16 State House Station Augusta, Maine 04333

Transportation Research Division

Technical Report 18-2

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges

December 2016

1. Report No.	2.	3. Recipient's Accession No.			
ME 18-2					
4 Title and Subtitle		5 Report Date			
Instrumentation During Live Load Testi	December 2016				
Five Slab-On-Girder Bridges					
	The sime on on an anges				
7. Author(s) Sport Temlinson D.E. William Davids I		8. Performing Organization Report No.			
Scou Tommson P.E., wimam Davids F	11.D, P.E.	1/-11-1414			
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.			
Advanced Structures and Composites Composites	enter	Project 017666.00 & 020	832.00		
University of Maine		5			
35 Flagstaff Rd.		11. Contract © or Grant (G) No			
Orono, ME 04469		Contract # 201604130000	000003122		
12. Sponsoring Organization Name and Address		13. Type of Report and Period C	Covered		
Maine Department of Transportation					
		14. Sponsoring Agency Code			
15. Supplementary Notes					
16 Abstract (Limit 200 words)					
16. Abstract (Limit 200 words)					
16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested	during the summer of 201	6 by the University of Ma	ine (UMaine) as part		
16. Abstract (Limit 200 words)Five slab-on-girder bridges were tested of this program for the Maine Department	during the summer of 201	6 by the University of Ma	ine (UMaine) as part		
16. Abstract (Limit 200 words)Five slab-on-girder bridges were tested of this program for the Maine Department	during the summer of 201 ent of Transportation (Main	6 by the University of Ma eDOT):	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Department 1. Steuben No. 3067 Dver Bay Road over the Steuben No. 3067 Dver Ba	during the summer of 201 ent of Transportation (Main er Dyer Creek.	6 by the University of Ma eDOT):	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Department 1. Steuben No. 3067 Dyer Bay Road ov 	during the summer of 201 ent of Transportation (Main er Dyer Creek,	6 by the University of Ma eDOT):	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Department 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River,	6 by the University of Ma eDOT):	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River,	6 by the University of Ma eDOT):	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I	6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I	6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I	6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River,	.6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River	6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River	6 by the University of Ma eDOT): River,	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were computed 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected	6 by the University of Ma eDOT): River, • (West Branch). during live load testing.	ine (UMaine) as part		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A.	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5,		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p analyses are summarized be	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A.	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings.		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings live I 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p malyses are summarized be oad test data and extrapol	6 by the University of Ma eDOT): River, (West Branch). during live load testing, provided in Appendices A. elow and are compared with ation of these results to oth	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings.		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p unalyses are summarized be oad test data, and extrapole	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth	. Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p inalyses are summarized be oad test data, and extrapole	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p inalyses are summarized be oad test data, and extrapole	6 by the University of Ma eDOT): River, (West Branch). during live load testing, provided in Appendices A. elow and are compared with ation of these results to oth	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. the structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 17. Document Analysis/Descriptors Bridge load rating, steel girder, live load 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan H r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p unalyses are summarized be oad test data, and extrapole	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 17. Document Analysis/Descriptors Bridge load rating, steel girder, live load 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p malyses are summarized be oad test data, and extrapola	6 by the University of Ma eDOT): River, (West Branch). during live load testing, provided in Appendices A. elow and are compared with ation of these results to oth 18. Availability Statement	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 17. Document Analysis/Descriptors Bridge load rating, steel girder, live load 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p inalyses are summarized be oad test data, and extrapole	6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. ter structures is at the		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 17. Document Analysis/Descriptors Bridge load rating, steel girder, live load 19. Security Class (this report) 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p inalyses are summarized be oad test data, and extrapole l testing	.6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth 18. Availability Statement 21. No. of Pages	ine (UMaine) as part . Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the 22. Price		
 16. Abstract (Limit 200 words) Five slab-on-girder bridges were tested of this program for the Maine Departme 1. Steuben No. 3067 Dyer Bay Road ov 2. Waltham No. 3238 Route 179 over U 3. Pembroke No. 3884 Pembroke Cross 4. Windham No. 5298 Windham Center 5. Buckfield No. 5452 North Buckfield Revised load ratings were compute instrumentation, load cases, and strain and A.5.5. The results of the tests and a Use of these revised load ratings, live I sole discretion of the bridge owner. 17. Document Analysis/Descriptors Bridge load rating, steel girder, live load 19. Security Class (this report) 	during the summer of 201 ent of Transportation (Main er Dyer Creek, Inion River, Road over Pennamaquan I r Road over Pleasant River, Road over Nezinscot River d using data collected plots for each bridge are p inalyses are summarized be oad test data, and extrapole l testing 20. Security Class (this page)	.6 by the University of Ma eDOT): River, (West Branch). during live load testing. provided in Appendices A. elow and are compared with ation of these results to oth 18. Availability Statement 21. No. of Pages 143	. Details of bridge .1, A.3, A.3.5, A.4.5, h the existing ratings. her structures is at the 22. Price		

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges

Prepared for: Dale Peabody P.E. Director Transportation Research Maine Dept. of Transportation 16 State House Station Augusta ME 04333-0016 University of Maine's Advanced Structures and Composites Center Report Number: 17-11-1414

2016-12-29-Rev00

Prepared by: Bill Davids PhD, PE John C. Bridge Professor of Civil and Environmental Engineering **Reviewed by:** Joshua Clapp PE Research Engineer

Scott Tomlinson PE, SCWI, Research Engineer Mahmood Jaleel Albraheemi, Graduate Researcher Andrew Schanck, Undergraduate Research Assistant

This report shall not be reproduced, except in full, without the written approval of University of Maine's Advanced Structures and Composites Center.

The University of Maine Advanced Structures and Composites Center is an ISO 17025 accredited testing laboratory, accredited by the International Accreditation Service.

Telephone: 207-581-2123 FAX: 207-581-2074 composites@maine.edu www.composites.umaine.edu

		-	
Name/ Organization	Date	Version	Action
William Davids, Author	2016-12-29	Rev00	Initial release to MaineDOT.
Scott Tomlinson, Author			
Mahmood Albraheemi, Author			
Andrew Schanck, Author			
Joshua Clapp, Reviewer			

Document Log

Table of Contents

Index of	Figures	. 3
Index of	Tables	. 5
Acronyn	1S	. 6
Executiv	e Summary	. 7
1	Bridge Testing Program	. 8
1.1	Instrumentation	9
1.2	Loading	11
1.3	Typical Results	12
1.4	Analysis Methodology	15
1.4.	Analysis Overview	15
1.4.2	2 Bridge Characteristics	15
1.4.3	3 AASHTO Distribution Factors	16
1.4.4	AASHTO Live Loads with Impact	16
1.4.5	5 Non-composite Rating Factor	16
1.4.0	5 Live Loads Applied during Testing	16
1.4.7	7 Percent Composite Action and Measured Section Properties	17
1.4.8	B Distribution Factors Determined from Live Load Testing	18
1.4.9	9 Modified Rating Factor	18
1.4.1	10 Shear Flow	19
2	Live Load Test Results	19
2.1	Steuben No. 3067	19
2.2	Waltham No. 3238	21
2.3	Pembroke No. 3884	23
2.4	Windham No. 5298	25
2.5	Buckfield No. 5452	27
3	Summary of Live Load Test Data Conclusions	29
4	References	30
A.1	Experimental Configuration and Data Collected	30
A.1.1	Input Data	30
A.1.2	Experimental Configuration	31

A.1.3	Collected Data	31
A.2	Steuben No. 3067	32
A.2.1	Input Data, Experimental Configuration, and Experimental Data Collected	32
A.2.2	Instrumentation	32
A.2.3	Loading	33
A.2.4	Representative Data Plots	37
A.2.5	Rating Factor Calculations	43
A.3	Waltham No. 3238	57
A.3.1	Input Data, Experimental Configuration, and Experimental Data Collected	57
A.3.2	Instrumentation	57
A.3.3	Loading	58
A.3.4	Representative Data Plots	62
A.3.5	Rating Factor Calculations	66
A.4	Pembroke No. 3884	80
A.4.1	Input Data, Experimental Configuration, and Experimental Data Collected	80
A.4.2	Instrumentation	80
A.4.3	Loading	81
A.4.4	Representative Data Plots	85
A.4.5	Rating Factor Calculations	89
A.5	Windham No. 5298	101
A.5.1	Input Data, Experimental Configuration, and Experimental Data Collected	101
A.5.2	Instrumentation	101
A.5.3	Loading	102
A.5.4	Representative Data Plots	106
A.5.5	Rating Factor Calculations	110
A.6	Buckfield No. 5452	124
A.6.1	Input Data, Experimental Configuration, and Experimental Data Collected	124
A.6.2	Instrumentation	124
A.6.3	Loading	125
A.6.4	Representative Data Plots	129
A.6.5	Rating Factor Calculations	131

Index of Figures

Figure 1: Typical strain sensors mounted under bridge connected to wireless nodes	9
Figure 2: BDI STS-Wi-Fi network setup for bridge sensor setup.	10
Figure 3: MaineDOT UBIT utilized to install sensors	11
Figure 4: Maine DOT trucks used for bridge loading	11
Figure 5: State highway patrol certified portable crane scales used to verify vehicle weight for	r each
test	12

Figure 6: Pembroke No. 3884 – 4 trucks, 2 lanes, test 2, strains in center girder	. 13
Figure 7: Pembroke No. 3884 - 4 trucks, 2 lanes, test 2, slip between girder and slab	. 13
Figure 8: Buckfield No. 5452 - 4 trucks, 2 lanes, test 1, strain in center girder	. 14
Figure 9: Buckfield No. 5452 - 4 trucks, 2 lanes, test 1, slip between girder and slab	. 15
Figure 10: Typical linear strain distribution	. 17
Figure 11: Steuben No. 3067 general condition	. 20
Figure 12: Waltham No. 3238 general condition	. 22
Figure 13: Pembroke No. 3884 General condition	. 24
Figure 14: Windham No. 5298 general condition	. 26
Figure 15: Buckfield No. 5452 general condition	. 28
Figure 16: Steuben No. 3067 sensor layout	. 32
Figure 17: Steuben No. 3067 Truck T01-137 loading	. 33
Figure 18: Steuben No. 3067 Truck T01-157 loading	. 34
Figure 19: Steuben No. 3067 Truck T01-166 loading	. 35
Figure 20: Steuben No. 3067 Truck T01-198 loading	. 36
Figure 21: Steuben No. 3067- 2 trucks 2 lanes test 1 strain	. 37
Figure 22: Steuben No. 3067- 2 trucks 2 lanes test 1 shear slip	. 38
Figure 23: Steuben No. 3067- 4 trucks 2 lanes test 1 strains	. 39
Figure 24: Steuben No. 3067- 4 trucks 2 lanes test 1 shear slip	. 40
Figure 25: Steuben No. 3067- 4 trucks 2 lanes test 2 strains	. 41
Figure 26: Steuben No. 3067- 4 trucks 2 lanes test 2 shear slip	. 42
Figure 27: Steuben No. 3067 Calculations	. 43
Figure 28: Waltham No. 3238 sensor layout	. 57
Figure 29: Waltham No. 3238 Truck T01-119 loading	. 58
Figure 30: Waltham No. 3238 Truck T01-257 loading	. 59
Figure 31: Waltham No. 3238 Truck T01-280 loading	. 60
Figure 32: Waltham No. 3238 Truck T01-287 loading	. 61
Figure 33: Waltham No. 3238 - 2 trucks 2 lanes test 2 strains	. 62
Figure 34: Waltham No. 3238 - 2 trucks 2 lanes test 2 shear slip	. 63
Figure 35: Waltham No. 3238 - 4 trucks 2 lanes test 1 strains	. 64
Figure 36: Waltham No. 3238 - 4 trucks 2 lanes test 1 shear slip	. 65
Figure 37: Waltham No. 3238 Calculations	. 66
Figure 38: Pembroke No. 3884 sensor layout	. 80
Figure 39: Pembroke No. 3884 Truck T01-223 loading	. 81
Figure 40: Pembroke No. 3884 Truck T01-231 loading	. 82
Figure 41: Pembroke No. 3884 Truck T01-242 loading	. 83
Figure 42: Pembroke No. 3884 Truck T01-244 loading	. 84
Figure 43: Pembroke No. 3884 - 4 trucks 2 lanes test 1 strains	. 85
Figure 44: Pembroke No. 3884 - 4 trucks 2 lanes test 1 shear slip	. 86
Figure 45: Pembroke No. 3884 - 4 trucks 2 lanes test 2 strains	. 87

Figure 46: Pembroke No. 3884 - 4 trucks 2 lanes test 2 shear slip	
Figure 47: Pembroke No. 3884 Calculations	89
Figure 48: Windham No. 5298 sensor layout	101
Figure 49: Windham No. 5298 Truck T01-164 loading	102
Figure 50: Windham No. 5298 Truck T01-197 loading	103
Figure 51: Windham No. 5298 Truck T01-247 loading	
Figure 52: Windham No. 5298 Truck T01-259 loading	105
Figure 53: Windham No. 5298 - 2 trucks 2 lanes test 1 strains	106
Figure 54: Windham No. 5298 - 2 trucks 2 lanes test 1 shear slip	107
Figure 55: Windham No. 5298 - 4 trucks 2 lanes test 2 strains	108
Figure 56: Windham No. 5298 - 4 trucks 2 lanes test 2 shear slip	109
Figure 57: Windham No. 5298 Calculations	110
Figure 58: Buckfield No. 5452 sensor layout	
Figure 59: Buckfield No. 5452 Truck T01-129 loading	125
Figure 60: Buckfield No. 5452 Truck T01-220 loading	126
Figure 61: Buckfield No. 5452 Truck T01-246 loading	127
Figure 62: Buckfield No. 5452 Truck T01-273 loading	
Figure 63: Buckfield No. 5425 - 4 trucks 2 lanes test 1 strains	129
Figure 64: Buckfield No. 5425 - 4 trucks 2 lanes test 1 shear slip	
Figure 65: Buckfield No. 5452 Calculations	

Index of Tables

Table 1: Bridge Characteristics	
Table 2: Steuben No. 3067 Strain and Neutral Axis Data	
Table 3: Steuben No. 3067 distribution factors	
Table 4: Waltham No. 3238 Strain and Neutral Axis Data	
Table 5: Waltham No. 3238 distribution factors	
Table 6: Pembroke No. 3884 Strain and Neutral Axis Data	
Table 7: Pembroke No. 3884 distribution factors	
Table 8: Windham No. 5298 Strain and Neutral Axis Data	
Table 9: Windham No. 5298 distribution factors	
Table 10: Buckfield No. 5452 Strain and Neutral Axis	
Table 11: Buckfield No. 5452 distribution factors	
Table 12: Steuben No. 3067 Bridge Input Data, Experimental Configuration, and Exp	perimental
Data Collected	
Table 13: Waltham No. 3238 Bridge Input Data, Experimental Configuration, and Exp	perimental
Data Collected	

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Table 144: Windham No. 5298 Bridge Input Data, Experimental Configuration, and Experimental
Data Collected101
Table 15:Buckfield No. 5452 Bridge Input Data, Experimental Configuration, and Experimental
Data Collected124

Acronyms

Cases

AASHTO: American Association of State Highway and Transportation Officials	29
BDI: Bridge Diagnostics Inc	9
LVDT: Linear Variable Differenetial Transformer	9
Maine DOT: Maine Department of Transportation	7
STS-WiFi: Wireless Structural Testing System	9
UBIT: Under Bridge Inspection Truck	10
UMaine: The University of Maine	7

Executive Summary

Five slab-on-girder bridges were tested during the summer of 2016 by the University of Maine (UMaine) as part of this program for the Maine Department of Transportation (MaineDOT):

- 1. Steuben No. 3067 Dyer Bay Road over Dyer Creek,
- 2. Waltham No. 3238 Route 179 over Union River,
- 3. Pembroke No. 3884 Pembroke Cross Road over Pennamaquan River,
- 4. Windham No. 5298 Windham Center Road over Pleasant River,
- 5. Buckfield No. 5452 North Buckfield Road over Nezinscot River (West Branch).

Revised load ratings were computed using data collected during live load testing. Details of bridge instrumentation, load cases, and strain plots for each bridge are provided in Appendices A.1, A.3, A.3.5, A.4.5, and A.5.5. The results of the tests and analyses are summarized below and are compared with the existing ratings. Use of the these revised load ratings, live load test data, and extrapolation of these results to other structures is at the sole discretion of the bridge owner.

- Steuben No. 3067: On July 21, 2016, four trucks were used to produce 78% of an HL-93 service load with impact. The rating factors based on non-composite response were 0.80 for interior and 1.04 for exterior girders, which made this span the lowest capacity bridge tested. Applied loads were near the predicted capacity. Not surprisingly, the strains measured were the highest for any of the bridges and it was among those exhibiting the least observed partial composite action, which led to the most modest rating factor increases for this set of bridges. However, using the provisions of the AASHTO *Manual for Bridge Evaluation* (AASHTO 2012), the rating factor for HL-93 was still increased to 1.09 for the interior girder and 1.13 for exterior girder bringing the rating factors above 1.0.
- 2. Waltham No. 3238: On July 14, 2016 87% of an HL-93 loading with impact was produced with four trucks. This was the highest loading for all bridges, but this structure also had the highest non-composite rating factors of 1.17 for the interior girder and 1.61 for the exterior girder. Full composite action was observed for this bridge, and measured strains were relatively small. Rating factors were increased for this structure to 1.68 for interior girders and 2.82 for exterior girders.
- 3. Pembroke No. 3884: On July 19, 2016 81% of an HL-93 loading with impact was produced for this span using four trucks. The initial non-composite rating factors were 0.86 for interior girders and 1.09 for exterior girders. Fairly high strain was produced compared to other bridges in the group, but full composite action was observed. Live load testing results allowed the rating factors to be increased to 1.33 for interior girders and 2.52 for exterior girders.
- 4. Windham No. 5298: On August 23, 2016 77% of an HL-93 loading with impact was achieved with four trucks. This structure had low non-composite rating factors of 0.81 for the interior and 0.99 for the exterior girders. Due to the observed full composite action, measured strains were low and rating factor increases to 1.26 and 1.29 for interior and exterior girders, respectively, were justified.

5. Buckfield No. 5452: On July 12, 2016 four trucks were used to produce 74% of an HL-93 loading with impact. Despite only partial composite action, this bridge saw the highest increase in rating factors from 0.96 and 1.18 to 1.61 and 1.76 for interior and exterior girders respectively.

1 Bridge Testing Program

Five concrete slab on steel girder bridges were tested during the summer of 2016 as part of this program:

- 1. Steuben No. 3067 Dyer Bay Road over Dyer Creek
- 2. Waltham No. 3238 Route 179 over Union River,
- 3. Pembroke No. 3884 Pembroke Cross Road over Pennamaquan River,
- 4. Windham No. 5298 Windham Center Road over Pleasant River,
- 5. Buckfield No. 5452 North Buckfield Road over Nezinscot River (West Branch).

All bridges were instrumented with a strain measuring system, loaded with heavy trucks, and then analyzed to determine whether it is reasonable to change the bridge rating factors based on the test results. These bridges were all constructed between 1935 and 1951, and were originally designed as non-composite with no shear studs. However, the top flanges of the girders were fully embedded in the concrete deck for all structures, which can result in significant composite action. The primary objective of this study was to assess the magnitude and significance of unintended composite action between the deck and girders. Additionally, the live load testing permitted quantification of partial support fixity, actual live load distribution, and the contribution of non-structural elements such as curbs, wearing surfaces, and partial concrete embedment of girder ends. Finally, recommendations for rating factor modifications are made based on the observed and computed response of these structures. Characteristics of the bridges tested and analyzed in this study are summarized in Table 1.

Bridge	Steuben	Waltham	Pembroke	Windham	Buckfield
Number	3067	3238	3884	5298	5452
Year Built	1949	1935	1944	1950	1951
Span (feet)	50.00	55.00	45.25	46.00	42.50
Interior Girder Size	W30x108	W36x150	W27x98	W30x108	W27x102
Number of Girders	5	5	5	5	5
Girder Spacing (in)	64	66	69	69	69
Total depth (in)	29.83	35.85	27.00	29.83	27.09
Girder flange width (in)	10.48	11.98	10.00	10.48	10.02
Girder flange thickness (in)	0.76	0.94	0.79	0.76	0.83
Girder web thickness (in)	0.55	0.63	0.50	0.55	0.52
Haunch (in)	-6.25	2.00	-0.792	0.50	2.00
Slab Thickness (in)	6.75	11.0	6.75	9.00	9.00

Table 1: Bridge Characteristics

1.1 Instrumentation

The strain measurement system utilized in this research is a partially Wireless Structural Testing System (STS-Wi-Fi) produced by Bridge Diagnostics Inc. (BDI). The system used for this testing utilized a mobile base station to communicate with up to 6 nodes, with up to 4 strain sensors or linear variable differential transformers (LVDTs) connected to each node. This system communicated with a dedicated laptop running BDI-specific WinSTS data acquisition software. A sample setup in the field is shown in Figure 1, with strain sensors mounted under the bridge at mid-span connected to battery operated wireless nodes. A clear diagram of the entire network is shown in Figure 2 including strain and displacement sensors, wireless nodes, the wireless base station, autoclicker, and the data recording laptop.

Figure 1: Typical strain sensors mounted under bridge connected to wireless nodes

Figure 2: BDI STS-Wi-Fi network setup for bridge sensor setup.

Strain and displacement sensors were mounted under the bridges using a MaineDOT Under Bridge Inspection Truck (UBIT) as shown in Figure 3. The sensors were mounted to the girders by first grinding the steel to a fresh, unpainted surface, then using the recommended adhesive to connect the strain sensor tabs to the steel. All structures had three strain gages mounted to the top flange, mid-depth and bottom flange of at least three girders at mid-span to give a complete picture of load distribution and peak flexural strains in each girder type: center, interior non-center, and exterior. Strain gages were also installed near the ends of selected girders to assess the support rotational restraint. LVDTs were placed near the ends of selected girders with one end attached to a girder top flange and one end attached to the bottom of the slab to measure slip between the slab and girder top flange. Strain sensor layout varied slightly for each bridge, with individual sensor layouts shown in the appendices A.2.2 for Steuben, A.3.2 for Waltham, A.4.2 for Pembroke, A.5.2 for Windham, and A.6.2 for Buckfield.

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Figure 3: MaineDOT UBIT utilized to install sensors

1.2 Loading

The vehicles used for this testing were Maine DOT standard three-axle dump trucks as shown in Figure 4. Each truck wheel or pair of wheels was weighed using state patrol certified portable scales as shown in Figure 5. Loading cases included one, two, and four trucks in designated lanes along loading paths. Trucks were positioned sequentially such that they produced maximum moment or significant shear in the bridge girders. In general, a set of tests included a single truck in one lane, two trucks in one lane back-to-back, two trucks side-by-side in opposite lanes, and four trucks, two back-to-back per lane, although not all bridges were subjected to all load cases.

Figure 4: Maine DOT trucks used for bridge loading

Figure 5: State highway patrol certified portable crane scales used to verify vehicle weight for each test

1.3 Typical Results

Results from two bridges are presented in this section to demonstrate two distinct types of behavior in the bridges tested in this study. The first bridge, Pembroke No. 3884, is typical of bridges with observed full composite action. Figure 6 shows a time history of the strains in the center interior girder as the bridge is loaded in the four truck, two lane, second test, and Figure 7 shows the slip between the girder and the slab in inches over the same test. Positive slip indicates the girder moving toward the pinned end relative to the slab, with negative slip indicating the slab is moving toward the pinned end relative to the girder. First the trucks are positioned back to back to incrementally increase shear to a maximum value, typically producing the maximum slip shown in Figure 7, although in some instances maximum slip was seen with the trucks positioned to produce maximum moment. After shear maximization tests, the trucks were then positioned to maximize moment in the bridge where strains in the center girder are maximized as shown in Figure 6. The strains in this test are typical of those three bridges showing full composite action, in that the midspan of the center girder shows high positive strains at the bottom, near zero strains at the top of the midspan gage set, and the middle gage splits the difference. This indicates high composite action with the neutral axis near the top of the girder. The slip is small compared to bridges showing only partial composite action. One note is that this bridge is typical of all bridges with much greater slip being measured at the interior girder than the exterior girder, likely because the interior girder carried much larger live load. Another important note is that the two end gages located at the bottom of the girder recorded negative strains. This is typical of all bridges and girders, and indicates partial rotational restraint at the abutments. It is unknown if this fixity will continue to be observed at higher load levels, or if there are seasonal or local causes of this partial

fixity that cannot be extrapolated to other bridges of this type. Full moment connections would yield approximately twice the strain readings as the magnitude of the midspan readings, and simply supported would yield small positive strain readings. This shows that the girder is closer to simply supported than fixed, but that the rotational restraint is still significant.

Figure 6: Pembroke No. 3884 – 4 trucks, 2 lanes, test 2, strains in center girder

Figure 7: Pembroke No. 3884 - 4 trucks, 2 lanes, test 2, slip between girder and slab

The other bridge shown in this section is the Buckfield No. 5452 bridge undergoing four truck, two lane loading. Figure 8 shows a time series of the strains in the center interior girder and Figure 9 shows the slip between the girder and slab as the bridge is loaded in the same manner as described above for Pembroke No. 3884. This bridge is typical of the two bridges that were observed to have

partial composite action. The midspan of the center interior girder shows large positive strains at the bottom, near zero strains at the middle of the girder at midspan, and large negative strains at the top of the girder at midspan. This indicates a neutral axis much closer to that of the non-composite girder than the neutral axis location predicted by fully composite action. However, this bridge is typical of all bridges tested in that negative strains were observed in the bottom flanges of the ends of the girders. This indicates that rotational restraint is provided at the abutments. Again, it is uncertain if this fixity will remain at higher loads or if it is affected by seasonal or local effects unique to these bridges. Full strain and slip plots for all bridge two and four truck tests are presented in the appendices. See section A.2.4 for Steuben No. 3067, A.3.4 for Waltham No. 3238, A.4.4 for Pembroke No. 3884, A.5.4 for Windham No. 5298, and A.6.4 for Buckfield No. 5452.

Figure 8: Buckfield No. 5452 - 4 trucks, 2 lanes, test 1, strain in center girder

Figure 9: Buckfield No. 5452 - 4 trucks, 2 lanes, test 1, slip between girder and slab

1.4 Analysis Methodology

1.4.1 Analysis Overview

Material properties, load and resistance factors, and design live loads were taken as specified in the AASHTO *Manual For Bridge Evaluation* and used with field-measured geometry to determine original non-composite rating factors for the bridges. Bridges were then tested using heavily loaded trucks and strains were measured and correlated with these applied loads. Resulting strains from live load testing were then used to compute percent composite action, effective section properties that reflected composite action, distribution factors determined from live load testing, modified rating factors, and shear flows. These calculation sheets are included in the appendices of this report. Appendix A.2.5 contains calculations for Steuben No. 3067, A.3.5 pertains to Waltham No. 3238, A.4.5 corresponds to Pembroke No. 3884, A.5.5 is for Windham No. 5298, and A.6.5 is for Buckfield No. 5452.

1.4.2 Bridge Characteristics

First, necessary parameters were defined for use in calculations. These included material properties for each bridge, as well as general bridge geometry (i.e. span length, girder section properties, and slab section properties). These were taken from each bridge's most recent available rating report or based on minimum material properties specified by the AASHTO *Manual for Bridge Evaluation*. Dead load moments and shears were determined from the bridge geometry and typical unit weights as specified in AASHTO *Manual for Bridge Evaluation*.

1.4.3 AASHTO Distribution Factors

Distribution factors for moment and shear for interior and exterior girders are calculated based on in-situ measured bridge characteristics along with nominal values for dimensions that could not be verifie in the field in accordance with AASHTO *LRFD Bridge Design Specifications*. All distribution factors of live load per lane for moment and shear are taken as cross-section "a" from Table 4.6.2.2.1-1 and Concrete Deck on Steel. For moment on interior beams this is per Table 4.6.2.2.2b-1, with all of the ranges of applicability met. For shear in interior beams the values calculated are from Table 4.6.2.2.3a-1 with all the ranges of applicability met. For the exterior girder moment distribution factors are per Table 4.6.2.2.2b-1 and the exterior girder shear distribution factors are per Table 4.6.2.2.3b-1.

1.4.4 AASHTO Live Loads with Impact

AASHTO live loads with impact (LL + IM) are determined as the maximum load effect with HL-93 per (6A.2.3) and AASHTO LRFD Design 3.6.1.2 and 3.6.2. This includes the worst case of truck or tandem loading with lane loads and impact as applicable.

1.4.5 Non-composite Rating Factor

Non-composite flexural rating factors are computed per AASHTO Manual for Bridge Evaluation (6A.4.2.1-1) with terms as defined in that section. Values specific to the bridges in this study are as shown in Equation 1. The live load per section 1.4.4 with impact is modified by the AASHTO distribution factors as described in section 1.4.3.

$$RF = \frac{C - \gamma_{DC}DC - \gamma_{DW}DW \pm \gamma_{P}P}{\gamma_{LL}(LL + IM)}$$
Equation 1

$$C = \varphi_{c}\varphi_{s}\varphi R_{n} (6A.4.2.1-1)$$

$$\varphi_{c} = 1.0 \text{ per Table } 6A.4.2.3-1$$

$$\varphi_{s} = 1.0 \text{ per Table } 6A.4.2.4-1$$

$$\varphi = 1.0 \text{ per LRFD Design } 6.5.4.2$$

$$\gamma_{DC} = 1.25 \text{ per Table } 6A.4.2.2-1$$

$$\gamma_{DW} = 1.50 \text{ per Table } 6A.4.2.2-1$$

$$\gamma_{LL} = 1.75 \text{ per Table } 6A.4.2.2-1$$
Non-composite flexural $R_{n} = F_{y}Z$ per Table LRFD Design $6.10.7.1.2$

$$P = 0 \text{ for all bridges in this study}$$

1.4.6 Live Loads Applied during Testing

Applied moment and shear live loadings were determined based on measured truck axle weights for both the load cases of two trucks, side-by side in two lanes, and four trucks, two trucks back-to-back in each of two lanes. The average of axle loads for side-by-side trucks was used to allow

live load distribution factors to be applied. The trucks were first positioned to maximize shear at distances of 2.0, 1.5, 1.0, and 0.5 times the depth from the center of the support. The trucks were then positioned to produce the maximum moment effect on the bridge. For each set of truck positions, strains were allowed to plateau and then measured before moving the trucks to the next set of truck positions.

Applied moments and shears were calculated based on simply supported beam assumptions. The percentage of AASHTO HL-93 loading achieved is the ratio of the moment produced by the live loads applied during testing and the moment produced by the AASHTO HL-93 loading as described in section 1.4.4.

1.4.7 Percent Composite Action and Measured Section Properties

For each girder, the percent composite action is calculated based on strains measured during testing. Using girder strains recorded during load testing at the top and bottom of the girders at midspan, linear strain distributions were calculated through the depth for each girder. This strain distribution was then used to calculate actual neutral axis (NA) location for each girder. This linear strain distribution is shown schematically in Figure 10.

Figure 10: Typical linear strain distribution

The effective slab width – defined as the slab width that produces the NA location – was calculated. A completely non-composite girder has zero effective slab width, and a fully composite slab width is the full tributary slab width. In the case of the interior girders, the tributary slab width is the interior girder spacing. The percent composite action was then calculated as the effective slab width divided by the AASHTO-defined slab width for a fully composite girder, which is the width of slab tributary to the girder. This effective slab width is then used to calculate an effective section

modulus which is used for determining distribution factors described in 1.4.8, modified rating factors described in 1.4.9, and shear stresses at the slab-girder interface as described in 1.4.10.

1.4.8 Distribution Factors Determined from Live Load Testing

Based on the neutral axis as determined by measured strains and the corresponding effective slab width, the section modulus for each girder is calculated. The moment carried by each girder is calculated as per Equation 2.

$$M_i = ES_i\varepsilon_i$$
 Equation 2

 $M_i = Moment \ carried \ by \ girder \ i$ $E = Modulus \ of \ Elasticity \ of \ girder$ $S_i = Section \ modulus \ of \ girder \ i$ $\varepsilon_i = Strain \ measured \ in \ girder \ i$

The distribution factor for each girder was then calculated by Equation 3.

$$DF_{i} = \frac{M_{i}}{\sum_{i=1}^{5} M_{i}}$$
Equation 3

 $DF_i = Distribution factor for girder i$ $M_i = Moment carried by girder i$

1.4.9 Modified Rating Factor

In accordance with the AASHTO *Manual for Bridge Evaluation*, the ratio of computed strain ε_c (based on the measured effective section properties) to measured strain ε_T was then used to compute a rating factor modification factor as detailed below in Equation 4 to Equation 6. This analysis is based on the critical interior center girder.

$$RF_T = RF_c K$$
 Equation 4

In Equation 4, RF_T is the modified rating factor taking into account test results, RF_c is the rating factor based on standard calculations which assumes non-composite action, and *K* is an adjustment factor which incorporates the test results. *K* is computed per Equation 5 below.

$$K = 1 + K_a K_b$$
 Equation 5

 K_a accounts for the difference between measured response based on load testing and expected response as shown below in Equation 6. K_b accounts for the magnitude of the applied test load and confidence in extrapolating results, and is defined in Table 8.8.2.3.1-1 in the AASHTO *Manual for Bridge Evaluation*. For all structures K_b was taken as 0.5, which reflects both the magnitude of the applied load and assumes results cannot be extrapolated to higher loads.

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

$$K_a = \frac{\varepsilon_c}{\varepsilon_T} - 1$$
 Equation 6

1.4.10 Shear Flow

Using the maximum measured shear loading per section 1.4.6, the measured section properties from 1.4.7, and the measured distribution factors per section 1.4.8, the shear flow achieved during live load testing was calculated according to Equation 7. This value is compared to the recommended maximum shear flow of 100 psi recommended by the AASHTO *Manual for Bridge Evaluation*.

$$\tau = \frac{DF \cdot V \cdot Q}{I \cdot b}$$
 Equation 7

 $\tau = shear flow$ V = calculated shear applied to bridge DF = distribution factor calculated from measured values Q = First moment of area calculated from measured values I = second moment of area calculated from measured values b = shear area between slab and girder flange

2 Live Load Test Results

2.1 Steuben No. 3067

The Steuben bridge No. 3067 over Dyer Creek is shown in Figure 11. Testing was conducted on July 21, 2016 with two trucks and with four trucks producing 53% and 78% of an HL-93 loading with impact, respectively. The rating factors based on non-composite girder behavior are 0.80 for interior and 1.04 for exterior girders, making this the lowest capacity bridge tested. The measured strains were as expected the highest for any of the bridges and partial composite action was observed. The composite action was only 47% for the two truck loading and 57% for the four truck loading. Table 2 shows the maximum measured strains and inferred neutral axis locations for this bridge. These conditions led to the most modest rating factor increases for this set of bridges. However, the rating factor for HL-93 was still able to be increased to 1.09 for the interior girder and 1.13 for exterior girder bringing the rating factors above 1.0.

The live load distribution factors determined from the measured strains and those calculated per AASHTO are shown in Table 3, and generally indicate that the AASHTO distribution factors are somewhat conservative. This is likely due in part to the presence of integral concrete curb and guardrail visible in Figure 6 which will tend to attract load to the exterior girders. Calculated shear flows and measured slip between the girder and slab for Steuben were 69.2 psi with 1.76 mils slip for the two-truck loading and 85.6 psi with 3.43 mils slip for the four-truck loading. These shear

flows were among the lowest and the slips were among the highest. This corresponds to the low degree of composite action observed in this bridge. These shear flows were below the 100 psi maximum recommended by AASHTO, and assuming a linear extrapolation gives 99.6 psi at 100% of HL-93 loading with impact. As shown in Table 2, strain measured at the ends of the girders indicates that there was rotational restraint leading to partial fixity and end moments. The strains at the girder ends for Steuben were lower as a percentage of measured midspan strain than those of other bridges in this study.

Figure 11: Steuben No. 3067 general condition

Ste	euben		Two Trucks			Four Trucks			
		M	idspan	Pinned End	Opposite End	Midspan		Pinned End	Opposite End
			Neutral				Neutral Axis		
Girder	Location	με	Axis (in)	με	με	με	(in)	με	με
1	Тор	3.8	20.1	-1.36	-	5.7	20.0	-2.9	-
1	Bottom	111.1	50.1	-11.8	-25.8	182.7	50.0	-16.4	-19.7
2	Тор	-20.7	25.7	-	-	-28.0	26.0	-	-
2	Bottom	157.5	23.7	-25.2	-33.1	238.4	20.0	-48.0	-41.3
2	Тор	-86.4	10.7	46.7	-	-109.8	20.7	65.5	-
3	Bottom	180.4	19.7	-30.6	-33.1	270.3	20.7	-47.9	-48.0
4	Тор	-10.5	27.5	-	-	-18.3	27.2	-	-
4	Bottom	181.6	27.3	-	-	263.4	21.2	-	-
5	Тор	-0.9	28.0	-	-	-1.2	28.0	-	-
5	Bottom	145.8	20.9	-	-	205.5	20.9	-	-

Table 2: Steuben No. 3067 Strain and Neutral Axis Data

Table 3: Steuben No. 3067 distribution factors

Steuben		Two Truc	k Loading	Four Truck Loading		
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference	
1	0.416	0.362	-13%	0.395	-5%	
2	0.468	0.366	-22%	0.368	-21%	
3	0.468	0.371	-21%	0.381	-19%	
4	0.468	0.422	-10%	0.407	-13%	
5	0.416	0.479	15%	0.449	8%	

2.2 Waltham No. 3238

The bridge in Waltham, No. 3238 over Union River, is shown in Figure 12. Testing was conducted on July 14, 2016 with two truck and four truck load cases producing 55% and 87% of an HL-93 load with impact, respectively. This is the highest percentage of HL-93 load applied among all the bridges. However, with a non-composite rating factor of 1.17 for the interior girder and 1.61 for the exterior girder, Waltham also had the highest capacity. Given that full composite action was observed for this bridge, the strains were generally lower than those observed for the other four structures as shown in Table 4. The measured composite action was more than 100% of the theoretical value for the two trucks and four trucks, giving this bridge one of the largest rating factor increases in this set to 1.68 for interior girders and 2.82 for exterior girders. The distribution factors shown in Table 5 indicate relatively stiff interior girders and less stiff exterior girders. This is surprising given the condition of the relatively new guardrail, and may be due to more restraint

at the interior girder ends than the exterior ends producing lower than expected mid span maximum strains.

Shear flows and corresponding slip between the girder and slab for Waltham were calculated/measured to be 57.1 psi with 0.83 mils of slip for the two-truck loading and 109.3 psi with 1.20 mils slip for the four-truck loading. This shear flow and slip correspond to the high degree of composite action observed in this bridge. The shear flow for the four trucks exceeded the 100 psi maximum recommended by AASHTO, and assuming a linear trend the shear flow would reach 131.5 psi at 100% HL-93 loading with impact. There was partial fixity observed at the ends of the girders as measured by the negative strains at the bottom of these girders and given in Table 4. The fixity for Waltham was greater than that of Steuben as a proportion of midspan strain, but lower than that observed in Windham and Buckfield.

Figure 12: Waltham No. 3238 general condition

Wa	ltham		Two	Trucks			Four	Trucks	
		M	lidspan	Pinned End	Opposite End	Midspan		Pinned End	Opposite End
			Neutral				Neutral Axis		
Girder	Location	με	Axis (in)	με	με	με	<i>(in)</i>	με	με
1	Тор	4.1	27.6	-	-	5.2	27.2	-	-
1	Bottom	58.2	57.0	-	-	84.9	57.2	-	-
2	Тор	11.5	41.1	-	-	23.2	12.2	-	-
2	Bottom	76.8	41.1	-	-	121.3	45.2	-	-
2	Тор	1.0	25.2	11.9	-	5.5	26.2	17.5	-
3	Bottom	91.4	55.5	-41.7	-41.8	140.9	50.5	-66.5	-68.6
4	Тор	18.5	16.6	-	-	17.1	41.1	-	-
4	Bottom	74.1	40.0	-6.8	-22.7	114.1	41.1	-7.7	-31.8
5 Top 15.7 Bottom 50.8	50.5	-2.4	-	17.7	45 1	-2.1	-		
	Bottom	50.8	50.5	-33.8	-24.4	78.5	43.1	-66.9	-38.3

 Table 4: Waltham No. 3238 Strain and Neutral Axis Data

Table 5: Waltham No. 3238 distribution factors

Waltham		Two T	rucks	Four Trucks		
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference	
1	0.38	0.319	-16%	0.304	-20%	
2	0.493	0.444	-10%	0.457	-7%	
3	0.493	0.529	7%	0.530	8%	
4	0.493	0.429	-13%	0.429	-13%	
5	0.38	0.279	-27%	0.281	-26%	

2.3 Pembroke No. 3884

The bridge in Pembroke, No. 3884 over Pennamaquan River, is shown in Figure 13. Testing on July 19, 2016 with two trucks and four trucks produced 49% and 81% of HL-93 loading with impact, respectively. The non-composite rating factors were 0.86 for interior girders and 1.09 for exterior girders. Observed strains are shown in Table 6. Full composite action was observed, with more than 100% of theoretical composite action achieved for both two and four truck loadings. The rating factors were increased to 1.33 for interior girders and 2.52 for exterior girders. The distribution factors shown in Table 7 show stiffer interior girders than exterior, but in all cases the distribution factors were less than those computed per AASHTO.

Shear flows and corresponding slip between the girder and slab for Pembroke were calculated/measured to be 86.7 psi with 0.74 mils slip for the two-truck loading and 107.4 psi with 1.78 mils slip for the four-truck loading. This shear flow and slip corresponds to the high degree of composite action observed in this bridge. The shear flow for the four trucks exceeded the 100 psi maximum recommended by AASHTO, and assuming a linear trend would reach 120.1 psi at

100% HL-93 loading with impact. There was partial fixity observed in Pembroke as shown by the negative strains at the bottom of the girders given in Table 6. These negative strains were the largest in magnitude observed at the girder ends.

Figure 13: Pembroke No. 3884 General condition

Pen	broke		Two	Trucks		Four Trucks			
		Mi	idspan	Pinned End	Opposite End	Midspan		Pinned End	Opposite End
			Neutral				Neutral Axis		
Girder	Location	με	Axis (in)	με	με	με	(in)	με	με
1	Тор	-0.4	26.1	9.6	-	-3.9	25.2	7.1	-
1	Bottom	63.6	20.1	-27.4	-20.7	99.5	23.2	-43.1	-29.9
2	Тор	-24.0	22.0	-	-	-24.4	22.2	-	-
2	Bottom	125.5	22.0	-26.4	-4.8	190.1	23.2	-55.9	-19.8
2	Тор	-16.0	22.6	12.8	-	-20.8	24.0	9.4	-
3	Bottom	144.5	23.0	-55.8	-82.3	220.4	24.0	-88.1	-147.3
4	Тор	-41.1	10 7	-	-	-53.4	10.7	-	-
4	Bottom	102.6	10./	-	-	160.9	19./	-	-
5	Тор	10.3	20.0	-	-	11.0	29.0	-	-
5 Botto	Bottom	82.3	29.9	_	-	118.1	20.9	_	-

Table 6: Pembroke No. 3884 Strain and Neutral Axis Dat
--

Pembroke		Two T	rucks	Four Trucks		
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference	
1	0.449	0.291	-35%	0.297	-34%	
2	0.544	0.453	-17%	0.459	-16%	
3	0.544	0.536	-1%	0.532	-2%	
4	0.544	0.343	-37%	0.359	-34%	
5	0.449	0.377	-16%	0.352	-22%	

Table 7: Pembroke No. 3884 distribution factors

2.4 Windham No. 5298

The bridge in Windham, No. 5298 over the Pleasant River, is shown in Figure 14. On August 23, 2016 two truck and four truck loadings were applied producing 53% and 77% of an HL-93 load with impact, respectively. This bridge had low non-composite rating factors for both interior (at 0.81) and exterior (at 0.99) girders. Due to the full composite action observed during testing, with both two truck and four truck loading indicating more than 100% of theoretical composite action, the strains as shown in Table 8 were low and the rating factors can be increased to 1.26 and 1.29 for interior and exterior girders, respectively. The comparison between AASHTO-computed and measured distribution factors given in Table 9 indicate relatively stiff exterior girders.

Shear flows and corresponding slip between the girder and slab for Windham were calculated/measured to be 75.5 psi with 2.20 mils slip for the two-truck loading and 118.0 psi with 4.11 mils slip for the four-truck loading. The high shear flow coupled with high slip is an outlier for the group of bridges tested, especially given the high degree of composite action observed in this bridge. However, the slip of 4.11 mils is still quite small. The shear flow for the four trucks was 20% greater than the 100 psi capacity recommended by AASHTO, and is the highest observed in this study. Assuming a linear trend, the shear flow would reach 159.4 psi at 100% HL-93 loading with impact. Partial rotational restraint was observed at the girder ends as shown by the negative strains in the bottom of the girder ends and noted in Table 8. As with the other bridges in this study the fixity was consistent across the girders.

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Figure 14: Windham No. 5298 general condition

Table 8: Windham	No.	5298	Strain	and I	Neutral	Axis	Data
------------------	-----	------	--------	-------	---------	------	------

Wir	ndham		Two	Trucks		Four Trucks			
				Pinned	Opposite			Pinned	Opposite
		Mi	idspan	End	End	Mie	dspan	End	End
							Neutral		
			Neutral				Axis		
Girder	Location	με	Axis (in)	με	με	με	(in)	με	με
1	Тор	-0.3	29.0	-4.1	-	-6.5	27.6	-7.3	-
1	Bottom	80.1		-12.8	-21.2	126.0		-26.4	-23.9
2	Тор	-46.6	19.1	-	-	-76.7	17.9	-	-
2	Bottom	89.6		-28.2	-15.9	122.2		-55.6	-5.9
2	Тор	7.2	28.1	31.4	-	5.8	28.1	44.3	-
3	Bottom	108.1		-48.5	-64.1	154.9		-78.4	-88.1
4	Тор	-29.7	17.9	-	-	-46.2	16.8	-	-
4	Bottom	47.4		-	-	62.9		-	-
5	Тор	15.1	33.6	-	-	17.3	33.6	-	-
3	Bottom	89.2		-	-	123.1		-	-

Windham		Two T	rucks	Four Trucks		
Girder	AASHTO DF	Measured DF	% Difference	Measured DF	% Difference	
1	0.431	0.479	11%	0.518	20%	
2	0.523	0.309	-41%	0.285	-46%	
3	0.523	0.470	-10%	0.480	-8%	
4	0.523	0.155	-70%	0.139	-74%	
5	0.431	0.588	36%	0.579	34%	

Table 9: Windham No. 5298 distribution factors

2.5 Buckfield No. 5452

The bridge in Buckfield, No. 5452 over the West Branch of the Nezinscot River is shown in Figure 15. On July 12, 2016 four trucks were used to produce 74% of an HL-93 loading with impact for this span, the lowest of the four truck configurations observed in this study. Despite a relatively low degree of partial composite action (35.7%), this bridge saw the highest increase in rating factors from 0.96 to 1.61 for interior and from 1.18 to 1.76 for exterior girders. Measured strains are given in Table 10, and distribution factors in Table 11.

Shear flows and corresponding slip between the girder and slab for Buckfield were calculated/measured to be 69.0 psi with 5.05 mils slip for the four-truck loading. This shear flow is the smallest observed in this study, for four trucks, and slip is the highest observed in this study. This is consistent with Buckfield exhibiting the lowest degree of partial composite action of all bridges. The partial fixity at girder ends observed in Buckfield is indicated by the strains given in Table 10.

Figure 15: Buckfield No. 5452 general condition

Buckfield		Four Trucks				
		Midsp	an	Pinned End		
			Neutral Axis			
Girder	Location	με	<i>(in)</i>	με		
1	Тор	18.2	20.0	-		
1	Bottom	144.9	50.0	-		
2	Тор	47.8	20.1	-		
2	Bottom	145.7	39.1	-		
2	Тор	-71.0	10.4	-		
3	Bottom	166.8	18.4	-106.6		
4	Тор	-99.5	15 1	-		
4	Bottom	134.5	13.1	-66.4		
5	Тор	12.1	20.1	-7.3		
5	Bottom	186.5	28.1	-94.3		

Table 10: Buckfield No. 5452 Strain and Neutral Axis

B	uckfield	Four Trucks			
Girder	AASHTO DF	Measured DF	% Difference		
1	0.44	0.366	-17%		
2	0.53	0.493	-7%		
3	0.53	0.421	-20%		
4	0.53	0.301	-43%		
5	0.44	0.418	-5%		

Table 11: Buckfield No. 5452 distribution factors

3 Summary of Live Load Test Data Conclusions

Analysis of the bridges tested is described in detail in Section 2. In general, calculations were based on mechanics of materials principles and AASHTO code requirements including the *Manual for Bridge Evaluation*.

Overall, a high percentage of HL-93 loading with impact was applied to the structures. For all structures, the four trucks were successful in loading the bridges to desired percentages to justify rating factor increases. While three of the five bridges showed full composite action, with slightly more than 100% of theoretical values of effective slab width computed based on measured response, significantly less composite action was observed for Steuben (56.6%) and Buckfield (35.7%).

Live load distribution factors inferred from the test data showed reasonably good agreement with AASHTO-recommended values, although the AASHTO values are conservative for four of the five bridges. The maximum percent differences are observed in Steuben and Buckfield, the two bridges that showed very little composite action compared to the other bridges in this study.

Shear stresses and slips between the girder and slab were determined for all bridges. Slip was measured directly by installing LVDTs connected to the girder and pushing against plates adhered to the slab. The shear flow was computed based on applied load and field-observed girder properties. Detailed calculations are given in Appendix A.2.5 for Steuben, A.3.5 for Waltham, A.4.5 for Pembroke, A.5.5 for Windham, and A.6.5 for Buckfield. In general, the two bridges with the least composite action, Steuben and Buckfield, not surprisingly show the largest degree of slip as well as the lowest calculated shear stress at the girder flange-slab interface. The three bridges showing full composite action had relatively little slip, except for one girder at Windham that appears to be an outlier.

One important observation was that measured strains near the girder ends for all bridges indicated some rotational restraint at each abutment. This rotational restraint was likely responsible for reductions in girder flexural strain at mid-span compared to a simple-span condition, and therefore contributed to the rating factor increases. However, the presence of this rotational restraint at higher loads and over the full range of seasonal temperature variations is not guaranteed.

FM-PR-08(07)

The test results and analyses presented here justify significant increases in the rating factors for all the bridges according to the AASHTO *Manual for Bridge Evaluation*. Even those bridges showing partial composite action, Steuben and Buckfield, had increases in the rating factor of 36% and 23% for interior girders. The average increase in rating factors for the critical interior girders of all bridges was 43%, with minimum and maximum increases of 23% and 56%. All rating factor increases have been calculated based on the assumption that the observed results cannot be confidently extrapolated to loads 30% beyond that produced by an HL-93 load with impact, due in part to uncertainty regarding the presence of support rotational restraint and at higher loads.

4 References

- 1. AASHTO (2010). "The Manual for Bridge Evaluation Second Edition," American Association of State Highway and Transportation Officials Washington DC. (with 2015 Interirm Revisions).
- AASHTO (2012). "AASHTO LRFD Bridge Design Specifications Customary U.S. Units", American Association of State Highway and Transportation Officials Washington DC. doi:978-1-56051-523-4.

A.1 Experimental Configuration and Data Collected

For each of the five bridges tested, a collection of data files is provided which contains input data, experimental configuration data, and data collected during tests. The files pertaining to each bridge are tabulated in the following appendices.

A.1.1 Input Data

Input data for each bridge includes bridge geometries, material properties, and sensor layouts. General geometry (i.e. span length, girder spacing, etc.) and material properties are tabulated in a Comma Separated Variable (.csv) file, each value listed with a description and unit. Section properties for interior and exterior girders are also listed in separate csv files, labeled and in units of inches to the appropriate power.

A .csv is also provided which gives a list of sensors in the order of collection, and another giving the layout of those sensors on each bridge. The sensor list .csv provides sensors in the order that they are used by the data acquisition system, and consequently in resulting test data. The sensor layout gives relative positions of sensors as they appeared for each bridge. Each girder is represented by three rows representing its top, middle and bottom respectively. Each collection of rows is placed in its relative position as it appears on the bridge. From left to right, columns represent the non-pinned end, mid-span, pinned end, and LVDT position on the bridge respectively. By this way, the position of each sensor can be determined. For example, a sensor in

FM-PR-08(07)

the second column of the second row would represent a sensor placed on the web of the first girder at mid-span.

A.1.2 Experimental Configuration

Experimental configuration data includes data on the loading trucks, as well as the positions of trucks at the beginning of tests. Each test includes a MATLAB variable file (a .mat file) containing information on the trucks used to test it. The truck .mat file contains structured arrays for each truck, containing its plate number, truck number in relation to each test, individual wheel weights (in pounds), lengths (center to center of wheels; side, front and back in inches), wheel bearing surface widths (front to back in inches), and wheel bearing lengths (front to back in inches). The start positions are packaged together in a single .mat file containing a structured array for each bridge. Each of those arrays contain cell arrays which show relative placements for each truck at the beginning of a test, the pinned-end of the bridge always being on the right.

A.1.3 Collected Data

Collected data includes rectified strain data (in microstrain) at critical points during each test, as well as the time index of their occurrence. For each test configuration, a Microsoft Excel file is provided which contains strain data at critical points during the test. This data has been rectified to correct for the sensors' tendency to drift its zero-point during a test, as well as to convert LVDT data to microstrain. A .csv file accompanies each Excel file, providing a description of the critical point recorded and its time of occurrence (in 1/10 seconds from the beginning of the test).

A.2 Steuben No. 3067

A.2.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 12: Steuben No. 3067 Bridge Input Data, Experimental Configuration, and Experimental Data Collected

File Contents	File Name	File Type
Bridge Geometry and Materials	Br3067 _Geom.csv	CSV Format
Exterior Section Data	Br3067 _Ext.csv	CSV Format
Interior Section Data	Br3067 _Int.csv	CSV Format
Sensors	Br3067 _Sensors.csv	CSV Format
Sensor Layout	Br3067 _SensorLayout.csv	CSV Format
Truck Weight and Dimensions	Br3067 _SensorLayout.mat	MATLAB Data File
Truck Starting Position	TestStart.m > Br3067 _TestStart	MATLAB Data File
Truck Position Measurements	Br3067 Tk_Positions.mat	MATLAB Data File
Sensor Data	Br3067 _1Tks_1Lns_1.xlsx	Microsoft Excel
	Br3067 _2Tks_1Lns_1.xlsx	Microsoft Excel
	Br3067 _2Tks_2Lns_1.xlsx	Microsoft Excel
	Br3067 _4Tks_2Lns_1.xlsx	Microsoft Excel
	Br3067 _4Tks_2Lns_2.xlsx	Microsoft Excel
Data Time Indices	Br3067_1Tks_1Lns_1_Time.csv	CSV Format
	Br3067_2Tks_1Lns_1_Time.csv	CSV Format
	Br3067_2Tks_2Lns_1_Time.csv	CSV Format
	Br3067_4Tks_2Lns_1_Time.csv	CSV Format
	Br3067_4Tks_2Lns_2_Time.csv	CSV Format

A.2.2 Instrumentation

Figure 16: Steuben No. 3067 sensor layout

A.2.3 Loading

Figure 17: Steuben No. 3067 Truck T01-137 loading

Figure 18: Steuben No. 3067 Truck T01-157 loading

Figure 19: Steuben No. 3067 Truck T01-166 loading

Figure 20: Steuben No. 3067 Truck T01-198 loading

A.2.4 Representative Data Plots

Figure 21: Steuben No. 3067- 2 trucks 2 lanes test 1 strain

Figure 22: Steuben No. 3067- 2 trucks 2 lanes test 1 shear slip

FM-PR-08(07)

Figure 23: Steuben No. 3067- 4 trucks 2 lanes test 1 strains

Figure 24: Steuben No. 3067- 4 trucks 2 lanes test 1 shear slip

FM-PR-08(07)

25

0

-25

-50

-75

-100

-125

1

201

401

Time (s)

Figure 25: Steuben No. 3067- 4 trucks 2 lanes test 2 strains

601

Page 41 of 143

B3055

B3059

B3060

--- B3061

B3058

- B3073

- B3074

- B3064

-- B3072

- B3065

-- B3063

-- B3062

---- B3070

801

Figure 26: Steuben No. 3067- 4 trucks 2 lanes test 2 shear slip

FM-PR-08(07)

A.2.5 Rating Factor Calculations

/IEBAY Rodi DYER CREE			Prepared B Checked By Date : 2016	r: Mahmood J. A : SMT 11-03
YearBuilt: 1949	Compressive Strength of	Table 6A.6.2.1-1	Minimum Mecha Year of Constructi	nical Properties o on
Concrete by Year of Constr Year of Construction	Compressive Strength, f' _c , ksi	Versef	Minimum Yield Point or Minimum Yield Stemath	Minimum Tancila
1959 and Later	3.0	Construction	F_{ν} , ksi	Strength, Fv, ksi
		Prior to 1905	26	52
$f'_c := 2.5 \ ksi$		1905 to 1936	30	60
• •		1936 to 1963	33	66
		Title 1909		
		fy:=33 ksi		
$\gamma c \coloneqq 150 \ pcf$		$\gamma s \coloneqq 490 \ pcf$		
$\gamma_{c_mod} \coloneqq 145 ~\textit{pcf}$		<i>Es</i> :=29000	:si	
LRFD Design Eq. 5.4.2.4 1				
$Ec \coloneqq 33000 \cdot \gamma_{c_mod}^{1.5}$	$\cdot \sqrt[2]{f'_c}$			
<i>Ec</i> := 2875.9 <i>ksi</i>				
Bridge Lengh	L:=50 ft			
Spacingbetween Girders	S≔5.33 ft			
Deck thickness	<i>ts</i> :=6.75 <i>in</i>			
Wearingsurfacethicknes	is $t_{w.s.} \coloneqq 4.5$ in γ_{t}	$w.s. \coloneqq 140 \ pcf$		

Figure 27: Steuben No. 3067 Calculations

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Page 2 of 4

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

DeadLoad: M_{DC} := 328 $ft \cdot kip$ M_{DW} := 87 $ft \cdot kip$ d := 29.83 $inLive Load :$	VHB report VHB report b _f := 10.48 <i>in</i>	t				
M_{DC} := 328 $ft \cdot kip$ M_{DW} := 87 $ft \cdot kip$ d := 29.83 $inLive Load :$	VHB rep o VHB rep o <i>b_f</i> := 10.48 <i>in</i>	t				
M_{DW} := 87 $ft \cdot kip$ d := 29.83 $inLive Load :$	VHB report	t				
d≔29.83 in Live Load :	$b_f := 10.48 \ in$					
Live Load :		6				
We use the average true	ckweight and d	limensior	nsin this c	alculat	ions	
					-	
						Trucks Weight
						Hucks Weight
ntuuhaal			T01-198	T01-137	T01-166	T01-157
nt wheel			20200	13700	20350	21400
t Wheel			20400	20100	20450	22350

Page 3 of 14

Prepared B: Mahmood J. Abraheemi Bridge #3067 STEUBENME Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 Live Load Analysis Two trucks in two lanes $p1 \coloneqq 14.8 \ \textit{kip}$ p3:=21.4 kip $p2 := 20.9 \ kip$ page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 5 \ ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 15 \ ft$ Trucks at shear locations: Max moment location $R_b(d1) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2)}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d2))$ At 0.5 d from support $R_b(d1) = 3.19 \ kip$ $d1 \coloneqq 0.5 \cdot d$ $M(d1) = 139.65 \ ft \cdot kip$ $R_a := p2 + p3 - R_b(d1) = 39.11$ kip $M_{0.5dtwotrucks}\!\coloneqq\!139.65\;\textit{ft}\cdot\textit{kip}$ $V_{shear2t} = R_a = 39.11 \ kip$ At 1.0 dfrom support $d1 \coloneqq 1.0 \cdot d$ $M(d1) = 180.39 \ ft \cdot kip$ $M_{1.0dtwotruck}\!\coloneqq\!180.4\boldsymbol{\cdot\!ft}\boldsymbol{\cdot\!kip}$ At 1.5 dfrom support $d1 \coloneqq 1.5 \cdot d$ $M(d1) = 218.51 \ ft \cdot kip$ $M_{1.5dtwotruck} \coloneqq 218.51 \cdot ft \cdot kip$ At 2.0 dfrom support $d1\!\coloneqq\!2.0\boldsymbol{\cdot} d$ $M(d1) = 254.02 \ ft \cdot kip$ $M_{2.0dtwotrucks} \! \coloneqq \! 254.02 \boldsymbol{\cdot ft} \boldsymbol{\cdot kip}$

Page 4 of 14

Bridge #3067 STEUBENME Prepared B: Mahmood J. Abraheemi Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 Trucks at Maximum Moment location: d1 distance between front wheel and the support pЗ 03 pı d1 Db $R_b(d1) \coloneqq \frac{(p1 \cdot d1) + (p2 \cdot (d1 + d3)) + (p3 \cdot (d1 + d2 + d3))}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d3)) - p3 \cdot (d2)$ $R_b(108 in) = 25.11 kip$ M(108 in)=545.808 ft · kip $M_{maxmomentwotrucks} \! \coloneqq \! 545.81 \cdot \! \textit{ft} \cdot \textit{kip}$

Page 5 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Prepared B: Mahmood J. Abraheemi Bridge #3067 STEUBENME Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 Four trucksin two lanes *p*1 := 14.6 *kip* $p2 := 20.4 \ kip$ *p*3 := 20.8 *kip* page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 5 ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 15 \ ft$ Trucks at shear locations: d1 distance between front re ar wheel and the support ; d4 distance between trucks 03 pS p2 p2 Max moment location $R_b (d1, d4) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2) + p3 \cdot (d1 + d2 + d4) + p2 \cdot (d1 + 2 \cdot d2 + d4) + p1 \cdot (d1 + 2 \cdot d2 + d4 + d3)}{L}$ $M(d1, d4) \coloneqq (R_b(d1, d4) \cdot (L - (d1 + d2 + d4))) - (p2 \cdot (d2)) - (p1 \cdot (d3 + d2))$ At 2.0 dfrom support $d1 \coloneqq 2.0 \cdot d$ d4:=88 in $M(d1, d4) = 697 ft \cdot kip$ $M_{2.0dfourtrucks} \coloneqq 697 \cdot ft \cdot kip$ $Ra \coloneqq 2 \cdot p2 + 2 \cdot p3 + p1 - R_b(d1, d4) = 63.63$ kip

Page 6 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #3067 STEUBENME Prepared B: Mahmood J. Abraheemi Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 Trucks at Maximum Moment location: d1 distance between front wheel and the support d4 distance between trucks : 62 ω2 рI 60 dı d2 At Maximum Moment: $R_b(d1, d4) \coloneqq \frac{p1 \cdot d1 + p2 \cdot (d1 + d3) + p3 \cdot (d1 + d3 + d2) + p3 \cdot (d1 + d3 + d2 + d4) + p2 \cdot (d1 + d3 + 2 \cdot d2 + d4)}{p1 \cdot (d1 + d3 + d2 + d4) + p2 \cdot (d1 + d3 + 2 \cdot d2 + d4)}$ L $M(d1, d4) \coloneqq (R_b(d1, d4) \cdot (L - (d1 + d3 + d2))) - (p2 \cdot (d2 + d4)) - (p3 \cdot d4)$ $R_b(66 \ in, 90 \ in) = 49.81 \ kip$ M(66 in, 90 in)=809.345 ft · kip $M_{maxmomentfourtrucks} \coloneqq 809.35 \cdot ft \cdot kip$

Page 7 of14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Section Pr	op e ties ar	<mark>nd Distributi</mark>	on Factos				
nterior Girder	Section P	roperties					
			modular	transf		_	
component	width	thickness	ratio	area	v		
Slab	64	6.75	10.00	43.2	32.6		
Moment Distr	ibution fa	ctors (Interio	r Girders)	_			
VHB repot							
$DF_{onelane} =$	0.419						
$DF_{twolanes}$ =	=0.468						
Calculated Dist	ribution fa	ctors hased	on actual m	leasuremer	nts		
	0.398		uotuum				
DF _{twolance} :	=0.516						
$DF_{shear} = 0$.621						
oncar							
Section Prop	etiesFully	composite					
Section Prop	<mark>eties:Fully</mark>	composite					
Section Prop y′≔25.1 i n	eties:Fully	composite ∵=10218 • in	4 Show	:=406.9• i	n^3	Q _{slab} :=305.0 ⋅ i	n^3
Section Prop y′≔25.1 in	eties:Fully 12 1	<mark>composite</mark> ∵=10218∙ in	4 S _{bot}	.:=406.9∙ i	n^3	Q_{slab} := 305.0 $\cdot i$	n^3
<mark>Section Prop</mark> y′≔25.1 in	e ties:Fully 1 <i>1</i>	<mark>composite</mark> ∵=10218∙ in	4 S _{bot}	.:=406.9∙ i	n^3	<i>Q_{slab}</i> :=305.0 ∙ <i>i</i>	n ³
<mark>Section Prop</mark> y′≔25.1 ir	<mark>eties:Fully</mark> 1 <i>1</i>	<mark>composite</mark> ∵≔10218 • <i>in</i>	4 S_{bot}	g≔406.9• i	n ³	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 i r	<mark>e</mark> ties:Fully 1 <i>I</i>	<mark>composite</mark> r≔10218∙ in	4 S _{bot}	:=406.9∙ i	n^3	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 in	eties:Fully 1 2	<mark>composite</mark> r̃≔10218∙ in	4 S _{bot}	:=406.9∙ i	n^3	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 in	eties:Fully z 1	<mark>composite</mark> r̃ ≔ 10218 • in	4 S _{bot}	:==406.9∙ i	n ³	<i>Q_{slab}</i> :=305.0∙ <i>i</i>	n ³
Section Prop y′≔25.1 in	<mark>eties:Fully</mark> z 1	<mark>composite</mark> ∵=10218•in	4 S _{bot}	g≔406.9• i	n ³	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 in	<mark>eties:Fully</mark> 1 <i>1</i>	composite r≔10218•in	4 S _{bot}	g:=406.9∙ i	n ³	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 <i>in</i>	eties:Fully 1 2	composite ^r ≔10218∙ <i>in</i>	4 S _{bot}	:=406.9• i	<i>n</i> ³	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 in	eties:Fully z 2	composite ∵= 10218 • <i>in</i>	4 S _{bot}	:= 406.9 • <i>i</i>	n^3	<i>Q_{slab}</i> := 305.0 ∙ <i>i</i>	n ³
Section Prop y′≔25.1 in	eties:Fully z 1	composite 7∵= 10218 • <i>in</i>	4 S _{bot}	=406.9∙ i	n ³	<i>Q_{slab}</i> :=305.0 ∙ <i>i</i>	n ³
Section Prop y′≔25.1 in	eties:Fully	composite r≔10218•in	4 S _{bot}	:=406.9∙ i	n ³	Q_{slab} := 305.0 $\cdot i$	n ³
Section Prop y′≔25.1 in	eties:Fully	composite ⁻ ≔10218• <i>in</i>	4 S _{bot}	g≔ 406.9• i	n ³	<i>Q_{slab}</i> :=305.0 ∙ <i>i</i>	n ³

Page 8 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Twotruc				each loadcase	for the lint	
	ksin two la	anes				
$Mt_{0.5dtwo}$	otrucks := D.	$F_{twolanes} \cdot M_0$).5dtwotrucks =	= 72 ft · kip		
$Mt_{1.0dtwo}$	$_{otrucks} := D$	$F_{twolanes} \cdot M_{2}$	1.0dtwotrucks =	=93 ft · kip		
$Mt_{1.5dtwo}$	$_{otrucks} \coloneqq D$	$F_{twolanes} \cdot M_{1}$	1.5dtwotrucks =	= 113 <i>ft • kip</i>		
$Mt_{2.0dtwo}$	$_{otrucks} := D$	$F_{twolanes} \cdot M_{2}$	2.0dtwotrucks =	= 131 ft • kip	201 ft him	
VI Umaxmo	menttwotruc	$ks \coloneqq DF_{twola}$	nes ^{• IVI} maxma	omenttwotrucks =	281 J l•ktp	
Four truc	ksin two la	anes				
$Mt_{2.0dfm}$	$_{urtrucks} \coloneqq D$	$F_{twolanes} \cdot M$	2.0dfourtrucks	=360 ft · ki t	2	
Mt_{maxmo}	mentfourtru	$cks := DF_{twold}$	anes• M_{maxm}	omentfourtrucks	=418 <i>ft•kip</i>	
0	(
Actual	section I	Kesponse				
our Truck	(5					
Position	LV 4521	B3076	B3075	B3811	LV4523	
IT @ 2.0d	0.003426	-34.1729012	4.25192093	61.05499361	-6.56099E-06	
vlax mom	0.002915	-47.9403656	-0.545197	65.50389684	-2.12E-05	
	c					
Wo Truck						
wo Truck	2					
īwo Truck	<u> </u>					
īwo Truck	5					
wo Truck	3					
wo Truck	2					
wo Truck	2					
wo Truck	2					
wo Truck	3					
wo Truck	5					
wo Truck	5					
wo Truck	5					

Page 9 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #3067 STEUBENME Prepared By: Mahmood J. Abraheemi Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 Four Trucks Look at the critical g irder the interior girder $Q_{2.0d} := 209.3 \ in^3$ $y'_{2.0d} := 21.9 \ in$ $S_{2.0d} := 381.8 \ in^3$ Partial composite $y'_{maxmoment} \coloneqq 20.7 \text{ in } S_{maxmoment} \coloneqq 370.7 \text{ in}^3 Q_{maxmoment} \coloneqq 174.3 \text{ in}^3$ Partialcomposite $M_{fourtrucks} \coloneqq \begin{bmatrix} Mt_{2.0dfourtrucks} \\ Mt_{maxmomentfourtrucks} \end{bmatrix}; \quad y_{fourtrucks} \coloneqq \begin{bmatrix} y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix}; \quad S_{fourtrucks} \coloneqq \begin{bmatrix} S_{2.0d} \\ S_{maxmoment} \end{bmatrix}$ Strain based on actual response $\varepsilon_{computed} \coloneqq \begin{bmatrix} Mt_{2.0dfourtracks} \\ S_{2.0d} \cdot 29000 \ \textbf{ksi} \\ Mt_{maxmomentfourtracks} \\ \hline S_{maxmoment} \cdot 29000 \ \textbf{ksi} \end{bmatrix} \cdot 10^{6} = \begin{bmatrix} 389.79 \\ 466.17 \end{bmatrix}$ Kb := 0.5 $Ka\!\coloneqq\!\frac{466.17}{270.32}\!-\!1$ $K \coloneqq 1 + Kb \cdot Ka = 1.36$

Page 10 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Two Trucks			
Look at the critical girder girder	the interior		
$u'_{0.5d} = 30.8 in$	$S_{0.5d} = 40$	6.9 in ³	Fully composite
$y'_{1 0d} = 29.0 in$	$S_{1.0d} = 40$	6.9 in ³	Fully composite
$y'_{1.5d} := 27.6 in$	$S_{1.5d} = 40$	6.9 in ³	Fully composite
$y'_{2.0d} := 28.3$ in	$S_{2.0d} := 40$	6.9 in ³	Fully composite
$y'_{maxmoment}$:=19.7 in	$S_{maxmomen}$	nt≔360.6 in ³	Partial composite
[Mt _{0.5dtwotmek}	.]	$\begin{bmatrix} y'_{0.5d} \end{bmatrix}$	$\begin{bmatrix} S_{0.5d} \end{bmatrix}$
Mt ₁ odtwotrack		$y'_{1 0d}$	$S_{1.0d}$
$M_{twotrucks} \coloneqq Mt_1 \in J_{torrel}$		$= y'_{1 \text{sd}}$	$S_{twotraphs1} := S_{1, \varepsilon, J}$
Mt _{2 Odtanotmet}		$y'_{2,0d}$	
$Mt_{maxmoment twot}$	rucks	$\begin{bmatrix} y'_{maxmoment} \end{bmatrix}$	$\begin{bmatrix} S_{maxmoment} \end{bmatrix}$
	[$Mt_{0.5dtwotruck}$	
		Sora • 29000 k	si
Strain bæed on ætual respons	e	$Mt_{1,0,dtwotrud}$	
		S	[73.28]
		Mt	94.66
	$\varepsilon_{computed} \coloneqq$	C 20000 k	$\cdot 10^6 = 114.66$
		$S_{1.5d} \cdot 29000 \ \mathbf{k}$	133.29
		MIL2.0dtwotruck	[323.18]
		$S_{2.0d} \cdot 29000 \ k$:si
		$Mt_{maxmomenttwot}$	trucks
	Ĺ	$S_{maxmoment} \cdot 2900$	0 <i>ksi</i>]
Kb:=0.5			
$Ka \coloneqq \frac{322.6}{180.41} - 1 = 0.79$			
$K \coloneqq 1 + Kb \cdot Ka = 1.39$			

Page 11 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Shear Flow Ca	Iculation	
Four Trucks maximum momert		
maximum shearforce $V \coloneqq 49.81 \ kip$	$Q_{2.0d} \!=\! 209.3 \; {\it in}^3$	$I_{2.0d} := 8361 \ in^4$
$\tau \coloneqq \frac{V \cdot DF_{shear} \cdot Q_{2.0d}}{I_{2.0d} \cdot b_f} = 73.89 \ psi$ Ac	tual shear flow	
$\tau \coloneqq \frac{V \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} = 88.1 \ psi$ sh	ear flow with fully comp	ooste
Four Trucks maximum stear		
maximum shearforce $V \coloneqq 63.631 \ kip \qquad Q_r$	$_{naxmoment}$ =174.3 in^3	$I_{maxmoment} \coloneqq 7679 \ \mathbf{i}$
$\tau \coloneqq \frac{V \cdot DF_{shear} \cdot Q_{maxmoment}}{I_{maxmoment} \cdot b_f} = 85.584 \text{ psi}$	Actual shear flow	
$\tau \coloneqq \frac{V \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} = 112.55 \ psi$	shear flow with fully	/ composte
Two Trucks maximum shear		
maximum shearforce $V_{shear2t}$ =39.1	1 <i>kip</i>	
$\tau \coloneqq \frac{V_{shear2t} \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} = 69.17 \ psi$	fully composit	8

Page 12 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

	Calcu	lation of	Actual Dis	stributio	on Facto	Ors	_	
Four Truc	ks							
Position	LV4521	B3076	B3075	B3811	LV4523	B3066		
Max mom	0.0029	-47.9404	-0.5452	65.5039	0.0000	-16.4265		
Two Truck	ks							
Position	LV4521	B3076	B3075	B3811	LV4523	B3066		
<mark>our Trucks r</mark>	<mark>naxmom</mark>	<mark>et DF ana</mark> y	sis					
lotal mom	ont 19	72 ft him						
otat_mom	ent ≔ 121	ο jι·κη						
Girder 4	Actual L	OF AASH	TO DF					
girder1"	0 305	0./	116					
girdor?"	0.030	0.4	316					
girder2"	0.308	0.8	10					
girder3"	0.381	0.8	016					
girder4"	0.407	0.8	516					
girder5"	0.449	0.4	16					
- .								
<u>vo Irucks n</u>	rax mome	ent DF analy	SIS					
		tt. him						
'otal mom	ent = 847	10-000						
otal_mom	$ent \coloneqq 847$	JUNNIP						
otal_mom	ent := 847 Actual_L	OF AASH	TO_DF					
otal_mom Girder 2	ent := 847 Actual_L)F AASH	TO_DF					
otal_mom Girder girder1"	$ent \coloneqq 847$ $Actual_L$ 0.362	0F AASH 0.4	TO_DF 116					
otal_mom Girder girder1" girder2"	ent := 847 Actual_L 0.362 0.366	0F AASH	TO_DF 116 516					
Girder 2 girder1" girder2"	ent := 847 $Actual_L$ 0.362 0.366 0.371	0F AASH 0.4 0.5	TO_DF 116 516					
otal_mom Girder girder1" girder2" girder3" girder4"	ent := 847 Actual_L 0.362 0.366 0.371 0.422	0F AASH 0.4 0.5	TO_DF 116 516 516 516					
Girder 2 girder1" girder2" girder3" girder4"	ent := 847 Actual_L 0.362 0.366 0.371 0.422 0.472	DF AASH 0.4 0.5 0.5	TO_DF 416 516 516 516					
Girder 2 girder1" girder2" girder3" girder4" girder5"	ent := 847 $Actual_L$ 0.362 0.366 0.371 0.422 0.479	DF AASH 0.4 0.4 0.4 0.4	TO_DF 116 516 516 516 516 416					
Girder girder1" girder2" girder3" girder4" girder5"	ent := 847 $Actual_L$ 0.362 0.366 0.371 0.422 0.479	DF AASH 0.4 0.5 0.5 0.5	TO_DF 116 516 516 516 116					

Page 13 of 14

Bridge #3067 STEUBENME Prepared By: Mahmood J. Abraheemi Route DYRBAY Rod Checked By: SMT Crossing DYER CREE Date : 201611-03 $DF_{external} = 0.416$ Four trucksmaximum moment $M_{maxmomentfourtrucks} = 809.35 \; ft \cdot kip$ $S_{4trucksexternal} \coloneqq 575.1 \ \textit{in}^3$ $measured_strain_4 \coloneqq 205.52$ $\varepsilon_{4external} \coloneqq \frac{M_{maxmomentfourtrucks} \cdot DF_{external}}{S_{4trucksexternal} \cdot 29000 \cdot \textbf{ksi}} \cdot 10^{6} = 242.25$ $K_b \coloneqq 0.5$ $K_{a4} \! \coloneqq \! \frac{\varepsilon_{4external}}{measured_strain_4} \! - 1$ $K_4 \coloneqq 1 + K_b \cdot K_{a4} = 1.09$ Twotrucksmaximummoment $M_{maxmoment two trucks} {=} 545.81 \; \textit{ft} {\cdot} \textit{kip}$ $S_{2trucksexternal} = 575.1 \ in^3$ $measured_strain_2 \coloneqq 145.83$ $\varepsilon_{2external} \coloneqq \frac{M_{maxmomenttwotrucks} \cdot DF_{external}}{S_{2trucksexternal} \cdot 29000 \cdot \textbf{ksi}} \cdot 10^{6} = 163.37$ $K_{a2}\!\coloneqq\!\frac{\varepsilon_{\textit{2external}}}{\textit{measured_strain_2}}\!-\!1\!=\!0.12$ $K_2 \coloneqq 1 + K_b \cdot K_{a2} = 1.06$

Page 14 of 14

A.3 Waltham No. 3238

A.3.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 13: Waltham No. 3238 Bridge Input Data, Experimental Configuration, and Experimental Data Collected

File Contents	File Name	File Type
Bridge Geometry and Materials	Br3238_Geom.csv	CSV Format
Exterior Section Data	Br3238_Ext.csv	CSV Format
Interior Section Data	Br3238_Int.csv	CSV Format
Sensors	Br3238_Sensors.csv	CSV Format
Sensor Layout	Br3238_SensorLayout.csv	CSV Format
Truck Weight and Dimensions	Br3238_SensorLayout.mat	MATLAB Data File
Truck Starting Position	TestStart.m > Br3238_TestStart	MATLAB Data File
Truck Position Measurements	Br3238_Tk_Positions.mat	MATLAB Data File
Sensor Data	Br3238_1Tks_1Lns_1.xlsx	Microsoft Excel
	Br3238_2Tks_1Lns_1.xlsx	Microsoft Excel
	Br3238_2Tks_2Lns_1.xlsx	Microsoft Excel
	Br3238_4Tks_2Lns_1.xlsx	Microsoft Excel
Data Time Indices	Br3238_1Tks_1Lns_1_Time.csv	CSV Format
	Br3238_2Tks_1Lns_1_Time.csv	CSV Format
	Br3238_2Tks_2Lns_1_Time.csv	CSV Format
	Br3238_4Tks_2Lns_1_Time.csv	CSV Format

A.3.2 Instrumentation

Figure 28: Waltham No. 3238 sensor layout

A.3.3 Loading

Figure 29: Waltham No. 3238 Truck T01-119 loading

Figure 30: Waltham No. 3238 Truck T01-257 loading

Figure 31: Waltham No. 3238 Truck T01-280 loading

Figure 32: Waltham No. 3238 Truck T01-287 loading

A.3.4 Representative Data Plots

Figure 33: Waltham No. 3238 - 2 trucks 2 lanes test 2 strains

Figure 34: Waltham No. 3238 - 2 trucks 2 lanes test 2 shear slip

FM-PR-08(07)

Figure 35: Waltham No. 3238 - 4 trucks 2 lanes test 1 strains

Figure 36: Waltham No. 3238 - 4 trucks 2 lanes test 1 shear slip

A.3.5 Rating Factor Calculations

Figure 37: Waltham No. 3238 Calculations

crossing Union			Checked E Date : 20	By: Scott Tomlin: 1611-02
Year Buil: 1935 Table 6A.5.2.1-1—Minimum Comp	pressive Strength of	Table 6A.6.2.1-1—M Structural Steel by	Ainimum Mechar Year of Construction	nical Properties o on
Year of Construction Compres	sive Strength, f'_{α} ksi	Vana	Minimum Yield Point or Minimum Vield Strength	Minimum Tansila
1959 and Later	3.0	Construction	F_{y} ksi	Strength, F _w , ksi
		Prior to 1905	26	52
f' _c :=2.5 ksi		1905 to 1936	30	60
		1936 to 1963	33	66
		Aller 1965		00
$\gamma c \coloneqq 150 \ pcf$		fy≔30 ksi		
$\gamma_{c_mod} \coloneqq 145 \ pcf$				
		$\gamma s \coloneqq 490 \ pcf$		
LRFD Design Eq. 5.4.2.4 1		$Es \coloneqq 29000$ k	si	
$Ec \coloneqq 33000 \cdot \gamma_{c_mod}^{1.5} \cdot \sqrt[2]{}$	f_c			
<i>Ec</i> ≔2880.95 ksi				
$\gamma_{w.s.} \coloneqq 156 \ \textit{pcf}$				
Bridge Lengh	<i>L</i> ≔ 55 <i>ft</i>			
Deck thickness	<i>ts</i> ≔7 <i>in</i>			
Wearingsurfacethickness	$t_{w.s.}\!\coloneqq\!4$ in			
Spacingbetween Girders	S≔5.5 ft			

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #3238 Waham ME Route 179 crossing Union River Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

Page 2 of 14

Bridge #3238 Watham ME Route 179 crossing Union River Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

	Loads	s on the	Interio	r Gird	er	
DeadLoad:						
M _{DC} :=328 ft∙kip	VHB rep	ot				
M _{DW} ≔87 ft∙kip	VHB rep	ot				
2.0						
Live Load :						
We use the averme tru	ckweight and	dimensions	in this cal	telu	ione	
we use the average th	ck weight and	unitensions	sintinscat	Julai	10115	
			T01-280	T01287	T01-257	T01119
nt wheel			T01-280 19150	<mark>T01287</mark> 15700	<mark>T01-257</mark> 14800	<mark>T01119</mark> 14300
nt wheel nt rear wheel			T01-280 19150 23450	T01287 15700 21200	T01-257 14800 23400	T01119 14300 23700
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel at rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250	T01287 15700 21200 22350	T01-257 14800 23400 23050	T01119 14300 23700 23200
nt wheel nt rear wheel r Wheel			T01-280 19150 23450 24250		T01-257 14800 23400 23050	T01119 14300 23700 23200

Page 3 of 14

Bridge #3238 Waham ME Prepared B: Mahmood J. Abraheemi Route 179 crossing Union Checked By: Scott Tomlinson PE River Date : 201611-02 Live Load Analysis Twotrucksin two lanes *p*3 := 23.3 *kip* $p2 := 22.3 \ kip$ p1:=17.4 kip page #3 average axle weight d2: distance between rear wheels d2:=5 **ft** d3 distance between front wheel and front rear wheel d3 := 17 ftTrucks at shear locations: d1: distance between front rear wheel and the support Max moment location $R_b(d1) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2)}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d2))$ At 0.5 d from support $R_b(d1) = 3.362 \ kip$ $d1 \coloneqq 1.5 \ ft$ $R_a(d1) := p2 + p3 - R_b(d1)$ $M(1.5 ft) = 163.048 ft \cdot kip$ $M_{0.5dtwotruck}\!\coloneqq\!163.048\;\textit{ft}\cdot\textit{kip}$ $V_{shear2t} = R_a(d1)$ At 1.0 dfrom support $d1 \coloneqq 3 ft$ M(3 ft)=216.456 ft · kip $M_{1.0dtwotrucks} \coloneqq 216.456 \cdot ft \cdot kip$ At 1.5 dfrom support $d1 \coloneqq 4.5 ft$ M(4.5 ft)=266.134 ft · kip $M_{1.5dtwotruck} \! \coloneqq \! 266.134 \boldsymbol{\cdot ft} \boldsymbol{\cdot kip}$ At 2.0 dfrom support $d1 \coloneqq 6 ft$ $M(6 ft) = 312.08 ft \cdot kip$ $M_{2.0dtwotruck}\!\coloneqq\!312.08\boldsymbol{\cdot\!ft}\boldsymbol{\cdot\!kip}$

Page 4 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #3238 Watham ME Prepared B: Mahmood J. Abraheemi Route 179 crossing Union Checked By: Scott Tomlinson PE River Date : 201611-02 Trucks at Maximum Moment location: d1 distance between front wheel and the support pЗ 03 pı $R_b(d1) \coloneqq \frac{(p1 \cdot d1) + (p2 \cdot (d1 + d3)) + (p3 \cdot (d1 + d2 + d3))}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d3)) - p3 \cdot (d2)$ $R_b(11.5 \ ft) = 29.385 \ kip$ $M_{maxmoment two trucks} \! \coloneqq \! 662.215 \boldsymbol{\cdot ft} \boldsymbol{\cdot kip}$ $M(11.5 ft) = 662.215 ft \cdot kip$

Page 5 of 14
Bridge #3238 Walham ME Prepared B: Mahmood J. Abraheemi Route 179 crossing Union Checked By: Scott Tomlinson PE River Date : 201611-02 Four trucksin two lanes *p*1 := 16 *kip* p2:=22.9 kip page #3 average axle weight p3:=23.2 kip d2: distance between rear wheels $d2 \coloneqq 5 ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 16 ft$ Trucks at shear locations: d1 distance between front re ar wheel and the support ; d4 distance between trucks pť p2 pЗ p۵ Max moment location $R_b(d1, d4) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2) + p3 \cdot (d1 + d2 + d4) + p2 \cdot (d1 + 2 \cdot d2 + d4) + p1 \cdot (d1 + 2 \cdot d2 + d4 + d3)}{p1 \cdot (d1 + 2 \cdot d2 + d4) + p1 \cdot (d1 + 2 \cdot d2 + d4 + d3)}$ L $M(d1, d4) \coloneqq (R_b(d1, d4) \cdot (L - (d1 + d2 + d4 + d2))) - (p1 \cdot (d3))$ At 0.5 d from support $d1 := 1.5 \ ft \ d4 := 7.5 \ ft$ $R_b(1.5 ft, 7.5 ft) = 27.365 kip$ $R_a := 2 \cdot p2 + 2 \cdot p3 + p1 - R_b (1.5 \ ft, 7.5 \ ft) = ? \ kip$ $M(1.5 ft, 7.5 ft) = 729.124 ft \cdot kip$ $M_{0.5dfourtracks} \coloneqq 729.124$ (ft·kip) At 1.0 dfrom support $d1 \coloneqq 3 ft$ $d4 = 7.6 \, ft$ $M(3 ft, 7.6 ft) = 790.736 ft \cdot kip$ $M_{1.0dfourtrucks} \coloneqq 790.736 \ (ft \cdot kip)$ At 1.5 dfrom support $d1 \coloneqq 4.5 \ \mathbf{ft} \qquad d4 \coloneqq 7.4 \ \mathbf{ft}$ $M(4.5 ft, 7.4 ft) = 841.379 ft \cdot kip$ $M_{1.5dfourtrucks} \coloneqq 841.379 \ (ft \cdot kip)$ At 2.0 dfrom support $d1 \coloneqq 6 ft$ $d4 = 7.3 \, ft$ $M(6 ft, 7.3 ft) = 884.929 ft \cdot kip$ $M_{2.0dfourtrucks} \coloneqq 884.929 \; (ft \cdot kip)$

Page 6 of14

Bridge #3238 Watham ME Prepared B: Mahmood J. Abraheemi Route 179 crossing Union Checked By: Scott Tomlinson PE River Date : 201611-02 Trucks at Maximum Moment location: d1 distance between front wheel and the support d4 distance between trucks : p2 03 μS o2 p٦ $R_{b}(d1, d4) \coloneqq \frac{p1 \cdot d1 + p2 \cdot (d1 + d3) + p3 \cdot (d1 + d3 + d2) + p3 \cdot (d1 + d3 + d2 + d4) + p2 \cdot (d1 + d3 + 2 \cdot d2 + d4)}{(d1 + d3 + d2 + d4) + p2 \cdot (d1 + d3 + 2 \cdot d2 + d4)}$ L $M(d1, d4) \coloneqq (R_b(d1, d4) \cdot (L - (d1 + d3 + d2))) - (p2 \cdot (d2 + d4)) - (p3 \cdot d4)$ $R_b(6.8 ft, 7.3 ft) = 54.7 kip$ $M(6.8 \, ft, 7.3 \, ft) = 1036.805 \, ft \cdot kip$ $M_{maxmomentfourtrucks} \coloneqq 1036.8 \cdot ft \cdot kip$

Page 7 of14

Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

_slab =	435.4 n Properties thickness ctors (Interio	in^3 modular ratio	Second as transf. area	sumption y		
Aternal Girder Section	n Properties thickness ctors (nterio	modular ratio	Second as transf. area	sumption y		
nent Distribution fa	n Properties thickness ctors (nterio	modular ratio	Second as transf. area	sumption y		
mponen width	thickness ctors (nterio	modular ratio	transf. area	y Y		
mponen width	thickness ctors (Interio	ratio	area	у		
nent Distrbution fa	<mark>ctors (</mark> nterio					
nent Distrbution fa	<mark>ctors (Interio</mark>					
		r Cirdoro				
		Gilders)			
$DF_{onelane} = 0.375$ $DF_{turnel-max} = 0.49$						
D1 twolanes 0.10						
alculated Distribution	<mark>factors</mark> bas	sedon actu	ual measur	ements		
DF : -0.377						
$DF_{onelane} = 0.317$ $DF_{twolanes} = 0.493$						
$DF_{shear} \coloneqq 0.634$						
ection Propeties:Fu	Illy composit	e				
a/220 im	L-97214	in ⁴	S 904	3.1. im ³	0 - 60	8 0. im ³
y ≔ 33.9 m	1 = 27314	. 276	$S_{bot} = 800$).1•876	$Q_{slab} = 09$	0.0 • 111
$b_f := 11.98$ in						

Page 8 of 14

Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

Maximum	n L <mark>ive Load Mo</mark>	ment calcul	ation in ea	ach Ioadca	se for the	interior	girder	
Twotruck	sin two lanes							
$Mt_{0.5dtwo}$	$trucks \coloneqq DF_{twol}$	$anes \cdot M_{0.5dt}$	wotrucks = 8	30 ft · kip				
$Mt_{1.0dtwo}$	$trucks := DF_{twol}$	$anes \cdot M_{1.0dt}$	wotrucks = 1	105 ft · ki j	p			
Mt _{1.5dtwo} Mt _{2.0} µ	$trucks := DF_{twol}$	$anes^{\bullet M} 1.5 dt$	$wotrucks \equiv 1$	130 <i>Jl•Ki</i> 152 ft•ki	p n			
Mt_{marmon}	nenttwotrucks :=]	anes 112.0dt DF _{twolanes} •	M_{marmom}	enttwotrucks	= 326 ft •	kip		
maxmon	пеннион иско	<i>i</i> wordines	maimoni	Gillaotracks		-		
Four truck	ksin two lanes							
$Mt_{0.5dfou}$	$T_{trucks} := DF_{two}$	$anes \cdot M_{0.5d}$	$_{fourtrucks} =$	359 ft · k	ip in			
Mt ₁ .0dfou	$T_{trucks} = DF_{two}$	$lanes \cdot M_{1.0d}$	fourtrucks =	390 Jt·K 415 ft.k	ip in			
Mt _{2 odfor}	TTTTTCks = DT two TTTTTCks := DT two	$M_{2} \sim M_{2} \sim M_{2}$	fourtrucks —	436 ft · k	ip			
Mt_{maxmon}	nentfour trucks :=	$DF_{twolanes}$ 2.04	•M _{maxmon}	ventfourtruck	s=511 ft	• kip		
maarnor	iteritig o ar tr achte	raotanee	maamon	uernege ar er aen				
Actual s	section Resp	oonse						
Actual s	section Rest	000058 55.489869	22.41063	0.288809	-34.0286	6.025945	66.6797	-9.963
Actual s 1.0d 1.5d	ection Resp -4.329146915 -3.231458311	55.489869 58.234414	22.41063 18.40945	0.288809 -1.68524	-34.0286 -25.1511	6.025945 7.947325	66.6797 72.28859	-9.963 -9.938
Actual s	ection Resp -4.329146915 -3.231458311 -2.886442548	55.489869 58.234414 55.091825	22.41063 18.40945 20.77649	0.288809 -1.68524 -1.60974	-34.0286 -25.1511 -39.5641	6.025945 7.947325 8.930679	66.6797 72.28859 79.44879	-9.963 -9.938 -10.619
Actual s 1.0d 1.5d 2.0d MaxMome	-4.329146915 -3.231458311 -2.886442548 23.18579254	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.619 -7.6650
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	-4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	ection Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	-4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	ection Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	-4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963; -9.938; -10.619 -7.6650
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	section Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	section Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963: -9.938: -10.619 -7.6650
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	section Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963; -9.938; -10.619 -7.6650
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	section Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665
Actual s 1.0d 1.5d 2.0d MaxMome Two Truck	section Resp -4.329146915 -3.231458311 -2.886442548 23.18579254 s 1	55.489869 58.234414 55.091825 84.933748	22.41063 18.40945 20.77649 39.37371	0.288809 -1.68524 -1.60974 5.162854	-34.0286 -25.1511 -39.5641 -38.2792	6.025945 7.947325 8.930679 5.548775	66.6797 72.28859 79.44879 121.3018	-9.963 -9.938 -10.61 -7.665

Page 9 of 14

Bridge #3238 Waham ME Route 179 crossing Union River Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

$ \begin{aligned} y'_{0.5d} &:= 37.4 \text{ in} \\ y'_{0.1d} &:= 38.0 \text{ in} \\ y'_{1.di} &:= 38.0 \text{ in} \\ y'_{1.di} &:= 38.7 \text{ in} \\ y'_{2.0d} &:= 36.3 \text{ in} \\ \end{aligned} \\ \begin{aligned} & M_{0.5dfourtracks} \\ Mt_{1.0dfourtracks} \\ Mt_{1.0dfourtracks} \\ Mt_{1.20dfourtracks} \\ Mt_{2.0dfourtracks} \\ S_{1.5d} \cdot 29000 \text{ ksi} \\ \frac{Mt_{2.0dfourtracks}}{S_{1.5d} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.0dfourtracks}}{S_{2.0d} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29000 \text{ ksi}}{S_{2.00} \cdot 29000 \text{ ksi}} \\ \frac{Mt_{2.03} + 29$	FourTrucks					
$ \begin{array}{c} y'_{1.0d} \coloneqq 38.0 \ in \\ y'_{1.5d} \coloneqq 38.7 \ in \\ y'_{1.5d} \coloneqq 38.7 \ in \\ y'_{1.5d} \coloneqq 38.7 \ in \\ y'_{2.0d} \vDash y'_{2.0d} \coloneqq 38.7 \ in \\ y'_{0.0d} \vDash y'_{0.0d} \atop y'_{1.5d} \atop y'_{2.0d} \atop y'_{1.5d} \atop y'_{2.0d} $	$y'_{0.5d}$:=37.4 in	$S_{0.5d} \! \coloneqq \! 806.1$ i	in ³		Fully con	nposite
$ \begin{array}{c} y'_{1.5d} \coloneqq 38.7 \ in \\ y'_{2.0d} \coloneqq 38.7 \ in \\ y'_{maxmoment} \coloneqq 36.3 \ in \\ S_{2.0d} \coloneqq 806.1 \ in^{3} \\ S_{maxmoment} \coloneqq 306.1 \ in^{3} \\ Fully composite \\ Fully comp$	$y'_{1.0d} := 38.0$ in	$S_{1.0d} \coloneqq 806.1$ i	in ³		Fully con	nposite
$y'_{2,0d} \coloneqq 38.7 \text{ in} \\ y'_{maxmoment} \coloneqq 36.3 \text{ in} \\ S_{maxmoment} \coloneqq 806.1 \text{ in}^{3} \\ fully composite \\ g'_{1,5d} \\ g'_{2,0d} \\ g'$	$y'_{1.5d} := 38.7$ in	$S_{1.5d} \coloneqq 806.1$ i	in ³		Fully con	nposite
$y'_{maxmoment} := 36.3 \text{ in} \qquad S_{maxmoment} := 806.1 \text{ in}^{3} \qquad \text{Fully composite}$ $I_{fourtrucks} := \begin{bmatrix} M_{0.5dfourtrucks} \\ Mt_{1.0dfourtrucks} \\ Mt_{1.5dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{2.0dfourtrucks} \end{bmatrix} ; y_{fourtrucks} := \begin{bmatrix} y'_{0.5d} \\ y'_{1.0d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \\ S_{2.0d} \\ y'_{maxmoment} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{1.0d} \\ S_{2.0d} \\ S_{1.0d} \\ $	$y'_{2.0d} := 38.7$ in	$S_{2.0d} \coloneqq 806.1$ i	in ³		Fully con	nposite
$I_{fourtrucks} := \begin{bmatrix} M_{0.5dfourtrucks} \\ Mt_{1.0dfourtrucks} \\ Mt_{1.5dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{maxmomentfourtrucks} \end{bmatrix} ; y_{fourtrucks} := \begin{bmatrix} y'_{0.5d} \\ y'_{1.0d} \\ y'_{1.5d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} := \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix}$	$y'_{maxmoment}$:=36.3 in	$S_{maxmoment} := 8$	306.1 <i>in</i> ³		Fully con	nposite
$\begin{split} \mathbf{A}_{fourtrucks} &\coloneqq \begin{bmatrix} Mt_{1.0dfourtrucks} \\ Mt_{1.5dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{2.0dfourtrucks} \\ Mt_{maxmomentfourtrucks} \end{bmatrix} ; y_{fourtrucks} &\coloneqq \begin{bmatrix} y'_{1.0d} \\ y'_{1.5d} \\ y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix} ; S_{fourtrucks} &\coloneqq \begin{bmatrix} S_{1.0d} \\ S_{1.5d} \\ S_{2.0d} \\ y'_{maxmoment} \end{bmatrix} \\ \\ \mathbf{S}_{raamoment} \\ \mathbf{S}_$	M _{0.5dfourtruc}	ks	$y'_{0.5d}$	1		$S_{0.5d}$
$ \begin{aligned} I_{fourtrucks} &\coloneqq \left[\begin{array}{c} Mt_{1:5dfourtrucks} \\ Mt_{2:0dfourtrucks} \\ Mt_{2:0dfourtrucks} \\ Mt_{maxmomentfourtrucks} \\ Mt_{maxmomentfourtrucks} \\ \end{array} \right] ; y_{fourtrucks} &\coloneqq \left[\begin{array}{c} y_{1:5d} \\ y_{2:0d} \\ y_{0} \\ y_{0} \\ maxmoment \\ \end{array} \right] ; S_{fourtrucks} \\ & \\ S_{2:0d} \\ S_$	$Mt_{1.0dfourtrue}$	cks	$y'_{1.0d}$			$S_{1.0d}$
$ \begin{array}{c} Mt_{2.0dfourtrucks} \\ Mt_{maxmomentfourtrucks} \\ Mt_{maxmomentfourtrucks} \\ \end{array} \\ \begin{array}{c} y_{2.0d} \\ y_{maxmoment} \\ y_{2.0d} \\ y_{maxmoment} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ S_{maxmoment} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ S_{maxmoment} \\ \end{array} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ S_{maxmoment} \\ \end{array} \\ \begin{array}{c} S_{1.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} Mt_{1.5dfourtrucks} \\ S_{1.5d} \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} Mt_{2.0dfourtrucks} \\ S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} Mt_{2.0dfourtrucks} \\ S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 29000 \\ ksi \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 200.112 \\ 212.928 \\ 223.949 \\ 262.383 \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 10^6 \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 10^6 \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 10^6 \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \cdot 10^6 \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \begin{array}{c} S_{2.0d} \\ \end{array} \\ \end{array} \\ \begin{array}{c} S_{2.0d}	$M_{fourtrucks} := Mt_{1.5dfourtrucks}$	$; y_{fourtruck}$	$x_s := y'_{1.5d}$; S_{fo}	urtrucks :=	$= S_{1.5d}$
$\begin{bmatrix} Mt_{maxmomentfourtrucks} \end{bmatrix} \begin{bmatrix} y'_{maxmoment} \end{bmatrix} \begin{bmatrix} S_{maxmoment} \end{bmatrix} \\ \begin{bmatrix} Mt_{0.5dfourtrucks} \\ \hline S_{0.5d} \cdot 29000 \ ksi \\ \hline Mt_{1.0dfourtrucks} \\ \hline S_{1.0d} \cdot 29000 \ ksi \\ \hline Mt_{1.5dfourtrucks} \\ \hline S_{1.5d} \cdot 29000 \ ksi \\ \hline Mt_{2.0dfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{2.0dfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{2.0d} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmomentfourtrucks} \\ \hline S_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{maxmoment} \cdot 29000 \ ksi \\ \hline Mt_{$	$Mt_{2.0dfourtrue}$	ks	$y'_{2.0d}$			$S_{2.0d}$
Strain based on actual response	$Mt_{maxmomentfour}$	rtrucks	$y'_{maxmoment}$]		
$\begin{bmatrix} Mt_{maxmomentfourtrucks} \\ S_{maxmoment} \cdot 29000 \ ksi \end{bmatrix}$ $(b := 1.0 \qquad Kb := 0.5 \qquad Ka := \frac{259.19}{200.71} - 1 = 0.291 \qquad Ka := \frac{262.38}{140.87} - 1 = 0.863 \qquad Ki := 1 + Kb \cdot Ka = 1.291 \qquad Ki := 1 + Kb \cdot Ka = 1.43$	Strain based on actual respo	n \mathbf{s} $arepsilon_{computed}$:=	$ \begin{bmatrix} Mt_{0.5dfourts} \\ S_{0.5d} \cdot 29000 \\ Mt_{1.0dfourts} \\ \hline S_{1.0d} \cdot 29000 \\ Mt_{1.5dfourts} \\ \hline S_{1.5d} \cdot 29000 \\ Mt_{2.0dfourts} \\ \hline S_{2.0d} \cdot 29000 \\ \end{bmatrix} $	rucks ksi rucks ksi ksi rucks ksi	$\cdot 10^{6} =$	$\begin{bmatrix} 184.52\\ 200.112\\ 212.928\\ 223.949\\ 262.383 \end{bmatrix}$
$\begin{bmatrix} S_{maxmoment} \cdot 29000 \ \textit{Kst} \end{bmatrix}$ $(b := 1.0 \qquad Kb := 0.5$ $(a := \frac{259.19}{200.71} - 1 = 0.291 \qquad Ka := \frac{262.38}{140.87} - 1 = 0.863$ $(i := 1 + Kb \cdot Ka = 1.291 \qquad K := 1 + Kb \cdot Ka = 1.43$			$Mt_{maxmomentfo}$	urtrucks	1	
$Cb := 1.0$ $Kb := 0.5$ $Ca := \frac{259.19}{200.71} - 1 = 0.291$ $Ka := \frac{262.38}{140.87} - 1 = 0.863$ $K := 1 + Kb \cdot Ka = 1.291$ $K := 1 + Kb \cdot Ka = 1.43$			$S_{maxmoment} \cdot 290$	000 KSi]	
$Ka \coloneqq \frac{259.19}{200.71} - 1 = 0.291 \qquad Ka \coloneqq \frac{262.38}{140.87} - 1 = 0.863$ $K \coloneqq 1 + Kb \cdot Ka = 1.291 \qquad K \coloneqq 1 + Kb \cdot Ka = 1.43$	<i>(b</i> := 1.0		Kb := 0.5			
$K := 1 + Kb \cdot Ka = 1.291$ $K := 1 + Kb \cdot Ka = 1.43$	$a = \frac{259.19}{200.71} - 1 = 0.291$		$Ka := \frac{262.38}{140.87}$	-1 = 0.	863	
	$K := 1 + Kb \cdot Ka = 1.291$		$\frac{140.87}{K \coloneqq 1 + Kb \cdot I}$	$X_a = 1.4$	3	

Page 10 of 14

Bridge #3238 Watham ME Route 179 crossing Union River Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

$egin{array}{llllllllllllllllllllllllllllllllllll$	Fully composite Fully composite Fully composite Fully composite Fully composite S _{twotrucks1} := $\begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{1.5d} \\ S_{2.0d} \\ S_{maxmond} \end{bmatrix}$
$y'_{0.5d}$ $y'_{1.0d}$ $y'_{1.5d}$ $y'_{2.0d}$ $y'_{maxmoment}$	$S_{twotrucks1} \coloneqq \begin{bmatrix} S_{0.5d} \\ S_{1.0d} \\ S_{1.5d} \\ S_{2.0d} \\ S_{maxmond} \end{bmatrix}$
Mt _{0.5dtwotruks} 90.5d • 29000 ksi Mt _{1.0dtwotruks} 91.0d • 29000 ksi Mt _{1.5dtwotruks} 91.5d • 29000 ksi Mt _{2.0dtwotruks} 92.0d • 29000 ksi maxmomenttwotnuck moment • 29000 ksi	$\left \cdot 10^{6} = \begin{bmatrix} 41.263 \\ 54.779 \\ 67.351 \\ 78.978 \\ 167.587 \end{bmatrix} \right $
$Kb := 0.5$ $Ka := \frac{167.58}{91.42}$ $K := 1 + Kb \cdot J$	$\frac{37}{2} - 1 = 0.833$ Ka = 1.42
	$Kb := 0.5$ $Ka := \frac{167.58}{91.42}$ $K := 1 + Kb \cdot 5$

Page 11 of 14

Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

	Shear Flow	Calculation	
our Trucks maximum mor	nert		
maximum shearforce	V := 54.7	kip	
$\tau := \frac{V \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} =$	73.98 psi	Fully composite	
our Trucks maximum shea	r		
maximum shearforce	$V \coloneqq 80.8$	35 <i>kip</i>	
$\tau := \frac{V \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} =$	109.321 psi	Fully composite	
wo Trucksmaximum shea	r and a second		
maximum shearforce	$V_{shear2t} = 42$	2.238 kip	
$\tau := \frac{V_{shear2t} \cdot DF_{shear} \cdot Q}{V_{shear} \cdot Q}$	$\frac{2}{slab} = 57\ 123\ nsi$		
$I \cdot b_f$	=011120 por		

Page 12 of 14

Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

_bottom =		765.6 in^3		
Mmidspar 94	4.04172333			
			Total	I 674
			- Otal	
our Trucks	maxmom e t l	DF analysis		
Total mom	cnt = 1025	ft.him		
Lotui_mom	ent - 1055	10-000		
Girder .	Actual_DF	AASHTO_DF		
"girder1"	0.304	0.38		
"girder2"	0.457	0.493		
"girder3"	0.530	0.493		
"girder4"	0.429	0.493		
"girder5"	0.281	0.38		
wo Trucks r	nax momentl	DFanalysis		
T 1 1	ent:=674 f t	t•kip		
1 otal_mom				
1 otal_mom		A A CITITO DI		
1 otal_mom Girder	Actual_DF	AASHTO_DF		
1 otal_mom Girder	Actual_DF	AASHTO_DF		
Girder	Actual_DF 	0.38		
Girder	Actual_DF 0.319 0.444	0.38 0.493		
Girder "girder1" "girder2" "girder3"	Actual_DF 0.319 0.444 0.529	0.38 0.493 0.493		
Girder "girder1" "girder2" "girder3" "girder4"	Actual_DF 0.319 0.444 0.529 0.429	0.38 0.493 0.493 0.493		

Page 13 of 14

Prepared By: Mahmood J. Abraheemi Checked By: Scott Tomlinson PE Date : 201611-02

Page 14 of 14

A.4 Pembroke No. 3884

A.4.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 13: Pembroke No. 3884 Bridge Input Data, Experimental Configuration, and Experimental Data Collected

File Contents	File Name	File Type
Bridge Geometry and Materials	Br3884 _Geom.csv	CSV Format
Exterior Section Data	Br3884 _Ext.csv	CSV Format
Interior Section Data	Br3884 _Int.csv	CSV Format
Sensors	Br3884 _Sensors.csv	CSV Format
Sensor Layout	Br3884 _SensorLayout.csv	CSV Format
Truck Weight and Dimensions	Br3884_SensorLayout.mat	MATLAB Data File
Truck Starting Position	TestStart.m > Br3884 _TestStart	MATLAB Data File
Truck Position Measurements	Br3884 _Tk_Positions.mat	MATLAB Data File
Sensor Data	Br3884 _1Tks_1Lns_1.xlsx	Microsoft Excel
	Br3884 _2Tks_1Lns_1.xlsx	Microsoft Excel
	Br3884 _4Tks_2Lns_1.xlsx	Microsoft Excel
Data Time Indices	Br3884_1Tks_1Lns_1_Time.csv	CSV Format
	Br3884_2Tks_1Lns_1_Time.csv	CSV Format
	Br3884_4Tks_2Lns_1_Time.csv	CSV Format

A.4.2 Instrumentation

Figure 38: Pembroke No. 3884 sensor layout

A.4.3 Loading

Figure 39: Pembroke No. 3884 Truck T01-223 loading

Figure 40: Pembroke No. 3884 Truck T01-231 loading

Figure 41: Pembroke No. 3884 Truck T01-242 loading

Figure 42: Pembroke No. 3884 Truck T01-244 loading

A.4.4 Representative Data Plots

Figure 43: Pembroke No. 3884 - 4 trucks 2 lanes test 1 strains

Figure 44: Pembroke No. 3884 - 4 trucks 2 lanes test 1 shear slip

Figure 45: Pembroke No. 3884 - 4 trucks 2 lanes test 2 strains

FM-PR-08(07)

Figure 46: Pembroke No. 3884 - 4 trucks 2 lanes test 2 shear slip

A.4.5 Rating Factor Calculations

Figure 47: Pembroke No. 3884 Calculations

#300 okeC ENNA	34PembrokeME DossRoad MAQUAN River			Prepared By Checked By Date : 2016	: Mahmood J. Abrahee SMT 11-16
	YearBuilt: 1944 Table 6A.5.2.1-1—Minimu	m Compressive Strength of	Table 6A.6.2.1-1—N Structural Steel by	finimum Mechar Year of Construction	tical Properties of
	Concrete by Year of Const	ruction		Minimum	
	Year of Construction Prior to 1959	Compressive Strength, f' _{co} ksi	Year of	Yield Point or Minimum Yield Strength.	Minimum Tensile
	1959 and Later	3.0	Construction	F _p , ksi	Strength, F _v , ksi
			Prior to 1905	26	52
	f' _c ≔2.5 ksi		1936 to 1963	33	66
			After 1963	36	66
			fy≔33 ksi		
	$\gamma c \coloneqq 150 \ pcf$		$\gamma s \coloneqq 490 \ pcf$		
	$\gamma_{c_mod} \coloneqq 145 \ \textit{pcf}$		<i>Es</i> := 29000 <i>k</i>	si	
l	LRFD Design Eq. 5.4.2.4 1				
	$Ec \coloneqq 33000 \cdot \gamma_{c_mod}^{1}$	$5 \cdot \sqrt[2]{f'_c}$			
	<i>Ec</i> := 2875.9 ksi				
I	Bridge Lengh	L:=45.25 ft			
	Spacingbetween Girder	s S:=5.75 ft			
I	Deck thickness	<i>ts</i> := 6.75 <i>in</i>			
١	Wearingsurfacethickne	ss $t_{w.s.} \coloneqq 0$ in γ	w.s. ≔140 pcf		

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

Page 2 of 12

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

	Loads on the	e Intei	rior Gi	rder	
DeadLoad:					
$M_{DC} \coloneqq 188 \; ft \cdot kip$	VHB report				
d≔27.0 in	$b_f \coloneqq 10.0$ in				
Live Load :					
We use the average truc	kweight and dimensio	nsin this	calculat	ions	
					Trucks Weight
		T01-231	T01-242	T01-223	T01-157244
nt wheel		14350	14400	15150	15000
it rear wheel		19500	20250	20850	20900
. wheel		19000	20000	21450	21200

Page 3 of12

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

Page 4 of 12

Bridge#3884PembrokeME Pembroke CrossRoad Over PENNAMAQUAN River Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

Page 5 of 12

Bridge#3884PembrokeME Prepared B: Mahmood J. Abraheemi Pembroke Cross Road Checked By: SMT Over PENNAMAQUAN River Date : 201611-16 Section Propeties and Distribution Factors second assumption Exterior Girder Section Properties modular transf. Moment Distribution factors (Interior Girders) VHB repot $DF_{onelane} = 0.375$ $DF_{twolanes} = 0.484$ Calculated Distribution factors basedon actual measurements $DF_{onelane} \coloneqq 0.421$ $DF_{twolanes} = 0.544$ $DF_{shear} = 0.652$ Section Propeties:Fully composite $Q_{slab}\!\coloneqq\!283.7\boldsymbol{\cdot in}^3$ $y' \coloneqq 23.4$ in $I \coloneqq 8152 \cdot in^4$ $S_{bot} = 347.8 \cdot in^3$

Page 6 of 12

Maximum Live Load Moment calculation in each load case, for the interior dirder	
Two trucks in two lanes $Mt_{maxmoment two trucks} := DF_{two lanes} \cdot M_{maxmoment two trucks} = 237 \ ft \cdot kip$	
Four trucks in two lanes $Mt_{maxmoment four trucks} := DF_{two lanes} \cdot M_{maxmoment four trucks} = 388 \ ft \cdot kip$	
Actual section Response	
Mid B3056 29.458648 B3061 46.8835476 bot. B3057 63.5795879 B3060 125.5109165	
y' 26.0514948 y' 22.0061647 modular transf.	
component width thickness ratio area	

Page 8 of12

je#3884PembrokeME proke CrossRoad PENNAMAQUAN River		Prepared By: Mahmood J. Abrahee Checked By: SMT Date : 201611-16
Two Trucks		
Look at the critical girder	the interior	
$y'_{maxmoment}$:=23.6 in	$S_{maxmoment}$:=347.8 in^3	Fully composite
Strain bæed on ætual response		
$arepsilon_{computed} \! \coloneqq \! rac{M t_{maxmomenttu}}{S_{maxmoment} \cdot 290}$	$\frac{votnucks}{000 \ ksi} \cdot 10^6 = 281.54$	
Kb := 0.5		
$Ka \coloneqq \frac{281.54}{144.48} - 1$		
$K \coloneqq 1 + Kb \cdot Ka = 1.47$		

Page 9 of 12

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

Page 10 of 12

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

				97	2.56E+03	
	y_bar=	26.4	in from k	ottom		
Momento	of Inertia 1	.131E+04	in^4			
S_bottom	=	428.9	10^3			
Mmidspa	n 122.45					
<mark>our Trucks r</mark>	naxmom e f	t DF anay	rsis			
otal mom	ent - 606	ft.kin				
otut_mome	5111 - 050	Jernep				
Girder 4	Actual_DF	AASH	TO_DF			
girder1"	0.297	0.4	449			
girder2"	0.459	0.	544			
girder3"	0.532	0.	544			
girder4"	0.359	0	544			
girdor5"	0.353	0	440			
girder5	0.555	0.4	449			
wo Trucks n	ax momen	<mark>t DF analy</mark>	vsis			
'otal_mome	$ent \coloneqq 453.1$	l ft•kıp				
Girder ,	Actual DF	' AASH	TO DF			
	ieraat_bi	111011	10_D1			
girder1"	0.201	0	140			
girder?"	0.452	0.4	544			
girdef 2"	0.403	0.	544			
girder3"	0.536	0.	544			
girder4"	0.343	0.	544			
	0.377	0.	449			
girder5"						
girder5"						
girder5"						

Page 11 of 12

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-16

Page 12 of 12

A.5 Windham No. 5298

A.5.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 144: Windham No. 5298 Bridge Input Data, Experimental Configuration, andExperimental Data Collected

File Contents	File Name	File Type
Bridge Geometry and Materials	Br5298_Geom.csv	CSV Format
Exterior Section Data	Br5298_Ext.csv	CSV Format
Interior Section Data	Br5298_Int.csv	CSV Format
Sensors	Br5298_Sensors.csv	CSV Format
Sensor Layout	Br5298_SensorLayout.csv	CSV Format
Truck Weight and Dimensions	Br5298_SensorLayout.mat	MATLAB Data File
Truck Starting Position	TestStart.m > Br5298_TestStart	MATLAB Data File
Truck Position Measurements	Br5298_Tk_Positions.mat	MATLAB Data File
Sensor Data	Br5298_1Tks_1Lns_1.xlsx	Microsoft Excel
	Br5298_2Tks_1Lns_1.xlsx	Microsoft Excel
	Br5298_2Tks_1Lns_3.xlsx	Microsoft Excel
	Br5298_2Tks_2Lns_1.xlsx	Microsoft Excel
	Br5298_4Tks_2Lns_2.xlsx	Microsoft Excel
Data Time Indices	Br3057_1Tks_1Lns_1_Time.csv	CSV Format
	Br3057_1UBT_1Lns_1_Time.csv	CSV Format
	Br3057_2Tks_1Lns_1_Time.csv	CSV Format
	Br3057_2Tks_1Lns_2_Time.csv	CSV Format
	Br3057_2Tks_2Lns_1_Time.csv	CSV Format
	Br3057_4Tks_2Lns_1_Time.csv	CSV Format

A.5.2 Instrumentation

Figure 48: Windham No. 5298 sensor layout

A.5.3 Loading

Figure 49: Windham No. 5298 Truck T01-164 loading

Figure 50: Windham No. 5298 Truck T01-197 loading

Figure 51: Windham No. 5298 Truck T01-247 loading

Figure 52: Windham No. 5298 Truck T01-259 loading

A.5.4 Representative Data Plots

Figure 53: Windham No. 5298 - 2 trucks 2 lanes test 1 strains

Figure 54: Windham No. 5298 - 2 trucks 2 lanes test 1 shear slip

FM-PR-08(07)

FM-PR-08(07)

-125

0

200

400

600

Time (s)

800

Figure 55: Windham No. 5298 - 4 trucks 2 lanes test 2 strains

1000

1200

-- B3062

---- B3070

Figure 56: Windham No. 5298 - 4 trucks 2 lanes test 2 shear slip

Prepared B: Mahmood J. Abraheemi

A.5.5 Rating Factor Calculations

Figure 57: Windham No. 5298 Calculations

Bridge #52 Raute Win Crossing P	298 Windlam ME Icham Center Road Ieasant River				Prepared B Checked By Date : 2016	: Mahmood J. Abrał SMT 11-03	
	YearBuilt: 1950 Table 6A.5.2.1-1—Minimum	Compressive Strength	of	Table 6A.6.2.1-1—1 Structural Steel by	-Minimum Mechanical Properties of y Year of Construction		
	Concrete by Year of Constru-	Year of Construction Year of Construction Compressive Strength, f' _{co} ksi Delete 1050		Year of	Minimum Yield Point or Minimum Yield Strength.	Minimum Tensile	
	1959 and Later	3.0		Construction	F_{y} , ksi	Strength, F_v , ksi	
			-	Prior to 1905	26	52	
	f'_c:=2.5 ksi			1905 to 1956	30	60	
				After 1963	36	65	
				fy≔33 ksi			
	$\gamma c \coloneqq 150 \ pcf$			$\gamma s \coloneqq 490 \ pcf$			
	$\gamma_{c_mod} {\coloneqq} 145 ~\textit{pcf}$			<i>Es</i> := 29000 k	si		
	LRFD Design Eq. 5.4.2.4 1						
	$Ec \coloneqq 33000 \cdot \gamma_{c_mod}^{1.5}$	$\cdot \sqrt[2]{f'_c}$					
	<i>Ec</i> := 2875.9 <i>ksi</i>						
	Bridge Lengh	L:=46 ft					
	Spacingbetween Girders	$S \coloneqq 5.33 \ ft$					
	Deck thickness	$ts \coloneqq 6.0$ in					
	Wearingsurfacethickness	s $t_{w.s.}$:=9.0 in	$\gamma_{w.s.}$:	=143 pcf			
	Page 1 of14						

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Page 2 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

	Loads on the	<mark>e Interi</mark>	<mark>or Gir</mark>	der	
DeadLoad:					
$M_{DC} \coloneqq 190 \; ft \cdot kip$	VHB report				
$M_{\text{DW}} = 155 \ ft \cdot kin$	VHB report				
$d \coloneqq 29.83$ in	$b_f := 10.48 \ in$				
Live Load :					
We use the average truc	kweight and dimensio	nsin this c	alculat	ions	
					Trucks Weight
		T01 197	T01-247	T01,164	T01-259
nt wheel		15700	15200	14550	14800
nt rear wheel		19450	19650	20100	19700
t Wheel		19150	20600	21150	22400

Page 3 of 14

Prepared B: Mahmood J. Abraheemi Bridge #5298 Windlam ME Route Windham Center Road Checked By: SMT Crossing Pleasant River Date : 201611-03 Live Load Analysis Two trucks in two lanes p3:=21.8 kip $p2 \coloneqq 19.9 \ kip$ $p1 := 14.7 \ kip$ page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 5 ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 15 \ ft$ Trucks at shear locations: Max moment location $R_b(d1) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2)}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d2))$ At 0.5 d from support $V_{shear2t} = p2 + p3 - R_b(d1) = ?$ kip $d1 \coloneqq 0.5 \cdot d$ $M(d1) = 139.003 \ ft \cdot kip$ $M_{0.5dtwotrucks} \coloneqq 139 \; ft \cdot kip$ At 1.0 dfrom support $d1 \coloneqq 1.0 \cdot d$ $M(d1) = 178.052 \ ft \cdot kip$ $M_{1.0dtwotruck}\!\coloneqq\!178\boldsymbol{\cdot\!ft}\boldsymbol{\cdot\!kip}$ At 1.5 dfrom support $d1 \coloneqq 1.5 \cdot d$ $M(d1) = 214.301 \ ft \cdot kip$ $M_{1.5dtwotrucks} \coloneqq 214.3 \cdot ft \cdot kip$ At 2.0 dfrom support $d1\!\coloneqq\!2.0\boldsymbol{\cdot} d$ $M(d1) = 247.748 \; ft \cdot kip$ $M_{2.0dtwotrucks} \coloneqq 247.7 \cdot ft \cdot kip$

Page 4 of 14

Page 5 of14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #5298 Windlam ME Prepared B: Mahmood J. Abraheemi Route Windham Center Road Checked By: SMT Crossing Pleasant River Date : 201611-03 Four trucksin two lanes *p*1 := 15.1 *kip p*2 := 19.7 *kip p*3 := 20.8 *kip* page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 5 ft$ d3 distance between front wheel and front rear wheel d3 = 15 ftTrucks at shear locations: d1 distance between front re ar wheel and the support ; d4 distance between trucks p2 03 d3 d2 d2 Max moment location $R_b(d1, d4) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2) + p3 \cdot (d1 + d2 + d4) + p2 \cdot (d1 + 2 \cdot d2 + d4) + p1 \cdot (d1 + 2 \cdot d2 + d4 + d3)}{(d1 + d2) + d2 + d4 + d4) + p2 \cdot (d1 + 2 \cdot d2 + d4) + p1 \cdot (d1 + 2 \cdot d2 + d4 + d3)}$ $M(d1, d4) \coloneqq (R_b(d1, d4) \cdot (L - (d1 + d2 + d4))) - (p2 \cdot (d2)) - (p1 \cdot (d3 + d2))$ At 2.0 dfrom support $d1 \coloneqq 2.0 \cdot d$ $d4 \coloneqq 89$ in $M(d1, d4) = 639.872 \ ft \cdot kip$ $M_{2.0dfourtrucks} = 639.872 \; (ft \cdot kip)$ $Ra := 2 \cdot p2 + 2 \cdot p3 + p1 - R_b (d1, d4) = 59.738$ kip $V_{shear} \coloneqq Ra = 59.738$ kip At 3.0 dfrom support $d1 \coloneqq 3 \cdot d$ d4 = 91 in $M(d1, d4) = 683.464 \ ft \cdot kip$ $M_{3.0dfourtrucks} \coloneqq 683.464 \; (ft \cdot kip)$ At 4.0 dfrom support $d1 \coloneqq 4 \cdot d$ $d4 \coloneqq 91$ in $M(d1, d4) = 701.567 \ ft \cdot kip$ $M_{4.0dfourtrucks} = 701.567 \ (ft \cdot kip)$

Page 6 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Page 7 of14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Section Pr	op e ties ai	nd Distributio	on Factos				
Girder Section	Propertie	S					
			modular	transf.		_	
component	width	thickness	ratio	area	у		
Slab	69	9	10.00	62.1	34.8		
Anmont Distr	ibution fo	otoro (Intorio					
vioment Distr	ibution la	ciors (interio	Giders)				
VHB repot	1.4.4						
$DF_{onelane} :=$	0.444						
$DF_{twolanes}$:=	=0.574						
Colorulate d Diet	uile stieve fe	<mark>atawa k</mark> asad					
DF -	noution fa	cions pased	on actual m	reasuremen	115		
$DF_{onelane} = DF_{onelane} = DF_{$	=0.523						
$DF_{-1} := 0$	- 0.025 .652						
sneur							
Section Prop	eties:Fully	composite					
Section Prop	eties:Fully	composite	4 S	:= 466 1 • i	<i>n</i> ³	Q := 410	6.5. <i>in</i> ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully 1. 1	composite [∵=13116• <i>in</i>]	4 S_{bot}	≔466.1• i	n ³	Q_{slab} := 410	6.5• in ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	<mark>composite</mark> ∵=13116• <i>in</i>	4 S_{bot}	:=466.1• i	in ³	Q_{slab} := 410	6.5• in ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	composite T≔13116• <i>in</i>	4 S_{bot}	:=466.1• i	n ³	Q_{slab} := 410	6.5• <i>in</i> ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	<mark>composite</mark> 7≔13116• in	4 S _{bot}	≔466.1• i	in ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	<mark>composite</mark> ∵=13116• in	4 S _{bot}	:=466.1• i	in ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	composite ⁷ ≔13116• <i>in</i>	4 S _{bot}	:=466.1• i	n ³	Q_{slab} := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	composite ⁷ ≔13116• <i>in</i>	4 S _{bot}	:=466.1• i	<i>n</i> ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y′≔28.1 <i>in</i>	eties:Fully	<u>composite</u> 7∷=13116• <i>in</i>	⁴ S _{bot}	:=466.1• i	in ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	composite 7∵=13116• <i>in</i>	4 S _{bot}	:=466.1• i	in ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	composite ⁷ ≔ 13116 • <i>in</i>	⁴ S _{bot}	:=466.1• i		<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	<u>composite</u> ⁷ ≔13116• <i>in</i>	⁴ S _{bot}	:=466.1• i	in ³	<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	<u>composite</u> :=13116∙ <i>in</i>	⁴ S _{bot}	:= 466.1 • i		<i>Q_{slab}</i> := 410	6.5• <i>in</i> ³
Section Prop y'≔28.1 <i>in</i>	eties:Fully	<u>composite</u> :=13116∙ <i>in</i>	4 S _{bot}	:=466.1• <i>i</i>		<i>Q</i> _{slab} := 410	6.5• <i>in</i> ³
Section Prop <i>y</i> ′ ≔ 28.1 <i>in</i>	eties:Fully	composite [*] := 13116 • <i>in</i>	4 S _{bot}	:= 466.1 • i		<i>Q</i> _{slab} := 410	6.5 • <i>in</i> ³
Section Prop <i>y</i> ′≔28.1 <i>in</i>	eties:Fully	<u>composite</u> ⁷ ≔ 13116 • <i>in</i>	⁴ S _{bot}	:=466.1• i		<i>Q</i> _{slab} := 410	6.5• <i>in</i> ³
Section Prop <i>y</i> ′ ≔ 28.1 <i>in</i>	eties:Fully	composite [*] ≔13116• <i>in</i>	⁴ S _{bot}	:= 466.1 • i		<i>Q</i> _{slab} :=410	6.5• <i>in</i> ³
Section Prop <i>y</i> '≔28.1 <i>in</i>	eties:Fully	composite	⁴ S _{bot}	:= 466.1 • i		<i>Q</i> _{slab} :=410	6.5 • <i>in</i> ³

Page 8 of 14

idge #5298 Windla aute Wincham Centr ossing Pleasant Rive	m ME er Road er				Prepared By: Mahr Checked By: SMT Date : 201611-03	mood J. Abraheemi
Maximu	m Live Load Mom	ent ca iculatio	on in eac h	load case 1	or the interior girder	
Two tri $Mt_{0.5d}$ $Mt_{1.0d}$ $Mt_{1.5d}$ $Mt_{2.0d}$ Mt_{max}	ucksin two lanes $twotrucks := DF_{twola}$ $twotrucks := DF_{twola}$ $twotrucks := DF_{twola}$ $twotrucks := DF_{twola}$ momentwotrucks := D	$mes \cdot M_{0.5dtwot}$ $mes \cdot M_{1.0dtwot}$ $mes \cdot M_{1.5dtwot}$ $mes \cdot M_{2.0dtwot}$ $F_{twolanes} \cdot M_{10}$	rucks = 73 f $rucks = 93 f$ $rucks = 112$ $rucks = 130$ maxmomenttu	t•kip t•kip ft•kip ft•kip _{votrucks} =25	s ft · kip	
Four tr $Mt_{2.0d}$	ucks in two lanes $_{fourtrwks} := DF_{twold}$	$_{unes} ullet M_{2.0dfou}$	rtrucks			
$Mt_{3.0d}$	$_{fourtrucks} := DF_{twold}$	$mes \cdot M_{3.0dfou}$	rtrucks			
Mt_{max}	moment four trucks := I	$DF_{twolanes} \cdot M$	maxmomentf	ourtrucks = 3	66 ft•kip	
Actua	al section Respo	onse				
FourT	rucks					
Positic	n LV4521	B3076	B3075	B3811	V 4523	
MaxN	1om -0.00208445	-78.423732	-26.3542	44.29619	-4E-05	
4.0d	-0.00323712	-74.50521	-16.4794	62.01858	-1E-05	
3.0d	-0.003866164	-69.951864	-12.9873	67.6924	5.82E-06	
2.0d	-0.004086198	-60.897547	-9.78585	72.16478	1.94E-05	

Page 9 of 4

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #5298 Windham ME Route Windham Center Road Crossing Pleasant River Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Page 10 of 14

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge #5298 Windlam ME Prepared B: Mahmood J. Abraheemi Route Windham Center Road Checked By: SMT Crossing Pleasant River Date : 201611-03 **Two Trucks** $y'_{0.5d} \! \coloneqq \! 30.2 \, in$ $S_{0.5d}\!\coloneqq\!466.1~\textit{in}^3$ $y'_{1.0d} = 30.2$ in $S_{1.0d} := 466.1 \ in^3$ $y'_{2.0d} := 30.7$ in $S_{2.0d} := 466.1 \ in^3$ $y'_{3.0d} \! \coloneqq \! 30.2 \, \operatorname{in}$ $S_{3.0d} := 466.1 \ in^3$ $y'_{maxmoment} \coloneqq 31.1$ in $S_{maxmoment} \coloneqq 466.1 \ in^3$ $Mt_{0.5 dtwo trucks}$ $S_{0.5d}$ $y'_{0.5d}$ $M_{twotrucks}$:= Mt_{1.0dtwotrucks} Mt_{2.0dtwotrucks} Mt_{2.0dtwotrucks} $S_{1.0d}$ $y^{\prime}_{1.0d}$ $S_{twotrucks1}$:= $y_{twotrucks}$: $S_{2.0d}$ $y_{2.0d}^{\prime}$ $S_{maxmomen}$ $y'_{maxmoment}$ $Mt_{0.5 dtwo trucks}$ Strain based on actual response $S_{0.5d}$ •29000 ksi $Mt_{1.0 \mathit{dtwotrucks}}$ 64.539 $\overline{S_{1.0d}} \cdot 29000$ ksi 82.647 $\varepsilon_{computed} \coloneqq$ $\cdot 10^{6}$ 115.009 $Mt_{2.0dtwotrucks}$ 224.655 $S_{2.0d}$ •29000 ksi $Mt_{maxmoment two trucks}$ $S_{maxmoment} \cdot 29000$ ksi $Mt_{maxmoment two trucks}$ $\cdot 10^6 = 224.655$ $S_{maxmoment} \cdot 29000$ ksi Kb := 0.5 $Ka \coloneqq \frac{224.65}{108.15}$ 1 = 1.077 $K \coloneqq 1 + Kb \cdot Ka = 1.54$

Page 11 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Four Trucks maximum m	omert		
ximum shearforce	V _{moment} =49.279 kip		
$\tau := \frac{V_{moment} \cdot DF_{sheat}}{I \cdot b_f}$	<i>r</i> ∙ <i>Q_{slab}</i> =97.4 psi	Fully composite	
Four Trucks maxmum sl	rear		
ximum shearforce	V _{shear} =59.738 kip	,	
$\tau := \frac{V_{shear} \cdot DF_{shear} \cdot }{I \cdot b_f}$	^Q _{slab} =118 psi	Fully composite	
Two Trucksmaximum sh	ear		
maximum shearforce	$V_{shear2t}=38.$	204 <i>kip</i>	
$\tau \coloneqq \frac{V_{shear2t} \cdot DF_{shear}}{I \cdot b_f}$	· <i>Q_{slab}</i> =75.475 psi	Fully composite	

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

womento	of Inertia =	23760.663 in ^4	
S_bottom :	=	706.8 in ^3	
Mmidspar	210.29802	.4	
Mt	210.29802	4	
Four Trucks n	naxmom e t E	ıF analysis	
Fotal mome	$ent \coloneqq 727 \ ft$	· kip	
_	Ĭ		
Girder A	actual_DF	AASHTO_DF	
"girder1"	0.518	0.431	
"girder2"	0.285	0.523	
"girder3"	0.480	0.523	
"girder4"	0.136	0.523	
0			
"girder5"	0.579	0.431	
"girder5" Two Trucks m	0.579 ex moment[0.431 Fanalysis	
"girder5" Two Trucks m	0.579 ex moment[0.431	
"girder5" Two Trucks m Fotal_mome	0.579 ∎x moment[ent := 519 ft	0.431 Fanalysis • <i>kip</i>	
"girder5" Two Trucks m Fotal_mome Girder A	0.579 æx moment[ent ≔519 ft Actual_DF	0.431 F analysis • <i>kip</i> AASHTO_DF	
"girder5" Two Trucks m Fotal_mome Girder A	0.579 ∎x moment[ent := 519 ft Actual_DF	0.431 Fanalysis •kip AASHTO_DF	
"girder5" Two Trucks m Fotal_mome Girder A "girder1"	0.579 ex moment[ent := 519 ft Actual_DF 0.479	0.431 F analysis • <i>kip</i> AASHTO_DF 0.431	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2"	0.579 ex moment[ent := 519 ft $Actual_DF$ 0.479 0.309	0.431 F analysis • kip AASHTO_DF 0.431 0.523	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3"	0.579 ex moment[ent := 519 ft Actual_DF 0.479 0.309 0.470	0.431 • kip AASHTO_DF 0.431 0.523 0.523	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3" "girder4"	0.579 EX MOMENT <i>Ent</i> := 519 <i>ft</i> <i>Actual_DF</i> 0.479 0.309 0.470 0.155	0.431 F analysis • kip AASHTO_DF 0.431 0.523 0.523 0.523 0.523	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3" "girder4" "girder5"	0.579 ex moment[ent := 519 ft Actual_DF 0.479 0.309 0.470 0.155 0.588	0.431 • kip AASHTO_DF 0.431 0.523 0.523 0.523 0.523 0.431	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3" "girder4" "girder5"	0.579 ex moment[<i>ent</i> := 519 <i>ft</i> <i>Actual_DF</i> 0.479 0.309 0.470 0.155 0.588	0.431 • kip AASHTO_DF 0.431 0.523 0.523 0.523 0.523 0.431	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3" "girder4" "girder5"	0.579 ex moment[ent := 519 ft Actual_DF 0.479 0.309 0.470 0.155 0.588	0.431 F analysis • <i>kip</i> <i>AASHTO_DF</i> 0.431 0.523 0.523 0.523 0.523 0.431	
"girder5" Two Trucks m Total_mome Girder A "girder1" "girder2" "girder3" "girder4" "girder5"	0.579 ex moment[<i>ent</i> := 519 <i>ft</i> <i>Actual_DF</i> 0.479 0.309 0.470 0.155 0.588	0.431 • <i>kip</i> <i>AASHTO_DF</i> 0.431 0.523 0.523 0.523 0.523 0.431	

Page 13 of 14

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-03

Page 14 of 14

A.6 Buckfield No. 5452

A.6.1 Input Data, Experimental Configuration, and Experimental Data Collected

Table 15:Buckfield No. 5452 Bridge Input Data, Experimental Configuration, and Experimental Data Collected

File Contents	File Name	File Type
Bridge Geometry and Materials	Br5452 _Geom.csv	CSV Format
Exterior Section Data	Br5452 _Ext.csv	CSV Format
Interior Section Data	Br5452 _Int.csv	CSV Format
Sensors	Br5452 _Sensors.csv	CSV Format
Sensor Layout	Br5452_SensorLayout.csv	CSV Format
Truck Weight and Dimensions	Br5452_SensorLayout.mat	MATLAB Data File
Truck Starting Position	TestStart.m > Br5452 _TestStart	MATLAB Data File
Truck Position Measurements	Br5452 Tk_Positions.mat	MATLAB Data File
Sensor Data	Br5452 _1Tks_1Lns_1.xlsx	Microsoft Excel
	Br5452 _2Tks_1Lns_1.xlsx	Microsoft Excel
	Br5452 _2Tks_2Lns_1.xlsx	Microsoft Excel
	Br5452 _4Tks_2Lns_1.xlsx	Microsoft Excel
Data Time Indices	Br5452_1Tks_1Lns_1_Time.csv	CSV Format
	Br5452_2Tks_1Lns_1_Time.csv	CSV Format
	Br5452_2Tks_1Lns_1_Time.csv	CSV Format
	Br5452_4Tks_2Lns_1_Time.csv	CSV Format

A.6.2 Instrumentation

Figure 58: Buckfield No. 5452 sensor layout

A.6.3 Loading

Figure 59: Buckfield No. 5452 Truck T01-129 loading

Figure 60: Buckfield No. 5452 Truck T01-220 loading

Figure 61: Buckfield No. 5452 Truck T01-246 loading

Figure 62: Buckfield No. 5452 Truck T01-273 loading

A.6.4 Representative Data Plots

Figure 63: Buckfield No. 5425 - 4 trucks 2 lanes test 1 strains

Figure 64: Buckfield No. 5425 - 4 trucks 2 lanes test 1 shear slip

A.6.5 Rating Factor Calculations

Figure 65: Buckfield No. 5452 Calculations

#5452Buckfield ME Buckfield Road EZNSCOT River			Prepared B Checked By Date : 2016	: Mahmood J. Abra SMT 11-14
YearBuilt: 1951 Table 6A.5.2.1-1—Minimum Concrete by Year of Construc	YearBuilt: 1951 Table 6A.5.2.1-1—Minimum Compressive Strength of			nical Properties of
Year of Construction C	compressive Strength, f'_c , ksi	- New Street	Minimum Yield Point or Minimum	Minimum Torolla
1959 and Later	2.5	Construction	F_{ν} , ksi	Strength, F_{ν} , ksi
1707 und Editer	0.0	Prior to 1905	26	52
$f'_{a} := 2.5 \ ksi$		1905 to 1936	30	60
<i>J C</i>		1936 to 1963	33	66
		$fy := 33 \ ksi$		00
$\gamma c \coloneqq 150 \ pcf$		$\gamma s := 490 \ pc$	f	
$\gamma_{c_mod} \coloneqq 145~{\it pcf}$		Es := 29000	ksi	
LRFD Design Eq. 5.4.2.4 1				
$Ec \coloneqq 33000 \bullet \gamma_{c_mod}^{1.5} \bullet$	$\sqrt[2]{f'_c}$			
<i>Ec</i> := 2875.9 <i>ksi</i>				
Bridge Lengh	$L := 42.5 \; ft$			
Spacingbetween Girders	S≔5.75 ft			
Deck thickness	<i>ts</i> :=6 <i>in</i>			
Wearingsurfacethickness	$t_{w.s.}\!\coloneqq\!6\;{oldsymbol in}$	$\gamma_{w.s.}\!\coloneqq\!152~\textit{pcf}$	VHB Report	
Page 1 of13				

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

Page 2 of 13

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

				der	
DeadLoad:					
M _{DC} :=156.47 ft ⋅ kip	VHB report				
M	VHB report				
$d \coloneqq 27.09 \ in$ b	$p_f \coloneqq 10.015 \ in$				
Live Load :	_				
Weusetheaveragetruck	weight and dimensic	onsin this c	alculat	ions	
					Trucks Maint
					Trucks weight
		T01-220	T01-129	T01-248	T01-273
ntwheel		13400	14500	14350	14700
nt rear wheel		18750	21350	19400	19300
wheel		18150	19700	18200	18800

Page 3 of 13

Prepared B: Mahmood J. Abraheemi Bridge#5452BuckfieldME North Buckfield Road Checked By: SMT Over NEZNSCOT River Date : 201611-14 Live Load Analysis Twotrucksin two lanes *p*3 := 18.5 *kip p*2 := 19.4 *kip* p1:=14.5 kip page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 5 ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 16 \ ft$ Trucks at shear locations: Max moment location $R_b(d1) \coloneqq \frac{p2 \cdot d1 + p3 \cdot (d1 + d2)}{L}$ $M(d1) := R_b(d1) \cdot (L - (d1 + d2))$ At 0.5 d from support $d1 \coloneqq 0.5 \cdot d$ $M(d1) = 115.772 \ ft \cdot kip$ $M_{0.5dtwotrucks} := M(d1) = 115.772 \ kip \cdot ft$ At 1.0 dfrom support $d1 \coloneqq 1.0 \cdot d$ $M(d1) = 147.653 \ ft \cdot kip$ $M_{1.0dtwotruck} := M(d1) = 147.653 \ kip \cdot ft$ At 1.5 dfrom support $d1 \coloneqq 1.5 \cdot d$ $M(d1) = 177.262 \ ft \cdot kip$ $M_{1.5dtwotruck} := M(d1) = 177.262 \ kip \cdot ft$ At 2.0 dfrom support $d1 \coloneqq 2.0 \cdot d$ $M(d1) = 204.599 ft \cdot kip$ $M_{2.0dtwotrucks} := M(d1) = 204.599 \ kip \cdot ft$

Page 4 of13

Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Prepared B: Mahmood J. Abraheemi Bridge#5452BuckfieldME North Buckfield Road Checked By: SMT Over NEZNSCOT River Date : 201611-14 Four trucksin two lanes p1 := 14.2 kip $p2 := 19.7 \ kip$ *p*3 := 18.7 *kip* page #3 average axle weight d2: distance between rear wheels $d2 \coloneqq 4.5 \ ft$ d3 distance between front wheel and front rear wheel $d3 \coloneqq 16 \ ft$ Trucks at Maximum shear locations 52 Maximum moment location $R_b(d1) = p2 + p3$ $M(d1) := R_b(d1) \cdot (d1 + d2) - p2 \cdot d2$ At 0.5 d from support $d1 = 0.5 \cdot d$ $M_{0.5 four trucks} \coloneqq M(d1)$ $M_{0.5 four trucks} \!=\! 127.494 ~\textit{ft} \cdot \textit{kip}$ At 1.0 dfrom support $d1 \coloneqq 1.0 \cdot d$ $M_{1.0 fourtrucks} := M(d1)$ $M_{1.0 four trucks} = 170.838 \; ft \cdot kip$ At 1.5 dfrom support $d1 \coloneqq 1.5 \cdot d$ $M_{1.5 four trucks} \coloneqq M(d1)$ $M_{1.5 fourtrucks} = 214.182 \ ft \cdot kip$ At 2.0 dfrom support $d1 \coloneqq 2.0 \cdot d$ $M_{2.0 fourtrucks} := M(d1)$ $M_{2.0 fourtrucks} = 257.526 \; ft \cdot kip$ $V_{shear} := R_b(d1) = 38.4 \ kip$

Page 6 of 13

Page 7 of13

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

	op e ties ar	nd Distributi	on Factos			
Interior Girder	Section P	roperties				
			modular	transf.		_
component	width	thickness	ratio	area	у	
Slab	69	9	10.00	62.1	33.6	
Moment Distr	<mark>ibution fa</mark>	<mark>ctors (Interio</mark>	r Girders)			
VHB repot	0.400					
$DF_{onelane} =$	0.403					
$Dr_{twolanes}$ =	=0.518					
Calculated Dist	ribution fa	ctors based	on actual m	reasuremen	nts	
DF	:0.413					
$DI_{onelane}$	=0.53					
$DF_{i} := 0$.652					
21 snear 0						
Section Prop	<mark>eties:Fully</mark>	composite				
Section Prop	eties:Fully	composite	.4 S.	.:= 444 4 • i	n ³	Q =405 2. in^3
<mark>Section Prop</mark> y′≔27.2 ir	eties:Fully 1 <i>1</i>	composite ∵=12078• in	,4 S _{bot}	:=444.4• i	n ³	Q_{slab} := 405.2 \cdot in^3
<mark>Section Prop</mark> y′≔27.2 ir	eties:Fully 12 1	composite ∑≔12078• <i>in</i>	,4 S _{bot}	:=444.4• i	n ³	Q_{slab} := 405.2 \cdot in^3
<mark>Section Prop</mark> y′≔27.2 ir	<mark>eties:Fully</mark> 1 <i>1</i>	<mark>composite</mark> ∵=12078 • <i>in</i>	,4 S _{bot}	;≔444.4 • i	n ³	Q_{slab} := 405.2 \cdot in^3
Section Prop y′≔27.2 ir	<mark>eties:Fully</mark> z 1	<mark>composite</mark> r≔12078∙ <i>in</i>	,4 S _{bot}	.:=444.4 • <i>i</i>	n ³	Q_{slab} := 405.2 \cdot in 3
Section Prop y′≔27.2 i r	<mark>e</mark> ties:Fully 1 <i>I</i>	composite ⁷ ≔12078∙ <i>in</i>	,4 S _{bot}	:=444.4• i	n ³	Q_{slab} := 405.2 \cdot in^3
Section Prop y′≔27.2 <i>i</i> r	eties:Fully 1 1	composite 7 ≔ 12078 • <i>in</i>	,4 S _{bot}	j≔444.4 • i	n ³	Q_{slab} := 405.2 \cdot in^3
Section Prop y′≔27.2 ir	eties:Fully z 1	composite 7≔12078• <i>in</i>	.4 S _{bot}	;≔444.4• i	n ³	Q_{slab} := 405.2 \cdot in^3
Section Prop y′≔27.2 ir	eties:Fully z 1	composite ⁻ ≔ 12078 • <i>in</i>	,4 S _{bot}	.≔444.4 • i	n ³	Q_{slab} := 405.2 \cdot in 3
Section Prop y′≔27.2 <i>ir</i>	<mark>eties:Fully</mark> 1 <i>1</i>	composite 7≔12078 <i>•in</i>	,4 S _{bot}	.:=444.4• i	n ³	Q_{slab} := 405.2 \cdot in 3
Section Prop y′≔27.2 ir	eties:Fully	composite 7 := 12078 • <i>in</i>	,4 S _{bot}	.:=444.4 • <i>i</i>	n ³	Q_{slab} := 405.2 \cdot in 3
Section Prop y′≔27.2 ir	eties:Fully 1 2	composite 7 ≔ 12078 • <i>in</i>	4 S _{bot}	:=444.4 • i	n ³	Q_{slab} := 405.2 \cdot in^3
Section Prop y'≔27.2 <i>i</i> r	eties:Fully z 2	composite 7 := 12078 • <i>in</i>	.4 S _{bot}	;≔444.4• i	n ³	Q_{slab} := 405.2 \cdot in 3
Section Prop y'≔27.2 in	eties:Fully z 2	composite ⁻ := 12078 • <i>in</i>	,4 S _{bot}	:=444.4 • i	n ³	Q_{slab} := 405.2 \cdot <i>in</i> ³

Page 8 of 13

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

Four trucks in	two lanes		CT 170 M 1		
Mt _{0.5fourtruck}	$_{cs} := DF_{twolanes} \cdot M$	0.5fourtrucks ⁼	$= 67.572 ft \cdot k$	1 p	
$Mt_{1.0 four truck}$	$_{ts} \coloneqq DF_{twolanes} \cdot M$	1.0fourtrucks ⁼	=90.544 <i>ft · k</i>	<i>ip</i>	
Mt _{1.5fourtruck}	$_{cs} \coloneqq DF_{twolanes} \cdot M$	1.5fourtrucks ⁼	= 113.516 ft •	кір 1.:	
Mt _{2.0fourtruck}	$_{cs} := DF_{twolanes} \cdot M$	2.0fourtrucks ⁼	=136.489 Jt •1	200 ft him	
WI Umaxmomen	$tfourtrucks := DF_{two}$	lanes ^{• IVI} maxn	noment four trucks	=309 Jt•ĸip	
Actual sec	tion Response				
		y_bar =	17.8	in from bottom	
	Moment of I	nertia =	5726.910814	in^4	
	S_bottom =		321.0	in^3	
	Q_slab =		127.7	IN^3	
Max moment					
nux moment					

Page 9 of13

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

FourTruck	(S			
Look at the	e critical girder the ir	nterior		
girder				
$y'_{0.5d} := 21$.2 in	$S_{0.5d} = 374.7$	n^3	Paríal composite
$y'_{1.0d} := 17$	7.3 in	$S_{1.0d} = 310.6$	n^3	Partial composite
$y'_{1.5d} \coloneqq 20$	in 👘	$S_{1.5d} \! \coloneqq \! 357.7$	n^3	Partial composite
$y'_{2.0d} = 17$	7.8 in	$S_{2.0d} = 321 \; in$	3	Partial composite
$y'_{maxmome}$	nt ^{:=} 18.4 in	$S_{maxmoment} := 3$	331.5 in ³	Partal composite
	[Mt _{0.5fourtmeks}	1	$\begin{bmatrix} y'_{0.5d} \end{bmatrix}$	$\begin{bmatrix} S_{0.5d} \end{bmatrix}$
	Mt _{1 0fourtmaks}		$y'_{1.0d}$	S_{10d}
$M_{c} = $	Mt1 5 fourtracks	: 11	u'_{154}	$S_{f_{1},0} = S_{1,5}$
Jourtrucks	Mt	9 Jourtrucks	$y'_{1.5a}$, $y'_{2.53}$	\sim fourtrucks \sim 1.5a Solor
	$Mt_{maxmomentfourtrucks}$	ks	$\begin{bmatrix} y'_{2.0d} \\ y'_{maxmoment} \end{bmatrix}$	$\begin{bmatrix} S_{2.0d} \\ S_{maxmoment} \end{bmatrix}$
	-	-	[Mt _{0.5fourtr}	ucks
			$S_{0.5d} \cdot 29000$) ksi
Strain bas	ed on actual response		Mt_1 of	
			S . 20000	$\frac{ucks}{hai}$ [74.622]
			$S_{1.0d} \cdot 29000$	120.626
		$\varepsilon_{commuted} :=$	MIL _{1.5fourtr}	$\cdot 10^6 = 131.318$
		computed	$S_{1.5d} \cdot 29000$) <i>ksi</i> 175.944
			$Mt_{2.0 fourtr}$	ucks 394.653
			$S_{2.0d}$ • 29000) ksi
			$Mt_{maxmomentfo}$	ourtrucks
			$\overline{S_{maxmoment} \cdot 29}$	000 <i>ksi</i>
$Mt_{maxmomen}$	ntfourtrucks			
$S_{maxmoment}$ •	$\frac{10^{\circ}}{29000} ksi \cdot 10^{\circ} = 39$	4.653		
Kb := 0.5				
$Ka := \frac{394.65}{166.85}$	1=1.365			
$K \coloneqq 1 + Kb \cdot I$	Ka = 1.68			
Kb := 1.0				
$Ka := \frac{394.65}{301.33}$	-1=?			
$K \coloneqq 1 + Kb \cdot I$	Ka = ?			

Page 10 of 13

Prepared B: Mahmood J. Abraheemi Bridge#5452BuckfieldME North Buckfield Road Checked By: SMT Over NEZNSCOT River Date : 201611-14 Shear Flow Calculation Four Trucks maximum shear $I_{shear} = 5727 \ in^4$ $V_{shear} = 38.4 \ \textit{kip}$ $Q_{shear} \coloneqq 127.7 \cdot \textit{in}^3$ maximum shearforce $\tau := \frac{V_{shear} \cdot DF_{shear} \cdot Q_{shear}}{I_{shear} \cdot b_f} = 55.743 \text{ psi}$ Actual shear flow $\tau := \frac{V_{shear} \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} = 83.87 \ \textbf{psi}$ Shear flow iffully composite Four Trucks maximum moment $V_{moment} := 44.69 \ \textit{kip}$ $Q_{moment} := 144.9 \ \textit{in}^3$ $I_{moment} := 6107 \cdot \textit{in}^4$ maximum shearforce $\frac{V_{moment} \cdot DF_{shear} \cdot Q_{moment}}{I_{moment} \cdot b_f} = 69.032 \ psi$ Actual shear flow $\tau := \frac{V_{moment} \cdot DF_{shear} \cdot Q_{slab}}{I \cdot b_f} = 97.607 \ psi$ Shear flow iffully composite

Page 11 of 13

Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

			T	Total M 634.490		
			DF girde	0.18	0.366	
Four Trucks	maxmom e t E)F analysis				
Total_mom	ent := 634.5	ft·kip				
Girder	Actual_DF	AASHTO_DF				
"girder1"	0.366	0.44				
"girder2"	0.493	0.53				
"girder3"	0.421	0.53				
"girder4"	0.301	0.53				
"girder5"	0.418	0.44				

Page 12 of 13
Instrumentation During Live Load Testing and Load Rating of Five Slab-On-Girder Bridges UMaine Composites Center Report 17-11-1414

Bridge#5452Buckfield ME North Buckfield Road Over NEZNSCOT River Prepared By: Mahmood J. Abraheemi Checked By: SMT Date : 201611-14

Page 13 of 13

Created with PTC Mathcad Express. See www.mathcad.com for more information.