

GEOTECHNICAL DATA REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MAINE DOT WIN 29486.00 (LEGACY WIN 27266.00) SIDNEY, MAINE

June 2025 09.0026242.00

Prepared for: Maine Department of Transportation Augusta, Maine

Prepared by: GZA GeoEnvironmental, Inc. 707 Sable Oaks Drive | Suite 150 | South Portland, Maine 04106 207.879.9190

31 Offices Nationwide www.gza.com

Copyright© 2025 GZA GeoEnvironmental, Inc.

Built on trust.

TABLE OF CONTENTS

Page

Page i

1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 OBJECTIVES AND SCOPE OF SERVICES	1
2.0	SUBSURFACE EXPLORATIONS	1
	2.1 PREVIOUS (1958) BORING	2
	2.2 RECENT BORINGS	2
3.0	LABORATORY TESTING	2
4.0	SUBSURFACE CONDITIONS	3
	4.1 SURFICIAL AND BEDROCK GEOLOGY	
	4.2 SUBSURFACE PROFILE	4
	4.2.1 Bedrock	6
	4.2.3 Groundwater	6

TABLES

TABLE 1	Summary of Subsurface Explorations
TABLE 2	Summary of Rock Core

FIGURES

FIGURE 1	Locus Plan
FIGURE 2	Boring Location Plan

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Historic Geotechnical Data and Foundation Drawings
APPENDIX C	Recent Test Boring Logs
APPENDIX D	Laboratory Test Results
APPENDIX E	Rock Core Photographs

1.0 INTRODUCTION

We are pleased to provide this Geotechnical Data Report, which includes geotechnical data related to the replacement of Maine Department of Transportation (MaineDOT) Town Farm Road Bridge No. 5785 in Sidney, Maine. Our work was completed in accordance with GZA's Project Contract for the above referenced project dated July 22, 2024, and our Proposal No. 09.P000130.24a, dated December 18, 2023, and the *Limitations* Included in **Appendix A** of this report.

1.1 BACKGROUND

The Town Farm Road Bridge No. 5785 was constructed circa 1958 and spans east to west, carrying Town Farm Road over Interstate 95 (I-95), as shown in **Figure 1**. Bridge No. 5785 is a 303-foot-long, five-span, continuous bridge with steel beams and a reinforced concrete deck. The bridge is 29 feet wide and supported by concrete piers and concrete stub abutments.

The 1958 as-built plans indicate that the two stub abutments are supported by HP 10x42 piles that are either plumb or battered at 2.5:12. Abutments 1 and 2 are supported by 9 and 12 piles, respectively. The piles were designed using an allowable design capacity of 37 and 30 tons for Abutments 1 and 2, respectively. The piles supporting the abutments were estimated to be between 30 to 40 feet long. The four pier stems are shown to be supported by spread footings bearing on marine sand or glacial till. The pier spread footings were designed an allowable bearing pressure of 2.5 tons per square foot (tsf). The existing approach embankments are approximately 13 to 19 feet above original grades. The available historic foundation drawings are attached in **Appendix B**.

Elevations referenced in this report are in feet and refer to the North American Vertical Datum of 1988 (NAVD88) unless noted otherwise. Elevations shown on the 1958 drawings are in feet and refer to the National Geodetic Vertical Datum of 1929 (NGVD29). Stantec indicated that a datum shift of approximately -0.7 feet can be used to convert from NGVD29 to NAVD88.

It is GZA's understanding that a full bridge replacement is planned for this project. The bridge will be designed and constructed as part of a Design-Build bundle. Requirements for on- or off-alignment bridge replacement alternatives will be specified in the MaineDOT Design-Build Request for Proposals (RFP).

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to collect data on the subsurface conditions as the Owner's Geotechnical Consultant to be provided to prospective Design-Build teams in the MaineDOT Design-Build Request for Proposals (RFP). To meet these objectives, GZA completed the following Scope of Services:

• Conducted a site visit to observe surficial conditions and reviewed existing bridge plans, historical topography, historical geotechnical reports, and mapped surficial and bedrock geology of the site;

- Coordinated and observed a subsurface exploration program, consisting of four test borings, to evaluate subsurface conditions for the bridge;
- Conducted a laboratory testing program to evaluate engineering and index properties of the site soils; and
- Prepared this report summarizing our findings.

2.0 SUBSURFACE EXPLORATIONS

Details of the previous and current subsurface explorations are provided in the following sections.

2.1 PREVIOUS (1958) BORING

In 1958, MaineDOT conducted eight test borings, designated BOR #1 through #8, to explore subsurface conditions for bridge construction. All borings drilled for the design of the existing bridge were drilled prior to construction of I-95. At the time, the grades were 13 to 18 feet lower than Town Farm Road is today. Six of the eight borings were drilled through the overburden and to bedrock, and approximately 5 feet of core was collected from these six borings. Depths to bedrock ranged from 16 to 55 feet below original grades in these borings. Boring BOR #5 and BOR #6, located at the existing Abutment 2, were terminated in very dense/hard soil with gravel and boulders without confirming bedrock at depths of approximately 34 to 55 feet below original grades, respectively.

The boring log sheets from the 1958 geotechnical report are included in **Appendix B**.

2.2 RECENT BORINGS

GZA completed a preliminary subsurface exploration program consisting of four (4) test borings (BB-STFR-101 through BB-STFR-104), the locations and designations of which are shown on the attached **Boring Location Plan, Figure 2**. Borings BB-STFR-101 and -104 were completed about 15 feet behind the face of each abutment, boring BB-STFR-102 was drilled through the bridge between Pier 1 and Pier 2, and boring BB-STFR-103 was drilled through the bridge between Pier 3 and Pier 4. The as-drilled boring locations and elevations were surveyed by MaineDOT, provided to GZA and shown on the logs; the surveyed as-drilled locations are shown on **Figure 2**.

The borings were drilled to depths of approximately 30 to 79 feet below ground surface (bgs) and terminated approximately 10 to 13 feet into bedrock. Seaboard Drilling of Bangor, Maine provided drilling services and coordinated utility clearance. The drilling was completed from July 16 through July 19, 2024. GZA personnel monitored the drilling work and prepared logs of each boring, included in **Appendix C**.

The borings were drilled using solid stem augers followed by 3-inch or 4-inch casing and drive-and-wash techniques through the overburden and coring equipment in the bedrock. Standard Penetration Testing (SPT) and split-spoon sampling were performed at 5-foot typical intervals in overburden soils. SPTs were conducted according to MaineDOT requirements using an automatic hammer system calibrated in accordance with ASTM D4633-05 and MaineDOT procedures. SPTs were conducted using automatic

hammer Seaboard SN367, which had a rated hammer energy transfer ratio of 1.066 at the time of drilling. The drilling subcontractor backfilled the approach boreholes with cuttings or sand and topped them with asphalt cold patch upon completion. The bridge deck was patched with quick-set concrete. Rock core was taken from each boring using NQ (2.0-inch diameter) coring equipment.

3.0 LABORATORY TESTING

GZA retained Thielsch Engineering's Geotechnical Laboratory in Cranston, Rhode Island to complete a laboratory testing program to assess the gradation and index properties of the soil and bedrock. The testing program included:

COMPLETED LABORATORY TESTS												
Laboratory Test ASTM Standard Number of Tes												
Grain Size Analysis	D6913	9										
Hydrometer	D7928	4										
Atterberg Limits	D4318	4										
Moisture Content	D2216	16										
Unconfined Compressive Strength (with axial and lateral strain)	D7012 Method D	2										

Results of the testing are included in **Appendix D**.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

Based on available surficial geologic mapping¹, the surficial unit at the site is mapped as the Presumpscot Formation, which consists of marine silt, clay, and local sand beds deposited on the late-glacial sea floor. Glacial Till is mapped to the northwest of the site and consists of a poorly sorted mixture of clay, silt, and sand and can include cobbles and boulders.

Bedrock in the vicinity of the site is mapped² as the Waterville Formation. The Waterville formation is characterized as fine to medium grained siltstone and claystone pelite and fine grained to very fine grained, non-foliated, quartz-plagioclase, metasandstone. The Mayflower Hill formation is mapped west of the site and consists of light grey phyllite.

¹ Hildreth, Carol T., 2005, Surficial geology of the Vassalboro quadrangle, Maine: Maine Geological Survey, Open-File Map 05-8, Map, scale 1:24,000. Maine Geological Survey Maps. 1505. http://digitalmaine.com/mgs_maps/1505

² Osberg, Philip H., 1968, Stratigraphy, structural geology, and metamorphism of the Waterville-Vassalboro area, Maine: Maine Geological Survey (Department of Economic Development), Bulletin 20, 64 p. report, color map, cross section, scale 1:62,500. Maine Geological Survey Maps. 80. http://digitalmaine.com/mgs_maps/80

4.2 SUBSURFACE PROFILE

Four soil units, Fill, Marine Clay, Marine Sand, and Glacial Till were encountered in the test borings underlying approximately 5 to 6 inches of asphalt pavement (in Town Farm Road approaches) and overlying bedrock. The thicknesses and generalized descriptions of the soil units are presented in the following table, in descending order from existing ground surface. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in **Appendix C**.

6/24/2025 GEOTECHNICAL DATA REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT

09.0026242.00 Page 5

	-	INTERPRETED SUBSURFACE CONDITIONS
Soil Unit	Approximate Encountered Thickness (ft)	Generalized Description
Fill	3 to 24	 Varies <u>from:</u> Brown to grey, loose to very dense, fine to coarse SAND, trace gravel to Gravelly, trace to some silt <u>to:</u> brown, stiff, Clayey SILT, little sand. Typical MaineDOT Frost Classification Range= 0 to II Results from 8 Grain Size and 8 Moisture Content Analyses: AASHTO Classification: A-1-a, A-1-b, A-2-4(0) USCS Classifications: SW-SM, SM, GP-GM, ML Moisture Content: 4.3 to 16.1% Encountered in all borings
Marine Clay	5 to 9	 Brown to grey, very soft to stiff, Clayey SILT to Silty CLAY, trace to some sand. Typical MaineDOT Frost Classification = IV Results from 3 Atterberg Limits and 3 Moisture Content Analyses: AASHTO Classification: A-4(6) USCS Classifications: CL, ML Liquid Limit: 22 to 29 Plastic Limit: 16 to 19 Plasticity Index: 6 to 10 Moisture Content: 21.2 to 25.8% Encountered in borings BB-STFR 101, BB-STFR-102, and BB-STFR-103
Marine Sand	15	Brown, medium dense to very dense, Silty fine to medium SAND. Encountered in BB-STFR-104
Glacial Till	7 to 30	 Varies <u>from</u>: Brown to grey, medium dense to very dense, Silty GRAVEL, Gravelly SAND, and Silty SAND <u>to</u>: hard, Clayey SILT, some gravel, trace to some sand. Typical MaineDOT Frost Classification Range= III to IV Results from 3 Grain Size, 1 Atterberg Limits, and 4 Moisture Content Analyses: AASHTO Classification: A-1-a, A-4(0) USCS Classifications: SM, GM, CL-ML Liquid Limit: 20 Plastic Limit: 13 Plasticity Index: 7 Moisture Content: 6.0 to 21.0%
Estimated Top of Bedrock*		Approx. El. 121 to 163 (34 to 69 feet bgs)
	ted top of bedroc Road approaches	k is based on recent borings. Depths to bedrock referenced to ground surface s or I-295.

4.2.1 Bedrock

Bedrock was cored in each test boring and was described as Pelite of the Waterville Formation. Pelite was generally described as medium hard to hard, fresh to slightly weathered, fine to medium grained, and grey with occasional quartzite laminae or intrusions. Joints were generally characterized as extremely close to widely spaced, low to high angle, planar to stepped, smooth to rough, fresh to discolored, and tight to open. The RQD ranged from 0 to 100 percent, indicating a Rock Quality of Very Poor to Excellent. The bedrock core data are summarized in **Table 2**. Wet and dry photographs of the collected rock core are included in **Appendix E**.

Unconfined compressive strength and elastic modulus tests were conducted on two rock specimens, the results of which are summarized in the following table.

	SUMMARY OF BEDROCK STRENGTH TEST RESULTS													
Boring	Depth below Existing Ground (ft)	Depth below Top of Rock (ft)	Unconfined Compressive Strength (psi)	Secant Modulus @ 50% of Failure Stress (ksi)	Unit Weight (pcf)	Rock Type								
BB-STFR-101	42.0	7.6	11,932	5,480	175.5	Pelite								
BB-STFR-102	23.2	3.6	5,063	3,370	172.4	Pelite								

4.2.3 Groundwater

The groundwater depth was measured in all borings. Groundwater depths ranged from approximately 6.1 to 28.8 feet, corresponding to approximately El. 160.7 to El. 178.0. Groundwater levels in the borings were measured during or immediately after drilling and were likely affected by cased drilling procedures, which included introduction of water for drilling purposes.

The groundwater observations were made at the times and under the conditions stated in the boring logs. Fluctuations in groundwater level occur due to variations in season, precipitation, and construction activities in the area. Consequently, water levels during construction are likely to vary from those encountered at the time the observations were made.

SIGNATURE PAGE

This report has been prepared and reviewed by:

GZA GEOENVIRONMENTAL, INC.

Blaine Cardali Senior Project Manager

Man 25m

Christopher L. Snow, P.E. Consultant/Reviewer

Andrew R. Blaisdell, P.E. Associate Principal

BMC/ARB/CLS:cc

P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 027266.00 Town Farm Rd Report\FINAL 26242.00-Town Farm Rd Bridge #5785 GDR 06.24.2025.docx

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

TABLES

TABLE 1Summary of Subsurface ExplorationsTown Farm Road Bridge #5785 over I-95Sidney, MEWIN 27266.00

				Top of Stratum Elevation							Stı	ratum Thick	ness					Groundwater	
Boring ID	Northing	Easting	Ground Surface El. (ft)	Asphalt	Fill	Marine Clay	Marine Sand	Glacial Till	Bedrock	Asphalt	Fill	Marine Clay	Marine Sand	Glacial Till	Bedrock	Bottom of Boring Depth (ft)	Bottom of Boring El. (ft)	El. (ft)	Depth (ft)
BB-STFR-101	606731.9	1158979.8	197.0	197.0	196.5	178.5	NE	170.0	162.6	0.5	18.0	8.5	NE	7.4	34.4	45.0	152.0	178.0	19.0
BB-STFR-102	606709.1	1159104.9	173.9	NE	173.9	168.9	NE	162.4	154.3	NE	5.0	6.5	NE	8.1	19.6	30.0	143.9	167.8	6.1
BB-STFR-103	606693.0	1159185.6	170.5	NE	170.5	167.0	NE	162.0	150.3	NE	3.5	5.0	NE	11.7	20.2	34.0	136.5	160.9	9.6
BB-STFR-104	606669.1	1159310.9	189.5	NE	189.5	NE	166.0	151.0	121.0	NE	23.5	NE	15.0	30.0	68.5	79.0	110.5	160.7	28.8

Notes:

1. Refer to the boring logs in Appendix C for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. Project coordinates are in survey feet and reference the North American Datum of 1983 (NAD83) Maine Coordinate System 2000 West, unless noted otherwise.

4. As-drilled locations were surveyed by MaineDOT and provided to GZA.

5. Stratum depths, thickness and elevations are rounded to the nearest 0.1 foot as interpreted on the boring logs, but this does not represent the precision of the data.

TABLE 2

Summary of Bedrock Data

Town Farm Road Bridge #5785 Over I-95

Sidney, ME WIN 27266.00

			Depth of Core Run below GS (ft)		th of Core Run below GS (ft)		Depth Below Top of Rock (ft)									Elev.	(ft)				LAB				
Boring ID	Core Run	Ground Surface El. (ft)	Тор		Bottom	Depth to Rock (ft)	Тор	Bottom	Length of Core Run (in)	Rec (in)	Rec (%)	RQD (in)	RQD %	Joint Spacing (in)	Joint Aperture (in)	Тор	Bottom	Depth of Sample (ft)	Depth of Sample into Rock (ft)	Elev Top of Sample (ft)	UCS (psi) Po	pissons Ratio	Modulus (ksi)	Unit Wt (pcf)	Rock Type
BB-STFR-101	R1	197.0	35.0	-	37.3	34.4	0.6	- 2.9	27.6	26	96%	14	51%	0.75-2.5	0.004-0.1	162.0	159.7								PELITE
BB-STFR-101	R2	197.0	37.3	-	39.0	34.4	2.9	- 4.6	20.4	20	100%	0	0%	0.75-0.75	0.004-0.01	159.7	158.0								PELITE
BB-STFR-101	R3	197.0	39.0	-	41.0	34.4	4.6	- 6.6	24.0	19	79%	10	50%	2.5-2.5	0.02-0.1	158.0	156.0								PELITE
BB-STFR-101	R4	197.0	41.0	-	42.0	34.4	6.6	- 7.6	12.0	10	83%	5	42%	0.75-0.75	0.004-0.1	156.0	155.0								PELITE
BB-STFR-101	R5	197.0	42.0	-	45.0	34.4	7.6	- 10.6	36.0	36	100%	36	100%	2.5-24	0.02-0.1	155.0	152.0	42.0	7.6	155.0	11,932	0.53	5,480	175.5	PELITE
BB-STFR-102	R1	173.9	20.0	-	25.0	19.6	0.4	- 5.4	60.0	59	98%	27	45%	0.75-2.5	0.01-0.02	153.9	148.9	23.2	3.6	150.7	5,063	0.38	3,370	172.4	PELITE
BB-STFR-102	R2	173.9	25.0	-	30.0	19.6	5.4	- 10.4	60.0	60	100%	40	67%	0.75-2.5	0.01-0.02	148.9	143.9								PELITE
BB-STFR-103	R1	170.5	24.0	-	29.0	20.2	3.8	- 8.8	60.0	60	100%	10	17%	0.75-2.5	0.01-0.02	146.5	141.5								PELITE
BB-STFR-103	R2	170.5	29.0	-	34.0	20.2	8.8	- 13.8	60.0	48	80%	23	48%	0.75-2.5	0.01-0.02	141.5	136.5								PELITE
BB-STFR-104	R1	189.5	69.0	-	74.0	68.5	0.5	- 5.5	60.0	58	97%	6	10%	0.75-2.5	0.01-0.02	120.5	115.5								PELITE
BB-STFR-104	R2	189.5	74.0	-	79.0	68.5	5.5	- 10.5	60.0	53	88%	19	36%	0.75-2.5	0.01-0.02	115.5	110.5								PELITE

Notes:

1. Refer to boring logs in Appendix B for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. As-drilled locations and elevations were surveyed by MaineDOT and provided to GZA.

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

FIGURES

© 2025 - GZA GeoEnvironmental, Inc. P:\09 Jobs\0026200\$\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Figures\GIS\APRX\APRX.aprx, April 08, 2025 - 2:01 PM, Elizabeth.Fulton

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX A - LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our

evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 027266.00 Town Farm Rd Report\FINAL 26242.00-Town Farm Rd Bridge #5785 GDR 06.24.2025.docx

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX B - HISTORIC GEOTECHNICAL DATA AND FOUNDATION DRAWINGS

d 1 2 3 4 5 INCHES

0 ... **6**

• . A B. P. R. STATE PROJECT NUMBER SHEET TOTAL NO. SHEETS 1 MAINE I-95-G((5)117 5 18 No.7 22" CASING STA. 12+68 - 20'RT. 4 No.8 21 CASING STA. 12+64 - 15 LT. 4 STIFF EL. 180.1 BROWN SANDY SILT STIFF BROWN SANDY 132 YERY STIFF GRAYISH BROWN SILT WEATHERED SILTY CLAY WITH THIN SAND LAYERS APPEARING WITH DEPTH 68 MEDIUN 70 DENSITY BROWN SAND ¢ MEDIUM DENSITY BROWN SAND ¢ GRAVEL GRAVEL 165 LEDGE, FRACTURED Phillite Calcareous Cleavage At High Angle 81% LEDGE FRACTURED PHILLITE CALCAREOUS WEATHERED 29% 159.1 CLEAVAGE AT 157.2 HIGH ANGLE 155 60 125 120 Traced from plans included in report of subsurface investigation DESIGN-TRACE-WELCH BRIDGE NO. SURVEY -PLOT -STATE HIGHWAY COMMISSION BRIDGE DIVISION TOWN FARM ROAD BRIDGE INTERSTATE HIGHWAY IN THE TOWN OF KENNEBEC COUNTY FOUNDATION SURVEY SHEET 5 OF 18 AUGUSTA, MAINE MAY 1958 74-158

۲

0, 1, 2, 3, 4, 5, INCHES

iches

3	STA	RAI	GHT	BARS]
MARK		No.	LENGTH	LOCATION	-
F 2	#5 *4	128	28'-10"	Slab "	
F 3 F 4	14	106	24'-2" 46'-8"	"	
F5		159	22-8"	"	-
F6 ·		106	45-8"	"]
F7 F8		64 64	19-0"	"	
/ 0	*	67	22-0		
CI	*4	20	24'-2"	Curb & Rail Curb (Slab)	
C2 C3	* 4 * 4	20 90	23'-8" 22'-8"	1, 1	-
AS1	* 6	176	14'-8"	Approach Slab	
AS 2	*4	40	21'-10"	11 11	
1					
A/ A2	"4 "4	24	2'-5"	Abutment-End Post "Rail Curb & Cu	-h
A3	*5	88	9'-6"	" WINgs Horr.	<u> </u>
A4 A5	*5 *5	40 40	10-2 10-5	" " Vert.	
A6	*6	12	3'-2"	" e Piles	
A 7 A 8	#6 #4	/8 /2	28'-8" 28'-8"	··· ·· bridge scot.	
A0 A9	#6	12	28-0	II I Q PILES	
A10	# 6	40	6'-5"	1	
A// A/2	+6	32 32	10-0" 51-9"	" " backwall	
A13	#5	30	4'-3"	1, bridje scat	
A14	* 6	16	12'-3"	" e piles	
					_
P8	#6	16	28:3"	PIER CAP	
P13 P14	#9	16	28'-3" 8'-0"		
P15	# 6	16	20-9"		
P16 P17	#8 #8	96 48	24'-7" 23'-8"	- #1 #3 Column:	
P18 P19	*8 *8	48	18'-9" 5'-0"		
P20	* 7	64	23-6"	- FOOTINGS	
P21	#4	64	7-6*		
					_
			DESIGN - DRES	SSELLY DET.FSMITH BRIDGE NO	
			TRACE - M.W.I CHECK - MCR	SSELLY DET.F.SMITH BRIDGE NO M. SURVEY - PLOT -	
				STATE HIGHWAY COMM BRIDGE DIVISION	
			IN K	VN FARM ROA OVER ITERSTATE H IN THE TOWN SIDNEY ENNEBEC PIERS & REINF. STEE OF 18 AUGUSTA, MAINE	IIGHWAY of COUNTY L APRILI
	•				74

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX C – TEST BORING LOGS

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM	MODIFIED BURMISTER SYSTEM
			GROUP		
MAJ COARSE- GRAINED SOILS	GRAVELS	ONS CLEAN GRAVELS (little or no fines)	GW GP	TYPICAL NAMES Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel sand mixtures, little or no fines.	Descriptive TermPortion of Total (%)trace0 - 10little11 - 20some21 - 35adjective (e.g. Sandy, Clayey)36 - 50
iger	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay	Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).
(more than half of material is larger than No. 200 sleve size)		amount of fines)		mixtures.	Density of Standard Penetration Resistance Cohesionless Soils N ₆₀ -Value (blows per foot) Very loose 0 - 4
ian half of an No. 200	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Loose 5 - 10 Medium Dense 11 - 30 Dense 31 - 50
(more th tha	(more than half of coarse fraction is smaller than No. 4 sieve size)	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200 sign(x), lashidae (1) increasing and exception silts and player (2) Converting Sector
	e than hali n is smalle sieve sit	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated. <u>Approximate</u>
	(mor fractio	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Undrained Consistency of SPT N ₆₀ -Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.	Very SoftWOH, WOR, WOP, <20 - 250Fist easily penetratesSoft2 - 4250 - 500Thumb easily penetratesMedium Stiff5 - 8500 - 1000Thumb penetrates with moderate effortStiff0 - 1510002000
FINE- GRAINED SOILS	(liquid limit l	ess than 50)	CL	Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff9 - 151000 - 2000Indented by thumb with great effortVery Stiff16 - 302000 - 4000Indented by thumbnailHard>30over 4000Indented by thumbnail with difficulty
is ze)			OL	Organic silts and organic Silty clays of low plasticity.	Rock Quality Designation (RQD): RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance length of core advance
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	мн	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high	*Minimum NQ rock core (1.88 in. OD of core) Rock Quality Based on RQD <u>Rock Quality</u> <u>RQD (%)</u> Very Poor ≤25 Poor 26 - 50
(more the smaller that	(liquid limit gr	eater than 50)	ОН	plasticity, fat clays. Organic clays of medium to high plasticity, organic silts.	Fair 51 - 75 Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable):
		ORGANIC	Pt	Peat and other highly organic soils.	Color (Munsell color chart) Texture (aphanitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.)
Color (Muns Moisture (dr Density/Cor Texture (find Name (Sand Gradation (sell color cha ry, damp, m nsistency (fr e, medium, d, Silty Sand well-graded on-plastic, s ayering, frac ell, moderat n (weak, mo rigin (till, ma	art) oist, wet) om above ri coarse, etc. d, Clay, etc. , poorly-grad slightly plast etures, crack ely, loosely, oderate, or s	ght hand s) , including ded, unifor ic, modera s, etc.) etc.,) strong)	portions - trace, little, etc.) m, etc.) tely plastic, highly plastic)	 Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.) Geologic discontinuities/jointing: -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - 22 inch, close - 2-12 inch, mod. close - 1-3 feet, wide - 3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))
Key	/ to Soil a	Geotechi	<i>nical</i> Seo Descrip	tions and Terms	Sample Container Labeling Requirements:WINBlow CountsBridge Name / TownSample RecoveryBoring NumberDateSample NumberPersonnel InitialsSample DepthSample Depth

Ι	Maine	-		of Transport	atior	1	Project:	Town	Farm R	oad Bridge #5785	Boring No.:	FR-101	
			Soil/Rock Expl	-			Locatio	n: Sidn	ey, Mai	ine		272	<i></i>
		Ţ	JS CUSTOM/	ARY UNITS							WIN:	2720	66.00
Drill	er:		Seaboard Drill	ing	Ele	vation	(ft.)	197.0			Auger ID/OD:	4.0/4.5"	
	rator:		K. Hanscom	8	_	um:	. /	NAVD88			Sampler:	Standard Splits	spoon
· ·	ged By:		J. Cozens		Ria	Туре		D-53 Mobile			Hammer Wt./Fall:	140#/30"	-F
	Start/Fi	nish [.]	7-19-24/7-19-2	24			lethod:			and SSA	Core Barrel:	NQ	
	ng Loca		N606731.9, E		_	sing IC		4.0/4.5"	, wash		Water Level*:	19'	
			actor: 1.066	1100777.0	_	-	Туре:	Automa	tio M	Hydraulic 🗆	Rope & Cathead	17	
Defini	tions:		40101. 1.000	R = Rock (Core Sam	ple	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S _u =	Peak/Re	molded Field Vane Undrained She	ear Strength (psf) T _V = F	Pocket Torvane She	
	plit Spoon S Unsuccess		oon Sample Atten	SSA = Soli hpt HSA = Hol				S _{u(lal} q _n = l	_{o)} = Lab Jnconfin	Vane Undrained Shear Strength (ed Compressive Strength (ksf)		Water Content, per Liquid Limit	cent
	hin Wall Tu		II Tube Sample A	ttempt RC = Rolle		10lh Ha	mmer			I = Raw Field SPT N-value iency Factor = Rig Specific Annual		Plastic Limit Plasticity Index	
V = Fi	eld Vane S	hear Test,	PP = Pocket Pe	netrometer WOR/C =	Neight of	Rods o	r Casing	N ₆₀ =	SPT N-	uncorrected Corrected for Hamme	er Efficiency G = G	rain Size Analysis onsolidation Test	
		iui Field Va	ne Shear Test Att	empt WO1P = W Sample Information			5011	1960 =	(namm	er Efficiency Factor/60%)*N-uncor		Unsolidation rest	
		<u>.</u>			ð								Laboratory Testing
.	- N N	: (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected			_	Graphic Log	Visual De	scription and Remarks		Results/
Depth (ft.)	Sample No.	Pen./Rec.		s (/6 pgth DD (corr		ور «	Elevation (ft.)	hic I	visual De	scription and itemarks		AASHTO and
ept	am	en./	t;	hew trer trer r R(un-	N60	Casing Blows	leva t.)	irap				Unified Class.
0	00	а.	0 E	<u> 田のの守</u> る	2	2			0	Top 6": Hot Mix Asphalt (H	-MA)		
							SSA	196.5	****				-
	1D	24/6	1.5 - 3.5	13-12-20-10	32	57				Brown/grey, moist, very de	nse. Gravely fine to coarse	SAND some	G#24-S-3634
										silt, (Fill).	inse, Gravery fine to coarse	Sinte, some	A-1-b, SM
													WC = 4.3%
- 5 -									****	Brown, moist, medium dens	so fine to madium SAND	some silt trace	G#24-S-3635
	2D	24/15	5.0 - 7.0	2-2-4-4	6	11				gravel, (Fill).	se, fine to medium SAND	some sin, trace	A-2-4(0), SM
													WC = 8.3%

- 10 -							V V			(T. 101) D		、 ,	
10	3D	24/15	10.0 - 12.0	5-4-3-3	7	12	36			(Top 12"): Brown, moist, m trace clay, (Fill).	edium dense, Silty SANI), some gravel,	
							20			(Bottom 3"): Brown, moist	, stiff, Clayey SILT, little	sand, (Fill).	
							20						
							106						
							76						
- 15 -							72						G #2 4 G 2 42 4
10	4D	24/9	15.0 - 17.0	10-21-10-14	31	55	39			Brown, moist, very dense, f silt, (Fill).	ine to coarse SAND, some	e gravel, little	G#24-S-3636 A-1-b, SM
							86						WC = 9.6%
							00						
							121						
							80	178.5	****				
							50						
- 20 -							50			Brown, moist, stiff, SILT, l	ittle fine sand (Marine Cl	av)	
	5D	24/20	20.0 - 22.0	2-1-2-6	3	5	51			PP = 2.0 tsf	inte fine suite, (friatilie en	- 57	
							89						
							50						
							59						
							139						
							121						
25 Rem	arks:												L
percer 2. Aut 3. Wa	ntages passi tomatic han ter level me	ng specific imer Seaboa easured imm	grain sizes. ard Drilling #D50 nediately after ren	Energy Transfer Ratio = 1.	066.			sification	techniqu	ues of laboratory Atterberg Limit T	'ests if available, rather than th	e MaineDot Standar	rd based
* Wate	er level read	dings have	approximate boui been made at tim me measurement	es and under conditions sta	ited. Gro	undwate	er fluctuation	ns may oo	cur due	to conditions other	Boring No.	BB-STFR	-101

I	Maine Department of Transpo Soil/Rock Exploration Log				ntion	Project: Town Farm Road Bridge #5785 Boring No.: B					BB-ST	FR-101
						Locatio	on: Sidi	ney, Ma	ine		252	
		<u>l</u>	JS CUSTOM	ARY UNITS						WIN:	2726	66.00
Drill	er:		Seaboard Dril	ling	Elevati	on (ft.)	197	.0		Auger ID/OD:	4.0/4.5"	
Ope	rator:		K. Hanscom		Datum		NA	VD88		Sampler:	Standard Splits	poon
Log	ged By:		J. Cozens		Rig Ty	e:	D-5	3 Mobil	e	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	7-19-24/7-19-	24	Drilling	Method:	Driv	ve & Wa	ash and SSA	Core Barrel:	NQ	
Bori	ng Loca	tion:	N606731.9, E	1158979.8	Casing	ID/OD:	4.0/	4.5"		Water Level*:	19'	
		iciency F	actor: 1.066			er Type:	Autom			Rope & Cathead 🗆		
MD = U = T MU = V = F	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter Il Tube Sample A PP = Pocket Pe ne Shear Test Att	npt HSA = Hollo RC = Roller ttempt WOH = Wei netrometer WOR/C = W tempt WO1P = Wei	Stem Auger w Stem Auge Cone ght of 140 lb. /eight of Rod	Auger Su(lab) = Lab Vane Undrained Shear Strength (psf) WC = Water Content, p						ar Strength (psf) cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	nple Depth	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	ing	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and
	San	Per	San (ft.)	Stree Stree or F	N-UN	Casing Blows	(ft.)	Gra				Unified Class.
25	6D	24/24	25.0 - 27.0	3-2-3-5	5 9	66			Brown, wet, medium stiff, (Marine Clay). PP = 0.25 , 0.75 , 1.0 tsf	Clayey SILT, little sand, w	ith sand seams,	G#24-S-3637 LL = 29 PL = 19
						67	170.0				27.0	PI = 10
						102	-					
						116	-					
- 30 ·	7D	24/12	30.0 - 32.0	14-16-16-8	32 5				Brown, wet, very dense, Gr	avelly SAND, some silt, (Glacial Till).	
						127	1					
						142						
						122	_					
- 35 ·						73	162.6		Casing refusal at 34.4', prob	bable top of bedrock at 34.4	4'. Advanced to	
	R1	27/26	35.0 - 37.3	RQD = 51%		NQ	-		35.0' and set up to core. R1: Hard, fresh, fine to med occasional quartzite lamination			
								90	stepped, rough, fresh, open close to very close, high an	to tight. 36.0-37.2': Joints	are extremely	
	R2	20/20	37.3 - 39.0	RQD = 0%			-		fresh to discolored, tight to Recovery = 96%		our to rough,	
								96	Rock Quality = Fair Rock Core Times (min:sec)	· 35 0-36 0' (4·17) 36 0-33	7 0'(3·26) 37 0-	
- 40 -	R3	24/19	39.0 - 41.0	RQD = 50%			-		37.2' (1:17) R2: Hard, fresh, fine to mee	lium grained, grey, PELIT	E, with	
		10/17					-		occasional quartzite lamina smooth, discolored, tight, w Recovery = 95%		gn angie, planar,	
	R4	12/10	41.0 - 42.0	RQD = 42%			-		Rock Quality = Very Poor Rock Core Times (min:sec)	: 37.3-38.3' (1:31), 38.3-39	9.0'(2:42)	q _p =1718 ksf
	R5	36/36	42.0 - 45.0	RQD = 100%			-		R3: Hard, fresh, fine to mec occasional quartzite lamina	lium grained, grey, PELIT e. Joints are close, high ang	E, with	•
							-	9199 1919	smooth, discolored, open, w Recovery = 79% Rock Quality = Poor	/ith siit inifiling.		
- 45 -						V	152.0	21161221	Rock Core Times (min:sec) R4: Hard, fresh, fine to mec occasional quartzite lamina- planar, smooth, discolored,	lium grained, grey, PELIT e. Joints are extremely clos	E, with	
							-		Recovery = 83% Rock Quality = Poor	адан ю орса.		
							-		Rock Core Times (min:sec) R5: Hard, fresh, fine to med	lium grained, grey, PELIT		
							-		occasional quartzite laminae moderately dipping, planar, Recovery = 100%			
<u>50</u>	arks:						1					
1. F perc 2. A	ine Grainec entages pas utomatic h	ssing specifi ammer Seab	c grain sizes. oard Drilling #D:	are based on plasticity estin 50 Energy Transfer Ratio = 1 2000 moval of casing.	-	sual manual o	classificat	on techn	ques of laboratory Atterberg Limit	Tests if available, rather than t	he MaineDot Stand	ard based

	e 2 of 3
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	ring No.: BB-STFR-101

Ι	Maine Department of Transportati			ation	Project	Town	Farm F	coad Bridge #5785	Boring No.:	ring No.: BB-STFR-101		
			Soil/Rock Exp JS CUSTOM			Locatio	n: Sidn	ey, Ma	ine	WIN:	2726	56.00
Drill	er:		Seaboard Dri	lling	Elevatio	n (ft.)	197.	0		Auger ID/OD:	4.0/4.5"	
Ope	rator:		K. Hanscom	0	Datum:	. ,	NAV	/D88		Sampler:	Standard Splits	poon
Logo	ged By:		J. Cozens		Rig Typ	e:	D-53	8 Mobi	e	Hammer Wt./Fall:	140#/30"	•
	Start/Fi	nish:	7-19-24/7-19-	-24		Method:	Driv	e & W	ash and SSA	Core Barrel:	NQ	
	ng Loca		N606731.9, E		Casing		4.0/4			Water Level*:	19'	
			actor: 1.066		Hamme		Automa		Hydraulic 🗆	Rope & Cathead	.,	
Definit D = S MD = U = TI MU = V = Fi	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test A	R = Rock 0 SSA = Sol mpt HSA = Hol RC = Rolk Attempt WOH = W enterometer WOR/C = tempt WO1P = V	Core Sample id Stem Auger low Stem Auge	r Hammer or Casing	S _u = S _{u(la} q _p = N-uno Hamr N ₆₀ =	Peak/Re b) = Lab Unconfii correcte mer Effic = SPT N	molded Field Vane Undrained She Vane Undrained Shear Strength (led Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme ter Efficiency Factor/60%)*N-unco	ear Strength (psf) T, psf) W LL P I Calibration Value P or Efficiency G	 Pocket Torvane She; Water Content, pere Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test 	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Bhear Strength (psf) or RQD (%)	N-uncorrected	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarl	۲S	Laboratory Testing Results/ AASHTO and Unified Class.
50									Rock Quality = Excellent Rock Core Times (min:sec) 45.0' (3:11)): 42.0-43.0' (3:04), 43.		
									Bottom of Exploration	n at 45.0 feet below gr	ound surface.	
							-					
- 55 -							-					
							-					
							-					
- 60 -												
- 65 -							-					
							-					
- 70 -							-					
							-					
- 75 Rem	arks:	I	1				1	I	I			
1. Fi perc 2. A	ine Grained entages pas utomatic h	ssing specifi ammer Seab	c grain sizes. oard Drilling #D	g are based on plasticity esti 50 Energy Transfer Ratio = removal of casing.	-	ual manual c	lassificatio	on techn	iques of laboratory Atterberg Limit	Tests if available, rather t	han the MaineDot Standa	ard based

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 3 of 3
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Boring No · BB-STFR-101
than those present at the time measurements were made.	Boring No.: BB-STFR-101
	-

I

Maine Department of TransportationProject: Town Farm Road Bridge #5785Boring No.:BB-STFR-1					FR-102								
			<u>Soil/Rock Expl</u> US CUSTOMA	-			Locatio	n: Sidn	ey, M	aine	WIN:	2726	56.00
			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u></u>									
Drille			Seaboard Drill	ing	_	vatior	1 (ft.)	173.9			Auger ID/OD:	4.0/4.5"	
Oper	ator:		K. Hanscom		_	tum:		NAVD	38		Sampler:	Standard Splits	spoon
	jed By:		L. Hailey			ј Туре		ATV			Hammer Wt./Fall:	140#/30"	
	Start/Fi		7-16-24/7-16-2		_		lethod:				Core Barrel:	NQ	
	ng Loca		N606709.1, E	1159104.9	_	sing II		4.0/4.5	, 3.0/	3.5"	Water Level*:	6.1'	
Ham Definit		iciency F	actor: 1.066	R = Rock C		mmer	Туре:	Automa		Hydraulic Remolded Field Vane Undrained She	Rope & Cathead	Pocket Torvane She	or Strongth (nof)
D = Sp MD = U = Th MU = V = Fig	olit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample At PP = Pocket Per <u>ne Shear Test Att</u>	SSA = Soli npt HSA = Holl RC = Rolle ttempt WOH = We netrometer WOR/C = N	d Stem A low Stem r Cone eight of 1 Weight of	Auger Auger 40lb. Ha	r Casing	S _{u(la} q _p = N-un Hami N ₆₀ :	b) = La Uncon correct ner Efi = SPT	Annoted Field Valle Orlidanced Sin bit Vane Undrained Shear Strength (ksf) ed = Raw Field SPT N-value iciency Factor = Rig Specific Annua N-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	psf) WC LL = PL = I Calibration Value PI = er Efficiency G =	e Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		· ·	1 1		q								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/10	0.0 - 2.0	2-4-15-16	19	34	21			Brown, wet, dense, fine to (Fill).	medium SAND, little grav	vel, trace silt,	G#24-S-3638 A-1-b, SW-SM
							34			×			WC = 16.1%
							37			×.			
			+				20			8			
- 5 -							27	168.9					
							34						
							33	-					
	2D	24/24	8.0 - 10.0	2-3-4-5	7	12	24			Brown, wet, stiff, Clayey S	ILT, trace sand, (Marine	Clay).	G#24-S-3639 CL
							42						LL = 24 PL = 16
- 10 -							81						PI = 8 $WC = 22.1%$
							135	162.4					
							128						
	3D	24/14	13.0 - 15.0	40-42-35-3	77	137	RC			Brown, wet, very dense, G	ravelly SAND, little silt,	(Glacial Till).	G#24-S-3640 A-1-a, SM WC = 6.0%
- 15 -													
	4D	12/10	18.0 - 19.0	13-110	110	195				Brown, wet, very dense, Si	Ity fine SAND, (Glacial T	111).	
- 20 -							$ \downarrow \downarrow$	154.3		Increased roller cone resista	· • •	19.6	q _p =729 ksf
	R1	60/59	20.0 - 25.0	RQD = 45%			NQ			Advanced roller cone to 20 R1: Medium hard, slightly with occasional quartzite la to closely spaced, moderate rough, discolored, partially Recovery = 98% Rock Quality = Poor	weathered, medium grain minae and intrusions. Joi ely dipping to high angle,	nts are very close	T
			───┤					-		Rock Core Times (min:sec) 23.0' (3:48), 23.0-24.0' (3:3		22.0' (2:29), 22.0-	
25										23.0 (3.40), 23.0-24.0 (3:3	5), 2 1 .0-23.0 (3.01)		
1. Find percent 2. Aut 3. Wat 4. Mea Stratifi * Wate	tages passi omatic han er level me isured 22.5 cation lines er level rea	ing specific nmer Seabo easured imn 5 feet froom s represent dings have	grain sizes. ard Drilling #D50 nediately after rem bridge deck to gro approximate bour been made at time	Energy Transfer Ratio =1.0 noval of casing. ound surface. ndaries between soil types; es and under conditions sta)66. transitior	ns may t	be gradual.			iques of laboratory Atterberg Limit 7	Page 1 of 2		
than	those pres	sent at the ti	ime measurement	s were made.							Boring No	.: BB-STFR	-102

Ι	Maine Department of Transport			ntion	Project: Town Farm Road Bridge #5785 Boring No.: BB-				BB-ST	FR-102		
			Soil/Rock Exp			Locatio						
		Ĺ	JS CUSTOM	<u>ARY UNITS</u>		Location	n. siui	icy, ivia	line	WIN:	2726	66.00
Drille	er:		Seaboard Dri	ling	Elevatio	n (ft.)	173.	9		Auger ID/OD:	4.0/4.5"	
Oper	ator:		K. Hanscom		Datum:		NAV	VD88		Sampler:	Standard Splits	spoon
Logo	jed By:		L. Hailey		Rig Type	e:	AT	1		Hammer Wt./Fall:	r Wt./Fall: 140#/30"	
Date	Start/Fi	nish:	7-16-24/7-16-	-24	Drilling Method: Drive & Wash					Core Barrel:	NQ	
Bori	ng Loca	tion:	N606709.1, E	1159104.9	Casing I	D/OD:	4.0/4	4.5", 3.0)/3.5"	Water Level*:	6.1'	
Ham	mer Effi	ciency Fa	actor: 1.066		Hammer	Туре:	Automa			Rope & Cathead □		
MD = U = Th MU = V = Fig	olit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	ful Split Spo be Sample ful Thin Wal hear Test,	oon Sample Atter Il Tube Sample A PP = Pocket Pe ne Shear Test At	mpt HSA = Hollor RC = Roller RC = Roller Attempt WOH = We enetrometer WOR/C = W tempt WO1P = W	Stem Auger	lammer or Casing	S _{u(la} q _p = N-un Hami N ₆₀ :	ab) = Lab Unconfir corrected mer Effic = SPT N	molded Field Vane Undrained She Vane Undrained Shear Strength (hed Compressive Strength (ksf) J = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-unco	psf) WC = LL = PL = I Calibration Value PI = er Efficiency G = 0	Pocket Torvane She Water Content, peri Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
	ŝ	Pe	ů tj	ឌ ភ្ ភ្ ភ្ ភ្	żž	йă	ШĘ	Ū				onnica olass.
- 30 -	R2	60/60	25.0 - 30.0	RQD = 67%			143.9		R2: Medium hard, slightly with occasional quartzite la to closely spaced, moderate rough, discolored, partially Recovery = 100% Rock Quality = Fair Rock Core Times (min:sec) 28.0' (2:41), 28.0-29.0' (4:5	minae and intrusions. Join ely dipping to high angle, open.): 25.0-26.0' (2:56), 26.0-2	nts are very close undulating,	
									Bottom of Exploration	n at 30.0 feet below grou	nd surface.	
- 35 -												
- 40 -												
- 45 -												
<u>50</u> Rem	arks:	<u> </u>	1		I	1	1	1				
1. Fi perce	ne Grained entages pas	sing specific	c grain sizes.	g are based on plasticity estin 50 Energy Transfer Ratio =1		ial manual cl	assificati	on techn	iques of laboratory Atterberg Limit	t Tests if available, rather than	the MaineDot Stand	ard based

Water level measured immediately after removal of casing.
 Measured 22.5 feet froom bridge deck to ground surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-STFR-102

I

N	Maine Department of Transporta Soil/Rock Exploration Log						Project: Town Farm Road Bridge #5785				Boring No.: BB-ST		FR-103
			Soil/Rock Exp JS CUSTOM				Locatio	n: Sidn	ey, Ma	ine	WIN:	2720	56.00
Drille	er:		Seaboard Dril	ling	Ele	evation	(ft.)	170.5			Auger ID/OD:	4.0/4.5"	
Oper	ator:		K. Hanscom	-	Da	tum:		NAVD	38		Sampler:	Standard Splits	spoon
Logo	jed By:		L. Hailey		Rig	д Туре		ATV			Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	7-17-24/7-18-	-24	Dri	illing N	lethod:	Drive a	nd Was	h	Core Barrel:	NQ	
Boriı	ng Loca	tion:	N606693.0, E	1159185.6	_	Casing ID/OD: 4.0/4.5", 3.0/3.5" Water Level*: 9.6'						9.6'	
Ham Definit		ciency F	actor: 1.066	R = Rock 0		mmer	Туре:	Automa		Hydraulic molded Field Vane Undrained She	Rope & Cathead	Pocket Torvane She	or Strongth (ncf)
D = Sp MD = U = Th MU = V = Fie	olit Spoon S Jnsuccess in Wall Tu Jnsuccess old Vane S	sful Split Spo be Sample sful Thin Wa shear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = Soli npt HSA = Hol RC = Rolle WOH = We worker WOR/C = N tempt WO1P = W	d Stem A low Sterr r Cone eight of 1 Weight o	Stem Auger $S_{U(lab)}$ = Lab Vane Undrained Shear Strength (pw Stem Auger q_p = Unconfined Compressive Strength (ksf)					psf) WC = LL = PL = Calibration Value PI = I er Efficiency G = 0	e Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		<u> </u>	1	Sample Information	70								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/6	0.0 - 2.0	13-8-8-6	16	28	105			Brown, dry, medium dense, silt, (Fill).	, GRAVEL, some fine to o	coarse sand, trace	G#24-S-3641 A-1-a, GP-GM WC = 14.3%
							47 24						
							22	167.0					
- 5 -							20			D		·	
5	2D	24/12	5.0 - 7.0	1-WOH-WOH-WOH			6			Brown-grey, wet, very soft	to soft, Clayey SILT, (Ma	trine Clay).	G#24-S-3642 CL LL = 22
							7 19						PL = 16 $PI = 6$ $WC = 21.2%$
													wC = 21.2%
							25 49	162.0				- — — -8.5-	
- 10 -	3D	24/15	10.0 - 12.0	4-7-7-6	14	25	42			Brown, wet, medium dense Till).	, Silty fine SAND, some (Gravel, (Glacial	G#24-S-3643 A-4(0), SM
							64						WC = 21.0%
							65						
							77 59						
- 15 -	4D	24/18	15.0 - 17.0	7-23-23-43	46	82	R/C			Brown, wet, very dense, Sil (Glacial Till).	lty fine to medium SAND	, some gravel,	
- 20 -	5D	2/0	20.0 - 20.2	50/2"				150.3		No recovery.		20.2-	
										Spoon refusal at 20.2', prob cone to 24.0' and set up to c			
	D 1	60/60	24.0 20.0	DOD 174/						R1: Medium hard, slightly			
25 Rem	R1	60/60	24.0 - 29.0	RQD = 17%			NQ		01/90	with occasional quartzite la	minae. Joints are very clo	se to closely	
1. Fine percen 2. Auto 3. Wat 4. Mea	Grained S tages passi omatic han er level me sured 24' f cation lines	ing specific nmer Seaboa easured with from bridge s represent	grain sizes. ard Drilling #D5(in the casing afted deck to ground so) Energy Transfer Ratio = 1. er waiting overnight.	066. transition	ns may b	e gradual.			ues of laboratory Atterberg Limit T	Fests if available, rather than the standard for the stan	ne MaineDot Standar	d based

than those present at the time measurements were made.

Boring No.: BB-STFR-103

Ι	Maine Department of Transport		of Transporta	tion	Project: Town Farm Road Bridge #5785			oad Bridge #5785	Boring No.: BB-STFR-103		FR-103	
		<u> </u>	Soil/Rock Exp	loration Log		Locatio	n: Sidn	ev. Ma	ine			
		Ĺ	JS CUSTOM	<u>ARY UNITS</u>			~~~~	,,		WIN:	2726	66.00
Drille	er:		Seaboard Dril	ling	Elevatio	n (ft.)	170.	5		Auger ID/OD:	4.0/4.5"	
Ope	rator:		K. Hanscom		Datum:		NAV	/D88		Sampler:	Standard Splits	poon
Logg	ged By:		L. Hailey		Rig Type	e:	ATV	7		Hammer Wt./Fall: 140#/30"		
Date	Start/Fi	nish:	7-17-24/7-18-	24	Drilling	Drilling Method: Drive and Wash				Core Barrel:	NQ	
Bori	ng Loca	tion:	N606693.0, E	1159185.6	Casing I	D/OD:	4.0/4	4.5", 3.0)/3.5"	Water Level*:	9.6'	
		ciency Fa	actor: 1.066			Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □						0
MD = U = Th MU = V = Fi	olit Spoon S Unsuccess nin Wall Tu Unsuccess eld Vane S	ful Split Spo be Sample ful Thin Wal hear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	RC = Roller C Muttempt WOH = Weig Monetrometer WOR/C = We	Stem Auger v Stem Auger	lammer or Casing	S _{u(la} q _p = N-un Hami N ₆₀ :	b) = Lab Unconfin corrected mer Effic = SPT N-	molded Field Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme rer Efficiency Factor/60%)*N-unco	wc = LL = L PL = F Calibration Value PI = P or Efficiency G = G	Pocket Torvane Shea Water Content, pero iquid Limit Plastic Limit lasticity Index rain Size Analysis phoolidation Test	
1010 -	0113000033			Sample Information	gitt of one re		1.60					Laboratori
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
25									spaced, moderately dipping open.	to high angle, undulating,	rough, partially	
								ENEL DE COMENCE ENEL ENEL ENEL ENEL	Recovery = 100% Rock Quality = Very Poor Rock Core Times (min:sec) 27.0' (2:03), 27.0-28.0' (2:4		5.0' (2:20), 26.0-	
- 30 -	R2	60/48	29.0 - 34.0	RQD = 48%				I AND I A AND AND AND AND AND AND AND AND AND AND	R2: Medium hard, slightly with occasional quartzite la spaced, moderately dipping discolored, partially open.	minae. Joints are very clos	e to closely	
								DA AND DA AND	Recovery = 80% Rock Quality = Poor Rock Core Times (min:sec) 32.0' (1:07), 32.0-33.0' (2:4		1.0' (3:34), 31.0-	
- 35 -							136.5		Bottom of Exploration	n at 34.0 feet below groun	34.0- d surface.	
- 40 -												
- 45 -												
50												
1. Fi perc	entages pas	sing specifi	c grain sizes.	g are based on plasticity estima		ial manual cl	assificati	on techni	ques of laboratory Atterberg Limit	Tests if available, rather than t	he MaineDot Standa	ard based

2.	. Automatic namin	er seaboard	i Dinning	#D30	Energy	riansier Katio	= 1.0
2	337 (1 1	1 .1.		0	•.•	• • •	

Water level measured within the casing after waiting overnight.
 Measured 24' from bridge deck to ground surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Boring No.: BB-STFR-103
than those present at the time measurements were made.	Doring No., DD-STFK-105

Γ	Main	e Dep	artment	of Transporta	ation		Project	: Town	Farm R	oad Bridge #5785	Boring No.:	BB-ST	FR-104	
			Soil/Rock Exp US CUSTOM/				Locatio	on: Sidn	ey, Mai	ne	WIN:	2720	66.00	
Drill	er.		Seaboard Dril	ling	Flev	ation	(ft)	189.5			Auger ID/OD:	4.0/4.5"		
	rator:		E. Baron	iiiig	Datu		(14)	NAVD	28		Sampler:	Standard Splits	spoon	
•								ATV	50			140#/30"	spoon	
	ged By:		L. Hailey	24		Type:			1 3 3 7 1		Hammer Wt./Fall:			
	Start/F		7-16-24/7-16-		-	-		Drive a			Core Barrel:	NQ		
	ng Loca		N606669.1, E	1159310.9	-	Casing ID/OD: 4.0/4.5", 3.0/3.5" Water Level*: 28.8' Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □								
Ham Defini		iciency I	actor: 1.066	R = Rock C			Type:	Automa		Hydraulic molded Field Vane Undrained She	Rope & Cathead	Pocket Torvane She	or Strongth (pcf)	
D = S MD = U = T MU = V = Fi	plit Spoon Unsucces hin Wall Tu Unsucces eld Vane S	sful Split Sp ube Sample sful Thin W Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test Att	SSA = Solid npt HSA = Holl RC = Roller ttempt WOH = Wei netrometer WOR/C = W tempt WO1P = Wei	I Stem Au ow Stem A Cone ight of 140 /eight of F	iger Auger Olb. Hai Rods or	Casing	S _{u(la} q _p = N-un Hami N ₆₀ :	b) = Lab Unconfin corrected ner Effici = SPT N-	Vane Undrained Shear Strength (ed Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	psf) WC = LL = I PL = I Calibration Value PI = F er Efficiency G = G	Water Content, per .iquid Limit Plastic Limit Plasticity Index rain Size Analysis onsolidation Test		
Ċ		: (in.)		Sample Information	ected				bo-	Vieuel De	parintian and Domarka		Laboratory Testing Results/	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	visual De	scription and Remarks		AASHTO and Unified Class	
0	0,		0,0			~			XXX					
	1D	4/1	1.0 - 1.3	20/4"			SSA	1		Brown, dry, Gravelly SAN Spoon refusal at 1.3' due to			G#24-S-3644 A-1-b, SM WC = 2.1%	
	2D	24/19	2.1 - 4.1	4-4-3-2	7	12				Brown, dry, medium dense, gravel, (Fill).	rown, dry, medium dense, fine to medium SAND, some silt, trace ravel, (Fill).			
- 5 -	3D	24/9	5.0 - 7.0	3-5-4-4	9	16		-		Brown, dry, medium dense, (Fill).				
10 -	4D	24/18	10.0 - 12.0	3-5-5-5	10	18		-		Brown, dry, medium dense, gravel, (Fill).	, fine to medium SAND, s	ome silt, trace	G#24-S-364 A-2-4(0), SN WC = 8.0%	
15 -	5D	24/22	15.0 - 17.0	7-7-6-5	13	23		-		Brown, moist, medium den some silt, (Fill).	se, fine to medium SAND	some gravel,		
20 -	6D	24/19	20.0 - 22.0	4-5-5-5	10	18		-		Brown, moist, medium den	se, fine to medium SAND	little silt, (Fill).	G#24-S-3647 A-2-4(0), SW SM WC = 5.0%	
								1	XXX					
							$\left \right $	-						
								166.0	×××××				1	
								1						
25 Rom	arks:							1						
1. Fin percer 2. Aut	e Grained ntages pass tomatic har	ing specific nmer Seabo	grain sizes.	Energy Transfer Ratio = 1.0		visual ı	nanual cla	ssificatior	techniqu	ues of laboratory Atterberg Limit T	Fests if available, rather than th	e MaineDot Standar	rd based	
Stratif * Wate	ication line er level rea	s represen dings have	t approximate bour	ndaries between soil types; t es and under conditions stat	ransitions ed. Grou	s may b indwate	e gradual. r fluctuati	ons may o	ccur due	to conditions other	Page 1 of 4			

than those present at the time measurements were made.
--

Driller: Operat Logge Date S Boring Hamm Definitior D = Split MD = Un U = Thin MU = Un V = Field			Maine Department of Transportation						Town	Farm R	bad Bridge #5785 Boring No.: BB-S	ΓFR-104	
Operat Logge Date S Boring Hamm Definition D = Split MD = Un U = Thin MU = Un V = Field	Soil/Rock Exploration Log					Location: Sidney, Maine						066.00	
Operat Logge Date S Boring Hamm Definition D = Split MD = Un U = Thin MU = Un V = Field	US CUSTOMARY UNITS										WIN:272	266.00	
Logge Date S Boring Hamm Definitior D = Split MD = Un U = Thin MU = Un V = Field	Driller: Seaboard Drilling					evation	(ft.)		189.	5	Auger ID/OD: 4.0/4.5"		
Date S Boring Hamm Definitior D = Split MD = Un U = Thin MU = Un V = Field	Operator: E. Baron					tum:			NAV	/D88	Sampler: Standard Spl	tspoon	
Boring Hamm Definitior D = Split MD = Un U = Thin MU = Un V = Field						g Type:			AT		Hammer Wt./Fall: 140#/30"		
Hamm Definition D = Split MD = Un U = Thin MU = Un V = Field						illing M				e and W			
Definition D = Split MD = Un U = Thin MU = Un V = Field			N606669.1, E	1159310.9		sing IC			/3.5" Water Level*: 28.8'				
	Hammer Efficiency Factor: 1.066 Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □ Definitions: R = Rock Core Sample Su = Peak/Remolded Field Vane Undrained Shear Strength (psf) T _v = Pocket Torvane Shear Strength T _v = Pocket Torvane Shear Strength T _v = Pocket Torvane Shear Strength WC = Water Content, percent D = Disuccessful Spion Sample HSA = Hollow Stem Auger gp = Unconfined Compressive Strength WC = Water Content, percent U = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw Field SPT N-value L = Liquid Limit MU = Unsuccessful Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of 140 lb. Hammer Hammer Efficiency Factor = Rig Specific Annual Calibration Value PI = Plasticity Index MV = Unsuccessful Field Vane Shear Test Attempt WOR/C = Weight of One Person N ₆₀ = SPT N-uncorrected for Hammer Efficiency Factor/60%)*N-uncorrected G = Grain Size Analysis									ercent			
		÷		Sample Information	p							Laboratory Testing	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	AASHTO and Unified Class.	
25	7D	24/23	25.0 - 27.0	6-6-6-7	12	21					Brown, moist, medium dense, Silty fine to medium SAND, (Marine Sand).		
							1	1					
								\downarrow					
- 30	8D	24/19	30.0 - 32.0	5-4-6-8	10	18	5	4			Brown, wet, medium dense, Silty fine to medium SAND, (Marine Sand).		
							7	6					
							12	24					
							15	50					
- 35 -							9	8					
	9D	24/9	35.0 - 37.0	18-18-20-22	38	68	3	3			Brown-grey, wet, very dense, Silty fine to medium SAND, some gravel, (Marine Sand). Wash ahead attempted, hole collapsed at 38.5'.		
							3	6			wash aread atempted, note compsed at 50.5.		
								2					
							1		151.0		38.	5-	
- 40	10D	24/12	40.0 - 42.0	13-12-12-15	24	43	R				Grey, wet, dense, Silty GRAVEL, little sand, (Glacial Till).	G#24-S-3648 A-4(0), GM	
												WC = 14.1%	
- 45 -	11D	24/8	45.0 - 47.0	9-12-11-10	23	41					(Top 4"): Brown, wet, dense, Silty fine SAND, some gravel, (Glacial Till). (Bottom 4"): Grey, wet, hard, Silty CLAY, (Glacial Till).		
50													
1. Fine percent 2. Auto	Remarks: 1. Fine Grained Soil Descriptions on this log are based on plasticity estimated using visual manual classification techniques of laboratory Atterberg Limit Tests if available, rather than the MaineDot Standard based percentages passing specific grain sizes. 2. Automatic hammer Seaboard Drilling #D50 Energy Transfer Ratio = 1.066. 3. Water level measured immediately after removal of casing.												

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 4
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-STFR-104

L 1							Project:	Town Farm R	oad Bridge #5785	Boring No.: BB-STFR-104		FR-104
Soil/Rock Exploration Log US CUSTOMARY UNITS							Locatio	1: Sidney, Mai	ine			cc 00
		<u> </u>	JS CUSTOM/	<u>ARY UNITS</u>						WIN:	27266.00	
Drille	ər:		Seaboard Dril	ling	Elev	atior	n (ft.)	189.5		Auger ID/OD:	4.0/4.5"	
Operator: E. Baron Datum:						NAVD88		Sampler: Standard Splitspoon				
Logged By: L. Hailey R					Rig	Гуре	:	ATV		Hammer Wt./Fall: 140#/30"		
Date Start/Finish: 7-16-24/7-16-24					Drilli	ng N	lethod:	Drive and W	Vash	Core Barrel: NQ		
	ng Loca		N606669.1, E	1159310.9	Casi	ng II	D/OD:	4.0/4.5", 3.0)/3.5"	Water Level*: 28.8'		
		iciency F	actor: 1.066	R = Rock Co			Туре:	Automatic 🛛 S = Peak/Re		Rope & Cathead \Box	ocket Torvane She	ar Strength (psf)
Definitions: R = Rock Core Sample S_{ij} = Peak/Remolded Field Vane Undrained Shear Strength (psf) T_{ij} = Pocket Torvane Shear Strength D = Split Spoon Sample SSA = Solid Stem Auger $S_{ij}(ab)$ = Lab Vane Undrained Shear Strength (psf) WC = Water Content, percent MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger q_{ij} = Unconfined Compressive Strength (ksf) LL = Liquid Limit												
U = Th	nin Wall Tu	ibe Sample	-	RC = Roller	Cone	-		N-uncorrected	a = Raw Field SPT N-value	PL = P	lastic Limit	
MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140 lb. Hammer Hammer Efficiency Factor = Rig Specific Annual Calibration Value PI = Plasticity Index V = Field Vane Shear Test, PP = Pocket Penetrometer WORC = Weight of Rods or Casing N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency G = Grain Size Analysis												
MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One Person N ₆₀ = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test Sample Information												
		(;		-	þe							Laboratory Testing
t.)	No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected			Elevation (ft.) Graphic Log	Visual De	scription and Remarks		Results/
Depth (ft.)	Sample No.	./Re	ble	ws (/ ingth (CDD)	ncor	_	ing vs	/atio				AASHTO and
Dep	San	Pen	San (ft.)	Stre Stre or R	n-Z	N ₆₀	Casing Blows	Elevation (ft.) Graphic Lo				Unified Class.
50	12D	24/13	50.0 - 52.0	11-13-15-18	28	50			Grey, wet, hard, Clayey SII	LT, some gravel, trace sand	, (Glacial Till).	G#24-S-3649
												CL LL = 20
												PL = 13 PI = 7
												WC = 19.3%
- 55 -									Grey, wet, hard, Clayey SII	T some sand (Glasial Til	D)	
	13D	24/24	55.0 - 57.0	19-26-25-27	51	91			Grey, wet, hard, Clayey Sh	L1, some sand, (Olaciai Th	1).	
								R				
- 60 -	14D	24/24	60.0 - 62.0	17-36-56-37	92	163			Grey, wet, hard, Clayey SII	LT, some sand, (Glacial Til	l).	
	14D	24/24	00.0 - 02.0	17-30-30-37	,2	105						
- 65 -												
05	15D	24/16	65.0 - 67.0	22-15-33-22	48	85	$ \rangle / $		Grey, wet, hard, Clayey SII	1, some sand, some grave	I, (Glacial Till).	
							+					
							V					
							V V	121.0	T			
	R1	60/58	69.0 - 74.0	RQD = 10%			NQ		Increased roller cone resista Advanced casing to 69.0' ar	nd set up to core.		
- 70 -								<u> IIII</u>	R1: Medium hard, slightly Joints are very close to clos			
									undulating, rough, discolore			
									Recovery = 97% Rock Quality = Very Poor			
									Rock Core Times (min:sec) 72.0' (2:08), 72.0-73.0' (2:2		.0' (1:40), 71.0-	
									, 2.0 (2.00), 12.0-13.0 (2.2	<i>, 15.0-14.0 (2.40)</i>		
									R2: Medium hard, slightly	weathered medium grains		
75	R2	60/53	74.0 - 79.0	RQD = 36%					with occasional quartzite la			
	arks:				•							
1. Fi	ne Grained	l Soil Descri	ptions on this log	g are based on plasticity estim	ated using	g visu	al manual cl	assification techni	ques of laboratory Atterberg Limit	t Tests if available, rather than t	he MaineDot Stand	ard based

Automatic hammer Seaboard Drilling #D50 Energy Transfer Ratio = 1.066.
 Water level measured immediately after removal of casing.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 3 of 4
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Deriver Mer, DD CTTD 104
than those present at the time measurements were made.	Boring No.: BB-STFR-104

Maine Department of Transportation						Project:	Town	Farm R	oad Bridge #5785	Boring No.: BB-STFR-104		FR-104	
Soil/Rock Exploration Log						Location: Sidney, Maine							
US CUSTOMARY UNITS									5,		WIN:	27266.00	
Driller: Seaboard Drilling				Ele	evatior	ו ו (ft.)	189.	5		Auger ID/OD:	4.0/4.5"		
Operator: E. Baron			Da	tum:		NAV	/D88		Sampler:	Standard Splits	poon		
Logged By: L. Hailey			Rig	д Туре	:	ATV	7		Hammer Wt./Fall:	140#/30"			
Date Start/Finish: 7-16-24/7-16-24			Dri	illing N	lethod:	Driv	e and V	Vash	Core Barrel:	NQ			
Bori	ng Loca	tion:	N606669.1, E	1159310.9	Ca	sing II	D/OD:	4.0/4	4.5", 3.0	/3.5"	Water Level*:	28.8'	
		ciency F	actor: 1.066			mmer	Туре:	Automa		2	Rope & Cathead		0
Definitions: R = Rock Cor D = Split Spoon Sample SSA = Solid S MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow U = Thin Wall Tube Sample RC = Roller C MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weig V = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weig MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weig					Solid Stem A Hollow Stem Diler Cone Weight of 1 = Weight of Weight of	Auger n Auger 40 lb. Ha f Rods o	or Casing	S _{u(la} q _p = N-un Hami N ₆₀ :	b) = Lab Unconfir corrected mer Effic = SPT N	molded Field Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) I = Raw Field SPT N-value iency Factor = Rig Specific Annua uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-unco	osf) WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Calibration Value PI = Plasticity Index r Efficiency G = Grain Size Analysis		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or ROD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remark		Laboratory Testing Results/ AASHTO and Unified Class.
75										to closely spaced, moderate rough, discolored, partially		e, undulating,	
								110.5		Recovery = 88% Rock Quality = Very Poor Rock Core Times (min:sec) 76.0-77.0' (1:55), 77.0-78.4): 74.0-75.0' (1:50), 75. 0' (2:04), 78.0-79.0' (2:	19) 79.0-	
- 80 -										Bottom of Exploration	n at 79.0 feet below gr	ound surface.	
- 85 -													
- 90 -													
- 95 -													
100 Rem	arks:												
1. Fi perce 2. Au	 Fine Grained Soil Descriptions on this log are based on plasticity estimated using visual manual classification techniques of laboratory Atterberg Limit Tests if available, rather than the MaineDot Standard based percentages passing specific grain sizes. Automatic hammer Seaboard Drilling #D50 Energy Transfer Ratio = 1.066. Water level measured immediately after removal of casing. 												

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 4 of 4
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	D
than those present at the time measurements were made.	Boring No.: BB-STFR-104
6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX D – LABORATORY TESTING RESULTS

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Project ID:	Town I #5785	arm Roa	nd Bridge	MDOT	Project	Nur	nber	•						
Town(s):	Sidney	, ME		GZA Pro	oject Nun	nber:		09.0026242.00 Task 01						
Boring & Sample	Station	Sample	Depth	Lab	Organic	wc	LL	PI	Cl	assificatio	n			
ID Number	(Feet)	No.	(Feet)	Number	%	%			Unified	AASHTO	Frost			
BB-STFR-101		1D	1.5-2.5	S-3634		4.3	NV	NP	SM	A-1-b	II			
BB-STFR-101		2D	5-7	S-3635		8.3	NV	NP	SM	A-2-4(0)	II			
BB-STFR-101		4D	15-17	S-3636		9.6	NV	NP	SM	A-1-b	II			
BB-STFR-101		6D	25-27	S-3637		25.8	29	10	CL		IV			
BB-STFR-102		1D	0-2	S-3638		16.1	NV	NP	SW-SM	A-1-b	0			
BB-STFR-102		2D	8-10	S-3639		22.1	24	8	CL	A-4(6)	IV			
BB-STFR-102		3D	10-12	S-3640		6.0	NV	NP	SM	A-1-a	II			
is follo	wed by the "	Frost Susceptib	s is in accordanc ility Rating" fror ing" is based up	n zero (non-l	rost suscepti	ble) to (Class IV	(highly	frost susce	ptible).				

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-19 and/or ASTM D 7928-21e1 (Last Updated June 2021)

WC = water content as determined by AASHTO T 265-19 and/or ASTM D 2216-19

LL = Liquid limit as determined by AASHTO T 89-17 and/or ASTM D 4318-17E01

PI = Plasticity Index as determined by AASHTO 90-16 and/or ASTM D4318-17E01

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approvel from the Agency, as defined in ASTM E329.

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Project ID:	Town l #5785	Farm Roa	ad Bridge	MDOT	Project	Nur	nber	•			
Town(s):	Sidney	, ME		GZA Pro	ject Nun	nber:		09.0	026242.	00 Task ()1
Boring & Sample	Station	Sample	Depth	Lab	Organic	wc	LL	PI	CI	assificatio	'n
ID Number	(Feet)	No.	(Feet)	Number	%	%			Unified	AASHTO	Frost
BB-STFR-103		1D	0-2	S-3641		14.3	NV	NP	GP-GM	A-1-a	0
BB-STFR-103		2D	5-7	S-3642		21.2	22	8	CL		IV
BB-STFR-103		3D	10-12	S-3643		21.0			SM	A-4(0)	111
BB-STFR-104		1D	0-2	S-3644		2.1	NV	NP	SM	A-1-b	
BB-STFR-104		2D	2.1-4.1	S-3645		8.1	NV	NP	SM	A-2-4(0)	Ш
BB-STFR-104		4D	10-12	S-3646		8.0	NV	NP	SM	A-2-4(0)	II
BB-STFR-104		6D	20-22	S-3647		5.0	NV	NP	SW-SM	A-2-4(0)	II
BB-STFR-104		10D	40-42	S-3648		14.1			GM	A-4(0)	
BB-STFR-104		12D	50-52	S-3649		19.3	20	7	CL		IV
is follo	wed by the "	Frost Susceptib	s is in accordanc ility Rating" fror ing" is based up	n zero (non-f	rost suscepti	ble) to (Class IV	(highly	frost susce	ptible).	

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-19 and/or ASTM D 7928-21e1 (Last Updated June 2021)

WC = water content as determined by AASHTO T 265-19 and/or ASTM D 2216-19

LL = Liquid limit as determined by AASHTO T 89-17 and/or ASTM D 4318-17E01

PI = Plasticity Index as determined by AASHTO 90-16 and/or ASTM D4318-17E01

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approvel from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Inf	ormation:	Projec	t Information:		
	Cranston RI, 02910	GZA GeoEnvi	ronmental, Inc.	Town Farm Road Bridge #5785			
Thielsch 迷	Phone: (401)-467-6454	South Po	rtland, ME	Sidney, Maine			
	Fax: (401)-467-2398	Project Manager:	Logan Hailey	Project Number:	09.0026242.00 Task 1		
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Logan Hailey	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	GZA	Report Date:	9/23/2024		

LABORATORY TESTING DATA SHEET, Report No.: 7424-J-167

					Identification Tests						Proctor / CBR / Permeability Tests										
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL % 318	OD LL	Gravel %	Sand %	Fines %	Org. %	pH	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4.	318			D6913	1	D2974	D4792	D1	557		1	1	1	1	1	Brown f-c SAND and f-c GRAVEL,
BB-STFR-101	1D	1.5-2.5	24-S-3634	4.3				35.3	43.7	21.0											some Silt
BB-STFR-101	2D	5-7	24-S-3635	8.3				4.3	71.8	23.9											Brown f-m SAND, some Silt, trace fine Gravel
BB-STFR-101	4D	15-17	24-S-3636	9.6				34.4	48.8	16.8											Brown f-c SAND, some f-c Gravel, little Silt
BB-STFR-101	6D	25-27	24-S-3637	25.8	29	19															Grey SILT & CLAY
BB-STFR-102	1D	0-2	24-S-3638	16.1				13.8	77.6	8.6											Brown f-m SAND, little fine Gravel, trace Silt
BB-STFR-102	2D	8-10	24-S-3639	22.1	24	16		0.0	4.2	95.8											Brown SILT & CLAY, trace fine Sand
BB-STFR-102	3D	10-12	24-S-3640	6.0				38.9	47.4	13.7											Brown GRAVELLY SAND, little Silt

Date Received:

9/10/2024

Reviewed By:

that

Date Reviewed:

9/23/2024

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Inf	ormation:	Projec	t Information:		
	Cranston RI, 02910	GZA GeoEnvi	ronmental, Inc.	Town Farm Road Bridge #5785			
Thielsch 迷	Phone: (401)-467-6454	South Po	rtland, ME	Sidney, Maine			
	Fax: (401)-467-2398	Project Manager:	Logan Hailey	Project Number:	09.0026242.00 Task 1		
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Logan Hailey	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	GZA	Report Date:	9/23/2024		

LABORATORY TESTING DATA SHEET, Report No.: 7424-J-168

					Identification Tests							Proctor / CBR / Permeability Tests									
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	%	Sand %	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
			1	D2216	D4	318			D6913	1	D2974	D4792	D1:	557		-			1	r	
BB-STFR-103	1D	0-2	24-S-3641	14.3				60.0	30.8	9.2											Dark Brown f-c GRAVEL, some f-c Sand, trace Silt
BB-STFR-103	2D	5-7	24-S-3642	21.2	22	16															Brown SILT & CLAY
BB-STFR-103	3D	10-12	24-S-3643	21.0				20.5	33.4	46.1											Brown CLAYEY SILT, some f-m Sand, some f-c Gravel
BB-STFR-104	1D	0-2	24-S-3644	2.1				39.1	40.3	20.6											Brown GRAVELLY SAND, some Silt
BB-STFR-104	2D	2.1-4.1	24-S-3645	8.1				1.3	74.5	24.2											Brown f-m SAND, some Silt, trace fine Gravel
BB-STFR-104	4D	10-12	24-S-3646	8.0				2.4	76.3	21.3											Brown f-m SAND, some Silt, trace fine Gravel
BB-STFR-104	6D	20-22	24-S-3647	5.0				0.0	88.9	11.1											Brown f-m SAND, little Silt
BB-STFR-104	10D	40-42	24-S-3648	14.1				35.2	19.0	45.8											Brown CLAYEY SILT and f-c GRAVEL, little f-c Sand
BB-STFR-104	12D	50-52	24-S-3649	19.3	20	13															Grey SILT & CLAY

Date Received:

9/10/2024

Reviewed By:

that

Date Reviewed:

9/23/2024

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

Tested By: RB/SBR

Tested By: RB/SBR

	195 Frances Avenue	Client Ir	nformation:	Project	Information:		
	Cranston RI, 02910	GZA GeoE	nvironmental	Sidn	ey Bridges		
Thielsch 🌉	Phone: (401)-467-6454	South P	ortland, ME	Town Farm Road, Sidney, ME			
	Fax: (401)-467-2398	(207)	879-9190	Project Number:	09.0026242.00 Task 1		
DIVISION OF THE RISE GROUP	thielsch.com	Project Contact:	Blaine Cardali	Summary Page:	3 of 3		
	Let's Build a Solid Foundation	Collected By:	B. Cardali	Report Date:	5/21/2025		

LABORATORY TESTING DATA SHEET, Report No.: 7425-E-142

						Specime	en Data					Con	npressive S	Strength T	ests			
Boring No.	Sample No.	Depth (ft)	Laboratory No.	Mohs Hard- ness	Diameter (in)	Length (in)	(1) Unit Weight (PCF)	(2) Wet Density (PCF)	Bulk G _s	(3) Other Tests	(4) Strength PSI	(5) Strain %	(6) E sec PSI EE+06	(7) Poisson's Ratio	st PSI	Is ₅₀ psi	(8) s _c PSI	Rock Formation or Description or Remarks
BB-STFR- 102	R1	23.2- 24.3	25-S-1720		1.968	4.504	172.4			U	5063	0.136	3.37	0.38				Grey Gneiss
								Free	sh Breal	k along t	foliation							
BB-STFR- 101	R5	42.0- 43.7	25-S-1721		1.976	4.465	175.5			U	11932	0.243	5.48	0.53				Grey Gneiss
					Fresh Break along foliation, early break at about 4000 psi													
(1) Volume	Determined	By Meas	suring Dimens	ions		(3) PLD=	Point Loa	ad (diametr	rical),				(5) Strain	at Peak De	eviator Str	ess		
(2) Determir	ned by Meas	suring Di	imensions and		Notes	PLA= Pc	oint Load	(Axial) ST=	Splitti	ng Tensi	le	Notes	(6) Repres	sents Seca	nt Modulu	is at 50% o	of Total F	ailure Stress
Weight of S	aturated Sar	nple			Z	ZZU= Unconfined Compressive Strength(7) Represents Secant Poisson's R								's Ratio at	50% of	Total Failure Stress		
						(4) Take	n at Peak	Deviator S	tress				(8) Estima	ted UCS fi	rom Table	1 of ASTN	1 D5731	for NX cores (Is x 24)
Date Re	eceived:		5/13/202	5	Reviewed By: Date Review 5/21/2025													

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	rmation:	Project I	nformation:			
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Sidney Bridges				
Thielsch 🌉	Phone: (401) 467-6454	S. Portlan	d, ME	Sidn	ey, ME			
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026242.00 Task 1/2/4			
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	SBR			
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	5.20.25			

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes:

	195 Frances Avenue	Client Info	rmation:	Project In	nformation:		
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Sidney Bridges			
Thielsch 🌉	Phone: (401) 467-6454	S. Portlan	d, ME	Sidn	ey, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026242.00 Task 1/2/4		
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	SBR		
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	5.20.25		

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes: H

Early break around 12000 lbs (4000 psi)

6/24/2025 GEOTECHNICAL DESIGN REPORT TOWN FARM ROAD BRIDGE NO. 5785 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX E – ROCK CORE PHOTOGRAPHS

MaineDOT Bridge No. 5785 Town Farm Rd over I-95 Sidney, ME WIN 27266.00 Rock Core Photographs

Boring No.	Run	Depth (ft	t)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-STFR-102	R1	20.0 -	25.0	59	98%	27	45%	PELITE	1
BB-STFR-102	R2	25.0 -	30.0	60	100%	40	67%	PELITE	2
BB-STFR-101	R1	35.0 -	37.3	26	96%	13	51%	PELITE	3
BB-STFR-101	R2	37.3 -	39.0	20	100%	0	0%	PELITE	3
BB-STFR-101	R3	39.0 -	41.0	19	79%	12	50%	PELITE	3
BB-STFR-101	R4	41.0 -	42.0	10	83%	5	42%	PELITE	4
BB-STFR-101	R5	42.0 -	45.0	36	100%	36	100%	PELITE	4

Notes:

1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom.

2. Top photo is dry, bottom photo is wet.

Page 1 of 2

Notes: 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.