DIVISION 800

MISCELLANEOUS DETAILS
GENERAL NOTES:
1. The sidewalk width shall be paved in all cases.
2. All residential or commercial entrances 10% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:
1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4% to 6% or greater) or the angle of approach to the entrance is unusual.
2. Generally the majority of entrances on a project will be built with flatter profiles than these maximum cases.
3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade % change of more than 9% in a 6 foot increment of entrance length. This applies to both up and down profiles.
4. Entrances with grades exceeding 15% must have a design exception. Field entrances with grades exceeding 22% must have a design exception.
5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3% will require a design exception.

*Design exception to be approved by Program Manager (or designee).
GENERAL NOTES:
1. The first 3 feet shown as pavement shall be paved only when abutting a paved area.

2. All residential or commercial entrances 10% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:
1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4% to 6% or greater) or the angle of approach to the entrance is unusual.

2. Generally the majority of entrances on a project should be built with flatter profiles than these maximum cases.

3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade % change of more than 9% in a 6 foot increment of entrance length. This applies to both up and down profiles.

4. Entrances with grades exceeding 15% must have a design exception. Field entrances with grades exceeding 22% must have a design exception.

5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3% will require a design exception.

*Design exception to be approved by Program Manager (or designee).
Provide 3’ min. paved apron for gravel entrances on all projects.

Match existing entrance width at limit of grading.

Radii apply to all angles of entrance.

Entrance angle should not be less than 45°.

~ GRAVEL ENTRANCE ~ ~ PAVED ENTRANCE ~

① Entrance angle should not be less than 45°.
Entrances with a high number of truck movements may be designed on an individual basis.

Provide 3’ min. paved apron for gravel entrances on all projects.

Match existing entrance width at limit of grading.

Maintain designated radii for all entrances skewed or square.

~ GRAVEL ENTRANCE ~

~ PAVED ENTRANCE ~

Entrance angle should not be less than 45°.
NOTES:
1. This type of entrance is suitable for other high traffic volume, public-type installations.

2. All island borders shall be curbed.

SHOPPING CENTER ENTRANCE ONTO HIGHWAY - PAVED SHOULDERS 801(05)
RESIDENTIAL ENTRANCE ONTO CURBED HIGHWAY
(WITH/WITHOUT SIDEWALKS)

NOTES:

1. Minimum curb opening is 20’ where the shoulder width is ≥ 6’ and 26’ where the shoulder width is < 6’.

~ GRAVEL ENTRANCE ~

~ PAVED ENTRANCE ~
Minimum entrance angle is 45° where the shoulder width ≥ 6’ and 60° where the shoulder width < 6’.

If there are high truck turning volumes, the designer should consider providing turning radii of 15’ - 25’ and/or a wider opening and/or limiting the angle of turn to accommodate trucks.

UNCURBED COMMERCIAL/INDUSTRIAL ENTRANCE ONTO CURBED HIGHWAY (WITH/WITHOUT SIDEWALK)
Minimum entrance angle is 45° where the shoulder width ≥ 6’ and 60° where the shoulder width < 6’.

~ PAVED ENTRANCE ~

Minimum entrance angle is 45° where the shoulder width ≥ 6’ and 60° where the shoulder width < 6’.

CURBED COMMERCIAL/INDUSTRIAL ENTRANCE
ONTO CURBED HIGHWAY WITH/WITHOUT SIDEWALK
801(08)
COMMERCIAL/INDUSTRIAL DOUBLE ENTRANCES ONTO CURBED HIGHWAY
(NARROW RIGHT-OF-WAY)
801(09)
T.W. = Traveled Way Pavement & Cross - slope
S. = Shoulder Pavement & Cross - slope

PVEMENT TRANSITION AT BRIDGE

801(10)
GENERAL NOTES

1. When the sidewalk is less than 5'-0" in width, a minimum pad 5'-0" x 5'-0" sloping no more than 2% shall be provided whenever a change in direction must be made.

2. There shall be a minimum of 1" Aggregate Subbase Course-Gravel under the 2" pavement on pedestrian ramps.

3. Curb openings for pedestrian ramps shall be 6'-0" minimum.

4. Detectable Warning Fields shall be installed at each pedestrian ramp in accordance with The Americans With Disabilities Act (ADA) specifications and guidelines.
Note:
This less desirable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

PEDESTRAIN RAMP - OPTION 1
801(12)
NOTES - OPTION 2
The desirable distance “D” is the tangent distance of the curb radius plus 7’. When local conditions do not permit the use of this distance the distances shown in the table below may be used:
These distances shall be used when the radius is equal to or less than 25’. When the radius exceeds 25’ the minimum distance “D” shall be the tangent minus 10’.

<table>
<thead>
<tr>
<th>Intersection Angle</th>
<th>Absolute Minimum “D”</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>15’</td>
</tr>
<tr>
<td>85°</td>
<td>16’</td>
</tr>
<tr>
<td>80°</td>
<td>18’</td>
</tr>
<tr>
<td>75°</td>
<td>20’</td>
</tr>
<tr>
<td>70°</td>
<td>21’</td>
</tr>
<tr>
<td>65°</td>
<td>24’</td>
</tr>
<tr>
<td>60°</td>
<td>26’</td>
</tr>
</tbody>
</table>

Provide 6” - 8” Setback from curb face to detectable warning
Provide 6” - 8” Setback from curb face to detectable warning

Radius as designed
Note:
This less desirable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

Must use Detectable Warnings that match the radius of the curb.

PEDESTRIAN RAMPS - OPTION 3
801(14)
Note:
This less desirable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

Must use Detectable Warnings that match the radius of the curb.

PEDESTRIAN RAMP WITH BERM

80I(15)
*24" Except where island or medians are less than 4’ wide. The detectable warning should extend across the full length of the cut through the island or median.

PEDESTRIAN RAMP
ISLAND - CURB TYPE 5
801(16)
Sidewalks less than 60" in width require a 5'-0" x 5'-0" passing area every 200'.

PEDESTRIAN PASSING AREAS
801(17)
NOTES:
1. Width may vary depending on type of material chosen.
2. Follow Manufacturer’s recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products List*.
4. See section 717.061 of the MaineDOT Standard Specification or MaineDOT Qualified Products List*.
*http://www.maine.gov/mdot/transportation-research/qpl.php

EROSION CONTROL BLANKET
SLOPE APPLICATION
802(01)
NOTES:
1. Width may vary depending on design flows, channel side slopes, and type of material chosen.
2. Follow Manufacturer's recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions shown for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products List*.
4. See Section 717.061 of the MaineDOT Standard Specifications or MaineDOT Qualified Products List*.
*http://www.maine.gov/mdot/transportation-research/qpl.php

EROSION CONTROL BLANKET
DITCH APPLICATIONS

802(02)
NOTES:
1. Dimensions shown are for a temporary hillside diversion; if used as a permanent practice, it must be designed by a professional engineer.

SILT FENCE
SEDIMENT BARRIER
802(04)

REF:
Best Management Practices for Erosion and Sedimentation Control - Level Spreader
NOTES:
1. The dimensions shown are approximate and may be modified in the field by the Resident.
2. Riprap will be required on portions of the culvert end treatment of 2:1.
 The remaining portion shall be loamed, seeded and hay mulched as directed.
3. Culverts installed on 2:1 slopes shall have riprap laid on a 2:1 slope around the inlet and outlet.

ROADWAY CULVERT END SLOPE TREATMENT
802(05)
Geotextile under stone

1.5:1 maximum Slope
2:1 or Flatter is preferred

Stone gradation and thickness shall be determined by an engineer.

RIPRAP DOWNSPOUT
802(06)
~ PIPE SLOPE DRAIN ~

REF: Best Mgmt. Practices for Erosion and Sedimentation Control - Temporary Slope Drains

TEMPORARY SLOPE DRAINS
802(07)
ENTRENCHED LEAD EDGE (12" - 24")

FLOW

SHOULDER BERM

DETOUR BERM

FLARED END SECTION

FLOW

SHOULDER BERM

DETOUR BERM

PLASTIC SHEETING OR GEOTEXTILE

~ SLOPE DRAIN INLETS ~

ENTRENCHED LEAD EDGE

FLOW

SHOULDER BERM

DETOUR BERM

CONTINUOUS CONTAINED BERM OR SAND BAGS

FLOW

150°

TEMPORARY SLOPE DRAIN INLETS

802(08)
NOTES:
1. ‘La’ = Length of Apron. Distance ‘La’ shall be of sufficient length to dissipate energy
2. Apron shall be set to a zero grade and aligned parallel to water flow.
3. Filter material shall be filter fabric or 6” thick minimum graded gravel layer.
5. This detail shall apply to pipe diameters of 36” or less.
6. Larger diameter pipes shall be designed by a professional engineer.
7. Reference: Riprap spec. 703.29

ENERGY DISSIPATER - RIPRAP APRON
802(09)
Riprap shall be underlain by gravel bedding or non-woven geotextile.

1. Riprap shall be underlain by gravel bedding or non-woven geotextile.
3. This detail shall apply to pipe diameters of 36" or less. Plunge pools for large diameter pipes shall be designed by a professional engineer.
NOTE:
Unless specified, stone shall meet requirements of material specification 703.29 stone ditch protection.

REF: Best Management Practices for Erosion and Sedimentation Control - Check Dam
NOTE: Use Silt Fence inlet protection in sump locations only. Sheet flow less than 1 acre Drainage Area not in paved areas or with concentrated flows.

REF: Best Management Practices for Erosion and Sedimentation Control - Storm Drain Inlet Protection
NOTES:
1. Use Stone aggregate and non-woven geotextile inlet protection only in sump locations where heavy concentrated flows are expected.

2. Do not use where ponding around the structure might cause inconvenience or damage.

3. Stone aggregate shall be Stone For French Drain 703.24 or approved by the Resident.

STONE AGGREGATE & GEOTEXTILE CB/
INLET GRATE UNIT PROTECTION
802(13)
Spillway width varies

Length of Sediment Trap
Varies

Width of Sediment Trap varies

Direction of flow

Ditch for type, size, locations, etc. See construction plans

~ PLAN VIEW ~

Spillway
Riprap Outlet Structure

~ SECTION A-A’ ~

24” min.

4’ min.

Geotextile

~ SECTION B-B’ ~

12” min.

12” min.

Spillway width varies

12” min.

12” min.

Slopes vary

Vegetated Side Slopes
(2:1 max.)

Height varies

Depth=12”

Geotextile

REF:
Best Management Practices for Erosion and Sedimentation Control - Sediment Traps

SEDIMENT TRAP
802(14)
TEMPORARY STREAM DIVERSION

REF: Best Management Practices for Erosion and Sedimentation Control - Temporary Stream Diversion

TEMPORARY STREAM DIVERSION

802(15)
NOTES:
1. Most non-woven geotextile is available in 12.5’ & 15’ widths.
2. Overlap all temporary sediment basin geo-textile joints by 1’ minimum.
~ PROFILE ~

Mountable Berm with Drainage Pipe (As Needed)

Existing Ground

Woven Geotextile

Stone for French Drain (or Stone Ditch Protection) over length and width of structure

~ PLAN ~

Widest vehicle plus 6'

Existing Pavement

REF: Best Management Practices for Erosion and Sedimentation Control - Stabilized Construction Entrance/Exit

CONSTRUCTION ENTRANCE/EXIT

802(17)
1. Payment for connection from the inspection standpipe to the proposed underdrain system shall be a 6 inch underdrain outlet, item no. 605.10, or as directed by the resident.

2. Inspection standpipe shall have a solid cover and be installed within the state’s right of way.

3. A check valve to prevent back flow to property may be installed. Check valve should be installed at the upstream side of the inspection standpipe and outside of the state’s right of way. Installation of check valve shall be the responsibility of the property owner.

4. Payment for connection of the existing cellar drain to the inspection standpipe shall be incidental to the item no. 801.141 or 801.16.

5. The station locations may be changed to fit field conditions, as directed by the resident.

6. A 3 foot length of #4 rebar shall be placed adjacent to standpipe and flush with cap. Installation of the rebar and the concrete footing shall be incidental to item no. 801.141 or 801.16.
STANDARD RAILROAD GRADE CROSSING DETAIL

Not to Scale
HIGHWAY SECTION
RAILROAD GRADE CROSSING

End Full Depth Excavation

Geotextile Fabric

New 136# Continuously Welded Rail
Highway Width Inc. Shoulders

Crushed Rock Ballast

6" Underdrain As Required

6" Underdrain As Required
The bituminous binder material for the mixture shall be viscosity grade AC-10 or 20 asphalt cement. The density requirements are waived.

ADDITIONAL PAVING NOTES

The Department will pay for the work specified in Subsection 401.11 for the HMA used, except that cleaning objectionable material from the pavement and furnishing and applying Item 409.15 bituminous material to joints and contact surfaces is incidental.

A tack coat of emulsified asphalt, RS-1 or HFMS-1, Item 409.15 shall be applied to any existing pavement at a rate of approximately 0.025 gal/sq.yd, and on milled pavement approximately 0.05 gal/sq.yd, prior to placing a new course. All joints between existing and new pavement will be tacked.

Crossings shall be paved within 20 days following the completion of the crossing reconstruction.

Paved shoulders within the gage of the rail to point 24" outside of the field side of each rail shall be a standard 6" depth of pavement. Paved shoulders outside of this area shall be paved with 2" surface mix only.

- The bituminous binder material for the mixture shall be viscosity grade AC-10 or 20 asphalt cement.
- The density requirements are waived.
RAILROAD CROSSING GENERAL NOTES

1. The highway section over railroad crossings shall be designed with a minimum of 2-lift travelways and 6’ shoulders. 4’ shoulders may be designed if field conditions warrant.

2. Signals shall be located as per standard detail and shall comply with the latest edition of the Manual of Uniform Traffic Control Devices.

3. The standard crossing surface shall consist of a rubber railseal interface as manufactured by Polycorp or Performance Polymers, Inc, or approved equivalent. Alternative crossing surfaces may be installed with approval of MaineDOT.

4. New 136 # prime welded rail shall be provided for crossing reconstruction. The minimum length of welded rail shall be 117’ or extend 30’ beyond each edge of pavement whichever is longer. The full depth excavation area shall extend 10’ beyond the welded rail and excavated to a minimum depth of 12” below bottom of tie elevation.

5. 7” x 9” ties (8’6” or 9’ long) shall be installed under the welded rail and shall be fully box anchored. Anchors may be omitted beneath the crossing surface in order to accommodate the installation of rubber railseal.

6. Geotextiles provided for rail crossings shall be the following minimum weights: 8 oz./s.y. for non-woven fabrics and 6 oz./s.y. for woven fabrics. The minimum width through the crossing area shall be 17’. Geotextile fabrics shall be placed throughout the entire full depth construction area.

7. Construction signs and traffic control devices shall be erected and maintained during the construction of the project.

8. Field work performed between December 15 and March 15 shall be approved in advance by the MaineDOT Resident.

9. Erosion Control shall be installed and maintained as per approved Erosion Control Plan until all permanent measures are in place.
1. The design traffic level for the mix placed shall be 0.3 to <3 million ESALS

2. Section 106.6 Acceptance, (2) Method C-For hot mix asphalt designated as Method C in Special Provision Section 403 - Hot Mix Asphalt, one sample will be taken from the paver hopper or the truck body per 250 ton per pay item. The mix will be tested for gradation and PGAB content. Disputes will not be allowed. If the mix is within tolerances listed in Table 9, Method C the Department will pay the contract unit price.

<table>
<thead>
<tr>
<th>Property</th>
<th>USL and LSL - Method C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent passing $\frac{3}{16}$" [No. 4] and larger sieves</td>
<td>Target +/- 7</td>
</tr>
<tr>
<td>Percent passing $\frac{3}{32}$" [No. 8] to 1.18mm [No. 16] sieves</td>
<td>Target +/- 5</td>
</tr>
<tr>
<td>Percent passing $\frac{1}{32}$" [No. 30] sieve</td>
<td>Target +/- 4</td>
</tr>
<tr>
<td>Percent passing $\frac{1}{64}$" [No. 50] to 0.003" [No. 200] sieve</td>
<td>Target +/- 3</td>
</tr>
</tbody>
</table>

If the test results for each 250 ton increment are outside these limits the following deductions (Table 9b) shall apply to the HMA quantity represented by the test. A second consecutive failing test shall result in cessation of production.

3. Compaction of the new Hot Mix Asphalt Pavement will be obtained using a minimal roller train consisting of a 3-5 ton vibratory roller. An approved release agent is required to ensure the mixture does not adhere to hand tools, rollers, pavers, and truck bodies. The use of petroleum based fuel oils will not be permitted.
NOTE:
The slope of the 8' shown, in no case, shall be above the plane of the rails either side of C/L per P.U.C. General Order # 2.
NOTE:
1. Flood lights should be provided to mark flagger stations at night as needed.
2. If entire work area is visible from one station, a single flagger may be used.
3. Warning lights should be used to mark channelizing devices at night as needed.
4. Channelizing devices are to be extended to a point where they are visible to approaching traffic.

TYPICAL APPLICATIONS OF TRAFFIC CONTROL DEVICES ON 2-LANE HIGHWAY. ONE LANE IS CLOSED AND FLAGGING IS PROVIDED.
Use Highest Posted Speed

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Minimum Distance (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>225'</td>
</tr>
<tr>
<td>25</td>
<td>325'</td>
</tr>
<tr>
<td>30</td>
<td>450'</td>
</tr>
<tr>
<td>35</td>
<td>550'</td>
</tr>
<tr>
<td>40</td>
<td>650'</td>
</tr>
<tr>
<td>45</td>
<td>750'</td>
</tr>
<tr>
<td>50</td>
<td>850'</td>
</tr>
<tr>
<td>55</td>
<td>950'</td>
</tr>
<tr>
<td>60</td>
<td>1100'</td>
</tr>
</tbody>
</table>

SUGGESTED MIN. PAVEMENT MARKING PLACEMENT DISTANCE ~

NOTES:

1. When used, a portion of the pavement marking symbol shall be directly opposite the Advance Warning Sign (W 10-I). If needed, supplemental pavement marking symbol(s) may be placed between the Advance Warning Sign and the crossing, but should be at least 50’ from the Stop Line.

2. A three lane roadway should be marked with a centerline for two-lane approach operation on the approach to a crossing. On multi-lane roads the transverse bands should extend across all approach lanes, and individual RXR symbols should be used in each approach lane.

3. Refer to Standard Alphabet for Highway and Markings for RXR symbols details.
TYPICAL SIGNAL LOCATION AND PAVING PLAN FOR SQUARE CROSSING
803(08)
TYPICAL SIGNAL AND GUARD RAIL LOCATIONS
FOR ACUTE ANGLE CROSSING
803(09)
TYPICAL SIGNAL AND CURB LOCATIONS FOR OBUSE ANGLE CROSSING

803(10)
TYPICAL FLASHING LIGHT SIGNAL - POST MOUNTED.

TYPICAL SHOULDER WITHOUT CURB

803(11)

Top of foundation to be at the same elevation as the surface of the traveled way and no more than 4" above the surface of the ground.
TYPICAL FLASHING LIGHT SIGNAL - CANTILEVER SUPPORTED

Top of foundation to be at the same elevation as the surface of the traveled way and no more than 4" above the surface of the ground.

Cantilever Arm Type and Length is Variable

Post mounted light units may be provided as conditions require.

Crown of Roadway

Ground Level

4" max.

17' min.
Typical minimum clearance is 2' from face of vertical curb to closest part of signal or gate arm in its upright position for a distance of 17' above the crown of the roadway.

Where there is no curb, a minimum horizontal clearances of 2' from edge of a paved or surfaced shoulder shall be provided with a minimum clearance of 6' from the edge of the traveled roadway where there is no curb or shoulder, the minimum horizontal clearance shall be 6' from the edge of the roadway.

Where gates are located in the median, additional widths may be required to provide the minimum clearance for the counterweight supports.

4'-1" for 8" Lights
4'-5" for 12" Lights

4" max.

Vertical Curb