UK Lessons : Global Perspective on OSW Supply Chain Opportunities for Maine

March 30 2021
Contents

1. UK introduction
 Peter Abbott OBE, British Consul General in Boston

2. Maine introduction
 Stephanie Watson, Governor’s Energy Office and Wade Merritt, Maine International Trade Center

3. How the UK has helped companies pivot to offshore wind
 Jan Matthiesen, Carbon Trust

4. Lessons learnt from Hywind and developing a floating wind supply cha
 Rhodri James, Equinor
1. UK and Maine introductions

- UK 10 point plan – quadruple offshore wind capacity by 2030, invest in ports, infrastructure and green jobs.

- New England has set the pace for US offshore wind and Maine has shown strong political leadership and academic excellence.

- UK and Maine signed a first of its kind energy partnership agreement at the end of 2020.

- Maine – strong manufacturing supply chain, proximity to energy market, political commitment, universities, shipping/working at sea. These will enable Maine to build the offshore wind opportunity.
UK introduction

Peter Abbott OBE, British Consul General in Boston
Maine introduction

For More Information:

To get involved with the State of Maine OSW Roadmap and Floating OSW Research Array: https://www.maine.gov/energy/initiatives/offshorewind
Stephanie.watson@maine.gov

To learn more about the Maine International Trade Center and their resources:
www.mitic.com
Wade Merritt: merritt@mitc.com
• The UK has developed the offshore wind industry through market visibility, innovation, learning, economies of scales and investment – help drive the market, reduce cost and risk.
• CfD mechanism provides market certainty and gives confidence to investors which is needed for cost reduction and market scale-up.
• Too many changing targets (or overly ambitious) can create uncertainty in the market having a negative effect on the industry.
3. Carbon Trust

- Offshore wind technology is constantly changing and the supply chain needs to be prepared e.g. increased turbine size, floating wind technology.

- Knowledge from other industries can help and countries should look at complementary skills.

- UK continues to invest and foster the supply chain, collaborating with other sectors and academia.
How the UK has helped companies pivot to offshore wind

Jan Matthiesen, Carbon Trust
Who we are

Our mission is to accelerate the move to a sustainable, low carbon economy

Carbon Trust:

- works with corporates and governments, helping them to align their strategies with climate science and meet the goals of the Paris Agreement;

- provides expert advice and assurance, giving investors and financial institutions the confidence that green finance will have genuinely green outcomes; and

- supports the development of low carbon technologies and solutions, building the foundations for the energy system of the future.
Developing an Offshore Wind Market

Drivers for creating an offshore wind market

1. **Market Visibility** – the provision of long term targets that with political will give certainty and confidence in a markets ambition to deploy offshore wind at scale.

2. **Innovation** – the application of resources to resolve offshore wind challenges and barriers often through collaboration.

3. **Learning** – the ability of the offshore wind sector to learn by doing to apply learning rates but also leverage off other marine industries.

4. **Economies of scale** – facilitating and capitalising on the cost advantages within the offshore wind supply chain due to the increasing size of projects and wind turbines but also its global expansion.

5. **Investment** – Creating an attractive and well regulated investment environment for offshore wind that reduces the cost of finance and facilitates debt & equity provision.
UK offshore wind has been a success story

• The UK is the world leader in offshore wind, with more installed capacity than any other country.
• The price of offshore wind is less than a third of what it was a decade ago.
• CFD Provide long term stability of income for new-build low carbon power projects (15 years of stability on a 25-35 year project lifetime)

[Diagram showing electricity price, CFD ‘strike price’ determined by competitive bidding, and reference price as a proxy for GB wholesale electricity market price]
Visibility of a potential market was critical in the UK to drive cost reduction

Creating attractive market conditions

- Create attractive market conditions for Offshore Wind
- Drive investment into the market
- R&D and technology optimisation
- Supply chain and economy of scale
- Deployment reduced risk and reduced finance cost
- Cost reduction

Consenting Policy
- Seabed zones
- Subsidy support policy
- Ensure grid infrastructure is in place

Industry needs to be confident in the market before investing in technology and innovations

With a clear pipeline investments in cost reductions are more attractive
The offshore wind market developed over the last 30 years
Changing targets created uncertainty in the market

Deployment targets need to be **realistic**
- Failure to meet overly ambitious targets can have a detrimental effect on the industry

A number of countries have been forced to scale-back deployment targets
- Scale-backs have been largely a result of high project costs, political uncertainty (i.e. changing subsidy regimes), consenting delays, and an expectation that offshore wind could be built out at the same rate as onshore wind

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Initial target</th>
<th>Revised 2020 target</th>
<th>Actual deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>20</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Germany</td>
<td>35</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>China</td>
<td>35</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Deployment targets which are ambitious but realistic.
The sector is constantly evolving

Be prepared for future technology and supply chain needs

New technology solutions are required to meet future demands
Supporting knowledge and skills transfer from other sectors helped offshore wind development
Examples of how the UK continues to foster the supply chain

- £160 million will be made available to upgrade ports and infrastructure
- This will create 2,000 construction jobs and support up to 60,000 jobs directly and indirectly by 2030 in ports, factories and the supply chains, manufacturing
- Investment in R&D including a new £20m floating wind demonstrator programme
- Focus on mid-technology readiness level (TRL) technologies that are ready to be proved
- Academia are encouraged to work collaboratively and engage with industry
- Funding is awarded to fill gaps or add cross-cutting activities to explore the transfer of research findings between sectors
Recommendations

Create a strong domestic market
 Market visibility (e.g. targets, leasing round, subsidy support)

Invest in key enabling infrastructure
 Port and manufacturing facilities, grid reinforcement

Support innovation in the supply chain
 Ongoing technology development and R&D

Increase coordination of supply chain by allowing knowledge and skills transfer across different industry sectors
 Identify and support new market entrants, capacity building

Align decarbonisation and energy goals with industrial strategy and green recovery
 Beyond LCOE – job creation/safeguarding, export opportunities
4. Equinor

- Equinor are making significant investments in the US and are developing the supply chain which will bring many jobs and significant economic opportunities.
- Development and scale-up of floating wind. Pilot projects have proven to be successful, giving confidence for future cost parity (economies of scale).
- Similarities in the supply chain between fixed and floating, although it is important to consider the differences e.g. mooring systems, dynamic cables etc.
- Equinor have worked closely with the supply chain to develop capabilities and build up the offerings.
4. Equinor

- UK is well positioned for growth with a long term market demand, enabling environment, focus on attracting inward investment and strengthening and growing the domestic supply chain.

- Important action for policy makers – market demand with certainty and scale, collaboration, specialisation to offer world class services, advocate Maine and create a business environment to enable inward investment.

- Important action for suppliers- understand the market, know your customer and understand the tier levels and where you sit, private sector partnerships and innovate to develop market needed solutions.
Lessons learned from Hywind Scotland and developing a floating offshore wind supply chain

UK-ME OSW Supply Chain webinar
Rhodri James, Lead Business Developer
30 March 2021
Equinor’s Global Presence: Offshore Wind

US EAST COAST
- Empire Wind I
 - 816 MW
- Beacon Wind I
 - 1230 MW
- Empire Wind II
 - 1260 MW

NORTH SEA
- Sheringham Shoal, UK
 - 317 MW
- Dudgeon, UK
 - 402 MW
- Hywind Scotland, UK
 - 30 MW
- Dogger Bank, UK
 - 3.6 GW
- UK Extensions
 - 720 MW

BALTIC SEA
- Arkona, Germany
 - 385 MW
- Poland (Baltysk I, II, III)
 - ~2.5 GW

ASIA
- Donghae I, S Korea
 - 200 MW
- Firefly S Korea
 - 800 MW

Future growth: Japan, China, SK
Economic development & Supply chain

- **South Brooklyn Marine Terminal (SBMT):**
 - Turbine staging
 - O&M hub

- **Port of Albany**
 - Turbine tower factory
 - Partnership with Marmin and Welcon

- **GBS (Empire 1)**
 - Concrete foundations
 - Fabricated with high local content in New York State

- **Skills & research:**
 - Workforce development & training
 - Research partnerships
Our floating wind roadmap:
Stepping up floating wind to become a competitive source of energy

- Long-term vision
 - Utility generation
 - Power export
 - Island states
 - O&G integration
 - Power-to-Gas (H₂)

<table>
<thead>
<tr>
<th>Technology development</th>
<th>2009</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hywind demo</td>
<td>2.3 MW</td>
<td></td>
</tr>
<tr>
<td>Hywind Tampen</td>
<td>88 MW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 MW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost reduction</th>
<th>2022</th>
<th>2025-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next floating wind project</td>
<td>~500-1000MW</td>
<td></td>
</tr>
<tr>
<td>Utility scale project</td>
<td>200-500MW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrialization</th>
<th>2027-30</th>
<th>2030+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully commercial technology</td>
<td>40-60 EUR/MWh</td>
<td></td>
</tr>
</tbody>
</table>
Elements in the Supply Chain for a Floating Offshore Wind project

LCOE (%): ~2-4% ~25-35% ~25-35% ~5-10% ~25-35%

Project development Turbine Balance of Plant Installation & Logistics Operation & Maintenance

Design and Engineering
- Feasibility studies
- Concept studies
- FEED
- Detail engineering

Permitting
- Planning
- Consent

Site investigation
- Wind resource
- Met-ocean assessment
- Geotechnical
- Geophysical
- Environmental surveys

Turbine
- Nacelle
- Blades
- Tower
- Small components (e.g. landing base)
- Other (e.g. internals)

Foundation
- Substructure
- Connection pieces
- Boat landing

Mooring system
- Mooring lines (chain/rope)
- Connection system
- Tensioner
- Anchors

Electrical infrastructure
- In-field array cables
- Floating elements
- Offshore substation
- Export cable
- Land Fall
- Onshore substation

Transportation
- Vessels
- Marine operations
- Logistics

Staging & Assembly
- Marshalling port(s)
- Heavy lift crane

Offshore installation
- Mooring system
- Offshore substation
- Cablelaying

Tow and hook-up
- Vessels
- Marine operations
- Logistics
- Commissioning

Vessels
- CTV
- SOV
- Heavy lift crane vessel

O&M base
- Port
- Facility / office

Subsea inspection
- Vessels (CTV, SOV)
- ROVs

Decommissioning
Hywind Scotland: Construction

Fabrication

Transportation

Staging & Assembly

Mating

Towing

Hook-up and commissioning
Procurement and supply chain of Hywind Scotland

Procurement observations:
- International supply chain
- First floating wind park of its kind
- Lack of Tier 1s able to take large scope
 -> Multi-contract strategy

Learnings:
- Project scale (5 units)
- Lack of future project pipeline
- Some great successes:
 - Suction anchors; onshore electrical infrastructure
 - O&M contracts (e.g. vessels, warehousing and storage, survey & inspection)
- Several suppliers secured future contract wins:
 - JDR Cables – Tampen 66kV dynamic cable
 - Green Marine – CTVs for Dudgeon OWF

Challenging business case for supply chain investment
UK: Positioned for future success

- **Long-term market demand**
 - 40 GW by 2030; ~100 GW by 2050
 - 1 GW floating offshore wind by 2030

- **Enabling environment**
 - Port infrastructure upgrades
 - Support from central to local government

- **Attracting inward investment**
 - GE blade facility
 - Monopile and tower facilities (TBC)

- **Strengthening and growing the domestic supply chain**
 - Offshore Wind Growth Partnership (SME support)
 - Innovation / R&D
KEY MESSAGES

POLICY MAKERS & PUBLIC SECTOR:

• Market demand: Investment needs order books and visibility/certainty of demand, at scale
• Collaborate: Work with neighbouring states to deliver mutual benefits
• Specialise: Identify strengths and focus on creating world-class capabilities
• Attract: Be an advocate for offshore wind in Maine to attract investment
• Enable: Creating an enabling environment for inward investment

SUPPLIERS & BUSINESSES:

• Understand the market: Do your research, utilise the services available, build a network
• Know your customer: Identify where you fit into the supply chain and target your engagement accordingly
• Collaborate: Seek to build partnerships/alliances to improve your value offering
• Innovate: Develop solutions that set you apart – cost reduction, risk reduction, HSE
Shaping the future of energy
• Fisheries – create a forum for discussion between developers and the fishing industry. It is important to keep clear lines of communication and transparency. There will be opportunities for co-existence e.g. Equinor are trialling different fishing methods at a testbed to aid understanding.
• Port facilities – Roadmap in Maine will look to identify short and long-term opportunities.
• Floating substations will be required in some markets (e.g. California) and Japan is currently operating one. Further development is required and fixed substations will be used in the short-medium term.
• O&M – floating will use CTVs and SOVs (similar to fixed) and don’t expect to see greater levels of seasickness.
• Turbines are designed to worst-case scenarios with curtailment and there are lots of learnings from O&G on the mooring systems.

Q&A