MAINE DEPARTMENT OF TRANSPORTATION
HIGHWAY PROGRAM
GEOTECHNICAL SECTION
AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

LARGE CULVERT #146244
PORT ROAD
MACHIASPORT, MAINE

Prepared by:
Cody Russell, P.E.
Geotechnical Engineer

 Reviewed by:
Kathleen Maguire, P.E.
Senior Geotechnical Engineer

Washington County
WIN 18834.00

Soils Report 2020-18
May 18, 2020
PROJECT DETAILS

The purpose of this Geotechnical Design Report is to present subsurface information and make geotechnical design and construction recommendations for the replacement of an existing large culvert (146244) consisting of twin 71-foot and 82-foot long, 36-inch diameter corrugated metal pipes (CMPs) on Port Road in Machiasport. The existing CMPs are in poor condition, with the end of one separated and filling with sediment and the other unzipped. The culvert is located approximately 0.4 of a mile northerly of Base Road as shown on the attached Location Map. Port Road is a Highway Corridor Priority 4 road.

The proposed replacement structure will be a 116-foot long, 96-inch diameter CMP culvert on a 20-degree skew to the roadway centerline. The invert of the proposed culvert is approximately 16 feet below the existing road grade at the roadway centerline. To facilitate fish passage, Habitat Connectivity Design elements will be used inside the CMP culvert as shown on the Special Details sheets in the Plans. The roadway embankment slopes at the proposed culvert inlet and outlet shall be no steeper than 2H:1V to protect against erosion.

SUBSURFACE INVESTIGATION

One (1) boring (HB-MACH-101) and one (1) probe (HB-MACH-102) were drilled for this project on January 12, 2016 by Northern Test Boring (NTB) of Gorham, Maine using a track mounted drill rig. Exploration locations are shown on the attached Boring Location Plan & Interpretive Subsurface Profile with Boring Logs. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are shown on the attached boring logs.

Boring HB-MACH-101 was drilled using hollow stem auger drilling techniques. Soil samples were obtained at 5-foot intervals using Standard Penetration Test (SPT) methods. The NTB drill rig is equipped with an automatic hammer to drive the split spoon. The NTB calibrated automatic hammer delivers approximately 47 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values (N$_{60}$) computed by applying an average energy transfer factor of 0.879 to the raw field N-values. Probe HB-MACH-102 was drilled using solid stem auger techniques. No soils samples were obtained in the probe.

The MaineDOT Geotechnical Team member selected the boring and probe locations, drilling methods, designated type and depth of sampling, reviewed field logs for accuracy and identified field and laboratory testing requirements. A NorthEast Transportation Training and Certification (NETTCP) certified Subsurface Investigator logged the subsurface conditions encountered. The borings were located in the field by taping to surveyed site features after completion of the drilling program.

LABORATORY TESTING

A laboratory testing program was conducted to assist in soil classification, evaluation of engineering properties of the soils and geologic assessment of the project site. Laboratory testing consisted of three (3) standard grain size analyses with natural water content and three (3) grain size analyses with hydrometer and natural water content. The results of the laboratory testing
program are discussed in the following section and are shown on the attached boring logs, Laboratory Testing Summary Sheet and Grain Size Distribution Curves

SUBSURFACE CONDITIONS

Subsurface conditions encountered at the test boring generally consisted of fill underlain by layers of native silt, sand, and silty clay. An interpretive subsurface profile depicting the generalized soil stratigraphy at the boring location is shown on the attached Boring Location Plan & Interpretive Subsurface Profile with Boring Logs.

Boring HB-MACH-101 was drilled to a depth of approximately 27.0 feet below ground surface (bgs) and did not encounter a refusal surface. Probe HB-MACH-102 was drilled to a depth of approximately 26.0 feet bgs and did not encounter a refusal surface.

The table below summarizes the field and laboratory information obtained in boring HB-MACH-101:

<table>
<thead>
<tr>
<th>Approx. Depth BGS¹ (feet)</th>
<th>Soil Description</th>
<th>AASHTO² Classification</th>
<th>USCS³</th>
<th>WC%⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 – 0.2</td>
<td>Pavement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2– 15.5</td>
<td>Fill: Brown, damp to wet, fine to coarse sand, some gravel, trace to little silt.</td>
<td>A-1-b</td>
<td>SW-SM or SW</td>
<td>4.5 to 10.8</td>
</tr>
<tr>
<td>15.5 – 18.0</td>
<td>Dark brown, wet, organic silt, little fine to coarse sand, trace gravel, wood.</td>
<td>A-4</td>
<td>ML</td>
<td>28.8</td>
</tr>
<tr>
<td>18.0 – 23.5</td>
<td>Grey, wet, fine to coarse sand, little clay, little silt, trace gravel.</td>
<td>A-2-4</td>
<td>SC-SM</td>
<td>15.5</td>
</tr>
<tr>
<td>23.5 – 27.0</td>
<td>Grey, wet, silty clay, trace fine to coarse sand, trace gravel.</td>
<td>A-7-6</td>
<td>CL</td>
<td>21.7</td>
</tr>
</tbody>
</table>

¹BGS = below ground surface
²AASHTO = American Association of State Highway and Transportation Officials
³USCS = Unified Soil Classification System
⁴WC% = Water content in percent

Three (3) corrected N-values obtained in the fill ranged from 6 to 15 blows per foot (bpf), indicating that the fill is loose to medium dense in consistency. One (1) corrected N-values obtained in the silt was 6 bpf, indicating that the silt is medium stiff in consistency. One corrected N-value obtained in the native sand was 21 bpf, indicating that the native sand is medium dense in consistency. One (1) corrected N-value obtained in the silty clay was 25 bpf, indicating that the silty clay is very stiff in consistency.

Groundwater was not recorded in the boring or probe. Groundwater levels can be expected to fluctuate subject to seasonal variations, local soil conditions, topography, precipitation, and construction activity.
GEOTECHNICAL DESIGN AND CONSTRUCTION RECOMMENDATIONS

CMP Option III Culvert Construction – The proposed replacement structure will be a 116-foot long, 96-inch diameter Corrugated Metal Pipe (CMP) Option III culvert on a 20-degree skew to the roadway centerline. The proposed CMP culvert shall be furnished and installed in accordance with MaineDOT Standard Specification 603.

The invert of the proposed culvert pipe ranges from approximately 15.0 feet at the inlet end to approximately 13.4 feet at the outlet end with a 1.41% slope. To facilitate fish passage, Habitat Connectivity Design elements will be used inside the CMP culvert as shown on the Special Details sheets in the Plans.

The proposed structure shall be bedded on a 2-foot thick, geotextile wrapped, geogrid reinforced, crushed stone mat (Underdrain Backfill Material, Type C; Pay Item 203.55, see Special Provision 203, attached). The geogrid reinforcement shall meet the requirements of Special Provision 620, attached. The Reinforcement Geotextile shall meet the requirements of MaineDOT Standard Specification 722.01. The soils at the bedding elevation shall be excavated using a smooth-edged backhoe bucket to limit disturbance. Any disturbed soils at the bedding elevation resulting from excavation activities shall be removed by hand prior to placement of the geotextile wrapped, geogrid reinforced, crushed stone mat. All subgrade surfaces should be protected from construction traffic in order to limit disturbance. Groundwater and surface water levels shall be depressed sufficiently to allow work in the dry.

The soil envelope and backfill shall consist of Granular Borrow (703.19) with a maximum particle size of 4 inches. The Granular Borrow backfill material shall be placed in lifts of 6 to 8 inches loose measure and compacted to the manufacturer’s specifications or, in the absence of manufacturer’s specifications, to at least 92 percent of the AASHTO T-180 maximum dry density. In no case shall the backfill soil be compacted less than 92 percent of the AASHTO T-180 maximum dry density.

Settlement – No settlement issues are anticipated at the site. No changes to the existing vertical or horizontal alignment are currently planned for this project. The proposed CMP Option III culvert is larger in diameter than the existing culverts and will result in a net unloading of the site soils at the structure location. Any settlement due to elastic compression of the bedding material will be immediate and negligible.

Scour and Riprap – Both the inlet and outlet of the CMP Option III culvert pipe shall be protected against scour with riprap conforming to MaineDOT Standard Specification Section 703.26 Plain and Hand Laid Riprap. Slopes shall be no steeper than 2H:1V. No specific scour protection recommendations are needed other than armoring with riprap. The riprap on the slopes shall be underlain by a non-woven, Class 1 Erosion Control Geotextile meeting the requirements of MaineDOT Standard Specification 722.03 that is underlain by a 1-foot layer of protective aggregate cushion consisting of Granular Borrow Material for Underwater Backfill (703.19). The toe of the riprap sections shall be keyed into the existing soils 1 foot below the streambed elevation.
Construction Considerations – Construction activities will include construction of cofferdams and earth support systems to control stream flow during construction. Construction activities will also include common earth excavation. Construction of the proposed CMP Option III culvert will require deep soil excavation. Earth support systems shall be implemented if laying back slopes is not feasible. It is likely that the use of complex (four-sided) braced excavations with dewatering will be necessary due to the depth of the excavation. If this is the case, adequate embedment into firm soils underlying the native silty clay and silt will be necessary to allow for the excavation and maintenance of a stable excavation bottom. All earth support systems shall be designed by a Professional Engineer licensed in the State of Maine. Regardless of the method of excavation, all excavations and earth support systems shall meet all applicable OSHA regulations.

The soils at the bedding elevation shall be excavated using a smooth-edged backhoe bucket to limit disturbance. Any disturbed soils at the bedding elevation resulting from excavation activities shall be removed by hand prior to placement of the geotextile wrapped, geogrid reinforced, crushed stone mat. All subgrade surfaces should be protected from construction traffic in order to limit disturbance. Groundwater and surface water levels shall be depressed sufficiently to allow work in the dry.

The Contractor shall control groundwater and surface water infiltration using temporary ditches, sumps, granular drainage blankets, stone ditch protection or hand-laid riprap with geotextile underlayment to divert groundwater and surface water as needed to maintain a stable excavation and allow work in the dry.

Using the excavated native soils as backfill around the culvert shall not be permitted. The native soils may only be used as Common Borrow in accordance with MaineDOT Standard Specifications 203 and 703.

The Contractor will have to excavate the existing subbase and subgrade fill soils in the vicinity of the culvert. These materials should not be used to re-base the roadway. Excavated subbase sand and gravel may be used as fill below roadway subgrade level in fill areas provided all other requirements of MaineDOT Standard Specifications 203 and 703 are met.

Closure

This report has been prepared for the use of the MaineDOT Highway Program for specific application to the proposed replacement of large culvert (#146244) under Port Road in Machiasport, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use or warranty is expressed or implied.

In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. These analyses and recommendations are based in part upon a limited subsurface investigation at discrete exploratory location completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.
It is recommended that a Geotechnical engineer be provided the opportunity for a review of the design and specifications in order that the earthwork and foundation recommendations and construction considerations presented in this report are properly interpreted and implemented in the design and specifications.

Attachments:

- Location Map
- Boring Location Plan & Interpretive Subsurface Profile with Boring Logs
- Key to Soil and Rock Descriptions and Terms
- Boring Logs
- Laboratory Testing Summary Sheet
- Grain Size Distribution Curve Sheets
- Special Provision 203 – Excavation and Embankment (Culvert Bedding Stone)
- Special Provision 620 – Geotextile (Reinforcement Geogrid)
Unified Soil Classification System

Major Divisions

<table>
<thead>
<tr>
<th>Gravels</th>
<th>Sands</th>
<th>Silts and Clays</th>
<th>Highly Organic Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse-Grained Soils</td>
<td>Fine-Grained Soils</td>
<td>Highly Organic Soils</td>
<td></td>
</tr>
<tr>
<td>Gravels (more than half of material is larger than No. 200)</td>
<td>Sands (more than half of material is larger than No. 200)</td>
<td>Silts and Clays (more than half of material is smaller than No. 200)</td>
<td>Peat and other highly organic soils</td>
</tr>
<tr>
<td>Gravel (most material is larger than No. 4)</td>
<td>Sand (most material is larger than No. 4)</td>
<td>Clayey silts or clays</td>
<td>Organic clays of medium to high plasticity, organic silts.</td>
</tr>
</tbody>
</table>

Clean Gravels

- GW: Well graded gravels, gravel-sand mixtures, little or no fines.
- GP: Poorly graded gravels, gravel sand mixtures, little or no fines.

Gravel with Fines

- GC: Clayey gravels, gravel-sand-clay mixtures.

Sands

- SW: Well graded sands, Gravelly sands, little or no fines.
- SP: Poorly graded sands, Gravelly sand, little or no fines.

Sands with Fines

- SM: Silty sands, sand-silt mixtures.
- SC: Clayey sands, sand-clay mixtures.

Silts and Clays

- ML: Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.
- CL: Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.
- OL: Organic silts and organic Silty clays of low plasticity.
- MH: Inorganic silts, micaceous or diatomaceous fine Sandy or Silty silts, elastic silts.
- CH: Inorganic clays of high plasticity, fat clays.
- OH: Organic clays of medium to high plasticity, organic silts.

Highly Organic Soils

- Pt: Peat and other highly organic soils.

Modified Burmister System

Descriptive Terms

<table>
<thead>
<tr>
<th>Descriptive Term</th>
<th>Portion of Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>0 - 10</td>
</tr>
<tr>
<td>Little</td>
<td>11 - 20</td>
</tr>
<tr>
<td>Some</td>
<td>21 - 35</td>
</tr>
<tr>
<td>Adjective (e.g., Sandy, Clayey)</td>
<td>36 - 50</td>
</tr>
</tbody>
</table>

Terms Describing Density/Consistency

Coarse-grained Soils

- More than half of material is larger than No. 200 - Coarse-grained soils includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Clays. Density is rated according to standard penetration resistance (N-value).

Fine-grained Soils

- More than half of material is smaller than No. 200 - Fine-grained soils includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to unstrained shear strength as indicated.

Density of Cohesionless Soils

<table>
<thead>
<tr>
<th>Density</th>
<th>N-Value (blows per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose</td>
<td>0 - 4</td>
</tr>
<tr>
<td>Loose</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>11 - 30</td>
</tr>
<tr>
<td>Dense</td>
<td>31 - 50</td>
</tr>
<tr>
<td>Very Dense</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Standard Penetration Resistance

Desired Rock Quality (RQD):

\[
\text{RQD} (%) = \frac{\text{sum of the lengths of intact pieces of core} > 4 \text{ inches}}{\text{length of core advance}}
\]

Minimum NQ rock core (1.88 in. OD of core)

Rock Quality Based on RQD

<table>
<thead>
<tr>
<th>RQD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Poor</td>
</tr>
<tr>
<td>Poor</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Excellent</td>
</tr>
</tbody>
</table>

Desired Rock Observations (in this order, if applicable):

- Color (Munsell color chart)
- Texture (aphanitic, fine-grained, etc.)
- Rock Type (granite, schist, sandstone, etc.)
- Hardness (very hard, hard, mod. hard, etc.)
- Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.)

Geologic discontinuities/jointing:

- Spacing (very close - <2 in., close - 2-12 inch. mod.
- Close - 1-3 feet, wide - 3-10 feet, very wide >10 feet)
- Tightness (tight, open, or healed)
- Infilling (grain size, color, etc.)

Rock and correlation to rock quality (very poor, poor, etc.)

- Ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical
- Site Characterization, Table 4-12
- Recovery (inch/inch and percentage)
- Rock Core Rate (X.X ft - Y.Y ft min/sec)

Sample Container Labeling Requirements:

<table>
<thead>
<tr>
<th>WIN</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Name / Town</td>
<td>Sample Recovery</td>
</tr>
<tr>
<td>Boring Number</td>
<td>Date</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Personnel Initials</td>
</tr>
<tr>
<td>Sample Depth</td>
<td></td>
</tr>
</tbody>
</table>

Maine Department of Transportation

Geotechnical Section

Key to Soil and Rock Descriptions and Terms

Field Identification Information

January 2020
Maine Department of Transportation

Soil/Rock Exploration Log

US CUSTOMARY UNITS

Project: Large Culvert Replacement on the Port Road
Location: Machiasport, Maine

Boring No.: HB-MACH-101
WIN: 18834.00

Driller: Northern Test Boring
Operator: Mike/Adam
Logged By: B. Wilder
Date Start/Finish: 1/12/2016; 12:30-15:00

Elevation (ft.): 29.6
Auger ID/OD: 2.75/6.5"

Boring Location: 18+89.7
Casing ID/OD: N/A

Hammer Efficiency Factor: 0.879
Hammer Type: Automatic

Logging By: B. Wilder

Datum: NAVD88

Sampler: Standard Split Spoon

Drilling Method: Hollow Stem Auger

Core Barrel: N/A

Water Level: None Observed

Definitions:
- R = Rock Core Sample
- SSA = Solid Stem Auger
- RC = Roller Cone
- W = Wheelbarrow Sample
- WOR = Weight of Rods or Casing
- Casing = Casing Depth
- N60 = SPT N-value
- PL = Plastic Limit
- PI = Plasticity Index
- MV = Unsuccessful Field Vane Shear Test Attempt
- MU = Unsuccessful Split Spoon Sample Attempt
- MD = Unsuccessful Thin Wall Tube Sample Attempt
- V = Field Vane Soil Test
- PP = Pocket Penetrometer
- WO1P = Weight of One Person
- 60 = SPT N-uncorrected Corrected for Hammer Efficiency
- WC = Water Content, percent
- HSA = Hollow Stem Auger
- U = Thin Wall Tube Sample
- SSA = Solid Stem Auger
- L = Rock Core Sample
- NC = N-uncorrected Corrected for Hammer Efficiency
- SS = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger
- WC = Water Content, percent

Soil/Rock Exploration Log

Location: Machiasport, Maine

Drilling Method: Hollow Stem Auger

Core Barrel: N/A

Water Level: None Observed

Definitions:
- R = Rock Core Sample
- SSA = Solid Stem Auger
- RC = Roller Cone
- W = Wheelbarrow Sample
- WOR = Weight of Rods or Casing
- Casing = Casing Depth
- N60 = SPT N-value
- PL = Plastic Limit
- PI = Plasticity Index
- MV = Unsuccessful Field Vane Shear Test Attempt
- MU = Unsuccessful Split Spoon Sample Attempt
- MD = Unsuccessful Thin Wall Tube Sample Attempt
- V = Field Vane Soil Test
- PP = Pocket Penetrometer
- WO1P = Weight of One Person
- 60 = SPT N-uncorrected Corrected for Hammer Efficiency
- WC = Water Content, percent
- HSA = Hollow Stem Auger
- U = Thin Wall Tube Sample
- SSA = Solid Stem Auger
- L = Rock Core Sample
- NC = N-uncorrected Corrected for Hammer Efficiency
- SS = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger
- WC = Water Content, percent
- SSA = Solid Stem Auger

Sample Information

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-uncorrected</th>
<th>N60</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
<th>Visual Description and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1D</td>
<td>24/15</td>
<td>1.00 - 3.00</td>
<td>3/3/2/2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td>29.6</td>
<td></td>
<td>Brown, damp, loose, fine to coarse SAND, some gravel, trace silt, (Fill).</td>
</tr>
<tr>
<td>5</td>
<td>2D</td>
<td>24/7</td>
<td>5.00 - 7.00</td>
<td>2/2/2/4</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown, damp, loose, fine to coarse SAND, some gravel, trace silt, (Fill).</td>
</tr>
<tr>
<td>10</td>
<td>3D</td>
<td>24/8</td>
<td>10.00 - 12.00</td>
<td>3/5/5/5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown, wet, medium dense, fine to coarse SAND, some gravel, little silt, (Fill).</td>
</tr>
<tr>
<td>15</td>
<td>4D</td>
<td>24/18</td>
<td>15.00 - 17.00</td>
<td>3/2/2/2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dark brown, wet, medium stiff, organic SILT, little fine to coarse sand, trace clay, trace gravel, wood,</td>
</tr>
<tr>
<td>20</td>
<td>5D</td>
<td>24/17</td>
<td>20.00 - 22.00</td>
<td>6/6/8/10</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey, wet, medium dense, fine to coarse SAND, little clay, little silt, trace gravel.</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Hammer #283

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Grey, wet, very stiff, Silty CLAY, trace fine to coarse sand, trace gravel.

Bottom of Exploration at 27.0 feet below ground surface.

NO REFUSAL
Maine Department of Transportation
Soil/Rock Exploration Log
US CUSTOMARY UNITS

Project: Large Culvert Replacement on the Port Road
Location: Machiasport, Maine

Boring No.: HB-MACH-102
WIN: 18834.00

Drilling Contractor: Northern Test Boring
Operator: Mike/Adam
Datum: NAVD88
Logged By: B. Wilder
Rig Type: Diedrich D-50
Date Start/Finish: 1/12/2016; 12:30-15:00
Drilling Method: Solid Stem Auger
Datum: N/A
Boring Location: 19+14.4, 14.2 ft Lt.

Soil/Rock Exploration Log
Location: Machiasport, Maine

Definitions:
D = Spilt Spoon Sample
U = Thin Wall Tube Sample
MV = Unsuccessful Field Vane Shear Test Attempt
S = Sample off Auger Flights
M = Successful Split Spoon Sample Attempt
RC = Roller Cone

Sample Information

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Description and Remarks:
Soils similar to HB-MACH-101.

Remarks:
Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Maine Department of Transportation
Soil/Rock Exploration Log
US CUSTOMARY UNITS

Project: Large Culvert Replacement on the Port Road
Location: Machiasport, Maine
Boring No.: HB-MACH-102

Drilling Contractor: Northern Test Boring
Operator: Mike Adam
Logged By: B. Wilder
Date Start/Finish: 1/12/2016; 12:30-15:00

Datum: NAVD88
Datum: NA

Soil/Rock Exploration Log
Location: Machiasport, Maine
US CUSTOMARY UNITS

Drilling Method: Solid Stem Auger
Core Barrel: N/A
Sample: N/A

Auger ID/OD: 5" Dia.

Boring Location: 19+14.4, 14.2 ft Lt.

Casing ID/OD: N/A
Water Level: None Observed

Definitions:
- B = Split Spoon Sample
- MU = Unsuccessful Thin Wall Tube Sample Attempt
- WOTP = Weight of 1 Person
- R = Rock Core Sample
- S = Sample off Auger Flights
- SSA = Solid Stem Auger
- SB = Peak Remolded Field Vane Undrained Shear Strength (psf)
- MD = Unsuccessful Split Spoon Sample Attempt
- HSA = Hollow Stem Auger
- SLV (psf) = Lab Vane Undrained Shear Strength (psf)
- MV = Unsuccessful Field Vane Shear Test Attempt
- RC = Roller Cone
- MV = Unsuccessful Field Vane Shear Test Attempt
- WOH = Weight of 140lb. Hammer
- U = Thin Wall Tube Sample
- N = N-value = Raw Field SPT N-value
- RC = Roller Cone
- VC = Weight of Rods or Casing

Visual Description and Remarks:
- Bottom of Exploration at 26.0 feet below ground surface.

Remarks:
- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
<table>
<thead>
<tr>
<th>Boring & Sample Identification Number</th>
<th>Station (Feet)</th>
<th>Offset (Feet)</th>
<th>Depth (Feet)</th>
<th>Reference Number</th>
<th>G.S.D.C. Sheet</th>
<th>W.C. %</th>
<th>L.L.</th>
<th>P.I.</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB-MACH-101, 1D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>1.0-3.0</td>
<td>303554</td>
<td>1</td>
<td>4.5</td>
<td></td>
<td></td>
<td>SW-SM A-1-b</td>
</tr>
<tr>
<td>HB-MACH-101, 2D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>5.0-7.0</td>
<td>303555</td>
<td>1</td>
<td>4.6</td>
<td></td>
<td></td>
<td>SW A-1-b</td>
</tr>
<tr>
<td>HB-MACH-101, 3D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>10.0-12.0</td>
<td>303556</td>
<td>1</td>
<td>10.8</td>
<td></td>
<td></td>
<td>SW-SM A-1-b</td>
</tr>
<tr>
<td>HB-MACH-101, 4D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>15.5-17.0</td>
<td>303557</td>
<td>1</td>
<td>28.8</td>
<td></td>
<td></td>
<td>ML A-4 IV</td>
</tr>
<tr>
<td>HB-MACH-101, 5D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>20.0-22.0</td>
<td>303558</td>
<td>1</td>
<td>15.5</td>
<td></td>
<td></td>
<td>SC-SM A-2-4</td>
</tr>
<tr>
<td>HB-MACH-101, 6D</td>
<td>18+89.7</td>
<td>11.6</td>
<td>25.0-27.0</td>
<td>303559</td>
<td>1</td>
<td>21.7</td>
<td></td>
<td></td>
<td>CL A-7-6 IV</td>
</tr>
</tbody>
</table>

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MaineDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)
WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98
LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98
PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98
NP = Non Plastic
<table>
<thead>
<tr>
<th>Boring/Sample No.</th>
<th>Station</th>
<th>Offset, ft</th>
<th>Depth, ft</th>
<th>Description</th>
<th>WC, %</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB-MACH-101/1D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>1.0-3.0</td>
<td>SAND, some gravel, trace silt.</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB-MACH-101/2D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>5.0-7.0</td>
<td>SAND, some gravel, trace silt.</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB-MACH-101/3D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>10.0-12.0</td>
<td>SAND, some gravel, little silt.</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB-MACH-101/4D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>15.5-17.0</td>
<td>SILT, little sand, trace clay, trace gravel.</td>
<td>28.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB-MACH-101/5D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>20.0-22.0</td>
<td>SAND, little clay, little silt, trace gravel.</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB-MACH-101/6D</td>
<td>18+89.7</td>
<td>11.6 RT</td>
<td>25.0-27.0</td>
<td>Silty CLAY, trace sand, trace gravel.</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIAL PROVISION
SECTION 203 – EXCAVATION AND EMBANKMENT
(Culvert Bedding Stone)

Description This work shall consist of constructing a foundation pad of Culvert Bedding Stone in accordance with these specifications and in reasonably close conformity with the width, length, grade and thickness shown on the Plans or established by the Resident.

Materials Culvert Bedding Stone shall meet the requirements of Standard Specification Section 703.22, Underdrain Backfill Material, Type C.

Construction Requirements The Culvert Bedding Stone shall be placed and graded as shown on the Plans or as directed by the Resident, and shall be compacted as required to ensure that all voids in the stone are filled, as approved by the Resident.

Method of Measurement Culvert Bedding Stone will be measured by the cubic yard, complete, in place.

Basis of Payment The accepted quantity of Culvert Bedding Stone will be paid for at the Contract unit price per cubic yard, complete, in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.55 Culvert Bedding Stone</td>
<td>Cubic Yard</td>
</tr>
</tbody>
</table>
Amend Standard Specification 620 – GEOTEXTILES to include the following:

620.01 Description This work shall consist of furnishing and installing Reinforcement Geogrid within the Culvert Bedding Stone in accordance with these specifications and in reasonably close conformity with the lines, grades, and dimensions shown on the plans or as directed by the Resident.

620.02 Material Reinforcement Geogrid shall consist of a regular network of integrally connected, polymeric tensile elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil, aggregate or other material. The Reinforcement Geogrid structure shall be dimensionally stable to retain its geometry under construction stresses and shall have high resistance to damage during construction, ultraviolet degradation, and all forms of chemical and biological degradation encountered in the soil being reinforced.

The Reinforcement Geogrid shall meet or exceed the Minimum Average Roll Values (MARV) of the properties in Table 1. Acceptable manufacturers for Reinforcement Geogrids must be approved by the Resident.

<table>
<thead>
<tr>
<th>Reinforcement Geogrid Mechanical Property</th>
<th>Test Method</th>
<th>Minimum Average Roll Value (MARV)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength at 5% Strain MD or XD</td>
<td>ASTM D 6637</td>
<td>1,200 lb/ft</td>
</tr>
<tr>
<td>Rib Junction Strength</td>
<td>GRI-GG2</td>
<td>1,000 lb/ft in both directions</td>
</tr>
<tr>
<td>Aperture Openings</td>
<td></td>
<td>Between 0.75 and 3 inches</td>
</tr>
<tr>
<td>Percent Open Area</td>
<td></td>
<td>50 to 80%</td>
</tr>
</tbody>
</table>

¹ Values are minimum average roll values determined in accordance with ASTM D 4759

A biaxial Reinforcement Geogrid shall be used in this application.

620.03 Placement Reinforcement Geogrid shall be installed, in accordance with the manufacturer’s recommendations, unless otherwise modified by this Special Provision. The Reinforcement Geogrid shall be placed within the layers of Crushed Stone Bedding at the proper elevation and alignment as shown on the Plans or as directed by the Resident.

1. The Reinforcement Geogrid shall be placed in continuous longitudinal strips. Splicing along the length will not be allowed. Reinforcement Geogrid shall be oriented such that the roll length runs either parallel or perpendicular to the construction centerline. The Contractor shall verify correct orientation of the Reinforcement Geogrid.

2. Reinforcement Geogrid may be temporarily secured in-place with staples, pins, sand bags or backfill as required by fill properties, fill placement procedures, or weather conditions, or as directed by the Resident.
3. Coverage of less than 100 percent shall not be allowed.

4. The Reinforcement Geogrid shall be lightly anchored and pulled taut to reduce any slack as directed by the Resident.

5. Fill shall not be dumped directly onto the Reinforcement Geogrid. It shall be dumped at the edge of the Reinforcement Geogrid or on a previous course of fill with a minimum compacted depth of 8 inches.

6. The Reinforcement Geogrid shall be covered with fill materials within 7 days of placement to protect against unnecessary exposure.

7. Fill may then be pushed onto the Reinforcement Geogrid using a track mounted bulldozer. At no time shall construction equipment be allowed directly onto the Reinforcement Geogrid. Track mounted equipment shall be allowed on previous courses of fill with a minimum compacted depth of 8 inches. Smooth drum roller compaction equipment shall be allowed on previous courses of fill with a minimum compacted depth of 8 inches and spread fill with a minimum depth of 12 inches, loose measure. At no time shall rubber tired or sheeps-foot rollers be allowed onto the reinforced fill. Turning of vehicles should be kept to a minimum to prevent tracks from displacing the fill and damaging the Reinforcement Geogrid. Sudden breaking and sharp turning shall be avoided. Equipment speeds over 10 MPH shall not be allowed.

8. Placement, spreading, and compaction of soil on top of the Reinforcement Geogrid shall advance from one end of the Reinforcement Geogrid and move towards the other. Care shall be taken to minimize the development of wrinkles and to ensure that the Reinforcement Geogrid doesn't move from its position during fill placement. A spotter shall observe all fill placement operations to ensure the Reinforcement Geogrid does not slip, achieves the minimum coverage specified on the Plans, and is not damaged by the work.

9. Fill shall be compacted as specified in (1) the Standard Specifications or (2) to at least 90 percent of the maximum dry density determined in accordance with AASHTO T-180, whichever is greater. Density testing shall be made at a minimum frequency of one (1) test per lift or as otherwise specified in the Standard Specifications. Care shall be taken not to drive test apparatus through the Reinforcement Geogrid tensile elements.

10. All rutting formed during construction shall be filled with new Culvert Bedding Stone. In no case shall rutting be filled by blading down

620.04 Overlap Adjacent rolls of Reinforcement Geogrid shall be overlapped a minimum of 1 foot.

620.05 Seams Seams along adjacent lengths of Reinforcement Geogrid shall be tied together with hog rings or cable ties every 3 to 6 feet.

620.06 Certification Prior to construction the Contractor shall submit to the Resident the Manufacturer’s certification that the Reinforcement Geogrid supplied has been evaluated in full compliance with this Specification and is fit for long-term, critical soil reinforcement applications.
The Contractor’s submittal package shall include, but not be limited to, actual tests for tension/creep, durability/aging, construction damage, and quality control tensile testing.

620.08 Shipment, Storage, Protection, and Repair of Fabric The Contractor shall check the Reinforcement Geogrid upon delivery to ensure that the proper material has been received. Each Reinforcement Geogrid roll shall be shipped in a protective bag and clearly marked with roll number, lot number, geogrid style and principle strength direction. During all periods of shipment and storage, the Reinforcement Geogrid shall be protected from temperatures greater than 140°F and all deleterious materials that might otherwise become affixed to the Reinforcement Geogrid and effect its performance. The manufacturer’s recommendations shall be followed with regard to protection from direct sunlight. The Reinforcement Geogrid shall be stored off the ground in a clean, dry environment out of the pathway of construction equipment.

Any Reinforcement Geogrid damage shall be repaired or replaced in accordance with the manufacturer’s recommendations. The Contractor shall replace any Reinforcement Geogrid damaged during installation at no additional cost to the Department.

620.09 Method of Measurement Reinforcement Geogrid will be measured by the number of Square Yards of surface area installed. Overlaps for connections, splices, patches, and repairs of damaged Reinforcement Geogrid, etc. are incidental to this Pay Item.

620.10 Basis of Payment Reinforcement Geogrid placement will be paid for per Square Yard in-place which shall be full compensation for all off-loading, inspection, storage, labor, materials, equipment, tools and any incidentals to complete the installation.

Payment will be made under:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>620.65 Reinforcement Geogrid</td>
<td>Square Yard</td>
</tr>
</tbody>
</table>