GEOTECHNICAL DESIGN REPORT

18-0005

September 4, 2019

Explorations and Geotechnical Engineering Services

Staples Bridge #1238 Replacement Card Mill Road over Great Works River North Berwick, Maine WIN 22336

PREPARED FOR: Maine Department of Transportation Attention: Laura Krusinski, P.E. State House Station 16 Augusta, ME 04333-0016

PREPARED BY: S. W. Cole Engineering, Inc. 26 Coles Crossing Drive Sidney, ME 04330 T: (207) 626-0600

Geotechnical Engineering

- Construction Materials Testing and Special Inspections
- GeoEnvironmental Services
- Test Boring Explorations

www.swcole.com

1.0 INTRODUCTION	. 1
1.1 Site Conditions	. 1
1.2 Proposed Construction	2
2.0 EXPLORATIONS AND TESTING	. 2
2.1 Explorations	2
2.1.1 Preliminary Phase Explorations	2
2.1.2 Design Phase Explorations	3
2.2 Testing	. 3
3.0 SUBSURFACE CONDITIONS	3
3.1 Surficial and Bedrock Geology	. 3
3.2 Subsurface Conditions	. 4
3.3 Groundwater Conditions	6
4.0 GEOTECHNICAL EVALUATION	6
4.1 Foundation Alternatives	6
4.2 Settlement and Global Stability	6
4.2.1 Settlement	6
4.2.2 Global Stability	7
4.3 Conventional, Cantilever-Type Structure	7
4.3.1 Abutment and Wingwall Design	7
4.3.1.1 Strength Limit State Design	8
4.3.1.2 Service Limit State Design	8
4.3.1.3 Extreme Limit State Design	8
4.3.2 Bearing Resistance and Eccentricity	8
4.3.3 Sliding Resistance	9
4.4 Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS)1	10
4.4.1 Abutment and Wingwall Design1	10
4.4.1.1 Facing Elements1	10
4.4.1.2 Geosynthetic Reinforcement1	11
4.4.1.3 Reinforced Backfill Material1	12
4.4.1.4 Integrated Approach Backfill1	13
4.4.2 Bearing Resistance	13
4.5 Earth Pressure and Surcharge1	13
4.5.1 Earth Pressure1	13
4.5.2 Surcharge Pressure1	14
4.6 Frost	14
4.7 Seismic Design Considerations1	15
4.8 Scour and Riprap1	15
4.8.1 Conventional, Cantilever-Type Structure1	15
4.8.2 GRS-IBS Structure	16
4.9 Construction Considerations	16
4.9.1 Bedrock Removal and Subgrade Preparation1	16

TABLE OF CONTENTS

4.9.2 Dewatering	17
4.9.3 Approach Embankments	17
4.9.4 Reuse of Excavated Soil and Bedrock	18
4.9.5 Erosion Control Recommendations	18
4.9.6 Weather Considerations	18
4.9.7 GRS-IBS	18
5.0 CLOSURE	19

LIST OF ATTACHMENTS

urface Profile
tions and Terms

www.swcole.com

18-0005

September 4, 2019

Maine Department of Transportation Attention: Laura Krusinski, P.E. State House Station 16 Augusta, ME 04333-0016

Subject: Geotechnical Design Report Explorations and Geotechnical Engineering Services Staples Bridge #1238 Replacement Card Mill Road over Great Works River North Berwick, Maine WIN 022336.00

Dear Laura:

In accordance with our Proposals dated February 15, 2018 and April 9, 2019, and project specific Assignment Letters #18 and #22 dated February 22, 2018 and April 19, 2019, we have made the requested subsurface explorations for the subject project. The purpose of our services was to obtain subsurface information in order to provide geotechnical design considerations and recommendations for foundations and earthwork associated with the proposed bridge replacement.

The services provided by S. W. Cole Engineering, Inc. (S.W.COLE) were conducted in accordance with our Multi-PIN Agreement with the Maine Department of Transportation (MaineDOT), No. 201507200000000085, dated July 20, 2015. The contents of this report are subject to the limitations in Attachment A.

1.0 INTRODUCTION

1.1 Site Conditions

The existing Staples Bridge No. 1238 carries Card Mill Road over the Great Works River in North Berwick, Maine. The site location is shown on the "Site Location Map" attached in Appendix B. Based on the Highway Bridge Inspection Report dated August 17, 2015, we understand the existing single-span structure is 26 feet long (end-to-end), 18 feet wide (curb-to-curb) with a 19 foot clear span and zero skew. The existing bridge consists of steel girders with timber deck and paved wearing surface supported on stacked stone abutments. We understand the existing crossing was constructed in 1928 with a superstructure replacement in 1987. We understand the 1987 superstructure replacement included construction of concrete load distribution slabs at the abutments. Based on site observations, the southeast corner of the east abutment has been reconstructed with concrete. The Bridge Inspection Report indicates scouring of the river channel in the southeast corner.

26 Coles Crossing Drive, Sidney, Maine 04330 • Tel: 207.626.0600 • E-mail: info@swcole.com

The Preliminary Design Report (PDR) indicates the preferred replacement option consists of an off-alignment bridge replacement. We understand the replacement structure will consist of a 48-foot single-span, 16-foot wide (curb-to-curb) bridge constructed ±40 feet downstream from the existing bridge. We understand construction will include about 150 linear feet of new roadway for the south approach and alignment with 2:1(H:V), or flatter, approach side slopes and 1.75:1 riprap slopes in front of the new abutments. The proposed replacement structure and alignment are shown on the "Boring Location Plan/Interpretive Subsurface Profile" attached in Appendix B.

1.2 Proposed Construction

Based on discussions with MaineDOT and the project team, we understand the proposed bridge replacement will be advertised as a "detail-build" project. At this time, we understand acceptable bridge substructure alternatives include:

- Conventional, cast-in-place concrete spread footings founded on bedrock; and
- Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) founded on bedrock.

The proposed bridge replacement substructure shall be designed for all applicable load combinations for all relevant service, strength, and extreme limit states in accordance with the American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) Bridge Design Specifications, 8th Edition, 2017; relevant Maine Department of Transportation (MaineDOT) Bridge Design Guide (BDG) sections; and project-specific special provisions.

2.0 EXPLORATIONS AND TESTING

2.1 Explorations

2.1.1 Preliminary Phase Explorations

Two borings (BB-NBGWR-101 and BB-NBGWR-102) and 13 probes (BP-NBGWR-101 through BP-NBGWR-113) were made for the existing alignment on May 29 to 31, 2018 by S. W. Cole Explorations, LLC. Borings BB-NBGWR-101 and BB-NBGWR-102 were drilled approximately 12 feet and 18 feet behind the faces of the existing west and east abutments, respectively. Seven test probes were made behind the existing west abutment and six test probes were made behind the existing west abutment and six test probes were made behind the existing west abutment and six test probes were made behind the existing east abutment. Test probes were spaced approximately 6-inches to 2 feet apart to investigate the geometry of the abutment back face. The exploration locations were selected and established in the field by S.W.COLE using taped measurements from existing site features. The "as-drilled" exploration locations are shown on the "Boring Location Plan/Interpretive Subsurface Profile" attached in Appendix B. Logs of the test borings and a Key to Soil and Rock Descriptions and Terms used on the logs are attached as Appendix C.

2.1.2 Design Phase Explorations

Two bridge borings (BB-NBGWR-201 and BB-NBGWR-202), two bridge probes (BP-NBGWR-201 and BP-NBGWR-202), and five roadway borings (HB-NBGWR-201 through HB-NBGWR-205) were made for the proposed off-alignment replacement on May 20 and 21, 2019 by S. W. Cole Explorations, LLC. These exploration locations were selected and established in the field by S.W.COLE. The ground surface elevations of the test borings were provided by MaineDOT. The "as-drilled" exploration locations are shown on the "Boring Location Plan/Interpretive Subsurface Profile" attached in Appendix B. Logs of the test borings and a Key to Soil and Rock Descriptions and Terms used on the logs are attached as Appendix C.

2.2 Testing

The explorations were drilled using a combination of solid- and hollow-stem augers, casedwash-boring and NQ rock core drilling techniques. The soils in the test borings were sampled at 2- to 5-foot intervals using a split-spoon sampler and Standard Penetration Testing (SPT) methods using a rope and cathead with safety hammer to drive the split-spoon. Upon encountering refusal on bedrock, borings BB-NBGWR-201 and BB-NBGWR-202 were advanced about 10 feet into bedrock using NQ2 rock coring. The uncorrected SPT blow counts, uncorrected and corrected SPT N-values and rock core intervals are shown on the logs.

Soils and rock core samples recovered from the test borings were visually classified in our laboratory and transported to the MaineDOT Laboratory in Bangor, Maine, for testing to assist soil classification and identification. Laboratory testing was performed on disturbed SPT samples obtained during the explorations. Laboratory testing was performed by the MaineDOT Materials Testing and Exploration Central Laboratory in Bangor, Maine, in accordance with applicable American Association of State Highway and Transportation Officials (AASHTO) testing procedures. Laboratory testing included 2 natural water content tests and 2 grain size analyses without hydrometer. A summary and results of the laboratory testing are provided in Appendix D.

3.0 SUBSURFACE CONDITIONS

3.1 Surficial and Bedrock Geology

The Maine Geological Survey (MGS) Surficial Geology of the North Berwick Quadrangle, Maine (Open-File No. 99-92)¹, indicates the surficial soils at the site consist of Presumpscot Formation (silt and silty clay) with marine regressive sand/ice contact deposits (coarse gravel and sand) and glacial till mapped in the vicinity. The subsurface conditions encountered were generally consistent with the mapped surficial geology within the site vicinity; however, the explorations also encountered a surface deposit of fill soils from previous site development.

¹ Smith, G.W., 1999, Surficial Geology of the North Berwick Quadrangle, Maine: Maine Geological Survey, Open-File Map 99-92.

The MGS Bedrock Geology of the Kittery Quadrangle, Maine (Geologic Map 16-6)², indicates the bedrock at the site consists of medium-bedded, medium brownish gray, feldspathic quartz-biotite granofels, greenish calc-silicate granofels, and subordinate quartz-biotite schist of the Berwick Formation. The bedrock conditions encountered were generally consistent with the mapped bedrock geology within the site vicinity.

3.2 Subsurface Conditions

The test borings along the proposed alignment encountered a soils profile generally consisting of a surface layer of forest duff and topsoil or fill overlying marine sands overlying refusal surfaces (bedrock). The test borings along the existing alignment encountered a soils profile generally consisting of a surface layer of pavement and fill overlying marine sands overlying refusal surfaces. The principal strata encountered in the explorations are summarized below. Refer to the attached logs for more detailed descriptions of the subsurface findings at the exploration locations.

<u>Topsoil</u>: Test borings BB-NBGWR-201, BB-NBGWR-202 and HB-NBGWR-202 through HB-NBGWR-204 encountered a 0.3- to 0.8-foot thick surface layer of forest duff and topsoil. The topsoil generally consisted of sand, some silt, trace to little gravel with organics.

<u>Pavement</u>: An approximate 4 inch layer of pavement was observed in BB-NBGWR-101 and BB-NBGWR-102.

<u>Fill</u>: From the ground surface in HB-NBGWR-201 and HB-NBGWR-205 and below pavement in BB-NBGWR-101 and BB-NBGWR-102, a 0.5- to 5-foot thick layer of fill was observed. The fill generally consisted of sand with varying amounts of gravel and silt. Below the granular fill in BB-NBGWR-101, a 1.4-foot thick layer of sand, some silt, little gravel and trace clay and organics was observed.

The fill was generally loose to medium dense with SPT N_{60} values ranging from 7 to 28 blows per foot (bpf).

<u>Marine Sand</u>: Below the fill, the borings generally encountered marine sand mantling relatively shallow refusal at depths of 9.2 to 12.3 feet below ground surface (bgs) corresponding to Elevation (El.) 135.3 to 128.1 feet. In general, the marine sand deposit consisted of sand with varying amounts of gravel and silt with cobbles and boulders.

The marine sand was generally medium dense to very dense with SPT N_{60} values ranging from 18 bpf to 50 blows for 3 inches (sampler refusal).

<u>Bedrock</u>: Bedrock was encountered and sampled in borings BB-NBGWR-101, BB-NBGWR-102, BB-NBGWR-201 and BB-NBGWR-202. The top of bedrock varied from about

² Hussey, A.M., II, Bothner, W.A., and Thompson, P.J., 2016, Bedrock Geology of the Kittery 1:100,000 Quadrangle, Maine and New Hampshire: Maine Geological Survey, Geologic Map 16-6.

9.2 to 12.3 feet bgs (El. 135.3 to 128.1 feet). The bedrock consisted of grey, hard, fresh to slightly weathered, quartz-biotite granofels.

The following table summarizes the approximate depths to bedrock, corresponding top of bedrock elevations and Rock Quality Designation (RQD) where encountered.

Boring Number (Substructure)	Approximate Depth to Bedrock (feet)	Approximate Bedrock Elevation (feet)	RQD (RMQ)
BB-NBGWR-101	10.3	135.3	33 to 100% (Poor to Excellent)
BB-NBGWR-102	12.3	132.6	40 to 41% (Poor)
BB-NBGWR-201 (Abutment No 2)	9.2	128.1	7 to 16% (Very Poor)
BB-NBGWR-202 (Abutment No 1)	11.7	131.7	66 to 76% (Fair to Good)

Rock quality designation (RQD) values for the bedrock generally ranged from 7 to 100 percent corresponding to a Rock Mass Quality (RMQ) of very poor to excellent. Detailed descriptions of the rock core and RQD values for each core run are shown on the exploration logs in Appendix C.

<u>Refusal Surface</u>: The probes encountered refusal surfaces interpreted as the abutment granite blocks or bedrock, based on drilling action. Refusal surfaces were encountered in the probes at the following depths:

Exploration No.	Location	Station / Offset	Refusal Depth (feet)	Refusal Elevation (feet)
BP-NBGWR-101	Existing South Abutment	Sta. 15+66.2, 43.1 ft Lt.	12.7	132.3
BP-NBGWR-102	Existing South Abutment	Sta. 15+68.2, 43.1 ft Lt.	7.5	137.5
BP-NBGWR-103	Existing South Abutment	Sta. 15+70.1, 42.9 ft Lt.	8.5	136.5
BP-NBGWR-104	Existing South Abutment	Sta. 15+70.6, 42.2 ft Lt.	3.5	141.5
BP-NBGWR-105	Existing South Abutment	Sta. 15+71.2, 42.9 ft Lt.	3.1	141.9
BP-NBGWR-106	Existing South Abutment	Sta. 15+72.1, 42.7 ft Lt.	3.8	141.2
BP-NBGWR-107	Existing South Abutment	Sta. 15+72.9, 42.7 ft Lt.	0.8	144.2
BP-NBGWR-108	Existing North Abutment	Sta. 16+1.9, 39.4 ft Lt.	4.2	140.8
BP-NBGWR-109	Existing North Abutment	Sta. 16+0.7, 38.3 ft Lt.	6.5	138.5
BP-NBGWR-110	Existing North Abutment	Sta. 16+2.7, 39.4 ft Lt.	7.3	137.7
BP-NBGWR-111	Existing North Abutment	Sta. 16+4.6, 39.0 ft Lt.	7.5	137.5
BP-NBGWR-112	Existing North Abutment	Sta. 16+6.6, 38.5 ft Lt.	8.5	136.5
BP-NBGWR-113	Existing North Abutment	Sta. 16+8.4, 37.9 ft Lt.	8.5	136.5
BP-NBGWR-201	Abutment No. 2	Sta. 16+6.0, 6.0 ft Rt.	10.3	127.0
BP-NBGWR-202	Abutment No. 1	Sta. 15+41.0, 13.5 ft Rt.	3.3	146.1

Probe BP-NBGWR-202 encountered what was interpreted to be a cobble or boulder at a depth of 3.3 feet bgs.

The exploration locations are shown on Boring Location Plan/Interpretive Subsurface Profile attached in Appendix B.

3.3 Groundwater Conditions

The soils encountered at the test borings were damp to wet from the ground surface. The measured water levels within the borings ranged from about 1 to 9 feet bgs. It should be noted that water was introduced during drilling; therefore, water levels indicated may not represent stabilized groundwater conditions. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate seasonally, particularly in response to periods of snowmelt and precipitation, changes in site use and the water level of the Great Works River.

4.0 GEOTECHNICAL EVALUATION

S.W.COLE conducted geotechnical engineering evaluations in accordance with 2017 AASHTO LRFD Bridge Design Specifications, 8th Edition (AASHTO LRFD) and the MaineDOT Bridge Design Guide, 2003 Edition with revisions through June 2018 (MaineDOT BDG) and offers the following:

4.1 Foundation Alternatives

During the PDR stage, on-alignment rehabilitation and replacement alternatives as well as an off-alignment bridge replacement alternative were evaluated. Based on the need for a temporary detour bridge for the on-alignment alternatives, the off-alignment alternative was selected as the preferred alternative. It is our understanding that the existing bridge will remain in-service during construction of the replacement structure.

The final replacement structure will be designed and constructed utilizing the detail-build method and the type of structure will be designed, detailed, and constructed in accordance with Special Provision 531 "Bridge Structure – Detail Build" which will be developed and provided in the final Contract Documents. Based on the subsurface conditions present at the site the following foundation support alternatives are considered feasible:

- Conventional, cantilever-type cast-in-place concrete abutments and wingwalls on spread footings founded on bedrock; and
- Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) founded on bedrock.

4.2 Settlement and Global Stability

4.2.1 Settlement

Proposed approach embankments will be constructed on granular soils overlying shallow bedrock. Placement of the necessary fill will result in negligible densification and elastic settlement. Settlement is anticipated to occur during and immediately after construction of the

embankments. Post-construction settlement will be minimal and anticipated to be less than $\frac{1}{2}$ inch.

Any settlement of abutments or wingwalls founded on bedrock will be due to elastic compression of the bedrock mass, and is anticipated to be less than ½ inch.

4.2.2 Global Stability

We performed global stability evaluations for the new approach embankment construction at Sta. 16+20 using SLOPE/W software. We evaluated the global stability considering the resistance factors outlined in AASHTO LRFD, Section 11.6.2.3 and guidance in Section C11.6.2.3 as follows:

<u>Global Stability for Static Conditions</u> FS \geq 1.5 (ϕ =0.75) for slopes or walls supporting a structural element FS \geq 1.3 (ϕ =0.65) for slopes or walls not supporting a structural element <u>Global Stability for Seismic Conditions</u> FS \geq 1.0 (ϕ =1)

In accordance with LRFD Article 11.6.5.2.2, the seismic condition includes a seismic load by incorporating a horizontal seismic coefficient, k_h of 0.06 g, equal to one-half of the calculated acceleration coefficient (A_s) of 0.119 g. Results of our global stability model runs are summarized in the following table and included in Appendix E.

Madal	Safety Factor	
Wodel	Static	Seismic
Sta. 16+25 – 7 foot new embankment with 2H:1V side slopes	1.43	1.24

Results of our global stability model runs indicates the global stability for 2H:1V side slopes are above the referenced safety factors per LRFD Section 11.6.2.3. Results are included as Appendix E.

4.3 Conventional, Cantilever-Type Structure

4.3.1 Abutment and Wingwall Design

The proposed bridge replacement structure (abutments and wingwalls) shall be evaluated for all applicable load combinations specified in LRFD Articles 3.4.1 and 11.5.5 and designed for all applicable load combinations for all relevant service, strength, and extreme limit states in accordance with 2017 AASHTO LRFD Bridge Design Specifications, 8th Edition (AASHTO LRFD), relevant Maine Department of Transportation (MaineDOT) Bridge Design Guide (BDG) sections, MaineDOT Standard Specifications, and project-specific special provisions.

4.3.1.1 Strength Limit State Design

The design of abutments and wingwalls founded on spread footings bearing on bedrock or on concrete seals overlying bedrock at the strength limit state shall consider bearing resistance, eccentricity (overturning) and failure by sliding and concrete structural failure.

For spread footings or concrete seals founded on bedrock, the eccentricity of loading at the strength limit state, based on factored loads, shall not exceed 0.45 of the footing dimensions in either direction. The eccentricity corresponds to the resultant of reaction forces falling within the middle nine-tenths (9/10) of the base width.

4.3.1.2 Service Limit State Design

For the service limit state, a resistance factor, ϕ , of 1.0 shall be used to assess spread footing design for settlement, horizontal movement and bearing resistance. The overall stability of foundations are typically investigated at the Service I Load Combination and a resistance factor, ϕ , of 0.65. Shear failure along adversely oriented joint surfaces in the rock mass below the foundations is not anticipated, therefore, global stability at the abutments was not evaluated.

4.3.1.3 Extreme Limit State Design

Extreme limit state design checks for abutments and wingwalls shall include bearing resistance, eccentricity (overturning), failure by sliding and structural failure with respect to extreme event load conditions relating to seismic forces, hydraulic events and ice. Resistance factors, ϕ , for the extreme limit state shall be taken as 1.0 with the exception of bearing resistance for which a resistance factor of 0.8 shall be used. LRFD Figures C11.5.6-1 and C11.5.6-2 illustrate the typical load factors to produce the extreme factored effect for bearing resistance and sliding and eccentricity.

The ice pressures for Extreme Event II shall be applied at the Q1.1 and Q50 elevations as defined in MaineDOT BDG Section 3.9 with the design ice thickness increased by 1 foot and a load factor of 1.0.

For scour protection of spread footings or concrete seals, construct the spread footings or concrete seals directly on bedrock surfaces cleaned and free of all weathered, loose and potentially erodible or scourable rock. With these precautions, strength and extreme limit state designs do not need to consider rock scour for the proposed foundations.

4.3.2 Bearing Resistance and Eccentricity

Application of permanent and transient load combinations and applicable load factors are specified in LRFD Article 11.5.6. Based on LRFD Figure 11.6.3.2-2, the stress distribution at the abutments may be assumed to be a triangular or trapezoidal distribution over the effective base.

For abutment and wingwall footings founded on competent, sound bedrock we recommend the following factored bearing resistances.

Limit State	Bearing Resistance Factor Φ _b	Factored Bearing Resistance (ksf)	LRFD Reference
Service	1.0	20.0	Article 10.5.5.1
Strength	0.45	18.5	Table 10.5.5.2.2-1
Extreme	0.8	32.8	Article C11.5.8

LRFD Figures C11.5.6-2 and C11.5.6-4 illustrate the typical load factors to produce the strength and extreme factored conditions for evaluating eccentricity. Based on LRFD Article 11.6.3.3, the location of the resultant force for eccentricity evaluation shall fall within the middle nine-tenths (9/10) of the foundation base for foundations bearing on rock.

In no instance shall the factored bearing stress exceed the factored compressive resistance of the footing concrete, which may be taken as 0.3f'c. No footing shall be less than 2 feet wide regardless of the applied bearing pressure or bearing material.

4.3.3 Sliding Resistance

The following table shows the resistance factors, ϕ_{τ} , for sliding analyses of cast-in-place spread footings on bedrock.

Limit State	Sliding Resistance Factor ϕ_{τ}	Reference
Strength	0.8	LRFD Article C10.5.5.2.2
Service	1.0	LRFD Article 10.5.5.1
Extreme	1.0	LRFD Article 10.5.5.3.3

Passive earth pressures due to the presence of soils in front of the abutments and wingwalls shall be neglected in the sliding analysis.

Bedrock subgrade preparation should occur in the dry. For bedrock subgrade prepared in-thedry and cleaned with high pressure water and air prior to placing footing concrete, sliding computations for resistance of abutment and wingwall footings to lateral loads shall assume a maximum frictional coefficient of 0.7 at the bedrock-concrete seal interface. For bedrock subgrades prepared in-the-wet, sliding computations for resistance of abutment and wingwall footings to lateral loads shall assume a maximum frictional coefficient of 0.6 at the bedrockconcrete seal interface.

Based on MaineDOT BDG Section 5.2.2, anchorage of the footing to a concrete seal, if used, is required. The dowels should be drilled and grouted into the concrete seal after dewatering and prior to placing the footing concrete. Anchorage of concrete seals to bedrock may also be required to resist sliding forces and improve stability. If bedrock is observed to slope steeper than 4H:1V at the subgrade elevation, the bedrock should be benched to create level steps or excavated to be completely level.

4.4 Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS)

GRS-IBS abutments and wingwalls shall be designed in accordance with *Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide* (FHWA-HRT-11-026; January, 2011) and *Geosynthetic Reinforced Soil Integrated Bridge System Synthesis Report* (FHWA-HRT-11-027; January, 2011) referred to herein as FHWA 2011. The design and construction recommendations of GRS-IBS structures (abutment and wingwalls) presented in this report are based on the criteria outlined in these FHWA publications.

GRS-IBS structures are a specific group of AASHTO-defined Mechanically-Stabilized Earth (MSE) walls that utilize pre-approved, large, wet cast blocks (in accordance with Special Provision 672), closely spaced geosynthetic reinforcement in the soil mass and an integrated approach. GRS-IBS structures do not include MSE walls with steel strap soil reinforcement and MSE walls with precast panels.

A GRS-IBS supported structure shall consist of the following components:

- GRS abutments and wing walls founded on bedrock or concrete seal on bedrock; and
- Integrated bridge seat and approach.

4.4.1 Abutment and Wingwall Design

The design of GRS abutments and wingwalls shall be evaluated for direct sliding, bearing capacity, and global stability failure modes. Because a GRS mass is relatively ductile and free of tensile strength, overturning about the toe, in a strict sense, is not a possible response due to earth pressures at the back of the mass or loading on its top (FHWA 2011). Additionally, internal stability shall be analyzed for vertical capacity, deformations and reinforcement strength.

The proposed GRS structure (abutment and wingwalls) will be a U-shaped structure with an abutment width of about 27 feet and a wingwall length of about 15 feet. AASHTO LRFD Article 11.10.10.2, states the guardrail should be placed a minimum distance of 3 feet from the face of mechanically stabilized earth walls. Final design layout of the GRS abutments and wingwalls should ensure that the face of the abutment is wide enough to allow for placement of a guardrail and permit a guardrail lay down length of 4 feet.

4.4.1.1 Facing Elements

The most commonly used facing element for GRS abutments and walls is the split face concrete masonry unit (CMU) with nominal dimensions of 8 inches by 8 inches by 16 inches. There are currently no CMU blocks available in the State of Maine that meet the freeze-thaw requirements of Standard Specification 672. The PCMB units shall meet the requirements of the Project Plans and Special Provision 672. Facing block elements as approved by MaineDOT shall consist of Redi-Rock® wet-cast blocks (18-inches high, 28-inches deep).

GRS abutments and wingwall facing elements shall be founded directly on bedrock or a concrete seal on bedrock. The upper 2 feet of the facing block elements are susceptible to movement. To prevent displacement, hollow cores blocks in the top 2 feet of the abutment facing blocks shall be filled with concrete fill and pinned together with No. 4 epoxy coated rebar embedded with a 2-inch minimum cover. After the top block void is filled with concrete and rebar is inserted, a thin layer of concrete is placed in top of the block to form the coping cap. The concrete shall be ASTM Class A concrete with 4,000 psi compressive strength. If the facing blocks are solid, No. 4 epoxy coated rebar shall be drilled and grouted into the blocks to tie the upper 2 feet of the facing blocks together.

4.4.1.2 Geosynthetic Reinforcement

Geosynthetic reinforcement shall consist of biaxial, woven polypropylene geotextile with an ultimate tensile strength of 4,800 pounds per foot (lb/ft) and tensile strength at 2 percent strain of 1,370 lb/ft in each direction of load-bearing. Limiting the required reinforcement strength to less than the reinforcement strength at 2 percent strain will ensure long-term performance and serviceability. Any geosynthetic meeting the requirements of this section can be used in the abutment but a geotextile fabric must be used for the integrated approach to encapsulate the material. The permittivity and apparent opening size of a geosynthetic need to be considered to ensure adequate long-term drainage particularly when the abutment may be submerged at any point.

The geosynthetic shall be placed in closely spaced layers less than or equal to 12 inches. Where 18-inch high blocks are used, the abutment GRS design should assume 9-inch maximum geosynthetic reinforcing spacing. In accordance with FHWA 2011, the GRS shall have a minimum base width of 6 feet. The minimum reinforcing length at the lowest level shall have a base-to-height (B/H) ratio, including the facing block of 0.3 or greater. Once the base length of the reinforcing is chosen, the length of the reinforcing should follow the cut slope up to a B/H ratio of 0.7. From there the reinforcing length can get progressively longer in reinforcement zones. The progressively longer lengths of reinforcing serve to improve the quality of construction and overall stability of the GRS abutment. The details of the reinforcement zones (i.e., numbers of layers and lengths) are determined during final design.

A bearing reinforcement zone is required under the bridge seat to support the increased loads due to the bridge. The bearing bed reinforcement spacing should be half the primary spacing (minimum). If the required strength in the bearing bed reinforcement zone at the 9-inch spacing does not exceed the allowable strength or the strength at 2 percent strain, intermediate layers of geotextile may not be necessary. The minimum length of the bearing bed reinforcement should be twice the setback plus the width of the bridge seat. The depth of the bearing reinforcement strength. At a minimum there should be five bearing bed reinforcement layers.

The integration zone is part of the integrated approach of GRS-IBS behind the bridge superstructure to limit the development of tension cracks and to blend the approach way on to the roadway. The integration zone reinforcement layers should be blended to create a smooth transition. The number of reinforcement layers in the integration zone depends on the height of the superstructure but each wrapped layer should be no more than 12 inches in height. The top layer of the integration zone should extend beyond the cut slope to prevent moisture infiltration.

4.4.1.3 Reinforced Backfill Material

The reinforced backfill is a major structural component for the GRS abutment. Abutment reinforced backfill shall consist of clean, crushed angular (not rounded), hard, durable particles or fragments of stone or gravel. These materials shall be free from organic matter or deleterious material such as shale or other soft particles that have poor durability. Reinforced backfill typically consists of open-graded backfill due to the relative ease of construction and favorable drainage characteristics. Since the lower sections of the abutments will be submerged, open-graded backfill should be used because it is free draining. Open-graded backfill material shall meeting the following gradation. The friction angle of the open-graded backfill shall be no less than 38 degrees.

Open Graded Backfill MaineDOT Standard Specification 518.02 Designation SP-2-89		
Sieve Size Percent Finer by Weight		
1/2 inch	100	
³‰ inch	90-100	
No. 4	20 to 55	
No. 8	5 to 30	
No. 16	0 to 10	
No. 50	0 to 5	
No. 200	0 to 1.5	

The backfill shall be compacted to a minimum of 95 percent of maximum dry density according to AASHTO T-99. Lifts of 6 to 9 inches, depending on facing block size, should be compacted using vibratory roller compaction equipment. Since the facing elements are not rigidly connected to the reinforcing, hand-operated compaction equipment is required within 3 feet of the back of the wall. The top 5 feet of the abutment shall be compacted to 100 percent of the maximum dry density according to AASHTO T-99.

The lateral stress distribution due to the weight of the GRS fill is found using the Rankine active earth pressure coefficient, K_{ar} , of 0.24. This K_{ar} is used for calculating the required reinforcement strength. For the internal stability analysis of the GRS mass, the ultimate load carrying capacity of the GRS mass is computed using the Rankine passive earth pressure coefficient, K_{pr} , of 4.2.

4.4.1.4 Integrated Approach Backfill

The GRS located directly behind the beam is necessary to provide a smooth integrated transition from the approach way to the bridge deck. FHWA 2011 recommends that the fill material used for this transition be well-graded gravel.

However, in an effort to specify one type of aggregate for all GRS components (the reinforced fill zone and the integration zone) it is recommended that the fill material in the integration zone consist of the open-graded gravel. The integrated approach backfill shall be compacted to a minimum of 95 percent of maximum dry density according to AASHTO T-99.

4.4.2 Bearing Resistance

For GRS abutments and wingwall footings founded on competent, sound bedrock we recommend the following factored bearing resistance at the strength limit state of 26.7 kips. A factored bearing resistance at the service limit state of 20 kips shall be used for the GRS-IBS abutments founded on bedrock to control settlement when analyzing the service limit state as allowed in AASHTO LRFD Table C10.6.2.6.1-1. These factored bearing resistances must be greater than the applied factored vertical bearing pressure determined by the structural designer for the applicable limit state.

Application	Resistance Factor	LRFD Reference
Bearing Resistance, ϕ_{bc}	0.65	Table 11.5.7-1
Direct Sliding, φ _r	1.0	Table 11.5.7-1
Global Stability, φ	0.65	Article 11.6.2.3
Vertical Capacity, ϕ_{cap}	0.45	FHWA 2011
Reinforcement Strength, <i>p</i> reinf	0.4	FHWA 2011

The following resistances factors shall be used in design of the GRS-IBS structure.

4.5 Earth Pressure and Surcharge

4.5.1 Earth Pressure

The abutments and wingwalls should be designed for active earth pressure over the wall height unless restrained from movement. Walls restrained from movement should be designed for at-rest earth pressure over the wall height. For design of gravity and semi-gravity walls backfilled with granular soil and drained (e.g. no hydrostatic pressures), we recommend the following earth pressure coefficients:

Structure Type	Rankine Active Earth Pressure Coefficient, k _a	At-rest Earth Pressure Coefficient, k₀
Conventional, cantilever-type cast-in-place concrete	0.28	0.47
Geosynthetic Reinforced Soil Integrated Bridge System	0.24	N/A

The resultant Rankine earth pressure is orientated perpendicular to the wall back-face.

Based on MaineDOT BDG Section 3.6.1, the designer may assume Soil Type 4 for the backfill material with the following soil properties for the conventional, cantilever-type structure:

- Internal Friction Angle, $\phi = 32$ degrees
- Total Unit Weight, $\gamma = 125 \text{ pcf}$

In accordance with FHWA 2011, the designer may assume the following soil properties for the open-graded backfill for the GRS structure:

- Internal Friction Angle, $\phi = 38$ degrees
- Total Unit Weight, $\gamma = 125 \text{ pcf}$

The friction angle of the open-graded backfill shall be confirmed with laboratory direct shear testing in accordance with AASHTO T 236 prior to use.

4.5.2 Surcharge Pressure

Lateral earth pressure due to construction surcharge or live load surcharge is required per Section 3.6.8 of the MaineDOT BDG for the abutments if an approach slab is not specified. When a structural approach slab is specified, reduction, not elimination of the surcharge loads, is permitted per LRFD Article 3.11.6.5.

The live load surcharge on wing walls may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (h_{eq}) of 2.0 feet, per LRFD Table 3.11.6.4-2. The live load surcharge on abutments may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (h_{eq}) based on the following:

Abutment Height (feet)	Equivalent Height of Soil, h _{eq} (feet)
5	4.0
10	3.0
≥20	2.0

Abutment and wingwall design shall include a drainage system to ensure that drainage of water behind the structure is maintained. Drainage behind the structures shall be in accordance with MaineDOT BDG Section 5.4.1.4 Drainage.

<u>4.6 Frost</u>

It is anticipated that the abutment and wingwall footings will be founded directly on bedrock or a mud slab on bedrock. For foundations on bedrock, heave due to frost is not a design concern therefore requirements for minimum depth of embedment are not necessary.

However, foundations placed on granular subgrade soils should be designed with an appropriate embedment for frost protection. Based on the MaineDOT BDG Figure 5-1, Maine Design Freezing Index Map, the design freezing index for the North Berwick, Maine area is approximately 1,200 freezing degree-days. Based on Section 5.2.1 of the MaineDOT BDG and

assuming a water content of 10% for new granular fills, the maximum seasonal frost penetration is estimated to be approximately 6.1 feet. Considering this, we recommend foundations constructed within or on granular fill be founded with least 6.1 feet of soil cover to provide frost protection.

4.7 Seismic Design Considerations

Seismic site class was evaluated in accordance with AASHTO Section 3.10.3.1 Method B (average N-value method). An N-value of 100 bpf was assumed for the profile below the refusal surface. Based on the subsurface information, the average N-value fell between 50 and 100 bpf corresponding to an AASHTO Site Class C as defined in AASHTO Table 3.10.3.1-1.

The USGS online Seismic Design Maps Tool was used to obtain the seismic design parameters for the site. Based on the assigned site class (AASHTO Site Class C) and site coordinates, the software provides the recommended AASHTO Response Spectrum for a 7% probability of exceedance in 75 years (1,000-year return period). The results for the project site are summarized below:

Recommended Seism	ic Design Parameters ³
Site Class	С
PGA	0.099 g
Ss	0.191 g
S1	0.045 g
F _{pga}	1.2
Fa	1.2
Fv	1.7
As	0.119 g
Sds	0.229 g
S _{D1}	0.077 g
Seismic Zone (based on S _{D1})	Zone 1

NOTE: Site Coordinates: N43.316808, W70.744094

4.8 Scour and Riprap

4.8.1 Conventional, Cantilever-Type Structure

For scour protection of abutment and wingwall, place the bottom of concrete seals or footings directly on bedrock surfaces cleaned of all weathered, loose and potentially erodible or scourable rock.

Bridge and channel soil slopes above the soil-bedrock interface shall be armored with at least 3 feet of riprap. Riprap shall conform to MaineDOT Standard Specification 703.26 "Plain and Hand Laid Riprap" and should be placed at a maximum slope of 1.75H:1V. The riprap section shall be underlain by a 1 foot layer of MaineDOT Standard Specification 703.19 "Granular

³ U.S. Geological Survey, Seismic Design Map, , accessed July 6, 2018

http://earthquake.usgs.gov/designmaps/us/application.php

Borrow Material for Underwater Backfill" and a Class 1 nonwoven erosion control geotextile per MaineDOT Standard Specification 722.03.

4.8.2 GRS-IBS Structure

A grain size analysis was performed on a soil sample taken from the approximate streambed elevation to generate a grain size curve for determining parameters to be used in scour analyses. The following streambed grain size parameters can be used in scour analyses:

- Average diameter of particle at 50 percent passing, $D_{50} = 6.7$ mm
- Average diameter of particle at 95 percent passing, $D_{95} = 38.1 \text{ mm}$
- Soil Classification AASHTO Soil Type A-1-a.

The grain size curve is included on Sheet 1 attached in Appendix D.

The design of scour countermeasures for GRS abutments is outlined in FHWA 2011 (Section 5.3 Hydraulic Design Considerations), including a typical cross section for the detailing of a riprap apron adapted from HEC-23. At a minimum, for scour protection and protection of the GRS-IBS structure, the bridge approach slopes and slopes at abutments should be armored with 3 feet of plain riprap. Refer to MaineDOT BDG Section 2.3.11 for information regarding scour design.

Riprap shall conform to MaineDOT Standard Specification 703.26 "Plain and Hand Laid Riprap" and should be placed at a maximum slope of 1.75H:1V. The riprap section shall be underlain by a 1 foot layer of MaineDOT Standard Specification 703.19 "Granular Borrow Material for Underwater Backfill" and a Class 1 nonwoven erosion control geotextile per MaineDOT Standard Specification 722.03.

4.9 Construction Considerations

Construction activities for new abutments and any retaining walls will require earth and loose, weathered bedrock excavation. The construction of cofferdams will be needed to control the Great Works River during placement of seal or spread footing concrete. Earth support systems may be needed to support the approach soils. New approach embankment construction will be needed.

4.9.1 Bedrock Removal and Subgrade Preparation

If included in design, the abutment and wingwall foundation subgrades should consist of sound bedrock or mud slab over sound bedrock. The borings and probes at the proposed abutment locations encountered bedrock at depths of approximately 9 to 12 feet below the existing ground surface. The bedrock cored at the site indicates that the bedrock is moderately to highly fractured. The nature, slope and degree of fracturing in the bedrock bearing surfaces will not be evident until the foundation excavations for the abutments are made.

The bedrock surface shall be cleared of all loose fractured bedrock, decomposed bedrock and soil to expose sound, intact bedrock. The final bearing surface shall be solid. If the bedrock surface is observed to slope steeper than 4H:1V at the subgrade elevation in any direction, the bedrock shall be benched to create level steps or excavated to be completely level. Excavation of highly sloped and loose fractured bedrock material shall be made using all conventional excavation methods (digging bucket, ripper tooth, hoe-ramming) possible in attempt to create level steps or be completely level. Based on the proximity to the existing bridge structure, we recommend bedrock excavation by blasting be avoided. Anchors or dowels may also be designed and employed to improve sliding resistance where the prepared bedrock surface is steeper than 4H:1V in any direction. The bottom of footing or concrete seal elevation may vary based on the presence of fractured bedrock and the variability of the bedrock surface.

The final bearing surface shall then be washed with high pressure water and air prior to concrete being placed for the footing. The final bedrock subgrade surfaces shall be approved by the Resident or Project Geotechnical Engineer prior to placement of concrete seal or footing concrete.

4.9.2 Dewatering

The Contractor should control groundwater and surface water infiltration into excavations throughout construction. The contractor should use temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment or other means to divert surface water and groundwater, if significant seepage is encountered, during construction.

Excavations for abutments and wingwalls, if included in design, will extend below the level of the Great Works River and groundwater will seep from fractures and joints exposed in the bedrock surface. Water should be controlled by pumping from sumps. The contractor should maintain the excavation so that all foundations are constructed in the dry.

4.9.3 Approach Embankments

Approach embankment areas should be cleared and grubbed to remove existing surficial topsoil, soils with organics, vegetation and stumps. The borings along the proposed approach alignment encountered topsoil and soils with organics to depths of approximately 0.2 to 2.5 feet below the existing ground surface. The final subgrade surfaces shall be approved by the Resident or Project Geotechnical Engineer prior to placement of approach embankment fills.

Approach embankment slopes outside of abutment and wingwall backfill envelope should be designed as earth fill slopes no steeper than 2H:1V. Slopes steeper than 2H:1V typically require reinforcement or rock fill surfacing. We recommend new embankment fill be thoroughly and systematically compacted to the full limit of the slope. Where new fill slope extensions are constructed over existing slopes, we recommend benching the existing slope soils in

accordance with MaineDOT Standard Specification 203.09, Preparation of Embankment Area, to prevent creation of a preferential slip plane under the new embankment fill.

4.9.4 Reuse of Excavated Soil and Bedrock

The native silty soils or existing fill soils may be used as common borrow in accordance with MaineDOT Standard Specification Sections 203 and 703. Contractors should expect that prior to placement and compaction it may be necessary to spread out and dry portions of these soils that are wet of optimum moisture content.

4.9.5 Erosion Control Recommendations

The fine-grained soils along the project are susceptible to erosion. We recommend using appropriate erosion control measures during construction as described in the MaineDOT Best Management Practices guidelines to minimize erosion of the fine-grained soils at the site.

4.9.6 Weather Considerations

The silty native soils are susceptible to disturbance and rutting as a result of exposure to water or construction traffic. We recommend the contractor protect the subgrade from exposure to water and any unnecessary construction traffic. If disturbance and rutting occur, we recommend that the contractor remove and replace the disturbed materials and replace with compacted Gravel Borrow.

4.9.7 GRS-IBS

For scour protection, the GRS abutments should be moved away from the channel. Since the proposed bridge design will rely on the riprap slopes to provide scour protection for the abutments, slope construction and riprap placement are of critical importance. Care should be taken in construction of the riprap slopes to assure that they are constructed in accordance with MaineDOT Special Provisions 610 and 703 and the Plans.

Careful attention should be given to the installation of the first row of blocks. Since all other courses of block are built off the first row, it is essential to ensure that the bottom row is level and even for construction.

Construction of the abutments will require soil excavation and partial or full removal of the existing structure. Construction activities may require cofferdams and/or earth support systems. The removal of the existing structure may require the replacement of excavated soils with compacted granular fill.

In some locations the native soils may be saturated and significant water seepage may be encountered during construction. There may be localized sloughing and surface instability in some soil slopes. The Contractor should control groundwater, surface water infiltration and soil erosion during construction.

Using the excavated native soils as structural backfill should not be permitted. The native soils may only be used as common borrow in accordance with MaineDOT Standard Specifications 203 and 703.

The Contractor will have to excavate the existing subbase and subgrade fill soils in the bridge approaches. These materials should not be used to re-base the new bridge approaches. Excavated subbase sand and gravel may be used as fill below subgrade level in fill areas provided all other requirements of MaineDOT Standard Specifications 203 and 703 are met.

5.0 CLOSURE

We trust this information meets your present needs. Please contact us if you have any questions or need further assistance.

Sincerely,

S. W. Cole Engineering, Inc.

Michael A. St. Pierre, P.E. Senior Geotechnical Engineer

Robert E. Chaput, P.E. Senior Geotechnical Engineer

MAS:tjm-rec

APPENDIX A

Limitations

This report has been prepared for the exclusive use of the Maine Department of Transportation for specific application to the Staples Bridge #1238 Replacement carrying Card Mill Road over Great Works River (MaineDOT WIN 022336.00) in North Berwick, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

APPENDIX B Figures

Date:9/4/20

BRIDGE Username: com

me: ...\00\BRIDGE\MSTA\005_BLP&ISP.dgn Divisio

APPENDIX C Boring Logs & Key to Soil and Rock Descriptions and Terms

	UNIFIE	ED SOIL C	LASSIFIC	CATION SYSTEM		MODIFIED E	BURMISTER S	YSTEM
MA		ONS	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravel- sand mixtures, little or no fines.	Descrip ti I s adjective (e o	otive Term race little ome sandy, clayey)	<u>Porti</u>	on of Total (%) 0 - 10 11 - 20 21 - 35 36 - 50
	f of coars r than Nc ze)	fines)	01	sand mixtures, little or no fines.	adjective (e.g	TERM	S DESCRIBING	G
	n halt arger ve si					DENSIT	Y/CONSISTEN	CY
	iore thar ction is la sie	GRAVEL WITH	GM	Silty gravels, gravel-sand-silt mixtures.	Coarse-grained sieve): Includes (<u>soils</u> (more than half 1) clean gravels; (2) si	of material is larger th ilty or clayey gravels;	an No. 200 and (3) silty,
erial is e size)	(m frae	(Appreciable amount of	GC	Clayey gravels, gravel-sand-clay mixtures.	penetration resist	ance (N-value).		
f of mate 200 siev		fines)			<u>Der</u> <u>Cohesio</u> Very	<u>isity of</u> <u>nless Soils</u> / loose	Standard Pe <u>N-Value</u>	e (blows per foot) 0 - 4
than hal	SANDS	CLEAN SANDS	SW	Well-graded sands, gravelly sands, little or no fines	Lo Mediu De	bose m Dense ense		5 - 10 11 - 30 31 - 50
(more larger ti	coarse an No. 4	(little or no fines)	SP	Poorly-graded sands, gravelly sand, little or no fines.	Very	Dense		> 50
	ian half of c smaller tha ieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	Fine-grained soi sieve): Includes (or silty clays; and strength as indica	 Is (more than half of r 1) inorganic and orgar (3) clayey silts. Cons ited. 	material is smaller tha nic silts and clays; (2) sistency is rated accor	n No. 200 gravelly, sandy rding to undrained shear
	(more th action is s	FINES (Appreciable amount of	SC	Clayey sands, sand-clay	Consistency of	SPT N-Value	<u>Approximate</u> <u>Undrained</u> Shear	Field
	μ Ψ	fines)	MI		Cohesive soils Very Soft	(blows per foot) WOH, WOR,	<u>Strength (psf)</u> 0 - 250	Guidelines Fist easily penetrates
	0		IVIL	sands, rock flour, silty or clayey fine sands, or clayey silts with	Soft Medium Stiff	2 - 4 5 - 8	250 - 500 500 - 1000	Thumb easily penetrates Thumb penetrates with
FINE-	SILISAN	ID CLAYS	CL	slight plasticity. Inorganic clays of low to medium	Stiff	9 - 15	1000 - 2000	moderate effort Indented by thumb with great effort
GRAINED SOILS	(liquid limit l	ess than 50)		plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Very Stiff Hard	16 - 30 >30	2000 - 4000 over 4000	Indented by thumbnail Indented by thumbnail with difficulty
			OL	Organic silts and organic silty clays of low plasticity.	Rock Quality De RQD (%) =	signation (RQD): sum of the lengths	of intact pieces of	core* > 4 inches
rrial is ve size)			мы	Inorgania silta, missocous or		*Minimu	length of core ac um NQ rock core (Ivance 1.88 in. OD of core)
ialf of mate o. 200 sie	SILTS AN	ID CLAYS	IVII I	diatomaceous fine sandy or silty soils, elastic silts.	<u>Rock M</u> Ver	Correlation of F ass Quality y Poor	RQD to Rock Mass	Quality <u>RQD (%)</u> ≤25
re than h er than N			СН	Inorganic clays of high plasticity, fat clays.	F F G	oor Fair Good		26 - 50 51 - 75 76 - 90
(mo smalle	(liquid limit gr	eater than 50)	ОН	Organic clays of medium to high plasticity, organic silts.	Exc Desired Rock (Color (Munsell	cellent Dbservations (in tl color chart)	his order, if applic	91 - 100 a ble):
	HIGHLY SC	ORGANIC ILS	Pt	Peat and other highly organic soils.	Texture (aphan Rock Type (gra Hardness (very	itic, fine-grained, el inite, schist, sandst r hard, hard, mod. h	tc.) one, etc.) nard, etc.) ht. moderate, mod	activeral activeral etc.)
Desired Sc	il Observat	tions (in thi	<u>s or</u> der, if	applicable):	Geologic discor	ntinuities/jointing:	ni, mouerale, mou	
Color (Mun	sell color ch	art)		<u> </u>		-dip (horiz - 0-5 de	g., low angle - 5-35	deg., mod. dipping -
Density/Col	ry, damp, m nsistency (fr	oisi, wet) om above ri	ght hand s	side)		-spacing (very clos	ep - 55-85 deg., ve se - <2 inch, close -	- 2-12 inch, mod.
Texture (fin	e, medium,	coarse, etc.) ncludina n	ortions - trace little etc.)		close - 1-3 feet,	, wide - 3-10 feet, v	ery wide >10 feet)
Gradation (well-graded	, poorly-grad	ded, unifor	m, etc.)		-infilling (grain size	e, color, etc.)	
Plasticity (n Structure (la	on-plastic, s	lightly plast	ic, modera	tely plastic, highly plastic)	Formation (Wat	terville, Ellsworth, C	Cape Elizabeth, etc	.) poor etc.)
Bonding (w	ell, moderat	ely, loosely,	etc.,)		ref: ASTM D6	032 and AASHTO	Standard Specifica	ation for Highway
Cementatio	n (weak, mo	oderate, or s	strong) luvium et	2)	Bridges, 17th	Ed. Table 4.4.8.1.2	2A ne)	
Groundwate	er level	inic clay, al		<i>.,</i>	Rock Core Rate	e (X.X ft - Y.Y ft (mi	in:sec))	
	Maina	Donortmo	nt of Tra	nenortation	Sample Cont	tainer Labeling I	Requirements:	
	walle L	Geotechi	nical Se	ction	WIN Bridge Name	/ Town	Blow Counts	
Ke	y to Soil a	and Rock	Descrip	otions and Terms	Boring Numb	er	Date	-
	Fiel	d Identific	ation Inf	ormation	Sample Numl Sample Deptl	ber h	Personnel Initia	lls

I	Maine	e Depa	artment	of Transport	Ation Project: Staples Bridge #1238 carries Card Mill Road over Great Works River						Boring No.:	BB-NBC	GWR-201
		<u>5</u> 1	Soil/Rock Expl JS CUSTOM	loration Log ARY UNITS			Locatio	Road n: Nor	over Gr th Berw	eat Works River ick, Maine	WIN:	022	2336
Drill	er:		S. W. Cole Ex	plorations, LLC	Elev	/ation	(ft.)	137	3		Auger ID/OD:	2.25/4.5 inch F	Hollow Stem
Ope	rator:		S. Shaw	F	Dati	um:	()	NA	VD88		Sampler:	Standard Split-	Spoon
Log	ged By:		A. Santiago		Rig	Туре		Die	lrich D-	50	Hammer Wt./Fall:	140 lbs/30"	
Date	Start/Fi	nish:	5/20/2019		Drill	ling N	lethod:	Cas	ed Wasł	1	Core Barrel:	NQ2 (2")	
Bori	ng Loca	tion:	Sta. 16+06.0,	6.0 ft Rt	Cas	ing IC)/OD:	HW	4"/4.5"		Water Level*:	1.0 ft (during d	lrill)
Ham	mer Effi	ciency Fa	actor: 0.60		Harr	nmer	Туре:	Autom	atic 🗆	Hydraulic 🗆	Rope & Cathead ⊠		
Defini D = S MD = U = T MU = V = Fi MV =	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess jeld Vane S <u>Unsuccess</u>	Sample iful Split Spo be Sample iful Thin Wa hear Test, <u>ful Field Var</u>	on Sample Atterr I Tube Sample A PP = Pocket Per the Shear Test Att	R = Rock (C SSA = Soli SSA = Soli RC = Rolle WOH = WI woh = WOR/C = ' empt WO1P = W Sample Information	Core Samp d Stem Au ow Stem A r Cone sight of 14 Weight of 1 <u>/eight of O</u>	ole uger Auger Olb. Ha Rods of <u>One Per</u>	mmer r Casing son	S _u = S _u (la q _p = N-ur Ham N ₆₀	Peak/Re ab) = Lab Unconfir corrected mer Effic = SPT N = (Hamm	molded Field Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) J = Raw Field SPT N-value iency Factor = Rig Specific Annua - uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-unco	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pocket Torvane She = Water Content, per Liquid Limit Plastic Limit Plastic Limit Plasticity Index Grain Size Analysis <u>Consolidation Test</u>	ar Strength (psf) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/14	0.00 - 2.00	1/1/1/2	2	2	H\$A	136.6	11111	Forest Duff over dark brow	n, moist to wet, very loos (rootlets) (Topsoil)	se, Sandy SILT,	
										Brown, moist to wet, very I Red-brown mottling from (oose, SAND, some silt, 1 0.8 to 1.2 feet bgs.	0.7-	
	2D	24/14	4.00 - 6.00	43/14/21/25	35	35				Brown, wet, dense, Sandy (Sand).	Gravel, trace silt, with col	bbles, (Marine	G#337285 A-1-a, GW-
- 5 - 10 - - 15 - - 20 -	R1	60/24	9.50 - 14.50	RQD = 7%				128.1		Frequent cobbles below 7 f Top of Bedrock at Elev. 12 Advanced by roller cone fr R1:Bedrock: Grey, fine-gra quartzite veins, trace pyrite (35-55 degrees), very close (Berwick Formation). Rock Mass Quality = Very R1:Core Times (min:sec) 9.5-10.5 ft (1:20) 10.5-11.5 ft (4:20) 11.5-12.5 ft (4:40) 12.5-13.5 ft (3:30) 13.5-14.5 ft (9:50) 40% Re R2:Bedrock: Similar to R1 (5 to 55 degrees). Rock Mass Quality = Very R2:Core Times (min:sec) 14.5-15.5 ft (3:15) 15.5-16.5 ft (2:15) 16.5-17.5 ft (2:18) 17.5-18.5 ft (3:24) 18.5-19.5 ft (9:58) 82% Re Bottom of Exploration	eet bgs 8.1 ft. om 9.2 to 9.5 feet bgs to s ined, quartz biotite GRA , hard, fresh, joints are m to close and open to heal Poor. covery. except joints are low to r Poor. Poor. at 19.5 feet below grou	9.2- seat casing. NOFELS with oderate dipping led with quartzite, noderate dipping 19.5- und surface.	GM WC=12.2%
								-					
25	arka												
bgs	= below ;	ground sur	face										
Stratif	Stratification lines represent approximate boundaries between soil types; transitions may be gradual. Page 1 of 1												
* Wate than	er level rea	dings have t sent at the ti	been made at tim me measurement	es and under conditions stats were made.	ited. Grou	undwate	er fluctuatio	ons may o	ccur due	to conditions other	Boring No	.: BB-NBG	WR-201

Ι	Maine Department of Transporta					1	Project	: Staple	s Bridg	e #1238 carries Card Mill	Boring No.:	BB-NBC	GWR-202
		1	Soil/Rock Expl	oration Log			Locatio	Road on: Nor	over Gr h Berw	eat Works River ick, Maine	14/151-	0.00	226
			US CUSTOMA	<u>ARY UNITS</u>							WIN:	022	336
Drille	er:		S. W. Cole Exp	plorations, LLC	Ele	vation	(ft.)	143	4		Auger ID/OD:	2.25/4.5 inch H	Iollow Stem
Oper	ator:		S. Shaw		Dat	um:		NA	/D88		Sampler:	Standard Split-	Spoon
Logo	jed By:		A. Santiago		Rig	Туре		Die	lrich D-	50	Hammer Wt./Fall:	140 lbs/30"	
Date	Start/Fi	nish:	5/21/2019		Dril	ling N	lethod:	Cas	ed Wash	1	Core Barrel:	NQ2 (2")	
Bori	ng Loca	tion:	Sta. 15+40.6, 9	9.3 ft Lt	Cas	sing ID)/OD:	HW	4"/4.5"		Water Level*:	1.0 ft (during d	rill)
Ham	mer Effi	ciency F	actor: 0.60	D. David	Har	nmer	Туре:	Autom	atic 🗆	Hydraulic 🗆	Rope & Cathead 🛛		- Otres atta (a af)
Definit D = Sp MD = U = Th MU = V = Fin MV =	ions: blit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S <u>Unsuccess</u>	Sample ful Split Sp be Sample ful Thin Wa hear Test, ful Field Va	oon Sample Attem III Tube Sample At PP = Pocket Per <u>ne Shear Test Atte</u> S	R = Rock C SSA = Solic pt HSA = Holl RC = Roller tempt WOH = We wmpt WOIP = W Sample Information	ore Sam d Stem A ow Stem Cone ight of 14 Veight of 0 eight of 0	ple uger Auger 40lb. Ha Rods of <u>One Per</u>	mmer r Casing son	S _u = S _u (la q _p = N-ur Ham N ₆₀ <u>N₆₀</u>	Peak/Re b) = Lab Unconfir corrected mer Effic = SPT N = (Hamm	molded Held Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme er Efficiency Factor/60%)'N-uncor	ar Strength (pst) I v = osf) WC = LL = PL = Calibration Value PI = I r Efficiency G = C crected C = C	Pocket Forvane She = Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	ar Strength (pst) cent
		(-	÷		þ				1				Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (in	Sample Dep (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrecte	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Results/ AASHTO and Unified Class.
0	1D	24/14	0.00 - 2.00	1/1/2/8	3	3	H\$A	142.6		Forest duff over dark brown little gravel, with organics (n, moist to damp, very loo rootlets), (Topsoil).	se, Sandy SILT,	
								142.0		Red-brown, damp, loose, S. Sand).	AND, little silt, trace grav	0.8- rel, (Marine	
- 5 -	2D	24/6	5.00 - 7.00	7/15/16/20	31	31		-		Brown with orange staining (Marine Sand).	, wet, dense, Sandy GRA	VEL, little silt,	
								-		Frequent cobbles below 7.5	feet bgs.		
- 10 -	3D	20/12	10.00 - 11.67	14/20/29/50-2"	49	49	RC			Similar to above except ver	y dense.		
- 15 - - 20 - 	R1 R2 arks:	60/48	11.70 - 16.70 16.70 - 21.70	RQD = 66%				131.7		Top of Bedrock at Elev. 13 R1:Bedrock: Grey, fine-gra quartzite veins hard, fresh, degrees), very close to mod Formation). Rock Mass Quality = Fair. R1:Core Times (min:sec) 11.7-12.7 ft (4:15) 12.7-13.7 ft (3:55) 13.7-14.7 ft (4:30) 14.7-15.7 ft (4:20) 15.7-16.7 ft (5:15) 80% Ret R2:Bedrock: Similar to R1. Rock Mass Quality = Good R2:Core Times (min:sec) 16.7-17.7 ft (5:18) 17.7-18.7 ft (5:50) 18.7-19.7 ft (6:48) 19.7-20.7 ft (2:52) 20.7-21.7 ft (9:58) 98% Ret	 1.7 ft. ined, quartz biotite GRAN joints are moderate dippin erate close and tight to op covery. . covery. a t 21.7 feet below ground 		
Kem	arks:		- C										I
bgs	= below g	ground su	rface										
Stratifi	cation line	s represent	approximate bour	daries between soil turner.	ransition	is may h	e gradual				Page 1 of 1		
* Wate	er level read	dings have	been made at time	es and under conditions sta s were made.	ted. Gro	undwate	er fluctuati	ons may o	ccur due	to conditions other	Borina No.	: BB-NBG	WR-202
												0	

I	Maine	e Depa	artment	of Transport	ation Project: Staples Bridge #1238 carries Card Mill Road over Great Works River						Boring No.: <u>HB-NBGV</u>		WR-201
		<u>s</u>	Soil/Rock Exp JS CUSTOM	loration Log ARY UNITS			Locatio	Road n: Nort	over G h Berv	reat Works River vick, Maine	WIN:	022	336
Drill			S. W. Colo Ex	related in a LLC	Flox	(ation	(#+)	144	5			2 25/4 5 inch H	allow Stom
One	ator:		S. W. COLE EX	cpiorations, LLC	Date		(11.)	144. NAV	5 7D88		Sampler:	Standard Split-	Spoon
Log	ned By:		A Santiago		Ria	Type:		Died	rich D	-50	Hammer Wt./Fall:	140 lbs/30"	Spoon
Date	Start/Fi	nish:	5/20/2019		Drill	lina N	lethod:	Holl	ow Ste	m Auger	Core Barrel:	N/A	
Bori	ng Locat	tion:	Sta. 16+70.8,	3.1 ft Lt	Cas	ing IC)/OD:	N/A			Water Level*:	Not observed	
Ham	mer Effi	ciency Fa	actor: 0.60		Han	nmer	Туре:	Automa	tic 🗆	Hydraulic 🗆	Rope & Cathead ⊠		
Defini D = S MD = U = TI MU = V = Fi MV =	tions: blit Spoon S Unsuccess hin Wall Tul Unsuccess eld Vane S <u>Unsuccess</u>	Sample ful Split Spo be Sample ful Thin Wal hear Test, ful Field Var	on Sample Atter I Tube Sample A PP = Pocket Pe te Shear Test At	R = Rock C SSA = Solit npt HSA = Holl RC = Rolle wtempt WOH = Wc metrometer WO1P = Wc tempt W01P = Wc Sample Information Sample Information	ore Samp d Stem Au ow Stem A r Cone ight of 14 Veight of 1 eight of C	ole Jger Auger Olb. Ha Rods of <u>One Per</u>	mmer [·] Casing son	S _u = S _u (la q _p = N-un Ham N ₆₀ : N ₆₀ :	Peak/R b) = Lal Unconfi correcte mer Effi = SPT N = (Hami	emolded Field Vane Undrained Shk o Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua - Luncorrected Corrected for Hammer mer Efficiency Factor/60%)*N-unco	aar Strength (psf) T, psf) W I Calibration Value PI or Efficiency G rrected C	, = Pocket Torvane Shea C = Water Content, pero . = Liquid Limit . = Plastici Limit = Plasticity Index = Grain Size Analysis = Consolidation Test	ar Strength (psf) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remark	(S	Testing Results/ AASHTO and Unified Class.
0	1D	24/16	0.00 - 2.00	10/9/6/4	15	15	HSA	144.0		Dark brown, damp, mediur	n dense, SAND, some g asphalt fragments (Fil	gravel, little silt,	
										Brown, moist, medium den Sand).	se, Gravelly SAND, litt	0.5- tle silt, (Marine	
								140.0				4.5-	
- 5 -										Bottom of Exploration Auger refusal.	n at 4.5 feet below gro	ound surface.	
- 10 -													
								-					
- 15 -													
								-					
								-					
- 20 -													
								-					
								-					
25]					
25 <u>Rem</u>	arks:		ı – I				1		I	ļ.			
bgs	bgs = below ground surface												
Stratif	ication lines	s represent a	approximate bou	ndaries between soil types;	transitions	s may b	e gradual.				Page 1 of 1		
* Wate than	er level read those pres	dings have t ent at the tir	been made at tim me measuremen	es and under conditions sta ts were made.	ted. Grou	undwate	er fluctuatio	ns may o	ccur du	e to conditions other	Boring N	o.: HB-NBG	WR-201
											L		

]	Maine	e Depa	artment	of Transport	atio	On Project: Staples Bridge #1238 carries Card Mil Road over Great Works River					e #1238 carries Card Mill	Boring No.:	HB-NBC	GWR-202
		\$	Soil/Rock Exp	loration Log			Locatio	Road on: No	l ove orth I	er Gro Berw	eat Works River ick, Maine			22.5
		<u> </u>	JS CUSTOM	<u>ARY UNITS</u>								WIN:	022	336
Drill	er:		S. W. Cole Ex	plorations, LLC	Ele	vation	(ft.)	13	8.9			Auger ID/OD:	2.25/4.5 inch H	Iollow Stem
Оре	rator:		S. Shaw		Dat	tum:		NA	AVD	88		Sampler:	Standard Split-	Spoon
Log	ged By:		A. Santiago		Rig	ј Туре		Di	edric	ch D-	50	Hammer Wt./Fall:	140 lbs/30"	
Date	e Start/Fi	inish:	5/20/2019		Dri	lling N	lethod:	Ho	ollow	v Ster	n Auger	Core Barrel:	N/A	
Bori	ng Loca	tion:	Sta. 16+30.9,	7.9 ft Rt	Ca	sing ID	D/OD:	N/.	A			Water Level*:	Not observed	
Ham Defini	mer Effi	iciency F	actor: 0.60	R = Rock (Hai	mmer	Туре:	Autor S.	natic = Pe	c □ ak/Re	Hydraulic molded Field Vane Undrained She	Rope & Cathead ar Strength (psf) Tu =	Pocket Torvane She	ar Strength (psf)
D = S	plit Spoon S	Sample	on Sample Atter	SSA = Soli	d Stem A	Auger		Su	(lab) =	= Lab	Vane Undrained Shear Strength (psf) WC	= Water Content, per	cent
U = T	hin Wall Tu	ibe Sample		RC = Rolle	r Cone			чр N-u	Incor	rected	= Raw Field SPT N-value	PL =	Plastic Limit	
V = F	ield Vane S	stul Thin wa Shear Test,	PP = Pocket Pe	enetrometer WOR/C = \	Neight of	FRods o	r Casing	N ₆	0 = S	PT N-	uncorrected Corrected for Hamme	er Efficiency G =	Grain Size Analysis	
IVI V =	Unsuccess	stul Fleid Va	ne Snear Test At	Sample Information	eight of	One Per	son	IN6		Hamm	er Emclency Factor/60%)"N-Uncol	rected C =	Consolidation Test	
		(;	£		þ									Laboratory Testing
G	Š	c. (ir	Dep	3 in.	recte			_		Log	Visual De	scription and Remarks		Results/
th (f	aldr	./Re	ble	ar ar OD	Jcor		ing vs	/atio		phic		•		and
Dep	San	Pen	San (ft.)	Stre Stre or R	n-Z	N60	Cas Blov	Ele/		Gra				Unified Class.
0	1D	24/0	0.00 - 2.00	1/1/1/1	2	2	HSA	138	7	CE C	¬ Forest duff over topsoil.		0.2	
								-		0100 0100 0100	From auger cutting.		0.2-	
								4	H	翻	Brown, moist to wet, Sandy	SILT, little gravel, (Ma	rine Sand).	
									100	Onins Philo Social	Cobble at 3 feet bgs.			
								134.	.9	0805	Bottom of Exploratio	n at 4 0 feet below grou		
- 5 -								-			Auger refusal.	n at 40 feet below grou	nu surface.	
								-						
								-						
- 10 -														
								-						
								-						
- 15 -								_						
								-						
- 20 -								1						
								-						
								-						
25	Ļ													
<u>Rem</u>	arks:													
bgs	= below	ground sur	rface											
Strati	fication line	s represent	approximate bou	ndaries between soil types;	transitior	ns may b	e gradual.					Page 1 of 1		
* Wat	er level rea	dings have	been made at tim	nes and under conditions sta	ited. Gro	oundwate	er fluctuati	ons may	occu	ur due	to conditions other	Dentry M		
thar	those pres	sent at the ti	me measuremen	its were made.									.: HR-NRG	wк-202

I	Maine	e Depa	artment	of Transport	Road over Great Works River					e #1238 carries Card Mill	Boring No.: <u>HB-NBGV</u>		GWR-203
		<u>9</u> 1	Soil/Rock Exp JS CUSTOM	loration Log ARY UNITS			Locatio	Road n: Nor	over G th Berv	reat Works River /ick, Maine	WIN:	022	.336
Drill	er:		S W Cole Ex	plorations LLC	Ele	vation	(ft.)	143	7		Auger ID/OD:	2 25/4 5 inch F	Iollow Stem
Ope	rator:		S. Shaw	pioradono, 220	Dat	tum:	()	NA	VD88		Sampler:	Standard Split-	Spoon
Log	ed By:		A. Santiago		Ric		:	Die	frich D	-50	Hammer Wt./Fall:	140 lbs/30"	~r
Date	Start/Fi	nish:	5/21/2019		Dri	llina N	lethod:	Hol	low Ste	m Auger	Core Barrel:	N/A	
Bori	ng Loca	tion:	Sta. 15+32.0.	0.0 ft	Ca	sina ID)/OD:	N/A			Water Level*:	Not observed	
Ham	mer Effi	ciencv Fa	actor: 0.60		Hai	mmer	Туре:	Autom	atic □	Hydraulic 🗆	Rope & Cathead 🛛		
Defini D = S MD = U = T MU = V = Fi MV =	tions: blit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S <u>Unsuccess</u>	Sample sful Split Spo be Sample sful Thin Wal shear Test, sful Field Var	oon Sample Atter Il Tube Sample A PP = Pocket Pe <u>he Shear Test At</u>	R = Rock (SSA = Sol Npt HSA = Hol RC = Rolle Mempt WOH = W WOR/C = V WOR/C = V WONP = V	Core Sam id Stem A low Stem er Cone eight of 1 Weight of Veight of	nple Auger h Auger 40lb. Ha f Rods of <u>One Per</u>	mmer ^r Casing son	S _u = S _{u(la} q _p = N-un Ham N ₆₀ N ₆₀	Peak/R ab) = La Unconfi correcte mer Effi = SPT N = (Ham	emolded Field Vane Undrained Sh Vane Undrained Shear Strength ned Compressive Strength (kS) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua -uncorrected Corrected for Hamm ner Efficiency Factor/60%)*N-unco	ear Strength (psf) T psf) W LL P I Calibration Value PI ar Efficiency G rrected C	 Pocket Torvane Shei Water Content, pero Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test 	ar Strength (psf) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remark	s	Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	24/14	0.00 - 2.00	1/1/2/3	3	3	HSA	143.4		Forest Duff over dark brow with organics (rootlets), (T	vn, moist, loose, Sandy opsoil).	SILT, trace gravel,	
								141.7	(11)0 (11)0 (11)0 長天秋	Brown, damp, loose, Sandy	/ SILT, little gravel.	0.32.0-	
	2D	5/4	2.00 - 2.42	50-4"						Grey with red mottling, mo (Marine Sand). Cobble at 2.4 feet bgs.	vist, very dense, Silty SA	AND, some gravel,	
- 5 -								139.2	2352	Bottom of Exploration Auger refusal.	on at 4.5 feet below gro	4.5- ound surface.	
- 10 -													
10													
- 15 -													
- 20 -													
25 <u>Rem</u>	arks:					<u> </u>	<u> </u>		1	I			
bgs	bgs = below ground surface												
Stratif	ication line	s represent :	approximate bou	ndaries between soil types;	transitior	ns may b	e gradual.				Page 1 of 1		
* Wat than	Alter level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other nan those present at the time measurements were made. Boring No.: HB-NBGWR-203												

]	Main	e Depa	artment	of Transport	atio	n	Project	: Staple	s Brid	ge #1238 carries Card Mill	Boring No.:	HB-NBC	GWR-204
		<u>.</u>	Soil/Rock Exp	loration Log			Locatio	Road	over G	reat Works River			
		<u> </u>	US CUSTOM	ARY UNITS			Looune		ui Dei v	viex, mane	WIN:	022	2336
Drill	or.		S W Cole Ex	plorations LLC	Fie	vation	(ft)	145	5		Auger ID/OD:	2 25/4 5 inch I	Jollow Stem
Ope	rator:		S. Shaw	piorations, EEC	Dat	tum:	(14)	NA	 VD88		Sampler:	Standard Split	Spoon
Log	aed By:		A. Santiago		Ric	Type		Die	frich D	-50	Hammer Wt./Fall:	140 lbs/30"	opoon
Date	Start/Fi	inish:	5/21/2019		Dri	lling N	lethod:	Hol	low Ste	em Auger	Core Barrel:	N/A	
Bori	ing Loca	tion:	Sta. 14+85.0,	0.0 ft	Ca	sing ID)/OD:	N/A			Water Level*:	Not observed	
Ham	nmer Effi	iciency F	actor: 0.60		Ha	mmer	Туре:	Autom	atic 🗆	Hydraulic 🗆	Rope & Cathead ⊠		
Defini D = S	itions: plit Spoon	Sample		R = Rock 0 SSA = Soli	Core Sam	nple Auger		S _u =	Peak/R	emolded Field Vane Undrained Sho b Vane Undrained Shear Strength (ear Strength (psf) T _v =	 Pocket Torvane She Water Content, per 	ar Strength (psf) cent
MD = U = T	Unsuccess hin Wall Tu	sful Split Spo ube Sample	oon Sample Atten	npt HSA = Hol BC = Bolle	low Stem ar Cone	Auger		q _p =	Unconf	ned Compressive Strength (ksf)	LL = PL =	= Liquid Limit = Plastic Limit	
MU = V = F	Unsuccess	sful Thin Wa	II Tube Sample A	work work work work work work work work	eight of 1 Weight of	40lb. Ha	mmer Casing	Ham	mer Effi = SPT N	ciency Factor = Rig Specific Annua	I Calibration Value PI =	Plasticity Index Grain Size Analysis	
MV =	Unsuccess	sful Field Va	ne Shear Test Att	tempt WO1P = W	Veight of	One Per	son	N ₆₀	= (Ham	mer Efficiency Factor/60%)*N-unco	rrected C =	Consolidation Test	
				Sample Information					-				Laboratory
	ġ	(in.	Jept	(.u.) %	ected				Do:)//			l esting Results/
) (ft.)		Rec		s (/6 pgth 2D (9	SOLIE		p.	tion	hicL	Visual De	escription and Remarks		AASHTO
epth	amp	en./	t.)	thea tren tren Ssf)	-nne	60	asir	t)	irap				Unified Class.
0	0	<u> </u>	0 E	<u> </u>	2	2				Forest Duff over dark brow	n, moist, loose, SILT, so	ome sand, little	
	1D	24/6	0.00 - 2.00	1/1/3/9	4	4	HSA	144.9	部語	gravel, with organics (root	lets), (Topsoil).	0.6	
									0.62			0.0	
	2D	24/18	2.00 - 4.00	14/17/14/11	31	31		1		Brown with orange staining	g, damp to moist, dense,	Sandy SILT, some	G#337284
								1					WC=13.0%
								4	2000 1000 2000				
5													
- 5 .	3D	21/6	5.00 - 6.75	9/12/45/50-1"	57	57		1		Brown, wet, very dense, Si	lty SAND, some gravel,	(Marine Sand).	
							H	1					
							v v	138.9	0-9750	Bottom of Exploratio	on at 6.6 feet below grou	nd surface.	
										Sampler Refusal.	0		
]					
								1					
- 10 -								-					
								1					
								-					
								4					
- 15 -								1					
								1					
								4					
								1					
								1					
- 20 -								-					
]					
								1					
								-					
25													
Rem	harks:		1 1				1	4	1	I			
bgs	= below	ground sur	rface										
Strati	fication line	s represent	approximate hour	ndaries between soil types.	transitio	ns mav h	e gradual				Page 1 of 1		
* W/st	er level rea	idings have	been made at tim	les and under conditions et	ated Gr	oundwate	er fluctuatio	ons may r	occur du	e to conditions other			
thar	those pres	sent at the ti	me measuremen	ts were made.		- an ru walt	. nuotuall	ay (Boring No	HB-NBG	WR-204

]	Main	e Dep	artment	of Transport	atior	1	Projec Locat	ct: Sta Ro ion: 1	aples oad o Nortł	Bridg ver Gr n Berw	e #1238 carries Card Mill eat Works River ick, Maine	Boring No.:	HB-NBC	<u>GWR-205</u>
		<u>.</u>	03 0031010	ARTUNITS								WIN.	022	
Drill	er:		S. W. Cole Ex	plorations, LLC	Elev	vation	n (ft.)	1	149.5	5		Auger ID/OD:	2.25/4.5 inch H	Iollow Stem
Ope	rator:		S. Shaw		Dat	um:		1	NAV	D88		Sampler:	Standard Split-	Spoon
Log	ged By:		A. Santiago		Rig	Туре	:	Ι	Diedı	rich D-	50	Hammer Wt./Fall:	140 lbs/30"	
Date	e Start/F	inish:	5/21/2019		Dril	lling N	lethod	: I	Hollo	ow Ster	n Auger	Core Barrel:	N/A	
Bori	ing Loca	tion:	Sta. 14+40.9,	5.4 ft Lt	Cas	sing ID	D/OD:	1	N/A			Water Level*:	Not observed	
Ham	nmer Eff	iciency F	actor: 0.60		Har	nmer	Туре:	Aut	toma	tic 🗆	Hydraulic 🗆	Rope & Cathead ⊠		A
Defin D = S MD = U = T MU = V = F MV =	itions: plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S Unsuccess	Sample sful Split Spo ibe Sample sful Thin Wa Shear Test, sful Field Va	oon Sample Atten III Tube Sample A PP = Pocket Pe <u>ne Shear Test At</u>	R = Rock / SSA = Sol npt HSA = Hol RC = Rolle kttempt WOH = W unotrometer WOR/C = tempt WO1P = V Scample Information Scample Information	Core Sam id Stem A llow Stem er Cone eight of 14 Weight of Veight of C	uger Auger 40lb. Ha Rods o <u>One Per</u>	immer r Casing son	5 0 1 1 1 1	$S_u = F$ $S_u(lab)$ $A_p = U$ N-unc Hamm $N_{60} =$ $N_{60} =$	Peak/Re) = Lab Jnconfin orrected her Effic SPT N (Hamm	molded Field Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) = Raw Field SPT N-value incry Factor = Rig Specific Annua -uncorrected Corrected for Hamme er Efficiency Factor/60%)'N-unco	aar Strength (psf) T _v psf) Wt(PL I Calibration Value PI or Efficiency G is rrected C is	= Pocket Torvane She C = Water Content, per = Liquid Limit = Plastic Limit = Plasticity Index = Grain Size Analysis = Consolidation Test	ar Strength (psf) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(ft.)	Graphic Log	Visual De	scription and Remark	s	Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	24/10	0.00 - 2.00	4/4/3/8	7	7	H\$A				Brown, damp, loose, SANI (wood fiber), (Fill).	D, some gravel, little silt	, with organics	
	2D	24/8	2.00 - 4.00	8/12/16/12	28	28		14	47.0		Similar to above except me	dium dense.	2.5	
								-			(Marine Sand).	uni dense, Sandy SiL1,	nute gravel,	
- 5	3D	24/12	5.00 - 7.00	15/16/17/18	33	33					Similar to above except der	ise.		
								/						
- 10 -								14	40.3	20022	Bottom of Exploration Auger Refusal.	on at 9.2 feet below gro	9.2- und surface.	
- 15 -														
								-						
- 20 -														
20								-						
								-						
25 <u>Ren</u>	harks:	I												
bgs	= below	ground su	rface											
Strati	fication line	s represent	approximate bou	ndaries between soil types;	transition	is may b	e gradua	al.				Page 1 of 1		
* Wat thar	Tater level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other an those present at the time measurements were made. Boring No.: HB-NBGWR-205													

I	Maine	e Depa	artment	of Transporta	ation	Project:	Staple	Bridge	e #1238 carries Card Mill	Boring No.:	BB-NBC	GWR-101
		<u></u>	Soil/Rock Exp	loration Log		Locatio	Road on: Nort	ver Gr h Berw	eat Works River ick. Maine			
		<u>l</u>	JS CUSTOM	<u>ARY UNITS</u>						WIN:	022	.336
Drill	er:		S. W. Cole Ex	plorations, LLC	Elevatio	n (ft.)	145.	5 ft		Auger ID/OD:	HSA 2.25"/4.2	5"
Оре	rator:		J. Lee		Datum:		NAV	D88		Sampler:	Standard Split-	Spoon
Log	ged By:		E. Baron		Rig Typ	e:	Mob	ile D53		Hammer Wt./Fall:	140 lbs/30"	
Date	Start/Fi	nish:	05-29-2018		Drilling	Method:	Case	d Wash	l	Core Barrel:	NQ2 (2")	
Bori	ng Loca	tion:	Sta. 15+63.8 f	t, 48.5 ft Lt	Casing	D/OD:	HW	4"/4.5"		Water Level*:	±9.0 ft (after d	rilling)
Ham	mer Effi	ciency Fa	actor: 0.6	D. Dook C	Hamme	r Type:	Automa	tic 🗆	Hydraulic	Rope & Cathead	Dealist Taniana Cha	or Strongth (nof)
Defini D = S MD = U = T MU = V = Fi MV =	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess jeld Vane S Unsuccess	Sample ful Split Spo be Sample ful Thin Wal hear Test, ful Field Var	oon Sample Atten II Tube Sample A PP = Pocket Pe ne Shear Test Att	R = ROBK UG SSA = Solid npt HSA = Hollc RC = Roller ttempt WOR/C = W WOR/C = W WOR/C = W WOR/C = W	Stem Auger Stem Auger w Stem Auger Cone ght of 140lb. H leight of Rods eight of One Pe	lammer or Casing erson	S _u = S _{u(la} q _p = N-uno Hamr N ₆₀ = N ₆₀ =	Peak/Re b) = Lab Jnconfin corrected ner Effic SPT N- (Hamm	moled Field Vane Undrained Shea Vane Undrained Shear Strength (j ed Compressive Strength (ksf) = Raw Field SPT N-value iency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)'N-uncor	Par Strength (psr) $V_V = F$ psr) $WC = LL = L$ PL = I Calibration Value $PI = P$ or Efficiency $G = G$ rected $C = C$	Water Content, per iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	ar Strength (psr) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	24/10	0.50 - 2.50	10/11/9/7	20 20	HSA	145.3	****	4" of Pavement			
									Brown, damp, medium den	se, SAND, some gravel, li	tle silt, (Fill).	
	2D	24/12	2.50 - 4.50	7/15/3/2	18 18				Similar to above.			
- 5 -		17/2		27/5/50 51			140.6		Dark brown mottlad gray n			
	3D	17/2	5.00 - 6.42	27/6/50-5"		++/	120.0		little gravel, trace clay, trace	e organics, fine to medium	sand.	
						OPEN	139.2		Numerous cobbles and bou	lders from 6.4 to 9.3 ft bgs	— — — —0.4-	
- 10 -	4D	3/3	9.50 - 9.75	50-3"		+ +	135.3		Brown, wet, dense, SAND,	some silt, some gravel, (M	Iarine Sand).	
	R1	24/21	10.50 - 12.50	RQD = 67%		NQ2	155.5	96	Top of Bedrock at Elev. 13: Advanced by rollercone fro	5.3 ft. m 10 3 to 10 5 feet bys	10.5	
		21/21	10.50 14.05						R1:Bedrock: Grey, fine-gra quartzite veins, hard, fresh,	ined, quartz-biotite GRAN joints are low angle to mo	OFELS with derate dipping	
	K2	21/21	12.50 - 14.25	KQD = 33%					(5-55 degrees), very close to Formation). Rock Mass Quality = Fair.	o close and tight to open, (Berwick	
	R3	60/60	14.30 - 19.30	RQD = 90%					R1:Core Times (min:sec) 10.5-11.5 ft (3:30)			
- 15 -									R2:Bedrock: Similar to R1 Rock Mass Quality = Poor.	covery. except joints are low angle	e to vertical.	
									R2:Core Times (min:sec) 12.5-13.5 ft (3:45) 13.5-14.3 ft (4:30) 100% R6	ecovery.		
R3:Bedrock: Similar to R1 except joints are low angle and close to wide.												
20	R4	14/14	19.30 - 20.47	RQD = 100%					R3:Core Times (min:sec) 14.3-15.3 ft (3:45)			
- 20 -						V	125.1	0(120)	15.5-16.5 ft (4:15) 16.3-17.3 ft (3:30) 17.3-18.3 ft (3:30)			
									18.3-19.3 ft (3:15) 100% Ro R4:Bedrock: Similar to R3	ecovery. except no joints.		
									Rock Mass Quality = Excel R4:Core Times (min:sec) 19.3-20.5 ft (3:30) 100% R4	ecovery.		
									Bottom of Exploration	1 at 20.5 feet below grour	20.5- ad surface.	
25												
<u>Rem</u>	arks:											
bgs	= below	ground sur	face									

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-NBGWR-101
	-

Maine Department of Transportat					Project: Staples Bridge #1238 carries Card Mill Road over Great Works River Road over Great Works River					Bridge	#1238 carries Card Mill	Boring No.:	BB-NBC	GWR-102
			Soil/Rock Expl	oration Log			Locat	I ion [.]	Road o	ver Gr	eat Works River			
		1	US CUSTOMA	ARY UNITS			LUCAL	1011.	NOIL	I Delw	ck, Maine	WIN:	022	2336
Drille	er:		S. W. Cole Exp	plorations, LLC	Ele	vation	(ft.)		144.9	9 ft		Auger ID/OD:	5" Solid Stem	Auger
Oper	ator:		J. Lee	-	Dat	tum:			NAV	D88		Sampler:	Standard Split-	Spoon
Logo	jed By:		E. Baron		Rig	Type			Mob	ile D53		Hammer Wt./Fall:	140 lbs/30"	
Date	Start/Fi	nish:	05-30-2018		Dri	lling M	lethod	:	Case	d Wash		Core Barrel:	NQ2 (2")	
Bori	ng Loca	tion:	Sta 16+16.9 ft:	34.5 ft Lt	Cas	sina IC)/OD:		HW	4"/4.5"		Water Level*:	+8 feet (during	drilling)
Ham	mer Effi	ciency F	actor: 0.6		Hai	mmer	Type:	Δ	utoma	fic□	Hydraulic 🗆	Rone & Cathead 🛛		6/
Definit	ions:	ciciley i	uoton: 0.0	R = Rock (Core Sam	ple	.,		S _u =	Peak/Re	molded Field Vane Undrained She	ear Strength (psf) $T_V = I$	Pocket Torvane She	ar Strength (psf)
D = Sp MD =	olit Spoon S Unsuccess	Sample ful Split Sp	oon Sample Attem	Ipt SSA = Sol HSA = Hol	d Stem A low Stem	Auger			$S_{u(lal)}$ $q_{p} = l$	_{o)} = Lab Jnconfin	Vane Undrained Shear Strength (p ed Compressive Strength (ksf)	osf) WC = LL = I	Water Content, per iquid Limit	cent
U = Tł MU =	nin Wall Tu	be Sample ful Thin Wa	ull Tube Sample At	RC = Rolle WOH - W	er Cone	40lh Ha	mmer		N-uno Hamr	orrected	= Raw Field SPT N-value	PL =	Plastic Limit	
V = Fi	eld Vane S	hear Test,	PP = Pocket Per	netrometer WOR/C =	Weight of	Rods or	r Casing		N ₆₀ =	SPT N-	uncorrected Corrected for Hamme	r Efficiency G = G	rain Size Analysis	
101 V =	Unsuccess	iui riela va	ne Snear Test Alle	Sample Information	reight of t	Une Per	son		1160 =	(⊓amn	er Einclency Factor/60%) N-uncor		onsolidation rest	
		÷	£		ğ			Т						Laboratory Testing
	ġ.	: (in	Jept	in.) (%	ecte				_	6o-	Vieual Do	parintian and Romarka		Results/
) (ft.	ole 1	Rec	ole [gth DD(Sor		ē,	, .	ation	hic I	visual De	scription and remains		AASHTO
eptł	amp	en./	r.) am	hear tren stf) r RC	ĥ	60	asir		t.)	rap				Unified Class.
0	S S	<u> </u>	ore ore	0.00 m	z	z		1	ш <u></u> 144 б	U	¬ 4" of Pavement			
	ID	24/7	0.50 - 2.50	12/16/12/8	28	28	SSA	<u> </u>			Grev damp medium dense	Sandy GRAVEL some		
										****	Grey, damp, medium dense	, Sandy GRAVEL, Some	sint, (1 iii <i>)</i> .	
	20	24/6	2 50 4 50	10/12/0/16	21	21								
	20	24/0	2.30 - 4.30	10/12/9/16	21	21		_		****	Brown, damp, medium dens	se, Gravelly SAND, little	silt, (Fill).	
- 5 -								-	139.9					
	3D	23/4	5.00 - 6.92	4/9/9/50-5"	18	18					Brown, moist, medium dens	se, SAND, some gravel, li	ttle silt, (Marine	
										an Daa	Sand).			
							+ $+$	_		0 60 0 10 0 9				
	4D	21/6	8.00 - 9.75	7/17/13/50-3"	30	30				0600 6106	Brown, wet, dense, Gravelly	y SAND, little silt, (Marin	e Sand).	
								\vdash		0 04 0 9 9 9 9				
10							V			的對				
10 -	R1	72/59	10.00 - 16.00				NØ2	2			Advanced by rock core thro	ough cobbles from 10 to 1	.3 feet bgs.	
							+	-						
										日本の				
				RQD = 41%					132.6		Top of Bedrock at Flev 13	2.6.ft		
										912)	Top of Doursen at Lion 15.	210 11		
								_		169D	R1:Bedrock: Grey, fine-gra	ined, quartz-biotite GRAN	OFELS with	
										90	degrees), very close to close	e and tight to open with sil	t infilling in	
- 15 -										<u>d</u> l 190	steep joint, (Berwick Forma	ation).		
								_		UMU (R1:Core Times (min:sec)			
	R2	60/47	16.00 - 21.00	RQD = 40%						963	12.3-13.0 ft (2:45)			
										5C115	13.0-14.0 ft (3:00) 14.0-15.0 ft (2:45)			
								_		<u>1110</u>	15.0-16.0 ft (2:30) 82% Rec	covery.		
										9129	Rock Mass Quality = Poor.	except joints are low angle		
					_			Π		66316	R2:Core Times (min:sec)			
- 20 -							+++	4		all a	10.0-17.0 ft (2:45) 17.0-18.0 ft (2:45)			
							$\downarrow V$		123.0	<i>U11</i> 0	18.0-19.0 ft (3:00)			
											19.0-20.0 ft (2:45) 20.0-21.0 ft (2:30) 78% Red	covery.		
											Bottom of Euplanetion	at 21.0 faat halam anam	21.0	
											BOUGHI OF EXPLORATION	1 at 21.0 reet below groui	iu sui face.	
25	arke						1							
Kem	ai KS:													
bgs	= below g	ground su	rface											
Stratifi	cation lines	s represent	approximate boun	daries between soil types;	transitior	ns may b	e gradua	al.				Page 1 of 1		
* Wate	those proc	dings have	been made at time	es and under conditions sta	ated. Gro	oundwate	er fluctua	itions	may oo	cur due	to conditions other	Boring No.	BB-NRG	WR-102
uian	anose pres	oon at t⊓e t	ine measurement										טמא פפ	

APPENDIX D Laboratory Test Results

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	North	Berv	wick		Work	ς Νι	ımt	ber	: 223:	36.00	
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	ssificatior	า
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-NBGWR-201, 2D	16+06	6.0 Rt.	4.0-6.0	337285	1	12.2			GW-GM	A-1-a	0
HB-NBGWR-204, 2D	14+85	CL	2.0-4.0	337284	1	13.0			CL	A-4	IV
								<u> </u>			
								<u> </u>			
Classification of th	ese soil samp	les is in ac	cordance wit	th AASHTO C	lassificatio	on Syst	em M-	·145-4	U. This cla	ssification	1
IS followed by the	"Frost Suscep	tibility Rat	ing" from zer	o (non-trost s	susceptible	e) to Cl	ass IV	(nigh	iy frost su	sceptible).	
	ceptibility Rat	ing is bas	sea upon the				eers C		ication Sy	stems.	
GOUC = Grain Size Distribution	auon Curve as		DY AASHIO	1 00-93 (1996) STM D 2246 0	and/or AS	IND 4	22-63	(кеар	proved 19	90)	

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98 NP = Non Plastic

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

UNIFIED CLASSIFICATION

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	BB-NBGWR-201/2D	16+06	6.0 RT	4.0-6.0	Sandy GRAVEL, trace silt.	12.2			
۲	HB-NBGWR-204/2D	14+85	CL	2.0-4.0	Sandy SILT, trace gravel.	13			
•									
X									

WI	N					
022336.00						
Town						
North Berwick						
Reported by/Date						
NHITE, TERRY A	7/15/2019					

APPENDIX E Calculations

Static Conditions

WIN 22336 Staples Bridge #1238 North Berwick, Maine

Station 16+25 North Approach Materials:

- 1. Existing Fill: Unit Wt = 120 pcf, Phi = 30 deg
- 2. New Fill: Unit Wt = 125 pcf, Phi = 32 deg
- 3. Marine Sand: Unit Wt = 130 pcf, Phi = 36 deg
- 4. Bedrock: Impenetrable

WIN 22336 Staples Bridge #1238 North Berwick, Maine Seismic Conditions kh = 0.5*amax = 0.06g

Materials:

- 1. Existing Fill: Unit Wt = 120 pcf, Phi = 30 deg
- 2. New Fill: Unit Wt = 125 pcf, Phi = 32 deg
- 3. Marine Sand: Unit Wt = 130 pcf, Phi = 36 deg
- 4. Bedrock: Impenetrable

Station 16+25 North Approach

Evaluation of Nominal and Factored Bearing Resistance on Rock

Service Limit State

From 2017 AASHTO LRFD Table 10.6.2.6.1-1, Presumptive Bearing Resistance for Spread Footing Foundations at the Service Limit State Modified after U.S. Department of the Navy (1982)

Bearing Material:	weathered or broken bedrock of any kind
Consistency in Place:	medium hard rock
Bearing Resistance Range:	16 to 20 ksf
Recommended Bearing Resistance:	20 ksf
Nominal Bearing Resistance	$q_{nominal service} \coloneqq 20 \ ksf$

 $\phi_r \coloneqq 1.0$

Resistance Factor Service Limit

Factored Bearing Resistance

 $q_{factored_service} \coloneqq \phi_r \cdot q_{nominal_service}$

 $q_{factored_service} = 20 \ ksf$

Recommend Nominal and Factored Bearing Resistance of 20 ksf (Service Limit State)

From 2017 LRFD Article C10.6.2.6.1, when using presumptive bearing resistance values the service limit bearing resistances are limited to 1 inch of settlement

Strength and Extreme Limit States

Reference(s): Wyllie (2009) Foundations on Rock, 2nd Ed.

Hoek and Brown (1988) <u>The Hoek-Brown Failure Criterion - A 1988 Update</u> AASHTO (2002) <u>Standard Specifications for Highway Bridges</u>, 17th Ed. 2012 AASHTO LRFD <u>Bridge Design Specifications</u>, 6th Ed.

Establish Bedrock Properties

No rock core compressive strengths performed. Evaluate based on observations of exposed bedrock at site and rock core obtained.

Estimate range or Compressive Strengths based on Table 4.4.8.1.2B from Standard Specifications for Highway Bridges.

Classify as Rock Category D, fine-grained igneous crystalline rock - Diabase Co = 450-12,000 ksf (3,100-83,000 psi)

Use $q_{uc} \approx 7000 \ psi$

 $q_{uc} = 1008 \ ksf$

Deterine Rock Mass Rating (RMR) using 2012 AASHTO LRFD Table 10.4.6.4-1 Geomechanics Classification of Rock Masses

1. Strength of Intact Rock Material

For assumed Uniaxial Compressive Strength of 7,000 psi (1,008 ksf)

LRFD Table 10.4.6.4-1 for Uniaxial Compressive Strength = 520-1,080 ksf;Relative Rating = 4RMR1:=4

2. Drill Core Quality RQD RQD ranged from 33-100% (Poor to Excellent); Weighte	ed RQD = 60% (Fair)
LRFD Table 10.4.6.4-1 for RQD 50-75%; Relative Rating = 13	<i>PMP</i> - 13
3. Spacing of Joints Very close to close joint spacing (2 to 12")	<i>Tuvitt</i> ₂ 13
LRFD Table 10.4.6.4-1 for joint spacing of 2in to 1ft; Relative Rating = 10	$RMR_3 \coloneqq 10$
 Condition of Joints Joints with slightly rough surfaces, seperation <0.05" ar 	nd soft joint wall rock
LRFD Table 10.4.6.4-1; Relative Rating = 12	$RMR_4 \coloneqq 12$
5. Groundwater Conditions General conditions: Moist Only (Relative Rating = 7) Water Under Moderate Pressure (Re	elative Rating = 4)
Use Relative Rating = 4	$RMR_5 := 4$
6. Strike and Dip Orientations (from 2012 LRFD Table 10.4.6.4-2 Geomechanics Rating	g for Joint Orientations)
For Foundations, assume Fair rating	
LRFD Table 10.4.6.4-2 for Strike and Dip Orientations; Relative Rating = -7	$RMR_6 \coloneqq 7$
$RMR \coloneqq RMR_1 + RMR_2 + RMR_3 + RMR_4 + RMR_5 - R$	MR_6
RMR=36	
From 2012 LRDF Table 10.4.6.4-3 Geomechanics Rock Mas Total Ratings	s Classes Determined from
RMR=36 is indicative of Poor Quality Rock Mass	
From 2012 LRDF Table 10.4.6.4-4	
Rock Type D - Fine grained polyminerallic igneous crystallir	ne rocks
For Rock Type D and Intact Rock (RMR=100, mi=17)	

Determine Rock Property Constants s and m	
From Hoek and Brown (1988) Table 1, Calcula	ate m and s
For Disturbed rock mass use Hoek and Brown Eqn 18 m/mi = exp((RI Eqn 19 s = exp((RMR-2	(1988) MR-100)/14) 100)/6)
where mi is the value of m for intact rock	$m_i := 17$
$m \coloneqq m_i \cdot \exp\left(\frac{RMR - 100}{14}\right)$	$m \!=\! 0.176$
$s \coloneqq \exp\left(\frac{RMR - 100}{6}\right)$	$s = 2.331 \cdot 10^{-5}$

Determine Correction Factor for Foundation Shape, from Wyllie (2009) Table 5.4 (Pg 138)

$$\begin{array}{cccc} L_{f} \coloneqq 28 \ ft & B_{f} \coloneqq 8.5 \ ft & \frac{L_{f}}{B_{f}} = 3.294 \\ C_{f1} \coloneqq 1.05 & & & & & \\ \end{array}$$

$$q_{nominal} \coloneqq C_{f1} \cdot \sqrt{s} \cdot q_{uc} \cdot \left(1 + \sqrt{m \cdot (s^{-0.5})} + 1\right)$$

 $q_{nominal} = 41.1 \ ksf$

Factored Bearing Resistance - Strength I

From AASHTO LRFD Table 10.5.5.2.2-1, Resistance Factor for Geotechnical Resistance of Shallow Foundations at the Strength Limit State

 $\varphi_b \coloneqq 0.45$

 $q_{factored_strength} \! \coloneqq \! \varphi_b \bullet q_{nominal}$

 $q_{factored_strength} = 18.5 \ ksf$

Strength Limit Factored Bearing Resistance

Factored Bearing Resistance - Extreme I

From AASHTO LRFD Table 10.5.5.2.2-1, Resistance Factor for Geotechnical Resistance of Shallow Foundations at the Extreme Limit State

 $\varphi_b \coloneqq 0.8$

 $q_{factored_extreme} \coloneqq \varphi_b \cdot q_{nominal}$

 $q_{factored_extreme} = 32.8 \ ksf$

Strength Limit Factored Bearing Resistance

Calculated by / Date: <u>MAS / August 2018</u> Checked by: <u>TJB</u>

Rock			C _o ⁽¹⁾			
Category	General Description	Rock Type	(ksf)	(psi)		
A	Carbonate rocks with well-	Dolostone	700- 6,500	4,800-45,000		
	developed crystal cleavage	Limestone	500- 6,000	3,500-42,000		
		Carbonatite	800-1,500	5,500-10,000		
		Marble	800- 5,000	5,500-35,000		
		Tactite-Skarn	2,700- 7,000	19,000-49,000		
В	Lithified argillaceous rock	Argillite	600- 3,000	4,200-21,000		
	-	Claystone	30- 170	200- 1,200		
		Marlstone	1,000- 4,000	7,600-28,000		
		Phyllite	500- 5,000	3,500-35,000		
		Siltstone	200- 2,500	1,400-17,000		
		Shale ⁽²⁾	150- 740	1,000- 5,100		
		Slate	3,000- 4,400	21,000-30,000		
С	Arenaceous rocks with strong	Conglomerate	700- 4,600	4,800-32,000		
	crystals and poor cleavage	Sandstone	1,400- 3,600	9,700-25,000		
		Quartzite	1,300- 8,000	9,000-55,000		
D	Fine-grained igneous	Andesite	2,100- 3,800	14,000-26,000		
	crystalline rock	Diabase	450-12,000	3,100-83,000		
Е	Coarse-grained igneous and	Amphibolite	2,500- 5,800	17,000-40,000		
	metamorphic crystalline rock	Gabbro	2,600- 6,500	18,000-45,000		
		Gneiss	500- 6,500	3,500-45,000		
		Granite	300- 7,000	2,100-49,000		
		Quartzdiorite	200- 2,100	1,400-14,000		
		Quartzmonzonite	2,700- 3,300	19,000-23,000		
		Schist	200- 3,000	1,400-21,000		
		Syenite	3,800- 9,000	26,000-62,000		

TABLE 4.4.8.1.2B Typical Range of Uniaxial Compressive Strength (C_o) as a Function of Rock Category and Rock Type

⁽¹⁾Range of Uniaxial Compressive Strength values reported by various investigations.

⁽²⁾Not including oil shale.

$$\rho = q_o (1 - \nu^2) B I_p / E_m, \text{ with } I_\rho = (L/B)^{1/2} / \beta_z \eqno(4.4.8.2.2-2)$$

Values of I_p may be computed using the β_z values presented in Table 4.4.7.2.2B from Article 4.4.7.2.2 for rigid footings. Values of Poisson's ratio (v) for typical rock types are presented in Table 4.4.8.2.2A. Determination of the rock mass modulus (E_m) should be based on the results of in-situ and laboratory tests. Alternatively, values of E_m may be estimated by multiplying the intact rock modulus (E_o) obtained from uniaxial compression tests by a reduction factor (α_E) which accounts for frequency of discontinuities by the rock quality designation (RQD), using the following relationships (Gardner, 1987):

$$E_{\rm m} = \alpha_{\rm E} E_{\rm o}$$
 (4.4.8.2.2-3)

 $\alpha_{\rm E} = 0.0231({\rm RQD}) - 1.32 \ge 0.15 \quad (4.4.8.2.2-4)$

For preliminary design or when site-specific test data cannot be obtained, guidelines for estimating values of E_o (such as presented in Table 4.4.8.2.2B or Figure 4.4.8.2.2A) may be used. For preliminary analyses or for final design when in-situ test results are not available, a value of $\alpha_E = 0.15$ should be used to estimate E_m .

4.4.8.2.3 Tolerable Movement

Refer to Article 4.4.7.2.3.

4.4.9 Overall Stability

The overall stability of footings, slopes, and foundation soil or rock shall be evaluated for footings located on

Table 10.4.6.4-1—Geomechanics Classification of Rock Masses

						_							
Parameter			Ranges of Values										
	Strength of Strength index		>175 ksf	85-	–175 ksf	75 45-85 ksf		20-45 ksf		or this low range, uniaxial ompressive test is preferred			xial erred
1	intact rock material	Uniaxial compressive strength	>4320 ksf	21 432	60 20 ksf	1080- 2160 ksf	52 1080	0–) ksf	215 	5–520 ksf	70	⊢215 ksf	20–70 ksf
	Relative Rating		15		12	7	4	ŀ		2		1	0
	Drill core quality	y RQD	90% to 100	0%	75%	6 to 90%	50%	6 to 75	5%	259	% to 5	50%	<25%
2	Relative Rating		20			17		13				8	3
	Spacing of joints	5	>10 ft		3	5–10 ft	1	1–3 ft		2	in.–1	ft	<2 in.
2	Relative Rating		30			25		20	1		1	0	5
4	Condition of joints		 Very rou, surfaces Not continuot No separatio Hard join wall rock 	rough Slightly roug surfaces es Separation uous <0.05 in. Hard joint w rock rock		htly rough aces aration 5 in. 1 joint wall	 Slightly rough surfaces Separation <0.05 in. Soft joint wall rock 		htly h Slicken-sided surfaces or Gouge <0.2 i thick joint rock Joints open 0.05–0.2 in. Continuous		sided 0.2 in. 9 9 9 9 1 0 9 9 1 0 9 9 1 9 1 9 1 9 1 9	 Soft gouge >0.2 in. thick or Joints open >0.2 in. Continuous joints 	
	Relative Rating		25			20		12		6		6	0
5	Groundwater conditions (use one of the three evaluation criteria as appropriate to the method of		None		<400 gal./h		nr.	r. 400–2000 g		00 gal./hr. >2000 gal./l		000 gal./hr.	
	exploration)	exploration) Ratio = joint water pressure/ major principal		0		0.0-0.2			0.2	-0.5			>0.5
		General	Complete	ly Dr	у (Moist onl	y ater)	mo	Wate	r under e pressi	ıre	Se	evere water problems
	Relative Rating		10			7		4		0			

Table 10.4.6.4-2-Geomechanics Rating Adjustment for Joint Orientations

Strike and Dip Orientations of Joints		Very Favorable	Favorable	Fair	Unfavorable	Very Unfavorable
	Tunnels	0	-2	-5	-10	-12
Ratings	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

Evaluation of Activ	ve Earth Pressure for CI	P Substructure Design
Assumed Backfill	Values	
MaineDOT BDG Sect	ion 3.6.1 - Soil Type 4	
$\gamma \coloneqq 125 \ pcf$		Unit Weight
φ≔38 deg		Friction Angle
$c \coloneqq 0 \ \boldsymbol{psf}$		Cohesion
Wall Parameters		
θ:=90 deg		Angle of back face of wall (from horizontal)
$\delta \coloneqq \frac{2}{3} \cdot \phi$	$\delta \!=\! 25.33 deg$	Interface Friction between Fill and Wall LRFD Table 3.11.5.3-1, δ = 19 to 24deg
$\beta \coloneqq 0 \ deg$		Continous Backslope Angle(s) (from horizontal)

Rankine Active Earth Pressure Coefficient

Calculated by / Date: <u>MAS / August 2019</u> Checked by: <u>TJM</u>

Evaluation of Activ	ve Earth Pressure for G	RS Structure Design
Assumed Backfill	Values	
FHWA-HRT-11-026,	dated January 2011 (FHW	A 2011)
$\gamma \coloneqq 125 \ pcf$		Unit Weight
$\phi \coloneqq 38 \ deg$		Friction Angle
$c := 0 \ \boldsymbol{psf}$		Cohesion
Wall Parameters		
<i>θ</i> := 90 <i>deg</i>		Angle of back face of wall (from horizontal)
$\delta \coloneqq \frac{2}{3} \cdot \phi$	$\delta = 25.33$ deg	Interface Friction between Fill and Wall
β≔0 deg		Continous Backslope Angle(s) (from horizontal)
Rankine Active Ea	rth Pressure Coefficien	t
$k_{a_r} \coloneqq an igg(45 \ deg$	$\left(q-\frac{\phi}{2}\right)^2$	$k_{a_{-}r} \!=\! 0.24$

Rankine Passive Earth Pressure Coefficient

Calculated by / Date: <u>MAS / August 2019</u> Checked by: <u>TJM</u>

5.2 General

5.2.1 Frost

Any foundation placed on seasonally frozen soils must be embedded below the depth of frost penetration to provide adequate frost protection and to minimize the potential for freeze/thaw movements. Fine-grained soils with low cohesion tend to be most frost susceptible. Soils containing a high percentage of particles smaller than the No. 200 sieve also tend to promote frost penetration.

In order to estimate the depth of frost penetration at a site, Table 5-1 has been developed using the Modified Berggren equation and Figure 5-1 Maine Design Freezing Index Map. The use of Table 5-1 assumes site specific, uniform soil conditions where the Geotechnical Designer has evaluated subsurface conditions. Coarse-grained soils are defined as soils with sand as the major constituent. Fine-grained soils are those having silt and/or clay as the major constituent. If the make-up of the soil is not easily discerned, consult the Geotechnical Designer for assistance. In the event that specific site soil conditions vary, the depth of frost penetration should be calculated by the Geotechnical Designer.

Desian	Frost Penetration (in)									
Freezing	Co	arse Grair	ned	Fine Grained						
Index	w=10%	w=20%	w=30%	w=10%	w=20%	w=30%				
1000	66.3	55.0	47.5	47.1	40.7	36.9				
1100	69.8	57.8	49.8	49.6	42.7	38.7				
1200	73.1	60.4	52.0	51.9	44.7	40.5				
1300	76.3	63.0	54.3	54.2	46.6	42.2				
1400	79.2	65.5	56.4	56.3	48.5	43.9				
1500	82.1	67.9	58.4	58.3	50.2	45.4				
1600	84.8	70.2	60.3	60.2	51.9	46.9				
1700	87.5	72.4	62.2	62.2	53.5	48.4				
1800	90.1	74.5	64.0	64.0	55.1	49.8				
1900	92.6	76.6	65.7	65.8	56.7	51.1				
2000	95.1	78.7	67.5	67.6	58.2	52.5				
2100	97.6	80.7	69.2	69.3	59.7	53.8				
2200	100.0	82.6	70.8	71.0	61.1	55.1				
2300	102.3	84.5	72.4	72.7	62.5	56.4				
2400	104.6	86.4	74.0	74.3	63.9	57.6				
2500	106.9	88.2	75.6	75.9	65.2	58.8				
2600	109.1	89.9	77.1	77.5	66.5	60.0				

Table 5-1 Depth of Frost Penetration

Notes: 1. w = water content

2. Where the Freezing Index and/or water content is between the presented values, linear interpretation may be used to determine the frost penetration.

Determine Seismic Site Classification per AASHTO LRFD Table C3.10.3.1-1 - Method B

Data From Boring BB-NBGWR-101

Layer No. Layer Depth Range (ft)				N ₆₀ values recorded within layer							Average N ₆₀ value	Layer Thickness	d _i /N _i	
	Description	Тор	op End								Ni	di		
1	Fill	0	5	20	18							19.0	5	0.26
2	Native	5	10.3	100	100							100.0	5.3	0.05
3	Bedrock	10.3	100	100								100.0	89.7	0.90
Notes:	1. Refusal N60 values taken as N=100									Σ =	100	1.21		
	2. N60 value for bedrock taken as N=100													
												N_bar	= di/di/Ni =	82.43

Data From Boring BB-BSR-102

Layer No.	Layer	Depth R	ange (ft)		N ₆₀	values	recor	ded w	ithin la	ayer	Average N ₆₀ value	Average N ₆₀ Layer value Thickness			
	Description	Тор	End								Ni	di			
1	Fill	0	5	28	21						24.5	5	0.20		
2	Native	5	12.3	18	30						24.0	7.3	0.30		
3	Bedrock	12.3	100	100							100.0	87.7	0.88		
Notes:	1. Refusal N6	0 values tak	en as N=10	00							Σ =	100	1.39		

2. N60 value for bedrock taken as N=100

N_bar = di/di/Ni = 72.19 Site Class C

Site Class

С

Data From Boring BB-NBGWR-201

Layer No.	Layer	Depth R	ange (ft)	N_{60} values recorded within layer						Average N ₆₀ value	Layer Thickness	d _i /N _i	
	Description	Тор	End								Ni	di	
1	Native	0	9.2	2	35						18.5	9.2	0.50
2	Bedrock	9.2	100	100							100.0	90.8	0.91
Notes:	1. Refusal N6	0 values tak	en as N=10	0							Σ =	100	1.41

2. N60 value for bedrock taken as N=100

N_bar = di/di/Ni = <u>71.16</u> Site Class C

Data From Boring BB-BSR-202

Layer No.	Layer	Depth R	ange (ft)	N_{60} values recorded within layer						4	Average N ₆₀ value	Layer Thickness	d _i /N _i	
	Description	Тор	End									Ni	di	
1	Native	0	11.7	3	31	49						27.7	11.7	0.42
2	Bedrock	11.7	100	100								100.0	88.3	0.88
Notes:	1. Refusal N6	0 values tal	ken as N=10	0								Σ =	100	1.31

Refusal N60 values taken as N=100
 N60 value for bedrock taken as N=100

N_bar = di/di/Ni = 76.58 Site Class C Conterminous 48 States 2007 AASHTO Bridge Design Guidelines AASHTO Spectrum for 7% PE in 75 years 43.316734 Latitude = Longitude = -070.743965Site Class B Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.099 PGA - Site Class B Ss - Site Class B 0.2 0.191 1.0 0.045 S1 - Site Class B Conterminous 48 States 2007 AASHTO Bridge Design Guidelines Spectral Response Accelerations SDs and SD1 Latitude 43.316734 = Longitude = -070.743965As = FpgaPGA, SDs = FaSs, and SD1 = FvS1 Site Class C - Fpga = 1.20, Fa = 1.20, Fv = 1.70 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.119 As - Site Class C 0.2 0.229 SDs - Site Class C 1.0 0.077 SD1 - Site Class C Conterminous 48 States 2007 AASHTO Bridge Design Guidelines Map Response Spectra for Site Class B Latitude = 43.316734 Longitude = -070.743965Ss and S1 = Mapped Spectral Acceleration Values Site Class B Data are based on a 0.05 deg grid spacing. Period Sa Sd (g) in. (sec) 0.000 0.099 0.000 T = 0.0, Sa = PGA 0.191 0.004 T = To, Sa = Ss0.048 0.200 0.191 0.075 T = 0.2, Sa = Ss0.238 0.191 0.106 T = Ts, Sa = Ss0.300 0.152 0.133 0.400 0.114 0.178 0.267 0.600 0.076 0.800 0.057 0.355 T = 1.0, Sa = S11.000 0.045 0.444 1.200 0.038 0.533 1.400 0.032 0.622 0.028 1.600 0.711 1.800 0.025 0.800 2.000 0.023 0.889 2.200 0.021 0.978 2.400 0.019 1.066 2.600 0.017 1.155 2.800 0.016 1.244 3.000 0.015 1.333 3.200 0.014 1.422

3.400	0.013	1.511	
3.600	0.013	1.600	
3.800	0.012	1.688	
4.000	0.011	1.777	
Conterminou	s 48 State	S	
2007 AASHT	O Bridge I	.s Desian (-	uidelines
Design Resp	onse Sner	tra for S	ite Class C
Latitude :	= 43.316	6734	
Longitude :	= -070 743	965	
As = From P	GA SDs =	= FaSs S	SD1 = FvS1
Site Class (C - Fpga:	= 1.20.	Fa = 1.20. $Fv = 1.70$
Data are ba	sed on a ().05 dea	arid spacing.
Period	Sa	Sd	9
(sec)	(g)	in.	
Ò.00Ó	0.119	0.000	T = 0.0, Sa = As
0.067	0.229	0.010	
0.200	0.229	0.090	T = 0.2, Sa = SDs
0.337	0.229	0.254	T = Ts, Sa = SDs
0.400	0.193	0.302	
0.600	0.129	0.453	
0.800	0.097	0.604	
1.000	0.077	0.755	T = 1.0, Sa = SD1
1.200	0.064	0.906	
1.400	0.055	1.057	
1.600	0.048	1.209	
1.800	0.043	1.360	
2.000	0.039	1.511	
2.200	0.035	1.662	
2.400	0.032	1.813	
2.600	0.030	1.964	
2.800	0.028	2.115	
3.000	0.026	2.266	
3.200	0.024	2.417	
3.400	0.023	2.568	
3.600	0.021	2./19	
3.800	0.020	2.870	
4.000	0.019	3.021	