Identifying Critical Portions of the Landscape for Water Quality Protection Using Terrain Analysis

Adam Birr, Ph.D.
Minnesota Department of Agriculture

David Mulla, Ph.D., Jake Galzki, and Joel Nelson
Department of Soil, Water, and Climate
University of Minnesota
Clean Water Funding Initiatives

• Passage of the constitutional amendment provides badly needed funding for protection, restoration and enhancement of impaired waters and damaged wildlife habitat
• Funding from the Clean Water Fund should be spent on the most critical landscapes and sources of water quality degradation
• There is a pressing need for tools to identify these critical areas
Precision Conservation

• “…set of spatial technologies and procedures to implement conservation management practices that integrates spatial and temporal variability across natural and agricultural systems.”
 – Berry et al. 2003

• “Getting the right practices, in the right places, at the right time, and at the right scale is what makes conservation effective.”
 – Cox 2005
Critical Areas

• Studies suggest that small areas of the agricultural landscape (5-25%) generate a disproportionately large amount of erosion or phosphorus

• Portion of landscape where least amount of BMP investment will yield the most benefit (Maas et al. 1985)
Critical Areas

- Two criteria:
 - Accumulation of surface flow
 - Hydrologic connection to surface waters
Critical Areas: Identification

• Defining critical areas is a challenge due to the hydrologic complexity and natural variability that occurs across the landscape

• Terrain analysis of Digital Elevation Models (DEM)s may be the key to defining critical areas

• LiDAR data can greatly enhance our ability to identify the critical areas
The Future of Elevation Data: Lasers

- Terrain analysis has been used for decades on coarse scale data.
- LiDAR has greatly improved the resolution of elevation data.
USGS 30 meter Elevation data
LiDAR 3 meter Elevation data
- 25 Minnesota counties currently have LiDAR data available
- Statewide LiDAR acquisition has been funded by the Clean Water Fund ($5.6 million)
- To be completed in 2012

“The legislature got you the dollars, now go out and show us what you can do!”
- Representative Rick Hanson
Terrain Analysis - DEM

- Use of a DEM to model the landscape
- Quantitative approach to representing features on the landscape
- Accurately characterize large areas quickly
- Describe, analyze, and interpret any topographically-related feature: soils, vegetation, wildlife, etc
Characteristics of Digital Terrain Analysis

- Sacrifices physical sophistication for simple calculations describing soil moisture patterns.
- Input requirements readily accessible and appropriate for the precision with which many management questions need to be and can be answered (Barling et al., 1994).
- Several studies have demonstrated the use of topographic indices to characterize the spatial distribution of soil moisture and soil mapping components controlled by soil hydrology (Bell et al., 1994; Thompson et al., 1998; Fried et al., 2000).
Digital Terrain Analysis
Overview Example

Point Elevations with GPS

Spatial Interpolation

DEM

Terrain Attributes

Attribute Calculation
Terrain Attributes

• Divided into primary and secondary (compound) attributes

• Primary attributes are calculated directly from the elevation data
 – Examples: Aspect, slope, catchment area, profile curvature, etc

• Compound attributes involve combinations of primary attributes and are indices that describe the spatial variability of specific process occurring in the landscape such as the potential for sheet erosion (Moore et al., 1991; Wilson and Gallant, 2000)
 – Examples: Wetness index, Stream power index, etc
Terrain Attributes: Slope

- Primary attribute that quantifies the maximum rate of change in value from each cell to its neighbors
- Describes overland and subsurface flow velocity and runoff rate
Terrain Attributes: Flow Accumulation

- Primary attribute representing the drainage area of any given cell
- Indicates overland flow paths
- Also known as catchment area, upslope contributing area

![Diagram showing elevation and flow accumulation]
Terrain Attributes: Stream Power Index

- Secondary attribute: product of Slope and Flow Accumulation
- Quantifies the erosive power of overland flow
- Isolates areas with large catchments and steep slopes

SPI

High

Low
Stream Power Index
Clean Water Legacy Pilot Study

- Objective is to develop a tool that uses terrain attributes to identify critical source areas vulnerable surface water runoff
 - Study conducted at multiple scales (3,000 ac to 800,000 ac) using different DEM sources.
 - 30m DEM: Le Sueur Watershed
 - 3m LiDAR-derived DEM: Beauford Ditch Watershed (Blue Earth County) and Seven Mile Creek Watershed (Nicollet County)
 - Focus primarily on near-stream features in the UPLANDS
Overview of Methods

• Calculated a suite of primary and secondary terrain attributes in the pilot watersheds
• Conducted a field survey to relate terrain attributes to critical source features in the field
• Identified terrain attributes that are of greatest use and used statistics to define threshold values
Study Area

- 2 pilot watersheds in Minnesota River Basin
Field Surveys

• Handheld Pocket PC with WAAS GPS
• Field Mapping Software
• Tape Measure
• Digital Camera
• Compass
• Log book
Methods

• Survey yielded GPS shapefile of points with associated field recorded attributes
Example: Using Flow Accumulation to Identify Gullies
Seven Mile Creek Watershed (Nicollet County)
Example: Using Flow Accumulation to Identify Gullies
Seven Mile Creek Watershed (Nicollet County)
Example: Using Flow Accumulation to Identify Gullies
Seven Mile Creek Watershed (Nicollet County)
Example: Stream Power Index to Identify Gullies

Seven Mile Creek Watershed (Nicollet County)
Courtesy of the Brown, Nicollet, Cottonwood Water Quality Board
Example: Using Flow Accumulation to Identify Critical Source Areas

Beauford Watershed (Blue Earth County)
Example: Using Flow Accumulation to Identify Critical Source Areas
Beauford Watershed (Blue Earth County)
Example: Using Flow Accumulation to Identify Critical Source Areas

Beauford Watershed (Blue Earth County)
Results
Results

• Confirmed that ordinal size of a feature is related to SPI
• Although not a quantitative assessment of delivery potential, values suggest that there is a relationship to the terrain attribute value and the magnitude of the erosion feature.
• Further study including water quality data collection recommended to quantify this relationship

Average Percentiles of SPI for Gullies in Seven Mile Creek Watershed
Summarized by SDP Score

<table>
<thead>
<tr>
<th>SDP Score</th>
<th>Average Percentile of SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (SDP = 3)</td>
<td>97.4</td>
</tr>
<tr>
<td>Moderate (SDP = 2)</td>
<td>83.8</td>
</tr>
<tr>
<td>Low (SDP = 1)</td>
<td>72.8</td>
</tr>
</tbody>
</table>

Average Percentiles of SPI for Side Inlets in Beauford Watershed
Summarized by Inlet Size

<table>
<thead>
<tr>
<th>Side Inlet Size</th>
<th>Average Percentile of SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large (24 - 36 inches)</td>
<td>98.9</td>
</tr>
<tr>
<td>Medium (14 - 18 inches)</td>
<td>93.3</td>
</tr>
<tr>
<td>Small (4 - 12 inches)</td>
<td>81</td>
</tr>
</tbody>
</table>
Cost Benefits of Terrain Analysis
Seven Mile Creek Watershed

• Walking survey took 10 days and about 300 labor hours with 3 people
• Total cost = $9,500 or about $413/ditch mile
• Estimate 10-12 years at a cost of about $100,000-$120,000 in labor to conduct the same survey for the rest of the County
• Source: Brown Nicollet Cottonwood Water Quality Board
Cost Benefits of Terrain Analysis
Seven Mile Creek Watershed

- LiDAR Based GIS survey completed in a matter of hours
- County-wide survey could be finished in a matter of weeks
- Majority of the largest contributing areas would be identified
- Temporal and financial requirements are a small fraction of the field based surveys
Conclusions

• Terrain analysis can be a very fast and effective tool to locate critical areas
• Terrain attribute values are related to ordinal size of erosional features
 – Conservation efforts can target most severe erosion risks
• These methods are easy to employ and can serve as a valuable use of newly acquired LiDAR data
Next Steps

• CWL project final report:
 – Includes a powerpoint tutorial for processing data and conducting a terrain analysis in ArcGIS.
 – http://www.mda.state.mn.us/protecting/waterprotection/newimpairedwaters.aspx

• Training workshops.

• Pilot the approach with LGUs in 2-3 watersheds.
One-Day Workshop:
Digital Terrain Analysis for TMDL Implementation in Minnesota

Learn a process for identifying critical source areas of the agricultural landscape to improve water quality

Register early, as seating is limited. See back ➔

- Winona State University - Wednesday, April 7, 2010
- Minnesota State University (Mankato) - Tuesday, May 11, 2010
- St. Cloud State University - Thursday, May 13, 2010

This one-day workshop is for GIS-trained natural resource analysts involved in locally led Total Maximum Daily Load (TMDL) water quality restoration and/or clean water protection efforts (see prerequisites on back). Participants will learn a scientific process that identifies the best places to implement conservation practices that reduce sediment and sediment-related pollutants. The workshop will transfer this process from the University of Minnesota lab to the GIS desktops of locally led clean water restoration/protection efforts throughout the state. The process was developed and tested by the University with 2007-2009 Clean Water Legacy funding from the Minnesota Department of Agriculture. The premise: if clean water goals are to be met, funding for clean water implementation must be targeted to high-contributing areas of the landscape.

Workshop Objectives

- Participants will receive instruction and hands-on practice in calculating the Stream Power Index, the Compound Topographic Index and other terrain attributes.
- Participants will practice applying these calculations to high-resolution LiDAR data so as to identify field gullies, side inlets and other fine-scale erosion and runoff features.
- Participants will practice interpreting terrain attribute values and images.
- Participants will leave the workshop with the knowledge and skills needed to apply digital terrain analysis to their own clean water efforts (assuming they have access to ArcGIS Desktop).

These workshops are part of the Minnesota Department of Agriculture (MDA) Clean Water Fund project Pilot Local Use of Targeting Tools for Clean Water Implementation. For more information, contact: Barbara Wissman, Minnesota Department of Agriculture, 651-201-6631, Barbara.Wissman@state.mn.us Adam Birn, Minnesota Department of Agriculture, 507-206-2883, Adam.Birn@state.mn.us
Training Videos

The following 5-minute videos describe how to process LiDAR data within ArcGIS to help identify critical areas on the landscape for conservation purposes.

Hint: To see these videos on a full screen, click on the square box near the right side of the control bar at the bottom of the video.

The videos were developed and narrated by Jake Gaitski and Joel Nelson (neils1945@umn.edu, 612-625-9235) of the University of Minnesota Department of Soil Water and Climate, and produced by David Lindeman (UM OIT Video Solutions). Funding was from the Clean Water Legacy Act, through the Minnesota Department of Agriculture (MDA), under Project Managers Adam Birr and Barbara Weisman.

Module 1: Data Pre-processing
Creating a hydrologically corrected Digital Elevation Model (DEM) with LiDAR contours or spot elevations.
Questions?

Adam Birr, Ph.D.
Research Scientist
Minnesota Department of Agriculture
507-206-2881
Adam.Birr@state.mn.us