PREHOSPITAL TREATMENT PROTOCOLS

Effective
December 1, 2021

Maine Emergency Medical Services
152 State House Station
Augusta, Maine 04333
TEL (207) 626-3860 TTY (207) 287-3659
FAX (207) 287-6251
AUTHORIZATION FOR PROTOCOLS

These protocols are issued by the Medical Direction and Practices Board (MDPB) and govern the practice of EMS licensees by the authority of 32 MRSA § 86.2-A. All health care clinicians in Maine involved in the EMS system and the regional EMS programs were invited to participate in the review and adoption of these protocols through their MEMS Regional Councils.

The Regional Medical Directors agree that when treatments are adopted in their regions, they will be consistent with these protocols.

The protocols will be continually reviewed. New or revised protocols will be listed on the Maine EMS website (maine.gov/ems). The MDPB may entertain substitutions as needed for drug shortages.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Bohanske, M.D.</td>
<td>Region 1 Medical Director</td>
</tr>
<tr>
<td>Seth Ritter, M.D.</td>
<td>Region 2 Medical Director</td>
</tr>
<tr>
<td>Timothy Pieh, M.D.</td>
<td>Region 3 Medical Director</td>
</tr>
<tr>
<td>David Saquet, D.O.</td>
<td>Region 4 Medical Director</td>
</tr>
<tr>
<td>Beth Collamore, M.D.</td>
<td>Region 5 Medical Director</td>
</tr>
<tr>
<td>Benjy Lowry, M.D.</td>
<td>Region 6 Medical Director</td>
</tr>
<tr>
<td>Matthew Sholl, M.D.</td>
<td>Maine EMS Medical Director</td>
</tr>
<tr>
<td>Kate Zimmerman, D.O.</td>
<td>Associate Maine EMS Medical Director</td>
</tr>
<tr>
<td>Kelly Meehan-Cousee, M.D.</td>
<td>American College of Emergency Physicians</td>
</tr>
<tr>
<td>Bethany Nash, PharmD</td>
<td>Clinical Pharmacist/Pharmacology Representative</td>
</tr>
<tr>
<td>Peter Tilney, D.O.</td>
<td>At Large Physician</td>
</tr>
<tr>
<td>Rachael Williams, M.D.</td>
<td>EMS for Children Medical Director</td>
</tr>
<tr>
<td>Claire Dufort, EMT-P</td>
<td>ALS Representative</td>
</tr>
<tr>
<td></td>
<td>BLS Representative</td>
</tr>
<tr>
<td>J. Samuel Hurley, NREM T-P</td>
<td>Maine EMS Director</td>
</tr>
</tbody>
</table>
The Maine EMS Prehospital Treatment Protocols are dedicated to Maine's EMS clinicians, both past and present, as well as the numerous physicians, PAs, NPs, nurses and other medical personnel who have provided their time and guidance over the years to make the development of these protocols possible. This document reflects the planned review, which occurs every two years, by the Medical Direction and Practices Board. We attempt to combine the best available evidence from the current literature and medical consensus together to produce protocols that will enhance prehospital care in the State of Maine.

Many individuals have spearheaded the effort for this work to become a reality. Although there are too many to mention individually, it is important to realize the common commitment shared to empower a continuously improving system where those citizens who need emergency medical assistance receive the best care possible.

For those of you reading this document, please keep in mind the great commitment and sacrifice that Maine EMS clinicians make daily in the course of providing superlative prehospital care. Their work is physically, emotionally, and mentally stressful, yet 24 hours a day, 365 days a year, these individuals provide care with the skill and compassion that promises the best prehospital care for all of the citizens of Maine. What you do matters and we thank you.

The 2021 Maine EMS protocols are specifically dedicated to Maine EMS clinicians' tireless response to the Coronavirus Pandemic. The MDPB and Maine EMS offers its most sincere gratitude for your dedication, service and sacrifice maintaining the health and safety of Maine citizens.
<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Color and Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>Brown 1 - 6</td>
</tr>
<tr>
<td>Definitions</td>
<td>Purple 1 - 6</td>
</tr>
<tr>
<td>Rescue or Alternate Airway Devices</td>
<td>Blue 1</td>
</tr>
<tr>
<td>Pre-Intubation Checklist</td>
<td>Blue 2</td>
</tr>
<tr>
<td>Airway Algorithm</td>
<td>Blue 3</td>
</tr>
<tr>
<td>Confirmation and Monitoring of Advanced Airways</td>
<td>Blue 4</td>
</tr>
<tr>
<td>Failed Intubation Algorithm</td>
<td>Blue 5</td>
</tr>
<tr>
<td>Post Intubation / BIAD Pain Control</td>
<td>Blue 6</td>
</tr>
<tr>
<td>Respiratory Distress with Bronchospasm</td>
<td>Blue 7 - 9</td>
</tr>
<tr>
<td>Anxiolysis in CPAP</td>
<td>Blue 10</td>
</tr>
<tr>
<td>Pulmonary Edema (without shock)</td>
<td>Blue 11</td>
</tr>
<tr>
<td>Pulmonary Hypertension Complications</td>
<td>Blue 12</td>
</tr>
<tr>
<td>Surgical Cricothyrotomy</td>
<td>Blue 13 - 14</td>
</tr>
<tr>
<td>Tracheostomy Care</td>
<td>Blue 15 - 16</td>
</tr>
<tr>
<td>Chest Pain - General</td>
<td>Red 1</td>
</tr>
<tr>
<td>Chest Pain - Suspected Cardiac Origin / STEMI Criteria</td>
<td>Red 2 - 3</td>
</tr>
<tr>
<td>Guidelines to the Prehospital Use of 12-Lead ECGs by the ALS Clinician</td>
<td>Red 4</td>
</tr>
<tr>
<td>Chest Pain - Fibrinolytic Checklist</td>
<td>Red 5</td>
</tr>
<tr>
<td>Chest Pain - Uncertain Etiology</td>
<td>Red 6</td>
</tr>
<tr>
<td>Cardiac Arrest Overview</td>
<td>Red 7</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>Red 8 - 11</td>
</tr>
<tr>
<td>Pediatric Cardiac Arrest Medications and Dosages</td>
<td>Red 12</td>
</tr>
<tr>
<td>Refractory VF / VT</td>
<td>Red 13</td>
</tr>
<tr>
<td>Termination of Resuscitation</td>
<td>Red 14 - 15</td>
</tr>
<tr>
<td>Adult Post-Resuscitation Care</td>
<td>Red 16</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Red 17 - 19</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>Red 20 - 21</td>
</tr>
<tr>
<td>Cardiogenic Shock</td>
<td>Red 22</td>
</tr>
<tr>
<td>Syncope</td>
<td>Red 23</td>
</tr>
<tr>
<td>Ventricular Assist Devices</td>
<td>Red 24 - 25</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Red 26 - 27</td>
</tr>
<tr>
<td>Allergy / Anaphylaxis</td>
<td>Gold 1 - 4</td>
</tr>
<tr>
<td>Altered Level of Consciousness</td>
<td>Gold 5</td>
</tr>
<tr>
<td>Diabetic/Hypoglycemic Emergencies</td>
<td>Gold 6 - 7</td>
</tr>
<tr>
<td>Seizure</td>
<td>Gold 8 - 9</td>
</tr>
<tr>
<td>Stroke</td>
<td>Gold 10 - 13</td>
</tr>
<tr>
<td>Medical Shock</td>
<td>Gold 14 - 17</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>Gold 18</td>
</tr>
<tr>
<td>Obstetrical Emergencies</td>
<td>Gold 19</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>Color and Number</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Nausea and Vomiting</td>
<td>Gold 20</td>
</tr>
<tr>
<td>Minimum Landing Zone</td>
<td>Green 1 - 2</td>
</tr>
<tr>
<td>Trauma Triage</td>
<td>Green 3 - 5</td>
</tr>
<tr>
<td>Spine Assessment</td>
<td>Green 6</td>
</tr>
<tr>
<td>Spine Management</td>
<td>Green 7 - 8</td>
</tr>
<tr>
<td>Glasgow Coma Scale</td>
<td>Green 9</td>
</tr>
<tr>
<td>Chest Trauma</td>
<td>Green 10</td>
</tr>
<tr>
<td>Head Trauma</td>
<td>Green 11 - 14</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Green 15</td>
</tr>
<tr>
<td>Hemorrhagic Shock</td>
<td>Green 16 - 18</td>
</tr>
<tr>
<td>Burn</td>
<td>Green 19 - 20</td>
</tr>
<tr>
<td>Universal Pain Management</td>
<td>Green 21 - 24</td>
</tr>
<tr>
<td>Termination of Resuscitation for Traumatic Cardiac Arrest</td>
<td>Green 25</td>
</tr>
<tr>
<td>Crush Injury</td>
<td>Green 26</td>
</tr>
<tr>
<td>Facial / Dental Injury</td>
<td>Green 27</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>Green 28</td>
</tr>
<tr>
<td>Open Fractures</td>
<td>Green 29</td>
</tr>
<tr>
<td>Poisoning / Overdose</td>
<td>Yellow 1 - 3</td>
</tr>
<tr>
<td>Naloxone Dispensation</td>
<td>Yellow 4</td>
</tr>
<tr>
<td>Alcohol Intoxication / Severe Alcohol Withdrawal</td>
<td>Yellow 5 - 6</td>
</tr>
<tr>
<td>Nerve Agent / Organophosphate / Carbamate Poisoning</td>
<td>Yellow 7</td>
</tr>
<tr>
<td>Cyanide / CO Exposure</td>
<td>Yellow 8 - 9</td>
</tr>
<tr>
<td>Radiation Injuries</td>
<td>Yellow 10</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>Yellow 11-12</td>
</tr>
<tr>
<td>Hyperthermia - Heat Exhaustion / Heat Stroke</td>
<td>Yellow 13-14</td>
</tr>
<tr>
<td>Drowning/Submersion Injuries</td>
<td>Yellow 15</td>
</tr>
<tr>
<td>Brief Resolved Unexplained Event</td>
<td>Pink 1</td>
</tr>
<tr>
<td>Pediatric Respiratory Distress with Inspiratory Stridor</td>
<td>Pink 2</td>
</tr>
<tr>
<td>Neonatal and Young Infant Fever</td>
<td>Pink 3</td>
</tr>
<tr>
<td>Child Birth</td>
<td>Pink 4 - 5</td>
</tr>
<tr>
<td>APGAR Score</td>
<td>Pink 6</td>
</tr>
<tr>
<td>Neonatal Resuscitation</td>
<td>Pink 7</td>
</tr>
<tr>
<td>Normal Pediatric Vital Signs</td>
<td>Pink 8 - 9</td>
</tr>
<tr>
<td>Pediatric Specific Equipment Sizes</td>
<td>Pink 10</td>
</tr>
<tr>
<td>Pediatric Transportation</td>
<td>Pink 11 - 12</td>
</tr>
<tr>
<td>Transport of Mentally Ill Patients</td>
<td>Orange 1</td>
</tr>
<tr>
<td>Depression / Suicidal Ideation</td>
<td>Orange 2</td>
</tr>
<tr>
<td>Restraints</td>
<td>Orange 3</td>
</tr>
<tr>
<td>Agitation / Excited Delirium</td>
<td>Orange 4 - 6</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>Color and Number</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Care of the Person Experiencing Homelessness</td>
<td>Orange 7</td>
</tr>
<tr>
<td>Do Not Resuscitate Guidelines</td>
<td>Grey 1 - 5</td>
</tr>
<tr>
<td>Pre-hospital Management of Hospice Patients</td>
<td>Grey 6 - 8</td>
</tr>
<tr>
<td>Death Situations for Emergency Responders</td>
<td>Grey 9 - 10</td>
</tr>
<tr>
<td>Maine Death With Dignity Law</td>
<td>Grey 11</td>
</tr>
<tr>
<td>Bariatric Patients</td>
<td>Grey 12</td>
</tr>
<tr>
<td>Mass Casualty / Disasters/Hazmat</td>
<td>Grey 13 - 15</td>
</tr>
<tr>
<td>Sexual Assault Victim</td>
<td>Grey 16</td>
</tr>
<tr>
<td>Child Abuse Management and Reporting</td>
<td>Grey 17 - 18</td>
</tr>
<tr>
<td>Adult Abuse, and Intoxicated Drivers</td>
<td>Grey 19</td>
</tr>
<tr>
<td>Transport Protocol</td>
<td>Grey 20 - 21</td>
</tr>
<tr>
<td>Protective Headgear Removal</td>
<td>Grey 22</td>
</tr>
<tr>
<td>Crime Scenes</td>
<td>Grey 23</td>
</tr>
<tr>
<td>Defibrillation / Cardioversion Settings</td>
<td>Grey 24</td>
</tr>
<tr>
<td>Maine EMS Medication List</td>
<td>Grey 25</td>
</tr>
<tr>
<td>Telephone / Radio Reference/ Contact Numbers</td>
<td>Grey 26 - 28</td>
</tr>
<tr>
<td>Non-EMS System Medical Interveners</td>
<td>Black 1</td>
</tr>
<tr>
<td>ANNEX</td>
<td></td>
</tr>
<tr>
<td>Operational K9 Protocols Intro</td>
<td>OD Green 1</td>
</tr>
<tr>
<td>Operational K9 Restraint</td>
<td>OD Green 2 - 3</td>
</tr>
<tr>
<td>Operational K9 Airway Obstruction</td>
<td>OD Green 4 - 5</td>
</tr>
<tr>
<td>Operational K9 Airway Management</td>
<td>OD Green 6 - 7</td>
</tr>
<tr>
<td>Operational K9 Surgical Airway</td>
<td>OD Green 8 - 9</td>
</tr>
<tr>
<td>Operational K9 Cardiak Arrest</td>
<td>OD Green 10 - 11</td>
</tr>
<tr>
<td>Operational K9 Post-Resuscitation Care</td>
<td>OD Green 12</td>
</tr>
<tr>
<td>Operational K9 Hemorrhage Control</td>
<td>OD Green 13</td>
</tr>
<tr>
<td>Operational K9 Hemorrhagic Shock</td>
<td>OD Green 14</td>
</tr>
<tr>
<td>Operational K9 Chest Trauma</td>
<td>OD Green 15</td>
</tr>
<tr>
<td>Operational K9 Burns</td>
<td>OD Green 16</td>
</tr>
<tr>
<td>Operational K9 Opioid Overdose</td>
<td>OD Green 17</td>
</tr>
<tr>
<td>Operational K9 CO/CN Exposure / Smoke Inhalation</td>
<td>OD Green 18</td>
</tr>
<tr>
<td>Operational K9 Nerve Agent / Organophosphate / Carbamate Exposure</td>
<td>OD Green 19</td>
</tr>
<tr>
<td>Operational K9 Heat Illness</td>
<td>OD Green 20 - 22</td>
</tr>
<tr>
<td>Operational K9 Anaphylaxis</td>
<td>OD Green 23</td>
</tr>
<tr>
<td>Operational K9 Gastric Dilation and Volvulus (GDV)</td>
<td>OD Green 24</td>
</tr>
<tr>
<td>Operational K9 M^ARCH^2 PEDALS</td>
<td>OD Green 25</td>
</tr>
<tr>
<td>Operational K9 Casualty Card</td>
<td>OD Green 26</td>
</tr>
<tr>
<td>K9 Normal Vitals & Glasgow Coma Score</td>
<td>OD Green 27</td>
</tr>
<tr>
<td>Operational K9 Formulary</td>
<td>OD Green 28</td>
</tr>
</tbody>
</table>
These protocols are a "living document" maintained electronically by Maine EMS and may be edited or updated, as required, at any time. A detailed review and editing of these protocols will occur on a biennial time frame and an updated version will be released every other year.

All licensed clinicians who practice within the Maine EMS system are required to be familiar with the contents of this document pertinent to their level of training. For the latest corrections/updates to these protocols, please visit the Maine EMS website at: http://www.maine.gov/ems.

There are protocols within this document that are the result of the collaboration between the Northern New England States (Maine, New Hampshire and Vermont) to provide uniform, evidence-based care to our patients. These protocols are identified by a joint statement at the bottom of the protocol.
These protocols were developed for the following reasons:
1. To provide the EMS clinician with a quick field reference, and
2. To develop written standards of care which are consistent throughout the State of Maine

Users of these protocols are assumed to have knowledge of more detailed and basic patient management principles found in EMS textbooks and literature appropriate to the EMS clinician’s level of training and licensure.

EMS clinicians are encouraged to contact OLMC in any situation in which advice is needed, not only in situations as directed by these written protocols.

To use these protocols as they are intended, it is necessary to know the philosophy, treatment principles, and definitions which guided the physicians and other EMS clinicians who drafted these protocols:

- **Treatment should very RARELY delay transport!** This is especially true for trauma patients, patients with chest pain, and patients with suspected stroke. IVs should be started en route except in those situations where treatment at the scene is in the patient’s best interest, such as shock, prolonged extrication, or a cardiac patient when full ACLS care is available. Delays in transport should be discussed with OLMC.

- **Inability to establish voice contact with OLMC:** There are rare situations where the patient is unstable and delay in treatment threatens the patient’s life or limb. If, after good faith attempts, the EMS clinician cannot contact OLMC, then the EMS clinician is authorized to use any appropriate treatment protocols as if they were standing orders. In such cases, treatments must still be consistent with the EMS clinician’s training and licensure. Continue attempts to contact OLMC and document these attempts on the patient run record.

- **Transports and transfers:** During transports and transfers, ambulance crews will follow these MEMS protocols, including use of only those medications and procedures for which they are trained and authorized by protocol.

- **Hospital destination choice:** If a patient needs care which the ambulance crew, in consultation with OLMC, believes cannot be provided at the most accessible hospital, the patient will be transported to the nearest facility capable of providing that care upon the patient’s arrival. If, with OLMC consultation, a patient is believed to be too unstable to survive such a diversion, then the patient will be transported to the most accessible hospital with an emergency department. Diversion is also non-binding, and if a patient insists or if the crew deems that bypass is not in the patient’s best interest, then going to a hospital “on diversion” is appropriate. If OLMC contact is not possible, the ambulance crew is authorized to make this determination. OLMC cannot legally refuse these patients.
Regional destination: Each region has the authority to develop protocols which designate the appropriate destination for patients transported from the scene. Any such protocol should be patient-centric and created exclusively to offer patients emergent care only available at selected regional sites. Examples of such protocols include the Maine EMS Trauma Triage Protocols.

Paramedics and AEMTs are expected to perform all duties in their listed scope of practice as well as those of the prior scopes of practice in the appropriate logical order. Treatments/medications should be given in the order specified. However, the MDPB recognizes that often treatments are delivered simultaneously and more than one protocol may be used. OLMC or ALS clinicians may request treatments/medications out of sequence for medical reasons.

MEMS patient/run record will be legible and thoroughly completed for each call or for each patient when more than one patient is involved in a call. This document is our legacy of patient care and holds valuable information for hospital clinicians. This information is essential to patient care and safety. Services must provide a patient care document before leaving the hospital. In MOST circumstances, this document will be a completed copy of the patient run report although, in rare circumstances, when it is not possible to complete the electronic patient care record before leaving the hospital, services may provide the hospital with a Maine EMS-approved, one page, patient care summary. THIS DOCUMENT DOES NOT REPLACE THE COMPLETED RUN REPORT. These documents may become part of the patient’s hospital record and, in an effort to ensure excellent patient care, all information on this written summary must reflect the information in the electronic run report. Services must still complete the electronic patient care report and make the report available to the hospital as soon as possible.

Quality Assurance: All EMS clinicians and services must be in compliance with the Regional and State Quality Improvement Program to the satisfaction of the Regional Medical Director.

Assuming and Reassessing care already provided: EMS clinicians who will be assuming the responsibility for patient care will also be responsible for assessing the care provided before their arrival, and for all subsequent care after they arrive up to and including their level of training and licensure. If an EMS clinician has not been trained in a particular treatment listed at their level, or if that treatment is not within the EMS clinician’s scope of practice, the clinician may not perform the treatment.

If there is a Paramedic on scene that is willing to:

a. Accompany the AEMT on the call, and
b. Accept responsibility for the AEMT’s actions

Then the Paramedic may direct the AEMT to administer medications that are within the AEMT’s scope of practice. This may be accomplished without contacting OLMC as long as the medication administration would not require OLMC for the Paramedic. If the Paramedic is unwilling to accept the above responsibilities, then the AEMT must contact OLMC before administering any medications.
• **Carbon monoxide monitors**: Carbon monoxide monitors may be used for informational purposes only. Treatment and transport decisions may not be made solely on the basis of CO readings from these monitors as they may report falsely low levels.

• **Medical Control permission**: If a treatment is listed as requiring Medical Control permission at one level and is listed again without requiring OLMC permission at a higher level, the higher-level EMT need not seek OLMC permission.

• **Deviation from protocols**: These protocols represent a consensus of the MDPB. In unusual situations, OLMC may deviate from these protocols if done in the patient’s best interest. The deviation in care ordered must be within the scope of practice, training, and skill of the EMS clinician. The reasons for deviating from these protocols must be documented in the patient’s chart. Under such circumstances, if the ALS clinician agrees, the ALS clinician will verify and will comply with OLMC orders, will fully document the deviation on the patient run record, and will not consider the care rendered to be an emergency medical treatment to be routinely repeated.

• **Arrival of officially dispatched EMS personnel**: Once EMS personnel have arrived on the scene, they may interact with other medical personnel on the scene who are not part of the organized EMS system responses in the following manner:

 • **Maine EMS licensees not affiliated with one of the responding services may only provide care within their scope of practice with the approval of the ambulance crew-member in charge of the call.**

 • **The patient’s own physician**, physician assistant, or nurse practitioner may direct care as long as they remain with the patient (in their absence, direction of care is subject only to these protocols and OLMC). You may assist this person within the scope of your practice and these protocols. Only a physician, physician assistant, or independent nurse practitioner authorized to offer OLMC by their hospital may give orders outside of the MEMS protocols. Questions in this regard should be resolved by OLMC. You may show this person Black 1, the “Non-EMS System Medical Interveners” protocol to assist with your explanation.

 • **Other unsolicited medical interveners** must be Maine-licensed physicians, nurses, nurse practitioners or physician assistants whose assistance you request. The Black 1 “Non-EMS System Medical Interveners” protocol describes this, and should be shown to such interveners.

 • **Other healthcare clinicians in the home**: Other healthcare clinicians in the home attending the patient (i.e. R.N., L.P.N., C.N.A., Nurse Midwife, etc.) are a valuable source of information and assistance. Any aid or treatment they wish to give must be authorized by OLMC. Any dispute over treatment or transport should be resolved by OLMC.
• **Home healthcare devices and appliances**: Patients may have devices and appliances (drains, ports, LVADs, insulin pumps, etc.) with which they are routinely discharged home. Patients (or their licensed care clinicians or previously instructed family members), are expected to maintain them on their own. These devices have some risks associated with them, but are generally considered safe in the home environment. As such, EMS clinicians are not restricted in the care or transfer of these patients based solely on the presence of these devices or appliances. **If an issue arises where there is unfamiliarity with or any questions concerning these devices (which cannot be immediately resolved by the patient or caregivers), refer to OLMC.**

• **Graduates with a current certification from a Maine EMS-approved wilderness EMT course** may apply the principles of care taught in that course with the approval of the service Medical Director and when patient arrival at a definitive care setting will be more than 2 hours.

• **Repeated Treatment**: Unless otherwise indicated, any treatment included in these protocols may be repeated after reassessment and with OLMC permission.

• **Oxygen supplementation** will be by nasal cannula or non-rebreather mask as appropriate.

• **Patient Sign-Offs**: There exist three origins for patient sign-offs:
 a. A patient refuses transport and the clinician agrees transport is not warranted
 b. The patient refuses transport but the clinician does not feel this is safe
 c. The patient requests transport but the clinician refuses (this final example is called an EMS System-initiated sign-off)

Patient-initiated sign-offs should only be considered in patients with decision-making capacity and resources available to care for themselves and when non-transport is considered safe. These sign-offs do not require discussion with On-Line Medical Control. Situations in which the patient requests sign-off but the EMS clinician deems it inappropriate, please refer to OLMC. **EMS System-initiated patient sign-offs (i.e. when the patient requests transfer but the EMS clinician refuses) are tremendously risky interactions and are not permissible. These sign-offs must be approved by OLMC and the service is expected to review all of these events through the service’s quality assurance mechanism. Patient care reports must be completed for all of these interactions.**

• **Vital Signs**: The MDPB believes that vital signs are essential pieces of information to be acquired on all patients. In addition, the MDPB believes that vital signs should be trended on all patients. In most cases, vital sign trending should occur every 5-10 minutes, based on the patient’s clinical status and other operational considerations.

• **Transfer of Care** When transferring care of a patient, an on-duty EMS clinician must ensure the receiving caregiver is licensed at an equal or higher level unless the patient’s condition and reasonably anticipated complications can be effectively managed by a lower-level clinician’s scope of practice. However, a patient who receives interventions at a higher level on scene shall only have care transferred to the same or higher-level clinician.
- **Maine EMS Special Circumstance Protocols**: Maine EMS protocols are intended to address the vast majority of medical emergencies encountered by an EMS clinician. While intended to be comprehensive, certain patients exist with rare medical conditions that require highly specialized emergent care. In such situations, Maine EMS has created the “Special Circumstance Protocols”. These are prearranged medical protocols specialized to individual patients, suggested by the patient's medical clinician and ratified by the MDPB. Patients will present with a “Maine EMS Special Circumstance Protocol Form” that outlines the patient’s individual protocol and is signed by the patient's physician, the patient or their guardian, the local EMS service chief, the Regional Medical Director, and the State of Maine EMS Medical Director. These Special Circumstance Protocols should be made known to local EMS services and clinicians. In cases of question or uncertainty regarding the nature of the protocol, please refer to OLMC.

- **During transport**, patients should be secured to the stretcher utilizing both lateral and shoulder straps. For Pediatric patient guidance, refer to Pediatric Transport Protocol, Pink 11 - 12.

- **Vagus Nerve Stimulators (VNS)** are implanted devices that are used to treat refractory partial seizures by stimulating the vagus nerve. They are not currently approved to treat generalized seizures. The exact mechanism is unclear, but the devices provide continuous on-off cycles of vagal stimulation to prevent seizures. Patients with a VNS typically have a magnet that they can use to trigger an additional 30 second stimulation period when they feel a seizure coming on or when they are having a seizure. Caregivers are typically trained to assist with the magnet. In the event no one is available who is trained to use the magnet, the EMS clinician at any level may assist the patient if the patient can confirm that the device is a VNS and after the EMS clinician consults with OLMC.

- **In the critically ill patient**, vascular access may be difficult to obtain. The decision on which technique to use first, IV versus IO, is based on the assessment and judgment of the clinician. Ultimately, an IV is the superior form of vascular access but the IO is appropriate for the initial resuscitation of the critically ill patient if, in the clinician's judgment, attempts to obtain IV access would lead to an unreasonable delay in initiating fluid resuscitation.

- **Option to Cancel ALS policy**: If the patient meets the protocol-specific cancellation criteria, the EMT and AEMT, in consultation with OLMC, may determine that it is appropriate to cancel the ALS response based on transport time, patient co-morbidities, and any other applicable factors.

- **All equipment** referenced in these protocols must be “Maine EMS-Approved.” In addition, it is expected that all clinicians will be appropriately trained before using any piece of equipment, device, or technique.
TASER PROBES

The use of a TASER does not automatically necessitate an EMS response or involvement. In assessing such patients, be cognizant of the potential for underlying metabolic dysfunction. TASER probes may be removed from the subject by the deploying officer. Probes that are embedded in a sensitive area (i.e. face, neck, breast, and genital area) may need to be removed by medical personnel. In these cases, the subject should be transported to the hospital for examination and removal of the probes by medical personnel at the hospital. Other adverse effects, (i.e. respiratory difficulty, seizures, etc.) should be treated, as appropriate, by the applicable protocol(s).
Definitions

ACLS is Advanced Cardiac Life Support.

Advanced Airway means the skill of endotracheal intubation and use of other airway modalities such as Blind Insertion Airway Devices (BIAD) performed only by those who have completed practical training in each of these skills.

AEMT (Advanced EMT) means the ability to provide Advanced EMT level of care (previously called Intermediate EMT).

AHA is the American Heart Association

ALS (Advanced Life Support) means the ability to provide advanced level of medical care, which in the prehospital realm means Paramedic. The ALS skills may include the following: IV access, advanced airway, cardiac monitoring, and/or oral or parenteral medications.

ALS (Advanced Life Support), If Available means that the patient shall receive the highest appropriate ALS intervention as soon as possible. The decision in this realm as to which interventions may be appropriate rests with the Paramedic. If any skills other than basic life support are deemed necessary or initially implemented, an ALS response should be sought, with simultaneous dispatch if possible. The use of a medical priority dispatching program, approved by the State Medical Director, is encouraged. When this cannot happen, the crew in attendance should bring ALS care and the patient together in the fastest of three ways: (1) ALS back-up at the scene; (2) ALS back-up met en route; or (3) ALS by hospital staff in the emergency department if prehospital rendezvous is not possible.

The BLS clinicians on the scene may modify the ALS response as appropriate.

AMS refers to Altered Mental Status and AMSS refers to Altered Mental Status Scale/Score.

BIADs refers to Blind Insertion Airway Devices and include periglottic (i.e. LMA) and transglottic (i.e: King) devices.

BP in these protocols refers to the systolic blood pressure.

BSA refers to Body Surface Area and, in burn patients, can be estimated by using the Rule of 9s or patient’s hand size (palm + fingers).

BVM refers to Bag-Valve-Mask ventilation

CHF refers to Congestive Heart Failure, a condition in which patients may present with dyspnea, hypoxia, wheezing, and rales.

CNS refers to Central Nervous System and includes the brain and spinal cord

Continuous Nebulization is administration of 3 unit doses of albuterol or albuterol-irratropium without interruption; that is, put all 3 unit doses into the nebulizer at the same time (if volume allows) and administer until complete OR administer 1 unit dose x 3 without waiting between administrations.
Definitions

CPAP refers to Continuous Positive Airway Pressure

CVA refers to Cerebral Vascular Accident (stroke)

DNR refers to Do Not Resuscitate

DNI refers to Do Not Intubate

Emergency Department means a hospital that provides an organized Emergency Service or Department that is available twenty-four (24) hours a day, seven (7) days a week and has the capability to provide On-Line Medical Control, to evaluate, treat, stabilize, and refer to an appropriate outside resource for all persons who present themselves for treatment.

Emergency Medical Responder
The MDPB recognizes the Emergency Medical Responder (EMR) scope of practice to include the following:

- Airway management, including manual maneuvers, suctioning, application of supplemental O₂, and use of the following airway adjuncts - pocket mask, OPA/NPA, BVM
- Acquisition of manual vital signs
- Application of medications for force protection only (such as the Mark 1 kit)
- Performance of manual CPR and use of AED
- Assistance in childbirth
- Manual stabilization of the cervical spine or extremity injuries
- Hemorrhage control, including use of a tourniquet
- Emergency patient moves (such as drags, carries, etc.)
- Provision of naloxone for suspected overdose
- Dispensation of naloxone as described in Yellow 4

The 2018 National Scope of Practice Updates include the following procedures to the EMR scope of practice: hemorrhage control: wound packing, placement of cervical collars, extremity splinting, and eye irrigation. Maine EMS EMRs who have been trained to perform these skills, through their primary training or Maine EMS-approved continuing medical education, may perform these skills in addition to the skills listed above.

EMS Provider means any person or service licensed by Maine EMS to provide emergency medical services.

End-tidal CO₂ (ETCO₂) is a measurement of carbon dioxide in exhaled air used to assess ventilation, also referred to as capnography. The capnography monitoring must be continuous and with a device that displays a waveform.

ETT refers to Endo-Tracheal Tube

Fluid Bolus indicates maximum fluid administration achievable without pumps or other special equipment in the field setting. Specifically, running a large-bore IV wide open until the desired clinical condition or blood pressure, based on the patient’s underlying condition, is achieved. A true IO bolus, at the appropriate dose with a syringe/3-way stop-cock assembly or pressure bag, is acceptable. Pediatric boluses are 20 mL/kg, and may be repeated one time if patient remains hypotensive, unless a specific alteration is noted in the protocols. Unless a specific volume of fluid is specified in the specific protocol, if the patient requires more than 40 mL/kg of IV fluid, contact OLMC to further guide fluid administration.
Definitions

GI refers to Gastro-Intestinal tract

GU refers to Genito-Urinary tract

Hypoglycemia is a blood glucose less than 60 mg/dL.

IM refers to Intra-Muscular route of medication administration

IN refers to Intra-Nasal route of medication administration

IO in these protocols, means intraosseous access. IO may be used by the Advanced EMT or Paramedic. The IO route should be considered in any patient if an IV is not established within two attempts or 90 seconds and that patient has one of the following:

a. Altered mental status (GCS less than or equal to 8)

b. Respiratory failure (SpO₂ less than or equal to 90% after appropriate oxygen therapy, respiratory rate less than 10 or greater than 40 breaths per minute) with alteration of mental status

c. Profound hypovolemia or hemodynamic instability with alteration of mental status or other evidence of shock – recall, the use of an IO for volume resuscitation requires the use of a pressure bag/3-way stop-cock to achieve optimal flow rates

d. Cardiac arrest (medical or traumatic)

Additionally, the clinician may choose to utilize the IO route first in critical patients for whom IV access may be difficult.

After discussion with OLMC, may consider IO placement for the following conditions:

a. Profound hypovolemia (Systolic BP less than 90 mmHg) without alterations in mental status or other evidence of shock

b. Burn patients with bilateral upper extremity burns

IO is CONTRAINDICATED in the following conditions

a. Fracture of the tibia or femur in lower extremity placement or fracture of the humerus in upper extremity placement

b. Infection at insertion site

c. IO within the prior 24 hours in the same bone

d. Knee or shoulder replacement (identified by mid-line vertical scar over the patella or anterior proximal humerus)

e. Tumor near site

f. Inability to locate landmarks

g. Excessive tissue at insertion site

h. IO access is not intended for prophylactic use

Approved Sites (one per bone): Per manufacturer recommendations. Consider humeral head placement preferentially due to proximity to central circulation, particularly in OHCA patients.

Continued
Definitions

IO, continued
Paramedic: If infusion of medications or fluids causes significant pain, consider the following:

1. **Adult**: Consider lidocaine 2% (preservative free) 40 mg slow IO push over 3-4 minutes followed by 10 mL Normal Saline flush. If pain continues, contact OLMC for OPTION of additional 20 mg slow IO push.

2. **Pediatric**: Consider lidocaine 2% (preservative free) 0.5 mg/kg (MAX 40 mg) slow IO push over 3-4 minutes followed by 10 mL Normal Saline flush. If pain continues, contact OLMC for OPTION of additional 0.25 mg/kg (MAX 20 mg) slow IO push.

IV means any balanced electrolyte solutions may be used, such as Lactated Ringers, Normal Saline and 5% Dextrose in Water. IV solutions, as defined in this document, DO NOT include other additives (such as potassium) or medications. Normal Saline is the fluid of choice for patients with history of renal failure, not Lactated Ringers. Recommended catheter size for rapid fluid resuscitation in adults is 14-18 gauge. If rapid fluid resuscitation is not required, smaller catheter sizes and heparin/saline locks may be used. Heparin used for this procedure is not considered a medication.

IV Push means an expedited method of medication delivery in which a small volume of medication is administered, all at once, over a short amount of time into a vein. Recommendations for administration times are listed in specific protocols.

LVAD refers to Left Ventricular Assist Device

LVO refers to Large Vessel Occlusion, a type of stroke that may be amenable to fibrinolytic/endovascular therapy

LOC refers to Level of Consciousness

mCPR refers to mechanical CPR

MDPB means Maine EMS Medical Direction and Practices Board, which consists of the six Regional Medical Directors, a physician representing the Maine Chapter of the American College of Emergency Physicians, an At-Large physician representative, a Clinical Pharmacist or Toxicologist, a BLS clinician, an ALS clinician, the State EMS Associate Medical Director and the State EMS Medical Director.

Neonate is an infant less than or equal to 28 days old.

NR means a non-rebreather oxygen mask.

O₂ means oxygen therapy as appropriate for patient.

OCME refers to Office of the Chief Medical Examiner

ODT refers to Orally Disintegrating Tablet, the formulation of oral ondansetron that may be administered by allowing the tablet to melt on the patient’s tongue.
OG refers to Oral-Gastric tube and should be considered in all intubated patients

OHCA refers to Out-of-Hospital Cardiac Arrest

On-Line Medical Control (OLMC) refers to the on-line physician/physician assistant/nurse practitioner who is licensed by the State of Maine and authorized by a hospital to direct emergency medical services personnel consistent with the protocols developed by the MDPB.

Other Appropriate Destination means a facility that has been approved by the Board of EMS to receive, via ambulance, patients who are in need of emergency care.

Paramedic Back-up means use of an Advanced Life Support resource when a presenting patient needs more than Basic Life Support. In the prehospital setting, this indicates a Paramedic response. An ALS back-up agreement should be written between EMS provider services routinely offering and accepting ALS back-up support. This would establish medical/operational/liability expectations of both services. These protocols cannot mandate any service to routinely offer or receive back-up. However, any decision in this regard, particularly to refuse to offer or accept ALS back-up, should be grounded in reasonable medical, operational, or financial considerations and should be reviewed by the individual service’s legal counsel.

PCP refers to Primary Care Provider

Pediatric Patient in these protocols, means pre-pubertal (without pubic, axillary, or facial hair).

PO refers to the oral route of medication administration

POLST: Provider Orders for Life-sustaining Treatment.

PPE refers to Personnel Protective equipment and includes gloves, gowns, masks, respirators, eye protection.

PPV is Positive Pressure Ventilation, such as (in order of preference): two-person bag-valve-mask technique with oxygen, one-person bag-valve-mask technique with oxygen, mouth-to-mask ventilation with oxygen, and mouth-to-mask ventilation without oxygen.

RTC’s refers to Regional Trauma Centers in Maine: Central Maine Medical Center (CMMC), Northern Light Eastern Maine Medical Center (EMMC), and Maine Medical Center (MMC)

TIA refers to Transient Ischemic Attack which presents with stroke-like symptoms
TKO refers to an IV rate of “To Keep Open” and may vary according to IV tubing (usually 10-25 mL/hour)

TOR refers to Termination of Resuscitation

TPA refers to Tissue Plasminogen Activator, a fibrinolytic medication used to treat non-hemorrhagic stroke

VAD refers to Ventricular Assist Device
Maine EMS recognizes 2 major classes of Blind Insertion Airway Devices (BIADs). The first class is periglottic devices, such as the LMA® and the second class is transglottic or potentially transglottic devices, such as the King LT®. Any FDA-approved devices from these classes are approved for use.

A c-spine collar should be considered to help protect placement of all endotracheal intubations, periglottic and transglottic airway devices.

There are periglottic devices on the market that can be used to facilitate endotracheal intubation. If these devices are placed without an attempt at endotracheal intubation, they may be treated as any other periglottic device. If they are used to assist in placing an endotracheal tube, that tube must be treated and confirmed as any other endotracheal intubation.

It is recommended to have *NO MORE THAN* one device per class (periglottic or transglottic).
Pre-Intubation Checklist

1. Airway adjuncts ready
 __ Suction
 __ Oropharyngeal airway/ 2 nasopharyngeal airways
 __ Nasal cannula for apneic oxygenation

2. Intubation equipment ready
 __ Laryngoscope assembled and functional
 __ ET tube ready with lubricant, bougie and syringe (Bougies should be used on all intubation attempts using size 6.0 ETT and above)
 __ Tube-securing device ready
 __ Continuous end-tidal CO₂ monitor ready
 __ OG Tube

3. Back-up equipment ready
 __ Blind Insertion Airway Device (i.e. LMA®, iLMA®, or King®) available
 __ Consider surgical airway device

4. Team ready
 __ Airway manager
 __ BVM operator
 __ Assistant

5. Plan discussed

6. Patient ready
 __ Pre-oxygenation/de-nitrogenation
 __ Vascular access
 __ Patient positioning (unless contraindicated)
 __ Ear-to-ster nal-notch
 __ 30 degree head-of-bed elevation
 __ Monitoring in place
 __ Evaluate airway difficulty
 __ Prep for surgical airway as needed

7. Post-intubation medications ready
 __ Pain control:
 __ fentanyl
 __ Sedation (*requires OLMC*):
 __ midazolam OR __ ketamine

8. Automatic ventilator settings (if available)
 __ Volume: 6-8 mL/kg
 __ Rate: 16 (10 in asthma/COPD)
Airway Algorithm

- An intubation attempt is defined as passing a bougie or the endotracheal tube past the teeth or the endotracheal tube inserted into the nasal passage.
- Continuous capnography is mandatory for all patients with a BIAD or Endotracheal Tube; if prolonged use of BVM, consider use of capnography.
- The goal of airway management is adequate oxygenation, ventilation, and airway protection. If an effective airway is being maintained by BVM with an OPA and/or NPA(s), it is acceptable to continue with basic airway measures rather than BIAD or intubation.
- Consider addition of high-flow nasal cannula in addition to BVM/face-mask prior to intubation attempt if not meeting oxygenation goals. Keep in place during intubation attempt.
- The gastric tube may be connected to low suction (less than 80 mmHg).

** Patients are more effectively ventilated with face-mask ventilation when:**
1) A two-person ventilation technique is used
2) ETCO₂ is used to guide ventilation
3) Avoiding hypo- and hyperoxia
4) Avoiding hypo- and hyperventilation
5) Minimizing peak airway pressure
6) When tolerated, both oral and nasal airways are placed
Face mask ventilation can be achieved with a transport vent if so trained (Adult only)

PEARLS for Endotracheal Intubation
* Position the airway for best view of the cords – raise head to the sniffing position (i.e. earlobe in-line with sternal notch)*
* Preparation: (four cornerstones)
1) ET tube
2) Laryngoscope with backup blade
3) Suction
4) Bougie on every attempt for ETT size 6 or greater
* Always have a back-up plan should the primary strategy fail*
When advanced airways are placed, secure the tube with either a commercial tube holder or tape, rather than held manually
Intubate Patient

Confirm ETT or Blind Insertion Airway Device placement with continuous waveform capnography.*
AND
Confirm ETT and BIAD placement with physical exam, including absence of sounds over the epigastrium, presence of symmetric bilateral breath sounds, etc.

ETT/BIAD placement correct

Secure ETT/BIAD in place

Yes

Continue ETCO₂ monitoring en route to hospital and repeated evaluation of ETT/BIAD placement via breath sounds assessment

No

Immediate direct visualization of ETT/BIAD through vocal cords?**

ETT/BIAD placement uncertain or equivocal findings for confirmation

Remove ETT/BIAD and ventilate via BVM

ETT/BIAD placement incorrect

Attempt correct ETT/BIAD placement or continue BVM ventilation

* For cardiac arrest patients, consider placement of the ETT/BIAD as well as lack of pulmonary circulation in the interpretation of ETCO₂ findings.

** Nasotracheally-intubated patients should be assumed to have incorrect ETT/BIAD placement if findings of breath sounds or ETCO₂ results are uncertain or equivocal.
Failed Intubation Algorithm

A “failed” intubation or the “can’t intubate patient” is defined as two (2) unsuccessful intubation attempts by the most proficient technician on scene OR anatomy inconsistent with intubation attempts.

NO MORE THAN THREE (3) TOTAL ATTEMPTS PER PATIENT WITHOUT OLMC CONSULTATION.

Adequate oxygenation and ventilation with BVM?

Yes

Continue BVM

No

If SPO$_2$ drops less than 90% or it becomes difficult to ventilate with BVM

Yes

Facial trauma or unrelieved obstruction?

Yes

Surgical airway

No

Blind Insertion Airway Device

Yes

Ventilate, monitor for signs of adequacy including ETCO$_2$ and pulse oximetry

No

Notify OLMC or receiving hospital AS EARLY AS POSSIBLE regarding the patient’s difficult airway

Notify receiving hospital

Continuous pulse oximetry and ETCO$_2$ monitoring should be utilized in all patients with difficult airways or respiratory distress.

FOR PEDIATRIC PATIENTS REQUIRING SURGICAL AIRWAY – Consider needle cricothyrotomy in patients less than 8 years old OR if physiologically young enough that surgical landmarks are NOT identifiable.
All patients with an ETT or BIAD inserted who are not currently in cardiac arrest are at risk for pain, anxiety and self-extubation. Therefore, appropriate pain control and anxiolysis are required for all intubated patients. Signs of inadequate pain control/sedation include eye opening, coughing or gagging, sweating, tearing, new or worsening hypertension and/or tachycardia, tachypnea, or attempts to self-extubate.

EMT
1. Minimize stimulation

ADVANCED EMT
2. Place IV for anticipated medication administration

PARAMEDIC
3. Pain control
 a. **Adult & Pediatric**: Fentanyl 0.5 - 1 mcg/kg IV/IO every 15 minutes to a MAX cumulative dose of 5 mcg/kg

4. Anxiolysis - Contact OLMC for ONE of the following options:
 a. **Midazolam**
 i. **Adult**: 0.5 - 2.5 mg IV/IO every 5 minutes, may repeat x 3 to a MAX cumulative dose of 5 mg OR 1-5 mg IM every 5 minutes, may repeat x 3 to a MAX cumulative dose of 10 mg
 ii. **Pediatric**:
 1. **6 months - 12 years**: 0.05 mg/kg IV/IO every 5 minutes to a MAX cumulative dose of 5 mg
 2. **6 months - 12 years**: 0.1 mg/kg IM (MAX single dose 5 mg) every 5 minutes to a maximum cumulative dose of 10 mg

 -OR-

 b. **Ketamine (Adult ONLY)**
 i. 0.2 mg/kg IV/IO, max single dose of 25 mg. Mix in 100 mL bag of saline and infuse over 10 minutes via a pump. May repeat x 1 in 5 minutes
 ii. 0.4 mg/kg IM, max single dose 50 mg. May repeat x 1 in 10 minutes

It is important to **avoid** hypotension in the critically ill patient, especially post cardiac arrest and head injury. Since anxiolytics (midazolam and ketamine) can cause significant hypotension, it is recommended to treat pain first and anxiolysis (if needed) second. Anxiolysis should be treated with **either** midazolam OR ketamine, not a combination of the two as this could cause profound hypotension.
Respiratory Distress with Bronchospasm #1
(COPD, Emphysema, Chronic Bronchitis, Asthma)

CAUTION: RESPIRATORY DISTRESS MAY BE DUE TO MULTIPLE OTHER CAUSES
FOR WHICH OTHER TREATMENTS MAY BE INDICATED, INCLUDING THE
FOLLOWING:

- Pulmonary Edema, see Blue 11
- Anaphylaxis, see Gold 1
- Chest Trauma, see Green 10

EMT/ADVANCED EMT
1. O₂ as appropriate
2. If needed, assist ventilations with positive pressure ventilation using 100% O₂
3. Request ALS (see Purple 1)
4. Ipratropium bromide 0.5 mg / albuterol sulfate 2.5 mg nebulizer if greater than one (1) year of age with continued respiratory distress. Every 5 minutes, may repeat x 2 as needed for ongoing symptoms.
5. Consider CPAP* in patients > 18 y/o if no improvement after three nebulizers.
 *CPAP at the EMT level only if available, and so trained

Recall that CPAP should never take the place of bronchodilators and should be used only after, or in concert with, inhaled bronchodilators in patients with acute bronchospasm. If CPAP is going to be used in the asthmatic, nebulizers must be administered simultaneously*.

6. If CPAP is initiated, do the following:
 a. Ensure ALS has been requested (see Purple 1). ALS clinicians bring additional therapies to support the management of patients requiring CPAP.
 b. Contact OLMC for the following treatment options:
 i. Ipratropium bromide 0.5 mg / albuterol sulfate 2.5 mg nebulizer every five minutes while the patient remains on CPAP
 ii. For severe disease refractory to CPAP ONLY: Epinephrine
 1. Adult – EPINEPHrine 0.3 mg IM of 1mg/1mL every 20 minutes
 2. Pediatric - EPINEPHrine dose which is as follows: < 25 kg, 0.15 mg IM [0.15 mL of 1mg/mL], > 25 kg, 0.3 mg IM [0.3 mL of 1mg/mL] in anterolateral thigh every 20 minutes

ADVANCED EMT
7. Cardiac monitor
8. Manage airway as needed, refer to Blue 3

PARAMEDIC
9. Adult/Pediatric
 a. Albuterol 2.5 mg by nebulization. May repeat 1 time; or
 b. Ipratropium bromide 0.5 mg / albuterol sulfate 2.5 mg nebulizer if greater than one (1) year of age and in continued respiratory distress. May repeat every five minutes x 2.

(continued)
Respiratory Distress with Bronchospasm #2
(COPD, Emphysema, Chronic Bronchitis, Asthma)

10. Dexamethasone
 a. Adult:
 i. 10 mg IV/IM/IO x 1 OR,
 ii. If patient can tolerate oral medications, is not in overt respiratory distress, and is not requiring an airway management technique that obscures access to the mouth (i.e. O2 mask or CPAP) consider 10 mg PO x1
 b. Pediatric:
 i. 0.6 mg/kg (single MAX dose of 10 mg) IV/IM/IO x 1 OR,
 ii. If patient can tolerate oral medications, is not in overt respiratory distress, and is not requiring an airway management technique that obscures access to the mouth (i.e. O2 mask or CPAP) consider 0.6 mg/kg (single MAX dose of 10 mg) PO x1

11. For patients not improving with the above measures, consider the following OPTIONS:
 a. Repeated or continuous albuterol by nebulization or inhaler.
 b. For patients in status asthmaticus
 i. Epinephrine
 1. Adult: EPINEPHrine 0.3 mg IM of 1mg/1mL every 20 minutes
 2. Pediatric: EPINEPHrine dose which is as follows:
 Less than 25 kg, 0.15 mg IM [0.15mL of 1mg/mL],
 Greater than 25 kg, 0.3 mg IM [0.3 mL of 1mg/mL] in anterolateral thigh every 20 minutes
 ii. Magnesium Sulfate
 1. Adult: Magnesium Sulfate 2 grams IV/IO over 10 minutes, consider placing this medication on a pump.
 2. Pediatric: Magnesium Sulfate 50 mg/kg IV/IO with a MAX dose of 2 grams over 10 minutes; consider placing this medication on a pump.

*Asthmatic patients:
Airway management of asthmatic patients is primarily pharmacological, not mechanical. Therefore, the focus should be on taking those actions that enable the clinician to provide inhaled bronchodilators and, in patients with severe bronchospasm, obtain rapid IV or IO access, administer IV dexamethasone, IV magnesium, and consider IM EPINEPHrine. Due to the pathophysiology of asthma, positive pressure ventilation (facemask, BIAD, or endotracheal intubation) rarely, if ever, is an effective treatment without pharmacological intervention. Therefore, unless the patient is apneic, provide supplemental oxygen via non-rebreather and focus on providing pharmacological interventions. CPAP, with the lowest PEEP setting possible, is a last resort and a bridge to intubation. Specifically, if CPAP is going to be used in the asthmatic, continuous nebs must be administered simultaneously and the clinician must be prepared to proceed with advanced airway management.
Pediatric Considerations:

Wheezing in the child less than 2 years old is very commonly due to bronchiolitis. Bronchiolitis is a self-limited viral illness of the bronchioles, marked by edema but not smooth muscle contraction. Bronchiolitis is the most common cause of wheezing in children under the age of 2. The treatment goals are to maintain oxygenation and hydration and to monitor for apnea and respiratory distress. Because the etiology is different than asthma, the treatment options are also very different. Patients suffering from bronchiolitis do not always benefit from inhaled albuterol, though a trial is appropriate. They also do not benefit from steroids. Instead, provide oxygen to ensure O\textsubscript{2} sats greater than or equal to 90% and nasal suctioning with bulb syringe. In patients who fail these measures, consider alternate diagnosis, including stridor/croup and refer to Pink 2. Monitor for apnea or respiratory distress and, if encountered, manage the patient’s airway as indicated per Blue 3.

Prehospital clinicians should consider patient age, diagnosis, transport time, clinician experience, and effectiveness of ongoing bag-mask ventilation in considering whether to continue with bag-mask ventilation versus proceeding to further airway management procedures. Bag-mask ventilation has been shown to be equivalent to endotracheal ventilation in pediatric patients in most situations with short transport times. If suspected opiate overdose, refer to the Poisoning/Overdose protocol, Yellow 1.
Anxiolysis in CPAP

Adult patients with respiratory failure who are unable to oxygenate and ventilate often require CPAP. These patients may be combative and unable to tolerate CPAP either due to their hypoxia or anxiety.

EMT/Advanced EMT/Paramedic

1. Attempt coaching

PARAMEDIC

2. Consider ondansetron 4 mg IV/IO/IM if CPAP causing nausea and bloating

3. If unable to achieve sufficient anxiolysis to tolerate CPAP with coaching, contact OLMC for for ONE of the following anxiolytics:

a. Midazolam
 i. 0.5 - 2.5 mg IV/IO every 5 minutes, may repeat x 3 to a MAX cumulative dose of 5 mg
 ii. 1-5 mg IM every 5 minutes, may repeat x 3 to a MAX cumulative dose of 10 mg

- OR -

b. Ketamine
 i. 0.2 mg/kg IV/IO, MAX single dose of 25 mg. Mix in 100 mL bag of saline and infuse over 10 minutes via a pump. May repeat x 1 in 5 minutes
 ii. 0.4 mg/kg IM, MAX single dose 50 mg. May repeat x 1 in 10 minutes
Avoid nitroglycerin in any patient who has used a phosphodiesterase inhibitor within the past 48 hours. Examples are: sildenafil (Viagra, Revatio), vardenafil (Levitra, Staxyn), tadalafil (Cialis, Adcirca) which are used for erectile dysfunction and pulmonary hypertension. Contact OLMC for options in patients who have taken such medicines.

If initial systolic BP is less than 100 mmHg, refer to "Cardiogenic Shock" protocol, Red 22.

EMT
1. **O₂** as appropriate. Assist ventilations (PPV) if needed
2. Assess for shock
3. If BP greater than 100 mmHg, place in sitting position
4. Request ALS
5. If available, and so trained, consider trial of CPAP

ADVANCED EMT
6. Cardiac monitor and 12-lead ECG
7. IV en route
8. Manage airway as needed, refer to **Blue 3**

9. Contact OLMC for administration of nitroglycerin 0.4 mg tab or 1 spray **SL**. Repeat nitroglycerin at 2-minute intervals if systolic BP greater than 100 mmHg. After initiation of SL nitroglycerin, may place 1 inch of nitroglycerin ointment 2% to the chest wall if BP greater than 100 mmHg and remove nitroglycerin ointment 2% if BP less than 100 mmHg. If the patient has had nitroglycerin before and no IV is established, and systolic BP is greater than 100 mmHg, then it is OK to give nitroglycerin.

10. Consider use of CPAP

PARAMEDIC

11. Paramedic may perform all treatments above without medical control

12. Contact OLMC if above measures are not working
Pulmonary Hypertension Complications

There are increasing numbers of patients being treated for pulmonary hypertension throughout the State of Maine. Pulmonary hypertension is a disease in which a patient’s pulmonary arterial pressures are elevated and can be due to multiple factors, including heart disease, chronic lung disease, or thromboembolic disease. Additionally, in some cases of pulmonary hypertension, the etiology is uncertain. Patients manifest with multiple clinical symptoms, including dyspnea, chest pain and syncope. Pulmonary hypertension is NOT a disease that will be diagnosed in the prehospital setting. Increasingly, patients are being treated for the disease with medications that cause pulmonary vascular vasodilation, such as treprostinil (Remodulin).

EMT Transport Destination
Preferably, patients suffering from pulmonary hypertension who are treated by a specialist should be transported to the hospital managing their disease for ALL emergencies whenever feasible or operationally reasonable. If operational circumstances or the patient’s needs dictate otherwise, please transport to the closest reasonable facility. Please consult OLMC for any questions.

ADVANCED EMT Medication Interruption
Treprostinil (Remodulin) and other medications used to treat pulmonary hypertension are provided by central access, typically through a pump. Patients are often treated with both IV and oral medications. Disruptions of the patient’s IV medications can lead to increased symptoms. Most medication interruptions are NOT related to the pump, but rather the patient's central line and loss of access. In the case of interruptions of IV medication due to loss of central access:
1. Establish peripheral access

PARAMEDIC
2. Verify the patient’s medication and dose
3. Re-initiate the patient’s medication through the newly-established peripheral access
4. Consider the transport destination suggestions as listed above.

PEARLS FOR PULMONARY HYPERTENSION COMPLICATIONS

Most medications used to treat pulmonary hypertension have a high pH and if left running through a peripheral line too long (greater than 4 hours) may cause peripheral vein phlebitis and sclerosis. Please document the time the medication was initiated through the peripheral line and alert treating Emergency staff.

For any questions, please contact On-Line Medical Control.
The following protocol is an effort to maintain awareness of a procedure that occurs rarely in the Maine EMS system. Ultimately, this procedure should be practiced on a regular basis to maintain proficiency. PLEASE NOTE, this protocol describes a generally acceptable open cricothyrotomy and will differ from services that employ percutaneous kits. The inclusion of this protocol DOES NOT mandate that all clinicians use this exact procedural description. Clinicians should employ the procedure they are trained, practiced and most comfortable with. This protocol is one of multiple acceptable means to perform this procedure. Regardless of the procedure type, it is essential that Maine EMS paramedics are familiar with the available supplies and materials.

The primary indication for surgical cricothyrotomy is failure to maintain the airway (including oxygenation, ventilation, and protection) through other, less invasive means in a patient 8 years or older with palpable landmarks. In the Maine EMS experience, this has occurred predominantly in trauma cases with disruption of the face and normal airway anatomy and in choking patients. Even in some dramatic facial injuries, the airway may be adequately managed by sitting the patient up and leaning forward, as long as the other injury patterns allow.

Materials/Equipment for Surgical Cricothyrotomy
1. Cuffed tracheostomy tube or 6.0 - 7.0 ETT
2. Tracheal hook or bougie
3. Trousseau dilator (if available)
4. Syringe to inflate cuff
5. Scalpel (No. 11 blade)
6. Umbilical tape or other means to secure tracheostomy tube or ETT
7. 4x4 gauze
Procedure:

1. Extend the neck when possible to ensure best access to the trachea. Swab/cleanse the area.

2. Immobilize the trachea with your non-dominant thumb and middle finger while palpating the cricothyroid membrane with your non-dominant index finger. **NOTE:** The cricothyroid membrane is immediately BELOW the thyroid cartilage.

3. Make a 3 - 5 cm **vertical** incision over the cricothyroid membrane through the skin and subcutaneous tissues. **NOTE:** Severe bleeding is possible with this procedure and may occur at this or the following steps. Be prepared to suction and provide direct pressure to control bleeding.

4. Palpate the membrane through the incision to confirm anatomy.

5. Make a small (1 cm or less) incision **horizontally** through the cricothyroid membrane.

6. Insert the tracheal hook or bougie in the opening of the membrane and rotate toward the head while maintaining hold of the thyroid cartilage with your non-dominant hand.

7. If Trousseau dilator available, insert into the incision site and spread vertical then rotate 90 degrees until the dilator is parallel with the neck.

8. Insert the cuffed tracheostomy tube or ETT tube into the incision site. Advance until the flanges rest on the skin of the neck (when using tracheostomy tube).

9. Carefully remove the dilator (if used), tracheal hook and obturator of the tracheostomy tube.

10. Inflate the balloon of the tracheostomy tube/ETT.

11. Ventilate and confirm position by physical exam and ETCO2.

12. Secure the tube in place.

13. Dress incision site.
Indication:
An adult or pediatric patient with an established tracheostomy with signs of respiratory distress or failure.

Procedure:
1. Consult the patient's caregiver for assistance.
2. Assess the tracheostomy tube looking for easily reversible causes of distress, including detached oxygen source, plugging, etc.
3. Administer high-flow O2 over the tracheostomy via non-rebreather mask or blow by.
4. If patient's respiratory distress continues, assist ventilation using a bag-valve-mask to the tracheostomy tube.
5. Suction the tracheostomy tube if unable to ventilate with BVM, course upper airway sounds or if respiratory distress continues despite BVM ventilation
 a. Use the patient's suctioning supplies or a tube that is no more than 1/2 the diameter of the tracheostomy tube.
 b. Use no more than 80 mmHg suction pressure in pediatric patients and 150 mmHg in adults
 c. If tracheostomy tube has a cannula, remove it prior to suctioning
 d. Determine the proper suction catheter depth by measuring the obturator. If no obturator is available, insert the suction catheter 2-3 inches into the tracheostomy tube. DO NOT force the suction catheter into the tracheostomy tube.
 e. Pre-oxygenate when possible for 30-60 seconds then insert the suction catheter to the desired depth. Apply suctioning while removing the catheter. Gently rotate the catheter while withdrawing. This should take 10 - 15 seconds.
6. Consider using 2 - 3 mL of saline or nebulized saline to help loosen thick secretions
7. If respiratory distress continues, consider likely cause and reference appropriate protocol

In the case of an adult or pediatric patient with established tracheostomy tube (greater than 1-2 weeks old), in respiratory distress or failure in which the above measures have not succeeded in improving respiratory status, consider replacing the tracheostomy tube. This protocol may also be appropriate for patients with dislodged tracheostomy tubes.

PEARLS FOR TRACHEOSTOMY CARE
There are many types of tracheostomy tubes on the market. One of the most common types is the Shiley. These tracheostomy tubes have an inner and outer cannula. PLEASE NOTE: only the inner cannula has a 15 mm adapter that will fit a BVM, the outer cannula will not. The inner cannula MUST be in place to ventilate the patient

ANY bleeding from the tracheostomy site should be evaluated emergently. Follow the Hemorrhage/Hemorrhagic Shock protocols, **Green 15 - 18**, AND, in the case of severe hemorrhage from the tracheostomy site, hyperinflate the tracheostomy cuff with 50 mL of air, in an effort to tamponade the bleeding vessel. Inflate slowly, to prevent cuff rupture. Depending on the make and model of the tube, inflating the entire 50 mL may not be possible.
Tracheostomy Care #2

Indication for Tracheostomy Replacement:
An adult or pediatric patient with an established tracheostomy (greater than 2 weeks old) with signs of respiratory distress or failure that have not improved with measures listed on the previous page. Also, for patients dislodged tracheostomy. If tracheostomy tube is less than 2 weeks old, refer to Blue 3 and attempt to secure airway from above.

Necessary Equipment:
- Replacement tracheostomy tube, if available (from the patient or care giver)
- If no replacement tracheostomy tube is available, an ETT of similar internal diameter (see below)
- If possible, water-based lubricant jelly

Procedure:
1. Place the patient on high-flow O2 and monitor
2. Place patient in a semi-recumbent position with the neck slightly extended
3. Remove old stoma dressing and clean the site
4. Lubricate the new tracheostomy tube or replacement ETT
5. Deflate the old tracheostomy tube’s balloon and remove during exhalation
6. Using the replacement tracheostomy tube’s obturator, insert the replacement tube at a 90 degree angle to the cervical axis.
7. Next, gently advance the replacement tracheostomy tube in a fluid fashion, using the natural curvature of the tube until the flange is flush against the neck.
8. Remove the obturator if using a replacement tracheostomy tube and insert the hollow internal cannula.
9. If using an ETT as replacement, remove the old tracheostomy tube as described above, insert a bougie into the stoma directed downward. Slowly advance the lubricated ETT into the stoma. RECALL, when using an ETT as replacement, it need only be advanced a few centimeters into the stoma. Consider shortening the ETT by cutting the tube AFTER the takeoff for the balloon inflation.
10. Inflate the cuff of the replacement tracheostomy tube or ETT
11. Secure the device to the patient’s neck.

<table>
<thead>
<tr>
<th>Portex Cuffed D.I.C. Tracheostomy Tubes</th>
<th>Shiley Tracheostomy Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portex Tube Size (mm) and Color</td>
<td>Shiley Tube Size</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>3.0 (NEO or PED)</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5 (NEO or PED)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0 (NEO or PED)</td>
</tr>
<tr>
<td>5.0 (orange)</td>
<td>5.0 (NEO or PED)</td>
</tr>
<tr>
<td>6.0 (green)</td>
<td>6.0 (NEO or PED)</td>
</tr>
<tr>
<td>7.0 (white)</td>
<td>8.0 (NEO or PED)</td>
</tr>
<tr>
<td>9.0 (blue)</td>
<td>9.0 / 9.0</td>
</tr>
<tr>
<td>10.0 (yellow)</td>
<td>10.0 / 10.0</td>
</tr>
</tbody>
</table>

PEARLS FOR TRACHEOSTOMY CARE
Please Note - the internal diameter of an ETT is designated by the tube name - i.e. 6.0 tube has a 6.0 mm internal diameter. If the tracheostomy is less than 2 weeks old, the track is immature and there is risk of creating a false lumen if attempts to replace or change the tracheostomy are made.
For all patients with chest pain, evaluation for acute coronary syndrome should occur. Commonly, it is difficult with the tools available to EMS clinicians to completely rule out a cardiac cause of chest pain. Therefore, all patients should be transported for emergency medical evaluation. Cardiac disease is but one of the many causes of chest pain and the EMS clinician should consider various causes such as esophageal, chest wall, pulmonary embolism, aortic dissection, spontaneous pneumothorax, etc. Patients commonly fall into one of three categories: suspected cardiac, traumatic, or uncertain cause of chest pain.

The cardiac monitor/defibrillator should be brought to the patient's side during the initial assessment.

Chest Pain

- **Suspected Cardiac Origin, follow Red 2**
- **Traumatic, follow Green 10**
- **Uncertain Etiology, follow Red 6**

Consider cardiac origin chest pain in the following:
- Chest pain or discomfort in other areas of the body (i.e. arm, jaw, epigastrium), shortness of breath, sweating, nausea, vomiting and dizziness.
- Atypical or unusual symptoms are more common in women, the elderly and patients with diabetes. May also present with CHF, syncope and/or shock.
Chest Pain - Suspected Cardiac Origin #1

- Avoid nitroglycerin in any patient who has used a phosphodiesterase inhibitor within the past 48 hours. Examples are:
 - sildenafil (Viagra, Revatio), vardenafil (Levitra, Staxyn), tadalafil (Cialis, Adcirca) which are used for erectile dysfunction and pulmonary hypertension.
 - epoprostenol (Flolan) or treprostinil (Remodulin) which are used for pulmonary hypertension.
- Administer nitrates with caution as hypotension can occur in any patient having an MI.

EMT

1. Administer O₂ to keep O₂ sats greater than or equal to 94% and less than 99% (avoid hypo/hyperoxia)
2. Treat for shock if indicated
3. Request ALS
4. If patient has not taken an aspirin, administer chewable aspirin 324 mg PO, if not contraindicated by allergy.
5. If available and so trained, perform 12 lead ECG. EMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining a 12-lead ECG. The purpose of the EMT in obtaining the 12-lead ECG is to present it to the Paramedic and/or receiving facility.

6. Contact OLMC for the OPTION of assisting with the administration of patient’s own nitroglycerin

ADVANCED EMT

7. IV en route
8. Cardiac monitor and 12-lead ECG within the first 10 minutes of patient contact, if so trained. AEMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining a 12-lead ECG. The purpose of the AEMT in obtaining the ECG is to present it to the Paramedic and/or receiving facility.

9. Contact OLMC for administration of nitroglycerin 0.4 mg tab SL or 1 SL spray. May repeat two times at 5 minute intervals if BP is greater than 100 mmHg. If the patient has had nitroglycerin before and no IV is established, and systolic BP is greater than 100 mmHg, then it is OK to give nitroglycerin

PARAMEDIC

10. Paramedic may perform all treatments above without medical control
11. Obtain 12-lead ECG within first 10 minutes of patient contact

If patient meets STEMI criteria, refer to local or regional cardiac systems of care for destination decision support and contact OLMC at receiving hospital to alert of impending arrival (local hospital notification) and go to Red 3.

Apply defib pads and be prepared to defibrillate as these patients are high risk for VF/VT
(Continued)
12. Patients who present with inferior MI, clear lung sounds, and BP less than 90 mmHg, give fluid bolus.

13. Consider
 a. Additional nitroglycerin
 b. Fentanyl 1 mcg/kg IV/IM, or IN to a MAX dose of 100 mcgs
 c. Additional fluid bolus in patients with inferior MI

14. If patient develops a dysrhythmia, refer to appropriate protocol

Inferior MIs and right-sided MIs are commonly associated with bradycardia and blocks.

Hypotension may occur in any MI, not just inferior MIs with right ventricular involvement.

STEMI Criteria

1. Septal (V1, V2), Anterior (V3, V4), Inferior (II, III, aVF) or Lateral MI (I, aVL, V5, V6): ST elevation greater than 1 mm in two or more anatomically contiguous leads with reciprocal changes.

2. For leads V2-V3, the criteria for STEMI are:
 2 mm - Males 40 yo and older
 2.5 mm - Males younger than 40 yo
 1.5 mm for Women independent of age

3. Posterior MI: ST depression greater than 1 mm in V1, V2 (and possibly V3) with an R/S ratio of greater than or equal to 1, place posterior leads to evaluate for ST segment elevation in leads V7/V8/V9

 New LBBB is no longer a criteria for STEMI
 (Presence of any LBBB makes the diagnosis of STEMI difficult)
Guidelines to the Prehospital Use of 12-Lead ECG by the ALS Clinician

1. Prehospital 12-lead ECG is now a standard of care for increasing diagnostic information regarding the chest pain/cardiac arrest patient.
2. Acquisition of a 12-lead ECG should be done in all patients with chest pain or a potential cardiac complaint/diagnosis such as syncope or shortness of breath. Given the frequency of atypical presentation in the elderly, responders must have a high index of suspicion in the elderly patient.
3. Transmission of 12-lead ECG or presentation of prehospital 12-lead ECG to treating clinicians at the receiving ED is intended to augment patient triage and facilitate rapid identification of a potential thrombolytic or emergent catheterization candidate.
4. In the case of STEMI, notify the receiving ED immediately.

EMT & Advanced EMT and the Use of 12-lead ECGs

EMTs and AEMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining the 12-lead ECG. The purpose of the EMT or AEMT in obtaining the 12-lead ECG is to present it to the Paramedic and/or receiving facility.

Consider Posterior Leads for suspected posterior MI
Chest Pain Fibrinolytic Checklist

For chest pain of suspected cardiac origin, initiate therapy per protocol, including the early use of aspirin and nitroglycerin, if not contraindicated.

Use this checklist, or local equivalent, if available.

Report the information as soon as practical to the receiving ED.

You may copy and use this page as your checklist, or you may use a checklist recommended by your usual receiving hospital which contains at least these questions.

Please follow your destination institution's STEMI Checklist

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has pain persisted for greater than 15 min and less than 12 hours?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is systolic BP less than 180 mmHg?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is diastolic BP less than 100 mmHg?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of structural CNS disease (i.e. AV malformation)</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Significant closed head/facial trauma within previous 3 months?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery or major trauma, GI/GU bleed in previous 2 weeks?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any history of intracranial hemorrhage?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any bleeding, clotting problem, or blood thinners?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnant?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Serious systemic disease (i.e. advanced cancer, severe liver or kidney disease?)</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Chest Pain - Uncertain Etiology

For ALL patients with chest pain, consider the possibility of cardiac disease no matter what the history and physical exam suggest. However, there are other sources of non-cardiac chest pain to consider such as pulmonary embolism, spontaneous pneumothorax, aortic dissection/aneurysm, esophageal, chest wall, etc.

If trauma suspected, refer to the Chest Trauma protocol, Green 10.

EMT:
1. Administer O₂ only to patients with dyspnea, hypoxia (SpO₂ less than 94%) or signs of heart failure at a rate to keep O₂ sats greater than or equal to 94% and less than 99% (avoid hyperoxia)
2. Transport in position of comfort
3. Request ALS
4. If available and so trained, perform 12-lead ECG. EMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining a 12-lead ECG. The purpose of the EMT in obtaining the 12-lead ECG is to present it to the Paramedic and/or receiving facility.

ADVANCED EMT
5. Establish IV at TKO
6. Request Paramedic
7. Cardiac monitor and 12-lead ECG. AEMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining a 12-lead ECG. The purpose of the AEMT in obtaining the 12-lead ECG is to present it to the Paramedic and/or receiving facility.

PARAMEDIC
8. If 12-lead ECG indicates STEMI, refer to Red 2 & 3
9. For chest pain in a stable patient with normal level of consciousness, refer to the Universal Pain Management protocol, Green 21-24 for analgesia options
10. For nausea and vomiting, refer to the Nausea and Vomiting protocol, Gold 20
Cardiac Arrest Overview

CARDIAC ARREST CHECKLIST

- Code leader and roles identified (pre-arrival)
- Continuous chest compressions with minimal interruption (compress while defibr charging) and full recoil
- Turn on CPR feedback device/metronome with goal of 100-120 compressions/minute
- Rotate compressors at least every 2 minutes
- AED/Defib applied and monitored
- O₂ flowing and attached to NR/BVM
- ETCO₂ waveform present & monitored
- IV/IO established
- Possible causes considered
- Consult OLMC early to discuss complex cases
- Gastric insufflation limited and gastric decompression considered
- Family present and ongoing communication/support provided

Evaluate for all potential causes of cardiac arrest, including the 5 H's (Hypothermia, Hypovolemia, Hypoxia, Hypo/Hyperkalemia, H⁺ ion or acidosis) and the 5 T's (Cardiac Tamponade, Tension Pneumothorax, Thromboembolic disease x 2 (i.e. pulmonary embolism/MI) and Toxins). Prior to termination of cardiac arrest, address potential causes of arrest, including effective management of patient airway, provision of fluid bolus, and consideration of bicarb in possible toxic or acidotic. Also, consider bicarb and calcium in suspected hyperkalemic patients. Please note, patients on dialysis are at risk for electrolyte abnormalities. Finally, consider needle decompression for tension pneumothorax if appropriate.
Cardiac Arrest #1

EMT

1. Initiate CPR until AED arrives unless valid DNR or signs incompatible with life are present; refer to Termination of Resuscitation protocol, [Red 14]
2. Attach AED as soon as available with minimal interruptions in chest compressions and follow AED prompts
3. Place oral and/or nasal airway(s)
4. High-flow O₂ with BVM ventilation at a ratio of 30:2 or 1 breath every 10 chest compressions during recoil and without interrupting compressions
5. Request ALS
6. Continue 2-minute cycles of chest compressions and AED checks
7. If ROSC occurs, refer to Adult Post-Resuscitation Care protocol, [Red 16]
8. Consider termination of resuscitation; refer to [Red 14]

ADVANCED EMT

9. Establish IV/IO without interrupting chest compressions
10. Manage the airway per [Blue 3]. Avoid respiratory rate greater than 10/minute in cardiac arrest
11. Defibrillate as indicated

PARAMEDIC

12. One medication intervention at each 2-minute reassessment per ACLS protocol
13. EPINEPHrine 1 mg of 1 mg/10 mL IV/IO push (within 30 seconds) every 3-5 minutes

NOTE: For Pediatric Medication doses, see [Red 12]

a. VF/VT: amiodarone 300 mg IV/IO; may consider additional 150 mg IV/IO one time
b. Torsades: 2 grams of magnesium sulfate IV/IO
c. For refractory VF/VT (total of 3 shocks, dose of EPINEPHrine and amiodarone), refer to Refractory VF/VT protocol, [Red 13]
d. For PEA, in addition to standard therapies, consider treatment based on QRS complex width and rate: narrow/fast vs wide/slow

PEA

Narrow/Fast QRS Complex

- Treatment:
 1) IV fluid bolus
 2) Consider bilateral needle decompression for suspected tension pneumothorax

- Potential causes include:
 - hypovolemia or mechanical obstruction of blood flow
 - tension pneumothorax, pericardial tamponade, pulmonary embolism

Wide/Slow QRS Complex

- Treatment:
 1) Sodium Bicarbonate
 2) Consider Calcium Gluconate for suspected hyperkalemia

- Potential causes include:
 - metabolic/toxicologic etiologies such as hyperkalemia (eg. dialysis patients) or overdose (eg. TCA, sodium channel blocker, etc.)

Continued
 a. Is patient on dialysis, have known renal disease or suspicion for hyperkalemia?
 i. Calcium gluconate 3 gram bolus IV/IO
 ii. Sodium bicarbonate 50 mEq bolus IV/IO; may repeat x 2
 iii. IV fluid bolus
 b. Is patient suspected TCA or other suspected sodium channel blocker overdose? (See Pearls)
 i. Sodium bicarbonate 50 mEq bolus IV/IO; may repeat x 2
 ii. IV fluid bolus
 c. Is there a suspected pre-existing metabolic acidosis? (See Pearls)
 i. Sodium bicarbonate 50 mEq bolus IV/IO; may repeat x 2
 ii. IV fluid bolus
 d. Is hypovolemia suspected? If yes, give fluid bolus
 e. Is hypoxia suspected? If yes, administer high-flow oxygen and manage airway per Blue 3
 f. Do you suspect a pneumothorax? If yes, perform needle decompression
 g. Is patient's core temperature less than 30°C (86°F) and circumstances consistent with hypothermia? If yes, see Hypothermia #2 protocol, Yellow 12

15. Upon ROSC:
 a. Refer to Adult Post-Resuscitation Care protocol, Red 16
 b. Contact OLMC for options of:
 i. Post-resuscitation amiodarone bolus

Pearls for Cardiac Arrest:
Effective chest compressions and defibrillation are the most important therapies for the patient in cardiac arrest. Effective chest compressions are defined as:
 a. A rate of 100 - 120 compressions/minute
 b. Depth of between 2 - 2.5 inches
 c. Allow for complete chest recoil
 d. Minimize interruptions in compressions
 e. Rotate rescuers every 2 minutes
 f. Avoid respiratory rate greater than 10/min
 g. Quantitative end-tidal CO₂ should be used to monitor effectiveness of chest compressions. If ETCO₂ is < 10 mmHg, attempt to improve chest compression quality
 h. Consider additional monitoring with biometric feedback

Resuscitate on scene as the effectiveness of chest compressions decreases during any patient movement. Resuscitation on scene should be the goal, with the only exceptions being safety concerns for the responding crew OR inability to effectively resuscitate in the patient's current location.
Pearls for Cardiac Arrest, continued:

All services MUST have an organized and structured response to the care of patients in cardiac arrest. This approach must be pre-arranged and may be modeled on the Maine EMS ICS for OHCA Program or other well-accepted structured approach to patient care. Also, EMS services are encouraged to train clinicians to these systems of care and to regularly train clinicians in high-performance CPR.

Use capnography during resuscitation for confirmation and monitoring of advanced airways and for prolonged use of BVM as well as monitoring effectiveness of chest compression and return or loss of spontaneous circulation.

Note: The algorithms for cardiac arrest or arrhythmias reflect the MEMS Medical Direction and Practices Board’s interpretation of ACLS guidelines, as they should be used in the prehospital setting.

In OHCA patients consider humeral head placement preferentially due to proximity to central circulation.

Classes of common sodium channel blockers include the following:
- Antidepressants (amitriptyline, nortriptyline, imipramine, doxepin)
- Antiarrhythmics (quinine/quinidine, propafenone, flecainide)
- Anesthetics (cocaine, lidocaine, bupivacaine)
- Muscle Relaxants (cyclobenzaprine)
- Antihistamines (diphenhydramine)

Consider metabolic acidosis as the cause of cardiac arrest in the following clinical settings: aspirin overdose, severe diabetic ketoacidosis, severe sepsis, and excited delirium.

In the case of peripartum cardiac arrest, provision of high-quality CPR remains a priority. If a patient's fundus height is at or above the level of the umbilicus, manual uterine displacement to either the left or right is the preferred method of relieving aortocaval compression during chest compressions. Additionally, local hospital resources for advanced care should be activated immediately upon recognition of peripartum cardiac arrest. Contact OLMC to discuss the potential of additional therapies.

Pediatric cardiac dysfunction is usually due to a respiratory cause and is thus more likely to initially respond to effective oxygenation and ventilation followed by fluid administration and then medications. Defibrillation alone is rarely successful.

It is also prudent to consider foreign body airway obstructions given the age of the patient.
1. Mechanical CPR (mCPR) devices are not mandatory devices, but may play a role in three prehospital cardiac arrest settings, including:
 a. Resuscitation events with few numbers of rescuers,
 b. Resuscitation events that are prolonged,
 c. Resuscitation events occurring during transport.
2. Manual CPR MUST remain the FIRST strategy for chest compressions as manual CPR is the most readily available and effective compression strategy in the vast majority of cases.
3. If applied, a mCPR device should be placed in a manner which minimizes interruptions, keeping all breaks in CPR to less than 10 seconds.
4. Application Process – Upon encountering a patient in cardiac arrest:
 a. Initiate manual CPR
 b. Continue manual CPR for a minimum of 2 two-minute cycles. Placement or implementation of mechanical CPR may not begin until AFTER the 2nd cycle of CPR.
 c. If the responding EMS service chooses to implement mechanical CPR, placement may begin AFTER the second cycle of CPR and must be applied in a manner that coordinates with pulse/rhythm checks AND keeps all breaks in CPR to less than 10 seconds.
 d. Apply the device in accordance to manufacturer’s instructions.
 e. It is possible that application of the device, in a manner that is coordinated with pulse/rhythm checks and maintains interruptions in CPR less than 10 seconds, may take an additional 2 or more cycles of CPR, leading to initiation of mechanical CPR after the 4th round of manual CPR.
5. Contraindications to Mechanical CPR
 a. Age less than 18.
 b. Patients who are unable to fit into the device due to body habitus.
6. In addition to the above, mechanical CPR devices may be placed prior to transport in patients that have recently achieved ROSC in the event of re-arrest. The device should be in “stand-by” mode and activated if patient re-arrests en route to the hospital.
7. All Maine EMS clinicians should be trained in High Performance CPR and Incident Command for Cardiac Arrest.
8. Mechanical CPR devices should ONLY be used by clinicians who have been trained to use the devices and can apply the devices while maintaining all breaks in CPR to 10 seconds or less.
9. Additionally, Maine EMS clinicians should routinely practice High Performance CPR, Incident Command for Cardiac Arrest and, if the service chooses, placement and use of mechanical CPR devices. The frequency of such training is difficult for the MDPB to determine for each individual service. Ultimately, this number will be determined by multiple factors, including the size of the service and the service’s annual number of resuscitation attempts. As a guide, some of the EMS services with the highest survival from witnessed VF arrest perform resuscitation training (including high performance CPR and ICS for cardiac arrest) 2-4 times a year. Please consult with your service medical director and QI program to assist in determining the proper frequency of trainings for your service.
Prehospital clinicians should consider patient age, diagnosis, transport time, clinician experience, and effectiveness of ongoing bag-valve-mask ventilation in considering whether to continue with bag-valve-mask ventilation versus proceeding to endotracheal intubation. Bag-valve-mask ventilation has been shown to be equivalent to endotracheal ventilation in pediatric patients in most situations with short transport times.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Indication</th>
<th>Route</th>
<th>Dose Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine (Bradycardia)</td>
<td>IV/IO: 0.02 mg/kg</td>
<td></td>
<td>Minimum dose: 0.1 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAX single dose: 0.5 mg (child)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May repeat once</td>
</tr>
<tr>
<td>EPINEPHrine 1 mg/10 mL</td>
<td>IV/IO: 0.01 mg/kg (0.1 mL/kg)</td>
<td></td>
<td>MAX single dose: 1 mg</td>
</tr>
<tr>
<td>(Indication: Bradycardia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPINEPHrine 1 mg/10 mL</td>
<td>IV/IO: 0.01 mg/kg (0.1 mL/kg)</td>
<td></td>
<td>MAX single dose: 1 mg</td>
</tr>
<tr>
<td>(Indication: Asystole/Pulseless Arrest)</td>
<td>Repeat every 3-5 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone (VF/VT)</td>
<td>IV/IO: 5 mg/kg bolus</td>
<td></td>
<td>MAX single dose: 300 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Can repeat in 3-5 minutes up to total dose of 15 mg/kg.</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>IV/IO: 1 to 2 mEq/kg bolus</td>
<td></td>
<td>MAX single dose: 50 mEq</td>
</tr>
<tr>
<td>(Indications: wide complex PEA suggesting hyperkalemia or sodium channel blocker overdose)</td>
<td>Repeat every 5 minutes until QRS duration is less than 120 msec</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium (Torsades de Pointes, moderate/severe asthma)</td>
<td>IV/IO: 25-50 mg/kg</td>
<td></td>
<td>MAX single dose: 2 g</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>IV/IO: 60 mg/kg push over 1 minute</td>
<td></td>
<td>MAX single dose: 3000 mg</td>
</tr>
<tr>
<td>(Indication: Cardiac Arrest Suspected due to Hyperkalemia)</td>
<td>Repeat in 10 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synchronized Cardioversion: 0.5 - 1.0 J/kg (initial); 2 J/kg (subsequent)

Defibrillation: 2 J/kg (initial); 4 J/kg; 6 J/kg; 10 J/kg (maximum)
Refractory VF/VT after 3 unsuccessful shocks and administration of EPINEPHrine and amiodarone, consider the following steps:

1. Vector Change: apply a second set of pads. If first set was in the anterior-apex position (blue pads in figure), place a second set in the anterior-posterior position (red pads). Do not allow the pads to touch one another.
2. Ensure adequate pad contact: i.e. pressure on pads with a barrier such as a stack of folded towels. Reassess for adequate pad contact before each defibrillation.
3. If the above steps fail to convert to sinus rhythm, consider dual-sequential external defibrillation.
 a. This can only be performed with MANUAL defibrillators.

 ****Check with the manufacturers of your manual defibrillators re: the warranty if used in dual-sequential external defibrillation****

 b. Assure that controls for the second manual defibrillator are accessible to the team leader
 c. Verify that both cardiac manual defibrillators are attached to the patient, that all pads are well-adhered, and simultaneously charge both manual defibrillators
 d. When both defibrillators are charged to maximum energy settings and all persons are clear, push one shock button followed by the other immediately after the first shock is delivered.
 e. May repeat procedure every 2 minutes as indicated if refractory VF/VT persists
Termination of Resuscitation #1

Resuscitation should be **withheld** under the following circumstances:

- When it is found that the patient has a DNR order or other actionable medical order (i.e. POLST/MOLST form, etc.), **Grey 1**
- Scene Safety: the physical environment is not safe for the clinician(s)
- When irreversible signs of death, such as rigor mortis, dependent lividity, decapitation, decomposition, incineration, other obvious lethal injuries are present.
- When down time has been unknown or greater than 20 minutes with no bystander CPR performed and the patient is cool to touch (not from exposure), no audible heart sounds, and fixed/dilated pupils.

Resuscitation may be **terminated**:

- When the patient regains pulse/respirations
- When the rescuers are physically exhausted or when equally or more highly trained health care personnel take over
- In the absence of ALS, when the same Maine EMS licensed crew member has determined the absence of vital signs for 20 minutes, in spite of BLS, except in the case of hypothermia, see Hypothermia protocol, **Yellow 12**
- When it is found that the patient has a DNR order or other actionable medical order (i.e. POLST/MOLST form, etc.), **Grey 1**
- When the following time frames have been met for ALS clinicians alone:
 - Persistent asystole x 20 minutes
 - Slow and/or wide complex PEA x 20 minutes
 - Fast/narrow PEA x 45 minutes
 - VF/Pulseless VT x 60 minutes
- If ALS clinicians arrive on scene of a patient managed by BLS clinicians, consider TOR if:
 - After a total (BLS + ALS) resuscitation time of 20 minutes, the AED has **never** advised shock AND the first rhythm noted by ALS clinicians is asystole or slow/wide PEA
 - If patient is found in fast/narrow PEA does not achieve ROSC after 45 minutes of ALS + BLS care
 - If the patient is found in VF/Pulseless VT does not achieve ROSC after 60 minutes of ALS+BLS care
 - In the case of fast/narrow PEA and VT/Pulseless VT, the ALS clinician must complete the ALS algorithm as dictated in these protocols prior to consideration of TOR, regardless of time frame

Survival and functional neurologic outcomes are unlikely if ROSC is not obtained by EMS. It is dangerous to the crew, pedestrians and other motorists to attempt to resuscitate a patient during ambulance transport. If circumstances do not allow TOR for safety or other reasons, notify OLMC.

If Resuscitative Efforts are terminated:
1. Focus attention on the family or bystanders. Explain the rationale for termination
2. Consider accessing support for family: other family, friends, or social support such as clergy
3. If termination of resuscitation occurs, one must consider management of the patient’s remains. No one option is correct for all circumstances; factors on scene will likely dictate the best option. Refer to **Grey 4**. If questions remain regarding disposition of the patient’s remains, contact OLMC. In the event that a patient arrests or re-arrests after leaving the scene and resuscitative efforts are unsuccessful, continue non-emergent transport to the hospital for disposition of the patient remains and family notification. This pathway should also be considered when termination of resuscitation occurs in unsafe or undesirable locations. Please discuss and pre-plan with local hospitals to ensure that all local systems are involved.
Termination of resuscitation is an important aspect of the medical care of the cardiac arrest patient. When resuscitative efforts have failed to be successful, compassionately transferring attention to the patient’s surviving loved ones and ensuring proper final care of the deceased are essential. Please recall from the 2011 Maine EMS Protocol Update that those final steps in care for the deceased include the following:

1) Notification of the family – May have already occurred. However, if the patient passes away without family or friends present, contingencies for family notification must be made.
2) Disposition of Patient Remains – There are multiple options for disposition of patient remains which include local funeral homes, the local ED, the local hospital’s morgue, the Medical Examiner’s office, etc. It is essential that your service partners with local hospitals, local police, and local funeral homes to facilitate this process. Please refer to the Maine EMS 2011 EMS Protocol FAQ sheet.
3) Notification of the patient’s PCP (if the patient has one) and the Medical Examiner
4) Signing the patient’s death certificate – Only a physician with a relationship to the patient (PCP or treating physician – includes an emergency physician resuscitating the patient) or the Medical Examiner can sign the death certificate.
5) Notification the New England Donor Services at 1-800-446-6362 with the following information; patient’s name, date of birth, location of arrest, your contact phone number, and time of death.
EMT
1. Manage airway. Administer O₂ only to keep O₂ sats greater than or equal to 94% and less than 99% (avoid hypo/hyperoxia). Maintain ventilation rate between 10-12 breaths per minute
2. Request ALS
3. Perform 12-lead ECG, if so trained

ADVANCED EMT
4. Provide advanced airway management if indicated and initiate capnography. Avoid excessive ventilation. Aim for ventilation rate between 10-12 breaths per minute
5. Obtain IV access and treat hypotension with fluid boluses. Goal systolic BP after ROSC is greater than or equal to 100 mmHg. For post-resuscitation hypotension, administer fluid boluses. Total volume should not exceed 2000 mL
6. Perform 12-lead ECG

PARAMEDIC

Goal #1 - Identify STEMI
7. If evidence of STEMI on 12-lead ECG, refer to STEMI protocol, Red 2 and follow local STEMI referral patterns

Goal #2 - Aggressive management of hypotension
8. Goal systolic BP after ROSC is greater than or equal to 100 mmHg. For post-resuscitation hypotension, administer IV fluid boluses. Total volume should not exceed 2000 mL

9. If hypotension persists, contact OLMC for the following OPTION:
 a. NOREPI norepinephrine IV infusion:
 i. Preparation - mix NOREPI norepinephrine 8 mg in 250 mL NS
 ii. Dosing - starting dose of NOREPI norepinephrine is 0.03 mcg/kg/min. Titrate by 0.03 mcg/kg/min every 3-5 minutes. Usual dose is 0.03 - 0.25 mcg/kg/min. Usual MAX dose is 0.6 mcg/kg/min. Absolute MAX dose is 3 mcg/kg/min
 b. Titrate to maintain systolic BP greater than 100 mmHg
 c. NOREPI norepinephrine infusions must be administered via a Maine EMS-approved medication pump

10. If seizure develops, refer to Seizure protocol, Gold 8

11. If patient suffers loss of spontaneous circulation and re-arrests, refer to appropriate guideline
Tachycardia #1

NOTE: For all cases, attempt to identify and treat the underlying cause of the patient’s tachycardia which may include maximizing oxygenation or (for Advanced EMTs/Paramedics) maximizing hemodynamics. If uncertainty exists between sinus tachycardia and SVT, please contact OLMC.

EMT
1. Airway management per Blue 3
2. Request ALS
3. Perform 12-lead ECG, if so trained

ADVANCED EMT
4. Establish IV/IO
5. Cardiac monitor, perform 12-lead ECG
6. Request ALS

PARAMEDIC

If hemodynamically UNSTABLE, as manifested by any of the following: hypotension, altered mental status, syncope/pre-syncope, chest pain, dyspnea, acute heart failure, signs of shock:

7. Consider synchronized cardioversion
 a. **ADULT Regular Narrow** complex (SVT): 50J or monophasic equivalent. With subsequent attempts: 100J, then 120-150J, then 200J, then max available dose
 b. **ADULT Irregular Narrow** complex (a-fib): 120-200J or monophasic equivalent. Subsequent attempts progress to 200J, then max available dose
 c. **ADULT Regular Wide** complex (VT): 100J or monophasic equivalent. Subsequent attempts progress to 150J, then 200J then max available dose.
 d. **PEDIATRIC** Synchronized Cardioversion for all rhythms, per Grey 24, initial cardioversion at 0.5 - 1.0 J/kg. All subsequent cardioversions at 2.0 J/kg
 e. Consider sedation with midazolam 3 mg IV/IO/IN or fentanyl 1 mcg/kg IV/IO/IN to MAX of 100 mcg for initial dose
 f. If unable to synchronize, or in the case of patient instability or polymorphic VT, defibrillate x 1 at 200J or monophasic equivalent

8. Rate control for A-Fib/A-Flutter ONLY, contact OLMC for option of metoprolol 5 mg IV over 5 minutes. REMEMBER, metoprolol must not be used in hypotension (SBP less than 100 mmHg). Discuss wheezing, if present, with OLMC before administration
 a. May repeat metoprolol 5 mg IV over 5 minutes after consultation with OLMC

9. Contact OLMC for further options, including amiodarone drip (for wide complex tachycardia)

Continued
If hemodynamically STABLE:

10. **Narrow complex** tachycardia (due to rhythms other than sinus tachycardia):
 a. Modified Valsalva maneuver - Position patient seated upright and have patient blow into a 10mL syringe forcefully, attempting to move the plunger for 15 seconds. Then, immediately lay the patient supine and raise legs to 45 degrees. Hold legs for 1 min, then return to seated position. Reassess. May repeat once.

 b. Adenosine:
 i. **Adult**: Adenosine 6 mg IV rapid bolus at centrally located peripheral IV with rapid saline flush
 1. May repeat adenosine x 2 at 12 mg IV rapid bolus at centrally located peripheral IV with rapid saline flush
 ii. **Pediatric < 50 kg**: Adenosine 0.1 mg/kg IV rapid bolus at centrally located peripheral IV with rapid saline flush
 1. May repeat adenosine x 1 at 0.2 mg/kg IV rapid bolus at centrally located peripheral IV with rapid saline flush

Continued from previous page:

11. **Wide complex tachycardia**

Only for REGULAR rhythm with MONOmatic QRS (see PEARL)

 a. Adenosine 6 mg IV rapid bolus at centrally located peripheral IV with rapid saline flush
 i. May repeat adenosine x 2 at 12 mg IV rapid bolus at centrally located peripheral IV with rapid saline flush

 b. Consider amiodarone 150 mg IV/IO in 100 mL D5W over 10 minutes

For POLYMorphic wide complex tachycardia (Torsades de Pointes)

12. Magnesium sulfate 1-2 grams IV over 5 minutes

Treatment of pre-excitation rhythms (such as WPW) include blocking at the level of the AV node, using adenosine or beta-blockers. Patients with pre-excitation AND A-fib should NOT receive any agents that block the AV node, as this could cause VF. WPW with A-fib may be recognized by a very fast rhythm, a predominance of wide QRS complexes with occasional narrow complexes and an irregular rhythm. When WPW with A-fib is suspected, the patient should NOT receive any medications that block the AV node because this will force all impulses through the accessory pathway and can cause VF. Instead, these patients should be cardioverted when they become unstable.

Do **NOT** give adenosine to a patient with Polymorphic VT or Torsades.

Do **NOT** give amiodarone to a patient converted from Polymorphic VT unless QT interval is less than 0.500 sec.

If QT interval is greater than 0.500 sec, contact OLMC for options.
Bradycardia #1
Heart rate less than 50 beats/min

Concerning signs or symptoms: hypotension, altered mental status, syncope/pre-syncope, chest pain, dyspnea, acute heart failure, signs of shock, or cyanosis/pallor:

If NO concerning signs or symptoms, then all levels (EMT/Advanced EMT/Paramedic) may do the following:
1. O₂ as appropriate
2. Advanced EMT/Paramedic ONLY – consider fluid bolus

If ANY concerning signs or symptoms, then:
EMT
1. O₂ as appropriate
2. Request ALS
3. Perform 12-lead ECG, if so trained

ADVANCED EMT
4. IV en route and fluid bolus as required
5. Cardiac monitor, perform 12-lead ECG, if so trained
6. Request ALS

PARAMEDIC
7. **Adult** - Atropine 1 mg IV/IO*; give in repeat doses every 3 - 5 minutes up to a maximum cumulative dose of 3 mg in the adult patient
8. **Pediatric**:
 a. EPINEPHrine 1mg/10mL - 0.01 mg/kg IV, MAX single dose 1 mg, repeat every 3-5 minutes
 b. In addition, consider Atropine* for increased vagal tone or primary AV Block
 i. **Pediatric** Atropine* 0.02 mg/kg IV. May repeat x 1. Minimum dose 0.1 mg and MAX single dose 0.5 mg
9. Apply external pacer—Initiate transcutaneous pacing (TCP) for patients who do not respond to atropine; if serious signs or symptoms, do not delay TCP while awaiting IV/IO access or for atropine to take effect. Consider premedicating with midazolam 3 mg IV/IN/IO OR fentanyl 1 mcg/kg IV/IN/IO to a MAX first dose of 100 mcg. Notify OLMC as **soon as possible**. Check capture frequently (every 2 minutes) by checking peripheral pulses, ensuring the pulse matches the paced rate.

* Transplanted, denervated hearts will not respond to atropine. Proceed to pacing, vasopressor infusion, or both*

Examples of circumstances leading to increased vagal tone include the following:
cholinergic medications (phenylephrine, neostigmine), sedatives (morphine) and nasopharangeal or esophageal stimulation (eg. due to gastric reflux, breath holding, vomiting, coughing, intubation, placement of nasopharangeal tube, suctioning, etc.)
Continued from Previous Page:

PARAMEDIC

10. If continued signs or symptoms, consider:
 a. Repeat atropine or
 b. EPINEPHrine IV infusion, which may typically be dosed the following way:
 i. Adult:
 1. Preparation - Add 1mL (1mg) of EPINEPHrine 1mg/mL to 250 mL bag NS. This results in a 1 mg/250 mL = 4 mcg/mL mix.
 2. Dose - Start at 0.05 mcg/kg/min. Titrate by 0.05 mcg/kg/min every 5 min. Titrate to desired desired effect which may include resolution of bradycardia, SPB of > 90 mmHg and/or MAP > 65 mmHg.
 Usual dose is 0.05-0.5 mcg/kg/min. Absolute maximum dose is 0.5 mcg/kg/min
 c. EPINEPHrine infusions must be administered via a Maine EMS-approved medication pump

PEARLS for Bradycardia:

Consider causes of bradycardia:
MI, hypoxia, pacemaker failure, hypothermia, sinus bradycardia, sick sinus syndrome, AV blocks, overdose (calcium channel blockers, beta-blockers, digoxin, organophosphates), hyperkalemia (in wide complex).

Application of TCP should be considered if deterioration is anticipated because of the following:
 a. Observed sinus pauses
 b. Episodes of 2nd degree Type II, or 3rd degree AV Block

Pre-medicati0n for TCP is preferably via the IV route. If unable to obtain IV, may try IN route in the cooperative patient with goal of ultimately obtaining IV/IO access.

Bradycardia in the Post-Arrest Patient: Post-ROSC bradycardia is a peri-arrest state. For the patient who has achieved ROSC and becomes bradycardic, be very cautious. Typically, these causes do not respond durably to transcutaneous pacing alone. In addition to transcutaneous pacing, consider early initiation of NOREPInephrine and refer to the post arrest protocol. Check mechanical capture every 2 minutes and restart CPR if no pulse is detected.
Cardiogenic Shock

EMT
1. O₂ as appropriate
2. Request ALS
3. If available and so trained, perform 12 lead ECG. EMTs are not certified to interpret the 12-lead ECG or change the ALS response based on obtaining a 12-lead ECG. The purpose of the EMT in obtaining the 12-lead ECG is to present it to the Paramedic and/or receiving facility.

ADVANCED EMT
4. Cardiac monitor, obtain 12-lead ECG
5. IV en route
6. Request ALS
7. Contact OLMC with following information:
 - Vital signs, lung sounds, cardiac rhythm, pedal edema assessment for
 - OPTION OF:
 a. Fluid bolus

PARAMEDIC
8. Contact OLMC for the following OPTION:
 a. NOREPInephrine IV infusion:
 i. Preparation – mix NOREPInephrine 8 mg in 250 mL NS.
 ii. Dosing - Starting dose is NOREPInephrine 0.03 mcg/kg/min. Titrate by 0.03 mcg/kg/min every 3-5 minutes. Usual dose is 0.03-0.25 mcg/kg/min. Usual max dose is 0.6 mcg/kg/min. Absolute max dose is 3 mcg/kg/min
 b. Titrate to maintain systolic BP greater than 100 mmHg
 c. NOREPInephrine infusions in adults and pediatrics must be administered via a Maine EMS-approved medication pump

PEARLS for Cardiogenic Shock
- Pediatric patients suffering from suspected cardiogenic shock should receive fluid boluses of 10 mL/kg with frequent reassessment for tolerance and need for additional fluids.
- Pediatric patients rarely require vasopressors. If the patient is not responding to or tolerating intravenous fluids, consult OLMC.
Syncope

EMT
1. Obtain history (seizure, stroke, fluid loss, palpitations, chest pain, dizzy, trauma) and consider spinal immobilization if appropriate
2. O₂ as appropriate
3. Perform finger stick to measure blood glucose, if so trained. If blood glucose less than 60 mg/dL, refer to Diabetic/ Hypoglycemic Emergencies protocol, Gold 6
4. Treat for shock if appropriate. If the cause of the shock is:
 a. Anaphylaxis, refer to Anaphylaxis protocol, Gold 1
 b. Cardiogenic, refer to Cardiogenic Shock protocol, Red 22
 c. Tension Pneumothorax, see Chest Trauma protocol, Green 10
 d. Medical Shock, see Medical Shock protocol, Gold 14
5. Request ALS
6. 12-lead ECG, if so trained

ADVANCED EMT/PARAMEDIC
7. Establish IV access
8. Cardiac monitor and 12-lead ECG, if so trained
9. Fluid bolus if appropriate
10. AEMT to request ALS

NOTE: At any time, if relevant signs/symptoms found, go to appropriate protocol

PEARLS for Syncope

- Syncope is defined as loss of consciousness accompanied by loss of postural tone.
- All of these patients should be transported for emergency evaluation.
- Up to one third of syncope in adults older than 60 is caused by cardiac disorders.
- 12-lead ECGs and cardiac monitoring are important for this patient population. The ECG should be evaluated for potential causes of syncope such as: ischemia, QT prolongation, Brugada Syndrome, pre-excitation, arrhythmia and hypertrophic cardiomyopathy.

A NORMAL ECG DOES NOT RULE OUT CARDIAC CAUSE OF SYNOCOPE

* Because of proximity to the event, EMS clinicians may be the only clinicians able to capture cardiac causes of syncope.
* Consider other causes including GI bleed, ectopic pregnancy, seizure, stroke, hypoglycemia, shock, toxicologic (i.e. alcohol), pulmonary embolism, and medications.
Patient Care Goals

- Rapid identification of, and interventions for, cardiovascular compromise in patients with VADs
- Rapid identification of, and interventions for, VAD-related malfunctions or complications

Inclusion Criteria

- Any patient with a Ventricular Assist Device

Patient Management

1. For VAD-related complaints, consider early consult with the patient’s VAD support team, including the following individuals in the following order:
 a. The patient’s VAD coordinator,
 b. The patient’s VAD physician,
 c. Other members of the VAD team, or
 d. OLMC at the patient’s VAD hospital

2. Assess for possible pump malfunction
 a. Assess for alarms
 b. Auscultate for pump "hum" sound (best heard in the left chest)
 c. Assess for signs of hypoperfusion including pallor, diaphoresis, altered mental status

3. If the VAD pump has malfunctioned:
 a. Utilize available resources to troubleshoot potential VAD malfunctions and to determine appropriate corrective actions to restore normal VAD function
 i. Contact the patient’s VAD-trained companion, if available
 ii. Contact the patient’s VAD-coordinator, using the phone number on the device
 iii. Check all connections to the system controller
 iv. Change VAD batteries, and/or change the system controller if indicated
 v. Have the patient stop all activity and assess for patient tolerance
 vi. Follow the appropriate protocol for the patient’s presenting complaint

4. If the patient is experiencing VAD-related complications or cardiovascular problems, expedite transport to the medical facility where the VAD was placed if the patient’s clinical condition and operational considerations allow. If direct transport to the patient's VAD center is not possible, take the patient to the most appropriate facility based on their clinical condition, notifying OLMC and the patient's VAD coordinator of destination decision

 a. If patient has a functioning VAD and is experiencing a non-cardiovascular-related problem, contact OLMC and transport to a facility that is appropriate for the patient’s main presenting problem without manipulating the device
4. If the patient is in cardiac arrest
 a. CPR should NOT be performed if there is any evidence the pump is still functioning. The decision whether to perform CPR should be based upon best clinical judgment. Consult OLMC or the patient’s VAD coordinator for questions
 b. CPR is indicated only when:
 i. The patient's pump has stopped and troubleshooting efforts to restart the pump have failed, AND
 ii. The patient is unresponsive with no detectable signs of life
5. Manage the patient’s airway as indicated by Blue 3
6. Establish IV/IO access based on the patient's acuity and clinician judgment
7. Place the patient on a cardiac monitor
8. Perform 12-lead ECG

PEARLS for VADs
- You do not need to disconnect the controller or batteries in order to defibrillate or cardiovert.
- You do not need to disconnect the controller or batteries in order to acquire a 12-lead ECG.
- Automatic non-invasive cuff blood pressures may be difficult to obtain due to the narrow pulse pressure created by the continuous flow pump.
- Flow through many VAD devices is not pulsatile and patients may not have a palpable pulse or accurate pulse oximetry. The blood pressure, if measurable, may not be an accurate measure of perfusion. Although automatic non-invasive blood pressure cuffs are often ineffective in measuring systolic and diastolic pressure, if they do obtain a measurement, the MAP is usually accurate. Doppler's may be more accurate at determining both pulse and blood pressure and, if available, should be used.
- Patient may be awake with a functioning pump in VF, VT, PEA or asystole. If the patient is responsive AND the encountered rhythm is thought to be new, ACLS therapies, including defibrillation may be attempted, however chest compressions are not necessary if the patient is awake and alert. Evaluate clinical condition and provide care in consultation with VAD coordinator.
- The patient’s emergency travel bag should accompany him/her at all times. If feasible, bring the patient's Power Module, cable and Display Module with patient to the hospital.
- The most common cause for VAD alarms are low batteries or battery failures
- Primary pump failure is a very rare occurrence. The most common VAD complications, in descending occurrence, are:
 - Infection
 - Bleeding
 - Arrhythmias
 - CHF
 - Aortic Insufficiency
 - Stroke/TIA
 - Cardiac Tamponade
- Follow the protocol most appropriate, based on the patient’s clinical condition.
- For questions, contact OLMC and the patient's VAD Coordinator.
- All patients with a VAD are anticoagulated, typically with warfarin (Coumadin).
Hyperkalemia (elevated serum potassium levels) can become a life-threatening electrolyte disturbance which causes changes in the electrical system of the heart potentially leading to fatal arrhythmias. While serum electrolyte values are not routinely available in the prehospital setting, a paramedic can identify the electrical changes on ECG and initiate prompt treatment.

Patients at highest risk of cardiac consequences of hyperkalemia are those in renal failure: either end stage kidney disease requiring dialysis or with acute decompensations in renal function. The most common at-risk patient is the dialysis dependent patient who has missed one or more scheduled dialysis sessions and thus has accumulated dangerously high levels of electrolytes, including potassium. There are also a number of prescription medications that can alter serum potassium levels such as diuretics, blood pressure medications, chemotherapy agents, and more.

Electrocardiographic signs of hyperkalemia include the following:

1. Obtain 12-lead ECG and evaluate for signs of hyperkalemia, including peaked T waves, widened QRS, lengthened QT interval, loss of P waves.
2. Perform continuous cardiac monitoring
3. Establish 2 points of IV/IO access
4. If ECG changes suggestive of hyperkalemia are noted, administer:
 a. IV/IO fluid bolus: 500 - 1000 mL (NS or LR)
 b. Calcium gluconate - NOTE: DO NOT administer Calcium through same IV/IO as Sodium Bicarbonate
 i. Adult: 2 grams diluted in 50-100 mL NS or D5W IV/IO over 10 minutes
 ii. Pediatric: 60mg/kg diluted in 50-100 mL NS or D5W (with MAX dose of 2 grams) IV/IO over 10 minutes
 c. Sodium bicarbonate - NOTE: DO NOT administer Sodium Bicarbonate through same IV/IO as Calcium
 i. Adult: 50mEq IV/IO
 ii. Pediatric: 1mEq/kg IV/IO over 5 minutes with MAX dose of 50mEq
 (8.4% sodium bicarbonate must be diluted with D5W to 4.2%
 [0.5 mEq/mL] prior to administration in patients less than 2 years of age.)
 d. Albuterol
 i. Adult: 15 mg via nebulizer
 ii. Pediatric:
 1. Pediatric less than 25 kg - 2.5 mg via nebulizer
 2. Pediatric greater than 25 kg - 5 mg via nebulizer
5. Repeat 12-lead ECG after treatment to evaluate for improvement
6. Consult OLMC with questions or to discuss repeat doses if ECG not improved

Continued
Hyperkalemia #2

Continued from previous page

7. **Note:** If patient progresses to cardiac arrest, give the following early in your resuscitation efforts (Refer to Red 9 – Cardiac Arrest #2):
 a. Calcium gluconate;:
 i. **Adult:** 3 gram IV/IO push over 1 minute, may repeat in 10 minutes
 ii. **Pediatric:** 60 mg/kg IV/IO push over 1 minute, max dose 3000 mg, may repeat in 10 minutes
 b. Sodium bicarbonate;:
 i. **Adult:** 50 mEq IV/IO push over 1-2 minutes, repeat every 5 minutes until QRS duration less than 120 msec
 ii. **Pediatric:** 1 to 2 mEq/kg IV/IO push over 1-2 minutes, MAX single dose: 50 mEq, repeat every 5 minutes until QRS duration less than 120 msec
 c. Fluid bolus

PEARLS for Hyperkalemia:
- Higher serum potassium levels (reported as K+) may not directly correlate with higher risk for cardiac instability, any elevation in serum potassium can increase risk of cardiac instability.
- Hyperkalemia should ONLY be treated if ECG changes are present. Patients presenting with elevated serum potassium levels based on outpatient/hospital lab testing do not warrant treatment unless ECG changes are present. If elevated serum potassium levels are noted on laboratory testing, obtain 12-lead ECG and perform continuous cardiac monitoring to evaluate for electrical changes.
- These can be dynamic situations. Monitor QRS complexes closely after therapy. If initial improvement, but recurrence of QRS changes, please re-initiate protocol.
- The treatment of hyperkalemia is based on several mechanisms:
 - Dilution: dilution of the serum potassium with fluid bolus
 - Cardiac stabilization: calcium gluconate stabilizes the electrical conduction system of the heart, making it less susceptible to electrolyte disturbance
 - Potassium shift: albuterol and sodium bicarbonate can temporarily shift potassium ions from the serum into cells, thus reducing the serum potassium level. The half-life of albuterol is short, but may temporarily improve serum potassium levels while the other treatments take effect.
EMT
1. Manage airway as appropriate, see Blue 3
2. If shock present, refer to Medical Shock protocol, Gold 14
3. If anaphylaxis identified, assist administration of patient’s own EPINEPHrine auto-injector, administer an adult or pediatric (as applicable) auto-injector, OR provide EPINEPHrine through the Maine EMS Check and Inject program in the anterolateral thigh:
 a. Adult: EPINEPHrine 0.3 mg IM [0.3 mL of 1mg/mL] in anterolateral thigh, or
 b. Pediatric dose of EPINEPHrine which is as follows: less than 25 kg, 0.15 mg IM [0.15mL of 1mg/mL], greater than 25 kg, 0.3 mg IM [0.3 mL of 1mg/mL] in anterolateral thigh
 c. May repeat IM EPINEPHrine doses every 5-15 min and notify OLMC of incoming critical patient.
4. Request ALS, if available
5. Consider local measures to prevent absorption of allergen

ADVANCED EMT
6. If anaphylaxis identified:
 a. Adult: EPINEPHrine 0.3 mg IM [0.3 mL of 1mg/mL] in anterolateral thigh, or
 b. Pediatric dose of EPINEPHrine which is as follows: less than 25 kg, 0.15 mg IM [0.15mL of 1mg/mL], greater than 25 kg, 0.3 mg IM [0.3 mL of 1mg/mL] IM in anterolateral thigh
 c. May repeat IM EPINEPHrine doses every 5-15 minutes. If patient requires repeated EPINEPHrine, request ALS.
7. IV en route
8. Cardiac monitor
9. If shock present, perform fluid bolus
10. If wheezing persists 5-15 minutes after first dose of EPINEPHrine consider Albuterol.
11. For patients with minor symptoms only or resolution of symptoms with a single dose of EPINEPHrine, the AEMT, in consultation with OLMC, may consider canceling ALS.

PARAMEDIC
12. Consider glucagon 1 mg IV q 5 minutes for patients taking beta-blockers and not responsive to EPINEPHrine
13. Diphenhydramine (Benadryl)
 a. Adult: 25-50 mg IV/IO/IM
 b. Pediatric: 1-2 mg/kg IV/IO/IM (max single dose of 50 mg)
14. Consider one of the following; may repeat x 1
 a. Albuterol 2.5 mg by nebulization; -OR-
 b. 1 mL of 1mg/mL EPINEPHrine nebulized with 2 mL of NS -OR-
 c. 0.5 mL of 2.25% racemic EPINEPHrine solution nebulized with 2.5 mL NS

Continued
15. Contact OLMC for repeat IM EPINEPHrine every 5 minutes and/or EPINEPHrine IV infusion for shock or cardiovascular compromise, which may typically be dosed the following way:

Preparation - Add 1mL (1mg) EPINEPHrine 1mg/mL to 250 mL bag NS. This results in a 1 mg/250 mL = 4 mcg/mL mix.

Dose - Start at 0.05 mcg/kg/min. Titrate by 0.05 mcg/kg/min every 5 min. Titrate to desired desired effect which may include resolution of respiratory symptoms, SPB of > 90 mmHg and/or MAP > 65 mmHg.

Usual dose is 0.05-0.5 mcg/kg/min. Absolute maximum dose is 0.5 mcg/kg/min.

This must be performed with OLMC and administered via a Maine EMS approved medication pump.

PEARLS for Allergy/Anaphylaxis

Children with a known, recent exposure to common triggers of allergic reactions (peanuts, medications, bee stings) should be considered at risk for having an allergic reaction or anaphylaxis.

Children with asthma should be considered high risk for a severe reaction.

Anaphylaxis in children should be treated for those exhibiting hypotension after exposure to a known allergen, respiratory compromise with acute onset of skin or mucosal involvement, or two or more of the following after exposure to a likely allergen: gastrointestinal symptoms, skin/mucosal involvement, respiratory compromise, or hypotension.

Severity should be differentiated between anaphylaxis and non-anaphylaxis (ie: Allergic reaction only). Only patients with anaphylaxis (as defined in Gold 3) should receive EPINEPHrine. Evidence suggests that the incidence of anaphylaxis is under recognized. Please consider the definitions of anaphylaxis (on the following page) and treat all cases of anaphylaxis with EPINEPHrine.

Evidence does not support the routine use of cardiac monitoring for patients who receive one dose of EPINEPHrine.
PEARLS for Allergy/Anaphylaxis:

1. Anaphylaxis is highly likely when any ONE of the following 3 criteria is fulfilled:

 Acute onset of an illness (minutes to several hours) with involvement of the skin, mucosal tissue, or both (eg, generalized hives, pruritus or flushing, swollen lips-tongue-uvula) AND at least ONE of the following:

 a. Respiratory compromise (eg, dyspnea, wheezing-bronchospasm, stridor, reduced Peak Expiratory Flow (PEF), hypoxia)
 b. Reduced BP or associated symptoms of end-organ dysfunction (eg, hypotonia [collapse], syncope, incontinence)

 OR

 TWO or more of the following that occur rapidly after exposure to a likely allergen for that patient (minutes to several hours):

 a. Involvement of the skin-mucosal tissue (eg, generalized hives, itch-flush, swollen lips, tongue-uvula)
 b. Respiratory compromise (eg, dyspnea, wheeze-bronchospasm, stridor, reduced peak expiratory flow, hypoxia)
 c. Reduced BP or associated symptoms (eg, hypotonia [collapse], syncope, incontinence)
 d. Persistent gastrointestinal symptoms (eg, crampy abdominal pain, vomiting) (several hours)

 OR

 Reduced BP after exposure to known allergen for that patient (minutes to several hours)

 a. Infants and children: low systolic BP (age specific) or greater than 30% decrease in systolic BP
 b. Adults: systolic BP of less than 90 mmHg or greater than 30% decrease from that person’s baseline

2. In every case when anaphylaxis is identified, EPINEPHrine should be provided. The best route of administration is via the IM route in the anterolateral thigh.

3. Patients may require repeated doses EPINEPHrine. These repeated doses are also provided via the IM route.

4. DO NOT administer IM EPINEP HRine concentration (1mg/1mL) via the IV route.
Allergy/Anaphylaxis #4

IV EPINEPHrine infusion drip, administered via a Maine EMS approved medication pump, should be started for patients unresponsive to IM EPINEPHrine administration in either of the following settings:

- Cardiovascular collapse (hypotension with altered mental status, pallor, diaphoresis, or delayed capillary refill)

OR

- Hypotension that is unresponsive to a total of 60 mL/kg (3 x 20 mL/kg boluses) isotonic fluid boluses and repeat doses of IM EPINEPHrine

Evidence does not support the prophylactic use of EPINEPHrine in the asymptomatic patient after exposure to a known allergen.

Children experiencing cutaneous signs of an allergic reaction with no systemic symptoms should be evaluated by a medical clinician.

Children experiencing anaphylaxis in the prehospital setting who receive EPINEPHrine require EMS transport.
Altered Level of Consciousness

Assess for trauma, drugs, diabetes, breath odor, needle tracks, medical alert tags, suspected seizure. Refer to appropriate protocol for specific suspected conditions.

Consider SCENE SAFETY as there may be an environmental or toxicologic cause, especially if more than one patient has decreased level of consciousness.

EMT
1. Immobilize spine if indicated
2. Manage airway as appropriate, see Blue 3
3. Request ALS, if available
4. If shock present, refer to Medical Shock protocol, Gold 14
5. Perform finger stick to measure blood glucose, if so trained. If blood glucose is less than 60 mg/dL, refer to Diabetic/Hypoglycemic Emergencies protocol, Gold 6
6. If respirations less than 12 per minute AND narcotic overdose suspected, refer to Poisoning/Overdose protocol, Yellow 1
 Never administer naloxone to a neonate

ADVANCED EMT/PARAMEDIC
7. IV en route
8. Cardiac monitor

Differential Diagnosis of Coma

<table>
<thead>
<tr>
<th>A</th>
<th>Alcohol (and other drugs), Acidosis (hyperglycemic coma/DKA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Electrolyte abnormality, Endocrine problem, Epilepsy</td>
</tr>
<tr>
<td>I</td>
<td>Insulin (diabetes/hypoglycemic shock)</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen (hypoxia), Overdose (or poisoning)</td>
</tr>
<tr>
<td>U</td>
<td>Uremia (renal failure/insufficiency)</td>
</tr>
<tr>
<td>T</td>
<td>Trauma, Temperature (hypothermia, heat stroke)</td>
</tr>
<tr>
<td>I</td>
<td>Infection (meningitis, encephalitis, sepsis)</td>
</tr>
<tr>
<td>P</td>
<td>Psychogenic</td>
</tr>
<tr>
<td>S</td>
<td>Stroke, Space occupying lesions, Seizure, Shock</td>
</tr>
</tbody>
</table>
Diabetic/Hypoglycemic Emergencies #1

EMT
1. Manage airway as appropriate, see Blue 3
2. Request ALS, if available
3. **If trained**, perform finger stick to measure blood glucose
 a. If blood glucose is less than 60 mg/dL, and patient is conscious and able to swallow, give glucose orally
4. **If not trained** to perform and patient is a known diabetic, has a known low blood sugar, or has an altered mental status, and if the patient is conscious and able to swallow, give glucose orally

Glucose paste is to be administered as soon as possible if the patient is conscious and able to swallow and presenting with the signs/symptoms of a diabetic emergency

ADVANCED EMT
5. IV en route
6. If blood glucose is less than 60 mg/dL
 a. If patient is conscious and able to swallow, give glucose **orally**, otherwise
 b. Administer dextrose 25 gm **IV** (50 mL of 50% solution or 250 mL of **D₁₀W** solution)
 c. If under 40 kg give **D₁₀W** as per the following:

<table>
<thead>
<tr>
<th>Weight (Kg/Lbs)</th>
<th>Volume to be infused</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/22</td>
<td>50 mL</td>
</tr>
<tr>
<td>20/44</td>
<td>100 mL</td>
</tr>
<tr>
<td>30/66</td>
<td>150 mL</td>
</tr>
<tr>
<td>40/88</td>
<td>200 mL</td>
</tr>
</tbody>
</table>

d. If IV unavailable, **DO NOT PLACE IO**
 i. Administer glucagon at the following doses:
 1) Adult and Pediatric patients 20 kg or greater: Glucagon 1 mg **IM**.
 2) Pediatric patients less than 20 kg: Glucagon 0.5 mg **IM**
7. If blood glucose greater than 300 mg/dL, give NS fluid bolus
8. Repeat glucose measurement in 5 minutes
9. Cardiac monitor

PARAMEDIC
10. Contact OLMC for OPTION of repeating dextrose, repeating glucagon, or placing an **IO**. If **IO** placed, administer dextrose 25 gm (250 mL of **D₁₀W**) via **IO**
Pearls for Diabetes/Hypoglycemic Emergencies

- The definition of hypoglycemia has been changed from 80 mg/dL to 60 mg/dL based upon current literature which suggests most patients will experience adrenergic symptoms under 60 mg/dL and CNS symptoms under 50 mg/dL. If a patient's finger stick glucose measurement is above 60 mg/dL and hypoglycemia remains a concern, contact OLMC for treatment options.

- Goal of fluid bolus in hyperglycemia is to treat hypotension/signs of hypoperfusion as well as decrease blood glucose to less than 300 mg/dL.

- Hypoglycemic patients on sulfonylurea class medications (glipizide (Glucotrol), glyburide (Diabeta), etc.) may have refractory hypoglycemia and all require transport, glucose monitoring and hospital evaluation.
PEARLS for Seizures: Most seizures are self-limited. Unless a specific underlying condition exists (i.e. diabetes with hypoglycemia), treatment of a seizure or multiple seizures with a total duration of less than 5 minutes should focus on patient protection and oxygenation.

EMT
1. Manage airway as appropriate, see Blue 3
2. Spinal immobilization as indicated. Refer to Spine Assessment protocol, Green 6
3. Left lateral recumbent position and protect patient from injury
4. Request ALS, if available
5. Perform finger stick to measure blood glucose, if so trained. If blood glucose is less than 60 mg/dL, refer to Diabetic/Hypoglycemic Emergencies protocol, Gold 6

ADVANCED EMT
6. Cardiac monitor
7. IV en route
8. If shock present, refer to Medical Shock protocol, Gold 14

PARAMEDIC
9. If the patient has a single seizure lasting greater than 5 minutes OR recurrent seizure activity without recovery/return to baseline between seizures, administer IM midazolam if no IV is established. If an IV is established, administer midazolam via the IV route
 a. Intramuscular dosing –
 i. Adult - midazolam 10 mg IM
 ii. Pediatric - midazolam 0.2 mg/kg IM to MAX dose of 10 mg
 b. Intravenous/Intraosseous dosing
 i. Adult - midazolam 5 mg IV/IO
 ii. Pediatric - midazolam 0.1 mg/kg IV to a MAX dose of 5 mg
 c. If Seizures continue, repeat midazolam at above doses IV/IO/IM q 5 min until resolution of seizure, for a total of: Adult: 20 mg IM total, 15 mg IV total; Pediatric 0.6 mg/kg IM with MAX cumulative dose of 20 mg, 0.3 mg/kg IV with MAX cumulative dose of 15 mg
 i. Contact the hospital if additional midazolam is necessary

PEARLS for Persistent Seizures: Patients requiring more than one dose of midazolam are potentially very ill and possibly in status epilepticus. Early hospital notification allows the hospital to prepare additional medications to care for the patient.

 ii. Monitor oxygenation and ventilation with O₂ saturation and end-tidal capnography, especially if providing repeated doses of midazolam
 iii. Manage the patient’s airway as necessary, see Blue 3
Seizure #2

10. For patients visibly pregnant or less than 2 weeks postpartum
 a. Magnesium sulfate 4 gm IV/IO over 10 minutes
 i. If IV/IO not available, magnesium sulfate 8 gm IM (4 gm in each buttock)

11. Contact OLMC for the following OPTIONS:
 a. If unable to stop seizure activity, or if therapy beyond these protocols are necessary

PEARLS for Seizures:
- First dose of midazolam should be given IM unless an IV has already been established; do not delay treatment to start an IV.
- Contact OLMC for any patient requiring 3 or more doses of midazolam independent of the route provided.
- For patients with Vagus Nerve Stimulator who are having repeated/continuous seizure activity, consider activation of the Vagus Nerve Stimulator, if not already attempted, by holding the patients hand-held magnet over the Vagus Nerve Stimulator.
Stroke #1

Stroke should be suspected if any of the following have appeared in the last few hours or days: weakness on one side of face, weakness in one arm or leg, abnormal speech (slurred, incoherent, absent).

Refer to the next page for early hospital notification process for patients who are potential stroke patients.

See Altered Level of Consciousness protocol, Gold 5, if warranted.
See Diabetic/Hypoglycemic Emergencies protocol, Gold 6, if warranted.

<table>
<thead>
<tr>
<th>Northern New England Stroke Screening Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Last Known Well: (if patient awoke with symptoms, last time known to be at baseline)</td>
</tr>
<tr>
<td>Witness Name and Best Contact Number:</td>
</tr>
</tbody>
</table>

Prehospital Stroke Scale Examination

Facial Droop: *Have the patient smile and show teeth.*
- **Normal:** Both sides of the face move equally well.
- **Abnormal:** One side of the face does not move as well as the other.

Arm Drift: *Have the patient close their eyes and hold arms extended.*
- **Normal:** Both arms move the same, or both arms don't move at all.
- **Abnormal:** One arm doesn't move, or one arm drifts down compared to the other.

Speech: *Ask the patient to repeat a phrase such as "You can't teach an old dog new tricks".*
- **Normal:** Patient says the words without slurring.
- **Abnormal:** Patient slurs words, says the wrong word, or is unable to speak.

Blood Glucose:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Alert Criteria - Please check Yes or No:</td>
<td></td>
</tr>
<tr>
<td>☐ ☐</td>
<td>Time from onset of symptoms is known to be less than 24 hours?</td>
</tr>
<tr>
<td>☐ ☐</td>
<td>Blood glucose is or has been corrected to greater than 60 mg/dL?</td>
</tr>
<tr>
<td>☐ ☐</td>
<td>Any abnormal finding on Prehospital Stroke Scale examination?</td>
</tr>
<tr>
<td>☐ ☐</td>
<td>Deficit unlikely due to head trauma or other identifiable cause?</td>
</tr>
</tbody>
</table>

If Patient Screens Positive for Stroke Based on Facial Droop, Arm Drift or Speech Abnormalities, Proceed to Next Page for Large Vessel Occlusion Screening

Northern NE Protocol Group has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
stroke #2 - large vessel occlusion screening

all patients who screen positive for stroke by presence of facial droop, speech abnormalities, or drift/weakness of the upper extremity should be screened for large vessel occlusive stroke. these specific types of strokes may benefit from therapies in addition to iv tpa. screening should be performed by all scopes of practice by using the field assessment stroke triage for emergency destination (fast-ed) screening tool.

<table>
<thead>
<tr>
<th>f</th>
<th>facial palsy</th>
<th>t</th>
<th>a</th>
<th>arm weakness</th>
<th>s</th>
<th>speech changes</th>
<th>t</th>
<th>e</th>
<th>eye deviation</th>
<th>d</th>
<th>denial/neglect</th>
<th>total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>facial palsy</td>
<td>t</td>
<td>a</td>
<td>arm weakness</td>
<td>s</td>
<td>speech changes</td>
<td>t</td>
<td>e</td>
<td>eye deviation</td>
<td>d</td>
<td>denial/neglect</td>
<td>total score</td>
</tr>
<tr>
<td>0</td>
<td>facial palsy</td>
<td>t</td>
<td>a</td>
<td>arm weakness</td>
<td>s</td>
<td>speech changes</td>
<td>t</td>
<td>e</td>
<td>eye deviation</td>
<td>d</td>
<td>denial/neglect</td>
<td>total score</td>
</tr>
<tr>
<td>1</td>
<td>facial palsy</td>
<td>t</td>
<td>a</td>
<td>arm weakness</td>
<td>s</td>
<td>speech changes</td>
<td>t</td>
<td>e</td>
<td>eye deviation</td>
<td>d</td>
<td>denial/neglect</td>
<td>total score</td>
</tr>
<tr>
<td>2</td>
<td>facial palsy</td>
<td>t</td>
<td>a</td>
<td>arm weakness</td>
<td>s</td>
<td>speech changes</td>
<td>t</td>
<td>e</td>
<td>eye deviation</td>
<td>d</td>
<td>denial/neglect</td>
<td>total score</td>
</tr>
<tr>
<td>score</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

*time is documented for decision making purposes and is not scored.

a score of greater than or equal to 4 has a sensitivity of 0.61 and a specificity of 0.89 for lvo (ppv 0.72)

destination support guidance for possible lvo stroke patients:

3tpa ?’s refers to the tpa checklist screening questions on gold 13. if all are answered negative and time criteria are met, the patient is considered tpa eligible. if any are answered positive, the patient is tpa ineligible. lkw refers to the time the patient was last known well and without the presenting stroke symptoms
EMT

1. Manage airway as appropriate, see **Blue 3**
2. Maintain O₂ saturation between 94 - 99%
3. Elevate head of stretcher to 30 degrees (unless patient requires spinal motion restriction)
4. Request ALS, if available. Do not delay transport for ALS intercept. When operationally and medically feasible, limit scene time to 10 minutes or less.
5. Perform finger stick to measure blood glucose, if so trained. If blood glucose is less than 60 mg/dL, refer to Diabetic/Hypoglycemic Emergencies protocol, **Gold 6**
6. As early as possible, alert the receiving hospital of a "Code Stroke"
 a. Relay the following information:
 i. Patient age and gender
 ii. Identify the patient as a potential stroke patient
 iii. The patient's neurologic deficits and the findings of the Cincinnati Prehospital Stroke Scale and FAST-ED Scale
 iv. The "Time Last Known Well"
 v. The patient's mental status
 vi. The patient's vital signs and finger stick blood glucose results
 vii. ETA
7. Transport to the most appropriate facility based on regional resources
8. If available and so trained, perform 12-lead ECG en route.

ADVANCED EMT/PARAMEDIC

8. Cardiac monitor
9. IV en route
10. Perform 12-lead ECG en route

PEARLS for Stroke:

- Consider transporting a **witness, family member or caregiver** with the patient to verify the time of stroke symptoms onset. If the witness can not come with you, obtain the witness’ best phone number and relay to receiving hospital staff.
- **Time Last Known Well** is the last time the patient was noted to be neurologically normal. If the patient was sleeping and wakes up with symptoms, time last known well is the last time the patient was seen to be normal. Check if the patient had gotten up and been at baseline during the night.
- **Suspect stroke** in patients with any of the following new symptoms or complaints: acute visual disturbance, altered mental state, difficulty with balance or coordination, difficulty with speech or understanding, severe headache, weakness or numbness on one side. Stroke should be suspected whenever a person has a sudden change in neurological function. More common symptoms of stroke are weakness or loss of sensation of the face, a limb or a side of the face or body, abnormal speech production (slurred or inappropriate use of words) or comprehension, dizziness/vertigo, uncoordinated movements of a limb, gait disturbance, loss of vision in one eye or one side of vision and/or sudden onset severe headache for no obvious reason.
- Consider **stroke mimics** including: migraine, hypoglycemia, seizures, intoxication, sepsis.
- The management of an LVO stroke is a COMBINATION of rapid provision of tPA AND endovascular therapies when a patient screens positive for an LVO stroke that is amenable for therapy. At present, BOTH therapies should be performed in as rapid as possible manner, highlighting the role of ALL hospitals in the care of stroke patients.

This protocol was developed in collaboration with the Northern New England Protocol Group.
Acute Stroke #4
Stroke Checklist

Time of symptom onset/Time Last Known Well: _____________

Yes No

Has the patient had any recent trauma, surgeries or procedures in the last 3 months?

☐ Yes ☐ No
If Yes, what was the procedure and when did it occur? Including:
1) Severe head trauma within the past 3 months
2) Intracranial or spinal surgery within the past 3 months
3) Major non-cranial surgery or trauma within 14 days with uncontrollable bleeding (e.g. internal organs)

Has the patient had any bleeding problems in the past?

☐ Yes ☐ No
If Yes, what was the bleeding problem and when did it occur? Including:
1) History of spontaneous (non-traumatic) intracranial hemorrhage
2) GI malignancy or GI bleed within in the past 21 days

☐ Yes ☐ No
Is the patient taking any anticoagulants, including oral or injectable medications?
If Yes, clarify what the medication is and when it was last administered. See below lists of common anticoagulants

This list represents a simplified approach to contraindications to tPA and should be inquired of all patients with suspected stroke. These are important to hospital clinicians determining eligibility for tPA AND when determining entry destination for possible LVO Strokes (referred to in the algorithm as 3tPA ?’s)

Please present these findings to the Emergency Medicine Staff at the receiving hospital. The patient's Last Known Well and the answers to these three questions identify the vast majority of ABSOLUTE contraindications for tPA. However, a positive answer to these questions does not absolutely rule out the ability to provide tPA.

PEARLS for Anticoagulants:
Patients may recognize their anticoagulants as "blood thinners". Inquire about traditional anticoagulants including warfarin (Coumadin or Jantoven) and Heparin (IV/IM - including Lovenox) as well as other oral anticoagulants, including dabigatran (Pradaxa), rivaroxaban (Xarelto), apixaban (Eliquis), betrixaban (Bevyxxa) or edoxaban (Savaysa). Please note, medication manufacturers are producing new anticoagulants frequently. Please note all medications the patient identifies as an anticoagulant and pass on to receiving hospital staff.

Northern NE Protocol Group has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
EMT
1. Attempt to identify cause
 a. Hemorrhagic Shock, see Green 16
 b. Cardiogenic Shock, see Red 22
 c. Anaphylactic Shock, see Gold 1
2. Manage airway as appropriate, see Blue 3
3. Request ALS, if available, and notify receiving hospital that the patient is a "Code Sepsis." When available, ALS is valuable in these patients and allows for initiation of essential therapies, including resuscitation.
4. Perform finger stick to measure blood glucose, if so trained
 a. If blood glucose less than 60 mg/dL, refer to Diabetic/Hypoglycemic Emergencies protocol, Gold 6
5. Transport

ADVANCED EMT
6. For Severe Sepsis
 a. Assess for acute pulmonary edema. If present, refer to Cardiogenic Shock protocol, Red 22
 b. Administer up to 30 mL/kg fluid bolus.
 c. For patients with evidence of fluid overload or at risk for fluid overload, consider consultation with OLMC for different resuscitation volume goals.

PEARLS for Sepsis: Patients at risk for fluid overload include, but are not limited to, patients over 65 years of age, patients with a history of heart failure, patients on dialysis for renal failure. Such patients may benefit from smaller volumes of resuscitation and earlier initiation of pressors.

d. Monitor closely during resuscitation. Goals of resuscitation in shock and sepsis are to treat hypotension and/or signs of hypoperfusion.
PARAMEDIC

7. For medical or presumed septic shock
 a. If no response to initial treatment: initiate NOREPIephrine IV infusion.
 NOREPIephrine infusions must be administered via a Maine EMS approved medication pump.
 i. Preparation – mix NOREPIephrine 8 mg in 250 mL NS [32 mcg/mL]
 ii. Dosing - Starting dose of NOREPIephrine is 0.03 mcg/kg/min. Titrate by 0.03 mcg/kg/min every 3-5 minutes. Usual dose is 0.03-0.25 mcg/kg/min. Usual MAX dose is 0.6 mcg/kg/min. Absolute MAX dose is 3 mcg/kg/min.
 iii. Titrate to maintain SBP greater than 90 mmHg and/or MAP > 65 mmHg

8. Additionally, if the patient is found to have Adrenal Insufficiency (via medic alert bracelet, patient records, or family/staff reports), administer dexamethasone as follows:
 a. Adults – dexamethasone 10 mg IV/IO/IM x 1 dose
 b. Pediatrics - 0.6 mg/kg with MAX single dose of 10 mg IV/IO/IM x 1 dose
 c. May provide patient’s own dose of hydrocortisone (Solu-cortef) at the patient’s physician's prescribed dose if patient's medications are available

PEARLS for Sepsis:
- Sepsis is a systemic inflammatory response due to infection, often resulting in significant morbidity and mortality.
- Septic shock has a 50% mortality rate and must be treated aggressively.
- Treatment consisting of IV fluid administration and early antibiotic administration reduces mortality in septic patients.
- Please alert the receiving hospital with patients identified as septic.
- Current evidence suggests there may be a benefit from use of Lactated Ringers in critically ill patients with shock. Consider using Lactated Ringers preferentially if available.
- When initiating NOREPIephrine, make sure that the IV flushes easily and that there is NO extravasation. Whenever possible, use proximal IV access.
- Patients suffering from sepsis or septic shock are very ill patients and the care of these patients may be nuanced. Please consider the value of On Line Medical Control discussion for any questions or concerns regarding the management of these patients.

This protocol was developed in collaboration with the Northern New England Protocol Group.

Northern NE Protocol Group has taken extreme caution to ensure all information is accurate and in accordance with professional standards in effect at the time of publication. These protocols, policies, or procedures MAY NOT BE altered or modified.
Pediatric shock is well established before the appearance of classic signs and symptoms. The earliest signs and symptoms of pediatric shock include delayed capillary refill, alterations in mental status, rising pulse, and increasing respiratory rate. By the time blood pressure drops, circulatory collapse is near. Consider sepsis in certain high-risk clinical settings.

High-risk features for invasive infection include malignancy, bone marrow or solid organ transplant, asplenia, presence of indwelling central line/catheter, or other situation with immune deficiency, compromise or suppression.

Please see below for pediatric specific findings & vital signs.

IDENTIFICATION OF POSSIBLE SEPSIS
- Suspected Infection - YES
- Temperature greater than 101° F or less than 96.8° F (greater than 38.3° C or less than 36° C)
- Heart rate or respiratory rate greater than normal limit for age (NOTE: heart rate may not be elevated in a septic hypothermic patient) **AND** at least one of the following indications of altered organ function:
 - Altered mental status
 - Capillary refill time less than 1 second (flash) or greater than 3 seconds
 - Mottled cool extremities

Note: Consider early contact with OLMC for suspected pediatric sepsis patients

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
<th>Resp Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 day-<1 mo</td>
<td>> 205</td>
<td>> 60</td>
</tr>
<tr>
<td>1 mo - <3 mo</td>
<td>> 205</td>
<td>> 60</td>
</tr>
<tr>
<td>3 mo - <1 y</td>
<td>> 190</td>
<td>> 60</td>
</tr>
<tr>
<td>1 y - <2 y</td>
<td>> 190</td>
<td>> 40</td>
</tr>
<tr>
<td>2 y - <4 y</td>
<td>> 140</td>
<td>> 40</td>
</tr>
<tr>
<td>4 y - <6 y</td>
<td>> 140</td>
<td>> 34</td>
</tr>
<tr>
<td>6 y - <10 y</td>
<td>> 140</td>
<td>> 30</td>
</tr>
<tr>
<td>10 y - <13 y</td>
<td>> 100</td>
<td>> 30</td>
</tr>
<tr>
<td>13 y or older</td>
<td>> 100</td>
<td>> 24</td>
</tr>
</tbody>
</table>

American College of Pediatrics "An Emergency Department Septic Shock Protocol and Care Guideline for Children Initiated at Triage
PEARLS for Medical Shock

Many pediatric patients with shock have associated hypoglycemia. Mortality is increased if this is not addressed. Also, the presenting symptoms of shock and those of hypoglycemia can be very similar.

In children under the age 6, prompt IO placement after one failed IV attempt should be considered, since timely, successful IV placement in this age group is shown to be difficult.

Patients in shock require frequent reassessment. The following physiologic parameters are appropriate endpoints for therapy: normalization of heart rate, capillary refill, mental status, resolution of existing hypotension and, if available, presence of urine output.
Abdominal Pain

Many diseases cause abdominal pain. While it is almost impossible to diagnose the cause of abdominal pain in the EMS environment, it is important to be prepared for the patient to suddenly become very ill. If the patient is in shock, refer to the medical shock protocol.

EMT
1. Manage airway as appropriate, see **Blue 3**
2. If evidence of shock, refer to the Medical Shock protocol, **Gold 14**
3. If available and so trained, perform 12-lead ECG in patients with prior history of cardiac disease or risk factors for cardiac disease

ADVANCED EMT
4. Establish IV
5. If so trained, perform 12-lead ECG, under the following circumstances:
 1) The patient has a history of cardiac disease or risk factors for cardiac disease, or
 2) Based on the clinician’s discretion

PARAMEDIC
6. Perform pain-rating score on 1-10 scale
7. For non-traumatic abdominal pain in a stable patient with a normal level of consciousness:
 a. Consider fentanyl 1 mcg/kg IV/IN for a MAX dose of 100 mcg
 i. If repeated doses necessary, contact OLMC

 b. For nausea or vomiting, refer to Nausea and Vomiting protocol, **Gold 19**
Obstetric Emergencies

Most pregnancies progress with no complications. In cases of pregnancy with either vaginal bleeding or abdominal/pelvic pain, consider the following possibilities:
 1. Abruptio placenta: placenta prematurely separates from the uterus causing intrauterine bleeding
 2. Placenta previa: placenta covers part or all of the cervical opening
 3. Ectopic pregnancy (ruptured)
 4. Spontaneous abortion (miscarriage)
 5. Pre-Eclampsia/Eclampsia (can occur for up to 6 weeks post partum)
 6. Postpartum Hemorrhage

EMT
1. Manage airway as appropriate, see Blue 3
 a. Patients in third trimester of pregnancy with evidence of shock should be transported on the side (either left or right), or with uterus manually displaced to the left or right
3. If the patient is pregnant with abdominal/pelvic pain, bleeding or concern for any of the above conditions, and the patient condition permits, transport to the nearest hospital with OB capabilities if total transport time is less than 45 minutes, otherwise go to the closest ED.
4. For trauma related to pregnancy, follow Trauma Triage, Green 3
5. Notify Hospital of incoming patient
6. Contact OLMC for decision support if questions regarding patient transport destination.

ADVANCED EMT/PARAMEDIC
7. Establish IV. If evidence of shock, resuscitate with fluid boluses
8. If history of syncope/lightheadedness, perform 12 lead ECG

PARAMEDIC
9. For patients suffering post partum hemorrhage and demonstrating evidence of shock, refer to the Hemorrhagic shock protocol and consider TXA.
 a. NOTE - TXA is contraindicated in patients greater than 24 wks pregnant (or pregnant with fundus above umbilicus) suffering hemorrhagic shock due to trauma (see Green 17)

Pearls for Obstetric Emergencies
Even minor trauma beyond the second trimester can lead to significant consequences for the pregnancy. In some cases, these patients require fetal monitoring and therefore should be transported.

Syncope can be a presenting symptom of hemorrhage from ectopic pregnancy or causes of vaginal bleeding.

Do not place hand/fingers into vagina of bleeding patient except in cases of prolapsed cord or breech birth that is not progressing

Please note, on scene Obstetric clinicians may provide TXA. Please ensure TXA has not been previously provided before proceeding with TXA.
Nausea and vomiting are symptoms of some other illness. Therefore, this is a supplemental protocol to be used in addition to other relevant protocols.

EMT
1. Manage airway as appropriate, see Blue 3
2. Transport in position of comfort, unless contraindicated
3. If available and so trained, perform 12-lead ECG if the patient has a history of cardiac disease, risk factors for cardiac disease, or based on the EMS clinician's discretion.

ADVANCED EMT/PARAMEDIC
3. Perform 12-lead ECG under the following circumstances:
 a. The patient has a history of cardiac disease or risk factors for cardiac disease,
 b. Or, based on the clinician's discretion
4. Consider Ondansetron: (Remember: do not administer if patient has history of long QT syndrome)
 a. **Adults**: administer ondansetron 4 mg ODT tablet **PO**, or ondansetron 4 mg **IV**
 i. May repeat once after 15 minutes as needed.
 b. **Pediatric** patients:
 i. If greater than 4 years old, use the adult oral and IV dose as above
 ii. If less than 4 years old, give 0.1 mg/kg **IV/IM** up to adult dose
5. Consider IV access if active vomiting or for management of underlying cause
6. Consider fluid bolus if actively vomiting

7. Contact OLMC for dosage question, abnormal vital signs, or coincident drug use (including alcohol) by patient.

PEARLS for Management of Nausea and Vomiting:
A small percentage of patients receiving ondansetron experience adverse cardiac reactions including QT prolongation. For this reason, patients should be questioned about preexisting QT prolongation, which is a contraindication to receiving ondansetron. In these conditions, patients SHOULD NOT receive ondansetron. There are also many medications which may cause a prolonged QT interval and ondansetron should be withheld in these cases. For more information on drugs that can cause QT prolongation, consider reading: https://www.uspharmacist.com/article/drug-induced-qt-prolongation
Minimum Landing Zone (LZ) Area #1

Aircraft Arrival
- Identify Scene and LZ Incident Command
- Establish radio communications prior to landing
- State Fire or State EMS are the default radio frequencies
- Advise pilot of terrain conditions, vertical obstructions, and wind direction
- Secure LZ and identify personnel to guard tail rotor guards
- Notify pilot if patient is packaged and ready for hot load.

Operating Around Helicopter
- Approach aircraft with crew escort only
- Approach aircraft 90 degrees to door only
- Avoid tail boom and rotor at all times
- Eye and ear protection should be worn
- Do not carry anything above shoulder height
- Secure all loose medical and personnel equipment
- Spotlights, headlights, and/or hand-held lights should not be pointed directly at the helicopter.
Minimum Landing Zone (LZ) Area #2

<table>
<thead>
<tr>
<th>Terrain:</th>
<th>Vertical Obstructions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Flat, firm, free of debris</td>
<td>- Mark towers, antennas, poles, tall trees with vehicle</td>
</tr>
<tr>
<td>- Consider dust and snow</td>
<td>- Check the wind, helicopter must land and take off into the wind</td>
</tr>
<tr>
<td>- LZ should be downwind of accident scene</td>
<td>- Ideal = clear approach and departure angle 8:1 (200' to 25' vertical obstruction)</td>
</tr>
<tr>
<td>- Free of vehicles and people</td>
<td></td>
</tr>
<tr>
<td>- Any markers must be able to withstand 60 mph winds</td>
<td></td>
</tr>
<tr>
<td>- Approach path only from down slope of aircraft</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wires:</th>
<th>Lighting:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Electrical and utility wires are greatest single hazard to helicopters</td>
<td>- Never shine light directly at aircraft</td>
</tr>
<tr>
<td>- Search LZ area for wires</td>
<td>- All emergency lights on until aircraft overhead</td>
</tr>
<tr>
<td>- Mark all wires, high-tension lines, guide wires with vehicles</td>
<td>- Shut down vehicle strobes and white lights when aircraft on approach</td>
</tr>
<tr>
<td>- Notify pilot of all wires in proximity to landing zone</td>
<td>- Keep working lights on minimum</td>
</tr>
</tbody>
</table>

Aircraft Departure
- Keep LZ clear for at least 5 minutes after helicopter departure
- In case of emergency the helicopter may have to return to LZ
- Keep communications open with pilot

REMEMBER - EVERYONE IS RESPONSIBLE FOR SAFETY
Trauma Triage #1
(Patient with Blunt or Penetrating Trauma)

ASSESSMENT #1
ASSESS PHYSIOLOGIC COMPROMISE
Determine:
- Glasgow Coma Scale
- Respiratory Rate
- Systolic Blood Pressure

- GCS ≤ 13
- Systolic Blood Pressure < 90 mmHg in adults or age appropriate BP in pediatrics (i.e. 70 mmHg + (age x 2)). For example: infant less than 70 mm Hg, 5 year old less than 80 mmHg
- Respiratory Rate < 10 or > 29 breaths per minute (adults and pediatrics greater than 1 year old), < 20 in infant aged 1 year old and younger,
- Need for ventilatory support

No

ASSESSMENT #2:
ASSESS ANATOMIC INJURY
DO ANY OF THE FOLLOWING CONDITIONS EXIST?
- Penetrating injury to head, neck, torso and extremities (proximal to the elbow/knee)
- Chest wall instability or deformity (i.e. flail chest)
- Two or more proximal long bone fractures
- Crushed, de-gloved, mangled or pulseless extremity
- Amputation proximal to the wrist or ankle
- Pelvic fractures
- Open or depressed skull fractures
- Paralysis or suspected spinal cord injury

Yes

Go to nearest Regional Trauma Center (CMMC, Northern Light EMMC, MMC) if total transport time is less than 45 minutes, otherwise go to closest ED which is a trauma system participating hospital; any questions, then contact OLMC

Yes

No

Go to Next Page
ASSESSMENT #3
ASSESS MECHANISM OF INJURY AND EVIDENCE OF HIGH ENERGY IMPACT

1. Falls
 a. Adults: > 20 feet (one story is equal to 10 feet)
 b. Children: > 10 feet or 2-3 times the height of the child

2. High Risk Automobile Crash
 a. Intrusion, including roof: > 12 inches occupant compartment, > 18 inches any compartment
 b. Death in same passenger compartment
 c. Ejection (partial or complete) from the automobile
 d. Vehicle telemetry data consistent with high risk injury

3. Auto vs. pedestrian/bicyclist thrown, run over, or with significant (>20 mph) impact
4. Pedestrian thrown or run over by vehicle
5. Motorcycle crash greater than 20 mph

ASSESSMENT #4
ASSESS SPECIAL PATIENT OR SYSTEM CONSIDERATIONS

Older Adults
- Risk of injury/death increases after age 55 years
- SBP < 110 may represent shock after age 65 years
- Low impact mechanisms (i.e. ground level falls) might result in severe injury

Children
- Should be triaged preferentially to a pediatric capable trauma center

Anticoagulant and bleeding disorders
- Patients with head injury are at high risk for rapid deterioration

Burns
- Without other trauma mechanism: triage to burn facility
- With trauma mechanism: triage to trauma center

Pregnancy > 20 weeks

EMS Clinician Judgment

- **Yes**
 - Consider transport to nearest Regional Trauma Center (CMMC, Northern Light EMMC, MMC) if total transport time is less than 45 minutes vs. transport to the closest ED, which is a trauma system participating hospital; any questions, then contact OLMC

- **No**
 - Transport to Trauma System Participating Hospital
1. OLMC considers patient transport to Regional Trauma Center (RTC) using the following guidelines:
 a. If patient would best be served by RTC and transport time less than 45 minutes, then OLMC may direct you to the RTC
 b. If patient requires RTC but transport time greater than 45 minutes or patient requires life saving interventions, patient to go to the closest ED
2. If upon arrival to ED:
 a. Facility is not an RTC and
 b. Patient continues to satisfy criteria of Assessments #1 and #2, and
 c. Patient can be stabilized for further transport, then the sending ED clinician should follow the regional/state trauma plan

If prehospital clinicians are unable to definitively manage the airway, maintain breathing or support circulation, begin transport to most accessible hospital and simultaneously request ALS intercept or tiered response.
Spine Assessment

Suspected spinal injury - Based on complaint and mechanism of injury (* For High Risk Mechanisms of Injury in Pediatrics, see below)

- Spine pain or tenderness?
 - Yes
 - Manage spine Green 7
 - No
 - Abnormal sensory or motor exam?
 - Yes
 - Spine pain or tenderness?
 - Yes
 - Spine pain or tenderness?
 - Yes
 - Manage spine Green 7
 - No
 - Abnormal sensory or motor exam?
 - Yes
 - Spine pain or tenderness?
 - Yes
 - Manage spine Green 7
 - No
 - Abnormal sensory or motor exam?
 - Yes
 - Spine pain or tenderness?
 - No
 - Manage spine Green 7
 - Yes
 - Manage spine Green 7

- Unreliable?**
 - (Intox/Alt LOC/ Acute stress reaction)
 - Yes
 - Manage spine Green 7
 - No
 - Distracting injury?***
 - Yes
 - Manage spine Green 7
 - No
 - Distracting injury?***
 - No
 - Manage spine Green 7

- Do not immobilize
 - No

* High risk mechanisms of injury in the pediatric population include, but are not limited to, the following: motor vehicle collisions, recreational vehicles (all-terrain vehicles and snowmobiles), axial loading, substantial torso injuries, and falls greater than 10 feet.

** Clearance of the spine requires the patient to be calm, cooperative, sober, and alert. Note that the smell of alcohol on the breath is not necessarily the same thing as intoxication; a single beer can be detected on the breath, but does not necessarily cause significant intoxication. The real question is not about the presence or absence of any alcohol, etc.; it is whether or not the patient and the exam are reliable.

*** Distracting injury includes any injury that produces clinically apparent pain that might distract the patient from the pain of a spine injury. The real question is not about the presence or absence of any other injuries, it is whether or not the patient and the exam are reliable.

Remember that patients can fracture the spine at any level, not just the C-spine. If a fracture at another level of the spine is suspected, the entire spine must be immobilized, including the cervical spine. Patients with thoracic or lumbar fractures will commonly have associated cervical spine injuries.
Spine Management #1

*Patients are able to self-extricate from a motor vehicle or seated position to an EMS stretcher when all of the following conditions are met:

1. Able to reliably follow commands including instructions to maintain neutral spine position

2. Without injury that would preclude patient from ambulating

3. The patient ambulates as little as possible. Ultimately the EMS stretcher should be in close proximity to the patient

Patients in the lying position should be moved to the EMS stretcher by scoop/long board or other similar device.

Only patients in a seated position (i.e. a vehicle) are candidates for self-extrication. Proper methods of self-extrication limit patient movement as much as possible. For instance, patient movement should be limited to standing and pivoting to the stretcher. Please use caution when considering self-extrication and recognize that some vehicles are difficult to self-extricate from. Use judgment when considering self-extrication, recalling the goal of minimizing spine movement. If, in your judgment, self-extrication would lead to more spine motion than an alternate method of extrication, proceed with the alternate method.

Patient requires spinal management

Does the patient have a helmet on?

Yes

Manually remove if clinically indicated (for airway management hemorrhage control, etc.)

No

Is the patient in a seated position and able to self-extricate?

Yes

Place cervical collar and allow patient to self-extricate

No

Immobilize cervical spine with collar or alternate method

-THEN-

Extricate with long board OR other extrication device

-OR-

If child is in car seat, extricate in the car seat if child is already strapped in with harness

Once patient is on the EMS stretcher, remove the long board UNLESS safe transport requires the use of a long board (see PEARLS). Transfer patient to appropriate hospital based on trauma triage decisions. If patient is in a car seat, see Pediatric Transportation protocol, Pink 11.
Role of Backboards - While the MDPB is attempting to limit the use of backboards, prehospital and hospital clinicians should recognize that there remain circumstances in which use of a backboard is appropriate. Backboards should be utilized to extricate patients from vehicles or other situations when they are unable to extricate themselves (critical patients, patients with lower extremity injuries, severe head injuries, etc.). In most instances, once on the EMS stretcher, the backboard is redundant and can be removed. However, in some settings, it may be appropriate for the backboard to remain. Those settings include, but are not limited to the following:

1. Cases in which the backboard is being utilized as an element of the splinting strategy (such as multiple long bone fractures)
2. Cases in which the patient is at risk for vomiting but unable to protect their own airway (such as intoxication, head injury, etc.) and may need to be turned to the side for airway protection during transport.
3. Cases in which the patient is unresponsive or agitated (i.e. head injury)
4. Cases in which removal of the backboard would otherwise delay transport to definitive care in a critical patient

Preferred Position - The preferred position for all patients with spine management is flat and supine. There are two circumstances under which raising the head of the bed should be considered:

- Patients in respiratory distress. Populations at risk for developing respiratory distress when laying flat include the elderly with underlying lung disease, patients with morbid obesity and late-term pregnant patients
- Patient with suspected severe head trauma

Under these circumstances, consider raising the head of the bed to no more than 30 degrees

Inter-Facility Transport - Long backboards do not have a role in the transport of patients between hospitals EVEN IF SPINE INJURY IS DIAGNOSED. Use of long boards during inter-facility transport is associated with increased pain and potential for pressure sores and ulcers. Patients should instead be managed with a cervical collar (if appropriate) and firmly secured to the EMS stretcher. If a sending facility has placed the patient on a long board or requests use of a long board, EMS clinicians should discuss the option of foregoing backboard use with the sending physician. If a back board is used, it must be padded adequately to maximize patient comfort.

Penetrating Injury - The incidence of incomplete, unstable spine injury in penetrating trauma is low. Spine immobilization on a backboard is associated with an increased risk of death in patients with penetrating injuries to the neck, especially gun shot wounds, due to unrecognized hemorrhage and airway compromise. Spine immobilization does not appear to prevent progression of neurologic injury in cases of penetrating cervical trauma and may negatively affect patients with vascular and airway injuries. Penetrating trauma such as a gunshot wound or stab wound should not be immobilized on a long board and should instead be secured firmly to the EMS stretcher. Emphasis should be on airway and breathing management, treatment of shock, and rapid transport to a Level 1 or 2 Trauma Center.

Special Patient Populations
- Caution should be exercised in older patients (i.e. 65 years and older) and in very young patients (i.e. less than 3 years of age), as spinal assessment may be less sensitive in discerning spinal fractures in these populations. However, age alone should not be a factor in decision-making for prehospital spinal care, rather the patient’s ability to reliably provide a history should be considered.
- In children using a booster seat or lap/shoulder belt during a motor vehicle collision, consider allowing the patient to self-extricate him/herself after applying a cervical collar, if needed. For the infant or toddler who is already strapped in a car seat with a built-in harness, extricate the child while strapped in his/her car seat.
- Children who do not require spinal immobilization or lying flat may be safely transported when restrained in an age-appropriate car seat. Children who do require spinal immobilization or lying flat should be directly secured to the stretcher.

Helmet Use - Padding should be applied, if necessary, to maintain neutral cervical spine positioning depending on the type of sports helmet and presence or absence of shoulder pads.

Management - In patients who have suffered a potential spinal injury and need to be moved onto or off of a backboard, consider using the lift and slide technique rather than the log roll technique, when feasible.
Glasgow Coma Scale

<table>
<thead>
<tr>
<th></th>
<th>Adult</th>
<th>Child</th>
<th>Infant</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Opening Response</td>
<td>Open spontaneously</td>
<td>Same as Adult</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Open to voice command</td>
<td>Same as Adult</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open to painful stimuli</td>
<td>Same as Adult</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Eyes remain closed</td>
<td>Same as Adult</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Best Motor Response</td>
<td>Moves on command</td>
<td>Obeys commands</td>
<td>Moves spontaneously/purposefully</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pushes painful stimuli away</td>
<td>Localizes painful stimuli</td>
<td>Withdraws to touch</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Withdraws from painful stimuli</td>
<td>Withdraws in response to pain</td>
<td>Withdraws in response to pain</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Decorticate (flexion)</td>
<td>Flexion in response to pain</td>
<td>Abnormal flexion in response to pain</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Decerebrate (extension)</td>
<td>Extension in response to pain</td>
<td>Abnormal extension in response to pain</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No motor response to pain</td>
<td>No response</td>
<td>No response</td>
<td>1</td>
</tr>
<tr>
<td>Best Verbal Response</td>
<td>Oriented</td>
<td>Oriented/Appropriate</td>
<td>Coos and babbles</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Confused</td>
<td>Confused</td>
<td>Irritable, cries</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inappropriate words</td>
<td>Inappropriate words</td>
<td>Cries to pain</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Incomprehensible sounds</td>
<td>Incomprehensible sounds</td>
<td>Moans to pain</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No sounds</td>
<td>No response</td>
<td>No response</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>3-15</td>
</tr>
</tbody>
</table>
Chest Trauma

EMT
1. O₂, as appropriate
2. Assist ventilations (PPV), if needed
3. Request ALS, if available
4. Impaled Objects
 a. Secure in place with bulky dressings
5. Open chest wound
 a. Cover with thick, bulky dressing (i.e. abd pad or bulky trauma dressing) and secure in place
 i. Monitor for persistent air leak and add additional dressings or consider occlusive dressing and one-way valve, if needed
6. Flail segment with paradoxical movement and respiratory distress
 a. Consider PPV
 b. Consider applying non-circumferential splint
7. If available, and so trained, consider 12 lead ECG

ADVANCED EMT
8. IV en route
9. If shock present, perform fluid bolus
10. Cardiac monitor and consider ECG
11. Request Paramedic, if available

PARAMEDIC
12. For presumed tension pneumothorax, perform chest decompression

NOTE: Chest decompression will be performed on the involved side using a Maine EMS-approved device. Chest decompression should be preferentially performed at the fourth or fifth intercostal space on the anterior axillary line. The second or third intercostal space on the mid-clavicular line may be used, if necessary.

PEARLS for Chest Trauma

- The fourth to fifth intercostal space on the anterior axillary line is preferred to the second or third intercostal space on the mid-clavicular line because of significant failure rates of the mid-clavicular approach (24-54% failure rate at the mid-clavicular line vs. 8-22% of the time for anterior axillary approach). This is, in part, due to a larger average depth to the thoracic cavity at the mid-clavicular line vs the anterior axillary line.
- All needle decompressions are at risk of kinking/clotting or not reaching the thoracic cavity. Patients undergoing needle decompression should be monitored for change in symptoms after the procedure. If concern for needle decompression failure arises, repeat the procedure and continue monitoring. If the initial procedure site was the mid-clavicular line, consider repeating at the anterior axillary line.
Definition: Prehospital identification of moderate to severe Traumatic Brain Injury (TBI): Any patient with physical trauma and a mechanism consistent with the potential to have induced a brain injury and:

- Any injured patient with *loss of consciousness*, especially those with a *GCS less than 15* or *decreased level of consciousness, decreased responsiveness*, or *any deterioration of mental status*. Please recall, GCS may be difficult to obtain or interpret in young children or infants. Focus on the child's level of consciousness, decreased responsiveness or mental status change.

- Any multisystem trauma requiring BVM (or advanced airway/ventilation)

- Any *post-traumatic seizures*

Continuously monitor and re-evaluate every 3-5 minutes, including:

1. Continuous O2 saturation via pulse oximetry
2. Systolic blood pressure
3. Continuous quantitative end-tidal CO2 (ETCO2) monitoring for ALL patients requiring advanced airway management

EMT

1. Consider immobilizing the spine if indicated per *Green 7*
2. If not in shock, elevate head of bed to 30 degrees while maintaining spinal immobilization, if necessary

Management of Airway/Oxygenation

3. Place continuous high-flow O2 via non-rebreather mask on all potential TBI cases
4. Identify and treat any episode of hypoxia (O2 saturation less than 90% and/or any evidence of cyanosis).
5. If high-flow O2 fails to correct hypoxia, treat per Airway Algorithm, *Blue 3*
6. Continue to monitor/re-evaluate every 3-5 minutes

PEARL: *A single* oxygen saturation less than 90% is independently associated with at least a doubling of mortality.

Management of Ventilation

7. If there is evidence of hypoventilation despite high-flow O2, see *Blue 3*, Airway Algorithm
8. Target ventilation rates (from the National TBI Guidelines):
 a. PEDIATRIC age 0-2 years: 1 breath every 2-3 seconds (25 breaths per minute)
 b. PEDIATRIC age 3-14 years: 1 breath every 3 seconds (20 breaths per minute)
 c. Adolescents/Adults age 15+: 1 breath every 6 seconds (10 breaths per minute)
Management of Hypoglycemia

Advanced EMT/Paramedic Management of Airway/Oxygenation

10. If airway compromise of hypoxia persists after above interventions, proceed with standard step wise airway management per Blue 3.

Management of Ventilation

11. If advanced airway, goal ETCO2 levels are between 35 and 45 mmHg (target = 40 mmHg).

Management of Hypotension/Blood Pressure

12. In patients with any potential for TBI, immediately initiate IV access to ensure maintenance of SBP.
13. PEDIATRICS - GOAL SBP defined below:
 a. Hypotension is defined as SBP below the 5th percentile for age, estimated using the following guide:
 i. Age 0-10: 70 mmHg + (age x 2)
 ii. Age greater than 10: 90 mmHg (same as adolescents and adults)
iii. "Rules of Thumb" to remember:
 1. Infant = 70 mmHg
 2. 5 year old = 80 mmHg
 3. 10 years and older = 90 mmHg
b. For SBP below goal for age, give 20 ml/kg IV bolus every 5 minutes until
 age-based goal SBP for age is achieved
14. ADOLESCENTS and ADULTS - Goal SBP = greater than 90 mmHg
 a. Initiate fluid resuscitation with an initial bolus of 1 liter for any SBP
 measurement less than 90 mmHg
 b. Continue IV fluid administration at a rate and volume sufficient to maintain
 SBP greater than 90 mmHg

PEARLS for Management of Hypotension/Blood Pressure

- A single episode of SBP <90 mmHg is independently associated with at least a
doubling of mortality. Repeated episodes of hypotension can increase the risk of
dying by as much as *eight* times. Hypotension kills neurons!
- In the context of Head Trauma, do not allow permissive hypotension below 90
mmHg (in adults) and do not wait for the patient to become hypotensive. If the
SBP is dropping, or if there are any other signs of compensated shock such as
increasing heart rate with decreasing SBP, begin aggressive treatment before the
patient becomes hypotensive.
- In TBI, treatment of acute hypertension is **NOT** recommended.
- IV fluids should be restricted to a minimal “keep open” rate in patients with, SBP
≥ 100 mmHg (infants/young children) SBP ≥ 130 mmHg (older
children/adolescents), and SBP ≥ 140 mmHg in adults.

15. For Nausea and Vomiting, refer to **Gold 20. Please Note**: IV Ondansetron is
preferred in patients with moderate to severe head injuries or if the EMS clinician
has any concerns regarding the patient’s ability to tolerate orals or manage their
airway independently.
Head Trauma, #4

15 L/min O2 for all Head Trauma Patients
Monitor O2, BP, HR every 3-5 min

Airway/Breathing

O2 Sat less than 90% or hypoventilation (despite non-rebreather)?

YES

Basic Airway Measures *

NO

Continue Monitoring O2 sat and airway every 3-5 min

REEVALUATE

O2 Sat less than 90% despite basic airway measures?

YES

NO

Continue Monitoring O2 sat and airway every 3-5 min

Hypotension ** or Other Signs of Shock?

NO

YES

Document Initial Mental Status and GCS AND any changes in Mental Status

Circulation

IV Fluid Bolus Repeat IV fluid bolus until hypotension resolves

Disability

* Goal Ventilation Rates:
 Age 0-2 years: 1 breath every 2-3 seconds (25 BPM)
 Age 3-14 years: 1 breath every 3 seconds (20 BPM)
 Age 15 years +: 1 breath every 6 seconds (10 BPM)

** Identifying Hypotension in Children:
 Newborn: 60 mmHg
 Age 0-2 years: 70 mmHg
 Age 3-9: 70+ (age x 2)
 Age 10 years or greater: greater than 90 mmHg

General Rules:
 Newborn: greater than 60 mmHg
 5 Year Old: greater than 80 mmHg
 10 years and older: greater than 90 mmHg

See Airway Algorithm - Blue 3
Avoid even MILD hyperventilation by using Ventilation Rate Timer and Pressure-Controlled Bag
Carefully maintain goal ventilatory rates *
With advanced airways, target ETCO2 to 40 mmHg (range 35-45 mmHg)
EMT
1. Ascerten all sites of bleeding and control with direct pressure and elevation
2. If life-threatening bleeding is on extremity and uncontrolled with direct pressure, consider applying a Maine EMS-approved tourniquet
 a. Tourniquets should be applied proximally on the affected limb for the following reasons:
 i. Injuries are commonly more proximal than anticipated, and
 ii. Double-bone structures in both the forearm and the lower leg effectively splint the arteries and prevent tourniquets from working properly
 b. Tourniquets should be as tight as possible
 i. Due to associated pain, request ALS, if available
 c. If hemorrhage continues after application of the tourniquet, ensure the tourniquet is applied as tightly as possible. If hemorrhage continues, consider placement of a second tourniquet, proximal to the first. Experience has shown applying two tourniquets greatly reduces the incidence of hemorrhage, especially in injuries to the lower extremity
3. If life-threatening bleeding is not controlled by the above or is located in an area not amenable to placement of a tourniquet, consider applying a Maine EMS-approved hemostatic agent by packing the agent in the wound and applying/maintaining pressure over the agent for a minimum of 5 minutes. Check for ongoing bleeding. If bleeding has stopped, bandage appropriately; if bleeding continues, reapply pressure for a minimum of 5 minutes. If bleeding continues after the second period of pressure, remove the initial hemostatic agent and repeat with a new hemostatic agent. Remember, for these agents to have maximal effectiveness, they must be packed inside the wound as close to the bleeding source as possible
4. Treat for shock, if indicated, and manage airway as appropriate
5. If amputation, rinse severed part briefly and gently with sterile saline to remove debris
 a. Wrap severed part in sterile gauze, moisten with sterile saline (do not soak), place in a water-tight container. Place container on ice (do not use dry ice). Do not put part directly on ice. If necessary, use ice packs to provide some level of cooling
6. Request Paramedic if bleeding cannot be controlled, patient demonstrates signs or symptoms of shock, or the patient requires pain management due to tourniquet placement

ADVANCED EMT /PARAMEDIC
7. IV en route (refer to Hemorrhagic Shock protocol, Green 16).
8. Cardiac monitor
If history of illness or mechanism of injury consistent with signs/symptoms of shock (elevated pulse, elevated respiratory rate, cool/pale skin, altered LOC, anxiety, sweating or lowered BP) then transport as soon and as efficiently as possible.

If the cause of the shock is NOT related to hemorrhage, consider the following protocols:
- Anaphylaxis, refer to the Anaphylaxis protocol, Gold 1
- Cardiogenic, refer to the Cardiogenic Shock protocol, Red 22
- Tension Pneumothorax, refer to the Chest Trauma protocol, Green 10
- Medical Shock, refer to the Medical Shock protocol, Gold 14

EMT
1. Control bleeding, refer to Hemorrhage protocol, Green 15
2. Manage airway, as appropriate; see Blue 3
3. If patient is in third trimester of pregnancy:
 a. Place patient on left lateral recumbent side and re-evaluate
 b. If shock is secondary to trauma, immobilize patient on a spinal board before placing in left or right lateral recumbent position (manually displace uterus to the left or right if tilting the board is not possible)
4. If the cause of hypovolemic shock is felt to be secondary to acute unstable pelvic fracture, the EMT, AEMT, or Paramedic may consider using a Maine EMS-approved pelvic stabilization device. If Maine EMS-approved pelvic binder is not available, consider immobilization with a sheet wrap.
5. Request ALS

ADVANCED EMT/PARAMEDIC
6. IV en route
7. Cardiac monitor
8. If shock present (see below table), perform fluid bolus according to the following guidelines:
 a. **Pediatrics** – establish IV access and perform 20 mL/kg fluid bolus. Repeat, as needed, within 15-30 min
 b. Uncontrolled bleeding: for suspected internal bleeding or uncontrolled bleeding, fluid bolus to maintain age appropriate target systolic BP (90 mmHg in adults)
 c. Suspected TBI/CNS injury: fluid bolus to maintain BP greater than 90 mmHg
 d. Current evidence suggests there may be a benefit from use of Lactated Ringers in critically ill patients with shock. Consider using Lactated Ringers preferentially, if available.

9. Contact OLMC if patient is older than 65 years of age for fluid bolus order
10. Contact OLMC if blood pressure remains less than 90 systolic after fluid boluses

Hemorrhagic Shock #1

Continued
Hemorrhagic Shock #2

Continued from Previous Page

PARAMEDIC

11. In patients with either penetrating/blunt trauma \textbf{OR} post-partum hemorrhage \textbf{AND}:
 a. are greater than or equal to 16 years of age, and
 b. are hemodynamically unstable as evidenced by tachycardia, hypotension or other evidence of shock, and
 c. who are less than 180 minutes (3 hours) from the time of injury/hemorrhage, consider:
 i. Tranexamic acid (TXA) 1 gr IV mixed in 250 ml of NS over 10 minutes

\textbf{1. NOTE:} Discuss the use of TXA in patients on anticoagulation with OLMC before providing medication* (see Pearls)

\textbf{2. NOTE: CONTRAINDICATIONS} for tranexamic acid (TXA) include:
 - \textbf{Isolated} head injury (multi-trauma patients with hemorrhagic shock \textbf{SHOULD} receive TXA regardless of head injury),
 - Patients younger than 16 years old
 - Patients greater than 24 wks pregnant (or pregnant with fundus above umbilicus) suffering hemorrhagic shock due to trauma,
 - Patients with known hypercoagulable states,
 - The patient is more than 180 minutes (3 hours) from the time of injury,
 - Patients with hemorrhage due to GI bleeding

\textbf{PEARLS for the use of TXA:}
Tranexamic acid is a lysine analogue that competitively binds to plasminogen therefore interrupting interactions with fibrin and preventing fibrinolysis or clot break down.
Patients in hemorrhagic shock from either blunt or penetrating trauma may benefit from Tranexamic acid (TXA). TXA must be provided as soon as possible, preferably within 1 hour of injury and absolutely before 3 hours from injury.

\textbf{Please ensure that receiving hospital staff:}
1. Know the \textbf{time of injury},
2. Are aware that the patient received \textbf{TXA},
3. Are aware of the \textbf{1 gram dose} as the patient may need to be re-dosed upon arrival, and
4. \textbf{Flag the IV line} that the patient received TXA through with a labeled piece of tape as some medications and blood products should not be provided through the same line.

*Additionally, discuss the use of TXA in patients on anticoagulants as these patients may require anticoagulation reversal and the combination of TXA and some of the reversal agents may have additive thrombotic effects. There are few adverse effects of this medication. TXA may cause hypotension if provided rapidly. The full dose should be provided over 10 minutes to prevent hypotension.
Hemorrhagic Shock #3

Additional PEARLS for Hemorrhagic Shock:

1) **TXA and GI Bleeding:** Recent evidence suggests patients with gastrointestinal bleeding SHOULD NOT receive tranexamic acid. Patients with GI bleeding who received TXA had no improvement in mortality but did suffer increased morbidity, including increased venous thromboembolic events.

2) **TXA and Isolated Head Injury:** The role of TXA in isolated head injury remains controversial with conflicting evidence in the medical literature. The most recent evidence suggests an association between prehospital TXA and increased mortality in patients with isolated severe brain injury. In an effort to maintain the upmost patient safety and promote the best possible patient outcomes, isolated head trauma remains a contraindication for TXA in the 2021 protocols. As a reminder, multi-trauma patients with hemorrhagic shock SHOULD receive TXA regardless of head injury.

Classification of Hemorrhagic Shock

<table>
<thead>
<tr>
<th></th>
<th>Compensated Shock</th>
<th>Mild Shock</th>
<th>Moderate Shock</th>
<th>Severe Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Loss</td>
<td><15% (1000 mL)</td>
<td>15-30% (1000-1500 mL)</td>
<td>30-40% (1500-2000 mL)</td>
<td>>40% (> 2000 mL)</td>
</tr>
<tr>
<td>Pulse</td>
<td>Normal</td>
<td>Elevated (>100)</td>
<td>Elevated (>120)</td>
<td>Elevated (>140)</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>Normal</td>
<td>Orthostatic Change</td>
<td>Marked Decrease</td>
<td>Profound Decrease</td>
</tr>
<tr>
<td>Cap Refill</td>
<td>Normal</td>
<td>May be Delayed</td>
<td>Usually Delayed</td>
<td>Always Delayed</td>
</tr>
<tr>
<td>Respiration</td>
<td>Normal</td>
<td>Mild Increase</td>
<td>Moderate Tachypnea</td>
<td>Marked Tachypnea and Respiratory Collapse</td>
</tr>
<tr>
<td>Mental Status</td>
<td>Normal or Agitated</td>
<td>Agitated</td>
<td>Confused</td>
<td>Lethargic/Obtunded</td>
</tr>
</tbody>
</table>
1. Remove burned clothing and/or jewelry, unless adhered to patient
2. O₂, as appropriate
3. Give highest priority to airway problems and major trauma
4. Manage shock, if present
5. Cover burn with dry dressing, sterile sheet, or commercially prepared dry dressing
6. Request ALS where there is a possibility of respiratory compromise, shock, burns greater than 10% BSA or need for pain medication

ADVANCED EMT
7. Venous access en-route, IV/IO
8. Cardiac Monitor (avoid placing leads on burned skin)
9. If shock present, perform fluid bolus
10. If shock NOT present, deliver fluid boluses as follows
 a. 0.25 x wt (kg) x % BSA = mL/hr (this represents the patient's fluid requirement each hour for the first 8 hours after the burn)

PARAMEDIC
11. For pain control, refer to the Universal Pain Management protocol, *Green 21*

PEARLS for Burn Management
- Only second (partial thickness) and third (full thickness) degree burns are counted when calculating burn surface area. Do not include first degree burns (superficial thickness).
- Errors are made in burn surface area calculation when an entire limb is counted despite only partial involvement. Consider using the patient's hand size (palm PLUS fingers = 1% BSA) to estimate 1% body surface area.
- Clean, dry dressings are adequate for covering all burns, regardless of size.
- It is preferable to establish IV access in non-burned tissue, but, if necessary, burned tissue may be used as a site for IV access.
Remember: The patient's hand (palm PLUS fingers) is about 1% of the patient's body surface area.
Universal Pain Management #1

Patient Inclusion Criteria
Adult and pediatric patients who are experiencing pain either from a traumatic injury or with non-traumatic chest, abdominal, or flank pain. Contact OLMC for any other painful conditions including but not limited to back pain, headache, and non-traumatic extremity pain.

Patient Exclusion Criteria
Change in baseline mental status or head injury with change in mental status from baseline.
For suspected cardiac chest pain, refer to Chest Pain - Suspected Cardiac Origin protocol, Red 2

EMT
1. Verbal reassurance
2. Splinting as needed, provide in-line stabilization. Consider cold pack application in isolated extremity trauma if hypothermia/frostbite is not present
3. Evaluate pain using age appropriate pain scale
4. If pain not improved by above measures and no contraindications to oral medications exist, for patients 5 years and older AND 20 lbs/9.4 kg or over consider:
 a. Acetaminophen chewable tab, 10 - 15 mg/kg rounded to the nearest 40 to 80 mg (may be chewed or swallowed whole). Max dose 1,000 mg.
 b. NOTE: Acetaminophen is contraindicated for patients with known or suspected liver disease or for those who have received acetaminophen within the past 4 hours

<table>
<thead>
<tr>
<th>Weight lbs/kgs</th>
<th>Acetaminophen Dose</th>
<th>Number of 80 mg Chew tabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 – 26 lbs/9.4 – 12 kgs</td>
<td>160 mg</td>
<td>2 tab</td>
</tr>
<tr>
<td>27 – 32 lbs/12.1 - 14.7 kgs</td>
<td>200 mg</td>
<td>2.5 tab</td>
</tr>
<tr>
<td>32 – 38 lbs/14.8 - 17.3 kgs</td>
<td>240 mg</td>
<td>3 tab</td>
</tr>
<tr>
<td>38 - 44 lbs/17.4 – 20 kgs</td>
<td>280 mg</td>
<td>3.5 tab</td>
</tr>
<tr>
<td>44 – 50 lbs/20.1 - 22.7 kgs</td>
<td>320 mg</td>
<td>4 tab</td>
</tr>
<tr>
<td>50 – 56 lbs/22.8 - 25.3 kgs</td>
<td>360 mg</td>
<td>4.5 tab</td>
</tr>
<tr>
<td>56 – 65 lbs/25.4 - 29.3 kgs</td>
<td>400 mg</td>
<td>5 tab</td>
</tr>
<tr>
<td>65 – 76 lbs/29.4 - 34.7 kgs</td>
<td>480 mg</td>
<td>6 tab</td>
</tr>
<tr>
<td>76 – 89 lbs/34.8 - 40.3 kgs</td>
<td>560 mg</td>
<td>7 tab</td>
</tr>
<tr>
<td>89 – 120 lbs/40.4 – 55 kgs</td>
<td>640 mg</td>
<td>8 tab</td>
</tr>
<tr>
<td>121 lbs and up/ 55.1 kgs and up</td>
<td>960 mg</td>
<td>12 tab</td>
</tr>
</tbody>
</table>

5. Request ALS if needed for pain management or management of underlying injury

(Continued)
ADVANCED EMT
6. Consider IV access in preparation for additional pain management
7. Consider cardiac monitoring based on patient assessment or injury etiology
8. If contraindication to oral pain medications in patients \textbf{70 kg or greater}, consider acetaminophen \textbf{IV} 1000 mg (1 gram) \textbf{IV} once, undiluted, over 15 minutes.
9. If nausea/vomiting, refer to \textbf{Gold 20}, Nausea and Vomiting

PARAMEDIC
10. If contraindication to oral pain medications in patients weighing \textbf{less than 70 kg} consider acetaminophen \textbf{IV} 12.5 mg/kg \textbf{IV} once up to 625 mg undiluted, over 15 minutes.
 a. \textbf{NOTE}: doses of acetaminophen less than 1000 mg require infusion via pump
11. For stable patients continuing to suffer pain from trauma or other listed inclusion criteria, consider the use of any \textbf{ONE} of the following medications:
 a. Fentanyl 1 mcg/kg \textbf{IV/IM/IN} with an initial MAX dose of 100 mcg.
 i. For persistent traumatic pain, may repeat doses every 5-10 minutes at 0.5-1 mcg/kg (MAX dose 100 mcg) \textbf{IV/IM/IN} titrated to effect, with a cumulative MAX dose of 5 mcg/kg
 ii. \textbf{NOTE}: Fentanyl may be ineffective in patients with underlying opioid use disorder
 b. OR, Ketamine:
 i. Ketamine 0.2 mg/kg \textbf{IV} to a MAX dose of 25 mg. Mix in 100 mL bag of saline and infuse over 10 minutes via a pump.
 1. Repeat in 15 minutes as needed for continued pain to a cumulative MAX dose of 1 mg/kg
 ii. Ketamine 0.5 mg/kg \textbf{IN} to a MAX dose of 25 mg
 1. Repeat 0.25 mg/kg \textbf{IN} to a MAX dose of 25 mg in 15 minutes as needed for pain x 1
 iii. \textbf{NOTE} : Ketamine is contraindicated in infants less than 3 months old and those with cardiogenic shock (or history of heart failure)
 c. OR, 50% nitrous oxide/oxygen mixture self-administered ONLY until patient removes mask or pain is controlled i.e. a blended 50/50 mixture.
 i. \textbf{NOTE} : Nitrous Oxide is contraindicated in suspected pneumothorax or bowel obstructions

12. Contact OLMC before using any analgesic (beyond acetaminophen) in:
 i. Isolated trauma involving the head,
 ii. Back pain,
 iii. Non-traumatic extremity pain,
 iv. Any patient with mental status changes,
 v. Any patient with unstable vital signs (including SBP < 100 mmHg)
 vi. Coincident drug use (including alcohol)
13. Contact OLMC if desiring to switch from one type of analgesic to another (other than from acetaminophen), no matter the duration of time that has passed since dosing the initial agent. Adding one class of medications to another can have additive effects such as hypotension, bradypnea, depression of mental status, etc.

14. Transport in position of comfort and reassess pain, as indicated

PEARLS for Pain Management:

1. Consider the potential for medical causes of trauma, especially in the elderly, lift assist patient, falls, and syncope. In such cases, refer to the appropriate protocol and monitor the patient as described.

2. Acute pain management is often considered to be a “ladder” process; that is, start at the bottom rung and increase the “strength” AND risk of interventions in a step wise fashion similar to climbing the rungs of a ladder. Therefore, it is expected that all clinicians, regardless of license level, will manage patients in the step wise fashion to the maximum scope of practice of their licenses.

3. **Pearls for acetaminophen**: Patients with underlying liver disease or those who have taken acetaminophen within the last 4 hours should NOT receive acetaminophen. Acetaminophen IV comes in a glass container and requires vented IV tubing. Acetaminophen should be administered, undiluted, over 15 minutes.

4. **Pearls for fentanyl**: Fentanyl may be considered the first line analgesic after acetaminophen. Adverse effects include bradypnea and hypotension.

5. **Pearls for ketamine**: Ketamine may be preferential for patients with a history of opioid intolerance or opioid use disorder. Ketamine must be infused slowly to reduce the incidence of complications including hypotension, bradypnea, and laryngospasm.
Pediatric considerations:
Have the patient rate his/her pain from 0-10, or on another appropriate pain scale:
- Ages less than 4 years, use FLACC Scale
- Ages 4-12 years, use Wong Baker “Faces” Scale
- Avoid coaching the patient; simply ask him/her to rate his/her pain on a scale from 0-10, where 0 is no pain at all, and 10 is the worst pain ever experienced by the patient

The FLACC Behavioral Pain Assessment Scale

<table>
<thead>
<tr>
<th>Categories</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>No particular expression or smile</td>
</tr>
<tr>
<td></td>
<td>Occasional grimace or frown, withdrawn, disinterested</td>
</tr>
<tr>
<td></td>
<td>Frequent to constant frown, clenched jaw, quivering chin</td>
</tr>
<tr>
<td>Legs</td>
<td>Normal position or relaxed</td>
</tr>
<tr>
<td></td>
<td>Uneasy, restless, tense</td>
</tr>
<tr>
<td></td>
<td>Kicking or legs drawn up</td>
</tr>
<tr>
<td>Activity</td>
<td>Lying quietly, normal position, moves easily</td>
</tr>
<tr>
<td></td>
<td>Squirming, shifting back and forth, tense</td>
</tr>
<tr>
<td></td>
<td>Arched, rigid, or jerking</td>
</tr>
<tr>
<td>Cry</td>
<td>No cry (awake or asleep)</td>
</tr>
<tr>
<td></td>
<td>Moans or whimpers, occasional complaint</td>
</tr>
<tr>
<td></td>
<td>Crying steadily, screams or sobs; frequent complaints</td>
</tr>
<tr>
<td>Consolability</td>
<td>Content, relaxed</td>
</tr>
<tr>
<td></td>
<td>Reassured by occasional touching, hugging or being talked to; distractable</td>
</tr>
<tr>
<td></td>
<td>Difficult to console or comfort</td>
</tr>
</tbody>
</table>

Wong-Baker “Faces “ Scale

The faces correspond to the numeric values from 0-5. The scale can be documented with the numeric value or the textual pain description.
Termination of Resuscitation For Traumatic Cardiac Arrest

Inclusion Criteria: Cardiac arrest from blunt or penetrating trauma in adult and pediatric patients.

Exclusion Criteria: (Patients for whom this protocol does not apply):
- Patients whose presentation is consistent with a medical cause of cardiac arrest, refer to Cardiac Arrest protocol, Red 8
- Hypothermic Patients, refer to Hypothermia protocol, Yellow 11
- Drowning patients, refer to Drowning/Submersion Injuries protocol, Yellow 15

EMT/ADVANCED EMT/ PARAMEDIC
1. Do not initiate cardiac arrest resuscitation if any of the following exist:
 a. Injuries incompatible with life
 b. Evidence of significant time lapse since pulselessness
 i. Dependent lividity, rigor mortis, or decomposition
2. CONSIDER resuscitation and transport ONLY if, transporting in a safe and prudent manner, you can deliver the patient to a hospital within 15 minutes of the TIME OF ARREST
3. If unable to meet these transport guidelines, DO NOT initiate resuscitation in trauma patients who are apneic and pulseless
4. If resuscitation initiated, manage massive hemorrhage per Hemorrhage Protocol Green 15 and airway per Airway Management Algorithm, Blue 3

ADVANCED EMT/ PARAMEDIC
5. If resuscitation initiated, consider rapid fluid bolus

PARAMEDIC
6. If resuscitation initiated, consider early bilateral needle decompression of the chest to alleviate tension pneumothorax (Chest Trauma protocol, Green 10)
Crush Injury

EMT/ADVANCED EMT/ PARAMEDIC
1. If severe hemorrhage is present, refer to Hemorrhage Protocol, Green 15
2. Administer high-flow oxygen to maintain O₂ sat between 94-99%
3. Manage airway as appropriate, see Blue 3

ADVANCED EMT/PARAMEDIC
4. Intravenous access should be established with Normal Saline initial bolus of 10-15 mL/kg (prior to extrication if possible)

PARAMEDIC
5. For significant crush injuries or prolonged entrapped extremity, consider sodium bicarbonate 1 mEq/kg (max dose of 50 mEq) IV bolus over 5 minutes
6. Attach ECG monitor. Obtain/interpret 12-Lead ECG, if available. Carefully monitor for hyperkalemia or dysrhythmias before and immediately after release of pressure and during transport
7. For pain control, consider analgesics; refer to Universal Pain Management protocol, Green 21
8. Consider the following post extrication:
 a. Continued resuscitation with Normal Saline
 i. **Adult**: 500-1000 mL/hr
 ii. **Pediatric**: 10 mL/kg/hr
 b. If ECG suggestive of hyperkalemia, see Hyperkalemia Protocol (Red 26)

PEARLS for Crush Injury:
Treat suspension trauma as prolonged entrapment and follow crush injury protocols as above
Facial/Dental Injury

EMT/ADVANCED EMT/ PARAMEDIC

1. Administer oxygen, as appropriate, with a target of achieving 94-99% saturation

2. **Avulsed tooth:**
 a. Avoid touching the root of the avulsed tooth. Do not wipe off tooth
 b. Pick up at crown end. If dirty, rinse off under cold water for 10 seconds
 c. Place tooth in milk or saline as the storage medium. Alternatively, a cooperative patient can hold tooth in mouth using own saliva as storage medium

3. **Unstable Mandible Injury:**
 a. Expect patient cannot spit/swallow effectively and have suction readily available.
 b. Preferentially transport sitting up with emesis basin/suction available (in the absence of a suspected spinal injury, see Spinal Management Protocol, *Green 7*)

4. **Epistaxis:**
 a. Squeeze nose (or have patient do so) for 10 – 15 minutes, continuously.

5. **Nose/Ear Avulsion:**
 a. Recover tissue if it does not waste scene time
 b. Transport with avulsed tissue wrapped in dry sterile gauze in a plastic bag placed on ice
 c. Severe ear and nose lacerations can be addressed with a protective, moist sterile dressing

ADVANCED EMT/PARAMEDIC

6. IV access, as needed, for fluid or medication administration

PARAMEDIC

7. Pain medication as per Universal Pain Management protocol, *Green 21*
EMT/ADVANCED EMT
1. Flush eye with sterile saline or clean water source continuously (for chemical exposure)
2. Assist patient with removal of contact lenses
3. Assess gross visual acuity
4. For thermal exposure, apply cool saline gauze compress to both eyes
5. For impaled object, secure object and patch both eyes and keep patient supine
6. For puncture wound, place protective shields over both eyes and keep patient supine.
7. For eye trauma:
 a. Place eye shield for any significant eye trauma
 b. If globe is avulsed, do not put back into socket: cover with moist saline dressings and then place cup over it

ADVANCED EMT/PARAMEDIC
8. For penetrating or blunt eye trauma, if patient experiences nausea, refer to Nausea and Vomiting protocol, Gold 20

PARAMEDIC
9. If no penetrating eye trauma and if the patient has no allergy to local anesthetics: Administer 2 drops tetracaine ophthalmologic drops every 5 minutes as needed to affected eye to facilitate eye flushing.
10. To facilitate flushing, the Paramedic may use a Morgan lens, if trained to do so

Pearls for eye injuries

- Normal or near normal vision does not r/o significant eye injury
- Chemical and thermal burns to the face may have concomitant respiratory injury
- Vomiting increases intraocular pressure and should be avoided in patients with eye injury.
- Tetracaine is to be provided by the Paramedic clinician only and not provided to the patient for ongoing use
Definition of Open Fracture: Suspected fracture with associated extensive tissue damage, wound, and/or visible bone.

EMT
1. Assess for other life threatening injuries and manage as indicated
2. In patients who are otherwise stable, gross contamination (such as leaves or gravel) should be removed if possible.
3. Cover open fractures with moist, sterile dressing
4. Splint the fractured extremity in the anatomic position if possible and the position of comfort if not able to splint in the anatomic position.
5. Request ALS, if available, for pain control and consideration of antibiotics

ADVANCED EMT
6. Place IV
7. Consider pain control. Refer to Universal Pain Management, *Green 21*
8. Request ALS, if available, for additional pain control and consideration of antibiotics

PARAMEDIC
9. Ceftriaxone, per dosing recommendations listed below:
 a. For patients 12 years and older: Ceftriaxone 2 grams IV in 50 -100 ml of NS or D5W over at least 10 minutes
 b. For patients less than 12 years old: Ceftriaxone 75 mg/kg IV (max dose 2 grams) in 50 -100 ml of NS or D5W over 10 minutes
 c. **NOTE:** ceftriaxone is CONTRAINDICATED in patients with history of allergy or anaphylaxis to penicillins or cephalosporins
10. Notify receiving hospital if patients received antibiotics.
 a. If patient **DID** receive antibiotics, notify hospital **WHEN** antibiotics were initiated
 b. If patient **DID NOT** receive antibiotics, notify hospital **WHY** antibiotics were withheld

Pearls for Open Fractures
- Examples of Penicillins include: penicillin, amoxicillin, augmentin, piperacillin (Zosyn), ampicillin (Unasyn)
- Examples of Cephalosporins include: cefazolin (Ancef), Cefdinir, cefuroxime (Ceftin or Zinacef), cefadroxil (Duricef), cephalaxin (Keflex). cefepime (Maxipime), ceftriaxone (Rocephin)
- Contact OLMC for questions regarding the patient's allergies
Poisoning/Overdose #1

Call Poison Control (1-800-222-1222) to receive medical guidance on patient care and to ensure that information regarding the toxin can be sent to the receiving ED prior to patient arrival.

EMT
1. Administer O₂ as appropriate
2. Manage airway as needed, see Blue 3
3. Request ALS
4. If respirations less than 12/minute AND narcotic overdose suspected
 NEVER GIVE NALOXONE TO A NEONATE
 a. ADULT and PEDIATRIC patients: naloxone 0.5 mg IN. Titrate to effect by providing 0.5 mg in one nostril:
 i. The desired outcome is effective oxygenation and ventilation with one important parameter being a respiratory rate of greater than 12 breaths/minute. Continue to manage the airway while assessing for effect.
 ii. If the patient remains apneic or continues to have ineffective oxygenation and ventilation 2-5 minutes after provision of the first dose of naloxone, provide a second dose of naloxone 0.5 mg in the other nostril.
 iii. Repeat 0.5 mg of naloxone IN every 2-5 minutes in alternating nostrils.
 b. EMRs and EMTs may use IN or IM naloxone via auto-injector at a dose available per commercially packaged product. Repeat dose (in opposite nostril if using IN route) if no response in 2-5 minutes. Lower dose strategies that allow titration of effect are preferred, whenever possible.
 c. NOTE: Patients abruptly and fully awakened from narcotic overdose may become combative or suffer acute narcotic withdrawal symptoms. Some drugs are longer acting opioids (or formulated to be so), such as buprenorphine, methadone, and the fentanyl patch, and may require many repeated doses of naloxone which could exceed a total of 4 mg.

5. For suspected cyanide or CO poisoning, see Cyanide/CO Exposure protocol Yellow 8
6. For hypoglycemia, see Diabetic/Hypoglycemic Emergencies protocol, Gold 6
7. For seizures, see Seizure protocol, Gold 8

ADVANCED EMT/PARAMEDIC
8. Establish IV access
9. Alternative naloxone route of administration
 a. Naloxone 0.1 - 2 mg IV/IO/IM; titrate to improved respiratory drive
 b. Pediatric patients: 0.1 mg/kg naloxone if less than 20 kg; 0.1-2 mg IV/IO/IM if greater than 20 kg or 5 years or older; titrate to improved respiratory drive
10. Cardiac Monitor
11. If patient is hypotensive, administer a fluid bolus
12. Obtain ECG, if so trained

PARAMEDIC
13. Ingested Poison: the role of charcoal in EMS is of limited value and should be provided ONLY under OLMC guidance. Contact OLMC to consider:
 a. Activated charcoal with OUT sorbitol 1 gram/kg PO
 b. Do NOT provide charcoal under the following circumstances:
 i. Ingested caustic substance
 ii. Ingested hydrocarbons
 iii. Seizures
 iv. Patient is unable to swallow/protect airway
(continued)
Paramedic (continued from previous page.)

14. For absorbed toxins resulting in pain, see Universal Pain Management protocol, Green 21 or analgesic for eye pain, see Ophthalmology protocol, Green 28

15. Suggested Treatments

a. Symptomatic bradycardia (hypotension, altered mental status, syncope/pre-syncope, chest pain, dyspnea, acute heart failure, signs of shock, or cyanosis/pallor) due to beta- or calcium channel blocker overdose:
 i. **Adult**: Calcium gluconate 60 mg/kg IV over 5-10 minutes (MAX 3 gm/dose), may repeat every 10-20 min for 3-4 additional doses.
 ii. **Pediatric**: Calcium gluconate 60 mg/kg IV over 30-60 minutes (MAX 3 gm/dose), may repeat every 10-20 min for 3-4 additional doses
 iii. Refer to Bradycardia Protocol, Red 20

b. Dystonic reaction:
 i. **Adult**: Diphenhydramine 25-50 mg IV/IM
 ii. **Pediatric**: Diphenhydramine 1-2 mg/kg IV/IM (MAX dose 50 mg)

c. Organophosphates, see Nerve Agent/Organophosphate/Carbamate Poisoning protocol, Yellow 7

d. Severe agitation, see Agitation/Excited Delirium protocol, Orange 4

e. Tricyclic Antidepressant/sodium-channel blocker overdose with either hemodynamic instability or widened QRS complex on initial 12-lead ECG defined as:
 i. Tachycardia (Adult: heart rate greater than 100 bpm; Pediatric as defined by age, see Pink 8) AND,
 a. QRS greater than 120 msec, OR
 b. An increase in QRS of 10 msec over serial ECGs (repeat every 10 min, if feasible)
 ii. Repeat ECG after treatment and every 10 minutes, if feasible, if QRS is less than 120 msec, and every 5 minutes, if feasible, if QRS is greater than 120 msec. Treat as follows:
 1. Sodium bicarbonate:
 a. **Adult**: 1 mEq/kg IV push over 1 minute. May repeat as needed with goal of QRS complex less than 120 msec.
 b. **Pediatric**: 1 mEq/kg IV push over 1 minute. May repeat as needed with goal of QRS complex less than 120 msec. (8.4% sodium bicarbonate must be diluted 1:1 with D5W to 4.2% [0.5 mEq/mL] prior to administration in patients less than 2 years of age.)
 2. Fluid bolus for hypotension

3. Contact OLMC to discuss additional fluid bolus versus initiating NOREPInephrine IV infusion. NOREPInephrine infusions must be administered via a Maine EMS approved medication pump.
 a. **Preparation** – mix NOREPInephrine 8 mg in 250 mL NS [32 mcg/mL]
 b. **Dosing** - Starting dose of NOREPInephrine is 0.03 mcg/kg/min. Titrate by 0.03 mcg/kg/min every 3-5 minutes. Usual dose is 0.03-0.25 mcg/kg/min. Usual MAX dose is 0.6 mcg/kg/min. Absolute MAX dose is 3 mcg/kg/min.
 c. **Titrate** to maintain SBP greater than 90 mmHg and/or MAP > 65 mmHg

continued
PEA R LS

- If possible, bring container/bottles, SDS sheets, placard info, shipping manifest, and/or contents and note the following:
 ◦ Route, time, quantity and substance(s)
 ◦ Reason, if known: intentional or accidental
 ◦ What treatments were provided prior to your arrival
- Pulse oximetry may NOT be accurate for toxic inhalation patients

For management of opioid overdose:
- Recall, the patient suffering from opiate overdose requires immediate oxygenation and ventilation. This should be the priority for these patients and is accomplished by airway management. Naloxone may be administered, but only after initiation of airway management practices. Do not give naloxone to a patient who is in cardiac arrest. This practice is not helpful and may be harmful as it distracts from the best performance of tasks that are necessary for the successful resuscitation of cardiac arrest. Refer to the 2019 Naloxone White Paper for more information.
- Naloxone should be titrated to adequate respiratory drive and airway protection rather than a completely awakened state.
- Patients receiving naloxone should be transported to the hospital. Contact OLMC for patients refusing transport.

For tricyclic antidepressant/sodium-channel blocker toxicity:
- The most common drugs requiring boluses of sodium bicarbonate are as follows:
 ◦ For adults, TCAs
 ◦ For pediatrics, antihistamines, though it is not common to get to the point of administering sodium bicarbonate for pediatric patients.
- There are several classes of medications that can cause sodium channel blockade when taken in an overdose, causing QRS prolongation and requiring sodium bicarbonate administration. The classes of these medications (with some examples) are listed below:
 ◦ Antidepressants (amitriptyline, nortriptyline, imipramine, doxepin)
 ◦ Antiarrhythmics (quinine/quinidine, propafenone, flecainide)
 ◦ Anesthetics (cocaine, lidocaine, bupivacaine)
 ◦ Muscle Relaxants (cyclobenzaprine)
 ◦ Antihistamines (diphenhydramine)
- Gather as much detailed information about the drug as possible and monitor the QRS as per protocol
- Sodium bicarbonate increases extracellular sodium, thereby overcoming sodium channel blockade of the tricyclic antidepressant and other sodium-channel blocking medications. This effect is transient and may be difficult to notice at first. Some patients may need repeated doses of sodium bicarbonate to fully correct QRS duration (under 120 msec). If no change to the QRS occurs, please repeat immediately. While some patients may require additional doses of sodium bicarbonate, this should not delay transport.
- Consider the importance of alerting OLMC.

PEARLS
• If possible, bring container/bottles, SDS sheets, placard info, shipping manifest, and/or contents and note the following:
 ◦ Route, time, quantity and substance(s)
 ◦ Reason, if known: intentional or accidental
 ◦ What treatments were provided prior to your arrival
• Pulse oximetry may NOT be accurate for toxic inhalation patients

4. Refer to Seizure protocol, Gold 8, for TCA-induced seizure activity
5. Consider magnesium sulfate for arrhythmia that does not respond to sodium bicarbonate.
 a. **Adult**: 2 grams of magnesium sulfate IV/IO over 10 minutes
 b. **Pediatric**: 25-50 mg/kg IV/IO (diluted to 20% or 2 gm/10mL) infusion over 10 minutes (MAX dose 2 grams).
6. Contact OLMC if further direction needed for conditions such as arrhythmia
Naloxone Dispensation

Amendments to Maine Law in 2021 allow EMS clinicians in the state of Maine to distribute naloxone to patients who are treated for opioid overdose, but refuse transport to the hospital. This protocol establishes the conditions for naloxone distribution (i.e., Naloxone "Leave Behind" Program).

For patients refusing transportation, please refer to the Transport protocol, Grey 20.

EMT/AEMT/Paramedic

If a patient treated for opioid overdose refuses transport to the hospital, and:

1. The patient has decision making capacity (defined by Maine EMS Transport Protocol, Grey 20, and

2. Responding EMS clinicians are trained to distribute naloxone, and

3. Maine EMS approved naloxone distribution kits are available, then:
 a. Distribute one (1) Maine EMS approved naloxone kit for future use to either the patient, for the patient, their family or friends to use in the case of suspected opioid overdose.
 b. Perform point of care training for use of the kit as described in Maine EMS naloxone distribution training.
 c. In addition to the naloxone kit and point of care training, please also provide a list of local substance use disorder resources.

PEARLS

- Maine has disproportionately been affected by the national opioid epidemic. In an effort to address opioid overdoses, Maine EMS has worked with the legislation to create pathways for distribution of naloxone in the instance a patient is treated for opioid overdose in the pre-hospital environment AND refuses transport.

- Please recognize, this protocol is specific to opiate use disorder AND the patient MUST meet the criteria for decision making capacity as described in the Maine EMS Transport Protocol, Grey 20. For patients WITHOUT decision making capacity, please follow the steps in Grey 20.

- The 130th Maine Legislature passed LD 1333, "An Act Concerning the Controlled Substances Prescription Monitoring Program and the Dispensing of Naloxone Hydrochloride by Emergency Medical Services Providers" which authorizes the practice of EMS clinicians leaving a medication with a non-transported patient for future use. Please recognize, this practice is authorized for naloxone ONLY.
Alcohol Intoxication/Severe Alcohol Withdrawal #1

EMT
1. Assess ABCs
2. Obtain vital signs
4. If trained, perform finger stick blood glucose.
 a. If blood glucose < 60 or clinical condition suggests hypoglycemia, request ALS and refer to Diabetic/Hypoglycemic protocol, Gold 6
5. In Acute Alcohol Intoxication - If the patient has evidence of incapacitating intoxication or acute illness/injury, request ALS.
6. With any concern for withdrawal - Question the patient about past withdrawal symptoms. Any patient with a history of hospitalization for alcohol withdrawal, withdrawal seizures or delirium tremens (DTs) should be transported to the Emergency Department.
7. In either Acute Alcohol Intoxication or concern for Alcohol Withdrawal, ask the patient about the time and amount of their most recent alcohol ingestion, frequency and amount of routine alcohol use, and any co-ingestion such as ethylene glycol (found in antifreeze), ethyl alcohol (ethanol, grain alcohol), methanol (wood alcohol) or other substances.
8. If the patient refuses transport, refer to the Transport Protocol, Grey 20

ADVANCED EMT
9. In either Acute Alcohol Intoxication or concern for Alcohol Withdrawal - for patients requiring transport, consider IV access and fluid bolus if clinically indicated

PARAMEDIC
10. For Severe Alcohol Withdrawal symptoms, contact OLMC for the option of midazolam 2.5 mg IV or 5 mg IM. May repeat x 1 with MAX cumulative dose of 5 mg IV or 10 mg IM
 a. Severe Alcohol Withdrawal symptoms include hypertension/tachycardia AND two or more of the following:
 i. Severe tremors, even with arms not extended - tested by "arms extended and fingers spread apart"
 ii. Drenching sweats
 iii. Continuous tactile disturbances - ask "Have you had any itching, pins and needles sensation, any burning, any numbness, or do you feel bugs crawling on or under your skin?"
 iv. Continuous auditory disturbances - ask "Are you more aware of sounds around you? Are they harsh? Do they frighten you? Are you hearing anything that is disturbing to you? Are you hearing things you know are not there?"
 v. Continuous visual disturbances - ask "Does the light appear to be too bright? Is its color different? Does it hurt your eyes? Are you seeing anything that is disturbing to you? Are you seeing things you know are not there?"

11. If seizure, refer to Seizure protocol, Gold 8

(Continued)
PEARLS

Intoxicated patients with any of the following MUST be transported to the Emergency Department:

1) **Incapacitating Intoxication**: inability to maintain airway; inability to stand from seated position and ambulate with minimal assistance; at immediate risk of environmental exposure or trauma due to unsafe location

2) **Acute Illness/Injury**: abnormal vital signs, physical complaint that may indicate underlying illness/trauma, seizure, hypoglycemia, trauma, head injury

Delirium tremens (DTs) is a severe form of alcohol withdrawal that can be life-threatening if not treated properly. DTs usually begin 48 hours after last alcohol consumption and is most severe 4-5 days after last alcohol consumption. Typical duration of DTs is 2-3 days but can last up to 8 days. Untreated DTs has a mortality rate of 37%. In contrast, hospitalized patients with DTs have a mortality rate of 1-4%.
PEARLS:
WARNING: CONTACT WITH THESE TOXINS CAN BE FATAL TO RESCUERS. CONSIDER SCENE SAFETY AND DECONTAMINATION
- Assess for SLUDGEM symptoms (Salivation, Lacrimation, Urination, Defecation, GI Distress, Emesis, Muscle twitching/Miosis [constricted pupils]) and the Killer-Bs (Bradycardia, Bronchorrhea, Bronchospasm)
- If you suspect a bioterrorism/WMD threat, see Grey 27
- Transport patients with all windows of ambulance open
- Decontaminate entire ambulance after patient transport
- All responders who contacted the patient require decontamination

In unstable patients with known nerve agent/organophosphate/carbamate poisoning:

EMT
1. Remove patient from contaminated area and consider decontamination as needed based on scene/call circumstances
2. O₂ as appropriate
3. Manage airway as appropriate, see Blue 3
 Ventilatory support may be critical in these poisonings
4. Vigorous suctioning may be necessary
5. Request ALS
6. Mark 1 kit (noted as auto-injector in table below)

ADVANCED EMT
7. IV en route
8. Cardiac monitor
9. In all cases, continue to monitor closely for worsening symptoms

PARA MEDIC
10. If seizures are present, refer to Seizure protocol, Gold 8

11. Contact OLMC for:
 a. Doses of medications beyond those listed in the chart below
 b. Administration of other selected antidotes

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Dyspnea, twitching, nausea, vomiting, sweating, confusion, or pinpoint pupils</th>
<th>Apnea, seizure, unconsciousness, or flaccid paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric < 1 year old</td>
<td>EMR/EMT/AEMT/Paramedic - 1 pediatric atropine auto-injector IM or Paramedic - atropine 0.2 mg IV/IO*, AND midazolam 0.2 mg/kg IM (MAX dose 10 mg) or 0.1 mg/kg IV/IO (MAX dose 5 mg) **</td>
<td></td>
</tr>
<tr>
<td>Pediatric 1 year or older</td>
<td>EMR/EMT/AEMT/Paramedic - 1 adult atropine auto-injector IM or Paramedic - atropine 2 mg IV/IO*, AND midazolam 0.2 mg/kg IM (MAX dose 10 mg) or 0.1 mg/kg IV/IO (MAX dose 5 mg) **</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>EMR/EMT/AEMT/Paramedic - 1 atropine auto-injector IM or Paramedic - atropine 2 mg IV/IO* AND midazolam 10 mg IM or 5 mg IV/IO **</td>
<td>EMR/EMT/AEMT/Paramedic - 3 atropine auto-injectors IM or Paramedic - atropine 5 mg IV/IO* AND midazolam 10 mg IM or 5 mg IV/IO **</td>
</tr>
</tbody>
</table>

* Monitor and repeat dose every 5 minutes if patient remains symptomatic; if atropine is drawn up from a vial to administer (Paramedic), the concentration may require more than one injection site to achieve the full dose without exceeding the recommended 3-5 mL max IM volume in adults and 0.5-2 mL max IM volume in peds.

** Repeat midazolam every 5 minutes until total of 3 doses have been provided
Cyanide/CO Exposure #1

Don PPE if necessary, assess patient after evacuation
Remove patient from source of smoke/inhalation

Assessment
Vital Signs
Evidence of Major Trauma
Major Burns, Inhalation Injury

Proceed to Appropriate Trauma or Airway Management protocol

Severity of Exposure Definitions (CO, CN, or Combined)

Mild Exposure
Transient neuro changes
GCS 14 or 15
No cardiovascular symptoms

Moderate Exposure
Ongoing neuro changes
Confusion
GCS 8-13 +/- Chest Pain/SOB

Severe Exposure
Severe confusion/Coma
GCS < 8
+Hypotension (<90 mmHg)
Apnea/Cardiac Arrest

Do Step 1

Do Step 1 and 2

Do Step 1, 2, and 3

Paramedic: If antidote considered, contact OLMC

Treatments

Step 1
EMT/AEMT/Paramedic
1. Administer high flow O₂
2. Pulse Ox may be inaccurate in exposure to CO/CN or methemoglobinemia

AEMT/P
3. Monitor rhythm

Step 2
EMT/AEMT/Paramedic
1. Manage Airway as appropriate, see Blue 3
2. 12-lead ECG, if trained AEMT/Paramedic
3. Collect rainbow blood sample tubes per local protocol
4. If hypotensive, administer IV bolus, may repeat x 1

Step 3
Paramedic
In case of CN toxicity, either alone or in combination with CO exposure:
1. Adult: Hydroxocobalamin (Cyanokit) - 5 g IV. May repeat x 1 for partial response
2. Peds: Hydroxocobalamin (Cyanokit) - 70 mg/kg IV, 2.5 g for weight less than 30 kg

(Continued)
Known or Suspected Cyanide/CO Exposure #2

(Continued from previous page)

PEARLS

- Finger CO monitors may not accurately detect CO level and should not be relied upon to guide treatment or alter transport decision.

- There is no correlation between CO (carboxyhemoglobin) level and ETCO2 (waveform capnography).

- Carbon monoxide (CO) and Hydrogen cyanide (HCN) gases are chemical asphyxiants that can kill rapidly. Carbon monoxide is odorless. Only 40% are able to detect the almond smell of CN. Cyanide is generated by combustion of synthetic materials present in many structural fires.

- Appropriate PPE includes self-provided air/oxygen source (i.e. SCBA). Scene safety is the top priority. No patient decontamination is required for victims evacuated from CN gas exposure.

- It is rare for viable CO-exposed patients to have persistent unconsciousness requiring intubation.

- Sources of CN: Structural fire (HCN), industrial cyanide salts*, unripe cassava, apricot pits, laetrile, etc.

- If injuries incompatible with life, DO NOT GIVE ANTIDOTE.

*may persist on skin, however water decontamination may liberate HCN gas.
Radiation Injuries

EMT/AEMT
1. Ensure the scene is safe.
2. Don standard PPE capable of preventing skin exposure to liquids and solids (gown and gloves), mucous membrane exposure to liquids and particles (face mask and eye protection), and inhalational exposure to particles (N95 face mask or respirator).
3. Hazmat Trained Personnel to determine need for decontamination
4. For Mass Casualty Incidents (MCI), if vomiting occurs:
 a. Within 1 hour of exposure, survival is unlikely. If providing care to patient will compromise other patients, tag patient “Black”.
 b. Less than 4 hours after exposure, patient requires immediate decontamination and medical evaluation, tag patient “Red”.
 c. 4 hours after exposure, re-evaluation can be delayed 24-72 hours, tag patient “Yellow”.
5. Treat traumatic injuries per appropriate protocol (Green Section).
6. Use water-repellent dressings to cover wounds to prevent cross contamination.
7. Consider transport only after appropriate decontamination

PARAMEDIC
10. Treat seizures per Seizure protocol, Gold 8. *Consider a primary medical cause or exposure to possible chemical agents unless indicators for a large whole body radiation dose (> 20 Gy), such as rapid onset of vomiting, are present.

PEARLS
- In general, patients exposed or contaminated by radiation should be triaged and treated according to the severity of their conventional injuries.
- Patients contaminated with radioactive material (flecks embedded in clothing or skin), generally pose minimal exposure risk to medical personnel who use appropriate PPE.
- Irradiated patients pose no threat to medical clinicians.
- Time to nausea and vomiting is a reliable indicator of receiving a significant dose of ionizing radiation. The more rapid the onset of vomiting, the higher the whole-body dose of radiation.
- Tissue burns are a late finding (weeks following exposure) of ionizing radiation injury. If burns are present acutely, they are from a thermal or chemical mechanism.
- Seizures may suggest acute radiation syndrome if accompanied by early vomiting. If other clinical indicators do not suggest a whole-body dose of greater than 20 Gy, consider other causes of seizure.
Hypothermia #1

<table>
<thead>
<tr>
<th>Classification</th>
<th>Core Temp</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>>95°F / 35°C</td>
<td>Cold sensation/shivering</td>
</tr>
<tr>
<td>Mild</td>
<td>90 - 95°F 32 - 35°C</td>
<td>Loss of fine or gross motor skills inability to complete simple thoughts</td>
</tr>
<tr>
<td>Moderate</td>
<td>82 - 90°F 28 - 32°C</td>
<td><= 90°F/32°C: Shivering stops <=86°F/30°C: AMS</td>
</tr>
<tr>
<td>Severe</td>
<td><= 82°F <= 28°C</td>
<td>Rigidity, vital signs reduced/absent. Severe risk of V-fib with mechanical simulation (rough handling)</td>
</tr>
<tr>
<td></td>
<td><= 77°F <= 24°C</td>
<td>Spontaneous V-fib cardiac arrest</td>
</tr>
</tbody>
</table>

Bold indicates major thresholds between stages
Adapted from "State of Alaska Cold Injuries Guidelines" 2014

Treatment

SEVERE HYPOTHERMIA WITH SIGNS OF LIFE/NOT IN CARDIAC ARREST:

EMT
1. Prevent further heat loss by insulating from the ground and shielding from wind and water. Move to a warm environment, when possible. Gently remove wet clothing. Cover with warm blankets
2. Pack thorax with wrapped heat pack
3. Consider warmed AND humidified 100% O₂
4. High sugar oral fluids, if tolerated, and only in mild hypothermia
5. Handle gently, avoid rough movement and excess activity
6. Maintain supine position in moderate or severe hypothermia
7. Apply clean dressing to frostbitten extremities and between involved fingers and toes.

ADVANCED EMT/ PARAMEDIC
8. Consider one to two 500 mL (20 mL/kg for pediatrics) boluses of NS heated to 104 - 108°F (40 - 42°C)
9. Contact OLMC for additional boluses

(Continued)
Hypothermia #2

(Continued from previous page)

SEVERE HYPOTHERMIA WITHOUT SIGNS OF LIFE

Note: Assess for pulse and respirations for 1 minute

Note: Definitive treatment for severe hypothermia without signs of life is rewarming with cardiopulmonary bypass. Do not delay transport of these patients. Do not initiate CPR if it will delay transport.

Do not initiate resuscitation if the patient meets any of the criteria in Grey 1 Section II.A OR Rescuers are exhausted or in a dangerous situation. These patients are deceased.

EMT
1. Initiate CPR after 1 minute pulse/respiration assessment
2. Attach AED and follow prompts.
3. Rewarm using techniques as listed under Treatment: Not in Cardiac Arrest (above)
4. If no ROSC after 20 minutes of CPR/rewarming, consider termination of resuscitation. Contact OLMC, if possible

ADVANCED EMT/PARAMEDIC
5. Consider one to two 500 mL (20 mL/ kg for pediatrics) boluses of NS heated to 104 - 108° F (40 - 42° C)
6. Contact OLMC for additional boluses
7. Otherwise, treat as per normothermic cardiac arrest management for the patient's dysrhythmia, refer to Cardiac Arrest protocol, Red 8

PEARL

- Do not massage extremities in attempt to actively re-warm the patient; massaging the extremities will not significantly increase body temperature and it may worsen the damage caused by frostbite.
- Moderate-to-severe frostbite is defined as:
 ◦ Frostbite involving hands, feet, face, or genitals,
 ◦ Frostbite associated with cyanotic tissue, blisters (clear or hemorrhagic) or skin necrosis,
 ◦ Frostbite associated with loss of sensation or weakness in the involved area
- Follow your local trauma system transport destination protocols in cases of moderate-to-severe frostbite.
- Circum-rescue hemodynamic collapse can occur in these patients. The drop in catecholamines and mental relaxation that occurs just before, during, or after rescue may lead to life-threatening hypotension or arrhythmia (i.e. ventricular fibrillation).
HEAT EXHAUSTION — Volume depletion due to sweat loss

ASSESSMENT:
If core temperature is obtained, it will be variable but always below 105° F (40.6° C).
Clinical pattern is essentially that of compensated hypovolemic shock:
 • Weakness and vomiting
 • Skin condition/color is variable. Core-shell shunt to increase heat loss competes with shell-core shunt to protect volume. Skin is usually pale and moist with variable skin temperature
 • Sweating
 • Normal consciousness and CNS function

TREATMENT: Goal is to reduce sweating and to restore volume

EMT
1. Protect the patient from heat challenge. Stop exercise and put patient at rest in a cool, shady place
2. Use evaporation techniques and remove/loosen as much clothing as practical
3. Oral fluids can be effective if the patient is not vomiting. Use dilute (less than 5% sugar) fluids given in small sips. Appropriate fluids to use include the World Health Organization’s Oral Rehydration Solution OR a “homemade” solution using 1 teaspoon of salt and 8 teaspoons of sugar per 1 liter of water

ADVANCED EMT / PARAMEDIC
4. Establish IV
5. Perform fluid bolus
Hyperthermia - Heat Stroke

HEAT STROKE — A true medical emergency that requires radical field treatment, usually, but not always, associated with heat exhaustion. Heat stroke is characterized by multisystem organ injury and failure. CNS dysfunction characterized by alterations in mental status is a hallmark distinguishing between heat exhaustion and heat stroke.

ASSESSMENT:
If core temperature is obtained, it is 105° F (40.6° C) or greater. Abnormal consciousness and/or CNS function; seizures are common. Any acute change in consciousness/CNS function in the context of a significant heat challenge should be managed as heat stroke without delay. Skin condition/color and sweating are variable, depending on volume status. Note that red, dry skin is not a dependable sign of heat stroke.

TREATMENT:
Immediate radical cooling is the urgent priority, followed by volume replacement.

EMT
1. Cool the patient immediately by any means practical, such as:
 a. Initiate Radical Cooling when available (especially beneficial for exertional hyperthermia, i.e. athletes, laborers):
 i. Immense patient up to their neck in ice water tub, if available.
 ii. TACO Method (Tarp-Assisted Cooling with Oscillation), if available, with 4-5 people holding the patient in a tarp, add ice water at foot and up to the neck and continuously oscillate the tarp to avoid warming of water in contact with the patient.
 b. Also consider non-radical cooling which includes: ice packs applied to neck, axillae, groin, back; wet patient, apply cold wet sheets to patient, and air conditioning en route.
 c. Consider moistening the skin and fan vigorously. This method is effective only at low ambient humidity and a large electric fan is more beneficial than manual fanning.
2. Discontinue radical cooling if:
 a. Shivering begins
 b. Core temperature falls to or below 102° F (38.8° C).

ADVANCED EMT / PARAMEDIC
3. Establish IV
4. Cardiac Monitor
5. Perform fluid bolus

PEARL
If at a sporting or athletic event, it is important to discuss the cooling plan with other on-scene clinicians, i.e. sports medicine clinicians or athletic trainers prior to the start of the event to ensure that necessary equipment is available.
Drowning/Submersion Injuries

PEARLS for Drowning:

- Fresh and salt water drowning are treated the same in the field; treatment must be directed toward correcting severe hypoxia.

- Factors affecting survival include the patient's age, length of time submerged, general health of the victim, type and cleanliness of liquid medium and water temperature that may contribute to the effectiveness of the mammalian diving reflex (decreased respirations, decreased heart rate, and vasoconstriction, with maintenance of blood flow to the brain, heart and kidneys).

- Circum-rescue hemodynamic collapse can occur in these patients. The drop in catecholamines and mental relaxation that occurs just before, during, or after rescue may lead to life-threatening hypotension or arrhythmia (i.e. ventricular fibrillation).

- All drowning/near-drowning victims with suspected barotrauma/decompression sickness should be transported in the left lateral Trendelenburg position to prevent any emboli in the ventricles from migrating to the arterial system.

- Even patients that are conscious and appear well after a submersion event require hospital-level evaluation and observation as they may develop delayed symptoms.

EMT
1. If C-spine injury suspected, manage C-spine per Spine Management protocol, **Green 7**
2. Obtain specific history including time, temperature, associated injury, etc.
3. Begin resuscitation efforts while removing patient from the water (e.g. rescue breaths) - follow ABC (rather than CAB) flow of resuscitation.
4. Consider hypothermia, refer to Hypothermia protocol, **Yellow 11**
5. Remove wet clothes and warm the patient
6. Conscious patients with submersion injuries should be transported to the hospital for further evaluation
7. If water temperature is estimated to be less than 43° F and submerged
 a. Less than 90 minutes - initiate full resuscitation
 b. Greater than 90 minutes - consider not initiating resuscitation or termination of resuscitation
8. If water temperature is estimated to be greater than 43° F and submerged
 a. Less than 30 minutes - initiate full resuscitation
 b. Greater than 30 minutes - consider not initiating resuscitation or termination of resuscitation
9. Consider CPAP to supplement the patient’s own respiratory effort

ADVANCED EMT/PARAPEDIC
10. If needed, refer to Anxiolysis in CPAP protocol, **Blue 10**
11. If near-drowning incident involves scuba diver, suggesting barotrauma, contact OLMC and consider hyperbaric treatment facility
Brief Resolved Unexplained Event

PEARLS
Definition of Brief Resolved Unexplained Event (BRUE):
These are sudden, brief (less than 1 minute), now resolved (returned to baseline) episodes of at least one of the following in a child less than 1 years old:
1. Cyanosis or pallor
2. Absent, decreased, or irregular breathing
3. Marked change in tone (hyper- or hypotonia)
4. Altered level of responsiveness
NOTE: Most children who experience a BRUE have a normal physical exam, however, almost 50% will have an underlying condition requiring comprehensive medical care.

In many cases, details from the child’s home may be important to downstream health care clinicians. Please include details, such as the following, when providing report to the hospital:
1. Make note of the home environment: Medications, condition, caregiver's condition, possibility of toxic exposure, etc.
2. Are there any concerns for non-accidental trauma?

EMT/ADVANCED EMT /PARAMEDIC:
1. Obtain medical history
 a. Determine the severity, nature, and duration of the episode
 b. Was the patient awake or sleeping at the time of the episode?
 c. Include details of the resuscitation, if applicable
2. Keep the child warm and transport to the emergency department
3. Contact OLMC for assistance if the parent/guardian refuses medical care and/or transport
Pediatric Respiratory Distress with Inspiratory Stridor

Inspiratory stridor may be due to many causes in the pediatric population, including croup, foreign body aspiration, or epiglottitis.

Stridor refers to upper airway obstruction as in laryngotracheitis/croup and is often accompanied by hoarseness and/or a barking cough (seal-like cough).

As stridor worsens in severity, the following may also be observed: tachypnea, retractions, accessory muscle use, nasal flaring, fatigue from respiratory effort, and cyanosis.

EMT / ADVANCED EMT
1. Humidified O\textsubscript{2}, if available and as appropriate, with upright posture
2. If needed, assist ventilations with PPV using 100% O\textsubscript{2}
3. Request ALS, if available

PARAMEDIC
4. Dexamethasone 0.6 mg/kg PO/IV/IM/IO x 1 (MAX dose 10 mg)
5. For signs of moderate to severe croup, administer inhalation of nebulized solution of 1 mL 1mg/mL EPINEPHrine OR 0.5 mL racemic epinephrine mixed with 2 mL normal saline solution*. Signs of moderate/severe croup include stridor at rest AND one of the following: tachypnea, moderate intercostal retractions (including suprasternal retractions), agitation/restlessness/tired appearing, difficulty talking or feeding.

6. Contact OLMC for the second dose of nebulized EPINEPHrine if symptoms do not improve a consider alternate diagnosis such as aspiration of foreign body, bacterial tracheitis, epiglottitis.

* Nebulized EPINEPHrine/racemic EPINEPHrine may be contraindicated in children with a history of congenital heart disease.

PEARLS
A common challenge when working with the pediatric population is the administration of medication. If commercial products are unavailable, alternative measures are often undertaken, such as crushing and dissolving portions of a tablet, or extemporaneous compounding of oral products. In some cases, an extemporaneous liquid cannot be prepared easily from tablets or capsules and off-label oral use of an intravenous (IV) or intramuscular (IM) preparation is considered. An example of this is administering the injectable formulation of dexamethasone orally. This practice is followed in emergency departments around the country.

Please note that at this time, the only IV medication on the MEMS formulary that has been approved to be given orally is single-dose/one-time use dexamethasone.
PEARLS

Neonates and young infants have immature immune systems and are at high risk for serious bacterial infection despite appearing well. The rate of serious bacterial infection (SBI) is up to 20% in neonates. Often, fever may be the only sign of critical illness in these children. All febrile neonates and young infants should be transported to the emergency department for further evaluation.

Definitions:
- Neonates are children 0-28 days old
- Young infants are less than 90 days old.
- Fever is a temperature of greater than or equal to 38.0 °C or 100.4 °F measured by any method by either caregivers or EMS.
- Serious Bacterial Infections (SBI) in neonates and young infants may also present with hypothermia (temperature less than 35.0°C or 95.0 °F)

EMT/ADVANCED EMT/PARAMEDIC:

1. Obtain medical history
 a. What was the highest temperature? How was it recorded?
 b. Is the child still feeding normally? If not, are there signs of dehydration?
 c. Birth history: was the baby full-term or premature? Was the baby admitted to the NICU?
 d. Were there complications from the pregnancy/delivery?
2. Evaluate the neonate or young infant for the following:
 a. Appearance (tone, inter-activeness, consolability, gaze, cry)
 b. Work of breathing (abnormal noises or position, retractions, flaring)
 c. Circulation (pallor, mottling, cyanosis)
 d. Evidence of dehydration
3. Evaluate for shock due to severe sepsis. If present, treat per Medical Shock protocol, **Gold 14** and notify receiving hospital.
4. Transport to the emergency department for further evaluation.
5. Contact OLMC for assistance if the caregiver/guardian refuses medical care and/or transport
EMT/ADVANCED EMT/PARAMEDIC

1. Evaluate for crowning/imminent delivery
2. If crowning/imminent delivery, encourage mother to relax, breathe slowly, and let baby deliver
3. If hypotensive, roll patient onto left or right hip
4. If the presenting part is the cord, apply pressure to the baby with a sterile, gloved hand to keep pressure off the cord until cord pulsations are felt. Raise mother's hips onto pillows. Keep cord warm and moist. Do not clamp or cut cord
5. Request ALS, if available, and DO NOT DELAY TRANSPORT
6. If baby's head is delivering:
 a. Do not hurry or slow the birth
 b. Check to see if cord is wrapped around neck. If so, attempt to slip the cord over the baby's head, then repeat in case of double nuchal cord. Do not clamp and cut the cord unless it appears to obstruct the birth
 c. Immediately place baby skin-to-skin with the mother, unless resuscitation is required. Dry and stimulate the baby, examine and keep warm, next to mother's skin, covering mother and baby with warm blankets or aluminum foil blankets (i.e. "space blankets"). As soon as possible, enable child to nurse at mother's breast. In a stable newborn, remain on scene, as conditions permit for a minimum of 15 minutes to allow for skin-to-skin contact.
 d. Assess APGAR SCORE at 1 and 5 minutes, refer to APGAR Score, Pink 6
 e. Do not externally massage the uterus en route until placenta has delivered
 f. Do not forcibly remove placenta
 g. The cord may be left intact, or it may be double clamped and cut only when:
 1. the baby is breathing and all cord pulsations have stopped (usually within 3 to 5 minutes), or
 2. the baby must be moved to allow for advanced newborn resuscitation, or
 3. Once the placenta has delivered.
 h. If placenta is delivered, wrap and package with cord intact
7. If delivery has occurred prior to EMS arrival, start at #5b above.
8. During transport, the baby should be placed in an appropriate child passenger restraint system with the head supported. Maintain warmth during transport. Wrap the baby in warm blankets or aluminum foil blankets (i.e. "space blankets") and a warming hat to minimize heat loss. Consider using a Maine EMS approved infant warming pad during transport.
9. Monitor the baby's airway during transport. Hypothermia in the newborn may cause decreased LOC, hypoglycemia, bradycardia and hypotension.
9. Most deliveries proceed without complications – If complications of delivery occur, the following steps are recommended:

 a. **Shoulder dystocia** – if delivery fails to progress after head delivers, quickly attempt the following:
 i. Hyperflex mother’s hips to severe supine knee-chest position
 ii. Apply firm suprapubic pressure to attempt to dislodge shoulder
 iii. Apply high-flow oxygen to mother
 iv. Transport as soon as possible
 v. Contact closest appropriate receiving facility

 b. **Prolapsed umbilical cord**
 i. Placed gloved hand into vagina and gently lift head/body off of cord
 1. Assess for pulsations in cord
 2. Maintain until relieved by hospital staff.
 ii. Consider placing mother in prone knee-chest position or extreme Trendelenburg
 iii. Apply high-flow oxygen to mother
 iv. Transport as soon as possible
 v. Contact closest appropriate receiving facility
 c. **Breech birth**
 i. Place mother supine, allow the buttocks and trunk to deliver spontaneously, then support the body while the head is delivered
 ii. If head fails to deliver, place gloved hand into vagina with fingers between infant’s face and uterine wall to create an open airway
 iii. Apply high-flow oxygen to mother
 iv. The presentation of an arm or leg through the vagina is an indication for immediate transport to hospital
 v. Assess for presence of prolapsed cord and treat as above
 vi. Transport as soon as possible
 vii. Contact closest appropriate receiving facility
 d. **Excessive bleeding** during active labor may occur with placenta previa
 i. Obtain history from patient
 ii. Placenta previa may prevent delivery of infant vaginally
 iii. C-Section needed – transport urgently
 iv. Contact closest appropriate receiving facility
 e. **Maternal cardiac arrest**
 i. Apply manual pressure to displace uterus from right to left
 ii. Treat per **Red 8**, Cardiac Arrest - defibrillation and medications should be given for same indications and doses as if non-pregnant patient
 iii. Contact OLMC to discuss rapid transport if infant is estimated to be over 24 weeks gestation
 1. Perimortem Cesarean section at receiving facility is most successful if done within 5 minutes of maternal cardiac arrest

10. **If any of the above conditions are present, the patient is best cared for at a hospital with Obstetric (OB) services.** If the patient condition permits, transport to the nearest hospital with OB capabilities if total transport time is less than 45 minutes, otherwise go to the closest ED. For questions, contact OLMC.
APGAR Score

Assess the baby at 1 minute and again at 5 minutes

DO NOT DELAY RESUSCITATION to obtain APGAR Score

A score of less than 7 suggests need for resuscitation with suction, ventilation, and ALS back up

<table>
<thead>
<tr>
<th></th>
<th>Appearance</th>
<th>Pulse</th>
<th>Grimace*</th>
<th>Activity**</th>
<th>Respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blue or Pale</td>
<td>Absent</td>
<td>None</td>
<td>Flaccid</td>
<td>Absent</td>
</tr>
<tr>
<td>P</td>
<td>Body Pink/Hands Blue</td>
<td>less than 100</td>
<td>Grimace</td>
<td>Some</td>
<td>Weak</td>
</tr>
<tr>
<td>G</td>
<td>Pink</td>
<td>greater than 100</td>
<td>Cough</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

* Tested by a suction catheter or bulb syringe tip gently placed in the nose or mouth
** Amount of spontaneous flexion of extremities
Neonatal Resuscitation

Term Gestation? Breathing or Crying? Good Muscle Tone?

NO

Provide Warmth Open Airway Dry, Stimulate

NO

HR Below 100? Gasping or Apnea?

YES

PPV With Room Air (No Oxygen). Advanced airway as needed.

NO

HR Below 100?

YES

Ensure adequate ventilation Add 100% Oxygen

NO

HR Below 60?

YES

AEMT/Paramedic BIAD - if available, or Paramedic - Intubation - if available

NO

HR Below 60?

YES

Chest Compressions Coordinate with PPV

NO

EPINEPHrine 1mg/10ml 0.01 mg/kg every 3-5 minutes until HR > 60

YES

Consider:
1) Hypovolemia
2) Pneumothorax

YES

Routine Care Provide Warmth Open Airway Dry Ongoing Evaluation

NO

Labored Breathing or Persistent Cyanosis?

YES

Clear Airway. Supplemental O2 as Needed.

NO

Post-Resuscitation Care

Pearls:
1) Remember to obtain APGAR scores at 1 and 5 minutes on baby, see Pink 6
2) NEVER GIVE NALOXONE TO A NEONATE
3) In neonates, ventilation and oxygenation may increase heart rate in properly placed advanced airways sooner than chest compressions.
Normal Pediatric Vital Signs

<table>
<thead>
<tr>
<th>Age</th>
<th>Approximate Weight (kg)</th>
<th>Pulse/Min</th>
<th>Resp/Min</th>
<th>Minimum Systolic BP</th>
<th>Glucose (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>3</td>
<td>100-160</td>
<td>30-60</td>
<td>60</td>
<td>45-120</td>
</tr>
<tr>
<td>6 months</td>
<td>7</td>
<td>100-160</td>
<td>30-60</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>10</td>
<td>100-140</td>
<td>24-40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2 years</td>
<td>12</td>
<td>80-130</td>
<td>24-40</td>
<td>70</td>
<td>100-180</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>80-130</td>
<td>24-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>80-120</td>
<td>22-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>80-120</td>
<td>22-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>20</td>
<td>70-110</td>
<td>18-30</td>
<td></td>
<td>80-140</td>
</tr>
<tr>
<td>8-9</td>
<td>25</td>
<td>70-110</td>
<td>18-30</td>
<td></td>
<td>80-140</td>
</tr>
<tr>
<td>10-11</td>
<td>35</td>
<td>60-100</td>
<td>16-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>40</td>
<td>60-100</td>
<td>16-24</td>
<td></td>
<td>70-120</td>
</tr>
<tr>
<td>14</td>
<td>50</td>
<td>60-100</td>
<td>16-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>55+</td>
<td>60-100</td>
<td>14-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Estimated weight in kilograms: [2 x (age in years)] + 8
* Typical Systolic BP in children 1-10 years of age: 90 + (age in years x 2)
* Lower Limits of Systolic BP for a child age 3-15 years: 70 + (age in years x 2)
Modified GCS for Infants and Children

<table>
<thead>
<tr>
<th>Child</th>
<th>Infant</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYE OPENING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous</td>
<td>Spontaneous</td>
<td>4</td>
</tr>
<tr>
<td>To speech</td>
<td>To speech</td>
<td>3</td>
</tr>
<tr>
<td>To pain only</td>
<td>To pain only</td>
<td>2</td>
</tr>
<tr>
<td>No response</td>
<td>No response</td>
<td>1</td>
</tr>
<tr>
<td>BEST VERBAL RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriented/Appropriate</td>
<td>Coos and babbles</td>
<td>5</td>
</tr>
<tr>
<td>Confused</td>
<td>Irritable, cries</td>
<td>4</td>
</tr>
<tr>
<td>Inappropriate words</td>
<td>Cries to pain</td>
<td>3</td>
</tr>
<tr>
<td>Incomprehensible sounds</td>
<td>Moans to pain</td>
<td>2</td>
</tr>
<tr>
<td>No response</td>
<td>No response</td>
<td>1</td>
</tr>
<tr>
<td>BEST MOTOR RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obey commands</td>
<td>Moves spontaneously/ purposefully</td>
<td>6</td>
</tr>
<tr>
<td>Localizes painful stimuli</td>
<td>Withdraws to touch</td>
<td>5</td>
</tr>
<tr>
<td>Withdraws in response to pain</td>
<td>Withdraws in response to pain</td>
<td>4</td>
</tr>
<tr>
<td>Flexion in response to pain</td>
<td>Abnormal flexion in response to pain</td>
<td>3</td>
</tr>
<tr>
<td>Extension in response to pain</td>
<td>Abnormal extension in response to pain</td>
<td>2</td>
</tr>
<tr>
<td>No response</td>
<td>No response</td>
<td>1</td>
</tr>
</tbody>
</table>
Pediatric Specific Equipment Sizes

<table>
<thead>
<tr>
<th>Equipment</th>
<th>GREY 3-5 kg</th>
<th>PINK Small Infant 6-7 kg</th>
<th>RED Infant 8-9 kg</th>
<th>PURPLE Toddler 10-11 kg</th>
<th>YELLOW Small Child 12-14 kg</th>
<th>WHITE Child 15-18 kg</th>
<th>BLUE Child 19-23 kg</th>
<th>ORANGE Large Child 24-29 kg</th>
<th>GREEN Adult 30-36 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVM</td>
<td>Infant or child</td>
<td>Infant or child</td>
<td>Infant or child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Adult</td>
</tr>
<tr>
<td>Oral Airway (mm)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Laryngoscope Blade (size)</td>
<td>1 straight</td>
<td>1 straight</td>
<td>1 straight</td>
<td>1 straight</td>
<td>2 straight</td>
<td>2 straight</td>
<td>2 straight or curved</td>
<td>3 straight or curved</td>
<td></td>
</tr>
<tr>
<td>ET Tube</td>
<td>3.0 cuffed</td>
<td>3.0 cuffed</td>
<td>3.0 cuffed</td>
<td>3.5 cuffed</td>
<td>4.0 cuffed</td>
<td>4.5 cuffed</td>
<td>5.0 cuffed</td>
<td>6.0 cuffed</td>
<td>6.5 cuffed</td>
</tr>
<tr>
<td>ET Tube Insertion length (cm)</td>
<td>3 kg 9-9.5</td>
<td>4 kg 9.5-10</td>
<td>5 kg 10-10.5</td>
<td>10.5-11</td>
<td>10.5-11</td>
<td>11-12</td>
<td>13.5</td>
<td>14-15</td>
<td>16.5</td>
</tr>
<tr>
<td>Stylet</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Pedi</td>
<td>Adult</td>
<td>Bougie</td>
</tr>
<tr>
<td>Suction Catheter (F)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>BP Cuff</td>
<td>Neonate</td>
<td>Infant or child</td>
<td>Infant or child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Small adult</td>
</tr>
<tr>
<td>IO (Ga)</td>
<td>18/15</td>
<td>18/15</td>
<td>18/15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NG Tube (F)</td>
<td>5-8</td>
<td>5-8</td>
<td>5-8</td>
<td>8-10</td>
<td>10</td>
<td>10</td>
<td>12-14</td>
<td>14-18</td>
<td>16-18</td>
</tr>
<tr>
<td>LMA</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>KING</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

For ET size, pinky finger diameter in a child affords an acceptable approximate of ET tube outer diameter. The formula for tube size is as follows: "Age (in years)/4 + 3.5 (cuffed)" and the length-based tape may be used for internal diameter determination. Using a tube one size larger or smaller than this guideline is also acceptable.
Pediatric Transportation, #1

PEARLS
These guidelines apply to transporting pediatric patients who are of an age/weight that require a child safety seat. Pediatric patients that don't require a child safety seat should be transported following adult guidelines.

Maine Statute 29-A M.R.S.§2081(2) & (3) requires all children weighing less than 80 pounds, less than 57 inches in height and less than 8 years old to be properly restrained in a child safety seat when riding in a vehicle. Children between 40 and 80 pounds AND less than 8 years of age must be properly secured in a child restraint system in accordance with the child restraint system manufacturer's recommendations. An ill or injured child must be restrained in a manner that minimizes injury in an ambulance crash. The best location for transporting a pediatric patient is secured directly to the ambulance cot. Never allow anyone to hold an infant or child during transport.

TYPES OF RESTRAINTS:
1. Convertible (traditional) car seat with two belt paths (front and back) with four points for belt attachment to the cot is considered best practice for pediatric patients who can tolerate a semi-upright position.
 a. Position safety seat on cot facing foot-end with backrest elevated to meet back of child safety seat.
 b. Secure safety seat with 2 pairs of belts at both forward and rear points of seat.
 c. Place shoulder straps of the harness through slots just below child's shoulders and fasten snugly to child.
 d. Follow manufacturer's guidelines regarding child's weight.

 Note: Non-convertible safety seats cannot be secured safely to cot. If child’s personal safety seat is not a convertible seat, it cannot be used on the cot.

2. Stretcher harness device with 5-point harness (examples: Ferno Pedi-Mate, SafeGuard Transport, ACR)
 a. Attach securely to cot utilizing upper back strap behind cot and lower straps around cot's frame.
 b. 5-point harness must rest snugly against child. Secure belt at child's shoulder level so no gaps exists above shoulders.
 c. Adjust head portion of cot according to manufacturer's recommendation.
 d. Follow manufacturer guidelines for weight ratings.

Examples	Weight Range
 Ferno Pedi-Mate | 10-40 pounds
 Ferno Pedi-Mate Plus | 10-100 pounds
 Quantum ACR4 | 4-99 pounds

3. Car bed with both a front and rear belt path (example: Dream Ride Infant Car Bed)
 a. For infants who cannot tolerate a semi-upright position or who must lie flat.
 b. Position car bed so infant lies perpendicular to cot, keeping infant's head toward center of patient compartment.
 c. Fully raise backrest and anchor car bed to cot with 2 belts, utilizing the 4 attachment sites supplied with car bed.
 d. Only appropriate for infants from 5 – 20 lbs.
4. Isolette/Incubator must be secured to ambulance according to manufacturer's guidelines.
 a. Secure infant using manufacturer's restraint. (Five-point harness restraint is preferred.)
 b. Blankets or towels may be used for additional stabilization

NON-PATIENT TRANSPORT
Best practice is to transport well children in a vehicle other than the ambulance, whenever possible, for safety.

If no other vehicle is available and circumstances dictate that the ambulance must transport a well child, he/she may be transported in the following locations:
1. Captain's chair in patient compartment using a size appropriate integrated seat or a convertible safety seat.
2. Passenger seat of the driver's compartment if child is large enough (according to manufacturer's guidelines) to ride forward-facing in a child safety seat or booster seat. Airbag should be turned off. If the air bag can be deactivated, an infant, restrained in a rear-facing infant seat, may be placed in the passenger seat of the driver's compartment.

USE OF PATIENT'S CHILD SAFETY SEAT AFTER INVOLVEMENT IN MOTOR VEHICLE CRASH
The patient's safety seat may be used to transport child to the hospital after involvement in a minor crash if ALL of the following apply:
1. It is a convertible seat with both front and rear belt paths.
2. Visual inspection, including under movable seat padding, does not reveal cracks or deformation.
3. Vehicle in which safety seat was installed was capable of being driven from the scene of the crash.
4. Vehicle door nearest the child safety seat was undamaged.
5. The air bags (if any) did not deploy.

MOTHER AND NEWBORN TRANSPORT
1. Secure and transport mother on the cot.
2. Consider transporting mother and newborn in separate ambulances to properly secure each patient to a cot.
3. Transport newborn secured to the rear-facing clinician seat / captain's chair using a size-appropriate child restraint system. Either a convertible safety seat with a forward-facing belt path or an integrated child restraint system certified by the manufacturer to meet FMVSS No. 213 may be used to secure infant.
4. Do NOT use a rear-facing only safety seat in the rear-facing clinician seat / captain's chair as this is dangerous and may lead to significant injuries.
Maine EMS personnel are generally called to transport a mentally ill patient in one of two situations:

Emergency Transport
Safety for the patient and the crew is the primary concern in the transport of the mentally ill patient. Personnel should make sure they do a thorough evaluation of the patient to find and treat possible medical causes of the behavior. Refer to the Agitation/Excited Delirium protocol, Orange 4.

All diagnostic and therapeutic interventions administered by EMS clinicians are pursuant to the prescriptive authority of a physician. In certain limited situations, when a patient poses a significant danger to self or others, it may be appropriate to restrain the patient involuntarily. Clinicians are cautioned to use physical restraint as a last resort, preferably with the assistance of local law enforcement, refer to Orange 3. Once the decision is made to restrain a patient, the least restrictive restraint reasonable should be implemented and the patient should remain restrained until arrival at the emergency department, unless it interferes with the delivery of medical care. Only commercially available soft restraints are approved by Maine EMS.

Non-Emergency Transfer
Mentally ill patients who are being transferred usually fall into one of these categories:

Voluntary Committal – These patients have agreed to be transferred to a facility for evaluation and treatment of an underlying mental illness. It is important to get a thorough report on the patient prior to transport to avoid surprises en route. Voluntary committal patients can change their mind during transport. In this case, it is the responsibility of the EMS personnel to discharge the patient at a safe location, preferably at the originating facility. If it is not possible to return the patient to the originating facility, notify local law enforcement to meet you at your location.

Involuntary Committal – Patients who are being committed involuntarily must have committal papers (blue papers) completed prior to transport. Between the hours of 7 a.m. and 11 p.m. a judge has to sign the committal papers. After 11 p.m. and before 7 a.m. the papers do not have to be signed except for Riverview Psychiatric Center (formerly AMHI) – this is known as the “pajama clause”. Make sure that the transporting service is listed correctly on the papers. According to Maine law, the patient must be transported in the least restrictive form of transportation available. Make sure you get a thorough history to determine whether restraints will be necessary. *If the receiving facility refuses to accept the patient after evaluating them, the transporting service is required, by law, to transport the patient back to the originating facility.*
Depression/Suicidal Ideation

1. Ensure the scene is safe and request law enforcement for patients actively threatening/attempting suicide
2. Assess the patient for need of medical treatment and follow appropriate protocol
3. Establish rapport with the patient by listening carefully and speaking in a non-confrontational manner.
4. Assess the patient
 a. Has a suicide attempt been made? If yes, request ALS
 b. SAD PERSONS Scale (report score to receiving hospital)
 1 point for each of the following
 - Sex: male
 - Age <20 or >44
 - Depression
 - Previous suicide attempt
 - Ethanol abuse
 - Rational thinking loss
 - Social supports lacking
 - Organized suicide plan
 - No spouse (divorced, widowed, single)
 - Sickness (chronic, debilitating, or severe)
 c. Columbia Suicide Screening (if possible, discuss the following questions with the patient):
 i. Have you wished you were dead or wished you could go to sleep and not wake up?
 ii. Have you been thinking about how you might kill yourself?
 iii. Have you taken any steps towards making a suicide attempt or preparing to kill yourself (such as collecting pills, getting a gun, giving valuables away or writing a suicide note)?
5. Provide constant, 1:1 supervision for the patient
6. Collect items such as toxic substances, alcohol, drugs and medications that may have been taken and transport with patient to the hospital
7. Provide support for family and friends who are present.
8. Obtain information from family and friends and obtain their contact information should the hospital have any questions.
9. Transport the patient to the closest facility that can meet their medical and psychiatric needs

Refer to Orange 1 for Transport of Mentally Ill Patients protocol
Refer to Orange 3 for Restraint protocol
Refer to Orange 4 for Agitation/Excited Delirium protocol

PEARL
A SAD PERSONS Score > 4 or a "yes" answer to any of the Columbia Suicide Screening questions may indicate that the patient requires psychiatric hospitalization. However, all patients presenting with a psychiatric emergency should be transported to the hospital for evaluation.
Restraints

In certain limited situations, when a patient poses a significant danger to self or others, it may be appropriate to restrain the patient involuntarily. Clinicians are cautioned to use physical restraint as a last resort, preferably with the assistance of local law enforcement. Once the decision is made to restrain a patient, the least restrictive restraint reasonable should be implemented and the patient should remain restrained until arrival at the emergency department, unless it interferes with the delivery of medical care. Only commercially available soft restraints are approved by Maine EMS.

EMT/AEMT
1. Refer to Altered Level of Consciousness Protocol, Gold 5, to establish etiology of agitation.
2. Request law enforcement assistance
3. Request ALS
4. Attempt de-escalation techniques (speak in an honest, non-confrontational tone while avoiding eye contact).
5. Have appropriate personnel available prior to initiating restraints
6. Restrain patients in a lateral or supine position. NEVER leave patients restrained in a prone position. NEVER restrain a patient’s hands and feet behind them (hog-tying). All applied restraints must be easy to remove should a medical emergency occur.
7. Never place objects on top of patients to restrain them.
8. Restrained patients require 1:1 observation by EMS personnel and require continuous cardiac, pulse oximetry and waveform capnography monitoring, if able to do so.
9. Contact OLMC as soon as logistically possible after securing the safety of the patient and clinicians.
10. Documentation: Document de-escalation techniques utilized prior to physical restraint. Document type of restraints used, how restraints applied, when restraints applied, why restraints applied (patient’s behavior and mental status), the agency and individual that applied the restraints, frequent vital signs and CSM checks, education provided to patient and time OLMC notified.
11. Restraint devices applied by law enforcement require an officer’s continued presence to ensure patient safety and allow for quick removal, if necessary. Law enforcement should accompany the patient in the ambulance.
12. Restrained patients should not be moved in a stair chair device as violent patients cannot properly be restrained in a stair chair and EMS personnel may be easily thrown off-balance by a resisting patient.
13. Restrained patients should be transported to the nearest emergency department that can safely accept the patient.

PARAMEDIC

14. Refer to Agitation/Excited Delirium protocol, Orange 4. Physical restraint is both physically and mentally traumatizing to patients. Consider pharmacologic management, if required, once the patient is physically restrained.

Pearls for Restraints

In conjunction with and support of a joint statement released in October 2020 by the NAEMSP, NASEM SO, NEMSMA, NAEMT and APA, the MDPB strongly supports regular, continuing education focused on the management of behavioral emergencies, implementation of QA/QI processes dedicated to these situations, and fostering local relationships with key stakeholders that encourage local systems of care to support EMS clinicians caring for patients suffering from behavioral emergencies.
EMT/ADVANCED EMT
1. Maintain crew safety; ask for law enforcement assistance, if available
2. Attempt verbal de-escalation using direct, empathetic and calm voice. Present clear limits and options. Respect the patient's personal space. Avoid direct eye contact and assume a non-confrontational posture
3. If altered mental status, check oxygen saturation and perform finger stick blood glucose, if so trained
4. If blood glucose is less than 60 mg/dL, refer to Diabetic/Hypoglycemic Emergencies protocol, **Gold 6**

PARAMEDIC
5. Perform the Altered Mental Status Scale:

<table>
<thead>
<tr>
<th>Score</th>
<th>Responsiveness</th>
<th>Speech</th>
<th>Facial Expression</th>
<th>Eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>Combative, very violent, out of control</td>
<td>Loud outbursts</td>
<td>Agitated</td>
<td>Normal</td>
</tr>
<tr>
<td>+3</td>
<td>Very anxious, agitated, mild physical element of violence</td>
<td>Loud outbursts</td>
<td>Agitated</td>
<td>Normal</td>
</tr>
<tr>
<td>+2</td>
<td>Anxious, agitated</td>
<td>Loud outbursts</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>+1</td>
<td>Anxious, agitated</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>0</td>
<td>Responds to name in normal tone</td>
<td>Normal</td>
<td>Normal</td>
<td>Clear, no ptosis</td>
</tr>
<tr>
<td>-1</td>
<td>Lethargic response to name</td>
<td>Mild slowing or thickening</td>
<td>Mild relaxation</td>
<td>Glazed or mild ptosis (<half eye)</td>
</tr>
<tr>
<td>-2</td>
<td>Responds only if name is called loudly</td>
<td>Slurring or prominent slowing</td>
<td>Mild relaxation (slacked jaw)</td>
<td>Glazed or marked ptosis (<half eye)</td>
</tr>
<tr>
<td>-3</td>
<td>Responds only after mild prodding</td>
<td>Few recognizable words</td>
<td>Mild relaxation (slacked jaw)</td>
<td>Glazed or marked ptosis (<half eye)</td>
</tr>
<tr>
<td>-4</td>
<td>Does not respond to mild prodding or shaking</td>
<td>Few recognizable words</td>
<td>Mild relaxation (slacked jaw)</td>
<td>Glazed or marked ptosis (<half eye)</td>
</tr>
</tbody>
</table>

Procedure for AMSS Assessment

<table>
<thead>
<tr>
<th>Step</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Observe the patient - if alert, restless, agitated or combative</td>
<td>0 to + 4</td>
</tr>
<tr>
<td>2. Say the patient’s name in a gentle tone of voice and ask patient to open eyes</td>
<td>-1</td>
</tr>
<tr>
<td>3. If no response to voice, continue with routine EMS care</td>
<td>-2 to -4</td>
</tr>
</tbody>
</table>
Agitation/Excited Delirium #2

PARAMEDIC

6. If Altered Mental Status Score +1, +2 or +3, consider midazolam 4-10 mg IM for patient/EMS clinician safety and patient comfort. First dose should be based on patient's size, age, and the circumstances causing agitation.

7. If Altered Mental Status Score +4, consider either:
 * Midazolam 4-10 mg IM for patient/EMS clinician safety and patient comfort. First dose should be based on patient's size, age, and the circumstances causing agitation.

 OR

 Contact OLMC for Ketamine 4 mg/kg IM. Ketamine may not be used in patients greater than 65 years old.

8. Monitor and document the following every 5 minutes - ECG, O₂ sat, ETCO₂, AMSS, and vital signs.

9. Contact OLMC for dosing questions or if patient requires repeat dosing.

Pearls for Agitation/Excited Delirium

Agitation - is defined by excessive, purposeless cognitive and motor activity or restlessness, usually associated with a state of tension or anxiety.

Excited Delirium - is a sub-category of agitation, with a potential for higher mortality and morbidity. It can be defined by a patient presenting with the following constellation of symptoms (based on the 2009 ACEP White Paper) with frequency in parenthesis:

- Exceptional/abnormal pain tolerance (100%)
- Tachypnea (100%)
- Tactile hyperthermia (95%)
- Unusual strength (90%)
- Police Noncompliance (90%)
- Lack of tiring against restraint (90%)
- Inappropriate clothing for environmental temperature (70%)
- Violent and paranoid behavior
- Rapid development of symptoms
- Rapidly and fluctuating periods of calm and then delirium

These symptoms may be caused by a number of intoxicants, including, but not limited to alcohol, sympathomimetics (cocaine, methamphetamine, MDMA), and dissociative agents (PCP, LSD, dextromethorphan, K2/Spice, Bath Salts, DMT, etc).

Early contact of OLMC is essential for proper preparation of the receiving facility and staff.
Pearls

- Patient who are in a post-ictal state (i.e. have just suffered a seizure) are **NOT** considered to be in excited delirium and should **NOT** receive Ketamine.
- Patients should **NOT** receive BOTH Midazolam and Ketamine due to concerns for potential additive affects and respiratory depression.

Pearls for Midazolam/Ketamine

Midazolam

- Patients with underlying medical conditions (including COPD/CHF/CAD) as well as patients older than 60 are more likely to suffer adverse effects from midazolam. Consider lower doses in this population.
- **WARNING:** May cause respiratory depression, arrest, or apnea.
- Assess patients for signs and symptoms of respiratory depression and sedation.
- Administration: **IM** - Administer undiluted deep IM into large muscle.
- Administration: **IV** - Do not administer intra-arterially. Administer by **slow IV** injection over at least 2 minutes using a concentration of 1 mg/mL or a dilution of the 1 or 5 mg/mL concentrations.
- Concomitant use with opioids: **[US Boxed Warning]**: Concomitant use of benzodiazepines and opioids may result in profound sedation, respiratory depression, coma, and death.

Ketamine

- Document the patient's Altered Mental Status Score (AMSS) in the run report.
- Patients with an AMSS less than 4 may be more likely to require airway management when receiving Ketamine, therefore Ketamine is to be used **ONLY** if the patient is suffering from excited delirium, as measured by an AMSS score of 4.
- Maine EMS Services will bestocking the 100 mg/mL concentration to accommodate the wide dose ranges in the protocol. This is to avoid carrying two very different concentrations and the risk of a serious dose error.
- **WARNING:** Overdose may lead to panic attacks and aggressive behavior; rarely seizures, increased ICP, and cardiac arrest. Very similar in chemical makeup to PCP (phencyclidine), but it is shorter acting and less toxic.
- Administration: **IM** - Inject deep IM into large muscle mass.
- Administration: **IV** - According to the manufacturer, administer bolus/induction doses over 1 minute or at a rate of 0.5 mg/kg/minute; more rapid administration may result in respiratory depression and enhanced pressor response. Some experts suggest administration over 2 to 3 minutes (Miller 2010).
- The **100 mg/mL concentration should not be administered IV unless properly diluted with, at minimum, an equal volume of Sterile Water for Injection, NS, or D$_5$W.**
EMT/ADVANCED EMT/PARAMEDIC
1. Approach patient in a non-threatening manner and establish rapport.
2. Patient may be wearing several layers of clothes. Avoid cutting clothes, if possible, as these may be the only clothes the patient has, however do not allow clothes to prevent a full examination of the patient. Be aware of the presence of sharp objects (i.e. syringes, knives, weapons, etc.) in pockets and clothing.
3. Be cognizant of patient possessions and attempt to secure patient belongings with a trusted individual if it is not feasible to transport all belongings.
4. Homeless patients are at risk of exposure to environmental elements. Move the patient to a “safe” environment (i.e. ambulance) early in the encounter, if feasible.
 a. Once the patient is physically in a private and safe location, consider inquiring about the patient's safety from physical or verbal threats.
5. Be aware of concurrent illnesses that may influence the chief complaint. Homeless individuals may lack access to routine medical care predisposing them to the risk for both chronic and acute illnesses.
 a. For example, the pregnancy rate of homeless women is estimated to be twice that of the general population
6. Mental illness and substance abuse occur frequently in the homeless population. Avoid attributing the current chief complaint to these underlying conditions.
7. Head injuries are common in the homeless population. For patient with altered mental status, refer to Altered Level of Consciousness Protocol, Gold 5 or Head Injury, Green 11
8. Individuals suffering homelessness may have many barriers that limit their interest in transport to a hospital. Should the patient refuse transport, refer to the Transport Protocol, Grey 20 and consider discussing with OLMC
Do Not Resuscitate (DNR) Guidelines #1

I. When to Start Resuscitation:
As soon as the absence of pulse and respiration is established.

II. When Not to Start Resuscitation:
A. All Patients:
 1. When irreversible signs of death, such as rigor mortis, dependent lividity, decapitation, decomposition, incineration, other obvious lethal injuries are present.
 2. When down time has been unknown or greater than 20 minutes with no bystander CPR performed and the patient is cool to touch (not from exposure), no audible heart sounds, and fixed/dilated pupils.
 3. Core temperature less than 50 degrees F, chest wall so stiff that compressions cannot be performed, or patients submerged in cold water (for specific recommendations in drowning, refer to Drowning/Submersion Injuries protocol, Yellow 15).

B. All Normothermic Patients: Major trauma victims who have no respiration and no pulse, no signs of life at the time of Maine EMS-licensed crew member arrival.

C. When a Do Not Resuscitate (DNR) order is presented in one of three forms:

 1. EMS DNR orders from other states' EMS/DNR programs. If the order or device (i.e. plastic bracelet, jewelry, or card) appears to be in effect, and is understandable to the crew, follow the order's specific instructions. Devices, such as jewelry, must have the patient's name clearly displayed and must indicate the patient's wishes to be DNR. If there are no specific instructions beyond “DNR”, follow Maine EMS Comfort Care/DNR Guidelines, Grey 2.

 2. Non-EMS actionable medical order (i.e. POLST/MOLST, etc.). A written order executed by a patient’s personal physician/PA/NP should be honored if it is understandable to the crew. Follow the order as written. If it is nonspecific as to the care to provide or withhold, follow the MEEMS Comfort Care/DNR guidelines, Grey 2.

 3. Maine EMS Comfort Care/DNR Program - A Maine EMS Comfort Care/DNR order does not have an expiration date. Once activated, it remains in effect until the patient, or someone acting on their behalf as described and authorized on the Comfort Care/DNR form, cancels it. (Note: Although no longer distributed by Maine EMS, extant DNR/Comfort Care “orange” forms, wallet cards and plastic bracelets remain valid).

D. When a signed Maine EMS DNR Directive form or Maine EMS-approved DNR Directive jewelry is presented to EMS personnel - Once executed by the patient and signed by a physician/PA/NP, the DNR Directive remains in effect until the expiration date on the form or, if no expiration date is noted on the form, until the patient cancels it.

E. A photocopy is acceptable as proof of the existence of valid DNR Order or DNR Directive, provided that the photocopy is legible and understandable to EMS personnel.

(continued)
III. Treatment/Comfort Care

A. When treating a patient with a Maine EMS Comfort Care/DNR Order or DNR Directive, the responding EMS clinician should perform routine patient assessment and resuscitation or intervention until EMS personnel verify:

1. That an EMS Comfort Care/DNR Order or DNR Directive exists; or,

2. That a Maine EMS-approved EMS Comfort Care/DNR wallet card, plastic bracelet or Maine EMS-approved DNR jewelry is present, intact and not defaced. The plastic bracelet may be worn on the wrist or ankle or on a necklace; or,

3. That Maine EMS-approved DNR Directive jewelry is present, intact and not defaced; and,

4. The identity of the patient through family or friends present, or with photo ID such as a driver's license. A good faith effort only is required.

B. Follow these EMS Comfort Care/DNR procedures in all cases:

1. **These comforting interventions are encouraged:**
 a. Open the airway manually (No intubation, no BVM unless invited by conscious patient);
 b. Suction and provide oxygen;
 c. Make the patient comfortable (position, etc.);
 d. Control bleeding;
 e. Provide pain and other medications of comfort only to a conscious patient (ALS per OLMC/Hospice Provider);
 f. Be supportive of the patient and family;
 g. Contact patient’s physician/PA/NP/Hospice Provider or OLMC if questions arise

2. **Resuscitative measures to be avoided:** (to be withheld, or withdrawn if resuscitation has begun prior to confirmation of EMS Comfort Care/DNR Order or DNR Directive status).
 a. CPR;
 b. Intubation (ET Tube, or other advanced airway management);
 c. Surgical procedures;
 d. Defibrillation;
 e. Cardiac resuscitation medications;
 f. Artificial ventilation by any means;
 g. Related procedures per OLMC.

(continued)
(Continued from previous page)

IV. Revocation, Documentation & When to Stop Resuscitation

A. Who may revoke an EMS Comfort Care/DNR Order or Maine DNR Directive:

1. The patient (by destroying EMS Comfort Care/DNR Order Form, wallet card, plastic bracelet and DNR jewelry, or by destroying the DNR Directive and DNR jewelry, or verbally withdrawing the order or directive);

2. For the EMS Comfort Care/DNR Order form only:
 a. The patient’s physician/PA/NP who signed the order;
 b. The Authorized Decision-Maker for the patient who signed the order.

B. Documentation:

1. Use the Maine EMS patient/run report.
2. Describe assessment of patient’s status.
3. Document which identification (i.e. form, wallet card, plastic bracelet or DNR jewelry) was used to confirm EMS Comfort Care/DNR or DNR Directive status and indicate that it was intact and not canceled.
4. Indicate the patient’s physician/PA/NP name, on the patient/run report.
5. If the patient has expired on arrival, comfort the family and follow your EMS agency’s procedure for death at home. A Maine EMS patient/run report still needs to be completed.
6. If transporting the patient, EMS clinicians should keep the original EMS Comfort Care/DNR Order Form, wallet card, plastic bracelet, DNR Directive form or DNR jewelry with the patient.

C. When to Stop Resuscitation: Resuscitation should be terminated:

1. Unwitnessed Arrest:
 a. When the patient regains pulse/respiration.
 b. When criteria as defined in the Termination of Resuscitation protocol (Red 14) have been met.
 c. When the rescuers are physically exhausted or when equally or more highly trained health care personnel take over.
 d. When it is found that the patient has a DNR order or other actionable medical order (i.e. POLST/MOLST etc.) form.
 e. Continue resuscitation if conditions on scene are NOT amenable to cessation of resuscitation.
 f. Continuation of resuscitation beyond these protocols must be in consultation with OLMC.

(continued)
Do Not Resuscitate (DNR) Guidelines #4

(Continued from previous page)

2. Witnessed arrest:
 a. When the patient regains pulse/respiration.
 b. When criteria as defined in the Termination of Resuscitation protocol (Red 14) have been met.
 c. In the absence of ALS, when the same Maine EMS-licensed crew member has determined the absence of all vital signs for 20 minutes, in spite of BLS, except in the case of hypothermia (Yellow 11).
 d. When the rescuers are physically exhausted or when equally or more highly trained health care personnel take over.
 e. When it is found that the patient has a DNR or other actionable medical order (i.e. POLST/MOLST form, etc.).
 f. Continue resuscitation if conditions on scene are NOT amenable to cessation of resuscitation.
 g. Continuation of resuscitation beyond these protocols must be in consultation with OLMC.

D. Management of Patient Remains
If resuscitation efforts are discontinued, follow your service’s policy for disposition of patient remains. In cases of uncertainty, arrangements should be made with OLMC with regards to disposition of the patient's body. Contact your local ED with regard to tissue donation options and procedures in advance.
Refer to Death Situations for Emergency Responders protocol, Grey 9.
Pearls for DNR Guidelines: Neither a Living will nor a Durable Power of Attorney for Healthcare (DPOAH) form is a valid DNR order. Neither a patient's spouse nor a healthcare agent under a DPOAH may direct EMS clinicians to withhold resuscitation in the absence of a valid DNR Order.

When a written DNR order is not available but the patient has a DPOAH and the patient's healthcare agent requests that resuscitation be withheld, contact OLMC for guidance.

Living Will:
A Living Will is intended to address patients who have been admitted to a healthcare facility. Living Wills rarely, if ever, have application in the prehospital environment.

POLST (Provider Orders for Life-Sustaining Treatment):
POLST Section A
The POLST constitutes a DNR if “No CPR” is indicated in this section. Otherwise, if the patient has indicated they do not want resuscitation but does not have a separate valid DNR order, contact Medical Control for guidance.

POLST Section B
When confronted with a seriously ill patient who has a POLST form (green form) and is not in cardiac arrest:
- If “Full Treatment” box is checked: Use all appropriate measures to stabilize/resuscitate patient.
- If “Selective Treatments” box is checked: The maximum respiratory interventions include interventions such as non-rebreather mask, CPAP, and suctioning. All appropriate IV medications may be utilized. Avoid intensive care: ventilator, cardioversion, defibrillation. Transfer to hospital if needs cannot be met in current location.
- If “Comfort-Focused Treatments” box is checked: Limit respiratory interventions to non-rebreather mask, suctioning and treatment of airway obstruction, as needed. Medications to relieve pain or discomfort may be utilized. Transfer to hospital only if comfort cannot be achieved in current setting.

POLST Section C
Refers to IV therapy for hydration, nutrition, and other orders. Advanced EMTs and Paramedics may start an IV for the purpose of medication administration outlined in Section B.
Pre-Hospital Management of Hospice Patients, #1

EMS may be called to respond to patients on Hospice Care. This may occur because the patient (or family) was unable to reach a Hospice nurse/physician or the patient (or family) became anxious. In these circumstances, **EMS clinicians should make every effort to reach a Hospice Provider** and should remain with the patient until the Hospice Provider arrives. Comforting interventions (Grey 2) should be undertaken. Support family members.

EMS clinicians should avoid the following interventions:
- Sirens, lights or aggressive interventions.
- IV therapy (except where other forms of medication administration are not possible).
 - Discuss options with patient, family, caregivers.
- Cardiac resuscitation: CPR, resuscitation medications, BVM ventilations.
- Cardiac pacing, cardioversion, and defibrillation.
- Hospice patients should not be transported to the hospital except where transport is specifically requested by the patient or his/her healthcare agent or surrogate, and preferably only after consultation with the hospice team and exhaustion of other treatment pathways that do not require transport to the hospital.

If the reason for calling 9-1-1 is unrelated to the Hospice patient’s terminal illness, the appropriate protocol should be followed and the patient should be transported to the hospital, if needed and requested by the patient or surrogate (example: laceration requiring sutures).

OLMC should be consulted, as needed, to discuss Hospice Provider orders and other concerns.
- Many hospice patients will have a hospice comfort kit that contains medications that patient’s caregivers are instructed to use to treat commonly encountered medical issues.

(continued)
EMT

Routine Patient Care.
1) Contact the hospice team (preferred) or OLMC to coordinate care and determine administration of hospice kit medications.
2) Consider paramedic response for medication administration.

3) **Breakthrough Pain**: Suggest administration of breakthrough pain medication by patient/families. For pain of sudden onset, seek to determine and treat the underlying cause (e.g., pathological fracture).

4) **Anxiety**: Consider potential causes for patient’s anxiety, such as increased pain and shortness of breath. Suggest administration of medication by patients/families.

5) **Dyspnea**: Administer oxygen, as appropriate, to relieve shortness of breath and achieve a respiration rate of < 20. Use a fan to blow air directly at the patient’s face.

6) **Constipation**: Suggest administration of constipation medication by patient/family.

7) **Terminal Dehydration**: Moisten lips with petroleum jelly; use artificial saliva/mouth sponges and ice chips.

8) **Confusion/Delirium**: Speak slowly and calmly to the person. Remind the patient of where they are, and who you are. Avoid contradicting the patient’s statements. Ensure a patient’s hearing aid and glasses are available. Limit activity/noise in the room.

Advanced EMT

9) **Nausea/Vomiting**: Suggest administration of nausea medication or refer to Nausea/Vomiting protocol, **Gold 20**.

Paramedic

10) Consider following written orders for medications in hospice kit. As an adjunct, consider:
 a) For Breakthrough Pain, refer to Universal Pain Management Protocol, **Green 21**.
 b) For Anxiety, contact OLMC for Ketamine 0.5 mg/kg IN for a max dose of 25 mg.
 c) For Bronchospasm, refer to Respiratory Distress with Bronchospasm protocol, **Blue 7**.

(continued)
PEARLS
Breakthrough Pain assessment and management is important in patients with advanced disease as they may have a high burden of pain, be opiate tolerant, and already be receiving high doses of opioids.

Anxiety ranges from mild to severe, is common in patients nearing death, and should be treated promptly.

Terminal secretions are noisy, gurgling respirations caused by secretions accumulating in the lungs or oropharynx.

Terminal dyspnea is exhibited by patients that are expected to die within hours to days. Individuals experiencing dyspnea often experience heightened anxiety.

Constipation is a frequent cause of nausea and vomiting. Opioid-related constipation is dose-related, and patients do not develop tolerance to this side effect.

Nausea / Vomiting can be extremely debilitating symptoms at the end of life. Effective control of nausea can be achieved in most patients.

Fever and Infection treatment should be guided by an understanding of where the patient is in the dying trajectory and the patient’s specific goals of care.

Overwhelming sepsis may be a sign of active death not to be reversed.

Delirium is common at end of life and is often caused by a combination of medications, dehydration, infections or hypoxia. It is distressing to families. It often heralds the end of life and may require active sedation.
Death Situations for Emergency Responders #1

PREPARED JOINTLY BY: Attorney General, Office of Chief Medical Examiner, and Maine State Police.

GENERAL AIM: Preservation of scene, including body as found, for investigative purposes within practical limits consistent with the role and responsibilities of emergency medical care givers.

Death Situation Guidelines

I. Preserve life: While forensic guidelines emphasize that the scene should not be disturbed, the first and most important course of action is to follow all usual procedures to ensure the preservation of life.

II. Once Death is confirmed: If the decedent is clearly dead, the body should not be moved or disturbed unless there is a danger that the body may be lost or further damaged.
 A. Maine statutes do not require a pronouncement of death.
 B. The scene should be secured and left undisturbed.
 1. If the police are present, they should take charge in order to determine whether the case falls under the jurisdiction of the Office of Chief Medical Examiner (OCME) or whether the death certificate may be certified by the patient’s private attending physician.
 2. If there is no police officer present, EMS should call the local police or call the OCME directly to report the case so that a determination may be made as to the need for further investigation into the cause and manner of death. OCME emergency line to report deaths: 1-800-870-8744.
 3. If it is determined not to be a Medical Examiner case, try to accommodate the family’s request or contact OLMC for guidance.
 4. Consider contacting the New England Donor Services 1-800-446-6362.
 C. Tubes and medical devices should be left in place. Certain reusable equipment may be removed to resupply the ambulance; however, written documentation of any such action must be given to investigators.
 D. Any clothing or property should be left undisturbed.

III. What is a Medical Examiner (ME) case?:
 A. Any suspected HOMICIDE.
 B. Any suspected SUICIDE.
 C. Any death involving any ACCIDENT or INJURY.
 D. Any death of a CHILD.
 E. Any death in CUSTODY.
 F. Deaths caused by SUSPECTED GROSS NEGLIGENCE during a Medical Procedure.
 G. SUDDEN DEATH from an UNKNOWN cause or any death where there is no private attending physician.
 H. UNIDENTIFIED persons.
 I. OCCUPATIONAL deaths (work-related).
 J. Unnatural deaths in a Mental, or DHS-Residential Care Facility.
 K. Any death that might ENDANGER or THREATEN the public health.

(continued)
Death Situations for Emergency Responders #2

(Continued from previous page)

IV. Deaths in Children:
 A. All deaths in children under the age of three automatically become Medical Examiner cases unless the death is expected based on previously diagnosed natural disease.
 B. Determination of the cause of death in infants and children is very difficult. While the OCME understands the concerns of the parents/guardians, the child must be left undisturbed until investigating police officers have finished the initial investigation. SIDS is not an acceptable reason to transport a deceased infant or allow the infant to be moved prior to investigation.

V. Reports and follow-up on Medical Examiner cases:
 A. If families have questions, they may be referred to the OCME. Families should call the office using the 24 hour business line at 207-624-7180.
 B. Copies of EMS run sheets should be given to police investigators and/or the OCME (refer to Brown 2).
 C. If any EMS clinician wishes follow-up information on any specific case, or if there is a question of infectious exposures, call the OCME on the business line, 207-624-7180.
PEARLS
Death with Dignity Law (Sec. 1. 22 MRSA c. 418): The Maine Death with Dignity Act provides eligible Maine residents with terminal, incurable diseases that will, within reasonable medical judgment, result in death within six months, the option to be prescribed a dose of medication that, if taken, will hasten the end of their life.

Patients should have a either a form that identifies their participation in the Maine Death with Dignity Program or a DNR/POLST form.

It is possible that Maine EMS personnel may be called to respond to an individual who has voluntarily entered into an agreement with his/her Attending physician to end their life under the Death with Dignity Act.

If dispatched to such a patient, and questions arise regarding patient care, please contact OLMC.
This protocol provides guidance for the triage, extrication, care and transport of bariatric patients. A bariatric patient exceeds 180 kg (400 lbs.) or possesses a body habitus that challenges the ability of a two-person crew to manage effectively. On scene time may be prolonged for bariatric patients who may require additional resources, personnel and equipment to safely evaluate, manage and transport. Goals include the timely and effective management of these patients while maintaining patient privacy, dignity and comfort.

EMT/Advanced EMT/Paramedic:
- Equipment: deploy specialized equipment/personnel per local/regional policy.
- Request a Bariatric ambulance, if feasible, and if time allows.
- Bariatric stretchers are preferred for patient comfort. Ensure that the weight limit of the utilized stretcher exceeds the weight of the patient.
- Request additional personnel resources for the extrication process.
- Clinicians should be knowledgeable about the utilization of bariatric equipment prior to using it.
- Early pre-hospital notification is required as special arrangements may be needed at the receiving hospital.
- Consider the patient’s immediate needs (CT scan, surgery, cardiac catheterization, etc.) when determining hospital destination. If the patient is stable and there exists a potential requirement for alternate destination, please contact OLMC for guidance and discussion regarding the most appropriate patient destination.
- If not present, request ALS (Paramedic), especially in situations in which on-scene time will be prolonged.

PEARLS
- It may be difficult to establish IV and IO access. Consider intramuscular or intranasal as alternatives for some medications. For IM, ensure that the needle used is sufficiently long.
- Weight-based calculations may yield inappropriately large doses in obese patients. Consult with medical control when in doubt regarding medication dosing. In addition, medication par levels may be exceeded when using weight-based dosing.
- Bariatric patients often have decreased functional residual capacity, and are at risk of rapid desaturation. Extremely obese individuals require more oxygen than non-obese individuals due to their diminished lung capacity. Pulse oximetry may not be reliable due to poor circulation. Even patients without respiratory distress may not tolerate the supine position.
- Bariatric patients may present with severe airway challenges. Carefully plan your approach to the airway and be prepared with backup airway plans.
- If the patient has had recent bariatric surgery, possible complications may include anemia, dehydration, internal leakage at the surgical site, ulcers, localized infection, sepsis, etc.
GENERAL RESPONSIBILITY FOR DECEASED PERSONS: The Office of Chief Medical Examiner is responsible for deceased victims of mass disasters including identification and removal from the scene. The Office of Chief Medical Examiner (1-800-870-8744, restricted emergency call number) should be informed immediately of any multiple fatality situations.

1. BODIES SHOULD BE LEFT IN PLACE AT THE SCENE except when they must be moved to preserve them from destruction or when they block access. The resting place of the victim may be critical for identification of the body and/or reconstruction of the incident. They can be tagged as fatalities to prevent other medical personnel from repeating examination.

2. IF DEATH OCCURS EN ROUTE TO THE HOSPITAL, the body need not be returned to the scene but can be brought to the hospital or other suitable storage place as determined by distances and/or the needs of other patients in the ambulance. If the body is left anywhere other than the hospital or designated temporary morgue, the body should be tagged and the Office of Chief Medical Examiner should be advised.

3. THE SITE A VICTIM IS REMOVED FROM SHOULD BE NOTED on a tag along with the name and agency of the person who removed it whenever removal is needed and in cases of death after removal. Such information may be critical for identification of the body and/or reconstruction of the accident.

4. IF AN IDENTIFICATION OF A PATIENT IS MADE, a tag with at least the name and date of birth and time of death of the patient/decedent along with the identifier’s name, relationship, address and where he/she can be located should be put on the body.

5. PERSONAL PROPERTY SHOULD BE LEFT WITH THE BODY including clothing removed from a patient if the victim dies. Nothing should be removed from those already deceased.

Consistent with New England EMS Council MCI Management, the action priorities for the first medical crews arriving on the scene are:

1. Assess and avoid exposure to existing dangers.
2. Notify dispatch of type of MCI and estimate of number and type of patients.
 a. Request EMS, fire, police assistance
 b. Request hospital notification
3. First ambulance or other vehicle with medical frequencies becomes EMS command vehicle – locate near fire and police command vehicles. Strip equipment/supplies – place in equipment area (near planned patient collection/treatment area).
4. Designate, in the following order, the following positions as qualified personnel become available:

EMS CONTROL OFFICER – Reports to Incident Commander. Responsible for overall patient triage, treatment, and transportation. Procures EMS back-up, supplies, equipment, transport vehicles, as needed, supervises and assigns all other medical personnel.

(continued)
PRIMARY TRIAGE OFFICER – Rapidly assesses all patients then assigns personnel to provide treatment to those patients in most need of immediate treatment, who will most benefit from immediate care with the resources available. Treatment is limited to:
- Bleeding – hemorrhage control
- Airway – reposition patient
- Shock – elevate extremities

SECONDARY TRIAGE OFFICER – Rapidly tags all patients, or assigns personnel to do tagging (with METTAGS, SMART Tags, or other locally approved Triage System) and supervises immobilization after classification, and oversees transfer to collection/treatment area.

Tag categories are:

RED (I): Conditions requiring immediate transport by ambulance to prevent jeopardy to life or limb and which will not unduly deplete personnel/equipment resources (examples: progressive shock, major blood loss, major multiple injuries, severe respiratory distress. Cardiac arrest – only if personnel can be spared).

YELLOW (II): Not requiring immediate transport to prevent jeopardy to life or limb, but eventually will require ambulance transport to hospital for attention.

GREEN (III): Minor conditions probably not requiring ambulance transport to hospital.

BLACK (O): Are obviously dead, or dying from lethal injuries, or requiring CPR when no personnel are available to do so without compromising other patients.

TREATMENT OFFICER – Sets up / supervises patient collection / treatment area. Reassesses and re-tags (if necessary) patients, assigns patients and personnel to treatment areas. Prioritizes for transport. Coordinates with Loading/Transport Officer to make single radio transmission to receiving facility (pt. ID#, METTAG priority, nature of injury, ambulance, and ETA ONLY).

LOADING OFFICER – Stages ambulances in holding area. Instructs crews to put all available equipment in equipment area. Assigns patients to vehicles. Directs drivers to hospital(s). Instructs not to contact hospital unless OLMC required for condition change. Notifies hospital, or coordinates communication to hospital notification times, patient ID#s and destination of all transporting vehicles.

In the event of a public health emergency or declared disaster, EMS clinicians may be asked to divert selected patients with certain conditions to hospital-established or state-established alternate care sites by OLMC.
Suggested Scene Organization
(Not for HazMat)
Sexual Assault Victim

ALL LEVELS

1. Treat any life-threatening emergency first and according to these protocols.
2. Try to attend to maintenance of forensic evidence. Try not to cut through tears or stains in clothing. Do not cleanse any skin area more than necessary to provide immediate care.
3. If the patient so desires and/or mandated reporting is indicated, police should be called if they have not already been notified.
4. If no life-threatening situation is present, prehospital care may require waiting for police to secure the scene which is a potential crime scene.
5. Victims of sexual assault commonly have much guilt, and may require psychological support. Please respect the stress that they are enduring.
6. By nature of this event, any touch may be traumatic for this patient. Overly and repeatedly explain what you are doing to try to lessen the impact of procedures and touching.
7. Advise the patient not to eat, drink, smoke, bathe, change clothing or go to the bathroom, if at all possible, in order to preserve any forensic evidence. If they must urinate, request that they do not wipe.
8. If the patient has removed any clothing worn in the assault, each piece of clothing should be separately bagged in paper bags and brought to the hospital with the patient.
9. When transporting the patient, it is preferable, whenever possible, to have a same sex clinician as the primary clinician. If the assault is a same sex assault, then a clinician of the opposite sex may be more comfortable for the patient.
10. To maintain privacy and confidentiality, use a phone for hospital reporting, whenever possible, and do not clarify the type of assault, only that you are transporting a “victim of assault.”
11. The patient should be encouraged to go to the hospital for a sexual assault forensic examination that would allow not only the option to have collection of forensic evidence, but also treatment of possible injuries, the chance to obtain pregnancy and sexually transmitted disease prophylactic treatment, and appropriate counseling.
12. If the patient refuses treatment and/or transportation to the hospital, document all findings and observations as completely as possible. When signing the patient off at the scene, try to have a police officer witness this sign off.
Child Abuse Management and Reporting #1

CHILD ABUSE
(Title 22 MRS, Chapter 1071, Subsection 4011-A)

All levels
- Child abuse and child neglect are sufficiently widespread to guarantee that virtually every EMS clinician will encounter them at least once during his/her career.
- It is estimated that approximately 2-3 million cases occur each year, or approximately 11 cases per every 1,000 children within the U.S. Each year at least 2,000 children die from physical abuse.
- The most commonly identified forms of abuse by the EMS clinician are physical abuse and severe physical neglect, although sexual abuse may, on occasion, be observed.
- The EMS clinician must at all times demonstrate and maintain a supportive and non-judgmental attitude with primary caregivers. Accusation and confrontation delay immediate treatment as well as transportation to a definitive care facility.
- When abuse is a possibility, the healthcare professional has two major responsibilities: first, to provide medical care to the child; and second, to collect and document all information that may possibly establish the occurrence of abuse or neglect. Refrain from asking the child too many questions and specifically do not ask any leading questions – keep questions simple and open-ended such as “What happened?” and “Are you hurt?”
- As an EMS clinician, you must report immediately to Child Protective Services any child whom you have “reasonable cause to suspect” has been abused or will be abused. Failure to do so is punishable as a civil violation. It is not enough to tell someone else of your suspicions. If a child is abused and unreported, there is a 50% chance that the child will be abused again and a 10% chance that the child will die from future abuse.

Possible Indicators of Abuse
1. Injured child under two years of age, especially hot water burns or fractures
2. Facial, mouth, or genital injuries
3. Atypical, diffuse, and/or severe injuries – especially when not over bony prominences
4. Poor nutrition or poor care
5. Delay in seeking treatment or not wanting the clinician to speak alone with the child
6. Vague, inconsistent, or changing history
7. Refer to appropriate protocol for the child with altered level of consciousness, Gold 5, the child in shock, Gold 14, or the child in cardiac arrest, Red 8

Treatment of suspected child abuse in the field
1. Suspect abuse but do not accuse the caretaker. Every time a child is encountered by the healthcare professional having a traumatic injury, the question that should come to mind is, “Could this be abuse?”. In most cases, the answer will be an obvious “no”; however, enough uncertainty will exist in some cases to warrant further assessment.
2. Follow normal initial assessment priorities of the ABC’s and mental status when caring for the child.
3. Provide the appropriate intervention procedures for any abnormal findings such as respiratory, trauma, shock, altered mental status or other medical emergencies.

(continued)
4. EMS clinicians are in key positions to assess environmental conditions and the observable interactions of family and child. Environmental signs of possible abuse or neglect may include, but are not limited to: unsanitary conditions; garbage scattered about the house; unsafe conditions such as open, unguarded windows or potentially dangerous objects within reach of children.

5. Perform a detailed physical examination on any child in stable enough condition to allow for such. Examine all parts of the body for deformities, ecchymosis, lacerations, abrasions, punctures, burns, tenderness, and swelling. It is vitally important that injuries of the mouth and sternum be observed in detail prior to the initiation of resuscitative measures and documented that such injuries were found prior to resuscitation.

6. It is important to transport all children having evidence of abuse or neglect due to the possibility of additional injuries not immediately obvious. Transport of potentially abused or neglected children ensures that they receive the appropriate and necessary social service. Assistance may be necessary from law enforcement, OLMC, etc.

7. Convey your impressions and information to the hospital staff.

8. Write a detailed and descriptive report, which provides an accurate and clear record of all observations and treatment from the time of the initial call through transfer of the patient to the ED staff. Do not make a diagnosis of abuse, and refrain from including personal opinions, emotional overtones, or interpretations. Primary caregiver quoted statements must be documented as such with quotation marks, and exactly word for word as stated by the person. As well, this legal document must be legible.

9. You must contact Adult (1-800-624-8404) and Children’s (1-800-452-1999) Emergency Services to make a report. This is a 24-hour a day reporting number. You will be protected, by law, from civil liability for making such a report, if made in good faith. Title 22 MRS, Chapter 1071, Subsection 4014

AN ACT TO STRENGTHEN THE LAWS GOVERNING MANDATORY REPORTING OF CHILD ABUSE OR NEGLECT.

(Title 22 MRS Section 4011-A, Subsection 7)

"Children under 6 months of age or otherwise non-ambulatory. A person required to make a report under subsection 1 shall report to the department if a child who is under 6 months of age or otherwise nonambulatory exhibits evidence of the following:

a. Fracture of a bone;
b. Substantial bruising or multiple bruises;
c. Subdural hematoma;
d. Burns;
e. Poisoning; or
f. Injury resulting in substantial bleeding, soft tissue swelling, or impairment of an organ."

(Title 22 MRS Section 4011-A, Subsection 9)

"Training requirement: A person required to make a report under subsection 1 shall complete, at least once every 4 years, mandated reporter training approved by the department."
Adult Abuse, and Intoxicated Drivers

ADULT ABUSE
(Title 22 MRS, Chapter 958-A, Subsection 3477)

“Reasonable cause to suspect. The following persons while acting in a professional capacity...ambulance attendant, emergency medical technician or other licensed medical service provider, Unlicensed assistive personnel shall immediately report to the department when the person knows or has reasonable cause to suspect that an incapacitated or dependent adult has been or is likely to be abused, neglected or exploited.”

Call Adult Protective Services: **1-800-624-8404** (24 hours a day). Similar protection from liability for reporting exists.

INTOXICATED DRIVERS
(Title 29-A)

§ 2405 (1) “Persons who may report if, while acting in a professional capacity a...emergency medical services person...knows or has reasonable cause to believe that a person has been operating a motor vehicle, hunting or operating a snowmobile, all-terrain vehicle or watercraft while under the influence of intoxicants and that motor vehicle, snowmobile, all-terrain vehicle or watercraft or a hunter has been involved in an accident, that person may report those facts to a law enforcement official.”

§ 2405 (2) Immunity from liability. A person participating in good faith in reporting under this section, or in participating in a related proceeding, is immune from criminal or civil liability for the act of reporting or participating in the proceeding.

§ 2524 (1) Persons qualified to draw blood for blood tests. “Only a physician, registered physician's assistant, registered nurse or person whose occupational license or training allows that person to draw blood samples may draw a specimen of blood for the purpose of determining the blood-alcohol level or the presence of a drug or drug metabolite.”

§ 2528 Liability. “A physician, physician's assistant, registered nurse, person whose occupational license or training allows that person to draw blood, hospital or other health care provider in the exercise of due care is not liable for an act done or omitted in collecting or withdrawing specimens of blood at the request of a law enforcement officer pursuant to this chapter.”
A patient without decision making capacity would be one who has one or more of the following: an altered mental status or intoxicated, confused, delirious, psychotic, comatose, unable to understand the language, or is a minor, etc. Additionally, a patient who demonstrates a suicidal/self harm gesture or admission, either verbally or in writing, shall be considered to be WITHOUT decision-making capacity.

1. If there is a question of decision making capacity or the patient does not appear to understand the consequences of his/her refusal of transport, then contact OLMC.
2. The patient must be informed of the consequences of his/her refusal to be transported. This must be documented in the patient care report.
3. This screening may typically arise when an ambulance is requested by someone other than the patient (i.e. the police, a bystander). The EMS run report must always be completed.
4. If the patient refuses transport and is judged to be without decision making capacity, the EMS clinician must speak directly with OLMC. If unable to reach OLMC, the patient is transported.
5. **EMS System initiated patient sign offs are tremendously risky interactions and are not condoned by Maine EMS.**
6. The service is expected to review all patient sign offs through the service’s quality assurance mechanism. Patient medical records must be completed for all of these interactions, and must include the following information:
 a. The patient must be calm, competent, sober, and alert with the absence of any acute medical/surgical or traumatic process that impairs the patient’s decision-making capacity
 b. Greater than 18 years, emancipated, or contact with guardian
 c. Service(s) offered
 d. Reason service(s) declined
 e. Statement of risks and patient understanding of risk
 f. Discussion of alternatives to service offered and potential consequences of declining offered service
 g. Discussion with patient that EMS services may be accessed at any time, and that the patient had decision making capacity.
7. In some circumstances, patient transport is requested by an off site medical clinician. Should a patient refuse transport and be found to have decision making capacity, EMS clinicians should communicate the discovery of decision making capacity and the patient’s right to refuse transfer with invested parties. OLMC, or the physician ordering transport, must be contacted by EMS in this decision making process. It is suggested that the consulted physician discuss the refusal of care or transport directly with the patient.

8. When the patient is found to lack decision-making capacity but continues to refuse transport, contact OLMC for assistance. Should the patient continue to refuse transport, consider accessing other community advocates and resources (such as family/friend when appropriate and/or police). Consider direct dialogue between OLMC and the patient or OLMC and law enforcement to assist in resolving the conflict.
Protective Headgear Removal

The decision to remove protective headgear from an injured patient rests with the EMS clinician on scene unless a Maine licensed physician is on scene and takes responsibility for the patient. It is important to immobilize the patient in a neutral in-line position, regardless of whether or not you choose to remove the helmet. This requires that you evaluate each patient and determine if other equipment (i.e. shoulder pads) must be removed or if additional padding under the shoulders or head is necessary. In the case of an athletic injury, the EMS clinician should consider input from athletic trainers. Disputes should be referred to OLMC for resolution.

When deciding whether to remove protective headgear, please evaluate the following criteria:

- Can You Access the Airway?
- Does the Helmet Fit Snugly?
- Can you adequately immobilize the spine while maintaining neutral in-line position?

- **YES**
 - Can You Access the Airway?
 - Does the Helmet Fit Snugly?
 - Can you adequately immobilize the spine while maintaining neutral in-line position?
 - **YES** Leave the Headgear in Place
 - **NO**
 - Can You Access the Airway?
 - **YES**
 - Does the Helmet Fit Snugly?
 - **YES** Leave the Headgear in Place
 - **NO**
 - Can you adequately immobilize the spine while maintaining neutral in-line position?
 - **YES** Leave the Headgear in Place
 - **NO**
 - Can You Access the Airway?
 - **NO** Remove the Headgear
 - **YES**
 - Does the Helmet Fit Snugly?
 - **NO** Remove the Headgear
 - **YES**
 - Can you adequately immobilize the spine while maintaining neutral in-line position?
 - **NO** Remove the Headgear
 - **YES** Leave the Headgear in Place
 - **NO**
Crime Scenes

DO NOT enter an active shooter scene, or a scene in which an unsecured weapon is involved, until the scene is secured by law enforcement, unless trained and authorized to do so (such as in the context of a tactical response team or rescue task force). If encountering a possible crime scene and not previously dispatched, contact law enforcement.

Once a crime scene is deemed safe by law enforcement, initiate patient contact and medical care, if necessary.

- Do not sacrifice patient care to preserve evidence.
- Have all EMS clinicians use the same path of entry and exit, if feasible.
- Do not touch or move anything at a crime scene unless it is necessary to do so for patient care (notify law enforcement prior to moving, if possible).
- Do not walk through fluids.
- Observe and document original location of items moved by crew whenever possible.
- Do not sacrifice patient care to preserve clothing, but when possible and removing patient clothing is required, leave it as intact as possible. Avoid cutting through holes made by weapons, if possible.
- If you remove any items from the scene, such as impaled objects or medication bottles, document your actions and advise a law enforcement official (prior to removal, if feasible).
- Consider requesting a law enforcement officer to accompany the patient in the ambulance to the hospital.
- Document statements made by the patient or bystanders on the EMS patient care report. Report significant information to a law enforcement official prior to leaving the scene, if feasible.
- Comments made by a patient or bystanders should be denoted in quotation marks.
- Inform staff at the receiving hospital that this is a “crime scene” patient.
- If the patient is obviously dead, consistent with Do Not Resuscitate Guidelines, Grey 1, notify law enforcement of decision not to initiate resuscitation/patient care.
- At motor vehicle incidents, preserve the scene by not driving over debris, not moving debris and parking away from tire marks, if feasible.
- Prior to leaving a crime scene, if feasible, check the bottom of your shoes for contamination (fluids, objects, etc.). Notify law enforcement for removal of any evidence and possible photographing of your shoes.
Defibrillation/Cardioversion Settings

Defibrillation Settings*

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Second</th>
<th>Third</th>
<th>Subsequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>Per device recommendations*</td>
<td>Maximum available energy</td>
<td>Maximum available energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If unknown, use maximum available energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric</td>
<td>2 J/kg</td>
<td>4 J/kg</td>
<td>6 J/kg</td>
<td>Max 10 J/kg</td>
</tr>
</tbody>
</table>

* Each device manufacturer recommends initial adult defibrillation settings. Please follow the recommendation of your device manufacturer.

** All settings are biphasic. If using monophasic machine refer to manufacturer recommendations.

Cardioversion Settings*

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Second</th>
<th>Third</th>
<th>Subsequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult VT (wide regular)</td>
<td>100 J</td>
<td>150 J</td>
<td>200 J</td>
<td>Maximum available energy</td>
</tr>
<tr>
<td>Adult SVT (narrow regular)</td>
<td>50 J</td>
<td>100 J</td>
<td>120-150 J</td>
<td>Maximum available energy</td>
</tr>
<tr>
<td>Adult A-fib (narrow irregular)</td>
<td>120-200 J</td>
<td>200 J</td>
<td></td>
<td>Maximum available energy</td>
</tr>
<tr>
<td>Pediatric</td>
<td>0.5-1.0 J/kg</td>
<td>2 J/kg</td>
<td>2 J/kg</td>
<td>2 J/kg</td>
</tr>
</tbody>
</table>

* All settings are biphasic. If using monophasic machine refer to manufacturer recommendations.
Maine EMS Medication List

The following are medications currently approved for use by Maine EMS licensees - as authorized by the Maine EMS Protocols. This list may be altered through protocol revision.

Prehospital Medications:

- Acetaminophen chewable tablets
- Acetaminophen IV
- Activated Charcoal (without sorbitol)
- Adenosine
- Albuterol
- Amiodarone
- Aspirin
- Atropine
- Calcium Gluconate
- Ceftriaxone
- Cyanide poisoning kit contents
- Dexamethasone
- Dextrose (D$_{10}$, D$_{50}$)
- Diphenhydramine
- EPINEPHrine 1 mg/mL & 1 mg/10mL
- EPINEPHrine Auto-injector
- Fentanyl
- Glucagon
- Hemostatic Agents
- Heparin Solution (for use in maintaining IV access in a heparin lock only; otherwise this is not considered a prehospital medication. Approved at Advanced EMT level).
- Ipratropium Bromide (Combivent)
- Ketamine
- Lidocaine 2% (preservation free)
- Magnesium Sulfate
- Metoprolol (Lopressor)
- Midazolam
- Naloxone (Narcan)
- Nitroglycerin (Non-parenteral)
- Nitrous Oxide
- NOREPInephrine
- Oxygen
- Ondansetron IV and ODT
- Racemic EPINEPHrine nebulized
- Tetracaine ophthalmologic Drops
- Tranexamic Acid (TXA)
- Sodium Bicarbonate
Telephone/Radio Reference/Contact Numbers #1

<table>
<thead>
<tr>
<th>Hospital:</th>
<th>NAME</th>
<th>Radio Frequency</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispatch:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State wide EMS Frequency 155.3850

Maine EMS Phone: (207)626-3860 Fax: (207)287-6251
e-mail: maine.ems@maine.gov www.maine.gov/ems

J. Sam Hurley, MPH, EMPS, NRP, Director
Jason Oko, Paramedic, Data & Preparedness Coordinator
Darren Davis, AS, Data Coordinator
Jessica Ricciadelli, Office Administrator
Chris Azevedo, BS, NRP, Education, Training & Testing Coordinator
Marc Minkler, BS, NRP, EMS for Children Program Manager
Melissa Adams, AAS, NRP, EMD-Q, EMD Program Manager and Licensing Agent
Griffin Bourassa, MMPM, NRP, Licensing Agent
State Medical Director: Matthew Sholl, M.D., MPH
State Associate Medical Director: Kate Zimmerman, D.O.

Region 1 – Atlantic Partners EMS, Inc

e-mail: office@apems.org
Medical Director: Mike Bohanske, M.D.

Region 2 – Tri-County EMS

e-mail: lebrunj@cmhc.org
Medical Director: Seth Ritter, M.D.

Region 3 - Atlantic Partners EMS, INC.

e-mail: office@apems.org
Medical Director: Timothy Pieh, M.D.

Region 4 - Atlantic Partners EMS, Inc.

e-mail: office@apems.org
Medical Director: David Saquet, D.O.
Region 5 – Aroostook EMS
(207) 768-2755
Chase Labbe, Coordinator
Medical Director: Beth Collamore, M.D.

Region 6 - Atlantic Partners EMS, Inc.
(207)877-0936
Sally Taylor, Coordinator
Medical Director: Bruce Lowry, M.D.

Maine ACEP Representative
Kelly Meehan-Coussee, M.D.

At-Large Representative
Peter Tilney, D.O.

Clinical Pharmacist/Pharmacology Representative
Bethany Nash, PharmD, AEMT

ALS Representative
Claire Dufort, EMT-P

BLS Representative

Pediatric Representative/EMS-C Medical Director
Rachel Williams, M.D.

Bioterrorism /WMD
If you suspect a chemical or biological agent threat, call your local law enforcement agency immediately.

Maine Bureau of Health Emergency
1-800-821-5821
Reporting and Consultation

Maine National Guard 11th Civil Support Team (WMD) 207-877-9623

Maine Emergency Management Agency 207-624-4400

To Report Workplace Injury:
Bureau of Labor
207-623-7923
Business Hours
207-592-4501
Evenings & Weekends
Additional Contact List

<table>
<thead>
<tr>
<th>Service / Agency</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Protective Services</td>
<td>1-800-624-8404</td>
</tr>
<tr>
<td>Child Abuse Reporting</td>
<td>1-800-452-1999</td>
</tr>
<tr>
<td>Divers Alert Network Emergency Hotline</td>
<td>1-919-684-9111</td>
</tr>
<tr>
<td>New England Donor Services</td>
<td>1-800-446-6362</td>
</tr>
<tr>
<td>Office of the Chief Medical Examiner</td>
<td>1-800-870-8744 207-624-7180</td>
</tr>
<tr>
<td>Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Bureau of Labor Standards</td>
<td>207-623-7923 207-592-4501</td>
</tr>
<tr>
<td>Bureau of Health Emergency Reporting (DHHS)</td>
<td>1-800-821-5821</td>
</tr>
<tr>
<td>Maine Emergency Management Agency</td>
<td>207-684-4400</td>
</tr>
</tbody>
</table>

Trauma & Cardiac Centers

<table>
<thead>
<tr>
<th>Institution / Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine Medical Center</td>
<td>207-662-2950</td>
</tr>
<tr>
<td>22 Bramhall St</td>
<td></td>
</tr>
<tr>
<td>Portland, ME 04102</td>
<td></td>
</tr>
<tr>
<td>Central Maine Medical Center</td>
<td>207-782-1110</td>
</tr>
<tr>
<td>300 Main St</td>
<td>207-795-2200</td>
</tr>
<tr>
<td>Lewiston, ME 04240</td>
<td></td>
</tr>
<tr>
<td>Northern Light Eastern Maine Medical Center</td>
<td>207-973-8000</td>
</tr>
<tr>
<td>489 State St</td>
<td></td>
</tr>
<tr>
<td>Bangor, ME 04401</td>
<td></td>
</tr>
</tbody>
</table>

EMS Offices

<table>
<thead>
<tr>
<th>Institution / Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine Emergency Medical Services</td>
<td>207-626-3860</td>
</tr>
<tr>
<td>45 Commerce Dr - Suite 1</td>
<td></td>
</tr>
<tr>
<td>152 State House Station</td>
<td></td>
</tr>
<tr>
<td>Augusta, ME 04333</td>
<td></td>
</tr>
<tr>
<td>Atlantic Partners (Southern Maine) EMS</td>
<td>207-536-1719</td>
</tr>
<tr>
<td>253 Warren Ave</td>
<td></td>
</tr>
<tr>
<td>Portland, ME 04103</td>
<td></td>
</tr>
<tr>
<td>Tri County EMS</td>
<td>207-795-2880</td>
</tr>
<tr>
<td>300 Main St</td>
<td></td>
</tr>
<tr>
<td>Lewiston, ME 04240</td>
<td></td>
</tr>
<tr>
<td>Atlantic Partners (Kennebec Valley) EMS</td>
<td>207-877-0936</td>
</tr>
<tr>
<td>71 Halifax Ave</td>
<td></td>
</tr>
<tr>
<td>Winslow, ME 04901</td>
<td></td>
</tr>
<tr>
<td>Atlantic Partners (Northeast) EMS</td>
<td>207-974-4880</td>
</tr>
<tr>
<td>354 Hogan Rd</td>
<td></td>
</tr>
<tr>
<td>Bangor, ME 04401</td>
<td></td>
</tr>
<tr>
<td>Aroostook EMS</td>
<td>207-768-2755</td>
</tr>
<tr>
<td>33 Edgemont Dr</td>
<td></td>
</tr>
<tr>
<td>Presque Isle, ME 04769</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for your offer of assistance.

Please be advised that these Emergency Medical Services clinicians are operating under the authority of the State of Maine and under protocols approved by the State of Maine. These EMS clinicians are also operating under the authority of a Medical Control physician and standing medical orders.

If you are currently providing patient care, you will be relinquishing care to these EMS personnel and their Medical Control physician.

No individual should intervene in the care of this patient unless the individual is:
1. Requested by the attending EMS clinician, and
2. Authorized by the Medical Control physician, and
3. Is capable of assisting, or delivering more extensive emergency medical care at the scene

If you are the patient’s own physician, PA, or nurse practitioner, the EMS clinicians will work with you to the extent that their protocols and scope of practice allow.

If you are not the patient’s own physician, PA, or nurse practitioner, you must be a Maine licensed physician who will assume patient management and accept responsibility. These EMS clinicians will assist you to the extent that their protocols and scope of practice allow. They will not assist you in specific deviations from their protocols without Medical Control approval. This requires that you accompany the patient to the hospital and that their Medical Control physician is contacted and concurs.

The EMS clinicians or medical control may request that you provide evidence that you are a Maine licensed physician: a copy of your pocket card, an identification issued by a Maine Hospital or healthcare agency, or confirmation of active license status through the Maine Board of Medicine or Nursing website at:

MDs, DOs, PAs and NPs are listed at the same website.
For MDs and PAs - select Regulator "Medicine"
For DOs - select Regulator "Osteopathic Medicine"
For NPs - Select Regulator "Nursing"
<table>
<thead>
<tr>
<th>INDEX TOPIC</th>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Lead Guidelines</td>
<td>Red 4</td>
<td>39</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>Gold 18</td>
<td>80</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>Green 17</td>
<td>103</td>
</tr>
<tr>
<td>Acute Stroke</td>
<td>Gold 10 - 13</td>
<td>72 - 75</td>
</tr>
<tr>
<td>Adrenal Insufficiency (Adult and Pediatric)</td>
<td>Gold 15</td>
<td>77</td>
</tr>
<tr>
<td>Advanced Airway Placement Confirmation</td>
<td>Blue 4</td>
<td>23</td>
</tr>
<tr>
<td>Adult Abuse</td>
<td>Grey 19</td>
<td>164</td>
</tr>
<tr>
<td>A-Fib/A-Flutter</td>
<td>Red 17 - 19</td>
<td>52 - 54</td>
</tr>
<tr>
<td>Agitated/Excited Delirium</td>
<td>Orange 4 - 6</td>
<td>142 - 144</td>
</tr>
<tr>
<td>Airway Algorithm (Adult and Pediatric)</td>
<td>Blue 3</td>
<td>22</td>
</tr>
<tr>
<td>Alcohol Intoxication/Withdrawal</td>
<td>Yellow 5 - 6</td>
<td>116 - 117</td>
</tr>
<tr>
<td>Allergy</td>
<td>Gold 1-4</td>
<td>63 - 66</td>
</tr>
<tr>
<td>Altered Level Of Consciousness Protocol</td>
<td>Gold 5</td>
<td>67</td>
</tr>
<tr>
<td>Altered Mental Status Scale (AMSS)</td>
<td>Orange 4</td>
<td>142</td>
</tr>
<tr>
<td>Alternative Airways</td>
<td>Blue 1</td>
<td>20</td>
</tr>
<tr>
<td>Amputation</td>
<td>Green 3, 15</td>
<td>85, 97</td>
</tr>
<tr>
<td>AMSS - Altered Mental Status Scale</td>
<td>Orange 4</td>
<td>142</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Gold 1-4</td>
<td>63 - 66</td>
</tr>
<tr>
<td>Antibiotics - Open Fractures</td>
<td>Green 29</td>
<td>111</td>
</tr>
<tr>
<td>Antidotes - Carbamate</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Antidotes - Ingested/Absorbed Poison</td>
<td>Yellow 1 -2</td>
<td>112 -113</td>
</tr>
<tr>
<td>Antidotes - Nerve Agents</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Antidotes - Opiates</td>
<td>Yellow 1, 3</td>
<td>112, 114</td>
</tr>
<tr>
<td>Antidotes - Organophosphates</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Antidotes - Sodium Channel Blocker Overdose</td>
<td>Yellow 2 -3</td>
<td>113 - 114</td>
</tr>
<tr>
<td>Antidotes - Tricyclic Antidepressants</td>
<td>Yellow 2, 3</td>
<td>113, 114</td>
</tr>
<tr>
<td>Anxiolysis - CPAP</td>
<td>Blue 10</td>
<td>29</td>
</tr>
<tr>
<td>Anxiolysis - Post Intubation</td>
<td>Blue 6</td>
<td>25</td>
</tr>
<tr>
<td>APGAR Scoring</td>
<td>Pink 6</td>
<td>132</td>
</tr>
<tr>
<td>Asthma</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>Bariatric Patients</td>
<td>Grey 12</td>
<td>157</td>
</tr>
<tr>
<td>BIAD - Blind Insertion Airway Devices</td>
<td>Blue 1</td>
<td>20</td>
</tr>
<tr>
<td>Bleeding Control</td>
<td>Green 15</td>
<td>97</td>
</tr>
<tr>
<td>Blind Insertion Airway Devices (BIAD)</td>
<td>Blue 1</td>
<td>20</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>Red 20 - 21</td>
<td>55 - 56</td>
</tr>
<tr>
<td>Brief Resolved Unexplained Event - (BRUE)</td>
<td>Pink 1</td>
<td>127</td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>BRUE - (Brief Resolved Unexplained Event)</td>
<td>Pink 1</td>
<td>127</td>
</tr>
<tr>
<td>Burns (adult and pediatric)</td>
<td>Green 19 - 20</td>
<td>101 - 102</td>
</tr>
<tr>
<td>Carbamate - Toxin</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Carbon Monoxide / Cyanide Exposure</td>
<td>Yellow 8 - 9</td>
<td>119 - 120</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>Red 7 - 11</td>
<td>42 - 46</td>
</tr>
<tr>
<td>Cardiac Arrest - Neonate</td>
<td>Pink 7</td>
<td>133</td>
</tr>
<tr>
<td>Cardiac Arrest - Pediatric</td>
<td>Red 8</td>
<td>43</td>
</tr>
<tr>
<td>Cardiac Arrest - Maternal / Pregnancy</td>
<td>Pink 5</td>
<td>131</td>
</tr>
<tr>
<td>Cardiogenic Shock</td>
<td>Red 22</td>
<td>57</td>
</tr>
<tr>
<td>INDEX TOPIC</td>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cardioversion Settings</td>
<td>Grey 24</td>
<td>169</td>
</tr>
<tr>
<td>Chest Pain – General</td>
<td>Red 1</td>
<td>36</td>
</tr>
<tr>
<td>Chest Pain – Suspected Cardiac</td>
<td>Red 2-3</td>
<td>37 - 38</td>
</tr>
<tr>
<td>Chest Pain - Uncertain Etiology</td>
<td>Red 6</td>
<td>41</td>
</tr>
<tr>
<td>Chest Pain Fibrinolytic Check List</td>
<td>Red 5</td>
<td>40</td>
</tr>
<tr>
<td>Chest Trauma</td>
<td>Green 10</td>
<td>92</td>
</tr>
<tr>
<td>Child Abuse</td>
<td>Grey 17 - 18</td>
<td>162 - 163</td>
</tr>
<tr>
<td>Childbirth</td>
<td>Pink 4 - 5</td>
<td>130 - 131</td>
</tr>
<tr>
<td>Childbirth Complications</td>
<td>Pink 5, Gold 19</td>
<td>131, 81</td>
</tr>
<tr>
<td>Chronic Bronchitis</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>CO Monitors</td>
<td>Brown 3</td>
<td>10</td>
</tr>
<tr>
<td>Coma (Altered Level of Consciousness)</td>
<td>Gold 5</td>
<td>67</td>
</tr>
<tr>
<td>Coma - Pediatric</td>
<td>Gold 5</td>
<td>67</td>
</tr>
<tr>
<td>Comfort Care</td>
<td>Grey 2</td>
<td>147</td>
</tr>
<tr>
<td>Contact Lists</td>
<td>Grey 26 - 28</td>
<td>171 - 173</td>
</tr>
<tr>
<td>Continuous Nebulizer Treatments</td>
<td>Purple 1</td>
<td>14</td>
</tr>
<tr>
<td>COPD</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>CPAP</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>CPAP - Anxiolysis</td>
<td>Blue 10</td>
<td>29</td>
</tr>
<tr>
<td>Crime Scenes</td>
<td>Grey 23</td>
<td>168</td>
</tr>
<tr>
<td>Crush Injury</td>
<td>Green 26</td>
<td>108</td>
</tr>
<tr>
<td>Cyanide / Carbon Monoxide Exposure</td>
<td>Yellow 8 - 9</td>
<td>119 - 120</td>
</tr>
<tr>
<td>Death Situation Guidelines</td>
<td>Grey 9 - 10</td>
<td>154 - 155</td>
</tr>
<tr>
<td>Death with Dignity Law</td>
<td>Grey 11</td>
<td>156</td>
</tr>
<tr>
<td>Decision Making Capacity</td>
<td>Grey 20 - 21</td>
<td>165 - 166</td>
</tr>
<tr>
<td>Defibrillation Settings</td>
<td>Grey 24</td>
<td>169</td>
</tr>
<tr>
<td>Delirium Tremens</td>
<td>Yellow 5 -6</td>
<td>116 - 117</td>
</tr>
<tr>
<td>Depression/Suicidal Ideation</td>
<td>Orange 2</td>
<td>140</td>
</tr>
<tr>
<td>Diabetic Emergencies</td>
<td>Gold 6</td>
<td>68</td>
</tr>
<tr>
<td>Diabetic Emergencies - Pediatric</td>
<td>Gold 6</td>
<td>68</td>
</tr>
<tr>
<td>DNR Orders</td>
<td>Grey 1 - 5</td>
<td>146 - 150</td>
</tr>
<tr>
<td>Donor Services</td>
<td>Red 15</td>
<td>50</td>
</tr>
<tr>
<td>Dual Sequential Defibrillation (DSD)</td>
<td>Red 13</td>
<td>48</td>
</tr>
<tr>
<td>Drowning (adult and pediatric)</td>
<td>Yellow 15</td>
<td>126</td>
</tr>
<tr>
<td>Emergency Childbirth</td>
<td>Pink 4</td>
<td>130</td>
</tr>
<tr>
<td>Emphysema</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>EMR Scope of Practice</td>
<td>Purple 2</td>
<td>15</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>Green 27</td>
<td>109</td>
</tr>
<tr>
<td>Excited Delirium</td>
<td>Orange 4 - 6</td>
<td>142 - 144</td>
</tr>
<tr>
<td>Eye Pain - Chemical</td>
<td>Green 28</td>
<td>110</td>
</tr>
<tr>
<td>Eye Pain - General</td>
<td>Green 28</td>
<td>110</td>
</tr>
<tr>
<td>Eye Trauma</td>
<td>Green 28</td>
<td>110</td>
</tr>
<tr>
<td>Faces Pain Scale - Pediatric (Wong-Baker)</td>
<td>Green 24</td>
<td>106</td>
</tr>
<tr>
<td>Facial/Dental Injury</td>
<td>Green 27</td>
<td>109</td>
</tr>
<tr>
<td>Failed Airway (Failed Intubation Algorithm)</td>
<td>Blue 5</td>
<td>24</td>
</tr>
<tr>
<td>Fainting (Syncope)</td>
<td>Red 23</td>
<td>58</td>
</tr>
<tr>
<td>INDEX TOPIC</td>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Fibrinolytic Checklist (Stroke Checklist)</td>
<td>Gold 13</td>
<td>75</td>
</tr>
<tr>
<td>FLACC Behavioral Pain Assessment Scale - Pediatric</td>
<td>Green 24</td>
<td>106</td>
</tr>
<tr>
<td>Fluid Bolus</td>
<td>Purple 2</td>
<td>15</td>
</tr>
<tr>
<td>Frostbite</td>
<td>Yellow 11 - 12</td>
<td>122 - 123</td>
</tr>
<tr>
<td>GCS</td>
<td>Green 9</td>
<td>91</td>
</tr>
<tr>
<td>Glasgow Coma Scale - Adult</td>
<td>Green 9</td>
<td>91</td>
</tr>
<tr>
<td>Glasgow Coma Scale - Pediatric</td>
<td>Green 9</td>
<td>91</td>
</tr>
<tr>
<td>Head Trauma</td>
<td>Green 11 - 14</td>
<td>93 - 96</td>
</tr>
<tr>
<td>Heat Exhaustion</td>
<td>Yellow 13</td>
<td>124</td>
</tr>
<tr>
<td>Heat Stroke</td>
<td>Yellow 14</td>
<td>125</td>
</tr>
<tr>
<td>Helicopter Landing Zone</td>
<td>Green 1 - 2</td>
<td>83 - 84</td>
</tr>
<tr>
<td>Helmet Removal</td>
<td>Grey 22</td>
<td>167</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Green 15</td>
<td>97</td>
</tr>
<tr>
<td>Hemorrhagic Shock</td>
<td>Green 16 - 18</td>
<td>98 - 100</td>
</tr>
<tr>
<td>Hemostatic Agents</td>
<td>Green 15</td>
<td>97</td>
</tr>
<tr>
<td>Home Health Care Devices</td>
<td>Brown 4</td>
<td>11</td>
</tr>
<tr>
<td>Homelessness - Care of People Experiencing</td>
<td>Orange 7</td>
<td>145</td>
</tr>
<tr>
<td>Hospice Patients</td>
<td>Grey 6 - 8</td>
<td>151 - 153</td>
</tr>
<tr>
<td>Hospital Destination Decision Making</td>
<td>Brown 2</td>
<td>9</td>
</tr>
<tr>
<td>Hyperkalemia protocol</td>
<td>Red 26 - 27</td>
<td>61 - 62</td>
</tr>
<tr>
<td>Hyperthermia - Heat Exhaustion</td>
<td>Yellow 13</td>
<td>124</td>
</tr>
<tr>
<td>Hyperthermia - Heat Stroke</td>
<td>Yellow 14</td>
<td>125</td>
</tr>
<tr>
<td>Hypoglycemic Emergencies</td>
<td>Gold 6</td>
<td>68</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>Yellow 11 - 12</td>
<td>122 - 123</td>
</tr>
<tr>
<td>Ingested / Absorbed Poison</td>
<td>Yellow 1 - 2</td>
<td>112 - 113</td>
</tr>
<tr>
<td>Intoxicated Drivers</td>
<td>Grey 19</td>
<td>164</td>
</tr>
<tr>
<td>Intubation (Pre-Intubation Checklist)</td>
<td>Blue 2</td>
<td>21</td>
</tr>
<tr>
<td>Intubation - Failed</td>
<td>Blue 5</td>
<td>24</td>
</tr>
<tr>
<td>IO Use</td>
<td>Purple 3</td>
<td>16</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Blue 6 & 10; Green 22, 23; Orge 5, 6</td>
<td>25 & 29; 104, 105; 143, 144</td>
</tr>
<tr>
<td>Landing Zone - Helicopter</td>
<td>Green 1 - 2</td>
<td>83 - 84</td>
</tr>
<tr>
<td>LVO - Large Vessel Occlusion Screening</td>
<td>Gold 11</td>
<td>73</td>
</tr>
<tr>
<td>LVAD</td>
<td>Brown 4, Red 24 - 25</td>
<td>11; 59 - 60</td>
</tr>
<tr>
<td>Mandatory Reporting</td>
<td>Grey 18</td>
<td>163</td>
</tr>
<tr>
<td>Mechanical CPR Devices</td>
<td>Red 11</td>
<td>46</td>
</tr>
<tr>
<td>Medical Shock</td>
<td>Gold 14 - 17</td>
<td>76 - 79</td>
</tr>
<tr>
<td>Medical Shock - Pediatric</td>
<td>Gold 14 - 17</td>
<td>76 - 79</td>
</tr>
<tr>
<td>Medication Dosages - Cardiac Arrest - Pediatric</td>
<td>Red 12</td>
<td>47</td>
</tr>
<tr>
<td>Medication List - Maine EMS approved</td>
<td>Grey 25</td>
<td>170</td>
</tr>
<tr>
<td>MOLST / POLST Forms</td>
<td>Grey 1 - 5</td>
<td>146 - 150</td>
</tr>
<tr>
<td>MEMS Run Record</td>
<td>Brown 2</td>
<td>9</td>
</tr>
<tr>
<td>Naloxone Distribution</td>
<td>Yellow 4</td>
<td>115</td>
</tr>
<tr>
<td>Narrow Complex Tachycardia</td>
<td>Red 17 - 19</td>
<td>52 - 54</td>
</tr>
<tr>
<td>Nausea</td>
<td>Gold 20</td>
<td>82</td>
</tr>
<tr>
<td>Neonatal Resuscitation</td>
<td>Pink 7</td>
<td>133</td>
</tr>
<tr>
<td>INDEX TOPIC</td>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Neonatal and Young Infant Fever</td>
<td>Pink 3</td>
<td>129</td>
</tr>
<tr>
<td>Nerve Agent Exposure</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Nitrox (nitrous oxide)</td>
<td>Green 22</td>
<td>104</td>
</tr>
<tr>
<td>Non-EMS Medical Interveners</td>
<td>Black 1</td>
<td>174</td>
</tr>
<tr>
<td>Nose Bleed</td>
<td>Green 27</td>
<td>109</td>
</tr>
<tr>
<td>Obstetric Emergencies</td>
<td>Gold 19</td>
<td>81</td>
</tr>
<tr>
<td>Open Fractures</td>
<td>Green 29</td>
<td>111</td>
</tr>
<tr>
<td>Opiates/opioids/narcotics - Toxins</td>
<td>Yellow 1</td>
<td>112</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>Green 28</td>
<td>110</td>
</tr>
<tr>
<td>Organ Donor</td>
<td>Red 15</td>
<td>50</td>
</tr>
<tr>
<td>Organophosphates - Toxins</td>
<td>Yellow 7</td>
<td>118</td>
</tr>
<tr>
<td>Pain - Abdominal</td>
<td>Gold 18</td>
<td>80</td>
</tr>
<tr>
<td>Pain - Eye</td>
<td>Green 28</td>
<td>110</td>
</tr>
<tr>
<td>Pain "Faces" Scale - Pediatric (Wong-Baker)</td>
<td>Green 24</td>
<td>106</td>
</tr>
<tr>
<td>Pain Control - Pediatric</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pain Control - Post Intubation</td>
<td>Blue 6</td>
<td>25</td>
</tr>
<tr>
<td>Pain Management - Trauma</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pain Management - Traumatic - Pediatric</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pain Management - Universal</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pain Scale - Pediatric (FLACC)</td>
<td>Green 24</td>
<td>106</td>
</tr>
<tr>
<td>Patient Centric Devices</td>
<td>Brown 4</td>
<td>11</td>
</tr>
<tr>
<td>Patient Sign-offs</td>
<td>Brown 4</td>
<td>11</td>
</tr>
<tr>
<td>Pediatric Airway</td>
<td>Blue 3</td>
<td>22</td>
</tr>
<tr>
<td>Pediatric - Bradicardia</td>
<td>Red 20 - 21</td>
<td>55 - 56</td>
</tr>
<tr>
<td>Pediatric - Coma (Altered Level of Consciousness)</td>
<td>Gold 5</td>
<td>67</td>
</tr>
<tr>
<td>Pediatric Diabetic Emergencies</td>
<td>Gold 6</td>
<td>68</td>
</tr>
<tr>
<td>Pediatric - Respiratory Distress</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>Pediatric Cardiac Arrest</td>
<td>Red 8</td>
<td>43</td>
</tr>
<tr>
<td>Pediatric Cardiac Arrest - Medication Dosages</td>
<td>Red 12</td>
<td>47</td>
</tr>
<tr>
<td>Pediatric Equipment Sizes</td>
<td>Pink 10</td>
<td>136</td>
</tr>
<tr>
<td>Pediatric Medical Shock</td>
<td>Gold 14 - 17</td>
<td>76 - 79</td>
</tr>
<tr>
<td>Pediatric Pain Control</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pediatric - Seizures</td>
<td>Gold 8 - 9</td>
<td>70 - 71</td>
</tr>
<tr>
<td>Pediatric - Tachycardia</td>
<td>Red 17 - 19</td>
<td>52 - 54</td>
</tr>
<tr>
<td>Pediatric Transportation</td>
<td>Pink 11 - 12</td>
<td>137 - 138</td>
</tr>
<tr>
<td>Pediatric Traumatic Pain Management</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Pediatric Vital Signs</td>
<td>Pink 8</td>
<td>134</td>
</tr>
<tr>
<td>Pelvic Binders</td>
<td>Green 16</td>
<td>98</td>
</tr>
<tr>
<td>Persons Experiencing Homelessness</td>
<td>Orange 7</td>
<td>145</td>
</tr>
<tr>
<td>Poisoning - Ingested / Absorbed</td>
<td>Yellow 1 - 2</td>
<td>112 - 113</td>
</tr>
<tr>
<td>POLST / MOLST Form</td>
<td>Grey 1 - 5</td>
<td>146 - 150</td>
</tr>
<tr>
<td>Post Intubation Anxiolysis</td>
<td>Blue 6</td>
<td>25</td>
</tr>
<tr>
<td>Post Intubation Pain Control</td>
<td>Blue 6</td>
<td>25</td>
</tr>
<tr>
<td>Post Resuscitation - Adult</td>
<td>Red 16</td>
<td>51</td>
</tr>
<tr>
<td>Pregnancy - Cardiac Arrest In</td>
<td>Pink 5</td>
<td>131</td>
</tr>
<tr>
<td>Pregnancy - Trauma Triage</td>
<td>Green 4</td>
<td>86</td>
</tr>
<tr>
<td>INDEX TOPIC</td>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Prehospital Stroke Scale (FAST - ED)</td>
<td>Gold 11</td>
<td>73</td>
</tr>
<tr>
<td>Pre-Intubation Checklist</td>
<td>Blue 2</td>
<td>21</td>
</tr>
<tr>
<td>Protective Headgear Removal</td>
<td>Grey 22</td>
<td>167</td>
</tr>
<tr>
<td>Pulmonary Edema</td>
<td>Blue 11</td>
<td>30</td>
</tr>
<tr>
<td>Pulmonary Hypertension</td>
<td>Blue 12</td>
<td>31</td>
</tr>
<tr>
<td>Pulseless Ventricular Tachycardia</td>
<td>Red 7 -11, 13</td>
<td>42 - 46, 48</td>
</tr>
<tr>
<td>Pulseless V-Tach</td>
<td>Red 7 -11, 13</td>
<td>42 - 46, 48</td>
</tr>
<tr>
<td>Radiation Injuries</td>
<td>Yellow 10</td>
<td>121</td>
</tr>
<tr>
<td>Radio Contact Numbers</td>
<td>Grey 26 - 28</td>
<td>171 - 173</td>
</tr>
<tr>
<td>Recurrent V-Fib</td>
<td>Red 13</td>
<td>48</td>
</tr>
<tr>
<td>Refractory V-Fib</td>
<td>Red 13</td>
<td>48</td>
</tr>
<tr>
<td>Refusal of Transport or Care</td>
<td>Grey 20 - 21</td>
<td>165 - 166</td>
</tr>
<tr>
<td>Refusals</td>
<td>Brown 4</td>
<td>11</td>
</tr>
<tr>
<td>Remodulan</td>
<td>Blue 12</td>
<td>31</td>
</tr>
<tr>
<td>Respiratory Distress - Adult</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>Respiratory Distress - Pediatric</td>
<td>Blue 7</td>
<td>26</td>
</tr>
<tr>
<td>Respiratory Distress with Stridor - Pediatric</td>
<td>Pink 2</td>
<td>128</td>
</tr>
<tr>
<td>Respiratory Distress with Wheezing - Pediatric</td>
<td>Blue 7 - 9</td>
<td>26 - 28</td>
</tr>
<tr>
<td>Restraints</td>
<td>Orange 3</td>
<td>141</td>
</tr>
<tr>
<td>Rule of 9's</td>
<td>Green 20</td>
<td>102</td>
</tr>
<tr>
<td>Seizures</td>
<td>Gold 8 - 9</td>
<td>70 - 71</td>
</tr>
<tr>
<td>Seizures - Pediatric</td>
<td>Gold 8 - 9</td>
<td>70 - 71</td>
</tr>
<tr>
<td>Septic Shock - Adult</td>
<td>Gold 14 - 17</td>
<td>76 - 79</td>
</tr>
<tr>
<td>Septic Shock - Pediatric</td>
<td>Gold 14 - 17</td>
<td>76 - 79</td>
</tr>
<tr>
<td>Sexual Assault</td>
<td>Grey 16</td>
<td>161</td>
</tr>
<tr>
<td>Shock - Classification of</td>
<td>Green 18</td>
<td>100</td>
</tr>
<tr>
<td>Shock - Pregnancy</td>
<td>Green 17</td>
<td>99</td>
</tr>
<tr>
<td>Sign-offs</td>
<td>Brown 4</td>
<td>11</td>
</tr>
<tr>
<td>Sodium Channel Blocker Overdose</td>
<td>Yellow 2 - 3</td>
<td>113 - 114</td>
</tr>
<tr>
<td>Special Circumstances Protocol</td>
<td>Brown 5</td>
<td>12</td>
</tr>
<tr>
<td>Spine Assessment</td>
<td>Green 6</td>
<td>88</td>
</tr>
<tr>
<td>Spine Management</td>
<td>Green 7 - 8</td>
<td>89 - 90</td>
</tr>
<tr>
<td>ST Elevation Myocardial Infarction (STEMI)</td>
<td>Red 3</td>
<td>38</td>
</tr>
<tr>
<td>STEMI Criteria</td>
<td>Red 3</td>
<td>38</td>
</tr>
<tr>
<td>Stretcher Shoulder Straps</td>
<td>Brown 5</td>
<td>12</td>
</tr>
<tr>
<td>Stridor - Pediatric</td>
<td>Pink 2</td>
<td>128</td>
</tr>
<tr>
<td>Stroke</td>
<td>Gold 10 - 13</td>
<td>72 - 75</td>
</tr>
<tr>
<td>Stroke Checklist</td>
<td>Gold 13</td>
<td>75</td>
</tr>
<tr>
<td>Stroke Scale</td>
<td>Gold 11</td>
<td>73</td>
</tr>
<tr>
<td>Submersion Injuries</td>
<td>Yellow 15</td>
<td>126</td>
</tr>
<tr>
<td>Surgical Cricothyrotomy</td>
<td>Blue 13</td>
<td>32</td>
</tr>
<tr>
<td>Syncope</td>
<td>Red 23</td>
<td>58</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Red 17 - 19</td>
<td>52 - 54</td>
</tr>
<tr>
<td>Taser Probes</td>
<td>Brown 6</td>
<td>13</td>
</tr>
<tr>
<td>Telephone Contact Numbers</td>
<td>Grey 26 - 28</td>
<td>171 - 173</td>
</tr>
<tr>
<td>Termination of Resuscitation</td>
<td>Red 14 - 15</td>
<td>49 - 50</td>
</tr>
<tr>
<td>INDEX TOPIC</td>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Termination of Resuscitation - Trauma</td>
<td>Green 25</td>
<td>107</td>
</tr>
<tr>
<td>Tooth Avulsion</td>
<td>Green 27</td>
<td>109</td>
</tr>
<tr>
<td>Tourniquets</td>
<td>Green 15</td>
<td>97</td>
</tr>
<tr>
<td>Toxins</td>
<td>Yellow 1 - 5</td>
<td>112 - 114</td>
</tr>
<tr>
<td>tPA Checklist for Acute Stroke</td>
<td>Gold 13</td>
<td>75</td>
</tr>
<tr>
<td>Tracheostomy Care</td>
<td>Blue 15</td>
<td>34</td>
</tr>
<tr>
<td>Transport of Hospice Patients</td>
<td>Grey 6 - 8</td>
<td>151 - 153</td>
</tr>
<tr>
<td>Transport of Mentally Ill</td>
<td>Orange 1</td>
<td>139</td>
</tr>
<tr>
<td>Transport Refusals</td>
<td>Grey 20 - 21</td>
<td>165 - 166</td>
</tr>
<tr>
<td>Trauma - Chest</td>
<td>Green 10</td>
<td>92</td>
</tr>
<tr>
<td>Trauma Head</td>
<td>Green 11</td>
<td>93</td>
</tr>
<tr>
<td>Trauma Pain Management - Pediatric</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>Trauma Triage</td>
<td>Green 3 - 5</td>
<td>85 - 87</td>
</tr>
<tr>
<td>Tricyclic Antidepressants - Toxins</td>
<td>Yellow 2</td>
<td>113</td>
</tr>
<tr>
<td>TXA - Tranexamic Acid</td>
<td>Green 17 - 18</td>
<td>99 - 100</td>
</tr>
<tr>
<td>Universal Pain Management</td>
<td>Green 21 - 24</td>
<td>103 - 106</td>
</tr>
<tr>
<td>VAD - Ventricular Assistive Device</td>
<td>Red 24 - 25</td>
<td>59 - 60</td>
</tr>
<tr>
<td>Vagus Nerve Stimulator</td>
<td>Brown 5, Gold 9</td>
<td>12, 71</td>
</tr>
<tr>
<td>Vital Signs - Pediatric</td>
<td>Pink 8</td>
<td>134</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Gold 20</td>
<td>82</td>
</tr>
<tr>
<td>Wheezing - Pediatric</td>
<td>Blue 7 - 9</td>
<td>26 - 28</td>
</tr>
<tr>
<td>Wong-Baker Pain Scale</td>
<td>Green 24</td>
<td>106</td>
</tr>
<tr>
<td>Wound Management</td>
<td>Green 15</td>
<td>97</td>
</tr>
</tbody>
</table>
ANNEX

The following protocols require specialty training and approval to access by the MDPB.

These protocols are not part of the standard prehospital patient care protocols.
The Medical Direction and Practices Board recognizes that EMS clinicians may work with Operational K9s [OpK9] as part of their job (with search and rescue or law enforcement teams). While the handler of the canine is ultimately responsible for their dog, they may grant permission for trained EMS personnel to provide care for their canine partner. At no time should the care of an OpK9 take priority over a person. It is vital that the EMS personnel who meet the requirements below have a working relationship with the OpK9 handlers well in advance of needing to implement these protocols.

Only clinicians who have successfully completed a Maine EMS-approved K9 medicine course may access these protocols. That clinician must seek approval from the MDPB prior to access. This will require the following:
1. Documentation of successful course completion
2. Documented affiliation/MOU with the service that deploys operational K9s
3. Established relationship with an accepting veterinary clinic
4. Documentation of training with said affiliated K9 service
5. The EMS clinician will be in good standing with Maine EMS

MRS Title 14, Chapter 7, subsection 164-B, *Immunity from civil liability for assistance given to law enforcement dogs, search and rescue dogs and service dogs*, was passed in 2017. This statute provides protections for emergency medical services clinicians who render aid to a working dog (please refer to statute for details).

At this time, these protocols do **NOT** apply to service dogs. Service dogs are defined by the ADA as a dog specifically trained to perform work for a person with a disability. Examples include guide dogs, medic alert dogs, and emotional support/psychiatric service dogs.

It is expected that clinicians maintain clinical competency and attend continuing education courses pertaining to the care of the Operational K9.

Denotes a potentially complex canine patient. Please consult the veterinarian to collaborate your efforts
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty.

Ill or injured humans always take priority over canines.

The goal is to safely provide the canine's initial medical evaluation, treatment and transport to definitive care. Injured and ill canines may pose an unintentional threat to clinicians, therefore it is imperative that the canine be secured prior to medical evaluation. This is best done by the canine's handler. It is preferable that the handler stay with their canine throughout all phases of care, evacuation, and transport unless they, themselves, are injured or required for threat neutralization. If the primary handler is not available, attempt to locate another handler or person that is familiar with handling OpK9s to secure and stay with the injured canine.

All injured canines should be muzzled before handling. The following are relative contraindications to muzzling:
1. Unconsciousness
2. Upper airway obstruction
3. Vomiting
4. Severe facial trauma
5. Heat-related injury (need to allow evaporative cooling via panting).
 - If these canines need to be muzzled, a Cage- or Basket-type muzzle is preferred.

EMT/AEMT/PARAMEDIC
Muzzling
1. The type of muzzle used depends on the size of the canine, available material, type of injury and desired canine access.

<table>
<thead>
<tr>
<th>Muzzle Type</th>
<th>Required Materials</th>
<th>Suggested Use</th>
</tr>
</thead>
</table>
| Cage or Basket | Manufactured cage/basket muzzle (preferably made out of rubber) | ~All-purpose
 | | ~Preferred muzzle: allows for open-mouth breathing
 | | ~Suggested if oxygen delivery is indicated |
| Fabric | Manufactured, pre-sized muzzle | All-purpose |
| Quick muzzle | Any available, broad-width (greater than 1-2 inches) tape, leash, webbing, gauze, etc. | ~Use only if fabric or cage/basket muzzle is unavailable
 | | ~Narrow tape/gauze etc. can cause injury |

(continued)
(continued from previous page)

2. The canine should be restrained in a position of comfort, which may include sitting or standing. Do not restrain the canine in such a manner that its ability to breathe or pant is impeded.
3. Slide the appropriately-sized muzzle over the canine's snout from the rostral (anterior) to caudal (posterior) aspect. Be sure that the lower jaw is captured in the muzzle and not free.
4. Be sure to frequently check the security of the muzzle and make sure that it is not impeding the canine's ability to breathe.

It is important that the clinician be adequately trained to restrain the Operational K9 in order to safely apply a muzzle. A stressed canine may not only bite the EMS clinician or others, but may bite its handler as well.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

Clinical signs of airway obstruction include the following:
- Gagging
- Pawing at the mouth
- Excessive drooling
- Frequent swallowing motions
- Extension of the head and neck
- Tripod position
- Reluctance to lie down
- Cyanosis (late sign)

Similar to a person who can speak clearly without any respiratory distress, consider a canine that is barking, growling, or whining without any clinical signs of respiratory distress to have a patent airway.

EMT/AEMT/PARAMEDIC
1. Allow for position of comfort (sit or stand, sternal helps with gravity)
2. Secure canine with leash/rope
3. Avoid putting hands in canine's mouth (serious injury to clinician can occur)
4. Attempt Heimlich maneuver (avoid if sharp object involved)
 a. "Bear hug" or lay canine on side and place fist just below sternum or behind ribs
 b. Five (5) quick and upward abdominal thrusts followed by airway check
 c. If not successful, repeat 1-2 times
5. Palpate throat/trachea - you may be able to dislodge a supraglottic foreign body cephalad out of the pharynx.
 a. Palpate the object at the supraglottic region (ventral mandible)
 b. From caudal aspect of object, squeeze/push cranially
 i. Two-handed with both thumbs, or
 ii. Single-handed with thumb and index or middle finger

Pharyngo-laryngeal manipulation (continued)
6. In an unconscious canine, open the airway by extending the head and neck, and pull the tongue forward. A second rescuer may use gauze/leash looped behind upper canine teeth to keep the mouth open. You may use a second length of gauze/leash for the lower jaw as well.

7. In an unconscious canine, if the obstruction is:
 a. **VISIBLE**: attempt to manually remove; do not push foreign body further back in airway
 b. **NOT VISIBLE**: do not attempt a blind finger sweep due to risk of pushing the foreign body further down the airway

8. If object is not removed and canine collapses, provide chest compressions and mouth-to-snout or BVM (with a canine mask). If unable to get chest rise, proceed to Airway Management protocol, **OD Green 6** and Cardiac Arrest protocol, **OD Green 10**.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

EMT/AEMT
1. Place the canine in the sternal (prone) position
2. Open airway
 a. Tilt head and slightly extend the neck
 b. If foreign body suspected, refer to Airway Obstruction protocol, **OD Green 4**.
3. Provide oxygen to maintain SpO\(_2\) > 94%*
4. BVM (with canine mask) with goal respiratory rate of 10-12 breaths/minute

PARAMEDIC
5. If unable to ventilate with basic airway maneuvers, proceed with intubation (only if canine is unconscious)
 a. Prepare
 Suction
 Light source (flashlight/headlamp/laryngoscope)
 ET tube ready with lubricant, bougie and syringe
 Measure ETT from incisor to thoracic inlet (typical ETT size is 9-11 mm)
 Tube-securing device ready
 _Continuous end-tidal CO\(_2\) monitor ready if available_
 Consider surgical airway device as back-up
 b. Pre-oxygenate (If time allows, often the collapse is sudden, not allowing adequate time to pre-oxygenate)
 Pre-oxygenate with face mask x 3 minutes
 _Ensure SpO\(_2\) greater than 90%_
 c. Position
 Sternal/prone position
 Assistant to help open mouth
 Second rescuer may use gauze/leash and place behind upper canines to hold mouth/airway open.
 d. Pass the tube
 Pull tongue straight out and over mandible
 Visualize vocal cords
 Directly visualize ETT passing through cords
 Inflate cuff
 e. Check tube placement
 Breath sounds/chest rise
 _End-tidal CO\(_2\), if available (35-45 mmHg)_
 f. Secure ETT
 Consider using a mouth-gag to keep mouth open and prevent damage to the ETT. This can be achieved with a 1-2 wide inch roll of tape
 g. Titrate oxygen to maintain SpO\(_2\) ~ 94%

6. If unable to intubate or ventilate with BVM, proceed to Surgical Airway, protocol **OD Green 8**

(continued)
*Pulse oximetry is most reliable in unconscious, sedated, or anesthetized canines. Finger probes used for people do not work well in canines. If possible, obtain and use a flat ear probe attachment. Place the probe on the tongue or non-pigmented portion of the lip. In conscious dogs, use the ear pinna, lip fold, inguinal skin fold or prepuce/vulva; although not optimal for oximetry, these alternate sites generally yield reliable results in most instances. Alternatively, a neonatal or disposable pulse oximetry adhesive sensor attached to the base of the canine's tail provides an alternative and very reliable site.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

Indication: Inability to oxygenate or ventilate via less invasive means (i.e. Basic airway maneuvers, and inability to intubate.)

Materials/Equipment for Surgical Cricothyrotomy
1. Cuffed tracheostomy tube or 6.0 - 10.0 ETT (dogs ~25 kg can accept a 9.0 mm tube)
2. Tracheal hook or bougie
3. Traussel dilator (if available)
4. Syringe to inflate cuff
5. Scalpel (No. 11 blade)
6. Umbilical tape or other means to secure tracheostomy tube or ETT
7. 4x4 gauze
8. Suction, if available

Procedure:
1. Extend the neck when possible to ensure best access to the trachea.
 a. Place a towel, IV bag or similar item under the neck to help extension.
 b. Swab/cleanse the area.
2. Stabilize the larynx and locate the cricothyroid membrane
 a. Immobilize the trachea with your non-dominant thumb and middle finger while palpating the cricothyroid membrane with your non-dominant index finger. **NOTE:** The cricothyroid membrane is immediately BELOW the thyroid cartilage.
3. Make a 3 - 5 cm **vertical** incision over the cricothyroid membrane through the skin and subcutaneous tissues. **NOTE:** Severe bleeding is possible with this procedure and may occur at this or the following steps. Be prepared to suction and provide direct pressure to control bleeding
4. Palpatate the membrane through the incision to confirm anatomy.
5. Make a small (1 cm or less) incision **horizontally** through the cricothyroid membrane.

(continued)
Procedure (continued from previous page)

6. Insert the tracheal hook or bougie in the opening of the membrane while maintaining hold of the thyroid cartilage with your non-dominant hand.
7. If Trousseau dilator available, insert into the incision site and spread vertical then rotate 90 degrees until the dilator is parallel with the neck.
8. Insert theuffed tracheostomy tube or ETT tube into the incision site and advance caudally. Advance until the flanges rest on the skin of the neck (when using tracheostomy tube).
9. Carefully remove the dilator (if used), tracheal hook and obturator of the tracheostomy tube.
10. Inflate the balloon of the tracheostomy tube/ETT.
11. Ventilate and confirm position by physical exam and ETCO₂.
12. Secure the tube in place.

Photos compliments of: Sureiyan Hardjo, UQVETS Small Animal Hospital

Dissection depicting the ventral laryngeal anatomy in a cadaver dog. (A) Blue arrow points to intact cricothyroid membrane and ligament. (B) Black arrow indicates the incision in the cricothyroid ligament. The cricothyroid membrane is located on the ventral aspect of the larynx, joining the caudoventral border of the thyroid cartilage and the cranioventral aspect of the cricoid cartilage. The medial part of the cricothyroid membrane is termed the cricothyroid ligament. The ligament is devoid of a major blood supply but may have small vessels associated near the cricoid and thyroid attachments.

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

EMT
1. Initiate chest compressions
2. High-flow O₂ with BVM ventilation 1 breath every 10 chest compressions during recoil and without interrupting compressions or at a ratio of 30:2
 a. Compression rate of 100-120 compressions/minute
 b. Depth of 1/2 - 1/3 of chest width
 c. End-tidal of >15 mmHg indicates good compressions
3. Continue 2-minute cycles of chest compressions with pulse checks
4. If ROSC occurs, refer to K9 Post-Resuscitation Care protocol, **OD Green 12**
5. If no ROSC in 20 minutes and ALS-trained K9 care clinician not on scene, terminate resuscitation.

ADVANCED EMT
6. Establish IV/IO without interrupting chest compressions
7. Manage the airway per **OD Green 6**. Avoid respiratory rate greater than 10/minute in cardiac arrest

PARAMEDIC
8. One medication intervention at each 2-minute reassessment per RECOVER clinical guidelines (doi. 10.1111/j.1476-4431.2012.00757.x)
9. EPINEPHrine 0.01 mg/kg of 1 mg/10 mL IV/IO push every 3-5 minutes
 a. VF/VT: amiodarone 5 mg/kg IV/IO push
 b. Asystole/PEA: atropine 0.04 mg/kg IV/IO push at the initiation of CPR, re-dose every other 2-minute cycle of compressions.
10. Consider causes of OHCA:
 a. Is hypovolemia suspected? If yes, give fluid bolus of 20 mL/kg
 b. Is hypoxia suspected? If yes, administer high-flow oxygen and manage airway per **OD Green 6**
 c. Do you suspect a pneumothorax? If yes, perform bilateral needle decompressions, refer to **OD Green 15**
11. Contact veterinarian for further treatment recommendations
12. If achieve ROSC, proceed to **OD Green 12**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Weight (kg)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb)</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Epi 1mg/10mL every other BLS cycle</td>
<td>0.01 mg/kg</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>Atropine (0.54 mg/mL)</td>
<td>0.04 mg/kg</td>
<td>1.9</td>
<td>2.2</td>
<td>2.6</td>
<td>3</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Amiodarone (50 mg/mL)</td>
<td>5 mg/kg</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>Lidocaine (20 mg/mL)</td>
<td>2 mg/kg</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>Naloxone (0.4 mg/mL)</td>
<td>0.04 mg/kg</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
</tbody>
</table>

(continued)
Termination of Resuscitation:
Consider terminating CPR when any of the following occurs:
1. ROSC
2. You are too exhausted to continue
3. Scene/situation becomes unsafe
4. No ROSC after 20 minutes of ineffective CPR OR 30-40 minutes of high-quality CPR
Operational K9 Post-Resuscitation Care

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty.
Ill or injured humans always take priority over canines.

EMT
1. Manage airway, OD Green 6
2. Administer O₂ only to keep O₂ sats greater than or equal to 94% and less than 99% (avoid hypo/hyperoxia).
3. Maintain ventilation rate between 10 - 12 breaths per minute

ADVANCED EMT
4. Obtain IV/IO access
5. Treat hypotension with fluid boluses.
 a. Goal systolic BP is measured by return of palpable femoral pulse.
 b. For post-resuscitation hypotension, administer fluid boluses of 20 mL/kg. Total volume should not exceed 60 mL/kg

PARAMEDIC
6. If hypotension persists: Contact the veterinarian for options such as NOREPInephrine IV/IO infusion.
 Preparation: mix NOREPInephrine 8 mg in 250 mL NS
 a. Dosing - usual dose of NOREPInephrine is 1 mcg/kg/min, follow guidelines of your veterinarian for dosing.

7. If seizure develops, check blood glucose
 a. If glucose < 70 mg/dL, administer D₅₀ 0.5 g/kg IV/10 (diluted to D₂₅ or D₁₂.₅ with NS) or give 0.5 g/kg of D₁₀W.
 b. If glucose > 70 mg/dL, provide supportive care

8. If K9 suffers loss of spontaneous circulation and re-arrests, follow the K9 Cardiac Arrest protocol, OD Green 10.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

EMS
1. Ascertain all sites of bleeding and control with direct pressure
 a. Extremity: apply an elastic wrap/pressure bandage, or SWAT-T.

 Commercially made windlass tourniquets are not effective on canines due to the tapered shape of their extremities.

2. For deep wounds in junctional areas or areas containing large muscle bellies (neck, thigh, shoulder/triceps area) control bleeding by applying a Maine EMS-approved hemostatic agent and packing the agent in the wound and applying/maintaining pressure over the agent for a minimum of 5 minutes.
 a. Check for ongoing bleeding. If bleeding has stopped, apply appropriate pressure bandage over top of dressing; if bleeding continues, reapply pressure for a minimum of 5 minutes.
 b. If bleeding continues, remove the initial hemostatic agent and repeat with a new hemostatic agent. Remember, for these agents to have maximal effectiveness, they must be packed inside the wound as close to the bleeding source as possible

3. Treat for shock, if indicated, OD Green 14
4. Manage airway as appropriate, OD Green 6

ADVANCED EMT/Paramedic
5. IV/IO en route if feasible. Do not delay transport for IV/IO access.

Please note that the SWAT-T should be stored in the OpK9 first aid pack only. This is not a Maine EMS-approved tourniquet for use on humans.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

If history of illness or mechanism of injury consistent with signs/symptoms of shock (elevated pulse, elevated respiratory rate, pale mucous membranes, altered LOC, or lowered BP) then transport as soon and as efficiently as possible.

EMT
1. Control bleeding, refer to Hemorrhage protocol, OD Green 13
2. Manage airway as appropriate; see OD Green 6

ADVANCED EMT
3. IV/IO en route
4. If shock present (see below table), perform fluid bolus according to the following guidelines:
 a. Establish IV/IO access and perform 20 mL/kg fluid bolus (LR preferred)
 Repeat, as needed, within 15-30 min
 i. May repeat in 250-500 mL boluses to achieve palpable femoral pulse and improved mentation with MAX total dose 60 mL/kg.

PARAMEDIC
5. In canines with either penetrating/blunt trauma and are hemodynamically unstable, as evidenced by tachycardia, hypotension (weak femoral pulse), or other evidence of shock, and who are less than 180 minutes (3 hours) from the time of injury/hemorrhage, consider:
 a. Tranexamic acid (TXA) 10mg/kg IV/IO mixed in 250 ml of NS over 10 minutes
 b. Notify receiving facility of the need for the second 10 mg/kg dose of TXA as a continuous infusion over 8 hours

<table>
<thead>
<tr>
<th>Stage of Shock</th>
<th>HR beats/min</th>
<th>Capillary Refill secs</th>
<th>Mucous Membranes</th>
<th>Mentation</th>
<th>Pulse Quality</th>
<th>SBP mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (at rest)</td>
<td><120</td>
<td><2</td>
<td>Pink</td>
<td>Bright, Alert</td>
<td>Strong</td>
<td>>90</td>
</tr>
<tr>
<td>Acute Compensatory</td>
<td>>120</td>
<td><1</td>
<td>Red</td>
<td>Alert</td>
<td>Fair</td>
<td>>90</td>
</tr>
<tr>
<td>Early Decompensatory</td>
<td>>140</td>
<td>>2</td>
<td>Pale</td>
<td>Depressed</td>
<td>Weak</td>
<td><90</td>
</tr>
<tr>
<td>Terminal/Irreversible</td>
<td><80</td>
<td>Absent</td>
<td>Pale</td>
<td>Stupor/Comatose</td>
<td>Absent</td>
<td>Low</td>
</tr>
</tbody>
</table>
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty.
Ill or injured humans always take priority over canines.

EMT
1. O₂ as appropriate
2. Assist ventilations (PPV), if needed
3. Impaled Objects
 a. Secure in place with bulky dressings
4. Open chest wound
 a. Cover with vented or non-vented occlusive dressing
 b. If shock present, consider tension pneumothorax has developed and burp/vent the chest seal.
5. Flail segment with paradoxical movement and respiratory distress
 a. Consider PPV

ADVANCED EMT
6. IV/IO en route
7. If shock present,
 a. Perform fluid bolus of 20 mL/kg LR

PARAMEDIC
8. For presumed tension pneumothorax, perform chest decompression
 a. Landmark
 i. 7th - 9th intercostal space (canines have 13 ribs)
 -OR-
 ii. Midpoint between shoulder and last rib/widest point on rib cage

 b. Go over top (cranial) aspect of rib
 c. Aspirate and consider decompressing the other side of the chest as well
 i. Remember the canine mediastinum is fenestrated
 d. DO NOT leave catheter(s) in place unless otherwise directed

NOTE: Chest decompressions will be performed using a Maine EMS-approved device.
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

EMT
1. Remove collar/harness/vest/booties, etc. Avoid pulling away any gear that is melted in the skin/coat
2. O₂, as appropriate
3. Give highest priority to airway problems and major trauma
4. If burn is < 15% of TBSA (superficial or partial thickness), consider cooling burn with cool water (sterile water/saline if available)
5. Cover burn with dry dressing, sterile sheet, or commercially prepared dry dressing
6. Prevent heat loss/hypothermia
7. If suspect CO/CN poisoning, refer to OD Green 18

ADVANCED EMT/PARAMEDIC
8. IV/IO en-route
9. If shock present, perform fluid bolus of 20 mL/kg of lactated ringers
10. If shock NOT present and TBSA > 20% or full thickness burns present, deliver fluid bolus as follows:
 a. 2mL/kg x %TBSA burned = amount to be given in first 8 hours
Operational K9 Opioid Overdose

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

WARNING: CONTACT WITH THESE TOXINS CAN BE FATAL TO RESCUERS CONSIDER SCENE SAFETY AND DECONTAMINATION

Don appropriate PPE as opioid exposure is often due to contact with the opioid in powder form and cross-contamination can occur between the OpK9, handler, and EMS clinician. Please alert the Veterinary Hospital as soon as feasibly possible so that they can take appropriate precautions as well.

Opioid overdose in canines is manifested primarily by excessive sedation, bradycardia, and hypothermia. Canines are less susceptible than humans to the respiratory depressant effects of opioids.

EMT
1. Administer O2, as appropriate
2. Manage airway providing rescue breaths if RR < 8, see OD Green 6
3. Consider securing canine with muzzle in anticipation of reversal of opioid
4. If it is suspected that the canine came into contact with an opioid and is showing symptoms of opioid overdose, administer:
 a. Naloxone 2-4 mg IN, repeat every 2-5 minutes as needed (dose depends upon pre-packaged medication); OR
 b. Naloxone 2-4 mg IM via auto-injector (dose depends upon device), repeat every 2-5 minutes as needed

ADVANCED EMT/PARAMEDIC
5. Establish IV/IO access
6. Alternative route of administration:
 a. Naloxone 2-4 mg IV/IO; may repeat every 2-5 minutes.
7. If canine is hypotensive, administer a fluid bolus of 20 mL/kg of LR

Northern New England Poison Center: (800) 222-1222
Animal Poison Helplines (Fees may apply):
• ASPCA Animal Poison Control: (888) 426-4435
• Pet Poison Control Helpline: (855) 764-7661
Operational K9 CO/CN Exposure/Smoke Inhalation

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

Don PPE if necessary, assess canine after evacuation
Remove canine from source of smoke/inhalation

EMT
1. Secure canine per OD Green 2
2. Manage airway as per OD Green 6
If suspect CO/CN exposure:
3. Administer high-flow O2
 *pulse oximetry may be inaccurate in exposure to CO/CN

AEMT
4. If hypotensive, administer IV/IO bolus of 20 mL/kg of LR, may repeat x 1

PARAMEDIC
5. In case of severe CN toxicity, either alone or in combination with CO exposure:
 a. Hydroxocobalamin (Cyanokit) - 150mg/kg IV/IO over 10-15 minutes, with consultation with the receiving veterinarian strongly encouraged.

Clinical signs of cyanide toxicity are frothing at the mouth, rapid/deep breathing, excitability (tremors, seizure), and can progress to severe respiratory depression, loss of consciousness, coma, and death.
Operational K9 Nerve Agent/Organophosphate / Carbamate Exposure

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

PEARLS:

WARNING: CONTACT WITH THESE TOXINS CAN BE FATAL TO RESCUERS CONSIDER SCENE SAFETY AND DECONTAMINATION

- Assess for SLUDGEM symptoms (Salivation, Lacrimation, Urination, Defecation, GI Distress, Emesis, Muscle twitching/Miosis [constricted pupils]) and the Killer-Bs (Bradycardia, Bronchorrhea, Bronchospasm)
- If you suspect a bioterrorism/WMD threat, see Grey 27
- Transport canine with all windows of ambulance open
- Decontaminate entire ambulance after canine transport
- All responders who contacted the canine require decontamination

In unstable canines with known organophosphate/carbamate poisoning:

EMT
1. Remove canine from contaminated area and consider decontamination as needed based on scene/call circumstances
2. O₂ as appropriate
3. Manage airway as appropriate, see OD Green 6
 Ventilatory support may be critical in these poisonings
4. Vigorous suctioning may be necessary
5. Mark 1 kit (noted as auto-injector in table below)

ADVANCED EMT/PARAMEDIC
6. IV/IO en route
7. In all cases, continue to monitor closely for worsening symptoms

<table>
<thead>
<tr>
<th>Symptoms/ Medications</th>
<th>Dyspnea, twitching, nausea, vomiting, sweating, confusion, or pinpoint pupils</th>
<th>Apnea, seizure, unconsciousness, or flaccid paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>0.2-0.5 mg/kg IM/IV/IO or ONE auto-injector (2mg) per 20 lb Repeat every 10-20 minutes as needed with preference of repeat doses of 0.1 mg/kg if feasible</td>
<td></td>
</tr>
<tr>
<td>2-PAM Chloride</td>
<td>10-20 mg/kg IM every 8-12 hours as needed</td>
<td></td>
</tr>
</tbody>
</table>

* If atropine is drawn up from a vial to administer (Paramedic), the concentration may require more than one injection site to achieve the full dose without exceeding the recommended 3-5 mL max IM volume

<table>
<thead>
<tr>
<th>Lb</th>
<th>Kg</th>
<th>Dose (mg)</th>
<th>Min # auto-injectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>18</td>
<td>3.6 - 9</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>4.5 - 11.4</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>27</td>
<td>5.4 - 13.5</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>32</td>
<td>6.4 - 16</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>7.2 - 18</td>
<td>3</td>
</tr>
<tr>
<td>90</td>
<td>41</td>
<td>8.2 - 20.5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lb</th>
<th>Kg</th>
<th>Dose (mg)</th>
<th>Min # auto-injectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>18</td>
<td>180-360</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>227-450</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>27</td>
<td>270-540</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>32</td>
<td>320-640</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>360-720</td>
<td>3</td>
</tr>
<tr>
<td>90</td>
<td>41</td>
<td>410-820</td>
<td>4</td>
</tr>
</tbody>
</table>
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

- Canines do not sweat. Their predominant cooling mechanism is by panting.
- The progression of heat injury in the canine can be quite rapid and requires immediate intervention.
- Causes are environmental, exertional or a combination of the two.
- Prevention is key - it is important for handlers to assure that their canines are acclimated, and physically conditioned to the climate and level of activity. Consider work:rest cycles and adequate hydration.
- **AVOID** muzzles unless required for safety reasons; an open basket muzzle is the preferred muzzle in this case to allow for panting.

<table>
<thead>
<tr>
<th>Mild (heat stress)</th>
<th>Core Temp* (F)</th>
<th>HR</th>
<th>MM</th>
<th>LOC</th>
<th>Panting**</th>
<th>Behavior/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies 105-106</td>
<td>Fast, Strong</td>
<td>Moist, Pink</td>
<td>Alert</td>
<td>Heavy, Controlled</td>
<td>Excessive thirst, discomfort with physical activity, slightly decreased performance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderate (heat exhaustion)</th>
<th>Core Temp* (F)</th>
<th>HR</th>
<th>MM</th>
<th>LOC</th>
<th>Panting**</th>
<th>Behavior/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>106-108</td>
<td>Fast, Strong, or Weak</td>
<td>Tacky or Dry, Bright Red</td>
<td>Alert</td>
<td>Uncontrolled, Failure to Salivate</td>
<td>Weakness, anxiety, unwillingness to work, acts tired, unresponsive to handler commands</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe (heat stroke)</th>
<th>Core Temp* (F)</th>
<th>HR</th>
<th>MM</th>
<th>LOC</th>
<th>Panting**</th>
<th>Behavior/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually > 108</td>
<td>Weak</td>
<td>Dry Pale</td>
<td>Altered</td>
<td>Maybe</td>
<td>Vomiting, diarrhea, ataxia, head tremors, seizures, blindness, abnormal pupil size</td>
<td></td>
</tr>
</tbody>
</table>

*Many canines are not trained or tolerable of rectal temps; may use axillary temperature if a rectal temp is not achievable. Axillary temps are approximately 1-2 degrees F less than rectal.

**Refer to PEARL in OD Green 22

Treatment for all stages of heat illness includes:
1. Remove the canine from the heat source and stop their work/exercise
2. Begin cooling methods
3. Monitor temperature (rectal or axillary)
4. Monitor for changes in mentation
5. Monitor closely for several hours to make sure illness does not progress to the next stage and that a rebound low body temperature does not develop.

Source: DHS Working Dog Handler Medical Care Manual 2017
(continued from previous page)

EMT
Mild Heat Injury (heat stress)
6. Cool by bringing to a shaded or lightly air-conditioned area. If no A/C available, use circulating fan to blow a light breeze by the canine
7. As feasible, remove muzzles, harnesses, tactical gear, etc.
8. Place on a cool surface to promote conductive cooling
9. Offer cool water and encourage drinking
10. Ensure the canine is afforded ample time to rest and recover where they are displaying no signs of heat stress.
11. Monitor vital signs every 5 minutes; discontinue cooling efforts when core temp is 104°F or less.
12. Ideally, these canines should not return to work or participate in outdoor activity for the rest of the day.

Moderate Heat Injury (heat exhaustion)
13. Follow guidelines above and start active external cooling
 a. Use cooling fans or air conditioning to reduce core body temperature
 b. Place cold compresses or wrapped in towels on the head and neck as well as the axillae and groin. Avoid placing ice packs on the limbs as this shunts hot blood back to the core.
 c. Doze or spray body with cold water; soak hair to skin with cold water and use fans or A/C to cool further.
14. Monitor vital signs every 5 minutes; discontinue cooling efforts when core temp reaches 104F
15. Dry canine off, place on dry surface and avoid direct application of air on canine from circulating fans or A/C.
16. Continue to monitor temperature every 10 minutes for at least the next few hours as body temperature may continue dropping to the subnormal range or rise excessively again.
 a. If body temperature drops below 100F (rebound hypothermia) consider passive warming by covering with blankets or other similar materials
17. Transport to appropriate veterinary treatment facility

Severe Heat Injury (heat stroke)
This is a life-threatening condition
18. Rapid cooling to a body temperature of 103.5-104°F
 a. Cool water (do not submerge in ice bath)
 b. Soaking the canine to the skin with cool water. Soak the entire canine as rapidly as possible through the hair, soaking the skin thoroughly and implement convective cooling with cooling fans or A/C.
19. When temperature reaches 104°F, remove from bath/water, dry hair and continue to monitor temperature, watch for rebound hypothermia, as above.
20. Transport to appropriate veterinary treatment facility

Source: DHS Working Dog Handler Medical Care Manual 2017
(continued from previous page)

AEMT/PARAMEDIC
21. Establish IV/IO access for moderate and severe heat-related illness
22. Administer 20 mL/kg fluid bolus IV/IO of LR
 a. Repeat as needed to achieve palpable femoral pulse and HR < 120 bpm and improved mentation
23. Check blood glucose. If <60 mg/dL, administer 0.5 g/kg D50 IV/IO (diluted to D25 or D12.5 in NS) or give 0.5 g/kg of D10W
24. Supplemental oxygen via face mask
25. Transport to appropriate veterinary treatment facility

NOTE: No single core temperature value defines heat-related illness for all canines in all circumstances. Well-conditioned, acclimated canines may reach peak core temperatures as high 106 - 108°F while working, yet display no behavioral or clinical signs of heat stress. Base clinical assessment on presence and progression of clinical signs over core temperature.

Controlled panting: the canine can stop panting with an alcohol-soaked gauze is put in front of the nose or when the canine becomes interested in or distracted by something (i.e. toy, reward, noxious stimulus, verbal command).

Uncontrolled panting: the canine cannot stop panting even when offered a treat or reward or when exposed to alcohol-soaked gauze or other noxious stimuli.
Operational K9 Anaphylaxis

These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

EMT
1. Allow canine to assume position of comfort
2. Secure canine with leash/rope
3. Manage airway as appropriate, OD Green 6
4. Supplemental O2, as appropriate
5. If anaphylaxis identified, assist administration of EPINEPHrine auto-injector, administer an adult or pediatric (as applicable) auto-injector, or provide EPINEPHrine through the Maine EMS Check and Inject program.
 a. EPINEPHrine 0.3 mg IM (Adult auto-injector) for canine 20 kg or greater
 b. EPINEPHrine 0.15 mg IM (Pedi auto-injector) for canine less than 20 kg
6. Transport
7. May repeat IM EPINEPHrine dose every 5-15 min x 3 if signs/symptoms continue or return despite initial treatment

ADVANCED EMT
8. If anaphylaxis identified:
 a. EPINEPHrine 0.3 mg IM [0.3 mL of 1mg/mL] for canine 20 kg or greater,
 b. EPINEPHrine 0.15 mg IM [0.15 mL of 1mg/mL] in canine less than 20 kg
9. IV/IO en route
10. If shock present, perform fluid bolus of 20 mL/kg and may repeat x 3 to MAX total volume of 60 mL/kg
11. If wheezing persists 5-15 minutes after EPINEPHrine administration, consider administration of albuterol via nebulizer 2.5 mg x 1

PARAMEDIC
12. Diphenhydramine 2 mg/kg IM
13. For mild allergic reactions/cutaneous allergies, the handler may administer 4 mg/kg diphenhydramine PO

PEARLS
In canines, cutaneous (i.e. urticaria/hives, pruritis/itching) signs of allergies are uncommon. However, with progression to anaphylaxis, clinical signs are most often associated with the cardiovascular (CV) and gastrointestinal (GI) systems. Respiratory signs may also develop, along with seizures and anxiousness, progressing to weakness and collapse.
Signs include:
- CV: tachycardia, weakness, weak pulses, mucous membrane color changes
- GI/GU: urinating, vomiting, and diarrhea that is often bloody
- Respiratory: increased respiratory effort, wheezes, and crackles

IV diphenhydramine can cause significant hypotension, therefore give IM
These canine guidelines are reserved for use only on Operational K9s who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

GDV (aka "bloat") progresses very rapidly and recognizing the symptoms in the canine quickly can save their life. Initial signs are often associated with abdominal pain. These can include, but are not limited to:

- an anxious look or looking at the abdomen
- extreme agitation due to acute pain
- standing and stretching, head and tail down with an arched back
- pacing, accompanied with the inability to sit or lay down comfortably
- drooling
- distending abdomen
- retching without producing anything except excessive saliva - this is the most common symptom, and sounds like dry-heaving but can sometimes sound like a repeated cough.

EMT
1. Immediate transport in position of comfort
2. Notify veterinary center early of GDV concern

AEMT
3. IV/IO access en route if feasible (do not delay transport for IV/IO access)
4. Administer fluid bolus of LR 20 mL/kg IV/IO

PARAMEDIC
5. Place canine on their side with side of maximum distention up.
6. Palpate the dilated stomach and caudal edge of the rib cage.
7. Identify point of maximum tympany on the left side. Perform needle decompression of gastric dilation with a 12-14 gauge x 3.25-5.25 inch IV catheter or large-bore needle.
8. Monitor for recurrent gastric dilation; decompress as indicated.

PEARL
The hallmark presentation of GDV is sudden onset of abdominal distention, distress, anxiety and pain (panting, guarding of the belly, anguished facial expression), and multiple attempts at vomiting that are frequently unproductive. Not every canine will have a classic appearance and some canines will not have obvious abdominal distention because of their body configuration.
These canine guidelines are reserved for use only on operational canines who are injured or become ill while on duty. Ill or injured humans always take priority over canines.

- **Move** K9 to safety
- **Muzzle** the K9 if conscious, no upper airway obstruction present, and not heat stress; handle cautiously if mentation is altered, K9 may have increased aggression
- **Control Massive Hemorrhage**
 - Direct pressure
 - Pressure bandage and/or wound packing
 - Avoid windlass tourniquets
 - Consider elastic tourniquet (i.e. SWAT-T)
- **Airway**
 - Clear oral cavity
 - Manual airway maneuvers (head and neck extended and in-line, prone positioning)
 - Advanced airway (ETT or surgical cricothyrotomy in the unresponsive canine)
- **Respiratory/Breathing**
 - Seal open chest wound
 - Tension pneumothorax management
- **Circulation**
 - IV/IO fluid resuscitation
 - TXA
- **Hypothermia**
 - Minimize exposure to elements
 - Apply survival blanket/maintain warmth
- **Head** and Trauma management
- **Pain** management (not available on formulary at this time)
- **Environment**
- **Dehydration**
- **Antibiotics** (not available on formulary at this time)
- **Lacerations/Wounds**
 - Bandage open abdominal wounds
 - Moisten/protect exposed organs
- **Splint** fracture (if safe to do so)
Operational K9 Casualty Card

CANINE-TACTICAL COMBAT CASUALTY CARE CARD (cTCCC)

EVAC CAT: ☐ Urgent ☐ Priority ☐ Routine

EVAC TYPE: ☐ Fixed ☐ Rotary ☐ Ground ☐ MEDEVAC ☐ CASEVAC

UNIT: __________________ NAME: __________________ TATTOO: __________

DATE: (DD-MM-YY) __________________ TIME: __________ GENDER: ☐ M ☐ F

Mechanism of Injury: (Mark X all that apply)
☐ IED ☐ GSW ☐ MINE ☐ BURN ☐ GRENADE ☐ ARTILLERY ☐ FALL
☐ OTHER: __

Injury: (Mark all injuries that apply with an X)

 Signs and Symptoms: (fill in the blank)

<table>
<thead>
<tr>
<th>Time</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain Score (0-10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (99-102.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Rate/Location (60-80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiration (16-30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Pressure (120/80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Ox% (> 95%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillary Refill (< 2 sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: __

__

DD FORM 3073 OCTOBER 2019 (Send card to dog.consult@us.army.mil) Page 1 of 1

https://jts.amed.army.mil/assets/docs/forms/DD_3073_Canine_Tactical_Combat_Casualty_Care_Card.pdf
K9 Normal Vitals & Glasgow Coma Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>10 - 40 breaths/minute</td>
</tr>
<tr>
<td>HR</td>
<td>60 - 80 bpm (up to 130 post exercise)</td>
</tr>
<tr>
<td>Capillary Refill</td>
<td>less than 2 sec.</td>
</tr>
<tr>
<td>Rectal Temp</td>
<td>100 -102.5 F (103-106 F post exercise)</td>
</tr>
<tr>
<td>LOC</td>
<td>Bright, alert, responsive (BAR)</td>
</tr>
<tr>
<td>BP</td>
<td>120/75 mmHg</td>
</tr>
<tr>
<td>Blood Glucose</td>
<td>70 - 120 mg/dL</td>
</tr>
<tr>
<td>SpO2</td>
<td>greater than 94%</td>
</tr>
<tr>
<td>EtCO2</td>
<td>35 - 45 mmHg</td>
</tr>
</tbody>
</table>

K9 Modified Glasgow Coma Score

Motor Activity
- Normal gait, normal spinal reflexes: 6
- Hemiparesis, tetraparesis, or decerebrate activity: 5
- Recumbent, intermittent extensor rigidity: 4
- Recumbent, constant extensor rigidity: 3
- Recumbent, constant extensor rigidity with opisthotonus: 2
- Recumbent, hypotonia of muscles, depressed or absent spinal reflexes: 1

Brain Stem Reflexes
- Normal pupillary light reflexes and oculocephalic reflexes: 6
- Slow pupillary light reflexes and normal to reduced oculocephalic reflexes: 5
- Bilateral unresponsive miosis with normal to reduced oculocephalic reflexes: 4
- Pinpoint pupils with reduced or absent oculocephalic reflexes: 3
- Unilateral, unresponsive mydriasis with reduced or absent oculocephalic reflexes: 2
- Bilateral, unresponsive mydriasis with reduced or absent oculocephalic reflexes: 1

Level of Consciousness
- Occasional periods of alertness and responsive to environment: 6
- Depression or delirium, capable of responding to environment but response may be inappropriate: 5
- Stupor, responsive to visual stimuli: 4
- Stupor, responsive to auditory stimuli: 3
- Stupor, responsive only to noxious stimuli: 2
- Coma, unresponsive to repeated noxious stimuli: 1

Score Interpretation

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>Coma</td>
</tr>
<tr>
<td>3-6</td>
<td>Grave</td>
</tr>
<tr>
<td>7-14</td>
<td>Guarded</td>
</tr>
<tr>
<td>15-18</td>
<td>Good</td>
</tr>
</tbody>
</table>

Source: www.K9tecc.org
Emergency Formulary for Operational K9s

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Dose for 30 kg canine</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSO DRUGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.01 mg/kg IV/IO (1 mg/10 mL) Cardiac Arrest q5min</td>
<td>0.3</td>
<td>mg</td>
</tr>
<tr>
<td>Atropine</td>
<td>0.04 mg/kg IV/IO/IM q4 min</td>
<td>1.2</td>
<td>mg</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>5 mg/kg IV/IO</td>
<td>150</td>
<td>mg</td>
</tr>
<tr>
<td>Defibrillation</td>
<td>2-4 J/kg</td>
<td>60 120</td>
<td>J</td>
</tr>
<tr>
<td>ANESTHETICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracaine 0.5%</td>
<td></td>
<td>1-2 drops/eye</td>
<td></td>
</tr>
<tr>
<td>DRUG REVERSALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naloxone</td>
<td>2-4 mg IV/IO/IM/IN; repeat q2-5 min</td>
<td>2 - 4</td>
<td>mg</td>
</tr>
<tr>
<td>ANTIEMETICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ondansetron</td>
<td>0.2 - 0.5 mg/kg PO or IV/IO (slowly over 2-15 min) q8h</td>
<td>6 15</td>
<td>mg</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>2-4 mg/kg IM or 4 mg PO q8-12h</td>
<td>60 120</td>
<td>mg</td>
</tr>
<tr>
<td>EpiPen</td>
<td>0.15-0.3 mg IM</td>
<td>0.3</td>
<td>mg</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.01 mg/kg IM (1 mg/1 mL) Anaphylaxis q3-5 min</td>
<td>0.3</td>
<td>mg</td>
</tr>
<tr>
<td>D50</td>
<td>0.5 g/kg IV slowly (dilute 1:1 with saline to make 25% or 1:2 to make D12.5) Can also deliver IV/IO via D10</td>
<td>15</td>
<td>grams</td>
</tr>
<tr>
<td>Atropine</td>
<td>0.2-0.5 mg/kg IM for organophosphate poisoning repeat dose of 0.1 mg/kg IM every 10-20 min</td>
<td>6 15</td>
<td>mg</td>
</tr>
<tr>
<td>2-PAM Chloride</td>
<td>10-20 mg/kg IM every 8-12 h</td>
<td>300 - 600</td>
<td>mg</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>150 mg/kg IV/IO Infuse over 10-15 min</td>
<td>4500</td>
<td>mg</td>
</tr>
</tbody>
</table>

Avoid **NON-Steroidal Anti-Inflammatory** medications (ASA, ibuprofen, etc) in the trauma patients

Fluid Resuscitation Guideline

Acute Trauma
1. Without active Hemorrhage, OR
2. With controlled Hemorrhage

| Crystalloid | 20 mL/kg IV (can repeat x 2) | 600 | mL |

Traumatic Shock
1. With uncontrolled active hemorrhage, OR
2. With internal body cavity bleeding

| Crystalloid | 10 mL/kg IV and only if evac time >30 min (repeat only x2) | 300 | mL |
| TXA | 10 mg/kg IV slow infusion | 300 | mL |

Acute trauma with:
1. Head trauma, OR
2. Pulmonary contusions (blast, overpressure or blunt trauma)

| Crystalloid | 10 mL/kg IV given ONCE; no more than 250 mL total if pulmonary contusion known or highly suspected | 300 (250 if pulm contusion) | mL |