

Advisory Board

Maine Offshore Wind Research Consortium

ERM & GRMI

Project Final Presentation

A Few Guidelines for Today

Advisory Board Members

- Please put * in front of your name
- Practice common rules-of-the road: Please raise your hand, share the floor and respect differences of opinion.
- Please use video (if you can) and use hand-raise function (*9 on phone). We'll try to be sure we
 pause periodically to make sure you can participate fully but shout out if you need to or put
 ideas in the Chat.

Observers

- Thank you for joining, we are glad you are here. We'll answer Advisory Board questions first but try to make sure we leave time for additional questions as well.
- Please keep video off and so we can focus discussion on the Advisory Board members.
- Mute unless speaking please (*6 on phone to unmute)

Meeting Objectives

- Learn research outcomes from Project 2: Exploring Approaches to Fisheries'
 Coexistence with Floating Offshore Wind
- Discuss implications of research outcomes for future offshore wind research

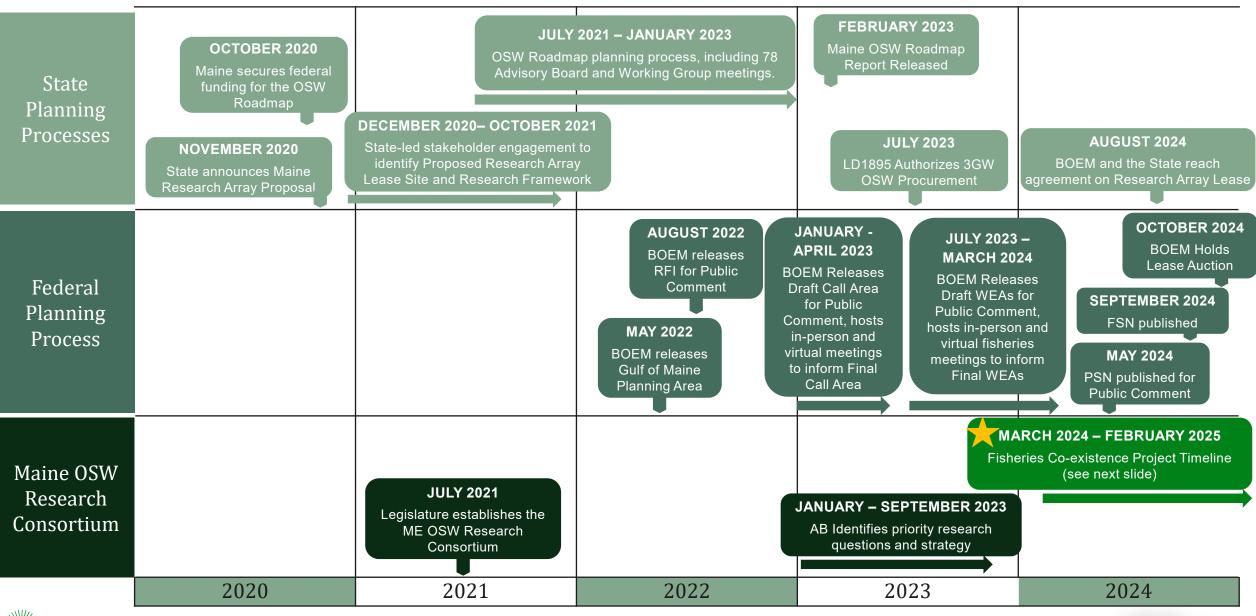
Meeting Agenda

- **12:00 Welcome** Alison Bates, Co-Chair; Katy Bland, Maine Sea Grant
- **12:05** Project Presentation
 - ☐ Alice Sandzén & Tayebeh Tajalli Bakhsh, ERM
 - ☐ Chas Van Damme & Hannah MacDonald, Gulf of Maine Research Institute
- 12:55 Q&A and Discussion
- **1:25** Wrap up
- 1:30 Adjourn

Exploring approaches to fisheries' coexistence with floating offshore wind

FEBRUARY 2025

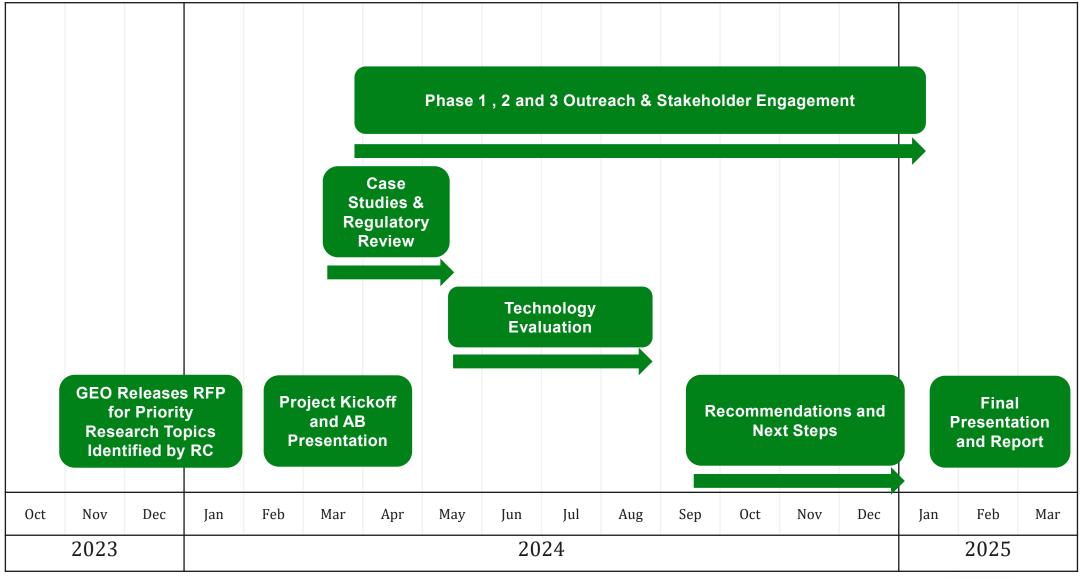
Sustainability is our business



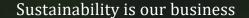
Agenda

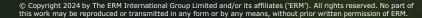
- 1 Introduction
- 2 Case Studies and Regulatory Review
- 3 Technology Evaluation
- Fisheries Technology
- FOW Technology
- Technical Compatibility Assessment
- 4 Recommendations and Next Steps
- 5 Questions and Answers

Context



Timeline





Project Team

About ERM

ERM is the world's largest pure play sustainability consultancy

Founded in 1971, we are the largest advisory firm in the world focusing solely on sustainability, offering unparalleled depth and breadth of expertise.

We shape a sustainable future with the world's leading organizations

Our purpose guides everything we do. We create a better future by helping the world's biggest brands address today's sustainability imperatives.

We are the recognized market leader in sustainability services

Numerous industry benchmarks attest to our market leadership and the majority of our work is sole-sourced, reflecting trusted partnerships we build with our clients.

ERM OVERVIEW

+0008

Professionals

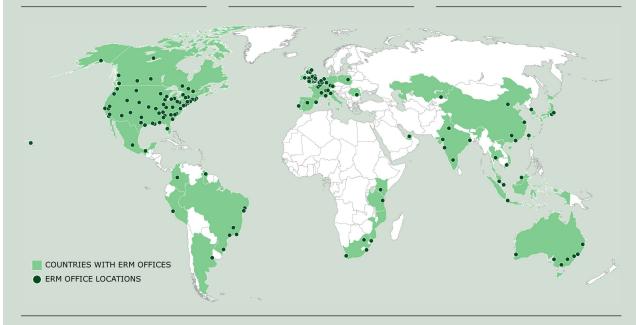
40

Countries & territories

Climate change consulting Leader Verdantix Green

Verdantix Green Quadrant 2023

150+


Offices

50+

Years of experience

#1

Sustainability service provider – HFS 2022

We partner with...

70% of Fortune 100

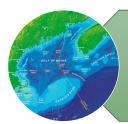
55% of Fortune 500

About GMRI

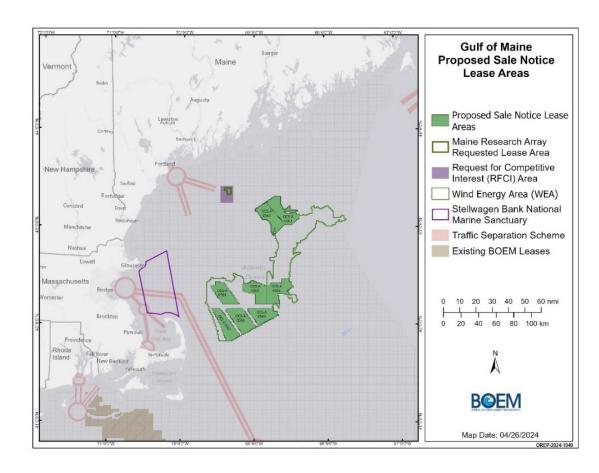
What is the Gulf of Maine Research Institute?

We are an independent, nonpartisan marine non-profit that supports the Gulf of Maine ecosystem and the communities that depend on it.

Scope of Work


Objectives

1. This study complements ongoing efforts by the state, BOEM, and the Research Consortium, by addressing critical data gaps.


2. The research will build on existing resources and data for greater efficiency and immediacy of results.

3. The Project will allow decision makers and stakeholders to make sensible predictions for other regions/species/applications/scales

4. The Project will provide collaborative research opportunities with community members.

Methodology

Stakeholder Engagement Approach

Phase 1

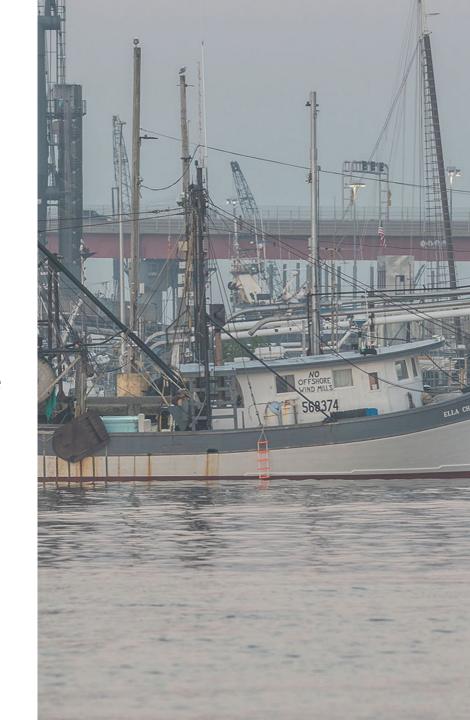
Discuss initial understandings, curiosities, and concerns regarding general operability around FOW arrays.

Phase 2

Evaluate and discuss how different gear types and fisheries may operate within various FOW technology concepts summarized by ERM, including platform, mooring, anchoring, and cabling designs.

Phase 3

Present ERM's initial recommendations for best practices on coexistence to previously engaged stakeholders and receive feedback. Incorporate feedback into the final report.



Engagement Methods

- GMRI and ERM developed an Engagement Plan in consultation with a subset of the Maine Offshore Wind Research Consortium Advisory Board.
- The subset of the Advisory Board approved the plan in which they recommended an initial set of stakeholders to engage, as well questions to ask.
- GMRI engaged fishermen, organization leaders, and relevant stakeholders through semi-structured in-person conversations, phone conversations, surveys, and focus groups.
- Employed a 'snowball' sampling approach throughout all phases of engagement
- **Prioritized flexibility**, engaged stakeholders on their terms in a style that works for them.
- Thematically summarized stakeholder input into three engagement reports.

Case Studies and Regulatory Review

DEFINING COEXISTENCE

Methodology

Literature Review - Case Studies

Academic literature identifies **four key types** of coexistence:

Multipurpose

Users occupy the same area, at the same time, and share core infrastructure and services

Symbiotic Use

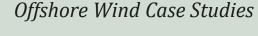
Users occupy the same area, at the same time, and share peripheral infrastructure or services

Colocation

Users occupy the same area at the same time

Repurposing

Users occupy the same area, but sequentially (one after the other) rather than at the same time



Literature Review - Case Studies

Research **gaps** indicate that future studies of operational and developed projects are needed:

- Nascent industry Floating technology is a relatively new industry and systematic documentation of data is needed as projects are coming online in different countries (e.g., Norway and Portugal)
- 2. Limited existing FOW case studies and academic literature Supplemented academic case study review, including relevant insights from fixed-bottom OSW and other marine industry, with publicly available project information and news articles.
- **3.** Lack of geographic diversity of existing case studies Lack of geographic diversity limits the lessons learned.

Literature Review - Case Studies

Key findings from Case Study review:

Coexistence First Project Design

Selecting sites with minimal disruption; burying cables for protection.

Language Clarity

Different meanings exist; use specific language types

Communication Matters

Early stakeholder engagement builds trust

Local Benefits

Compensation, new business opportunities, and share facilities

Cooperation is Key

Success involves industry, government, and non-governmental organizations

Literature Review - Regulatory and Legal

Desktop review identified **three key** themes, which are addressed by regulations in different ways (in the U.S. and globally).

Marine Environment Impacts

- **Concern:** potential habitat changes (e.g., creation of artificial reefs, impacts of exclusion zones)
- Relevant U.S. Regulations: For example, National Environmental Policy Act (NEPA), Outer Continental Shelf Lands Act (OCSLA) and Endangered Species Act

Access to Wind Energy Area

- **Concern:** potential restricted access to fishing grounds, potential navigational route changes, safety concerns
- Relevant U.S. Regulations: OCSLA

Financial Considerations

- **Concern:** costs for navigation, insurance consideration, need for compensation programs
- Relevant U.S. Regulations: Multi-state (including Maine) OSW Fisheries Compensation Fund in development, but no fund analogous to the Fishermen's Contingency Fund established under OCSLA for oil & gas developments

Terms and Conditions of **Lease Agreements** address some key themes not covered by regulations, for example:

- Compensatory mitigation
- Survey mitigation (e.g., when NMFS surveys overlap with wind energy development area)
- Survey requirements (e.g., seasonal restrictions, methods)
- Data sharing requirements
- Navigation equipment and training funding

Phase 1: Stakeholder Engagement - Defining Coexistence

Discuss initial **understandings**, **curiosities**, and **concerns** regarding general operability around FOW arrays.

Coexistence: Questions

- How do you define "coexistence"?
- What is your current understanding of FOW technology?
- When you hear the word, "coexistence," what does that mean to you?

General Operability: Questions

- What do you foresee being a challenge with your current fishing operation and with FOW technology?
- What is unique about the way that you fish that might make operating within wind arrays challenging?
- What should we be looking into to determine whether fishing in a FOW array is possible?

Phase 1: Stakeholder Engagement - Defining Coexistence

Key themes emerged from the engagement period.

Coexistence

- Spatial conflict
- Economic, social, and environmental concerns
- Coexistence should encapsulate the fishing industry at large

Coexistence described as:

"Getting to a compromise, where both sides are respecting the other side's perspectives and needs"

"Coexistence requires adaptation on both sides. Adaptation has to be a two-way street."

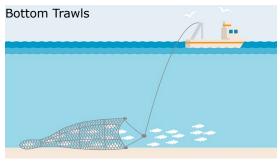
"Multiple entities existing in the same space or at the same time."

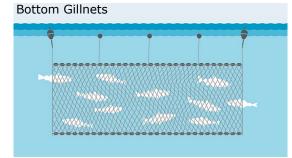
General Operability

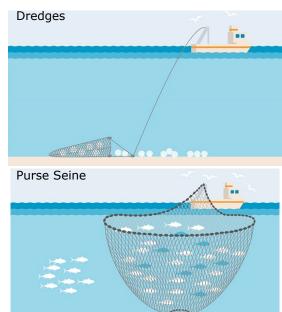
- Operational concerns
 - Gear entanglement
 - Navigational challenges
 - Reduced fishing efficiency
- Safety/insurance concerns
 - Inclement weather
 - Lack of information
- Other concerns
 - Skeptical of sustained job creation
 - Cost concerns for ratepayers
 - Siting further offshore to avoid key fishing areas has cost implications
 - Shoreside dealer/processor implications

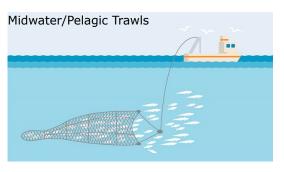
Technology Evaluation

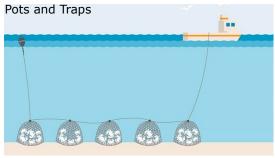
Methodology

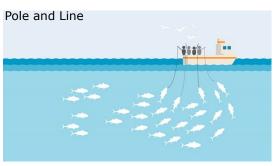


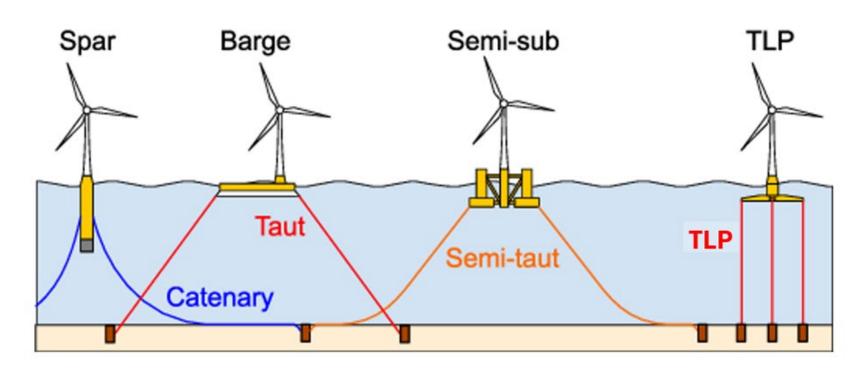

Technology Evaluation - Fishing Gear


Top Species by Value (Lease Areas)	Gear Type
Haddock	Bottom Trawl, Bottom Gillnet
Pollock	Bottom Trawl, Bottom Gillnet
Cod	Bottom Trawl, Bottom Gillnet
Monkfish	Bottom Trawl, Bottom Gillnet
Redfish	Bottom Trawl
American Lobster	Pots and Traps
Sea Scallop	Dredge
White Hake	Bottom Trawl, Bottom Gillnet
American Plaice Flounder	Bottom Trawl
Witch Flounder	Bottom Trawl, Bottom Gillnet
Atlantic Herring (bait)*	Pelagic Trawl, Purse Seine
Bluefin Tuna*	Hook and Line, Harpoon


^{*}Identified by local stakeholder







Technology Evaluation - FOW Technology

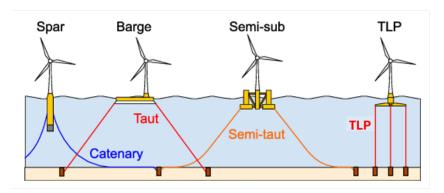
ERM evaluated FOW technical components:

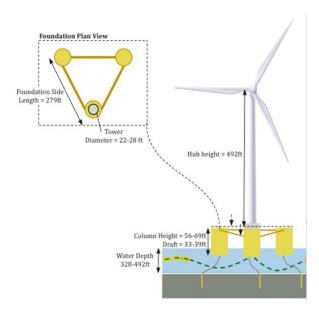
- Platform
 - o Spar
 - o Barge
 - Semi-submersible
 - Tension-leg platform (TLP)
- Mooring systems
 - Catenary
 - Taut
 - Semi-taut
 - o TLP
- Electrical cables (inter-array)
- Anchor design

The **mooring system** influences the **cabling** and takes up the most space, so the fishing technical compatibility assessment focused on the **mooring system**.

Evaluate and discuss how different gear types and fisheries may operate within various FOW technology concepts including **platform**, **mooring**, **cabling**, and **anchoring** designs.

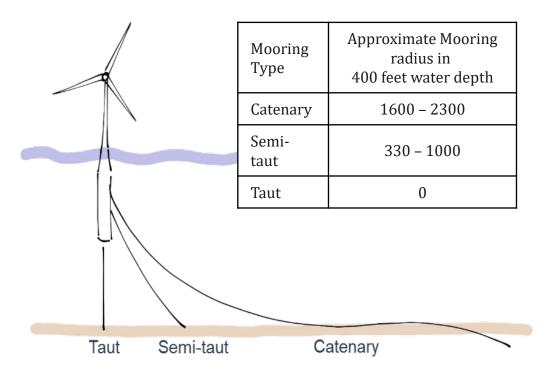
Engagement Questions


- What is your reaction to this design?
- Based on these designs, what do you see as the most challenging with your fishing practice?
- Which design do you see being the least challenging?
- What parameters could be put in place to make coexistence a possibility?
- What is your comfort level (not comfortable at all, nervous, or comfortable) with navigating around this technology?
- What is your comfort level (not comfortable at all, nervous, or comfortable) with fishing around this technology?
- What if anything could be changed to enable you to fish/navigate with a greater sense of comfort?



Hywind Spar - Equinor

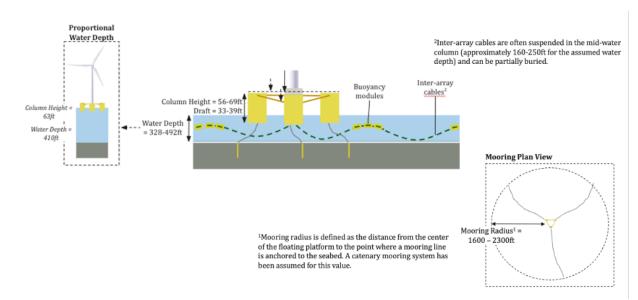
Platform Systems

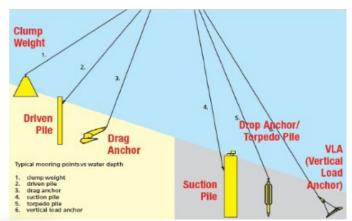


Key Takeaways

- Discomfort fishing and navigating around all platform types (both fixed & mobile gear types)
- Preference for concepts with the smallest spatial footprints
- Safety concerns:
 - Unpredictable platform movement
 - Potential radar interference
 - Potential overcrowding
 - Potential vessel issues (e.g., power loss)
 - Inclement weather
 - o Implications for search & rescue operations
- Technical and operational uncertainties:
 - Size of platform's watch circle
 - Lack of context-specific precedent (i.e., commercialscale FOW arrays)

Mooring Systems




Key Takeaways

- Preference for concepts with smaller spatial footprints (i.e., taut/TLP)
- Discomfort fishing and navigating around all concepts (both fixed & mobile gear types)
- Concerns with gear entanglement:
 - "FOW is like an iceberg"
 - Catenary moorings described as "frightening," "a nightmare," and "too scary" to operate around
 - Taut/TLP described as potentially "least impactful to fishing operations" and "least challenging"

Cabling and Anchoring Systems

Key Takeaways

- Concerns with **gear entanglement**
 - Concern with combination of suspended inter-array cables and mooring lines
 - Potential for unpredictable movement of inter-array cables due to ocean currents
- Preference for buried inter-array cables over suspended cables for both fishing & navigating.
 - Worried cables may be become unburied over time
 - Skeptical that existing cable burial methods would be effective
- Preference for "least impactful" anchoring systems
 - Environmental concerns with drag anchor and driven pile anchor
- Environmental concerns
 - Potential impacts of electromagnetic fields (EMFs)
 - Potential for secondary entanglement

Recommendations and Next Steps

PRELIMINARY

Methodology

Preliminary Assessment and Recommendations

Preliminary **technical compatibility** assessment based on currently available technology¹

	Bottom Trawls	Midwater / Pelagic Trawls	Bottom Gillnets	Pots & Traps	Dredges	Pole & Line	Purse Seine	Harpoon
Mooring T	уре							
Catenary	Х	٧	~*	~*	Х	~	~*	√
Semi- Taut	Х	2	~*	~*	Х	2	~*	✓
Taut	Х	Х	~*	~*	Х	~	~*	✓
TLP	~*	~	√ *	√ *	X	2	2	✓

✓ = Expected to be technically compatible throughout most of the farm.

~ = May be technically compatible in certain areas in certain circumstances²

X = Not expected to be technically compatible

Preliminary Recommendations

Engineering recommendations

- Optimize spacing and layout to promote coexistence
- Leverage technology opportunities

Regulatory and Case Study recommendations

- Follow data-driven siting processes
- Incorporate preventative measures to reduce risks
- Leverage technology to mitigate key risks
- Implement regulations to ensure coexistence, where feasible

Other recommendations

- Engage and communicate with fishermen
- Establish clear protocols for compensation
- Collect and share data
- Mitigate impacts on fishing

^{*}Technical compatibility depends on the cable being buried and an established exclusion zone around the wind turbines ¹FOW technology and fishing gear continue to evolve.

²For all amber categories, additional engineering solutions would be needed for fishermen to feel comfortable fishing in the array.

Phase 3: Stakeholder Engagement – Preliminary Assessment and Recommendations

Preliminary Assessment & Recommendations

- Preliminary technical compatibility assessment
- Engineering recommendations
- Regulatory and Case Study recommendations
- Other recommendations

Solicit feedback

- Presentation to Research Consortium in November
- Focus group, Google survey, conversations, phone calls

Final Assessment & Recommendations

- Revised technical compatibility assessment
- Engineering recommendations
- Regulatory and Case Study recommendations
- Other recommendations

Phase 3: Stakeholder Engagement – Preliminary Assessment and Recommendations

Preliminary **technical compatibility** assessment based on currently available technology¹

	Bottom Trawls	Midwater / Pelagic Trawls	Bottom Gillnets	Pots & Traps	Dredges	Pole & Line	Purse Seine	Harpoon
Mooring T	уре							
Catenary	X	2	~ *	~*	X	2	*	✓
Semi- Taut	Х	2	~*	~*	Х	~	~*	✓
Taut	X	X	~*	~*	X	2	~*	✓
TLP	~*	2	√ *	√ *	X	~	>	✓

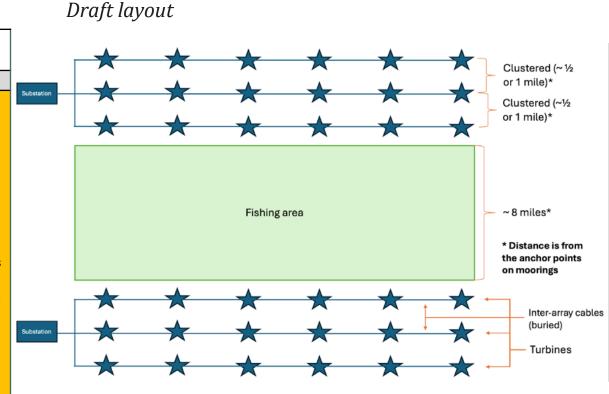
✓ = Expected to be technically
compatible throughout most of the
farm

~ = May be technically compatible in certain areas in certain circumstances² X = Not expected to be technically compatible

Stakeholder feedback (fishing industry and Advisory Board)

- General agreement, but with recommended adjustments to dredges and harpoon categories
- Desire to incorporate fishermen's perceived risk of operating in/around FOW technology
- Requests to recognize weather and oceanographic conditions
- Concern that inter-array cable burial may be "unrealistic"
- Notes that compatibility determinations are site-specific
- Requests for greater clarity on size of exclusion zones and array layout configurations

^{*}Technical compatibility depends on the cable being buried and an established exclusion zone around the wind turbines ¹FOW technology and fishing gear continue to evolve.


²For all amber categories, additional engineering solutions would be needed for fishermen to feel comfortable fishing in the array.

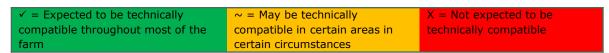
Phase 3: Stakeholder Engagement – Preliminary Assessment and Recommendations

Outputs from a focus group session:

Compatibility assessment that considers perceived risk

	Bottom Trawls	Midwater / Pelagic Trawls	Bottom Gillnets	Pots & Traps	Dredges	Pole & Line	Purse Seine	Harpoon
Mooring 1	Гуре							
Catenary	4+ miles between mooring	4+ miles	4+ miles between mooring	4+ miles between mooring	4+ miles		4+miles between mooring	
Semi- Taut	anchors OR cluster turbines as closely as possible and include a common fishing	between mooring anchors OR cluster turbines as	anchors OR cluster turbines as closely as	anchors OR cluster turbines as	between mooring anchors OR cluster turbines as	1+ mile betwee	anchors OR cluster turbines as closely	<1 mile between mooring anchors with
Taut		closely as possible and include a common fishing area ~8 miles	possible and include a common fishing	closely as possible and include a common	closely as possible and include a common fishing area ~8 miles	n mooring anchors *	as possible and include a common fishing	recognition that species may "run" when harpooned*
TLP	area ~8 miles wide*	wide*	area ~8 miles wide*	fishing area ~8 miles wide*	wide*		area ~8 miles wide*	

*The figures above were developed by a focus group of five fishermen and do not represent all fishing industry stakeholders' perspectives.


Final Assessment and Recommendations

Preliminary technical compatibility assessment

	Bottom Trawls	Midwater / Pelagic Trawls	Bottom Gillnets	Pots & Traps	Dredges	Pole & Line	Purse Seine	Harpoon
Mooring T	уре							
Catenary	X	~	~*	~*	X	2	~*	√
Semi- Taut	Х	~	~*	~*	Х	~	~*	√
Taut	Х	Х	~*	~*	Х	2	~*	✓
TLP	~*	~	√ ∗	√ ∗	X	2	~	✓

Revised technical compatibility assessment

		Bottom Trawls	Midwater / Pelagic Trawls	Bottom Gillnets	Pots & Traps	Dredges	Pole & Line	Purse Seine	Harpoon **
	Mooring T	уре							
,	Catenary	X	۶	~*	~*	Х	2	~*	2
	Semi- Taut	Х	~	~*	~*	Х	2	~*	~
	Taut	Х	Х	~*	~*	Х	~	~*	~
	TLP	~*	~	√ *	√ *	~*	2	~	~

^{*} Technical compatibility depends on the cable being buried to sufficient depth (at least 1.25 meters) and an established exclusion zone around the WTGs. Required standards would need to be developed for the site by regulators, in addition to existing standards such as DNV-ST-0119, and approved from an engineering perspective.

^{**} Harpooning tuna or swordfish might involve chasing the catch after it is struck, increasing the risk of gear entanglement with moorings.

Recommendations and Next Steps

Recommendations and Considerations - Engineering

Example **engineering** recommendations and considerations

Spacing & Layout

- Consider site-specific conditions and fishing activities; microsite to minimize conflicts and maximize operations efficiency
- Fishermen want input in the layout design, which may be optimized to promote coexistence (e.g., consider bathymetry)

Mooring & Platform

- TLP platform and mooring may be most compatible with fishing
- Fishermen want input in the design process

Technology

- New technologies may be leveraged to optimize design, reduce conflicts and improve knowledge of underwater equipment locations
- Fishermen do not want technology adoption to be a financial burden

Recommendations and Considerations - Regulatory and Case Studies

Example case study recommendations and considerations

Data Driven Siting

- Lease areas are determined by BOEM's data-driven and stakeholder-informed siting process
- Fishermen want developers to microsite within the lease areas

Use Preventative Measures

- Consult fishermen in the design process to avoid areas with highsnag/collision risk
- Leverage technology to mitigate key risks, noting that fishermen do not want technology adoption to pose a financial burden

Consider Navigational Impacts

- Adopt coexistence-first project designs
- Use mitigation and compensation measures when impacts are unavoidable, noting that fishermen do not want to be paid not to fish

Consider Regulations

 Though regulations exist to promote coexistence, fishermen want regulatory language that gives the fishing industry greater influence in the decision-making process

Recommendations and Considerations - Others

Engage Fishermen

- Throughout surveys to reduce conflicts (e.g., planning and staffing)
- On decisions (e.g., technology, micrositing)
- On communication protocols (e.g., apps, text alerts)

Clear Compensation Protocols

- Provide details
- Gear and technology uptake should not be a financial burden

Collect and Share Data

- Conduct comprehensive monitoring before, during, and after FOW construction
- Map fishing activities, and habitats, and continuously monitor trends
- Make data easy to access

Adaptive Management Frameworks

- Adapt to new data and minimize fishing impacts
- Create adaptive compensation mechanisms

Mitigate Impacts on Fishing

- Create guidelines and buffer zones
- Microsite to avoid sensitive habitats and fishing areas
- Establish transit lanes and fishing corridors

Next Steps

Gaps	Proposed Next Step
Empirical Data	Pilot coexistence zones and demonstration scale projects to test compatibility.
	• Fill species distribution data gaps, conduct pre-construction surveys, and monitor ecosystem changes over time.
Modeling Studies	Model climate related changes to evaluate future species distributions.
	 Model hydrodynamics and ecosystems to evaluate the impact of FOW arrays on species distribution and to inform layout design.
	 Model socioeconomic impacts to evaluate how restricted fishing zones may alter community livelihoods to promote equitable compensation.
Economic Impact Assessment	 Engage with the insurance industry to understand the potential insurance implications for fishermen who fish within a FOW array.
	 Design adaptive compensation models that represent all gear types and account for direct and indirect economic impacts.
Stakeholder	Evaluate the regulatory framework to ensure all stakeholders are represented.
Engagement Frameworks	• Evolve current engagement frameworks to further promote communication and collaboration between the fishing industry and FOW developers, while minimizing stakeholder fatigue.

Questions and Discussion

Thank you

Please direct any questions to:

Meghan Suslovic, Maine GEO meghan.suslovic@maine.gov

Alice Sandzen, ERM

Alice.Sandzen@erm.com

SAMBAS Consulting LLC

Contact

Program manager: Katy Bland - katy@neracoos.org

GEO contact: Stephanie Watson - Stephanie.Watson@maine.gov

Program advisor: Laura Singer - laura@SAMBASconsulting.com

Program advisor: Olivia Burke - Olivia.i.burke@carbontrust.com

https://www.maine.gov/energy/initiatives/offshorewind/research consortium