Scientific & Technical Subcommittee Highlights

Co-Chairs: Susie Arnold, Stephen Dickson, Ivan Fernandez

maine department of Environmental Protection

Introduction

Ivan J. Fernandez

School of Forest Resources Climate Change Institute University of Maine

Scientific & Technical Subcommittee Highlights

The Maine Climate Council Scientific and Technical Subcommittee **What do we do?**

In 2019, Public Law Chapter 476 established the Maine Climate Council and the Scientific and Technical Subcommittee (STS) within the Council "to identify, monitor, study and report out to the council and to the working groups...findings and recommendations related to climate change in the State and its effects on the State's climate, species, marine and coastal environments and natural landscape and on the oceans and other bodies of water."

Global and National Science

Scientific & Technical Subcommittee Highlights

Global and National Science

Accelerating indicators of change
Tipping points
Accelerating costs - extreme events
Accelerating costs - extreme events
Every 0.1°C matters
Progress - but not enough
Solutions are accelerating!

Daily Surface Air Temperature, World (90°S-90°N, 0-360°E)

Dataset: ECMWF Reanalysis v5 (ERA5) downloaded from C3S | Image Credit: ClimateReanalyzer.org, Climate Change Institute, University of Maine

Maine Climate Science Assessment

Scientific Assessment of Climate Change and Its Effects in Maine

MAINE CLIMATE COUNCIL SCIENTIFIC AND TECHNICAL SUBCOMMITTEE

2020

2021

Scientific Assessment of Climate Change and Its Effects in Maine

2024

Scientific & Technical Subcommittee Highlights

March 14, 2024

www.maine.gov/future/climate/council/sts

climatechange.umaine.edu/climate-matters/maines-climate-future/

Agenda

- 1. Introduction
- 2. Climate
- 3. Human Dimensions
- 4. Human Health
- 5. Sea Level Rise & Storm Surge
- 6. Marine
- 7. Agriculture & Food
- 8. Forests & Biodiversity
- 9. Information Needs
- 10. The Science of Hope
- 11. Reflections

Climate

Sean Birkel

Climate Change Institute Cooperative Extension University of Maine

Scientific & Technical Subcommittee Highlights

Maine's climate continues to get warmer and wetter with more extremes

Temperature

- Annual increase of about 3.5 °F since 1895
- Overnight lows have risen more than daytime highs
- All 10 warmest have occurred years since 1998
- Projected 2-10 °F warming depending on emissions scenario

Precipitation

- Annual increase of about 6" since 1895
- Heavy precipitation > 2" per day becoming more common
- Projected 5-14% annual rainfall increase by 2100 and more frequent extremes

Scientific & Technical Subcommittee Highlights

Season Extremes, May-Sep 2020 (driest), 2023 (2nd wettest)

Below average and infrequent rainfall from May through September 2020 led to an extreme hydrologic drought across much of New England, with some areas experiencing a flash drought, reflecting its quick stroughout the region. In September, the U.S. Department of Agriculture (2020) declared Aroostook County in Maine and Hillsborough and Merrimack Counties in New Hampshire as crop disaster areas. By the beginning of October, 166 community water systems and 5 municipalities in New Hampshire, more than 100 municipalities in Massachusetts, and several community water supplies in Connectut, Maine, and Rhode Island had mandatory water restrictions in place (Northeast Regional Climate Center, 2020b).

Highlights

 Much of the scarce precipitation during summer 2020 fell in a few storms, leaving long periods with little to no rain.

- Northern and central Maine were in a flash drought by the beginning of July; southeastern Massachusetts, northern Rhode Island, and northeastern Connecticut, by the beginning of August.
- During September, 14 USGS streamgages recorded the lowest 7-day average streamflows in the past 30 years; the USGS recorded the lowest streamflow measurements in the past 30 years at 14 streamgages.
- The lowest monthly groundwater levels in the past 25 years were recorded at 24 USGS monitoring wells during the summer.

• In 2023, frequent rain led to flooding, erosion, difficult field access, and in some cases decreased yield or crop losses.

- Recent studies find an intensified hydrologic cycle could produce "drier dry" periods, and "wetter wet" periods. Must manage both.
- Maine variously impacted by drought 2016– 2022. The 2020 drought, May-Sep, culminated in drought disaster declaration before wet weather returned in October.

Warming is projected to increase storm intensities, but changes in frequency are uncertain

- Storms enhanced by warming-driven intensification of the hydrologic cycle. Also associated with weaker circulation and blocking patterns.
- Strong mid-autumn storms 1979–2019 found to have trend toward more accompanying precipitation; no trend in frequency or wind intensity.
- Most climate models project an overall decrease in extratropical cyclones along the U.S. East Coast, but with increasing intensity.
- More research is needed to understand both historical and projected storm trends in Maine.

Scientific & Technical Subcommittee Highlights

As temperature rises, the warm season lengthens and the winter snow and ice season shortens

Freshwater Quality

Effects and Information Needs reported in the 2020 Scientific Assessment remain valid

2024 Additions:

- Lake Resilience Subset of Watershed Resilience
- Lake & Resilience Indicator Compilation (see diagram to right)
- Vulnerable Waters
 - unmapped headwater streams
 - non-floodplain wetlands
 - more accurate maps needed
- "Socioecological" Resilience
- Actions & Planning for Resilience in Watershed Systems

Scientific & Technical Subcommittee Highlights

Human Dimensions

Cindy Isenhour

Professor of Anthropology and Climate Change University of Maine

Scientific & Technical Subcommittee Highlights

Takeaway #1: Social & Economic impacts

Climate change is **already** affecting Maine's social and economic systems.

- Growing social costs of CO2 pollution
- More than monetary–impacts on place-based heritage and identity linked to well-being

Projections are uncertain.

- Projected increase in demand for civil and governmental services
- Market responses: some hopeful, others could present additional hardship (winter tourist markets, housing, solar, insurance)
 - e.g. Housing market response to migration, impacts of storm events

Takeaway #2: Vulnerability

Mainers experience differential levels of vulnerability:

- Physical risk/exposure: coastal, inland, drought, heat, flooding
- Social vulnerability: rural, older populations, marginalized peoples, lower income
- Adaptive capacity: economic sensitivity, governance structure, information

Vulnerability matters

- can be exacerbated by poorly designed policy
- can be reduced through inclusive design (e.g. indigenous sovereignty)
- reducing vulnerability can result in co-benefits and lead to more effective climate action

Takeaway #3: Adaptation and Resilience

Science suggests resilience is linked to strong **social** infrastructures and institutions:

- importance of social capital
- collaboration and capacity building needed for municipalities
- linked to notions of care across scale
- infrastructures for participatory governance

Key enablers of adaptation success:

- good information about impacts and solutions
- political commitments
- institutionalization of planning frameworks
- policies with clear goals
- adequate financial resources
- inclusive governance

Human Health

Rebecca Lincoln

Environmental Epidemiologist Maine Center for Disease Control

Scientific & Technical Subcommittee Highlights

Takeaway #1: Extreme Weather & Health

- Maine is projected to experience more periods of **extreme heat**
 - Men, middle-aged adults, and those who work outdoors/in a hot environment are disproportionately affected
- Recent severe **heat waves** in **temperate areas** of the U.S. have caused significant morbidity and mortality and **illustrate the need for adaptation**
- Evidence for health impacts of heat exposure continues to expand
- Other types of extreme weather events can also have significant health impacts
 - The December 18, 2023, storm caused at least 4 confirmed deaths and dozens of Emergency Department visits

Takeaway #2: Mental Health

- There is **increasing evidence** for adverse **mental health** impacts of climate change
 - Direct exposure to climate hazards can exacerbate existing conditions or cause new onset of symptoms
 - Concern for current and future threats posed by climate change can produce 'climate anxiety'
- Rates of mental health disorders remain high in Maine, and there are persistent gaps between existing need and available services
- Efforts to **expand and improve mental health services** should account for **climate-related impacts** and **climate anxiety**
- Efforts to **improve preparedness for climate hazards** should account for the likely **need for mental health services**

Takeaway #3: Vector-borne Diseases

- A warmer, wetter Maine climate is likely to support increasing populations of ticks and mosquitoes
- Blacklegged (deer) ticks are established in southern Maine and increasing in northern Maine
 - Carriers of Lyme disease, anaplasmosis, babesiosis, Powassan encephalitis, relapsing fever
 - Lyme disease cases in Maine continue to increase
- Lone star ticks are appearing more frequently in Maine
 - Carriers of ehrlichiosis, tularemia, alpha-gal syndrome (red meat allergy)
- 2023 was an unusually active year for mosquito-borne diseases
 - Veterinary outbreak of Eastern Equine Encephalitis Virus (EEEV)
 - Mosquitoes carrying EEEV, West Nile Virus, and Jamestown Canyon Virus

Takeaway #4: Air Quality

- In **2023**, the Eastern U.S. experienced periods of **poor air quality** due to wildfires in Canada and the Western U.S.
- Most of the future health burden from Western states' wildfire smoke is likely to be on the East Coast due to higher population density
- Other climate-related air quality issues of importance include increasing levels of **pollen/aeroallergens**
- Maine Center for Disease Control (CDC) is working with the Department of Environmental Protection (DEP) to develop tools for tracking climate-related air quality issues:
 - Developing a wildfire and air quality data dashboard
 - Implementing a statewide **pollen monitoring network**

Sea Level Rise & Storm Surge

Peter Slovinsky Maine Geological Survey

Scientific & Technical Subcommittee Highlights

Sea Level continues to rise in Maine and 2023 set record mean sea levels for many months of the year

This high mean sea level trend **continues in 2024** with **new record mean sea levels recorded at all three tide gauges** in January.

Scientific & Technical Subcommittee Highlights

Higher than normal mean sea levels in 2023...a repeat of 2010?

North Atlantic Oscillation (NAO)

Atlantic Meridional Overturning Circulation (AMOC)

Scientific & Technical Subcommittee Highlights

Maine's "commit to manage" sea level rise scenario remains valid The "prepare to manage" scenario shifts two decades later

High Tide Nuisance Flooding along the Maine coast has increased and will continue to increase with sea level rise and a lunar nodal cycle.

Scientific & Technical Subcommittee Highlights

The January 10th and 13th storm events set records along the Maine coastline, and were *enhanced* by sea level rise

3/10/24 Storm (prelims): Portland:13.32 (8th) Bar Harbor: 15.28 (3rd) Eastport: 23.72 (7th)

Marine

Nichole Price Bigelow Laboratory for Ocean Sciences

Scientific & Technical Subcommittee Highlights

Acidification & Seawater Warming by 2050

- Updated models project seafloor warming of up to 2.75 °C by 2050
- These same new models now project that aragonite saturation state will be below critical thresholds for shellfish for most of the year by 2050
- These projections for the STS 2024 report are more extreme that reported previously, particularly for acidification

Right Whales

- Higher extinction risks are associated climate-driven changes in foraging environment and habitat use
- Modeling efforts to understand prey re-distribution patterns are now used to evaluate likelihood of strikes and entanglement in particular regions

Prey: Calanus finmarchicus

Ross et al. 2023 Marine Ecology Progress Series

Scientific & Technical Subcommittee Highlights

Meyer Gutbrod et al. 2021 Oceanography

March 14, 2024

MAINE COMPCT

Wild Capture Fisheries

- Lobster fisheries continue to report relatively slowed landings, consistent with climate-driven predictions
- The timing of lobster egg hatch and zooplankton seasonality has become mismatched; shifted phenologies contribute to other species losses
- Subpolar species are projected to continue to decline, but certain valuable temperate species are rising in abundance, as predicted (e.g., squid, sea bass, Jonah crabs)

Scientific & Technical Subcommittee Highlights

Aquaculture

- Storm Damage:
 - January storms caused significant flooding and surge along coastal Maine
 - \$70.3 million in public infrastructure damage, largely working waterfront
- Heat Waves:
 - Further, sustained exposure to marine heat waves is impacting seaweed brood stock resources for seaweed nurseries
 - Harmful Algal Blooms (HAB) becoming more frequent, last longer, and shifting seasonality

Scientific & Technical Subcommittee Highlights

Ocean Climate Mitigation Strategies

- Substantive research underway to establish requisite baselines
- Several funded projects underway to develop or apply tools to assess efficacy
- Continued evaluation of the carbon footprint of fisheries and aquaculture underway

- **1.** Submerged aquatic vegetation captures carbon
- 2. Seaweed fragments *may be* stored in marine sediments
- **3**. Sea plants transfer carbon to sediments via roots
- 4. Zooplankton *may* contribute to carbon storage

- Ongoing exploration of potential ecosystem impacts
- Building evidence soundscapes will not disrupt fisheries

case

• Any impacts are likely to be extremely site specific and need to be evaluated case-by-

Scientific & Technical Subcommittee Highlights

Agriculture & Food

Glen Koehler

Cooperative Extension University of Maine

Scientific & Technical Subcommittee Highlights

Warming brings both benefits and costs

Higher average annual minimum temperatures allow a wider range of perennial crop options.

And may also increase winter survival of current and new insect, disease, and weed pests.

Scientific & Technical Subcommittee Highlights

March 14, 2024

Adapted from USDA 2023

Longer and warmer growing seasons allow for a wider range of annual and perennial crop options and potential for higher yields.

Observed and projected growing season duration: RCP8.5 future emissions scenario (difference from 1971-2000)

	1971-	2010-	2040-	2070-
	2000	2039	2069	2099
PRESQUE	145	161	183	196
ISLE		(+16)	(+38)	(+51)
LEWISTON	176	195 (+19)	212 (+36)	223 (+47)

Increasing Growing Season Duration in Maine Number of days between last spring and first fall temperature <= 32F

Scientific & Technical Subcommittee Highlights

March 14, 2024

Adapted from ClimateToolbox

But...Variable and Extreme Weather can counteract any agricultural gains from warming

Apples rendered unsaleable by combination of an early bloom followed by unusually late frost on May 18, 2023

Scientific & Technical Subcommittee Highlights

March 14, 2024

Photos: Glen Koehler

A tale of two seasons June 1 to September 30 Inches Precipitation minus Evapotranspiration

vs. 1990 – 2019 average

Data and map, ClimateEngine.org, 2024.

Scientific & Technical Subcommittee Highlights

Scientific & Technical Subcommittee Highlights

March 14, 2024

Data: Stacy Knapp, Graph: Glen Koehler

Greenhouse Gas Emissions by Food Supply Chain Stage

Nationally, more than half of food greenhouse gas emissions are off-farm and in the end...

30+% of food is lost as waste

Scientific & Technical Subcommittee Highlights

March 14, 2024

Data and graph adapted from 5th National Climate Assessment

Forests & Biodiversity

Kristen Puryear Maine Natural Areas Program

Scientific & Technical Subcommittee Highlights

Maine Forest Carbon

Maine forest ecosystem and harvested wood product annual average carbon stock change for the last three FIA inventory periods (MMTCO2e/yr)

Maine's forests currently sequester nearly 15 million metric tons of CO2-equivalent per year (MMTCO2e/yr)

Harvested wood products ~1 MMTCO2e/yr

Together, forests + products offset nearly all of Maine's fossil fuel greenhouse gas (GHG) emissions

Persistently high rates over 10+ years, but emerging threats of pest, disease, fire, etc. could reverse this trend.

Scientific & Technical Subcommittee Highlights

Persistent and Emerging Threats: Forests

Forest Relative Density (RD)

Maine's forest at a biological tipping point with ongoing threats from climate change, natural disturbances (e.g. wind, fire), and invasive species

Scientific & Technical Subcommittee Highlights

Wildfire Threat

Despite its low fire risk, serious wildfires occurred in Maine, especially during droughts (e.g., 1947)

2023 Nova Scotia wildfires burned 60,000 acres, similar ecosystem

Risks: dense forest fuels, houses in forest interface, lack of wildfire fighting capacity

Relatively low, but increasing wildfire probability in Maine due to climate change

For the most pessimistic emissions scenario, northeastern fire risk is expected to more than double

Projected changes (%) in annual fire probability from baseline (1971-2000) to late century (2070-2099) based on Greenhouse Gas Emissions Scenario RCP 8.5.

Scientific & Technical Subcommittee Highlights

Opportunities and Barriers to Adaptation Active & passive adaptation

Active & passive adaptation can enhance, maintain, and restore the mitigation value of forests.

Rural foresters were concerned most with warming winters and declining tree vigor; urban foresters cite extreme weather and safety hazards from stormdamaged trees as highest concerns.

Many forest managers believe adaptation is a priority, however there are many barriers that they face:

- Increased public use on conserved lands
- Public opposition to harvesting
- High costs of treatments & limited timber markets
- Information at relevant spatial scales
- Determining appropriate on-the-ground management

Scientific & Technical Subcommittee Highlights

Status of Biodiversity

Species impacts

- 8 wildlife species added to Maine's Endangered and Threatened Species List (in 2023)
- 21% of Maine's butterflies are listed rare/threatened/endangered/extirpated (25% due to climate change)
- With 3°C warming, range shifts predicted for 100 N. American bird species (including Loons)

Habitat impacts

- Temperature seasonal mismatch, parasites, diseases
- Food webs & interspecies response invasive plants and animals

Scientific & Technical Subcommittee Highlights

Persistent and Emerging Threats

Habitat loss is still the primary driver of species loss

- Direct and compounding climate-related effects are increasing, including:
- Invasive species new and expanding
- Stream temperature increases
- Sea level rise
- Stream flooding

Japanese stiltgrass (photo: MNAP)

Saltmarsh sparrow (photo: B. Bienvenuti)

Scientific & Technical Subcommittee Highlights

Opportunities and Considerations

Diverse landscapes support species diversity

Biodiversity protection yields naturebased solutions

Connected landscapes and corridors buffer climate impacts

Scientific & Technical Subcommittee Highlights

Information Needs

Stephen M. Dickson Maine Geological Survey

Scientific & Technical Subcommittee Highlights

Land & Air

- a. Agriculture Interpreting weather forecasts to support decisions by growers; site-specific trends in seasons and frost matter
- **b. Biodiversity** Projections of invasive species; track range and populations of endangered and threatened species; map forest changes
- c. Forests Projected health / biomass / tree carbon / soil carbon / Indigenous knowledge included in assessments
- d. Climate Study high-impact storms & trends; real-time hydrology & drought monitoring; track solar irradiation & clouds
- e. Air Expand monitoring statewide for particulate matter (PM), ozone & pollen

Water

- f. Water Quality Predict harmful algal blooms (HABs); develop fast toxin sensing; understand bioaccumulation up the food chain; connect to human health and advisories; expand stations and data types
- **g. Hydrology** Wetland hydrology & water balance; expand stream gauges and snowpack monitoring; improve detailed river flood mapping and forecasting
- h. Marine Better local monitoring of deep-water temperatures, coastal nutrients, marine HABs & bacteria; expand water level sensors; model future erosion from sea level rise (SLR); improve guidance for storm preparedness and coastal adaptation

People

i) Human Dimensions -

- a) Address mental health from extreme physical conditions; inability to adapt; loss of cultural heritage; develop public health interventions and care
- b) Project climate migration and tourism; relate demographics to housing, transportation, power grid & economics
- c) Evaluate vulnerability and readiness in terms of both socioeconomics and infrastructure
- d) Understand ticks & pathogens

The Science of Hope

Susie Arnold Island Institute

Scientific & Technical Subcommittee Highlights

3 Primary Components of Constructive Hope

HOPE = Goal Setting + Agency Thinking (Willpower) + Pathways Thinking (Waypower)

- Goal- do you have a meaningful goal?
- Agency- do you have the knowledge or determination that gives you confidence you can achieve your goals
- Pathways thinking- do you have a plan and willingness to tweak your plan

Hope-Based Communications

Where hope is activated mitigates where anxiety is activated

Global Environmental Change 76 (2022) 102569

Contents lists available at ScienceDirect

Global Environmental Change

journal homepage: www.elsevier.com/locate/gloenvcha

Climate anxiety: Conceptual considerations, and connections with climate hope and action

Julia Sangervo ^{a,*,3}, Kirsti M. Jylhä^{b,1,4}, Panu Pihkala^{c,2,5}

- Climate anxiety can lead to both action and paralysis
- Hope increased climate action more than anxiety
- A need to promote feelings of constructive hope to encourage climate action

Comment | Published: 10 May 2023

Climate change anxiety in young people

Janis Whitlock

Nature Mental Health 1, 297–298 (2023) | Cite this article

• Coordinate opportunities for discussion, supply opportunities to exercise agency, and avenues for meaningful action

PRACTICE BRIDGE | JULY 30 2021

Empowering hope-based climate change communication techniques for the Gulf of Maine

Collections: Knowledge Domain: Sustainability Transitions , Special Feature: Gulf of Maine 2050: Visioning Regional Resilience and Sustainability

Aimee Bonanno, Megan Ennes, Jennifer A. Hoey, Emily Moberg ≥, Sarah-Mae Nelson, Nette Pletcher, Richelle L. Tanner

- Communications models that further engagement in climate conversations involve:
 - Head (understanding climate change)
 - Heart (hope through agency and efficacy)
 - Hands (intentions to participate in action)

* Email: emily.a.moberg@gmail.com Elementa: Science of the Anthropocene (2021) 9 (1): 00051.

Social Connectedness- A Predictor of Hope & Important for Building Resilience in Rural Communities

Hope is a Framework for Action

Reflections

Maine Climate Council Meeting March 14, 2024

2024 Maine Climate Council Meetings

- June 18, 2024 In person, Augusta Civic Center
- September 25, 2024 Zoom
- October 23, 2024 Zoom
- November 21, 2024 In person, location TBD

MAINE WON'T WAIT

A YEAR PLAN FOR CLIMA

A DECEMBER 2020 UNCIL