16 State House Station Augusta, Maine 04333

Transportation Research Division

Technical Report 18-3

Live Load Testing and Load Rating of Five Reinforced Concrete T-Beam Bridges

August 2018

1. Report No.	2.	3. Recipient's Accession No.			
ME 18-3					
4. Little and Subtitle	ive Deinforced Concrete	5. Report Date			
T Desa Deides	The Reinforced Concrete	August 2018			
1-Beam Bridges		6			
		0.			
7. Author(s)		8. Performing Organization Ren	port No.		
Andrew Schanck E.L. William Davids F	h.D. P.E.	19-03-1414			
······································	· · · ·				
9. Performing Organization Name and Address		10. Project/Task/Work Unit No	·.		
Advanced Structures and Composites Co	enter	Project 017666.00 & 020	832.00		
University of Maine					
35 Flagstaff Rd.		11. Contract © or Grant (G) No			
Orono, ME 04469		Contract # 201604130000	000003122		
12 Sponsoring Organization Norse and All		12 True of Denset 1 D. 1	Correct		
12. Sponsoring Organization Name and Address		13. Type of Report and Period C	Jovered		
Mane Department of Transportation					
		14. Sponsoring Agency Code			
15. Supplementary Notes					
16 Abstract (Limit 200 and de)					
16. Abstract (Limit 200 words)					
Five reinforced T-beam bridges were to	ested during the summer o	f 2017 by the University o	f Maine (UMaine) as		
nort of this program for the Maine Dang	ested during the summer of	MainaDOT):	i Manie (OManie) as		
part of this program for the Manie Depa	intiment of Transportation (I	Mainebol).			
1 Canton No. 3356 School Street over	Whitney Brook				
1. Canton No. 5550 School Street over	winney brook,				
2 Dame No. 5422 Bidge Deed over Speers Streem					
2. Teru No. 5452 Mage Road over Spec	us sucani,				
3 Jackson No. 3776 Village Road over	Marsh Stream (North Bran	uch)			
5. Jackson No. 5776 Vinage Road over	Marsh Stream (North Bran	icii),			
A Alna No. 2130 Route 218 over Carlto	on (Trout) Brook				
4. Ana 10. 2150 Route 218 over Caria	JII (11000) BIOOK,				
5 Franklin No. 3307 Route 200 over C	ard's Mill Stream				
5. 1 fankini 10. 5507 Kode 200 over ea	ard s will Stream.				
Revised load ratings were compute	d using data collected	during live load testing	Details of bridge		
internet time had ratings were computed		during rive road testing	A Circlation The		
instrumentation, load cases, and strain	plots for each bridge are pr	ovided in Appendices A.1	to A.o inclusive. The		
results of the tests and analyses are sur	mmarized below and are c	ompared with the existing	ratings. Use of these		
revised load ratings, live load test data,	and extrapolation of these	results to other structures is	at the sole discretion		
of the bridge owner.					
17. Document Analysis/Descriptors 18. Availability Statement					
Bridge load rating, concrete T-beams, li					
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price		
		139			
	1	1	1		

Live Load Testing and Load Rating of Five Reinforced Concrete T-Beam Bridges

Prepared for: Dale Peabody P.E. Director Transportation Research Maine Dept. of Transportation 16 State House Station Augusta ME 04333-0016 University of Maine's Advanced Structures and Composites Center Report Number: 19-03-1414

2018-08-30-Rev00

Reviewed by:

Prepared by: Andrew Schanck EI Graduate Researcher

William Davids PhD, PE John C. Bridge Professor of Civil and Environmental Engineering Scott Tomlinson PE Research Engineer

This report shall not be reproduced, except in full, without the written approval of University of Maine's Advanced Structures and Composites Center.

CONFIDENTIAL

The University of Maine Advanced Structures and Composites Center is an ISO 17025 accredited testing laboratory, accredited by the International Accreditation Service.

Telephone: 207-581-2123 FAX: 207-581-2074 composites@maine.edu www.composites.umaine.edu

Name/ Organization	Date	Version	Action
Andrew Schanck, Author	2018-08-31	Rev00	Initial release to MaineDOT.
William Davids, Author			
Scott Tomlinson, Reviewer			

Document Log

Table of Contents

Iı	ndex of	Figures	3
Iı	ndex of	Tables	6
A	cronym	IS	6
E	xecutiv	e Summary	7
1		Bridge Testing Program	8
	1.1	Instrumentation	9
	1.2	Loading	10
	1.3	Typical Results	11
	1.4	Analysis Methodology	13
	1.4.1	Analysis Overview	. 13
	1.4.2	Bridge Characteristics	. 13
	1.4.3	AASHTO Distribution Factors	. 13
	1.4.4	AASHTO Live Loads with Impact	. 14
	1.4.5	AASHTO Rating Factor	. 14
	1.4.6	Live Loads Applied during Testing	. 15
	1.4.7	Verification of Uncracked Behavior	. 15
	1.4.8	Distribution Factors Determined from Live Load Testing	. 16
	1.4.9	Modified Rating Factor	. 17
2		Live Load Test Results	. 18
	2.1	Canton No. 3356	18
	2.2	Peru No. 5432	22
	2.3	Jackson No. 3776	25
	2.4	Alna No. 2130	27
	2.5	Franklin No. 3307	29
3		Summary of Live Load Test Data Conclusions	. 32
4		References	. 33
A	.1	Experimental Configuration and Data Collected	. 34
	A.1.1	Input Data	34
	A.1.2	Experimental Configuration	34
	A.1.3	Collected Data	34
A	2	Canton No. 3356	. 35
	A.2.1	Input Data, Experimental Configuration, and Experimental Data Collected	35

A.2.2	Instrumentation	
A.2.3	Loading	
A.2.4	Representative Data Plots	40
A.2.5	Rating Factor Calculations	44
A.3	Peru No. 5432	59
A.3.1	Input Data, Experimental Configuration, and Experimental Data Collected	59
A.3.2	Instrumentation	60
A.3.3	Loading	61
A.3.4	Representative Data Plots	64
A.3.5	Rating Factor Calculations	68
A.4	Jackson No. 3776	80
A.4.1	Input Data, Experimental Configuration, and Experimental Data Collected	80
A.4.2	Instrumentation	81
A.4.3	Loading	82
A.4.4	Representative Data Plots	85
A.4.5	Rating Factor Calculations	89
A.5	Alna No. 2130	101
A.5.1	Input Data, Experimental Configuration, and Experimental Data Collected	101
A.5.2	Instrumentation	102
A.5.3	Loading	103
A.5.4	Representative Data Plots	106
A.5.5	Rating Factor Calculations	110
A.6	Franklin No. 3307	121
A.6.1	Input Data, Experimental Configuration, and Experimental Data Collected	121
A.6.2	Instrumentation	121
A.6.3	Loading	122
A.6.4	Representative Data Plots	125
A.6.5	Rating Factor Calculations	129

Index of Figures

Figure 1: Typical strain sensor mounted under bridge, equipped with extension	. 9
Figure 2: BDI STS-Wi-Fi network setup for bridge sensor setup.	. 9
Figure 3: MaineDOT UBIT used to install sensors	10
Figure 4: Maine DOT (left) and contractor supplied (right) three axle trucks used for loading	11
Figure 5: State highway patrol certified portable truck scales used to verify vehicle weight for ea	ch
test	11
Figure 6: Jackson No. 3776 – MAX_2_1, center girder strains at midspan	12
Figure 7: Jackson No. 3776 – MAX_2_1, center girder strains at ends	13
Figure 8: Canton No. 3356 general condition	19

Figure 9: Canton No. 3356 original cross section	. 19
Figure 10: Canton No. 3356 redesigned cross section	. 20
Figure 11: Peru No. 5432 general condition	. 23
Figure 12: Jackson No. 3776 general condition	. 26
Figure 13: Alna No. 2130 general condition	. 28
Figure 14: Franklin No. 3307 general condition	. 30
Figure 15: Canton No. 3356 sensor layout	. 35
Figure 16: Canton No. 3356 Truck T01-211 loading	. 36
Figure 17: Canton No. 3356 Truck T01-272 loading	. 37
Figure 18: Canton No. 3356 Truck T01-901 loading	. 38
Figure 19: Canton No. 3356 Truck T01-904 loading	. 39
Figure 20: Canton No. 3356- BTB_2_1 strains - Midspan	. 40
Figure 21: Canton No. 3356- BTB_2_1 strains - Ends	. 40
Figure 22: Canton No. 3356- SBS_1_2 strains - Midspan	. 41
Figure 23: Canton No. 3356- 4 SBS_1_2 strains - Ends	. 41
Figure 24: Canton No. 3356- MAX_1_2 strains - Midspan	. 42
Figure 25: Canton No. 3356- MAX_1_2 strains – Ends	. 42
Figure 26: Canton No. 3356 - ALT_1_1 strains - Midspan	. 43
Figure 27: Canton No. 3356 – ALT_1_1 strains – Ends	. 43
Figure 28: Canton No. 3356 Calculations	. 44
Figure 29: Peru No. 5432 sensor layout	. 60
Figure 30: Peru No. 5432 Truck T01-211 loading	. 61
Figure 31: Peru No. 5432 Truck T01-272 loading	. 62
Figure 32: Peru No. 5432 Truck T01-901 loading	. 63
Figure 33: Peru No. 5432 Truck T01-904 loading	. 64
Figure 34: Peru No. 5432 – BTB_2_1 strains - Midspan	. 64
Figure 35: Peru No. 5432 – BTB_2_1 strains - Ends	. 65
Figure 36: Peru No. 5432 – SBS_2_1 - Midspan	. 65
Figure 37: Peru No. 5432 – SBS_2_1 – Ends	. 66
Figure 38: Peru No. 5432 – MAX_2_1 - Midspan	. 66
Figure 39: Peru No. 5432 – MAX_2_1 - Ends	. 67
Figure 40: Peru No. 5432 – ALT_2_1 - Midspan	. 67
Figure 41: Peru No. 5432 – ALT_2_1 - Ends	. 68
Figure 42: Peru No. 5432 Calculations	. 68
Figure 43: Jackson No. 3776 sensor layout	. 81
Figure 44: Jackson No. 3776 Truck 8A-5565 loading	. 82
Figure 45: Jackson No. 3776 Truck 791-040 loading	. 83
Figure 46: Jackson No. 3776 Truck T01-020 loading	. 84
Figure 47: Jackson No. 3776 Truck T01-175 loading	. 85
Figure 48: Jackson No. 3776 – BTB_2_1 strains - Midspan	. 85

Figure 49: Jackson No. 3776 – BTB_2_1 strains - Ends	86
Figure 50: Jackson No. 3776 – SBS_2_1 strains - Midspan	86
Figure 51: Jackson No. 3776 – SBS_2_1 strains – Ends	87
Figure 52: Jackson No. 3776 – MAX_2_1 strains - Midspan	87
Figure 53: Jackson No. 3776 – MAX_2_1 strains - Ends	88
Figure 54: Jackson No. 3776 – ALT_2_1 strains - Midspan	88
Figure 55: Jackson No. 3776 – ALT_2_1 strains - Ends	89
Figure 56: Jackson No. 3776 Calculations	89
Figure 57: Alna No. 2130 sensor layout	102
Figure 58: Alna No. 2130 Truck 1B-7321 loading	103
Figure 59: Alna No. 2130 Truck 8A-6132 loading	104
Figure 60: Alna No. 2130 Truck T01-169 loading	105
Figure 61: Alna No. 2130 Truck T01-914 loading	106
Figure 62: Alna No. 2130 – BTB_2_1 strains - Midspan	106
Figure 63: Alna No. 2130 – BTB_2_1 strains - Ends	107
Figure 64: Alna No. 2130 – SBS_2_1 strains - Midspan	107
Figure 65: Alna No. 2130 – SBS_2_1 strains – Ends	108
Figure 66: Alna No. 2130 – MAX_3_1 strains - Midspan	108
Figure 67: Alna No. 2130 – MAX_3_1 strains - Ends	109
Figure 68: Alna No. 2130 – ALT_2_1 strains - Midspan	109
Figure 69: Alna No. 2130 – ALT_2_1 strains - Ends	110
Figure 70: Alna No. 2130 Calculations	110
Figure 71: Franklin No. 3307 sensor layout	121
Figure 72: Franklin No. 3307 Truck T01-137 loading	122
Figure 73: Franklin No. 3307 Truck T01-166 loading	123
Figure 74: Franklin No. 3307 Truck T01-215 loading	124
Figure 75: Franklin No. 3307 Truck T01-286 loading	125
Figure 76: Franklin No. 3307 – BTB_2_1 strains - Midspan	125
Figure 77: Franklin No. 3307 – BTB_2_1 strains – Ends	126
Figure 78: Franklin No. 3307 – SBS_2_1 strains - Midspan	126
Figure 79: Franklin No. 3307 – SBS_2_1 strains - Ends	127
Figure 80: Franklin No. 3307 – MAX_2_1 strains - Midspan	127
Figure 81: Franklin No. 3307 – BTB_2_1 strains - Ends	128
Figure 82: Franklin No. 3307 – BTB_2_1 strains - Midspan	128
Figure 83: Franklin No. 3307 – BTB_2_1 strains - Ends	129
Figure 84: Franklin No. 3307 Calculations	129

Index of Tables

Table 1: Bridge Characteristics	
Table 2: Canton No. 3356 strains recorded from tests SBS_1_2 and MAX_1_1	
Table 3: Canton No. 3356 distribution factors	22
Table 4: Peru No. 5432 strains from tests SBS_2_1 and MAX_2_1	
Table 5: Peru No. 5432 distribution factors from recorded strains	
Table 6: Peru No. 5432 distribution factors assuming identical strains in girder 2 and 4	25
Table 7: Jackson No. 3776 strains from tests SBS_2_1 and MAX_2_1	
Table 8: Jackson No. 3776 distribution factors	
Table 9: Alna No. 2130 Strain and Neutral Axis Data	
Table 10: Alna No. 2130 distribution factors	
Table 11: Franklin No. 3307 Strain and Neutral Axis	
Table 12: Franklin No. 3307 distribution factors	31
Table 13: Canton No. 3356 input data, experimental configuration, and experimental data	collected
	35
Table 14: Peru No. 5432 input data, experimental configuration, and experimental data	collected
	59
Table 15: Alna No. 2130 input data, experimental configuration, and experimental data	collected
	101
Table 16:Franklin No. 3307 input data, experimental configuration, and experimental	ntal data
collected	121

Acronyms

Cases

AASHTO: American Association of State Highway and Transportation Officials	. 28
BDI: Bridge Diagnostics Inc	9
Maine DOT: Maine Department of Transportation	7
STS-WiFi: Wireless Structural Testing System	9
UBIT: Under Bridge Inspection Truck	. 10
UMaine: The University of Maine	7

Executive Summary

Five reinforced T-beam bridges were tested during the summer of 2017 by the University of Maine (UMaine) as part of this program for the Maine Department of Transportation (MaineDOT):

- 1. Canton No. 3356 School Street over Whitney Brook,
- 2. Peru No. 5432 Ridge Road over Spears Stream,
- 3. Jackson No. 3776 Village Road over Marsh Stream (North Branch),
- 4. Alna No. 2130 Route 218 over Carlton (Trout) Brook,
- 5. Franklin No. 3307 Route 200 over Card's Mill Stream.

Revised load ratings were computed using data collected during live load testing. Details of bridge instrumentation, load cases, and strain plots for each bridge are provided in Appendices A.1 to A.6 inclusive. The results of the tests and analyses are summarized below and are compared with the existing ratings. Use of these revised load ratings, live load test data, and extrapolation of these results to other structures is at the sole discretion of the bridge owner.

- 1. Canton No. 3356: On July 11, 2017, maximum applied loading produced 75% of HL-93 flexural service load with impact. The rating factors per AASHTO were 0.98 for interior, 2.48 for the original exterior girder, and 0.28 for the extended exterior girder. The extended exterior girder made this span the lowest capacity bridge tested. Applied loads were greater than the predicted capacity. Not surprisingly, measured extended exterior girder strains were the highest for any of the bridges and had the smallest compressive strength window for uncracked behavior. Using the provisions of the AASHTO *Manual for Bridge Evaluation* (AASHTO 2012), the rating factor for HL-93 was increased to 1.39 for the interior girders, 2.48 for the original exterior girder, and 0.30 for the extended girder.
- 2. Peru No. 5432: On July 13, 2017 87% of HL-93 flexural service loading with impact was produced from maximum loading. This was the highest loading for all bridges. The live load rating factors per AASHTO were 0.75 for the interior girders and 2.04 for the exterior girders. Overall, the strains measured at this bridge were highest, although it still exhibited uncracked section behavior. Rating factors were increased for this structure to 1.10 for interior girders and 2.55 for exterior girders, bringing this bridge to an acceptable operating flexural rating.
- 3. Jackson No. 3776: On July 18, 2017 70% of HL-93 flexural service loading with impact was produced for this under maximum loading. The initial rating factors per AASHTO were 0.69 for interior girders and 2.08 for exterior girders. Fairly low strain was produced compared to other bridges in the group due to the relatively small percentage of HL-93 loading, but rating factor increases were still allowable and uncracked section behavior was observed. Live load testing results allowed the rating factors to be increased to 1.20 for interior girders and 2.40 for exterior girders, bringing this bridge's flexural rating factors to acceptable values.
- 4. Alna No. 2130: On July 20, 2017 75% of HL-93 service flexural loading with impact was achieved under maximum applied load. This structure had near-acceptable AASHTO calculated rating factors of 0.92 for the interior and 1.01 for the exterior girders. Uncracked

section behavior was observed, and rating factor increases to 1.28 and 1.98 for interior and exterior girders, respectively, were justified, bringing this bridge's flexural rating factors to acceptable values.

5. Franklin No. 3307: On July 25, 2017 maximum applied loading produced 84% of HL-93 service flexural loading with impact. This bridge exhibited very low strains as compared with those predicted, exhibiting uncracked behavior and justifying rating factor increases from 0.92 and 2.78 to 1.61 and 5.03 for interior and exterior girders respectively. These increases brought this bridge's flexural rating factors to acceptable values.

1 Bridge Testing Program

Five reinforced concrete T-beam bridges were tested during the summer of 2017 as part of this program:

- 1. Canton No. 3356 School Street over Whitney Brook,
- 2. Peru No. 5432 Ridge Road over Spears Stream,
- 3. Jackson No. 3776 Village Road over Marsh Stream (North Branch),
- 4. Alna No. 2130 Route 218 over Carlton (Trout) Brook,
- 5. Franklin No. 3307 Route 200 over Card's Mill Stream.

All bridges were instrumented with a strain measuring system, loaded with heavy trucks, and then analyzed to determine whether it was reasonable to change the bridge rating factors based on the test results. These bridges were all constructed between 1936 and 1950, and were originally designed as simply supported with nominal concrete compressive strength of 2.5 ksi. The primary objective of this study was to determine more appropriate live-load rating factors for these bridges and to determine actual live load distribution factors. Recommendations for rating factor modifications are made based on the observed and computed response of these structures. Characteristics of the bridges tested and analyzed in this study are summarized in Table 1.

Bridge	Canton	Peru	Jackson	Alna	Franklin
Number	3356	5432	3776	2130	3307
Year Built	1936	1950	1941	1939	1941
Span - Center to Center of Bearings (feet)	27.50	40.50	31.00	27.00	43.08
Number of Girders	6	5	5	4	5
Girder Spacing (in)	67.5, 59.5	76	68.63	72,70	68.75
Total depth (in)	28.00	35.75	30.50	33.00	31.00
Girder web thickness (in)	18.5, 14	20.0	19.5	16,12	19
Slab Thickness (in)	6.50	5.75	5.50	8.00	5.75

	Table	1:	Bridge	Characteristic	s
--	-------	----	--------	----------------	---

1.1 Instrumentation

The strain measurement system utilized in this research was the Wireless Structural Testing System (STS-Wi-Fi) produced by Bridge Diagnostics Inc. (BDI). The system used a mobile base station to communicate with up to 6 nodes, with up to 4 strain transducers connected to each node. This system communicated with a dedicated laptop running BDI-specific WinSTS data acquisition software. A sample setup in the field is shown in Figure 1, with strain sensors mounted under the bridge at mid-span connected to battery operated wireless nodes. The sensors used in these tests were equipped with extensions which are also visible in Figure 1. These extensions increased the gauge length of the transducers so as to minimize the effect of local stress concentrations and concrete cracks. A schematic of the entire network is shown in Figure 2 including strain and displacement sensors, wireless nodes, the wireless base station, autoclicker, and the data recording laptop.

Figure 1: Typical strain sensor mounted under bridge, equipped with extension

Figure 2: BDI STS-Wi-Fi network setup for bridge sensor setup.

Strain transducers were mounted under the bridges using a MaineDOT Under Bridge Inspection Truck (UBIT) as shown in Figure 3. The sensors were mounted to the girders by first grinding the concrete to be as flat as possible, then using LOCTITE 410 rubberized instant adhesive with LOCTITE SF7453 accelerant to attach the strain transducer mounting tabs to the cleaned concrete. All structures had three strain gages mounted to each girder at midspan - one to the bottom of the slab, one at mid-depth of the web, and one at the web bottom face at mid-span - to give a complete picture of load distribution and peak flexural strains in each girder type: center, interior non-center, and exterior. Strain transducers were also installed near the ends of selected girders (generally exterior and central girders as the number of remaining transducers allowed) to determine the extent of any rotational restraint at the supports. Strain sensor layout varied slightly for some bridges, with individual sensor layouts shown in the appendices A.2.2 for Canton, A.3.2 for Peru, A.4.2 for Jackson, A.5.2 for Alna, and A.6.2 for Franklin.

Figure 3: MaineDOT UBIT used to install sensors

1.2 Loading

The vehicles used for this testing were Maine DOT standard three-axle dump trucks, and/or threeaxle trucks provided by contractors, as shown in Figure 4. Each truck wheel or pair of wheels was weighed using state patrol certified portable scales as shown in Figure 5. Various load cases were applied to each bridge, with each test given a specific identification code with the format: "Test Configuration_Test Position_Test Number". Test configurations included two trucks, one in each lane ("SBS"), two trucks in a single lane ("BTB"), four trucks, two in each lane arranged to produce maximum moment ("MAX"), and four trucks, two in each lane arranged to produce less than maximum moment ("ALT"). Test positions included load close to the first curb ("1"), load close to the bridge centerline ("2"), and load close to the opposite curb ("3"). Test number refers to the test index if a certain load case was repeated. In most cases at least three tests were completed

FM-PR-08(07)

for each configuration, one in each position, with the test in position "1" performed twice to verify repeatability. Not all bridges were subjected to all load cases.

Figure 4: Maine DOT (left) and contractor supplied (right) three axle trucks used for loading

Figure 5: State highway patrol certified portable truck scales used to verify vehicle weight for each test

1.3 Typical Results

Results from a representative test of one of the five bridges are presented in this section to overview the general trends seen. Jackson No. 3776 had typical geometry and results for all test configurations. Figure 6 shows a time history of the strains measured at midspan of the center girder during the MAX_2_1 test, and Figure 7 shows a time history of the strains recorded at the ends of the same girder during the same test. In this test, trucks were backed onto the bridge

sequentially and came to rest such that two trucks were arranged back to back in each lane, with their rear tandem wheels spaced approximately symmetrically about the midspan, with the trucks in the two lanes spaced about symmetrically with respect to the striped centerline, thereby maximizing applied moment. When all position measurements had been taken, the trucks were then removed from the bridge in reverse order. This sequential loading is seen in the strain plateaus in Figure 6 which clearly demark a truck backing onto, or pulling off the bridge. This figure also demonstrates the typical linear response to flexure seen across all bridges. The sensor at the section bottom recorded modestly high positive (tensile) strain at the maximum strain plateau, while the sensor at the top of the section recorded very small compressive strains and the sensor at the middepth of the section roughly split the difference. This strain distribution across the section indicates that section's neutral axis lies in the web, close to the bottom of the slab. The location of the neutral axis within the section, as well as the relatively low strains recorded, indicate that the section behaves as uncracked under test loading and has not experienced significant flexural cracking due to prior loading. Figure 7 shows the typical behavior of girder ends. At both ends of the girder, the bottom of the section experiences small tensile strains while the top of the section experiences very small compressive strains, mimicking the strain distribution at midspan. This indicates that very little, if any, unintended end restraint is present.

Figure 6: Jackson No. 3776 - MAX_2_1, center girder strains at midspan

Figure 7: Jackson No. 3776 - MAX_2_1, center girder strains at ends

1.4 Analysis Methodology

1.4.1 Analysis Overview

Material properties, load and resistance factors, and design live loads were taken from or calculated as specified in the AASHTO *Manual for Bridge Evaluation* and used with field-measured geometry to determine original nominal rating factors for each of the bridges. Bridges were then tested using heavily loaded trucks and strains were measured and correlated with these applied loads. Resulting strains from live load testing were then used to verify cracked/uncracked behavior and compute distribution factors determined from live load testing and modified rating factors. These calculation sheets are included in the appendices of this report. Appendix A.2.5 contains calculations for Canton No. 3356, A.3.5 pertains to Peru No. 5432, A.4.5 corresponds to Jackson No. 3776, A.5.5 is for Alna No. 2130, and A.6.5 is for Franklin No. 3307.

1.4.2 Bridge Characteristics

First, necessary parameters were defined for use in calculations. These included material properties for each bridge, as well as general bridge geometry (i.e. span length, girder section properties, and reinforcement layout and geometry). These were taken from each bridge's most recent available rating report or were based on minimum material properties specified by the AASHTO *Manual for Bridge Evaluation*. Dead load moments were determined from the bridge geometry and typical unit weights as specified in AASHTO *Manual for Bridge Evaluation*.

1.4.3 AASHTO Distribution Factors

Distribution factors for moment for interior and exterior girders are calculated based on in-situ measured bridge characteristics along with nominal values for dimensions that were not possible

to verify in the field in accordance with AASHTO *LRFD Bridge Design Specifications*. All live load distribution factors for moment are taken assuming cross-section "e" from Table 4.6.2.2.1-1 and "Cast-in-Place Concrete Tee Beam, Monolithic concrete." For moment on interior beams this is per Table 4.6.2.2.2b-1, with all ranges of applicability met. For the exterior girder moment distribution factors are per Table 4.6.2.2.2d-1, with all ranges of applicability met.

1.4.4 AASHTO Live Loads with Impact

1.4.5 AASHTO live loads with impact (LL + IM) per lane were determined as the maximum load effect with HL-93 per (6A.2.3) and AASHTO LRFD Design 3.6.1.2 and 3.6.2. This includes the worst case of truck or tandem loading with lane loads and impact as applicable. Girder moment was calculated based on this load and the AASHTO Distribution Factors calculated as described in section 1.4.3 of this report.AASHTO Rating Factor

Flexural rating factors are computed per AASHTO Manual for Bridge Evaluation (6A.4.2.1-1) with terms as defined in that section. Values specific to the bridges in this study are as shown in Equation 1. The live load per lane computed according to section 1.4.4 of this report with impact was multiplied by the AASHTO distribution factors as described in section 1.4.3 of this report. It should be noted that only flexural rating factors were computed as bridges were not instrumented to determine effects of shear. This implies that shear rating factors could not be improved based on measured strains.

$$RF = \frac{C - \gamma_{DC}DC - \gamma_{DW}DW \pm \gamma_{P}P}{\gamma_{LL}(LL + IM)}$$
Equation 1

$$C = \varphi_{c}\varphi_{s}\varphi R_{n} (6A.4.2.1-1)$$

$$\varphi_{c} = 1.0 \text{ per Table } 6A.4.2.3-1$$

$$\varphi_{s} = 0.85 - 1.0 \text{ per Table } 6A.4.2.4-1$$

$$\varphi = 0.9 \text{ per LRFD Design } 5.7.2.1$$

$$\gamma_{DC} = 1.25 \text{ per Table } 6A.4.2.2-1$$

$$\gamma_{DW} = 1.25 \text{ per Table } 6A.4.2.2-1 \text{ (field-measured dimensions, no coring)}$$

$$\gamma_{LL} = 1.35 \text{ per Table } 6A.4.2.2-1 \text{ (operating rating)}$$

$$R_{n} = A_{s}f_{y} \left(d_{s} - \frac{a}{2}\right) \text{ per LRFD Design } 5.7.3.2.2-1$$

$$P = 0 \text{ for all bridges in this study,}$$
no permanent loads
other than dead loads

1.4.6 Live Loads Applied during Testing

Applied moment loadings were determined based on measured truck axle weights for all load configurations. The average of axle loads for side-by-side trucks was used to allow live load distribution factors to be calculated and applied. The trucks were positioned to produce the maximum moment effect on the bridge, with the exception of the "ALT" test series, which was designed to apply less than maximum moment. Continuous data recording was started, and then trucks started moving onto the bridge in a serial manner. For each load configuration and position, trucks were moved onto the bridge one after another and the strains were allowed to plateau at the pre-determined configurations with data recording continuing during truck movement.

Applied moments were calculated assuming the bridges were simply supported. The percentage of AASHTO HL-93 loading achieved is the ratio of the moment produced by the live loads applied during testing and calculated per section 1.4.8 of this report and the moment produced by the AASHTO HL-93 loading as described in section 1.4.4 of this report.

1.4.7 Verification of Uncracked Behavior

For each bridge, the theoretical strains under test loading were computed and compared with the measured strains to verify whether concrete sections behaved as though they had remained uncracked. Theoretical strains were calculated as shown in Equation 2.

$$\varepsilon_C = \frac{DF * M_{max}}{E_c S}$$
Equation 2

DF = Distribution Factor per AASHTO LRFD Spec 4.6.2.2.2b-1 or 4.6.2.2.2d-1

 M_{max} = Maximum applied moment per girder

 E_c = Concrete elastic modulus per AASHTO LRFD SpecC5.4.2.4 - 1

S = Girder section modulus, uncracked or cracked

In all cases, E_c was calculated using the compressive strength specified by the AASHTO *Manual* for Bridge Evaluation, 2.5 ksi. In addition, strains were computed assuming a compressive strength of 5 ksi, which is more conservative and may more accurately reflect the in-service concrete compressive strength of these older structures. The maximum strains recorded were compared with these calculated values. Maximum strains equal to or less than the estimated uncracked strain indicated that the bridge remained uncracked with the assumed compressive strength, while strains greater than the theoretical uncracked strain indicated possible cracking. For all bridges, the strains measured in all girders under maximum loading were smaller than those predicted with uncracked sections and 5 ksi compressive strength. For this reason, the strains computed assuming 5 ksi concrete were used in calculating rating factor improvements.

As an additional comparison to help verify uncracked behavior, the measured neutral axis depth for all girders was determined under maximum loading using the recorded strains. These depths were taken relative to the top of the deck in the case of interior girders and the top of the integral curbs for exterior girders. Where present, integral concrete wearing surfaces were considered part of the sections. These neutral axis locations inferred from measured strains were compared to the sections' theoretical neutral axis locations based on conventional strength of materials assumptions. Neutral axis locations inferred from measured strains were determined using the strains recorded at girder bottoms and at mid-height. The strains measured at the bottom of the slab were generally not used per BDI's recommendation against relying on very small measured strains. In general, measured neutral axis locations tended to be consistent with either uncracked section behavior or fell between cracked and uncracked behavior ("partially cracked"). When behavior not consistent with either uncracked or partially cracked behavior was seen, it tended to be unreasonable and was assumed to be in error.

1.4.8 Distribution Factors Determined from Live Load Testing

The appropriate section modulus – uncracked or cracked – was determined based on results from 1.4.7. The moment carried by each girder was then calculated as per Equation 3.

$$M_i = E_c S_i \varepsilon_i$$
 Equation 3

 $M_i = Moment \ carried \ by \ girder \ i$ $E = Modulus \ of \ elasticity \ of \ girder$ $S_i = Section \ modulus \ of \ girder \ i$ $\varepsilon_i = Strain \ measured \ in \ girder \ i$

The distribution factor for each girder was then calculated by Equation 4.

$$DF_i = \frac{M_i}{\sum_{i=1}^n M_i}$$
 Equation 4

 DF_i = Distribution factor for girder i M_i = Moment carried by girder i n = Total number of girders

1.4.9 Modified Rating Factor

In accordance with the AASHTO *Manual for Bridge Evaluation*, the ratio of computed strain ε_c (based on the section behavior determined in 1.4.7) to measured strain ε_T was then used to compute a rating factor modifier as detailed below in Equation 5 to Equation 7. This analysis is based on the interior girder and exterior girder that experienced the largest measured strain.

$$RF_T = RF_c K$$
 Equation 5

In Equation 5, RF_T is the modified rating factor taking into account test results, RF_c is the rating factor based on standard calculations, and *K* is an adjustment factor specified by the AASHTO *Manual for Bridge Evaluation* that incorporates the test results. *K* is computed per Equation 6 below.

$$K = 1 + K_a K_b$$
 Equation 6

 K_a accounts for the difference between measured response based on load testing and expected response as shown below in Equation 7. K_b accounts for the magnitude of the applied test load and confidence in extrapolating results; and is defined in Table 8.8.2.3.1-1 in the AASHTO *Manual for Bridge Evaluation*. For all structures K_b was taken as 0.5 per the AASHTO *Manual for Bridge Evaluation*, which reflects both the magnitude of the applied load and assumes results cannot be extrapolated to higher loads.

$$K_a = \frac{\varepsilon_c}{\varepsilon_T} - 1$$
 Equation 7

2 Live Load Test Results

2.1 Canton No. 3356

The bridge in Canton, No. 3356 over Whitney Brook, is shown in Figure 8. Testing was conducted on July 11, 2017 with a maximum applied moment producing 75% of HL-93 loading with impact. The rating factors based on the AASHTO *LRFD Design Manual* and *Manual for Bridge Evaluation* are 0.98 and 2.48 for the interior and original exterior girders respectively. This bridge was unique in that its roadway was widened by utilizing an additional exterior girder. This girder was originally designed to support a sidewalk, as is shown from the original design drawings in Figure 8 but is now used to support traffic loading, as is shown in Figure 8. The rating factor computed per the AASHTO *MBE* for this extended girder was 0.28, making this bridge the lowest rating bridge of those tested. As expected, strains measured from this extended exterior girder were the largest measured from all exterior girders, while strains measured from the remaining girders were typical of other bridges. Table 2 shows the maximum measured strains for this bridge.

Assuming the nominal concrete compressive strength of 2.5 ksi specified, the strains recorded indicate the sections remain uncracked. Using a more conservative value of 5 ksi, the high strains recorded in the extended girder seem to indicate partially cracked behavior. This is supported by the observed neutral axis depths, which, with the exception of girders 3 and 5 which are likely in error, display uncracked behavior as can be seen in Table 3. Based only on the computed cracking strain, cracked behavior would be experienced in the exterior girder for compressive strengths greater than about 3.5 ksi. However, uncracked behavior was still assumed for the remaining girders as they experienced relatively low strains and their measured neutral axes indicated either uncracked or partially cracked behavior. These conditions allowed interior girder rating factors to be increased to 1.39 and the original exterior girder rating factor to be increased to 5.69. Conservatively using its uncracked section modulus to predict strain response, the extended exterior girder's rating factor could be increased to 0.30.

The live load distribution factors determined from the measured strains and those calculated per AASHTO are shown in in Table 3, and generally indicate that the AASHTO distribution factors are conservative with the exception of girder 1 – the extended exterior girder. It should be noted as well that due to technical issues, tests could not be conducted at load position 2 (trucks centered about the roadway centerline) for this bridge, which may have led to a more even distribution of live load. As shown in Table 2, strain measured at the ends of the girders indicate very little, if any, end restraint.

Figure 8: Canton No. 3356 general condition

Figure 9: Canton No. 3356 original cross section

Figure 10: Canton No. 3356 redesigned cross section

Ca	Canton SBS 1 2			MAX_1_1			
		Midspan	Abutment 1	Abutment 2	Midspan	Abutment 1	Abutment 2
Girder	Location	με	με	με	με	με	με
	Тор	3.47	-2.34	-	5.71	-3.20	-
1	Center	9.87	-	-	13.0	-	-
	Bottom	50.6	-0.38	-3.84	78.5	5.70	-0.63
	Тор	6.98	-	-	4.93	-	-
2	Center	21.1	-	-	29.3	-	-
	Bottom	49.8	-	-	66.9	-	-
	Тор	2.01	-0.57	-	2.67	-1.22	-
3	Center	44.5	-	-	45.4	-	-
	Bottom	59.1	0.89	2.64	72.6	8.49	3.16
	Тор	0.13	-	-	-0.70	-	-
4	Center	19.9	-	-	27.4	-	-
	Bottom	49.1	-	-	63.2	-	-
	Тор	1.26	-	-	1.79	-	-
5	Center	15.0	-	-	20.1	-	-
	Bottom	22.0	-	-	31.2	-	-
	Тор	0.90	-	_	2.61	-	-
6	Center	3.47	-	_	6.76	-	-
	Bottom	9.93	-	-	18.0	-	-

Table 2: Canton No. 3356 strains recorded from tests SBS_1_2 and MAX_1_1

Table 3: Canton No. 3356 neutral axis depths

Girder	Uncracked NA Depth (in)	Cracked NA Depth (in)	Measured NA Depth (in)
1	17.9	11.5	26.8
2	12.2	7.60	12.7
3	12.2	7.60	2.93
4	12.2	7.60	13.0
5	12.2	7.60	1.59
6	19.5	13.9	22.04

Canton		SBS	_1_2	MAX_1_1		
Girder	AASHTO DF	Measured DF % Difference		Measured DF	% Difference	
1	0.438	0.436	-0.5%	0.496	13%	
2	0.611	0.398	-35%	0.393	-36%	
3	0.611	0.472	-23%	0.424	-31%	
4	0.611	0.392	-36%	0.360	-41%	
5	0.611	0.175	-71%	0.171	-72%	
6	0.438	0.127	-71%	0.155	-65%	

Table 4: Canton No. 3356 distribution factors

2.2 Peru No. 5432

The bridge in Peru, No. 5432 over Spears Stream, is shown in Figure 11. Testing was conducted on July 13, 2017 with maximum applied moment producing 87% of HL-93 flexural service load with impact. This is the highest percentage of HL-93 load applied among all the bridges. This led to some of the highest strains recorded of all the bridges tested, as shown in Table 4. Despite these high strains, the girders behaved as uncracked when both the nominal 2.5 ksi compressive strength, and when the more conservative 5 ksi was used to predict strains. Based on a computed modulus of rupture, uncracked behavior would be experienced for compressive strengths up to around 5 ksi. Further evidence for uncracked behavior is provided by the measured neutral axis depths which tended to be consistent with uncracked or partially cracked behavior as seen in Table 5. The originally computed rating factors based on the AASHTO *LRFD Design Manual* and *Manual for Bridge Evaluation* are 0.75 and 2.04 for the interior and exterior girders respectively. Under the conditions experienced during testing, the interior and exterior rating factors were able to be increased to 1.10 and 2.55, bringing both flexural rating factors to acceptable operating levels.

The live load distribution factors determined per AASHTO as well as those experimentally determined from measured strains are given in Table 5. The AASHTO distribution factors are quite conservative. However, as can be seen in Table 4, the strain reading at the bottom sensor of girder 2 is likely in error as it reads a value of strain very close to that measured at the girder's mid-depth.

The distribution factors resulting from replacing the recorded strain in girder 2 with that recorded in girder 4 are presented in Table 5. The distribution factor for girder 2 calculated in this way is more consistent with the distribution factors calculated for the other girders and is still much smaller than the distribution factor predicted by AASHTO. It is evident from the girder end strains reported in Table 4 that any unintended end restraint was negligible.

Figure 11: Peru No. 5432 general condition

Г)	SBS 2-1			MAV 2 1		
1	reru	SDS_2_1		NIAA_2_1			
		Midspan	Abutment 1	Abutment 2	Midspan	Abutment 1	Abutment 2
Girder	Location	με	με	με	με	με	με
	Тор	-3.44	-3.35	-	-5.34	-2.43	-
1	Center	2.39	-	-	3.41	-	-
	Bottom	30.00	7.39	-0.54	46.47	12.12	-
	Тор	-3.29	-	-	-6.05	-	-
2	Center	18.59	-	-	27.46	-	-
	Bottom	18.81	-	-	26.56	-	-
	Тор	-5.35	-2.60	-	-9.71	-2.19	-
3	Center	19.57	-	-	27.26	-	-
	Bottom	56.34	3.66	-2.29	77.96	-1.33	1.25
	Тор	-0.48	-	-	-5.91	-	-
4	Center	22.10	-	-	33.22	-	-
	Bottom	60.52	-	-	87.34	-	-
5	Тор	-3.97	0.83	-	-5.20	-4.23	-
	Center	15.46	-	-	28.38	-	-
	Bottom	34.77	11.71	-0.43	55.16	14.88	0.45

Table 5: Peru No. 5432 strains from tests SBS_2_1 and MAX_2_1

Table 6: Peru No. 5432 neutral axis depths

Girder	Uncracked NA Depth (in)	Cracked NA Depth (in)	Measured NA Depth (in)
1	22.9	15.5	31.6
2	15.4	9.00	12.5
3	15.4	9.00	16.8
4	15.4	9.00	15.5
5	22.9	15.5	16.9

Table 7: Peru No. 5432 distribution factors from recorded strains

Peru		Two T	rucks	Four Trucks		
Girder	AASHTO DF	DF Measured DF % Difference		Measured DF	% Difference	
1	0.473	0.360	-24%	0.382	-19%	
2	0.68	0.186	-73%	0.161	-76%	
3	0.68	0.500	-26%	0.474	-30%	
4	0.68	0.537	-21%	0.530	-22%	
5	0.473	0.417	-12%	0.453	-4%	

Peru		Two T	rucks	Four Trucks	
Girder AASHTO DF		Measured DF	% Difference	Measured DF	% Difference
1	0.473	0.306	-35%	0.322	-32%
2	0.68	0.457	-33%	0.448	-34%
3	0.68	0.425	-38%	0.400	-41%
4	0.68	0.457	-33%	0.448	-34%
5	0.473	0.355	-25%	0.382	-19%

Table 8: Peru No. 5432 distribution factors assuming identical strains in girder 2 and 4

2.3 Jackson No. 3776

The bridge in Jackson, No. 3776 over the North Branch of Marsh Stream, is shown in Figure 12. Testing was conducted on July 18, 2017 with maximum applied moment producing 70% of HL-93 moment with impact. This was the smallest percentage of HL-93 moment with impact applied to any of the bridges tested, and just barely qualifies the load test to be useful in improving live load rating. As a result, the strains recorded were among the smallest on any bridges tested, as shown in Table 7. Rating factors determined per AASHTO equaled 0.69 and 2.08 for interior and exterior girders respectively. When compared with predicted strains using both the nominal and conservative compressive strengths of 2.5 ksi and 5 ksi respectively, the recorded strains indicated uncracked behavior. This uncracked behavior would theoretically continue with compressive strengths up to around 5.5 ksi. The measured neutral axis depths also provide evidence for uncracked behavior. For all girders, the measured neutral axis depths indicate uncracked or nearly uncracked behavior as seen in Table 8. These conditions allowed for the interior and exterior rating factors to be increased to 1.20 and 2.40 respectively.

The live load distribution factors determined per AASHTO as well as those experimentally determined from measured strains are given in Table 8. The results of experimental determination would suggest that AASHTO's distribution factors are somewhat conservative. However, Table 7 shows that the measured strain at the bottom of the midspan section of girder 2 is large in comparison to the other measured strains for the tests reported. This may be due to some cracking in this particular girder that was not visible. Regardless, the AASHTO distribution factors remain conservative, with the exception of girder 5. It is evident from the girder end strains reported in Table 7 that any unintended end restraint was negligible.

Figure 12: Jackson No. 3776 general condition

Jackson		SBS_2_1			MAX_2_1		
		Midspan	Abutment 1	Abutment 2	Midspan	Abutment 1	Abutment 2
Girder	Location	με	με	με	με	με	με
	Тор	-1.68	0.72	-	-2.40	0.93	-
1	Center	8.37	-	-	12.86	-	-
	Bottom	21.95	1.08	1.69	30.27	2.22	6.49
	Тор	-1.36	-	-	-2.08	-	-
2	Center	15.58	-	-	20.27	-	-
	Bottom	54.6	-	-	67.69	-	-
	Тор	-2.43	-0.81	-	-2.22	-0.57	-
3	Center	17.29	-	-	24.07	-	-
	Bottom	44.57	4.21	4.71	57.69	11.56	11.78
	Тор	-	-	-	-	-	-
4	Center	12.8	-	-	19.01	-	-
	Bottom	38.95	-	-	53.94	-	-
	Тор	0.322	-1.49	-	-0.740	-3.17	-
5	Center	3.09	-	-	5.75	_	-
	Bottom	27.41	1.34	0.42	44.79	4.93	2.55

Table 9: Jackson No. 3776 strains from tests SBS_2_1 and MAX_2_1

Girder	Uncracked NA Depth (in)	Cracked NA Depth (in)	Measured NA Depth (in)
1	20.9	14.1	23.4
2	13.4	7.70	16.7
3	13.4	7.70	13.1
4	13.4	7.70	15.4
5	20.9	14.1	28.2

Table 10: Jackson No. 3776 neutral axis depths

Jackson		SBS	_2_1	MAX_2_1	
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference
1	0.396	0.299	-24%	0.300	-24%
2	0.635	0.525	-17%	0.474	-25%
3	0.635	0.428	-33%	0.404	-36%
4	0.635	0.374	-41%	0.378	-40%
5	0.396	0.373	-6%	0.444	12%

Table 11: Jackson No. 3776 distribution factors

2.4 Alna No. 2130

The bridge in Alna, No. 2130 over Carlton (Trout) Brook, is shown in Figure 13. Testing occurred on July 20, 2017 with maximum applied moment producing 75% of HL-93 live load with impact. Rating factors determined per AASHTO equaled 0.92 and 1.01 for interior and exterior girders respectively. The recorded strains presented in Table 9 indicate uncracked behavior when compared with predicted strains using both the nominal and conservative compressive strengths of 2.5 ksi and 5 ksi respectively. Uncracked behavior would theoretically continue up to a compressive strength around 8 ksi based on a nominal computed modulus of rupture. Measured neutral axis height tends to confirm uncracked behavior for girders 2, 3, and 4. However, the measured neutral axis height for girder 1 is unreasonable (outside of the section) and so was determined to be in error. This can be seen in Table 9 These conditions allowed for interior and exterior and exterior rating factors to be increased to 1.28 and 1.98 respectively.

The live load distribution factors determined per AASHTO as well as those experimentally determined from measured strains are given in Table 10. For exterior girders, AASHTO is very conservative. However, for interior girders, the AASHTO distribution factors appear to be unconservative. Alna No 2130 is the only structure for which this is the case. One possible cause is that Alna has only four girders compared to five for all other structures tested. It is surprising that so little load is drawn to the exterior girders given that the bridge's curb and railing were recently replaced and are quite massive. It would seem that such a large mass of concrete would add significantly to the stiffness of the girders. However, the girder, curb, and railing may not act fully compositely, decreasing the beneficial stiffening effect. From the relatively large negative

FM-PR-08(07)

girder end strains reported in Table 9, it would seem that a small amount of unintended end restraint was experienced during the SBS_2_1 test. However, this was not seen in the MAX_2_1 test and so it should not be regarded as a reliable beneficial effect.

Figure 13: Alna No. 2130 general condition

A	Alna		SBS_2_1			MAX_2_1		
		Midspan	Abutment 1	Abutment 2	Midspan	Abutment 1	Abutment 2	
Girder	Location	με	με	με	με	με	με	
	Тор	3.60	-0.07	-	2.46	2.74	-	
1	Center	12.05	-	-	10.81	-	-	
	Bottom	14.43	0.69	-2.45	12.12	4.56	0.77	
	Тор	-2.97	-0.81	-	-5.29	-1.50	-	
2	Center	17.25	-	-	17.55	-	-	
	Bottom	47.97	-3.80	-5.71	47.06	3.28	5.74	
	Тор	-4.84	-1.82	-	-7.55	-3.84	-	
3	Center	18.31	-	-	17.62	-	-	
	Bottom	59.28	-4.09	-10.11	56.37	-0.42	0.24	
	Тор	-	-0.17	-	-	-0.19	-	
4	Center	8.498	-	-	9.07	-	-	
	Bottom	22.18	-0.18	-2.15	19.71	-0.07	1.04	

Table 12: Alna No	. 2130 Strain and	d Neutral Axis Data
-------------------	-------------------	---------------------

Girder	Uncracked NA Depth (in)	Cracked NA Depth (in)	Measured NA Depth (in)
1	21.2	15.1	-17.1
2	12.2	7.70	12.6
3	12.2	7.70	14.8
4	21.2	15.1	25.4

Table 13: Alna No. 2130 neutral axis depths

Alna		SBS_2_1		MAX_2_1	
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference
1	0.485	0.201	-59%	0.185	-62%
2	0.707	0.663	-6%	0.667	-6%
3	0.707	0.827	17%	0.829	17%
4	0.485	0.309	-36%	0.319	-34%

 Table 14: Alna No. 2130 distribution factors

2.5 Franklin No. 3307

The bridge in Franklin, No. 3307 over Card's Mill Stream, is shown in Figure 14. Testing occurred on July 25, 2017 with maximum applied moment producing 84% of HL-93 load with impact. Rating factors determined per AASHTO equaled 0.92 and 2.78 for interior and exterior girders respectively. Measured strains given in Table 11 indicate uncracked behavior when compared with strains predicted using the nominal 2.5 ksi compressive strength or the more conservative 5 ksi. Based on the models by AASHTO, the section would remain uncracked for compressive strengths up to 11 ksi. This behavior is supported by the measured neutral axis depths, which indicate uncracked or partially cracked behavior for all girders as seen in Table 12. Based on these conditions, the interior and exterior flexural rating factors could be increased to 1.61 and 5.03 respectively.

The live load distribution factors determined per AASHTO as well as those experimentally determined from measured strains are given in Table 12. It is clear that for all girders AASHTO is conservative and this conservatism is relatively consistent across both presented load cases. Notably, the measured distribution factors seem to increase from the exterior girders to the center girder and are reasonably symmetric about the center girder. This is somewhat unexpected as the deck had a significant side-slope to conform to road super-elevation and because this symmetric behavior was not seen in other bridges. It is evident from the girder end strains reported in Table 11 that any unintended end restraint was negligible.

Figure 14: Franklin No. 3307 general condition

Franklin		SBS 2 1			MAX 2 1		
		Midspan	Abutment 1	Abutment 2	Midspan	Abutment 1	Abutment 2
Girder	Location	με	με	με	με	με	με
1	Тор	0.46	-0.83	-	1.33	-3.67	-
	Center	11.56	-	-	16.74	-	-
	Bottom	30.9	-0.17	-0.01	44.31	-5.04	1.54
2	Тор	-8.43	-	-	-8.43	-	-
	Center	16.82	-	-	25.45	-	-
	Bottom	41.3	-	-	58.21	-	-
3	Тор	-7.16	1.57	-	-8.97	-0.07	-
	Center	19.63	-	-	27.27	-	-
	Bottom	55.65	8.42	-0.12	76.16	7.09	2.82
4	Тор	-	-	-	-	-	-
	Center	14.44	-	-	21.61	-	-
	Bottom	45.29	-	-	62.48	-	-
5	Тор	-4.95	0.27	-	-	-0.64	-
	Center	6.44	-	-	11.06	-	-
	Bottom	25.24	1.28	-2.79	38.65	-1.34	-4.96

Table 15: Franklin No. 3307 Strain and Neutral Axis

Table 16: Franklin No. 3307 neutral axis depths

Girder	Uncracked NA Depth (in)	Cracked NA Depth (in)	Measured NA Depth (in)
1	22.0	16.1	23.3
2	14.2	9.20	12.7
3	14.2	9.20	15.4
4	14.2	9.20	15.8
5	22.0	16.1	26.0

Table 17: Franklin No. 3307 distribution factors

Franklin		SBS_2_1		MAX_2_1	
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference
1	0.432	0.319	-27%	0.324	-25%
2	0.6	0.413	-31%	0.412	-31%
3	0.6	0.556	-7%	0.539	-10%
4	0.6	0.453	-25%	0.442	-26%
5	0.432	0.260	-40%	0.282	-35%

3 Summary of Live Load Test Data Conclusions

Analyses of the tested bridges are described in detail in Section 2. In general, calculations were based on mechanics of materials principles and AASHTO code requirements including the *Manual for Bridge Evaluation*.

Overall, a high percentage of HL-93 loading with impact was applied to the structures. In all cases, the maximum applied moment was at least 70% of HL-93 service moment with impact, which is required to justify rating factor increases per the AASHTO *Manual for Bridge Evaluation*. Numerically, this translates to a test understanding factor, k_b equal to 0.5 for all bridges, which effectively reduces the measured benefit by 50% Because measured strains were invariably smaller than those predicted, all test benefit factors, k_a were greater than zero, and all rating factors could be increased based on measure strains.

Live load distribution factors inferred from the test data showed reasonable agreement with AASHTO-recommended values, although the AASHTO values are generally conservative. The maximum differences between values inferred from the tests and values computed per AASHTO were observed for the bridge in Canton. However, these differences may have been less pronounced for symmetric load cases.

Assuming the nominal specified concrete compressive strength of 2.5 ksi, all bridges exhibited uncracked behavior under maximum applied moment. With the exception of the bridge in Canton, the assumption of uncracked behavior could be extended to strains predicted for a compressive strength of 5 ksi or greater, continuing to 11 ksi for the bridge in Franklin. This observation is significant in that it is possible that the actual compressive strengths of the concrete in these bridges is significantly greater than the nominal value specified by AASHTO given their age and condition.

The test results and analyses presented here justify significant increases in the rating factors for four of the five bridges according to the AASHTO *Manual for Bridge Evaluation*. The average increase in HL-93 flexural operating rating factors for the critical interior girders of all bridges was 55.6%, with minimum and maximum increases of 41.8% and 74.9% respectively. All rating factor increases have been calculated based on the assumption that the observed results cannot be confidently extrapolated to loads of 30% beyond that produced by HL-93 load with impact, largely due to uncertainty of uncracked section behavior at higher loads.

With the exception of the bridge in Canton, each bridge's controlling operating flexural rating factor could be increased to 1.0 or greater for HL-93 loading with impact, indicating that they are sufficient for such loading. For the case of the bridge in Canton, the controlling rating factor of 0.30 is for the exterior girder originally supporting a sidewalk that was re-purposed to support traffic loads. The remaining girders of the Canton bridge had increased flexural rating factors above 1.0.

4 References

- 1. AASHTO (2010). "The Manual for Bridge Evaluation (2nd Ed)." American Association of State Highway and Transportation Officials, Washington DC. (with 2015 Interirm Revisions).
- AASHTO (2012). "AASHTO LRFD Bridge Design Specifications (Customary U.S. Units)." American Association of State Highway and Transportation Officials, Washington DC. doi:978-1-56051-523-4.

A.1 Experimental Configuration and Data Collected

For each of the five bridges tested, a collection of data files is provided which contains input data, experimental configuration data, and data collected during tests. The files pertaining to each bridge are tabulated in the following appendices.

A.1.1 Input Data

Input data for each bridge include bridge geometries, material properties, and sensor layouts. Section properties for interior and exterior girders are also listed in separate Comma Separated Variable (.csv) files, labeled and in units of inches to the appropriate power.

A .csv is also provided which gives a list of the serial numbers of the sensors in the order as well as a MATLAB variable file (.mat) giving the layout of those sensors on each bridge. The sensor list .csv file provides sensors in the order that they are used and tabulated by STS-WiFi, and consequently in resulting test data. The sensor layout gives relative positions of sensors as they appeared for each bridge. Each girder is represented by three rows of data representing its top, middle and bottom respectively. Each collection of rows is placed in its relative position as it appears on the bridge. From left to right, columns represent the end receiving two sensors, mid-span, and the end receiving one sensor respectively. In this way, the relative position of each sensor can be determined. For example, a sensor in the second column of the second row would represent a sensor placed at mid-height of the first girder at midspan.

A.1.2 Experimental Configuration

Experimental configuration data includes data on the loading trucks. Each test includes a .mat file containing information on the trucks used to test it. The truck .mat file contains structured arrays for each truck, containing its plate number, truck number in relation to each test, individual wheel weights (in pounds), lengths (center to center of wheels; side, front and back in inches), wheel bearing surface widths (front to back in inches), and wheel bearing lengths (front to back in inches).

A.1.3 Collected Data

For each test configuration, a .mat file is provided which contains strain data recorded during the test. This data has been rectified by a linear correction function to correct for the sensors' tendency to drift its zero-point during a test.
A.2 Canton No. 3356

A.2.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 18: Canton No. 3356 input data, experimental configuration, and experimental data collected

File Contents	File Name	File Type
Exterior Section Data	Br3356_Geom _Ext.csv	CSV Format
Interior Section Data	Br3356_Geom_Int.csv	CSV Format
Sensors	Br3356 _Sensors.csv	CSV Format
Sensor Layout	Br3356 _SensorLayout.mat	MATLAB Data File
Truck Weight and Dimensions	Br3356_Trucks.mat	MATLAB Data File
Sensor Data	Br_3356_ALT_1_1_Strain.mat	MATLAB Data File
	Br_3356_BTB_1_1_Strain.mat	MATLAB Data File
	Br_3356_BTB_1_3_Strain.mat	MATLAB Data File
	Br_3356_BTB_2_1_Strain.mat	MATLAB Data File
	Br_3356_MAX_1_1_Strain.mat	MATLAB Data File
	Br_3356_MAX_1_2_Strain.mat	MATLAB Data File
	Br_3356_SBS_1_1_Strain.mat	MATLAB Data File

A.2.2 Instrumentation

Figure 15: Canton No. 3356 sensor layout

A.2.3 Loading

Figure 16: Canton No. 3356 Truck T01-211 loading

Figure 17: Canton No. 3356 Truck T01-272 loading

Figure 18: Canton No. 3356 Truck T01-901 loading

Figure 19: Canton No. 3356 Truck T01-904 loading

A.2.4 Representative Data Plots

Figure 21: Canton No. 3356- BTB_2_1 strains - Ends

Figure 23: Canton No. 3356- 4 SBS_1_2 strains - Ends

Figure 24: Canton No. 3356- MAX_1_2 strains - Midspan

Figure 25: Canton No. 3356- MAX_1_2 strains – Ends

Figure 26: Canton No. 3356 – ALT_1_1 strains – Midspan

Figure 27: Canton No. 3356 – ALT_1_1 strains – Ends

A.2.5 Rating Factor Calculations

Figure 28: Canton No. 3356 Calculations

AASHTO Rating Calculations:		
Bridge 3356 - Canton, Maine		
Material Parameters:		
Concrete Compressive Strength		$f_{c}' = 5$ ksi
Reinforcement Yield Strength		$F_y := 33$ ksi
Unit Weights: Reinforced Concrete, Wearing Surface	$\gamma_{RC} \coloneqq 0.150 \; rac{m{kip}}{m{ft}^3} = \gamma_{ws} \colon$	$=0.144 \frac{kip}{ft^3}$
Concrte Elastic Modulus - LRFD Design C5.4.2.4-1	$E_c \coloneqq 1820 \ \textit{ksi} \cdot \sqrt{\frac{f'_c}{\textit{ksi}}} = \langle 4.0$	$7\cdot 10^3ig angle$ ksi
Geometric Properties:		T. 07 E
Span Lengu		
Girder Spacing - Interior and Exterior	$S \coloneqq 67.5$ in	$S_x = 46$ in
Number of Girders		$NG \coloneqq 6$
Skew Angle		$skew \coloneqq 0$ *
Width and Number of Lanes	$lanewidth \coloneqq 13.5~{\it ft}$	$Nlane \coloneqq 2$
Wearing Surface Thickness		$ws \coloneqq 4$ in
Girder Height - Interior, Exterior	$h \coloneqq 28$ in	$h_x \coloneqq 28$ in
Deck Thickness		$d_s \! \coloneqq \! 6.5$ in
Web Height - Interior, Exterior	$d_g \coloneqq h - d_s$ d	$_{gx} \coloneqq h_x - d_s$
Web Thickness - Interior, Exterior	$b_w \coloneqq 18.5$ in b	_{wx} = 18.5 in
Distance from Centerline of Girder to Edge of Curb	d	e = -5.75 in
Height of Curb Above Deck	h	$_{curb} \coloneqq 12$ in
Width of Curb	Ъ	$_{curb} \coloneqq 18$ in

Height to Centroid of Reinforcement - Interior, Exterior		$y_{bar} \coloneqq$	$egin{array}{c} 3 \\ 4.67 \\ 5.5 \\ 4.67 \\ 3 \\ \end{array}$	 in 	yı	barx ≔	$\begin{bmatrix} 3 \\ 4.63 \\ 5.5 \\ 4.63 \\ 3 \end{bmatrix}$	7 in 7
Dictance Between Centroids of Deck and Web					$e_g \coloneqq$	$\frac{d_g + a}{2}$	$\frac{l_s}{-}=1$	4 in
Depth of Reinforcement - Interior, Exterior		$d \coloneqq$	$h - y_b$	ar	$d_x \coloneqq$	$h_x - y$	lbarx -	⊢ h _{curb}
Area of Reinforcement at All Changes -	s:=	5.0625 7.0625 9.0625 7.0625 5.0625	 in ²		A_{sx} ::	$\begin{bmatrix} 5.0 \\ 7.0 \\ 9.0 \\ 7.0 \\ 5.0 \end{bmatrix}$	$\begin{array}{c} 625 \\ 625 \\ 625 \\ 625 \\ 625 \\ 625 \\ \end{array}$	in ²
Load and Analysis Parameters						L ANNOUS		
Concentrated Load Due to Diaphragms on One Girder					P	dínt :=	0 kij	D
Resistance Factors - Structural Dead load, Weading Surfa	ice, I	Live Lo: $\gamma_{DC} \coloneqq$	ad 1.25	γ _{DW} ∶	=1.2	5 γ.	$_{LL} :=$	1.35
Impact Factor						II	M := 0	0.33
Resistance Factor							$\phi \coloneqq$	=.9
System Factor							ϕ_s :	=1.0
Condition Factor							ϕ_c :	=1.0
Distributed Load Due to Rail					w	$p_{rail} := 0$	0.017	$\frac{kip}{ft}$
Eccentricity of Centerline of Girders w.r.t. Centerline of Roadway						exc:	=2.5	2 in
						P _{dex}	t := -	dínt 2

Distribution Destaur								
Distribution Factors								
Area and Moment of Inertia of Web		$4 \coloneqq d_g \cdot b_i$	w=397.	75 in ².	$I := \frac{b_w}{1}$	$\frac{d_g^3}{2}$	= (1.53)	$32 \cdot 10^4 \rangle in^4 n \coloneqq 1$
Modular Ratio - Deck and Web								
Longitudinal Stiffness Parameter			K_{g}	g≔n•($I + A \cdot e$	$\left(g^{2}\right) =$	=(9.32	$\left.8\!\cdot\!10^{4} ight angle$ in 4
Interior Moment Distribution Factor		$g_{m1} := 0$	0.06+(-	$\left(\frac{S}{14 \ ft}\right)$	$\cdot \left(\frac{S}{L}\right)$	0.3	$\left(\frac{K_g}{L \cdot d_s^3} \right)$	-) ^{0.1} =0.496
	4	$g_{m2} := 0.0$	$75 + \left(\frac{1}{9}\right)$	$\left(\frac{S}{.5 ft}\right)^{0}$	$\cdot \left(\frac{S}{L}\right)^{c}$	•	$\frac{K_g}{L \cdot d_s^3}$	$\Big ^{0.1} = 0.611$
						g_m	$= \max$	$\langle g_{m1}, g_{m2} \rangle$
Roadway Width					и	7 _r :=	lanewi	dth•Nlane
Eccentricity of Design Lane From Center of Gravity of Girders					$e_1 \coloneqq$	$\frac{W_r}{2}$	–5 ft ∙	+exc=8.71 j
Eccentricity of Exterior Girder From Center of Gravity of Girders					$X_{ext} \coloneqq ($	NG	$-1) \cdot \frac{s}{2}$	<u>-</u> =14.063 ft
Eccentricity of Each Girder							a x3:=	$\begin{array}{c} x_1 \coloneqq X_{ext} \\ z_2 \coloneqq X_{ext} - S \\ \equiv X_{ext} - 2 \cdot S \end{array}$
				$x_4: x_5: x_6: x_7: x_7: x_7: x_7: x_7: x_7: x_7: x_7$	= if {NC = if {NC = if {NC = if {NC	$\vec{x} > 3$ $\vec{x} > 4$ $\vec{x} > 5$ $\vec{x} > 6$	$, X_{ext} - , X_{ext} - $	$egin{array}{l} -3 \cdot S, 0 {\it ft} angle \ -4 \cdot S, 0 {\it ft} angle \ -5 \cdot S, 0 {\it ft} angle \ -6 \cdot S, 0 {\it ft} angle \end{array}$
Lever Rule - One Design Lane	$R_1 \coloneqq \frac{1}{I}$	$\frac{1}{\sqrt{G}} + \frac{1}{x_1^2}$	$x^{2} + x_{2}^{2} +$	$\frac{X_{0}}{-x_{3}^{2}+}$	$e_{xt} \cdot e_1$ $x_4^2 + x_5$	$\frac{2}{5} + 3$	$x_6^2 + x_6^2$	$\frac{1}{2} = 0.388$
				<i>a</i> _{m ₽1} ::	$= \mathbf{i} \mathbf{f} \langle P_{x} \rangle$.>(1.2.	$B_{1},0\rangle = 0$

Total Exterior Dead Load		DC_x :	=w _{girderx} +1	$w_{deckx} + w_{ns} =$	=0.78 <u>kip</u> ft
Wearing Surface Dead Load			DW:	$= \gamma_{ws} \cdot ws \cdot S$:	$=0.27 \frac{kip}{ft}$
Exterior Wearing Surface D	ead Load		$DW_x \coloneqq c$	$\gamma_{ws} \cdot ws \cdot S_x =$	0.184
Dead Load Moments			1		
$M_{DC} \coloneqq \frac{DC \cdot L^2}{8} + P_{dint} \cdot \frac{1}{4}$		$M_{DCx} \coloneqq \frac{DC}{dt}$	$\frac{D_x \cdot L^2}{8} + P_{d\epsilon}$	$t_{xt} \cdot \frac{L}{4} = 71.10$	03 ft•kip
$M_{DW} \coloneqq \frac{DW \cdot L^2}{8} = 1$	24.604 ft•kip	$M_{DWx} \coloneqq \frac{D^{1}}{2}$	$\frac{W_x \cdot L^2}{8} = 16$	3.767 ft•kip	
Live Load Moment - Truck	Load $M_{Truck} \coloneqq$	32 $kip \cdot \left(\frac{L}{4}\right) +$	$-\frac{40 \ kip}{2} \cdot \left(\frac{1}{2}\right)$	$\left[\frac{5}{2} - 14 ft \right] = 3$	206 ft·kip
Live Load Moment - Tande	m	(4)			
	M _{Tandem} :	$=25 kip \cdot \frac{L}{4} +$	$\frac{25 \text{ kip}}{2} \cdot \left(\frac{1}{2}\right)$	$\left(\frac{1}{2}-4 ft\right)=28$	87.5 ft•kip
Live Load Moment - Lane		M	$_{Lane} \coloneqq 0.64$.	$\frac{kip}{ft} \cdot \frac{L^2}{8} = 5$	8.32 ft•kip
Total HL-93 Live Load	$M_{LL} \coloneqq M_{Lane} + (1 - 1)$	$+IM) \cdot \max(N)$	M_{Truck}, M_{Tax}	$_{ndem}\rangle = 440.6$	95 ft·kip

Nominal Resistance	[0.582]
	F. 0.812
Depth of Interior Whitney Stress Block	$a := A_s \cdot \frac{-y}{0.85 \cdot f' \cdot S} = 1.042 $ in
	0.03*J c*S 0.812
	[0.582]
	[0.855]
Depth of Exterior Whitney Stress Block	
	$a_x \coloneqq A_{sx} \cdot \frac{1}{2} \frac{y}{y} = 1.53$ in
	$0.85 \cdot f_c \cdot S_x$ 1.192
	[0.855]
	[343.993]
Nominal Interior Moment Resistance	$M_n \coloneqq F_y \cdot A_s \cdot \left[d - \frac{a}{2}\right] = 547.752 ft \cdot kip$
	445.223
	[343.993]
Midspan Moment Capacity	$M_{capacity} \coloneqq \max{\langle} M_n{ angle} = 547.752 \; {\it ft} \cdot {\it kip}$
	[509.161]
Nominal Exterior Moment Resistance	$M_{nx} \coloneqq F_y \cdot A_{sx} \cdot \left(d_x - \frac{u_x}{2} \right) = \begin{vmatrix} 840.743 \\ 674.598 \\ 509.161 \end{vmatrix} (ft \cdot kip)$
Midspan Moment Capacity	$M_{capacityx}\!\coloneqq\!\max{\langle}M_{nx}{ angle}\!=\!840.743\;{\it ft}\cdot{\it kip}$
Rating Factors	
	t t t M av M av M
	$RF_{Interior} \coloneqq \frac{\phi \cdot \phi_s \cdot \phi_c \cdot \mathcal{W}_{capacity} - \mathcal{Y}_{DC} \cdot \mathcal{W}_{DC} - \mathcal{Y}_{DW} \cdot \mathcal{W}_{DW}}{\mathcal{W}_{capacity} - \mathcal{W}_{DC} - \mathcal{W}_{DW} - \mathcal{W}_{DW}}$
	$\gamma_{LL}{\scriptstyle{ullet}}M_{LL}{\scriptstyle{ullet}}g_m$
R	$F_{Enterior} \coloneqq \frac{\phi \cdot \phi_s \cdot \phi_c \cdot M_{capacityx} - \gamma_{DC} \cdot M_{DCx} - \gamma_{DW} \cdot M_{DWx}}{\phi_s \cdot \phi_s \cdot \phi_c \cdot M_{capacityx} - \gamma_{DC} \cdot M_{DCx} - \gamma_{DW} \cdot M_{DWx}}$
	$\gamma_{LL} \cdot M_{LL} \cdot g_{mx}$
Interior	Exterior
$RF_{Interior} = 0.981$	$RF_{Exterior} = 2.482$

Rating Factor	
Interior	
	-6
Maximum Recorded Strain	$\varepsilon_T \coloneqq 75.38 \cdot 10^{\circ}$
Maximum Applied Moment per Lane	$M_{Max}\!\coloneqq\!329.16\; \textit{ft} \cdot \textit{kip}$
Uncracked Section Modulus	$S_{unc} := 4304 \ in^3$
Cracked Section Modulus	$S_{cr} \coloneqq 1478 \ \textit{in}^3$
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$S_e \coloneqq \mathbf{if} \langle Behav$	$ior = "Uncracked", S_{unc}, S_{cr} = \langle 4.304 \cdot 10^3 \rangle in^3$
Calculated Strain	$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_m}{S_e \cdot E_c} = 1.378 \cdot 10^{-4}$
Test Benefit Factor	$k_a\!\coloneqq\!\frac{\varepsilon_c}{\varepsilon_T}\!\!-\!1\!=\!0.828$
Ratio of Applied to HL-93 Moment	$r_{M}\!\coloneqq\!\frac{M_{Max}}{M_{LL}}\!=\!0.747$
Test Understanding Factor	$k_b\!:=\! ext{if}\langle r_M\!>\!0.7, 0.5, 0 angle\!=\!0.5$
Rating Improvement Factor	$k \coloneqq 1 + k_a \cdot k_b = 1.414$
Improved Rating Factor	$RF_{Improved} := RF_{Interior} \cdot k = 1.388$

Exterior	
Maximum Recorded Strain	$\varepsilon_T \coloneqq 17.18 \cdot 10^{-6}$
Maximum Applied Moment per Lane	M _{Max} :=329.16 ft · kip
Uncracked Section Modulus	$S_{unc} = 6902 \ in^3$
Cracked Section Modulus	$S_{cr} \coloneqq 2522$ in ³
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$S_e \coloneqq \mathbf{if} \langle Be \rangle$	$havior = "Uncracked", S_{unc}, S_{cr} = \langle 6.902 \cdot 10^3 \rangle$ in ³
Calculated Strain	$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_{mx}}{S_e \cdot E_c} = 6.159 \cdot 10^{-5}$
Test Benefit Factor	$k_a \coloneqq \frac{\varepsilon_c}{\varepsilon_T} - 1 = 2.585$
Ratio of Applied to HL-93 Moment	$r_{M}\!\coloneqq\!\frac{M_{Max}}{M_{LL}}\!=\!0.747$
Test Understanding Factor	$k_{b}\!:=\!\mathbf{if}\langle r_{M}\!>\!0.7,0.5,0\rangle\!=\!0.5$
Rating Improvement Factor	$k := 1 + k_a \cdot k_b = 2.293$
Improved Rating Factor	$RF_{ImprovedExt} \coloneqq RF_{Exterior} \cdot k \!=\! 5.691$

Exterior - Extended Girder		
Maximum Recorded Strain		$\varepsilon_T \coloneqq 81.73 \cdot 10^{-6}$
Maximum Applied Moment pe	r Lane	$M_{Max} \coloneqq 329.16 \; \textit{ft} \cdot \textit{kip}$
Uncracked Section Modulus		$S_{\mathit{unc}}\!\coloneqq\!4641\;{\it in}^3$
Cracked Section Modulus		$S_{cr} \coloneqq 1035$ in ³
Section Behavior		$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for	Behavior	
	$S_e := \mathbf{if} \langle Behavior = \circ$	Uncracked", $S_{unc},S_{cr} angle \!=\! \left<\! 4.641 \cdot 10^3 \right> {\it in}^3$
Calculated Strain		$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_{mx}}{S_e \cdot E_c} = 9.168 \cdot 10^{-5}$
Test Benefit Factor		$k_a\!\coloneqq\!\frac{\varepsilon_c}{\varepsilon_T}\!\!-\!1\!=\!0.122$
Ratio of Applied to HL-93 Mor	ment	$r_M \coloneqq \frac{M_{Max}}{M_{LL}} = 0.747$
Test Understanding Factor		$k_{b}\! \coloneqq\! \mathbf{if} \left<\! r_{\!M}\!\! >\! 0.7, 0.5, 0\right>\!\! =\!\! 0.5$
Rating Improvement Factor		$k \coloneqq 1 + k_a \cdot k_b = 1.061$
Improved Rating Factor		$RF_{ImprovedExt2} \coloneqq RF_{Exterior2} \cdot k = 0.296$
Summary		
Interior	Exterior	Exterior-Extended
$RF_{Improved} = 1.388$	$RF_{ImprovedExt} \!=\! 5.69$	$RF_{ImprovedExt2} = 0.296$

A.3 Peru No. 5432

A.3.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 19: Peru No. 5432 input data, experimental configuration, and experimental data collected

File Contents	File Name	File Type
Exterior Section Data	Br5432_Geom_Ext.csv	CSV Format
Interior Section Data	Br5432_Geom_Int.csv	CSV Format
Sensors	Br5432_Sensors.csv	CSV Format
Sensor Layout	Br5432_SensorLayout.mat	MATLAB Data File
Truck Weight and Dimensions	Br5432_Trucks.mat	MATLAB Data File
Sensor Data	Br_5432_ALT_1_1_Strain.mat	MATLAB Data File
	Br_5432_ALT_2_1_Strain.mat	MATLAB Data File
	Br_5432_ALT_3_1_Strain.mat	MATLAB Data File
	Br_5432_BTB_1_1_Strain.mat	MATLAB Data File
	Br_5432_BTB_1_2_Strain.mat	MATLAB Data File
	Br_5432_BTB_2_1_Strain.mat	MATLAB Data File
	Br_5432_MAX_1_1_Strain.mat	MATLAB Data File
	Br_5432_MAX_1_2_Strain.mat	MATLAB Data File
	Br_5432_MAX_2_1_Strain.mat	MATLAB Data File
	Br_5432_MAX_3_1_Strain.mat	MATLAB Data File
	Br_5432_SBS_1_1_Strain.mat	MATLAB Data File
	Br_5432_SBS_1_2_Strain.mat	MATLAB Data File
	Br_5432_SBS_2_1_Strain.mat	MATLAB Data File

A.3.2 Instrumentation

Figure 29: Peru No. 5432 sensor layout

A.3.3 Loading

Figure 30: Peru No. 5432 Truck T01-211 loading

Figure 31: Peru No. 5432 Truck T01-272 loading

Figure 32: Peru No. 5432 Truck T01-901 loading

Figure 33: Peru No. 5432 Truck T01-904 loading

Figure 34: Peru No. 5432 - BTB_2_1 strains - Midspan

Strain at Girder Ends, Test BTB, Test 2, Position 2

Figure 36: Peru No. 5432 – SBS_2_1 - Midspan

Strain at Girder Ends, Test SBS, Test 1, Position 2

Figure 38: Peru No. 5432 – MAX_2_1 - Midspan

Strain at Girder Ends, Test MAX, Test 2, Position 2

Figure 40: Peru No. 5432 – ALT_2_1 - Midspan

Strain at Girder Ends, Test ALT, Test 1, Position 2

Figure 41: Peru No. 5432 – ALT_2_1 - Ends

A.3.5 Rating Factor Calculations

Figure 42: Peru No. 5432 Calculations

AASHTO Rating Calculations:		
Bridge 5432 - Peru, Maine		
Material Parameters:		
Concrete Compressive Strength		$f_c'\!\coloneqq\!5$ ksi
Reinforcement Yield Strength		$F_y \coloneqq 33$ ksi
Unit Weights: Reinforced Concrete, Wearing Surface	$\gamma_{RC} \coloneqq 0.150 \ rac{m{kip}}{m{ft}^3} = \gamma_u$	$_{vs} \coloneqq 0.144 \ \frac{kip}{ft^3}$
Concrte Elastic Modulus - LRFD Design C5.4.2.4-1	$E_{c} \coloneqq 1820 \ \textit{ksi} \cdot \sqrt{\frac{f'_{c}}{\textit{ksi}}} = \bigl\langle 4$.07•10 ³) ksi
Geometric Properties:		
Span Length		$L := 40 \ ft$
Girder Spacing - Interior and Exterior	$S \coloneqq 76$ in	$S_x \! \coloneqq \! 51$ in
Number of Girders		$NG \coloneqq 5$
Skew Angle		$skew \coloneqq 0$ *
Width and Number of Lanes	$lanewidth \coloneqq 12~{\it ft}$	$Nlane \coloneqq 2$
Wearing Surface Thickness		$ws \! \coloneqq \! 4$ in
Girder Height - Interior, Exterior	h := 35.75 in	$h_x \coloneqq 35.75$ in
Deck Thickness		$d_s \! \coloneqq \! 5.5$ in
Web Height - Interior, Exterior	$d_g\!\coloneqq\!h\!-\!d_s$	$d_{gx}\!\coloneqq\!h_x\!-\!d_s$
Web Thickness - Interior, Exterior	$b_w \coloneqq 20$ in	$b_{wx} \coloneqq 20$ in
Distance from Centerline of Girder to Edge of Curb		$d_e\!\coloneqq\!-\!8~\textit{in}$
Height of Curb Above Deck		$h_{curb}\!\coloneqq\!12$ in
Width of Curb		$b_{curb} \coloneqq 21$ in

Height to Centroid of Reinforcement - Interior, Exterior		$y_{bar} \coloneqq$	$\begin{bmatrix} 4.346 \\ 5.028 \\ 6.24 \\ 7.068 \\ 6.24 \\ 5.028 \\ 4.346 \end{bmatrix}$	in		$y_{barx} :=$	$\begin{bmatrix} 4.346 \\ 5.028 \\ 6.24 \\ 7.068 \\ 6.24 \\ 5.028 \\ 4.346 \end{bmatrix}$	in
Dictance Between Centroids of Deck and Web					e _g :	$=\frac{d_g+a}{2}$	$\frac{L_s}{2} = 17.$.875 i
Depth of Reinforcement - Interior, Exterior		$d \coloneqq$	$h - y_{bar}$		d_x :	$= h_x - y$	$t_{barx} + h$	^l curb
Area of Reinforcement at All Changes - Interior, Exterior	$4_s \coloneqq$	$\begin{bmatrix} 7.062 \\ 9.062 \\ 11.062 \\ 13.062 \\ 11.062 \\ 9.062 \\ 7.062 \end{bmatrix}$	5 5 25 25 in ² 25 5 5		A_{sa}	$ \begin{array}{c} 7.0 \\ 9.0 \\ 11. \\ 13. \\ 11. \\ 9.0 \\ 7.0 \end{array} $	$\begin{array}{c c} 625 \\ 625 \\ 0625 \\ 0625 \\ 0625 \\ 0625 \\ 625 \\ 625 \\ 0625 \\ \end{array}$	in ²
Concentrated Load Due to Diaphragms on One Girder						$P_{dint} :=$	2.042	kip
Resistance Factors - Structural Dead load, Weading Surf	face, 1	Live Lo $\gamma_{DC} \coloneqq$	ad $1.25 \gamma_I$	o₩ ^{:=}	= 1.	25γ	$_{LL} \coloneqq 1.$	35
Impact Factor						II	$M \coloneqq 0$.	33
Resistance Factor							$\phi \coloneqq .$	9
System Factor							$\phi_s \coloneqq$	1.0
Condition Factor							$\phi_c \coloneqq$	1.0
Distributed Load Due to Rail						$w_{rail} \coloneqq 0$	0.109 -	kip ft
Eccentricity of Centerline of Girders w.r.t. Centerline of Roadway						e	$xc \coloneqq 0$	in
						P_{dex}	$t := \frac{P_{di}}{2}$	<u>nt</u>
Distribution Factors								
--	---							
Area and Moment of Inertia of Web	$A := d_g \cdot b_w = 605 \ in^2 \qquad I := \frac{b_w \cdot d_g^{-1}}{12} = \langle 4.613 \cdot 10^4 \rangle \ in^4 \\ n := 1$							
Modular Ratio - Deck and Web								
Longitudinal Stiffness Parameter	$K_{g} = n \cdot \left(I + A \cdot e_{g}^{2}\right) = \left(2.394 \cdot 10^{5}\right) in^{4}$							
Interior Moment Distribution Factor	$g_{m1} \coloneqq 0.06 + \left(\frac{S}{14 \ ft}\right)^{0.4} \cdot \left(\frac{S}{L}\right)^{0.3} \cdot \left(\frac{K_g}{L \cdot d_s^{-3}}\right)^{0.1} = 0.527$							
	$g_{m2} \coloneqq 0.075 + \left(\frac{S}{9.5 \ \text{ft}}\right)^{0.6} \cdot \left(\frac{S}{L}\right)^{0.2} \cdot \left(\frac{K_g}{L \cdot d_s^{-3}}\right)^{0.1} = 0.68$							
	$g_m \coloneqq \max \left< g_{m1}, g_{m2} \right>$							
Roadway Width	$W_r \coloneqq lanewidth \cdot Nlane$							
Eccentricity of Design Lane From Center of Gravity of Girders	$e_1 \coloneqq \frac{W_r}{2} - 5 \mathbf{ft} + exc = 7 \mathbf{ft}$							
Eccentricity of Exterior Girder From Center of Gravity of Girders	$X_{ext} \coloneqq (NG-1) \cdot \frac{S}{2} = 12.667 \ ft$							
Eccentricity of Each Girder	$\begin{array}{c} x_1 \coloneqq X_{ext} \\ x_2 \coloneqq X_{ext} - S \\ x_3 \coloneqq X_{ext} - 2 \cdot S \end{array}$							
	$\begin{array}{l} x_4 \coloneqq \mathbf{if} \langle NG \! > \! 3 , X_{ext} \! - \! 3 \! \cdot \! S , 0 \mathbf{ft} \rangle \\ x_5 \coloneqq \mathbf{if} \langle NG \! > \! 4 , X_{ext} \! - \! 4 \! \cdot \! S , 0 \mathbf{ft} \rangle \\ x_6 \coloneqq \mathbf{if} \langle NG \! > \! 5 , X_{ext} \! - \! 5 \! \cdot \! S , 0 \mathbf{ft} \rangle \\ x_7 \coloneqq \mathbf{if} \langle NG \! > \! 6 , X_{ext} \! - \! 6 \! \cdot \! S , 0 \mathbf{ft} \rangle \end{array}$							
Lever Rule - One Design Lane	$R_{1} \coloneqq \frac{1}{NG} + \frac{X_{ext} \cdot e_{1}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} + x_{6}^{2} + x_{7}^{2}} = 0.421$							
	$g_{mR1}\!\coloneqq\!\!\mathbf{if} \left<\!P_{dint}\!\!>\!0,1.2\!\cdot\!\!R_1,0\right>\!\!=\!0.50$							

Lever Rule - Two Desig	n Lanes	$R_2 \coloneqq$	2+		X_e	$_{xt} \cdot \langle e_1 - 5 \ ft \rangle$	=0.463
		2	NG	$x_1^2 + x_2^2$	$x_{2}^{2} + x_{3}$	$x^{2} + x_{4}^{2} + x_{5}^{2} + x_{6}^{2} + x_{6}^{2} + x_{6}^{2}$	¢7 ²
						$g_{mR2}\!\coloneqq\!\mathbf{if}\left\langle P_{dint}\!>\!0,B\right.$	$\left c_2, 0 \right\rangle = 0.40$
Exterior Moment Distrib	oution Factor				g_n	$\max := \frac{1.2 \langle S + d_e - 2 \mathbf{f}}{2 \cdot S}$	$(\underline{t})_{=0.347}$
						$ee \coloneqq 0.77 + \frac{d_e}{9 f}$	<u>-</u> =0.696
						$g_{mx2} \coloneqq g_{m2} \cdot ee$	=0.473
Interior	Exterior					$g_{mx} \coloneqq \max \langle g_{mx} \rangle$	$_{x1}$, $g_{mx2}\rangle$
$g_m = 0.68$	$g_{mx} = 0.47$	'3					
Loading							
nterior Girder Dead Lo	ad				w	$\gamma_{irder} := \gamma_{RC} \cdot b_w \cdot d_q = 0.$.63 <u>kip</u>
							ft
Deck Dead Load						$w_{deck} \coloneqq \gamma_{RC} \cdot S \cdot d_s \!=\! 0$.435 kip ft
Curb Dead Load					w_{curb}	$:= \gamma_{RC} \cdot h_{curb} \cdot b_{curb} = 0.$.263
Dead Load from Nonstr Components	uctural					$w_{ns}\!\coloneqq\!\frac{w_{curb}}{NG}\!+\!w_{rail}\!=\!$	0.162
Fotal Dead Load				D	$C \coloneqq w_{i}$	$_{girder} + w_{deck} + w_{ns} = 1$.	227 kip ft
Exterior Girder Dead Lo	bad				w_{gird}	$erx \coloneqq \gamma_{RC} \cdot b_{wx} \cdot d_{gx} = 0.$	63 kip ft
							lei a

Rating Factor	
Improvements	
Interior	
	o⊤ o (o ⁻⁶
Maximum Recorded Strain	$\varepsilon_T \coloneqq 87.34 \cdot 10^{-1}$
Maximum Applied Moment per Lane	$M_{Max} \coloneqq 629.99 \; \textit{ft} \cdot \textit{kip}$
Uncracked Section Modulus	${S}_{unc}\!\coloneqq\!7434{m in}^3$
Cracked Section Modulus	$S_{cr} \coloneqq 2519$ in ³
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$\boldsymbol{S}_{e}\!\coloneqq\!\mathbf{if}\big\langle Behavi$	for = "Uncracked", S_{unc} , $S_{cr} \rangle = \langle 7.434 \cdot 10^3 \rangle$ in ³
Calculated Strain	$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_m}{S_e \cdot E_c} = 1.7 \cdot 10^{-4}$
Test Benefit Factor	$k_a\!\coloneqq\!\frac{\varepsilon_c}{\varepsilon_T}\!\!-\!1\!=\!0.946$
Ratio of Applied to HL-93 Moment	$r_{M}\!:=\!\frac{M_{Max}}{M_{LL}}\!=\!0.867$
Test Understanding Factor	$k_{b}\!:=\!\mathrm{if}\left<\!$
Rating Improvement Factor	$k \coloneqq 1 + k_a \cdot k_b = 1.473$
Improved Rating Factor	$RF_{Improved} \coloneqq RF_{Interior} \star k = 1.098$

Exterior				
Maximum Recorded Strain				$\varepsilon_T \coloneqq 58.62 \cdot 10^{-6}$
Maximum Applied Moment pe	er Lane		M_{Ma}	_w ≔629.99 ft • kip
Uncracked Section Modulus				$S_{unc}\!\coloneqq\!10052~\mathrm{in}^3$
Cracked Section Modulus				$S_{cr} \coloneqq 3475 \text{ in}^3$
Section Behavior			Behavi	$or \coloneqq "Uncracked"$
Section Modulus Effective for	Behavior			
	$S_e \coloneqq \mathbf{if} \langle Be$	ehavior = "Uncre	$cked", S_{unc}, S_{cr}$	$\rangle \!=\! \left\langle 1.005 \boldsymbol{\cdot} 10^4 \right\rangle \boldsymbol{in}^3$
Calculated Strain			$\varepsilon_c \! \coloneqq \! \frac{M_{Max}}{S_e} \cdot$	$\frac{\cdot g_{mx}}{E_c} = 8.749 \cdot 10^{-5}$
Test Benefit Factor			k,	$a \coloneqq \frac{\varepsilon_c}{\varepsilon_T} - 1 = 0.492$
Ratio of Applied to HL-93 Mo	ment		r_{I}	$M \coloneqq \frac{M_{Max}}{M_{LL}} = 0.867$
Test Understanding Factor			$k_b\!:=\!\mathbf{if}\langle r_M$	$>\!0.7, 0.5, 0 \bigr\rangle \!=\! 0.5$
Rating Improvement Factor			k	$= 1 + k_a \cdot k_b = 1.246$
Improved Rating Factor		a 	$RF_{ImprovedExt} \coloneqq I$	$RF_{Exterior} \cdot k \!=\! 2.545$
Summary				
Interior		Exterior		
RF _{Improved}	l=1.098	RF _{Improv}	$e_{dExt} = 2.545$	

A.4 Jackson No. 3776

A.4.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 13: Jackson No. 3776 input data, experimental configuration, and experimental data collected

File Contents	File Name	File Type
Exterior Section Data	Br3776_Geom _Ext.csv	CSV Format
Interior Section Data	Br3776_Geom_Int.csv	CSV Format
Sensors	Br3776 _Sensors.csv	CSV Format
Sensor Layout	Br3776 _SensorLayout.mat	MATLAB Data File
Truck Weight and Dimensions	Br3776_Trucks.mat	MATLAB Data File
Sensor Data	Br_3776_ALT_1_1_Strain.mat	MATLAB Data File
	Br_3776_ALT_2_1_Strain.mat	MATLAB Data File
	Br_3776_ALT_3_1_Strain.mat	MATLAB Data File
	Br_3776_BTB_1_1_Strain.mat	MATLAB Data File
	Br_3776_BTB_1_2_Strain.mat	MATLAB Data File
	Br_3776_BTB_2_1_Strain.mat	MATLAB Data File
	Br_3776_BTB_3_1_Strain.mat	MATLAB Data File
	Br_3776_MAX_1_1_Strain.mat	MATLAB Data File
	Br_3776_MAX_1_2_Strain.mat	MATLAB Data File
	Br_3776_MAX_2_1_Strain.mat	MATLAB Data File
	Br_3776_MAX_3_1_Strain.mat	MATLAB Data File
	Br_3776_SBS_1_1_Strain.mat	MATLAB Data File
	Br_3776_SBS_1_2_Strain.mat	MATLAB Data File
	Br_3776_SBS_2_1_Strain.mat	MATLAB Data File
	Br_3776_SBS_3_1_Strain.mat	MATLAB Data File

A.4.2 Instrumentation

Figure 43: Jackson No. 3776 sensor layout

A.4.3 Loading

Figure 44: Jackson No. 3776 Truck 8A-5565 loading

Figure 45: Jackson No. 3776 Truck 791-040 loading

Figure 46: Jackson No. 3776 Truck T01-020 loading

Figure 47: Jackson No. 3776 Truck T01-175 loading

Figure 48: Jackson No. 3776 – BTB_2_1 strains - Midspan

Instrumentation During Live Load Testing and Load Rating of Five Reinforced Concrete T-Beam Bridges UMaine Composites Center Report xx-xx-xxxx

Strain at Girder Ends, Test BTB, Test 1, Position 2

Figure 50: Jackson No. 3776 – SBS_2_1 strains - Midspan

Strain at Girder Ends, Test SBS, Test 1, Position 2

Figure 52: Jackson No. 3776 - MAX_2_1 strains - Midspan

Instrumentation During Live Load Testing and Load Rating of Five Reinforced Concrete T-Beam Bridges UMaine Composites Center Report xx-xx-xxxx

Figure 53: Jackson No. 3776 – MAX_2_1 strains - Ends

Figure 54: Jackson No. 3776 – ALT_2_1 strains - Midspan

Instrumentation During Live Load Testing and Load Rating of Five Reinforced Concrete T-Beam Bridges UMaine Composites Center Report xx-xx-xxxx

Strain at Girder Ends, Test ALT, Test 1, Position 2

Figure 55: Jackson No. 3776 - ALT_2_1 strains - Ends

A.4.5 Rating Factor Calculations

Figure 56: Jackson No. 3776 Calculations

AASHTO Rating Calculations:		
Bridge 3776 - Jackson, Maine		
Material Parameters:		
Concrete Compressive Strength		f'_c:=5 ksi
Reinforcement Yield Strength		$F_y \coloneqq 33$ ksi
Unit Weights: Reinforced Concrete, Wearing Surface	$\gamma_{RC} = 0.150 \ rac{m{kip}}{m{ft}^3} \gamma_u$	$b_{s} \coloneqq 0.144 \frac{kip}{ft^3}$
Concrte Elastic Modulus - LRFD Design C5.4.2.4-1	$E_{c} \coloneqq 1820 \ \textit{ksi} \cdot \sqrt{\frac{f'_{c}}{\textit{ksi}}} = \bigl\langle 4$.07•10 ³) ksi
Geometric Properties:		
Span Length		L := 32.96 ft
Girder Spacing - Interior and Exterior	S := 68.625 in	$S_x \! \coloneqq \! 47.063$ in
Number of Girders		$NG \coloneqq 5$
Skew Angle		$skew \coloneqq 0$ *
Width and Number of Lanes	$lanewidth \coloneqq 11~{\it ft}$	$Nlane \coloneqq 2$
Wearing Surface Thickness		ws := 4 in
Girder Height - Interior, Exterior	$h\!\coloneqq\!30.5$ in	$h_x \coloneqq 30.5$ in
Deck Thickness		$d_s \! \coloneqq \! 5.5$ in
Web Height - Interior, Exterior	$d_g\!\coloneqq\!h\!-\!d_s$	$d_{gx}\!\coloneqq\!h_x\!-\!d_s$
Web Thickness - Interior, Exterior	$b_w \coloneqq 19.5$ in	$b_{wx} \! \coloneqq \! 19.5$ in
Distance from Centerline of Girder to Edge of Curb		$d_e\!\coloneqq\!-\!15.75~\textit{in}$
Height of Curb Above Deck		$h_{curb}\!\coloneqq\!12$ in
Width of Curb		$b_{curb} \coloneqq 18$ in

y_{bar} ::	$\begin{bmatrix} 3.063 \\ 4.337 \\ 5.049 \\ 4.337 \\ 3.063 \end{bmatrix}$	in	Ybo	urne := 3 4 4 4 4 4 4 5	.063 .337 .049 .337 .063	 in
		e	$e_g \coloneqq \frac{d}{d}$	$\frac{d_g + d_s}{2}$	=15.	25 i:
d :	$= h - y_{ba}$. ($d_x := b$	$x - y_{ba}$	rx + h	curb
$A_s \coloneqq$	$\begin{bmatrix} 5.0625 \\ 7.0625 \\ 9.0625 \\ 7.0625 \\ 5.0625 \end{bmatrix}$	in 2	$4_{sx} \coloneqq$	$ \begin{bmatrix} 5.062 \\ 7.062 \\ 9.062 \\ 7.062 \\ 5.062 \end{bmatrix} $:5 :5 :5 ir :5 :5 :5	2
				P _{dint} :=	=0 ki	p
ace, Live L γ_{DO} :	oad = 1.25 γ_1	ow≔	1.25	γ_{LL}	=1.3	35
				IM	:=0.3	33
					¢∷.9	•
					$\phi_s := 1$	0
					$\phi_c \coloneqq 1$	1.0
			w_r	ail := 0.	109 <mark>-</mark>	kip ft
				exc	:=0 1	in
	y_{bar} :: d: $A_s:=$ ace, Live L γ_{DC} ::	$y_{bar} := \begin{vmatrix} 3.063 \\ 4.337 \\ 5.049 \\ 4.337 \\ 3.063 \end{vmatrix}$ $d := h - y_{bar}$ $A_s := \begin{vmatrix} 5.0625 \\ 7.0625 \\ 9.0625 \\ 7.0625 \\ 5.0625 \end{vmatrix}$ hce, Live Load $\gamma_{DC} := 1.25 \ \gamma_I$	$y_{bar} := \begin{bmatrix} 3.063 \\ 4.337 \\ 5.049 \\ 4.337 \\ 3.063 \end{bmatrix} in$ $d := h - y_{bar}$ $a_{s} := \begin{bmatrix} 5.0625 \\ 7.0625 \\ 9.0625 \\ 5.0625 \end{bmatrix} in$ $a_{s} := \begin{bmatrix} 1.25 \\ \gamma_{DC} $	$y_{bar} := \begin{bmatrix} 3.063 \\ 4.337 \\ 5.049 \\ 4.337 \\ 3.063 \end{bmatrix} in \qquad y_{ba}$ $e_g := -$ $d := h - y_{bar} \qquad d_x := h$ $A_s := \begin{bmatrix} 5.0625 \\ 7.0625 \\ 9.0625 \\ 5.0625 \end{bmatrix} in A_{sc} :=$ $ree, Live Load$ $\gamma_{DC} := 1.25 \ \gamma_{DW} := 1.25$	$y_{bar} := \begin{bmatrix} 3.063\\ 4.337\\ 5.049\\ 4.337\\ 3.063 \end{bmatrix} in \qquad y_{barx} := \begin{bmatrix} 3.4\\ 4\\ 5\\ 4\\ 3\end{bmatrix}$ $e_g := \frac{d_g + d_s}{2}$ $d := h - y_{bar} \qquad d_x := h_x - y_{bar}$ $d_x := h_x - y_{bar}$ $A_s := \begin{bmatrix} 5.0625\\ 7.0625\\ 5.0625 \end{bmatrix} in A_{sx} := \begin{bmatrix} 5.062\\ 7.062\\ 5.0625 \end{bmatrix}$ $P_{dint} :=$ nce, Live Load $\gamma_{DC} := 1.25 \ \gamma_{DW} := 1.25 \ \gamma_{LL}$ IM	$y_{bar} := \begin{bmatrix} 3.063 \\ 4.337 \\ 5.049 \\ 4.337 \\ 3.063 \end{bmatrix} in$ $y_{barx} := \begin{bmatrix} 5.049 \\ 4.337 \\ 3.063 \end{bmatrix}$ $e_g := \frac{d_g + d_s}{2} = 15.$ $d := h - y_{bar}$ $d_x := h_x - y_{barx} + h$ $A_s := \begin{bmatrix} 5.0625 \\ 7.0625 \\ 7.0625 \\ 5.0625 \end{bmatrix} in$ $A_{sx} := \begin{bmatrix} 5.0625 \\ 7.0625 \\ 5.0625 \end{bmatrix} i$ $P_{dint} := 0 \ ki$ $P_{dint} := 0 \ ki$ $p_{dint} := 0 \ ki$ $\phi_s := 1$ $\phi_c := 1$ $\psi_{rail} := 0.109 \ ki$

Distribution Factors	
Area and Moment of Inertia of Web	$A := d_g \cdot b_w = 487.5 \ in^2 \ I := \frac{b_w \cdot d_g^3}{12} = \langle 2.539 \cdot 10^4 \rangle \ in^4$
Modular Ratio - Deck and Web	$n \coloneqq 1$
Longitudinal Stiffness Parameter	$K_{g} := n \cdot \left(I + A \cdot e_{g}^{2} \right) = \left(1.388 \cdot 10^{5} \right) in^{4}$
Interior Moment Distribution Factor	$g_{m1} \coloneqq 0.06 + \left(\frac{S}{14 \ \textbf{ft}}\right)^{0.4} \cdot \left(\frac{S}{L}\right)^{0.3} \cdot \left(\frac{K_g}{L \cdot d_s^3}\right)^{0.1} = 0.505$
	$g_{m2} \coloneqq 0.075 + \left(\frac{S}{9.5 \ \text{ft}}\right)^{0.6} \cdot \left(\frac{S}{L}\right)^{0.2} \cdot \left(\frac{K_g}{L \cdot d_s^3}\right)^{0.1} = 0.635$
	$y_m = \max\left(y_{m1}, y_{m2}\right)$
Roadway Width	$W_r \coloneqq lanewidth \cdot Nlane$
Eccentricity of Design Lane From Center of Gravity of Girders	$e_1 \coloneqq \frac{W_r}{2} - 5 \ \mathbf{ft} + exc = 6 \ \mathbf{ft}$
Eccentricity of Exterior Girder From Center of Gravity of Girders	$X_{ext} \coloneqq (NG-1) \cdot \frac{S}{2} = 11.438 \ f$
Eccentricity of Each Girder	$\begin{array}{c} x_1 \coloneqq X_{ext} \\ x_2 \coloneqq X_{ext} - S \\ x_3 \coloneqq X_{ext} - 2 \cdot S \end{array}$
	$\begin{split} x_4 \coloneqq & \mathbf{if} \langle NG > 3 , X_{ext} - 3 \cdot S , 0 \mathbf{ft} \rangle \\ x_5 \coloneqq & \mathbf{if} \langle NG > 4 , X_{ext} - 4 \cdot S , 0 \mathbf{ft} \rangle \\ x_6 \coloneqq & \mathbf{if} \langle NG > 5 , X_{ext} - 5 \cdot S , 0 \mathbf{ft} \rangle \\ x_7 \coloneqq & \mathbf{if} \langle NG > 6 , X_{ext} - 6 \cdot S , 0 \mathbf{ft} \rangle \end{split}$
Lever Rule - One Design Lane	$R_1 \coloneqq \frac{1}{NG} + \frac{X_{ext} \cdot e_1}{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2} = 0.41$
	$g_{m\!R\!1}\!\coloneqq\!\mathbf{if}\left<\!P_{dint}\!>\!0,1.2\!\cdot\!R_{1},0\right>\!=\!0$

Lever Rule - Two Design	n Lanes	R.:	2	+	$X_{ext} \cdot \langle e$	$_1-5 ft$	=0.43
Devel I and T are Desig.	II LIMITOS	102	NG	$x_1^2 +$	$x_2^2 + x_3^2 + x_3^2$	$x_4^2 + x_5^2 + x_6^2 + z_6^2 + z_6^2$	¢7 ²
					g_{mR2}	$q := \mathbf{if} \langle P_{dint} > 0 , F_{dint} \rangle$	$\left \mathbf{k}_{2},0\right\rangle =0$
Exterior Moment Distrib	oution Factor				$g_{mx1} \coloneqq$	$\frac{1.2 \left\langle S + d_e - 2 f \right\rangle}{2 \cdot S} d$	$ \underline{t} \rangle = 0.252$
						$ee \coloneqq 0.77 + \frac{\omega_e}{9 f}$	=0.624
						$g_{mx2} \coloneqq g_{m2} \cdot ee$	=0.396
Interior	Exterior					$g_{mx} \coloneqq \max \langle g_{mx} \rangle$	$_{x1}$, $g_{mx2} angle$
<u>Intentor</u>		0					
$g_m = 0.635$	$g_{mx} = 0.39$	b					
Loading							
Interior Girder Dead Lo	ad				w_{girder} :	$= \gamma_{RC} \cdot b_w \cdot d_g = 0$.508
Deck Dead Load					w _{dec}	$k \coloneqq \gamma_{RC} \cdot S \cdot d_s = 0$.393 <u>kip</u> ft
Curb Dead Load					$w_{curb} \coloneqq \gamma_R$	$_{C} \cdot h_{curb} \cdot b_{curb} = 0.$.225
Dead Load from Nonstru Components	uctural				w _{ns} :	$=\frac{w_{curb}}{NG}+w_{rail}=$	0.154
Total Dead Load					$DC \coloneqq w_{girder}$	$+w_{deck}+w_{ns}=1.$	055 <u>kip</u> ft
					$w_{oirderx} = c$	$\gamma_{RC} \cdot b_{wx} \cdot d_{qx} = 0.$	508 kip
Exterior Girder Dead Lo	bad				-		ft

Total Exterior Dead Load				DC_x	w_{gin}	-derx+	w _{deck}	$x + w_n$	s=0.93	31 <u>kip</u> ft
Wearing Surface Dead Loa	d					DW	$= \gamma_{ws}$	•ws•1	$S = 0.2^{\circ}$	75 <u>kip</u> ft
Exterior Wearing Surface I	Dead Load				D	$W_x \coloneqq$	γ _{ws} •ι	vs•S _x	=0.18	8 <mark>kip</mark> ft
Dead Load Moments										
M_{DC} :=	$\frac{DC \cdot L^2}{8} =$	=143.261	ft·kip		M _{DC}	$x \coloneqq \frac{D}{2}$	$C_x \cdot L$	= 12	26.486	ft•kip
<i>M_{DW}</i> :=	$\frac{DW \cdot L^2}{8}$	=37.276	ft · kip		М _D ң	$r_x := -$	$\frac{W_x \cdot J}{8}$	$\frac{L^2}{2} = 2$	25.564	ft•kip
Live Load Moment - Truck	Load									
		M_{Truck} :	=32 kip	$\cdot \left(\frac{L}{4}\right)$	$+\frac{40}{2}$	ip · ($\frac{L}{2}$ -1	4 ft):	=313.2	8 ft•ki p
Live Load Moment - Tande	em	Marina dam	:= 25 k i	n . <u>L</u>	25 k	<i>ip</i> .($\frac{L}{-4}$	ft =	362 ft	• kin
		I dhaen		4	2	l	2	•)		
Live Load Moment - Lane				M	I _{Lane} :=	= 0.64	kip ft	$\frac{L^2}{8} =$	86.90) ft•kip
Total HL-93 Live Load	$M_{rr} := \Lambda$	Лт+(1	+IM).	max ('M	. Ma		=568	3.369 f	t · kin
	PD	-Lane (,, -		1 Fuci	¢,1	snaem)		,	

Nominal Resistance	[0 572]
Nominal Resistance	
Depth of Interior Whitney Stress Block	$a \coloneqq A_{x} \cdot \frac{F_{y}}{F_{y}} = 1.025 in$
	$0.85 \cdot f'_c \cdot S = 0.799$
	0.573
	[0.835]
Depth of Exterior Whitney Stress Block	
	$a_m := A_m \cdot \frac{F_y}{1.495} = 1.495$ in
	$x^{sx} = 0.85 \cdot f'_c \cdot S_x = 1.165$
	0.835
Nominal Interior Moment Resistance	$M := F \cdot A \cdot (d - a) = 621509$ ft kin
	$n_n - \frac{1}{y} n_s \left(\frac{2}{2} \right) = \frac{521.000}{500.375}$
	377.987
Midspan Moment Capacity	$M_{capacity}\!\coloneqq\!\max{\langle}M_n{ angle}\!=\!621.509\;{\it ft}\cdot{\it kip}$
Nominal Exterior Moment Resistance	$M = E \cdot A \cdot (d = a_x) = 014.718 (ft. hig)$
Nominal Exterior Moment Resistance	$\frac{1}{1} \frac{1}{1} \frac{1}$
	[040.220]
Midspan Moment Capacity	$M_{capacityx} \coloneqq \max \langle M_{nx} angle = 914.718 \; \textit{ft} \cdot \textit{kip}$
Rating Factors	
	$RF_{Interior} \coloneqq \frac{\varphi \cdot \varphi_s \cdot \varphi_c \cdot \mathcal{W}_{capacity} - \gamma_{DC} \cdot \mathcal{W}_{DC} - \gamma_{DW} \cdot \mathcal{W}_{DW}}{\varphi_s \cdot \varphi_s \cdot \varphi$
	$\gamma_{LL} {\scriptstyle ullet} M_{LL} {\scriptstyle ullet} g_m$
	$\phi \cdot \phi \cdot \phi \cdot M = -\gamma_{\text{part}} M_{\text{part}} - \gamma_{\text{mart}} M_{\text{mart}}$
<i>F</i>	$F_{Exterior} \coloneqq \frac{\varphi \cdot \varphi_s \cdot \varphi_c \cdot \varphi_s}{1 D U} capacityx IDU^{-1 \nu_1} D C x IDW^{-1 \nu_1} D W x}{1 D U V}$
	γ_{LL} · $_{ML}$ · g_{mx}
Interior	Exterior
$RF_{Interior} = 0.685$	$RF_{Entropics} = 2.083$
	Devention

Rating Factor	
Improvements	
Interior	
Maximum Recorded Strain	$\varepsilon_T = 57.69 \cdot 10^{-1}$
Maximum Applied Moment per Lane	M _{Max} :=397.94 ft · kip
Uncracked Section Modulus	$S_{unc} = 5171 in^3$
Cracked Section Modulus	$S_{cr} = 1651 \ in^3$
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$S_e \coloneqq \mathbf{if} \langle Behan$	$pior = "Uncracked", S_{unc}, S_{cr} \rangle = \langle 5.171 \cdot 10^3 \rangle in^3$
	Magan + am
Calculated Strain	$\varepsilon_c \coloneqq \frac{Max}{S_c \cdot E_c} = 1.44 \cdot 10^{-4}$
Test Benefit Factor	$k_a \coloneqq \frac{\varepsilon_c}{\varepsilon_T} - 1 = 1.497$
Ratio of Applied to HL-93 Moment	$r_{\mathcal{M}} \coloneqq \frac{M_{Max}}{M_{Max}} = 0.7$
	M_{LL}
Test Understanding Factor	$k_{b}\!\coloneqq\!$
Rating Improvement Factor	$k \coloneqq 1 + k_a \cdot k_b = 1.748$
Improved Rating Factor	$RF_{Improved} \coloneqq RF_{Interior} \cdot k = 1.198$

Exterior				
Maximum Recorded Strain				$\varepsilon_T \!\coloneqq\! 48.51 \cdot \! 10^{-6}$
Maximum Applied Moment per	Lane		M	_{Max} ≔397.94 ft・kip
Uncracked Section Modulus				$S_{unc} \!\coloneqq\! 7324$ in 3
Cracked Section Modulus				$S_{\mathit{cr}}\!\coloneqq\!2406\mathit{in}^3$
Section Behavior			Beha	$vior \coloneqq "Uncracked"$
Section Modulus Effective for I	Behavior			
	$S_e \coloneqq \mathbf{if} \langle B \epsilon$	r <i>havior</i> = "Unc	$racked", S_{unc}, S$	$\left S_{cr}\right\rangle = \left<7.324 \cdot 10^3\right>$ in ³
Calculated Strain			$\varepsilon_c \coloneqq \frac{M_N}{S}$	$\frac{f_{ax} \cdot g_{mx}}{b_e \cdot E_c} = 6.348 \cdot 10^{-5}$
Test Benefit Factor				$k_a \!\coloneqq\! \frac{\varepsilon_c}{\varepsilon_T} \!-\! 1 \!=\! 0.309$
Ratio of Applied to HL-93 Mor	nent			$r_M\!\coloneqq\!\frac{M_{Max}}{M_{LL}}\!=\!0.7$
Test Understanding Factor			$k_b \coloneqq \mathbf{if} \langle r$	$c_M \! > \! 0.7, 0.5, 0 \rangle \! = \! 0.5$
Rating Improvement Factor				$k \coloneqq 1 + k_a \cdot k_b = 1.154$
Improved Rating Factor			$RF_{ImprovedExt}$	$= RF_{Exterior} \cdot k = 2.404$
Summary				
Interior		Exterio	<u>r</u>	
$RF_{Improved}$	=1.198	RF _{Impr}	$_{ovedExt} = 2.404$	

A.5 Alna No. 2130

A.5.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 20: Alna No. 2130 input data, experimental configuration, and experimental data collected

File Contents	File Name	File Type
Exterior Section Data	Br2130_Geom_Ext.csv	CSV Format
Interior Section Data	Br2130_Geom_Int.csv	CSV Format
Sensors	Br2130_Sensors.csv	CSV Format
Sensor Layout	Br2130_SensorLayout.csv	MATLAB Data File
Truck Weight and Dimensions	Br2130_Trucks.mat	MATLAB Data File
Sensor Data	Br_2130_ALT_1_1_Strain.mat	MATLAB Data File
	Br_2130_ALT_2_1_Strain.mat	MATLAB Data File
	Br_2130_ALT_3_1_Strain.mat	MATLAB Data File
	Br_2130_BTB_1_1_Strain.mat	MATLAB Data File
	Br_2130_BTB_1_2_Strain.mat	MATLAB Data File
	Br_2130_BTB_2_1_Strain.mat	MATLAB Data File
	Br_2130_BTB_3_1_Strain.mat	MATLAB Data File
	Br_2130_MAX_1_1_Strain.mat	MATLAB Data File
	Br_2130_MAX_1_2_Strain.mat	MATLAB Data File
	Br_2130_MAX_2_1_Strain.mat	MATLAB Data File
	Br_2130_MAX_3_1_Strain.mat	MATLAB Data File
	Br_2130_SBS_1_1_Strain.mat	MATLAB Data File
	Br_2130_SBS_1_2_Strain.mat	MATLAB Data File
	Br_2130_SBS_2_1_Strain.mat	MATLAB Data File
	Br_2130_SBS_3_1_Strain.mat	MATLAB Data File

A.5.2 Instrumentation

Figure 57: Alna No. 2130 sensor layout

A.5.3 Loading

Figure 58: Alna No. 2130 Truck 1B-7321 loading

Figure 59: Alna No. 2130 Truck 8A-6132 loading

Figure 60: Alna No. 2130 Truck T01-169 loading

Figure 61: Alna No. 2130 Truck T01-914 loading

Figure 62: Alna No. 2130 – BTB_2_1 strains - Midspan

Figure 63: Alna No. 2130 – BTB_2_1 strains - Ends

Figure 64: Alna No. 2130 - SBS_2_1 strains - Midspan

Figure 65: Alna No. 2130 – SBS_2_1 strains – Ends

Figure 66: Alna No. 2130 - MAX_3_1 strains - Midspan

Figure 67: Alna No. 2130 – MAX_3_1 strains - Ends

Figure 68: Alna No. 2130 – ALT_2_1 strains - Midspan

Figure 69: Alna No. 2130 – ALT_2_1 strains - Ends

A.5.5 Rating Factor Calculations

Figure 70: Alna No. 2130 Calculations

AASHTO Rating Calculations:		
Bridge 2130 - Alna, Maine		
Material Parameters:		
Concrete Compressive Strength		$f_c' = 5$ ksi
Reinforcement Yield Strength		$F_y \coloneqq 33$ ksi
Unit Weights: Reinforced Concrete, Wearing Surface	$\gamma_{RC} \coloneqq 0.150 \; rac{m{kip}}{m{ft}^3} = \gamma_{ws}$	$= 0.144 \frac{kip}{ft^3}$
Concrte Elastic Modulus - LRFD Design C5.4.2.4-1	$E_c \coloneqq 1820 \text{ ksi} \cdot \sqrt{\frac{f'_c}{ksi}} = \langle 4.0 \rangle$)7•10 ³) ksi
Geometric Properties: Span Length		$L \coloneqq 27 \ ft$
Girder Spacing - Interior and Exterior	$S \coloneqq 86$ in	$S_x \coloneqq 34$ in
Number of Girders		$NG \coloneqq 4$
Skew Angle		$skew \coloneqq 0$ *
Width and Number of Lanes	$lanewidth \coloneqq 10 \ ft$	$Nlane \coloneqq 2$
Wearing Surface Thickness		$ws \coloneqq 13$ in
Girder Height - Interior, Exterior	$h \coloneqq 33$ in	$h_x \coloneqq 33$ in
Deck Thickness		$d_s \coloneqq 8$ in
Web Height - Interior, Exterior	$d_g \coloneqq h - d_s$	$d_{gx}\!\coloneqq\!h_x\!-\!d_s$
Web Thickness - Interior, Exterior	$b_w \coloneqq 16$ in	$b_{ux} \coloneqq 12$ in
Distance from Centerline of Girder to Edge of Curb		$l_e := -0.75 \; ft$
Height of Curb Above Deck		$h_{curb}\!\coloneqq\!17$ in
Width of Curb		$b_{curb} \coloneqq 18$ in

Height to Centroid of Reinforcement - Interior, Exterior	y _{bar} ∷	$\begin{bmatrix} 3\\ 3.5\\ 4.4\\ 3.5\\ 3 \end{bmatrix}$	 in 		Y _{barx} ∷	$\begin{bmatrix} 3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3 \end{bmatrix} $ <i>in</i>
Dictance Between Centroids of Deck and Web				e_g	$=\frac{d_g+2}{2}$	<u>d_s</u> =16.5 in
Depth of Reinforcement - Interior, Exterior	$d \coloneqq h - g$	Ybar		d_x	$= h_x -$	$y_{barx} + h_{curb}$
Area of Reinforcement at All Changes - Interior, Exterior		$A_s \coloneqq$	$ \begin{bmatrix} 6 \\ 8 \\ 10 \\ 8 \\ 6 \end{bmatrix} $	in ²	A_{sx}	$\coloneqq \begin{bmatrix} 2 \\ 4 \\ 4 \\ 2 \end{bmatrix} \boldsymbol{in}^2$
Load and Analysis Parameters						
Concentrated Load Due to Diaphragms on One Girder					P_{dis}	nt := 0 kip
Resistance Factors - Structural Dead load, Weading Surfa	ace, Live L γ _{DO} :	oad = 1.25	γ _{DW}	-= 1	.25	$\gamma_{LL} \coloneqq 1.35$
Impact Factor						IM := 0.33
Resistance Factor						$\phi \coloneqq .9$
System Factor						$\phi_s\!\coloneqq\!1.0$
Condition Factor						$\phi_c\!\coloneqq\!0.95$
Distributed Load Due to Rail					w_{ro}	$_{cil} \coloneqq 0.1 \; rac{kip}{ft}$
Eccentricity of Centerline of Girders w.r.t. Centerline of Roadway						exc:=0 in
			I	dext	$=\frac{P_{din}}{2}$	<u>t</u>

Distribution Factors																
Area and Moment of Inertia of Web		A :	$= d_{g}$	$_{g} \cdot b_{w}$	=4	.00	in ²	Ι	:=_	$b_w \cdot 1$	d_g^3 2	$=\langle 2$.08	3•]	$\begin{pmatrix} 10^4 \\ n \\ $	in ⁴ =1
Modular Ratio - Deck and Web																
Longitudinal Stiffness Parameter						K_{i}	,:= n	$\cdot \langle I$	+4	۱ ∙e	$\left(\begin{array}{c} 2 \\ g \end{array} \right)$	=(1.	297	7 • 1	05>	in ⁴
Interior Moment Distribution Factor			g _m	₁ ≔ 0	.06	+(S 14 f		.4	$\left(\frac{S}{L}\right)$	0.3 •	$\left(\frac{K}{L^{\star}}\right)$	d_s^3) 0.1	=0.	561
		g_m	₁2 :=	0.07	′5 +	$\left(\frac{1}{9}\right)$	S 5 ft	-)0.6	• { <u>1</u>	$\left(\frac{S}{L}\right)^{0}$.2	K_g L•d	$\left(\frac{3}{s}\right)$	0.1	=0.7	07
											g_m	i= n	ax	(g _n	x_{1}, g_{r}	n2)
Roadway Width										и	7 _r :=	lane	ewi	dth	•Nl	ane
Eccentricity of Design Lane From Center of Gravity of Girders									e	1 := .	$\frac{W_r}{2}$	-5	ft -	⊦ex	c=5	5 ft
Eccentricity of Exterior Girder From Center of Gravity of Girders								Х	C _{ext}	≔(.	NG	-1)	$\cdot \frac{s}{2}$.=]	10.7	5 ft
Eccentricity of Each Girder												a	x 3:=	$x_{2} \coloneqq X_{e_{1}}$	X_{ext} X_{ext} $X_{xt} - 2$	$C_{ext} = S$ $2 \cdot S$
							2 2 2 2	c ₄ := c ₅ := c ₆ := c ₇ :=	if (if (if (if (NG NG NG NG	τ̃ > 3 τ̃ > 4 τ̃ > ξ τ̃ > ξ	X_e X_e X_e X_e X_e	xt — xt — xt — xt —	-3+, -4+, -5+,	$S, 0 \\ S, 0$	$egin{array}{c} ft \ ft $
Lever Rule - One Design Lane	$R_1 \coloneqq$	$\frac{1}{NC}$	_ + }	$\frac{1}{x_1^2}$	+ x	2 +	- x ₃ ²	X_{es} +x	$e^{t} \cdot e^{2}$	x_{1}^{2}	2+	x_{6}^{2} -	+ x.	= 7	=0.4	59
							g_{mR}	21 :=	if (P _{dir}	<i>nt</i> >	0,1.	2•1	₹ ₁ ,	$0\rangle =$	0

Lever Rule - Two Design	Lanes	$R_2 \coloneqq \frac{2}{NG}$	$+\frac{X_{ext} \cdot \langle e_1 - 5 ft \rangle}{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2} = 0.5$
			$g_{mR2}\!:=\!\mathbf{if}\langle P_{dint}\!>\!0,R_2,0\rangle\!=\!0$
Exterior Moment Distribu	tion Factor		$g_{mx1} \coloneqq \frac{1.2 \left\langle S + d_e - 2 \mathbf{ft} \right\rangle}{2 \cdot S} = 0.37$
			$ee := 0.77 + \frac{d_e}{9 \ ft} = 0.687$
			$g_{mx2} \! \coloneqq \! g_{m2} \! \cdot ee \! = \! 0.485$
Interior	Exterior		$g_{mx} \coloneqq \max \langle g_{mx1}, g_{mx2} \rangle$
$g_m = 0.707$	$g_{mx} = 0.485$		
Loading			
Interior Girder Dead Load	1		$w_{girder} \coloneqq \gamma_{RC} \cdot b_w \cdot d_g \!=\! 0.417 \; \frac{kip}{ft}$
Deck Dead Load			$w_{deck} \coloneqq \gamma_{RC} \cdot S \cdot d_s = 0.717 \frac{kip}{ft}$
Curb Dead Load			$w_{curb} \coloneqq \gamma_{RC} \cdot h_{curb} \cdot b_{curb} = 0.319 \frac{kip}{ft}$
Dead Load from Nonstrue Components	ctural		$w_{ns} \coloneqq \frac{w_{curb}}{NG} + w_{rail} = 0.18 \ \frac{kip}{ft}$
Total Dead Load			$DC \coloneqq w_{girder} + w_{deck} + w_{ns} = 1.313 \ \frac{kip}{ft}$
Exterior Girder Dead Loa	ıd		$w_{girderx} \coloneqq \gamma_{RC} \cdot b_{wx} \cdot d_{gx} = 0.313 \ \frac{kip}{ft}$
Exterior Deck Dead Load			$w_{deckx} \coloneqq \gamma_{RC} \cdot S_x \cdot d_s \!=\! 0.283 \; \frac{kip}{ft}$

Total Exterior Dead Load		DC_x	$= w_{girderx} + i$	w _{deckx} +w	$_{ns}=0.776rac{kip}{ft}$
Wearing Surface Dead Load			DW:	$= \gamma_{ws} \cdot ws \cdot$	$S = 1.118 \frac{kip}{ft}$
Exterior Wearing Surface Dea	nd Load		$DW_x \coloneqq d$	$\gamma_{ws} \cdot ws \cdot S$	$x = 0.442 \frac{kip}{ft}$
Dead Load Moments					
$M_{DC} \coloneqq \underline{L}$	$\frac{DC \cdot L^2}{8} = 119.649 \ ft$	• kip	$M_{DCx} \coloneqq \frac{De}{dt}$	$\frac{C_x \cdot L^2}{8} = 7$	0.669 ft · kip
$M_{DW} \coloneqq I$	$\frac{DW \cdot L^2}{8} = 101.878 \ \boldsymbol{f}$	t · kip	$M_{DWx} \coloneqq \frac{D}{dx}$	$\frac{W_x \cdot L^2}{8} =$	40.277 ft · kip
Live Load Moment - Truck L	oad				
	$M_{Truck} = 32$	$kip \cdot \left(\frac{L}{4}\right)$	$+\frac{40 \ kip}{2} \cdot \left(\frac{1}{2}\right)$	$\left(\frac{L}{2}-14\ ft\right)$	=206 ft · kip
Live Load Moment - Tandem	$M_{Tandem} \coloneqq 2$	$25 \ kip \cdot \frac{L}{4}$	$+\frac{25 \ kip}{2} \cdot \left(\frac{1}{2}\right)$	$\left(\frac{5}{2}-4 ft\right) =$	=287.5 ft•kip
Live Load Moment - Lane		M	$t_{Lane} \coloneqq 0.64$	$\frac{kip}{ft}$	=58.32 ft•kip
Total HL-93 Live Load					
	$M_{LL} \coloneqq M_{Lane} + (1+I)$	$M) \cdot \max \langle \cdot$	M_{Truck}, M_{Ta}	$_{ndem} angle = 44$	0.695 <i>ft•kip</i>

Nominal Resistance	[0.542]
Depth of Interior Whitney Stress Bloc	$a \coloneqq A_{s} \cdot \frac{F_{y}}{0.85 \cdot f'_{c} \cdot S} = \begin{vmatrix} 0.722 \\ 0.903 \\ 0.722 \\ 0.722 \\ 0.542 \end{vmatrix} $ <i>in</i>
Depth of Exterior Whitney Stress Blo	ck $a_x \coloneqq A_{sx} \cdot \frac{F_y}{0.85 \cdot f'_c \cdot S_x} = \begin{bmatrix} 0.457 \\ 0.913 \\ 0.913 \\ 0.913 \\ 0.913 \\ 0.457 \end{bmatrix}$ in
Nominal Interior Moment Resistance	$M_{n} \coloneqq F_{y} \cdot A_{s} \cdot \left(d - \frac{a}{2}\right) = \begin{bmatrix} 490.531 \\ 641.055 \\ 774.085 \\ 641.055 \\ 490.531 \end{bmatrix} \mathbf{ft} \cdot \mathbf{kip}$
Midspan Moment Capacity	$M_{capacity} \coloneqq \max \langle M_n angle = 774.085 \; ft \cdot kip$
Nominal Exterior Moment Resistance	$M_{nx} := F_y \cdot A_{sx} \cdot \left(d_x - \frac{a_x}{2} \right) = \begin{bmatrix} 257.244 \\ 506.476 \\ 506.476 \\ 506.476 \\ 506.476 \\ 257.244 \end{bmatrix} (ft \cdot kip)$
Midspan Moment Capacity	$M_{capacityx}$:= max $\langle M_{nx} angle$ = 506.476 $ft \cdot kip$
Rating Factors	
	$RF_{Interior} \coloneqq \frac{\phi \cdot \phi_s \cdot \phi_c \cdot M_{capacity} - \gamma_{DC} \cdot M_{DC} - \gamma_{DW} \cdot M_{DW}}{\gamma_{LL} \cdot M_{LL} \cdot g_m}$
	$RF_{Foxter(or)} \coloneqq \frac{\phi \cdot \phi_s \cdot \phi_c \cdot M_{capacityx} - \gamma_{DC} \cdot M_{DCx} - \gamma_{DW} \cdot M_{DWx}}{\phi_s \cdot \phi_s \cdot$
	$\gamma_{LL} \cdot M_{LL} \cdot g_{mx}$
Interior	Exterior
$RF_{Interior} = 0.915$	$RF_{Exterior} \!=\! 1.019$

Rating Factor	
Improvements	
Interior	
Maximum Recorded Strain	$\varepsilon_T \! \coloneqq \! 65.45 \cdot \! 10^{-6}$
Maximum Applied Moment per Lane	M _{Max} :=329.14 ft · kip
Uncracked Section Modulus	$S_{unc} = 5850 in^3$
Cracked Section Modulus	$S_{cr} = 2185 \operatorname{in}^3$
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$\boldsymbol{S}_{\boldsymbol{e}}\!\coloneqq\!\mathbf{if}\big\langle Behav$	$nor = "Uncracked", S_{unc}, S_{cr} = \langle 5.85 \cdot 10^3 \rangle in^3$
Calculated Strain	$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_m}{S_e \cdot E_c} = 1.173 \cdot 10^{-4}$
Test Benefit Factor	$k_a \! \coloneqq \! \frac{\varepsilon_c}{\varepsilon_T} \! - \! 1 \! = \! 0.792$
Ratio of Applied to HL-93 Moment	$r_{M}\!:=\!\frac{M_{Max}}{M_{LL}}\!=\!0.747$
Test Understanding Factor	$k_b\!:=\!\mathrm{if}\langle r_M\!>\!0.7,0.5,0\rangle\!=\!0.5$
Rating Improvement Factor	$k := 1 + k_a \cdot k_b = 1.396$
Improved Rating Factor	$RF_{Improved} \coloneqq RF_{Interior} \cdot k = 1.278$

Exterior				
Maximum Recorded Strain				$\varepsilon_T \coloneqq 27.74 \cdot 10^{-6}$
Maximum Applied Moment per	Lane		M_{I}	_{Max} :=329.14 <i>ft · kip</i>
Uncracked Section Modulus				$S_{unc} \! \coloneqq \! 5894 \operatorname{in}^3$
Cracked Section Modulus				$S_{cr} \!\coloneqq\! 1832$ in 3
Section Behavior			Beha	$vior \coloneqq "Uncracked"$
Section Modulus Effective for I	3ehavior			
	$S_e \coloneqq \mathbf{if} \langle B \epsilon$	ehavior = "Unc	$racked", S_{unc}, S$	$_{cr} angle \!=\! \left< \! 5.894 \! \cdot \! 10^3 \right> {\it in}^3$
Calculated Strain			$\varepsilon_c := \frac{M_M}{S}$	$\frac{ax \cdot g_{mx}}{e \cdot E_c} = 7.993 \cdot 10^{-5}$
Test Benefit Factor				$k_a \coloneqq \frac{\varepsilon_c}{\varepsilon_T} - 1 = 1.881$
Ratio of Applied to HL-93 Mor	nent			$r_{M} \! \coloneqq \! \frac{M_{Max}}{M_{LL}} \! = \! 0.747$
Test Understanding Factor			$k_b := \mathbf{if} \langle r \rangle$	$_{M}\!\!>\!0.7, 0.5, 0ig angle\!=\!0.5$
Rating Improvement Factor				$k \coloneqq 1 + k_a \cdot k_b = 1.941$
Improved Rating Factor			$RF_{ImprovedExt}$:	$=\!RF_{Exterior} \cdot k \!=\! 1.978$
Summary				
Interior		Exterio	<u> </u>	
RF _{Improved}	=1.278	RF _{Impr}	$_{ovedExt} = 1.978$	

Bridge 2130			
Interior Section Pr	operties		
$y_{unc}\!\coloneqq\!21.4$ in	$I_{unc} := 125330 \ in^4$	$S_{unc} = 5850 \ in^3$	$N_i \coloneqq 2$
$y_{cr} \! \coloneqq \! 25.9$ in	$I_{cr} \coloneqq 56621 \ \textit{in}^4 \ S_{cr}$	=2185 in ³	
Exterior Section P $y_{uncx} = 25.9$ in	roperties $I_{uncx} = 152933 \ in^4$	$S_{uncx} = 5894$ in 3	$N_x = 2$
$y_{crx} {\coloneqq} 32.1$ in	$I_{crx} \coloneqq 58763 \text{ in}^4$	$S_{crx} \coloneqq 1832 \ in^3$	
Test Parameters			
Maximum Applieo M≔658.28 ft · I	l Moment cip	$\begin{array}{l} \operatorname{Maximum} \operatorname{Measu}\\ \varepsilon_m \!\coloneqq\! 65.45 \!\cdot\! 10^{-1} \end{array}$	red Strain 6
Using Nominal Co	ompressive Strength - 2.5	5 ksi	
$f_c' \coloneqq 2.5$ ksi	$E_c \coloneqq 1820 \ \textit{ksi} \cdot \sqrt{\frac{f'_c}{\textit{ksi}}}$	$=\langle 2.878 \cdot 10^3 \rangle$ ks	í
$\varepsilon_{uncracked} \coloneqq {N_i \cdot S}$	$\frac{M}{S_{unc} \cdot E_c + N_x \cdot S_{uncx} \cdot E_c}$	$= 1.169 \cdot 10^{-4}$	
$\varepsilon_{cracked} \coloneqq {N_i \cdot S_{cr}}$	$\frac{M}{\cdot E_c + N_x \cdot S_{crx} \cdot E_c} = 3.$.417•10 ⁻⁴ Behavi	$ior \coloneqq ext{if } \varepsilon_m < \varepsilon_{uncracked} = ext{``Uncracked''} \ \ ext{``Uncracked''} \ $
Using More Realis	stic Compressive Strengt	th - 5 ksi	else "Cracked"
f′ _c ≔5 ksi	$E_c \coloneqq 1820 \ ksi \cdot \sqrt{\frac{f'_c}{ksi}}$	$= \langle 4.07 \cdot 10^3 \rangle$ ksi	
$\varepsilon_{uncracked} \coloneqq {N_i \cdot S}$	$\frac{M}{E_{vnc} \cdot E_c + N_x \cdot S_{vncx} \cdot E_c}$	$= 8.264 \cdot 10^{-5}$	
$\varepsilon_{cracked} \coloneqq {N_i \cdot S_{cr}}$	$\frac{M}{\cdot E_c + N_x \cdot S_{crx} \cdot E_c} = 2.$	$.416 \cdot 10^{-4}$	
		$Behavior \coloneqq \mathbf{i}$	$f \varepsilon_m < \varepsilon_{uncracked} = "Uncracked"$
			"Uncracked"
			else
			"Cracked"

A.6 Franklin No. 3307

A.6.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 21:Franklin No. 3307 input data, experimental configuration, and experimental data collected

File Contents	File Name	File Type
Exterior Section Data	Br3307_Geom_Ext.csv	CSV Format
Interior Section Data	Br3307_Geom_Int.csv	CSV Format
Sensors	Br3307 _Sensors.csv	CSV Format
Sensor Layout	Br3307_SensorLayout.mat	MATLAB Data File
Truck Weight and Dimensions	Br3307_Trucks.mat	MATLAB Data File
Sensor Data	Br_3307_ALT_1_1_Strain.mat	MATLAB Data File
	Br_3307_BTB_1_1_Strain.mat	MATLAB Data File
	Br_3307_BTB_1_2_Strain.mat	MATLAB Data File
	Br_3307_BTB_2_1_Strain.mat	MATLAB Data File
	Br_3307_BTB_3_1_Strain.mat	MATLAB Data File
	Br_3307_MAX_1_1_Strain.mat	MATLAB Data File
	Br_3307_MAX_1_2_Strain.mat	MATLAB Data File
	Br_3307_MAX_2_1_Strain.mat	MATLAB Data File
	Br_3307_MAX_3_1_Strain.mat	MATLAB Data File
	Br_3307_SBS_1_1_Strain.mat	MATLAB Data File
	Br_3307_SBS_1_2_Strain.mat	MATLAB Data File
	Br_3307_SBS_2_1_Strain.mat	MATLAB Data File
	Br 3307 SBS 3 1 Strain.mat	MATLAB Data File

A.6.2 Instrumentation

	-1.00-	MIDSPAN	-1,	-00		
EXTERIOR GIRDER	2 [№] (19) 20 73 74 SBOT TOP	60 61 62 BOT MID ↓ TOP	(18) 3 [↑] 72 BOT ↓	-	DETAIL 1	DETAIL 2
INTERIOR GIRDER		③ ① 1 ⁵ ① 63 64 BOT MID L _→ TOP		_		BOT
INTERIOR GIRDER	2 ¹⁵ (14) (15)	(6) (1) 1 (2) 70 65 BOT MID ↓ TOP	②) 3 ⁵ 75 BOT ↓	_	DETAIL 3	- BMA2 -
INTERIOR GIRDER		3 ④ 1 5 57 58 59 BOT MID ↓ TOP		_		
EXTERIOR GIRDER	2 (1) (2) 55 56 ₅BOT TOP	17 23 1 24 71 810 811 BOT MID L₅ TOP	22 3 76 BOT		BOT BWV2	
				DOWEL EDGE		
	UM-01 UM-02	2 UM-03 UM → B3073 (21 → B3075 (1)-	1-04 UM-05 → B3055 ③→ B3057	UM-06 22		
	б → взобо 20 —	→ B3074 ①> B3065 ②-	→ B3056 ④ → B3058	⑦ → B3071	BRIDGE 3307 S	SENSOR LAYOUT
	(7) → B3061 (9)	→ B3063 (12) → B3066 (14)	→ B3068 (5) → B3059	23> B3810 20> B3811	DRAWN BY	DATE
	0		- B2009 (10	64	APS	2017/03/08
[

Figure 71: Franklin No. 3307 sensor layout

A.6.3 Loading

Figure 72: Franklin No. 3307 Truck T01-137 loading

Figure 73: Franklin No. 3307 Truck T01-166 loading

Figure 74: Franklin No. 3307 Truck T01-215 loading

Figure 75: Franklin No. 3307 Truck T01-286 loading

Figure 76: Franklin No. 3307 – BTB_2_1 strains - Midspan

Strain at Girder Ends, Test BTB, Test 1, Position 2

Figure 77: Franklin No. 3307 – BTB_2_1 strains – Ends

Figure 78: Franklin No. 3307 - SBS_2_1 strains - Midspan

Strain at Girder Ends, Test SBS, Test 1, Position 2

Figure 79: Franklin No. 3307 – SBS_2_1 strains - Ends

Figure 80: Franklin No. 3307 – MAX_2_1 strains - Midspan

Figure 81: Franklin No. 3307 – BTB_2_1 strains - Ends

Figure 82: Franklin No. 3307 – BTB_2_1 strains - Midspan

Figure 83: Franklin No. 3307 - BTB_2_1 strains - Ends

A.6.5 Rating Factor Calculations

Figure 84: Franklin No. 3307 Calculations

AASHTO Rating Calculations		
Bridge 3307 - Franklin, Maine		
Material Parameters:		
Concrete Compressive Strength		$f_c' = 5$ ksi
Reinforcement Yield Strength		$F_y := 33$ ksi
Unit Weights: Reinforced Concrete, Wearing Surface	$\gamma_{RC} \coloneqq 0.150 \; rac{m{kip}}{m{ft}^3} = \gamma_{ws}$	$= 0.144 \frac{kip}{ft^3}$
Concrte Elastic Modulus - LRFD Design C5.4.2.4-1	$E_c \coloneqq 1820 \ \textit{ksi} \cdot \sqrt{\frac{f'_c}{\textit{ksi}}} = \bigl\langle 4.$	$07 \cdot 10^3 ight angle$ ksi
Geometric Properties:		
Span Length		$L \coloneqq 40 \ ft$
Girder Spacing - Interior and Exterior	$S \coloneqq 68.75$ in	$S_x := 46.875$ in
Number of Girders		NG = 5
Skew Angle		$skew \coloneqq 0$ *
Width and Number of Lanes	$lanewidth \coloneqq 11~{\it ft}$	$Nlane \coloneqq 2$
Wearing Surface Thickness		$ws \coloneqq 4$ in
Girder Height - Interior, Exterior	h := 31.5 in	$h_x \coloneqq 31.5$ in
Deck Thickness		$d_s \! \coloneqq \! 5.75$ in
Web Height - Interior, Exterior	$d_g\!\coloneqq\!h\!-\!d_s$	$d_{gx}\!\coloneqq\!h_x\!-\!d_s$
Web Thickness - Interior, Exterior	$b_w \! := \! 19$ in	$b_{wx} \coloneqq 19$ in
Distance from Centerline of Girder to Edge of Curb		$d_e \! \coloneqq \! -15$ in
Height of Curb Above Deck		$h_{curb} \! \coloneqq \! 12$ in
Width of Curb		$b_{curb} \coloneqq 18$ in

Height to Centroid of Reinforcement - Interior, Exterior	ybar =	$\begin{bmatrix} 4.42 \\ 5.125 \\ 6.4 \\ 7.25 \\ 6.4 \\ 5.125 \\ 4.42 \end{bmatrix}$	in	$y_{barx} \coloneqq egin{bmatrix} 4. \ 5 \ 6 \ 7. \ 6 \ 5 \ 4. \ 4. \ 4. \ 4. \ \end{bmatrix}$	$\begin{array}{c c} 42 \\ 125 \\ .4 \\ 25 \\ .4 \\ 125 \\ 42 \end{array}$ <i>in</i>
Dictance Between Centroids of Deck and Web			e_g :	$=\frac{d_g+d_s}{2}=$	15.75 in
Depth of Reinforcement - Interior, Exterior	d:	$= h - y_{bas}$	d_x	$= h_x - y_{bara}$	$+ h_{curb}$
Area of Reinforcement at All Changes - Interior, Exterior Load and Analysis Parameters	$A_s \coloneqq$	$\begin{bmatrix} 7.594 \\ 10.125 \\ 12.656 \\ 15.188 \\ 12.656 \\ 10.125 \\ 7.594 \end{bmatrix}$	$in A_{so}$	$\mathfrak{c} := \begin{bmatrix} 7.594 \\ 10.125 \\ 12.656 \\ 15.188 \\ 12.656 \\ 10.125 \\ 7.594 \end{bmatrix}$	 in ²
Concentrated Load Due to Diaphragms on One Girder				$P_{dint} := 0$) kip
Resistance Factors - Structural Dead load, Weading Surfa	ace, Live L $\gamma_{DO} =$	oad = $1.25 \gamma_I$	DW := 1.	25 γ_{LL} = IM =	=1.35
Resistance Factor					$\phi \coloneqq .9$
System Factor				ϕ_{i}	, :=1.0
Condition Factor				φ	₂ ≔1.0
Distributed Load Due to Rail				$w_{rail} \coloneqq 0$	$0.1 \frac{kip}{ft}$
Eccentricity of Centerline of Girders w.r.t. Centerline of Roadway				exc :=	=0 in

Distribution Factors								
Distribution Pactors					7	, 3		
Area and Moment of Inertia of Web		$A \coloneqq d_g \cdot b_w =$	=489.2	$5 in^2 I$	$=\frac{b_w}{1}$	d _g 2	=(2.70)	$ 3\cdot10^4\rangle$ in $n=1$
Modular Ratio - Deck and Web								
Longitudinal Stiffness Parameter			K_g :	$= n \cdot \langle I$	+A•e	g^{2}	=(1.484	$\left {f \iota } 10^5 ight angle$ in 4
Interior Moment Distribution Factor		$g_{m1} := 0.4$	$06 + \left(\frac{1}{1}\right)$	$\left(\frac{S}{4 ft}\right)^{0.5}$	$\mathbf{\cdot}\left(\frac{S}{L}\right)$	0.3 •	$\left(\frac{K_g}{L \cdot d_s^3}\right)$	$\left.\right)^{0.1} = 0.47$
		$g_{m2} := 0.075$	$+\left(\frac{1}{9.5}\right)$	$\left(\frac{S}{ft}\right)^{0.6}$	$\cdot \left(\frac{S}{L}\right)^0$	•2	$\left(\frac{K_g}{L \cdot d_s^3}\right)$	0.1 =0.6
						g_m	$= \max$	$\langle g_{m1}, g_{m2} \rangle$
Roadway Width					ห	7 _r :=	lanewi	dth•Nlane
Eccentricity of Design Lane From					$e_1 \coloneqq$	W_r	-5 ft -	+exc=6 ft
Center of Gravity of Girders						2		
Eccentricity of Exterior Girder From							q	
Center of Gravity of Girders				X	ext := (NG	$-1) \cdot \frac{5}{2}$	-=11.458 f i
Eccentricity of Each Girder							x	$x_1 \coloneqq X_{ext}$ $x_2 \coloneqq X_{ext} - S$
							$x_3 :=$	$X_{ext} - 2 \cdot S$
				$x_4 :=$	if (NG	$\tilde{t} > 3$	$, X_{ext} - $	$3 \cdot S, 0 ft$
				$x_5 \coloneqq x_6 \coloneqq$	if (NG)	$\frac{1}{4} > 4$ $\frac{1}{4} > 5$	$X_{ext} - X_{ext} - X_{e$	$(4 \cdot S, 0 \mathbf{ft})$ $(5 \cdot S, 0 \mathbf{ft})$
				x ₇ :=	if (NG	$\tilde{t} > 6$	$S, X_{ext} -$	$(6 \cdot S, 0 \mathbf{ft})$
Lever Rule - One Design Lane	$R_1 \coloneqq$	$\frac{1}{NC} + \frac{1}{2}$	9	Xex	* e ₁	3	9	=0.409
		<i>IVG</i> x ₁ [*] +	$-x_2^{-+3}$	$x_{3}^{2} + x_{2}$	$x_{4}^{*} + x_{5}$; [*] +	$x_6^2 + x_7$	7
			Į	$g_{mR1} := $	if $\langle P_{dir}$	nt>(0,1.2· <i>H</i>	$\left \mathbf{R}_{1},0\right\rangle = 0$

ctor		NG	x ₁ ²	$+x_2^2 + x_3$	$g_{mR2}^{2} + x_{2}^{2}$	g_{ma}^{2} + $i = if$ 1.2 ee : g_{ma}	$x_5^2 + i$ $\langle P_{dint}$ $\langle S + d_d$ $2 \cdot S$ $= 0.77$ $x_2 := g_{\gamma}$	$x_6^2 + x_7$ $t_t > 0, R_2$ $t_e - 2 ft$ S $T + \frac{d_e}{9 ft}$	$,0\rangle = 0$.=0.26 =0.631
ctor				g_{η}	g _{mR2} _{nx1} ≔-	:= if 1.2 ee: g_{ma}	$\langle P_{dint} $ $\langle S + d_{dint} $ $2 \cdot S $ = 0.77 $x_2 := g_{\gamma}$	$t > 0, R_2$ $\frac{e - 2 ft}{S}$ $7 + \frac{d_e}{9 ft}$	$,0\rangle = 0$.=0.26 =0.631
ctor erior				<i>g</i> ,	nx1 ≔-	1.2 ee: g _{m:}	$\frac{\langle S+d_{t} \rangle}{2 \cdot t} = 0.77$ $_{x2} := g_{t}$	$\frac{e-2 ft}{s}$ $7 + \frac{d_e}{9 ft}$	=0.26 =0.631
erior						ee: g _{m:}	= 0.77 $_{r2} := g_{r}$	$7 + \frac{d_e}{9 ft}$	=0.631
erior						g_m	$x_2 := g_r$		
erior								_{m2} •ee=	0.379
						g_{m}	r=ma	$a_{X}\langle g_{mx1}$	$,g_{mx2}\rangle$
=0.379									
				w	girder ^{::}	$=\gamma_{R0}$	∂•b _w •	$d_g \!=\! 0.5$	$\frac{kip}{ft}$
					w _{dec} i	$c \coloneqq \gamma$	$_{RC} \cdot S$	$\cdot d_s = 0.4$	12 kip ft
				w_{curl}	γ_R	7• h _c	urb•bc	urb = 0.2	25
					w _{ns} :	$=\frac{w_c}{N}$	$\frac{urb}{G} + i$	$w_{rail} = 0.$	145 <u>kip</u> ft
				$DC \coloneqq u$	girder -	⊦w _d ,	_{eck} +u	$v_{ns} = 1.00$	36 kip ft
				w _{gira}	erx := ?	^Y RC*	b _{wx} ∙d	$l_{gx} = 0.5$	l <mark>kip</mark> ft
				w	deckx ^{:=}	$=\gamma_{RC}$	$_{7} \cdot S_{x} \cdot $	$d_s = 0.28$	1 kip ft
	=0.379	=0.379			=0.379 w	$= 0.379$ $w_{girder} = w_{deck}$ $w_{curb} = \gamma_{R0}$ $w_{ns} = 0$ $DC = w_{girder}$ $w_{girderx} = 0$ $w_{deckx} = 0$	$= 0.379$ $w_{girder} := \gamma_{RU}$ $w_{deck} := \gamma$ $w_{curb} := \gamma_{RC} \cdot h_c$ $w_{ns} := \frac{w_c}{N}$ $DC := w_{girder} + w_d$ $w_{girderx} := \gamma_{RC} \cdot$ $w_{deckx} := \gamma_{RC}$	$= 0.379$ $w_{girder} := \gamma_{RC} \cdot b_{w} \cdot w_{deck} := \gamma_{RC} \cdot S_{w} \cdot w_{deck} := \gamma_{RC} \cdot S_{w} \cdot w_{curb} := \gamma_{RC} \cdot h_{curb} \cdot b_{c}$ $w_{ns} := \frac{w_{curb}}{NG} + v_{deck} + u$ $DC := w_{girder} + w_{deck} + u$ $w_{girderx} := \gamma_{RC} \cdot b_{wx} \cdot c$ $w_{deckx} := \gamma_{RC} \cdot S_{x} \cdot w_{deckx} := \gamma_{RC} \cdot S_{x} \cdot w_{deckx}$	$= 0.379$ $w_{girder} := \gamma_{RC} \cdot b_w \cdot d_g = 0.5$ $w_{deck} := \gamma_{RC} \cdot S \cdot d_s = 0.4$ $w_{curb} := \gamma_{RC} \cdot h_{curb} \cdot b_{curb} = 0.2$ $w_{ns} := \frac{w_{curb}}{NG} + w_{rail} = 0.$ $DC := w_{girder} + w_{deck} + w_{ns} = 1.06$ $w_{girderx} := \gamma_{RC} \cdot b_{wx} \cdot d_{gx} = 0.5$ $w_{deckx} := \gamma_{RC} \cdot S_x \cdot d_s = 0.28$

Total Exterior Dead Load			DC_x	$:= w_{girder}$	_r +w _{deckx} +	$w_{ns} = 0.935 \frac{kip}{ft}$
Wearing Surface Dead Load				D	$W \coloneqq \gamma_{ws} \cdot u$	$s \cdot S = 0.275 \frac{kip}{ft}$
Exterior Wearing Surface De	ead Load			DW_a	$x \coloneqq \gamma_{ws} \cdot ws$	$\cdot S_x = 0.188 \frac{kip}{ft}$
Dead Load Moments						
$M_{DC} := 2$	$\frac{DC \cdot L^2}{8}$	=213.284 ft •	kip	$M_{DCx} \coloneqq$	$\frac{DC_x \cdot L^2}{8}$	=187.079 ft•kip
<i>M_{DW}</i> :=-	$\frac{DW \cdot L^2}{8}$.=55 ft•kip		M_{DWx} =	$\frac{DW_x \cdot L^2}{8}$.=37.5 ft • kip
Live Load Moment - Truck	Load	$M_{Truck} = 32$	$kip \cdot \left(\frac{L}{L}\right)$	40 kip	$\cdot \left(\frac{L}{-14} \right)$	$ft = 440 ft \cdot kip$
		ITUN	• (4)	2	(2) * *
Live Load Moment - Tander	n	$M_{Tandem} \coloneqq 2$	$5 kip \cdot \frac{L}{4}$	$+\frac{25 \text{ kip}}{2}$	$\cdot \left(\frac{L}{2} - 4 ft\right)$)=450 ft · kip
Live Load Moment - Lane			N	$I_{Lane} := 0.$	$64 \frac{kip}{ft} \cdot \frac{L}{8}$	2 _=128 <i>ft•kip</i>
Total HL-93 Live Load						
	$M_{LL} \coloneqq I$	$M_{Lane} + (1 + II)$	$M) \cdot \max($	M_{Truck}, N	$I_{Tandem} \rangle = 0$	726.5 ft·kip

New in al Basisterna	[0.858]
Nominal Resistance	1.144
	F_{u} 1.429
Depth of Interior Whitney Stress Block	$a \coloneqq A_s \cdot \frac{-g}{0.85 + f' - g} = 1.715 in$
	0.03+ j c+5 1.429
	1.144
	[0.858]
	[1.258]
	1.677
Depth of Exterior Whitney Stress Block	2.096
	$F_y = 2516$ in
	$u_x = A_{sx} \cdot \frac{1}{0.85 \cdot f'_s \cdot S_s} = 2.006$
	[1.258]
	[556.57]
	718.459
	\longrightarrow 848.706
Nominal Interior Moment Resistance	$M_n := F_u \cdot A_s \cdot (d - \frac{a}{d}) = 977.027$ ft $\cdot kip$
	718 459
	556 57
	[330.37]
Midspan Moment Capacity	$M_{canacity} \coloneqq \max \langle M_n \rangle = 977.027 \ ft \cdot kip$
	002.002
	1.045+10
	$ \longrightarrow $ $ 1.255 \cdot 10^{3} $
Nominal Exterior Moment Resistance	$M_{uu} := F_{u} \cdot A_{uv} \cdot \left[d_{u} - \frac{a_{x}}{a_{x}} \right] = \left[1.462 \cdot 10^{3} \right] \left(ft \cdot ki \right)$
	$x = \frac{1}{2}$
	1.233+10
	$1.045 \cdot 10^{\circ}$
	[802.992]
Midspan Moment Capacity	$M_{\text{exercities}} := \max \langle M_{\text{exe}} \rangle = \langle 1.462 \cdot 10^3 \rangle \text{ft} \cdot \text{ki}$
1	cupucitya (na) (7 •
Rating Factors	
B	$F_{T_{u} \neq v \neq v} \coloneqq \frac{\phi \cdot \phi_s \cdot \phi_c \cdot M_{capacity} - \gamma_{DC} \cdot M_{DC} - \gamma_{DW} \cdot M_{DW}}{\phi \cdot M_{DW}}$
	$\gamma_{LL} \cdot M_{LL} \cdot g_m$
DD	$- \phi \cdot \phi_s \cdot \phi_c \cdot M_{capacityx} - \gamma_{DC} \cdot M_{DCx} - \gamma_{DW} \cdot M_{DWx}$
RF _E	aterior ···································
	אוויק תנייי ענוי
Interior	Exterior
$RF_{Interior} = 0.924$	$RF_{Enterior} = 2.784$

Rating Factor	
Improvements	
Interior	
Maximum Recorded Strain	$\varepsilon_T\!\coloneqq\!76.16\boldsymbol{\cdot}10^{-\!6}$
Maximum Applied Moment per Lane	$M_{Max} \! \coloneqq \! 609.88 \; \textit{ft} \cdot \textit{kip}$
Uncracked Section Modulus	$S_{unc}\!\coloneqq\!5712m{in}^3$
Cracked Section Modulus	$S_{cr} \coloneqq 2250$ in ³
Section Behavior	$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for Behavior	
$\boldsymbol{S}_{e}\!\coloneqq\!\mathbf{if}\langle Behavi$	for = "Uncracked", $S_{unc}, S_{cr} \rangle = \langle 5.712 \cdot 10^3 \rangle in^3$
Calculated Strain	$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_m}{S_e \cdot E_c} = 1.89 \cdot 10^{-4}$
Test Benefit Factor	$k_a \coloneqq \frac{\varepsilon_c}{\varepsilon_T} - 1 = 1.482$
Ratio of Applied to HL-93 Moment	$r_M\!\coloneqq\!\frac{M_{Max}}{M_{LL}}\!=\!0.839$
Test Understanding Factor	$k_{b}\!:=\!\mathrm{if}\left<\!r_{M}\!>\!0.7,0.5,0\right>\!=\!0.5$
Rating Improvement Factor	$k \coloneqq 1 + k_a \cdot k_b = 1.741$
Improved Rating Factor	$RF_{Improved} \coloneqq RF_{Interior} \star k = 1.608$

Exterior			
Maximum Recorded Strain			$\varepsilon_T \! \coloneqq \! 44.3 \cdot 10^{-6}$
Maximum Applied Moment p	er Lane		$M_{Max} \coloneqq 609.88 \; \textit{ft} \cdot \textit{kip}$
Uncracked Section Modulus			$S_{unc} \coloneqq 5894$ in ³
Cracked Section Modulus			$S_{cr} \! \coloneqq \! 1832$ in 3
Section Behavior			$Behavior \coloneqq "Uncracked"$
Section Modulus Effective for	Behavior		
	$S_e \coloneqq \mathbf{if} \langle B_e \rangle$	<i>havior</i> = "Uncrack	ed", $S_{unc},S_{cr} angle=\langle 5.894\cdot 10^3 angle$ in 3
Calculated Strain			$\varepsilon_c \coloneqq \frac{M_{Max} \cdot g_{mx}}{S_e \cdot E_c} = 1.156 \cdot 10^{-4}$
Test Benefit Factor			$k_{a}\!\coloneqq\!\frac{\varepsilon_{c}}{\varepsilon_{T}}\!-\!1\!=\!1.61$
Ratio of Applied to HL-93 Mc	oment		$r_{M}\!\coloneqq\!\frac{M_{Max}}{M_{LL}}\!=\!0.839$
Test Understanding Factor			$k_{b}\! \coloneqq\! \mathbf{if} \left<\! r_{M} \! > \! 0.7, 0.5, 0 \right> \! = \! 0.5$
Rating Improvement Factor			$k \coloneqq 1 + k_a \cdot k_b = 1.805$
Improved Rating Factor		RF	$T_{ImprovedExt} \coloneqq RF_{Exterior} \star k = 5.025$
Summary			
Interior		Exterior	
RF _{Improve}	_d =1.608	$RF_{ImprovedE}$	xt=5.025

