

REPORT

Preliminary Geotechnical Data Report (REV02)

Kenduskeag Avenue Bridge No. 5798 over Interstate 95, Bangor, Maine (WIN 026095.00)

Submitted to:

Maine Department of Transportation

Submitted by:

WSP USA, Inc. 428 Dow Highway Eliot, Maine 03903

207.865.4024

WIN 026095.00 / WSP US0025840.3905

September 16, 2024 (Revised Oct. 15, 2024)

Table of Contents

1.0	INTRODUCTION	1
	PROJECT UNDERSTANDING	
3.0	GEOLOGIC SETTING	1
4.0	SUBSURFACE INVESTIGATION	1
5.0	LABORATORY TESTING	2
6.0	SUBSURFACE CONDITIONS	3
7.0	CONDITIONS OF ROCK CORE	4
8.0	REPORT AND EXPLORATION LIMITATIONS	4

TABLES (embedded)

Table 5-1: Number and Type of Laboratory Tests Performed	2
Table 6-1: Summary of Subsurface Fill and Soil Encountered	3

Tables (attached)

Table 1: Summary of Subsurface ExplorationsTable 2: Summary of Rock Core Quality

FIGURES (attached)

Figure 1: Site Location Map Figure 2: Boring Location Map

APPENDICES

APPENDIX A Boring Logs

APPENDIX B Rock Core Photographs

APPENDIX C Laboratory Test Results

APPENDIX D Rock Core Calculations

1.0 INTRODUCTION

This Preliminary Geotechnical Data Report (PGDR) summarizes the results of the geotechnical subsurface investigation and laboratory testing program of site soils and rock that WSP USA Inc. (WSP) performed to support the replacement of the Bridge No. 5798 that carries Kenduskeag Avenue over Interstate 95 (I-95) in Bangor, Maine. Figure 1 shows the site location.

2.0 PROJECT UNDERSTANDING

WSP reviewed the 1959 historic as-built drawings¹ for the existing Kenduskeag Avenue bridge structure and boring logs provided by MaineDOT. The existing structure was constructed in 1958 and consists of a four-span bridge with three (3) piers and two (2) abutments.

3.0 GEOLOGIC SETTING

Available site geology information, consisting of surficial² geologic maps of the area indicate subsurface conditions consist of road embankment fills overlying Pleistocene Presumpscot Formation glaciomarine deposits generally consisting predominantly of silt and fine sand.

Available site geology information, consisting of bedrock³ geologic maps of the area indicate bedrock in the region is mapped as the Medium bedded facies of the Penobscot River Member of the Silurian-aged Bangor Formation of the Vassalboro Group, consisting of medium to dark gray, fine-grained to very fine-grained, Metawacke; a metamorphosed impure, poorly sorted sandstone with appreciable clay minerals. The historical boring logs¹ characterize bedrock as phyllite (a general term for metamorphosed clay-rich rocks).

4.0 SUBSURFACE INVESTIGATION

WSP completed two (2) test borings (BB-BKA-101 and BB-BKA-103) within the paved roadway of Kenduskeag Avenue behind the existing bridge abutments on May 5 and 6, 2024 and one (1) test boring (BB-BKA-102) south of Kenduskeag Avenue on the paved shoulder of I-95 southbound near the existing bridge pier on August 1, 2024. The as-drilled boring locations and elevations are summarized in Table 1 and boring locations with respect to existing site features are illustrated in the Boring Location Plan in Figure 2.

WSP subcontracted Seaboard Drilling, LLC (Seaboard) of Bangor, Maine, who completed the borings using a Diedrich D-50 drill rig for all borings. Borings were advanced either using solid stem augers (SSA) followed by 4-inch casing and drive and wash methods to refusal or using 4-inch casing and drive and wash methods to refusal. At refusal, rock coring was performed in a 3-inch casing seated in rock.

SPT was performed using a calibrated automatic hammer system and standard 2-inch split spoon sampler in general accordance with American Society for Testing and Materials (ASTM) D1586. Sampling was conducted at approximately 5-foot intervals, where split spoons were advanced 24 inches with a 140-pound hammer dropped 30 inches. WSP recorded the number of hammer blows required to advance the sampler through each 6-inch

¹ Maine State Highway Commission, February 24, 1958. Final As Built Plans, Project No. I-95-8(7) 177, Interstate #95 under Kenduskeag Ave. in the City of Bangor, Penobscot County, Key Plans and Profiles, 8 sheets, Received from HNTB, Filename: 5798 Bangor 1959 As-Built.pdf.

² Syverson, K.M., Thompson, A.M., and Johnston, R.A., (2011). Surficial Geology, Bangor Quadrangle, Maine. Open-File No. 11-6, Maine Geological Survey, 1 sheet, scale 1:24,000.

³ Pollock, S.G., Johnston, R.A., (2011). Bedrock Geology of the Bangor Quadrangle, Maine, Open-File No. 11-57, Maine Geological Survey, 1 sheet, scale 1:240,000.

increment. Measured, uncorrected N-values, are calculated as the sum of the hammer blows to advance the sampler during the 6-inch to 18-inch intervals. Seaboard provided WSP with a copy of the automatic hammer calibration report from November 2023^4 for both drill rigs used. WSP used a calibrated hammer energy transfer ratio of 106.6% for the May borings and 108.7% for the August boring provided by in the report to convert the measured N-values to N₆₀ values. Uncorrected N-values and N₆₀ are shown on the boring logs (Appendix A). WSP collected and stored soil samples in sealed glass jars for later evaluation and laboratory testing.

Up to 15 feet of rock core was collected in each boring using NX size (1-7/8-inch diameter) diamond tipped core barrels following either refusal of casing or failure to advance the split spoon sampler or roller bit. Rock core samples were placed in wooden boxes and transported to the WSP office. WSP recorded the lithology, Total Core Recovery (TCR), Rock Quality Designation (RQD), and coring rates for each core run which are provided in the boring logs in Appendix A. Photographs of all collected rock core are presented in Appendix B.

The boring logs provided in Appendix A present details of the sampling methods used, field data obtained, and soil and rock conditions encountered during the investigation. A description of the boring log symbols and terms used for the soil and rock descriptions precedes the boring logs. A WSP geotechnical engineer monitored drilling activities, selected sampling intervals, logged subsurface conditions encountered, and obtained soil samples for use in visual descriptions and subsequent laboratory testing and classification WSP field characterized the soils in general accordance with ASTM D2488. WSP field characterized the bedrock lithology.

5.0 LABORATORY TESTING

After reviewing the collected samples in the office, WSP transferred select samples to GeoTesting Express (GTX) of Acton, Massachusetts for geotechnical laboratory testing in accordance with applicable AASHTO and ASTM testing procedures. The types and numbers of each of the laboratory tests conducted on soil samples and rock core are presented in Table 5-1. Soil testing results are included on the boring logs in Appendix A. Complete soil and rock core laboratory testing results are provided in Appendix C.

Laboratory Test	Test Standard	No. Tests Completed
Moisture content	AASHTO T267, ASTM D2216	4
Grain size analysis (coarse)	AASHTO T88, ASTM D6913	10
Grain size (fine)	AASHTO T88, ASTM D7928	1
Atterberg limits	AASHTO T89 / T90, ASTM D4318	4
Chlorides	AASHTO T291, ASTM D512	1
рН	AASHTO T289, ASTM D4972	1
Sulfates	AASHTO T290	1
Electric Resistivity	ASTM G57	1
Elastic Moduli of Rock in Uniaxial Compression - Rock	ASTM D7012 Method D	2

Table 5-1: Number and Type of Laboratory Tests Performed

⁴ GRL Engineers, Inc., SPT Energy Calibration on November 2, 2023, Submitted to Eric Baron of S.W. Cole Explorations, LLC (now known as Seaboard Drilling LLC) on November 10, 2023.

6.0 SUBSURFACE CONDITIONS

The boring logs in Appendix A provide detailed descriptions of the soil, bedrock, and measured groundwater conditions encountered in the borings.

Soils: The soils encountered in the borings generally consist of fill materials placed during construction of the bridge and roadway, clay deposits, and naturally occurring sand and gravel interpreted as glacial till. Table 6-1 summarizes the major stratigraphic units, the range of thicknesses, and generalized material descriptions for soils encountered.

Stratigraphic Unit	Approximate Range in Encountered Thickness (feet)	Generalized Description
Asphalt	0.5 to 1.0	Asphalt pavement approximately 6-inch to 12-inch thick (<i>Encountered in the three borings</i>)
Fill	3.3 to 9.8	The fill consists of olive brown to brown or grey to brown, dry, loose to very dense, fine to coarse Sand with some fine to coarse gravel, and trace to little silt. USCS: SM. AASHTO: A-1-b (0) (Encountered in the three borings)
Fill (Silt and Clay)	0 to 8.3	The silt and clay fill consists of brown to olive brown, moist, very stiff, Silt to Clay with trace to some fine to coarse sand, trace to some fine gravel, and medium plasticity. USCS: CL and ML. AASHTO: A-6 (13), A-4 (0) <i>(encountered in BB-BKA-103)</i>
Clay	8.7 to 11.8	Brown to grey, moist to wet, soft to very stiff, Clay, some to trace fine to coarse sand and trace gravel. USCS: CL. AASHTO: A-4(5), A-6(12), A-6(13), A-6(17) (Encountered in BB-BKA-101 and BB-BKA-103)
Glacial Till	2.3 to 7.0	Brown to grey, moist to wet, dense to very dense, fine to coarse Gravel, some fine to coarse sand, little to some silt, and weathered rock fragments. USCS: SM-GM, GM. AASHTO: A-2-4(0), A-1b(0), A-1-a(0) (Encountered in the three borings)

Table 6-1: Summary of Subsurface Fill and Soil Encountered

Notes: USCS classification from laboratory testing in accordance with ASTM D2487. AASHTO classification from laboratory testing and includes Group Classification and Group Index in parentheses in accordance with AASHTO M145.

Bedrock: Bedrock was cored in each boring. The top of bedrock surface was at approximately 24.5 feet bgs (EL. 84.4 feet NAVD88) in BB-BKA-101, 6.7 feet bgs (EL. 77.3 feet NAVD88) in BB-BKA-102, and 38.0 feet bgs (EL. 65.1 feet NAVD88) in BB-BKA-103. Bedrock consists of grey, very fine to fine grained, very thinly to thinly bedded, Metawacke [metasandstone] with calcite veins that is medium strong to very strong and slightly to moderately weathered. The bedrock is mapped as the Penobscot River Member of the Bangor Formation.³

Rock quality designation (RQD) is a common parameter that is used to help assess the competency of sampled bedrock. RQD is defined as the sum of pieces of recovered bedrock greater than 4 inches in length divided by the

total length of the core run. RQD values for bedrock encountered at the site ranges between 0 and 78 percent, which generally correlates to Rock Mass Quality ratings of very poor to poor with one quality rating of good.

Groundwater: Groundwater levels were measured in BB-BKA-101, BB-BKA-102, and BB-BKA-103 before the casing was withdrawn and at the end of the drilling day. Groundwater elevations vary from approximately EL. 104.2 feet to EL. 72.6 feet (NAVD88). Groundwater levels will fluctuate due to soil conditions and topography and seasonal variations in precipitation. Groundwater levels encountered during construction may differ from those recorded from the borings.

7.0 CONDITIONS OF ROCK CORE

Rock Mass Rating (RMR) and Geological Strength Index (GSI) values were calculated for the rock core collected in each boring. The RMR system⁵ assigns numerical ratings to six parameters, including strength of the intact rock, RQD, discontinuity spacing, discontinuity surface conditions, groundwater conditions, and orientation of discontinuities. These ratings are summed to provide the RMR value. The GSI system⁶ assigns a numerical rating to qualitative estimates of the lithology, discontinuity structure, and discontinuity surface conditions in a rock mass.

To determine the RMR, WSP used the discontinuities described in each rock core run and the RQD measured in each core run to assign ratings. The proposed foundation orientation may allow for a different rating adjustment for discontinuity orientation, and thus a modification to the RMR value. Our calculated RMR values are summarized in Table 2 (attached) for the boring rock core runs. Full RMR calculations including the individual parameter ratings are provided in Appendix D. Based on our field observations and measurements at the Kenduskeag Avenue bridge site, we estimate that RMR values range from 28 to 62 and average 42 for the rock core runs from 8 runs.

To determine the GSI, WSP used the discontinuity surface conditions described in the core runs to assign a rating. We selected the GSI value from the range established by Marinos and Hoek⁶ for typical sandstone lithologies. The GSI chart is presented in Appendix D. Based on our observations and measurements, we estimate a GSI value of 50 for the Kenduskeag Avenue bridge site.

8.0 REPORT AND EXPLORATION LIMITATIONS

This Preliminary Geotechnical Data Report (PGDR) was prepared for the replacement of Kenduskeag Avenue Bridge No. 5798 over Interstate 95 in Bangor, Maine. The professional services provided by WSP for this project include only the geotechnical aspects of the subsurface conditions at this site. The presence or implications of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this report and have not been investigated or addressed.

⁵ Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. John Wiley & Sons.

⁶ Marinos, Paul and Hoek, Evert. November 2000. GSI: a geologically friendly tool for rock mass strength estimation. ISRM International Symposium, Melbourne, Australia, paper number ISRM-IS-2000-035.

Signature Page

WSP USA, Inc.

Melissa E. Landon, PhD, PE Lead Consultant, Geotechnical Engineering

July 1

Jeffrey D. Lloyd, PE Assistant Vice President, Geotechnical Engineering

RJN/MEL/JDL

https://wsponlinenam.sharepoint.com/sites/us-win02609500/shared documents/06 deliverables/kenduskeag geotech data report/hntb kenduskeag ave bangor win 026095.00 wsp pgdr rev02.docx

TABLES

Prepared By: RJN

Checked By: DEB

Reviewed By: MEL

Table 1: Summary of Subsurface Explorations Preliminary Geotechnical Data Report Bridge #5798, Kenduskeag Ave over I-95, Bangor, Maine MaineDOT WIN 026095.00

		As-Drilled	Locations ⁴		Арр	oroximate	e Strata Thio	ckness (1	feet)				
				Ground Surface Elevation ⁴	Asphalt		Fill (Silt and			Approximate Top of Bedrock Depth	Approximate Elevation of Top of Bedrock	Approximate Bottom of Exploration Depth (feet bgs ⁵)	Approximate Elevation of Bottom of Exploration
	Boring No. ^{1,2,3}	Northing	Easting	(feet NAVD88)	Pavement	Fill	Clay)	Clay	Glacial Till	(feet bgs ⁵)	(feet NAVD88)		(feet NAVD88)
86	BB-BKA-101	480256.02	1728526.82	108.9	0.5	9.8	NE ⁵	8.7	5.1	24.1	84.8	38.5	70.4
#5798	BB-BKA-101A ⁶	-	-	108.9	0.5	0.8	NE⁵	NE⁵	NE ⁵	NE ⁵	NE ⁵	1.3	107.6
Bridge	BB-BKA-102	480181.49	1728595.97 84.0 1.0		1.0	3.3	NE ⁵	NE ⁵	2.3	6.6	77.4	16.3	67.7
Bri	BB-BKA-103	480124.85	1728757.63	103.1	0.5	9.7	8.3	11.8	7.0	37.3	65.8	48.0	55.1

Notes:

1. Boring locations are shown in Figure 2 - Boring Location Plan of the Preliminary Geotechnical Data Report.

2. Borings BB-BKA-101, and BB-BKA-103 were performed by Seaboard Drilling, LLC in May, 2024. Boring BB-BKA-102 was performed by Seaboard Drilling, LLC in August, 2024.

3. Boring logs are presented in Appendix A of the Preliminary Geotechnical Data Report.

4. As drilled boring locations obtained from the electronic file "Lidar.Ground.dgn" provided to WSP by HNTB on August 12, 2024.

5. bgs = below ground surface, NE = not encountered

6. BB-BKA-101 was offset northeast from BB-BKA-101A due to shallow refusal encountered at BB-BKA-101A. The as-drilled northing and easting coordinates and elevation for BB-BKA-101A were not surveyed. The as-drilled elevation for BB-BKA-101 is reported for BB-BKA-101A in the absence of survey data.

Table 2: Summary of Rock Core Quality

Preliminary Geotechnical Design Report

Bridge #5798, Kenduskeag Avenue over I-95, Bangor, Maine

MaineDOT WIN 026095.00

				Run				тс	R ¹		RQ	D ²	Physica	I Rock Paramete	ers	
Test Boring Designation	Core Size (in)	No.	Midpoint Depth Below Bedrock Surface (ft)	Depth	Surface	Ground (ft) Midpoint	Length (ft)	Ler (ft)	ngth %	Ler (ft)	ngth %	Designation	Weathering ³	Estimated Field Strength ³	Rock Mass Rating [RMR] ⁴	Lithologic, I
		R1	2.9	24.5	29.5	27.0	5.0	4.2	83%	0.00	0%	Very Poor	Moderately Weathered (W3)	Medium Strong (R3) to Strong (R4)	28	Grey, very fine to fine grained veins, medium strong to stror dipping, very close to close si fractures at 28 feet bgs; seve RIVER MEMBER, BANGOR
BB-BKA-101	NX	R2	7.9	29.5	34.5	32.0	5.0	4.8	95%	0.50	10%	Very Poor	Moderately Weathered (W3)	Medium Strong (R3) to Strong (R4)	29	Grey, very fine grained, thinly strong, moderately weathered spacing, planar to irregular, s [MEDIUM BEDDED FACIES
DD-DKA-101	(1.88)	R3	11.4	34.5	36.5	35.5	2.0	2.0	100%	0.42	21%	Very Poor	Moderately (W3) to Slightly (W2) Weathered	Strong (R4) to Very Strong (R5)	39	Grey, very fine grained, very t calcite veins, strong to very st vertical dipping, very close to severely fractured [MEDIUM BANGOR FORMATION].
		R4	13.4	36.5	38.5	37.5	2.0	2.0	100%	0.00	0%	Very Poor	Moderately (W3) to Slightly (W2) Weathered	Strong (R4) to Very Strong (R5)	37	Grey, very fine grained, very t calcite veins, strong to very st vertical dipping, very close to severely fractured [MEDIUM BANGOR FORMATION].
BB-BKA-102	NX	R1	2.6	6.7	11.7	9.2	5.0	4.7	94%	0.50	10%	Very Poor	Fresh (W1)	Weak (R2)	41	Grey, very fine grained, thinly frequent calcite veins and mil steep dipping, very close to c per foot [MEDIUM BEDDED FORMATION].
DD-DKA-102	(1.88)	R2	7.4	11.7	16.3	14.0	4.6	5.2	113%	2.00	43%	Poor	Fresh (W1)	Strong (R4) to Very Strong (R5)	51	Grey, very fine grained, thinly frequent calcite veins and mil low angle to steep dipping, ve fractures per foot [MEDIUM E FORMATION].
BB-BKA-103	NX	R1	3.2	38.0	43.0	40.5	5.0	5.0	100%	1.75	35%	Poor	Slightly Weathered (W2)	Strong (R4) to Very Strong (R5)	50	Grey, very fine grained, thinly calcite veins, strong to very st dipping, very close to close s 2.4 fractures per foot [MEDIL BANGOR FORMATION].
66-6KA-103	(1.88)	R2	8.2	43.0	48.0	45.5	5.0	5.0	100%	3.83	77%	Good	Fresh (W1)	Very Strong (R5)	62	Grey, very fine grained, thinly calcite veins, very strong, fres moderately close spacing, pla [MEDIUM BEDDED FACIES

, Rock Mass and Discontinuity Description^{5,6}

ed, thinly bedded, METAWACKE [metasandstone] with calcite ong, moderately weathered; discontinuities steep to vertical spacing, planar to stepped, smooth, open, clay infilling in verely fractured [MEDIUM BEDDED FACIES, PENOBSCOT PR FORMATION].

ily bedded, METAWACKE [metasandstone], medium strong to red; discontinuities steep to vertical dipping, very close to close , smooth, open, clay infilling in fractures; severely fractured ES, PENOBSCOT RIVER MEMBER, BANGOR FORMATION].

y thinly bedded, METAWACKE [metasandstone] with some strong, slightly to moderately weathered; discontinuities steep to to close spacing, planar to irregular, smooth to very rough, open; M BEDDED FACIES, PENOBSCOT RIVER MEMBER,

y thinly bedded, METAWACKE [metasandstone] with some strong, slightly to moderately weathered; discontinuities steep to to close spacing, planar to irregular, smooth to very rough, open; M BEDDED FACIES, PENOBSCOT RIVER MEMBER,

nly to very thinly bedded, METAWACKE [metasandstone] with nilky quartz intrusions, weak, fresh; discontinuities low angle to o close spacing, rough to very rough, tight to open, 4.2 fractures D FACIES, PENOBSCOT RIVER MEMBER, BANGOR

Ity to very thinly bedded, METAWACKE [metasandstone] with nilky quartz intrusions, strong to very strong, fresh; discontinuities very close spacing, rough to very rough, tight to open, 2.8 I BEDDED FACIES, PENOBSCOT RIVER MEMBER, BANGOR

Ity to very thinly bedded, METAWACKE [metasandstone] with strong, slightly weathered; discontinuities low angle to steep spacing, planar to stepped, rough to very rough, open; average NUM BEDDED FACIES, PENOBSCOT RIVER MEMBER,

Ity to very thinly bedded, METAWACKE [metasandstone] with esh; discontinuities, low angle to steep dipping, close to planar, smooth to rough, open; average 0.8 fractures per foot ES, PENOBSCOT RIVER MEMBER, BANGOR FORMATION].

Table 2: Summary of Rock Core Quality

Preliminary Geotechnical Design Report Bridge #5798, Kenduskeag Avenue over I-95, Bangor, Maine

MaineDOT WIN 026095.00

	Run						T	CR ¹		RQ	D ²	Physica	I Rock Paramet	ers		
Test Boring Designation	Core Size	No.	Midpoint Depth Below Bedrock Surface	Depth	n Below Surface	v Ground ∋ (ft)	Length	Le	ngth	Le	ngth	Designation	Weathering ³	Estimated Field Strength ³	Rock Mass Rating [RMR] ⁴	Lithologic, F
	(in)		(ft)	Start	End	Midpoint	(ft)	(ft)	%	(ft)	%					

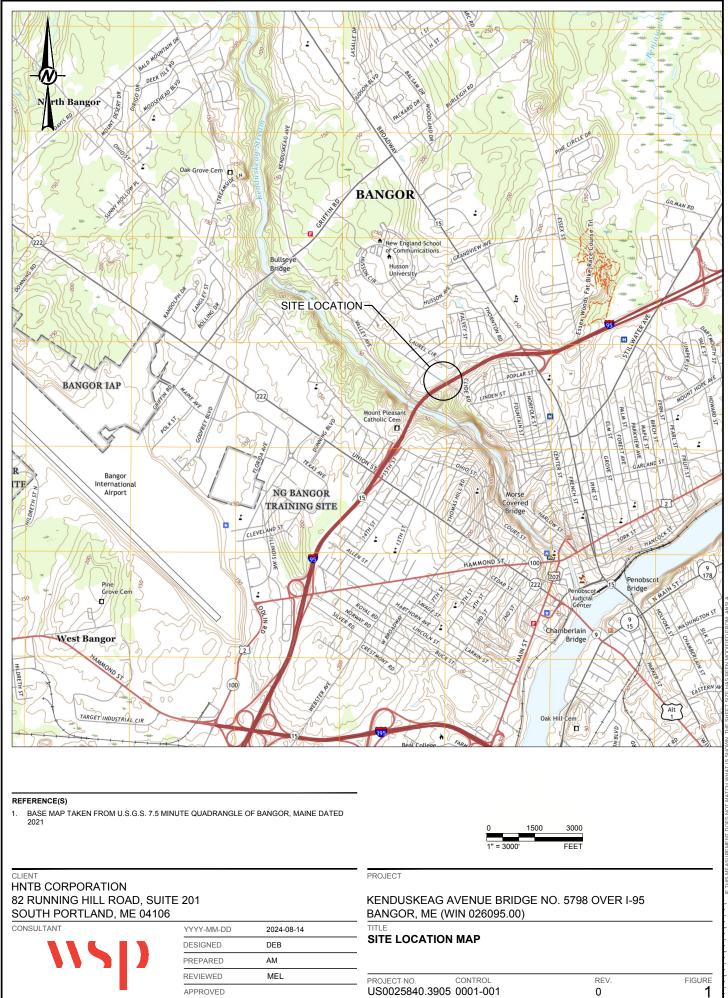
Notes:

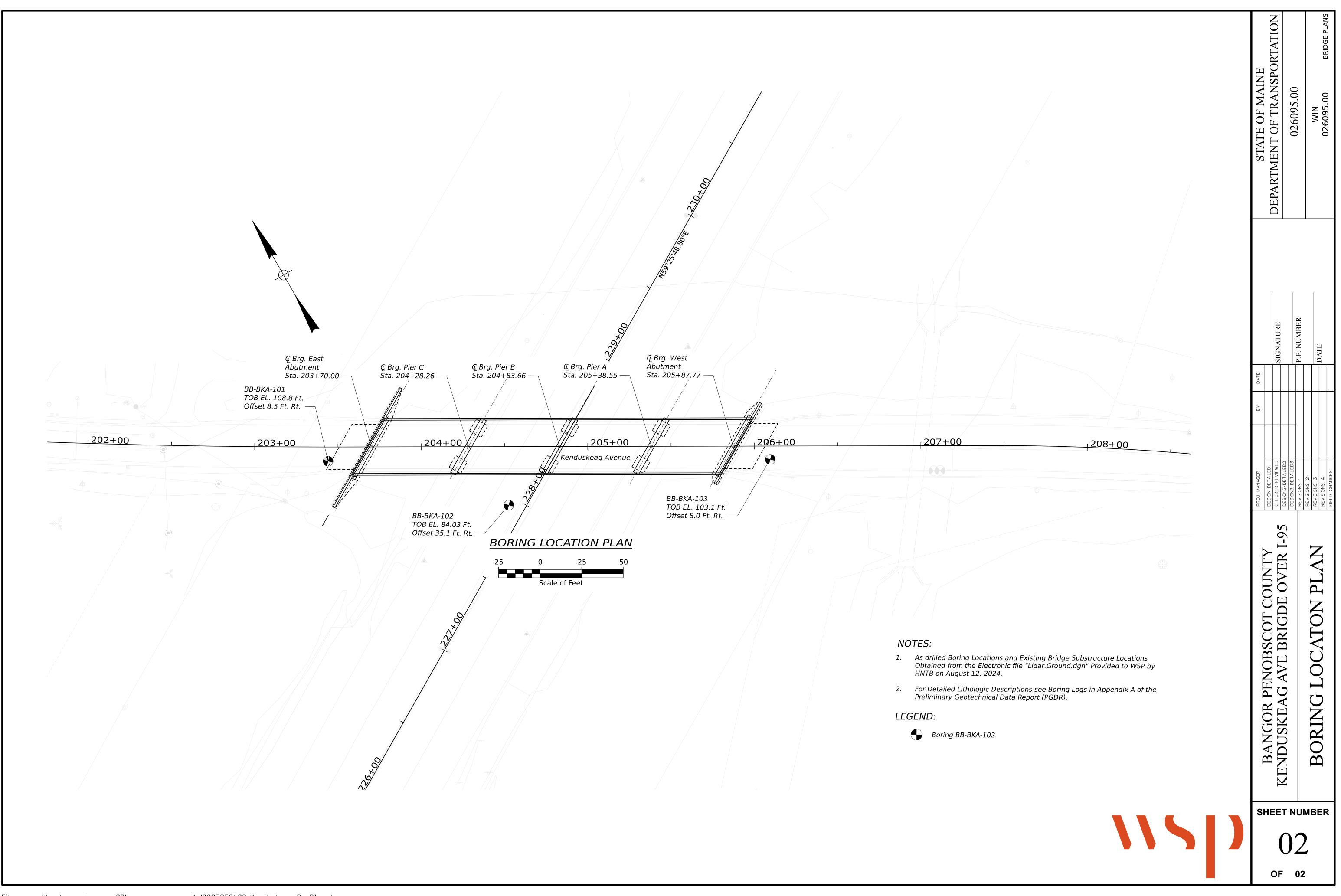
1. TCR = total core recovery. Total core recovery is the length of core recovered divided by the length of the run.

2. RQD = rock quality designation. RQD is the total length of intact, full diameter core pieces recovered with a length greater than or equal to 4 inches measured along the core axis. The percent RQD is the total length of RQD measured divided by the run length. Note that vertical discontinuities are not included in determination of RQD.

3. Weathering and Estimated Field Strength based on Tables II.4 and II.3 (respectively) in Wyllie and Mah, 2004, Rock Slope Engineering: Civil and Mining, 4th Edition (based on ISRM, 1981).

4. Rock Mass Rating (RMR) System (Bieniawski, 1989) assigns numerical ratings to six parameters, including the strength of the intact rock, the RQD, the discontinuity spacing, groundwater conditions, and orientation of discontinuities. These ratings are summed to provide the RMR value. The rating adjustment for joint orientation was assigned a value of 0; correlation of geologic field mapping data of exposed rock outcrops with the rock core samples and proposed foundation type may allow for a different rating adjustment for joint orientation, and thus a modification to the RMR value shown on this table.


5. Bedrock formation name from: Pollock, Stephen G. 2011. Bedrock geology of the Bangor Quadrangle, Maine. Maine Geological Survey Open-File No. 11-57. Map scale 1:24,000.


6. ft = feet, in = inches

, Rock Mass and Discontinuity De<u>scription^{5,6}</u>

Prepared by: KAR Checked by: DEB / BK Reviewed by: MEL

FIGURES

APPENDIX A

Boring Logs

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM		MODIFIED B	URMISTER S	YSTEM		
			GROUP							
MAJ COARSE- GRAINED SOILS	GRAVELS	ONS CLEAN GRAVELS (little or no	GW GP	TYPICAL NAMES Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel	tr li	<u>tive Term</u> race ittle ome . Sandy, Clayey)	<u>Porti</u>	<u>on of Total (%)</u> 0 - 10 11 - 20 21 - 35 36 - 50		
	alf of coan er than No size)	fines)		sand mixtures, little or no fines.	(0.g.	TERMS	S DESCRIBING Y/CONSISTEN	3		
is larger ize)	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable amount of	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	<u>Coarse-grained soils</u> (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).					
(more than half of material is larger than No. 200 sleve size)		fines) CLEAN	SW	Well-graded sands, Gravelly	<u>Cohesion</u> Very	<u>isity of</u> <u>nless Soils</u> / loose pose		enetration Resistance ue (blows per foot) 0 - 4 5 - 10		
e than hal than No.	SANDS	SANDS (little or no	SP	sands, little or no fines Poorly-graded sands, Gravelly	De	m Dense ense Dense		11 - 30 31 - 50 > 50		
(mor	(more than half of coarse fraction is smaller than No. 4 sieve size)	fines)		sand, little or no fines.	Fine-grained soil	<u>Fine-grained soils</u> (more than half of material is s sieve): Includes (1) inorganic and organic silts and		an No. 200		
	ire than h∉ on is small sieve s	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	or Silty clays; and strength as indica	., ,,	<u>Approximate</u>	ording to undrained shear		
	(mo fracti	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N ₆₀ -Value	<u>Undrained</u> <u>Shear</u> Strength (psf)	<u>Field</u> <u>Guidelines</u>		
			ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily penetrates Thumb easily penetrates Thumb penetrates with		
FINE- GRAINED	SILTS AN	ID CLAYS	CL	slight plasticity. Inorganic clays of low to medium plasticity, Gravelly clays, Sandy	Stiff Very Stiff	9 - 15 16 - 30	1000 - 2000 2000 - 4000	moderate effort Indented by thumb with great effort Indented by thumbnail		
SOILS	(liquid limit l	ess than 50)	OL	clays, Silty clays, lean clays. Organic silts and organic Silty	Hard Rock Quality Des	>30 signation (RQD):	over 4000	Indented by thumbnail with difficulty		
ial is e size)				clays of low plasticity.	RQD (%) =	sum of the lengths *Minimu	of intact pieces of length of core ad im NQ rock core (*	lvance		
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	СН	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high	Rock Quality Based on RQDRock QualityRQD (%)Very Poor≤25Poor26 - 50					
(more the smaller tha	(liquid limit gr	eater than 50)	ОН	plasticity, fat clays. Organic clays of medium to high plasticity, organic silts.	Desired Rock C	Fair Good Excellent Dbservations (in th	51 - 75 76 - 90 91 - 100 nis order, if appli	cable):		
		ORGANIC	Pt	Peat and other highly organic soils.	Color (Munsell Texture (aphan Rock Type (gra		tc.) one, etc.)			
Desired Se	il Observet	tions (in thi	s order if	annlicable):			ht, moderate, mod	l. severe, severe, etc.)		
Color (Muns Moisture (dr Density/Cor Texture (find Name (Sand Gradation (sell color ch ry, damp, m nsistency (fr e, medium, d, Silty San well-graded on-plastic, s ayering, frac ell, moderat n (weak, mo rigin (till, ma	art) oist, wet) om above ri coarse, etc. d, Clay, etc. , poorly-grad slightly plast ctures, crack ely, loosely, oderate, or s	ght hand s) , including ded, unifor ic, modera (s, etc.) etc.,) strong)	portions - trace, little, etc.) m, etc.) tely plastic, highly plastic)	Formation (Wat RQD and correl ref: ASTM D6 Site Characte Recovery (inch/ Rock Core Rate	35-55 deg., stee -spacing (very clos close - 1-3 feet, -tightness (tight, op -infilling (grain size terville, Ellsworth, C lation to rock quality 032 and FHWA NH erization, Table 4-12 /inch and percentag e (X.X ft - Y.Y ft (mi	ep - 55-85 deg., ve ee - <2 inch, close wide - 3-10 feet, v pen, or healed) , color, etc.) Cape Elizabeth, etc y (very poor, poor, 1I-16-072 GEC 5 - 2 ge) n:sec))	very wide >10 feet) c.) etc.) Geotechnical		
Key	y to Soil a	Geotechi	<i>nical</i> Sec Descrip	tions and Terms	Sample Cont WIN Bridge Name Boring Numbe Sample Numb Sample Depth	er ber	Requirements: Blow Counts Sample Recove Date Personnel Initia	ery		

Classification of Rock Material Strengths¹

Grade	Description	Field Identification		nge of Uniaxial vive Strength
			MPa	psi
S1	Very soft clay	Easily penetrated several inches by fist	<0.025	<4
S2	Soft clay	Easily penetrated several inches by thumb	0.025-0.05	4-7
S3	Firm clay	Can be penetrated several inches by thumb with moderate effort	0.05-0.10	7-15
S4	Stiff clay	Readily indented by thumb but penetrated only with great effort	0.10-0.25	15-35
S5	Very stiff clay	Readily indented by thumbnail	0.25-0.50	35-70
S6	Hard clay	Indented with difficulty by thumbnail	>0.50	>70
R0	Extremely weak rock	Indented by thumbnail	0.25-1.0	35-150
R1	Very weak rock	Crumbles under firm blows with point of geological hammer; can be peeled by a pocket knife	1-5	150-725
R2	Weak rock	Can be peeled by a pocket knife with difficulty; shallow indentations made by firm blow with point of geological hammer	5-25	725-3,500
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife; specimen can be fractured with single firm blow of geological hammer	25-50	3,500-7,000
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it	50-100	7,000-15,000
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100-250	15,000-36,000
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250	>36,000

Note: Grades S1 to S6 apply to cohesive soils, for example clays, silty clays, and combinations of silts and clays with sand, generally slow draining. Discontinuity wall strength will generally be characterized by grades R0-R6 (rock) while S1-S6 (clay) will generally apply to filled discontinuities. Rock material strength descriptions are included in the rock core descriptions in the boring logs. Rock material strength grades (R0-R6) are not included in the rock core descriptions to avoid confusion with the numbering of the rock core runs.

¹ International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests (1978): Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, No. 6, pp. 319-368.

N	Aaine	e Dep:	artment	of Transporta	atio	n	Project:	MaineDOT K	enduskeag Avenue Bridge	Boring No.:	KA-101		
		<u>s</u>	Soil/Rock Expl US CUSTOMA	loration Log			-	#5798 over I- n: Bangor. ME	95	WIN:	0260	95.00	
Drille	er:		Seaboard		T Elf	evation		108.86		Auger ID/OD:			
Opera			Kevin Hanscon	m	-	tum:	,	Maine East	Zone	Sampler:	Standard Split S	Spoon	
· ·	ed By:		Lina-Maria Pu		_	g Type:		Diedrich D-		Hammer Wt./Fall:	140 lbs/30 in	<u> </u>	
	Start/Fi	inish:	5/06/24 (20:24	4); 5/06/24 (23:24)			Method:	Cased wash		Core Barrel:	NX		
Borir	ng Loca			E: 1728526.82	Ca	ising IC	D/OD:	4.0 in/4.25 i	in and 3.0 in/3.25 in	Water Level*:	4.7 ft on 5/06/24	4 at 21:28	
Hami	mer Effi	iciency F	actor: 1.066		На	mmer	Туре:	Automatic 🛛	Hydraulic 🗆	Rope & Cathead □			
Definiti D = Sp	ions: olit Spoon S	Sample		R = Rock C SSA = Solic					emolded Field Vane Undrained She Vane Undrained Shear Strength (Pocket Torvane Shea Water Content, perce		
MD = U	Jnsuccess		oon Sample Attem		low Stem			q _p `= Unconfin	ned Compressive Strength (ksf) d = Raw Field SPT N-value	LL = L	Liquid Limit Plastic Limit		
MU = U	Unsuccess	sful Thin Wal	all Tube Sample At PP = Pocket Per	ttempt WOH = We	eight of 1			Hammer Effic	iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme	I Calibration Value PI = F	Plasticity Index Brain Size Analysis		
MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One Person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation												1	
		<u> </u>		Sample Information		Τ						Laboratory	
	ö	Pen./Rec. (in.)	Sample Depth (ft.)	in.) %)	N-uncorrected		!	n Log				Testing Results/	
(ft.)	Sample No.	čec.	e D	Blows (/6 in.) Shear Strength (pst) or RQD (%)	orre		5		Visual De	escription and Remarks		AASHTO	
Depth (ft.)	dme	Fuel The Provide Herein Provide Here	dure (;	ows near renc renc RQ	oun-	N60	Casing Blows	Elevation (ft.) Graphic L				and Unified Class.	
	ŭ	<u> </u>	<u>ў т</u>	<u></u>	ż	Ž			A 1 1/ Decompany				
						<u> </u>	SSA	108.4	Asphalt Pavement Boring offset from BB-BK.	A-101A location			
									Advanced with augers from		0.5-		
									Autore war engine	10.10 10 510 1001 - 0			
		<u> </u>	+ +			<u> </u>	+++						
- 5 -	1D	24/8.5	5.00 - 7.00	10-10-11-6	21	37	++-	I 🗱	Olive brown, dry, dense, fi	ne to coarse SAND, some	fine gravel, little	WC = 6%	
	10	24/0.3	5.00 - 7.00	10-10-11-0	21	51	++-'	I 🗱	silt (FILL).	Fines = 13.6% A-1b (0), SM			
		 				 	+'					A-10 (0), 514	
							\Box						
- 10 -	2D	24/11.5	10.00 - 12.00	1-2-1-2	3	5	13	98.6	2DA Top 3 in: Olive brown		SAND, some	WC = 20%	
1		<u> </u>	+			<u> </u>	15		fine gravel, little silt (FILL)	-	10.3-	Fines = 73.1%	
			++			<u> </u>			2DB Bottom 8.5 in: Brown trace gravel, medium plasti			PL = 18	
		 				──	28		the sample			PI = 9 $LI = 0.2$	
		 				—	34		$T_V = 0.4$ ksf and 0.6 ksf; H	$P_{\rm p} = 4.0 \rm ksr$ and 0.0 ksr		L1 = 0.2 A-4 (5), CL	
- 15 -	MV	_		Would Not Push		<u> </u>	24		Failed field vane, would no	st nuch nast 15 feet has			
1.5	3D	24/0	15.00 - 17.00	2-3-1-2	4	7	16		NO RECOVERY	n push pasi 15 reel ogs.			
							13						
1							15						
l ľ			1 1				15						
			+		I	+	18	89.9	Driller notes change in drill		- — — -19.0-		
- 20 -	40	24/11 5	20.00 22.00	4.9.17.01	- 25	+ 14	1		Brown, wet, dense, fine to	0 0		WC = 10%	
	4D	24/11.5	20.00 - 22.00	4-8-17-21	25	44	OPEN		graded (GLACIAL TILL).	-		Fines = 24.5% A-1b (0), GM	
		 				 	<u> '</u>					A-10 (0), OM	
	R1	60/50	24.50 - 29.50	RQD = 0%			NX	84.8	Bedrock encountered at 24.		24.1-		
- 25 -									Top of Bedrock Elev. 84.8 Advanced with roller bit to				
l l		<u> </u>	+ +			<u> </u>	+++		R1 (24.5' - 29.5'): Grey, ver	ry fine to fine grained, thin			
			++				+		METAWACKE [metasand strong, moderately weather				
		 				<u> </u>	+'		very close to close spacing,	, planar to stepped, smooth	, open, clay		
infilling in fractures at 28 feet bgs; severely fractured [MEDIUM													
Remarks:													
 Hammer Efficiency factor provided by S.W. Cole and taken from "2023PA00074 - SW Cole - SPT Report" by GRL Engineers Inc., dated 11/10/2023. As-drilled boring locations and ground surface elevations were provided by MaineDOT. 													
3. Water level reading taken on 5/6/24 at 21:28 was made before the start of rock coring with bottom of casing at 24.5 ft bgs.													
Stratific	cation line	s represent	approximate bour	ndaries between soil types; t	transitior	ns may t	be gradual.			Page 1 of 2			
* Wate	r level rea	.dings have !	been made at tim	es and under conditions stat ts were made.	ted. Gro	oundwate	er fluctuatio	ns may occur due	to conditions other	Boring No.	BB-BKA-	101	

N	Maine Department of Transportation Soil/Rock Exploration Log US CUSTOMARY UNITS							Maine #5798 n: Bang	ove	er I-9		BKA-101 .6095.00
Drille	r:		Seaboard		Eleva	ation	n (ft.)	108.8	86		Auger ID/OD:	
Oper	ator:		Kevin Hansco	m	Datu		. ,	Mair	1e E	last 2		olit Spoon
Logg	ed By:		Lina-Maria Pu	a	Rig T	ype	:	Died	rich	n D-:		<u>^</u>
		nish:	5/06/24 (20:24	4); 5/06/24 (23:24)			lethod:	Case	d w	ash	Core Barrel: NX	
Borir	g Loca	tion:	N: 480256.02			-	D/OD:	4.0 ii	n/4.	25 ii	n and 3.0 in/3.25 in Water Level*: 4.7 ft on 5/	06/24 at 21:28
	-		actor: 1.066			-	_	Automa			Hydraulic □ Rope & Cathead □	
Definitions: R = Rock Core Sample D = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone WOH = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140 lb. V = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Rods MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One F							ammer r Casing	S _{u(lal} q _p = l N-uno Hamr N ₆₀ =	b) = Unco corre ner I = SP	Lab onfine ected Efficie T N-	molded Field Vane Undrained Shear Strength (psf) $T_v = Pocket Torvane$ Vane Undrained Shear Strength (psf) $WC = Water Content$ vd Compressive Strength (ksf) $LL = Liquid Limit$ = Raw Field SPT N-value PL = Plastic Limit ency Factor = Rig Specific Annual Calibration Value PI = Plastic Limit uncorrected Corrected for Hammer Efficiency G = Grain Size Analy er Efficiency Factor/60%)*N-uncorrected C = Consolidation Te	percent
		(;		Sample Information	ç				1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)		Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Class.
- 30 -	R2 R3	60/57	29.50 - 34.50	RQD = 9%							BEDDED FACIES, PENOBSCOT RIVER MEMBER, BANGOR FORMATION]. Rock Mass Quality = very poor 83% Recovery Rock Core Rate (min:sec) 24.5-25.5 ft (1:17) 25.5-26.5 ft (1:33) 26.5-27.5 ft (1:58) 27.5-28.5 ft (1:40) 28.5-29.5 ft (2:10)	
- 35 -	R3	24/24	36.50 - 38.50	RQD = 17%				70.4			R2 (29.5' - 34.5'): Grey, very fine grained, thinly bedded, METAWACKE [metasandstone], medium strong to strong, moder: weathered; discontinuities steep to vertical dipping, very close to c spacing, planar to irregular, smooth, open, clay infilling in fracture severely fractured [MEDIUM BEDDED FACIES, PENOBSCOT RIVER MEMBER, BANGOR FORMATION]. Rock Mass Quality = very poor 95% Recovery	ose
- 40 -											Rock Core Rate (min:sec) 29.5-30.5 ft (1:05) 30.5-31.5 ft (1:56) 31.5-32.5 ft (1:59) 33.5-33.5 ft (1:59) 33.5-34.5 ft (2:50) R3 (34.5' -36.5'): Grey, very fine grained, very thinly bedded, METAWACKE [metasandstone] with some calcite veins, strong to very strong, slightly to moderately weathered; discontinuities steep	
- 45 -											vertical dipping, very close to close spacing, planar to irregular, srr to very rough, open; severely fractured [MEDIUM BEDDED FAC PENOBSCOT RIVER MEMBER, BANGOR FORMATION]. Rock Mass Quality = very poor 100% Recovery Rock Core Rate (min:sec) 34.5-35.5 ft (1:47)	ooth
34.3-35.3 ft (1:47) 35.3-36.5 ft (1:46) R4 (36.5' - 38.5'): Grey, very fine grained, very thinly bedded, METAWACKE [metasandstone] with some calcite veins, strong to very strong, slightly to moderately weathered; discontinuities steep to very strong, slightly to moderately weathered; discontinuities steep to very strong, slightly to moderately metabeling, performance R4 (36.5' - 38.5'): Grey, very fine grained, very thinly bedded, METAWACKE [metasandstone] with some calcite veins, strong to very strong, slightly to moderately metabeling, performance R0 K Mass Quality = very poor 100% Recovery R0ck Core Rate (min:sec) 36.5-37.5 ft (2:26)											ooth	
55 36.5-37.5 tf (2:26) 37.5-38.5 ft (3:21) 38.5 Bottom of Exploration at 38.5 feet below ground surface. 38.5 Boring backfilled with bentonite chips in the rock core socket, drill cuttings and gravel to bottom of pavement and patched with cold patch asphalt. 38.5												
Remarks: 1. Hammer Efficiency factor provided by S.W. Cole and taken from "2023PA00074 - SW Cole - SPT Report" by GRL Engineers Inc., dated 11/10/2023. 2. As-drilled boring locations and ground surface elevations were provided by MaineDOT. 3. Water level reading taken on 5/6/24 at 21:28 was made before the start of rock coring with bottom of casing at 24.5 ft bgs.										•		
Stratifi	Stratification lines represent approximate boundaries between soil types; transitions may be gradual. Page 2 of 2											
* Wate than	* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.											

eadings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other esent at the time measurements were made.	oring No.:	BB-BKA-101
---	------------	------------

Maine Department of Transportation						Project:	Maine	DOT I	Kenduskeag Avenue Bridge	Boring No.:	BB-BK	A-101A	
		<u>s</u>	oil/Rock Exp JS CUSTOM	loration Log			Location	#5798 n: Bang			WIN:	0260	95.00
Drill	or:		Seaboard		Eleva	tion	(f+)	108.8	26		Auger ID/OD:		
	rator:		Kevin Hansco	m	Datur		(11.)		e East	Zone	Sampler:	Standard Split S	noon
<u> </u>	ged By:		Lina-Maria Pu		Rig T				rich D		Hammer Wt./Fall:	140 lbs/30 in	spoon
	Start/Fi			3); 5/06/24 (20:20)			lethod:		d wasl		Core Barrel:	NX	
	ng Locat		Refer to remai		Casin	<u> </u>		Case	u wasi	1	Water Level*:	Not Measured	
	•		actor: 1.066	iks 2 aliu 5	-	-		• •			1	Not Measured	
Defini		степсу га	actor: 1.000	R = Rock C	Hamn Fore Sample		Type.	Automa $S_{11} = 1$	Peak/R	Hydraulic emolded Field Vane Undrained Sh	Rope & Cathead \Box ear Strength (psf) $T_{y} =$	Pocket Torvane Shea	r Strength (psf)
	plit Spoon S		on Sample Atter	SSA = Solie mpt HSA = Holl				S _{u(lal}) = Lal	o Vane Undrained Shear Strength ned Compressive Strength (ksf)	(psf) WC =	= Water Content, perc Liquid Limit	
U = TI	hin Wall Tul	be Sample		RC = Rolle	r Cone	-		N-uno	orrecte	d = Raw Field SPT N-value	PL =	Plastic Limit	
MU = V = Fi	Unsuccess eld Vane SI	ful Thin Wal hear Test,	I Tube Sample A PP = Pocket Pe	Attempt WOH = We enetrometer WOR/C = V				N ₆₀ =	SPT N	ciency Factor = Rig Specific Annua I-uncorrected Corrected for Hamm	er Efficiency G = 0	Plasticity Index Grain Size Analysis	
MV =	Unsuccess	ful Field Var	ne Shear Test Att	tempt WO1P = W Sample Information	eight of One	Per	son	N ₆₀ =	: (Hamr	ner Efficiency Factor/60%)*N-unco	rrected C = C	Consolidation Test	
		$\widehat{}$			σ								Laboratory
	ġ	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected				Log) (avail D			Testing Results/
Depth (ft.)	Sample No.	Sec.		gth D (9	OLIE		D.,	Elevation (ft.)	lic L	Visual D	escription and Remarks		AASHTO
epth	dme	ł/.ue	dme (;	ows near ren(sf) RQ	ņ	N60	Casing Blows	eva	Graphic				and Unified Class.
	ů	Pe	ы К	ਫ਼ਲ਼ਲ਼ਫ਼੶ਫ਼	ż	z	йШ						
	1D	10/6.5	0.46 - 1.29	16-50/4"	R		SSA	108.4	***	Asphalt Pavement		0.5	
								107.6	****	Brown, dry, Silty coarse G	RAVEL, some sand, well-	-graded (FILL).	
										Bottom of Explorati Roller bit refusal on reinfo	on at 1.3 feet below grou		
										cuttings to bottom of paver			
										Boring offset to the BB-BH	KA-101 location.		
- 5 -													
- 10 -													
1.5													
- 15 -													
- 20 -													
- 25 -													
Rem	arks:		I		I		1			ļ			
1. F	lammer E	fficiencv f	actor provided	l by S.W. Cole and taker	n from "20	23P/	A00074 - S	SW Cole	e - SP	F Report" by GRL Engineers I	nc., dated 11/10/2023.		
2. E	B-BKA-1	101 was of	fset NE from I	BB-BSA-101A due to sh	allow refu	isal o	on BB-BS.	A-101A					
3. A	as-ariiled	boring elev	vation was not	t survey. The elevation fi	om BB-B	ĸА-	101 was u	sed.					
											D 4 - 4 4		
				indaries between soil types;		•	-				Page 1 of 1		
* Wate	er level read those pres	dings have b ent at the tir	peen made at tim me measuremen	nes and under conditions sta Its were made.	ted. Ground	dwate	er fluctuation	ns may o	ccur du	e to conditions other	Boring No.	: BB-BKA-	101A

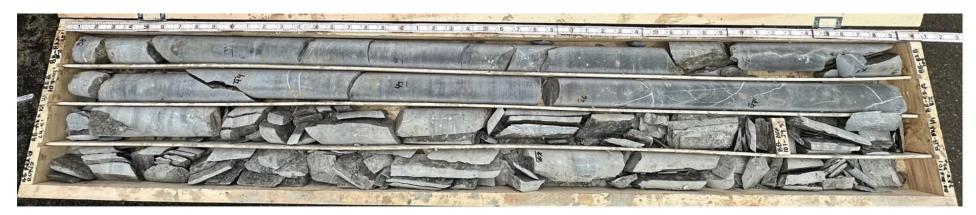
N	Maine Department of Transportation Soil/Rock Exploration Log US CUSTOMARY UNITS						-	MaineDOT Ke #5798 over I-9 n: Bangor. ME		Boring No.: WIN:	<u>BB-BK</u> 0260	
Drille	er:		Seaboard		Elev	atior	י ו (ft.)	84.03		Auger ID/OD:		
Oper	ator:		Ryan Hackett		Datu	ım:		Maine East 2	Zone	Sampler:	Standard Split S	poon
Logg	ed By:		Daniel Burges	s	Rig	Туре	:	Diedrich D-5	50	Hammer Wt./Fall:	140 lbs/30 in	
Date	Start/Fi	inish:	8/01/24 (1:32)	; 8/01/24 (3:32)	Drilli	ing N	lethod:	Cased wash		Core Barrel:	NX	
Borir	ng Loca	tion:	N: 480179.15	E: 1728607.8	Casi	ng II	D/OD:	4.0 in/4.25 in	n and 3.0 in/3.25 in	Water Level*:	4.55 ft on 8/01/2	24 at 3:16
Ham	mer Effi	iciency Fa	actor: 1.087		Ham	mer	Туре:	Automatic 🖂	Hydraulic 🗆	Rope & Cathead □		
MD = U U = Th MU = U V = Fie	elit Spoon Jnsuccess in Wall Tu Jnsuccess eld Vane S	sful Split Spo ube Sample sful Thin Wal Shear Test,	on Sample Atterr I Tube Sample At PP = Pocket Per Re Shear Test Att	RC = Roller ttempt WOH = Weig work/C = W	Stem Au w Stem A Cone pht of 140 eight of F	ger Auger)Ib. Ha Rods o	r Casing	S _{u(lab)} = Lab q _p = Unconfine N-uncorrected Hammer Efficie N ₆₀ = SPT N-0	molded Field Vane Undrained Sho Vane Undrained Shear Strength (ed Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annua uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-unco	psf) WC = LL = L PL = F I Calibration Value PI = P er Efficiency G = G	ocket Torvane Shea Water Content, perce iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0							SSA		Asphalt Pavement			
	1D	24/17	1.50 - 3.50	16-16-13-13	29	53		83.0	Brown, dry, very dense, fin gravel, little silt (FILL).	e to coarse SAND, some fi	1.0- ne to coarse	Fines = 17.4% A-1b (0), SM
- 5 -	2D	13.5/10	5.00 - 6.13	22-20-50/1.5"	70	127			Grey, moist, very dense, fir GRAVEL, some silt non-pl			Fines = 33.1% A-2-4 (0), SM/
- 10 - - 15 - - 20 -	R2	60/56.4	5.00 - 0.13 6.70 - 11.70 11.70 - 16.30	RQD = 10%				67.7	Auger Refusal at 6.6 feet b Top of Beadrock Elev. 77.4 R-1 (6.7' - 11.7') Grey, very METAWACKE [metasand quartz intrusions, strong to to steep dipping, very close to open, 4.2 fractures per fc PENOBSCOT RIVER ME Rock Mass Quality = very 94% recovery 10% RQD Rock Core Rate (min:sec) 6.7-7.7 ft: (4:31) 7.7-8.7 ft: (3:26) 8.7-9.7 ft: (3:40) 10.7-11.7 ft: (6:52) R-2 (11.7' - 16.3') Grey, ver METAWACKE [metasand quartz intrusions, strong to to steep dipping, very close 2.8 fractures per foot [MEEL RIVER MEMBER, BANG Rock Mass Quality = poor 100% recovery 43% RQD Rock Core Rate (min:sec) 11.7-12.7 ft: (4:23) 12.7-13.7 ft: (3:47) 13.7-14.7 ft: (2:23) 14.7-15.7 ft: (2:47) 15.7-16.3 ft: (3:23)	gs. 4 ft 7 fine grained, thinly to ver stone] with frequent calcite very strong, fresh; disconti- to close spacing, rough to bot [MEDIUM BEDDED F MBER, BANGOR FORM. poor ry fine grained, thinly to ver stone] with frequent calcite very strong, fresh; disconti- spacing, rough to very rou DIUM BEDDED FACIES, OR FORMATION]. n at 16.3 feet below groun tonite chips in the rock cor	eveins and milky inuities, low angle very rough, tight ACIES, ATION]. ery thinly bedded, eveins and milky inuities, low angle igh, tight to open, PENOBSCOT 16.3- nd surface. e socket, drill	A-2-4 (0), SM/ GM
2. A	ammer E s-drilled	boring loca	ations and grou	ind surface elevations we	re provi	ided t	oy MaineE		Report" by GRL Engineers I	nc., dated 11/10/2023.		
				4 at 3:16 am was made a								
* Wate	r level rea	idings have b		ndaries between soil types; tr es and under conditions state s were made.			-	ns may occur due	to conditions other	Page 1 of 1 Boring No.:	BB-BKA-	102

Boring	No.:	BB-BKA-	-102
--------	------	---------	------

N	Maine Department of Transportation						Project:	MaineDOT K	enduskeag Avenue Bridge	Boring No.: BB-	BKA-103
		<u></u>	Soil/Rock Expl JS CUSTOMA	oration Log			-	#5798 over I-9 1: Bangor. ME	95	WIN: 02	6095.00
Daille					1 =1-		(64.)	102.10			
Drille Oper			Seaboard Kevin Hanscor		-	vatior	i (ft.)	103.10 Maine East 2	Zana	Auger ID/OD: Sampler: Standard Sp	lit Speep
	jed By:		Lina-Maria Pu			j Type		Diedrich D-		Sampler:Standard SpHammer Wt./Fall:140 lbs/30 i	
	Start/Fi			;; 5/06/24 (00:54)	<u> </u>		Nethod:	Cased wash		Core Barrel: NX	
	ng Loca		N: 480124.85		-	sing II			n and 3.0 in/3.25 in		06/24 at 00:45
	-		actor: 1.066		-	mmer		Automatic 🛛	Hydraulic 🗆	Rope & Cathead 🗆	
Definit D = Sp MD = 0 U = Th MU = 0 V = Fie	ions: blit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split Spo be Sample sful Thin Wal Shear Test,	oon Sample Atterr Il Tube Sample At PP = Pocket Per ne Shear Test Atte	RC = Roller WOH = Weig netrometer WOR/C = W	Stem A Stem A w Stem Cone ght of 14	nple Auger n Auger 40lb. Ha f Rods o	immer r Casing	$\begin{array}{l} S_{u} = \text{Peak/Re}\\ S_{u}(\text{lab}) = \text{Lab}\\ q_{p} = \text{Unconfin}\\ \text{N-uncorrected}\\ \text{Hammer Effici}\\ \text{N}_{60} = \text{SPT N-} \end{array}$	molded Field Vane Undrained She Vane Undrained Shear Strength (j ed Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	ear Strength (psf) psf) T _V = Pocket Torvane S WC = Water Content, LL = Liquid Limit PL = Plastic Limit I Calibration Value or Efficiency G = Grain Size Analys	bercent
				Sample Information							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log	Visual De	Testing Results/ AASHTO and Unified Class.	
0	1D	24/10.2	0.54 - 2.54	21-23-20-10	43	76	SSA	102.6	Asphalt Pavement		0.5-
									Brown, dry, very dense, Sa (FILL).	ndy coarse GRAVEL, some silt, well-gra	
- 5 -	2D	24/11.5	5.00 - 7.00	6-7-7-7	14	25			Grey to brown, dry, mediur sand, trace silt (FILL).	n dense, medium to coarse GRAVEL, so	me
- 10 -	3D	20/17	10.00 - 11.67	2-3-13-50/2"	16	28	15		GRAVEL, some sand, trace 3DB Bottom 15 in: Brown,	wn, dry, medium dense, medium to coars e silt (FILL). moist, very stiff, CLAY, trace sand, trac cobble at bottom of sample interval (FIL	e Fines = 96.2%
							26				A-6 (13), CL
- 15 -							55		Olive brown moist years at	iff, SILT, some fine to coarse sand, some	WC = 6%
-	4D	20/17.5	15.00 - 16.67	9-6-11-50/2"	17	30	81		fine gravel, gravel content i		Fines = 45.1%
							238				A-4 (0), ML
							250				
							88	84.6			8.5-
							39				
- 20 -	5D	24/23	20.00 - 22.00	9-8-9-10	17	30	91		Brown to grey, moist, very (CLAY).	stiff, CLAY, trace fine sand, high plastic	WC = 22% Fines = 98.4%
							106		$P_p > 9.0 \text{ ksf}$		LL = 37
							117				PL = 21 PI = 16
							131				LI = 0 A-6 (17), CL
							76				A-0 (17), CL
- 25 -	6D	24/22	25.00 - 27.00	3-3-4-5	7	12	-			dium stiff, CLAY, trace fine sand, mediu	
	6D	24/22	25.00 - 27.00	3-3-4-3	/	12	72		plasticity (CLAY).		Fines = 98.1% LL = 30
							82				PL = 17
							103				PI = 13 LI = 0.8
							112				A-6 (12), CL
1. H 2. A	s-drilled		ations and grou						Report" by GRL Engineers In wel reading taken on 5/6/24 a	nc., dated 11/10/2023. tt 00:45 was made after the completion o	f drilling with

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-BKA-103

N	Maine Department of Transportation Soil/Rock Exploration Log US CUSTOMARY UNITS					l		MaineDOT K #5798 over I-9 1: Bangor. ME		Boring No.: WIN:	BB-BKA-103 026095.00	
		ļ		ARY UNITS							02003	95.00
Drille			Seaboard			vation	1 (ft.)	103.10		Auger ID/OD:		
Oper			Kevin Hansco		Datu			Maine East 2		Sampler:	Standard Split S	poon
	ed By: Start/Fi	nich	Lina-Maria Pu	5); 5/06/24 (00:54)		Type	: lethod:	Diedrich D-: Cased wash	50	Hammer Wt./Fall: Core Barrel:	140 lbs/30 in NX	
	ig Loca			E: 1728757.63	-	ing ID			n and 3.0 in/3.25 in	Water Level*:	30.5 ft on 5/06/2	24 at 00:45
	-		actor: 1.066	E. 1720757.05	-		_	Automatic 🛛	Hydraulic	Rope & Cathead	30.5 11 011 5/00/2	24 at 00.45
Definiti D = Sp MD = U U = Th MU = U V = Fie	ons: lit Spoon S Jnsuccess in Wall Tul Jnsuccess eld Vane S	Sample ful Split Spo be Sample ful Thin Wa hear Test,	oon Sample Atten II Tube Sample A PP = Pocket Pe ne Shear Test Att	RC = Roller (WOH = Weig Netrometer WOR/C = Weig	re Samp Stem Au V Stem J Cone Iht of 14 eight of 1	ole uger Auger 0 lb. Ha Rods ol	ammer r Casing	$S_u = Peak/Re$ $S_u(lab) = Lab$ $q_p = Unconfin$ N-uncorrected Hammer Effici $N_{60} = SPT N$ -	molded Field Vane Undrained Sh Vane Undrained Shear Strength (ad Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annua uncorrected Corrected for Hamm er Efficiency Factor/60%)*N-unco	ear Strength (psf) T _v = I (psf) WC = LL = I PL = I Calibration Value PI = F er Efficiency G = C	Pocket Torvane Shea Water Content, perci Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis consolidation Test	
		(in.)		-	ð							Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (ir	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log	Visual De	escription and Remarks		Results/ AASHTO and Unified Class.
- 30 -	MV 7D	24/14	30.00 - 32.00	Would Not Push 8-9-27-28	36	64	65 OPEN	72.8	Failed field vane, would no 7DA Top 4 in: Light olive medium plasticity (CLAY)	brown, wet, hard, CLAY,	trace fine sand,	
									7DB Bottom 10 in: Brown some sand, weathered rock	to grey, moist, very dense		
- 35 -	8D	24/6	35.00 - 37.00	20-19-24-17	43	76		65.8	Olive brown, wet, very den little silt (GLACIAL TILL)			WC = 10% Fines = 13.7% A-1-a (0), SM/ GM
	R1	60/60	38.00 - 43.00	RQD = 36%			NX	65.8	Top of Bedrock Elev. 65.8 Advanced with roller bit to	38.0 feet bgs.	37.3-	
- 40 -									R1 (38' - 43'): Grey, very fi METAWACKE [metasand strong, slightly weathered; very close to close spacing open; average 2.4 fractures PENOBSCOT RIVER ME Rock Mass Quality = poor	stone] with calcite veins, s discontinuities, low angle , planar to stepped, rough t per foot [MEDIUM BED] MBER, BANGOR FORM	strong to very to steep dipping, to very rough, DED FACIES,	
- 45 -	R2	60/60	43.00 - 48.00	RQD = 78%					100% Recovery Rock Core Rate (min:sec) 38.0-39.0 ft (2:09) 39.0-40.0 ft (3:12)			
									40.0-41.0 ft (2:22) 41.0-42.0 ft (3:10) 42.0-43.0 ft (3:07)			
								55.1	R2 (43' - 48'): Grey, very fi METAWACKE [metasand discontinuities, low angle t spacing, planar, smooth to	stone] with calcite veins, w o steep dipping, close to m	very strong, fresh; noderately close	
- 50 -									[MEDIUM BEDDED FAC BANGOR FORMATION] Rock Mass Quality = good	CIES, PENOBSCOT RIVE		
									100% Recovery Rock Core Rate (min:sec) 43.0-44.0 ft (2:36) 44.0-45.0 ft (2:15)			
- 55 -									45.0-46.0 ft (2:30) 46.0-47.0 ft (2:30) 47.0-48.0 ft (2:43)			
									Bottom of Exploratio Boring backfilled with ben cuttings and gravel to botto asphalt.	*	nd surface. re socket, drill	
Rema	arks:											
1. H 2. A botto	ammer E s-drilled om of cas	boring loc ing at 38 t	ations and grou ft bgs.	ind surface elevations we	re prov	vided b	oy MaineD		Report" by GRL Engineers I wel reading taken on 5/6/24 a	at 00:45 was made after the	e completion of dri	lling with
Stratifi	cation lines	represent	approximate boui	ndaries between soil types; tra	ansitions	s may b	e gradual.			Page 2 of 2		


Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-BKA-103

APPENDIX B

Rock Core Photographs

APPENDIX B ROCK CORE PHOTOGRAPHS BRIDGE #5798, KENDUSKEAG AVENUE OVER INTERSTATE 95 BANGOR, MAINE MAINEDOT WIN 026095.00

		Depth Below Surface			Recovery				RQD				Date
Boring	Run	F	eet	F	eet	%	F	-eet	t	%	Rock Type	Box Row	Cored
BB-BKA-103	R1	38.0	- 43.0	5.0	- 5.0	100	1.8	-	5.0	36	Metawacke	Row 1	5/5/2024
DD-DKA-103	R2	43.0	- 48.0	5.0	- 5.0	100	3.9	-	5.0	78	Metawacke	Row 2	5/5/2024
BB-BKA-101	R1	24.5	- 29.5	4.2	- 5.0	83	0.0	-	5.0	0	Metawacke	Row 3	5/6/2024
DD-DIA-101	R2	29.5	- 34.5	4.8	- 5.0	95	0.5	-	5.0	9	Metawacke	Row 3,4	5/6/2024

Notes:

1. "Box row" indicates the section of the box where the core is contained: 1 = top, 4 = bottom. 2. Top of each core run is on the left and increases with depth to the right. Prepared By: RJN Checked By: DEB Reviewed By: JDL

APPENDIX B ROCK CORE PHOTOGRAPHS BRIDGE #5798, KENDUSKEAG AVENUE OVER INTERSTATE 95 BANGOR, MAINE MAINEDOT WIN 026095.00

		Depth Bel	ow Surface		Recovery				RQD				Date
Boring	Run	Feet		Feet		%	F	Feet		%	Rock Type	Box Row	Cored
BB-BKA-101	R3	34.5	- 36.5	2.0	- 2.0	100	0.3	-	2.0	17	Metawacke	Row 1	5/6/2024
DD-DKA-101	R4	36.5	- 38.5	2.0	- 2.0	100	0.0	-	2.0	0	Metawacke	Row 1	5/6/2024

Notes:

"Box row" indicates the section of the box where the core is contained: 1 = top, 4 = bottom.
 Top of each core run is on the left and increases with depth to the right.

Prepared By: RJN Checked By: DEB Reviewed By: JDL

APPENDIX B ROCK CORE PHOTOGRAPHS BRIDGE #5798, KENDUSKEAG AVENUE OVER INTERSTATE 95 BANGOR, MAINE MAINEDOT WIN 026095.00

		Depth Be	low Su	urface		Recovery			RQD						Date
Boring	Run	F	Feet		Feet		%		Feet		%	Rock Type	Box Row	Cored	
BB-BKA-102	R1	6.7	- 1	11.7	4.7	-	5.0	94	0.5	-	5.0	10	Metawacke	Row 1	8/1/2024
DD-DRA-102	R2	11.7	- 1	16.3	5.2	-	4.6	100	2.0	-	4.6	43	Metawacke	Row 2 & 3	8/1/2024

Notes:

"Box row" indicates the section of the box where the core is contained: 1 = top, 4 = bottom.
 Top of each core run is on the left and increases with depth to the right.

Prepared By: RJN Checked By: DEB Reviewed By: JDL

APPENDIX C

Laboratory Test Results

Client:	WSP USA, Inc.				
Project:	MaineDOT I-95 Bridge K	enduskeag			
Location:	Bangor, ME			Project No:	GTX-319187
Boring ID:		Sample Type:		Tested By:	ajl
Sample ID	:	Test Date:	06/05/24	Checked By:	ank
Depth :		Test Id:	771742		

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BB-BKA-101	1D	5-7ft	Moist, olive brown silty sand with gravel	5.9
BB-BKA-101	4D	20-22ft	Moist, sandy silty gravel with sand	9.6
BB-BKA-103	4D	15-16.7ft	Moist, olive brown silty sand with gravel	6.3
BB-BKA-103	8D	35-37ft	Moist, olive brown silty sand with gravel	10.1

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge Ke	nduskeag			
Location:	Bangor, MI	E			Project No:	GTX-319187
Boring ID:	BB-BKA-10	03	Sample Type:	Jar	Tested By:	ajl
Sample ID:	1D		Test Date:	06/05/24	Checked By:	ank
Depth :	0.5-2.5ft		Test Id:	771743		
Test Comm	ent:					
Visual Desc	ription:	Moist, light br	own gravelly si	lt		
~ . ~						

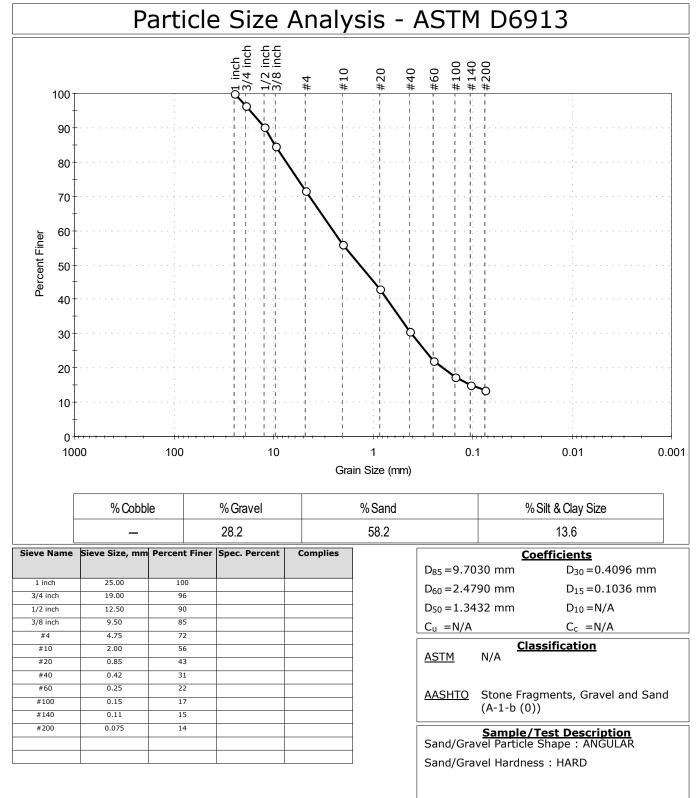
Sample Comment: ---

pH of Soil by ASTM D4972

Boring ID	Sample ID	Depth	Visual Description	pH of Soil in Distilled Water	pH of Soil in Calcium Chloride
BB-BKA-103	1D	0.5-2.5ft	Moist, light brown gravelly silt	8.7	7.7

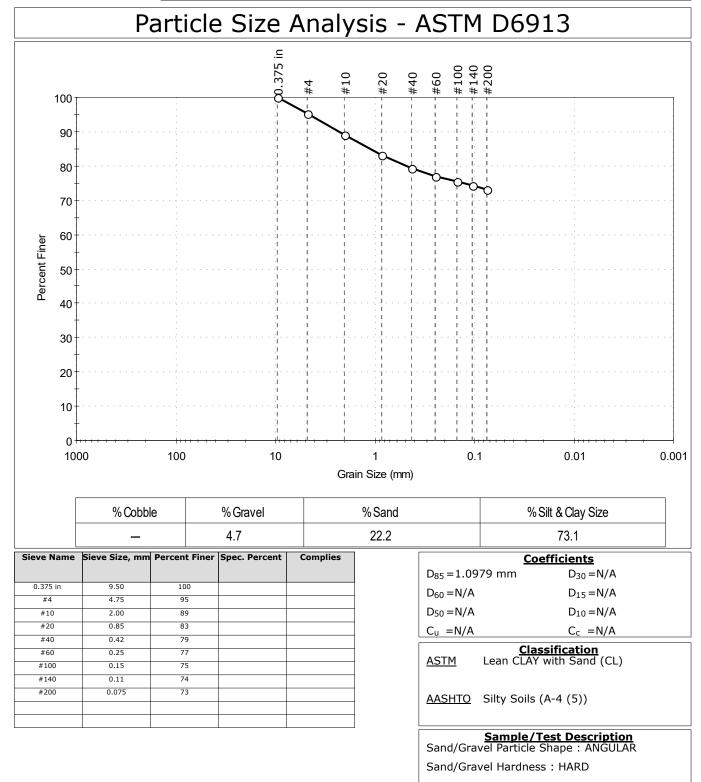
Notes: Sample Preparation: screened through #10 sieve Method A, pH meter used

Client:	WSP USA, Inc.
Project:	Maine DOT I-95 Bridge Kenduskeag
Location:	Bangor, ME
GTX#:	319187
Test Date:	06/06/24
Due Date:	06/13/24
Tested By:	NMK
Checked By:	ank

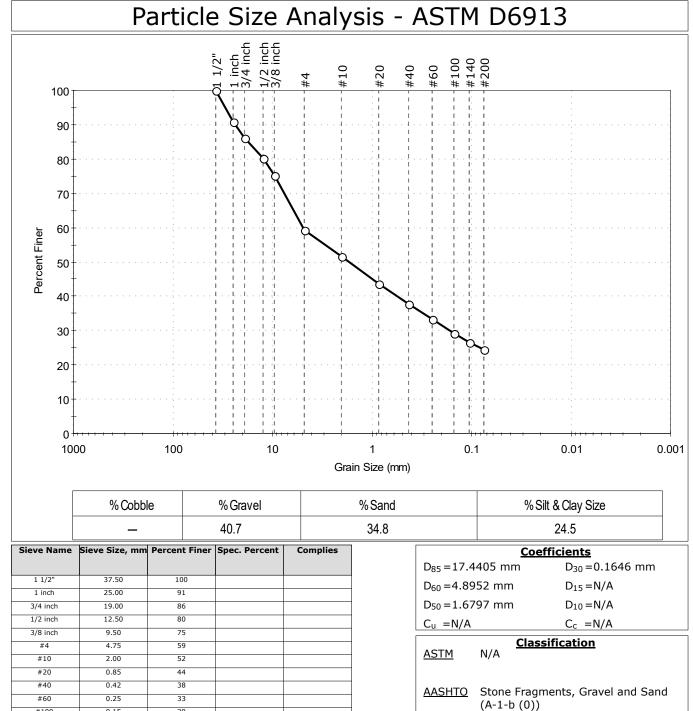

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
BB-BKA-103	1D	0.5-2.5 ft	Moist, light brown gravelly silt	1,102	9.07E-04

Notes: Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil Box Water added to sample to create a thick slurry prior to testing (saturated condition). Electrical Conductivity is calculated as inverse of Electrical Resistivity (per ASTM G57) Test conducted in standard laboratory atmosphere: 68-73 F



Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge Ke	enduskeag			
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	01	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 1D		Test Date:	06/10/24	Checked By:	ank
Depth :	5-7ft		Test Id:	771732		
Test Comm	nent:					
Visual Dese	cription:	Moist, olive bi	rown silty sand	with gravel		
Sample Co	mment:					



Client:	WSP USA,	, Inc.				
Project:	MaineDOT	I-95 Bridge Ke	enduskeag			
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	01	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 2DB		Test Date:	06/10/24	Checked By:	ank
Depth :	10-12ft		Test Id:	771733		
Test Comm	ent:					
Visual Deso	cription:	Moist, brown	clay with sand			
Sample Co	mment:					

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge Ke	enduskeag			
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	01	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 4D		Test Date:	06/10/24	Checked By:	ank
Depth :	20-22ft		Test Id:	771734		
Test Comm	ient:					
Visual Deso	cription:	Moist, sandy	silty gravel with	n sand		
Sample Co	mment:					

0.15

0.11

0.075

29

26

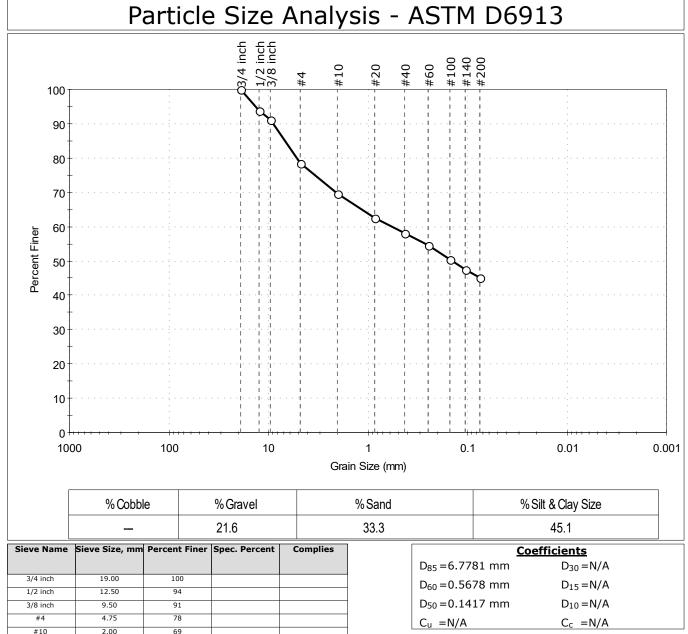
24

#100

#140

#200

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge Ke	enduskeag			
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 3DB		Test Date:	06/10/24	Checked By:	ank
Depth :	10-11.7ft		Test Id:	771735		
Test Comm	ent:					
Visual Deso	cription:	Moist, grayish	brown clay			
Sample Co	mment:					


Particle Size Analysis - ASTM D6913 #100 #140 #200 #40 #60 #20 #10 #4 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Cobble % Gravel % Sand % Silt & Clay Size 0.8 3.0 96.2 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** $D_{85} = N/A$ $D_{30} = N/A$ 4.75 99 #4 $D_{60} = N/A$ $D_{15} = N/A$ #10 2.00 98 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 98 97 #40 0.42 $C_u = N/A$ $C_c = N/A$ #60 0.25 97 Classification Lean CLAY (CL) #100 0.15 97 <u>ASTM</u> #140 0.11 97 96 #200 0.075 AASHTO Clayey Soils (A-6 (13))

Sample/Test Description Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness : ---

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge Ke	enduskeag			
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 4D		Test Date:	06/10/24	Checked By:	ank
Depth :	15-16.7ft		Test Id:	771736		
Test Comm	nent:					
Visual Des	cription:	Moist, olive b	rown silty sand	with gravel		
Sample Co	mment:					

Classification

<u>ASTM</u>

N/A

AASHTO Silty Soils (A-4 (0))

Sand/Gravel Hardness : HARD

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

printed	6/12/2024	10:56:27	AM

0.85

0.42

0.25

0.15

0.11

0.075

63

58

55

51

47

45

#20

#40

#60

#100

#140

#200

Client:	WSP USA,	WSP USA, Inc.					
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag					
Location:	Bangor, MI	=			Project No:	GTX-319187	
Boring ID:	BB-BKA-10)3	Sample Type:	Jar	Tested By:	ajl	
Sample ID:	5D		Test Date:	06/10/24	Checked By:	ank	
Depth :	20-22ft		Test Id:	771737			
Test Comm	ent:						
Visual Desc	isual Description: Moist, grayish brown clay						
Sample Co	ple Comment:						

Particle Size Analysis - ASTM D6913 #100 #140 #200 #40 #60 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Cobble % Gravel % Sand % Silt & Clay Size 0.0 1.6 98.4 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** $D_{85} = N/A$ $D_{30} = N/A$ 4.75 100 #4 $D_{60} = N/A$ $D_{15} = N/A$ #10 2.00 100 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 100 100 #40 0.42 $C_u = N/A$ $C_c = N/A$ #60 0.25 100 Classification Lean CLAY (CL) #100 0.15 99 <u>ASTM</u> #140 0.11 99 98 #200 0.075 AASHTO Clayey Soils (A-6 (17))

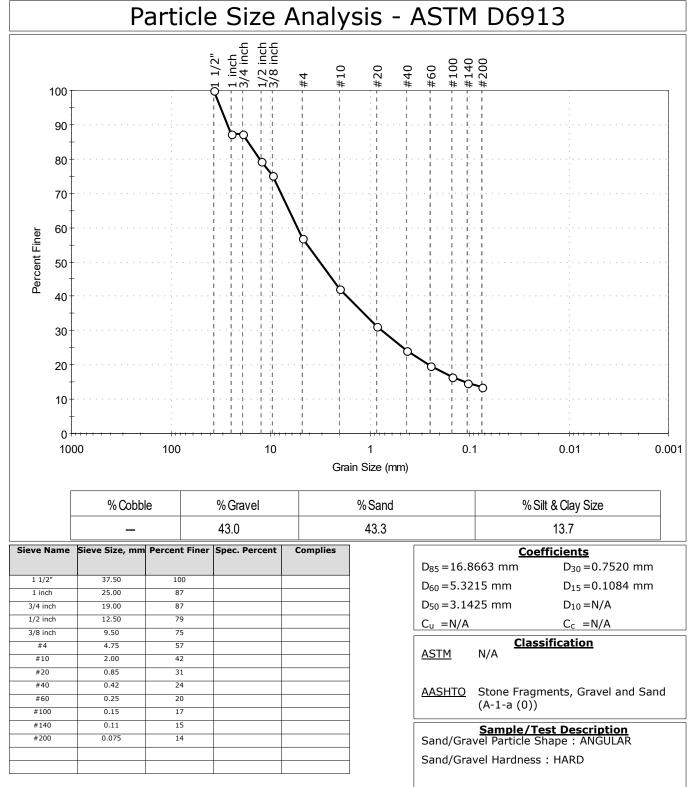
Sample/Test Description Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness : ---

Client:	WSP USA,	Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag				
Location:	Bangor, M	E			Project No:	GTX-319187
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 6D		Test Date:	06/07/24	Checked By:	ank
Depth :	25-27ft		Test Id:	771747		
Test Comm	ent:					
Visual Desc	cription:	Moist, light ol	ive brown clay			
Sample Co	Sample Comment:					

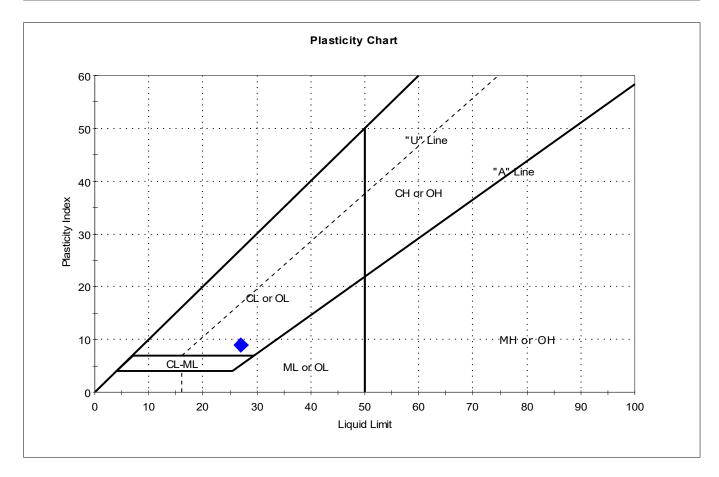
Particle Size Analysis - ASTM D6913/D7928 #100 #140 #200 #60 ¥40 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 1000 100 10 1 0.1 0.01 0.001 Grain Size (mm) % Gravel % Sand % Silt & Clay Size % Cobble 0.0 1.9 98.1 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.0503 mm $D_{30} = 0.0060 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.0235 mm $D_{15} = 0.0025 \text{ mm}$ #10 100 2.00 D₅₀ = 0.0158 mm D₁₀=0.0015 mm #20 0.85 100 100 #40 0.42 $C_u = 15.667$ $C_c = 1.021$ #60 0.25 99 Classification Lean CLAY (CL) #100 99 0.15 ASTM #140 0.11 99 98 #200 0.075 Particle Size (mm) Hydromete Percent Finer Spec. Percent Complies AASHTO Clayey Soils (A-6 (12)) 0.0295 67 0.0204 55 ----0.0121 44 Sample/Test Description Sand/Gravel Particle Shape : ---36 0.0087 0.0062 31 Sand/Gravel Hardness : ---0.0045 24 0.0032 18 Dispersion Device : Apparatus A - Mech Mixer

Dispersion Device : Apparatus A - M Dispersion Period : 1 minute Est. Specific Gravity : 2.65


Separation of Sample: #200 Sieve

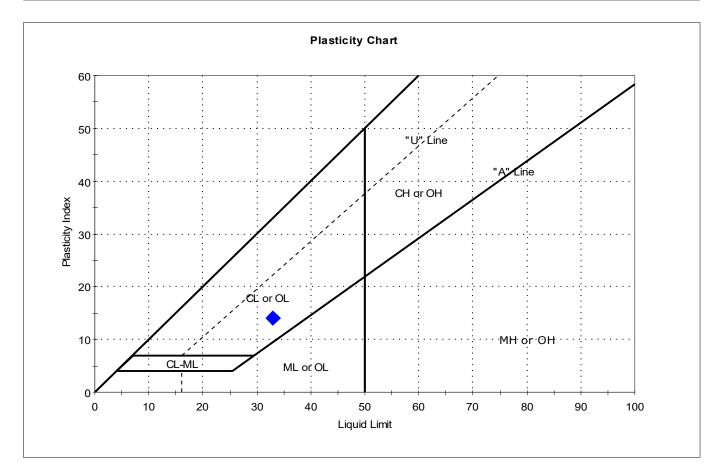
0.0014

9



Client:	WSP USA,	WSP USA, Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag				
Location:	Bangor, ME Project No: GTX-3				GTX-319187	
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	ajl
Sample ID:	: 8D		Test Date:	06/10/24	Checked By:	ank
Depth :	35-37ft		Test Id:	771738		
Test Comm	ent:					
Visual Desc	cription:	Moist, olive br	rown silty sand	with gravel		
Sample Comment:						

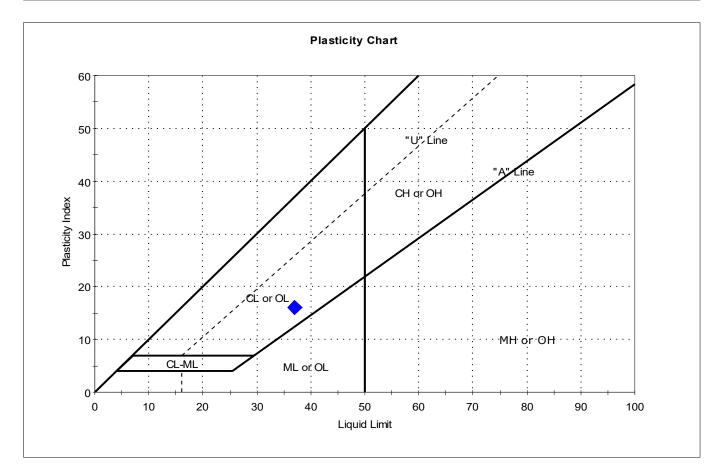
Client:	WSP USA,	WSP USA, Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag				
Location:	Bangor, ME Project No: GTX-31918				GTX-319187	
Boring ID:	BB-BKA-1	01	Sample Type:	Jar	Tested By:	cam
Sample ID	: 2DB		Test Date:	06/11/24	Checked By:	ank
Depth :	10-12ft		Test Id:	771728		
Test Comm	ent:					
Visual Deso	scription: Moist, brown clay with sand					
Sample Co	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	2DB	В-ВКА-10	10-12ft	20	27	18	9	0.2	Lean CLAY with Sand (CL)

Sample Prepared using the WET method 21% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

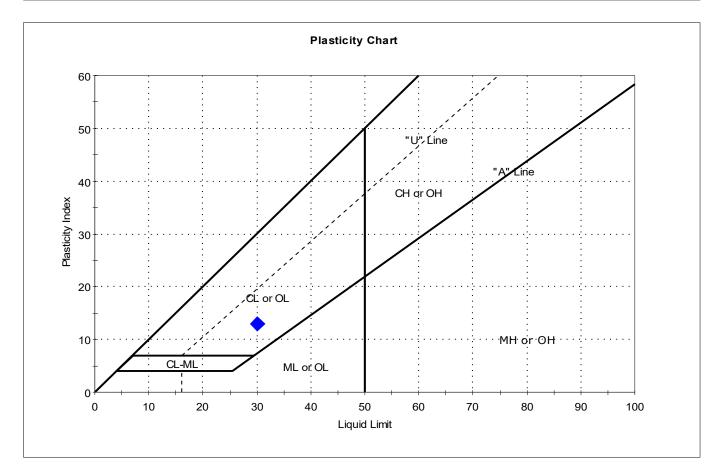
Client:	WSP USA,	WSP USA, Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag				
Location:	Bangor, ME			Project No:	GTX-319187	
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	cam
Sample ID	: 3DB		Test Date:	06/07/24	Checked By:	ank
Depth :	10-11.7ft		Test Id:	771729		
Test Comm	nent:					
Visual Deso	cription:	Moist, grayish	n brown clay			
Sample Co	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	3DB	В-ВКА-10	10-11.7ft	25	33	19	14	0.4	Lean CLAY (CL)

Sample Prepared using the WET method 3% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	WSP USA	WSP USA, Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag				
Location:	Bangor, ME Project No: GTX-31918				GTX-319187	
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	cam
Sample ID	: 5D		Test Date:	06/07/24	Checked By:	ank
Depth :	20-22ft		Test Id:	771730		
Test Comm	nent:					
Visual Deso	cription:	Moist, grayish	n brown clay			
Sample Co	ple Comment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	5D	В-ВКА-10	20-22ft	22	37	21	16	0	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	WSP USA,	WSP USA, Inc.					
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag					
Location:	Bangor, ME Project No: GTX-31918				GTX-319187		
Boring ID:	BB-BKA-1	03	Sample Type:	Jar	Tested By:	cam	
Sample ID	: 6D		Test Date:	06/10/24	Checked By:	ank	
Depth :	25-27ft		Test Id:	771731			
Test Comm	nent:						
Visual Dese	scription: Moist, light olive brown clay						
Sample Co	mment:						

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	6D	В-ВКА-10	25-27ft	27	30	17	13	0.8	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Etesting m services

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No.	TS-A2411934
Report Date	07 June 2024
Date Sampled	31 May 2024
Date Received	04 June 2024
Where Sampled	Acton, MA USA
Sampled By	Client

This is to attest that we have examined: Soil: Project: Maine DOT I-95 Bridge Kenduskeag; Site Location: - - -; Job Number: GTX-319187

When examined to the applicable requirements of:

AASHTO T 291-18

AASHTO T 290-20

"Standard Method of Test for Determining Water-Soluble Chloride Ion Content in Soil" Method B "Standard Method of Test for Determining Water-Soluble Sulfate Ion Content in Soil"

Results:

AASHTO T 291 – Chloride (Method B)

Somela		Res	Minimum	
	Sample	ppm (mg/kg)	% ¹	Detection Limit
BB-BKA-103		210	0.0310	10
1D 0.5 – 2.5'		- 310.	0.0310	10.

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

AASHTO T 290 – Sulfates (Soluble)

Sol	mplo	Res	Minimum	
Sal	mple	ppm (mg/kg)	% ¹	Detection Limit
BB-BKA-103		50.	0.0050	10
1D 0.5 – 2.5'		50.	0.0050	10.

NOTE: ¹Percent by weight after drying and prepared as per the Standard. END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. - Engineer in Charge

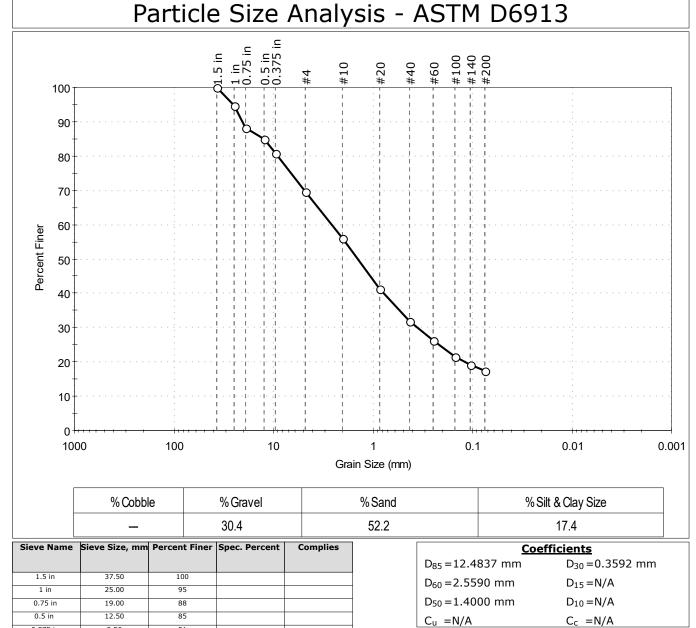
© 2024 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

Client:	WSP USA,	Inc.					
Project:	MaineDOT	I-95 Bridge K	enduskeag				
Location:	Bangor, M	E			Project No:		GTX-319187
Boring ID:	BB-BKA-1	02	Sample Type:	Jar	Tested By:	ajl	
Sample ID	: 1D		Test Date:	08/13/24	Checked By:	ank	
Depth :	1.5-3.5 ft		Test Id:	780363			
Test Comm	nent:						
Visual Deso	cription:	Moist, brown	silty sand with	gravel			
Sample Co	mment:						

Classification

Stone Fragments, Gravel and Sand

N/A


(A-1-b (0))

Sand/Gravel Hardness : HARD

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

<u>ASTM</u>

<u>AASHTO</u>

0.375 in

#4

#10

#20

#40

#60

#100

#140

#200

9 50

4.75

2.00

0.85

0.42

0.25

0.15

0.11

0.075

81

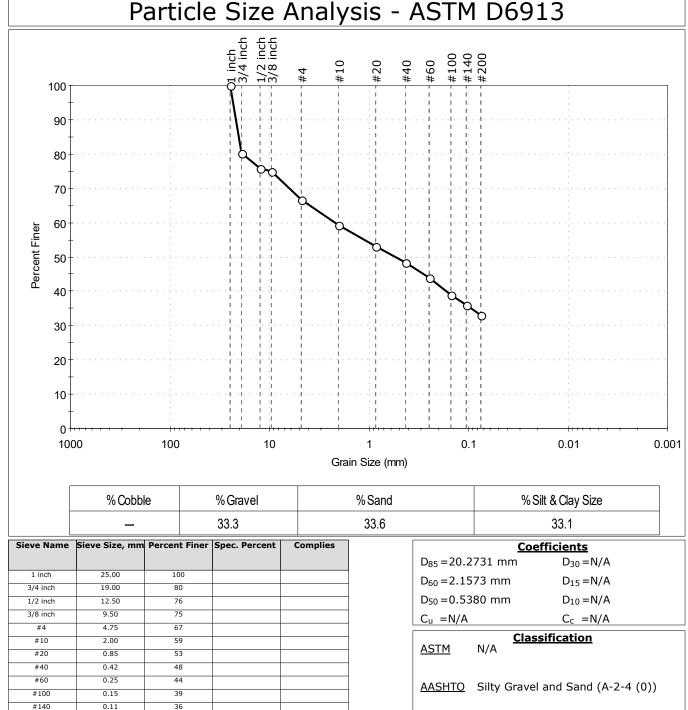
70

56

41

32

26

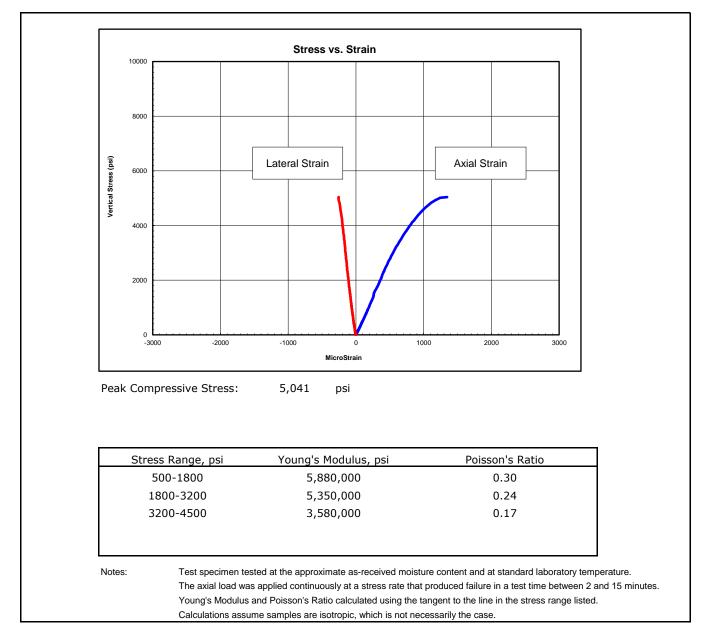

21

19

17

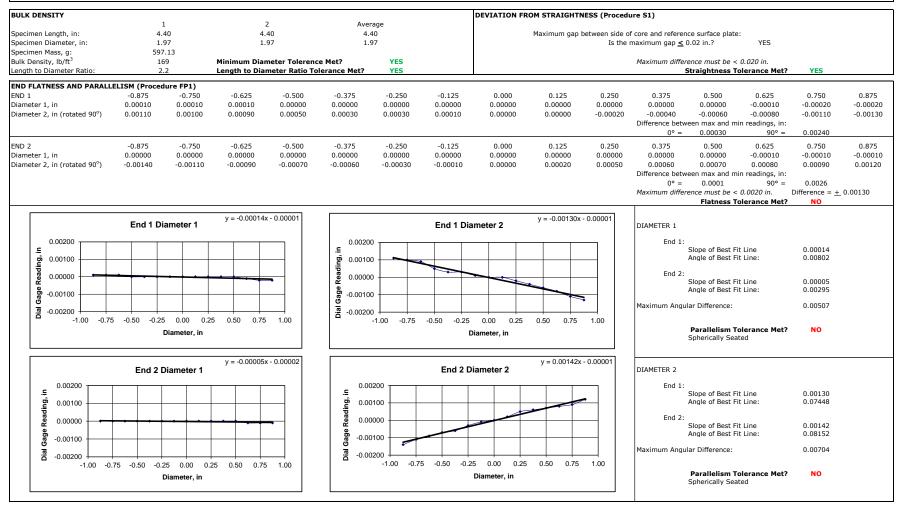
م ام اللي	<u>C:</u>				CO12		
Sample Co	mment:						
Visual Desc	•	Moist, dark g	ray silty sand w	ith gravel			
Test Comm	ent:						
Depth :	5-6.1 ft		Test Id:	780364			
Sample ID:	: 2D		Test Date:	08/12/24	Checked By:	ank	
Boring ID:	BB-BKA-1	02	Sample Type:	Jar	Tested By:	ajl	
Location:	Bangor, M	E			Project No:	GTX-319187	
Project:	MaineDOT	MaineDOT I-95 Bridge Kenduskeag					
Client:	WSP USA,	Inc.					

0.075


33

#200

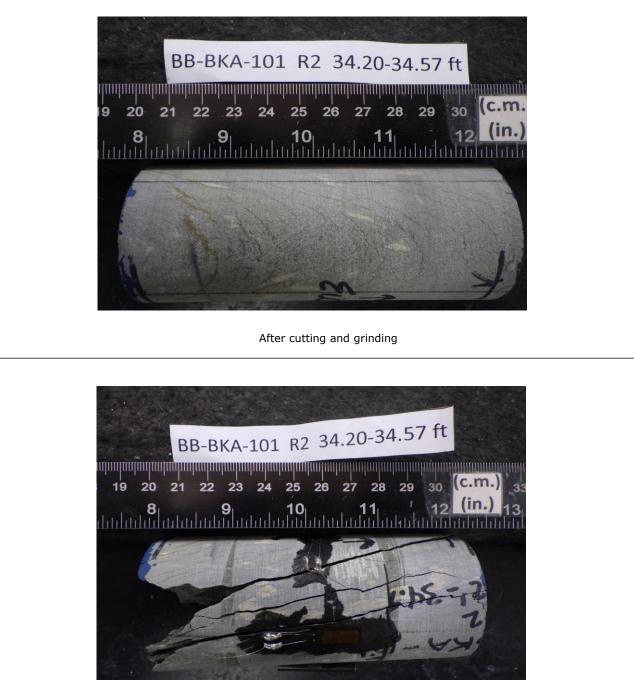
Client:	WSP USA, Inc.
Project Name:	MaineDOT I-95 Bridge Kenduskeag
Project Location:	Bangor, ME
GTX #:	319187
Test Date:	6/13/2024
Tested By:	gp
Checked By:	jsc
Boring ID:	BB-BKA-101
Sample ID:	R2
Depth, ft:	34.20-34.57
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure
	Best Effort end preparation performed


Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

WSP USA, Inc.	Test Date: 6/12/2024	
MaineDOT I-95 Bridge Kenduskeag	Tested By: gp	
Bangor, ME	Checked By: smd	
319187		
BB-BKA-101		
R2		
34.20-34.57		
See photographs		
	MaineDOT I-95 Bridge Kenduskeag Bangor, ME 319187 BB-BKA-101 R2 34.20-34.57	MaineDOT I-95 Bridge Kenduskeag Tested By: gp Bangor, ME Checked By: smd 319187 BB-BKA-101 R2 34.20-34.57

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

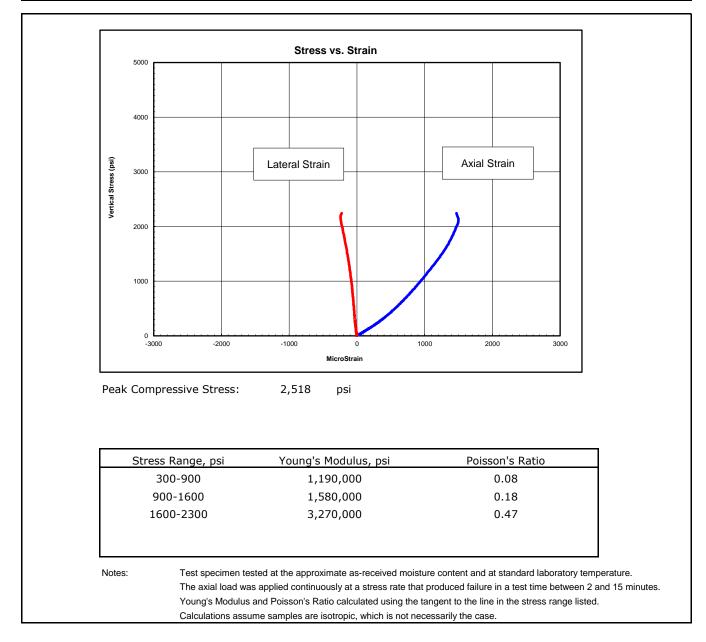
PERPENDICULARITY (Proced	lure P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00030	1.970	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00240	1.970	0.00122	0.070	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00010	1.970	0.00005	0.003	YES	
Diameter 2, in (rotated 90°)	0.00260	1.970	0.00132	0.076	YES	


Client:	WSP USA, Inc.	Test Date:	6/12/2024
Project Name:	MaineDOT I-95 Bridge Kenduskeag	Tested By:	gp
Project Location:	Bangor, ME	Checked By:	smd
GTX #:	319187		
Boring ID:			gauge measurements could not be
Sample ID:	RZ	•	this rock type. Tolerance ts were performed using a
Depth (ft):	24 20 24 57		aightedge and feeler gauges to
Visual Description:	rock core	ASTM specific	cations.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

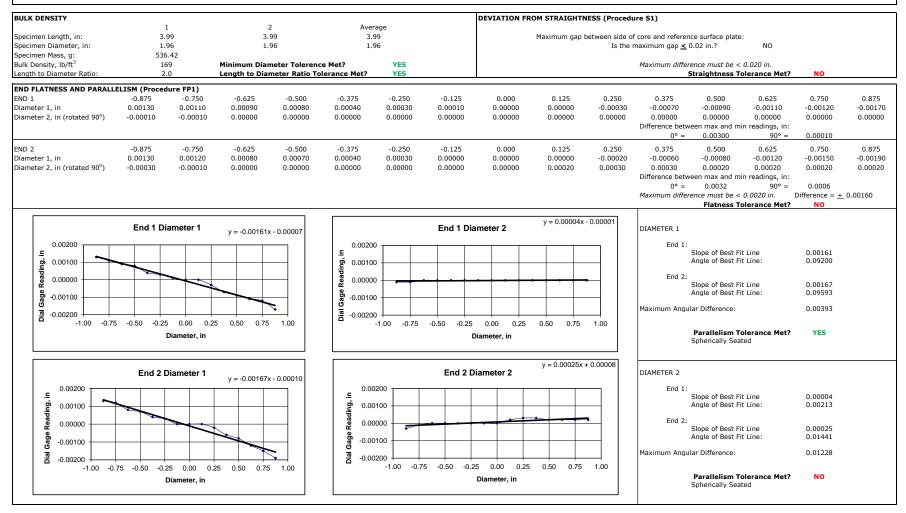
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Toler	ance Met?	? YES

Client:	WSP USA, Inc.
Project Name:	MaineDOT I-95 Bridge Kenduskeag
Project Location:	Bangor, ME
GTX #:	319187
Test Date:	6/13/2024
Tested By:	gp
Checked By:	smd
Boring ID:	BB-BKA-101
Sample ID:	R2
Depth, ft:	34.20-34.57



After break

Client:	WSP USA, Inc.
Project Name:	MaineDOT I-95 Bridge Kenduskeag
Project Location:	Bangor, ME
GTX #:	319187
Test Date:	8/27/2024
Tested By:	gp
Checked By:	jsc
Boring ID:	BB-BKA-102
Sample ID:	R-1
Depth, ft:	7.1-7.4
Sample Type:	rock core
Sample Description:	See photographs Discontinuity failure Best Effort end preparation performed


Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Client:	WSP USA, Inc.	Test Date:	8/26/2024
Project Name:	MaineDOT I-95 Bridge Kenduskeag	Tested By:	gp
Project Location:	Bangor, ME	Checked By:	smd
GTX #:	319187		
Boring ID:	BB-BKA-102		
Sample ID:	R-1		
Depth (ft):	7.1-7.4		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00300	1.960	0.00153	0.088	YES					
Diameter 2, in (rotated 90°)	0.00010	1.960 0.00005			YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00320	1.960	0.00163	0.094	YES					
Diameter 2, in (rotated 90°)	0.00060	1.960	0.00031	0.018	YES					

	Client:	WSP USA, Inc.	Test Date:	8/26/2024						
D	Project Name:	MaineDOT I-95 Bridge Kenduskeag	Tested By:	gp						
9	Project Location:	Bangor, ME	Checked By:	smd						
	GTX #:	319187								
	Boring ID:		Reliable dial gauge measurements could not be							
	Sample ID:	N-1	•	on this rock type. Tolerance nts were performed using a rraightedge and feeler gauges to						
	Depth (ft):	7171								
	Visual Description:	See photographs	ASTM specific	cations.						

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Toler	ance Met?	YES

Client:	WSP USA, Inc.						
Project Name:	MaineDOT I-95 Bridge Kenduskeag						
Project Location:	Bangor, ME						
GTX #:	319187						
Test Date:	8/27/2024						
Tested By:	gp						
Checked By:	smd						
Boring ID:	BB-BKA-102						
Sample ID:	R-1						
Depth, ft:	7.1-7.4						

After cutting and grinding

APPENDIX D

Rock Core Calculations

Appendix D: Calculation of Rock Mass Rating Preliminary Geotechnical Data Report Bridge #5798, Kenduskeag Ave over I-95, Bangor, Maine MaineDOT WIN 026095.00

References:

1. Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. John Wiley & Sons.

2. Wyllie, Duncan C. 1999. Foundations on Rock, 2nd Edition. E&FN Spon.

3. Hoek, Evert. 2006. Practical Rock Engineering. Rocscience Inc.

Notes:

1. The RMR ratings for parameter 1 (intact rock strength), parameter 2 (drill core quality RQD), and parameter 3 (discontinuity spacing) are selected using Charts A, B, and C, respectively, from Bieniawski 1989 (Ref. 1). For core runs on which UCS lab testing was not performed, the intact strength rating is selected based on field strength estimates using Table 3.5 from Wyllie 1999 (Ref. 2).

2. The RMR ratings for parameter 4 (discontinuity condition) are selected using Section E of Table 4 from Hoek 2006 (Ref. 3).

3. The RMR ratings for parameter 5 (groundwater) are selected using Table 3.5 from Wyllie 1999 (Ref. 2).

4. Since outcrop data is not available at the Kenduskeag Ave bridge site, a typical persistance of 3 to 10 feet is assumed for the boring core runs.

5. Since outcrop data is not available at the Kenduskeag Ave bridge site, the rating adjustment for joint orientation is assigned a value of 0; correlation of geologic field mapping data of exposed rock outcrops with the rock core samples and proposed foundation type may allow for a different rating adjustment for joint orientation, and thus a modification to the RMR value shown on this table.

Prepared by: KAR Checked by: BK Reviewed by: JDL

	Run Number	Intact Strength		Intact Strength		Fracture Spacing			A. Classification Parameters									B. Rating		
	or					Average	Average	Average	1	2	3			4				5	Adjustment	
Boring or	Discontinuity	UCS	UCS		RQD	fractures		spacing					Ground	for joint						
Outcrop	ID	(psi)	(MPa)	Field Strength Estimate	(%)	per foot	(ft)	(mm)	of rock	RQD	of joints	Persistence	Aperture	Roughness	Infilling	Weathering	Total	water	orientation	RMR
BB-BKA-101	R1	-	-	Medium Strong (R3) to Strong (R4)	0	3.5	0.3	87	4	3	6	4	0	1	0	3	8	7	0	28
	R2	5041	35	Medium Strong (R3) to Strong (R4)	10	4.0	0.3	76	4	4	6	4	0	1	0	3	8	7	0	29
	R3	-	-	Strong (R4) to Very Strong (R5)	21	5.0	0.2	61	7	5	6	4	0	1	6	3	14	7	0	39
	R4	-	-	Strong (R4) to Very Strong (R5)	0	4.0	0.3	76	7	3	6	4	0	1	6	3	14	7	0	37
BB-BKA-102	R1	2518	17	Weak (R2)	10	4.2	0.2	73	3	4	6	4	0	5	6	6	21	7	0	41
DD-DNA-102	R2	-	-	Strong (R4) to Very Strong (R5)	43	2.8	0.4	109	7	9	7	4	0	5	6	6	21	7	0	51
BB-BKA-103	R1	-	-	Strong (R4) to Very Strong (R5)	35	2.4	0.4	127	7	8	7	4	1	5	6	5	21	7	0	50
	R2	-	-	Very Strong (R5)	77	0.8	1.3	381	12	15	10	4	1	1	6	6	18	7	0	62

Average RMR = 42

Appendix D: **Calculation of Geological Strength Index Preliminary Geotechnical Data Report** Bridge #5798, Kenduskeag Ave over I-95, Bangor, Maine MaineDOT WIN 026095.00

Prepared by: KAR Checked by: BK Reviewed by: JDL

> GSI = 50

> > BB-BKA-101

3B-BKA-102

and -103

GEOLOGICAL STRENGTH INDEX FOR highly weathered surfaces with compact highly weathered surfaces with soft clay JOINTED ROCKS (Hoek and Marinos, 2000) moderately weathered and altered surface From the lithology, structure and surface slightly weathered, iron stained surfaces conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 VERY GOOD Very rough, fresh unweathered surfaces POOR Slickensided, highly weathered surfaces coatings or fillings or angular fragments to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavourable orientation with respect to the excavation face, these SURFACE CONDITIONS will dominate the rock mass behaviour. The shear strength of surfaces in rocks VERY POOR Slickensided, highly coatings or fillings that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. FAIR Smooth, GOOD Rough DECRE SING SURFACE Q ALITY STRUCTURE INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced 90 N/A N/A PIECES discontinuities 80 BLOCKY - well interlocked un-ROCK disturbed rock mass consisting 70 of cubical blocks formed by three intersecting discontinuity sets 1 Ь 60 DECREASING INTERLOCKING VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks 50 formed by 4 or more joint sets BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence 30 of bedding planes or schistosity DISINTEGRATED - poorly interlocked, heavily broken rock mass with mixture of angular and 20 rounded rock pieces 10 LAMINATED/SHEARED - Lack of blockiness due to close spacing N/A N/A of weak schistosity or shear planes *WARNING: The shaded areas are indicative and may not be appropriate for site specific design purposes. Mean values are not suggested for indicative characterisation; the use of ranges is recommended 1. Massive or bedded (no clayey cement present)

Table 5: Most common GSI ranges for typical sandstones.*

2. Brecciated (no clayey cement present)

GSI chart from: Marinos, Paul, and Hoek, Evert. November 2000. GSI: a geologically friendly tool for rock mass strength estimation. ISRM International Symposium, Melbourne, Australia, paper number ISRM-IS-2000-035.

