

January 22, 2015 Michael Chelminski Page 2 of 4

Reference: MaineDOT Stride Bridge – Rehab and Replacement Options

The Machias River is tidally influenced immediately seaward from Dike Bridge; and Tidal stage parameters for the Machias River were developed for this study using data collected by Maine DOT; these statistics are presented in Table 1.

Table 2: Tidal Statistics for Machias River

Tidal Data (ft, NAVD88)							
Max. MHHW MHW Average MLW MLLW Min.							
11.7	9.3	8.4	2.0	-4.5	-4.8	-5.5	

Tidal stage data collected by Maine DOT in the Middle River immediately upstream (landward) from Dyke Bridge indicates that the normal tidal range is from elevation -0.5 (normal high tide) to elevation -2.0 (normal low tide).

Backwater effects associated with the existing tide gate system at Dyke Bridge result in persistent backwater effects in the upstream reach of the Middle River and minimum water surface elevations (approximately elevation -2.0 ft) that are above the invert of the Stride Bridge culvert.

BRIDGE REHABILITATION OPTIONS

As requested by Maine DOT, the evaluated rehabilitation options for the Stride Bridge are invert lining and sliplining.

The top half of existing culvert appears to be in good condition and the bottom half is corroding so invert lining could be appropriate for this structure. There have been several MaineDOT invert lining projects in the past several years and they generally consist of a 5 to 6 inch reinforced slab cast against the lower half of the corrugated metal pipe (CMP) with shear studs welded along the sides of the pipe to transfer load from the existing CMP to the new concrete invert lining. The exposed steel portion could also be coated or painted to help prolong the life of the structure. Invert lining would maintain the structural integrity of the original design as the lower portion continues to corrode and the MaineDOT Bridge Design Guide (BDG) estimates that it would extend the life of the structure for 25 years or more. The structural capacity would need to be evaluated further for this alternative, as the current bridge rating is below current AASHTO design loads.

Sliplining would be a longer term rehabilitation option where a slightly smaller pipe would be placed inside the existing and the space between would be filled with grout. The estimated life span of a sliplining, according to the BDG would be 75 years, as it is a complete replacement with a new pipe.

The main concerns with these rehabilitation alternatives are the following:

- The existing roadway width is only 23' wide and sliplining or invert lining would not allow for any roadway widening;
- The hydraulic opening would be reduced;
- Fish passage may not be adequate.

January 22, 2015 Michael Chelminski Page 3 of 4

Reference: MaineDOT Stride Bridge - Rehab and Replacement Options

BRIDGE REPLACEMENT OPTIONS

Replacement bridge alternatives for the Stride Bridge will depend on the actual subsurface information at the site and depth to bedrock. If bedrock is shallow, tall cantilever abutments bearing directly on bedrock could be used with a short superstructure just long enough to provide bankfull width plus the design safety factor. If the bedrock is very deep, integral or spill-through abutments with riprap protection sloping towards the channel would likely be needed and the superstructure would be a much longer span.

The Maine Geological Survey website has surficial geology maps available of the site which show "Qp" soils at the surface with bedrock outcrops (shown hatched) nearby, see Figure 1. The "Qp" designation indicates that Stride Bridge is on a silt and clay deposit, so the longer span integral or spill-through abutment alternative is the likely alternative, however site specific borings would be required to confirm how deep this layer is.

http://www.maine.gov/dacf/mgs/pubs/online/surficial/surficial.htm

Glacial-marine deposits (Presumpscot Formation)

Silt, clay, and sand. Commonly a clayey silt, but sand is very abundant at the surface in some places. Locally fossiliferous. Map unit includes small areas of till, sand, and gravel that are not completely covered by marine sediment.

Qps: Mostly sand, but may be underlain by silt and clay. Moderate to high permeability. Fair to good drainage.

Qp : Mostly silt and clay. Low permeability, Poor drainage.

Figure 1 Clip from Maine Geological Survey's Reconnaissance Surficial Geology of the Machias Quadrangle, Maine by Harold Borns, Jr. 1974.

The following are conceptual bridge replacement options for two different subsurface conditions:

January 22, 2015 Michael Chelminski Page 4 of 4

Reference: MaineDOT Stride Bridge – Rehab and Replacement Options

- Shallow Bedrock @ 1.2x Bankfull Width with Vertical Abutments: Full-height cantilever abutments at 1.2-times bankfull width (37' face-to-face). The superstructure would likely be 21" voided slabs with a varying leveling slab up to 6", spanning 40' bearing-to-bearing, similar to Fryeburg WIN 17872.00. The structure depth at the center of road would be about 30". The low chord of the bridge should have a minimum 2' freeboard from the Q10 water surface elevation (based on MHW) including wave heights, as described in the BDG.
 - a. A precast concrete arch, such as a Conspan[®], could also be used with full-height abutments, but are not recommended due to the smaller hydraulic opening.
- 2. Deep Foundation @ 1.2x Bankfull Width with Sloped Abutments: Integral or spill-through abutments with sloping riprap (1.5H:1V) protection towards the channel. If the toe of riprap is at the edge of 1.2-times bankfull width and a 2'-6" shelf is provided in front of the abutment the span would be at least 76' (73' face-to-face abutments). NEXT beams or butted box beams would be the likely beam type for spans in this range. 36" NEXT F-beams with an 8" deck and 3" wearing surface would put the structure depth around 52", accounting for cross-slope. Similar to the first alternative 2' of freeboard should be provided over the Q10, which may require a significant profile raise.
- 3. Deep Foundation @ 1.0x Bankfull Width with Sloped Abutments: Similar to alternative 2, but starting the toe of riprap at bankfull width, since the sloping riprap provides much more hydraulic opening over the full-height cantilever abutment alternative. It would drop the span to around 70' and would likely reduce the structure depth to 48", by using a 32" NEXT beam vs. 36".

Based on the available information it has been assumed that no underground utilities exist in the immediate vicinity of Stride Bridge.

STANTEC CONSULTING SERVICES INC.

Daniel D. Taylor, P.E. Structural Engineer Phone: (207) 887-3448 Fax: (207) 883-3376 Daniel.Taylor@stantec.com

Maine Department of Transportation

Memo

To:	Kristen Chamberlain, Eric Ham, Julie Senk
From:	Charles Hebson
CC:	David Gardner
Date:	2021 October 21
Re:	16714 Machias – Potential Racetrack Inundation Due to Tidal Restoration

Executive Summary

The frequency of racetrack inundation under Alternative 10 (tidal transparency) has been evaluated using 2011 data, 2021 data and modeling results provided by Stantec. The following discussion pertains to "normal" (i.e., non-storm) tides. Most generally, under Alternative 10 the track will see water twice daily, on every high tide. Using a racetrack elevation of 3-ft NAVD88 as the threshold for flooding, the data show that we can expect "flooding" about 33% of the time. This is somewhat conservative, since it assumes that the entire track is instantaneously covered with water as soon as the tide exceeds 3-ft. Mean High Water (MHW) is estimated at 6.40-ft from the 2021 data set, further confirming that the track will be inundated on a twice-daily basis if tidal transparency is established. Under the Alternative 4M model simulation (culverts allowing some tidal exchange), landward water levels never exceed 3-ft under "normal", non-storm conditions. There may be localized areas in the track domain below 3-ft with drainage connectivity to the Middle River that will flood at water levels less that 3-ft. The 4M simulated landward water levels (not measured data) are very similar to the August 2021 data period corresponding to a leaky flapper gate. Once the gate was repaired in late August, the subsequent 2021 landward levels reverted to 2011 conditions.

Discussion

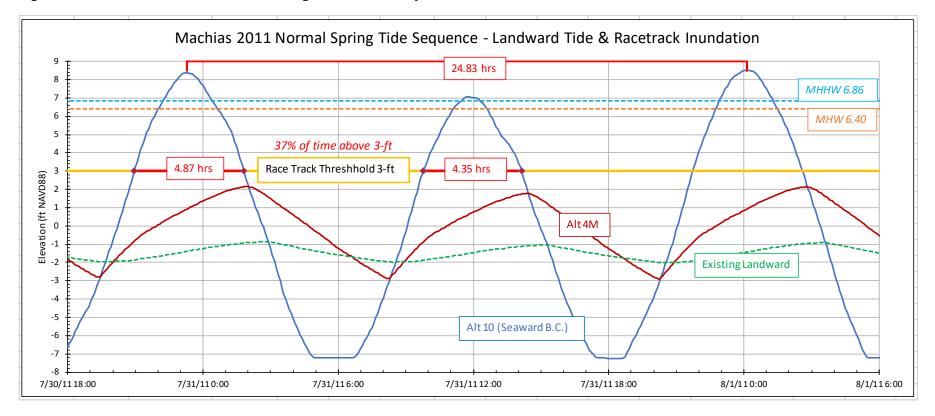
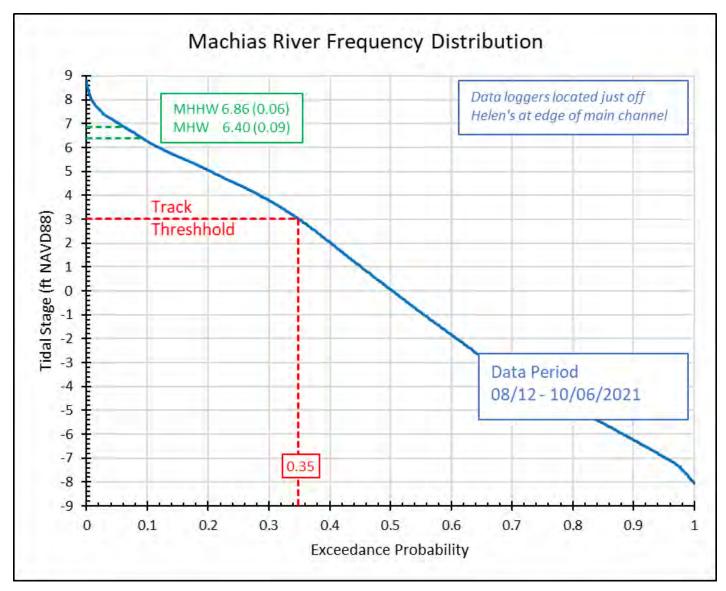
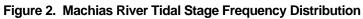

Alternative 10 consists of an opening large enough so that tidal hydrology is restored landward (upstream) of the causeway. This has been referred to as "tidal transparency". The type of hydraulic structure (culvert or span) is immaterial, though to date Alternative 10 has been treated as a span. The idea is that the structure has no effect on tidal flow moving in and out of the Middle River. Under this scenario we can assume that the tides as measured seaward of the causeway in the Machias River will be duplicated landward (upstream) in the Middle River.

Figure 1 shows one complete tidal cycle spanning 31 July 2011. This is a "normal" spring tide, "normal" indicating "not a storm event"; the spring tides are the high tides that occur monthly. The tidal period is 24.83 hours; the water level exceeds 3-ft NAVD88 for (4.87 + 4.35) = 9.22 hours. This gives a water level exceedance duration of 37% above 3-ft for this cycle. The duration would be somewhat smaller for average and lower neap tides. Under Alternative 4M (culverts allowing some tidal exchange) high tides never exceed 3-ft. The tidal datums (MHW and MHHW) were calculated using the NOAA Tidal Datum Calculator and the 8/12 - 10/06/2021 data set used for Figure 2.


Figure 2 shows the Machias River tidal stage frequency distribution, based on the 8/12 - 10/06/2021 data set. As described above, we assume that this data is representative of what would result in the Middle River under Alternative 10. Since this data record covers a full range of tides, the calculated exceedance frequency is somewhat lower than for a single spring tide (35% vs. 37%) as in Figure 1.


Figure 3 shows the 2021 landward tidal data collected in the impoundment upstream of the causeway. The tides are significantly higher than the 2011 and the post-August 2021 landward data; the range is also larger (-0.75 to 1.25 ft; 2-ft range). This was due to a leaky flapper gate. These elevated water levels are consistent with aerial photos taken in the July 2021 drone flight, observations in the course of project field work prior to repair of the faulty gate, and anecdotal comments from local residents.

Model simulation results for Alternative 4M (two 10S x 5R culverts with flappers, one 10S x 5R open culvert) for a 2011 model period are superimposed on the 2021 data segment in Figure 4. The measured 2021 leaky hydrology is remarkably similar to the model results, particularly the peak water levels. Thus, the actual landward tidal experience through August 2021 gives a good idea of what Alternative 4M would be like if constructed. The gate was repaired around August 30 and the hydrology reverted almost immediately to what was seen in the 2011 data set. In Figure 5, 2011 measured landward water levels are superimposed over 2021 measurements. The post-repair water levels are essentially identical to what was measured in 2011 and indicates only a small amount of leakage.

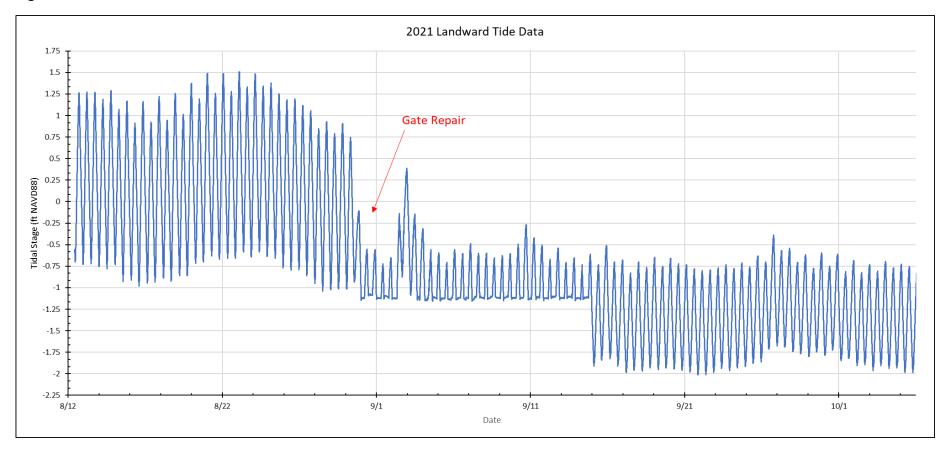


Figure 1. Racetrack Inundation Illustrated Using 7/31/2011 Tidal Cycle

Figure 3. 2021 Landward Tide Data

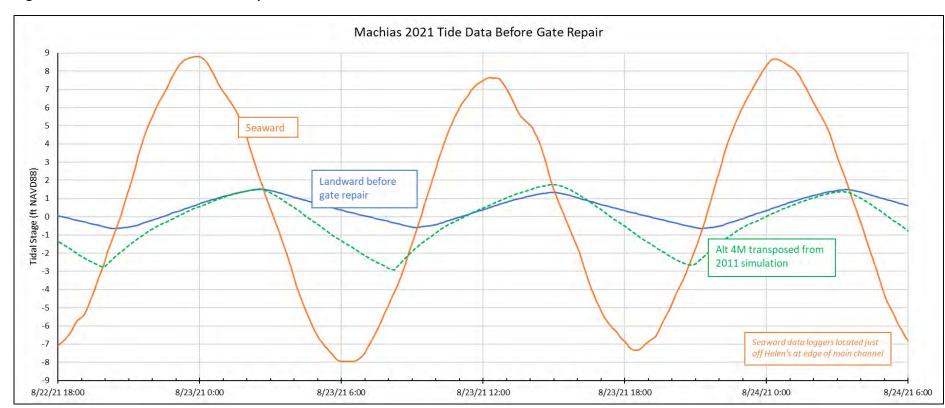
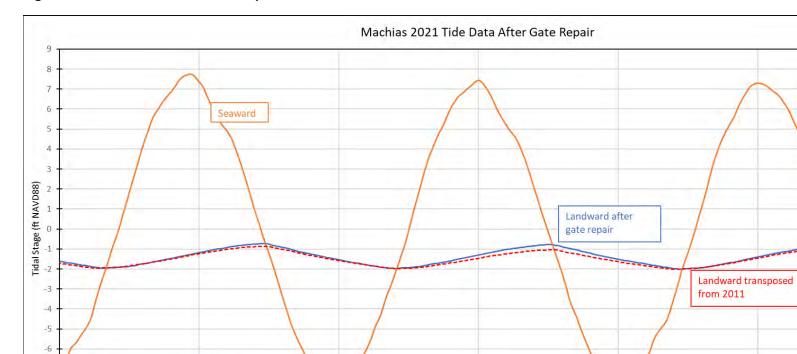



Figure 4. 2021 Tide Data Before Gate Repair

9/21/21 6:00

9/21/21 12:00

Date

9/21/21 18:00

9/22/21 0:00

9/22/21 6:00

Figure 5. 2021 Tide Data After Gate Repair

Seaward data loggers located just off Helen's at edge of main channel

9/21/21 0:00

-7

-8 -9 -

9/20/21 18:00

Appendix A. Output from NOAA Tidal Datum Calculator

Run Time: 2021-10-19 16:58:15	TIDAL DATUMS BY Monthly Means Simultaneous Comparison:
Using DS-WL-for-Datum-Calc.csv	Using Cutler Farris ref station
Time Zone = EDT-UTC4	·
13256 data points loaded.	From 9 / 2021 to 9 / 2021
Interval: 0:06:00	1 Months of control station means retrieved.
FEET	1 months in the analysis
All calculations and results are in Feet	Mean_Diff_MSL = -12.99
	Mean Diff MTL = -13.04
Gulf/East coast station:	Mean_Diff_DTL = -13.03
Using Modified Range Ratio Method	Mean_Ratio_MN = 0.98
	Mean Ratio GT = 0.98
Sampling Rate: 240.0 per day. Using cutoff frequency of 4.0 per day	Mean_Diff_MHHW = -13.17
107 highs 106 lows	Mean_Diff_MHW = -13.17
Data Start: 2021-08-12 10:30:00	Mean Diff MLW = -12.90
Data End : 2021-10-06 16:00:00	Mean_Diff_MLLW = -12.90
Mean Water Level: 0.10	
Highest Water Level: 8.80	Corrected values for MN, GT, MTL, DTL
Lowest Water Level: -8.04	13.44 14.29 -0.31 -0.29
Duration: 55 days, 5:30:00	Corrected values for MHHW, MHW, MLW, MLLW
High Tides Found: 107	6.86 6.41 -7.04 -7.44
Low Tides Found : 106	
Tides per day: 3.9	Datums by Monthly Means Simultaneous Comparison (MMSC):
Semi-Diurnal - Using EXHL	HWL = 8.83 (2021/08/22 23:48)
54 Highs	MHHW = 6.86
53 Higher Highs	MHW = 6.40
53 Lows	DTL = -0.29
53 Lower Lows	MTL = -0.31
	MSL = -0.32
3 Monthly plots generated	MLW = -7.03
Control Datums for: 8411060	MLLW = -7.43
	DHQ = 0.46
MHHW, MHW, DTL, MTL, MSL, MLW, MLLW	DLQ = 0.40
20.03 19.58 12.75 12.72 12.66 5.87 5.47	GT = 14.29
GT, MN, DHQ, DLQ, NAVD, LWI, HWI	MN = 13.44
14.56 13.71 0.45 0.40 12.99 9.51 3.25	LWL = -8.08 (2021/08/22 05:30)
	_
SUBORDINATE MONTHLY MEANS:	Feet
9 / 2021 :	
HWL = 8.33	That is all.
MHHW = 7.10	
MHW = 6.66	
MSL = 0.09	
MLW = -6.49	
MLW = -6.81	
LWL = -7.94	

Maine Department of Transportation

Memo

Kristen Chamberlain
Charles Hebson
Joyce Taylor, David Gardner, Eric Ham
2023 September 6
16714 Machias Dyke Bridge #2246 – Encroachment Determination

Executive Summary

Dyke Bridge (#2246) in Machias ME carries U.S. Route 1 over the Middle River just above its confluence with the Machias River. The bridge consists of a long causeway embankment structure with four 5'x5' timber box culverts fitted with outlet flap gates. The embankment has a length of approximately 1,000 feet (ft) and is constructed of timber cribbing with rubble and earthen fill. The culverts have deteriorated to the point that the overlying roadway is failing. One of the alternatives under consideration is a hydraulically equivalent replacement-in-kind culvert assemblage.

Along with replacing the culverts it is anticipated that the roadway will be raised to protect against sea level rise (SLR). Raising the road will involve placing fill on top as well as along the embankments and toes of the causeway. *Raising the causeway is the only practicable alternative for protecting Middle River upstream against expected Sea Level Rise.* But this raises the question, does placing fill along the causeway constitute a "significant encroachment". Based on a simple analysis of the required fill volume, it is reasonable to conclude that a culvert replacement/road raising alternative does not constitute a "significant encroachment".

A separate memo (MaineDOT, 9/6/23), discusses the history of Dyke Bridge and whether it should be viewed as a flood control structure. Our conclusion is that it is not a flood control structure in the modern sense of the term. That memo should be referenced for additional information and complements this discussion.

Discussion

Dyke Bridge has been a feature on the landscape since 1868. It was built to serve two purposes:

- 1. agricultural land reclamation by keeping tidal (saline) flow out of Middle River, and
- 2. providing a roadway across the top of the dike.

The culverts that constitute Dyke Bridge have reached the end of useful life and have started to fail. The seaward (downstream) side of Dyke Bridge is exposed to the tidal portion of the Machias River. In addition to inland riverine flow the tidal Machias River experiences a normal tide range of 10 - 12 ft. The Middle River approaches Dyke Bridge on the landward (upstream) side. Flap gates at the outlet prevent tidal flow into Middle River (except for some leakage).

Broadly speaking, there are three alternative approaches for dealing with the failing culverts:

- 1. *No action*. This choice is unacceptable since the causeway would eventually have to be closed and US-1 rerouted.
- 2. Some variant of replace-in-kind (RIK) with culverts. This option is most consistent with the existing structure and would continue to prevent tidal flow into Middle River, something the local population has come to assume and expect.
- 3. *An open span*. This would allow for full tidal flow into Middle River, subjecting land that is currently dry, accessible, and possibly suitable for agricultural usage to regular tidal inundation.

This discussion is limited to Alternative 2 (culvert option), assuming in addition that the roadway elevation will be raised by 4-ft.

The current Dyke Bridge is directly exposed to tides and is subject to Sea Level Rise (SLR). Typical causeway elevation is 11-ft (all elevations NAVD88) and MHHW in the Machias River at the bridge is 6.9-ft. The causeway overtops or comes close to overtopping on a regular (annual or biannual) basis; see the complementary memo for photos and tabulated tidal data. These storm tides will only get higher with SLR. The Maine Governor's Office and State Legislature have adopted 4-ft SLR by 2100 as the "prepare to manage" target. Therefore, MaineDOT has decided to build protection against SLR into the culvert alternative by raising the causeway 4-ft. This will entail placing fill along the embankment and into the adjoining waterbody, as well as on top of the roadway.

Alternative (2) – RIK – in conjunction with raising the road is the only practicable approach for protecting Middle River upstream from SLR, both normal tides as well as surge. "No Action" leaves the causeway at its current elevation, increasingly subject to overtopping and upstream inundation. "Open Span" would immediately subject upstream to the full range of tides as well as SLR and surge, losing the protection and attenuation provided by causeway.

Placement of fill in turn raises the question of whether this constitutes a "significant encroachment" on adjacent mapped floodplains. As described here, MaineDOT concludes that raising the causeway by augmenting the embankment slopes is not a significant encroachment.

FHWA Policy and Guidance

The Federal-Aid Policy Guide ("the Guide"; 1994; 23 CFR 650A) lays out policy and guidance for hydraulic design in flood plains. Prior to the date of the Guide, the Gordon-Clackley memo (4/2/85) explains in detail how a significant encroachment may be determined, particularly with regard to vital transportation facilities.

Selected Definitions: According to definitions in the Guide, Alternative 2 would constitute an "action". Furthermore, it would be an "encroachment", as the action would occur within the limits of the mapped base flood plain.

The definition for "significant encroachment" will be stated in full:

(q) "Significant encroachment" shall mean a highway encroachment and any direct support of likely base flood-plain development that would involve one or more of the following construction- or flood-related impacts:

(1) A significant potential for interruption or termination of a transportation facility which is needed for emergency vehicles or provides a community's only evacuation route.

- (2) A significant risk, or
- (3) A significant adverse impact in natural or beneficial flood-plain values

Selected Policies: pertinent policies addressed here include

(a) NFIP maps shall be used to determine whether a highway location alternative will include an encroachment

(b) To avoid longitudinal encroachments, where practicable

(c) To avoid significant encroachments, where practicable

Culvert/Raising Road Alternative (#2) Checked Against Policy

As noted, Alternative 2 (culverts) is an "action". Since it takes place in a mapped flood plain, it is also an "encroachment".

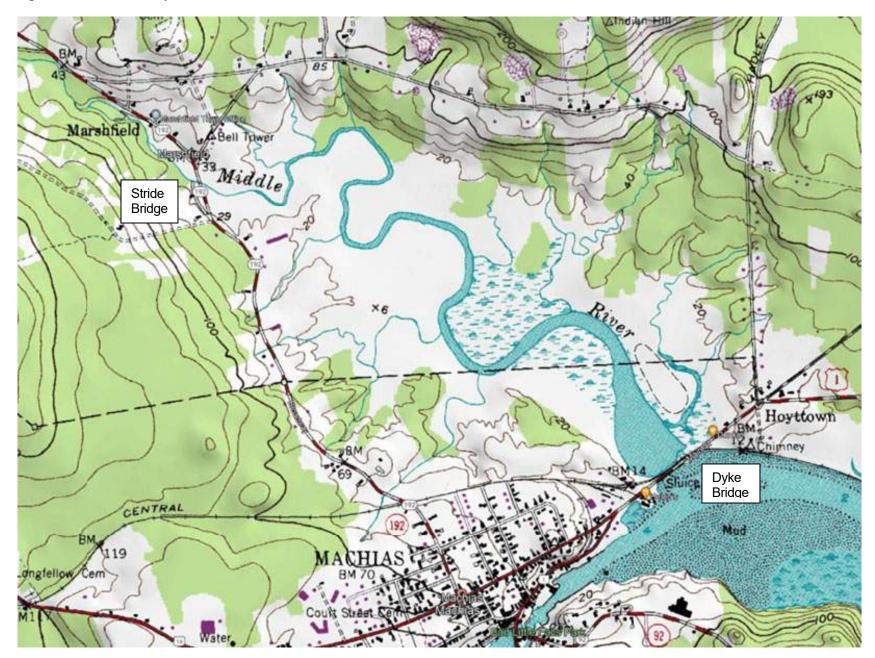
Policy (a): The FEMA map is shown in Figure 1. Middle River is an AE zone at BFE 11-ft; Machias River is an AE zone at BFE 10.7-ft. The Machias River Flood Insurance Study (FIS) profile is shown in Figure 2. The BFE in the Machias River is due to storm surge / tidal flooding at the point where Middle River joins the Machias. If the causeway were not present, or if there were an open span, this tidal flooding would move into the Middle River. The Middle River BFE is 11-ft and essentially reflects the Machias tidal flooding boundary condition at the outlet of the Middle River; details of the FIS modeling were not available. Estimated BFE rises are 0.01-ft in the Middle River and 0.20-ft in the Machias River (see Appendix A). These are well within a "no rise" limit of 1-ft.

Policy (b): More than anything, the horizontal alignment is fixed and cannot be modified in any practicable way. The causeway is transverse to flow in the Middle River, not longitudinal with the river, so placing fill on the landward side of the causeway is consistent with policy. The causeway is approximately longitudinal to flow in the Machias River, located back from an outside bend.

Policy (c): As demonstrated in Appendix A, fill placement to raise the causeway will not create a significant encroachment on the floodplain. This conclusion is amplified by considering the items under definition of "significant encroachment" copied above.

- (1) "... termination of a transportation facility ...": There are only two crossings of the Middle River, at Dyke Bridge and well upstream at Stride Bridge. Both bridges are MaineDOT structures. The proposed action will place the Dyke Bridge roadway well above BFE (15-ft vs. 11-ft) and addresses an existing and anticipated future problem. The current roadway over Stride Bridge (12.5'D CMP; invert -2.5-ft approx.) is at about 11.5-ft. The estimated BFE rise is 0.01-ft, indicating that placing fill at the causeway will not impact Stride Bridge. The estimated BFE rise in the Machias River is 0.2-ft; this is conservative and actual rise is likely less. There are no transportation facilities that will be impacted on the Machias River. The only road across the river, ME92, is set back and well above the river. We conclude that there is no termination of transportation facilities associated with this action.
- (2) "*a significant risk*": for all practical purposes, a rise of 0.01-ft (0.12-in) in the Middle River BFE cannot be measured and is effectively zero. As a calculation, this is well within reasonable accepted error bounds. It follows that there is no significant risk associated with placing fill on the Middle River embankment. The same holds true for an estimated 0.20-ft (2.4-in) rise in Machias River BFE.
- (3) "a significant adverse impact on natural or beneficial flood-plain values": the toes will be extended out laterally about 25-ft on each side, converting from muddy silt bottom to riprap. These portions of the mapped flood plains are always submerged. Given the great areal expanse of mudflat bottoms upstream and downstream, this is a minor impact and cannot be characterized as "adverse".

References


FEMA, 7/18/2017. Flood Insurance Study, No. 23029CV000A, Washington County, Maine. https://map1.msc.fema.gov/data/23/S/PDF/23029CV000A.pdf?LOC=46f89f3ed1540c23ba99b01769fa9 809

FHWA, 12/7/1994. Federal-Aid Policy Guide, 23 CFR 650A, Subchapter G – Engineering and Traffic Operations, Part 650 – Bridges, Structures, and Hydraulics, Subpart A – Location and Hydraulic Design of Encroachments on Flood Plans

FHWA, 4/2/1985. "Significant Encroachments", memo from S. Gordon to E. Clackley

MaineDOT, 9/6/23. Memo: "16714 Machias Dyke Bridge #2246 – Flood Control", Hebson to Chamberlain et al.

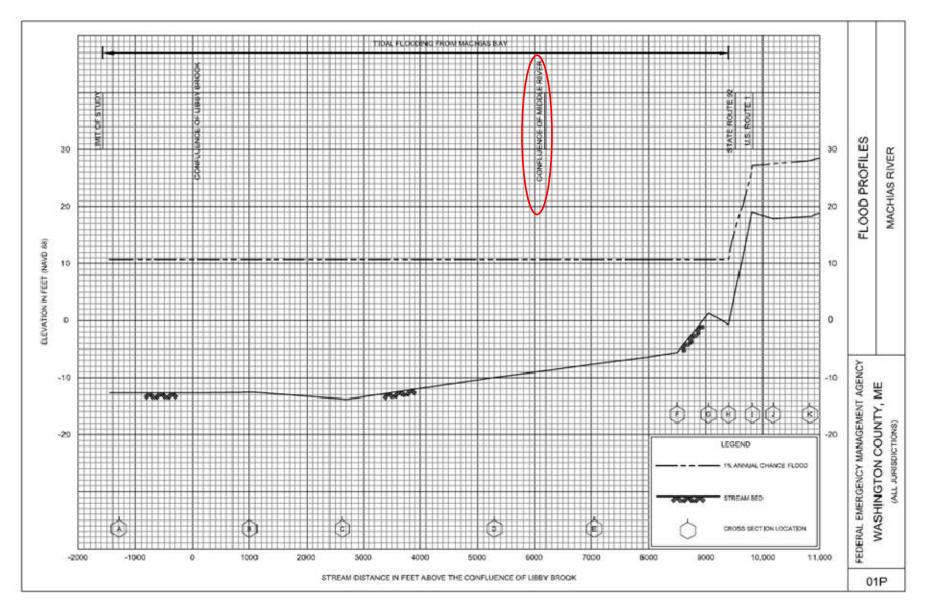

Figure 1. Location Map

Figure 2. FEMA Flood Plain Map

Appendix A

Simple Analysis of Potential Rise in BFE Due to Fill Placement

The Middle and Machias Rivers have mapped AE flood plains, determined with engineering methods. The causeway crosses the Middle River transversely at a right angle while it crosses the Machias flood plain somewhat obliquely. MaineDOT anticipates raising the causeway by 4-ft in order to address Sea Level Rise. This will entail placing fill along the embankments, onto the river bottoms at toe of slope, and on top of the roadway. The Middle River BFE is 11-ft; the Machias River BFE is 10.7-ft. This simplified analysis addresses the question of whether fill placement beneath the BFE will have a significant effect on the BFE.

This assessment is based on simple displacement: given a volume of fill placed beneath BFE, imagine spreading it over the surface water area at BFE. How thick would the layer of fill be? This gives an approximate idea how much BFE will rise.

Figure A1 shows causeway contours in the vicinity of the culverts. Figure A2 shows the section through the existing causeway and the same section simply raised by 4-ft. This is a simple approximation, assuming these sections are uniform along the 1000-ft long embankment. Design sections may vary along the embankment, as would the difference between the design and actual sections. The area between the blue and red lines is the fill volume (per linear foot) below 11-ft BFE. Figure A3 shows the fill volume as a function of station for the two embankments; Figure A4 shows fill volume as a function of elevation. Fill volume per linear foot is 275 ft³/ft on the Middle River embankment and 216 ft³/ft on the Machias River embankment.

The total fill volumes for the 1000-ft causeway are 1000 x 275 = 275,000 ft³ on the Middle River side and 1000 x 216 = 216,000 ft³ on the Machias River side. Table A1 gives the water surface area – elevation table (analogous to a hypsometric curve) for the Middle River. At BFE = 11-ft the water surface area is approximately 22,500,000 ft². If the total fill volume on the Middle River side were spread over this area, the depth would be

Fill depth (BFE rise) = 275,000 ft³ / 22,500,000 ft² = 0.012 ft = 0.15 in

An area-depth table is not available for the Machias River. It is further complicated by the fact that the BFE is not described by a closed polygon since the river opens up downstream. The assumed effected area is shown in Figure A5. The shoreline boundaries correspond to the FEMA map. The BFE in the Machias River is reported as 10.7-ft; for simplicity here it was taken as 11-ft. The fill depth spread over the assumed area is

Fill depth (BFE rise) = 216,000 ft³ / 1,100,000 ft² = 0.20 ft = 2.4 in

This is likely a conservative assumption about the extent of where the BFE might rise. Larger areas will lower the effective depth. Based on this simple geometric analysis, we conclude that fill placement is well withing a "no rise" result and will not create a significant encroachment.

Figure A1. Topo/Bathy Contours Near Culverts with Section Line

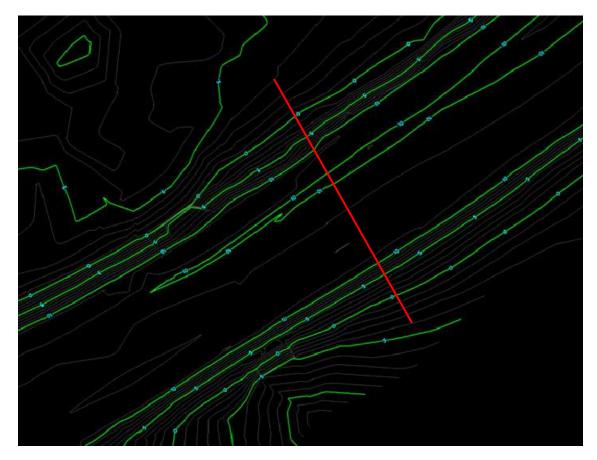


Figure A2. Causeway Section Just North of Culverts

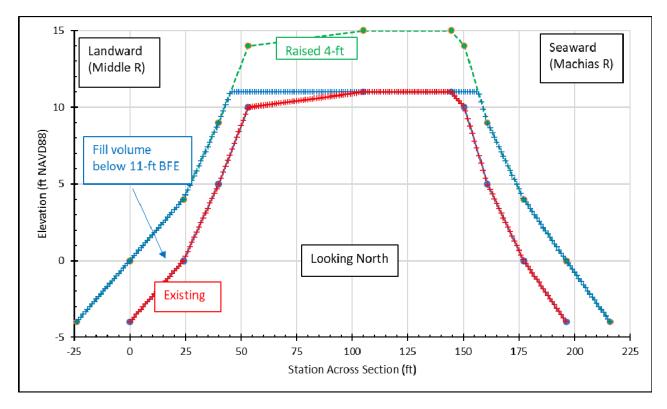


Figure A3. Fill Volume Across Section

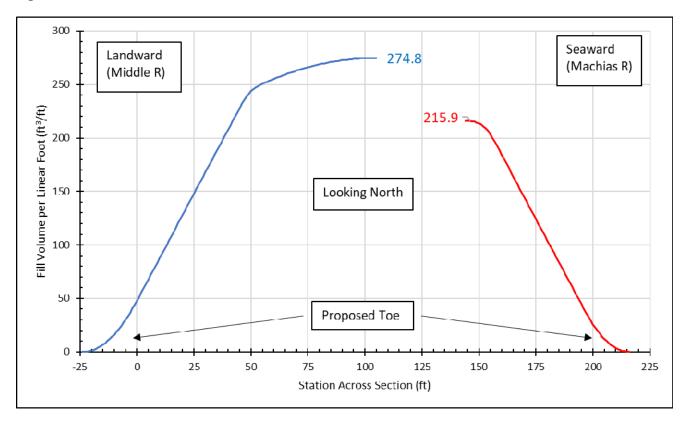
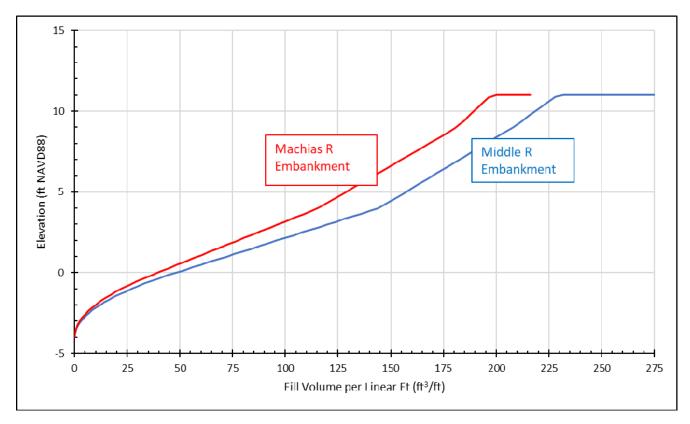
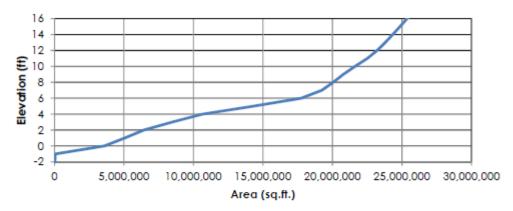



Figure A4. Fill Volume vs Elevation

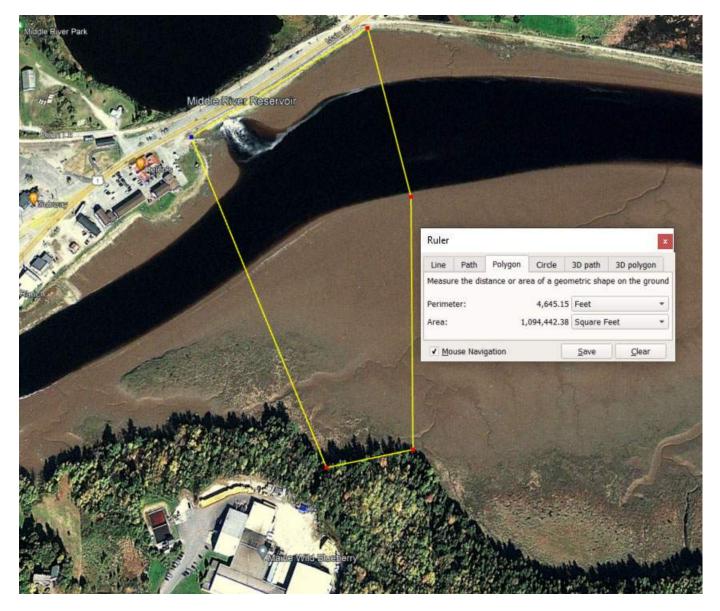

Table A1. Middle River Hypsometric Curve

TECHNICAL REPORT: MIDDLE RIVER HYDROLOGIC AND ALTERNATIVES ANALYSES

Appendix B : Elevation-Area Information, Middle River Landward from Dyke Bridge June 30, 2015

Appendix B: ELEVATION-AREA INFORMATION, MIDDLE RIVER LANDWARD FROM DYKE BRIDGE

Plot of Elevation-Area Data



Tabular Elevation-Area Data

Elevation (ft NAVD88)	Area (sq. ff)	Area (acres)
-1	62,361	1.43
0	3,584,172	82.3
1	5,052,564	116
2	6,426,034	148
3	8,469,801	194
4	10,661,151	245
5	14,323,379	329
6	17,742,072	407
7	19,237,352	442
8	20,052,345	460
9	20,780,224	477
10	21,623,345	496
11	22,513,513	517
12	23,220,294	533
13	23,796,594	546
14	24,328,877	559
15	24,853,485	571
16	25,366,834	582

Figure A5. Effected Area in Machias River (assumed)

FEDERAL-AID POLICY GUIDE December 7, 1994, Transmittal 12

23 CFR 650A

OPI: HNG-31

SUBCHAPTER G - ENGINEERING AND TRAFFIC OPERATIONS

PART 650 - BRIDGES, STRUCTURES, AND HYDRAULICS

Subpart A - Location and Hydraulic Design of Encroachments on Flood Plains

Sec.

650.101 Purpose.

650.103 Policy.

650.105 Definitions.

650.107 Applicability.

650.109 Public involvement.

650.111 Location hydraulic studies.

650.113 Only practicable alternative finding.

650.115 Design standards.

650.117 Content of design studies.

Authority:23 U.S.C. 109 (a) and (h), 144, 151, 315, and 319; 23 CFR 1.32; 49 CFR 1.48(b), E.O. 11988 (3 CFR, 1977 Comp. p. 117); Department of Transportation Order 5650.2 dated April 23, 1979 (44 FR 24678); section 161 of Public Law 97-424, 96 Stat. 2097, 3135; section 4(b) of Public Law 97-134,95 Stat. 1699; and 33 U.S.C. 401, 491 et seq., 511 et seq.; and section 1057 of Public Law 102-240, 105 Stat. 2002.

[59 FR 37935, July 26, 1994]

Source:44 FR 67580, Nov. 26, 1979, unless otherwise noted.

Sec. 650.101 Purpose.

To prescribe Federal Highway Administration (FHWA) policies and procedures for the location and hydraulic design of highway encroachments on flood plains, including direct Federal highway projects administered by the FHWA.

Sec. 650.103 Policy.

It is the policy of the FHWA:

(a) To encourage a broad and unified effort to prevent uneconomic, hazardous or incompatible use and development of the Nation's flood plains,

(b) To avoid longitudinal encroachments, where practicable,

(C) To avoid significant encroachments, where practicable,

(d) To minimize impacts of highway agency actions which adversely affect base flood plains,

(e) To restore and preserve the natural and beneficial flood-plain values that are adversely impacted by highway agency actions,

(f) To avoid support of incompatible flood-plain development,

(g) To be consistent with the intent of the Standards and Criteria of the National Flood Insurance Program, where appropriate, and

(h) To incorporate "A Unified National Program for Floodplain Management" of the Water Resources Council into FHWA procedures.

Sec. 650.105 Definitions.

(a) "Action" shall mean any highway construction, reconstruction, rehabilitation, repair, or improvement undertaken with Federal or Federal-aid highway funds or FHWA approval.

(b) "Base flood" shall mean the flood or tide having a 1 percent chance of being exceeded in any given year.

(c) "Base flood plain" shall mean the area subject to flooding by the base flood.

(d) "Design Flood" shall mean the peak discharge, volume if appropriate, stage or wave crest elevation of the flood associated with the probability of exceedance selected for the design of a highway encroachment. By definition, the highway will not be inundated from the stage of the design flood.

(e) "Encroachment" shall mean an action within the limits of the base flood plain.

(f) "Floodproof" shall mean to design and construct individual buildings, facilities, and their sites to protect against structural failure, to keep water out or to reduce the effects of water entry.

(g) "Freeboard" shall mean the vertical clearance of the lowest structural member of the bridge superstructure above the water surface elevation of the overtopping flood.

(h) "Minimize" shall mean to reduce to the smallest practicable amount or degree.

(i) "Natural and beneficial flood-plain values" shall include but are not limited to fish, wildlife, plants, open space, natural beauty, scientific study, outdoor recreation, agriculture, aquaculture, forestry, natural moderation of floods, water quality maintenance, and groundwater recharge.

(j) "Overtopping flood" shall mean the flood described by the probability of exceedance and water surface elevation at which flow occurs over the highway, over the watershed divide, or through structure(s) provided for emergency relief.

(k) "Practicable" shall mean capable of being done within reasonable natural, social, or economic constraints.

(1) "Preserve" shall mean to avoid modification to the functions of the natural flood-plain environment or to maintain it as closely as practicable in its natural state.

(m) "Regulatory floodway" shall mean the flood-plain area that is reserved in an open manner by Federal, State or local requirements, i.e., unconfined or unobstructed either horizontally or vertically, to provide for the discharge of the base flood so that the cumulative increase in water surface elevation is no more than a designated amount (not to exceed 1 foot as established by the Federal Emergency Management Agency (FEMA) for administering the National Flood Insurance Program).

(n) "Restore" shall mean to reestablish a setting or environment in which the functions of the natural and beneficial flood-plain values adversely impacted by the highway agency action can again operate.

(o) "Risk" shall mean the consequences associated with the probability of flooding attributable to an encroachment. It shall include the potential for property loss and hazard to life during the service life of the highway.

(p) "Risk analysis" shall mean an economic comparison of design alternatives using expected total costs (construction costs plus risk eosts) to determine the alternative with the least total expected cost to the public. It shall include probable flood-related costs during the service life of the facility for highway operation, maintenance, and repair, for highway-aggravated flood damage to other property, and for additional or interrupted highway travel.

(q) "Significant encroachment" shall mean a highway encroachment and any direct support of likely base flood-plain development that would involve one or more of the following construction-or flood-related impacts:

(1) A significant potential for interruption or termination of a transportation facility which is needed for emergency vehicles or provides a community's only evacuation route.

(2) A significant risk, or

(3) A significant adverse impact on natural and beneficial flood-plain values.

(r) "Support base flood-plain development" shall mean to encourage, allow, serve, or otherwise facilitate additional base flood-plain development. Direct support results from an encroachment, while indirect support results from an action out of the base flood plain.

Sec. 650.107 Applicability.

(a) The provisions of this regulation shall apply to all encroachments and to all actions which affect base flood plains, except for repairs made with emergency funds (23 CFR Part 668) during or immediately following a disaster.

(b) The provisions of this regulation shall not apply to or alter approvals or authorizations which were given by FHWA pursuant to regulations or directives in effect before the effective date of this regulation.

Sec. 650.109 Public involvement.

Procedures which have been established to meet the public involvement requirements of 23 CFR Part 771 shall be used to provide opportunity for early public review and comment on alternatives which contain encroachments.

[53 FR 11065, Apr. 5, 1988]

Sec. 650.111 Location hydraulic studies.

(a) National Flood Insurance Program (NFIP) maps or information developed by the highway agency, if NFIP maps are not available, shall be used to determine whether a highway location alternative will include an encroachment.

(b) Location studies shall include evaluation and discussion of the practicability of alternatives to any longitudinal encroachments.

(c) Location studies shall include discussion of the following items, commensurate with the significance of the risk or environmental impact, for all alternatives containing encroachments and for those actions which would support base flood-plain development:

(1) The risks associated with implementation of the action,

(2) The impacts on natural and beneficial flood-plain values,

(3) The support of probable incompatible flood-plain development,

(4) The measures to minimize flood-plain impacts associated with the action, and

(5) The measures to restore and preserve the natural and beneficial flood-plain values impacted by the action.

(d) Location studies shall include evaluation and discussion of the practicability of alternatives to any significant encroachments or any support of incompatible flood-plain development.

(e) The studies required by Sec. 650.111 (c) and (d) shall be summarized in environmental review documents prepared pursuant to 23 CFR Part 771.

(f) Local, State, and Federal water resources and flood-plain management agencies should be consulted to determine if the proposed highway action is consistent with existing watershed and flood-plain management programs and to obtain current information on development and proposed actions in the affected watersheds.

Sec. 650.113 Only practicable alternative finding.

(a) A proposed action which includes a significant encroachment shall not be approved unless the FHWA finds that the proposed significant encroachment is the only practicable alternative. This finding shall be included in the final environmental document (final environmental impact statement or finding of no significant impact) and shall be supported by the following information:

(1) The reasons why the proposed action must be located in the flood plain,

(2) The alternatives considered and why they were not practicable, and

(3) A statement indicating whether the action conforms to applicable State or local flood-plain protection standards.

[44 FR 67580, Nov. 26, 1979, as amended at 48 FR 29274, June 24, 1983]

Sec. 650.115 Design standards.

(a) The design selected for an encroachment shall be supported by analyses of design alternatives with consideration given to capital costs and risks, and to other economic, engineering, social and environmental concerns.

(1) Consideration of capital costs and risks shall include, as appropriate, a risk analysis or assessment which includes:

(i) The overtopping flood or the base flood, whichever is greater, or

(ii) The greatest flood which must flow through the highway drainage structure(s), where overtopping is not practicable. The greatest flood used in the analysis is subject to state-of-the-art capability to estimate the exceedance probability.

(2) The design flood for encroachments by through lanes of Interstate highways shall not be less than the flood with a 2 percent chance of being exceeded in any given year. No minimum design flood is specified for Interstate highway ramps and frontage roads or for other highways.

(3) Freeboard shall be provided, where practicable, to protect bridge structures from debris- and scourrelated failure.

(4) The effect of existing flood control channels, levees, and reservoirs shall be eonsidered inestimating the peak discharge and stage for all floods considered in the design.

(5) The design of encroachments shall be consistent with standards established by the FEMA, State, and local governmental agencies for the administration of the National Flood Insurance Program for:

(i) All direct Federal highway actions, unless the standards are demonstrably inappropriate, and

(ii) Federal-aid highway actions where a regulatory floodway has been designated or where studies are underway to establish a regulatory floodway.

(b) Rest area buildings and related water supply and waste treatment facilities shall be located outside the base flood plain, where practicable. Rest area buildings which are located on the base flood plain shall be floodproofed against damage from the base flood.

(c) Where highway fills are to be used as dams to permanently impound water more than 50 acre-feet $(6.17 \times 10^4 \text{ cubic metres})$ in volume or 25 feet (7.6 metres) deep, the hydrologic, hydraulic, and structural design of the fill and appurtenant spillways shall have the approval of the State or Federal agency responsible for the safety of dams or like structures within the State, prior to authorization by the Division Administrator to advertise for bids for construction.

Sec. 650.117 Content of design studies.

(a) The detail of studies shall be commensurate with the risk associated with the encroachment and with other economic, engineering, social or environmental concerns.

(b) Studies by highway agencies shall contain:

(1) The hydrologic and hydraulic data and design computations,

(2) The analysis required by Sec. 650.115(a), and

(3) For proposed direct Federal highway actions, the reasons, when applicable, why FEMA criteria (44 CFR 60.3, formerly 24 CFR 1910.3) are demonstrably inappropriate.

(c) For encroachment locations, project plans shall show:

(1) The magnitude, approximate probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of Sec. 650.115(a)(1) (ii), and

(2) The magnitude and water surface elevation of the base flood, if larger than the overtopping flood.

Home | Directives | 23 CFR TOC | Feedback

United States Department of Transportation - Federal Highway Administration

Page

Ferm PHWA-M (Rev. 11-57)

:

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION MINUTE - MEMO .

•

of Pages Use this form in lieu of transmittal alips within Dept. of Trans. when measage comment is to be retained as file material. Do not prepare carbons. Not to be used in lieu of Form FHWA-121 for informal corre-spondence.

SUBJECT

Significant E	ncroachments
---------------	--------------

<u> </u>	MESSAGE/COMMENT	FROM/DATE
eckley V-10	The following guidence is provided reyarding the determination of a significant encroschment as defined in FHPM 6-7-3-2:	S. Gordon HNG-31
	A significant encroachment is a <u>Federal Action</u> within the base flood plain (or any direct support of likely flood plain development) that would involve one of the following:	4/2/85
	 significant potential for interruption or termination of a transportation facility which is needed for emergency vehicles or which provides a community's only evacuation route, 	
	(2) a significant risk, or	
	(3) a significant adverse impact on natural and beneficial flood plain values.	
	In items 1 thru 3 above, the term significant is defined in the same manner as is used in environmental review procedures - i.e., a project with a significant encroachment must be processed with an EIS. This type of determination for items (2) and (3) above is made in a manner similar to any other type of impact and has generally been handled by FHKA and the States without problems in interpretation. Item (1), on the other hand, has caused problems in interpretation and is therefore explained in further detail.	
	If a planned Federal action would result in a significant potential for interruption or termination of the type of transportation facility described in (1) above, it shall be termed a significant encroachment. Engineering judgment is required in evaluating the site conditions to decide whether the Federal action should be classified as a significant encroachment, taking into consideration:	
	(1) extent and frequency of overtopping of the facility by floodwaters,	
	(2) consequences of overtopping - anticipated damages and effect on the community served, and	
~	(3) other relevant factors that may have some bearing on the case such as amount of traffic using the facility, number of people in the community, general elevation of the community as compared with the overtopping elevation, anticipated time for advance warning, etc.	

ø Page

Form FHWA-681 (Rev. 11-67)

.

ŕ ;,

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION MINUTE - MEMO

Use this form in lies of transmittel slips within Dept. of Trass. when message comment is to be retained as file material. Do not prepare carbons. Not to be used in lieu of Form FHWA-121 for informal corre-spondence.

TUBJECT

TQ	MESSAGE/COMMENT	FROM/DAT
	The determination of a significant encroschment is based on the	
	proposed Federal action rather than on the existing trans-	
	portation facility; therefore, an improvement proposed for	
	construction on an existing alignment that alleviates or does	
	not worsen the existing flood hazard would not normally be	
	considered as a significant encroachment. In planning this type of project, consideration abould be given to the need to	
	minimize the flooding hazard for the entire section of the	
	highway facility in the base flood plain. Where it is not	
	practical to accomplish this objective, the project records	
	should support the basis for the design selected, and there	
	should be reasonable public notification of the proposed	
	design.	
	It is our view that incorporation of the type of significant	
	encroachment described above (resulting from a significant	
	potential for interruption of a transportation facility) is	
	rarely justified for Federal-aid highway projects on new	
	location. Where the evaluation of site conditions for such	
	facilities indicates substantial risks, we would encourage	
	raising the transportation facility to an elevation (normally the 100-year flood or tide elevation) that would minimize the	
	risk and avoid the significant encroachment.	
	TASK BILL BUGAS CHO DAGHAT LOLAS DISTOCTOR	
]
	1	
		· .
		1

Pages 34

To:	Maine Department of Transportation	From:	Lori Benoit, Michael Chelminski
	Augusta, Maine		Northampton MA Office
File:	197450347	Date:	November 8, 2021

Reference: Estimated Elevation Ranges of Intertidal Habitats for Middle River / Dyke Bridge Alternatives

In support of the Dyke Bridge Replacement Project (Project) located on the Middle River in Machias, Maine, Stantec was tasked with estimating the extent of tidal wetland habitats for two previously vetted alternatives (4m and 10) for replacing existing flap gates at Dyke Bridge. Stantec reviewed existing background information and data on tidal hydrology and vegetation elevations and distribution in the following documents:

- Technical Report: Middle River Hydrologic and Alternatives Analysis, Stantec 2015
- Memo: Draft Phase 1 Hydraulic Analysis for Machias Dyke Bridge (#2246) Planning Phase Support Services, September 2, 2021, Stantec to MaineDOT (Stantec 2021)
- Data: SchoppeeMarsh_TidalRestrictionAssessment_Draft_Hydrodata.xls. Schoppee Marsh Tide Gate Removal Project hydrology, elevation, and vegetation data from BB USFWS GOMP/ DSF.

SIMULATED TIDAL STAGE STATISTICS

Stantec 2021 presents information obtained from the preliminary, unsteady-state numerical hydraulic model study for a range of potential alternatives for the Project, including simulated water surface elevations in the Middle River for Alternatives 4m and 10. Tidal statistics were generated for the two noted alternatives based on a hydraulic model simulation period of 34 days. Boundary conditions for the unsteady-state simulations included a constant inflow of 13.7 cubic feet per second representing a typical discharge of the Middle River and a time-varying water surface elevation at downstream boundary condition based on tidal stage data collected in the Machias River by MaineDOT in 2011.

Tidal stage statistics were developed based on the simulated water surface elevations in the Middle River landward (upstream) from Dyke Bridge using the National Oceanic and Atmospheric Administration online Tidal Analysis Datum Calculator tool¹. Calculated tidal statistics are presented in Table 1.

	Estimated Tide Statistics (ft, NAVD88)		
	Alt4m		
Mean Higher High Water	2.01	7.39	
Mean High Water	1.87	6.87	
Mean Tide level	-0.41	0.21	
Mean Low Water	-2.68	-6.46	
Mean Lower Low Water	-2.73	-6.66	

Table 1. Estimated Tide Statistics for the Middle River for Alternatives 4m and 10

¹ <u>CO-OPS Datum Calculator (noaa.gov)</u>

November 8, 2021 Maine Department of Transportation Page 2 of 5

Reference: Estimated Elevation Ranges of Intertidal Habitats for Middle River / Dyke Bridge Alternatives

ESTIMATED SALTMARSH RANGES

Based on this review, Stantec estimated potential elevation ranges for three habitat types of high marsh, low marsh, and unvegetated intertidal areas, and present the estimates in Table 1 with elevations referenced to the North American Vertical Datum of 1988 (NAVD88).

Table 2: Estimated Potentia	al Saltmarsh Habitat Ranges
------------------------------------	-----------------------------

	Estimated Saltmarsh Habitat Ranges (ft, NAVD88)				
	Alternative 4m		Alternative 10		
Estimated Habitat	Low Range	High Range	Low Range	High Range	
High Marsh	1.9	2.0	6.9	7.4	
Low Marsh	0.8	1.9	3.8	6.9	
Unvegetated intertidal/subtidal	-	0.8	-	3.8	

The attached figures depict the estimated areas of high marsh, low marsh, and unvegetated intertidal and subtidal habitats based on the elevation ranges in Table 1 using a digital terrain model developed using LiDAR data. These figures include estimated areas for the evaluated habitat types. The estimated habitat areas were developed based on the assumption that salinities in the Middle River landward from Dyke Bridge would be similar to salinities in the Machias River seaward from the bridge.

Unvegetated intertidal habitat is a distinct habitat type but here has been temporarily lumped with subtidal habitat until updated bathymetric data becomes available. Predicted elevations for saltmarsh habitats may be revised as additional information becomes available. The estimated elevations and descriptions for intertidal habitats landward of Dyke Bridge under two alternatives are based also on the following assumptions:

- 1) High marsh formation is predicted at elevations between mean high water (MHW) and mean higher high water (MHHW), which are areas typically inundated with salt water during only the highest tides of the month.
- 2) High marsh is typically dominated by saltmeadow cordgrass (*Spartina patens*). Black grass (*Juncus gerardii*) may be found at the highest elevations/upper border of the high marsh. Saltwater cordgrass (*Spartina alterniflora*) may be found in the high marsh in slight depressions on the marsh surface (high saline pannes) along with glasswort species (*Salicornia* spp.)
- 3) Low marsh has the potential to establish from MHW to the approximate elevation of the mean tide level (MTL). In actuality, *S. alterniflora* often is not found at elevations as low as the mean tide level (MTL). Data for the unrestricted portion of Machias River does not show low marsh close to the "Diurnal Tide Level" in the Machias River at an elevation (EI.) of 0.47 ft (see "Assessment Notes" tab of Schoppee Marsh Excel file) and which Stantec assumes approximates the MTL. At the seaward side (no restriction) of the Machias River, the data gathered by DSF shows low marsh at EI. 4.99 ft. Based on this data point, approximately 5 ft above the MTL appears to not be vegetated. However, this one data point for unrestricted low marsh is insufficient information to assess the overall elevation distribution of low marsh in the tidal wetland with unrestricted flows. Also, the start of downstream (presumably downstream of tide gate in unrestricted flow Machias River) low marsh is shown at

November 8, 2021 Maine Department of Transportation Page 3 of 5

Reference: Estimated Elevation Ranges of Intertidal Habitats for Middle River / Dyke Bridge Alternatives

approximately EL. 3.6 ft in the Schoppee Marsh Excel file . In this case, approximately 50% of the tide range between MTL and MHHW is unvegetated. This data is consistent with previously published findings indicating that ice scour may limit the lower extent of low marsh in northern New England salt marshes (Hardwick-Witman 1986) and this may explain lack of Spartina alterniflora at or near the MTL. Therefore, the lower limit of low marsh for both alternatives 4m and 10 was roughly estimated as the MHHW el. minus 50% of the tide range between the MTL and the MHHW.

- 4) S. alterniflora is the dominant, monotypic plant species of the low marsh.
- 5) Unvegetated intertidal areas (encompasses habitat called "mud flat") are expected in the range from MTL to mean lower low water. Erosion caused by ice scour of mid-range intertidal areas may limit the lower extent of vegetated intertidal areas. Increased height of tidal flooding may inhibit *S. alterniflora* growth in the intertidal region below MHW particularly in locations such as the Gulf of Maine that experiences extreme tidal ranges.
- 6) At individual tidal sites, variations in microtopography and flood/drainage patterns, including those due to disturbances such as culverts and tide gates that cause tidal restrictions, may alter the elevations and predicted patterns at which high marsh, low marsh, and unvegetated tidal areas are established.
- 7) Estimated ranges of intertidal habitats for Alternative 10 were adjusted based on field-collected data at unrestricted Machias River intertidal sites. Notably, the extreme tide heights, and duration, and ice scour may preclude low marsh/ *S. alterniflora* establishment in a significant portion of the intertidal zone below MHW.
- 8) Under the Alternative 4m scenario, it was assumed that high marsh may become established in a narrow elevation range that will not be flooded daily but only on the highest predicted tides each month and based on restricted flow through the culverts that will limit the higher tidal heights.

MIDDLE RIVER STAGE-AREA CURVE

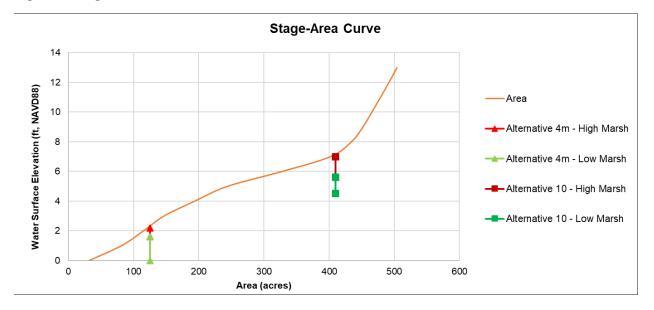

A stage-area (hypsometric) curve was developed from a digital terrain model (DTM) of land adjacent to the Middle River upstream from Dyke Bridge to the vicinity of Stride Bridge. The DTM was developed using existing LiDAR and was initially compiled for development of the project hydraulic model study program.

Figure 1 depicts the stage-area curve along with the estimated High Marsh and Low Marsh habitat elevation ranges for Alternatives 4m and 10 that are presented in Table 2. Table 3 presents the stage-area data in tabular format.

The stage-area data does not include areas for elevations below Elevation 0.0 ft which are largely in the current area that is inundated during normal tidal conditions in the Middle River upstream from Dyke Bridge. The estimated saltmarsh habitat ranges presented in Table 2 and in Figure 1 indicate that areas below Elevation 0.0 would be unvegetated intertidal/subtidal habitat for Alternative 4m and that areas below Elevation 4.5 ft would be unvegetated intertidal/subtidal habitat for Alternative 10.

November 8, 2021 Maine Department of Transportation Page 4 of 5

Reference: Estimated Elevation Ranges of Intertidal Habitats for Middle River / Dyke Bridge Alternatives

Table 3. Stage-Area	Curve Data from	Figure 1	for Middle River I	Jostream from D	vke Bridae

WSEL (ft, NAVD88)	Area (acres)
0	33
1	82
2	116
3	147
4	194
5	244
6	328
7	402
8	434
9	452
10	465
11	478
12	491
13	504

November 8, 2021 Maine Department of Transportation Page 5 of 5

Reference: Estimated Elevation Ranges of Intertidal Habitats for Middle River / Dyke Bridge Alternatives

DATA LIMITATIONS AND CAVEATS

The methodology for collection of vegetation data by DSF is not provided. Using a series of transects from below MTL to the upland is a standard method for vegetation assessment. Identifying plants and community types on the fly in the field and taking vegetation and elevation data would not be recommended as this approach could introduce selection bias.

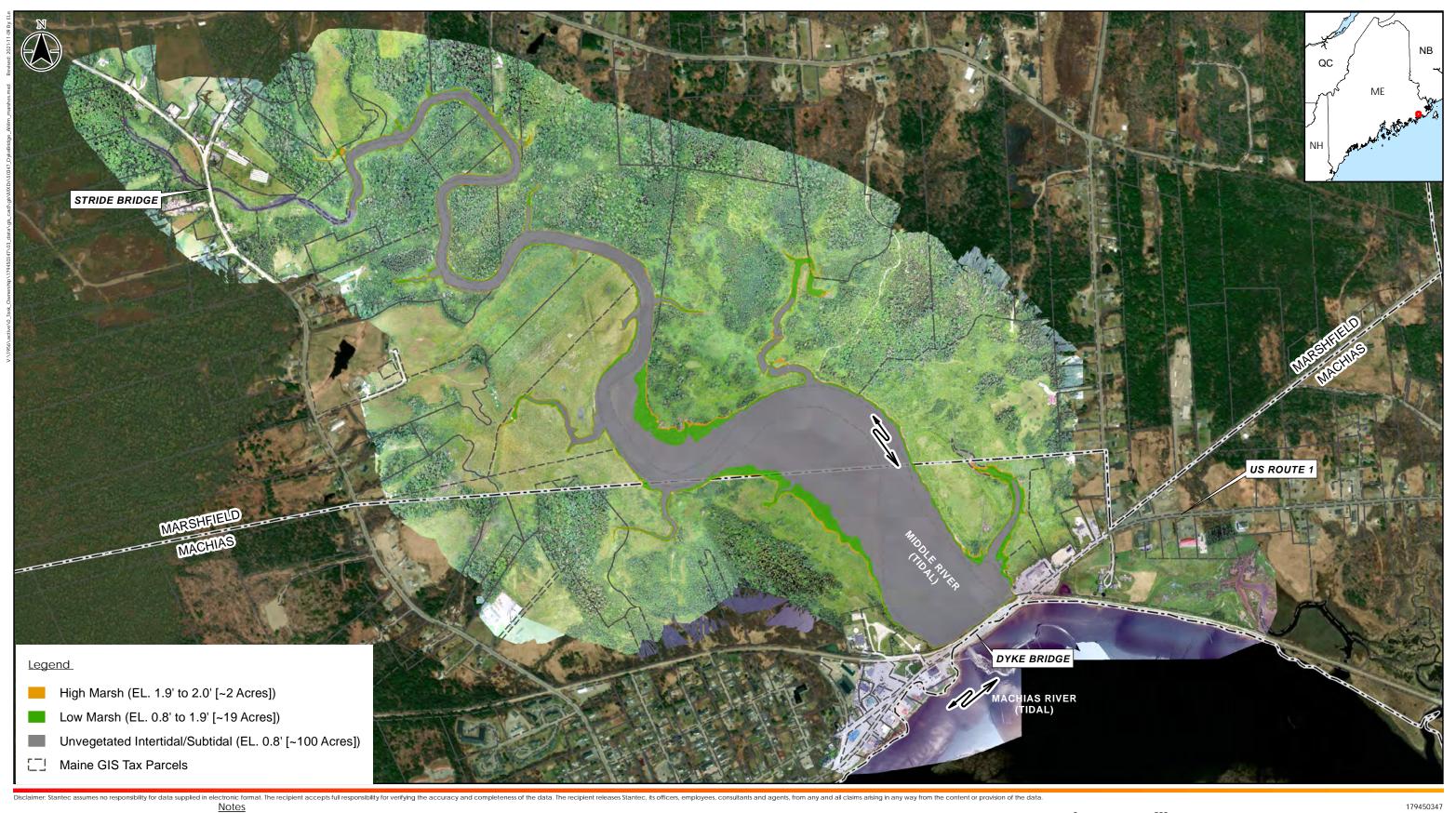
We are not able to determine from the DSF plant community and elevation data exactly which data applies to the Eastern Schoppee Marsh. That location has a partial tidal restriction (does not drain fully at low tide and does not reach full tidal height compared to the unrestricted Machias River) and could be skewing the data if it is grouped with the "unrestricted" data. Based on the presentation of three sets of tidal data (Machias River, Schoppee Marsh Restricted, and Schoppee Marsh Eastern), we would expect three sets of vegetation data that reflect the tidal regime in each location. However, plant community and elevation data is shown only as restricted vs. unrestricted. Are there any vegetation and elevation data specifically for the Eastern Schoppee Marsh? Of the three locations, the Eastern Schoppee Marsh may be most similar to the alternative 4m.

Elevations of vegetation community called "Low hypersaline panne – restricted" does not make sense given the elevations of the high marsh. Hypersaline pannes are embedded within the high marsh zone and are typically only a few millimeters lower in elevation than the surrounding S. patens-dominated high marsh. The elevation data for the pannes appear to be lower by a foot or more in elevation compared to the high marsh. It is possible that these areas are stunted and dying S. alterniflora areas caused by excessive duration of flooding upstream of the Schoppee tide gate.

The data assessment appears to be in the draft stage. Note comment by "WBennett" regarding the vegetation community classification: "Need to further evaluate the classification of different communities. Many irregularities exist and overlap." We suggest proceeding with caution on using and interpreting the existing data for predicting locations/areas of salt marsh habitats for the different design alternatives. We may want to discuss the data with DSF, and additional data collection may be warranted.

Please contact Stantec with questions or comments regarding the information presented in this memo.

Stantec Consulting Services Inc.


Lori K. Benoit, Ph.D. Project Manager, Environmental Services Phone: 413 387 4516 Fax: 413 584 3157 Lori.Benoit@stantec.com

Michael Chelminski Principal, Environmental Services Phone: 413 387 4514 Fax: 413 584 3157 michael.chelminski@stantec.com

Attachment:

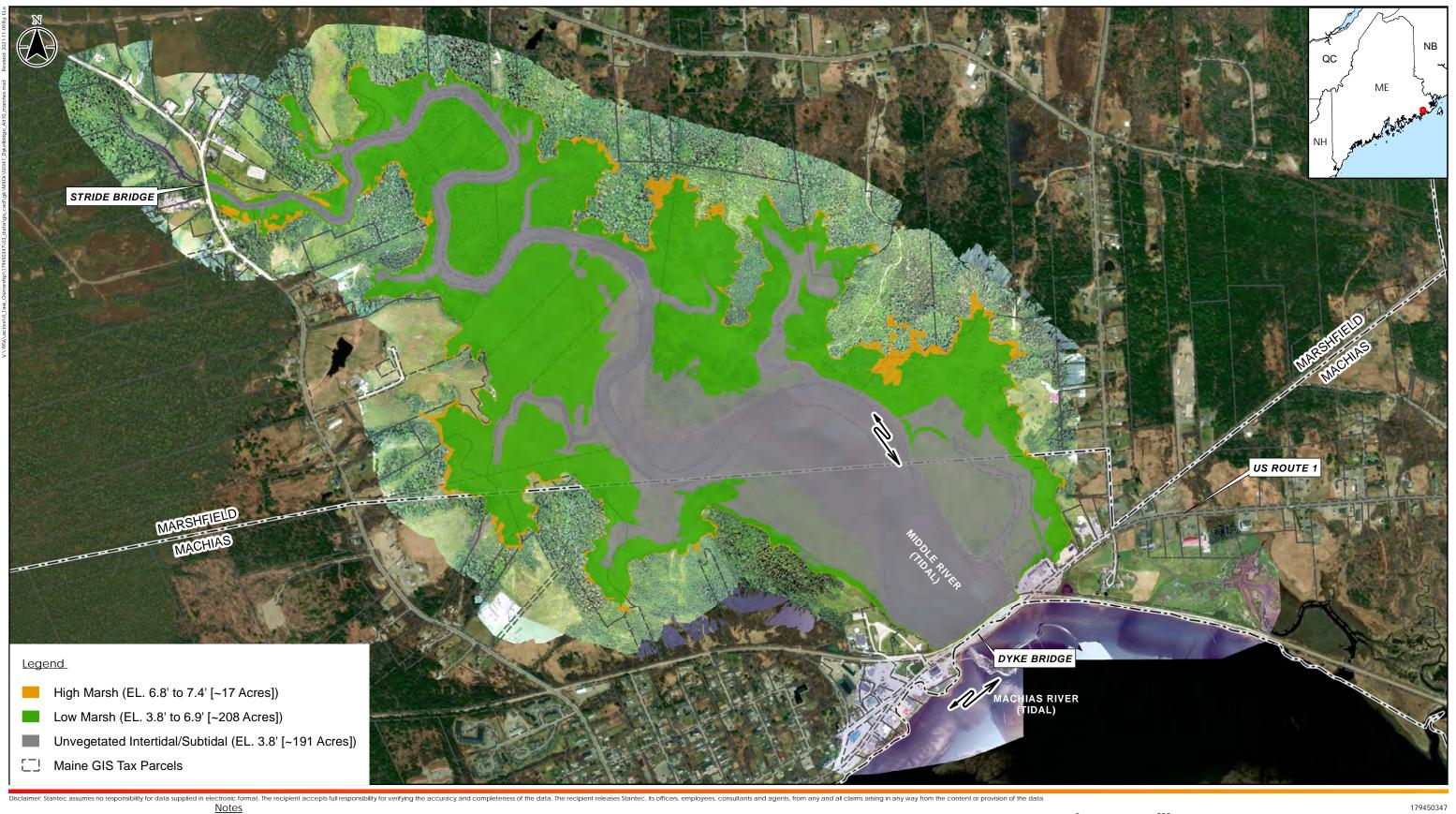
Figure 1: Alternative 4m, Estimated Saltmarsh Habitat Figure 2: Alternative 10, Estimated Saltmarsh Habitat

c. Tim Merritt, Stantec

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199

Prepared by EPL on 2021-08-09 Reviewed by MRC on 2021-08-09

50347_DykeBridge_Alt4m_marshes.mxd


- 1. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 hydraulics analysis using tidal stage data collected by MaineDOT in 2011. 2. Coordinate System: NAD 1983 UTM Zone 19N FT
- 3. Vertical Datum: NAVD88
- 4. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021.
- 5. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service (http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).
- 6. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

179450347

800 🖬 Feet 833 feet (At page size of 11*x17*

Client/Project Maine DOT Dyke Bridge Machias, Maine Figure No.

Title Alternative 4m Estimated Saltmarsh Habitat 11/9/2021

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199

Prepared by EPL on 2021-08-09 Reviewed by MRC on 2021-08-09

50347_DykeBridge_Alt10_marshes.mxd

- 1. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 hydraulics analysis using tidal stage data collected by MaineDOT in 2011. 2. Coordinate System: NAD 1983 UTM Zone 19N FT
- 3. Vertical Datum: NAVD88
- 4. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021.
- 5. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service (http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).
- 6. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

179450347

800 🖬 Feet feet (At page size of

Client/Project Maine DOT Dyke Bridge Machias, Maine Figure No. 2 Title Alternative 10 Estimated Saltmarsh Habitat 11/9/2021

APPENDIX 6 – LANDFILL IMPACTS

- 1. Overview: Machias Landfill Investigation
- 2. November 2022 Report: Machias Landfill Investigation, Machias Dyke Bridge, MaineDOT WIN 16714.00, Machias, Maine
- 3. 8/26/2022 Memo: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias Dike Bridge (#2246) Planning Phase Support Services Amendment #2

Bruce A. Van Note

OVERVIEW

MACHIAS LANDFILL INVESTIGATION

BACKGROUND: MaineDOT has completed an environmental and geotechnical assessment of subsurface conditions at the closed Machias Landfill. The primary objectives of this assessment focused on defining the existing stability of the landfill and current groundwater quality conditions. Additionally, based on findings, an evaluation was performed relative to potential impacts to the landfill associated with rising surface water levels in adjacent wetlands and the nearby Middle River.

ASSESSMENT: Work at the closed Machias Landfill included a subsurface investigation, groundwater monitoring, laboratory testing, and hydrogeologic and geotechnical evaluations. Eight subsurface test borings were drilled around and through the Landfill; groundwater observation wells were installed in five of the eight borings. Geologic and geotechnical samples were collected from the borings.

Groundwater levels and water quality samples were collected from the observation wells.

Geotechnical and water quality samples were sent to certified laboratories for testing. Information on the engineering properties of soils and the chemistry of groundwater near the Landfill was obtained.

Information captured in the field and from testing was used to perform engineering and hydrogeologic evaluations of conditions at the Landfill. Standard industry practices, aided with computer-assisted modeling, served as the basis for the evaluations.

FINDINGS: Groundwater at the Landfill flows generally from west to east with discharge into the adjacent wetland. Laboratory testing of groundwater samples suggest the Landfill has caused some impact on existing water quality; the most notable concerns are inorganic compounds (dissolved metals) and PFAS compounds. Barium, cadmium, iron, and manganese were found to exceed Maine Department of Environmental Protection (MDEP) Maximum Exposure Guidelines (MEGs) for drinking water.

PFAS compounds also exceeded Maine Drinking Water standards. The Maine Center for Disease Control (CDC) has implemented an interim drinking water standard of 20 ng/L-parts per trillion (ppt; alone or in combination) for the six regulated PFAS contaminants that include: perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA) and perfluorodecanoic acid (PFDA). Total PFAS (6) results ranged from 26.5 ng/L to 181 ng/L with all samples exceeding the CDC 20 ng/L standard.

Engineering calculations and computer modelling indicate the Landfill is currently stable. Underlying soil and groundwater conditions are favorable to support the Landfill. The calculated "Factor of Safety" values (a geotechnical measure of how stable a slope is given underlying soil characteristics and geometry of the slope) exceed recommended levels. Even under extreme structural forces such as an earthquake, engineering calculations indicate the Landfill exceeds the "pseudo-static seismic load" factor of safety threshold.

Further technical evaluations to determine the sensitivity of the Landfill's global stability relative to increasing surface and groundwater levels were performed. Results of these evaluations indicate that elevated water levels outside the landfill (i.e., at the toe of the landfill slope) would not negatively impact global stability factors of safety. Elevated water levels within the landfill (i.e., inboard of the landfill toe) were found to have a slight negative impact on the factor of safety, but the levels would need to be raised considerably (i.e., up to approximately elevation 31, about 30 feet above the current river level and 11 feet above measured stabilized groundwater levels within the landfill) to cause an unsatisfactory factor of safety.

Calculations indicate that increasing water levels in the Middle River estuary system associated with MaineDOT's proposed Machias Dike alternatives will not adversely impact the Machias Landfill. Depending on the proposed alternative, surface water levels in the Middle River are anticipated to increase upwards of 14 plus feet; as discussed previously, any anticipated rise in surface water levels associated with the Machias Dike alternatives will not adversely impact the Landfill.

www.haleyaldrich.com

REPORT ON MACHIAS LANDFILL INVESTIGATION MACHIAS DIKE BRIDGE MAINEDOT WIN 16714.00 MACHIAS, MAINE

by Haley & Aldrich, Inc. Portland, Maine

for Maine Department of Transportation Augusta, Maine

File No. 0130749-009 November 2022

HALEY & ALDRICH, INC. 75 Washington Avenue Suite 1A Portland, ME 04101 207.482.4600

9 November 2022 File No. 0130749-009

Maine Department of Transportation 16 State House Station Augusta, Maine 04333-0016

Attention: Dwight Doughty, Jr., C.G.

Subject: Report on Machias Landfill Investigation Machias Dike Bridge MaineDOT WIN 16714.00 Machias, Maine

Ladies and Gentlemen:

We are pleased to submit herewith our report entitled, "Report on Machias Landfill Investigation, Machias Dike Bridge, MaineDOT WIN 16714.00, Machias Maine." This report has been prepared in accordance with our mutually agreed upon work scope and in accordance with the scope outlined in our Assignment Letter #8, dated 14 June 2022, under our environmental MultiWIN contract number 2017062600000000824 dated 22 June 2017.

Introduction

This report presents the results of the subsurface investigation and laboratory testing programs, groundwater monitoring program, and geotechnical evaluations conducted by Haley & Aldrich, Inc. (Haley & Aldrich) on behalf of the Maine Department of Transportation (MaineDOT) for the proposed Machias Dike Bridge project at the Machias Landfill in Machias, Maine (see Figure 1, Project Locus).

HORIZONTAL COORDINATE SYSTEM AND ELEVATION DATUM

Plan locations of test borings are reported as northing and easting coordinates relative to the Maine State Plane Coordinate System, North American Datum of 1983 (NAD 83), Maine 2000 East Zone.

The project elevation datum and elevations referenced herein are in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

PROJECT LOCATION AND EXISTING SITE CONDITIONS

The project site is located at an existing, grass-covered, closed landfill, with natural site grades around the landfill ranging from approximately El. 10 northeast of the landfill to approximately El. 55 southwest

of the landfill. The maximum ground surface elevation within the existing landfill footprint is at approximately El. 69. A two-lane road and residential homes are located to the south and west of the landfill. The area to the north and east of the landfill is generally undeveloped and occupied by wooded areas and grassed fields.

A series of timber box culverts are currently located below US Route 1 at the mouth of the Middle River. The culvert conveys water flow between the Machias and Middle Rivers during tide cycles, with a current inundation level of approximately EL -1.0.

PROPOSED IMPROVEMENTS

We understand that MaineDOT is currently considering replacing the existing culvert with a single-span bridge at the mouth of the Middle River. The bridge is proposed to have a larger hydraulic opening than the existing culvert and would result in higher water inundation levels on the upstream (west) side of the proposed replacement bridge. Inundation levels up to approximately El. 14.7 (including sea level rise) were used in the evaluations below. It is our understanding, based on discussions with MaineDOT, that this elevation is the highest water level between proposed "Alternative 10" and the "do nothing" condition. The larger water inundation area will extend up to the eastern edge of the existing landfill.

Subsurface Exploration Program

Haley & Aldrich completed an initial subsurface exploration program in association with the subject project consisting of five test borings designated HA22-1/HA22-1B, HA22-2, and HA22-5 through HA22-7, that were drilled at the site from 27 June to 1 July 2022. Test borings HA22-3 and HA22-4 were laid out in the field and planned to be drilled depending on conditions encountered and available time. These two borings were not drilled. The purpose of the subsurface exploration program was to characterize the general subsurface conditions in the area of the existing landfill that could be impacted by the larger inundation area.

Haley & Aldrich completed a supplemental subsurface exploration program consisting of three test borings designated HA22-8 through HA22-10, that were drilled at the site from 25 to 26 July 2022. The purpose of the supplemental program was to install additional wells to monitor groundwater levels and to collect groundwater samples for analytical testing.

The test boring locations were laid out in the field by Haley & Aldrich by taping distances from existing site features prior to the start of drilling. "As-drilled" boring locations and ground surface elevations at boring locations were determined in the field by MaineDOT using GPS survey equipment upon completion of drilling. The plan location data of the borings are summarized in Table I and are provided on the individual boring logs in Appendix A. Boring locations are shown on Figure 2.

The initial test borings were drilled by New England Boring Contractors (NEBC) of Hermon, Maine using a Mobile Drill B-53 track-mounted drill rig and the supplemental test borings were drilled by S.W. Cole Explorations, LLC (SWC) of Bangor, Maine using a Diedrich D-50 track-mounted drill rig. Test borings were advanced using cased wash drilling methods to depths ranging from approximately 6.0 to 44.0 ft

below existing ground surface (BGS) using 4-in. (HW-size) inside diameter (ID) steel casing. At three locations (HA22-1/HA22-1B, HA22-2, and HA22-5), the borings were drilled to bedrock and each sampled 5 ft of rock core. Soil samples were generally collected continuously through fill soils and at standard, 5-ft intervals thereafter, by driving a 1-3/8-in. inside diameter (ID) split-spoon sampler with a 140-lb hammer dropped from a height of 30 in., as indicated on the test boring logs. The number of hammer blows required to advance the sampler through each 6-in. interval was recorded and is provided on the boring logs. The uncorrected SPT N-value (N-uncorrected) is defined as the total number of blows required to advance the sampler through the middle 12 in. of the 24-in. sampling interval.

The drill rigs were equipped with calibrated automatic hammers. Based on the calibration information provided by NEBC and SWC, a theoretical hammer efficiency factor of 0.863 and 0.91 were used for the automatic hammers. The energy-corrected SPT N-value (N60) is equal to the uncorrected SPT N-value multiplied by the hammer efficiency factor (0.863 or 0.91) divided by 0.6 (i.e., 60 percent calculated hammer efficiency). Both the raw blow count (uncorrected N-values) and the corrected N-values are shown on the boring logs.

All soil and bedrock samples were collected and preserved in glass jars and wooden boxes, respectively. The samples that were not submitted for laboratory testing are available for review upon request. The available soil and bedrock samples are currently being stored at the Haley & Aldrich storage facility in Portland, Maine.

Five observation wells were installed in the completed boreholes HA22-1B, HA22-2, and HA22-8 through HA22-10 to provide information on the variability of static groundwater levels at the site and to collect samples for groundwater testing. The observation wells consisted of 2-in. ID, machine-slotted PVC pipe and solid PVC riser pipe extending approximately 2.4 to 3.1 ft above existing ground surface. The observation wells were outfitted with steel guard pipes and lock/cap assemblies. The observation well installation and groundwater monitoring reports are provided in Appendix B.

All drilling and sampling operations were performed in accordance with MaineDOT specifications.

Generalized Subsurface Conditions

SOIL CONDITIONS

The subsurface conditions encountered at the site during the recent subsurface exploration programs completed by Haley & Aldrich generally consist of the following geologic units presented in order of increasing depth below ground surface: fill, clay cap, landfill waste and cover, marine deposit (reworked), tidal marsh deposit, marine deposit (natural), fluvial deposit, glacial till, and bedrock. Refer to Table II for a summary of the soil units and encountered thicknesses at each test boring location. A general description of each soil/bedrock unit is provided separately, below. Detailed soil and bedrock descriptions are provided on the boring logs included in Appendix A.

Soil Unit	Approximate Range in Encountered Thickness (ft)	Generalized Description
Fill	4	Silty fine to medium SAND, trace coarse sand and gravel (only encountered in test boring HA22-8, located at the edge of the public works storage area, outside the landfill footprint)
Clay Cap	1 to 4	Medium stiff to very stiff silty CLAY, trace coarse gravel (encountered in test borings HA22-1/1B, HA22-2, HA22-5, and HA22-6; the clay cap may be present at the location of HA22-7, however was not encountered likely due to sampling frequency)
Landfill Waste and Cover	5 to 22	Medium stiff to hard silty CLAY, trace fine to coarse sand and gravel; loose to very dense fine to coarse SAND, trace silt; contains occasional cobble pieces, ash layers, and approximately trace to 40% waste consisting of newspaper, plastic bag, wood, glass, metal, wire, plastic netting, and insulation (encountered in test borings HA22-1/1B, HA22-5, HA22-7, and HA22-10)
Marine Deposit (Reworked)	11 to 13	Very stiff to hard silty CLAY (encountered in test borings HA22-1/1B and HA22-7 in the central portion of the landfill)
Tidal Marsh Deposit	> 4.6	Very loose silty fine SAND, trace medium sand (only encountered in test boring HA22-10 east of the landfill)
Marine Deposit (Natural)	3 to > 21	Medium stiff to hard silty CLAY, layered depositional structure, occasional fine sand lenses (encountered in test borings HA22-1/1B, HA22-2, HA22-5, HA22-6, HA22-8, and HA22-9)
Fluvial Deposit	7	Medium dense fine to coarse SAND, little silt, trace gravel; contains cobbles and boulders (only encountered in test boring HA22-5 along the northern edge of the landfill)
Glacial Till 1 to 4		Dense to very dense fine to coarse SAND, trace silt, little gravel, loosely bonded; contains cobbles (encountered in test borings HA22-1/1B, HA22-5, and HA22-7)
Bed	rock	Top of bedrock surface encountered at depths ranging from approximately 9.0 to 38.7 ft BGS (El5.1 to El. 8.0).

Please note that soil descriptions provided on the logs In Appendix A represent subsurface conditions at the specific boring locations. The subsurface conditions encountered between test boring locations may vary from those encountered in the borings.

BEDROCK CONDITIONS

As stated previously, approximately 5 ft of bedrock was cored in three of the test borings. The recovered bedrock samples generally consisted of the following:

- Very hard to hard, fresh to slightly weathered, dark gray, porphyritic BASALT with occasional 1-in. thick clasts. Primary joints dip horizontally and are moderately closely spaced, open.
- Very hard to hard, slightly weathered, dark gray and white, aphanitic to coarse-grained basaltic TUFF BRECCIA. Primary joints dip horizontal to low angles and are very close to moderately closely spaced, open.

Rock quality designation (RQD) is a common parameter that is used to help assess the competency of sampled bedrock. RQD is defined as the sum of pieces of recovered bedrock greater than 4 in. in length divided by the total length of the bedrock core run. RQD values for the BASALT encountered at the site ranged from 43 to 85 percent (average of 66 percent) indicating poor to good rock quality. RQD values for the TUFF BRECCIA encountered at the site was 78 percent indicating good rock quality.

Photographs of the sampled bedrock are provided for reference in Appendix A.

GROUNDWATER CONDITIONS

As discussed previously, an observation well was installed in completed boreholes HA22-1B, HA22-2, and HA22-8 through HA22-10 to provide information on the static groundwater levels at the site. The measured water levels during the period 28 June 2022 to 7 September 2022 ranged from approximately 0.1 ft above ground surface to 27.3 ft below ground surface (El. -0.9 to El. 62.1). In addition, water was encountered during drilling in borings HA22-1B, HA22-2, and HA22-8 through HA-22-10, at depths ranging from approximately 3.6 to 29.7 ft BGS (El. -3.3 to El. 59.1).

Groundwater flow directions in the overburden were evaluated based on water level measurements collected from the installed monitoring wells on 15 August 2022. Groundwater elevations ranged from El. 55.6 in HA22-8 to El. 10.2 in HA22-9. As anticipated, groundwater generally flows in an easterly direction towards the Middle River.

In general, water levels may fluctuate with season, precipitation and local soil/bedrock conditions. Therefore, water levels may vary from those summarized above, shown on the boring logs included in Appendix A and shown on the groundwater monitoring reports included in Appendix B.

Groundwater Analytical Testing Program

Groundwater samples were collected from select monitoring wells including HA22-8, an upgradient well located in the western portion of the site in the vicinity of the Machias Public Works facility, and monitoring wells HA22-2, HA22-9 and HA22-10 located at the landfill toe-of-slope (see Figure 2). Groundwater samples were collected for laboratory analysis for various parameters to assess potential

groundwater impacts to areas downgradient of the landfill. Groundwater samples were collected from the monitoring wells on 15 and 16 August 2022.

Prior to sample collection, the wells were purged using dedicated polyethylene tubing and a variablerate peristaltic pump. During the well purging, field measurements including pH, specific conductance, turbidity, dissolved oxygen, temperature, and oxidation-reduction potential (ORP) were monitored using a flow-through cell. Well evacuation continued until field parameters showed stable readings per the EPA low-flow sampling guidance. Copies of the low-flow sampling forms are included in Appendix D.

After the field parameters of the well discharge stabilized, groundwater samples were collected for laboratory analysis directly from the discharge of the pump tubing prior to the flow-through cell. The samples analyzed for dissolved metals were filtered in the field using disposable 0.45-micron filters. The samples were transferred directly to laboratory-supplied containers, labeled, and packaged in coolers with ice and chain of custody documentation for submission to the testing laboratory. The samples were submitted to Alpha Analytical Laboratories (Alpha) for analysis.

Based on discussions with MaineDOT and the Maine Department of Environmental Protection (MEDEP), groundwater samples from each of the four monitoring wells were sampled for the following parameters:

- Volatile Organic Compounds (VOCs) by Method 8260C
- Semi-Volatile Organic Compounds (SVOCs) by Method 8270D-SIM
- Pesticides by Method 8081B
- Herbicides by Method 8151A
- Dissolved Metals and Hardness
- Inorganics and Miscellaneous (Alkalinity, Nitrogen, Chemical Oxygen Demand, Total Organic Carbon, Bromide, Total Dissolved Solids, Nitrogen-Nitrates, Hexavalent Chromium, Chloride, Sulfate
- Perfluorinated Alkyl Acids (PFAS) by Alpha Method 134, LCMSMS-ID

The laboratory analytical results are summarized in Table III. Copies of the chain of custody documentation and the laboratory reports/analytical results are included in Appendix E.

ANALYTICAL RESULTS SUMMARY

Consistent with the MEDEP, the groundwater sample results collected in the vicinity of the landfill were compared to drinking water MEDEP Maximum Exposure Guidelines (MEGs) and EPA Maximum Contaminant Levels (MCLs) in addition to MEDEP Construction Worker Groundwater Remedial Action Guidelines (RAGs). For several parameters, including VOCs, SVOCs and herbicides, the laboratory detection limits exceeded the more stringent drinking water MEGs and MCLs for certain compounds as summarized below.

• **VOCs** – Various VOCs were detected in groundwater samples from each of the four wells. With the exception of naphthalene in HA22-8, all detected VOC concentrations were below the

applicable MEG, MCL and RAGs criteria. The detected concentration of naphthalene in the groundwater sample from HA22-8 was 49 ug/L, which exceeded both the MEG (10 ug/L) and the RAG (19ug/L).

- SVOCs No SVOCs were detected in HA22-2. Various SVOCs were detected in HA22-8, HA22-9 and HA22-10, however, none of the detected SVOCs exceeded the applicable MEGs, MCLs or RAGs criteria.
- Inorganic Compounds (Dissolved Metals) Metals including arsenic, chromium, hexavalent chromium, copper, lead and mercury were not detected above laboratory detection limits in any of the groundwater samples. Barium was detected in all four samples but only the detected concentration in HA22-10 (2.18 mg/L) exceeded the MEG (1 mg/L) and the MCL (2 mg/L). The detected concentration of cadmium in HA22-9 (0.005 mg/L) exceeded the MEG (0.001 mg/L). Iron was detected in all samples at concentrations ranging from 0.168 mg/L (HA22-2) to 148 mg/L (HA22-8). The detected concentration of iron in HA22-9 and HA22-10 exceeded the MEG (5 mg/L) and the detected concentration of iron in HA22-8 exceeded both the MEG and the RAG. Manganese concentrations ranged from 0.396 mg/L (HA22-10) to 39.6 mg/L (HA22-9) and concentrations in HA22-2, HA22-8 and HA22-10 exceeded the MEG (0.3 mg/L) and detected concentrations in HA22-9 exceeded both the MEG and RAG (37 mg/L). Sodium concentrations ranged from 412 mg/L (HA22-2) to 2,380 mg/L (HA22-9). Detected sodium concentrations in each of the four monitoring wells exceeded the applicable MEG (20 mg/L). Calcium was detected in each of the samples at concentrations ranging from 98.3 mg/L (HA22-10) to 478 mg/L (HA22-9). Hardness ranged from 335 mg/L (HA22-10) to 2,010 mg/L (HA22-9). Magnesium was detected in each of the samples at concentrations ranging 21.7 mg/L (HA22-10) to 198 mg/L (HA22-9). Potassium was detected at concentrations ranging from 9.42 mg/L (HA22-8) to 29.3 mg/L (HA22-9). There are no applicable criteria for calcium, hardness, magnesium or potassium.
- Dissolved Gases and Other Landfill Parameters Dissolved gas ethene was not detected in any of the samples. Ethane was detected in HA22-9 (0.51 ug/L) and HA22-10 (2.63 ug/L) and methane was detected at concentrations ranging from 32.6 ug/L (HA22-2) to 9,310 ug/L (HA22-8). There is no applicable criteria for ethene, ethane or methane. None of the detected concentrations of ammonia exceed the applicable MEG. Detected concentrations of both nitrate and nitrite were below the MEG, MCL and RAG criteria. Total dissolved solids (TDS) were detected at concentrations ranging from 1,700 mg/L (HA22-2) to 7,200 mg/L (HA22-9). Bicarbonate concentrations ranged from 64.2 mg/L (HA22-8) to 405 mg/L (HA22-9). Bicarbonate concentrations ranged from 64.2 mg/L (HA22-8) to 405 mg/L (HA22-2). Chemical oxygen demand (COD) ranged from 47 mg/L (HA22-2) to 370 mg/L (HA22-9). Chloride concentrations ranged from 3.31.mg/L (HA22-2) to 4.53 mg/L (HA22-10). There is no applicable criteria for MIDS mg/L (HA22-2) to 4.53 mg/L (HA22-10). There is no applicable criteria for MIDS.
- Herbicides and Pesticides No herbicides or pesticides were detected above the laboratory reporting limits.

• **PFAS** – Various PFAS compounds were detected in samples collected from each of the monitoring wells. Total PFAS ranged from 26.5 ng/L (HA22-8) to 181 ng/L (HA22-10). The detection of PFOS in HA22-10 (72 ng/L) exceeded the MEG (70 ng/L) and the detection of PFOA in both HA22-2 (84 ng/L) and HA22-10 (71.2 ng/L) exceed the MEG criteria (70 ng/L).

The Maine Center for Disease Control (CDC) has implemented an interim drinking water standard of 20 ng/L-parts per trillion (ppt; alone or in combination) for the six regulated PFAS contaminants that include: perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA) and perfluorodecanoic acid (PFDA). Total PFAS (6) results ranged from 26.5 ng/L (HA22-8) to 181 ng/L (HA22-10) with all samples exceeding the CDC 20 ng/L standard. Total PFAS (6) results for the remaining samples from downgradient wells HA22-2 and HA22-9 were detected at 173 ng/L and 123 ng/L, respectively. Based on the comparison of the Total PFAS (6) results from the upgradient well (HA22-8) to the three downgradient landfill wells (HA22-2, HA22-9 and HA22-10), it appears that the landfill debris is contributing to the increased concentrations of Total PFAS (6).

Based on the comparison to the drinking water MEGs and MCLs of the groundwater sample analytical results collected from monitoring wells located along the toe of the existing landfill slope, it does not appear that groundwater beneath the landfill would have a significant environmental impact to downgradient surface water quality associated with the Middle River east of the landfill.

Geotechnical Laboratory Testing Program

A geotechnical laboratory testing program was undertaken by Haley & Aldrich on representative soil samples collected during the subsurface exploration program to aid in soil classification and determination of engineering soil properties. All laboratory testing was performed in accordance with applicable American Society for Testing Materials (ASTM) testing procedures by GeoTesting Express, Inc. (GTX) of Acton, Massachusetts. Laboratory test results are provided in Appendix C and are shown on boring logs in Appendix A. A summary of laboratory test results is provided below.

Laboratory Test	ASTM Test Designation	Soil Unit	No. of Completed Tests	Range in Test Results ¹
Atterberg Limits	ASTM D 4318	Marine Deposit	3	38 < LL < 45 20 < PL < 23 18 < PI < 22

Notes:

¹ LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index

Geotechnical Evaluations

Geotechnical analyses were completed to evaluate global stability of the landfill under current and future water level conditions as described below. Engineering calculations that support the evaluations outlined in this section are provided for reference in Appendix F.

Static and pseudo-static seismic stability evaluations were conducted at two critical sections in the northeast and southeast edges of the existing landfill. These areas were identified as being "critical" from a geotechnical standpoint as they had the steepest slopes and were closest to the potential new, higher inundation area. A series of computer-assisted, two-dimensional global stability evaluations were performed using the computer program Slide2 Version 9 to evaluate the likelihood of global stability failures at the site.

A typical soil profile was developed based on the subsurface conditions encountered in the test borings at each cross section. The following physical and strength properties were used to complete the global stability evaluations:

Material	Unit Weight (pcf)	Friction Angle (degrees)	Undrained Shear Strength (psf)
Clay Cap	120	-	775
Landfill Waste and Cover	120	28	OR 550
Marine Deposit (reworked)	120	-	3,000
Marine Deposit (natural)	120	-	1,500
Fluvial	120	35	-
Glacial Till	130	38	-
Bedrock		infinite strength	

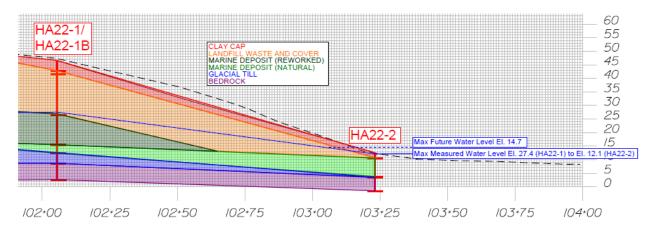
The landfill waste and cover material sampled in borings included both cohesive and cohesionless soils. As shown in the table below, modeling the landfill waste and cover layer stratum with cohesive properties yielded more conservative results at Section A-A, therefore the cohesive properties were used for the remainder of our evaluations.

Two groundwater conditions were modeled at each section. A model with current groundwater levels was run at each cross section based on conditions observed in observation wells during the recent subsurface exploration program. A model with groundwater level equal to high tide plus storm surge plus sea level rise water level of El. 14.7 was also run at each section. This higher elevation was provided to us by MaineDOT.

The calculated global stability factors of safety (FoS) values at sections A-A and B-B are summarized below.

Section	Landfill Waste and	Calculated FoS				
Section	Cover Properties	Static	Seismic			
SE Landfill Section A-A (Current Groundwater Level; El. 12.1)	cohesive	1.53	1.24			
SE Landfill Section A-A (Current Groundwater Level; El. 12.1)	cohesionless	2.04	1.66			
SE Landfill Section A-A (Future High Tide/Storm/SLR; El. 14.7)	cohesive	1.53	1.24			
NE Landfill Section B-B (Current Groundwater Level; El. 11.0)	cohesive	1.86	1.36			
NE Landfill Section B-B (Future High Tide/Storm/SLR; El. 14.7)	cohesive	1.86	1.36			

The factor of safety for pseudo-static seismic load cases was calculated using a horizontal acceleration coefficient, k_h , of 0.06g (i.e., one half of the acceleration coefficient, As). A value of As/2 was selected in accordance with AASHTO LRFD guidance in Section 11.6.5.2.2; the reduction from As is due to soil slope flexibility and the fact that the peak ground acceleration during an earthquake lasts only for a very short period of time.


The minimum required factor of safety as specified by both AASHTO LRFD and the MaineDOT BDG for embankments under static conditions which do not support structures is 1.3. The minimum required factor of safety for landfills under static conditions is typically 1.5. The minimum required factor of safety for embankments subjected to pseudo-static seismic loading is 1.1 (FHWA GEC No. 3).

The results indicate that the current and future conditions meet the required minimum acceptable factors of safety. Note that the increase in groundwater level did not impact the factors of safety. Although the water level at the toe of the landfill is expected to increase, the water level within the landfill where the critical failure surfaces are located is currently above El. 14.7, and is not expected to change significantly, as illustrated in the sketch below.

Per your request, we completed additional technical evaluations to determine the sensitivity of increased groundwater levels on the global stability results. The results of the evaluations indicate that elevated water levels outside the landfill (i.e., at and outboard of the toe of the landfill slope) would not negatively impact global stability factors of safety. Elevated water levels within the landfill (i.e., inboard of the landfill toe) were found to have a slight negative impact on the factor of safety, but the levels would need to be raised considerably (i.e., up to approx. El. 31, about 16 ft above maximum inundation flood level and 11 ft above measured stabilized water levels within the landfill) to cause an unsatisfactory factor of safety.

In our evaluations we assumed that no changes would be made to the landfill and adjacent ground surface. We also assumed that since the groundwater sample analytical results came back favorably, it would not be necessary to remove any of the waste (i.e., no excavation into the landfill). Note that based on the subsurface conditions encountered in the borings, the majority of the waste seems to be located above the future water level (El. 14.7). Based on interpolation between borings, there may be a small area of waste present below the future water level at the toe of slope at Section A-A (bottom interpolated at approximately El. 10.6), as shown in the sketch below.

Note that although increased water levels are not anticipated to cause global stability problems, they may cause surficial erosion/scour at the toe of the landfill. To protect against erosion/scour, we recommend placing a 3 ft-thick layer of plain riprap on the slopes from the existing toe of slope up to El. 15 (slightly above the maximum inundation water level). Refer to MaineDOT standard detail for "Stone Scour Protection, 610(02)" for additional information.

Conclusions

- Based on the comparison to the drinking water MEGs and MCLs of the groundwater sample analytical results collected from monitoring wells located along the toe of the existing landfill slope, it does not appear that groundwater beneath the landfill would have a significant environmental impact to downgradient surface water quality associated with the Middle River east of the landfill.
- The results of the geotechnical evaluations indicate that the current and future conditions meet the required minimum acceptable factors of safety. Evaluations indicate that the global stability factor of safety is not sensitive to changes in water level.

Limitations

This report is prepared for the exclusive use of MaineDOT relative to the subject project. There are no intended beneficiaries other than MaineDOT. Haley & Aldrich shall owe no duty whatsoever to any other person or entity on account of the Agreement or the report. Use of this report by any person or entity other than MaineDOT for any purpose whatsoever is expressly forbidden unless such other person or entity obtains written authorization from MaineDOT and Haley & Aldrich. Use of this report by such other person or entity without the written authorization of MaineDOT and Haley & Aldrich shall be at such other person's or entities sole risk and shall be without legal exposure or liability to Haley & Aldrich.

Use of this report by any person or entity, including by MaineDOT, for a purpose other than relative to the subject project is expressly prohibited unless such person or entity obtains written authorization from Haley & Aldrich indicating that the report is adequate for such other use. Use of this report by any other person or entity for such other purpose without written authorization by Haley & Aldrich shall be at such person's or entities sole risk and shall be without legal exposure or liability to Haley & Aldrich.

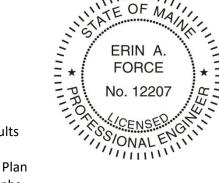
The information provided herein is based, in part, upon the data obtained from the referenced subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations then appear, it may be necessary to reevaluate the recommendations of this report.

Closure

We appreciate the opportunity to continue to provide MaineDOT services on this project. Please do not hesitate to call if you have any questions or comments.

Sincerely yours, HALEY & ALDRICH, INC.

Erin a. Force


Erin A. Force, P.E. Senior Geotechnical Engineer

Wayne A. Chadbourne, P.E. Lead Quality Control Engineer

Enclosures:

Danst A Clende

David A. Dearden Senior Environmental Geologist

11111

Table I – Subsurface Exploration Location Data Subsurface Exploration Subsurface Data Table II – Table III – Summary of Groundwater Analytical Results Figure 1 – **Project Locus** Figure 2 – Site and Subsurface Exploration Location Plan Appendix A – Test Boring Logs and Rock Core Photographs Appendix B – **Observation Well Installation and Groundwater Monitoring Reports** Appendix C – Geotechnical Laboratory Test Results Low Flow Field Sampling Forms Appendix D – Appendix E – **Groundwater Analytical Results** Appendix F – **Geotechnical Design Calculations**

G:\PROJECTS\130749 - 2017 MEDOT Env. Multi-PIN\009 - Machias Landfill\Deliverables\2022-1109-HAI-Machias Landfill Report-f1.docx

TABLES

TABLE ISubsurface Exploration Location DataMachias Landfill InvestigationMachias Dike BridgeMaineDOT WIN 16714.00Machias, Maine

Haley & Aldrich, Inc. File No.: 0130749-009

Test	Ground Surface	Coordinates ⁴					
Boring No. ^{1,5}	Elevation (ft) ^{2,3}	Northing	Easting				
HA22-1	46.7	324,629	2,402,438				
HA22-1B	46.7	324,629	2,402,438				
HA22-2	12.6	324,616	2,402,555				
HA22-5	26.4	324,780	2,402,399				
HA22-6	17.0	324,827	2,402,414				
HA22-7	52.5	324,632	2,402,378				
HA22-8	64.5	324,623	2,401,655				
HA22-9	17.5	324,821	2,402,411				
HA22-10	19.2	324,502	2,402,502				

Notes:

¹ Test boring locations are shown on Figure 2, Site and Subsurface Exploration Location Plan.

² Ground surface elevations at test boring locations were determined in the field by MaineDOT using GPS survey equipment.

³ Elevations are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

⁴ As-drilled coordinates of test borings were determined by MaineDOT using GPS survey equipment, are measured in feet and reference NAD83, Maine 2000 East Zone coordinate system.

⁵ Test boring HA22-3 and HA22-4 were laid out in the field as alternate boring locations, to be drilled depending on conditions encountered and available time. These two test borings were not drilled.

	Individual	Date
Prepared By:	EMS	10/4/2022
Checked By:	EAF	10/18/2022
Reviewed By:	WAC	10/20/2022

Subsurface Exploration Subsurface Data Machias Landfill Investigation Machias Dike Bridge

MaineDOT WIN 16714.00 Machias, Maine

Haley & Aldrich, Inc. File No.: 0130749-009

Test	Ground	Total	El. Bottom of		Fill^4			Clay Cap⁴		Landfill	Waste and	l Cover ⁴	Marine	Deposit (Re	worked) ⁴	Tidal	Marsh Dep	oosit ⁴	Marine	Deposit (N	atural) ^{4,5}		Fluvial ^{4,5}			$Glacial Till^4$,5	Bedro	ock ^{4,5}
Boring No. ^{1,8}	Surface Elevation (ft) ^{2,3}	Exploration Depth (ft)	Exploration	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness ⁶	Depth to Top	El. of Top ^{2,3}	Thickness ⁶	Depth to Top	El. of Top ^{2,3}	Thickness	Depth to Top	El. of Top ^{2,3}	Thickness ⁶	Depth to Top	El. of Top ^{2,3}
				(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
HA22-1 / HA22-1B	46.7	44.0	2.7	NE	NE	NE	0.0	46.7	4.0	4.0	42.7	16.3	20.3	26.4	11.2	NE	NE	NE	31.5	15.2	3.1	NE	NE	NE	34.6	12.1	4.1	38.7	8.0
HA22-2	12.6	15.3	-2.7	NE	NE	NE	0.0	12.6	2.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	2.0	10.6	7.0	NE	NE	NE	NE	NE	NE	9.0	3.6
HA22-5	26.4	37.5	-11.1	NE	NE	NE	0.0	26.4	2.0	2.0	24.4	5.7	NE	NE	NE	NE	NE	NE	7.7	18.7	16.0	23.7	2.7	6.8	30.5	-4.1	1.0	31.5	-5.1
HA22-6	17.0	6.0	11.0	NE	NE	NE	0.0	17.0	1.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	1.0	16.0	> 5.0								
HA22-7	52.5	35.6	16.9	NE	NE	NE	NE ⁹	NE	NE	0.0	52.5	22.0	22.0	30.5	13.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	35.0	17.5	> 0.6		
HA22-8 ⁷	64.5	17.6	46.9	0.0	64.5	4.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	4.0	60.5	> 13.6								
HA22-9 ⁷	17.5	21.4	-3.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.0	17.5	> 21.4								
HA22-10 ⁷	19.2	9.6	9.6	NE	NE	NE	NE	NE	NE	0.0	19.2	5.0	NE	NE	NE	5.0	14.2	> 4.6											

Notes:

¹ Test boring locations are shown on Figure 2, Site and Subsurface Exploration Location Plan.

² Ground surface elevations at test boring locations were determined in the field by MaineDOT using GPS survey equipment.

³ Elevations are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88).

 $^{\rm 4}~$ "NE" indicates stratum was not encountered in test boring.

 $^{\rm 5}\,$ "--" indicates test boring was not drilled deep enough to determine presence of stratum.

⁶ "> 32.8" indicates test boring was not drilled deep enough to determine entire stratum thickness. Actual total stratum thickness greater than value shown.

⁷ HA22-8 through HA22-10 were drilled to install wells for groundwater sampling. Minimal soil sample data was collected. Soil and strata descriptions determined from drilling cutting observations.

⁸ Test boring HA22-3 and HA22-4 were laid out in the field as alternate boring locations, to be drilled depending on conditions encountered

and available time. These two test borings were not drilled.

⁹ Clay cap not encountered in HA22-8 likely due to sampling frequency.

	Individual	Date
Prepared By:	EMS	10/4/2022
Checked By:	EAF	10/18/2022
Reviewed By:	WAC	10/20/2022

Summary of Groundwater Analytical Results

Machias Landfill Investigation

Machias Dike Bridge

MaineDOT WIN 16714.00

Machias, Maine

Leasting Mar			g-22		MECofor	Maximum	Constructio
Location Nan	e HA22-2(OW) L2244025-01	HA22-8(OW) L2244025-02	HA22-9(OW) L2244025-03	HA22-10(OW) L2244025-04	MEGs for Drinking Water	Contaminant	Worker Groundwat
Lab Sample		L2244025-06	L2244025-07	L2244025-08	Drinking Water	Level (MCLs)	RAGs
Volatile Organic Compounds (ug/L)							
1,1,1,2-Tetrachloroethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	10	NA	620
1,1,1-Trichloroethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	10000	200	29000
1,1,2,2-Tetrachloroethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	2	NA	90
1,1,2-Trichloroethane	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	6	5	12
1,1-Dichloroethane	1.6	ND (0.75)	ND (0.75)	1.3	60	NA	2200
1,1-Dichloroethene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	40	7	960
1,1-Dichloropropene	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	NA
1,2,3-Trichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	2900
1,2,3-Trichloropropane	ND (1) ^[A]	ND (1) ^[A]	ND (1) ^[A]	ND (1) ^[A]	0.01	NA	2.1
1,2,4-Trichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	70	70	140
1,2,4-Trimethylbenzene	ND (1)	ND (1)	ND (1)	ND (1)			140
-					NA	NA	
1,2-Dibromo-3-chloropropane (DBCP)	ND (1) [AB]	ND (1) [AB]	ND (1) [AB]	ND (1) [AB]	0.4	0.2	1.2
1,2-Dibromoethane (Ethylene Dibromide)	ND (1) ^[AB]	ND (1) ^[AB]	ND (1) ^[AB]	ND (1) ^[AB]	0.2	0.05	8.7
1,2-Dichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	200	600	12000
1,2-Dichloroethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	4	5	140
I,2-Dichloropropane	ND (1)	ND (1)	ND (1)	ND (1)	10	5	22
I,3,5-Trichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	40	NA	NA
I,3,5-Trimethylbenzene	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	1100
.,3-Dichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	1	NA	6200
l,3-Dichloropropane	ND (1)	ND (1)	ND (1)	ND (1)	100	NA	100000
L,4-Dichlorobenzene	ND (1)	ND (1)	ND (1)	ND (1)	70	75	400
2,2-Dichloropropane	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	NA
2-Butanone (Methyl Ethyl Ketone)	ND (1)	ND (5)	ND (1)	ND (1)	4000	NA	9000
2-Chlorotoluene	ND (5) ND (1)	ND (1)	ND (3) ND (1)	ND (5) ND (1)	100	NA	3300
2-Chlorotototene 2-Hexanone (Methyl Butyl Ketone)	ND (1) ND (5)	ND (1) ND (5)	ND (1) ND (5)	ND (1) ND (5)	NA	NA	240
2-Phenylbutane (sec-Butylbenzene)						NA	100000
	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA		
I-Chlorotoluene	ND (1)	ND (1)	ND (1)	ND (1)	500	NA	100000
I-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (5)	ND (5)	ND (5)	ND (5)	500	NA	5800
Acetone	ND (5)	ND (5)	ND (5)	ND (5)	6000	NA	100000
Acrylonitrile	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	0.6	NA	11
Benzene	ND (0.5)	ND (0.5)	0.55	0.56	4	5	350
Bromobenzene	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	1200
Bromodichloromethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	6	80	130
Bromoform	ND (1)	ND (1)	ND (1)	ND (1)	40	80	5500
Bromomethane (Methyl Bromide)	ND (1)	ND (1)	ND (1)	ND (1)	10	NA	490
Carbon disulfide	ND (1)	ND (1)	ND (1)	ND (1)	600	NA	3100
Carbon tetrachloride	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	5	5	700
Chlorobenzene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	100	100	2600
							600
Chlorobromomethane	ND (1)	ND (1)	ND (1)	ND (1)	100	NA	
Chloroethane	2.2	ND (1)	1.2	4	7	NA	16000
Chloroform (Trichloromethane)	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	70	80	170
Chloromethane (Methyl Chloride)	ND (2)	ND (2)	ND (2)	ND (2)	20	NA	11000
cis-1,2-Dichloroethene	ND (0.5)	ND (0.5)	0.64	ND (0.5)	10	70	3700
cis-1,3-Dichloropropene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA	NA	NA
Cymene (p-Isopropyltoluene)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	70	NA	NA
Dibromochloromethane	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	4	80	53000
Dibromomethane	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	280
Dichlorodifluoromethane (CFC-12)	ND (2)	ND (2)	ND (2)	ND (2)	1000	NA	5400
Diisopropyl ether (DIPE)	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	3700
Ethyl Ether	2	ND (1)	19	1.9	NA	NA	14000
thylbenzene	ND (0.5)	0.82	ND (0.5)	ND (0.5)	30	700	1400
, Hexachlorobutadiene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	4	NA	230
odomethane	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
sopropylbenzene (Cumene)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA	NA	500
Methyl Tert Butyl Ether (MTBE)	ND (0.5)	ND (0.5)	ND (1)	ND (0:5)	35	NA	13000
Methylene chloride (Dichloromethane)	ND (1)	ND (1)	ND (1)	ND (1)	40	5	4900
-		49 ^[AC]				_	
Naphthalene	ND (1)	-	ND (1)	ND (1)	10	NA	19
n-Butylbenzene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA	NA	100000
n-Propylbenzene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA	NA	4900
ityrene	ND (1)	ND (1)	ND (1)	ND (1)	100	100	15000
ert-Amyl Methyl Ether (TAME)	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	NA
ert-Butyl Alcohol (tert-Butanol)	ND (10)	ND (10)	15	ND (10)	NA	NA	NA
ert-Butyl Ethyl Ether (ETBE)	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	NA
ert-Butylbenzene	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	25000
etrachloroethene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	40	5	250
- etrahydrofuran	2.7	ND (2)	15	2.6	600	NA	16000
oluene	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	600	1000	24000
rans-1,2-Dichloroethene	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	100	100	3900
rans-1,3-Dichloropropene	ND (0.73)	ND (0.5)	ND (0.73)	ND (0.73)	NA	NA	NA
rans-1,4-Dichloro-2-butene	ND (2.5) ^[C]	ND (2.5) ^[C]	ND (2.5) ^[C]	ND (2.5) ^[C]	NA	NA	1
Trichloroethene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	4	5	12
richlorofluoromethane (CFC-11)	ND (1)	ND (1)	ND (1)	ND (1)	2000	NA	5900
/inyl acetate	ND (5)	ND (5)	ND (5)	ND (5)	7000	NA	180
/inyl chloride	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	0.2	2	0.22
(ylene (total)	ND (1)	ND (1)	ND (1)	ND (1)	1000	10000	2100

Summary of Groundwater Analytical Results

Machias Landfill Investigation

Machias Dike Bridge

MaineDOT WIN 16714.00

Machias, Maine

		Aug	g-22				Constructio
Location Name	HA22-2(OW)	HA22-8(OW)	HA22-9(OW)	HA22-10(OW)	MEGs for	Maximum Contaminant	Worker
	L2244025-01	L2244025-02	L2244025-03	L2244025-04	Drinking Water	Level (MCLs)	Groundwat
Lab Sample ID	L2244025-05	L2244025-06	L2244025-07	L2244025-08			RAGs
Semi-Volatile Organic Compounds (ug/L)							
1,2,4-Trichlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	70	70	140
1,2-Dichlorobenzene	ND (2)	ND (2)	ND (2)	ND (2)	200	600	12000
1,3-Dichlorobenzene	ND (2) ^[A]	ND (2) ^[A]	ND (2) ^[A]	ND (2) ^[A]	1	NA	6200
1,4-Dichlorobenzene	ND (2)	ND (2)	ND (2)	ND (2)	70	75	400
2,2'-oxybis(1-Chloropropane)	ND (2)	ND (2)	ND (2)	ND (2)	300	NA	NA
2,4,5-Trichlorophenol	ND (5)	ND (5)	ND (5)	ND (5)	700	NA	100000
2,4,6-Trichlorophenol	ND (5)	ND (5)	ND (5)	ND (5)	7	NA	690
2,4-Dichlorophenol	ND (5)	ND (5)	ND (5)	ND (5)	20	NA	27000
2,4-Dimethylphenol	ND (5)	ND (5)	ND (5)	ND (5)	100	NA	100000
2,4-Dinitrophenol	ND (20) ^[A]	ND (20) ^[A]	ND (20) ^[A]	ND (20) ^[A]	10	NA	100000
2,4-Dinitrotoluene	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	1	NA	15000
2,6-Dinitrotoluene	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	0.5	NA	2700
2-Chlorophenol	ND (2)	ND (2)	ND (2)	ND (2)	40	NA	29000
2-Methylphenol (o-Cresol)	ND (5)	ND (5)	ND (5)	ND (5)	40	NA	100000
2-Nitroaniline	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
2-Nitrophenol	ND (10)	ND (10)	ND (10)	ND (10)	NA	NA	NA
3&4-Methylphenol	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
3,3'-Dichlorobenzidine	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	ND (5) [A]	0.8	NA	2000
3-Nitroaniline	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
4,6-Dinitro-2-methylphenol	ND (10)	ND (10)	ND (10)	ND (10)	NA	NA	NA
4-Bromophenyl phenyl ether	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	NA
4-Chloro-3-methylphenol	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	100000
4-Chloroaniline	ND (5) ^[A]	ND (5) ^[A]	ND (5) ^[A]	ND (5) [A]	2	NA	2700
4-Chlorophenyl phenyl ether	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	NA
4-Nitroaniline	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	100000
1-Nitrophenol	ND (10)	ND (10)	ND (10)	ND (10)	60	NA	NA
Aniline	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	86000
Azobenzene Benzidine	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	NA NA
	ND (20)	ND (20)	ND (20)	ND (20)	NA	NA	
Benzoic acid Benzyl Alcohol	ND (50) ND (2)	ND (50)	ND (50)	ND (50) ND (2)	30000 NA	NA NA	100000 100000
Biphenyl	ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (2)	400	NA	29
bisic2-Chloroethoxy)methane	ND (2) ND (5)	ND (2) ND (5)	ND (2) ND (5)	ND (2) ND (5)	400 NA	NA	NA
bis(2-Chloroethyl)ether	ND (2) ^[A]	ND (2) ^[A]	ND (3)	ND (2) ^[A]			54
					0.3 30	NA	
bis(2-Ethylhexyl)phthalate Butyl benzylphthalate	ND (3)	ND (3)	5.6	ND (3)		6	100000
Carbazole	ND (5) ND (2)	ND (5)	ND (5)	ND (5) 2.1	200 NA	NA NA	100000 13000
Dibenzofuran	ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (2)	NA	NA	1200
Diethyl phthalate	ND (5)	ND (5)	ND (2)	ND (2)	6000	NA	100000
Dimethyl phthalate	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
Di-n-butylphthalate	ND (5)	ND (5)	ND (5)	ND (5)	700	NA	100000
Di-n-octyl phthalate	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	100000
Hexachlorocyclopentadiene	ND (20)	ND (20)	ND (20)	ND (20)	40	50	NA
sophorone	ND (5)	ND (5)	ND (5)	ND (5)	400	NA	100000
Nitrobenzene	ND (2) ^[A]	ND (2) ^[A]	ND (2) ^[A]	ND (2) ^[A]	1	NA	NA
N-Nitrosodimethylamine	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	NA
N-Nitrosodi-n-propylamine	ND (5)	ND (5)	ND (5)	ND (5)	NA	NA	NA
N-Nitrosodiphenylamine	ND (2)	ND (2)	ND (2)	ND (2)	NA	NA	100000
Phenol	ND (5)	ND (5)	ND (5)	ND (5)	2000	NA	100000
Pyridine	ND (3.5)	ND (3.5)	ND (3.5)	ND (3.5)	NA	NA	NA
Semi-Volatile Organic Compounds (SIM) (ug/L)							
1-Methylnaphthalene	ND (0.1)	3.1	ND (0.1)	ND (0.1)	NA	NA	8800
2-Chloronaphthalene	ND (0.1) ND (0.2)	3.1 ND (0.2)	ND (0.1) ND (0.2)	ND (0.1) ND (0.2)	NA	NA	8800
2-Methylnaphthalene	ND (0.2) ND (0.1)	1.6	0.12	ND (0.2) ND (0.1)	30	NA	1500
Acenaphthene	ND (0.1)	1.6	ND (0.1)	ND (0.1)	400	NA	74000
Acenaphthylene	ND (0.1) ND (0.1)	0.2	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	A00 NA	NA	74000
Anthracene	ND (0.1)	0.2	ND (0.1)	ND (0.1)	2000	NA	10000
Benzo(a)anthracene	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	0.5	NA	470
Benzo(a)pyrene	ND (0.1) ^[A]	ND (0.1) ^[A]	ND (0.1) ^[A]	ND (0.1) ^[A]	0.05	0.2	11000
Benzo(b)fluoranthene	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	0.5	NA	10000
Benzo(g,h,i)perylene	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	NA	NA	100000
Benzo(k)fluoranthene	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	5	NA	100000
Chrysene	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	50	NA	100000
Dibenz(a,h)anthracene	ND (0.1) ^[A]	ND (0.1) ^[A]	ND (0.1) ^[A]	ND (0.1) ^[A]	0.05	NA	26000
luoranthene	ND (0.1)	0.19	ND (0.1)	ND (0.1)	300	NA	100000
luorene	ND (0.1)	1.4	ND (0.1)	ND (0.1)	300	NA	100000
lexachlorobenzene	ND (0.1)	ND (0.8) ^[A]	ND (0.8) ^[A]	ND (0.1)	0.2	1	13
lexachlorobenzene	ND (0.8) ND (0.5)	ND (0.8) ND (0.5)	ND (0.8) ND (0.5)	ND (0.8)	0.2 Л	NA	230
lexachloroethane	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	5	NA	470
ndeno(1,2,3-cd)pyrene	ND (0.8) ND (0.1)	ND (0.8) ND (0.1)	ND (0.8) ND (0.1)	ND (0.8) ND (0.1)	0.5	NA	100000
Naphthalene	ND (0.1) ND (0.1)	5.9	0.29	ND (0.1) ND (0.1)	10	NA	100000
Pentachlorophenol	ND (0.1) ND (0.8)	5.9 ND (0.8)	0.29 ND (0.8)	ND (0.1) ND (0.8)	0.9	NA 1	19 140
Phenanthrene	ND (0.8) ND (0.1)	1.2	ND (0.8) ND (0.1)	ND (0.8) ND (0.1)	0.9 NA	NA	58000
		1.2	110 (0.1)		1 11/23		50000

Summary of Groundwater Analytical Results Machias Landfill Investigation

Machias Dike Bridge

MaineDOT WIN 16714.00

Machias, Maine

		Au	g-22				Construction
Location Name	HA22-2(OW)	HA22-8(OW)	HA22-9(OW)	HA22-10(OW)	MEGs for	Maximum	Worker
	L2244025-01	L2244025-02	L2244025-03	L2244025-04	Drinking Water	Contaminant Level (MCLs)	Groundwater
Lab Sample ID	L2244025-05	L2244025-06	L2244025-07	L2244025-08		Level (IVICLS)	RAGs
Inorganic Compounds (mg/L)							
Arsenic, Dissolved	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	0.01	0.01	5.8
Barium, Dissolved	0.161	0.314	0.739	2.18 ^[AB]	1	2	100
Cadmium, Dissolved	ND (0.005) ^[A]	ND (0.005) ^[A]	0.005 ^[A]	ND (0.005) ^[A]	0.001	0.005	0.94
Calcium, Dissolved	122	165	478	98.3	NA	NA	NA
Chromium, Dissolved	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.02	0.1	NA
Chromium VI (Hexavalent), Dissolved	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.02	NA	0.69
Copper, Dissolved	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.5	1.3	100
Hardness, Dissolved	624	680	2010	335	NA	NA	NA
Iron, Dissolved	0.168	148 ^[AC]	5.65 ^[A]	96.6 ^[A]	5	NA	100
Lead, Dissolved	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.01	0.015	NA
Magnesium, Dissolved	77.6	65	198	21.7	NA	NA	NA
Maganese, Dissolved	4.07 ^[A]	35.9 ^[A]	39.6 ^[AC]	0.396 ^[A]	0.3	NA	37
Mercury, Dissolved	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	NA	0.002	0.0021
Potassium, Dissolved	14.5	9.42	29.3	25.6	NA	NA	NA
	412 ^[A]	1870 ^[A]	2380 ^[A]	500 ^[A]	20		
Sodium, Dissolved	412	18/0**	2380	500**	20	NA	NA
Dissolved Gases (ug/L)							
Ethane	ND (0.5)	ND (0.5)	0.51	2.63	NA	NA	NA
Ethene	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	NA	NA	NA
Methane	32.6	9310	1030	4090	NA	NA	NA
Other							
Total Dissolved Solids (TDS) (mg/L)	1700	5500	7200	1800	NA	NA	NA
Ammonia, Total (mg/L)	0.803	5.89	0.15	8.95	30	NA	NA
Bicarbonate (as CaCO3), Total (mg/L)	405	64.2	380	318	NA	NA	NA
Bromide, Total (mg/L)	1.83	9.39	6.06	4.78	NA	NA	NA
Calcium Carbonate, Total (mg/L)	405	64.2	380	318	NA	NA	NA
Chemical Oxygen Demand (COD), Total (mg/L)	47	250	370	64	NA	NA	NA
Chloride, Total (mg/L)	838	3250	4190	859	NA	NA	NA
Nitrate (as N), Total (mg/L)	ND (0.05)	0.537	0.166	ND (0.05)	10	10	100
Nitrite (as N), Total (mg/L)	ND (0.05)	0.057	ND (0.05)	0.05	1	1	100
Sulfate, Total (mg/L)	26.8	ND (1)	24.7	1.07	NA	NA	NA
Total Organic Carbon (TOC) (mg/L)	3.31	4.14	3.62	4.53	NA	NA	NA
llowhisidos (
Herbicides (ug/L)					NIA	NIA	16000
2-(2-Methyl-4-chlorophenoxy)-propionic acid (MCPP)	ND (500) ND (2)	ND (500)	ND (500)	ND (500) ND (2)	NA 70	NA NA	16000 100000
2,4,5-T 2,4,5-TP (Silvex)	ND (2)	ND (2) ND (2)	ND (2)	ND (2)	60	50	8400
2,4-DB	ND (2) ND (10)	ND (2) ND (10)	ND (2) ND (10)	ND (2) ND (10)	NA	NA	NA
2,4-DB 2,4-Dichlorophenoxyacetic acid (2,4-D)	ND (10)	ND (10)	ND (10)	ND (10)	70	70	NA
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	ND (63.2) ^[A]	ND (63.2) ^[A]	ND (63.2) ^[A]	ND (63.2) ^[A]	4		680
2-sec-butyl-4,6-dinitrophenol (Dinoseb)	ND (83.2) ND (5)	ND (83.2) ND (5)	ND (63.2) ND (5)	ND (63.2) ND (5)	7	NA 7	1200
Dalapon	ND (3)	ND (3)	ND (3) ND (20)	ND (3)	200	200	1200
Dicamba	ND (20) ND (1)	ND (20) ND (1)		ND (20) ND (1)	200	NA	NA
Dichloroprop	ND (1) ND (10)	ND (1) ND (10)	ND (1) ND (10)	ND (1) ND (10)	NA	NA	NA
						INA .	NA NA
Pesticides (ug/L)							
4,4'-DDD	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	1	NA	1.7
4,4'-DDE	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	1	NA	140
4,4'-DDT	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	1	NA	19000
Aldrin	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.02	NA	2.9
alpha-BHC	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.06	NA	80
alpha-Chlordane	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	NA	NA	NA
beta-BHC	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.2	NA	280
Chlordane	ND (0.143)	ND (0.143)	ND (0.143)	ND (0.143)	NA	NA	NA
delta-BHC	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	NA	NA	NA
Dieldrin	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.003)	0.02	NA	13
Endosulfan I	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	NA	NA	NA
Endosulfan II	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	NA	NA	NA
Endosulfan sulfate	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	NA	NA	NA
Endrin	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	2	2	87
Endrin aldehyde	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	NA	NA	NA
Endrin ketone	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	NA	NA	NA
gamma-BHC (Lindane)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.03	0.2	7.2
gamma-Chlordane	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	NA	NA	NA
Heptachlor	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.07	0.4	3.9
Heptachlor epoxide	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.04	0.2	5.5
Methoxychlor	ND (0.143)	ND (0.143)	ND (0.143)	ND (0.143)	40	40	1400
Toxaphene	ND (0.143)	ND (0.143)	ND (0.143)	ND (0.143)	0.3	3	NA

Summary of Groundwater Analytical Results

Machias Landfill Investigation

Machias Dike Bridge

MaineDOT WIN 16714.00 Machias, Maine

		Aug	g-22			Maximum	Construction
Location Name	HA22-2(OW)	HA22-8(OW)	HA22-9(OW)	HA22-10(OW)	MEGs for	Contaminant	Worker
	L2244025-01	L2244025-02	L2244025-03	L2244025-04	Drinking Water	Level (MCLs)	Groundwater
Lab Sample ID	L2244025-05	L2244025-06	L2244025-07	L2244025-08		Level (IVICES)	RAGs
PFAS (ng/L)							
4,8-Dioxa-3H-Perfluorononanoic Acid (ADONA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	3.29	3.46	5.39	5.49	NA	NA	NA
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND (1.83)	ND (1.87)	ND (1.86)	4.75	NA	NA	NA
N-Methyl Perfluorooctanesulfonamidoacetic Acid (MeFOSAA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluoro-2-propoxypropanoic acid (PFPrOPrA)(GenX) (HFPO-DA)	ND (45.7)	ND (46.7)	ND (46.4)	ND (46.1)	NA	NA	NA
Perfluorobutanesulfonic acid (PFBS)	2.67	ND (1.87)	3.24	2.01	NA	NA	1.00E+08
Perfluorobutanoic acid (PFBA)	9.19	ND (1.87)	16.1	6.28	NA	NA	NA
Perfluorodecanesulfonic acid (PFDS)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluorodecanoic acid (PFDA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluorododecanoic acid (PFDoDA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluoroheptanesulfonic acid (PFHpS)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluoroheptanoic acid (PFHpA)	22.5 ^[D]	ND (1.87)	26.2 ^[D]	14.5	NA	NA	NA
Perfluorohexadecanoic acid (PFHxDA)	ND (3.66)	ND (3.74)	ND (3.71)	ND (3.69)	NA	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	26.8 ^[D]	16.3	28.9 ^[D]	19.1	NA	NA	NA
Perfluorohexanoic acid (PFHxA)	23.1	ND (1.87)	33	13.9	NA	NA	NA
Perfluorononane sulfonic acid (PFNS)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluorononanoic acid (PFNA)	3.57	ND (1.87)	ND (1.86)	4.6	NA	NA	NA
Perfluorooctadecanoic acid (PFOcDA)	ND (3.66)	ND (3.74)	ND (3.71)	ND (3.69)	NA	NA	NA
Perfluorooctane sulfonamide (PFOSA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluorooctanesulfonic acid (PFOS)	35.7 ^[D]	8.02	8.27	72 ^[AD]	70	NA	750000
Perfluorooctanoic acid (PFOA)	84 ^[AD]	2.18	59.9 ^[D]	71.2 ^[AD]	70	NA	750000
Perfluoropentanesulfonic acid (PFPeS)	2.17	ND (1.87)	2.24	ND (1.84)	NA	NA	NA
Perfluoropentanoic acid (PFPeA)	13.3	ND (1.87)	16.7	8.83	NA	NA	NA
Perfluorotetradecanoic acid (PFTeDA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluorotridecanoic acid (PFTrDA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Perfluoroundecanoic acid (PFUnDA)	ND (1.83)	ND (1.87)	ND (1.86)	ND (1.84)	NA	NA	NA
Total PFAS (6): PFOA, PFOS, PFNA, PFHxS, PFHpA, PFDA	173 ^[D]	26.5 ^[D]	123 ^[D]	181 ^[D]	NA	NA	NA

ABBREVIATIONS AND NOTES:

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the method detection limit

MEGs: Maximum Exposure Guidelines

RAGs: Maine Remedial Action Guidelines

ug/L: microgram per liter

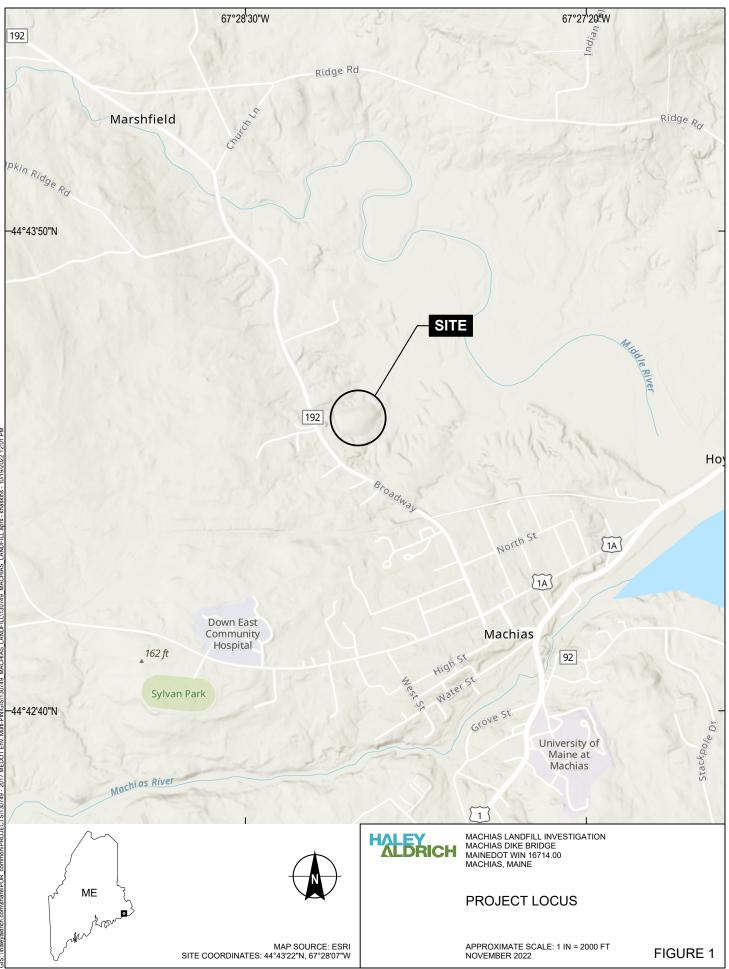
-: Not Analyzed

- Volatile Organic analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.

- Highlighted values indicate an exceedances of at least one of the listed screening levels.

A - Maximum Exposure Guidelines for Drinking Water, 2016

B - Maximum Contaminant Level (MCLs)

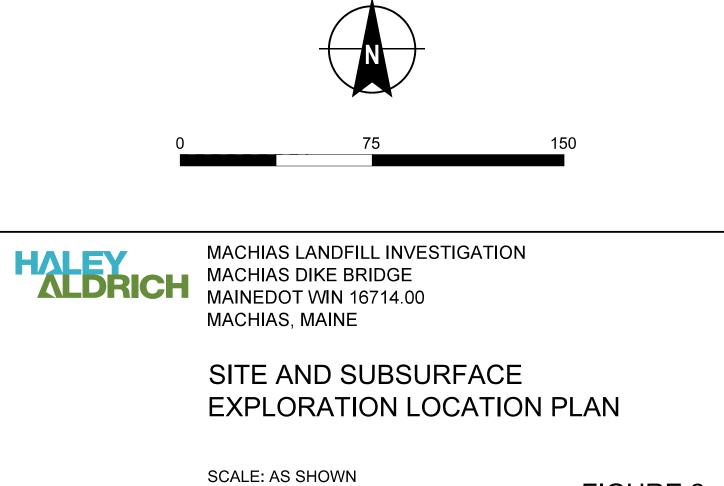

C - Construction Worker Groundwater ME RAGs, May 2021

D - Maine Center for Disease Control interim drinking water standard of 20 ng/L (alone or in combination) for the six regulated PFAS contaminants that include PFOA, PFAS, PFHxS, PFNA, PFHpA, and PFDA.

	Individual	Date
Prepared By:	КJС	9/8/2022
Checked By:	DAD	9/8/2022
Reviewed By:	EAF	10/20/2022

Haley & Aldrich, Inc. \\haleyaldrich.com\share\por_common\PROJECTS\130749 - 2017 MEDOT Env. Multi-PIN\009 - Machias Landfill\Database\Output\2022-1107-HAI-GW Summary-F3.xlsx

FIGURES



aved by: KPOSTOLOWSKI Printed: ----:\POR_COMMON\PROJECTS\130749 - 2017 MEDOT ENV. MULTI-PIN\CAD\130749_001_BORING PLAN.DGN

LEGEND HA22-1 46.7	DESIGNATION, AS-DRILLED LOCATION AND GROUND SURFACE ELEVATION OF BORING DRILLED BY NEW ENGLAND BORING CONTRACTORS OF HERMON, MAINE (HA22-1 THROUGH HA22-7) AND S.W. COLE ENGINEERING OF GRAY, MAINE (HA22-8 THROUGH HA22-10) UNDER THE DIRECTION OF HALEY & ALDRICH IN JUNE AND JULY 2022
(OW)	DESIGNATES WELL INSTALLED IN COMPLETED BOREHOLE
	EXISTING GROUND SURFACE ELEVATION CONTOUR BASED ON LIDAR SURVEY
	EXISTING GROUND SURFACE ELEVATION CONTOUR BASED ON SURVEY PERFORMED BY MAINE DEPARTMENT OF TRANSPORTATION (5-FT INTERVAL)
	EXISTING GROUND SURFACE ELEVATION CONTOUR BASED ON SURVEY PERFORMED BY MAINE DEPARTMENT OF TRANSPORTATION (1-FT. INTERVAL)
	APPROXIMATE LOCATION OF EDGE OF LANDFILL WASTE/ COVER BASED ON TEST BORING INFORMATION

NOTES:

- 1. EXISTING SITE CONDITIONS AND TOPOGRAPHY ARE TAKEN FROM ELECTRONIC MICROSTATION FILES PROVIDED BY STANTEC CONSULTING SERVICES INC. ON 12 SEPTEMBER 2022.
- 2. THE PLAN LOCATIONS OF AND GROUND SURFACE ELEVATIONS AT TEST BORINGS SHOWN WERE DETERMINED UPON THE COMPLETION OF DRILLING BY THE MAINE DEPARTMENT OF TRANSPORTATION USING GPS SURVEY EQUIPMENT.
- 3. ELEVATIONS ARE IN FEET AND REFERENCE THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).
- 4. HORIZONTALL DATUM: MAINE 2000 ÉAST NAD 83 (FT).
- 5. TEST BORINGS WERE MONITORED IN THE FIELD BY A HALEY & ALDRICH, INC. GEOLOGIST.
- 6. REFER TO APPENDIX A FOR TEST BORING LOGS AND ROCK CORE PHOTOGRAPHS AND APPENDIX B FOR OBSERVATION WELL INSTALLATION AND GROUNDWATER MONITORING REPORTS.
- 7. BACKGROUND IMAGE TAKEN FROM GOOGLE EARTH PRO DATED 28 SEPTEMBER 2019.
- 8. TEST BORING HA22-3 AND HA22-4 WERE LAID OUT IN THE FIELD AS ALTERNATE BORING LOCATIONS, TO BE DRILLED DEPENDING ON CONDITIONS ENCOUNTERED AND AVAILABLE TIME. THESE TWO BORINGS WERE NOT DRILLED.

NOVEMBER 2022

FIGURE 2

APPENDIX A Test Boring Logs and Rock Core Photographs

Ι	Maine Department of Transportation						Project	Mach	ias Lan	dfill	Boring No.: HA	22-1
		-	Soil/Rock Exp	-			Locatio			e Bridge Jaine	W/INI. 1 <i>C</i>	714.00
		<u> </u>	US CUSTOM	ARY UNITS			Localio	11. 101a	cillas, iv	lanc	WIN: <u>16</u>	714.00
Drill	er:		New England	Boring Co., Inc.	Ele	evation	(ft.)	46.	7		Auger ID/OD:	
Оре	rator:		T. Schaeffer		Da	tum:		NA	VD 88		Sampler: Split-Spoon	3.0 in. ID
Log	ged By:		H. Hollauer		Rig	д Туре		B53	3 Mobile	e Drill	Hammer Wt./Fall: SS-140#/30	;HW-300#/16
Date	Start/F	inish:	6-29-2022/6-	29-2022	_	-	lethod:	SSA	A/HW D	Drive	Core Barrel: NQ-2.0 in. 1	D
Bori	ng Loca	tion:	N324629; E2	402438	Ca	sing ID	0/OD:	HW	7-4.0 in.	ID/NW-3.0 in. ID	Water Level*: 29.7 ft	
Ham Defini		iciency F	actor: 0.863	R = Rock		mmer		Auton			Rope & Cathead \Box rength (psf) $T_v = Pocket Torvane Shear St$	rongth (psf)
D = Split Spoon Sample SSA = Solid Stem Auger Su(lab) = Lab Vane Undrained Shear Strength (psf) MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) U = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw Field SPT N-value MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140lb. Hammer Hindmer Efficiency W = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Rods or Casing N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency										WC = Water Content, perce LL = Liquid Limit PL = Plastic Limit ration Value PI = Plasticity Index ciency G = Grain Size Analysis		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr	iption and Remarks	Testing Results/ AASHTO and Unified Class.
0								ШE	////	Brown, slightly moist, very s	stiff, Silty CLAY, trace coarse grav	el
	1D 2D	24/12	0.0 - 2.0	3/8/8/7 3/7/2/29	16 9	23 13				-CLAY CAP-(CL) PID Readings=Not Detected MgM=CH4=OK Similar to above, except stiff -CLAY CAP-(CL) PID Readings=Not Detected	f, cobble pieces	
								42.7		MgM=CH4=2.6 Cobble layer from 4 to 5 ft		.0-
- 5 -								41.7			rd, Silty CLAY, trace fine to coarse	.0-
	3D	24/16	5.0 - 7.0	40/57/8/10	65	93		40.7		Bottom of Exploration at 6.0 feet below ground surface.		
- 10 -											imately 3 ft to avoid obstruction at e Test Boring Report HA22-1B for boring.	
- 15 -												
- 20 -												
25												
25 Remarks: Stratification lines represent approximate boundaries between soil types; transitions may be gradual. Page 1 of 1												
than	those pre	sent at the t	ime measuremer	nes and under conditions sta nts were made.				ay			Boring No.: HA2	2-1

	Maine Department of Transportation					n	Project			·····	Boring No.: <u>HA22-1B(OW)</u>		
	Soil/Rock Exploration Log US CUSTOMARY UNITS							Mach on: Ma		aine WIN: 167	14.00		
Drille	er:		New England	Boring Co., Inc.	EI	evatior	n (ft.)	46.'	7	Auger ID/OD:			
Oper	ator:		T. Schaeffer		Da	atum:		NA	VD 88	Sampler: Split-Spoon 3	.0 in. ID		
.ogged By: H. Hollauer Rig Typ				g Type	:	B53	3 Mobil	Drill Hammer Wt./Fall: SS-140#/30;H	W-300#/16				
Date	Start/Fi	inish:	6-29-2022/6-3	30-2022	Di	rilling N	lethod:	SSA	A/HW/N	W Drive Core Barrel: NQ-2.0 in. ID			
Boriı	ng Loca	tion:	N324629; E24	402438	Ca	asing IC	D/OD:	HW	/-4.0 in.	ID/NW-3.0 in. ID Water Level*: 29.7 ft			
lam	mer Effi	iciency F	actor: 0.863		Ha	ammer	Туре:	Autom	natic 🛛	Hydraulic □ Rope & Cathead □			
MD = I U = Th MU = I V = Fi€	lit Spoon 3 Jnsuccess in Wall Tu Jnsuccess Id Vane S	sful Split Sp ibe Sample sful Thin Wa Shear Test,	oon Sample Atter all Tube Sample A PP = Pocket Pe ine Shear Test At	SSA = S mpt HSA = F RC = Rc Attempt WOH = 1 enetrometer WOR/C tempt WO1P =	k Core Sa Solid Stem Hollow Ste Diler Cone Weight of Weight of Weight of	Auger m Auger 140lb. Ha of Rods o	immer I r Casing I	S _{u(lab)} = q _p = Unc N-uncorre Hammer N ₆₀ = SF	Lab Van onfined C ected = R Efficienc PT N-unc	ed Field Vane Undrained Shear Strength (psf) T _v = Pocket Torvane Shear Strength a Undrained Shear Strength (psf) WC = Water Content, percent ompressive Strength (ksf) LL = Liquid Limit aw Field SPT N-value PL = Plastic Limit rected For Rig Specific Annual Calibration Value PL = Plasticity Index rected for Hammer Efficiency G = Grain Size Analysis ficiency Factor/60%)*N-uncorrected C = Consolidation Test			
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Clas		
	Š	Pe	s t	ع بې بې رې به	ź	z	ΰă	Ξŧ	Ū				
								-		Driller moved rig approximately 3 ft to avoid obstruction at approximately 6 ft depth at boring location HA22-1. See Test Boring Report HA22-1 for soil description for 0 to 6 ft depth.			
	4D	24/12	6.0 - 8.0	4/3/4/5	7	10		40.7		6.0 Dark grey, slightly moist, stiff, Silty CLAY, trace sand, some cobble pieces -LANDFILL WASTE AND COVER-(CL)			
	5D	24/12	8.0 - 10.0	4/3/4/5	7	10				PID Readings=Not Detected MgM=OK Similar to 4D, except trace gravel, approximately 0.5-in. thick			
10								- 36.7	,	layer of black ash, approximately 30% waste of newspaper, wood plastic bags, glass, metal \-LANDFILL WASTE AND COVER-(CL)	,		
-	6D	24/3	10.0 - 12.0	19/34/60/35	94	135				Grey, moist, very dense, granitic piece of COBBLE, trace metal, rag, poor recovery, waste approximately 20% -LANDFILL WASTE AND COVER-(CL)			
	7D	24/12	12.0 - 14.0	11/19/22/14	41	59		34.7		Grey, wet, very dense, fine to coarse SAND, little silt, trace gravel, poorly-graded, approximately 40% waste of newspaper,			
										plastic bags, approximately 3-in. black ash layer beneath waste			
	8D	24/4	14.0 - 16.0	8/4/2/2	6	9		32.7		$^-LANDFILL$ WASTE AND COVER-(SP)			
15 -								-		Brown, wet, loose, fine to coarse SAND, trace silt, well-graded, washed soil			
-	9D	24/3	16.0 - 18.0	2/3/6/8	9	13		-		-LANDFILL WASTE AND COVER-(SW) Similar to 8D, except medium dense and trace glass, plastic -LANDFILL WASTE AND COVER-(SW)			
-	10D	24/8	18.0 - 20.0	5/3/3/2	6	9		28.4		Dark brown, wet, loose, fine to coarse SAND, trace silt, well- graded, trace glass (approximately 10%) -LANDFILL WASTE AND COVER-(SW-SM)			
20								26.7		\square	1		
	11D	24/14	20.0 - 22.0	20/42/42/46	84	121		26.4		CANDFILL WASTE AND COVER-(SM)			
	12D	24/20	22.0 - 24.0	9/20/22/24	42	60				20.3 Brown and grey mottled, slightly moist, hard, Silty CLAY -MARINE DEPOSIT-(REWORKED) (CL) Similar to 11D			
	13D	24/22	24.0 - 26.0	9/10/14/14	24	35		-		-MARINE DEPOSIT-(REWORKED) (CL) Brown and grey mottled, slightly moist, hard, Silty CLAY -MARINE DEPOSIT-(REWORKED) (CL)			

Ι	Maine Department of Transportation							: Mach	ias Lan	dfill	Boring No.:	HA22-	1B(OW)	
			Soil/Rock Exp US CUSTOM				Locatio			e Bridge Aaine	WIN:	16714.00		
Drill	er:		New England	Boring Co., Inc.	EI	evatior	l 1 (ft.)	46.	7		Auger ID/OD:			
Ope	ator:		T. Schaeffer	8		tum:	()	NA	VD 88		Sampler:	Split-Spoon	3.0 in. ID	
Logg	ged By:		H. Hollauer		Ri	g Type	:	B53	3 Mobil	e Drill	Hammer Wt./Fall:		HW-300#/16	
	Start/Fi	inish:	6-29-2022/6-3	30-2022		Drilling Method: SSA/HW/NW Drive					Core Barrel:	NQ-2.0 in. I	D	
Bori	ng Loca	tion:	N324629; E24	402438	Ca	sing II	D/OD:	HW	/-4.0 in.	. ID/NW-3.0 in. ID	Water Level*:	29.7 ft		
Ham	mer Effi	iciency F	actor: 0.863		Ha	mmer	Type:	Autom	natic 🖂	Hydraulic 🗆	Rope & Cathead □			
MD = U = TI MU = V = Fi	olit Spoon Unsuccess hin Wall Tu Unsuccess eld Vane S	sful Split Sp ibe Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test At	SSA = So mpt HSA = Ho RC = Rol Attempt WOH = V enetrometer WOR/C =	ollow Ster ler Cone Veight of Weight of Weight of	Auger n Auger 140 lb. Ha	r Casing	S _{u(I} q _p = N-u Han N ₆₀	ab) = Lal Unconfi ncorrecte nmer Effi = SPT N	emolded Field Vane Undrained She b Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual I-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-uncor	psf) WC = LL = L PL = F I Calibration Value PI = P er Efficiency G = G	cket Torvane She Water Content, p iquid Limit Pastic Limit lasticity Index rain Size Analysis phosolidation Test		
		÷	1 1						1				Laboratory	
5 Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	ription and Remarks		Testing Results/ AASHTO and Unified Class.	
23									V///					
	14D	24/24	26.0 - 28.0	13/15/16/20	31	45		1	V///	Similar to 13D				
								-	V///	-MARINE DEPOSIT-(REW	(CL)			
									V///	0' 'I i 12D				
	15D	24/24	28.0 - 30.0	6/8/12/14	20	29		18.2		Similar to 13D, except very -MARINE DEPOSIT-(REW				
								1	V///	Grey-brown,slightly moist,	very stiff. Silty CLAY			
- 30 -								-	V///	-MARINE DEPOSIT-(REW	VORKED) (CL)			
	16D	24/24	30.0 - 32.0	5/9/10/12	19	27			V///	Grey-brown, slightly moist, -MARINE DEPOSIT-(REW				
								15.2				31.5		
									V///	Grey, slightly moist, very st structure	iff, Silty CLAY, layered	d depositional		
									V///	-MARINE DEPOSIT-(CL)				
									V///					
								12.1						
- 35 -								12.1		Grey-brown, slightly moist,				
	17D	24/20	35.0 - 37.0	20/20/27/29	47	68				trace silt, little gravel, loose -GLACIAL TILL-(SP)	ly bonded			
								1						
							- DG	8.7	•	COBBLES				
							RC	8.0) International (1				
40	R1	60/51	39.0 - 44.0	RQD = 85%			NQ Core			Top of Bedrock El. 8.0 Note: Advanced roller bit to	39.0 ft and begin NQ r	ock core.		
- 40 -							Core	1		R1: Dark grey, porphyritic I clasts, very hard, fresh, mas	BASALT with occasion	al 1-in. thick		
									98	Rock Quality=Good	sive, solid core stelli			
										-DENNYS FORMATION- Recovery=85%				
									1990	R1 Core Times (min:sec): 3				
					1			1	alls"	41.0-42.0' (2:30); 42.0-43.0'	(2:00); 43.0-44.0' (2:30))		
							$+ \vee$	2.7	01/15	Detter fr 1 it	4 4 4 0 8	44.0		
- 45 -								1	1	Bottom of Exploration a	t 44.0 feet below groun	ia surface.		
									1	Note: Installed Observation HA22-1(OW) for details.	Well. See Observation	Well Report		
								1		1.122 1(0) for details.				
								ł	1					
								1	1					
									1					
								1	1					
50 Rem	arks:								<u> </u>					
				ndaries between soil type		-	-				Page 2 of 2			
* Wate than	er level rea those pres	idings have sent at the t	been made at tim ime measuremen	nes and under conditions s ts were made.	tated. Gr	oundwat	er fluctuatio	ons may	occur du	e to conditions other	Boring No	b.: HA22	-1B(OW)	

Ι	Main	e Depa	of Transport	tatio						Boring No.:	HA22-2	2(OW)	
		-	<u>Soil/Rock Exp</u> JS CUSTOM				Locatio			e Bridge ⁄Iaine	WIN:	1671	4.00
Drill	er:			Boring Co., Inc.	Ele	evation	(ft.)	12.6	<u>.</u>		Auger ID/OD:		
	rator:		T. Schaeffer	Dornig Col, Inc.	_	Datum: NAVD 88					Sampler:	Split-Spoon 3.	0 in. ID
•	ged By:		H. Hollauer		-	g Type			B Mobil	e Drill	Hammer Wt./Fall:		
						lethod:		A/HW E		Core Barrel:	NQ-2.0 in. ID		
)/OD:			. ID/NW-3.0 in. ID	Water Level*:	3.6 ft	
	-		actor: 0.863			mmer		Autom			Rope & Cathead □		
D = S MD = U = T MU = V = Fi	Definitions: R = Rock Core Sample Su = Peak/Remolded Field Vane Undrained Shear Strength (psf) T _v = Pocket Torvane Shear Strength (psf) D = Split Spoon Sample SSA = Solid Stem Auger Su(lab) = Lab Vane Undrained Shear Strength (psf) WC = Water Content, percent MD = Unsuccessful Split Spoon Sample HSA = Hollow Stem Auger Su(lab) = Lab Vane Undrained Shear Strength (psf) WC = Water Content, percent MU = Unsuccessful Thin Wall Tube Sample Attempt RC = Roller Cone N-uncorrected = Raw Field SPT N-value PL = Plastic Limit WO = Unsuccessful Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Adds or Casing N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency G = Grain Size Analysis WV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One Person N ₆₀ = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test												_{gth (psf)} Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/18	0.0 - 2.0	2/2/5/8	7	10		10.6		Brown grading to grey-brow reworked -CLAY CAP-(CL) PID Readings=1.7 ppm \MgM=OK	vn, slightly moist, stiff,	Silty CLAY,	
	2D	24/20	2.0 - 4.0	2/7/8/11	15	22				Grey-brown, slightly moist, depositional structure -MARINE DEPOSIT-(CL)	very stiff, Silty CLAY	, layered	WC=30
- 5 -	3D	24/20	4.0 - 6.0	4/7/9/10	16	23				PID Reading=1.0 ppm MgM=OK Grey-brown mottled, slightl CLAY, fissures of wet grey -MARINE DEPOSIT-(CL)		stiff, Silty	LL=45 PL=23 PI=22 CL
	4D	24/22	6.0 - 8.0	4/6/9/12	15	22		3.6		PID Readings=0.7 ppm MgM=OK Grey-brown, slightly moist, depositional structure, occas -MARINE DEPOSIT-(CL) PID Readings=0.2 ppm			
- 10 -	R1	20/18	10.3 - 12.0	RQD = 70%			RC NQ			MgM=OK Note: Advanced NW 3-in. c	casing to 9.0 ft.	9.0	
							Core			Top of Bedrock El. 3.6 Note: Advanced roller bit to R1: Dark grey, porphyritic l slightly weathered. Primary	BASALT, very hard to joints dipping horizont	hard, fresh to ally, spaced	
	R2	39.6/23	12.0 - 15.3	RQD = 43%						moderately close, open. Joi with iron staining. Joint infi fine to coarse silty sand. See angles, smooth, planar.	lled with approximately	y 0.5 in. grey	
- 15 -								-2.7		Rock Quality=Fair -DENNYS FORMATION- Recovery=90% R1 Core Times (min:sec): 1 R2: Similar to R1.	0.3-11.0' (5:00); 11.0-1	2.0' (4:00)	
										Rock Quality=Poor -DENNYS FORMATION- Recovery=58% R2 Core Times (min:sec): 1	2.0-13.0' (4:00); 13.0-1	4.0' (3:00);	
- 20 -										Bottom of Exploration a	0		
										Note: Installed Observation HA22-2(OW) for details.	Well. See Observation	Well Report	
25 <u>Rem</u>	arks:												
				undaries between soil types nes and under conditions st nts were made.		-	-	ons may o	occur due	e to conditions other	Page 1 of 1 Boring N	о.: НА??.	-2(OW)
unan	anose pre	sent at trie t	me measuremer	no were made.								•••••••••••••••••••••••••••••••••••••••	2(011)

]	Maine Department of Transporta						Project	: Mach	ias Lan	dfill	Boring No.:	HA2	2-5		
			Soil/Rock Exp	ploration Log			Locatio			e Bridge Jaine	WIN:	1671	4.00		
			US CUSTOM	ARY UNITS			Looullo		cinus, iv	lune	WIN:	10/1	4.00		
Drill	er:		New England	Boring Co., Inc.	Elev	vation	n (ft.)	26.4	4		Auger ID/OD:				
Ope	rator:		T. Schaeffer		_	um:			VD 88		Sampler:	Split-Spoon 1.			
	ged By:		H. Hollauer			Туре			8 Mobile		Hammer Wt./Fall:				
	e Start/F		6-28-2022/6-2		_		lethod:		A/HW D		Core Barrel:	NQ-2.0 in. ID			
	ng Loca		N324780; E2	402399	_	ing ID				ID/NW-3.0 in. ID	Water Level*:				
Defin		ICIENCY F	actor: 0.863	R = Rock	Core Sam				k/Remolo	led Field Vane Undrained Shear St		Forvane Shear Strer	igth (psf)		
$ \begin{array}{lll} \text{MD} = \text{Unsuccessful Split Spoon Sample Attempt} & \text{HSA} = \text{Hollow Stem Auger} & q_p \\ \hline & \text{U} = \text{Thin Wall Tube Sample} & \text{RC} = \text{Roller Cone} & \text{N-uncorrected} \\ \text{MU} = \text{Unsuccessful Thin Wall Tube Sample Attempt} & \text{WOH} = \text{Weight of 140lb. Hammer} & \text{Hammer Efficien} \\ \text{V} = \text{Field Vane Shear Test,} & \text{PP} = \text{Pocket Penetrometer} & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{N}_{60} = \text{SPT N-uncorrected} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{WOR/C} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{WOR/C} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{WOR/C} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{WOR/C} \\ \hline & \text{WOR/C} = \text{Weight of Rods or Casing} & \text{WOR/C} \\ \hline \hline & \text{WOR/C} \\ \hline \hline & \text$									onfined C ected = R Efficiency T N-unco	e Undrained Shear Strength (psf) compressive Strength (ksf) aw Field SPT N-value / Factor = Rig Specific Annual Calit prrected Corrected for Hammer Effi fficiency Factor/60%)*N-uncorrecte	LL = Liquid PL = Plastic pration Value PI = Plastici ciency G = Grain S	Limit ty Index ize Analysis			
		<u> </u>	1		ğ				1				Laboratory Testing		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		iption and Remarks		Results/ AASHTO and Unified Class.		
0	1D	24/18	0.0 - 2.0	1/3/4/3	7	10				Grey and brown, slightly me sand layer approximately 0. -CLAY CAP-(CL)		, poorly-graded			
	2D	24/16	2.0 - 4.0	2/2/3/3	5	7		24.4		PID Readings=7.8 ppm MgM=OK		2.0			
					_	-				Grey, moist, medium stiff, S layers, trace ash seam, few l odor		. thick sand			
- 5 -	3D	24/6	4.0 - 6.0	1/2/2/2	4	6				-LANDFILL WASTE-(CL) PID Readings=0.8 ppm MgM=OK Similar to 2D, except wet, th	ngs=0.8 ppm 2D, except wet, trace fine sand, thin seam of blue				
	4D	24/16	6.0 - 8.0	1/2/6/6	8	12				plastic sheeting, thin seam of approximately 0.5-in. space -LANDFILL WASTE-(CL)	seams				
								18.7		PID Readings=0.2 ppm MgM=0.8 CH4					
	5D	24/20	8.0 - 10.0	4/7/9/11	16	23				Grey, wet, stiff, Silty CLAY glass pieces, plastic sheeting					
10										-LANDFILL WASTE-(CL) PID Readings=0.0 ppm		0001			
- 10 -	6D	24/20	10.0 - 12.0	3/7/8/11	15	22				MgM=1.1 CH4		7.7-			
										Brown, slightly moist, stiff, structure	Silty CLAY, layered d	lepositional			
										-MARINE DEPOSIT-(CL) Grey-brown mottled, slightl	v moist, verv stiff, Silt	v CLAY.			
										layered depositional structur -MARINE DEPOSIT-(CL) Similar to 5D		. .			
- 15 -										-MARINE DEPOSIT-(CL) Grey-brown, slightly moist,	etiff Silty CLAV				
	7D	24/24	15.0 - 17.0	3/4/5/7	9	13				-MARINE DEPOSIT-(CL)	sun, bity clari				
- 20 -	8D	24/24	20.0 - 22.0	WOH/WOH/3/3	3	4				Grey, slightly moist, mediu -MARINE DEPOSIT-(CL)	n stiff, Silty CLAY		WC=29 LL=38		
													PL=20 PI=18 CL		
								2.7				23.7-			
25								1.9		Note: Drilling change noted refusal at 24.8 ft.	while advancing casin	ig. Casing			
	arks:														
3.0	-in. diam	eter split-s	poon used to sa	ample 1D to 6D.											
Strati	fication line	es represent	approximate bou	Indaries between soil types	transition	s mav h	e gradual.				Page 1 of 2				
				nes and under conditions st nts were made.		-	-	ons may	occur due	e to conditions other	Ū	o.: HA22	-5		
thar	those pre	sent at the t	ime measuremer	nts were made.								U пА22-	-5		

Maine Department of Transportation						n	Project	: Macl	nias Lan	dfill	Boring No.:	HA	.22-5
		-	Soil/Rock Exp	-			Locatio			e Bridge Jaine	\A/INI-	1.67	14.00
			US CUSTOM	ARY UNITS			Localio	11. 1 v 1a	iemas, iv	lanc	WIN:	16/	14.00
Drille	ər:		New England	Boring Co., Inc.	Ele	vatior	(ft.)	26.	4		Auger ID/OD:		
Oper	rator:		T. Schaeffer		Da	tum:		NA	VD 88		Sampler:	Split-Spoon	1.375 in. ID
Logo	ged By:		H. Hollauer		Rig	ј Туре	:	B5	3 Mobil	e Drill	Hammer Wt./Fall:	SS-140#/30;	HW-300#/16
Date	Start/F	inish:	6-28-2022/6-2	29-2022	Dri	lling N	lethod:	SS	A/HW E	Drive	Core Barrel:	NQ-2.0 in. I	D
Bori	Boring Location: N324780; E2402399 Casi					sing IC	D/OD:	HV	V-4.0 in.	ID/NW-3.0 in. ID	Water Level*:		
		iciency F	actor: 0.863	D. Davis		mmer	Туре:		natic 🛛	2	Rope & Cathead	diret Tamana Oh	
D = Sp MD = U = Th MU = V = Fie	Definitions: R = Rock Core Sample D = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140 lb. WV = Unsuccessful Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Rods MV = Unsuccessful Field Vane Shear Test Attempt WOR/C = Weight of Fords Sample Information Sample Information								lab) = Lat = Unconfi ncorrecte nmer Effic) = SPT N	emolded Field Vane Undrained She v Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual l-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-uncor	wc = LL = L PL = F Calibration Value PI = P er Efficiency G = G	Water Content, p iquid Limit Plastic Limit lasticity Index rain Size Analysi phosolidation Test	s
		(in.)	1		þ				1_				Laboratory Testing
5 Depth (ft.)	Sample No.	Pen./Rec. (ii	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	ription and Remarks	24.5	Results/ AASHTO and Unified Class.
25										Cobbles		24.5	
-	9D	24/12	26.0 - 28.0	16/10/11/11	21	30		0.4		Grey, wet, medium dense, f gravel, poorly-graded, one s -FLUVIAL DEPOSIT-(SM - Note: Rollerbit to 28.8 ft an	ilt laminae)		
								-2.4		Boulder and Cobbles		28.8	-
- 30 -										Bounder und Cobbies			
	10D	12/6	30.5 - 31.5	20/30				-4.1		Grey-brown, wet, dense to v	very dense, fine to coars		
							RC	-5.1		silt, little gravel, well-grade		,	
	R1	60/57	32.5 - 37.5	RQD = 78%			NO			-GLACIAL TILL-(SW)		31.5	
-	KI	00/57	52.5 - 51.5	RQD = 70%					1990	Top of Bedrock El5.1 Note: Advance roller bit to 2	32.5 ft and begin NQ ro	ck coring.	
							Core		696	R1: Dark grey, white, aphar BRECCIA, very hard to har	itic to coarse-grained, b	asaltic TUFF-	
										dipping at horizontal to low	angles, spaced very clo	se to	
- 35 -									<i>MG</i>	moderately close, open. No stained, calcite coatings.	infilling. Joint surfaces	slightly iron-	
-										Rock Mass=Good			
									2912	-DENNYS FORMATION- Recovery=95%			
							$ \vee$	-11.1	1 2018-2	R1 Core Times (min:sec): 3 34.5-35.5' (3:00); 35.5-36.5'			
										<u></u>		37.5	
										Bottom of Exploration a	t 37.5 feet below groun	d surface.	
- 40 -													
40													
								1					
								1					
- 45 -													
								1					
50													
	arks:	1	1				1		1	1			1
3.0-	in. diame	eter split-s	poon used to sa	ample 1D to 6D.									
Stratifi	ication line	es represent	approximate bou	indaries between soil types;	transitio	ns may b	e gradual.				Page 2 of 2		
* Wate	er level rea	adings have	been made at tim	nes and under conditions sta		-	-	ons mav	occur due	e to conditions other	-		-
than	those pres	sent at the t	ime measuremer	its were made.							Boring No	D.: HA22	-5

I	Maine Department of Transportatio										ring No.:	HA2	2-6
			Soil/Rock Exp	oloration Log			Locatio			e Bridge Iaine	NI-	1671	4.00
		<u> </u>	JS CUSTOM	IARY UNITS					,	•••		1071	4.00
Drill				Boring Co., Inc.		ation	(ft.)	17.0			ger ID/OD:		
	rator:		T. Schaeffer H. Hollauer		Datu				VD 88 3 Mobil		npler: nmer Wt./Fall:	Split-Spoon 3.	0 in. ID
	ged By: Start/F	inish	6-29-2022/6-	29-2022		Type: ling N	lethod:		A Drive		re Barrel:		
	ng Loca		N324827; E2			-	D/OD:		1 Diive		ter Level*:		
			actor: 0.863				Туре:	Autom	atic 🖂		& Cathead		
MD = U = T MU = V = Fi	plit Spoon Unsucces hin Wall Tu Unsucces ield Vane S	sful Split Spo ube Sample sful Thin Wa Shear Test,		SSA = Sol mpt HSA = Ho RC = Rolle Attempt WOH = W enetrometer WOR/C =	Core Samp lid Stem Au llow Stem A er Cone leight of 14 Weight of I	ole uger Auger 0lb. Ha Rods ol	s c M mmer H r Casing N	Su(lab) = lp = Unc V-uncorre lammer V ₆₀ = SF	Lab Van onfined C ected = R Efficienc	ted Field Vane Undrained Shear Strength e Undrained Shear Strength (psf) compressive Strength (ksf) aw Field SPT N-value r Factor = Rig Specific Annual Calibration rrected Corrected for Hammer Efficiency fficiency Factor/60%)*N-uncorrected	WC = Water LL = Liquid L PL = Plastic I Value PI = Plasticity	Limit / Index ze Analysis	^{gth (psf)} Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descriptior			Testing Results/ AASHTO and Unified Class.
0	1D	24/18	0.0 - 2.0	WOH/2/2/7	4	6		16.0		Grey and brown, slightly moist, rr plastic bag, reworked structure to -CLAY CAP-(CL)			
	2D	24/22	2.0 - 4.0	10/23/36/38	59	85				Grey-brown mottled, slightly moi depositional structure -MARINE DEPOSIT-(CL)	ist, hard, Silty CL	AY, layered	
- 5 -	3D	24/24	4.0 - 6.0	7/10/11/13	21	30				Similar to 2D, except very stiff			WC=26 LL=40 PL=22
								11.0		Bottom of Exploration at 6.0 t	feet below groun	6.0- d surface.	PI=18 CL
										No Refusal			
- 10 -													
- 15 -													
- 20 -													
25													
<u>Rem</u>	arks:												
Stratif	ication line	s represent	approximate bou	undaries between soil types	; transitions	s may b	e gradual.				Page 1 of 1		
		-		nes and under conditions st nts were made.			-	ons may	occur du	e to conditions other	Boring No	5.: HA22-	-6

I	Maine Department of Transportatio					L	Project: Machias Landfill Machias Dike Bridge				Boring No.:	HA2	2-7
			Soil/Rock Exp US CUSTOM	v			Locatio				WIN:	1671	4.00
Drill	er:		New England	Boring Co., Inc.	Elev	atior	n (ft.)	52.5	5		Auger ID/OD:		
Ope	rator:		T. Schaeffer		Datu		()		VD 88		Sampler:	Split-Spoon 1.	375 in. ID
Log	ged By:		H. Hollauer		Rig	Туре	:	B53	3 Mobile	Drill	Hammer Wt./Fall:		
Date	Start/F	inish:	7-01-2022/7-0	01-2022	Drill	ing N	lethod:	SSA	A/HW D	rive	Core Barrel:		
Bori	ng Loca	ation:	N324632; E24	402378	_		D/OD:	HW	-4.0 in.	ID	Water Level*:		
Ham	mer Eff	ficiency F	actor: 0.863		Ham	mer	Туре:	Autom	atic 🖂	Hydraulic 🗆	Rope & Cathead □		
MD = U = T MU = V = Fi	plit Spoon Unsucces hin Wall To Unsucces ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test Af	SSA = Sol mpt HSA = Ho RC = Rolle Attempt WOH = W enetrometer WOR/C =	eight of 14 Weight of F	iger Auger Olb. Ha Rods o	s م ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	Su(lab) = Ap = Unco N-uncorre Hammer N ₆₀ = SP	Lab Vano onfined C ected = R Efficiency T N-unco	led Field Vane Undrained Shear St e Undrained Shear Strength (psf) icompressive Strength (ksf) aw Field SPT N-value r Factor = Rig Specific Annual Calit prrected Corrected for Hammer Effi fficiency Factor/60%)*N-uncorrecte	WC = Water LL = Liquid PL = Plastic oration Value PI = Plastici ciency G = Grain S	Limit ty Index ize Analysis	gth (psf)
		Î			σ								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	iption and Remarks		Testing Results/ AASHTO and Unified Class.
0													
- 5 -													
									\mathbb{V}/\mathbb{A}				
- 10 -										Grey-brown, slightly moist	medium stiff silty CI	AV trace fine	
	1D	24/14	10.0 - 12.0	2/2/3/4	5	7				sand, trace gravel, approxim	ately 10% waste of pla		
								1		-LANDFILL WASTE AND	COVER-(CL)		
- 15 -													
								1	V///				
								l					
- 20 -	2D	24/10	20.0 - 22.0	6/4/4/4	8	12		1		Grey, wet, stiff, Silty CLAY			
	20	24/10	20.0 - 22.0	0/1/1/1	0	12				gravel, approximately 30% -LANDFILL WASTE AND		and wire	
								30.5			. /	22.0-	
	3D	24/16	22.0 - 24.0	17/30/37/44	67	96			V///	Brown, slightly moist, hard,			
										-MARINE DEPOSIT (REW	UKKED)-(CL)		
25													
Rem	arks:												
3.0-	in. diam	eter split-s	poon used to sa	ample 1D.									
Stratif	ication line	es represent	approximate bou	Indaries between soil types	transitions	may b	e gradual.				Page 1 of 2		
							-	ons mav o	occur due	to conditions other	Ũ	11 - 22	-
thar	those pre	esent at the t	ime measuremer	nes and under conditions st nts were made.	2.50							o.: HA22-	- /

I	Main	e Dep	artment	t of Transport	tatior	ı	Project	: Macl	nias Lar	dfill	Boring No.:	HA	22-7
		_		ploration Log			Locatio	Macl	nias Dik	e Bridge	\A/INI-	1.67	14.00
		ļ	US CUSTON	<u>IARY UNITS</u>			Localio	 1010	iemas, i	hane	WIN:	167	14.00
Drill	er:		New England	d Boring Co., Inc.	Ele	vatior	n (ft.)	52.	5		Auger ID/OD:		
Ope	rator:		T. Schaeffer		Dat	um:		NA	VD 88		Sampler:	Split-Spoon	1.375 in. ID
	ged By:		H. Hollauer			Туре			3 Mobil		Hammer Wt./Fall:	SS-140#/30	
	e Start/F		7-01-2022/7-		_	-	lethod:		A/HW I		Core Barrel:		
	ng Loca		N324632; E2		_	sing II			V-4.0 in		Water Level*:		
Ham Defini		ICIENCY F	actor: 0.863		Core Sam		Туре:	Su	natic ⊠ = Peak/R	Hydraulic emolded Field Vane Undrained Sho	Rope & Cathead \Box ear Strength (psf) $T_v = Po$	cket Torvane She	ear Strength (psf)
D = S	plit Spoon		oon Sample Atte	SSA = So	lid Stem A Ilow Stem	uger		Sut	lab) = La	b Vane Undrained Shear Strength (ined Compressive Strength (ksf)	psf) WC =	Water Content, p iquid Limit	
U = T	hin Wall Tu	ube Sample	Il Tube Sample	RC = Roll	er Cone	-	ammer	N-u	ncorrecte	ed = Raw Field SPT N-value ciency Factor = Rig Specific Annua	PL = F	Plastic Limit lasticity Index	
V = Fi	ield Vane S	Shear Test,	PP = Pocket P ne Shear Test A	Penetrometer WOR/C =	Weight of	Rods o	r Casing	N60	= SPTI	N-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	er Efficiency G = G	rain Size Analysis	3
1010 -				Sample Information	Weight of C		3011						I also and an i
		in.)	oth	$\hat{}$	ed								Laboratory Testing
ft.)	° N	Pen./Rec. (in.)	Dep	6 in (%)	N-uncorrected			Ę	Graphic Log	Visual Desc	ription and Remarks		Results/ AASHTO
Depth (ft.)	Sample No.	I./Re	nple	ws (/ engtl sar sar	100	~	ws	Elevation (ft.)	phic				and
	Sar	Per	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	n-Z	N60	Casing Blows	(.) (ft.)	Gra				Unified Class.
25									V///	Note: Probe advanced to bo	ttom of clay/glacial till	interface.	
								-	V//				
									V///				
									V///				
								1	V///				
									V///				
- 30 -									V///				
									V///				
									V///				
									V//				
									V//				
									V///				
								1	V//	Note: Drill action indicates	cobbles and gravel at 35	5.0 ft.	
- 35 -								17.	5	-PROBABLE GLACIAL T	IT 1	35.0	
								16.9		<u></u>		35.6	
										Bottom of Exploration a	t 55.6 leet below groui	lu surface.	
]					
40													
- 40 -													
								1					
- 45 -													
50													
	arks:	1					1		-				
3.0-	-in. diame	eter split-s	poon used to s	sample 1D.									
Stratif	fication line	es represent	approximate bo	undaries between soil types	; transition	is may b	pe gradual.				Page 2 of 2		
* Wat than	er level rea those pre	adings have sent at the t	been made at tii ime measureme	mes and under conditions st ents were made.	ated. Gro	undwate	er fluctuatio	ons may	occur du	e to conditions other	Boring No	5.: HA22	-7

I	Maine Department of Transportation					Project: Machias Landfill Machias Dike Bridge				dfill Boring No.: HA22-80	(OW)
				ploration Log			Locatio				1.00
			US CUSTON								F.00
Drill				xplorations, LLC		vation	n (ft.)	64.:		Auger ID/OD:	
	rator:		K. Hanscom		-	tum:			VD 88	Sampler:	
	ged By: e Start/F		H. Hollauer	25 2022		J Type			drich 50		
	ng Loca		7-25-2022/7- N324623; E2			sing IC	lethod:		4/HW E /-4.0 in.		
	-	iciency F		2401055		mmer		Auton		Hydraulic Rope & Cathead	
Defini					Core Sam	nple	5	S _u = Pea	k/Remole	ded Field Vane Undrained Shear Strength (psf) T _v = Pocket Torvane Shear Strengt	th (psf)
MD =	Unsucces	sful Split Sp	oon Sample Atte	empt HSA = Ho	lid Stem A blow Stem		c	n = Unc	onfined C	e Undrained Shear Strength (psf) WC = Water Content, percent Compressive Strength (ksf) LL = Liquid Limit	
MU =	Unsucces		all Tube Sample		/eight of 14		mmer H	lammer	Efficienc	taw Field SPT N-value PL = Plastic Limit y Factor = Rig Specific Annual Calibration Value PI = Plasticity Index	
			PP = Pocket P ane Shear Test A		Weight of Weight of (f Rods o One Per	r Casing N son N	∿ ₆₀ = SF √ ₆₀ = (H	PT N-unc ammer E	orrected Corrected for Hammer Efficiency G = Grain Size Analysis fficiency Factor/60%)*N-uncorrected C = Consolidation Test	
		1		Sample Information				i			Laboratory
	ċ	Pen./Rec. (in.)	Sample Depth (ft.)		sted				b		Testing
(ft.)	Sample No.	kec.	e De	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected			u	Graphic Log	Visual Description and Remarks	Results/ AASHTO
Depth (ft.)	du	n./F	ldm (ows lear reng RQI	nuc	N ₆₀	Casing Blows	Elevation (ft.)	aph		and Inified Class.
D 0	Sa	Pe	(tr Sa	ត ភ្លំសិ ទ័ ទ	ż	z	ပိဗ်	Ξŧ	Ō		nineu Ciass.
0										Note: No soil samples collected. SSA used to determine refusal depth and approximate depth to water. Soil descriptions	
										determined from drill cutting observations.	
										Brown, dry, Silty fine to medium SAND, trace coarse sand, trace	
										coarse gravel -FILL-(SM)	
								60.5		Brown grading to grey, moist, Silty CLAY 4.0	
- 5 -									V///	-MARINE DEPOSIT-(CL)	
									V///		
									V///		
									V///		
									V///		
									V///		
									V///		
- 10 -								1	V///		
									$\langle ///$		
									<i>\///</i>		
									V///		
								1	V///		
									V///		
- 15 -									<i>\///</i>		
									<i>\///</i>		
									<i>\///</i>		
									V///	Auger refusal at 17.6 ft	
								46.9	' 	17.6-Bottom of Exploration at 17.6 feet below ground surface.	
									1	Note: Installed observation well - see Observation Well	
									1	Installation Report HA22-8(OW) for details.	
- 20 -								1	1		
									1		
									1		
25											
Rem	arks:										
Stratif	fication line	es represent	approximate bo	undaries between soil types	; transitior	ns may b	e gradual.			Page 1 of 1	
* Wat	er level rea	adings have	been made at tir	mes and under conditions st nts were made.	tated. Gro	oundwate	er fluctuatio	ons may	occur du	e to conditions other Boring No.: HA22-8	ROW
than	i inose pre	sent at the	ame measureme	ans were made.							

I	Main	e Dep	tation	Dn Project: Machias Landfill Machias Dike Bridge			ias Lan	1fill	Boring No.: HA22	-9(OW)		
			Soil/Rock Exp				Locatio				WIN: 167	14.00
			US CUSTOM									14.00
Drill				plorations, LLC		ation	n (ft.)	17.5			Auger ID/OD:	
· ·	rator:		K. Hanscom H. Hollauer		Datu				VD 88 drich 50	Trools	Sampler:	
	ged By: Start/F	inish	7-25-2022/7-	25-2022		Type ing N	: lethod:		VHW E		Hammer Wt./Fall: HW-300#/16 Core Barrel:)
	ng Loca		N324821; E2			-	D/OD:		-4.0 in.		Water Level*: 20.8 ft	
	-	iciency I					Туре:	Autom			Rope & Cathead	
Defini D = S MD = U = T MU = V = Fi	tions: plit Spoon Unsucces: hin Wall Tu Unsucces: ield Vane S	Sample sful Split Sp ube Sample sful Thin W Shear Test, sful Field Va	ooon Sample Atte all Tube Sample / PP = Pocket P ane Shear Test A	SSA = So mpt HSA = Hc RC = Roll Attempt WOH = W enetrometer WOR/C =	Core Samp lid Stem Au llow Stem A er Cone 'eight of 144 Weight of 14 <u>Weight of O</u>	iger Auger Olb. Ha Rods o	c n mmer H r Casing N	S _u = Pea Su(lab) = Ip = Unco I-uncorre Hammer Iammer	k/Remole Lab Van onfined C ected = R Efficiency T N-unce		rength (psf) T _v = Pocket Torvane Shear Str WC = Water Content, percer LL = Liquid Limit PL = Plastic Limit oration Value PI = Plasticity Index ciency G = Grain Size Analysis	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psť) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		iption and Remarks	Testing Results/ AASHTO and Unified Class.
- 5 -										depth and approximate depth determined from drill cutting		
- 10 -												
- 15 -								2 0				
								-3.8 -3.9		-MARINE DEPOSIT-(CL) Casing refusal at 21.4 ft		
Stratif	er level rea	adings have		undaries between soil types mes and under conditions si nts were made.			-	ns may d	Doccur due	Installation Report HA22-9(OW) for details. Page 1 of 1 Boring No.: HA22	1 2-9(OW)

Maine Department of Transportation					ation					dfill Boring No.: H	A22-10(OW)
			Soil/Rock Exp	oloration Log		Loc	catio		nias Dik chias, N	e Bridge Maine WIN:	16714.00
		-	US CUSTON	IARY UNITS							10/14.00
Drill	er:		S.W. Cole Ex	xplorations, LLC	Elevati	on (ft.))	19.	2	Auger ID/OD:	
Ope	rator:		K. Hanscom		Datum			NA	VD 88	Sampler: Split-	Spoon 1.375 in. ID
Log	ged By:		H. Hollauer		Rig Ty	pe:		Die	drich 50	Track Hammer Wt./Fall: SS-14	40#/30
Date	e Start/F	inish:	7-26-2022/7-	26-2022	Drilling	J Meth	od:	SS	A/HW E	Drive Core Barrel:	
Bori	ing Loca	ation:	N324502; E2	402502	Casing	ID/OD	D:	HV	/-4.0 in.	ID Water Level*: 4.9 ft	
		iciency F	actor: 0.91	P. Dook (Hamm	er Typ			natic 🛛	Hydraulic □ Rope & Cathead □ ded Field Vane Undrained Shear Strength (psf) T _y = Pocket Torvane S	Change Otrag atthe (and)
MD = U = T MU = V = F	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atte III Tube Sample PP = Pocket P <u>ne Shear Test A</u>	sSA = Soliv mpt HSA = Holl RC = Rolle Attempt WOH = We enetrometer WOR/C = W	Core Sample d Stem Auger ow Stem Aug r Cone eight of 140lb. Veight of Rod leight of One	er Hamme s or Cas	S q _i N er H sing N	u(lab) = p = Unc -uncorr ammer 60 = SF	E Lab Van confined C ected = R Efficienc PT N-unc	ded Field Vane Undrained Shear Strength (psf) T _v = Pocket Torvane S ce Undrained Shear Strength (psf) WC = Water Conten compressive Strength (ksf) L = Liquid Limit taw Field SPT N-value PL = Plastic Limit y Factor = Rig Specific Annual Calibration Value PI = Plasticit Undex fifciency Factor/60%)*N-uncorrected C = Consolidation True	t, percent
		÷			g						Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Class.
0										Note: No soil samples collected in upper 5 ft. SSA used to determine refusal depth and approximate depth to water. 3 descriptions determined from drill cutting observations. -LANDFILL WASTE AND COVER-	
- 5 -	1D	24/20	5.0 - 7.0	1/1/1/1	2 3	;		14.2	2	Dark grey to black, wet, very loose, Silty fine SAND, trac	
										medium sand -TIDAL MARSH DEPOSIT-(SM)	
								9.6	5	Refusal at 9.6 ft on probable bedrock	9.6-
- 10 -										Bottom of Exploration at 9.6 feet below ground surf	
										Note: Installed observation well - see Observation Well Installation Report HA22-10(OW) for details.	
- 15 -											
						_					
- 20 -											
						_			1		
25											
Not	fication line	es represent	approximate bo	undaries between soil types;	transitions ma	ay be gra	adual.			uttings indicate LANDFILL WASTE AND COVER. Page 1 of 1	
* Wat than	er level rea those pre	adings have sent at the t	been made at tir ime measureme	mes and under conditions sta nts were made.	ted. Groundv	vater fluo	ctuatior	ns may	occur du	e to conditions other Boring No.:	HA22-10(OW)

ROCK CORE PHOTOGRAPHS MACHIAS LANDFILL INVESTIGATION MACHIAS, MAINE FILE NO. 0130749-009

Top Row: HA22-2, Run No. C1 10.3 (left) to 12.0 (middle-left); Run No. C2 12.0 (middle-left) to 15.3 (right) Top Middle Row: HA22-5, Run No. C1 32.5 (left) to 37.5 (right) Bottom Middle Row: HA22-1, Run No. C1 39.0 (left) to 44.0 (right) Bottom Row: empty APPENDIX B Observation Well Installation and Groundwater Monitoring Reports

		OBSE	RVATION W	/ELL		Well No. HA22-1 (OW)
ALDRICH	1		LATION RE			Boring No.
	1011 1				12074	HA22-1
-	Machias Landfill Inve Machias, Maine	estigation, Macmas	Dike Bridge	H&A FILI PROJECT		19-009 arden
	Maine Department of	Transportation		FIELD RE		
CONTRACTOR	New England Boring				STALLED 6/30/2	
DRILLER	T. Schaeffer			WATER I	LEVEL 19.4 ft	t (below ground surface)
Ground El. El. Datum	46.7 ft NAVD 88	Location See Pl	lan		☑ Guard Pij□ Roadway	-
SOIL/ROCK	BOREHOLE		——————————————————————————————————————	e cover/lock		able Cap
CONDITIONS	BACKFILL		. –			
CLAY CAP 4.0 ft	_		Height of top of g above ground surf	uard pipe/roadway face	' box	<u>3.2</u> ft
LANDFILL WASTE			Height of top of ri above ground surf			<u>3.1</u> ft
AND COVER	BENTONITE			e casing:	Steel C	Suard Pipe
· · · · · · ·			Length	, cuoma.	<u>.</u>	5.3 ft
			Inside Diamete	er		4.0 in
			Depth of bottom (of guard pipe/roadv	way box	ft
				Type of Seals	Top of Seal (ft)	Thickness (ft)
20.3 ft	_		_	Bentonite Seal	0.0	32.0
			ļ	Bentonite Seal	38.5	5.5
REWORKED MARINE DEPOSIT (CLAY)	г		-			
		┤│┆│┢─	Type of riser pipe	:	Sch.	40 PVC
			Inside diamete	er of riser pipe		2.0 in
			Type of backfi	ll around riser	Filter Sar	nd/Bentonite
31.5 ftNATIVE			• Diameter of boreh	nole		in
MARINE DEPOSIT		│┿╎┢┿	D			24.0 ft
(CLAY)	32.0 ft		└── Depth to top of we	ell screen		<u> 34.0 ft</u>
34.6 ft	FILTER				Sah	·• = 1/2
GLACIAL TILL	SAND		Type of screen	or size of openings	Scn.	40 PVC 0.010 in
ULACIAL IILL		L2	Diameter of sci	. 0		<u> </u>
			Type of backfill a		Filte	er Sand
38.0 ft			- J F	l Unite		J Duna
COBBLES						
	38.5 ft		Depth of bottom o	of well screen		<u> </u>
38.7 ft	BENTONITE					—
BEDROCK			Bottom of Silt traj	-		<u> </u>
44.0	44.0		Depth of bottom o	of borehole		ft
(Botton	m of Exploration) epth from ground surface in feet)			(Not to Scale)		
	$\frac{37.0 \text{ ft}}{\text{Pay Length (L1)}} + \frac{37.0 \text{ ft}}{\text{Pay Length (L1)}}$	5.0 Length of screer		0.0 ft of silt trap (L3)	= <u>42.0</u> Pay len	<u>ft</u> ngth
COMMENTS:						

HALEY ALDRICH		OBSERVA	TION WELL		Well No. HA22-2 (OW)
ALDRICH		INSTALLAT	ION REPORT	[Boring No.
PROJECT	Machias Landfill Inve	stigation, Machias Dike B		E NO. 13074	HA22-2 9-009
LOCATION	Machias, Maine	511guiloil, 1.1	PROJEC		
CLIENT	Maine Department of	Transportation	FIELD R	EP. H. Hol	lauer
CONTRACTOR	New England Boring	Contractors, Inc.	DATE IN	STALLED 6/28/2	
DRILLER	T. Schaeffer		WATER		below ground surface)
Ground El. El. Datum	12.6 ft NAVD 88	Location See Plan		☑ Guard Pip□ Roadway	
SOIL/ROCK	BOREHOLE	[]	Type of protective cover/lock	Locka	ble Cap
CONDITIONS	BACKFILL				
CLAY CAP			Height of top of guard pipe/roadway bove ground surface	y box	<u>3.3</u> ft
2.0 ft			Height of top of riser pipe above ground surface		<u>3.1</u> ft
	BENTONITE	r 1	Type of protective casing:	Steel G	uard Pipe
			Length		<u>5.3</u> ft
			Inside Diameter		<u>4.0</u> in
			Depth of bottom of guard pipe/road	way box	<u> </u>
			Type of Seals	Top of Seal (ft)	Thickness (ft)
			Bentonite Seal	0.0	3.0
			Bentonite Seal	9.0	6.3
MARINE		LI			
DEPOSIT					
(CLAY)	3.0 ft				
			Type of riser pipe:	Sch.	40 PVC
			Inside diameter of riser pipe		<u>2.0</u> in
			Type of backfill around riser	Filter San	d/Bentonite
		│	Diameter of borehole		<u>4.0</u> in
	FILTER	│ ╪ │ ╞═┥┽┑			
	SAND		Depth to top of well screen		<u>4.0</u> ft
			Гуре of screen	Sch.	40 PVC
			Screen gauge or size of openings		<u>0.010</u> in
		L2	Diameter of screen		<u> </u>
			Type of backfill around screen	Filte	r Sand
9.0 ft	9.0 ft		Depth of bottom of well screen		<u>9.0</u> ft
DEDD C CTT	BENTONITE		D-44 & C 14 4		0.0
BEDROCK	SEAL		Bottom of Silt trap		9.0 ft
15.3	15.3	╶┥╵└╌╌╌┶╌┍─╹	Depth of bottom of borehole		<u>15.3</u> ft
	m of Exploration) epth from ground surface in feet)		(Not to Scale)		
	6.7 ft +	5.0 f	řt + 0.0 ft	= 11.7	ft
Riser	Pay Length (L1)	Length of screen (L2)	Length of silt trap (L3)	Pay len	
COMMENTS:					

		OBSERVATION WE	 FI I	Well No.
HALEY ALDRICH				HA22-8 (OW) Boring No.
		INSTALLATION REP		HA22-8 (OW)
PROJECT		estigation, Machias Dike Bridge		49-009
LOCATION	Machias, Maine	Trensportation		earden ollauer
CLIENT CONTRACTOR	Maine Department of SW Cole Exploration		FIELD REP. H. H. DATE INSTALLED 7/25/2	
DRILLER	K. Hanscom	, ,		(below ground surface)
Ground El.	64.5 ft	Location See Plan	Guard P	, e
El. Datum	NAVD 88	North side of salt pile along tree line	Roadway	•
SOIL/ROCK	BOREHOLE	Type of protective c	cover/lock	N/A
CONDITIONS	S BACKFILL			
	BENTONITE 1.0 ft	Height of top of gua above ground surfac	ard pipe/roadway box ace	<u>3.2</u> ft
FILL		Height of top of rise above ground surface		<u>3.0</u> ft
1 11		Type of protective c	easing: 4-in. dia. S	Steel Guard Pipe
		Length		5.4 ft
		Inside Diameter		4.0 in
~4.0 ft		Denth of bottom of	guard pipe/roadway box	2.4 ft
~4.0 n —	FILTER			
	SAND		Type of Seals Top of Seal (ft) Bentonite 0.0	<u>Thickness (ft)</u> 1.0
			Bentonite 0.0	1.0
MARINE			<u> </u>	
DEPOSIT				
		Type of riser pipe:	Sch	. 40 PVC
		Inside diameter of		2.0 in
		Type of backfill	around riser File	ter Sand
		Diameter of borehol	le	in
		Depth to top of well	l screen	<u>1.3</u> ft
		Type of screen	Sch	. 40 PVC
		Screen gauge or	size of openings	0.010 in
		L2 Diameter of scre	æn	2.0 in
		← Type of backfill aro	und screen File	ter Sand
		Depth of bottom of	well screen	<u> 16.3 ft</u>
		L_3 Bottom of Silt tran		160 84
			Lholo	<u>16.3</u> ft
17.6	om of Exploration)	Depth of bottom of	Dorenoie	<u> 17.6 </u> ft
	depth from ground surface in feet)		(Not to Scale)	
	4.1 ft +	$\frac{15.0 \text{ ft}}{100000000000000000000000000000000000$		ft
	r Pay Length (L1)		silt trap (L3) Pay les	ngth
COMMENTS: So	oil conditions determined	from drill cutting observations.		

		OBSEC	RVATION WEI	1		Well No.
HALEY ALDRICH						HA22-9 (OW) Boring No.
KEDITION		INSTALL	ATION REPC	DRT		HA22-9 (OW)
PROJECT	Machias Landfill Inve	estigation, Machias l	Dike Bridge	H&A FILE N	O. 13074	9-009
LOCATION	Machias, Maine			PROJECT M		
CLIENT	Maine Department of			FIELD REP.	H. Ho	
CONTRACTOR DRILLER	SW Cole Exploration K. Hanscom	S		DATE INSTA WATER LEV		t (below ground surface)
Ground El.	17.5 ft	Location See Pla	0.0		Guard Pi	
El. Datum	NAVD 88	Approx. 7 ft west of l			Guard Fr Roadway	-
SOIL/ROCK	BOREHOLE	•	——————————————————————————————————————	er/lock]	N/A
CONDITIONS	BACKFILL					
	SAND 1.0 ft BENTONITE		Height of top of guard above ground surface	pipe/roadway bo	x	<u>3.1</u> ft
	2.0 ft		Height of top of riser p above ground surface	іре		<u>2.4</u> ft
			└──── Type of protective casi	ng:	4-in. dia. St	eel Guard Pipe
			Length			<u>5.4</u> ft
			Inside Diameter			<u>4.0</u> in
	FILTER		Depth of bottom of gua	ard pipe/roadway	box	<u>2.4</u> ft
	SAND		Tvr	e of Seals	Fop of Seal (ft)	Thickness (ft)
				entonite	1.0	1.0
MARINE		L1				
DEPOSIT						
				–	Sch.	40 PVC
			Inside diameter of 1		E:14	<u>2.0</u> in
			Type of backfill aro	und riser	Filt	er Sand
			Diameter of borehole			in
			Depth to top of well scr	reen		ft
			—— Type of screen	-	Sch.	40 PVC
			Screen gauge or size	e of openings		0.010 in
		L2	Diameter of screen			<u>2.0</u> in
			——— Type of backfill around	d screen	Filto	er Sand
	20.8 ft		Depth of bottom of wel	ll screen		<u>19.5</u> ft
	FILTER SAND		—— Bottom of Silt trap			19.5 ft
21.4	21.4		Depth of bottom of bor	rehole		<u>21.4</u> ft
	om of Exploration) epth from ground surface in feet)			(Not to Scale)		
	6.8 ft +	15.0	ft + 0.0	ft =	21.8	ft
Riser	Pay Length (L1)	Length of screen			Pay ler	
COMMENTS: So	oil conditions determined	from drill cutting obse	ervations.			

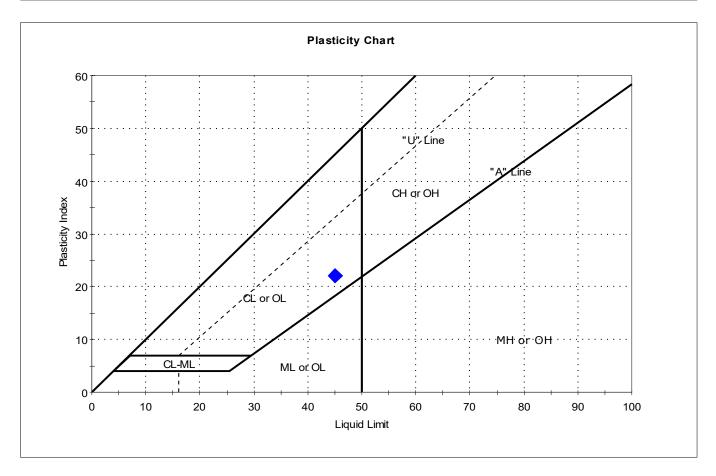
HALEY ALDRICH		OBSE	ERVATION WELL		Well No. HA22-10 (OW)
ALDRICH		INSTA	LLATION REPORT		Boring No. HA22-10 (OW)
PROJECT	Machias Landfill Inv	estigation, Machi	ias Dike Bridge H&A FII	LE NO. 13074	49-009
LOCATION	Machias, Maine				earden
CLIENT	Maine Department of	-	FIELD R		ollauer
CONTRACTOR	SW Cole Exploration	18		NSTALLED 7/26/2	
DRILLER	K. Hanscom		WATER		(below ground surface)
Ground El. El. Datum	19.2 ft NAVD 88		e Plan ndfill at toe of slope	☑ Guard Pi□ Roadway	-
SOIL/ROCK	BOREHOLE		Type of protective cover/lock		N/A
CONDITIONS	BACKFILL				
LANDFILL WASTE	BENTONITE]_[_	Height of top of guard pipe/roadwa	ıy box	<u>3.2</u> ft
AND COVER 5.0 ft	2.0 ft		Height of top of riser pipe above ground surface		<u>2.9</u> ft
			Type of protective casing:	4-in. dia. S	teel Guard Pipe
			Length		<u>5.4</u> ft
			Inside Diameter		<u>4.0</u> in
	FILTER		Depth of bottom of guard pipe/road	dway box	<u>2.7</u> ft
	SAND		Type of Seals	Top of Seal (ft)	Thickness (ft)
TIDAL			Bentonite	0.0	2.0
MARSH					
DEPOSIT					·
			Type of riser pipe:	Sch.	. 40 PVC
			Inside diameter of riser pipe		<u> </u>
			Type of backfill around riser	Filt	ter Sand
			Diameter of borehole		<u>4.0</u> in
			Depth to top of well screen		ft
			← Type of screen	Sch.	. 40 PVC
			Screen gauge or size of openings	\$	<u> </u>
		L2	Diameter of screen		<u> </u>
			← Type of backfill around screen	Filt	ter Sand
	9.4 ft		Depth of bottom of well screen		<u>9.6</u> ft
	FILTER SAND	L3	Bottom of Silt trap		9.6 ft
<u>.</u>			Depth of bottom of borehole		9.6 ft
9.6 (Botton	9.6		_		
(Numbers refer to de	epth from ground surface in feet)		(Not to Scale)		
Riser	5.0 ft + • Pay Length (L1)	7.0 Length of scr		$= \frac{12.0}{\text{Pay ler}}$	ftngth
COMMENTS:					

		GRO	OW/PZ NUMBER				
	CH	UN	DUNDWAT			HA	22-1
				EPORT		Page	of
PROJECT			vestigation, Machias Dike B	ridge	H&A FILE NO. PROJECT MGR.	130749-009	
LOCATION CLIENT		chias, Maine	f Transportation		FIELD REP.	D. Dearden H. Hollauer	
			g Contractors, Inc.		- DATE	6/30/2022	
		ERENCE POIN		REFERENCE PO	DINT: Ground Surface		Other 🗌
Date	Time	Elapsed Time (days)	Depth of Water from Reference Point	Elevation of Water	Remark	S	Read By
6/30/2022		0	22.5	27.4			HH
7/1/2022	8:00	1	29.7	20.1			HH
7/26/2022		26	30.3	19.5			HH
9/7/2022	13:45	69	30.4	19.4			JI
							_
							_
							_
							_
							1
							+
							<u> </u>

HALEY ALDRI		OW/PZ NUMBER HA22-2					
PROJECT		iias Landfill Inv iias, Maine	estigation, Machias Dike Br	EPORT	H&A FILE NO. PROJECT MGR.	Page 130749-009 D. Dearden	of
CLIENT			f Transportation		FIELD REP.		
			Contractors, Inc. T <u>15.7</u>	DEFEDENCE D	DATE DUT: Communication	<u>6/28/2022</u>	04
Date	Time	RENCE POIN Elapsed Time (days)	Depth of Water from Reference Point	Elevation of Water	DINT: Ground Surface Remark		Other C
6/28/2022	8:30	0	3.6	12.1			НН
6/28/2022	14:00	0	3.7	12.0			НН
6/29/2022	7:00	1	3.7	12.0			HH
6/30/2022	7:30	2	3.8	11.9			HH
7/25/2022		27	4.1	11.6			НН
7/26/2022	8:40	28	4.1	11.6			HH
8/15/2022	14:00	48	4.6	11.2			HH
9/7/2022	13:35	71	4.0	11.7			JI
							+
							+
		+					+
		┨					+
		+					+
		┨					+
		┨					

	ICH	GRO	GROUNDWATER MONITORING REPORT										
			R	EPORT		Page	A22-8						
PROJECT			vestigation, Machias Dike B	ridge	H&A FILE NO.	130749-009							
LOCATION		hias, Maine			PROJECT MGR.	D. Dearden							
CLIENT			of Transportation		FIELD REP.	H. Hollauer							
		ERENCE POIN	g Contractors, Inc. VT <u>67.5</u>	REFERENCE PO	DATE DINT: Ground Surface	7/25/2022 □ PVC ☑	Other 🗌						
Date	Time	Elapsed Time (days)	Depth of Water from	Elevation of Water	Remark		Read By						
7/25/2022	12:30	0	5.4	62.1			HH						
7/25/2022	16:30	0	9.8	57.7			HH						
8/15/2022	11:00	21	11.9	55.6			HH						
9/7/2022	14:30	44	10.8	56.7			Л						
							+						
							1						
							+						
							+						
							+						
							+						
							+						
							<u> </u>						
													
							T						

HALEY ALDRI	СН	GRO	ITORING	OW/PZ NUMBER HA22-9		
PROJECT			estigation, Machias Dike B	EPORT ridge	H&A FILE NO. 13074	
LOCATION CLIENT	Mair		f Transportation 5 Contractors, Inc.		PROJECT MGR. D. De FIELD REP. H. Ho DATE 7/25/2	llauer
		RENCE POIN		REFERENCE PO		VC Other
Date	Time	Elapsed Time (days)	Depth of Water from Reference Point	Elevation of Water	Remarks	Read By
7/25/2022	16:30	0	20.8	-0.9		HH
7/26/2022	6:50	1	8.9	11.0		НН
8/15/2022	12:35	21	9.7	10.2		HH
9/7/2022	14:15	44	9.3	10.6		JI

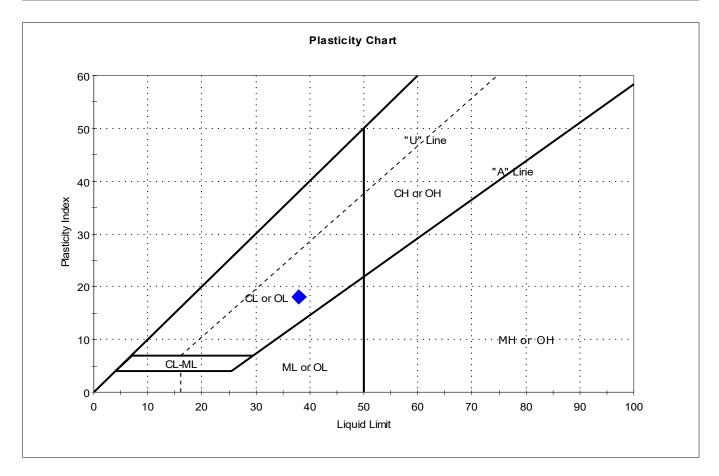

HALEY ALDRI	GROUNDWATER MONITORING								
PROJECT LOCATION		nias Landfill Inv nias, Maine	estigation, Machias Dike B	EPORT ridge		Pageof749-009Dearden			
CLIENT	Main	e Department of	f Transportation 5 Contractors, Inc.		FIELD REP. H. H	Hollauer 5/2022			
		RENCE POIN		REFERENCE PO	-	PVC 🗹 Other 🗌			
Date	Time	Elapsed Time (days)	Depth of Water from Reference Point	Elevation of Water	Remarks	Read By			
7/26/2022		0	4.9	17.2		HH			
7/26/2022	9:45	0	5.2	17.0		НН			
8/15/2022	15:15	20	3.1	19.0		НН			
9/7/2022	13:25	43	2.8	19.3		JI			
		+				<u> </u>			
		+							

APPENDIX C Geotechnical Laboratory Test Results

	Client:	Haley & Al	drich, Inc.				
	Project:	Machias La	andfill				
	Location:	Machias, M	1E			Project No:	GTX-315911
	Boring ID:	HA22-2		Sample Type:	bag	Tested By:	cam
	Sample ID:	S3		Test Date:	08/16/22	Checked By:	bfs
	Depth :	4-6'		Test Id:	682011		
ſ	Test Comm	ent:					
	Visual Desc	ription:	Moist, light oli	ve brown clay			
	Sample Cor	nment:					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S3	HA22-2	4-6'	30	45	23	22	0.3	

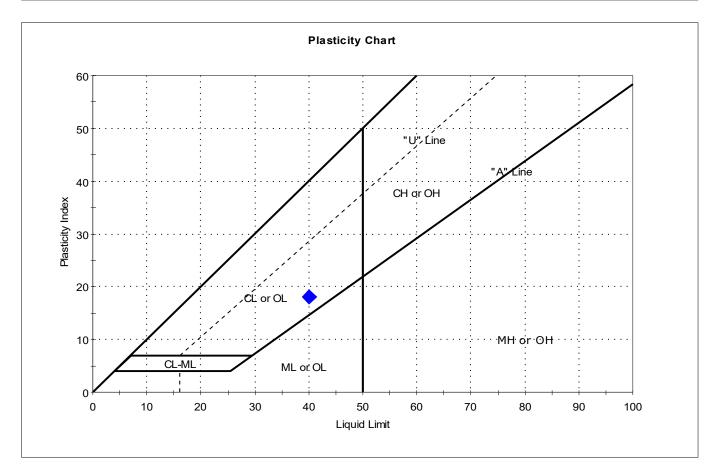

Sample Prepared using the WET method

Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

ſ	Client:	Haley & Al	drich, Inc.				
	Project:	Machias La	andfill				
	Location:	Machias, N	1E			Project No:	GTX-315911
1	Boring ID:	HA22-5		Sample Type:	bag	Tested By:	cam
	Sample ID:	S8		Test Date:	08/16/22	Checked By:	bfs
	Depth :	20-22'		Test Id:	682012		
[Test Comm	ent:					
	Visual Desc	ription:	Moist, gray cla	у			
	Sample Cor	nment:					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S8	HA22-5	20-22'	29	38	20	18	0.5	


Sample Prepared using the WET method

Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

	Client:	Haley & A	ldrich, Inc.				
	Project:	Machias La	andfill				
	Location:	Machias, M	1E			Project No:	GTX-315911
	Boring ID:	HA22-6		Sample Type:	bag	Tested By:	cam
	Sample ID:	S3		Test Date:	08/16/22	Checked By:	bfs
	Depth :	4-6'		Test Id:	682013		
Γ	Test Comm	ent:					
	Visual Desc	ription:	Moist, brown o	clay			
	Sample Cor	nment:					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S3	HA22-6	4-6'	26	40	22	18	0.2	

Sample Prepared using the WET method

Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW APPENDIX D Low Flow Field Sampling Forms

-	· · · · · · · · · · · · · · · · · · ·		No MANY MILLION OF THE MANY MANY MALE AND AND AND					inand All and sameline in Colorida in Sin Col	har di dina. Ilan yanan kari maga sarapara ya			
HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING I	FORM[Page of \
PROJECT	MDOT	Machias Lan I	ត៍រា								H&A FILE NO	130749
LOCATION	Machia	s, Maine					-				PROJECT MG &	D. Dearden
CLIENT	Maine	DOT					-				FIELD REP.	H. Hollauer
CONTRACTO	R None						_				DATE INSTAL .ED	6/28/2022
DRILLER											WATER LEVE	4.55
Sampling Data	15 A	19.202 -2(04	2									
Well ID:	HAZ	-2 (Qu	Well Depth	:		0	ft britial l	Depth To Water:	4.5	<u>f</u> t	Purging Device:	Geotech peristaltic pump
Start time:	<u> 140 </u>	0		op Of Sereen:		0	ft Lepth (Of Pump Intake:	~ 8	<u>, 0</u> ft	Tubing Present I Well:	Yes X No
Finish Time	1510	2	Depth To B	ottom Cf Screen:	9,	0	A Pum	p start	ed 1410		Tubing Type:	Silicone and LDPE
	Depth To	Pamp	Purge	Cum alative	Temp-			1				
Elapsed	Water	Setting	Rate	Puri :e Vol.	erature		Conduct-	Dissolved				
Thme	From Cesing	(ml/min) or	(mi/min) or	no (an stil)	(°F) or		ivity	Oxygen	furbidity	ORP/eB		
(24 hour)	(ft)	(gal/min)	(gal/min)	(IRI)	(°C)	pН	(US /CI 1)	(mg/L)	(NTU)	(mv)		Comments
1415	5.68		~300		19,41		<u>+</u> *	*/%		+/m		-f
1420	6.30		~500		19,10	6.45	2.93	1.42	28.3	146	Cteor, no o	0(0)
1425	6,82		+		18,99			0.76		146		· · · · · · · · · · · · · · · · · · ·
1430	7.00					6.42	2.87	0.33	17.1	136		
1433	7.25			~1.0	18.80	6.41	2.85	0,33	14.9	13.5		
1 33			<u> </u>	100	18160	V , -11	17.03			-133	Calleyted	andle prior to
	<u> </u>		1								Full stabille	atten because
										···· · · · · · · · · · · · · · · · · ·	well possel	
				· · · · · · · · · · · · · · · · · · ·						<u> </u>	The second s	in muy be
							<u> </u>				pumped de	1
												<u></u>
											DTW at end	of sandling
											= 8,88	
									Υ			
											The hole for	the lack broke
											so unable to	lock casing.
							<u> </u>					<u></u>
L			<u> </u>	L	L	I	<u></u>				To PVC to Teo	casing = 0,15
				ł	texCr,	etc. a	collect	rd 8/1	6/22		Sample Th	<u> </u>
				C	N Q 80	0.				PŦ	TAS Field E	slank Taken
										Ŧ	Field Rlack-1	2 8/15 21430

HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING I	FORM		Page of
PROJECT	MDOT	Machias Land	£11								H&A FILE NO.	130749
LOCATION	Machia	s, Maine									PROJECT MGR.	D. Dearden
CLIENT	Maine I	DOT									FIELD REP.	H. Hollauer
CONTRACTO	R None						-				DATE INSTALLED	25/2022
DRILLER											WATER LEVEL	11.90
Sampling Data:	1514	19. 202 - 8(0w)	-J-						-			
Well ID:	HAZZ	-8(ow)	Well Depth	:	_16	.3	ft Initial I	Depth To Water:	11.9		Purging Device:	Geotech peristaltic pump
Start time:	1100		-	op Of Screen:	<u> </u>	3	ft Depth	Of Pump Intake:	~ 15	ft	Tubing Present In Well:	Yes X No
Finish Time:	1230		Depth To B	ottom Of Screen:	16	,3	A Pum	p stort	ed 1110		Tubing Type:	Silicone and LDPE
	Depth To	Pump	Purge	Cumulative	Temp-			1				
Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
Time	From Casing	(mil/min) or	(ml/min)) or	(liters) or	(°F) or		ivity	Oxygen	Turbidity	ORP/eH		
(24 hour)	(ft)	(gel/min)	(gal/min)	(gal)		pH	(us cm)	(mg/L)	(NTU)	(m v)	c	Comments
			<u> </u>		+/%	+/-01	+/-3_%	(mg/L) 40 <u>5</u> %		+/- 10 mv		
1112	12.42	303	~300		16.71	615	12.1	1.05	18.1	-44	Clear, no od	Y
1120	12.65				16.31	6.10	11.6	1.13	17.3	-38	Changed pung	head to slover
1125	12,70		~250		17.13	6.13	11.8	2.24	20.5	-22	RPM	
1130	12,75				17.90	6.20	12.1	3.92	32.8	-13		
1135	12.92			_	17.33	6.10	11.3	0.69	26.5	-11		
1140	13.11				17.56	6.09	11.0	0.22	15.4	-12		
1145	1313				17.45	6.08	10.9	0.02	11.8	-13		
1148	13.15				17.49	6.08	10,8	0.00	10.2	-13		
1153	13,18				17,49	6.08	10.7	0.00	9.4	-12		
1153	13.21			~1.5001	17.49	6.08	10,6	0.00	-9.3	-12		
				5								
											Ta PUCTOT	Teo Castra = 0.15
											Sample tim	<u>τόρ Cashy =0.15</u> 2 1200

HexCr, etc collected 8/16/22 a)0720

HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING H	FORM.		Page) of }
PROJECT	MDOT	Machias Lan I	611								H&A FILE NO	130749
LOCATION	Machia	s, Maine					-				PROJECT MG 2.	D. Dearden
CLIENT	Maine I	DOT									FIELD REP.	H. Hollauer
CONTRACTO	R None										DATE INSTAL .ED	7/25/2022
DRILLER											WATER LEVE	9.46
Sampling Data:	15 M	ng.208	12									****
Well ID:	HA22-	-glow)	Well Depth			5	ft li itial	Depth To Water:	<u> </u>	o ft	Purging Device:	Geotech peristattic pump
Start time:	12.35		Depth To To	op Of Screen:	4	15	ft Eepth	Of Pump Intake:	~ 18	ft	Tubing Present I Well:	Yes X No
Finish Time:	ीतार		Depth To B	ottom Cf Screen:	_/9	.5	# Pvr	ping sto			Tubing Type:	Silicone and LDPE
	Depth To	Pamp	Purge	Cum alative	Temp-							
Elapsed	Water	Setting	Rate	Purije Vol.	eratare		Condu ct-	Dissolved				
Time	From Casing	(ml/min) or	(ml/min) or	(liters) or	(⁰F)or		ivity	Oxygen	Carbidity	ORP/eH		
(24 hour)	(ft)	(gal/min)	(gal/min)		÷	₽Ħ ↓	(100/cr) (100/cr)	(mg/L)	(NTU) Ck <u>07</u> 000	(tanv) +/- <u>/0</u> m	(Comments
1245	9,66		~300		19,56	6.60	4.90	0,95	26.5	82	Clear, no o	dor
1250	10,42				17.37	6.59	5.09	0.28	43,7	93		
1255	10,52				16,69	6.60	5.19	0.08	54.2	81		<u> </u>
1300	10.72				15.64	6.59	5143	0,00	56.2	63		
1305	10.80				14.97	6.57	5.68	0.00	25.8	62		
1310	10.82				14,62	6.57	5.91	0.00	4,7	66		
1315	10,90				14.34	6.47	6.30	0.00	2.5	75		
1320	11.08				14.34	6.49	6.35	0,00	3.8	80		
1325	11.18			~20	14.34	6.45	6.42	0.00	4.4	79		
			ļ									
							,			·		
			ļ			//			L			
						·						
			ļ									
			ļ									
			I					ļ				
								ļ				<i></i>
			<u> </u>					ļ				
								<u>l</u>			Top PUC to To	p Cash g = 0.15'
											Sample tim	e 1330

Hex Cr sampled 8/16/22 00 0740

HALE	RICH			LOW	FLOW	//MNA	FIELD	SAMP	LING I	FORM		Page of
PROJECT	MDOT	Machias Land	តរា				-				H&A FILE NO.	130749
LOCATION		s, Maine					-				PROJECT MGR.	D. Dearden
CLIENT	Maine I	DOT					-				FIELD REP.	H. Hollauer
CONTRACTO	R None						-				DATE INSTALLED	7/26/2022
DRILLER						1					WATER LEVEL	3,08
Sampling Data:	15 H	ug. Je	22		0	,			3			
Well ID:		-10 (ow)	-			6		Depth To Water:	<u>3.08</u> ~8'	Ĥ	Purging Device:	Geotech peristaltic pump
Start time:	1515		-	op Of Screen:			-	Of Pump Intake:		ft ft	Tubing Present In Well:	Yes X No
Finish Time:	<u> </u>		Depth To B	ottom Of Screen:	<u> </u>	<u> </u>	. ^a Pur	p stort	1230		Tubing Type:	Silicone and LDPE
	Depth To	Pump	Purge	Cumulative	Temp-							
Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
Time	From Casing	(mi/min) or	(ml/min) or	(liters) or	(°F)or		mS/cm	Oxygen	l'urbidity	ORP/eR		
(24 hour)	(ft)	(gal/min)	(gal/min)		(C) +/- <u>3 %</u>	рН +/- <u>О (</u>	-(us/cn) +-3 %	(mg/L) <q_<u>5 %</q_<u>	(NTU) < <u>10</u> אדט	(mv) +/- <u>10</u> mv	с	'omments
1530	3.22		~300		24.95	6.55	2,77	0,83	14.5	- 88	Clear, organ	(codor
1535	3,22				22.01	6.53	2.87	0.26	1713	-88		
1540	3.22				19.93	6.52	2.96	0.00	26.1	-88		
1545	3,22				19.71	6.52	2.97	0.00	25.5	-88		
1550	3.22				19.52	6.51	2.98	00.00	27.7	-88		
1555	3.22	L		\sim $3/4$	19,50	6.51	2.98	0,00	27.0	-88		
						ļ						
			_									
		ļ	ļ									
							 					
	<u> </u>											
							<u> </u>					
	L		<u> </u>		L	l	L	L			IGO PVC to To	φ casing = 0.27
											Sample TIm	$\frac{1}{2} casilg = 0.27$ 2 1600

HexCr sampled 8/16/22 20150

APPENDIX E Groundwater Analytical Results

ANALYTICAL REPORT

Lab Number:	L2244025
Client:	Haley & Aldrich
	75 Washington Avenue
	Suite 203
	Portland, ME 04101-2617
ATTN:	Dave Dearden
Phone:	(207) 482-4600
Project Name:	MOOT MACHIAS LF
Project Number:	130749
Report Date:	08/25/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08252219:47

Project Name:MOOT MACHIAS LFProject Number:130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2244025-01	HA22-2(OW)	WATER	MACHIAS, ME	08/15/22 14:40	08/16/22
L2244025-02	HA22-8(OW)	WATER	MACHIAS, ME	08/15/22 12:00	08/16/22
L2244025-03	HA22-9(OW)	WATER	MACHIAS, ME	08/15/22 13:30	08/16/22
L2244025-04	HA22-10(OW)	WATER	MACHIAS, ME	08/15/22 16:00	08/16/22
L2244025-05	HA22-2(OW)	WATER	MACHIAS, ME	08/16/22 08:00	08/16/22
L2244025-06	HA22-8(OW)	WATER	MACHIAS, ME	08/16/22 07:20	08/16/22
L2244025-07	HA22-9(OW)	WATER	MACHIAS, ME	08/16/22 07:40	08/16/22
L2244025-08	HA22-10(OW)	WATER	MACHIAS, ME	08/16/22 07:50	08/16/22
L2244025-09	FIELD BLANK	WATER	MACHIAS, ME	08/15/22 14:30	08/16/22

Project Name: MOOT MACHIAS LF Project Number: 130749 Lab Number: L2244025 Report Date: 08/25/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: MOOT MACHIAS LF Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Case Narrative (continued)

Sample Receipt

L2244025-09: A sample identified as "FIELD BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was not analyzed.

Semivolatile Organics

The WG1677442-2/-3 LCS/LCSD recoveries, associated with L2244025-01 through -04, are below the acceptance criteria for benzidine (6%/4%) and benzoic acid (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Semivolatile Organics by SIM

The WG1677444-1 Method Blank, associated with L2244025-01 through -04, has a concentration above the reporting limit for naphthalene. Since the concentrations in L2244025-01, -02, and -04 are non-detect for this target analyte, no corrective action is required. L2244025-03 was re-extracted and the associated Method Blank had a concentration above the reporting limit for naphthalene. The results of the original analysis are reported and are qualified with a "B".

Perfluorinated Alkyl Acids by Isotope Dilution

L2244025-01 through -04: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details. L2244025-04: The sample was centrifuged and decanted prior to extraction due to sample matrix.

Anions by Ion Chromatography

The WG1676555-3 MS recoveries, performed on L2244025-08, are outside the acceptance criteria for chloride (122%), nitrogen, nitrate (75%), and sulfate (81%); however, the associated LCS recoveries are within criteria. No further action was taken.

The WG1677498-3 MS recovery, performed on L2244025-04, is outside the acceptance criteria for bromide (128%); however, the associated LCS recovery is within criteria. No further action was taken.

Project Name: MOOT MACHIAS LF Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Case Narrative (continued)

The WG1676555-4 Laboratory Duplicate RPD for performed on L2244025-08, is above the acceptance criteria for sulfate; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

Alkalinity, Total

The WG1678011-4 MS recovery, performed on L2244025-04, is outside the acceptance criteria for alkalinity, total (49%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Jen Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 08/25/22

ORGANICS

VOLATILES

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/17/22 19:46			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	1.6		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	2.2		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1

Due is at Names							1.00232219.47	
Project Name:	MOOT MACHIAS LF				Lab Nu		L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMPL	E RESULTS	5				
Lab ID:	L2244025-01				Date Col	lected:	08/15/22 14:40	
Client ID:	HA22-2(OW)				Date Red	ceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	y GC/MS - Westborough I	_ab						
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
lodomethane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND			5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
				ug/l				
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		2.7		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
Isopropylbenzene		ND		ug/l	0.50		1	
p-lsopropyltoluene		ND		ug/l	0.50		1	

Serial_No:08252219:47

	Serial_No:08252219:47							
Project Name:	MOOT MACHIAS LF				Lab Nu	umber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMPL	E RESULTS	5				
Lab ID:	L2244025-01				Date Co	llected:	08/15/22 14:40	
Client ID:	HA22-2(OW)				Date Re	ceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	Lab						

Naphthalene	ND	ug/l	1.0	 1
n-Propylbenzene	ND	ug/l	0.50	 1
1,2,3-Trichlorobenzene	ND	ug/l	1.0	 1
1,2,4-Trichlorobenzene	ND	ug/l	1.0	 1
1,3,5-Trimethylbenzene	ND	ug/l	1.0	 1
1,3,5-Trichlorobenzene	ND	ug/l	1.0	 1
1,2,4-Trimethylbenzene	ND	ug/l	1.0	 1
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	 1
Ethyl ether	2.0	ug/l	1.0	 1
Diisopropyl Ether	ND	ug/l	1.0	 1
Tert-Butyl Alcohol	ND	ug/l	10	 1
Ethyl-Tert-Butyl-Ether	ND	ug/l	1.0	 1
Tertiary-Amyl Methyl Ether	ND	ug/l	1.0	 1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	102	70-130

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	117,-			
Analytical Date:	08/18/22 13:25			
Analyst:	BB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	32.6		ug/l	2.00		1	A
Ethene	ND		ug/l	0.500		1	А
Ethane	ND		ug/l	0.500		1	А

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/17/22 20:07			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	0.82		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1

Desident Manual							0.00202219.47	
Project Name:	MOOT MACHIAS LF				Lab Nu		L2244025	
Project Number:	130749			_	Report	Date:	08/25/22	
		SAMP		6				
Lab ID:	L2244025-02				Date Col	lected:	08/15/22 12:00	
Client ID:	HA22-8(OW)				Date Red	ceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		-	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
				ug/l				
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
lodomethane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
Isopropylbenzene		ND		ug/l	0.50		1	
p-lsopropyltoluene		ND		ug/l	0.50		1	
				3				

Serial_No:08252219:47

					S	Serial_No	0:08252219:47	
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMPI		6				
Lab ID:	L2244025-02				Date Col	lected:	08/15/22 12:00	
Client ID:	HA22-8(OW)				Date Red	ceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Newlifelene		10		4	4.0		4	
Naphthalene		49		ug/l	1.0		1	
n-Propylbenzene		ND		ug/l	0.50		1	

ug/l

% Recovery

116

101

97

101

1.0

1.0

1.0

1.0

1.0

2.5

1.0

1.0

10

1.0

1.0

Qualifier

--

--

--

--

--

--

Acceptance Criteria

70-130

70-130

70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

ND

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,3,5-Trichlorobenzene

1,2,4-Trimethylbenzene

Ethyl ether

Diisopropyl Ether

Tert-Butyl Alcohol

Ethyl-Tert-Butyl-Ether

Surrogate

Toluene-d8

Tertiary-Amyl Methyl Ether

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

trans-1,4-Dichloro-2-butene

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	117,-			
Analytical Date:	08/18/22 13:43			
Analyst:	BB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	9310		ug/l	2.00		1	А
Ethene	ND		ug/l	0.500		1	А
Ethane	ND		ug/l	0.500		1	А

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/17/22 20:29			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	0.55		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	1.2		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	0.64		ug/l	0.50		1

						_	0.06252219.47	
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMP	LE RESULTS	i				
Lab ID:	L2244025-03				Date Col	llected.	08/15/22 13:30	
Client ID:	HA22-9(OW)				Date Re		08/16/22	
Sample Location:	MACHIAS, ME				Field Pre		Refer to COC	
	,							
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		0.64		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
lodomethane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		15		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethan	е	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
Isopropylbenzene		ND		ug/l	0.50		1	
p-Isopropyltoluene		ND		ug/l	0.50		1	

Serial_No:08252219:47

			Serial_No:08252219:47					
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
SAMPLE RESULTS								
Lab ID:	L2244025-03				Date Coll	ected:	08/15/22 13:30	
Client ID:	HA22-9(OW)				Date Rec	eived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	p:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
Naphthalene		ND		ug/l	1.0		1	
· · · · · · · · · · · · · · · · · · ·		ND					1	
n-Propylbenzene		ND		ug/l	0.50		I	

ug/l

% Recovery

124

97

101

107

1.0

1.0

1.0

1.0

1.0

2.5

1.0

1.0

10

1.0

1.0

Qualifier

--

--

--

--

--

Acceptance Criteria

70-130

70-130

70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

19

ND

15

ND

ND

		1.	_		
	$/ \Delta$	N 🗎	Р	1/	Υ.
1 2	_		YT	_	_

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,3,5-Trichlorobenzene

1,2,4-Trimethylbenzene

Ethyl ether

Diisopropyl Ether

Tert-Butyl Alcohol

Ethyl-Tert-Butyl-Ether

Surrogate

Toluene-d8

Tertiary-Amyl Methyl Ether

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

trans-1,4-Dichloro-2-butene

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2244025-03 HA22-9(OW) MACHIAS, ME		Date Collected: Date Received: Field Prep:	08/15/22 13:30 08/16/22 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 117,- 08/18/22 14:01 BB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1030		ug/l	2.00		1	А
Ethene	ND		ug/l	0.500		1	А
Ethane	0.510		ug/l	0.500		1	А

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/17/22 20:50			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	1.3		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	0.56		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	4.0		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1

Project Name:					Lab Nu		1.00202219.47	
-	MOOT MACHIAS LF						L2244025	
Project Number:	130749	CAMD			Report	Date:	08/25/22	
Lab ID: Client ID: Sample Location:	L2244025-04 HA22-10(OW) MACHIAS, ME	SAMP	LE RESULTS	•	Date Col Date Rec Field Pre	ceived:	08/15/22 16:00 08/16/22 Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1.2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
lodomethane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		2.6		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
Isopropylbenzene		ND		ug/l	0.50		1	
p-lsopropyltoluene		ND		ug/l	0.50		1	
				5				

Serial_No:08252219:47

		Serial_No:08252219:47						
Project Name:	MOOT MACHIAS LF				Lab Numb	ber:	L2244025	
Project Number:	130749				Report Da	ate:	08/25/22	
		SAMPI		6				
Lab ID:	L2244025-04				Date Collec	ted:	08/15/22 16:00	
Client ID:	HA22-10(OW)				Date Receiv	ved:	08/16/22	
Sample Location:	MACHIAS, ME				Field Prep:		Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Naphthalene		ND		ug/l	1.0		1	

ug/l

% Recovery

115

98

102

102

0.50

1.0

1.0

1.0

1.0

1.0

2.5

1.0

1.0

10

1.0

1.0

Qualifier

--

--

--

--

--

--

Acceptance Criteria

70-130

70-130

70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

1.9

ND

ND

ND

ND

n-Propylbenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,3,5-Trichlorobenzene

1,2,4-Trimethylbenzene

Ethyl ether

Diisopropyl Ether

Tert-Butyl Alcohol

Ethyl-Tert-Butyl-Ether

Surrogate

Toluene-d8

Tertiary-Amyl Methyl Ether

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

trans-1,4-Dichloro-2-butene

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2244025-04 HA22-10(OW) MACHIAS, ME		Date Collected: Date Received: Field Prep:	08/15/22 16:00 08/16/22 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 117,- 08/18/22 15:38 BB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	4090		ug/l	2.00		1	A
Ethene	ND		ug/l	0.500		1	А
Ethane	2.63		ug/l	0.500		1	А

Project Number: 130749

0749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method:117,-Analytical Date:08/18/22 09:30Analyst:BB

Parameter	Result	Qualifie	r Units		RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	nple(s):	01-04	Batch:	WG167690	8-3	
Methane	ND		ug/l		2.00		А
Ethene	ND		ug/l	(0.500		А
Ethane	ND		ug/l	(0.500		А

Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/17/22 18:43Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-04 Batch:	WG1677231-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.0	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	1.0	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.0	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	0.20	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	

Project Number: 130749

)749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/17/22 18:43Analyst:LAC

Databile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1677231-5 1,2-Dichlorobenzene ND ug/l 1.0 1,3-Dichlorobenzene ND ug/l 1.0 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert bulyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 xylenes, Total ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 lodomethane ND ug/l 1.0 lodomethane ND ug/l 1.0 Styrene ND ug/l 1.0 Carbon disulfide ND ug/l 1.0 Carbon disulfide ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 -	arameter	Result	Qualifier Units	RL	MDL
1,3-Dichlorobenzene ND ug/l 1.0 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Sylenes, Total ND ug/l 1.0 Dichoromethane ND ug/l 1.0 Ibforomethane ND ug/l 1.0 Iodomethane ND ug/l 1.0 Iodomethane ND ug/l 1.0 Iodomethane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 4-Methyl-2-pentanone <td< th=""><th>olatile Organics by GC/MS</th><th>- Westborough Lab</th><th>for sample(s):</th><th>01-04 Batch:</th><th>WG1677231-5</th></td<>	olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1677231-5
1.4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 1.0 lodomethane ND ug/l 1.0 locondisulfide ND ug/l 1.0 Carbon disulfide ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 Hexanone ND	1,2-Dichlorobenzene	ND	ug/l	1.0	
Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Xylenes, Total ND ug/l 0.50 Dibromomethane ND ug/l 1.0 Dibromomethane ND ug/l 1.0 1,2,3-Trichloropropane ND ug/l 1.0 Dibromotethane ND ug/l 1.0 Dichloroptifluoromethane ND ug/l 1.0 Styrene ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 <td< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>ug/l</td><td>1.0</td><td></td></td<>	1,3-Dichlorobenzene	ND	ug/l	1.0	
p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Xylenes, Total ND ug/l 0.50 Dibromotethane ND ug/l 1.0 Iodomethane ND ug/l 1.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 1.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 1.0 Bromochloromethane </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>ug/l</td> <td>1.0</td> <td></td>	1,4-Dichlorobenzene	ND	ug/l	1.0	
o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 dis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 1.0 Iodomethane ND ug/l 1.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 1.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 1.0 2-Dichloropropane <td>Methyl tert butyl ether</td> <td>ND</td> <td>ug/l</td> <td>1.0</td> <td></td>	Methyl tert butyl ether	ND	ug/l	1.0	
Xylenes, Total ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 1.0 Iodomethane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 1.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 1.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 1.0 Bromochloromethane ND ug/l 1.0	p/m-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 1.0 Iodomethane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 2-Hexanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 1.0 2-Dichloromethane ND ug/l 1.0 2-Dichloro	o-Xylene	ND	ug/l	1.0	
Dibromomethane ND ug/l 1.0 lodomethane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 1.0 2-Exotonorethane ND ug/l 1.0 2.2-Dichloropropane ND ug/l 1.0 1,2-Dibromoetha	Xylenes, Total	ND	ug/l	1.0	
Iodomethane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 1.0 Bromochloromethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,2-Dibromoethan	cis-1,2-Dichloroethene	ND	ug/l	0.50	
1,2,3-Trichloropropane ND ug/l 1.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroetha	Dibromomethane	ND	ug/l	1.0	
Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 1.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50	lodomethane	ND	ug/l	5.0	
Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 1.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50	1,2,3-Trichloropropane	ND	ug/l	1.0	
Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 1.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 5.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Styrene	ND	ug/l	1.0	
Carbon disulfide ND ug/l 1.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 5.0 2.2-Dichloropropane ND ug/l 1.0 1.2-Dibromoethane ND ug/l 1.0 1.2-Dibromoethane ND ug/l 1.0 1.3-Dichloropropane ND ug/l 1.0 1.1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Dichlorodifluoromethane	ND	ug/l	2.0	
2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 5.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50	Acetone	ND	ug/l	5.0	
Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 5.0 Z-Lexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Carbon disulfide	ND	ug/l	1.0	
4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 0.50 ND ug/l 0.50	2-Butanone	ND	ug/l	5.0	
2-Hexanone ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 1.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Vinyl acetate	ND	ug/l	5.0	
AcrylonitrileNDug/l5.0BromochloromethaneNDug/l1.0TetrahydrofuranNDug/l2.02,2-DichloropropaneNDug/l1.01,2-DibromoethaneNDug/l1.01,3-DichloropropaneNDug/l1.01,1,1,2-TetrachloroethaneNDug/l0.50BromobenzeneNDug/l0.50n-ButylbenzeneNDug/l0.50	4-Methyl-2-pentanone	ND	ug/l	5.0	
BromochloromethaneNDug/l1.0TetrahydrofuranNDug/l2.02,2-DichloropropaneNDug/l1.01,2-DibromoethaneNDug/l1.01,3-DichloropropaneNDug/l1.01,1,1,2-TetrachloroethaneNDug/l0.50BromobenzeneNDug/l0.50n-ButylbenzeneNDug/l0.50	2-Hexanone	ND	ug/l	5.0	
TetrahydrofuranNDug/l2.02,2-DichloropropaneNDug/l1.01,2-DibromoethaneNDug/l1.01,3-DichloropropaneNDug/l1.01,1,1,2-TetrachloroethaneNDug/l0.50BromobenzeneNDug/l1.0n-ButylbenzeneNDug/l0.50	Acrylonitrile	ND	ug/l	5.0	
2,2-Dichloropropane ND ug/l 1.0 1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Bromochloromethane	ND	ug/l	1.0	
1,2-Dibromoethane ND ug/l 1.0 1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	Tetrahydrofuran	ND	ug/l	2.0	
1,3-Dichloropropane ND ug/l 1.0 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	2,2-Dichloropropane	ND	ug/l	1.0	
1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 1.0 n-Butylbenzene ND ug/l 0.50	1,2-Dibromoethane	ND	ug/l	1.0	
BromobenzeneNDug/l1.0n-ButylbenzeneNDug/l0.50	1,3-Dichloropropane	ND	ug/l	1.0	
n-Butylbenzene ND ug/l 0.50	1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
	Bromobenzene	ND	ug/l	1.0	
sec-Butylbenzene ND ug/l 0.50	n-Butylbenzene	ND	ug/l	0.50	
	sec-Butylbenzene	ND	ug/l	0.50	

Project Number: 130749

0749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/17/22 18:43Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01-04 Batch:	WG1677231-5
tert-Butylbenzene	ND	ug/l	1.0	
o-Chlorotoluene	ND	ug/l	1.0	
p-Chlorotoluene	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	1.0	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
1,3,5-Trimethylbenzene	ND	ug/l	1.0	
1,3,5-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trimethylbenzene	ND	ug/l	1.0	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	1.0	
Diisopropyl Ether	ND	ug/l	1.0	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	1.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	1.0	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	111		70-130			
Toluene-d8	101		70-130			
4-Bromofluorobenzene	105		70-130			
Dibromofluoromethane	101		70-130			

Project Name: MOOT MACHIAS LF

Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Dissolved Gases by GC - Mansfield Lab	Associated sample(s	s): 01-04	Batch: WG16769	008-2					
Methane	102		-		80-120	-		25	А
Ethene	98		-		80-120	-		25	А
Ethane	96		-		80-120	-		25	А

Project Number: 130749 Lab Number: L2244025 08/25/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough I	•			•	3 WG1677231-4	10.2	
		sumple(s).	UT UT Date		,		
Methylene chloride	90		86		70-130	5	20
1,1-Dichloroethane	100		97		70-130	3	20
Chloroform	94		89		70-130	5	20
Carbon tetrachloride	90		86		63-132	5	20
1,2-Dichloropropane	95		90		70-130	5	20
Dibromochloromethane	88		84		63-130	5	20
1,1,2-Trichloroethane	98		94		70-130	4	20
Tetrachloroethene	110		98		70-130	12	20
Chlorobenzene	97		89		75-130	9	25
Trichlorofluoromethane	120		110		62-150	9	 20
1,2-Dichloroethane	100		100		70-130	0	 20
1,1,1-Trichloroethane	94		88		67-130	7	 20
Bromodichloromethane	87		82		67-130	6	 20
trans-1,3-Dichloropropene	83		75		70-130	10	 20
cis-1,3-Dichloropropene	74		71		70-130	4	 20
1,1-Dichloropropene	100		97		70-130	3	20
Bromoform	81		74		54-136	9	20
1,1,2,2-Tetrachloroethane	98		89		67-130	10	 20
Benzene	95		90		70-130	5	 25
Toluene	96		88		70-130	9	 25
Ethylbenzene	95		88		70-130	8	 20
Chloromethane	110		110		64-130	0	 20
Bromomethane	91		87		39-139	4	 20

Project Number: 130749 Lab Number: L2244025 08/25/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: \	NG1677231-	3 WG1677231-4			
Vinyl chloride	120		110		55-140	9		20
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	100		97		61-145	3		25
trans-1,2-Dichloroethene	97		95		70-130	2		20
Trichloroethene	95		92		70-130	3		25
1,2-Dichlorobenzene	95		86		70-130	10		20
1,3-Dichlorobenzene	100		88		70-130	13		20
1,4-Dichlorobenzene	97		87		70-130	11		20
Methyl tert butyl ether	84		82		63-130	2		20
p/m-Xylene	100		90		70-130	11		20
o-Xylene	95		85		70-130	11		20
cis-1,2-Dichloroethene	91		88		70-130	3		20
Dibromomethane	90		85		70-130	6		20
lodomethane	52	Q	48	Q	70-130	8		20
1,2,3-Trichloropropane	97		92		64-130	5		20
Styrene	95		90		70-130	5		20
Dichlorodifluoromethane	100		100		36-147	0		20
Acetone	110		120		58-148	9		20
Carbon disulfide	100		100		51-130	0		20
2-Butanone	100		110		63-138	10		20
Vinyl acetate	98		98		70-130	0		20
4-Methyl-2-pentanone	88		87		59-130	1		20
2-Hexanone	81		79		57-130	3		20

Project Number: 130749 Lab Number: L2244025

Report Date: 08/25/22

Parameter	LCS %Recovery	Qual		LCSD lecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-04	Batch:	WG1677231-3	WG1677231-4				
Acrylonitrile	94			96		70-130	2		20	
Bromochloromethane	92			89		70-130	3		20	
Tetrahydrofuran	130			130		58-130	0		20	
2,2-Dichloropropane	89			80		63-133	11		20	
1,2-Dibromoethane	98			94		70-130	4		20	
1,3-Dichloropropane	98			92		70-130	6		20	
1,1,1,2-Tetrachloroethane	94			88		64-130	7		20	
Bromobenzene	97			86		70-130	12		20	
n-Butylbenzene	100			89		53-136	12		20	
sec-Butylbenzene	98			87		70-130	12		20	
tert-Butylbenzene	94			82		70-130	14		20	
o-Chlorotoluene	100			88		70-130	13		20	
p-Chlorotoluene	98			87		70-130	12		20	
1,2-Dibromo-3-chloropropane	76			71		41-144	7		20	
Hexachlorobutadiene	96			83		63-130	15		20	
Isopropylbenzene	94			82		70-130	14		20	
p-Isopropyltoluene	93			83		70-130	11		20	
Naphthalene	80			73		70-130	9		20	
n-Propylbenzene	100			90		69-130	11		20	
1,2,3-Trichlorobenzene	95			86		70-130	10		20	
1,2,4-Trichlorobenzene	89			79		70-130	12		20	
1,3,5-Trimethylbenzene	98			86		64-130	13		20	
1,3,5-Trichlorobenzene	96			87		70-130	10		20	

Lab Number: L2244025 Report Date: 08/25/22

Project Number: 130749

MOOT MACHIAS LF

Project Name:

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Bat	ch: WG1677231	-3 WG1677231-4	ŀ			
1,2,4-Trimethylbenzene	93		82		70-130	13		20	
trans-1,4-Dichloro-2-butene	94		85		70-130	10		20	
Ethyl ether	93		88		59-134	6		20	
Diisopropyl Ether	96		94		70-130	2		20	
Tert-Butyl Alcohol	90		90		70-130	0		20	
Ethyl-Tert-Butyl-Ether	88		85		70-130	3		20	
Tertiary-Amyl Methyl Ether	77		76		66-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	114	110	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	105	102	70-130
Dibromofluoromethane	101	98	70-130

Lab Du	plicate Analysis	
	Quality Control	

Project Name:MOOT MACHIAS LFProject Number:130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits	
Dissolved Gases by GC - Mansfield La	b Associated sample(s): 01-04	QC Batch ID: WG1676908-4	QC Sample:	L2244025-	02 Client ID	: HA22-8	(OW)
Methane	9310	9610	ug/l	3		25	А
Ethene	ND	ND	ug/l	NC		25	А
Ethane	ND	ND	ug/l	NC		25	А

SEMIVOLATILES

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	1: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 19:04			
Analyst:	EK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Benzidine	ND		ug/l	20		1		
1.2.4-Trichlorobenzene	ND		ug/l	5.0		1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1		
1,2-Dichlorobenzene	ND		ug/l	2.0		1		
1,3-Dichlorobenzene	ND		ug/l	2.0		1		
1,4-Dichlorobenzene	ND		ug/l	2.0		1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1		
2,4-Dinitrotoluene	ND		ug/l	5.0		1		
2,6-Dinitrotoluene	ND		ug/l	5.0		1		
Azobenzene	ND		ug/l	2.0		1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1		
Hexachlorocyclopentadiene	ND		ug/l	20		1		
Isophorone	ND		ug/l	5.0		1		
Nitrobenzene	ND		ug/l	2.0		1		
NDPA/DPA	ND		ug/l	2.0		1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		
Biphenyl	ND		ug/l	2.0		1		
Aniline	ND		ug/l	2.0		1		
4-Chloroaniline	ND		ug/l	5.0		1		

			Serial_No:08252219:47		
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025	
Project Number:	130749		Report Date:	08/25/22	
		SAMPLE RESULTS			
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40	
Client ID:	HA22-2(OW)		Date Received:	08/16/22	
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC	

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab									
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	2.0		1				
ND		ug/l	2.0		1				
ND		ug/l	5.0		1				
ND		ug/l	2.0		1				
ND		ug/l	2.0		1				
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	10		1				
ND		ug/l	10		1				
ND		ug/l	20		1				
ND		ug/l	10		1				
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	5.0		1				
ND		ug/l	50		1				
ND		ug/l	2.0		1				
ND		ug/l	2.0		1				
ND		ug/l	3.5		1				
	Stborough Lab ND ND <	ND ND	ND ug/l ND	ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 <td>ND ug/l 5.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 <tr< td=""></tr<></td>	ND ug/l 5.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 <tr< td=""></tr<>				

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	68	41-149

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 20:17			
Analyst:	DV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10		1		
2-Chloronaphthalene	ND		ug/l	0.20		1		
Fluoranthene	ND		ug/l	0.10		1		
Hexachlorobutadiene	ND		ug/l	0.50		1		
Naphthalene	ND		ug/l	0.10		1		
Benzo(a)anthracene	ND		ug/l	0.10		1		
Benzo(a)pyrene	ND		ug/l	0.10		1		
Benzo(b)fluoranthene	ND		ug/l	0.10		1		
Benzo(k)fluoranthene	ND		ug/l	0.10		1		
Chrysene	ND		ug/l	0.10		1		
Acenaphthylene	ND		ug/l	0.10		1		
Anthracene	ND		ug/l	0.10		1		
Benzo(ghi)perylene	ND		ug/l	0.10		1		
Fluorene	ND		ug/l	0.10		1		
Phenanthrene	ND		ug/l	0.10		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1		
Pyrene	ND		ug/l	0.10		1		
1-Methylnaphthalene	ND		ug/l	0.10		1		
2-Methylnaphthalene	ND		ug/l	0.10		1		
Pentachlorophenol	ND		ug/l	0.80		1		
Hexachlorobenzene	ND		ug/l	0.80		1		
Hexachloroethane	ND		ug/l	0.80		1		

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	MACHIAS, ME				Field Prep:		Refer to COC
Client ID:	HA22-2(OW)				Date Receiv	ved:	08/16/22
Lab ID:	L2244025-01				Date Collec	ted:	08/15/22 14:40
		SAMP		6			
Project Number:	130749				Report Da	ate:	08/25/22
Project Name:	MOOT MACHIAS LF				Lab Numb	ber:	L2244025
					Ser	ial_No	0:08252219:47

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	67	15-120
2,4,6-Tribromophenol	107	10-120
4-Terphenyl-d14	67	41-149

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	I: ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	08/17/22 17:51
Analytical Date:	08/18/22 15:44			
Analyst:	MP			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							
Perfluorobutanoic Acid (PFBA)	9.19		ng/l	1.83		1	
Perfluoropentanoic Acid (PFPeA)	13.3		ng/l	1.83		1	
Perfluorobutanesulfonic Acid (PFBS)	2.67		ng/l	1.83		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.83		1	
Perfluorohexanoic Acid (PFHxA)	23.1		ng/l	1.83		1	
Perfluoropentanesulfonic Acid (PFPeS)	2.17		ng/l	1.83		1	
Perfluoroheptanoic Acid (PFHpA)	22.5		ng/l	1.83		1	
Perfluorohexanesulfonic Acid (PFHxS)	26.8		ng/l	1.83		1	
Perfluorooctanoic Acid (PFOA)	84.0		ng/l	1.83		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.29		ng/l	1.83		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.83		1	
Perfluorononanoic Acid (PFNA)	3.57		ng/l	1.83		1	
Perfluorooctanesulfonic Acid (PFOS)	35.7		ng/l	1.83		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.83		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.83		1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.83		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.83		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.83		1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.83		1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.83		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.83		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.83		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83		1	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	45.7		1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.83		1	
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.66		1	

roject Number:130749Report Date:08/25/22ab ID:L2244025-01Date Collected:08/15/22 14:40lient ID:HA22-2(OW)Date Received:08/16/22ample Location:MACHIAS, MEImage: Neffer to COCNDResultQualifierUnitsRLMDLDilution FactorPerfluorinated AlkyLocato by Isotope Dilution - Mansfield Labrefluorocctadecanoic Acid (PFODA)NDng/l3.661					Se	erial_N	0:08252219:47
SAMPLE RESULTS ab ID: L2244025-01 lilent ID: HA22-2(OW) ample Location: MACHIAS, ME arameter Result Qualifier Inits RL MD Dilution Factor Perfluorioated Alkyl Acids by Isotope Dilution - Mansfield Lab 1 1 1 fAss, Total (6) 173 ng1 3.86 - 1 Perfluorio(13CA)Butanoic Acid (MPEPA) 89 58-132 1 Perfluorio(12,A)Butanoic Acid (MBPERA) 89 58-132 1 Perfluorio(12,3,4-13C3)Butanoic Acid (M3PEBS) 89 70-131 1 11,11,24,24-Perfluoro(1,2,3,4-13C4)Heptanoic Acid (M3PERA) 76 60-129 Perfluoro(1,2,3,4-13C4)Heptanoic Acid (M3PERA) 76 60-129 Perfluoro(1,2,3,4,5-13C3)Heptanoic Acid (M3PERA) 89 22-124 Perfluoro(Project Name:	MOOT MACHIAS LF			Lab Num	ber:	L2244025
bli: L2244025-01 HA22-2(OW) AMCHIAS, ME Date Collected: Date Received: Field Prep: 08/15/22 Refer to COC ample Location: MACHIAS, ME Result Qualifier MD ND ND ND Diltion Factor Perfluorionated Alkyl Acids by Isotope Dilution - Mansfield Lab 13 ng/l 3.66 - 1 Fas, Total (6) 173 ng/l 3.66 - 1 Fas, Total (6) 173 ng/l 1.83 - 1 Perfluori[13C4]Butanoic Acid (MPFBA) 89 S8-132 62-163 Perfluori[13C5]Pentancic Acid (MPFBA) 91 62-163 62-163 Perfluori[13C5]Pentancic Acid (MSPFPEA) 91 62-163 70-131 14,14,24;24:Perfluoro[1,2-3,45:13C3]Hexanoic Acid (M2+F1x4) 73 57-129 Perfluoro[1,23,4:13C4]Heptanoic Acid (M3PFBA) 92 62-129 Perfluoro[1,23,4:13C3]Hexanoic Acid (M3PFFNA) 92 62-129 Perfluoro[1,23,4:5:13C3]Hexanoic Acid (M3PFFNA) 92 62-129 Perfluoro[1,23,4:5:6:13C6]Decanoic Acid (M3PFFNA) 104 59-139 <t< td=""><td>Project Number:</td><td>130749</td><td></td><td></td><td>Report D</td><td>ate:</td><td>08/25/22</td></t<>	Project Number:	130749			Report D	ate:	08/25/22
Iten ID: ample Location: HA22-2(OW) MACHIAS, ME Date Received: Field Prep: 08/16/22 Refer to COC armple Location: MACHIAS, ME starmater Result Valifier Not Not Perluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab ngil 3.66 - 1 FAS, Total (6) 173 ngil 1.83 - 1 FAS, Total (6) 173 ngil 1.83 - 1 Perfluorinated Alkyl Acid (MPFBA) 89 58-132 - - Perfluorin2(3,4+13C3)Butanesulfonic Acid (M3PFBS) 89 70-131 - - Perfluorin2(1,2,3,4+13C3)Hexanesulfonic Acid (M3PFHA) 73 57-129 - - Perfluorin2(1,2,3,4-13C4)Hexanesulfonic Acid (M3PFHA) 73 62-129 - - Perfluorin2(1,2,3,4-13C4)Hexanesulfonic Acid (M3PFHA) 91 69-139 - - Perfluorin2(1,2,3,4-13C4)Hexanesulfonic Acid (M3PFHA) 73 57-129 - - Perfluorin1(1,2,3,4-5.6-13C6)Decanoic Acid (M4PFHA)			SAMPLE RESUL	.TS			
ample Location: MACHIAS, ME Field Prep: Refer to COC ample Depth: arameter Result Qualifier ND ND ND ND 10 Perfluoroctadecancic Acid (PFODA) ND ng1 3.66 - 1 FAS, Total (6) 173 ng1 1.83 - 1 Perfluoro(13C4)Butanoic Acid (MPFBA) 89 58-132 58-132 Perfluoro(13C3)Butanesulfonic Acid (MPFBA) 89 58-132 Perfluoro(1,2,3,4-13C3)Butanesulfonic Acid (M2-4:2FTS) 2300 Q 12-142 Perfluoro(1,2,3,4-13C3)Butanesulfonic Acid (M3PFBx) 73 57-129 56-132 Perfluoro(1,2,3,4-13C3)Butanesulfonic Acid (M2-4:2FTS) 2300 Q 12-142 Perfluoro(1,2,3,4-13C3)Hexanesulfonic Acid (M2-6:2FTS) 86 71-134 Perfluoro(1,2,3,4-13C3)Hexanesulfonic Acid (M2-6:2FTS) 104 59-139 Perfluoro(13C6)Octanesulfonic Acid (M8PFDA) 52 62-129 11,11,2H,2H-Perfluoro(1,2-13C2)Dectanesulfonic Acid (M2-6:2FTS) 104 59-139 Perfluoro(13C6)Octanesulfonic Acid (M8PFDS) <td< td=""><td>Lab ID:</td><td>L2244025-01</td><td></td><td></td><td>Date Colle</td><td>cted:</td><td>08/15/22 14:40</td></td<>	Lab ID:	L2244025-01			Date Colle	cted:	08/15/22 14:40
Arameter Result Qualifier Units RL MDL Dilution Factor Perfluorionated Alkyl Acids by Isotope Dilution - Mansfield Lab ng/l 3.66 1 FAS, Total (6) ND ng/l 1.83 1 FAS, Total (6) 173 ng/l 1.83 1 Perfluori(13C4]Butanoic Acid (MPFBA) 89 58-132	Client ID:	, <i>,</i>					
Parameter Result Qualifier Units RL MDL Dilution Factor Perfluorinated Aklyl Acids by Isotope Dilutor - Mansfield Lab ngl 3.66 - 1 FAS, Total (6) ND ngl 3.66 - 1 FAS, Total (6) 173 ngl 1.83 - 1 Perfluorial 3C4]Butanoic Acid (MPFBA) 89 58-132 - - Perfluorial 3C5]Pentanoic Acid (MPFBA) 91 62-163 -	Sample Location:	MACHIAS, ME			Field Prep		Refer to COC
Perfluor ND ng/l 3.66 - 1 FAS, Total (6) 173 ng/l 1.83 - 1 FAS, Total (6) 173 ng/l 1.83 - 1 FAS, Total (6) 173 ng/l 1.83 - 1 Perfluorol 13C4JButancic Acid (MPFDA) % Recovery Qualifier Acceptance Criteria Perfluorol 13C4JButancic Acid (MSPFDA) 89 58-132 Perfluorol 13C4JButancic Acid (MSPFDA) 91 62-163 Perfluorol 1,2,4,6-13C3JButanesulfonic Acid (M3PFBS) 89 70-131 H1, H2, H2, H2, H2, H2, H2, H2, H2, H2, H2	Sample Depth:						
ND ng/l 3.66 - 1 FAS, Total (6) 173 ng/l 1.83 - 1 FAS, Total (6) 173 ng/l 1.83 - 1 Surrogate (Extracted Internal Standard) % Recovery Qualifier Acceptance Criteria 1 Perfluoro[13C4]Butanoic Acid (MPFBA) 89 58-132 58-132 58-132 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 89 70-131 1 H1,H2,H2,H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4.6-13C5]Hexanoic Acid (M3PFHxA) 73 57-129 57-129 Perfluoro[1,2,3,4.6-13C5]Hexanoic Acid (M3PFHxS) 86 71-134 59-132 Perfluoro[1,2,3,4.6-13C5]Detanoic Acid (M3PFHxS) 86 71-134 59-133 Perfluoro[13C8]Octanoic Acid (M9FFOA) 92 62-129 14.147 Perfluoro[13C8]Octanoic Acid (M9FFOA) 104 59-139 59-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M8FFDA) 89 62-124 14.147 Perfluoro[1,2,3,4,5,6,7-13C7]Unde	Parameter		Result Qualifier	Units	RL	MDL	Dilution Factor
FAS, Total (6) 173 ng/l 1.83 - 1 Surrogate (Extracted Internal Standard) % Recovery Qualifier Acceptance Criteria Perfluoro[13C4]Butanoic Acid (MPFBA) 89 58-132 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFPEA) 91 62-163 Perfluoro[1,2,3,4-13C3]Butanesulfonic Acid (M2+4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4-6-13C6]Hexanos Acid (M3PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M2+4:2FTS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M2+6:2FTS) 199 Q 14-147 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M3PFDA) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 11,11,2H,2H-Perfluoro[-1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMEFOSAA) 62 24+116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,3,5,7-13C7]Undecan	Perfluorinated Alky	/I Acids by Isotope Dilutior	n - Mansfield Lab				
FAS, Total (6) 173 ng/l 1.83 - 1 Surrogate (Extracted Internal Standard) % Recovery Qualifier Acceptance Criteria Perfluoro[13C4]Butanoic Acid (MPFBA) 89 58-132 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFPEA) 91 62-163 Perfluoro[1,2,3,4-13C3]Butanesulfonic Acid (M2+2:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4,6-13C6]Hexanosic Acid (M4PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M2+2:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4,6-13C6]Hexanosic Acid (M4PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M2+6:2FTS) 86 71-134 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M3PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2,13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C8]Octanesulfonic Acid (M3PFDA) 89 62-124 14,147 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M2-8:2FTS) 144 10-162 14-147 Perfluoro[1,2,3,4,5,6	Perfluorooctadecanoic A	cid (PFODA)	ND	ng/l	3.66		1
Surgate (Extracted Internal Standard) % Recovery Qualifier Criteria Perfluoro[13C4]Butanoic Acid (MPFBA) 89 58-132 Perfluoro[13C5]Pentanoic Acid (M3PFPEA) 91 62-163 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 89 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M3PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFNX) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[1,2-3,4,5,6-13C6]Decanoic Acid (M8PFOA) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73	PFAS, Total (6)		173	ng/l	1.83		1
Surgate (Extracted Internal Standard) % Recovery Qualifier Criteria Perfluoro[13C4]Butanoic Acid (MPFBA) 89 58-132 Perfluoro[13C5]Pentanoic Acid (M3PFPEA) 91 62-163 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 89 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M3PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3,4-13C3]Hexanesulfonic Acid (M3PFNX) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[1,2-3,4,5,6-13C6]Decanoic Acid (M8PFOA) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73						٨	centance
Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 91 62-163 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 89 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4-613C5]Hexanoic Acid (M5PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3-13C3]Hexanosulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[1,2-3,4,6-13C6]Decanoic Acid (M8PFOA) 104 59-139 Perfluoro[1,2-3,4,6,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-6:2FTS) 104 59-139 Perfluoro[1,2,3,4,6,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,6,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,6,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 54	Surrogate (Extra	acted Internal Standard)		% Recovery	Qualifier		
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 89 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4-6-13C5]Hexanoic Acid (M5PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C3]Hexanoic Acid (M3PFHxA) 73 60-129 Perfluoro[1,2,3,4-13C3]Hexanoic Acid (M3PFHxS) 86 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 69-131 Perfluoro[12,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 62 24-116	Perfluoro[13C4]Bu	Itanoic Acid (MPFBA)		89			58-132
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 230 Q 12-142 Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 76 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[1,2-13C3]Octanoic Acid (M8PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2,-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M5-NEtFOSAA) 62 24-116 Perfluoro[1,2,13C2]Dedecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,13C2]Dedecanoic Acid (M7-PFUDA) 54 27-126 Perfluoro[1,2,13C2]Dedecanoic Acid (M2PFTEDA) 79<	Perfluoro[13C5]Pe	entanoic Acid (M5PFPEA)		91			62-163
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 73 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 76 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M8PFOA) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro1octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEFOSAA) 62 24-116 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEFOSAA) 54 27-126 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEFOSAA) 54 27-126 Perfluoro[1,2-13C2]Deceanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Deceanoic Acid (M2-PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 <td>Perfluoro[2,3,4-13</td> <td>C3]Butanesulfonic Acid (M3PFB</td> <td>S)</td> <td>89</td> <td></td> <td></td> <td>70-131</td>	Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3PFB	S)	89			70-131
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 76 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[13C8]Octanoic Acid (M8FFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M9FFNA) 104 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M8PFOS) 104 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 62 48-131 Perfluoro[1,2,13C2]Doctanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Doctanesulfonamidoacetic Acid (d5-NEtFOSAA) 62 48-131 Perfluoro[1,2-13C2]Detecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165	1H,1H,2H,2H-Perf	fluoro[1,2-13C2]Hexanesulfonic	Acid (M2-4:2FTS)	230	Q		12-142
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 86 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 104 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Deteanoic Acid (M2-PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid <	Perfluoro[1,2,3,4,6	6-13C5]Hexanoic Acid (M5PFHx/	A)	73			57-129
Perfluoro[13C8]Octanoic Acid (M8PFOA) 92 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M9FNA) 104 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d7-NFUDA) 73 55-137 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Dodecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165	Perfluoro[1,2,3,4-1	13C4]Heptanoic Acid (M4PFHpA)	76			60-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 199 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 104 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Dodecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165	Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M3PFH	łxS)	86			71-134
Perfluoro[13C9]Nonanoic Acid (M9PFNA) 104 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 104 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 89 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 144 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA) 62 24-116 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 62 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 18 5-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165	Perfluoro[13C8]Oc	ctanoic Acid (M8PFOA)		92			62-129
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)10469-131Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)8962-1241H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)14410-162N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)6224-116Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)7355-137Perfluoro[13C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA)185-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (M2PFTEDA)7922-136Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	1H,1H,2H,2H-Perf	fluoro[1,2-13C2]Octanesulfonic A	Acid (M2-6:2FTS)	199	Q		14-147
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)8962-1241H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)14410-162N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)6224-116Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)7355-137Perfluoro[1,3C8]Octanesulfonamidoacetic Acid (d5-NEtFOSAA)185-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	Perfluoro[13C9]No	onanoic Acid (M9PFNA)		104			59-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)14410-162N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)6224-116Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)7355-137Perfluoro[13C8]Octanesulfonamide (M8FOSA)185-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	Perfluoro[13C8]Oc	ctanesulfonic Acid (M8PFOS)		104			69-131
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)6224-116Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)7355-137Perfluoro[13C8]Octanesulfonamide (M8FOSA)185-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	Perfluoro[1,2,3,4,5	5,6-13C6]Decanoic Acid (M6PFD	PA)	89			62-124
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 73 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 18 5-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 62 48-131 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165	1H,1H,2H,2H-Perf	fluoro[1,2-13C2]Decanesulfonic	Acid (M2-8:2FTS)	144			10-162
Perfluoro[13C8]Octanesulfonamide (M8FOSA)185-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	N-Deuteriomethylp	N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)		62			24-116
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165	Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)		73			55-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6248-131Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)7922-1362,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid9410-165(M3HFPO-DA)000	Perfluoro[13C8]Oc	Perfluoro[13C8]Octanesulfonamide (M8FOSA)		18			5-112
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 79 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165 (M3HFPO-DA) 10-165 10-165	N-Deuterioethylpe	N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)		54			27-126
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 94 10-165 (M3HFPO-DA)	Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)		62			48-131	
(M3HFPO-DA)	Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)		79			22-136	
		o-2-[1,1,2,2,3,3,3-Heptafluoropro	poxy]-13C3-Propanoic Acid	94			10-165
	,	exadecanoic Acid (M2PFHxDA)		52			10-206

			Serial_No	08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 19:27			
Analyst:	EK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	

			Serial_N	o:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
2-Nitroaniline	ND			5.0		1	
			ug/l				
3-Nitroaniline	ND		ug/l	5.0		1	
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	80	41-149

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 20:33			
Analyst:	DV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough La	ab				
Acenaphthene	1.6		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	0.19		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	5.9		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	0.20		ug/l	0.10		1
Anthracene	0.20		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	1.4		ug/l	0.10		1
Phenanthrene	1.2		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	0.18		ug/l	0.10		1
1-Methylnaphthalene	3.1		ug/l	0.10		1
2-Methylnaphthalene	1.6		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					S	Serial_No	0:08252219:47	
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMPI		6				
Lab ID:	L2244025-02				Date Coll	ected:	08/15/22 12:00	
Client ID:	HA22-8(OW)				Date Rec	eived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	p:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Somivolatila Organ	Non	thorough Lo	h					

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	111	10-120
4-Terphenyl-d14	69	41-149

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2244025-02 HA22-8(OW) MACHIAS, ME		Date Collected: Date Received: Field Prep:	08/15/22 12:00 08/16/22 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 134,LCMSMS-ID 08/18/22 16:00 MP		Extraction Method Extraction Date:	: ALPHA 23528 08/17/22 17:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.87		1		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.87		1		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.87		1		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.87		1		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.87		1		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.87		1		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.87		1		
Perfluorohexanesulfonic Acid (PFHxS)	16.3		ng/l	1.87		1		
Perfluorooctanoic Acid (PFOA)	2.18		ng/l	1.87		1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.46		ng/l	1.87		1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.87		1		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.87		1		
Perfluorooctanesulfonic Acid (PFOS)	8.02		ng/l	1.87		1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.87		1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.87		1		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.87		1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	1.87		1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.87		1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.87		1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.87		1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.87		1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.87		1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.87		1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.87		1		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	46.7		1		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.87		1		
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.74		1		

Project Number:130749Report Date:08/28Lab ID:L2244025-02Date Collected:08/15/2Client ID:HA22-8(OW)Date Received:08/16/2	22 12:00
SAMPLE RESULTSLab ID:L2244025-02Date Collected:08/15/2Client ID:HA22-8(OW)Date Received:08/16/2	22 12:00
Lab ID: L2244025-02 Date Collected: 08/15/2 Client ID: HA22-8(OW) Date Received: 08/16/2	
Client ID: HA22-8(OW) Date Received: 08/16/2	
Sample Leasting: MACHIAS ME Eigld Brogs Deforts	
Sample Location: MACHIAS, ME Field Prep: Refer to	o COC
Sample Depth:	
Parameter Result Qualifier Units RL MDL Dilution	n Factor
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab	
Perfluorooctadecanoic Acid (PFODA) ND ng/l 3.74	1
PFAS, Total (6) 26.5 ng/l 1.87	1
Acceptance	
Surrogate (Extracted Internal Standard) % Recovery Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA) 90 58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 112 62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 99 70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 234 Q 12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 81 57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 84 60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 95 71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA) 95 62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 179 Q 14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA) 108 59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)11269-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 94 62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 119 10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 73 24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 75 55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA) 16 5-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 66 27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)6548-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)8322-136	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 103 10-165 (M3HFPO-DA)	
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)4810-206	

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 19:49			
Analyst:	EK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	5.6		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1

			Serial_No:08252219:		
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025	
Project Number:	130749		Report Date:	08/25/22	
		SAMPLE RESULTS			
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30	
Client ID:	HA22-9(OW)		Date Received:	08/16/22	
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	55	21-120	
Phenol-d6	46	10-120	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	66	15-120	
2,4,6-Tribromophenol	90	10-120	
4-Terphenyl-d14	66	41-149	

			Serial_No	08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 20:49			
Analyst:	AH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	0.29	В	ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	0.12		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					Se	rial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF				Lab Num	ber:	L2244025
Project Number:	130749				Report Da	ate:	08/25/22
		SAMP		6			
Lab ID:	L2244025-03				Date Collec	cted:	08/15/22 13:30
Client ID:	HA22-9(OW)				Date Recei	ved:	08/16/22
Sample Location:	MACHIAS, ME				Field Prep:		Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Constructed title Onner	the by CC/MC CIM Mas	the area of the la	. I.				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	61		21-120	
Phenol-d6	51		10-120	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	73		15-120	
2,4,6-Tribromophenol	126	Q	10-120	
4-Terphenyl-d14	74		41-149	

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	08/17/22 17:51
Analytical Date:	08/18/22 16:17			
Analyst:	MP			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	16.1		ng/l	1.86		1
Perfluoropentanoic Acid (PFPeA)	16.7		ng/l	1.86		1
Perfluorobutanesulfonic Acid (PFBS)	3.24		ng/l	1.86		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.86		1
Perfluorohexanoic Acid (PFHxA)	33.0		ng/l	1.86		1
Perfluoropentanesulfonic Acid (PFPeS)	2.24		ng/l	1.86		1
Perfluoroheptanoic Acid (PFHpA)	26.2		ng/l	1.86		1
Perfluorohexanesulfonic Acid (PFHxS)	28.9		ng/l	1.86		1
Perfluorooctanoic Acid (PFOA)	59.9		ng/l	1.86		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.39		ng/l	1.86		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.86		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.86		1
Perfluorooctanesulfonic Acid (PFOS)	8.27	F	ng/l	1.86		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.86		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	46.4		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.86		1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.71		1

				Se	erial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF			Lab Num	ber:	L2244025
Project Number:	130749			Report D	ate:	08/25/22
-		SAMPLE RESUL	TS	-		
Lab ID:	L2244025-03			Date Colle	cted:	08/15/22 13:30
Client ID:	HA22-9(OW)			Date Rece		08/16/22
Sample Location:	MACHIAS, ME			Field Prep	:	Refer to COC
Sample Depth:						
Parameter		Result Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alky	I Acids by Isotope Dilutior	n - Mansfield Lab				
Perfluorooctadecanoic Ac	id (PFODA)	ND	ng/l	3.71		1
PFAS, Total (6)		123	ng/l	1.86		1
					٨٥	ceptance
Surrogate (Extra	cted Internal Standard)		% Recovery	Qualifier		Criteria
Perfluoro[13C4]Bu	tanoic Acid (MPFBA)		96			58-132
Perfluoro[13C5]Pe	ntanoic Acid (M5PFPEA)		90			62-163
Perfluoro[2,3,4-130	C3]Butanesulfonic Acid (M3PFB	S)	97			70-131
1H,1H,2H,2H-Perfl	uoro[1,2-13C2]Hexanesulfonic	Acid (M2-4:2FTS)	275	Q		12-142
Perfluoro[1,2,3,4,6	-13C5]Hexanoic Acid (M5PFHx/	۹)	76			57-129
Perfluoro[1,2,3,4-1	3C4]Heptanoic Acid (M4PFHpA)	81			60-129
Perfluoro[1,2,3-130	C3]Hexanesulfonic Acid (M3PFH	łxS)	96			71-134
Perfluoro[13C8]Oc	tanoic Acid (M8PFOA)		98			62-129
1H,1H,2H,2H-Perfl	uoro[1,2-13C2]Octanesulfonic A	cid (M2-6:2FTS)	282	Q		14-147
Perfluoro[13C9]No	nanoic Acid (M9PFNA)		115			59-139
Perfluoro[13C8]Oc	tanesulfonic Acid (M8PFOS)		105			69-131
Perfluoro[1,2,3,4,5	,6-13C6]Decanoic Acid (M6PFD	DA)	88			62-124
1H,1H,2H,2H-Perfl	uoro[1,2-13C2]Decanesulfonic	Acid (M2-8:2FTS)	233	Q		10-162
N-Deuteriomethylp	erfluoro-1-octanesulfonamidoac	etic Acid (d3-NMeFOSAA)	69			24-116
Perfluoro[1,2,3,4,5	,6,7-13C7]Undecanoic Acid (M7	-PFUDA)	69			55-137
Perfluoro[13C8]Oc	tanesulfonamide (M8FOSA)		24			5-112
N-Deuterioethylper	fluoro-1-octanesulfonamidoacet	tic Acid (d5-NEtFOSAA)	66			27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)		55			48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTED	DA)	78			22-136
2,3,3,3-Tetrafluoro (M3HFPO-DA)	-2-[1,1,2,2,3,3,3-Heptafluoropro	poxy]-13C3-Propanoic Acid	119			10-165
Perfluoro[13C2]He	xadecanoic Acid (M2PFHxDA)		48			10-206

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2244025-04 HA22-10(OW) MACHIAS, ME		Date Collected: Date Received: Field Prep:	08/15/22 16:00 08/16/22 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8270D 08/20/22 20:12 EK		Extraction Method Extraction Date:	d: EPA 3510C 08/19/22 15:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	

			Serial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				

-	-							
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
2-Nitroaniline	ND		ug/l	5.0		1		
3-Nitroaniline	ND		ug/l	5.0		1		
4-Nitroaniline	ND		ug/l	5.0		1		
Dibenzofuran	ND		ug/l	2.0		1		
n-Nitrosodimethylamine	ND		ug/l	2.0		1		
2,4,6-Trichlorophenol	ND		ug/l	5.0		1		
p-Chloro-m-cresol	ND		ug/l	2.0		1		
2-Chlorophenol	ND		ug/l	2.0		1		
2,4-Dichlorophenol	ND		ug/l	5.0		1		
2,4-Dimethylphenol	ND		ug/l	5.0		1		
2-Nitrophenol	ND		ug/l	10		1		
4-Nitrophenol	ND		ug/l	10		1		
2,4-Dinitrophenol	ND		ug/l	20		1		
4,6-Dinitro-o-cresol	ND		ug/l	10		1		
Phenol	ND		ug/l	5.0		1		
2-Methylphenol	ND		ug/l	5.0		1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1		
2,4,5-Trichlorophenol	ND		ug/l	5.0		1		
Benzoic Acid	ND		ug/l	50		1		
Benzyl Alcohol	ND		ug/l	2.0		1		
Carbazole	2.1		ug/l	2.0		1		
Pyridine	ND		ug/l	3.5		1		

53 45	21-120 10-120
45	10-120
62	23-120
64	15-120
97	10-120
71	41-149
	97

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	08/19/22 15:58
Analytical Date:	08/20/22 21:05			
Analyst:	DV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	ND		ug/l	0.10		1	
2-Chloronaphthalene	ND		ug/l	0.20		1	
Fluoranthene	ND		ug/l	0.10		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
1-Methylnaphthalene	ND		ug/l	0.10		1	
2-Methylnaphthalene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	
Hexachlorobenzene	ND		ug/l	0.80		1	
Hexachloroethane	ND		ug/l	0.80		1	

					S	Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025
Project Number:	130749				Report	Date:	08/25/22
		SAMP		S			
Lab ID:	L2244025-04				Date Coll	ected:	08/15/22 16:00
Client ID:	HA22-10(OW)				Date Rec	eived:	08/16/22
Sample Location:	MACHIAS, ME				Field Pre	p:	Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Somivolatila Organ	Non	thorough L	ah.				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	55	41-149

		Serial_No:	:08252219:47
MOOT MACHIAS LF		Lab Number:	L2244025
130749		Report Date:	08/25/22
	SAMPLE RESULTS		
L2244025-04		Date Collected:	08/15/22 16:00
HA22-10(OW)		Date Received:	08/16/22
MACHIAS, ME		Field Prep:	Refer to COC
Water		Extraction Method:	: ALPHA 23528
134,LCMSMS-ID		Extraction Date:	08/17/22 17:51
08/18/22 16:33			
MP			
	130749 L2244025-04 HA22-10(OW) MACHIAS, ME Water 134,LCMSMS-ID 08/18/22 16:33	130749 SAMPLE RESULTS L2244025-04 HA22-10(OW) MACHIAS, ME Water 134,LCMSMS-ID 08/18/22 16:33	MOOT MACHIAS LF Lab Number: 130749 SAMPLE RESULTS L2244025-04 HA22-10(OW) MACHIAS, ME Water 134,LCMSMS-ID 08/18/22 16:33 Lab Number: Lab Number: Report Date: Lab Number: Report Date: Lab Number: Report Date: Repo

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	6.28		ng/l	1.84		1		
Perfluoropentanoic Acid (PFPeA)	8.83		ng/l	1.84		1		
Perfluorobutanesulfonic Acid (PFBS)	2.01		ng/l	1.84		1		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.84		1		
Perfluorohexanoic Acid (PFHxA)	13.9		ng/l	1.84		1		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.84		1		
Perfluoroheptanoic Acid (PFHpA)	14.5		ng/l	1.84		1		
Perfluorohexanesulfonic Acid (PFHxS)	19.1	F	ng/l	1.84		1		
Perfluorooctanoic Acid (PFOA)	71.2		ng/l	1.84		1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.49		ng/l	1.84		1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.84		1		
Perfluorononanoic Acid (PFNA)	4.60		ng/l	1.84		1		
Perfluorooctanesulfonic Acid (PFOS)	72.0		ng/l	1.84		1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.84		1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.84		1		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.84		1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.84		1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.84		1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.84		1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.84		1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	4.75		ng/l	1.84		1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.84		1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.84		1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.84		1		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	46.1		1		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.84		1		
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.69		1		

				Se	erial_N	0:08252219:47
Project Name:	MOOT MACHIAS LF			Lab Num	ber:	L2244025
Project Number:	130749			Report D	ate:	08/25/22
		SAMPLE RESU	LTS			
Lab ID:	L2244025-04			Date Colle	cted:	08/15/22 16:00
Client ID:	HA22-10(OW)			Date Rece		08/16/22
Sample Location:	MACHIAS, ME			Field Prepa		Refer to COC
Sample Depth:						
Parameter		Result Qualifie	er Units	RL	MDL	Dilution Factor
Perfluorinated Alky	I Acids by Isotope Dilutior	n - Mansfield Lab				
Perfluorooctadecanoic Ac	sid (PFODA)	ND	ng/l	3.69		1
PFAS, Total (6)		181	ng/l	1.84		1
					٨٥	cceptance
Surrogate (Extra	cted Internal Standard)		% Recovery	Qualifier		Criteria
Perfluoro[13C4]Bu	tanoic Acid (MPFBA)		96			58-132
Perfluoro[13C5]Pe	ntanoic Acid (M5PFPEA)		103			62-163
Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3PFB	S)	96			70-131
1H,1H,2H,2H-Perf	luoro[1,2-13C2]Hexanesulfonic	Acid (M2-4:2FTS)	250	Q		12-142
Perfluoro[1,2,3,4,6	-13C5]Hexanoic Acid (M5PFHx)	A)	74			57-129
Perfluoro[1,2,3,4-1	3C4]Heptanoic Acid (M4PFHpA)	82			60-129
Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M3PFF	łxS)	97			71-134
Perfluoro[13C8]Oc	tanoic Acid (M8PFOA)		99			62-129
1H,1H,2H,2H-Perf	luoro[1,2-13C2]Octanesulfonic A	Acid (M2-6:2FTS)	267	Q		14-147
Perfluoro[13C9]No	nanoic Acid (M9PFNA)		119			59-139
Perfluoro[13C8]Oc	tanesulfonic Acid (M8PFOS)		109			69-131
Perfluoro[1,2,3,4,5	,6-13C6]Decanoic Acid (M6PFD	PA)	93			62-124
1H,1H,2H,2H-Perf	luoro[1,2-13C2]Decanesulfonic	Acid (M2-8:2FTS)	204	Q		10-162
N-Deuteriomethylp	erfluoro-1-octanesulfonamidoac	etic Acid (d3-NMeFOSAA) 75			24-116
Perfluoro[1,2,3,4,5	,6,7-13C7]Undecanoic Acid (M7	-PFUDA)	78			55-137
Perfluoro[13C8]Oc	tanesulfonamide (M8FOSA)		21			5-112
N-Deuterioethylpe	rfluoro-1-octanesulfonamidoacet	tic Acid (d5-NEtFOSAA)	64			27-126
Perfluoro[1,2-13C2	2]Dodecanoic Acid (MPFDOA)		62			48-131
Perfluoro[1,2-13C2	2]Tetradecanoic Acid (M2PFTED	DA)	85			22-136
2,3,3,3-Tetrafluoro (M3HFPO-DA)	-2-[1,1,2,2,3,3,3-Heptafluoropro	poxy]-13C3-Propanoic Ac	id 120			10-165
Perfluoro[13C2]He	xadecanoic Acid (M2PFHxDA)		49			10-206

Report Date:

Project Name: MOOT MACHIAS LF

MP

134,LCMSMS-ID

08/18/22 13:48

Project Number: 130749

Analytical Method:

Analytical Date:

Analyst:

Method Blank Analysis Batch Quality Control

Extraction Method:ALPHA 23528Extraction Date:08/17/22 17:51

L2244025

08/25/22

arameter	Result	Qualifier	Units	RL		MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield La	ab for	sample(s):	01-04	Batch:	WG1676461
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00			
1H,1H,2H,2H-Perfluorohexanesulfonic Acio (4:2FTS)	d ND		ng/l	2.00			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00			
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00			
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00			
1H,1H,2H,2H-Perfluorodecanesulfonic Acio (8:2FTS)	ND		ng/l	2.00			
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00			
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00			
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFP0 DA)	ND D-		ng/l	50.0			
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00			

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	08/18/22 13:48	Extraction Date:	08/17/22 17:51
Analyst:	MP		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	ab for s.	ample(s): 01-04	Batch:	WG1676461-1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	4.00		
Perfluorooctadecanoic Acid (PFODA)	ND		ng/l	4.00		
PFAS, Total (6)	ND		ng/l	2.00		

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	107	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	135	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	85	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	105	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	103	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	110	62-129
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	83	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	122	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	104	62-124
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	86	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	71	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	40	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	108	22-136
,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid M3HFPO-DA)	143	10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	68	10-206

Report Date:

Project Name: MOOT MACHIAS LF

1,8270D

CMM

08/20/22 14:10

Project Number: 130749

Analytical Method:

Analytical Date:

Analyst:

Method Blank Analysis Batch Quality Control

Extraction Method: EPA 3510C Extraction Date: 08/19/22 15:44

L2244025

08/25/22

arameter	Result	Qualifier Units	RL		MDL
emivolatile Organics by GC/MS	6 - Westborougł	n Lab for sample(s)	: 01-04	Batch:	WG1677442-1
Acenaphthene	ND	ug/l	2.0		
Benzidine	ND	ug/l	20		
1,2,4-Trichlorobenzene	ND	ug/l	5.0		
Hexachlorobenzene	ND	ug/l	2.0		
Bis(2-chloroethyl)ether	ND	ug/l	2.0		
2-Chloronaphthalene	ND	ug/l	2.0		
1,2-Dichlorobenzene	ND	ug/l	2.0		
1,3-Dichlorobenzene	ND	ug/l	2.0		
1,4-Dichlorobenzene	ND	ug/l	2.0		
3,3'-Dichlorobenzidine	ND	ug/l	5.0		
2,4-Dinitrotoluene	ND	ug/l	5.0		
2,6-Dinitrotoluene	ND	ug/l	5.0		
Azobenzene	ND	ug/l	2.0		
Fluoranthene	ND	ug/l	2.0		
4-Chlorophenyl phenyl ether	ND	ug/l	2.0		
4-Bromophenyl phenyl ether	ND	ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0		
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l	2.0		
Hexachlorocyclopentadiene	ND	ug/l	20		
Hexachloroethane	ND	ug/l	2.0		
Isophorone	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.0		
Nitrobenzene	ND	ug/l	2.0		
NDPA/DPA	ND	ug/l	2.0		
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0		
Butyl benzyl phthalate	ND	ug/l	5.0		

Report Date:

Project Name: MOOT MACHIAS LF

Project Number: 130749

Method I

Method Blank Analysis Batch Quality Control

Extraction Method: EPA 3510C

L2244025

08/25/22

Analytical Method: Analytical Date: Analyst:

1,8270D 08/20/22 14:10 CMM

Extraction Date: 08/19/22 15:44

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-04	Batch:	WG1677442-1
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	2.0		
Benzo(a)pyrene	ND		ug/l	2.0		
Benzo(b)fluoranthene	ND		ug/l	2.0		
Benzo(k)fluoranthene	ND		ug/l	2.0		
Chrysene	ND		ug/l	2.0		
Acenaphthylene	ND		ug/l	2.0		
Anthracene	ND		ug/l	2.0		
Benzo(ghi)perylene	ND		ug/l	2.0		
Fluorene	ND		ug/l	2.0		
Phenanthrene	ND		ug/l	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		
Pyrene	ND		ug/l	2.0		
Biphenyl	ND		ug/l	2.0		
Aniline	ND		ug/l	2.0		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	2.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	5.0		
Dibenzofuran	ND		ug/l	2.0		
2-Methylnaphthalene	ND		ug/l	2.0		
n-Nitrosodimethylamine	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		

Report Date:

Project Name: MOOT MACHIAS LF

Project Number: 130749

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8270D 08/20/22 14:10 CMM Extraction Method: EPA 3510C Extraction Date: 08/19/22 15:44

L2244025

08/25/22

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/MS	6 - Westborough	Lab for sample(s)	: 01-04	Batch: WG16	77442-1
2,4-Dichlorophenol	ND	ug/l	5.0		
2,4-Dimethylphenol	ND	ug/l	5.0		
2-Nitrophenol	ND	ug/l	10		
4-Nitrophenol	ND	ug/l	10		
2,4-Dinitrophenol	ND	ug/l	20		
4,6-Dinitro-o-cresol	ND	ug/l	10		
Pentachlorophenol	ND	ug/l	10		
Phenol	ND	ug/l	5.0		
2-Methylphenol	ND	ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0		
2,4,5-Trichlorophenol	ND	ug/l	5.0		
Benzoic Acid	ND	ug/l	50		
Benzyl Alcohol	ND	ug/l	2.0		
Carbazole	ND	ug/l	2.0		
Pyridine	ND	ug/l	3.5		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	82	10-120
4-Terphenyl-d14	65	41-149

Project Name:MOOT MACHIAS LFLab Number:Project Number:130749Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM
Analytical Date:	08/21/22 11:38
Analyst:	JJW

Extraction Method: EPA 3510C Extraction Date: 08/19/22 15:43

L2244025

08/25/22

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC	/MS-SIM - Westbo	rough Lab for sample(s): 01-04	Batch:	WG1677444-1
Acenaphthene	ND	ug/l	0.10		
2-Chloronaphthalene	ND	ug/l	0.20		
Fluoranthene	ND	ug/l	0.10		
Hexachlorobutadiene	ND	ug/l	0.50		
Naphthalene	0.25	ug/l	0.10		
Benzo(a)anthracene	ND	ug/l	0.10		
Benzo(a)pyrene	ND	ug/l	0.10		
Benzo(b)fluoranthene	ND	ug/l	0.10		
Benzo(k)fluoranthene	ND	ug/l	0.10		
Chrysene	ND	ug/l	0.10		
Acenaphthylene	ND	ug/l	0.10		
Anthracene	ND	ug/l	0.10		
Benzo(ghi)perylene	ND	ug/l	0.10		
Fluorene	ND	ug/l	0.10		
Phenanthrene	ND	ug/l	0.10		
Dibenzo(a,h)anthracene	ND	ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		
Pyrene	ND	ug/l	0.10		
1-Methylnaphthalene	ND	ug/l	0.10		
2-Methylnaphthalene	ND	ug/l	0.10		
Pentachlorophenol	ND	ug/l	0.80		
Hexachlorobenzene	ND	ug/l	0.80		
Hexachloroethane	ND	ug/l	0.80		

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		Method Blank Analysis Batch Quality Control		
Analytical Method:	1,8270D-SIM		Extraction Method:	EPA 3510C
Analytical Date:	08/21/22 11:38		Extraction Date:	08/19/22 15:43

JJW

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westb	orough Lab	for samp	le(s): 01-04	Batch: WG1677444	-1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	25	21-120
Phenol-d6	19	10-120
Nitrobenzene-d5	31	23-120
2-Fluorobiphenyl	30	15-120
2,4,6-Tribromophenol	41	10-120
4-Terphenyl-d14	26	Q 41-149

Project Number: 130749

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limit	5
Perfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfield Lab	Associated sample(s)	: 01-04 Batch	: WG1676461-2			
Perfluorobutanoic Acid (PFBA)	91	-		67-148	-	30	
Perfluoropentanoic Acid (PFPeA)	93	-		63-161	-	30	
Perfluorobutanesulfonic Acid (PFBS)	95	-		65-157	-	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	104	-		37-219	-	30	
Perfluorohexanoic Acid (PFHxA)	91	-		69-168	-	30	
Perfluoropentanesulfonic Acid (PFPeS)	97	-		52-156	-	30	
Perfluoroheptanoic Acid (PFHpA)	93	-		58-159	-	30	
Perfluorohexanesulfonic Acid (PFHxS)	112	-		69-177	-	30	
Perfluorooctanoic Acid (PFOA)	90	-		63-159	-	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	105	-		49-187	-	30	
Perfluoroheptanesulfonic Acid (PFHpS)	84	-		61-179	-	30	
Perfluorononanoic Acid (PFNA)	79	-		68-171	-	30	
Perfluorooctanesulfonic Acid (PFOS)	85	-		52-151	-	30	
Perfluorodecanoic Acid (PFDA)	88	-		63-171	-	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	132	-		56-173	-	30	
Perfluorononanesulfonic Acid (PFNS)	84	-		48-150	-	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	102	-		60-166	-	30	
Perfluoroundecanoic Acid (PFUnA)	117	-		60-153	-	30	
Perfluorodecanesulfonic Acid (PFDS)	85	-		38-156	-	30	
Perfluorooctanesulfonamide (FOSA)	91	-		46-170	-	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	91	-		45-170	-	30	
Perfluorododecanoic Acid (PFDoA)	96	-		67-153	-	30	

Project Number: 130749

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	mple(s): 01-04	Batch:	WG1676461-2			
Perfluorotridecanoic Acid (PFTrDA)	92		-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	79		-		59-182	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	83		-		57-162	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	86		-		69-143	-		30
Perfluorohexadecanoic Acid (PFHxDA)	105		-		40-167	-		30
Perfluorooctadecanoic Acid (PFODA)	19		-		10-119	-		30

Project Name: MOOT MACHIAS LF

Project Number: 130749

Lab Number: L2244025

Report Date: 08/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilutior	n - Mansfield Lab	Associated	sample(s): 01-04	Batch:	WG1676461-2				

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	106				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	128				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	86				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	105				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	111				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	89				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	122				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	111				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	91				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	96				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	44				5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	67				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	90				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	108				22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	138				10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	71				10-206

Project Number: 130749

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s)	: 01-04 Batcl	h: WG1677	7442-2 WG16774	42-3			
Acenaphthene	83		76		37-111	9		30	
Benzidine	6	Q	4	Q	10-75	42	Q	30	
1,2,4-Trichlorobenzene	81		73		39-98	10		30	
Hexachlorobenzene	96		93		40-140	3		30	
Bis(2-chloroethyl)ether	71		65		40-140	9		30	
2-Chloronaphthalene	79		75		40-140	5		30	
1,2-Dichlorobenzene	77		71		40-140	8		30	
1,3-Dichlorobenzene	75		72		40-140	4		30	
1,4-Dichlorobenzene	75		70		36-97	7		30	
3,3'-Dichlorobenzidine	77		68		40-140	12		30	
2,4-Dinitrotoluene	78		74		48-143	5		30	
2,6-Dinitrotoluene	78		75		40-140	4		30	
Azobenzene	97		87		40-140	11		30	
Fluoranthene	80		79		40-140	1		30	
4-Chlorophenyl phenyl ether	84		80		40-140	5		30	
4-Bromophenyl phenyl ether	92		85		40-140	8		30	
Bis(2-chloroisopropyl)ether	67		62		40-140	8		30	
Bis(2-chloroethoxy)methane	74		69		40-140	7		30	
Hexachlorobutadiene	88		83		40-140	6		30	
Hexachlorocyclopentadiene	91		83		40-140	9		30	
Hexachloroethane	82		81		40-140	1		30	
Isophorone	75		67		40-140	11		30	
Naphthalene	100		73		40-140	31	Q	30	

Project Number: 130749

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits					
Semivolatile Organics by GC/MS - We	emivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1677442-2 WG1677442-3										
Nitrobenzene	78		75	40-140	4	30					
NDPA/DPA	84		81	40-140	4	30					
n-Nitrosodi-n-propylamine	75		75	29-132	0	30					
Bis(2-ethylhexyl)phthalate	101		100	40-140	1	30					
Butyl benzyl phthalate	88		92	40-140	4	30					
Di-n-butylphthalate	89		86	40-140	3	30					
Di-n-octylphthalate	100		98	40-140	2	30					
Diethyl phthalate	90		86	40-140	5	30					
Dimethyl phthalate	80		77	40-140	4	30					
Benzo(a)anthracene	89		84	40-140	6	30					
Benzo(a)pyrene	93		86	40-140	8	30					
Benzo(b)fluoranthene	91		82	40-140	10	30					
Benzo(k)fluoranthene	91		84	40-140	8	30					
Chrysene	82		78	40-140	5	30					
Acenaphthylene	81		77	45-123	5	30					
Anthracene	80		78	40-140	3	30					
Benzo(ghi)perylene	80		74	40-140	8	30					
Fluorene	84		79	40-140	6	30					
Phenanthrene	80		74	40-140	8	30					
Dibenzo(a,h)anthracene	78		74	40-140	5	30					
Indeno(1,2,3-cd)pyrene	89		84	40-140	6	30					
Pyrene	80		78	26-127	3	30					
Biphenyl	82		78	40-140	5	30					

Project Number: 130749 Lab Number: L2244025

Report Date: 08/25/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - West	oorough Lab Associa	ated sample(s)	01-04 Batch	: WG167	7442-2 WG16774	42-3	
Aniline	40		36	Q	40-140	11	30
4-Chloroaniline	77		85		40-140	10	30
1-Methylnaphthalene	94		82		41-103	14	30
2-Nitroaniline	77		79		52-143	3	30
3-Nitroaniline	75		70		25-145	7	30
4-Nitroaniline	80		79		51-143	1	30
Dibenzofuran	84		81		40-140	4	30
2-Methylnaphthalene	120		109		40-140	10	30
n-Nitrosodimethylamine	51		51		22-74	0	30
2,4,6-Trichlorophenol	89		89		30-130	0	30
p-Chloro-m-cresol	90		86		23-97	5	30
2-Chlorophenol	78		75		27-123	4	30
2,4-Dichlorophenol	85		79		30-130	7	30
2,4-Dimethylphenol	74		75		30-130	1	30
2-Nitrophenol	79		75		30-130	5	30
4-Nitrophenol	73		71		10-80	3	30
2,4-Dinitrophenol	68		75		20-130	10	30
4,6-Dinitro-o-cresol	74		71		20-164	4	30
Pentachlorophenol	85		92		9-103	8	30
Phenol	56		54		12-110	4	30
2-Methylphenol	75		71		30-130	5	30
3-Methylphenol/4-Methylphenol	77		69		30-130	11	30
2,4,5-Trichlorophenol	89		89		30-130	0	30

Project Name: MOOT MACHIAS LF

Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Semivolatile Organics by GC/MS - Westborc	ough Lab Associa	ated sample(s)	: 01-04 Batch	: WG167	7442-2 WG16774	42-3		
Benzoic Acid	0	Q	0	Q	10-164	NC	30	
Benzyl Alcohol	80		74		26-116	8	30	
Carbazole	85		82		55-144	4	30	
Pyridine	22		18		10-66	20	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	72	67	21-120
Phenol-d6	66	59	10-120
Nitrobenzene-d5	85	76	23-120
2-Fluorobiphenyl	83	79	15-120
2,4,6-Tribromophenol	120	115	10-120
4-Terphenyl-d14	86	87	41-149

Lab Control Sample Analysis

Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

Lab Number: L2244025 Report Date: 08/25/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04 Batch: WG1677444-2 WG1677444-3 Acenaphthene 72 67 40-140 7 40 2-Chloronaphthalene 66 61 40-140 8 40 Fluoranthene 67 69 40-140 3 40 Hexachlorobutadiene 76 67 40-140 13 40 Q 62 40-140 Q 40 Naphthalene 173 94 Benzo(a)anthracene 72 75 40-140 4 40 Benzo(a)pyrene 66 68 40-140 3 40 Benzo(b)fluoranthene 77 76 40-140 40 1 Benzo(k)fluoranthene 77 81 40-140 5 40 Chrysene 80 76 40-140 5 40 Acenaphthylene 62 57 40-140 8 40 Anthracene 68 66 40-140 3 40 Benzo(ghi)perylene 82 82 40-140 0 40 40-140 40 Fluorene 71 69 3 Phenanthrene 70 68 40-140 3 40 Dibenzo(a,h)anthracene 85 86 40-140 40 1 Indeno(1,2,3-cd)pyrene 89 40-140 3 40 86 69 40-140 40 Pyrene 67 3 1-Methylnaphthalene 40-140 67 60 11 40 2-Methylnaphthalene 72 60 40-140 18 40 Pentachlorophenol 87 86 40-140 40 1 Hexachlorobenzene 86 80 40-140 7 40 Hexachloroethane 65 57 40-140 13 40

Project Name: MOOT MACHIAS LF

Project Number: 130749

 Lab Number:
 L2244025

 Benert Date:
 08/25/22

Report Date: 08/25/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - V	Vestborough Lab As	sociated sa	mple(s): 01-04	Batch: WG	21677444-2 WC1				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	58	53	21-120
Phenol-d6	48	45	10-120
Nitrobenzene-d5	69	65	23-120
2-Fluorobiphenyl	67	64	15-120
2,4,6-Tribromophenol	98	101	10-120
4-Terphenyl-d14	60	63	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

_

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is Sample	otope Dilutior	n - Mansfield	Lab Assoc	iated sample(s):	01-04	QC Batch	ID: WG167646	1-3	QC Sample:	L22432	18-01	Client ID:	MS
Perfluorobutanoic Acid (PFBA)	15.4	37.8	50.1	92		-	-		67-148	-		30	
Perfluoropentanoic Acid (PFPeA)	23.8	37.8	57.8	90		-	-		63-161	-		30	
Perfluorobutanesulfonic Acid (PFBS)	26.4	33.6	58.3	95		-	-		65-157	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	35.5	38.4	108		-	-		37-219	-		30	
Perfluorohexanoic Acid (PFHxA)	38.4	37.8	73.2	92		-	-		69-168	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	35.6	36.1	101		-	-		52-156	-		30	
Perfluoroheptanoic Acid (PFHpA)	66.2	37.8	101	92		-	-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	34.6	40.0	112		-	-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	161	37.8	197	95		-	-		63-159	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	36	39.2	109		-	-		49-187	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	36.1	33.9	94		-	-		61-179	-		30	
Perfluorononanoic Acid (PFNA)	ND	37.8	30.2	79		-	-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	ND	35.1	34.2	94		-	-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	ND	37.8	33.2	88		-	-		63-171	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	36.3	45.4	125		-	-		56-173	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	36.4	31.7	87		-	-		48-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	37.8	36.8	97		-	-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	ND	37.8	43.3	114		-	-		60-153	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	36.5	33.0	90		-	-		38-156	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	37.8	35.4	94		-	-		46-170	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	37.8	37.2	98		-	-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	ND	37.8	37.0	98		-	-		67-153	-		30	

Matrix Spike Analysis

Project Name: Project Number:	MOOT MACHI 130749	AS LF		Ba	atch Quality Cont	trol	Lab Number: Report Date:	L2244025 08/25/22	
	Native	MS	MS	MS	MSD	MSD	Recovery	RPD	

Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Perfluorinated Alkyl Acids by Is Sample	sotope Dilutio	n - Mansfield	Lab Associ	ated sample(s)	: 01-04	QC Batch	ID: WG167646	1-3 (QC Sample:	L22432	18-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	37.8	36.1	95		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	37.8	31.0	82		-	-		59-182	-		30

	MS	5	MS	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	89				10-162
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	108				12-142
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	82				14-147
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	46				27-126
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	46				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	74				55-137
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	80				62-124
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	71				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	69				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100				71-134
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	95				22-136
Perfluoro[13C4]Butanoic Acid (MPFBA)	69				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	83				62-163
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	9				5-112
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106				69-131
Perfluoro[13C8]Octanoic Acid (M8PFOA)	72				62-129
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90				59-139
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103				70-131

Lab Duplicate Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Lab Number: Report Date:

L2244025 08/25/22

Project Number: 130749

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by Isotope Dilution - N				76461-4	QC Sample: L2243218-02 Client
Perfluorobutanoic Acid (PFBA)	12.5	12.6	ng/l	1	30
Perfluoropentanoic Acid (PFPeA)	21.1	21.1	ng/l	0	30
Perfluorobutanesulfonic Acid (PFBS)	26.4	26.9	ng/l	2	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	33.9	35.4	ng/l	4	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	58.8	59.9	ng/l	2	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	112	118	ng/l	5	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Report Date: (

Lab Number:

L2244025 08/25/22

Project Number: 130749

Parameter	Native Sample	Duplicate Sam	nple Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - ID: DUP Sample	Mansfield Lab Associated sa	mple(s): 01-04 (QC Batch ID: WG167	6461-4 (QC Sample: L2243218-02 Cl	lient
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30	

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
– Perfluoro[13C4]Butanoic Acid (MPFBA)	61		64		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	74		78		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	111		94		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	99		82		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	58		61		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	58	Q	60		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	107		91		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	62		66		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	81		69		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	74		76		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110		112		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	73		71		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	93		79		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	40		41		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	71		70		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6		7		5-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	34		42		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	69		70		48-131	

Project Name: Project Number:	MOOT MACHIAS LF 130749		Lab Duplica Batch Qua	ate Analy ality Control		Lab Num Report Da		L2244025 08/25/22
Parameter		Native Sample	Duplicate Sa	imple U	nits RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acid: D: DUP Sample	s by Isotope Dilution - Mar	sfield Lab Associated sa	ample(s): 01-04	QC Batch II	D: WG1676461-4	QC Sample:	L2243218	8-02 Client
a						Acceptanc	e	

- -

Surrogate (Extracted Internal Standard)	%Recovery Qual	ifier %Recovery Qualifie	er Criteria	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	91	92	22-136	

PESTICIDES

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	1: EPA 3510C
Analytical Method:	1,8081B		Extraction Date:	08/21/22 17:30
Analytical Date:	08/22/22 12:59			
Analyst:	AKM			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		ug/l	0.014		1	A
Lindane	ND		ug/l	0.014		1	А
Alpha-BHC	ND		ug/l	0.014		1	А
Beta-BHC	ND		ug/l	0.014		1	А
Heptachlor	ND		ug/l	0.014		1	A
Aldrin	ND		ug/l	0.014		1	А
Heptachlor epoxide	ND		ug/l	0.014		1	А
Endrin	ND		ug/l	0.029		1	А
Endrin aldehyde	ND		ug/l	0.029		1	А
Endrin ketone	ND		ug/l	0.029		1	А
Dieldrin	ND		ug/l	0.029		1	А
4,4'-DDE	ND		ug/l	0.029		1	А
4,4'-DDD	ND		ug/l	0.029		1	А
4,4'-DDT	ND		ug/l	0.029		1	А
Endosulfan I	ND		ug/l	0.014		1	А
Endosulfan II	ND		ug/l	0.029		1	А
Endosulfan sulfate	ND		ug/l	0.029		1	А
Methoxychlor	ND		ug/l	0.143		1	А
Toxaphene	ND		ug/l	0.143		1	А
Chlordane	ND		ug/l	0.143		1	А
cis-Chlordane	ND		ug/l	0.014		1	А
trans-Chlordane	ND		ug/l	0.014		1	А

						Serial_No	0:08252219:47	
Project Name:	MOOT MACHIAS LF				Lab N	umber:	L2244025	
Project Number:	130749				Repor	t Date:	08/25/22	
		SAMP	LE RESULTS	6				
Lab ID:	L2244025-01				Date Co	llected:	08/15/22 14:40	
Client ID:	HA22-2(OW)				Date Re	eceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pr	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC -	· Westborough Lab							

% Recovery	Qualifier	Acceptance Criteria	Column
74		30-150	А
72		30-150	А
78		30-150	В
81		30-150	В
	74 72 78	74 72 78	% Recovery Qualifier Criteria 74 30-150 72 30-150 78 30-150

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	l: EPA 8151A
Analytical Method:	1,8151A		Extraction Date:	08/19/22 14:02
Analytical Date:	08/20/22 22:43			
Analyst:	EJL			
Methylation Date:	08/20/22 09:59			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Chlorinated Herbicides by GC - Westborough Lab											
MCPP	ND		ug/l	500		1	A				
МСРА	ND		ug/l	500		1	А				
Dalapon	ND		ug/l	20.0		1	А				
Dicamba	ND		ug/l	1.00		1	А				
Dichloroprop	ND		ug/l	10.0		1	А				
2,4-D	ND		ug/l	10.0		1	А				
2,4-DB	ND		ug/l	10.0		1	А				
2,4,5-T	ND		ug/l	2.00		1	А				
2,4,5-TP (Silvex)	ND		ug/l	2.00		1	А				
Dinoseb	ND		ug/l	5.00		1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	126		30-150	A
DCAA	124		30-150	В

			Serial_No	p:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2244025-02 HA22-8(OW) MACHIAS, ME		Date Collected: Date Received: Field Prep:	08/15/22 12:00 08/16/22 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8081B 08/22/22 13:10 AKM		Extraction Method Extraction Date:	d: EPA 3510C 08/21/22 17:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		ug/l	0.014		1	А
Lindane	ND		ug/l	0.014		1	А
Alpha-BHC	ND		ug/l	0.014		1	А
Beta-BHC	ND		ug/l	0.014		1	А
Heptachlor	ND		ug/l	0.014		1	А
Aldrin	ND		ug/l	0.014		1	А
Heptachlor epoxide	ND		ug/l	0.014		1	А
Endrin	ND		ug/l	0.029		1	А
Endrin aldehyde	ND		ug/l	0.029		1	А
Endrin ketone	ND		ug/l	0.029		1	А
Dieldrin	ND		ug/l	0.029		1	А
4,4'-DDE	ND		ug/l	0.029		1	А
4,4'-DDD	ND		ug/l	0.029		1	А
4,4'-DDT	ND		ug/l	0.029		1	А
Endosulfan I	ND		ug/l	0.014		1	А
Endosulfan II	ND		ug/l	0.029		1	А
Endosulfan sulfate	ND		ug/l	0.029		1	А
Methoxychlor	ND		ug/l	0.143		1	А
Toxaphene	ND		ug/l	0.143		1	А
Chlordane	ND		ug/l	0.143		1	А
cis-Chlordane	ND		ug/l	0.014		1	А
trans-Chlordane	ND		ug/l	0.014		1	А

	Serial_No:08252219:47							
Project Name:	MOOT MACHIAS LF				Lab Nu	umber:	L2244025	
Project Number:	130749				Report	t Date:	08/25/22	
		SAMPI	LE RESULTS	5				
Lab ID: Client ID: Sample Location:	L2244025-02 HA22-8(OW) MACHIAS, ME				Date Co Date Re Field Pre	ceived:	08/15/22 12:00 08/16/22 Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC -	Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	А
Decachlorobiphenyl	58		30-150	А
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	63		30-150	В

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 8151A
Analytical Method:	1,8151A		Extraction Date:	08/19/22 14:02
Analytical Date:	08/20/22 23:01			
Analyst:	EJL			
Methylation Date:	08/20/22 09:59			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC - We	estborough Lab						
MCPP	ND		ug/l	500		1	A
МСРА	ND		ug/l	500		1	А
Dalapon	ND		ug/l	20.0		1	А
Dicamba	ND		ug/l	1.00		1	А
Dichloroprop	ND		ug/l	10.0		1	А
2,4-D	ND		ug/l	10.0		1	А
2,4-DB	ND		ug/l	10.0		1	А
2,4,5-T	ND		ug/l	2.00		1	А
2,4,5-TP (Silvex)	ND		ug/l	2.00		1	А
Dinoseb	ND		ug/l	5.00		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	123		30-150	A
DCAA	131		30-150	В

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8081B		Extraction Date:	08/21/22 17:30
Analytical Date:	08/22/22 13:22			
Analyst:	AKM			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		ug/l	0.014		1	А
Lindane	ND		ug/l	0.014		1	А
Alpha-BHC	ND		ug/l	0.014		1	A
Beta-BHC	ND		ug/l	0.014		1	A
Heptachlor	ND		ug/l	0.014		1	А
Aldrin	ND		ug/l	0.014		1	А
Heptachlor epoxide	ND		ug/l	0.014		1	А
Endrin	ND		ug/l	0.029		1	А
Endrin aldehyde	ND		ug/l	0.029		1	А
Endrin ketone	ND		ug/l	0.029		1	А
Dieldrin	ND		ug/l	0.029		1	А
4,4'-DDE	ND		ug/l	0.029		1	А
4,4'-DDD	ND		ug/l	0.029		1	А
4,4'-DDT	ND		ug/l	0.029		1	А
Endosulfan I	ND		ug/l	0.014		1	А
Endosulfan II	ND		ug/l	0.029		1	А
Endosulfan sulfate	ND		ug/l	0.029		1	А
Methoxychlor	ND		ug/l	0.143		1	А
Toxaphene	ND		ug/l	0.143		1	А
Chlordane	ND		ug/l	0.143		1	А
cis-Chlordane	ND		ug/l	0.014		1	А
trans-Chlordane	ND		ug/l	0.014		1	А

		_					0:08252219:47	
Project Name:	MOOT MACHIAS LF				Lab Nu	mber:	L2244025	
Project Number:	130749				Report	Date:	08/25/22	
		SAMP		6				
Lab ID:	L2244025-03				Date Col	llected:	08/15/22 13:30	
Client ID:	HA22-9(OW)				Date Ree	ceived:	08/16/22	
Sample Location:	MACHIAS, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC -	Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	А
Decachlorobiphenyl	80		30-150	А
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	87		30-150	В

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 8151A
Analytical Method:	1,8151A		Extraction Date:	08/19/22 14:02
Analytical Date:	08/20/22 23:20			
Analyst:	EJL			
Methylation Date:	08/20/22 09:59			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC - West	borough Lab						
MCPP	ND		ug/l	500		1	А
МСРА	ND		ug/l	500		1	А
Dalapon	ND		ug/l	20.0		1	А
Dicamba	ND		ug/l	1.00		1	А
Dichloroprop	ND		ug/l	10.0		1	А
2,4-D	ND		ug/l	10.0		1	А
2,4-DB	ND		ug/l	10.0		1	А
2,4,5-T	ND		ug/l	2.00		1	А
2,4,5-TP (Silvex)	ND		ug/l	2.00		1	А
Dinoseb	ND		ug/l	5.00		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	118		30-150	А
DCAA	123		30-150	В

			Serial_No	0:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	1: EPA 3510C
Analytical Method:	1,8081B		Extraction Date:	08/21/22 17:30
Analytical Date:	08/22/22 13:33			
Analyst:	AKM			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough L	ab						
Delta-BHC	ND		ug/l	0.014		1	A
Lindane	ND		ug/l	0.014		1	А
Alpha-BHC	ND		ug/l	0.014		1	А
Beta-BHC	ND		ug/l	0.014		1	А
Heptachlor	ND		ug/l	0.014		1	А
Aldrin	ND		ug/l	0.014		1	А
Heptachlor epoxide	ND		ug/l	0.014		1	А
Endrin	ND		ug/l	0.029		1	А
Endrin aldehyde	ND		ug/l	0.029		1	А
Endrin ketone	ND		ug/l	0.029		1	А
Dieldrin	ND		ug/l	0.029		1	А
4,4'-DDE	ND		ug/l	0.029		1	А
4,4'-DDD	ND		ug/l	0.029		1	А
4,4'-DDT	ND		ug/l	0.029		1	А
Endosulfan I	ND		ug/l	0.014		1	А
Endosulfan II	ND		ug/l	0.029		1	А
Endosulfan sulfate	ND		ug/l	0.029		1	А
Methoxychlor	ND		ug/l	0.143		1	А
Toxaphene	ND		ug/l	0.143		1	А
Chlordane	ND		ug/l	0.143		1	А
cis-Chlordane	ND		ug/l	0.014		1	А
trans-Chlordane	ND		ug/l	0.014		1	А

	Serial_No:08252219:47							
Project Name:	MOOT MACHIAS LF				Lab N	umber:	L2244025	
Project Number:	130749				Report Date:		08/25/22	
		SAMP		5				
Lab ID: Client ID: Sample Location:	L2244025-04 HA22-10(OW) MACHIAS, ME				Date Co Date Re Field Pr	ceived:	08/15/22 16:00 08/16/22 Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC -	Westborough Lab							

79		30-150	А
74		30-150	А
75		30-150	В
81		30-150	В
	74 75	74 75	74 30-150 75 30-150

			Serial_No	:08252219:47
Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 8151A
Analytical Method:	1,8151A		Extraction Date:	08/19/22 14:02
Analytical Date:	08/20/22 23:38			
Analyst:	EJL			
Methylation Date:	08/20/22 09:59			
Matrix: Analytical Method: Analytical Date:	1,8151A 08/20/22 23:38 EJL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Chlorinated Herbicides by GC - Westborough Lab										
МСРР	ND		ug/l	500		1	A			
МСРА	ND		ug/l	500		1	А			
Dalapon	ND		ug/l	20.0		1	А			
Dicamba	ND		ug/l	1.00		1	А			
Dichloroprop	ND		ug/l	10.0		1	А			
2,4-D	ND		ug/l	10.0		1	А			
2,4-DB	ND		ug/l	10.0		1	А			
2,4,5-T	ND		ug/l	2.00		1	А			
2,4,5-TP (Silvex)	ND		ug/l	2.00		1	А			
Dinoseb	ND		ug/l	5.00		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	126		30-150	А
DCAA	122		30-150	В

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:	1,8151A 08/20/22 20:35 EJL	Extraction Method: Extraction Date:	EPA 8151A 08/19/22 14:02
Methylation Date:	08/20/22 09:59		

arameter	Result	Qualifier Uni	ts	RL	MDL	Column
chlorinated Herbicides by GC	- Westborough L	ab for sample(s	s):	01-04 Batch:	WG1677401	-1
MCPP	ND	ug	g/I	500		A
MCPA	ND	ug	g/l	500		А
Dalapon	ND	ug	g/l	20.0		А
Dicamba	ND	ug	g/l	1.00		А
Dichloroprop	ND	ug	g/l	10.0		А
2,4-D	ND	ug	g/l	10.0		А
2,4-DB	ND	ug	g/l	10.0		А
2,4,5-T	ND	ug	g/l	2.00		А
2,4,5-TP (Silvex)	ND	ug	g/I	2.00		А
Dinoseb	ND	ug	g/l	5.00		А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
DCAA	116		30-150	A	
DCAA	99		30-150	В	

 Project Name:
 MOOT MACHIAS LF
 Lab Number:

 Project Number:
 130749
 Report Date:

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8081B 08/22/22 12:25 AKM Extraction Method: EPA 3510C Extraction Date: 08/21/22 17:30

arameter	Result Qu	ualifier Units	RL	MDL	Colum
esticides by GC - Westbor	ough Lab for sample(s)	: 01-04 Batch:	WG16779	01-1	
Delta-BHC	ND	ug/l	0.014		А
Lindane	ND	ug/l	0.014		А
Alpha-BHC	ND	ug/l	0.014		А
Beta-BHC	ND	ug/l	0.014		А
Heptachlor	ND	ug/l	0.014		А
Aldrin	ND	ug/l	0.014		А
Heptachlor epoxide	ND	ug/l	0.014		А
Endrin	ND	ug/l	0.029		А
Endrin aldehyde	ND	ug/l	0.029		А
Endrin ketone	ND	ug/l	0.029		А
Dieldrin	ND	ug/l	0.029		А
4,4'-DDE	ND	ug/l	0.029		А
4,4'-DDD	ND	ug/l	0.029		А
4,4'-DDT	ND	ug/l	0.029		А
Endosulfan I	ND	ug/l	0.014		А
Endosulfan II	ND	ug/l	0.029		А
Endosulfan sulfate	ND	ug/l	0.029		А
Methoxychlor	ND	ug/l	0.143		А
Toxaphene	ND	ug/l	0.143		А
Chlordane	ND	ug/l	0.143		А
cis-Chlordane	ND	ug/l	0.014		А
trans-Chlordane	ND	ug/l	0.014		А

Project Name: Project Number:	MOOT MACHIAS LF 130749		Lab Number: Report Date:	L2244025 08/25/22
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8081B 08/22/22 12:25 AKM		Extraction Method Extraction Date:	: EPA 3510C 08/21/22 17:30

Parameter	Result	Qualifier	Units	RL	MDL	Column
Pesticides by GC - Westborough	Lab for sam	ple(s): 01-04	4 Batch:	WG1677901	-1	

			e	
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	А
Decachlorobiphenyl	85		30-150	А
2,4,5,6-Tetrachloro-m-xylene	81		30-150	В
Decachlorobiphenyl	95		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749 Lab Number: L2244025

Report Date: 08/25/22

arameter	LCS %Recovery	Qual		CSD covery	gual	%Recovery Limits	RPD	Qual	RPD Limits	Column
	///////////////////////////////////////	Quui	,		Quui	Linito		Quui	Liinto	oolullilli
Chlorinated Herbicides by GC - Westborough	Lab Associate	ed sample(s):	01-04	Batch:	WG1677401-2	2 WG1677401-3				
МСРР	318	Q		304	Q	30-150	5		25	А
МСРА		Q							25	
MCPA	200	Q		190	Q	30-150	5		25	A
Dalapon	117			108		30-150	8		25	А
Dicamba	106			99		30-150	7		25	А
Dichloroprop	130			123		30-150	6		25	А
2,4-D	120			112		30-150	7		25	А
2,4-DB	99			97		30-150	2		25	А
2,4,5-T	129			118		30-150	9		25	А
2,4,5-TP (Silvex)	114			107		30-150	6		25	А
Dinoseb	75			70		30-150	7		25	А

Surrogate	LCS	LCSD	Acceptano	ce
	%Recovery	Qual %Recovery	Qual Criteria	Column
DCAA	126	118	30-150	A
DCAA	131	123	30-150	B

Lab Control Sample Analysis Batch Quality Control

Project Number: 130749 Lab Number: L2244025

Report Date: 08/25/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
esticides by GC - Westborough Lab Ass	sociated sample(s):	01-04 B	atch: WG1677901	-2 WG167	77901-3				
Delta-BHC	65		67		30-150	3		20	А
Lindane	81		78		30-150	4		20	А
Alpha-BHC	84		81		30-150	4		20	А
Beta-BHC	78		74		30-150	6		20	А
Heptachlor	81		78		30-150	4		20	А
Aldrin	86		82		30-150	5		20	А
Heptachlor epoxide	83		80		30-150	5		20	А
Endrin	83		80		30-150	4		20	А
Endrin aldehyde	67		68		30-150	2		20	А
Endrin ketone	82		81		30-150	1		20	А
Dieldrin	96		92		30-150	4		20	А
4,4'-DDE	88		84		30-150	4		20	А
4,4'-DDD	93		88		30-150	6		20	А
4,4'-DDT	90		85		30-150	5		20	А
Endosulfan I	91		83		30-150	9		20	А
Endosulfan II	80		82		30-150	2		20	А
Endosulfan sulfate	74		76		30-150	3		20	А
Methoxychlor	92		86		30-150	7		20	А
cis-Chlordane	79		76		30-150	4		20	А
trans-Chlordane	108		101		30-150	7		20	А

Lab Control Sample Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

LCSLCSD%RecoveryRPDParameter%RecoveryQualLimitsRPDQualPesticides by GC - Westborough Lab Associated sample(s):01-04Batch:WG1677901-2WG1677901-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	77	80	30-150 A
Decachlorobiphenyl	79	75	30-150 A
2,4,5,6-Tetrachloro-m-xylene	72	76	30-150 B
Decachlorobiphenyl	88	87	30-150 B

METALS

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-01		Date Collected:	08/15/22 14:40
Client ID:	HA22-2(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	<i>l</i> ansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Barium, Dissolved	0.161		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Cadmium, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Calcium, Dissolved	122		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Chromium, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Copper, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Iron, Dissolved	0.168		mg/l	0.050		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Lead, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Magnesium, Dissolved	77.6		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Manganese, Dissolved	4.07		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Mercury, Dissolved	ND		mg/l	0.00020		1	08/17/22 17:24	4 08/21/22 16:17	EPA 7470A	1,7470A	AW
Potassium, Dissolved	14.5		mg/l	2.50		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Sodium, Dissolved	412		mg/l	2.00		1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF
Dissolved Hardness	by SM 2	340B - Mar	nsfield L	ab							
Hardness	624		mg/l	0.660	NA	1	08/17/22 17:03	3 08/25/22 14:48	EPA 3005A	1,6010D	JF

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-02		Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	<i>l</i> ansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Barium, Dissolved	0.314		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Cadmium, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Calcium, Dissolved	165		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Chromium, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Copper, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Iron, Dissolved	148		mg/l	0.050		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Lead, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Magnesium, Dissolved	65.0		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Manganese, Dissolved	35.9		mg/l	0.100		10	08/17/22 17:03	3 08/25/22 15:40	EPA 3005A	1,6010D	JF
Mercury, Dissolved	ND		mg/l	0.00020		1	08/17/22 17:24	4 08/21/22 16:04	EPA 7470A	1,7470A	AW
Potassium, Dissolved	9.42		mg/l	2.50		1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF
Sodium, Dissolved	1870		mg/l	20.0		10	08/17/22 17:03	3 08/25/22 15:40	EPA 3005A	1,6010D	JF
Dissolved Hardness	by SM 2	340B - Mar	nsfield L	ab							
Hardness	680		mg/l	0.660	NA	1	08/17/22 17:03	3 08/25/22 14:33	EPA 3005A	1,6010D	JF

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-03		Date Collected:	08/15/22 13:30
Client ID:	HA22-9(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Barium, Dissolved	0.739		mg/l	0.010		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Cadmium, Dissolved	0.005		mg/l	0.005		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Calcium, Dissolved	478		mg/l	0.100		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Chromium, Dissolved	ND		mg/l	0.010		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Copper, Dissolved	ND		mg/l	0.010		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Iron, Dissolved	5.65		mg/l	0.050		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Lead, Dissolved	ND		mg/l	0.010		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Magnesium, Dissolved	198		mg/l	0.100		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Manganese, Dissolved	39.6		mg/l	0.100		10	08/17/22 17:0	3 08/25/22 15:45	EPA 3005A	1,6010D	JF
Mercury, Dissolved	ND		mg/l	0.00020		1	08/17/22 17:24	4 08/21/22 16:49	EPA 7470A	1,7470A	AW
Potassium, Dissolved	29.3		mg/l	2.50		1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF
Sodium, Dissolved	2380		mg/l	20.0		10	08/17/22 17:0	3 08/25/22 15:45	EPA 3005A	1,6010D	JF
Dissolved Hardness	by SM 2	340B - Mar	nsfield L	ab							
Hardness	2010		mg/l	0.660	NA	1	08/17/22 17:0	3 08/25/22 14:37	EPA 3005A	1,6010D	JF

Project Name:	MOOT MACHIAS LF		Lab Number:	L2244025
Project Number:	130749		Report Date:	08/25/22
		SAMPLE RESULTS		
Lab ID:	L2244025-04		Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)		Date Received:	08/16/22
Sample Location:	MACHIAS, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	lansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Barium, Dissolved	2.18		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Cadmium, Dissolved	ND		mg/l	0.005		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Calcium, Dissolved	98.3		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Chromium, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Copper, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Iron, Dissolved	96.6		mg/l	0.050		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Lead, Dissolved	ND		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Magnesium, Dissolved	21.7		mg/l	0.100		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Manganese, Dissolved	0.396		mg/l	0.010		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Mercury, Dissolved	ND		mg/l	0.00020		1	08/17/22 17:24	1 08/21/22 16:53	EPA 7470A	1,7470A	AW
Potassium, Dissolved	25.6		mg/l	2.50		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Sodium, Dissolved	500		mg/l	2.00		1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF
Dissolved Hardness	by SM 2	340B - Mar	sfield L	ab							
Hardness	335		mg/l	0.660	NA	1	08/17/22 17:03	3 08/25/22 14:43	EPA 3005A	1,6010D	JF

Project Name: MOOT MACHIAS LF Project Number: 130749
 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mans	field Lab for sample	e(s): 01-04	Batch	: WG1	676235-1				
Arsenic, Dissolved	ND	mg/l	0.005		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Barium, Dissolved	ND	mg/l	0.010		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Cadmium, Dissolved	ND	mg/l	0.005		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Calcium, Dissolved	ND	mg/l	0.100		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Chromium, Dissolved	ND	mg/l	0.010		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Copper, Dissolved	ND	mg/l	0.010		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Iron, Dissolved	ND	mg/l	0.050		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Lead, Dissolved	ND	mg/l	0.010		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Magnesium, Dissolved	ND	mg/l	0.100		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Manganese, Dissolved	ND	mg/l	0.010		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Potassium, Dissolved	ND	mg/l	2.50		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF
Sodium, Dissolved	ND	mg/l	2.00		1	08/17/22 17:03	08/25/22 14:23	1,6010D	JF

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Hardness by S	SM 2340B - Mansfield	d Lab for	sample(s): 01-0	4 Batch:	WG1676235-1			
Hardness	ND	mg/l	0.660	NA	1	08/17/22 17:03	08/25/22 14:23	3 1,6010D	JF

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mansfield Lab for sample(s): 01-04 Batch: WG1676237-1										
Mercury, Dissolved	ND		mg/l	0.00020		1	08/17/22 17:24	08/21/22 15:57	7 1,7470A	AW

Project Name: MOOT MACHIAS LF Project Number: 130749
 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis

Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

Lab Number: L2244025 Report Date: 08/25/22

LCSD %Recovery LCS **RPD** Limits %Recovery Qual %Recovery Limits RPD Parameter Qual Qual Dissolved Metals - Mansfield Lab Associated sample(s): 01-04 Batch: WG1676235-2 Arsenic, Dissolved 102 80-120 -Barium, Dissolved 97 80-120 --Cadmium, Dissolved 80-120 96 --Calcium, Dissolved 80-120 99 --Chromium, Dissolved 94 80-120 --Copper, Dissolved 98 80-120 --Iron, Dissolved 98 80-120 --Lead. Dissolved 80-120 98 -Magnesium, Dissolved 103 80-120 --Manganese, Dissolved 95 80-120 --Potassium, Dissolved 101 80-120 --Sodium. Dissolved 94 80-120 --Dissolved Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01-04 Batch: WG1676235-2 80-120 Hardness 102 -Dissolved Metals - Mansfield Lab Associated sample(s): 01-04 Batch: WG1676237-2 Mercury, Dissolved 107 80-120 --

Matrix Spike Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749 Lab Number: L2244025 **Report Date:** 08/25/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Fou	IN OB		Recovery Limits	RPD	RPD Qual Limits
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01-04 QC	Batch ID: WO	G1676235-3	QC Sample: L224	44025-01	Client ID:	HA22	2-2(OW)
Arsenic, Dissolved	ND	0.12	0.128	107				75-125	-	20
Barium, Dissolved	0.161	2	2.03	93				75-125	-	20
Cadmium, Dissolved	ND	0.053	0.049	92				75-125	-	20
Calcium, Dissolved	122	10	130	80				75-125	-	20
Chromium, Dissolved	ND	0.2	0.180	90				75-125	-	20
Copper, Dissolved	ND	0.25	0.252	101				75-125	-	20
Iron, Dissolved	0.168	1	0.995	83				75-125	-	20
Lead, Dissolved	ND	0.53	0.490	92				75-125	-	20
Magnesium, Dissolved	77.6	10	88.3	107				75-125	-	20
Manganese, Dissolved	4.07	0.5	4.45	76				75-125	-	20
Potassium, Dissolved	14.5	10	25.2	107				75-125	-	20
Sodium, Dissolved	412	10	421	90				75-125	-	20
issolved Hardness by SM 23 (OW)	340B - Mansfiel	d Lab Assoc	ciated samp	ole(s): 01-04	QC Batch ID:	WG1676235-3	QC Sam	ple: L224402	25-01	Client ID: HA2
Hardness	624	66.2	687	95				75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01-04 QC	Batch ID: WO	G1676237-3	QC Sample: L224	44025-02	2 Client ID:	HA22	2-8(OW)
Mercury, Dissolved	ND	0.005	0.00511	102				75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Project Number: 130749

arameter	Native Sample	Duplicate Sa	ample Units	RPD	Qual	RPD Limits
ssolved Metals - Mansfield Lab Associated sample(s	: 01-04 QC Batch ID:	WG1676235-4	QC Sample: L22	244025-01 Cli	ent ID: HA22	·2(OW)
Arsenic, Dissolved	ND	ND	mg/l	NC		20
Barium, Dissolved	0.161	0.155	mg/l	4		20
Cadmium, Dissolved	ND	ND	mg/l	NC		20
Calcium, Dissolved	122	119	mg/l	2		20
Chromium, Dissolved	ND	ND	mg/l	NC		20
Copper, Dissolved	ND	ND	mg/l	NC		20
Iron, Dissolved	0.168	ND	mg/l	NC		20
Lead, Dissolved	ND	ND	mg/l	NC		20
Magnesium, Dissolved	77.6	77.0	mg/l	1		20
Manganese, Dissolved	4.07	3.97	mg/l	2		20
Potassium, Dissolved	14.5	14.0	mg/l	4		20
Sodium, Dissolved	412	400	mg/l	3		20
ssolved Hardness by SM 2340B - Mansfield Lab Ass DW)	ociated sample(s): 01-04	4 QC Batch ID:	WG1676235-4	QC Sample:	L2244025-01	Client ID: HA22
Hardness	624	614	mg/l	2		20
solved Metals - Mansfield Lab Associated sample(s)): 01-04 QC Batch ID:	WG1676237-4	QC Sample: L22	244025-02 Cli	ent ID: HA22	-8(OW)
Mercury, Dissolved	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: MOOT MACHIAS LF Project Number: 130749

Lab ID:	L2244025-01		Date Colle	cted:	08/15/22 14:40	
Client ID:	HA22-2(OW)		Date Rece	ived:	08/16/22	
Sample Location:	MACHIAS, ME		Field Prep	:	Refer to COC	
Sample Depth: Matrix:	Water					
		Dilution	Date	Date	Analytical	

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - Westborough Lab											
Alkalinity, Total	405.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT		
Alkalinity, Bicarbonate	405.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT		
Nitrogen, Ammonia	0.803	mg/l	0.075		1	08/22/22 13:50	08/22/22 20:10	121,4500NH3-BH	AT		
Chemical Oxygen Demand	47.	mg/l	20		1	08/17/22 09:00	08/17/22 12:08	121,5220D	CN		
Total Organic Carbon	3.31	mg/l	1.00		2	-	08/17/22 10:01	121,5310C	DW		
Anions by Ion Chromatography - Westborough Lab											
Bromide	1.83	mg/l	0.050		1	-	08/19/22 17:13	44,300.0	AT		

Project Name: MOOT MACHIAS LF Project Number: 130749

Lab ID:	L2244025-02	Date Collected:	08/15/22 12:00
Client ID:	HA22-8(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Refer to COC
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
General Chemistry - Westborough Lab												
Alkalinity, Total	64.2	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT			
Alkalinity, Bicarbonate	64.2	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT			
Nitrogen, Ammonia	5.89	mg/l	0.075		1	08/22/22 13:50	08/22/22 20:13	121,4500NH3-BH	AT			
Chemical Oxygen Demand	250	mg/l	20		1	08/17/22 09:00	08/17/22 12:08	121,5220D	CN			
Total Organic Carbon	4.14	mg/l	2.00		4	-	08/17/22 10:23	121,5310C	DW			
Anions by Ion Chromatography - Westborough Lab												
Bromide	9.39	mg/l	1.25		25	-	08/19/22 21:02	44,300.0	AT			

Project Name: MOOT MACHIAS LF Project Number: 130749

Lab ID:	L2244025-03		Date Colle	cted:	08/15/22 13:30	
Client ID:	HA22-9(OW)		Date Rece	ived:	08/16/22	
Sample Location:	MACHIAS, ME		Field Prep	:	Refer to COC	
Sample Depth: Matrix:	Water					
		Dilution	Date	Data	Analytical	

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)							
Alkalinity, Total	380.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT
Alkalinity, Bicarbonate	380.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT
Nitrogen, Ammonia	0.150	mg/l	0.075		1	08/22/22 13:50	08/22/22 20:17	121,4500NH3-BH	H AT
Chemical Oxygen Demand	370	mg/l	20		1	08/17/22 09:00	08/17/22 12:16	121,5220D	CN
Total Organic Carbon	3.62	mg/l	2.00		4	-	08/17/22 12:08	121,5310C	DW
Anions by Ion Chromatog	raphy - West	borough Lab							
Bromide	6.06	mg/l	2.50		50	-	08/19/22 20:51	44,300.0	AT

Project Name: MOOT MACHIAS LF

Project Number: 130749

SAMPLE RESULTS

Lab ID:	L2244025-04	Date Collected:	08/15/22 16:00
Client ID:	HA22-10(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Refer to COC

Sample Depth: Matrix:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)							
Alkalinity, Total	318.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT
Alkalinity, Bicarbonate	318.	mg CaCO3/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT
Nitrogen, Ammonia	8.95	mg/l	0.075		1	08/22/22 13:50	08/22/22 20:18	121,4500NH3-BH	AT
Chemical Oxygen Demand	64.	mg/l	20		1	08/17/22 09:00	08/17/22 12:16	121,5220D	CN
Total Organic Carbon	4.53	mg/l	1.00		2	-	08/17/22 11:06	121,5310C	DW
Anions by Ion Chromatog	raphy - West	borough Lab							
Bromide	4.78	mg/l	1.25		25	-	08/19/22 21:35	44,300.0	AT

Project Name: MOOT MACHIAS LF Project Number: 130749

SAMPLE RESULTS

Lab ID:	L2244025-05	Date Collected:	08/16/22 08:00
Client ID:	HA22-2(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

General Chemistry - Westbo Solids, Total Dissolved Nitrogen, Nitrite	orough Lab					-	Analyzed	Method	Analyst
Nitrogen Nitrite	1700		mg/l	10	 1	-	08/17/22 09:10	121,2540C	DW
	ND		mg/l	0.050	 1	-	08/17/22 05:36	44,353.2	KA
Chromium, Hexavalent	ND		mg/l	0.010	 1	08/17/22 06:05	08/17/22 06:19	1,7196A	KA
Anions by Ion Chromatograp	ohy - West	borough	Lab						
Chloride	838.		mg/l	12.5	 25	-	08/17/22 20:35	44,300.0	AT
Nitrogen, Nitrate	ND		mg/l	0.050	 1	-	08/17/22 16:57	44,300.0	AT
Sulfate	26.8		mg/l	1.00			08/17/22 16:57	44,300.0	AT

Serial_N	0:08252219:47
----------	---------------

Project Name: MOOT MACHIAS LF Project Number: 130749

Lab ID:	L2244025-06	Date Collected:	08/16/22 07:20
Client ID:	HA22-8(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total Dissolved	5500		mg/l	20		2	-	08/17/22 09:10	121,2540C	DW
Nitrogen, Nitrite	0.057		mg/l	0.050		1	-	08/17/22 05:44	44,353.2	KA
Chromium, Hexavalent	ND		mg/l	0.010		1	08/17/22 06:05	08/17/22 06:19	1,7196A	KA
Anions by Ion Chromato	graphy - Westb	orough l	Lab							
Chloride	3250		mg/l	250		500	-	08/17/22 20:46	44,300.0	AT
Nitrogen, Nitrate	0.537		mg/l	0.050		1	-	08/17/22 17:08	44,300.0	AT
Sulfate	ND		mg/l	1.00		1	-	08/17/22 17:08	44,300.0	AT

Serial_N	0:08252219:47
----------	---------------

Project Name: MOOT MACHIAS LF

Project Number: 130749

SAMPLE RESULTS

Lab ID:	L2244025-07	Date Collected:	08/16/22 07:40
Client ID:	HA22-9(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total Dissolved	7200		mg/l	20		2	-	08/17/22 09:10	121,2540C	DW
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	08/17/22 05:45	44,353.2	KA
Chromium, Hexavalent	ND		mg/l	0.010		1	08/17/22 06:05	08/17/22 06:20	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	Lab							
Chloride	4190		mg/l	250		500	-	08/17/22 20:57	44,300.0	AT
Nitrogen, Nitrate	0.166		mg/l	0.050		1	-	08/17/22 17:19	44,300.0	AT
Sulfate	24.7		mg/l	1.00		1	-	08/17/22 17:19	44,300.0	AT

Lab Number: L2244025 Report Date: 08/25/22

Project Name: MOOT MACHIAS LF

Project Number: 130749

SAMPLE RESULTS

Lab ID:	L2244025-08	Date Collected:	08/16/22 07:50
Client ID:	HA22-10(OW)	Date Received:	08/16/22
Sample Location:	MACHIAS, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

	thorough Lat				 	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	Looroagn Eak)							
Solids, Total Dissolved	1800		mg/l	20	 2	-	08/17/22 09:10	121,2540C	DW
Nitrogen, Nitrite	0.050		mg/l	0.050	 1	-	08/17/22 05:47	44,353.2	KA
Chromium, Hexavalent	ND		mg/l	0.010	 1	08/17/22 06:05	08/17/22 06:20	1,7196A	KA
Anions by Ion Chromatog	raphy - West	borough	Lab						
Chloride	859.		mg/l	12.5	 25	-	08/17/22 20:02	44,300.0	AT
Nitrogen, Nitrate	ND		mg/l	0.050	 1	-	08/17/22 17:30	44,300.0	AT
Sulfate	1.07		mg/l	1.00	 1	-	08/17/22 17:30	44,300.0	AT

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	F	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	05-08	Bat	ch: WG	61676050-1					
Nitrogen, Nitrite	ND		mg/l	C	0.050		1	-	08/17/22 03:21	44,353.2	KA	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	01-04	Bat	ch: WG	61676086-1					
Total Organic Carbon	ND		mg/l	C	0.500		1	-	08/17/22 05:15	121,5310C	DW	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	05-08	Bat	ch: WG	61676114-1					
Chromium, Hexavalent	ND		mg/l	C	0.010		1	08/17/22 06:05	08/17/22 06:18	1,7196A	KA	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	01-04	Bat	ch: WG	61676163-1					
Chemical Oxygen Demand	ND		mg/l		20		1	08/17/22 09:00	08/17/22 12:05	121,5220D	CN	
General Chemistry - Westbo	brough La	ab for sam	ple(s):	05-08	Bat	ch: WG	61676175-1					
Solids, Total Dissolved	ND		mg/l		10		1	-	08/17/22 09:10	121,2540C	DW	
Anions by Ion Chromatography - Westborough Lab for sample(s): 05-08 Batch: WG1676555-1												
Chloride	ND		mg/l	C).500		1	-	08/17/22 16:35	44,300.0	AT	
Nitrogen, Nitrate	ND		mg/l	C	0.050		1	-	08/17/22 16:35	44,300.0	AT	
Sulfate	ND		mg/l		1.00		1	-	08/17/22 16:35	44,300.0	AT	
Anions by Ion Chromatograp	ohy - We	stborough	Lab for	samp	le(s):	01-04	Batch: W	G1677498-1				
Bromide	ND		mg/l	C	0.050		1	-	08/19/22 16:51	44,300.0	AT	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	01-04	Bat	ch: WG	61678011-1					
Alkalinity, Total	ND		mg CaCC	03/L :	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	01-04	Bat	ch: WG	61678013-1					
Alkalinity, Bicarbonate	ND		mg CaCC	03/L	2.00	NA	1	-	08/22/22 08:44	121,2320B	MT	
General Chemistry - Westbo	orough La	ab for sam	ple(s):	01-04	Bat	ch: WG	61678048-1					
Nitrogen, Ammonia	ND		mg/l	C).075		1	08/22/22 13:50	08/22/22 20:05	121,4500NH3-B	н ат	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2244025 Report Date: 08/25/22

Project Number: 130749

MOOT MACHIAS LF

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 05-08	Batch: WG1676	050-2				
Nitrogen, Nitrite	94		-		90-110	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-04	Batch: WG1676	086-2				
Total Organic Carbon	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 05-08	Batch: WG1676	114-2				
Chromium, Hexavalent	102		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-04	Batch: WG1676	163-2				
Chemical Oxygen Demand	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 05-08	Batch: WG1676	175-2				
Solids, Total Dissolved	100		-		80-120	-		
Anions by Ion Chromatography - Westb	orough Lab Associat	ed samp	le(s): 05-08 Bate	ch: WG167	6555-2			
Chloride	104		-		90-110	-		
Nitrogen, Nitrate	92		-		90-110	-		
Sulfate	103		-		90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

 Lab Number:
 L2244025

 Report Date:
 08/25/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - West	borough Lab Associated sam	ple(s): 01-04 Batch: W	G1677498-2		
Bromide	109	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-04	Batch: WG1678011-2			
Alkalinity, Total	108	-	90-110		10
General Chemistry - Westborough Lab	Associated sample(s): 01-04	Batch: WG1678048-2	-		
Nitrogen, Ammonia	90	-	80-120	-	20

Matrix Spike Analysis

Batch Quality Control

Project Name: MOOT MACHIAS LF

Project Number: 130749

Lab Number: L2244025 Report Date: 08/25/22

RPD Native MS MS MS MSD MSD Recovery Sample %Recovery Qual Found Added Found Limits %Recovery Qual **RPD** Qual Limits Parameter General Chemistry - Westborough Lab Associated sample(s): 05-08 QC Sample: L2244025-05 Client ID: HA22-2(OW) QC Batch ID: WG1676050-4 ND 4 80-120 Nitrogen, Nitrite 3.9 98 20 General Chemistry - Westborough Lab Associated sample(s): 05-08 QC Batch ID: WG1676114-4 QC Sample: L2244025-06 Client ID: HA22-8(OW) ND 0.1 0.098 Chromium. Hexavalent 98 85-115 20 QC Batch ID: WG1676555-3 Anions by Ion Chromatography - Westborough Lab Associated sample(s): 05-08 QC Sample: L2244025-08 Client ID: HA22-10(OW) Chloride 859 100 981 122 Q 90-110 18 ---ND 0.4 0.292 75 Q 90-110 15 Nitrogen, Nitrate Sulfate 1.07 8 8.00 Q 90-110 20 81 _ Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG1677498-3 QC Sample: L2244025-04 Client ID: HA22-10(OW) 4.78 10 Q Bromide 17.5 128 _ 90-110 _ 20 General Chemistry - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG1678011-4 QC Sample: L2244025-04 Client ID: HA22-10(OW) 318 100 367 Q Alkalinity, Total 49 86-116 10 General Chemistry - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG1678048-4 QC Sample: L2244025-01 Client ID: HA22-2(OW) Nitrogen, Ammonia 0.803 4 4.64 96 80-120 20

Lab Duplicate Analysis Batch Quality Control

Project Name: MOOT MACHIAS LF Project Number: 130749

Lab Number: Report Date:

L2244025 08/25/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated s	ample(s): 05-08 QC Bat	tch ID: WG1676050-3	QC Sample:	L2244025-05	Client ID:	HA22-2(OW)
Nitrogen, Nitrite	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated s	ample(s): 05-08 QC Bat	tch ID: WG1676114-3	QC Sample:	L2244025-05	Client ID:	HA22-2(OW)
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated s	ample(s): 05-08 QC Bat	tch ID: WG1676175-3	QC Sample:	L2244025-05	Client ID:	HA22-2(OW)
Solids, Total Dissolved	1700	1700	mg/l	0		10
Anions by Ion Chromatography - Westborough Lab A	Associated sample(s): 05-	08 QC Batch ID: WG	1676555-4	QC Sample: L	.2244025-0	8 Client ID: HA22-
Nitrogen, Nitrate	ND	ND	mg/l	NC		15
Sulfate	1.07	ND	mg/l	NC		20
Anions by Ion Chromatography - Westborough Lab A 10(OW)	Associated sample(s): 05-	08 QC Batch ID: WG	1676555-4	QC Sample: L	.2244025-0	8 Client ID: HA22-
Chloride	859	867	mg/l	1		18
Anions by Ion Chromatography - Westborough Lab A	Associated sample(s): 01-	04 QC Batch ID: WG	1677498-4	QC Sample: L	.2244025-0	4 Client ID: HA22-
Bromide	4.78	4.77	mg/l	0		20
General Chemistry - Westborough Lab Associated s	ample(s): 01-04 QC Bat	tch ID: WG1678011-3	QC Sample:	L2244025-04	Client ID:	HA22-10(OW)
Alkalinity, Total	318	317	mg CaCO3/I	0		10
General Chemistry - Westborough Lab Associated s	ample(s): 01-04 QC Bat	tch ID: WG1678013-2	QC Sample:	L2244025-04	Client ID:	HA22-10(OW)
Alkalinity, Bicarbonate	318	317	mg CaCO3/I	0		9

Parameter		Native Sample	Duplicate Sample	Units	RPD	RP	PD Limits
Project Number:	130749				Report	Date:	08/25/22
Project Name:	MOOT MACHIAS LF	L	ab Duplicate Analy Batch Quality Control		Lab Nı	ımber:	L2244025

. .

General Chemistry - Westborough Lab Associated san	nple(s): 01-04 QC	Batch ID: WG1678048-3	QC Sample: I	_2244025-01	Client ID: HA22-2(OW)
Nitrogen, Ammonia	0.803	0.846	mg/l	5	20

ANALY

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent
E	Absent

Container Information

Container Information				Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)	
	L2244025-01A	Plastic 250ml unpreserved	С	NA		2.9	Y	Absent		ME-8260(7),BR-300(28)	
	L2244025-01B	Vial HCI preserved	С	NA		2.9	Y	Absent		ME-8260(7)	
	L2244025-01C	Vial HCl preserved	С	NA		2.9	Y	Absent		ME-8260(7)	
	L2244025-01D	Vial H2SO4 preserved	С	NA		2.9	Y	Absent		TOC-5310(28)	
	L2244025-01E	Vial H2SO4 preserved	С	NA		2.9	Y	Absent		TOC-5310(28)	
	L2244025-01F	20ml Vial HCl preserved	С	NA		2.9	Y	Absent		DISSGAS(14)	
	L2244025-01G	20ml Vial HCl preserved	А	NA		2.8	Y	Absent		DISSGAS(14)	
	L2244025-01H	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
	L2244025-01I	Plastic 250ml unpreserved	С	NA		2.9	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
	L2244025-01J	Plastic 250ml unpreserved/No Headspace	С	NA		2.9	Y	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)	
	L2244025-01K	Plastic 250ml HNO3 preserved	С	<2	<2	2.9	Y	Absent		PB-SI(180),FE-SI(180),BA-SI(180),AS- SI(180),CU-SI(180),NA-SI(180),MN- SI(180),CD-SI(180),HARDS(180),K- SI(180),MG-SI(180),CR-SI(180),CA- SI(180),HG-S(28)	
	L2244025-01L	Amber 120ml unpreserved	С	7	7	2.9	Y	Absent		PEST-8081(7)	
	L2244025-01M	Amber 120ml unpreserved	С	7	7	2.9	Y	Absent		PEST-8081(7)	
	L2244025-01N	Amber 250ml unpreserved	С	7	7	2.9	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)	
	L2244025-01O	Amber 250ml unpreserved	С	7	7	2.9	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)	
	L2244025-01P	Plastic 500ml H2SO4 preserved	С	<2	<2	2.9	Y	Absent		COD-5220(28),NH3-4500(28)	
	L2244025-01Q	Amber 1000ml unpreserved	С	7	7	2.9	Y	Absent		HERB-8151(7)	

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2244025-01R	Amber 1000ml unpreserved	С	7	7	2.9	Y	Absent		HERB-8151(7)
L2244025-02A	Plastic 250ml unpreserved	В	NA		2.8	Y	Absent		ME-8260(7),BR-300(28)
L2244025-02B	Vial HCI preserved	В	NA		2.8	Y	Absent		ME-8260(7)
L2244025-02C	Vial HCI preserved	В	NA		2.8	Y	Absent		ME-8260(7)
L2244025-02D	Vial H2SO4 preserved	В	NA		2.8	Y	Absent		TOC-5310(28)
L2244025-02E	Vial H2SO4 preserved	В	NA		2.8	Y	Absent		TOC-5310(28)
L2244025-02F	20ml Vial HCl preserved	В	NA		2.8	Υ	Absent		DISSGAS(14)
L2244025-02G	20ml Vial HCl preserved	А	NA		2.8	Υ	Absent		DISSGAS(14)
L2244025-02H	Plastic 250ml unpreserved	А	NA		2.8	Υ	Absent		A2-ME-537ISOTOPE-28+(14)
L2244025-02I	Plastic 250ml unpreserved	В	NA		2.8	Υ	Absent		A2-ME-537ISOTOPE-28+(14)
L2244025-02J	Plastic 250ml unpreserved/No Headspace	В	NA		2.8	Y	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2244025-02K	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Y	Absent		PB-SI(180),FE-SI(180),BA-SI(180),NA- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),CD-SI(180),HARDS(180),K- SI(180),MG-SI(180),CR-SI(180),CA- SI(180),HG-S(28)
L2244025-02L	Amber 120ml unpreserved	В	7	7	2.8	Y	Absent		PEST-8081(7)
L2244025-02M	Amber 120ml unpreserved	В	7	7	2.8	Y	Absent		PEST-8081(7)
L2244025-02N	Amber 250ml unpreserved	В	7	7	2.8	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)
L2244025-02O	Amber 250ml unpreserved	В	7	7	2.8	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)
L2244025-02P	Plastic 500ml H2SO4 preserved	В	<2	<2	2.8	Y	Absent		COD-5220(28),NH3-4500(28)
L2244025-02Q	Amber 1000ml unpreserved	В	7	7	2.8	Y	Absent		HERB-8151(7)
L2244025-02R	Amber 1000ml unpreserved	В	7	7	2.8	Y	Absent		HERB-8151(7)
L2244025-03A	Plastic 250ml unpreserved	E	NA		2.8	Y	Absent		ME-8260(7),BR-300(28)
L2244025-03B	Vial HCI preserved	E	NA		2.8	Y	Absent		ME-8260(7)
L2244025-03C	Vial HCI preserved	E	NA		2.8	Y	Absent		ME-8260(7)
L2244025-03D	Vial H2SO4 preserved	Е	NA		2.8	Y	Absent		TOC-5310(28)
L2244025-03E	Vial H2SO4 preserved	E	NA		2.8	Y	Absent		TOC-5310(28)
L2244025-03F	20ml Vial HCl preserved	E	NA		2.8	Y	Absent		DISSGAS(14)
L2244025-03G	20ml Vial HCI preserved	А	NA		2.8	Y	Absent		DISSGAS(14)

Container Info		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2244025-03H	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
L2244025-03I	Plastic 250ml unpreserved	E	NA		2.8	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
L2244025-03J	Plastic 250ml unpreserved/No Headspace	E	NA		2.8	Y	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)	
L2244025-03K	Plastic 250ml HNO3 preserved	E	<2	<2	2.8	Y	Absent		PB-SI(180),FE-SI(180),BA-SI(180),NA- SI(180),AS-SI(180),MN-SI(180),CU- SI(180),CD-SI(180),HARDS(180),CR- SI(180),MG-SI(180),K-SI(180),HG-S(28),CA- SI(180)	
L2244025-03L	Amber 120ml unpreserved	E	7	7	2.8	Y	Absent		PEST-8081(7)	
L2244025-03M	Amber 120ml unpreserved	E	7	7	2.8	Y	Absent		PEST-8081(7)	
L2244025-03N	Amber 250ml unpreserved	E	7	7	2.8	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)	
L2244025-03O	Amber 250ml unpreserved	E	7	7	2.8	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)	
L2244025-03P	Plastic 500ml H2SO4 preserved	E	<2	<2	2.8	Y	Absent		COD-5220(28),NH3-4500(28)	
L2244025-03Q	Amber 1000ml unpreserved	E	7	7	2.8	Y	Absent		HERB-8151(7)	
L2244025-03R	Amber 1000ml unpreserved	E	7	7	2.8	Y	Absent		HERB-8151(7)	
L2244025-04A	Plastic 250ml unpreserved	D	NA		2.4	Y	Absent		ME-8260(7),BR-300(28)	
L2244025-04B	Vial HCI preserved	D	NA		2.4	Y	Absent		ME-8260(7)	
L2244025-04C	Vial HCI preserved	D	NA		2.4	Y	Absent		ME-8260(7)	
L2244025-04D	Vial H2SO4 preserved	D	NA		2.4	Y	Absent		TOC-5310(28)	
L2244025-04E	Vial H2SO4 preserved	D	NA		2.4	Y	Absent		TOC-5310(28)	
L2244025-04F	20ml Vial HCl preserved	D	NA		2.4	Y	Absent		DISSGAS(14)	
L2244025-04G	20ml Vial HCl preserved	А	NA		2.8	Y	Absent		DISSGAS(14)	
L2244025-04H	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
L2244025-04I	Plastic 250ml unpreserved	D	NA		2.4	Y	Absent		A2-ME-537ISOTOPE-28+(14)	
L2244025-04J	Plastic 250ml unpreserved/No Headspace	D	NA		2.4	Y	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)	
L2244025-04K	Plastic 250ml HNO3 preserved	D	<2	<2	2.4	Y	Absent		PB-SI(180),FE-SI(180),BA-SI(180),MN- SI(180),CU-SI(180),NA-SI(180),AS-SI(180),CD- SI(180),HARDS(180),CR-SI(180),MG- SI(180),K-SI(180),CA-SI(180),HG-S(28)	
L2244025-04L	Amber 120ml unpreserved	D	7	7	2.4	Y	Absent		PEST-8081(7)	
L2244025-04M	Amber 120ml unpreserved	D	7	7	2.4	Y	Absent		PEST-8081(7)	
L2244025-04N	Amber 250ml unpreserved	D	7	7	2.4	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)	

Serial_No:08252219:47 *Lab Number:* L2244025 *Report Date:* 08/25/22

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2244025-04O	Amber 250ml unpreserved	D	7	7	2.4	Y	Absent		8270TCL-LVI(7),8270TCL-SIM-LVI(7)
	L2244025-04P	Plastic 500ml H2SO4 preserved	D	<2	<2	2.4	Y	Absent		COD-5220(28),NH3-4500(28)
	L2244025-04Q	Amber 1000ml unpreserved	D	7	7	2.4	Y	Absent		HERB-8151(7)
	L2244025-04R	Amber 1000ml unpreserved	D	7	7	2.4	Y	Absent		HERB-8151(7)
	L2244025-05A	Plastic 950ml unpreserved	С	7	7	2.9	Y	Absent		SO4-300(28),HEXCR-7196(1),CL- 300(28),NO2-353(2),NO3-300(2),TDS-2540(7)
	L2244025-06A	Plastic 950ml unpreserved	В	7	7	2.8	Y	Absent		SO4-300(28),CL-300(28),HEXCR- 7196(1),NO2-353(2),NO3-300(2),TDS-2540(7)
	L2244025-07A	Plastic 950ml unpreserved	E	7	7	2.8	Y	Absent		SO4-300(28),HEXCR-7196(1),CL- 300(28),NO3-300(2),NO2-353(2),TDS-2540(7)
	L2244025-08A	Plastic 950ml unpreserved	D	7	7	2.4	Y	Absent		SO4-300(28),HEXCR-7196(1),CL- 300(28),NO2-353(2),NO3-300(2),TDS-2540(7)
	L2244025-09A	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		HOLD-537(14)

Project Number: 130749

Serial_No:08252219:47 Lab Number: L2244025 Report Date: 08/25/22

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
· · · ·		

Project Number: 130749

Lab Number: L2244025

Report Date: 08/25/22

GLOSSARY

Acronyms

/ lor on y mo	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Number: 130749

Lab Number: L2244025 Report Date: 08/25/22

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Number: 130749

Serial_No:08252219:47

Lab Number: L2244025

Report Date: 08/25/22

Data Qualifiers

- \mathbf{ND} Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

 Lab Number:
 L2244025

 Report Date:
 08/25/22

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 117 Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08252219:47

<u>III</u>	CHAI	NOF	LIOTO	DV				1	awali (a			in the second								
ALPHA	СПАІ	N OF C	0510	DY	PAGE	_OF	- Da	ate Re	c'd in La	b: 8	10	00	F		A	LPH.	A Jo	b#:	:L204402	5
8 Walkup Driv	a 320 Forbes Blvd	Pro	ject Informa	tion			R	epor	t Inform	ation -	Data	Deli	verab	les	В	illing	g Info	orma	ition	
Westboro, M/ Tel: 508-896	A 01581 Mansfield, MA 0204	⁴⁸ Proj	ect Name: M	DOT M	acho	s LF	C	ADE	x		IAIL					Same	as C	client i	info PO #:	
Client Informat	ion	Proje	ect Location:	Jachi	as M	Ē		egula	tory Re	quiren	nents	&	Pro	ject l	nfor	mati	on R	lequi	irements	
Client: Holey	+ aldrich	Proje	ect #: 130	149	111	-			No MA					SDG) (D		es 🗆	No (CT RCP Analytical Met Inorganics)	thods
Address: 75 U	ashigter are,	C+#+ Proje	ect Manager: C	Dead	Ja.			Yes C	No GW	1 Stand	ards (
Portlar	d. ME	ALF	PHA Quote #:	1, wear	iso_			Yes C Other	No NPI State /Fe	DES RG	P ram	10.5	ne D	50	10	off	chiler	ia P	crameters	
Phone: 207-L	182-4606	Tu	n-Around Ti	me	Sin La	S. Martin			1 1.	22	7	1	1 1	1	/	/	/	7	1/2/2	
	denas haley al	drich v				and the second secon	1.	1		CLS C	CIPP13	lino s	BICI	-/	/	/	/	/	1 1 7	
		com		RUSH (only	confirmed if pre-a	approved()		SISATU	3/5	1 1	/	Ranges	BIN O	1	/	/ /	/ /	1	197	т
Additional I	Project Information	n: Da	te Due:					\overline{z}/z	S DI	DMCP 14	/0	10	1-2/	U Fingerprint	/ /	/	y	A la	SAMPLE IN	
Dissolved	metals are f	Freld frit	red.				₹	0 624	6ª/.	0/0	arget	Targets D	2/2	5/	/	10	JA:	7	N O Findation	Ĕ
HexCo	,etc was no	t filtered							24 S	1 Ser	1.80	1 20	uant Only	13	9	19	320	1-9	S Lab to do	#
Disso	sived metals	perame	ers-ca	stact	Meliss	agulli	1	76.6260	10	59	6	8	Quant	10	d	Clu	7	A	A Preservation	- T
ALPHA Lab ID	Sample	Sec. 18		ection	Sample		. / .		METALS:	EPH: DR.	VPH: DRan	D PCB	TPH: DQuant Only	Ē	ğ,	Alleelued	当ら	24	Lab to do	Ť L
(Lab Use Only)			Date	Time	Matrix	Initials	13	/ ø		7/2	18	9/1	£ / ·	4'	14	1~	99	12	Sample Commer	nts s
44005 DI			8/15/22	1440	gw	HNH	X	X	X			X	X	X	X	X	X			18
60	HA22-8(01	(u	8/15/22	1200	gω	HMH	X	X	X			X	X	x	X	X	X		spilled out	18
03	HA22-910	w)	8/15/22	1330	gw	ннн	X	X	X			X			1	X				18
OY	HA22-10(0	w)	8/15/22	1600	gw	HMH	X	X	X			X	10.00		1	X	P. 1			18
05	HA22-2(00		8/16/22	0800	GW	HMH		10						1	1	A	~	X		10
do	HA22-860	24	8/16/22	0000	0.0				-	++		+	+	+	-					
00	HA22-9 (0		8/16/22	0100	12222000	AMH	+				-	-		-	-		-	X		
NO	HA22-10(0	Contract of the second s	8/16/22	0140	guv	HMH	-		-		-	+	-	+	-		-	X		-1-
00	17/102-1010		14	0.150	900	HMH	-	-			+	-	-	+-	-		-	X		
			-				-	_			-	-	+	-	-		_			
Container Type	Preservative			- F				_		+ +		-	_	-			_			_
P= Plastic A= Amber glass	A= None B= HCI			-		ainer Type	V	A	P		4	4	P	V	V	P	P	P		
V= Vial G= Glass B= Bacteria cup	C= HNO3 D= H2SO4 E= NaOH	Defin	mulahad Dur		-	eservative	ß	A	<u> </u>		ŀ	1	b	0	B	A	A	A		
C= Cube O= Other E= Encore	F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃	Ulma Ho	quished By:			e/Time 2 <i>10</i> /30	To	111		ved By:			ci	Date		<u></u>	All	samp	ples submitted are subj	ject to
Page 134 of 134	I= Ascorbic Acid	all	v www.cs		11112	2 10 30	D	nA	100	91	AL		gli	122	16	21			Terms and Conditions. erse side.	
	O= Other	mi Janes	- AAI	-	416177	21:00	the state	PI	1.	110	12	1	PIL	100	2	roc	10000		01-01 (rev. 12-Mar-2012)	

APPENDIX F Geotechnical Design Calculations

ΗΛΙΕ		File No.:	130749-009
		Sheet:	1 of 1
Client:	Maine Department of Transportation	Date:	18-Oct-2022
Project:	Machias Landfill, Dike Bridge Culvert Replacement	Computed by:	EMS
Subject:	Global Stability	Checked by:	EAF

PROBLEM STATEMENT AND OBJECTIVE

Calculate the global stability minimum factor of safety at the existing landfill.

REFERENCES

1. Slide2 version 9 by RocScience.

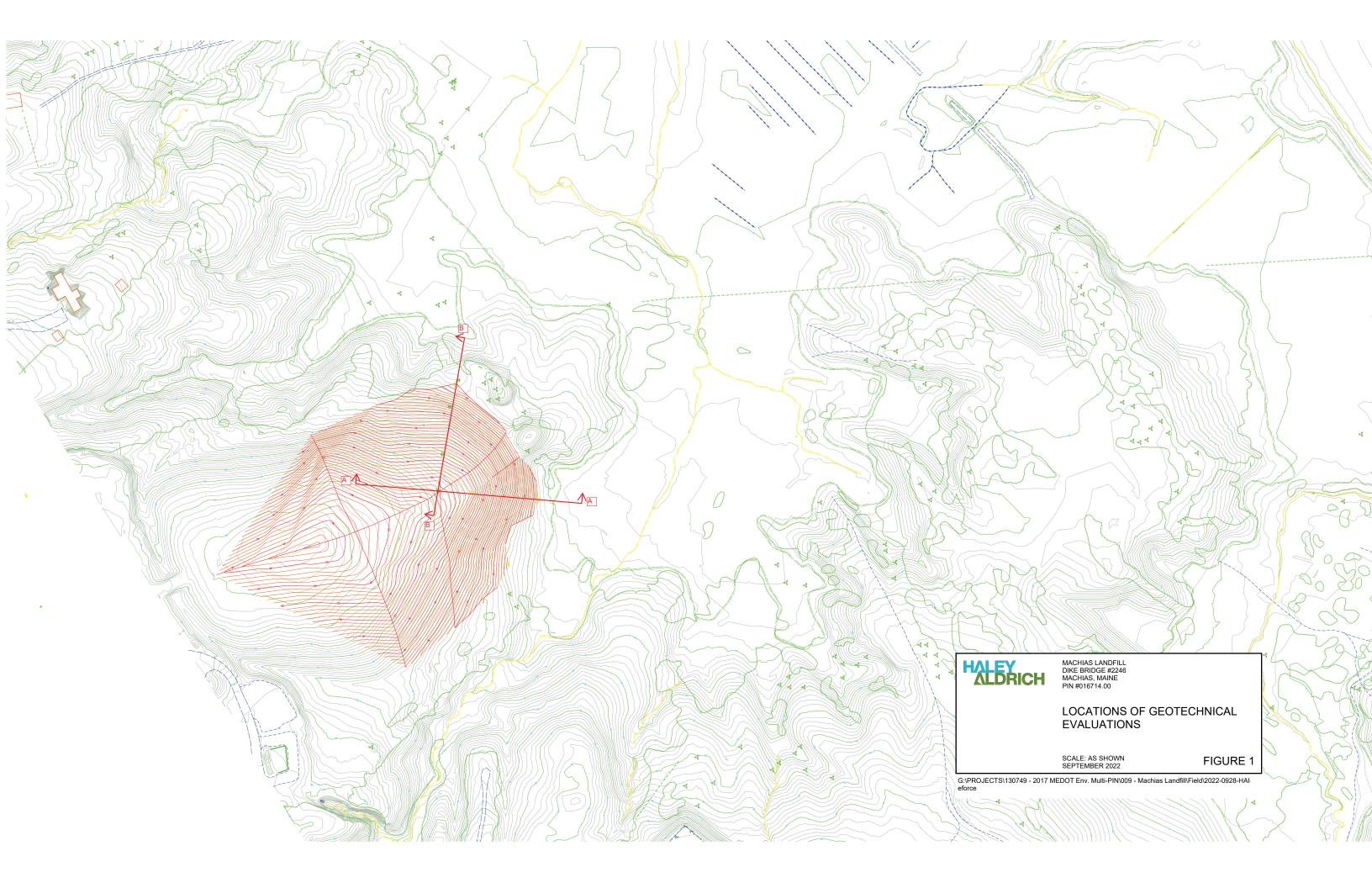
AVAILABLE INFORMATION

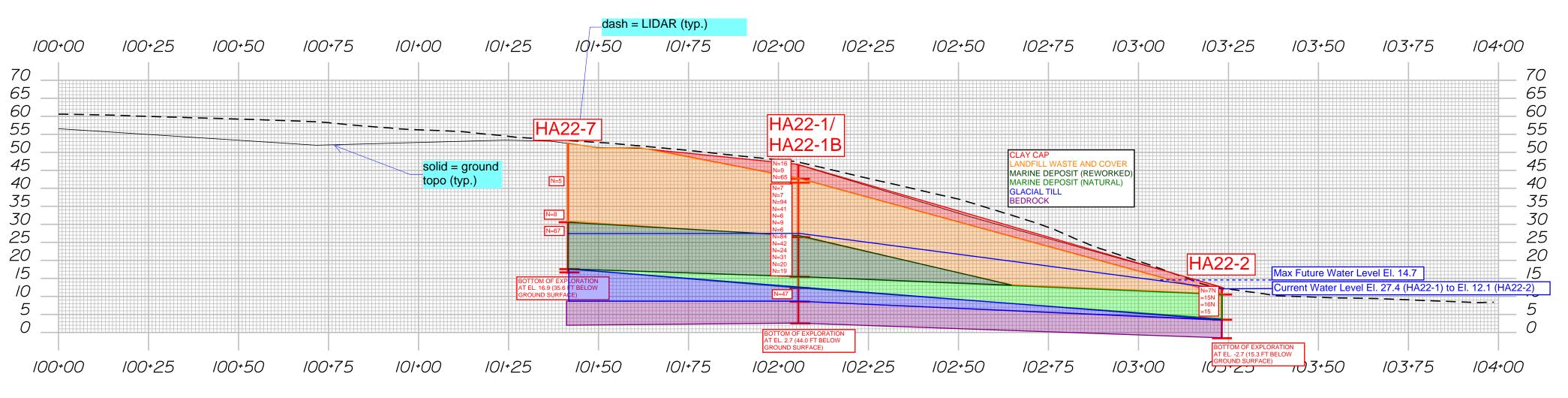
- 1. Topographic plan and cross sections AA' and BB' provided by MaineDOT.
- 2. Boring logs HA22-1, HA22-1B, HA22-2, and HA22-5 through HA22-10, and their associated observation wells.

ASSUMPTIONS

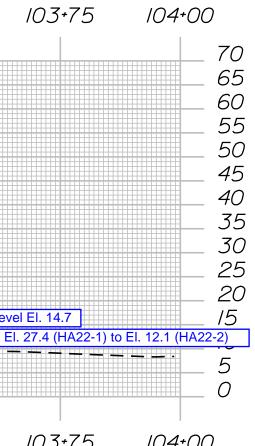
- 1. Water levels were modeled based on conditions observed in observation wells (OW-1 at AA' and BB' crest, OW-2 at AA' toe, and OW-9 at BB' toe).
- 2. High tide plus storm plus sea level rise water level (El. 14.7) was considered and had no effect on factors of safety.
- 3. Seismic cases will have a seismic force of As/2 (0.119 g/2) = 0.06 g based on the seismic site class calculations.
- 4. Soil properties were determined based on soil types and SPT N-values observed in the field.
- 5. The landfill waste and cover strata encountered both granular and cohesive soils. Cohesive properties were determined to be more conservative, therefore the landfill waste and cover is assumed to be cohesive in our final models.
- 6. Sections AA' and BB' were modeled to represent the "worst case scenario" steepest areas of the landfill slopes.

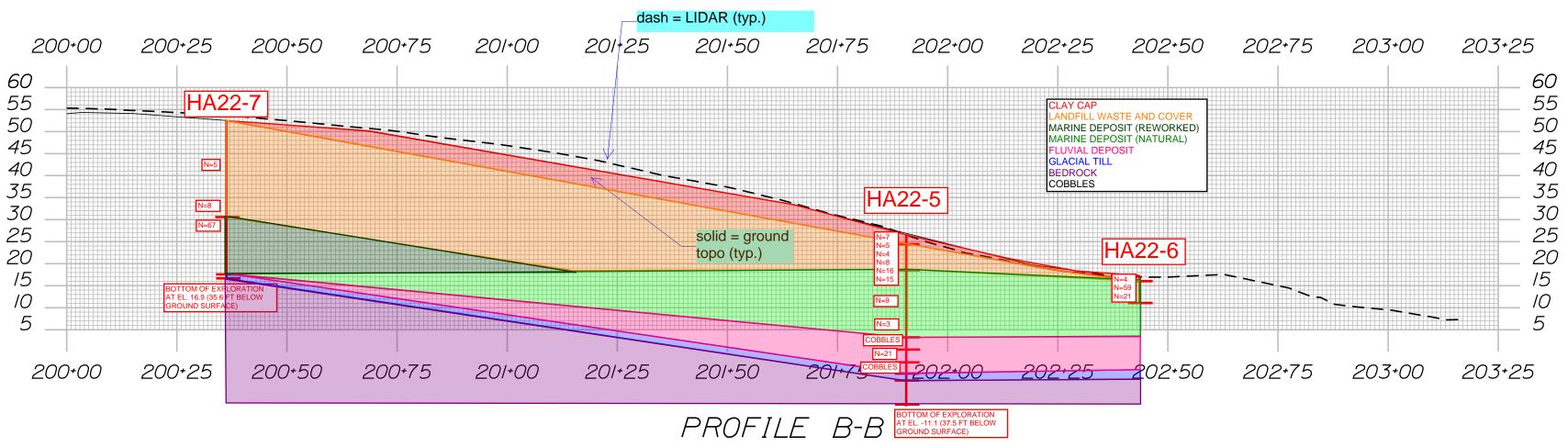
Material	Unit Weight	Friction Angle	Undrained Shear						
Wateria	(pcf)	(degrees)	Strength (psf)						
Clay Cap	120	-	775						
Landfill Waste and Cover	120	28	550						
Marine Deposit (reworked)	120	-	3000						
Marine Deposit (natural)	120	-	1500						
Fluvial	120	35	-						
Glacial Till	130	38	-						
Bedrock	130	infinit	ite strength						

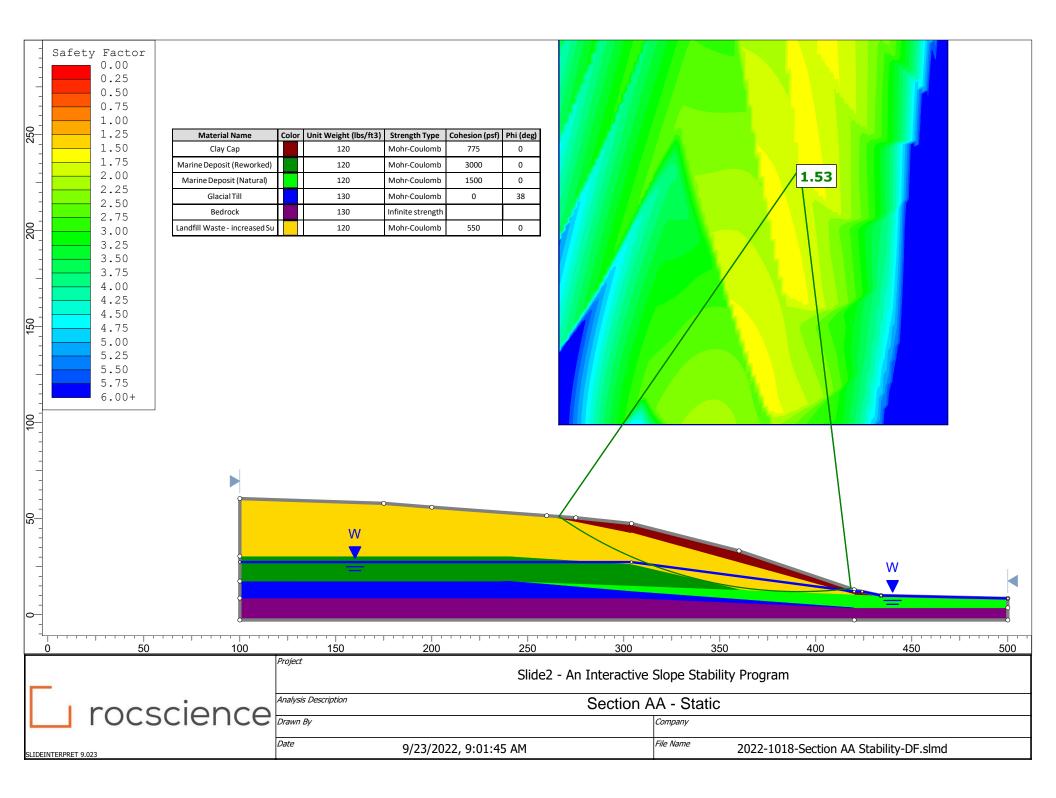

SOIL PROPERTIES

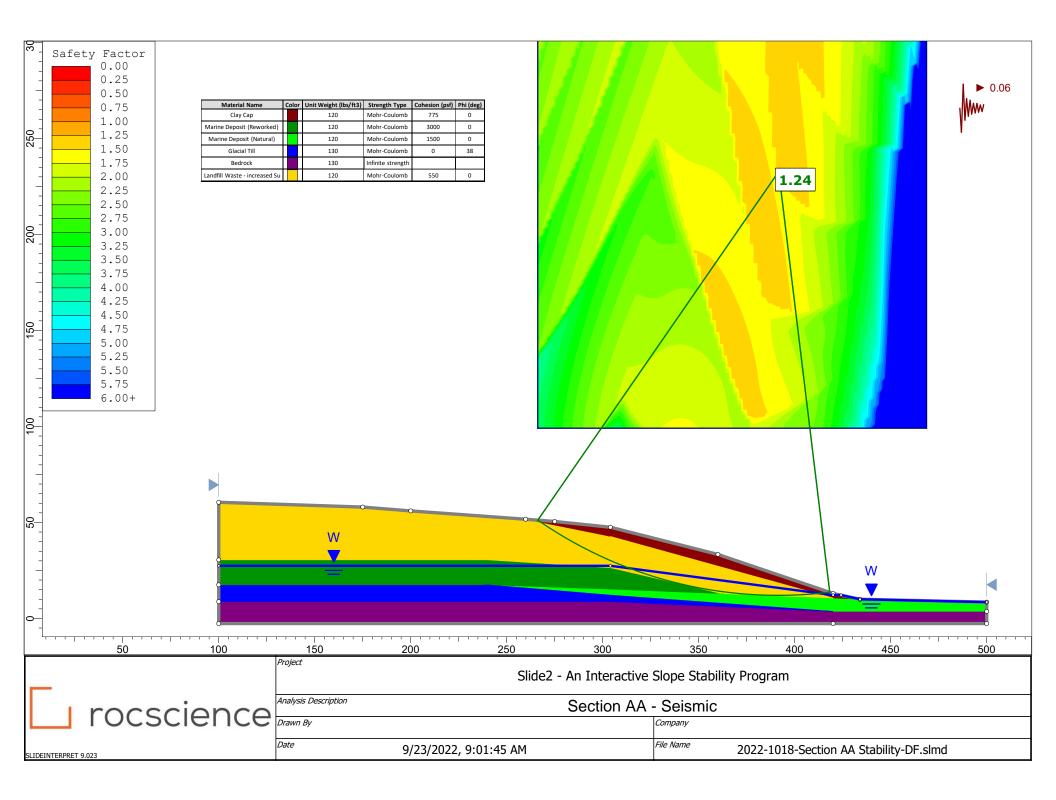

RESULTS AND CONCLUSIONS

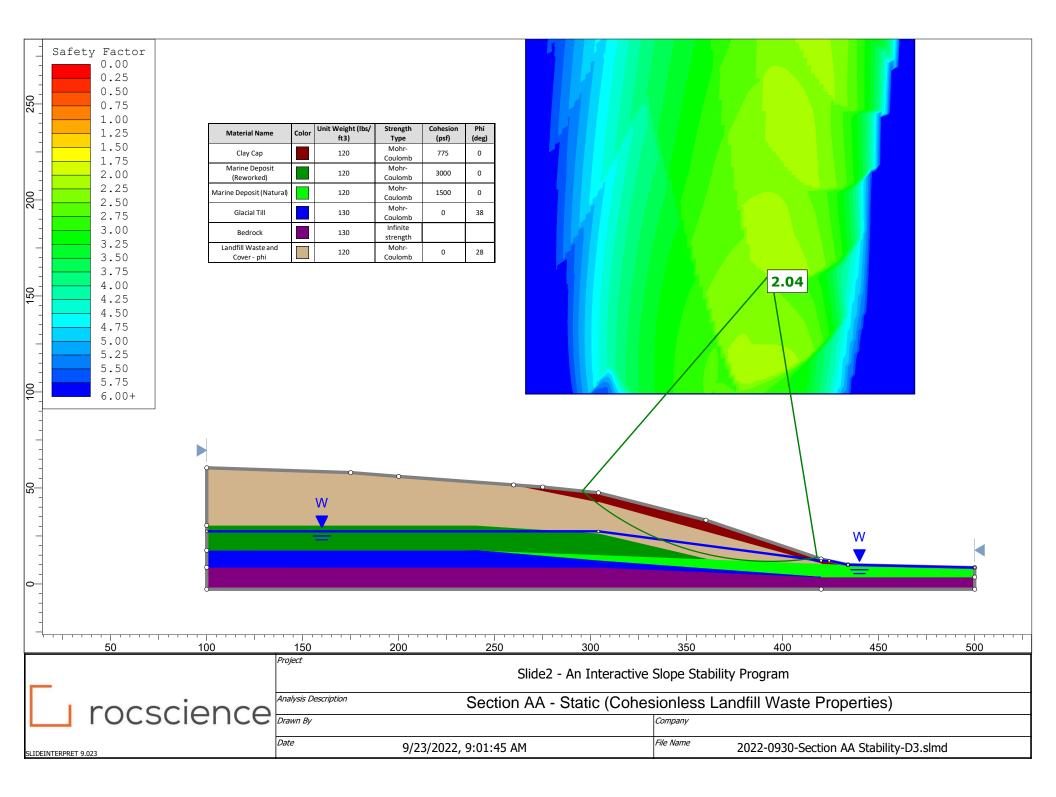
Section	Landfill Waste and Cover	F.S.					
Section	Properties	Static	Seismic				
SE Landfill Section A-A (Current Groundwater Level; El. 12.1)	cohesive	1.53	1.24				
SE Landfill Section A-A (Current Groundwater Level; El. 12.1)	cohesionless	2.04	1.66				
SE Landfill Section A-A (Future High Tide/Storm/SLR; El. 14.7)	cohesive	1.53	1.24				
NE Landfill Section B-B (Current Groundwater Level; El. 11.0)	cohesive	1.86	1.36				
NE Landfill Section B-B (Future High Tide/Storm/SLR; El. 14.7)	cohesive	1.86	1.36				
Based on AASHTO LRFD Section	11.6.3.7, an acceptable res	istance factor fo	or where the geote				

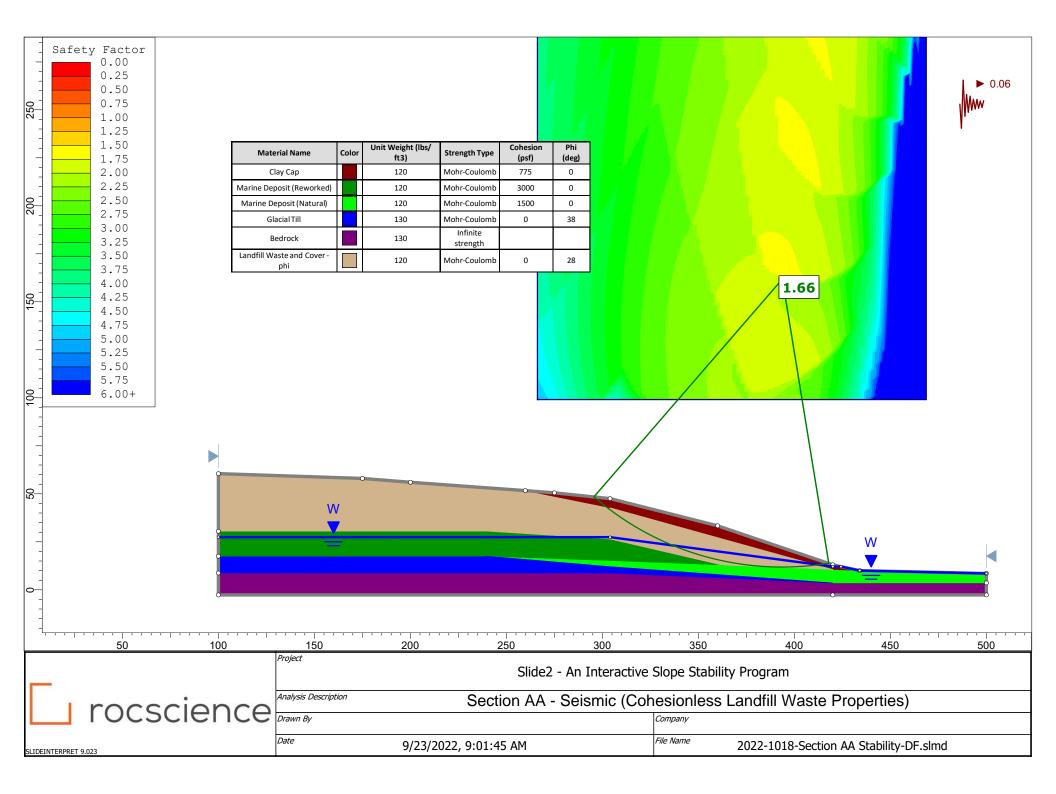

Based on AASHTO LRFD Section 11.6.3.7, an acceptable resistance factor for where the geotechnical parameters and subsurface stratigraphy are well defined is 0.75 (F.S. = 1/0.75 = 1.3). Based on FHWA GEC No. 3, a minimum seismic factor of safety of 1.1 is acceptable for slope stability.

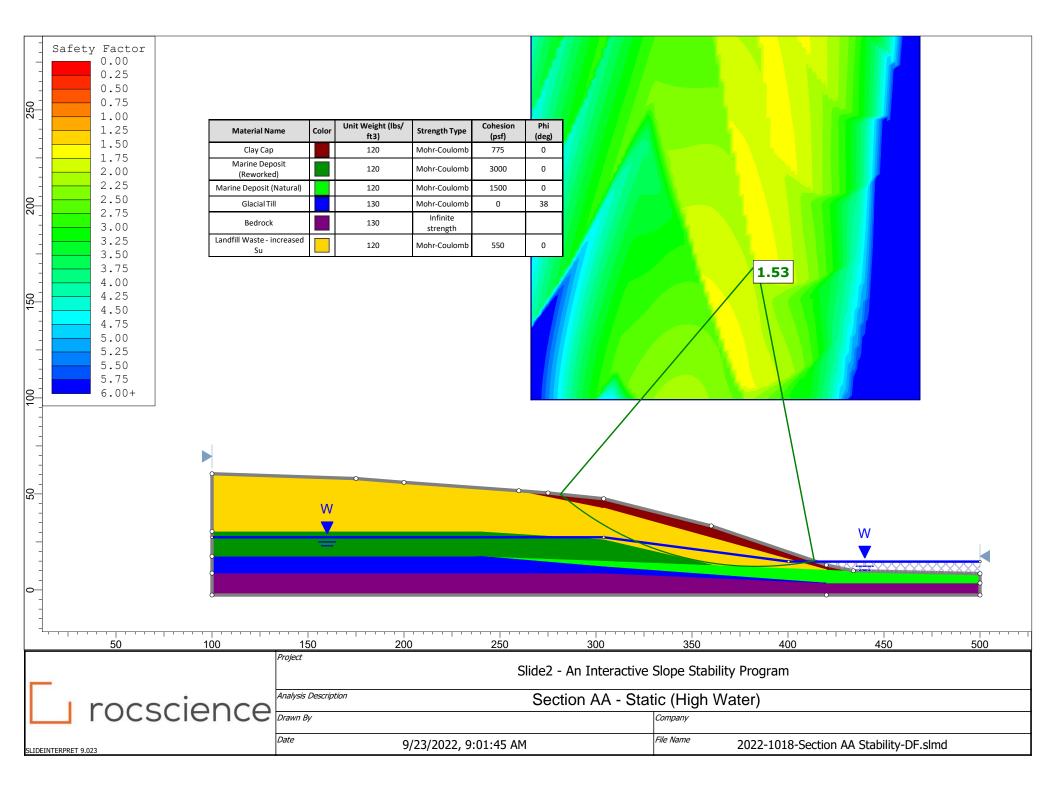

\\haleyaldrich.com\share\por_common\PROJECTS\130749 - 2017 MEDOT Env. Multi-PIN\009 - Machias Landfill\Calculations\Stability\550 psf update\[2022-1018-HAI-Machias-Glc

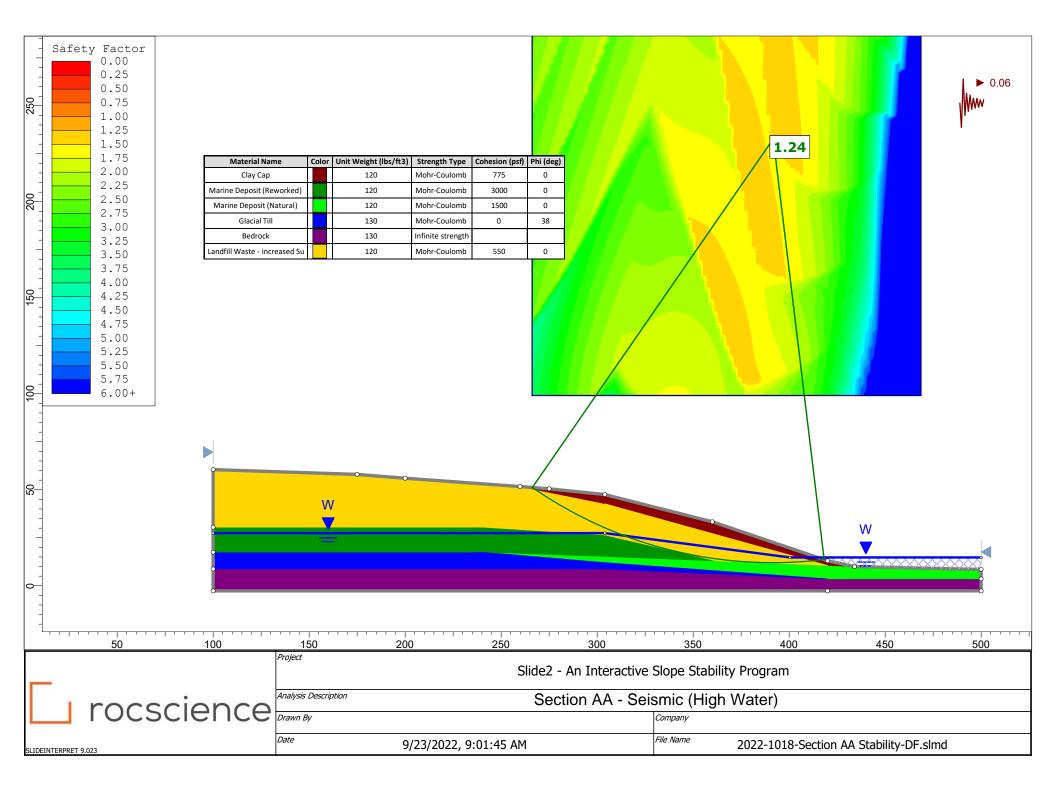


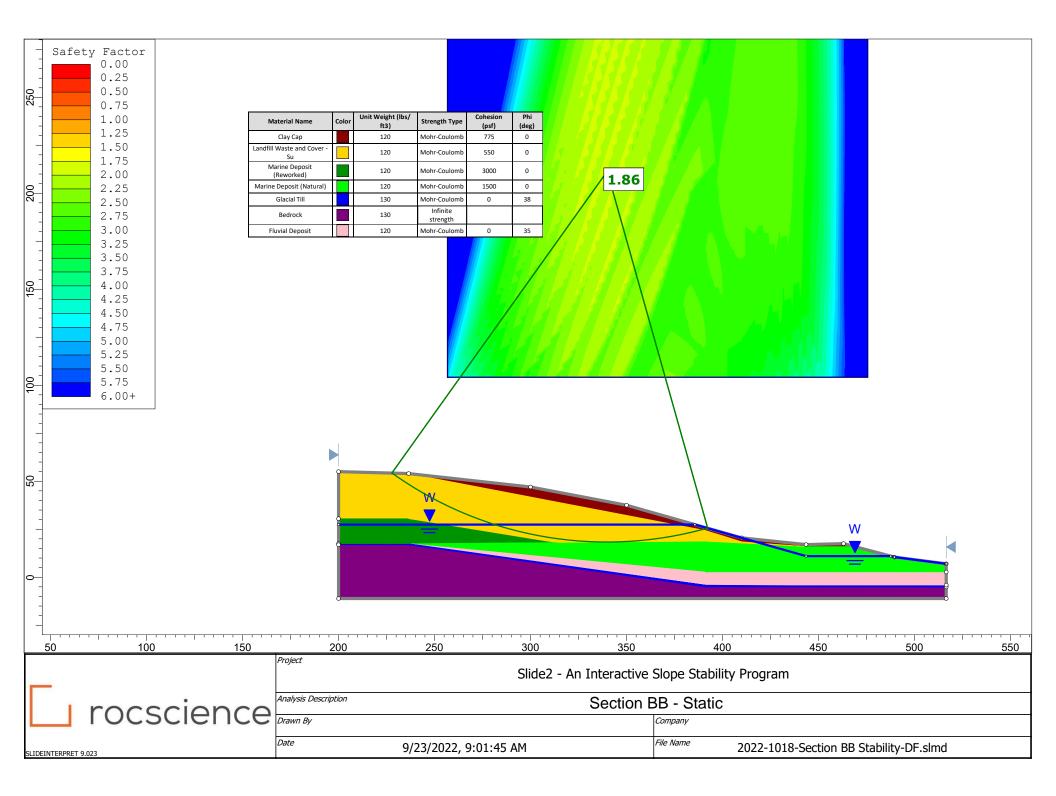

PROFILE A-A

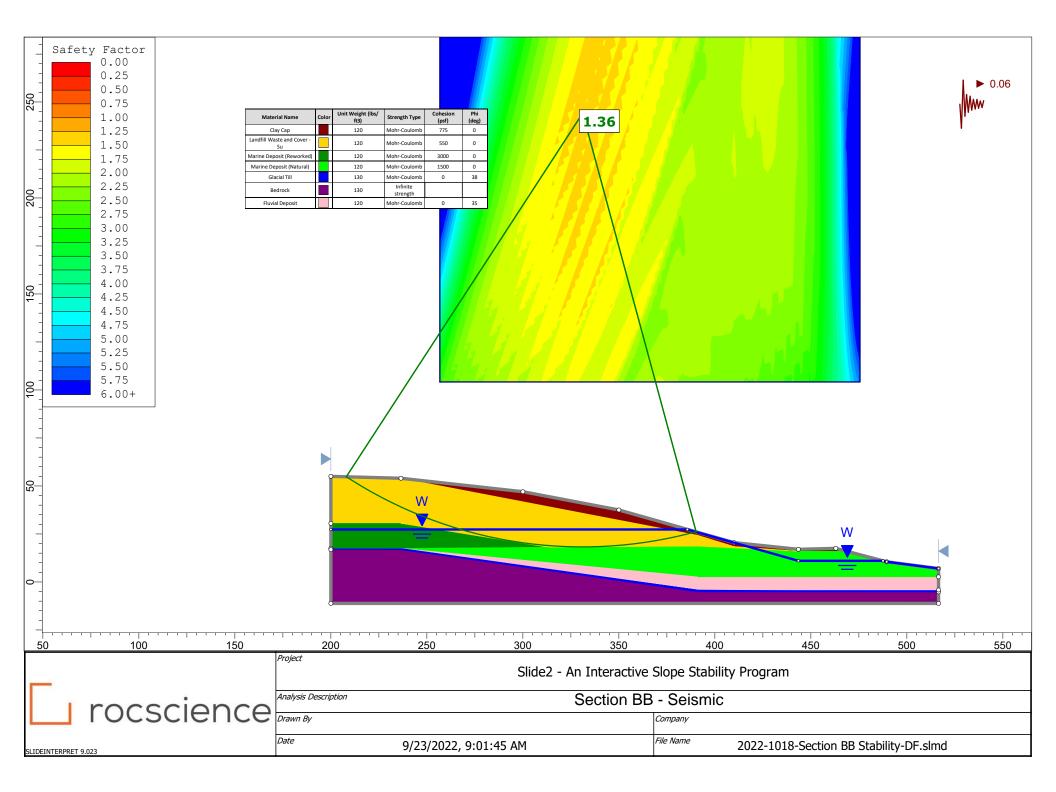


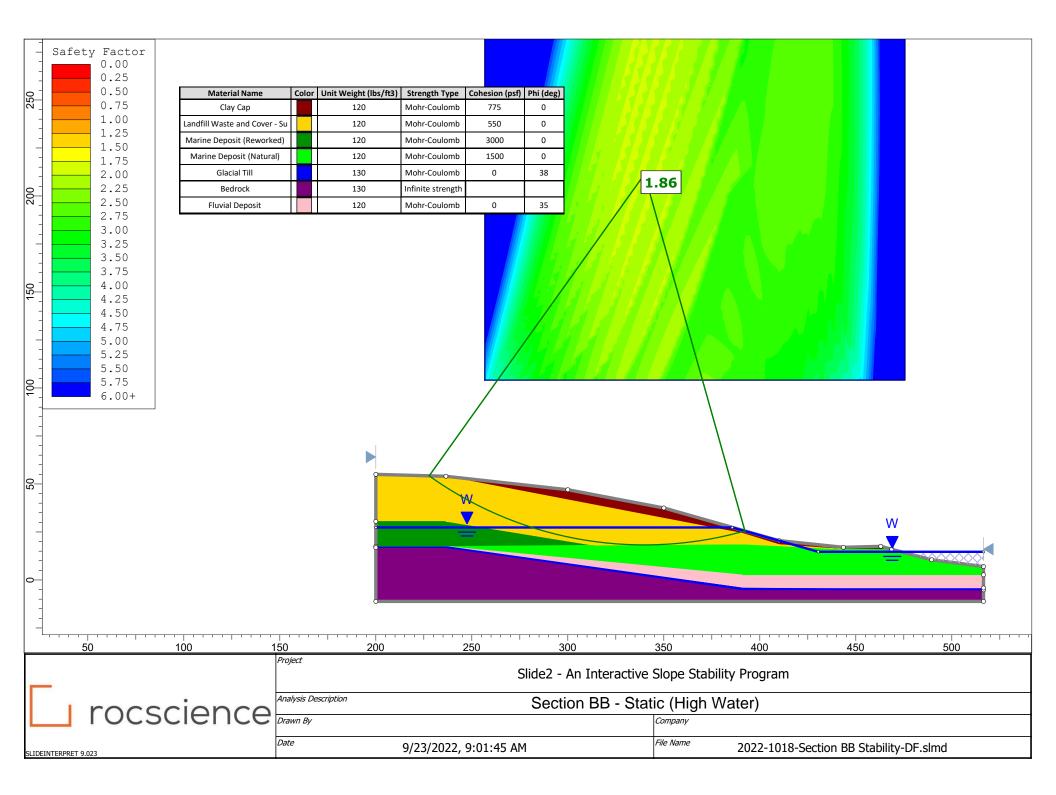


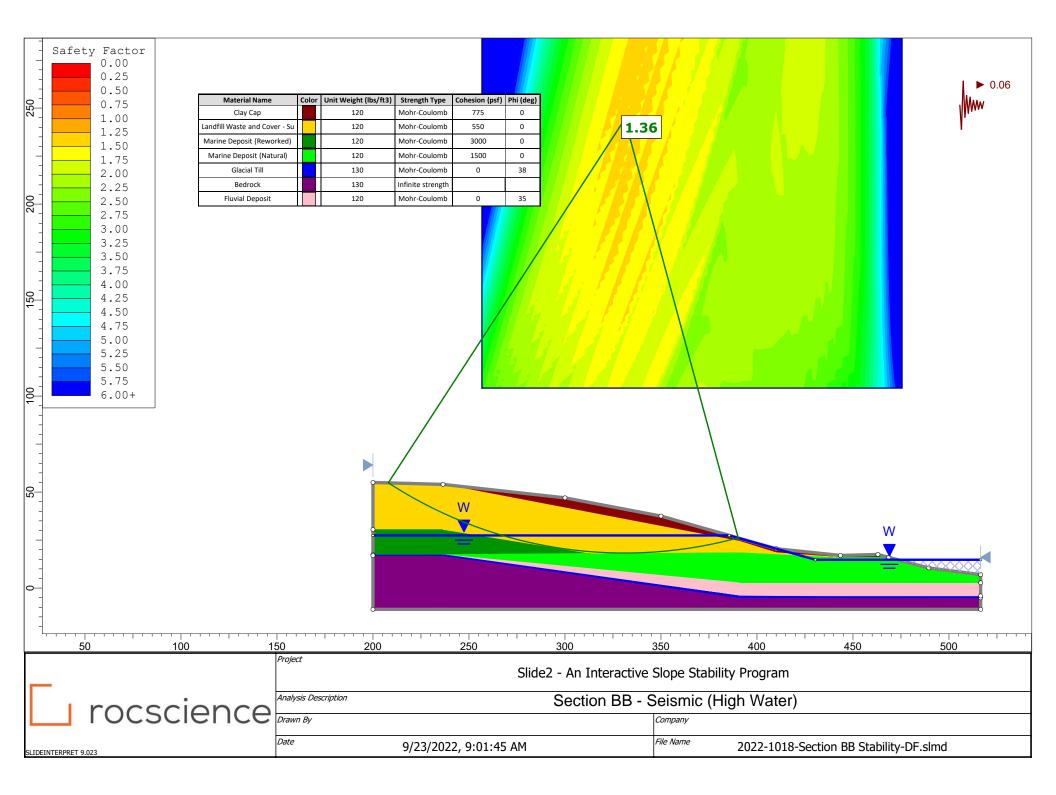

-		F	<u> </u>	55
				50
		Ē		
_		E		45
-	F	F		
	Ε	E		40
	H	E	<u> </u>	10
		F		35
	H	Þ		55
-	F	F		70
	E	E		30
		E		~ -
-	E	Þ		25
	F	F		
	E	E		20
		E		20
-	H	Þ		15
		F	<u> </u>	15
	E	E		\mathbf{i}
	H	Þ		10
-	Ħ	Þ		–
	E	E		5
			-	
١	1		8+2	5
1		1	N T /	~)











То:	MaineDOT	From:	Gordon E. Clark Michael Chelminski, P.E.
File:	179450347	Date:	August 26, 2022

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

1 Introduction

This memo was prepared by Stantec Consulting Services Inc. (Stantec) under contract to the Maine Department of Transportation (MaineDOT) for Planning Phase Support Services (Planning Study) as part of the Dike Bridge Replacement Project (Project) located on the Middle River in Machias, Maine. MaineDOT is pursuing replacement of the existing infrastructure at Dike Bridge due to its poor condition with the objectives to provide adequate drainage from upland floods without overtopping the Route 1 roadway, provide adequate freeboard during tidal flood events, provide sea-level-rise resiliency, and accommodate fish passage to the extent practicable.

As part of this scope of services for the Planning Study, Stantec performed hydraulic analyses to assess hydraulic conditions associated with replacement alternatives for the Dike Bridge culvert. The first phase (Phase 1) of the hydraulic analyses included assessment of hydraulic conditions associated with five primary replacement alternatives for the Dike Bridge culvert, which is documented in the "Phase 1 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services" dated September 2021 (Phase 1 Study). The second phase (Phase 2) of the hydraulic analyses included evaluation of hydraulic performance across a wider range of conditions for two refined alternatives, including Alternative 4m and Alternative 10, which is documented in the "Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services" dated December 2021 (Phase 2 Study).

Following Phase 1 and Phase 2 of the Planning Study, additional concerns were voiced related to potential impacts of the proposed bridge replacement alternatives on the municipal landfill located upstream of Dike Bridge. To better understand these potential impacts, Stantec performed a preliminary evaluation to compare simulated hydraulic conditions upstream of Dike Bridge for the refined alternatives to existing conditions based on the Phase 2 Study model simulations. A summary of this preliminary evaluation of potential impacts to the municipal landfill are documented in this memo and includes a brief review of existing conditions for subject infrastructure, hydraulic conditions for existing and proposed alternatives, and recommended additional study and data collection. Attachment A contains a figure that shows the approximate wetland areas in the floodplain of the Middle River in the vicinity of the municipal landfill. Attachment B contains figures that depict mapped water surface elevations¹ (WSELs) along the Middle River landward from Dike Bridge for the proposed alternatives.

1.1 Goals and Objectives

This section presents goals and objectives of the preliminary evaluation as documented herein. The goal of the preliminary evaluation is to present anticipated hydraulic conditions that would occur landward of Dike

¹ Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

August 26, 2022 MaineDOT

Page 2 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

Bridge in the Middle River and potential impacts to the municipal landfill from the proposed alternatives based on results from the Phase 2 Study. The objective of the preliminary evaluation is twofold and includes the following:

- 1. Comparison of existing hydraulic conditions, including primarily water surface elevations and inundation areas, for existing and proposed alternatives adjacent to the municipal landfill across a range of different flow events including normal tide and riverine flow conditions and higher magnitude storm conditions; and
- 2. Evaluation of potential impacts based on the hydraulic simulation results on the municipal landfill.

1.2 Assumptions and Limitations

The preliminary evaluation presented in this memo is based on the following limitations and assumptions:

- 1. Hydraulic information used to compare existing conditions and the refined proposed conditions alternatives are based on the model prepared and documented as part of the Phase 2 Study, including the associated methodologies, assumptions, and limitations.
- 2. The character and location of the potential leachate-impacted groundwater/surface water interface is unknown.
- 3. Municipal landfill leachate contamination conditions, particularly fate and transport, have not been assessed or studied, and therefore it is unknown how proposed alternatives would alter the fate and transport of contamination from the municipal landfill.
- 4. The geotechnical stability of the existing landfill is unknown and information related to the geotechnical characteristics of the landfill were not reviewed as part of this preliminary evaluation.
- 5. Information from any existing municipal landfill site remedial and mitigation systems that are used to characterize potential exposure to contaminants as part of routine system monitoring, operation, and maintenance was not reviewed in preparation of this memo.

2 Existing Conditions Overview

The following sections present information on existing conditions relevant to the preliminary evaluation of potential impacts to the municipal landfill from replacement of Dike Bridge, including a brief summary of conditions of existing relevant infrastructure and a summary of existing hydraulic conditions landward from the bridge.

2.1 Subject Infrastructure

The following section presents information on the existing conditions at Dike Bridge and the municipal landfill.

August 26, 2022 MaineDOT Page 3 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

2.1.1 DIKE BRIDGE

Dike Bridge (#2246) caries Route 1 over the Middle River in the Town of Machias. The existing conveyance structure at Dike Bridge is approximately 130 feet (ft) long and composed of four rectangular box culverts (approximately 6 ft wide by 5.5 ft high) constructed of timber and stone masonry. A buried concrete slab that was previously installed as a remedial repair is located over part of the culvert. There are top-hinged flap-gates installed on the seaward side of each of the four culverts, with at least one which does not seal and leaks landward during flood tides. The Dike Bridge culvert system needs improvement due to large spalls, heavy scaling, wide cracks, loss of and rotted timber members, poorly functioning tide gates, and the need for urgent and unscheduled repairs. The primary purpose and need for the Project are addressing the culvert structure's condition and the safety of the traveling public along US Route 1 and the adjacent Calais Branch Rail Corridor.

From a hydraulic perspective, there is no apparent flood history associated with the conveyance through the existing culvert or a need to increase the hydraulic opening. The proposed structure configuration and opening are being driven by the need to improve the upstream fish passage while mitigating potential landward flooding during the normal daily riverine and tidal conditions. In addition, the existing structure may also be inadequate under certain sea level rise (SLR) scenarios (see Section 3.1). Upstream fish passage, mitigation of landward flooding during normal daily riverine and tidal conditions, and resiliency due to sealevel rise are elements that represent some of the secondary purpose and needs for the Project.

2.1.2 MUNICIPAL LANDFILL

The municipal landfill is located approximately 3,800 ft west-northwest of Dike Bridge, and approximately 1,100 ft from the existing channel of the Middle River normal flow west (i.e., right²) bank about 0.84 river miles landward of Dike Bridge. It is adjacent to the current waste transfer station on Route 192. The municipal landfill is reportedly approximately 2.5 acres in size and is an unlined landfill. According to records from the Maine Department of Environmental Protection (MDEP), the landfill was capped in 1996 as part of the MDEP Landfill Closure and Remediation Program using what MDEP describes as a "reduced procedure" approach, which includes regrading the waste and capping with six inches of topsoil over 18 inches of glacial till over six inches of borrow.

The municipal landfill is located between two small unnamed channels that are classified as low-gradient riverine habitat by the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI), which drain the east side of the upland topography west of Route 192. The municipal landfill is directly adjacent to a persistent, freshwater emergent wetland, which is located in the lower gradient historic floodplain between the channel of the Middle River and the edge of the municipal landfill. See Attachment A Figure A.1 for a depiction of NWI wetlands in the vicinity of the municipal landfill.

Due to the unlined landfill design and the "reduced procedure" capping approach, routine monitoring, operation, and maintenance may be necessary at this site. Information related to the existing condition of the landfill cap, monitoring data for the site's remedial or mitigation systems for managing potential environmental contaminants, and groundwater/surface water leachate interface characteristics, and geotechnical stability are currently unknown and were not available for the preparation of this memo.

² Based on an observer facing downstream/seaward.

August 26, 2022 MaineDOT Page 4 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

2.2 Hydraulics

Based on review of digital elevation model data available at the municipal landfill, the elevation³ at the toe of the municipal landfill slope is estimated to be around 10 to 11 ft in the low-gradient area abutting the floodplain and noted wetlands. Based on review of the topography and data from the NWI, there appears to be potential for hydrologic connectivity between the unnamed tributaries, wetlands, and the Middle River, specifically on the east-southeast side of the municipal landfill.

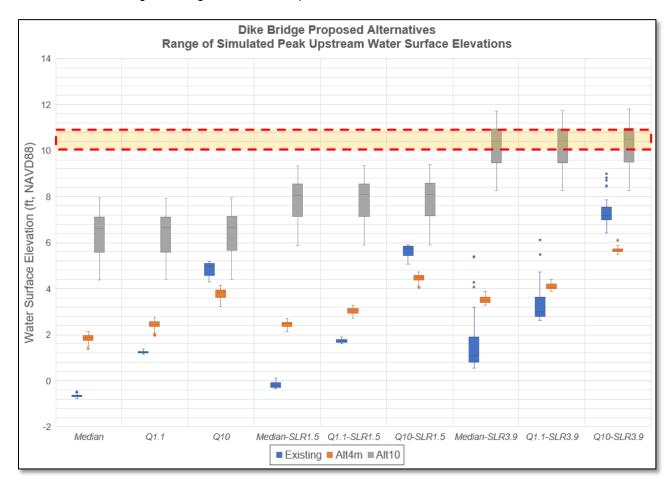
Existing maximum water surface elevations for normal, annual peak flow, and the 10-year peak flow are -0.5 ft, 1.4 ft, and 5.2 ft, respectively. The Federal Emergency Management Agency (FEMA) 100-year event base flood elevation is at 11 ft and is therefore located at the toe of the municipal landfill under existing conditions. Although the water surface elevation of the Middle River near the municipal landfill is not near the municipal landfill on a daily basis, it remains a concern for higher flows based on the FEMA base flood elevation.

3 Proposed Alternative Conditions

The following section presents a summary of the hydraulic conditions for the proposed alternatives compared to existing conditions upstream of Dike Bridge in the Middle River adjacent to the municipal landfill as well as a summary of potential landfill impacts based on the assumptions and limitations of the Phase 2 Study methodology.

3.1 Hydraulics

Figure 1 is a graphical depiction of the range of peak upstream water surface elevations in a traditional boxand-whisker plot across different model simulations with normal tidal (i.e., without storm surge) seaward boundary conditions with and without SLR. Note that the estimated elevation of the toe of the municipal landfill slope is depicted in Figure 1 as the yellow area outlined with red around elevation 10 to 11 ft. The different model simulations include normal tidal conditions, 1.5 ft of SLR on normal tidal conditions, and 3.9 ft of SLR on normal tidal conditions, for riverine median, annual peak (Q1.1), and 10-year peak (Q10) flows. Reference the Phase 2 Study for additional information and descriptions related to these different model simulations.


There were some statistical outliers in the model runs over the simulation period, which are represented as points in Figure 1. Values were considered outliers if they were 1.5 times the interquartile range (IQR; the difference between the third quartile and the first quartile) larger than the third quartile or 1.5 times the IQR smaller than the first quartile. There were more outliers for the existing conditions simulations with the 3.9 ft of SLR tidal boundary condition due to what may be undeveloped or stable oscillation patterns in the numerical model as a result of overtopping of Dike Bridge, which is at elevation 11 ft, and the maximum tidal stage for the normal tide with 3.9 ft of SLR of 12.1 ft. Reference section 5.1 in the Phase 2 Study Memo for more discussion related to this SLR scenario.

³ Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88)

August 26, 2022 MaineDOT Page 5 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

Both Alternative 4m and 10 result in increased bi-directional flow across Dike Bridge. As a result, under normal riverine flow and tidal conditions, the upstream water surface elevation is both greater in magnitude and also results in a wider range of flows than for the existing conditions. Similar to existing conditions, the daily peak water surface elevations landward of Dike Bridge in the Middle River for the proposed alternatives coincide with the high tide cycles (i.e., the timing of the peak upstream flows relative to the normal tide cycles generally remain the same); however, the maximum water surface elevation on a daily basis would be greater than for existing conditions under both proposed alternatives as presented in Figure 1 and Alternative 10 would result in the largest change in maximum upstream water surface elevations

Figure 1. Summary of simulated peak landward water surface elevations in Middle River across a range of different riverine flows and downstream tidal boundary conditions; Note that the area highlighted in yellow and outlined in red represents the approximate elevation of the toe of the municipal landfill slope

While peak riverine flows such as the 1.1-year (~annual) peak flow and the 10-year peak flow are expected to occur relatively infrequently (e.g., 10% chance on an annual basis), the regular semi-diurnal tides result in approximately two occurrences of a high tide each day. Therefore, compared to peak flow conditions, typical

Design with community in mind

\\us0289-ppfss01\workgroup\1956\active\0_task_ownership\179450347\05_report_deliv\draft_doc\\andfill-impacts\memo\mem_machias-prelim-landfill-eval_findft_20220826.docx

August 26, 2022 MaineDOT Page 6 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

riverine and tidal conditions have a much more significant and frequent impact on the water surface elevations landward from Dike Bridge in the Middle River. Table 1 presents a summary of the range of peak landward water surface elevations under normal riverine flow and normal tidal conditions for existing and proposed alternatives. On a daily basis, Alternative 4m would result in an average increase in upstream water surface elevations of approximately 1.5 ft and Alternative 10 would result in an approximately 6 ft average increase compared to existing. Both proposed alternatives would result in increased peak water surface elevations compared to existing conditions. Alternative 10 results in the largest change in maximum upstream water surface elevations. The peak upstream water surface elevations for normal flows and normal tidal conditions under Alternative 10 are between 4.4 ft and 8 ft. This would come within two vertical feet of the toe of the municipal landfill slope. The peak upstream water surface elevations for normal flows and normal tidal conditions under Alternative 4m are between 1.4 and 2.1 ft, which would be approximately 8 vertical feet from the toe of the municipal landfill slope.

Table 1. Summary of the range of peak upstream water surface elevations under normal flow and normal tide conditions for existing and proposed alternatives.

	Existing	Alternative 4m	Alternative 10
Minimum	-0.8	1.4	4.4
Average	-0.6	1.8	6.4
Maximum	-0.5	2.1	7.9

Attachment B contains figures that depict the inundation extents for existing and proposed alternatives for various riverine and tidal conditions. In general, there is increased landward inundation under the proposed alternatives compared to existing conditions. The increased inundated area in Alternative 10 is a result of the more transparent tidal regime. The single bidirectional flow culvert used on one of the three culverts in Alternative 4m will also result in increased inundation relative to existing conditions, but not to the extent of Alternative 10.

Figure B.0 presents the maximum landward (i.e., upstream) water levels for typical tides and river flows. For normal tidal and riverine flow conditions, Alternatives 4m and 10 result in increased areas of inundation of approximately 86 acres and 398 acres, respectively. The spatial extents and inundation areas of the maximum landward water levels for typical tides and river flows for existing conditions and Alternatives 4m and 10 are presented and can be compared to the approximate location of the municipal landfill slope. For this tide and river flow scenario, Alternative 10 would result in landward water levels that are in relatively close proximity (i.e., approximately 250 ft) to the toe-of-slope of the municipal landfill compared to a distance of approximately 1,000 ft for existing conditions and Alternative 4m, which are approximately similar in distance.

Figure B.1 presents the landward water levels that represent the 100-year peak riverine flow and mean high water downstream boundary condition based on steady-state modeling methods. This figure shows that the inundation area for all three model geometries (i.e., existing conditions and both proposed conditions) are relatively similar for this simulation. Note that the FEMA base flood elevation (BFE) is also depicted in Figure B.1, and the inundation area aligns relatively closely to the simulation results from the model.

Figures B.2., B.3. and B.4 present the inundation extents for the simulated 1.1-year (~annual) peak flow riverine conditions with 100-year high tide surge downstream boundary conditions with 1.5 ft and 3.9 ft of SLR. In general, Alternative 10 has the greatest area of inundation and comes in closest proximity to the

Design with community in mind

August 26, 2022 MaineDOT Page 7 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

landfill compared to existing conditions and Alternative 4m, except for 3.9 ft of SLR where Dike bridge is overtopped under existing conditions.

3.2 Potential Landfill Impacts

Based on the results of the Phase 2 Study simulation results as presented in the Phase 2 Study Memo and in Section 3.1 of this memo, there are anticipated changes to the landward water surface elevations upstream of Dike Bridge from existing to proposed conditions for both Alternative 4m and Alterative 10. In general, there will be an increased magnitude in the maximum peak upstream water surface elevations for both alternatives with Alternative 10 resulting in the greatest increase due to the increased tidal transparency through the proposed bridge opening. The larger bridge opening in Alternative 10 will also result in a greater flux and exchange of water between the tidal area of the Middle River upstream of Dike Bridge and its confluence with the Machias River compared to both existing conditions and Alternative 4m. Due to the limited information and assumptions and limitations of the Phase 2 Study analyses, it is unknown whether this greater flux and resulting increased wetting at the toe-of-slope of the municipal landfill would result in conditions that would increase the likelihood of adverse impacts from contaminants at the municipal landfill (e.g., impacts to fate and transport of contaminants downstream).

The results from the Phase 2 Study and as presented in this memo suggest that the extent of daily inundation associated with regular, semi-diurnal tides are to be significantly more pronounced for Alternative 10 compared to Alternative 4m. This would result in a reduced wetland buffer between the municipal landfill and the Middle River on a daily basis. This would also result in the normal daily wetted area of the Middle River being in closer proximity to the toe of slope and the groundwater / surface water interface. Note that the characteristics of the groundwater / surface water interface are currently unknown (reference Section 1.2).

In addition, based on the steady-state simulation results for the 100-year riverine flow with mean high water downstream boundary conditions and the regulatory FEMA BFE of 11 ft, it appears as though the toe of the municipal landfill slope may be subject to inundation and flooding risk under existing conditions, which may potentially pose concerns for adverse impacts related to contaminants. Sea-level rise will also increase the likelihood for increased inundation in the future for both existing and proposed conditions. Existing potential acute effects and risk associated with a large pulse or slug of contamination from gross-failure of the municipal land fill slope at the wetland and floodplain interface may also be exacerbated by low-frequency storm events under both current sea-level and future sea-level rise conditions.

4 Recommended Additional Study and Data Collection

The following additional studies and data collection are recommended to further evaluate the potential impacts of the proposed alternatives on the municipal landfill:

- 1. Evaluate the conditions of the existing installed municipal landfill site remedial and mitigation systems used to prevent ongoing exposure to site contaminants as part of routine system monitoring, operation, and maintenance.
- 2. Evaluate the characteristics and location of the leachate groundwater / surface water interface.

August 26, 2022 MaineDOT Page 8 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

- 3. Identify the primary leachate contaminate constituents.
- 4. If contaminants of concern are identified in the municipal landfill, evaluate the fate and transport of contaminants for both existing and proposed conditions downstream.
- 5. Evaluate geotechnical conditions including slope-stability at the municipal landfill for various hydraulic conditions for existing and proposed conditions at Dike Bridge. Various hydraulic conditions for consideration may include typical normal flows in Middle River with normal tidal boundary conditions, as well as for low-frequency storm flow events (e.g., 100-year riverine flow), and storm surge and SLR conditions.

5 Conclusion

A preliminary evaluation was performed to compare hydraulic conditions simulated upstream of Dike Bridge for the refined alternatives to existing conditions. A summary of this preliminary evaluation of potential impacts to the municipal landfill are documented in this memo and recommendations for additional study and data collection are provided. The following items summarize the findings from this preliminary evaluation:

- 1. Both Alternative 4m and Alternative 10 will result in increased landward water surface levels in the Middle River landward of Dike Bridge with Alternative 10 resulting in the largest increase due to the increased tidal transparency from the large bridge opening.
- 2. Alternative 10 would result in a significantly greater inundation area under typical tides and riverine flows compared to existing conditions and Alternative 4m.
- 3. Typical tides and riverine flows represent the hydraulic conditions that would occur most frequently in the Middle River landward from Dike Bridge.
- 4. Peak landward water surface elevations for normal flows in the Middle River and normal tidal conditions under Alternative 10 are between 4.4 ft and 8 ft. Water surface elevations in the range of 8 ft would be within two vertical feet of the toe of the municipal landfill slope.
- 5. Peak upstream water surface elevations for normal flows in the Middle River and normal tidal conditions under Alternative 4m are between 1.2 and 2.1 ft, which would be approximately eight vertical feet from the toe of the municipal landfill slope.
- 6. Alternative 10 would result in a significant change to the amount of wetland buffer in the floodplain between the municipal landfill and the Middle River under typical flow and tidal conditions. Alternative 4m and existing conditions are relatively similar under normal conditions. For example, the approximate distance between the normal maximum water line in the Middle River under Alternative 10 is 250 ft versus approximately 1,000 ft for Alternative 4m and existing conditions.
- 7. If a slope-stability issue was identified at the municipal landfill, then a slope failure of the municipal landfill could potentially result in increased risk of environmental contamination under existing and proposed conditions for both alternatives. However, the increased inundation characteristics and the

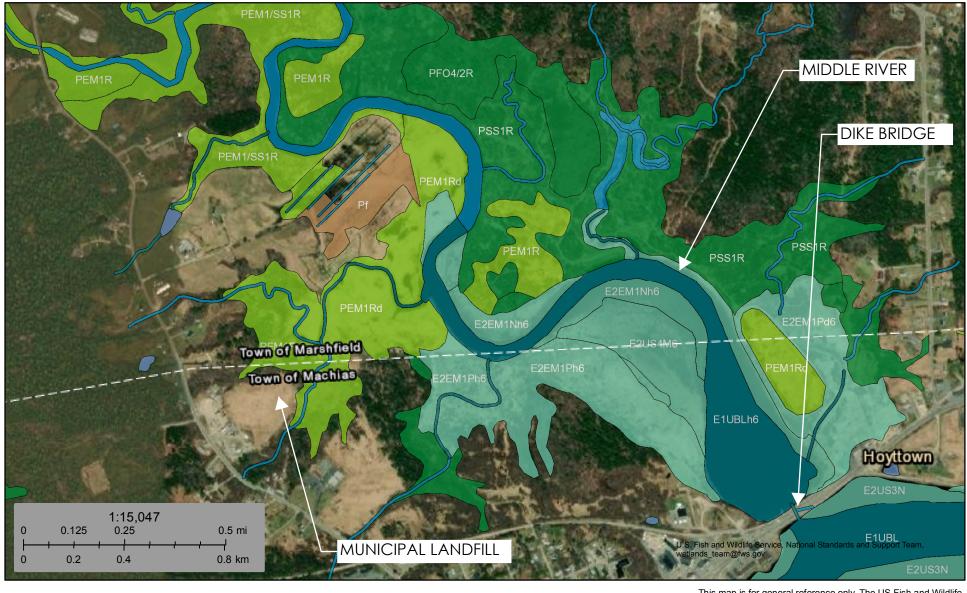
Design with community in mind

August 26, 2022 MaineDOT Page 9 of 9

Reference: DRAFT Preliminary Municipal Landfill Impact Evaluation; Machias – Dike Bridge (#2246) Planning Phase Support Services Amendment #2

resulting potential for increased dispersal of material associated with Alterative 10 may make a remediation cleanup effort more challenging.

- 8. Low-frequency storm events, such as the regulatory 100-year FEMA BFE, may result in conditions that would place the inundation extent in close proximity to the municipal landfill under existing conditions as well.
- 9. SLR is also expected to increase the likelihood of increased inundation at the location of the municipal landfill under existing and proposed conditions.
- 10. Due primarily to the assumptions and limitations of the preliminary evaluation presented herein, it is unknown whether the increased inundation and greater flux of water at the location of the municipal landfill would result in conditions that would increase the likelihood of adverse impacts from contaminants at the municipal landfill (e.g., impacts to fate and transport of contaminants downstream).


Attachment A

Wetland Figure

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Middle River, Machias, ME

August 17, 2022

Wetlands

- Estuarine and Marine Wetland

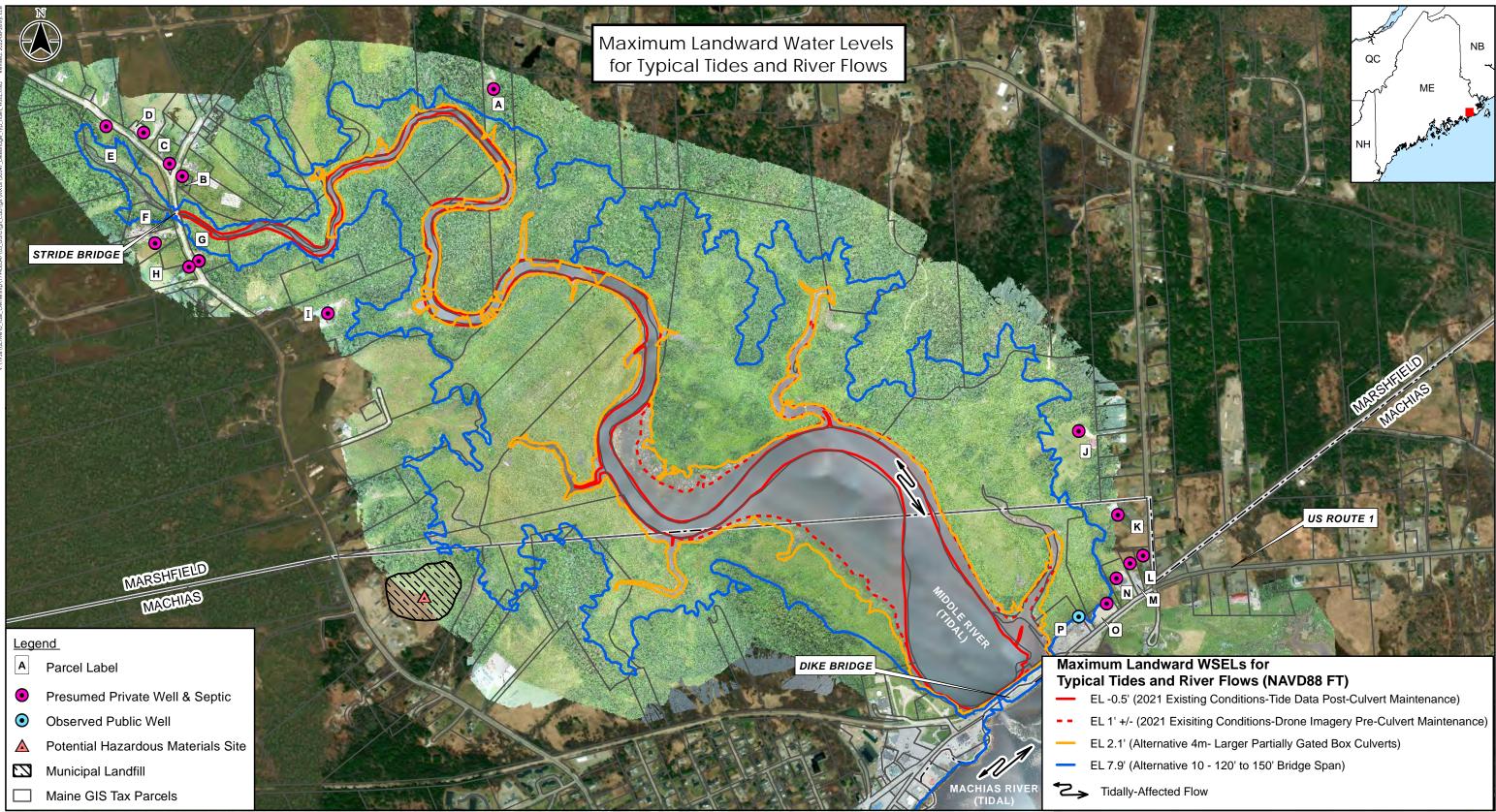
Estuarine and Marine Deepwater

- Freshwater Emergent Wetland Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.


FIGURE A.1

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

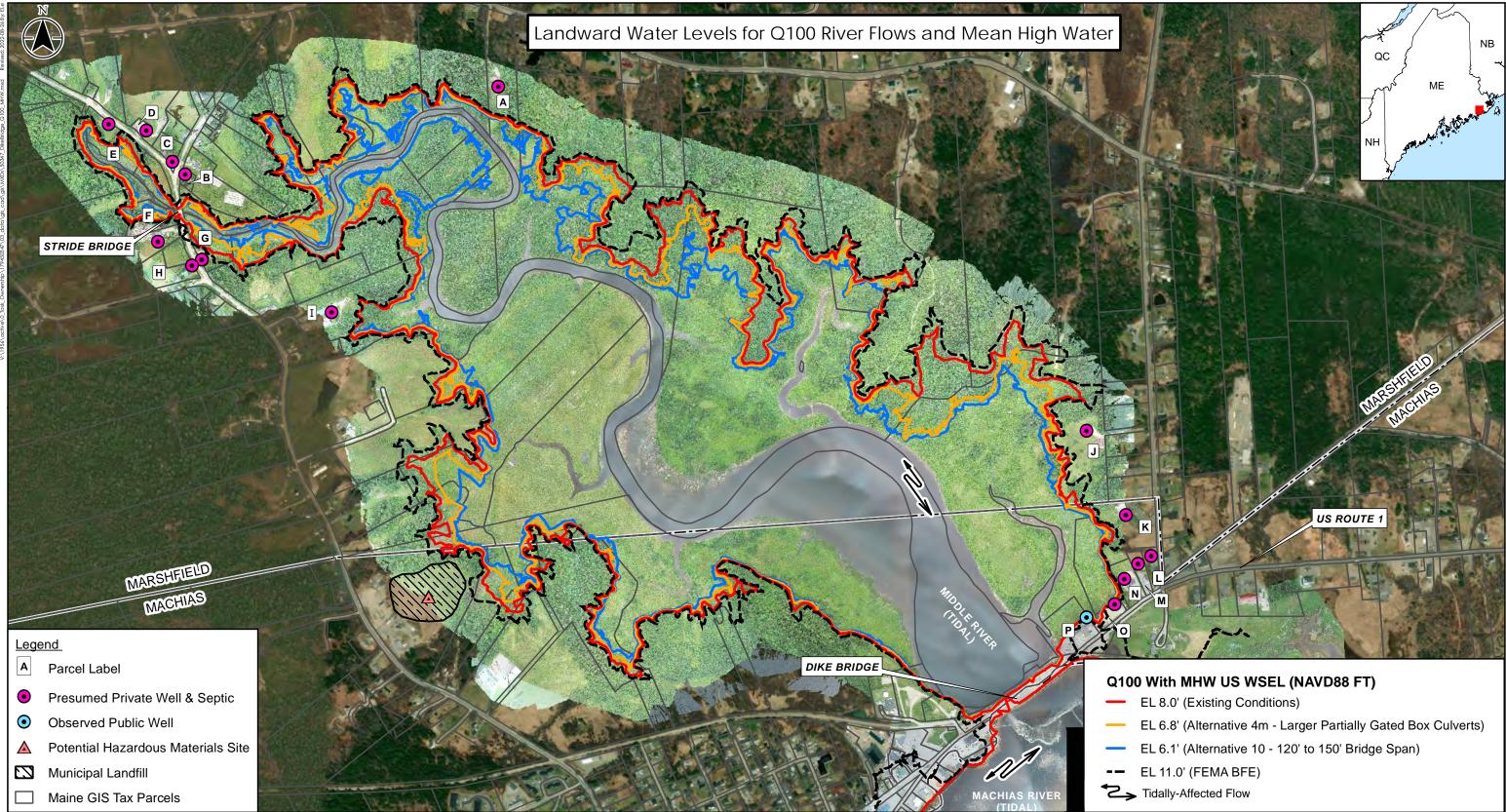
Attachment B

Inundation Figures

ents, from any and all claims arising in any

vay from the content or provision of the date

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2022-08-26 Reviewed by TM on 2022-08-26 50347_DikeBridge_Typ_Tides_WSEL.mxd


<u>Notes</u>

pility for data supplied in electronic format. The recipient accepts full responsibility for

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) depicted are based on unsteady-state methods as part of the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service (http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

) Feet	Client/Project Maine DOT Dike Bridge Machias, Maine	179450347
	Figure No. B.O	
		ndward Water Levels les and River Flows

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2022-08-26 Reviewed by TM on 2022-08-26 50347_DikeBridge_Q100_MHW.mxd

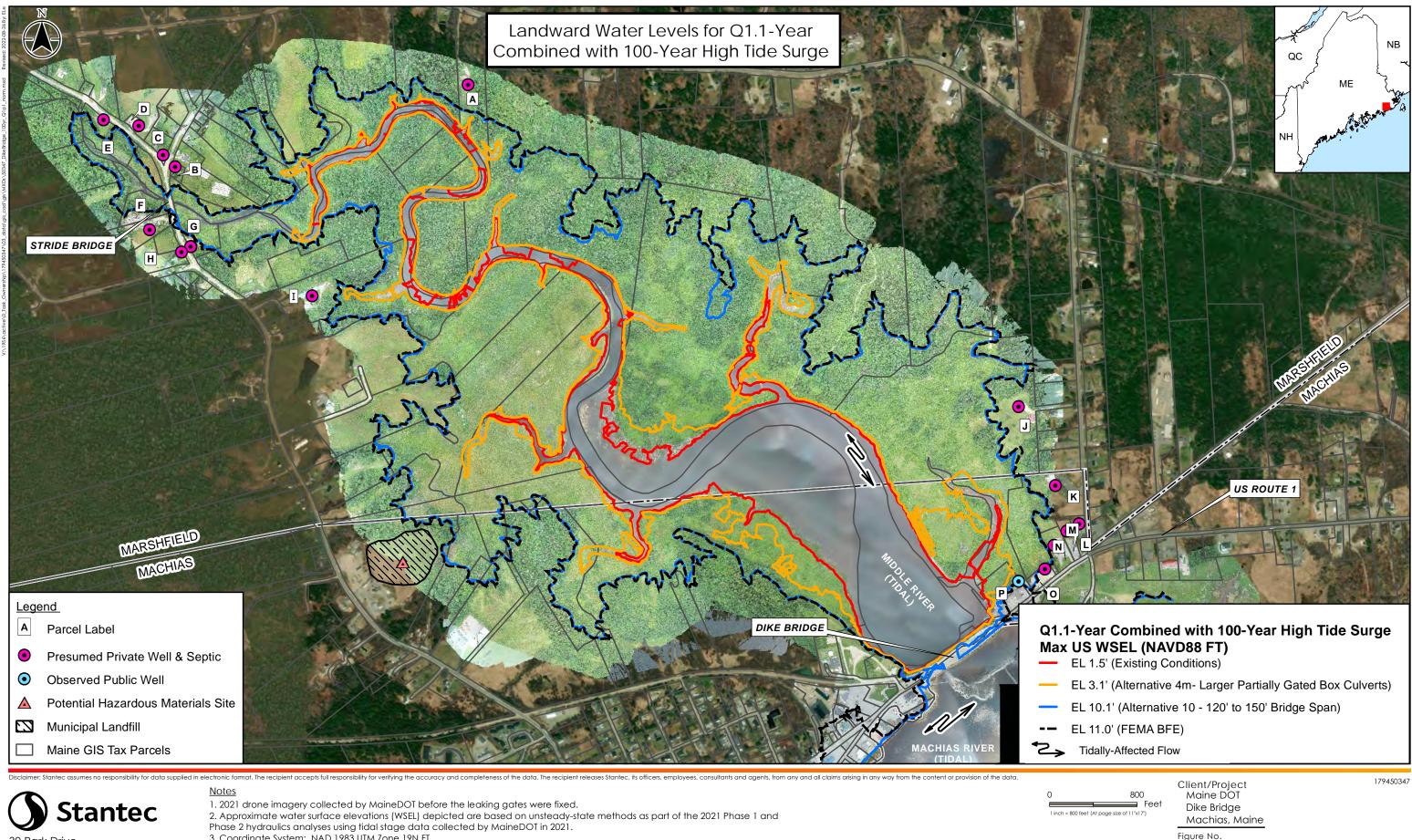
<u>Notes</u>

ibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and co

1. 2021 drone imagery collected by MaineDOT before the leaking gates were fixed.

2. Approximate water surface elevations (WSEL) depicted are based on unsteady-state methods as part of the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT

4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021.


6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service

(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

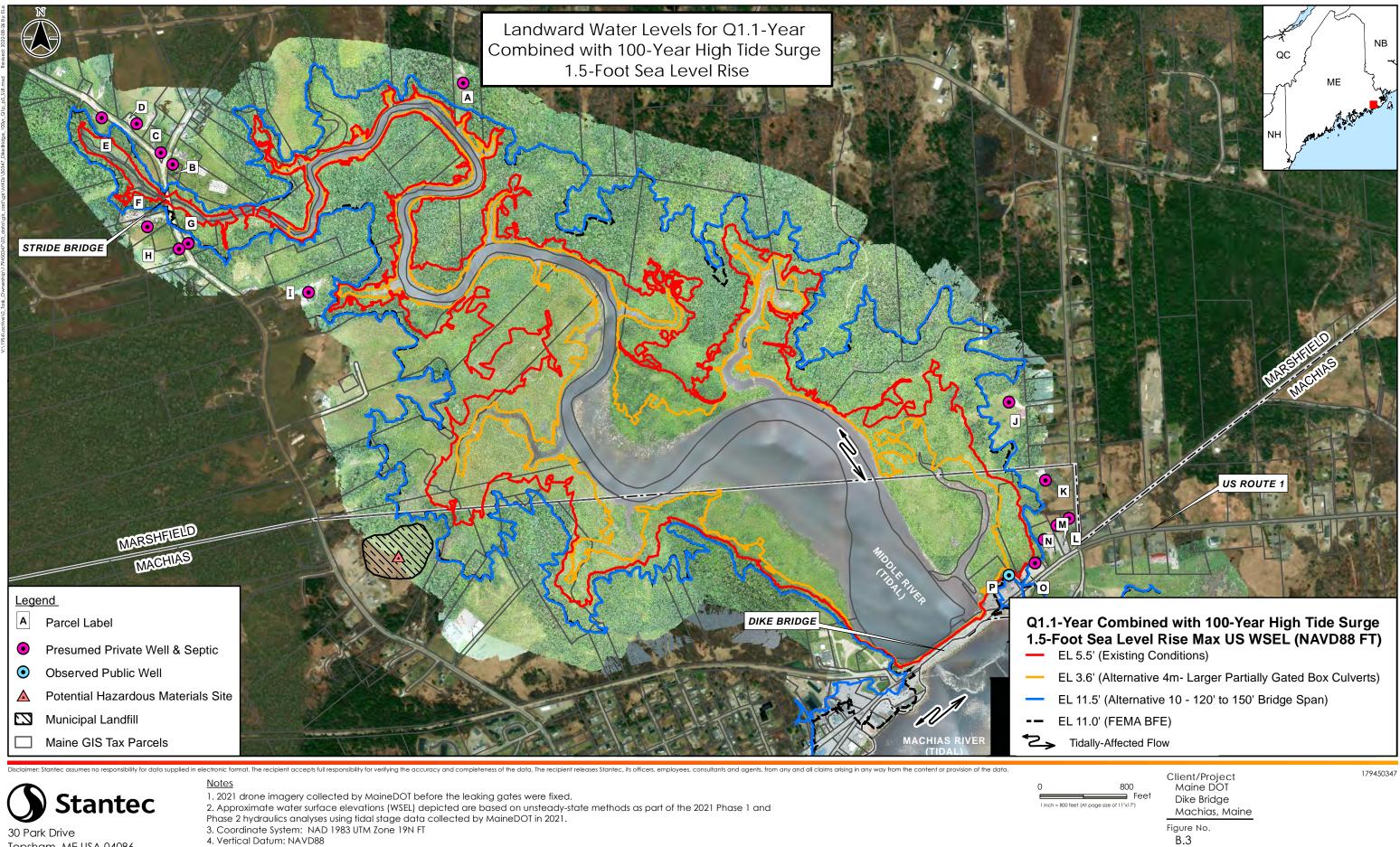
ent or provision of the date

800 ■ Feet "×17")	Client/Project Maine DOT Dike Bridge Machias, Maine	179450347
	Figure No. B.1	
	Title Landward Water Levels Q100 River Flows and N 8/26/2022	

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2022-08-26 Reviewed by TM on 2022-08-26 50347_DikeBridge_100yr_Q1p1_norm.mxd

3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88

5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service


(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

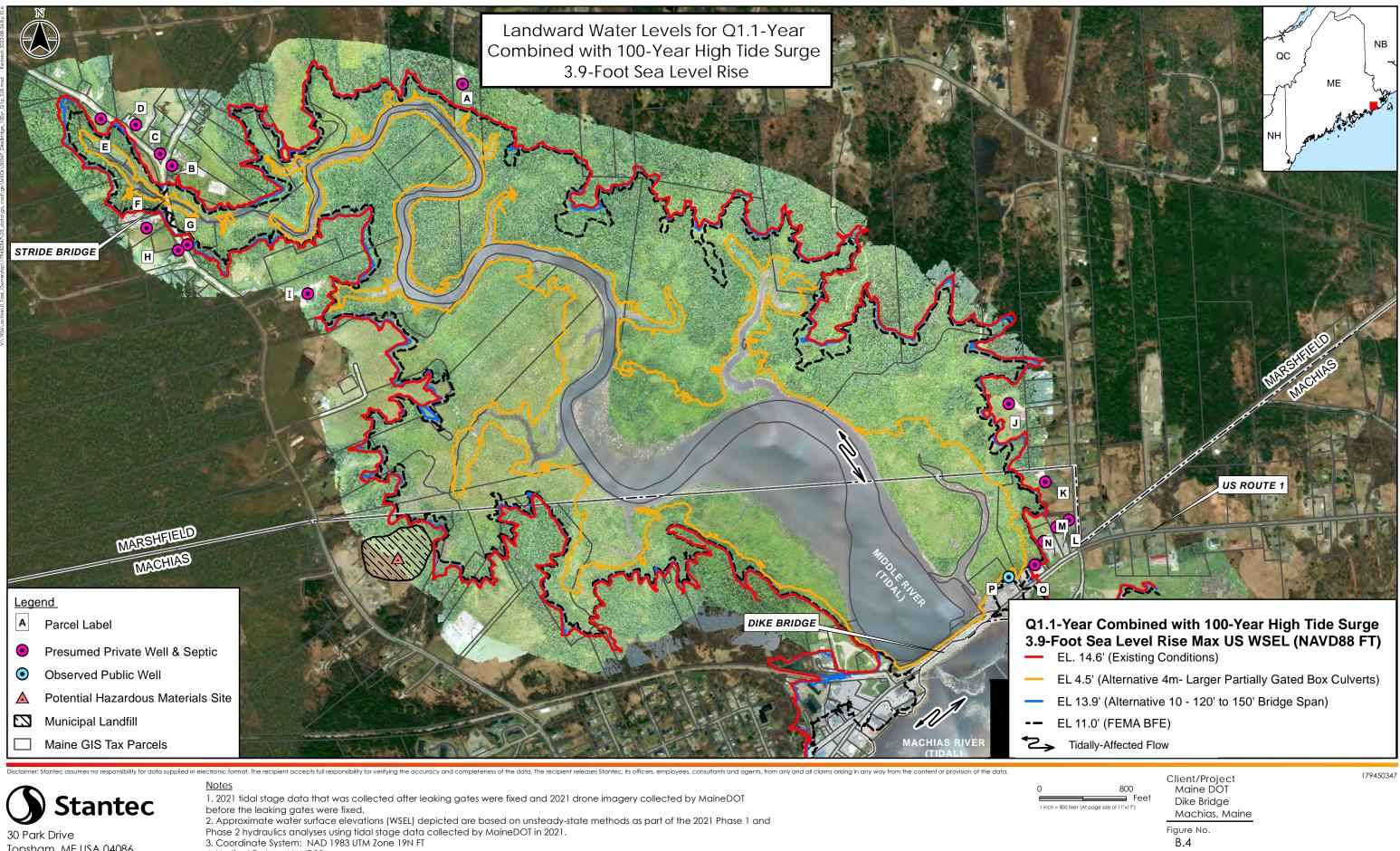
Landward Water Levels for Q1.1-Year Combined with 100-Year High Tide Surge

8/26/2022

B.2

Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2022-08-26 Reviewed by TM on 2022-08-26 50347_DikeBridge_100yr_Q1p_p5_SLR.mxd

5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021.


6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service

(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

Т	itle	

Landward Water Levels for Q1.1-Year Combined with 100-Year High Tide Surge 1.5-Foot Sea Level Rise

Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2022-08-26 Reviewed by TM on 2022-08-26 50347_DikeBridge_100yr_Q1p_SLR.mxd

4. Vertical Datum: NAVD88

5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service

(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

Landward Water Levels for Q1.1-Year Combined with 100-Year High Tide Surge 3.9-Foot Sea Level Rise

APPENDIX 7 – Section 106 – Determination of Eligibility and Effects / Concurrence

- 1. 3/6/2023 Memo: Concurrence-Finding of Effects All Alternatives
- 2. 2/7/2023 Memo: Additional Information Response for Finding of Effects
- 3. 12/28/2022 Memo: Response to Section 106 Request for Concurrence
- 4. 12/8/2022 Memo: Section 106 Request for Concurrence

STATE OF MAINE

MEMORANDUM

March 6, 2023

To:	Julie Senk, ENV/Maine Department of Transportation
From:	Kirk F. Mohney, State Historic Preservation Officer KFM
Subject:	WIN 16714.00, Machias, Dyke Bridge Replacement; MHPC # 1269-08

In response to your recent request, I have reviewed the information received February 7, 2023 to continue consultation on the above referenced undertaking pursuant to the Maine Programmatic Agreement and Section 106 of the National Historic Preservation Act of 1966, as amended.

Finding of Effects

Based on the alternatives presented in the supplemental documentation for finding of effects, the Commission has reached the following conclusions:

No Build

The Commission concurs with MaineDOT that *no historic properties would be affected* under this alternative.

In-Kind Replacement (Alternative 1)

The Commission concurs with MaineDOT that *no historic properties would be affected* under this alternative.

Partially-Gated Culvert Replacement (Alternative 4)

The Commission concurs with MaineDOT that this alternative would have an *no adverse effect* on the Trotting Park. Under normal tides, this alternative would have *no effect* on the Railroad Station. However, when SLR and an astronomical high tide is taken into consideration, this alternative would have *no adverse effect* on the Railroad Station.

Partially-Gated Culvert Replacement (Alternative 4M)

The Commission concurs with MaineDOT that this alternative would have *no adverse effect* on the Trotting Park. Under normal tides, this alternative would have *no effect* on the Railroad Station. However, when SLR and an astronomical high tide is taken into consideration, this alternative would have *no adverse effect* on the Railroad Station.

Open Box Culvert Replacement (Alternative 9)

The Commission concurs with MaineDOT that this alternative would have an *adverse effect* on the Trotting Park. Under normal tides, this alternative would have *no effect* on the Railroad Station. However, when SLR and an astronomical high tide is taken into consideration, this alternative would have *no adverse effect* on the Railroad Station.

Bridge Replacement (Alternative 10)

The Commission concurs with MaineDOT that this alternative would have an *adverse effect* on the Trotting Park. Under normal tides, this alternative would have *no adverse effect* on the Railroad Station. However, when SLR and an astronomical high tide is taken into consideration, this alternative would have an *adverse effect* on the Railroad Station.

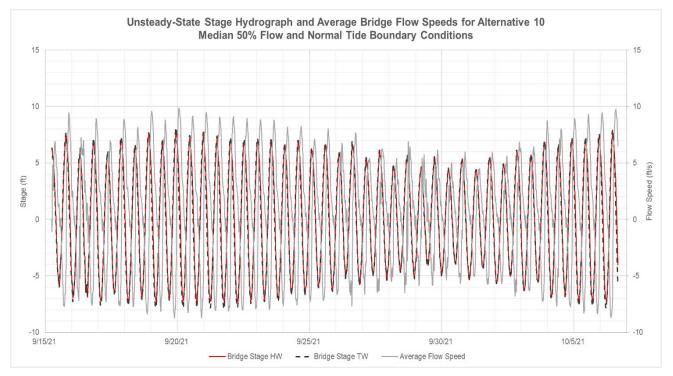
Please contact Megan M. Rideout of our office if we can be of further assistance in this matter.

STATE OF MAINE Memorandum

Date: February 7, 2023

To: Kirk Mohney, MHPC From: Julie Senk, Maine DOT/ENV Subject: Section 106 Request for More Information Project: Machias 16714.00, MHPC #1269-08

The Maine DOT has reviewed this project pursuant to the Maine Programmatic Agreement (PA) and Section 106 of the National Historic Preservation Act of 1966, as amended.


This memo is in response to the Maine Historic Preservation Commission's request for more information on the subject project, dated December 28, 2022. The MaineDOT consulted with Stantec, who provided this information in the December 21, 2021, memo from Stantec to MaineDOT ("Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services"). The report is attached to this memo for reference.

Q: What SLR scenarios were considered during the hydraulic study?

A: Unsteady-state modeling of conditions with 1.5 feet (ft) and 3.9 ft of SLR on the normal tide hydrograph based on the updated tidal stage data collected by MaineDOT in 2021 with the 50th percentile (median), 1.1-year, and 10-year flows in the Middle River.

Q: Did the MaineDOT explore SLR scenarios with astronomical high tides for the existing structure and each of the proposed alternatives?

A: The two SLR scenarios (1.5 ft and 3.9 ft) were used to evaluate potential impacts of SLR with normal tides by linearly applying (adding elevation) the two SLR scenarios to tidal stage data collected by MaineDOT in 2021.

The dashed gray line in the graph above reflects the 2021 tidal stage data collected by MaineDOT that was used to force the hydraulic model and depicts a series of higher astronomical tides around 9/20/21 and 10/6/21. Note that the hydraulic model simulations were constrained to using actual tidal stage data collected by MaineDOT and did not attempt to identify the highest annual tide/highest astronomical tide.

Q: What is the water level difference between the existing high tides and expected high tides under the various alternatives?

A: Information relevant to this question is presented in Tables 6 (Current (2021) conditions, 7 (1.5 ft SLR) and 8 (3.9 ft SLR) in Stantec's 2021 report (page 13). The question has been addressed with and without SLR, but the table below specifically addresses SLR. The referenced tables provide information only on Existing Conditions, Alternative 4M, and Alternative 10. The table below provides a preliminary assessment based on the information provided above (positive values in the "difference" column are increased/higher water surface elevations). For reference, the representative elevation of the Trotting Track is approximately 3 ft.

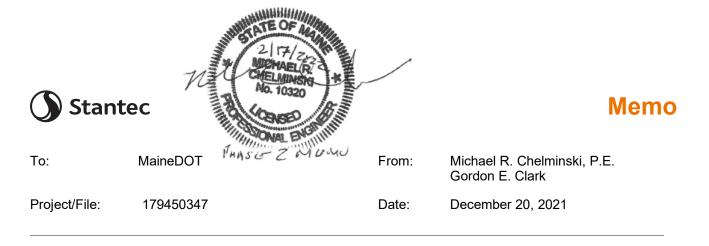
	Current Conditions	1	.5 ft SLR	3.9 ft SLR		
Middle River Flow	Median Flow	Με	dian Flow	Me	edian Flow	
Scenario	Max WSEL (ft, NAVD88)	Max WSEL (ft, NAVD88)	Difference from Current Conditions (ft)	Max WSEL (ft, NAVD88)	Difference from Current Conditions (ft)	
Existing Conditions	-0.5	0.1	0.6	5.4	5.9	
Alternative 4M	2.1	2.7	0.6	3.9	1.8	
Difference from Current Conditions (ft)	2.6					
Alternative 10	7.9	9.3	1.4	11.7	3.8	
Difference from Current Conditions (ft)	8.4					

Q: What is the existing water level difference at astronomical high tides with accounting for SLR?

A: This information is summarized in the table above and can be found in Tables 6, 7, and 8 in the attached Stantec report (page 13). For the simulation period from 9/20/21 and 10/6/21, Alternative 4M results in an increase in WSELs landward (upstream) from the Dike Bridge of 2.6 ft and Alternative 10 results in an increase in WSELs landward (upstream) from the Dike Bridge of 8.4 ft.

Q: Please confirm the proposed vertical alignment height for all alternatives, including the causeway.

A: The proposed conceptual profiles for the culvert and bridge alternatives are summarized for minimum and maximum SLR scenarios developed to date in the table below. Also included is


the relative change compared to existing conditions at key locations along the causeway, (at the proposed structure, at the high-point or low-point for min/max SLR).

Alternative	Existing Causeway Elevation (ft)	Minimum Conceptual Sea- Level Rise Causeway Profile (EL in ft)	Maximum Conceptual Sea- Level Rise Causeway Profile (EL in ft)	Relative Elevation Change (current condition to conceptual profile)
Culverts (Alt 1, 4, 4M, 9)	~EL. 12.0 ft in existing timber culvert location (Elevation of causeway is	Finished Grade ~EL. 14.5 at conceptual culvert location and high point at EL 15.6 near middle of causeway. The profile ties into existing grade (~EL. 12.0) near Helens on the West end of causeway and low point (EL. 13.2) near mini mall drive at the East end of the causeway.	Finished Grade ~EL. 17.0 at conceptual culvert location and high point at EL 18.2 near middle of causeway. The profile ties into existing grade (~EL. 12.0) near Helens on the West end of causeway and low point (EL. 15.7) near mini mall drive at the East end of the causeway.	At Conceptual Culvert = 2.5 ft with min SLR and 5 ft with max SLR Max = ~ 4.1 ft with min SLR and ~6.7 ft at high- point of profile (EL 18.2) At low point near mini mall – 0.2 ft with min SLR and ~2.3 ft with max SLR
Bridge (Alt 10)	relatively flat with finished grade varying between EL. 11.0 and 12.0 ft) and 13.0-13.5 ft just beyond the end of the causeway	Finished Grade EL. 19.0 at conceptual Bridge location. The profile ties into existing grade (EL 12.0) near Helens on the West end of causeway and low point (EL. 13.2) near mini mall drive at the East end of the causeway.	Finished Grade EL. 19.0 at conceptual Bridge location. The profile ties into existing grade (EL 12.0) near Helens on the West end of causeway and low point (EL. 15.7) near mini mall drive at the East end of the causeway.	At conceptual bridge location = 7 ft with min and max SLR At low point near mini mall – 0.2 ft with min SLR and ~1.0 ft with max SLR. At max SLR the causeway has a more consistent raise of ~5.0 ft

Please contact me at Julie.Senk@maine.gov or 592-3486 if you have any questions. Thank you.

cc: CPD e-file

enc: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services (Stantec 2021)

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

1.0 INTRODUCTION

This memo was prepared by Stantec Consulting Services Inc. (Stantec) under contract to the Maine Department of Transportation (MaineDOT) for Planning Phase Support Services (2020-2021 Planning Study) as part of the Dike Bridge Replacement Project (Project) located on the Middle River in Machias, Maine. MaineDOT is pursuing replacement of the existing infrastructure at Dike Bridge due to its poor condition with the objectives to provide adequate drainage from upland floods without overtopping the Route 1 roadway, provide adequate freeboard during tidal flood events, provide sea-level-rise resiliency, and accommodate fish passage to the extent practicable.

As part of this scope of services for the 2020-2021 Planning Study, Stantec performed hydraulic analyses to assess hydraulic conditions associated with replacement alternatives for the Dike Bridge culvert. The first phase (Phase 1) of the hydraulic analyses included assessment of hydraulic conditions associated with five primary replacement alternatives for the Dike Bridge culvert, which is documented in the "Phase 1 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services" dated September 2021 (Phase 1 Study). Phase 2 of the hydraulic analyses builds on the previous work completed as part of Phase 1 and includes evaluation of hydraulic performance across a wider range of conditions for two refined alternatives (Alternative 4m - larger partially gated box culverts and Alternative 10 - 120 ft bridge). This memo documents the **second phase** (Phase 2) of the hydraulic analysis for the 2020-2021 Planning Study (Phase 2 Study), including the methodology and results of the hydraulic modeling for the primary replacement alternatives, preliminary recommendations for scour countermeasures, and evaluation of potential impacts and sediment management approaches related to development of a new channel in the landward area for the bridge alternative are discussed.

Appendix A contains the unsteady-state stage hydrograph simulation results from the hydraulic model. Appendix B contains figures that depict mapped water surface elevations¹ (WSELs) along the Middle River upstream from Dike Bridge for the refined alternatives. Appendix C contains a conceptual sketch of the anticipated channel in the landward embayment and in the expected footprint of the existing embankment of Dike Bridge for estimating impacts to regulated resources and construction costs. Appendix D contains figures depicting the U.S. Army Corps of Engineers (USACE) navigation channel bathymetry on the seaward side of Dike Bridge.

¹ Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

December 20, 2021 MaineDOT Page 2 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

2.0 BACKGROUND²

The proposed hydraulic studies for the 2020-2021 Planning Study are focused on evaluating potential alternatives relative to regulatory agency request for improved upstream fish passage, and potential analysis and channel design needs for replacement of the existing culverts with a bridge structure. The Project hydraulic analyses include a two-phased hydraulic analysis approach. Phase 1 is presented in the September 2021 Phase 1 Study Memo. Phase 1 of the hydraulic analysis was performed for the five primary alternatives and simulated the following conditions:

- 1. Unsteady-state modeling of conditions with normal tide data as represented by tidal stage data collected by MaineDOT in 2011 with the 50th percentile (median) flow in the Middle River;
- 2. Unsteady-state modeling of conditions with normal tide data as represented by tidal stage data collected by MaineDOT in 2011 with the 1.1-year (Q1.1) and 10-year (Q10) riverine flow conditions for the bridge replacement alternative only (Alternative 10); and
- 3. Steady-state modeling of the 100-year (Q100) peak flow in the Middle River with mean high water (MHW) and mean low water (MLW) downstream boundary conditions.

The Phase 2 of the hydraulic analyses was performed for the two <u>refined alternatives</u> that were identified by MaineDOT following the Phase 1 Study. The Phase 2 hydraulic model simulations were developed for the following conditions:

- Unsteady-state modeling of conditions with normal tide data as represented by updated tidal stage data collected by MaineDOT (2021) with the 50th percentile (median), 1.1-year, and 10-year flows in the Middle River;
- Unsteady-state modeling of conditions with 1.5 feet (ft) and 3.9 ft of sea-level rise (SLR) on the normal tide hydrograph based on the updated tidal stage data collected by MaineDOT in 2021 with the 50th percentile (median), 1.1-year, and 10-year flows in the Middle River;
- 3. Unsteady-state modeling of conditions with the 100-year tidal surge for high tide with the 1.1-year and 10-year flows in the Middle River;
- 4. Unsteady-state modeling of conditions with 1.5 ft and 3.9 ft of SLR on the 100-year tidal surge for high tide with the 1.1-year and 10-year flows in the Middle River; and
- 5. Steady-state modeling of the 50-year (Q50) and 100-year peak flows in the Middle River with MHW and MLW downstream boundary conditions.

Phase 2 hydraulic analyses included updates to the normal tidal regime used for Phase 1, which was based on 2011 tidal data collected by MaineDOT, with tidal data collected by MaineDOT in 2021. The normal tidal regime data were used in both the Phase 1 Study and Phase 2 Study for establishing a baseline for existing conditions and for simulation of the evaluated alternatives. Interim repairs to the Dike Bridge culvert flap gates by MaineDOT in August 2021 prompted MaineDOT to collect updated tidal stage data in the Middle River upstream and in the Machias River downstream (seaward) from Dike Bridge. The tidal stage data collected by Maine DOT in 2021 were used to recalibrate the existing conditions Phase 2 hydraulic model (see Section 3.4) to establish baseline conditions across the simulation scenarios.

The objective of the Phase 2 hydraulic analyses is to build on the work completed as part of Phase 1 and include assessment of the refined alternatives for the following:

Design with community in mind

\\us0289-ppfss01\workgroup\1956\active\0_task_ownership\179450347\05_report_deliv\draft_doc\phs2-hydr_mem\mem_phs2-hydr-machias_fin_20211220.docx

² For additional Project background information refer to Section 1.0 in the September 2021 Phase 1 Study Memo.

December 20, 2021 MaineDOT Page 3 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

- 1. Potential improvements to upstream fish passage at Dike Bridge (e.g., duration of advective landward fish passage relative to existing conditions, typical flow speeds through structure opening, water depths at lower tides);
- 2. Changes in water surface elevations (WSELs) landward from Dike Bridge (e.g., areas of land that would be inundated if normal tidal exchange results in higher typical WSELs);
- 3. Hydraulic performance for the 100-year high tide surge scenario (e.g., overtopping, freeboard)
- 4. Changes in hydraulic characteristics and performance as a result of SLR (e.g., upstream fish passage criteria, changes in WSELs landward from Dike Bridge, overtopping and freeboard);
- 5. Preliminary scour countermeasure design (e.g., stable riprap sizing); and
- 6. Potential impacts and preliminary sediment management approaches related to development of a new channel in the landward area for the bridge alternative as well as considerations for the area immediately seaward of the proposed bridge location.

The Phase 2 Study includes evaluation of 1) existing conditions and 2) two refined alternatives. The two refined alternatives were identified following review of the work performed as part of Phase 1 and represent MaineDOT's two refined alternative approaches for a replacement structure at Dike Bridge. Stantec developed the 2020-2021 Alternatives Matrix (Matrix), which provides a comprehensive overview of replacement alternatives for the Project. For information related to how the refined alternatives align with the Matrix, refer to the September 2021 Phase 1 Study Memo. For details related to the parameterization of the geometries of the refined alternatives for the hydraulic model, refer to Section 3.2 in this memo.

3.0 METHODOLOGY

Hydraulic modeling simulations of existing conditions and the refined alternatives were performed using the numerical, hydraulic model that Stantec developed as part of Phase 1 of the 2020-2021 Planning Study and builds on previous work (refer to the September 2021 Phase 1 Study Memo for information related to previous methodologies). The Phase 2 Study included evaluations with steady- and unsteady-state flow regimes. The following sections document the development of the hydraulic model, including the geometric data, boundary conditions, flow regimes, and model scenarios.

3.1 HYDRAULIC MODEL

A one-dimensional, steady- and unsteady-state numerical hydraulic model (Model) was developed using HEC-RAS (v. 5.0.7) for the Phase 2 Study, which includes integration of automated flap-gate routines on culvert structures. Hydraulic studies performed prior to those as part of the 2020-2021 Planning Study used an earlier version of HEC-RAS, which did not include integration of automated flap-gate routines on culvert structures.

One shortcoming of the integrated flap-gate routines is the inability to assign individual culverts flap-gates within a group of culverts in an inline structure. The flap-gate routines can either be assigned to none of the culverts or all the culverts. Alternative 4m includes bidirectional flow (i.e., no flap-gate) on one culvert barrel with flap-gates on the remaining two culvert barrels. To apply the flap-gate routines in the Model, a "dummy reach" was developed that represented a cloned parallel reach that extends approximately 500 ft upstream and 200 ft downstream of Dike Bridge. Additional details related to this geometry modification are documented in Section 3.2 (Geometry Data) in this memo.

3.2 GEOMETRY DATA

Geometric data for the Phase 2 Study Model was developed using bathymetric and topographic data provided by MaineDOT, including a limited number of bathymetric transects surveyed by MaineDOT before 2014 and

December 20, 2021 MaineDOT Page 4 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

augmented with bathymetric data collected in the Middle River by MaineDOT in 2021 after substantial completion of the Phase 1 Study. In addition, minor modifications to geometry transects were incorporated in the Model to increase the numerical stability during unsteady-state simulations of low-flow conditions. Normal ineffective flow areas were parameterized along the approximate top of banks along the Middle River landward from Dike Bridge. Note that normal ineffective flow areas (see HEC-RAS documentation) were not included in the Phase 1 Study hydraulic model, but were identified during the Phase 2 Study modeling as beneficial to improving model stability and accuracy and were included as part of the Phase 2 Study.

A "dummy-reach" (Dummy Reach) was inserted to connect upstream and downstream of Dike Bridge (bifurcated geometry). This created two parallel reaches, which provided the ability to model the bidirectional flow culvert as part of Alternative 4m while still using the integrated culvert flap-gate routines. Alternative 10 was evaluated using a single thread channel. For additional information related to the bifurcated geometry approach, including a schematic overview of the Model geometry with the parallel reaches at Dike Bridge, refer to the September 2021 Phase 1 Study Memo.

The following sections document the geometric data for the Phase 2 Study Model, representing a total of three different geometries that correspond to the existing condition geometry and the two refined alternative geometries. For information related to the development of the geometric data for the Model used in the rest of the domain, refer to the September 2021 Phase 1 Study Memo.

3.2.1 Existing

The existing conditions geometry ("ex"³) was based on the bifurcated geometry approach that includes the cloned, dummy reach. The bifurcated geometry approach was used primarily to facilitate model calibration and for consistency of approaches across the Model simulations, since Alternative 4m also was based on the bifurcated geometry approach. The roadway embankment was modeled as two inline structures, one on each parallel reach, with one box culvert fitted with a flap-gate on Parallel Reach 1 and three box culverts fitted with flap-gates on Parallel Reach 2. The four box culverts have top-hinged flap-gates installed on the seaward side of each of the four culverts. The existing culverts and flap-gate routines in HEC-RAS do not allow for leakage. To accommodate leakage, a 0.35 ft high by 17 ft wide opening with the invert at -4.1 ft was used in the Model with no flap-gate for the duration of the simulation. The geometry of this "leakage opening" was determined based on an iterative calibration process comparing the simulation data to the observed data (see Section 3.4) and varied slightly from the leakage opening that was 12 ft wide as part of the Phase 1 Study.

The existing conditions culverts were modeled with heights of 4 ft and widths of 5 ft, with the culvert inverts at elevation -3.1 ft. Culvert invert selection was based on review of survey data provided by MaineDOT, including elevations of the culvert inverts. The reduced culvert heights and invert elevations were used to address apparent blockages in the bottoms of the culverts (e.g., stone, debris) as determined from bridge inspection reports provided by MaineDOT and result in the Model's culvert inverts being approximately one foot higher than the average surveyed invert elevations of -4.05 ft. The existing culverts were modeled as 130 ft long with an entrance loss coefficient of 0.5 and an exit loss coefficient of 1. Manning's n values in the culvert were set at 0.018 to represent some of the debris and additional roughness within the culverts due to their existing condition. The culverts were modeled using the FHWA Chart #16 (corrugated metal box culvert) and Scale #1 (90-degree headwall), which was determined to be most representative of existing conditions. Ineffective flow

³ Abbreviations in quotes are provided for clarity as they are combined in the HEC-RAS Plan file names that are depicted on graphics in this memo.

December 20, 2021 MaineDOT Page 5 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

areas were defined within the upstream and downstream cross-sections adjacent to the bridge at an approximately one-to-one aspect ratio.

3.2.2 Alternative 4m

The Alternative 4m geometry ("alt04m") was based on the bifurcated geometry approach. The roadway embankment was modeled as two inline structures, one on each parallel reach, with one box culvert (no flap-gates) on Parallel Reach 1 and two box culverts fitted with flap-gates on Parallel Reach 2. The Alternative 4m culvert on Parallel Reach 1 was modeled with a height of 5 ft, width of 10 ft, and the invert of the culvert at elevation -6.05 ft. Alternative 4m culverts on Parallel Reach 2 were modeled with heights of 5 ft, widths of 10 ft, and the inverts at -4.05 ft.

Based on preliminary analysis results and discussion with MaineDOT on March 29, 2021, it was decided that the box culvert heights should be reduced from 10 ft to 5 ft to better match the overall opening to hydraulic conveyance needs (i.e., reduce landward flows during flood tides) and reduce landward water surface levels. The open culvert invert was lowered with the intent of further improving fish passage for a wider range of tidal flows and the 10-ft width was maintained to address fish injury concerns. The Manning's n for the culverts were assumed to be the same for the top and bottom at 0.012. A 130-ft culvert length was used with an entrance loss coefficient of 0.5 and an exit loss coefficient of 1. The culverts were modeled using the FHWA Chart #10 Scale #1 approach corresponding to 90-degree headwall with inlet edges chamfered three-quarters of an inch. Ineffective flow areas were defined within the upstream and downstream cross-sections adjacent to the bridge at an approximately one-to-one aspect ratio.

3.2.3 Alternative 10

The Alternative 10 geometry ("alt10") uses a single thread channel instead of the bifurcated geometry approach. The roadway embankment was modeled as a bridge structure with a deck/roadway. The Alternative 10 bridge was modeled with bridge span of 120 ft and a clear span of 116.5 ft and a low-chord elevation of 13.1 ft. Sloping, spill-through type abutments were defined at slopes of 1.75 horizontal to 1 vertical (1.75H:1V) and 2-ft-wide benches at elevations of 10.42 ft to provide access along each abutment adjacent to both bridge abutments. The channel elevation was set at -8.5 ft. The preliminary bridge low-chord elevation was selected to match the Town of Machias' "Phase 1" SLR protection plans to be above the highest astronomical tide (HAT) elevation of 9.8 ft and the Federal Emergency Management Agency (FEMA) Base Flood Elevation (BFE) of 10.7 ft plus a freeboard allowance for at least 1.5 ft of SLR. This results in a roadway grade raise of approximately 7 ft in the bridge area. Modeling of this alternative included changes to some of the HEC-RAS cross sections in the Middle River upstream (landward) from Dike Bridge to have a lower and more defined channel. These geometric changes were made to improve the numerical stability of the unsteady-state HEC-RAS model and reflect expected erosion of sediment in the Middle River if a bridge were installed at Dike Bridge. The bridge was modeled using the Energy (Standard Step) approach in the bridge routines. Ineffective flow areas were defined within the upstream and downstream cross-sections adjacent to the bridge at an approximately one-to-one aspect ratio.

3.3 BOUNDARY CONDITIONS

Boundary conditions for the Model included both steady- and unsteady-state regimes, which are documented in the following sections.

December 20, 2021 MaineDOT Page 6 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

3.3.1 Steady-State Boundary Conditions

The upstream⁴ boundary conditions for steady-state simulations as part of the 2020-2021 Planning Study included the 50- and 100-year peak flows. Peak flows were calculated and provided by MaineDOT and are referenced in previous studies (see the September 2021 Phase 1 Study Memo). Peak flows for steady-state boundary conditions at Dike Bridge and Stride Bridge⁵ used in the Model are presented in Table 1. The steady-state upstream flows were input to the Model at locations landward of Stride Bridge and Dike Bridge. Under steady-state conditions, these upstream, inland flows are simulated as a constant flow value (e.g., not a hydrograph) with no attenuation due to potential storage in the Model domain.

Table 1. Drainage areas and peak upland flows for upstream steady-state boundary conditions at DikeBridge and Stride Bridge

Location	Drainage Area (sq. mi.)	50-Year Return-Interval Event Peak Flow (cfs*)	100-Year Return-Interval Event Peak Flow (cfs)
Stride Bridge	9.41	787	912
Dike Bridge	13.22	832	958

*cfs - "cubic feet per second"

Note that the use of the bifurcated geometry approach resulted in the need to split flow between the two parallel reaches just upstream of Dike Bridge. The initial conditions flows at the upstream junction were divided equally in half for the steady-state modeling and then recombined at the junction downstream of Dike Bridge. Flow splits at the Model junctions were then calculated by the HEC-RAS model.

The downstream boundary conditions for the steady-state flow simulations were set at the downstream (seaward) limit of the Model assuming constant values of 6.1 ft for MHW and -6.6 ft for MLW. See the September 2021 Phase 1 Study Memo for additional information related to the basis for these downstream boundary conditions, including tidal statistics tables.

3.3.2 Unsteady-State Boundary Conditions

The following section documents the unsteady-state upstream and downstream boundary conditions for the Phase 2 Study.

3.3.2.1 Upstream Boundary Conditions

The upstream boundary conditions for the unsteady-state simulations included peak flow values for the annual median flow (i.e., 50% flow duration annual exceedance), 1-year peak flow (note the 1.1-year or the peak flow with an annual exceedance of 0.91 [91%] is used as representative of the 1-year peak flow), and the 10-year

Design with community in mind

⁴ "Upstream" and "downstream" are used in this report to describe the HEC-RAS model boundary conditions for consistency with boundary condition references in the HEC-RAS documentation. For reference, upstream generally refers to the landward direction and downstream generally refers to seaward direction.

⁵ Stride Bridge is located landward from Dike Bridge and is included in the project HEC-RAS model that was developed for a previous study of Dike Bridge. Alternatives at Stride Bridge were not evaluated as part of the 2020-2021 Planning Study.

^{\\}us0289-ppfss01\workgroup\1956\active\0_task_ownership\179450347\05_report_deliv\draft_doc\phs2-hydr_mem\mem_phs2-hydr-machias_fin_20211220.docx

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

peak flow (i.e., annual exceedance probability of 0.1 [10%]). Upstream boundary conditions are summarized in Table 2 below.

Table 2. Peak upland flows	for upstream unstead	y-state boundary conditions
----------------------------	----------------------	-----------------------------

	Return-Interval Event (Years) / Peak Flow (cfs)				
Location	50% Median Flow	1.1	10		
Upstream Model Boundary	13.7	152	565		

3.3.2.2 Downstream Boundary Conditions

Downstream boundary conditions for "normal tide" conditions used in the unsteady-state simulations included use of tidal stage data collected by MaineDOT at the Project site from mid-August to early October 2021. These data were used as the downstream boundary condition representing typical tidal conditions. The tidal stage data were collected at two locations using datalogging pressure transducers that recorded pressure at 5-minute intervals at locations landward and seaward from Dike Bridge in the Middle River and Machias River, respectively, and post-processed by MaineDOT to develop tidal stage and elevation data. A subset of these data (September 14 to October 6, 2021) were selected for the Phase 2 Study, which represents a range of tide levels typical of this location with high-tide elevations ranging from 4.4 ft to 8.2 ft and low-tide elevations ranging from -3.9 to -8.0 ft. Note that this is compared to 4.5 to 9.0 ft and -4.7 to -7.2 ft for high- and low-tides, respectively, from the 2011 MaineDOT tidal data used as part of the Phase 1 modeling. The data subset of the seaward datalogger tide values were used for the downstream boundary condition of the unsteady-state flow model as representing typical, normal tides.

Additional downstream boundary conditions included derivations of this MaineDOT 2021 tidal data set. A summary of downstream boundary condition data used for the Phase 2 Study includes:

- 1. A normal tidal stage hydrograph based on a selected set of MaineDOT recorded data from September and October 2021 used as "normal tide" boundary conditions;
- 2. Two future SLR tidal stage hydrographs developed by adding 1.5 and 3.9 ft to the 2021 MaineDOT normal tidal stage hydrograph data;
- 3. A 100-year high tide surge stage hydrograph based on a subset of the 2021 MaineDOT tidal stage hydrograph data (for additional details related to the development of the 100-year high tide surge stage hydrograph, refer to Section 3.3.2.3); and
- 4. Two future SLR, 100-year high tide surge stage hydrographs developed by adding 1.5 ft and 3.9 ft to the 100-year high tide surge stage hydrograph (see item (3) above).

See Table 3 for a summary of the maximum and minimum high tides and low tides across the six downstream boundary conditions.

December 20, 2021 MaineDOT Page 8 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Table 3. Summary of range of minimum and maximum high- and low-tide stage hydrograph values across the Phase 2 downstream boundary conditions

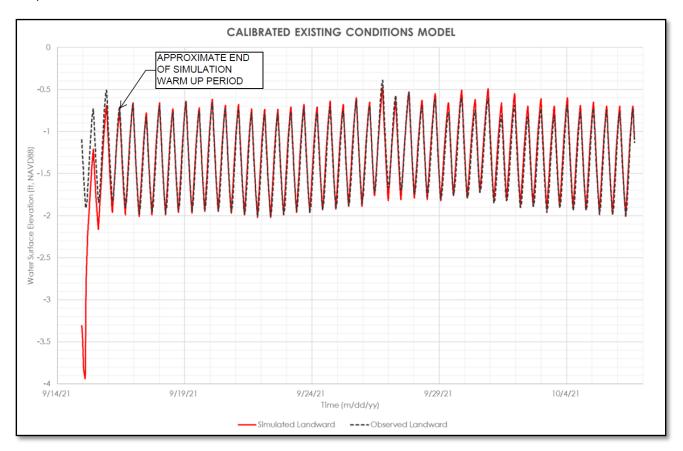
Downstream Boundary	Higl	n Tide	Low Tide	
Condition Description	Minimum	Minimum Maximum		Maximum
Normal Tide	4.39	8.19	-8.04	-3.94
Normal Tide +1.5 ft SLR	5.89	9.69	-6.54	-2.44
Normal Tide +3.9 ft SLR	8.29	12.09	-4.14	-0.04
100-Year High Tide Surge	4.46	10.70	-7.97	-4.98
100-Year High Tide Surge +1.5 ft SLR	5.96	12.20	-6.47	-3.48
100-Year High Tide Surge +3.9 ft SLR	8.36	14.60	-4.07	-1.08

3.3.2.3 100-Year Tidal Surge Hydrograph Development

A 100-year tidal surge hydrograph was developed to evaluate potential flooding associated with a tidal surge storm event. The tidal surge hydrograph was developed using guidance from MaineDOT, information presented in the report "Technical Report: Middle River Hydrologic and Alternatives Analyses" dated June 30, 2015, that was prepared for MaineDOT by Stantec (Stantec 2015), and information obtained from the current FEMA Flood Insurance Study for the Project area.

Stantec 2015 included development of a 100-year tidal surge hydrograph with a duration of 50 hours and an amplitude of 2.5 ft. This hydrograph was mapped onto tidal stage data collected by MaineDOT in 2021 to generate a synthetic storm surge hydrograph with a maximum water surface elevation of 10.7 ft in the Machias River seaward from Dike Bridge. The basis for selection of a maximum water surface elevation of 10.7 ft is that this is the elevation of the existing FEMA BFE in the Machias River.

3.4 CALIBRATION


The Phase 1 Study hydraulic model was calibrated based on the 2011 MaineDOT tidal data. Due to the updated normal tide downstream boundary condition that uses the 2021 MaineDOT data (see Section 3.3.2.2), the Phase 2 Study Model required recalibration to provide an accurate baseline for the existing conditions scenarios.

The bidirectional "leakage gate" included in the existing conditions geometry (see Section 3.1) allows for landward flow during flood tides, which is apparent in visual observations and the tidal stage data collected by MaineDOT in the Middle River landward from Dike Bridge. Similar to previous calibration efforts, gate parameters within the inline gate editor in HEC-RAS were modified until a satisfactory calibration was achieved that accounted for leakage based on visual comparison of observed and simulated upstream WSELs. Leakage

December 20, 2021 MaineDOT Page 9 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

was accounted for in the existing conditions geometry through use of a gate opening with a height of 0.35 ft, a width of 17 ft, and an invert at -4.1 ft (see Section 3.2.1). Figure 1 presents the simulation results of the final calibrated Model for existing conditions with a normal tide and typical riverine flows (i.e., 50% Median Flow) compared to the observed landward data.

Figure 1. Final calibrated existing conditions Phase 2 Study simulation results compared to observed data

3.5 MODEL SCENARIOS

Hydraulic modeling efforts as part of the Phase 2 Study included 57 independent simulations (Model scenarios) that consisted of the unique geometries (see Section 3.2) and boundary conditions (see Section 3.3) combined together in HEC-RAS "plan" files. These simulations included 12 steady-state and 45 unsteady-state scenarios for a total of 57 plans. Table 4 presents a summary of the model scenarios used as part of the Phase 2 Study and presented in this report including the plan name, geometry name, flow name, and HEC-RAS file names.

Stantec

Simulation No.	ScenarioID	Plan Name	Plan File	Geom. Name	Geom. File	Flow Name	Flow File
1	ex_ss_q050_mlw	ex_ss_mlw	2021_machias_phs2.p04	ex	2021_machias_phs1.g01	ss_mlw	2021_machias_phs1.f01
2	ex_ss_q050_mhw	ex_ss_mhw	2021_machias_phs2.p02	ex	2021_machias_phs1.g01	ss_mhw	2021_machias_phs1.f02
3	ex_ss_q100_mlw	ex_ss_mlw	2021_machias_phs2.p04	ex	2021_machias_phs1.g01	ss_mlw	2021_machias_phs1.f01
4	ex_ss_q100_mhw	ex_ss_mhw	2021_machias_phs2.p02	ex	2021_machias_phs1.g01	ss_mhw	2021_machias_phs1.f02
5	alt04m_ss_q050_mlw	alt04m_ss_mlw	2021_machias_phs1.p49	alt04m	2021_machias_phs1.g04	ss_mlw	2021_machias_phs1.f01
6	alt04m_ss_q050_mhw	alt04m_ss_mhw	2021_machias_phs1.p50	alt04m	2021_machias_phs1.g04	ss_mhw	2021_machias_phs1.f02
7	alt04m_ss_q100_mlw	alt04m_ss_mlw	2021_machias_phs1.p49	alt04m	2021_machias_phs1.g04	ss_mlw	2021_machias_phs1.f01
8	alt04m_ss_q100_mhw	alt04m_ss_mhw	2021_machias_phs1.p50	alt04m	2021_machias_phs1.g04	ss_mhw	2021_machias_phs1.f02
9	alt10_ss_q050_mlw	alt10_ss_mlw	2021_machias_phs1.p51	alt10	2021_machias_phs1.g08	ss_mlw-singlethread	2021_machias_phs1.f03
10	alt10_ss_q050_mhw	alt10_ss_mhw	2021_machias_phs1.p52	alt10	2021_machias_phs1.g08	ss_mhw-singlethread	2021_machias_phs1.f04
11	alt10_ss_q100_mlw	alt10_ss_mlw	2021_machias_phs1.p51	alt10	2021_machias_phs1.g08	ss_mlw-singlethread	2021_machias_phs1.f03
12	alt10_ss_q100_mhw	alt10_ss_mhw	2021_machias_phs1.p52	alt10	2021_machias_phs1.g08	ss_mhw-singlethread	2021_machias_phs1.f04
13	ex_us_fd50per_normtide	ex_us_fd50per_normtide	2021_machias_phs2.p03	ex	2021_machias_phs2.g01	us_fd50per_normtide	2021_machias_phs2.u01
14	ex_us_q001_normtide	ex_us_q001_normtide	2021_machias_phs2.p05	ex	2021_machias_phs2.g01	us_q001_normtide	2021_machias_phs2.u02
15	ex_us_q010_normtide	ex_us_q010_normtide	2021_machias_phs2.p06	ex	2021_machias_phs2.g01	us_q010_normtide	2021_machias_phs2.u03
16	ex_us_fd50per_SLR1p5	ex_us_fd50per_SLR1p5	2021_machias_phs2.p09	ex	2021_machias_phs2.g01	us_fd50per_SLR1p5	2021_machias_phs2.u07
17	ex_us_q001_SLR1p5	ex_us_q001_SLR1p5	2021_machias_phs2.p16	ex	2021_machias_phs2.g01	us_q001_SLR1p5	2021_machias_phs2.u11
18	ex_us_q010_SLR1p5	ex_us_q010_SLR1p5	2021_machias_phs2.p25	ex	2021_machias_phs2.g01	us_q010_SLR1p5	2021_machias_phs2.u13
19	ex_us_fd50per_SLR3p9	ex_us_fd50per_SLR3p9	2021_machias_phs2.p10	ex	2021_machias_phs2.g01	us_fd50per_SLR3p9	2021_machias_phs2.u08
20	ex_us_q001_SLR3p9	ex_us_q001_SLR3p9	2021_machias_phs2.p17	ex	2021_machias_phs2.g01	us_q001_SLR3p9	2021_machias_phs2.u12
21	ex_us_q010_SLR3p9	ex_us_q010_SLR3p9	2021_machias_phs2.p26	ex	2021_machias_phs2.g01	us_q010_SLR3p9	2021_machias_phs2.u14
22	ex_us_q001_surge-high	ex_us_q001_surge-high	2021_machias_phs2.p31	ex	2021_machias_phs2.g01	us_q001_surge-high	2021_machias_phs2.u19
23	ex_us_q010_surge-high	ex_us_q010_surge-high	2021_machias_phs2.p32	ex	2021_machias_phs2.g01	us_q010_surge-high	2021_machias_phs2.u20
24	ex_us_q001_surgehigh-SLR1p5	ex_us_q001_surgehigh-SLR1p5	2021_machias_phs2.p37	ex	2021_machias_phs2.g01	us_q001_surgehigh-SLR1p5	2021_machias_phs2.u23
25	ex_us_q010_surgehigh-SLR1p5	ex_us_q010_surgehigh-SLR1p5	2021_machias_phs2.p39	ex	2021_machias_phs2.g01	us_q010_surgehigh-SLR1p5	2021_machias_phs2.u24
26	ex_us_q001_surgehigh-SLR3p9	ex_us_q001_surgehigh-SLR3p9	2021_machias_phs2.p43	ex	2021_machias_phs2.g01	us_q001_surgehigh-SLR3p9	2021_machias_phs2.u27
27	ex_us_q010_surgehigh-SLR3p9	ex_us_q010_surgehigh-SLR3p9	2021_machias_phs2.p46	ex	2021_machias_phs2.g01	us_q010_surgehigh-SLR3p9	2021_machias_phs2.u29
28	alt04m_us_fd50per_normtide	alt04m_us_fd50per_normtide	2021_machias_phs2.p12	alt04m	2021_machias_phs2.g04	us_fd50per_normtide	2021_machias_phs2.u01
29	alt04m_us_q001_normtide	alt04m_us_q001_normtide	2021_machias_phs2.p07	alt04m	2021_machias_phs2.g04	us_q001_normtide	2021_machias_phs2.u02
30	alt04m_us_q010_normtide	alt04m_us_q010_normtide	2021_machias_phs2.p08	alt04m	2021_machias_phs2.g04	us_q010_normtide	2021_machias_phs2.u03
31	alt04m_us_fd50per_SLR1p5	alt04m_us_fd50per_SLR1p5	2021_machias_phs2.p11	alt04m	2021_machias_phs2.g04	us_fd50per_SLR1p5	2021_machias_phs2.u07
32	alt04m_us_q001_SLR1p5	alt04m_us_q001_SLR1p5	2021_machias_phs2.p18	alt04m	2021_machias_phs2.g04	us_q001_SLR1p5	2021_machias_phs2.u11
33	alt04m_us_q010_SLR1p5	alt04m_us_q010_SLR1p5	2021_machias_phs2.p27	alt04m	2021_machias_phs2.g04	us_q010_SLR1p5	2021_machias_phs2.u13

Table 4. Summary of unique model scenarios performed as part of the Phase 2 Study

Design with community in mind

\\us0289-ppfss01\workgroup\1956\active\0_task_ownership\179450347\05_report_deliv\draft_doc\phs2-hydr_mem\mem_phs2-hydr-machias_fin_20211220.docx

Memo

December 20, 2021

MaineDOT Page 11 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Simulation No.	ScenarioID	Plan Name	Plan File	Geom. Name	Geom. File	Flow Name	Flow File
34	alt04m_us_fd50per_SLR3p9	alt04m_us_fd50per_SLR3p9	2021_machias_phs2.p13	alt04m	2021_machias_phs2.g04	us_fd50per_SLR3p9	2021_machias_phs2.u08
35	alt04m_us_q001_SLR3p9	alt04m_us_q001_SLR3p9	2021_machias_phs2.p19	alt04m	2021_machias_phs2.g04	us_q001_SLR3p9	2021_machias_phs2.u12
36	alt04m_us_q010_SLR3p9	alt04m_us_q010_SLR3p9	2021_machias_phs2.p28	alt04m	2021_machias_phs2.g04	us_q010_SLR3p9	2021_machias_phs2.u14
37	alt04m_us_q001_surge-high	alt04m_us_q001_surge-high	2021_machias_phs2.p33	alt04m	2021_machias_phs2.g04	us_q001_surge-high	2021_machias_phs2.u19
38	alt04m_us_q010_surge-high	alt04m_us_q010_surge-high	2021_machias_phs2.p34	alt04m	2021_machias_phs2.g04	us_q010_surge-high	2021_machias_phs2.u20
39	alt04m_us_q001_surgehigh-SLR1p5	alt04m_us_q001_surgehigh-SLR1p5	2021_machias_phs2.p38	alt04m	2021_machias_phs2.g04	us_q001_surgehigh-SLR1p5	2021_machias_phs2.u23
40	alt04m_us_q010_surgehigh-SLR1p5	alt04m_us_q010_surgehigh-SLR1p5	2021_machias_phs2.p40	alt04m	2021_machias_phs2.g04	us_q010_surgehigh-SLR1p5	2021_machias_phs2.u24
41	alt04m_us_q001_surgehigh-SLR3p9	alt04m_us_q001_surgehigh-SLR3p9	2021_machias_phs2.p44	alt04m	2021_machias_phs2.g04	us_q001_surgehigh-SLR3p9	2021_machias_phs2.u27
42	alt04m_us_q010_surgehigh-SLR3p9	alt04m_us_q010_surgehigh-SLR3p9	2021_machias_phs2.p47	alt04m	2021_machias_phs2.g04	us_q010_surgehigh-SLR3p9	2021_machias_phs2.u29
43	alt10_us_fd50per_normtide	alt10_us_fd50per_normtide	2021_machias_phs2.p22	alt10	2021_machias_phs2.g08	us_fd50per_normtide-singlethread	2021_machias_phs2.u04
44	alt10_us_q001_normtide	alt10_us_q001_normtide	2021_machias_phs2.p23	alt10	2021_machias_phs2.g08	us_q001_normtide-singlethread	2021_machias_phs2.u05
45	alt10_us_q010_normtide	alt10_us_q010_normtide	2021_machias_phs2.p24	alt10	2021_machias_phs2.g08	us_q010_normtide-singlethread	2021_machias_phs2.u06
46	alt10_us_fd50per_SLR1p5	alt10_us_fd50per_SLR1p5	2021_machias_phs2.p14	alt10	2021_machias_phs2.g08	us_fd50per_SLR1p5-singlethread	2021_machias_phs2.u09
47	alt10_us_q001_SLR1p5	alt10_us_q001_SLR1p5	2021_machias_phs2.p20	alt10	2021_machias_phs2.g08	us_q001_SLR1p5-singlethread	2021_machias_phs2.u15
48	alt10_us_q010_SLR1p5	alt10_us_q010_SLR1p5	2021_machias_phs2.p29	alt10	2021_machias_phs2.g08	us_q010_SLR1p5-singlethread	2021_machias_phs2.u17
49	alt10_us_fd50per_SLR3p9	alt10_us_fd50per_SLR3p9	2021_machias_phs2.p15	alt10	2021_machias_phs2.g08	us_fd50per_SLR3p9-singlethread	2021_machias_phs2.u10
50	alt10_us_q001_SLR3p9	alt10_us_q001_SLR3p9	2021_machias_phs2.p21	alt10	2021_machias_phs2.g08	us_q001_SLR3p9-singlethread	2021_machias_phs2.u16
51	alt10_us_q010_SLR3p9	alt10_us_q010_SLR3p9	2021_machias_phs2.p30	alt10	2021_machias_phs2.g08	us_q010_SLR3p9-singlethread	2021_machias_phs2.u18
52	alt10_us_q001_surge-high	alt10_us_q001_surge-high	2021_machias_phs2.p35	alt10	2021_machias_phs2.g08	us_q001_surge-high-singlethread	2021_machias_phs2.u21
53	alt10_us_q010_surge-high	alt10_us_q010_surge-high	2021_machias_phs2.p36	alt10	2021_machias_phs2.g08	us_q010_surge-high-singlethread	2021_machias_phs2.u22
54	alt10_us_q001_surgehigh-SLR1p5	alt10_us_q001_surgehigh-SLR1p5	2021_machias_phs2.p41	alt10	2021_machias_phs2.g08	us_q001_surgehigh-SLR1p5-singlethread	2021_machias_phs2.u25
55	alt10_us_q010_surgehigh-SLR1p5	alt10_us_q010_surgehigh-SLR1p5	2021_machias_phs2.p42	alt10	2021_machias_phs2.g08	us_q010_surgehigh-SLR1p5-singlethread	2021_machias_phs2.u26
56	alt10_us_q001_surgehigh-SLR3p9	alt10_us_q001_surgehigh-SLR3p9	2021_machias_phs2.p45	alt10	2021_machias_phs2.g08	us_q001_surgehigh-SLR3p9-singlethread	2021_machias_phs2.u28
57	alt10_us_q010_surgehigh-SLR3p9	alt10_us_q010_surgehigh-SLR3p9	2021_machias_phs2.p48	alt10	2021_machias_phs2.g08	us_q010_surgehigh-SLR3p9-singlethread	2021_machias_phs2.u30

Stantec

4.0 RESULTS

The following sections summarize the hydraulic Model simulation results for the steady- and unsteady-state scenarios.

4.1 STEADY-STATE

A total of 12 steady-state simulations were performed as part of the Study. Table 5 presents a summary of results from the steady-state Model simulations. The results are presented based on the WSELs upstream (US) and downstream (DS) of Dike Bridge.

Table 5. Summary of upstream and downstream WSELs across steady-state simulations. Note that values in parenthesis are WSELs previously reported in the Phase 1 Study that changed as part of the Phase 2 Study^{*}.

	Q50 with MLW		Q50 with MHW		Q100 with MLW		Q100 with MHW	
Alternative	US WSEL (ft)	DS WSEL (ft)	US WSEL (ft)	DS WSEL (ft)	US WSEL (ft)	DS WSEL (ft)	US WSEL (ft)	DS WSEL (ft)
Existing Conditions	1.6	-6.6	7.5	6.1	1.9 (5.9)	-6.6	8.0 (10.9)	6.1
Alternative 04m	0.1	-6.6	6.6	6.1	0.5 (0.8)	-6.6	6.8 (7.3)	6.1
Alternative 10	-4.9	-6.8	6.1	6.1	-4.6 (-5.0)	-6.7	6.1 (6.1)	6.1

*Note: Some values in this table were updated during the Phase 2 Study reporting and reflect some differences from the Phase 1 Study reporting.

Note that the Phase 1 Study included evaluation of the 100-year peak flow scenario for these three alternatives and reported values that varied from those reported herein. Apparent differences in reported values between the Phase 1 and Phase 2 modeling are due to 1) a recalibrated existing conditions model, 2) updated bathymetric data, and 3) more extensive use of ineffective flow areas landward of Dike Bridge along the Middle River identified during Phase 2 to improve model stability and accuracy.

4.2 UNSTEADY STATE

A total of 45 unsteady-state simulations were performed as part of the Phase 2 Study. Appendix A contains figures representing the stage hydrograph simulation outputs. The observed MaineDOT 2021 stage data landward of Dike Bridge was included in the flow stage hydrographs, with the exception of the scenarios that included the 100-year high tide surge downstream boundary condition with and without SLR, to compare differences between the exiting and proposed scenarios.

Maximum upstream and downstream WSELs and the total change between these values were calculated for each of the modeled scenarios. In addition, the percentage of time flow was being conveyed landward (i.e., flows moving from the sea [downstream] towards land [upstream]) at Dike Bridge were calculated based on the simulation results. The maximum WSELs in the Middle River and upstream WSEL range for the normal tide, normal tide with 1.5 ft of SLR, and normal tide with 3.9 ft of SLR downstream boundary conditions are presented in Tables 6, 7, and 8, respectively. A summary of maximum upstream WSELs from the unsteady-state simulations for the 100-year surge for high tide is presented in Table 9. Percentage of time of landward flow for the duration of the simulation are presented in Table 10. For discussion related to the results presented in this section, see Section 5.0.

December 20, 2021 MaineDOT Page 13 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Table 6. Summary of maximum, minimum, and maximum range of WSELs from the unsteady-state simulations for the normal tide downstream boundary conditions

	Median Flow			Q1.1-Year			Q10-Year		
Alternative	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range
Existing Conditions	-0.5	-2.0	1.5	1.4	-0.2	1.6	5.2	3.5	1.7
Alternative 4m	2.1	-3.2	5.3	2.7	-2.1	4.8	4.1	0.3	3.8
Alternative 10	7.9	-7.4	15.3	7.9	-6.9	14.8	8.0	-5.5	13.4

Table 7. Summary of maximum, minimum, and maximum range of WSELs from the unsteady-state simulations for the normal tide plus 1.5 ft of SLR downstream boundary conditions

	Median Flow			Q1.1-Year			Q10-Year		
Alternative	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range
Existing Conditions	0.1	-1.7	1.8	1.9	0.2	1.7	5.9	4.3	1.6
Alternative 4m	2.7	-2.2	4.9	3.3	-1.2	4.5	4.7	1.3	3.5
Alternative 10	9.3	-6.3	15.7	9.4	-6.2	15.5	9.4	-5.2	14.6

Table 8. Summary of maximum, minimum, and maximum range of WSELs from the unsteady-state simulations for the normal tide plus 3.9 ft of SLR downstream boundary conditions

	Median Flow			Q1.1-Year			Q10-Year		
Alternative	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range	Max US WSEL	Min US WSEL	Range
Existing Conditions	5.4	-0.6	6.0	6.2	1.3	4.9	9.0	5.6	3.5
Alternative 4m	3.9	-0.5	4.4	4.4	0.4	4.0	6.1	3.1	3.0
Alternative 10	11.7	-3.9	15.6	11.7	-3.8	15.6	11.8	-3.5	15.2

December 20, 2021 MaineDOT Page 14 of 30

Existing Conditions

Alternative 4m

Alternative 10

1.5

3.1

10.1

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

5.5

4.5

10.1

	•					
Alternative	Q1.1-Year	Q10-Year	Q1.1-Year (1.5 ft SLR)	Q10-Year (1.5 ft SLR)	Q1.1-Year (3.9 ft SLR)	Q10-Year (3.9 ft SLR)
	Max US WSEL	Max US WSEL	Max US WSEL	Max US WSEL	Max US WSEL	Max US WSEL

5.5

3.6

11.5

7.8

5.1

11.6

14.6

4.5

13.9

14.6

6.1

13.9

 Table 9. Summary of maximum upstream WSELs from the unsteady-state simulations for the 100-Year surge for high tide

Table 10. Summary of percent landward flow for typical, median (50%) riverine flows and normal tide downstream boundary conditions

Alternative	Normal Tide	Normal Tide +1.5 ft SLR	Normal Tide +3.9 ft SLR
Existing Conditions	57%	63%	68%
Alternative 4m	53%	57%	62%
Alternative 10	44%	46%	48%

4.3 INUNDATED LAND FOR NORMAL TIDAL AND RIVER FLOW CONDITIONS

This section summarizes areas of inundated land upstream from Dike Bridge for the two refined alternatives based on 1) an elevation-area relationship (stage-area curve) and 2) the unsteady-state simulation results for the maximum WSELs during normal tidal and riverine flow conditions from the Phase 2 Study (see Table 6). Reference Appendix B for figures that depict WSEL contours for selected conditions for the Phase 2 Study alternatives in the area adjacent to the Middle River upstream from Dike Bridge.

The stage-area curve is presented in the September 2021 Phase 1 Study Memo and was developed using the existing terrain model that was compiled for the Phase 2 Study Model. Refer to the September 2021 Phase 1 Study memo for details related to the stage-area curve development.

Table 11 presents the maximum upstream WSELs for normal tidal and riverine flow conditions based on the stage-area curve relationships. The "Increased Inundation Area" in Table 11 reflects estimated inundated areas in the Middle River with normal tidal and riverine flow conditions upstream from Dike Bridge above elevation 0.0 ft and exclusive of the existing, regularly inundated area (~33 acres). Table 11 depicts an inundation area based on 1) tidal stage data in the Middle River collected by MaineDOT in 2021 and 2) additional bathymetric data collected by MaineDOT in 2021.

December 20, 2021 MaineDOT Page 15 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Table 11. Inundated areas and increased inundated areas for maximum upstream WSELs for normal tidal and riverine flow conditions

Alternative	Max US WSEL (ft)	Inundation Area (acres)	Increased Inundation Area (acres)
Existing Conditions	-0.5	32.7	n/a
Alternative 4m	2.1	119	86
Alternative 10	7.9	431	398

4.4 FISH PASSAGE

Hydraulic parameters related to fish passage, including flow speed and depth of flow, were evaluated for the bridge alternative (Alternative 10) based on the results of the model simulations. Results from this evaluation are presented in this section and are relevant to discussion of fish passage for the refined alternatives as part of the Project.

Flow speeds were calculated by dividing the discharge through the bridge with a representative (average) area through the prismatic, trapezoidal cross-sectional geometry at the bridge opening. Note that this approach results in a depth-averaged flow speed and does not account for variations in flow speed within the water column or laterally across the channel. Although more complex modeling approaches (e.g., two- or three-dimensional modeling) and/or physical modeling could assist in achieving a higher precision of flow distribution, the modeling approach used for this study with the accompanying assumptions and limitations was considered suitable for providing a general evaluation of bridge hydraulics that meet the needs of the Project.

The percent exceedance of average flow speeds for the modeled bridge alternatives are presented in Table 12 for the full tidal spectrum (i.e., All Flows), landward flows only (i.e., Landward), and seaward flows only (i.e., Seaward). In general, the flow speeds for the seaward flows were slightly greater than those for the landward flows, which is expected since the current is not working against the downstream riverine flows. However, the differences were very small and were not significantly different.

Table 12. Summary of average flow speed (feet per second [ft/s]) percent exceedance distributions through the Alternative 10 bridge opening for median (50%) riverine flows and normal tide boundary conditions for landward flows only, seaward flows only, and all flows for the simulation duration.

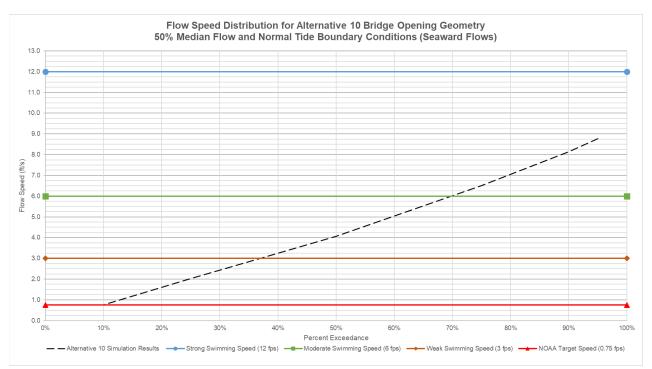
Percent Exceedance	Landward (ft/s)	Seaward (ft/s)	All Flows (ft/s)
95%	7.9	8.8	8.4
90%	7.5	8.1	7.8
75%	6.3	6.5	6.4
50%	4.2	4.1	4.1
25%	1.7	2.0	1.9
10%	0.5	0.8	0.6

December 20, 2021 MaineDOT Page 16 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Figure 2 graphically depicts the information in Table 12 for seaward flows, since these flows correspond with upstream fish passage conditions. Fish passage maximum swimming speed criteria⁶ are also presented in Figure 2, which are based on general categories of strong, moderate, and weak swimming species with maximum flow speed criteria of 12 ft/s, 6 ft/s, and 3 ft/s, respectively. In addition, an all-species criterion of 0.75 ft/s as additionally suggested by Project stakeholders as part of the Project planning phase is included.

Figure 3 and Figure 4 present the unsteady-state stage hydrograph for the full simulation time frame as well as for a select two-day tidal cycle for Alternative 10 with bridge headwater (HW), tailwater (TW), and average flow speeds through the bridge span for median annual (i.e. 50% exceedance) riverine flows and normal tidal boundary conditions. The two-day tidal cycle presented in Figure 4 is useful for examining the relationship between headwater and tailwater with flow speed. Negative flow speeds represent flow landward (upstream) and positive flow speeds represent flow seaward (downstream). The greatest flow speeds for each tidal cycle occur during the ebb tide when the difference in headwater and tailwater are the greatest. Similarly, the second greatest flow speed occurs during the flood tide. This is also reflected in the differences in the 95% exceedance flows comparing seaward and landward flow speeds in Table 12, since the seaward flow speed is higher than the landward for these higher flows.


Flow depths in the bridge were calculated by taking the average of the headwater and tailwater WSELs and comparing to the proposed channel elevation through the bridge (-8.5 ft). A close up of typical depths of flow through the Alternative 10 bridge opening during the simulation with median (50%) riverine flows and normal tide boundary conditions are presented in Figure 5

For reference to simulated ambient flow speed conditions in the Middle River, Figure 5 presents simulated flow speeds at HEC-RAS cross-section 3028.072 in the Middle River approximately 2,500 ft upstream from Dike Bridge along with the general fish passage maximum flow speed criteria thresholds. Information presented in Figure 5 indicates that regular ebb tide (seaward) flow speeds typically exceed the all-species criterion of 0.75 ft/s and, at times, exceed a flow speed of 3 ft/s. A similar evaluation of minimum depths of water identifies that typical depths at this cross-section are approximately 1 ft except during higher low tides when depths approach up to approximately 2 ft.

Design with community in mind

⁶ Criteria are based on the values presented in the *Federal Interagency Nature-like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes* by Turek, J., Haro, A., & Towler, B., and published in May 2016 by the National Marine Fisheries Service, the U.S. Geological Survey, and the U.S. Fish and Wildlife Service.

December 20, 2021 MaineDOT Page 17 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Figure 2. Flow speed distribution for the Alternative 10 bridge opening geometry for seaward flows only with fish passage flow speed criteria for ebb tide

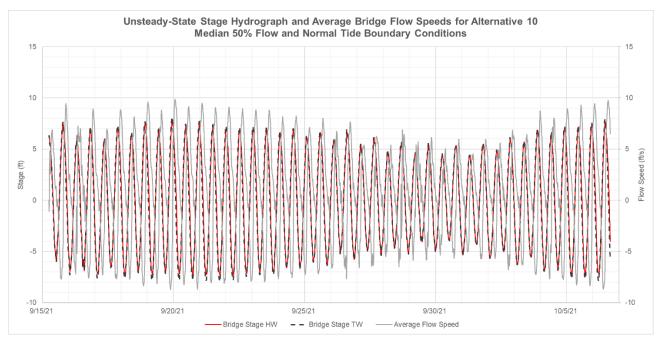
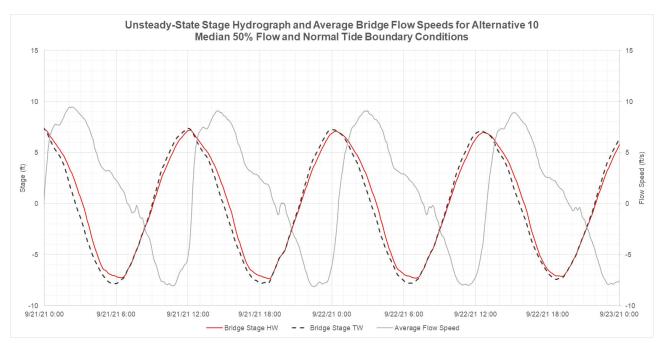



Figure 3. Unsteady-state stage hydrograph and average flow speeds through the bridge for Alternative 10 for median (50%) riverine flows and normal tide boundary conditions.

\u00edus028-ppfss01\workgroup\1956\active\0_task_ownership\179450347\05_report_deliv\draft_doc\phs2-hydr_mem\mem_phs2-hydr-machias_fin_20211220.docx

December 20, 2021

MaineDOT Page 18 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Figure 4. Close-up of typical unsteady-state stage hydrograph and average flow speeds through the bridge for Alternative 10 for median (50%) riverine flows and normal tide boundary conditions.

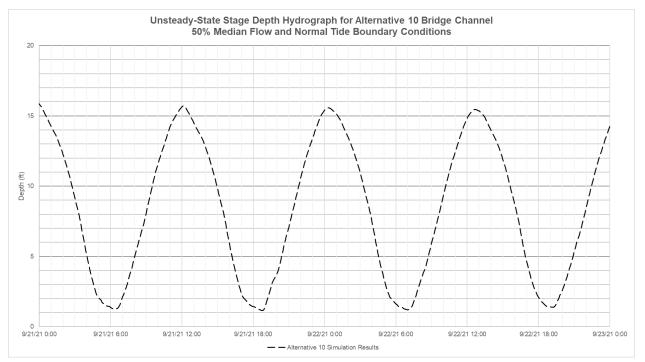
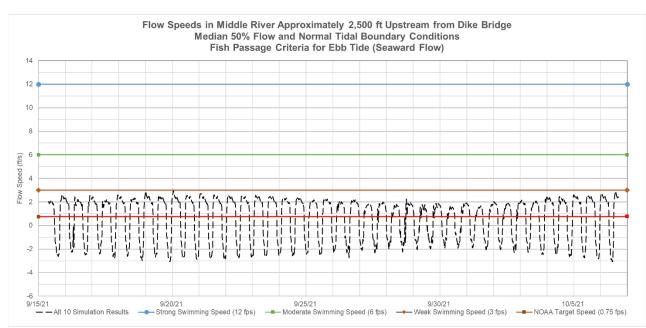



Figure 5. Close-up of the typical unsteady-state depth hydrograph for flow through the Alternative 10 bridge opening.

December 20, 2021 MaineDOT

Page 19 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

Figure 6. Overview of the Alternative 10 average bridge flow speeds for median (50%) riverine flow and normal tide boundary conditions with fish passage criteria for ebb tide.

4.5 PRELIMINARY SCOUR COUNTERMEASURE DESIGN

Scour countermeasure rock armor sizing was assessed from the model results using the method presented in the US Army Corps of Engineers (USACE) Engineering Manual EM-1110-2-1601 (Hydraulic Design of Flood Control Channels)⁷. The USACE approach is the method recommended in the National Cooperative Highway Research Program NCHRP 568 Report and as recommended in the Federal Highway Administration Hydraulic Engineering Circular No. 23 Design Guidelines #4 and #14.

Input parameters for calculation of the rock armor size were obtained from the Model and professional judgement. The D_{30} is determined and D_{50} is then calculated based on a uniformity ratio (D_{85}/D_{15}) of 2. Input parameters that were used to calculate the rock material D_{30} include depth of water and flow speed, a safety factor (Sf) of 1.1, a stability coefficient (CS) of 0.3 (corresponding to angular rock), a vertical velocity coefficient (CV) of 1.0 corresponding to a straight channel alignment, and a rock armor thickness coefficient (CT) of 1.3 corresponding to a rock armor thickness of more than two-times the material D_{50} or greater than the D_{100} . The side-slope correction factor (K1) was set at 0.9 based on an angle of repose of angular rock of 40 degrees and a maximum side slope of 3.5 horizontal: 1 vertical (approximately 16 degrees). The unit weight of water (Υ_W) was set at 62.4 pounds per cubic foot (pcf) and the unit weight of the rock material (Υ_S) was set as 156 pcf based on a specific gravity of 2.5. Note that this approach is limited to longitudinal (parallel to the direction of flow) channel bed slopes of less than 2% and that the ratio of the D_{30} to the channel depth at the design flow is greater than or equal to 0.02 (i.e., the depth of water is less than 50-times the D_{30}).

⁷ USACE. 1994. *Hydraulic design of flood control channels*. Engineer manual 1110-2-1601.

December 20, 2021 MaineDOT Page 20 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

A stable rock size was calculated for the Alternative 10 bridge using the estimated average flow speed and depth of flow in the middle of the proposed bridge channel for the median, 1.1-, and 10-year flows. Seaward and landward flow directions were both used in the calculation. The median D₅₀ rock size was determined to be approximately 2.47, 2.51, and 2.71 ft for the typical, median (50%) flow, and 1.1- and 10-year peak flows, respectively. These results suggest that the approximate size of stable rock armor material for scour countermeasures would need to have a nominal diameter of approximately 3 ft, which is consistent with MaineDOT's "Heavy Riprap" material specification. Note that the Phase 2 Study Model results indicate that maximum discharges for simulations with the median (50%) riverine flow and normal tide boundary conditions results in maximum discharges of approximately 10,000 cfs that are substantially greater than the evaluated peak flow riverine discharges (e.g., the 100-year peak flow in the Middle River at Dike Bridge is 958 cfs). Unlike typical riverine bridges, regular tidal conditions are therefore specifically relevant to design of scour countermeasures for Alternative 10.

5.0 DISCUSSION

This section presents discussion of the hydraulic model simulation results for the Phase 2 Study as part of the Project including discussion on WSELs landward of Dike Bridge, inundated land, fish passage, preliminary scour countermeasure design, and dredging and sediment transport considerations.

5.1 LANDWARD WATER SURFACE ELEVATIONS

There are minor variations between results presented in this memo compared to the results presented in the September 2021 Phase 1 Study Memo. These variations can be attributed to (1) updated downstream tide data that was collected in 2021 by MaineDOT and supersedes the previous 2011 tidal dataset, (2) updated bathymetric data, and (3) additional normal ineffective flow areas along the banks of the Middle River upstream of Dike Bridge, where identified and included during Phase 2 to improve Model stability and accuracy. In general, these variations are minor and do not appear to represent significant deviations from the Phase 1 Study findings.

Both Alternative 4m and Alternative 10 provide increases in the upstream tidal range across the range of scenarios modeled. Alternative 4m provides significantly less of a landward tidal range compared to Alternative 10 (e.g., 5.3 ft versus 15.3 ft during normal flows and normal tides, see Table 6). Alternative 10 provides a greater hydraulic conveyance capacity compared to existing conditions and Alternative 4m due to the larger effective, cross-sectional area and therefore was less sensitive to increases in maximum landward WSELs with increased flow. Overall, as the upstream inflows increase, maximum and minimum landward WSELs increase and the ranges (difference between maximum and minimum landward surface elevations during the simulation period) decrease.

SLR results in higher maximum and minimum WSELs landward from Dike Bridge (see Table 7 and Table 8). For the existing-conditions simulations, the maximum landward WSELs increases from approximately -0.5 ft to 0.1 ft, representing an increase in approximately 0.6 ft, for the 1.5-ft SLR increase to the normal tidal range under median flow conditions. Similarly, 1.5 ft of SLR under median flow conditions also results in approximately 0.6 ft of increase in the landward maximum WSELs for Alternative 4m. The Alternative 10 bridge approaches tidal transparency and consequently results in a comparatively greater increase in landward maximum WSELs as a result of SLR. For example, 1.5 ft of SLR results in an increase from a maximum landward WSEL of 7.9 ft to 9.3 ft (1.4-ft increase) for Alternative 10 under median riverine flow conditions.

December 20, 2021 MaineDOT Page 21 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

The maximum tidal stage for the normal tide with 3.9 ft of SLR was approximately 12.1 ft, which was above the top elevation of the existing Dike Bridge roadway (see Table 3). Therefore, under the existing conditions simulations, it is expected that the existing Dike Bridge would be overtopped and that landward WSELs and resulting flooding would occur under this SLR scenario. This is reflected in the dramatic increase in maximum landward WSEL under the existing conditions simulations for 3.9 ft of SLR (see Table 8). The variations in landward tidal amplitude, and specifically the peak high-tide stages, occurring during spring tides for the 3.9 ft of SLR downstream normal tide boundary condition appears to result in perturbations in the landward existing conditions scenario WSELs (see Figures A.13, A.19, A.25, A.37, and A.43 in Appendix A). The maximum elevation of the perturbations occur during the peak stage of the spring tide series and dampen as riverine flow increases (e.g., comparing Figures A.13 to A.25). The apparent cause of the perturbations is landward flow over Dike Bridge during spring tides with 3.9 ft of SLR, consequent surcharging in the Middle River, and limited seaward discharge on the ebb tide. Simulations for Alternative 4m do not result in similar perturbations and appear to reflect increased seaward discharge capacity with Alternative 4m as well as no overtopping. More refined modeling may be necessary to resolve the complex hydraulic occurring during these overtopping events within the vicinity of the bridge under existing conditions. However, it is unlikely that the existing configuration at Dike Bridge would be present under the 3.9-ft SLR scenario, which is based on potential end-of-century climate change scenarios and is rather included to provide approximately relative comparisons between alternatives. Note that the refined alternatives evaluated assume that the top of the roadway would be greater than the maximum tidal stage for SLR boundary conditions and no overtopping would occur.

5.2 INUNDATED AREA LANDWARD OF DIKE BRIDGE

Both alternatives will result in an increase in inundation area. Of the two refined alternatives, Alternative 10 will result in the largest increase in inundated area landward of Dike Bridge. The increased inundated land area is a result of the more transparent tidal regime as part of the Alternative 10 bridge. The single bidirectional flow culvert used on one of the three culverts in Alternative 4m will also result in increased inundation relative to existing conditions but not to the degree of Alternative 10.

5.3 UPSTREAM FISH PASSAGE

Upstream fish passage was preliminarily assessed for the refined alternatives, which are discussed and summarized in this section.

Alternative 4m includes two gated culverts that allow for seaward flow and a single, ungated culvert that allows for bi-directional flow to facilitate landward (upstream) fish passage at Dike Bridge. When the seaward tide WSEL is greater than the landward WSEL, there are opportunities for upstream fish passage via advection through the ungated culvert. Fish species interested in migrating upstream would benefit from the mass-movement of the flood tide through the ungated culvert and would be advected through the culvert upstream into the inundated area landward of Dike Bridge following which migrating fish species would either take refuge in the lower energy areas or continue traveling upstream along the Middle River. Based on analysis of percentage of time in which seaward flows would be occurring through the ungated culvert, it was determined that under normal riverine flows and normal (astronomical) tides, Alternative 4m offers upstream fish passage via advection for 53%, 57%, and 62% of the time for existing normal tides, 1.5-ft SLR, and 3.9-ft SLR, respectively.

Results from the flow speed evaluation through the Alternative 10 bridge opening provides an opportunity to assess typical flow and tidal conditions against fish passage criteria. Headwater and tailwater differentials and flow speed were evaluated. The objective of the flow speed evaluation was to identify flow speeds that may

December 20, 2021 MaineDOT Page 22 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

allow for volitional fish passage. Note that specific criteria for fish passage (e.g., target fish species, maximum allowable flow speed, designed range and tolerances for conditions suitable for volitional fish passage) have not been identified for the Project. Therefore, this memo presents information that is expected to assist in developing a general approach providing reasonably transparent tidal cycle conditions across a bridge alternative and thereby allow for volitional fish passage opportunities.

The evaluated bridge alternatives have the underlying channel at an elevation of -8.5 ft and therefore similar to the elevation of lower low tides. During low tides, depths of water in the channel are approximately 1 ft. Shallow flow at low tide could necessitate construction of a defined "low-flow" channel through the bridge opening to meet minimum depth criteria for upstream fish passage. A low-flow channel would need to extend well beyond the upstream limits of any proposed bridge near-field dredging and riprap apron in order to tie into the existing channel. Similarly, results identify the percentage of time in which certain flow speeds occur; however, in the absence of a defined target fish species and associated performance criteria, evaluation of volitional fish passage performance is not possible. It is recommended that these criteria (e.g., target fish species) be defined.

Information on fish passage criteria were provided by stakeholders and include a flow speed criterion of 0.75 ft/s. Information obtained from the HEC-RAS model in the Middle River at a cross-section approximately 2,500 ft upstream from Dike Bridge indicates that ebb tide (seaward) flows exceed this value and exceed 3 ft/s during regular tidal conditions. In addition, depths of water at this cross-section are approximately 1 ft except during higher low tides when depths approach up to approximately 2 ft.

5.4 SCOUR COUNTERMEASURES

Preliminary scour countermeasure design calculations suggest that stable rock armor sizes would have a nominal diameter of approximately 3 ft (heavy riprap). The relatively large size of this preliminary scour countermeasure rock size is due to periods during the tidal cycle where the depths of flow are shallow and the flow speeds are the greatest. The maximum seaward flow speed is greater than the maximum landward flow speed during the simulation period; therefore, the seaward flows govern the rock sizing for the scour countermeasure design. It is further recommended that the selected alternative include considerations for ice and debris loading in addition to the expected hydraulic loading effects.

5.5 DREDGING AND SEDIMENT TRANSPORT

Selection of a bridge replacement alternative for the Project would require consideration for "active", or "passive" development of an upstream channel. Active channel development refers to the process of dredging a channel in the anticipated alignment in advance of installation of the bridge. Passive channel development refers to the process of near-field dredging within the vicinity of the proposed replacement structure (e.g., channel through the bridge and immediately upstream and downstream), and then relying on natural sediment transport processes to mobilize sediment downstream. The opportunities of active channel development primarily include (1) reduced transport of sediment downstream and (2) reduced likelihood of requiring dredging to address shoaling in the Machias River seaward from Dike Bridge following completion of the Project. The opportunities of passive channel development primarily include (1) reduced costs in the short-term associated with the Project and (2) eliminating risks associated with dredging upstream without a prior knowledge on where the channel may actually form. Note that in addition to the areas landward of Dike Bridge that may require dredging, dredging of the existing mud flat areas immediately downstream of the bridge would also likely be required.

Appendix C contains a figure that depicts the anticipated alignment and conceptual area where a channel would be anticipated to head-cut upstream after installation of a bridge (i.e., Alternative 10). Based on the bathymetric

December 20, 2021 MaineDOT Page 23 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

data, it is estimated that greater than 20,000 cubic yards (CY) of sediment would be displaced by this conceptual channel alignment. If no upstream dredging is proposed as part of the Project, it is anticipated that this volume of sediment would become mobilized in the near-term, shortly after completion of the bridge installation, which would all be relocated to the USACE navigation channel adjacent to the municipal boat launch on the Machias River adjacent to the southwest end of Dike Bridge. Appendix D contains figures that depict the USACE navigation channel in the areas immediately downstream of Dike Bridge in the Machias River.

Note that a utility (sewer) pipeline crosses the Middle River about 25 ft upstream of Dike Bridge. The vertical profile and horizontal location of the pipeline are not well defined. Additional information related to this utility infrastructure is required to better inform potential design solutions for the Project.

6.0 SUMMARY

The following is a bulleted summary of findings from the Phase 2 Study.

- 1. Both Alternative 4m and Alternative 10 will result in higher WSELs and increased land inundation upstream from Dike Bridge.
- Alternative 10 would result in the greatest increase in inundation area upstream from Dike Bridge. Increased upstream WSELs may be an issue for property owners along the upstream reach of the Middle River.
- Alternative 10 has the greatest tidal exchange and qualitatively appears to approach tidal transparency landward of Dike Bridge. Additional preliminary analysis of various bridge sizes suggests that increasing the bridge span beyond 120 ft provide relatively small (e.g., approximately 2%) increases in intertidal habitat acreage.
- 4. Alternative 10 has opportunities for volitional upstream fish passage. Results identify the percentage of time in which certain flow speeds occur; however, in the absence of a defined target fish species and associated performance criteria, evaluation of volitional fish passage performance was not possible. It is recommended that these criteria (e.g., target fish species) be defined. The results also identify that depths of flow through the bridge would be relatively shallow (e.g., less than 1.5 ft) at and near low tide.
- 5. Alternative 4m provides enhanced opportunities for fish passage compared to existing conditions due to the larger culvert opening and an ungated culvert. Fish passage would generally be through the process of advection through the bi-directional (i.e., ungated) culvert opening when the seaward WSELs are greater than landward WSELs.
- 6. Information on fish passage criteria were provided by stakeholders and include a flow speed criterion of 0.75 ft/s. Information obtained from the HEC-RAS model in the Middle River at a cross-section approximately 2,500 ft upstream from Dike Bridge indicates that ebb tide (seaward) flows exceed this value and exceed 3 ft/s during regular tidal conditions. This ambient condition suggests that the lower 0.75 ft/s criterion is too conservative and may be inappropriate for evaluating fish passage for Alternative 10.
- 7. Increased WSELs in the Middle River for the two refined alternatives may result in increased fish passage opportunities at Stride Bridge, either by upstream passage through advection during flood tides, or by increasing the tailwater elevation at Stride Bridge, which would lower velocities through the culvert barrel thereby facilitating passage.

December 20, 2021 MaineDOT Page 24 of 30

Reference: Phase 2 Hydraulic Analysis for Machias Dike Bridge (#2246) Planning Phase Support Services

- 8. Additional hydraulic evaluations at Stride Bridge are recommended to assess if hydraulic design criteria (e.g., freeboard) are adequate when coupled with the hydraulic changes to the Middle River reach from the replacement alternatives proposed at Dike Bridge.
- 9. Preliminary scour countermeasure design calculations suggest that stable riprap armor sizes would have a nominal diameter of approximately 3 ft (MaineDOT Heavy Riprap) for Alternative 10. The relatively large size of this preliminary scour countermeasure riprap size is due to periods during the tidal cycle where the depths of flow are shallow and the flow speeds are the greatest.
- 10. Alternative 4m would require energy dissipation on the seaward side of Dike Bridge. It is expected that boulders would need to be placed adjacent to the seaward side of the Alternative 4m culverts to control scour. Scour countermeasures would be required adjacent to the landward side of the Alternative 4m culverts but would be more limited (relative to the seaward side) due to a persistent backwater condition. The spatial extent of scour countermeasures on the landward side of the ungated Alternative 4m culvert would need to be larger than for the two gated culverts.
- 11. The spatial extent of scour countermeasures adjacent to the ends of the Alternative 4m culverts would be smaller than those for Alternative 10.
- 12. Alternative 10 would result in development of a larger channel morphology through the reach landward of the Dike Bridge in the Middle River due to the larger span and lower invert compared to Alternative 4m. Greater than 20,000 CY of sediment is estimated to be mobilized landward of the estimated near-field dredge and riprap apron area.
- 13. Upstream mobilization of sediment for Alternative 10 would likely have implications on the downstream USACE navigation channel in the Machias River where shoaling already exists adjacent to the boat launch. Additional investigation is recommended.
- 14. No increases in the FEMA BFE are anticipated for the refined alternatives that were modeled as part of the Phase 2 Study when considering the non-SLR flood events.
- 15. Alternative 4m results in the lowest WSELs in the Middle River during the 100-year high-tide surge and 1.1-year riverine peak flow with 1.5 ft and 3.9 ft SLR scenarios relative to the existing condition and Alternative 10 simulations.
- 16. The existing condition with the 100-year high tide surge and 1.1-year riverine peak flow with 3.9 ft of SLR results in overtopping of Dike Bridge and the highest WSELs in the Middle River. This condition results from no resiliency measures (e.g., seawalls) for the existing condition simulations.
- 17. Analyses as part of this study did not consider potential impacts to public safety or navigation.

Memo

APPENDIX A UNSTEADY-STAGE HYDROGRAPHS

Figure A.1 - Unsteady-state stage hydrograph for median riverine flow and normal tide boundary conditions.

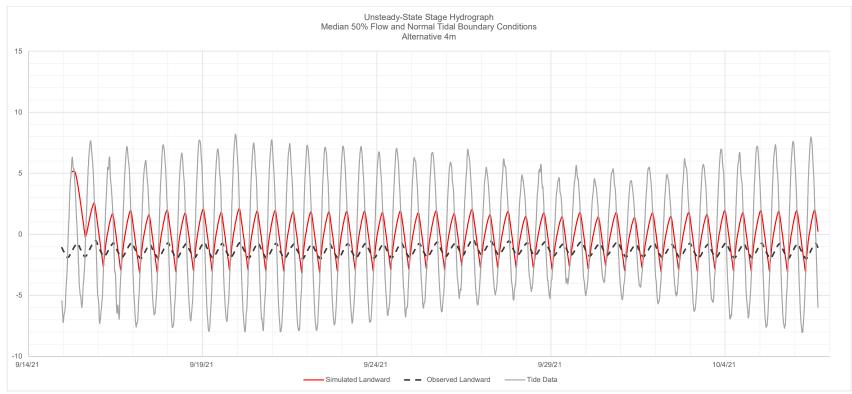


Figure A.2 - Unsteady-state stage hydrograph for median riverine flow and normal tide boundary conditions.

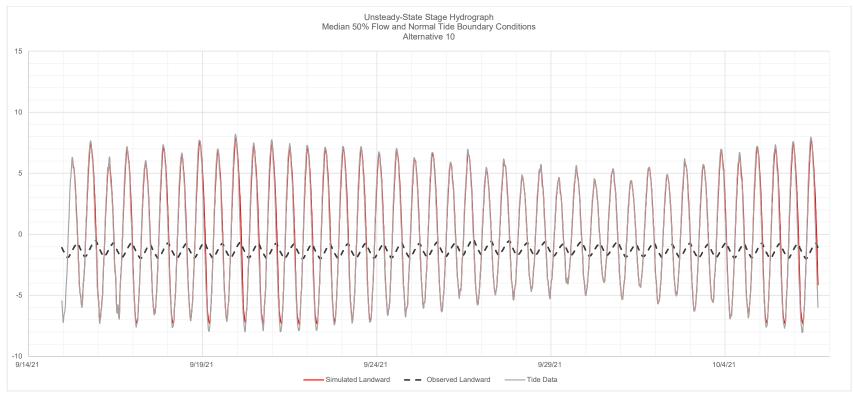


Figure A.3 - Unsteady-state stage hydrograph for median riverine flow and normal tide boundary conditions.

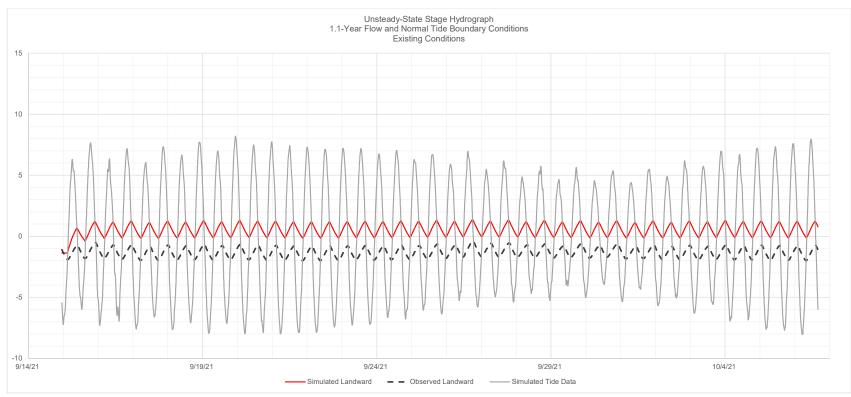


Figure A.4 - Unsteady-state stage hydrograph for 1.1-year riverine flow and normal tide boundary conditions.

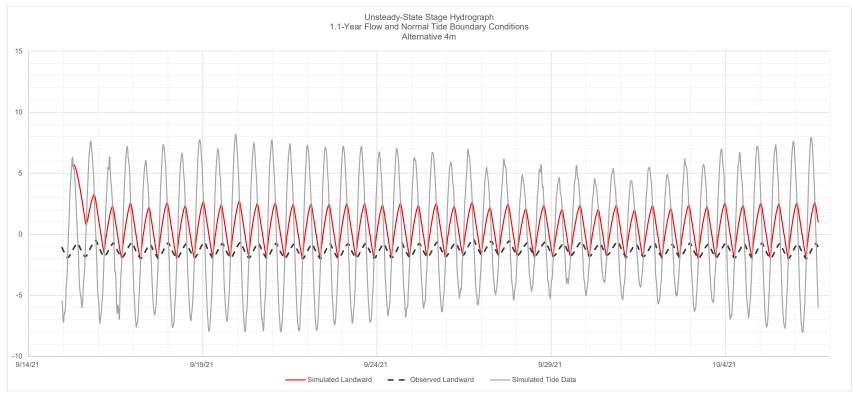


Figure A.5 - Unsteady-state stage hydrograph for 1.1-year riverine flow and normal tide boundary conditions.

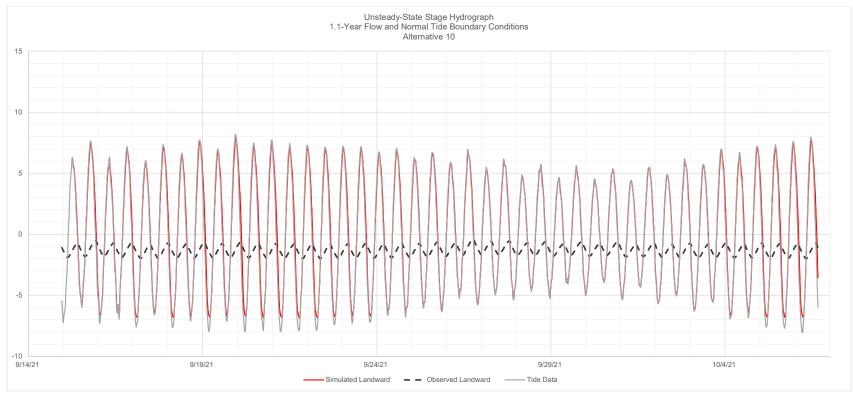


Figure A.6 - Unsteady-state stage hydrograph for 1.1-year riverine flow and normal tide boundary conditions.

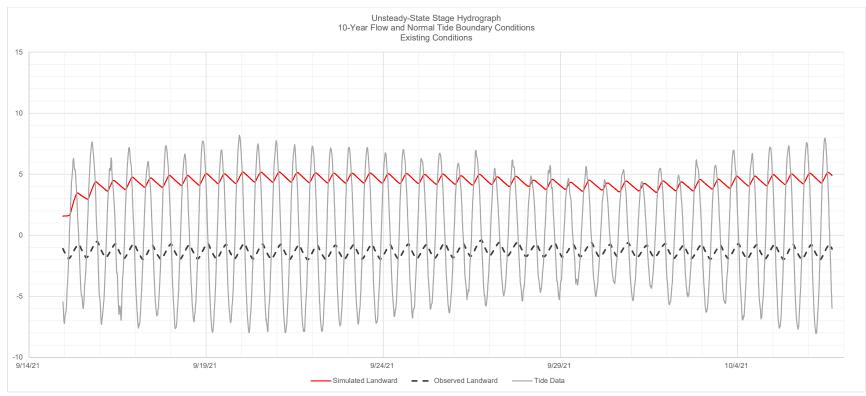


Figure A.7 - Unsteady-state stage hydrograph for 10-year riverine flow and normal tide boundary conditions.

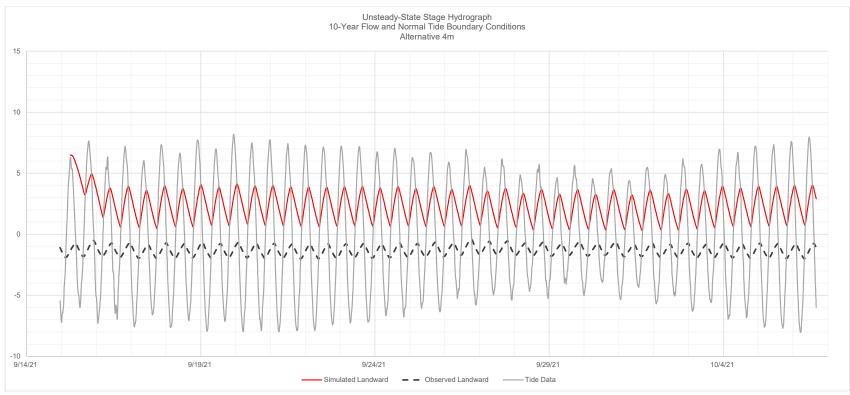


Figure A.8 - Unsteady-state stage hydrograph for 10-year riverine flow and normal tide boundary conditions.

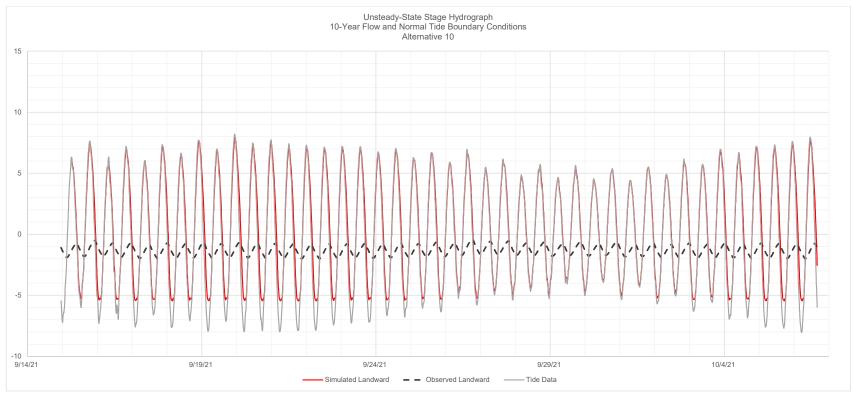


Figure A.9 - Unsteady-state stage hydrograph for 10-year riverine flow and normal tide boundary conditions.

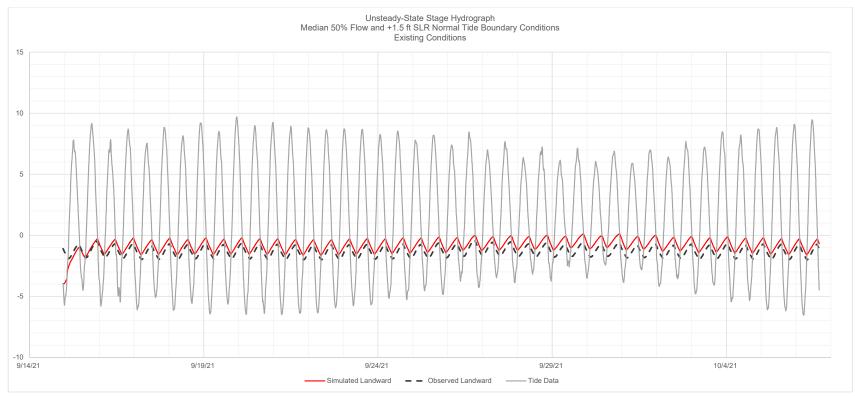


Figure A.10 - Unsteady-state stage hydrograph for median riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

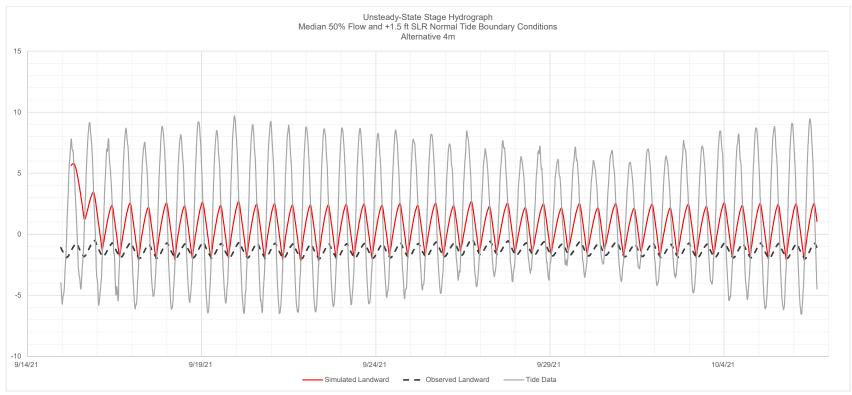


Figure A.11 - Unsteady-state stage hydrograph for median riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

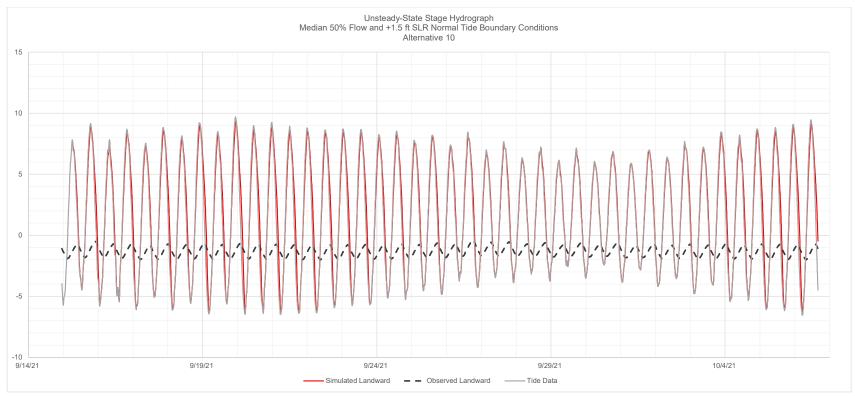


Figure A.12 - Unsteady-state stage hydrograph for median riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

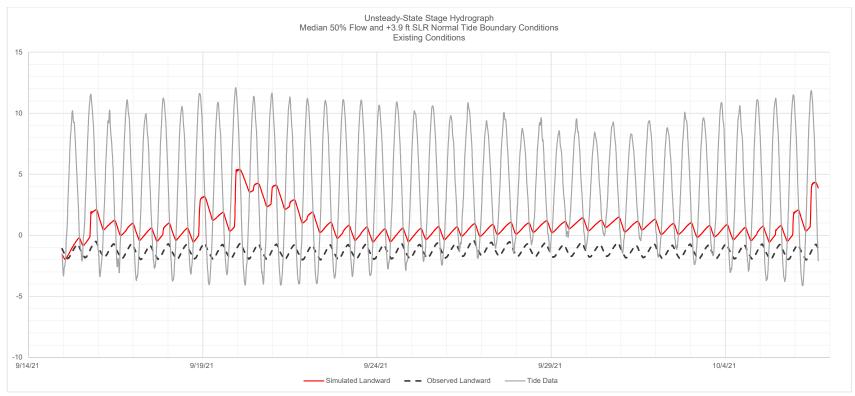


Figure A.13 - Unsteady-state stage hydrograph for median riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

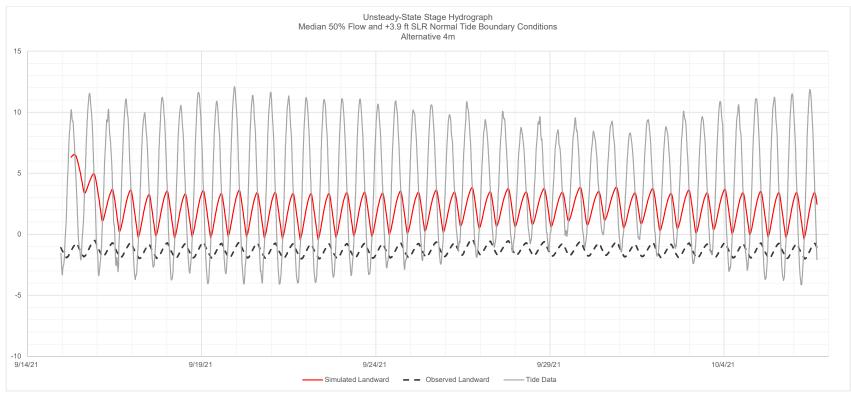


Figure A.14 - Unsteady-state stage hydrograph for median riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

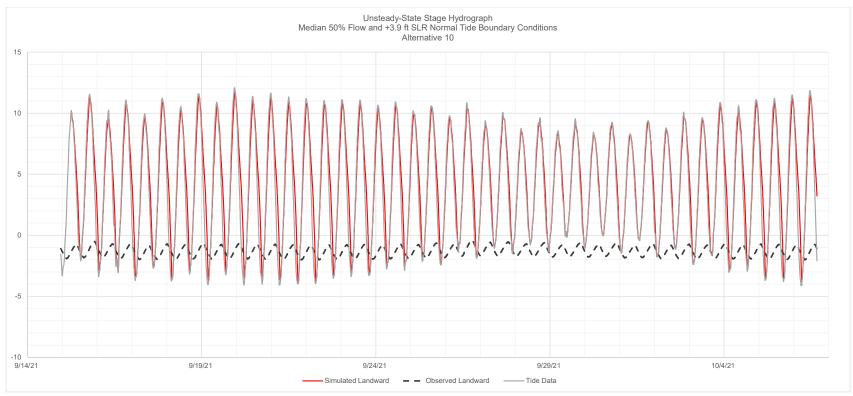


Figure A.15 - Unsteady-state stage hydrograph for median riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

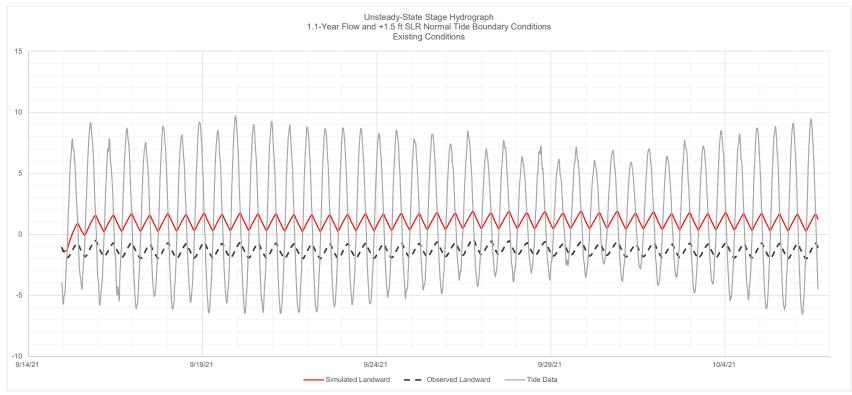


Figure A.16 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

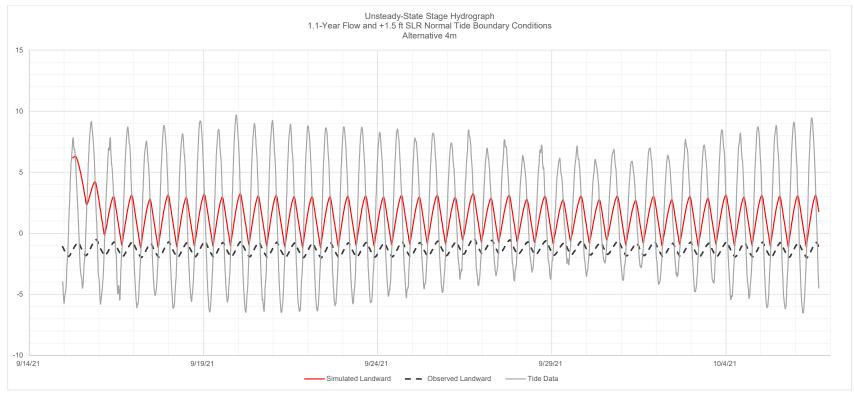


Figure A.17 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

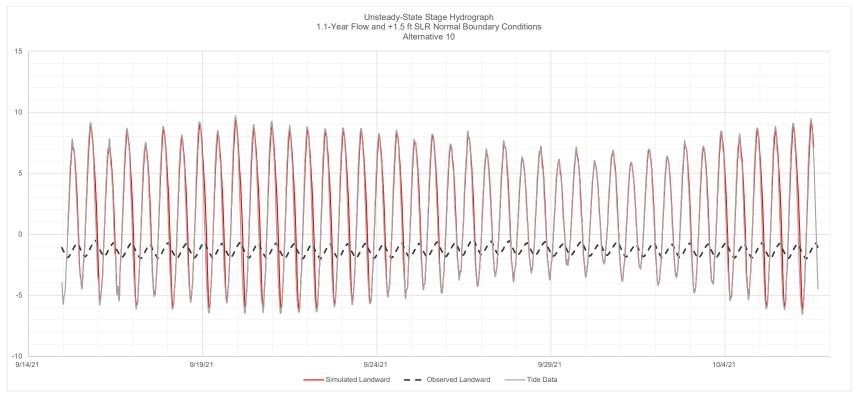


Figure A.18 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

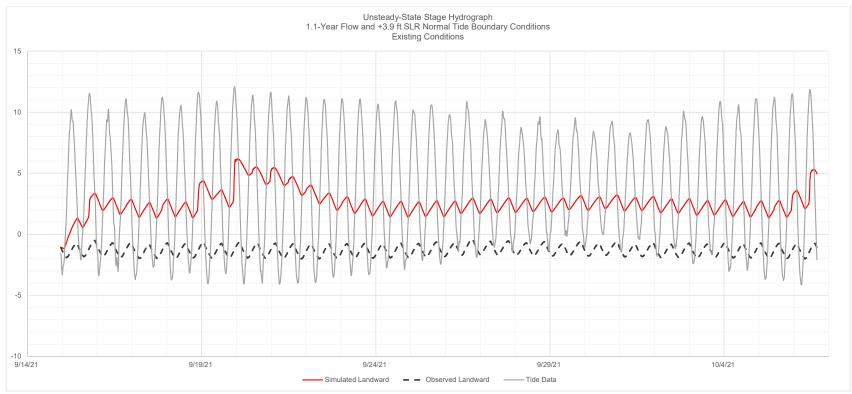


Figure A.19 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

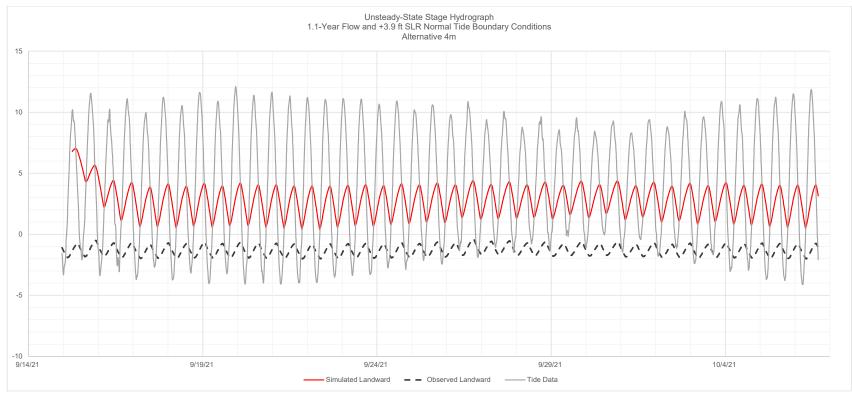


Figure A.20 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

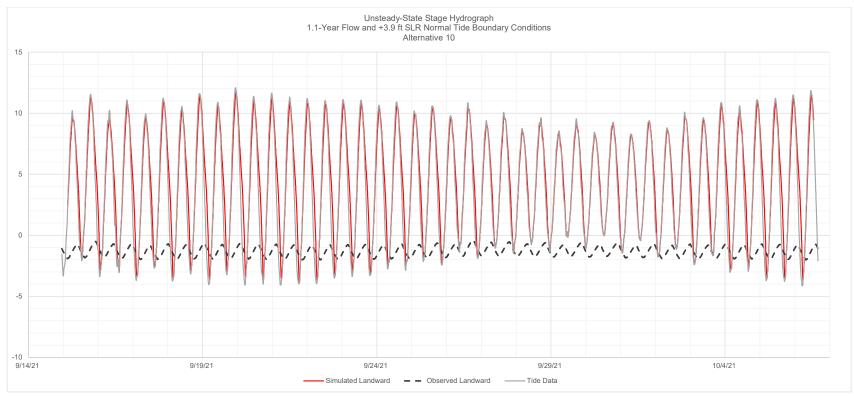


Figure A.21 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

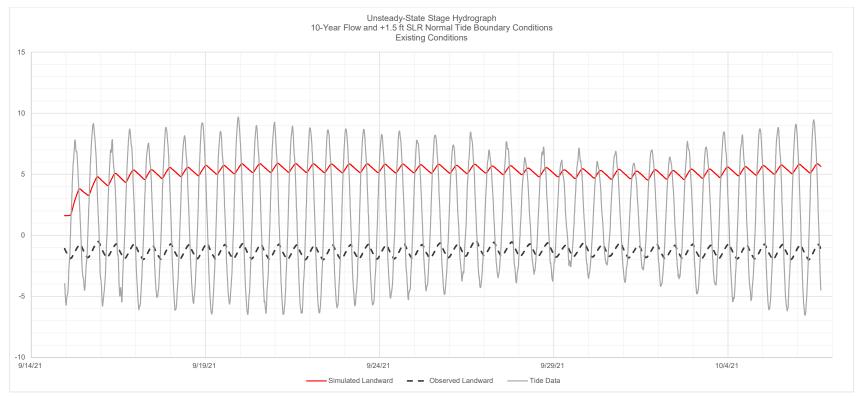


Figure A.22 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

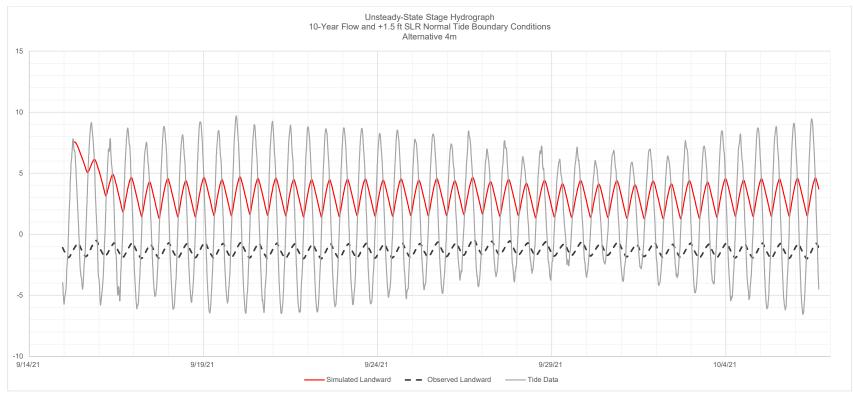


Figure A.23 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

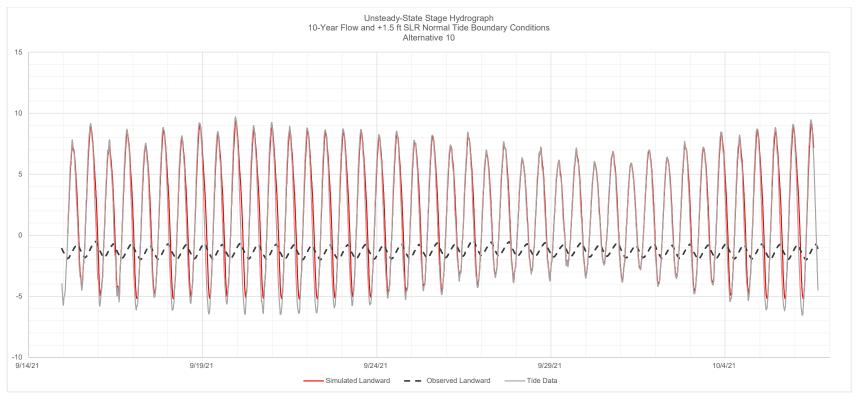


Figure A.24 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise normal tide boundary conditions.

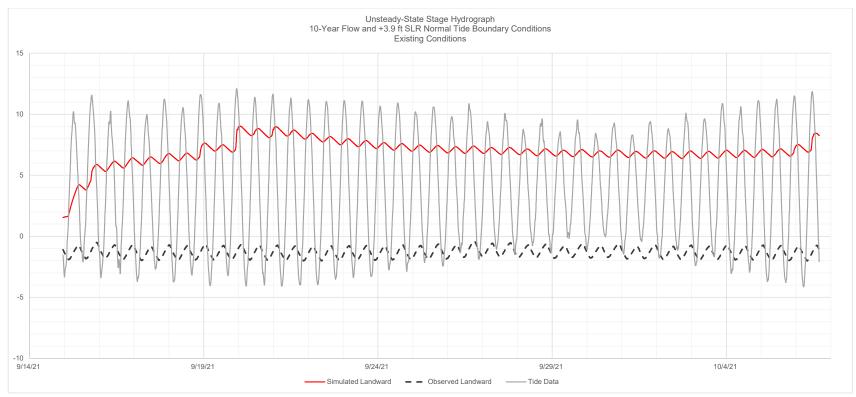


Figure A.25 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

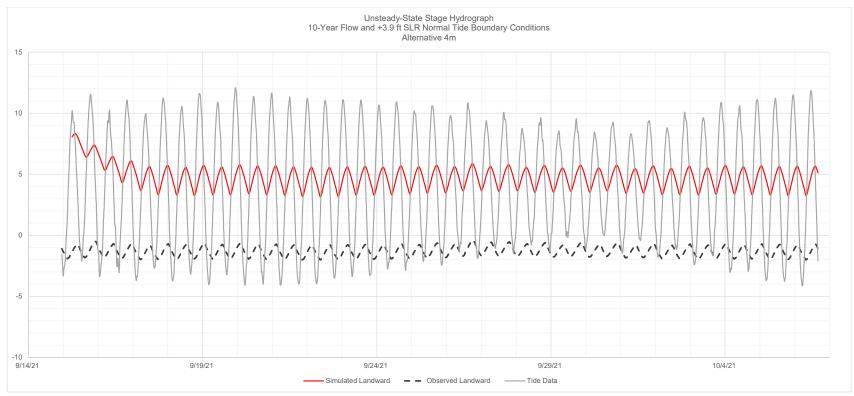


Figure A.26 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

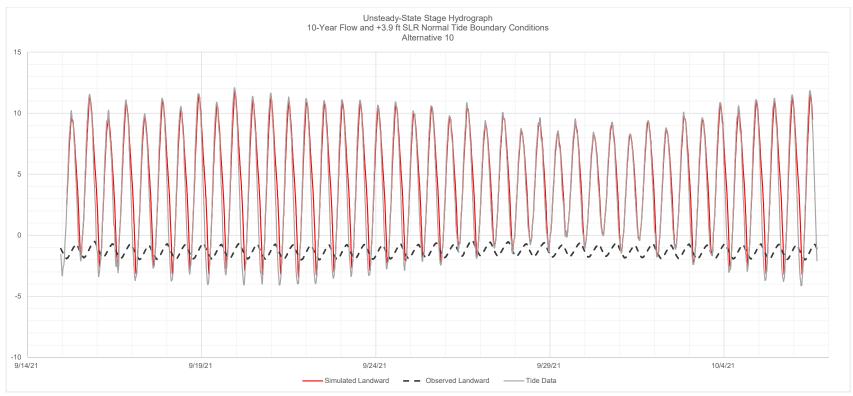


Figure A.27 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise normal tide boundary conditions.

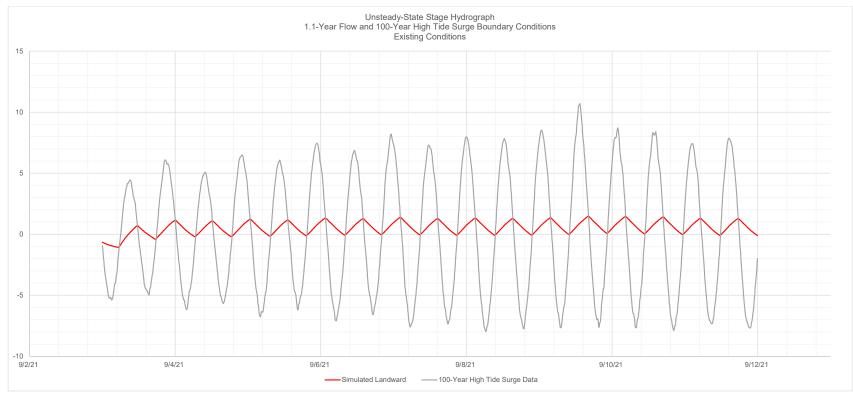


Figure A.28 - Unsteady-state stage hydrograph for 1.1-year riverine flow and 100-year high tide surge boundary conditions.

Figure A.29 - Unsteady-state stage hydrograph for 1.1-year riverine flow and 100-year high tide surge boundary conditions.

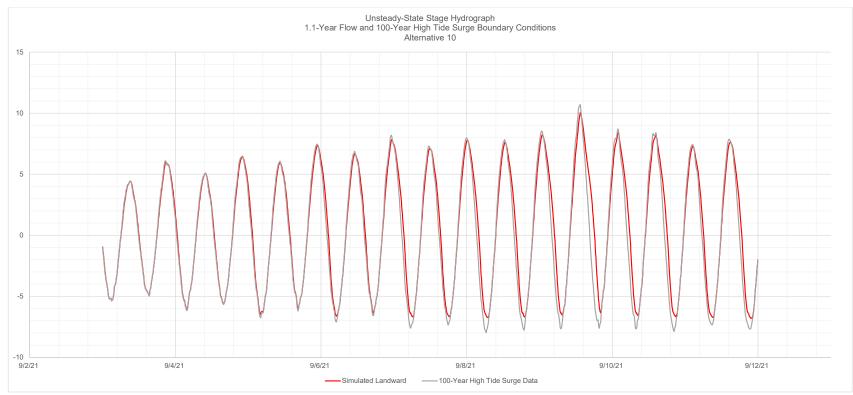


Figure A.30 - Unsteady-state stage hydrograph for 1.1-year riverine flow and 100-year high tide surge boundary conditions.

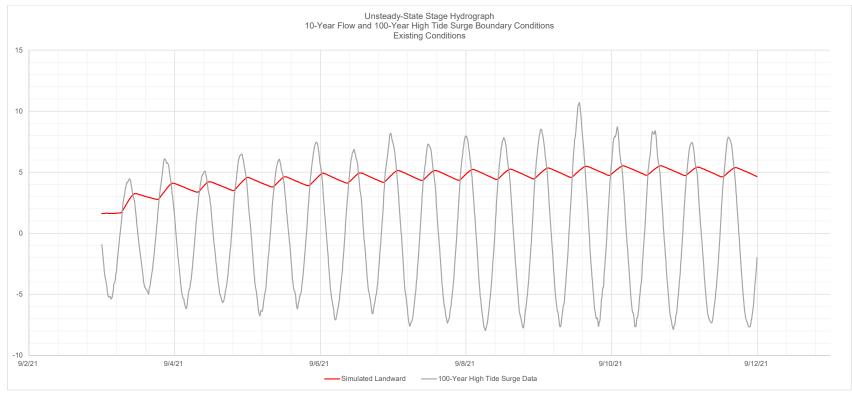


Figure A.31 - Unsteady-state stage hydrograph for 10-year riverine flow and 100-year high tide surge boundary conditions.

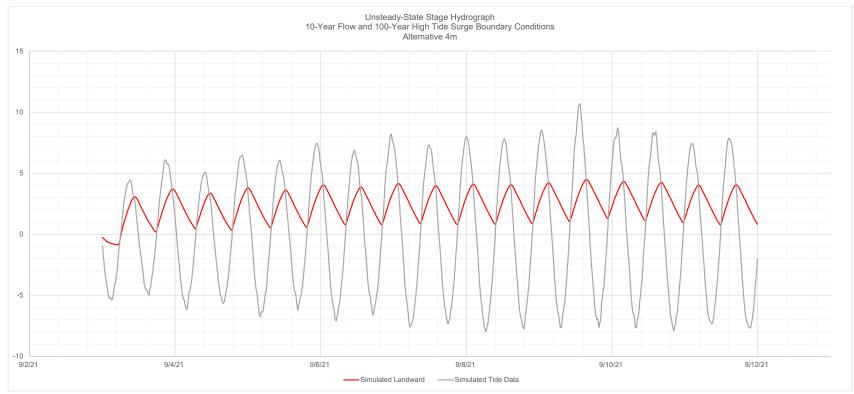


Figure A.32 - Unsteady-state stage hydrograph for 10-year riverine flow and 100-year high tide surge boundary conditions.

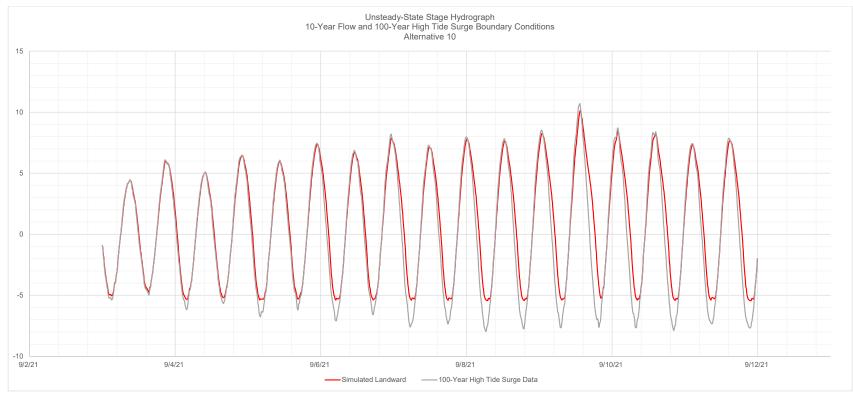


Figure A.33 - Unsteady-state stage hydrograph for 10-year riverine flow and 100-year high tide surge boundary conditions.

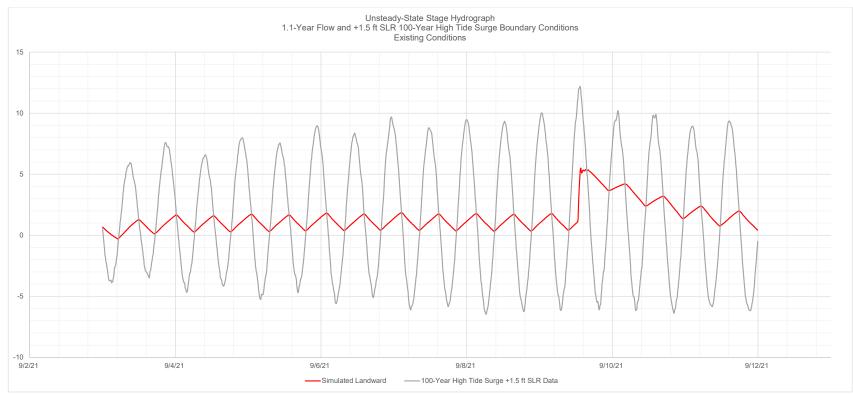


Figure A.34 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

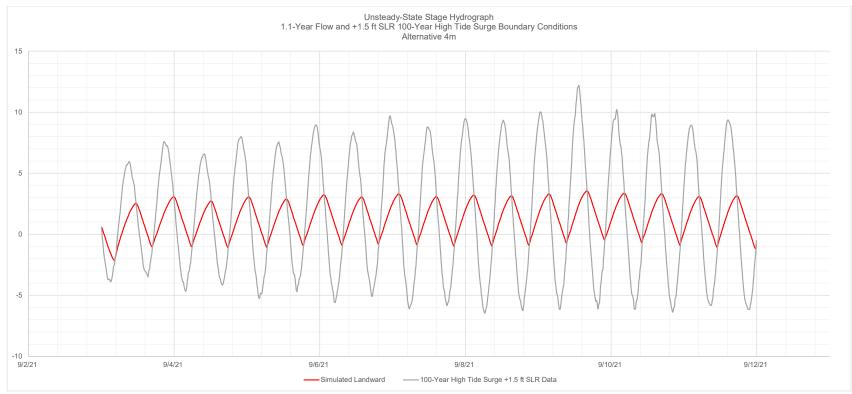


Figure A.35 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

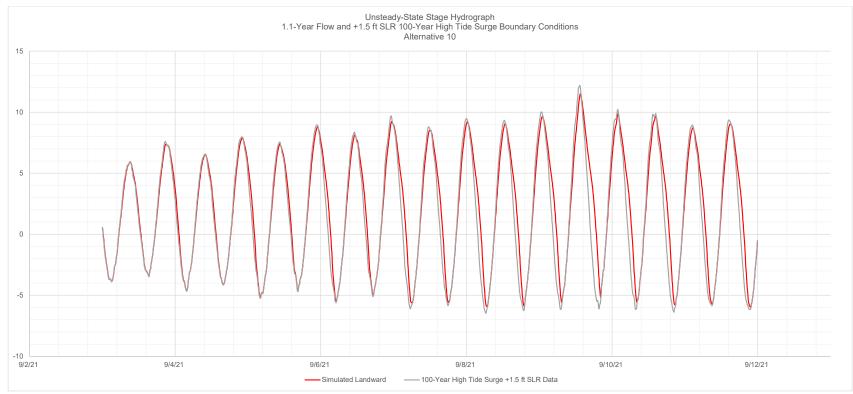


Figure A.36 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

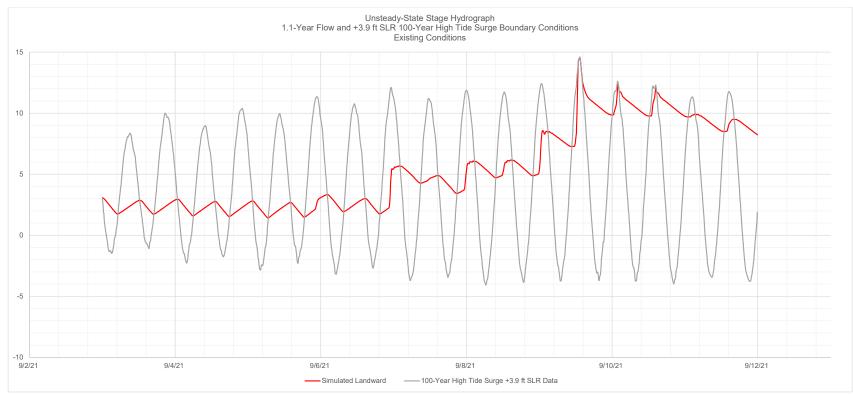


Figure A.37 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

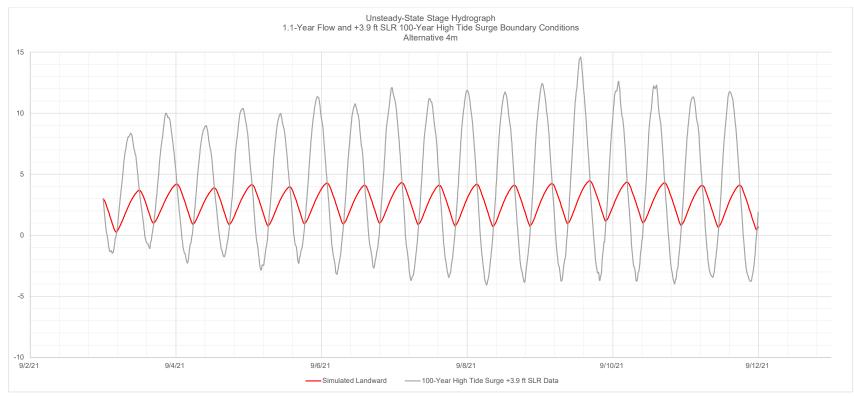


Figure A.38 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

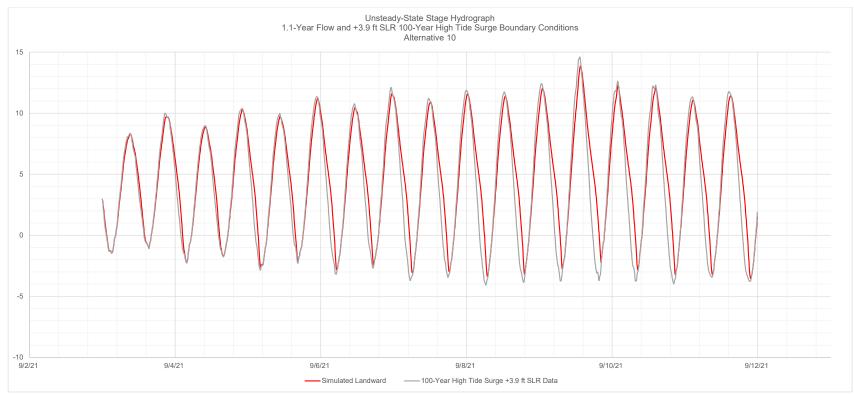


Figure A.39 - Unsteady-state stage hydrograph for 1.1-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

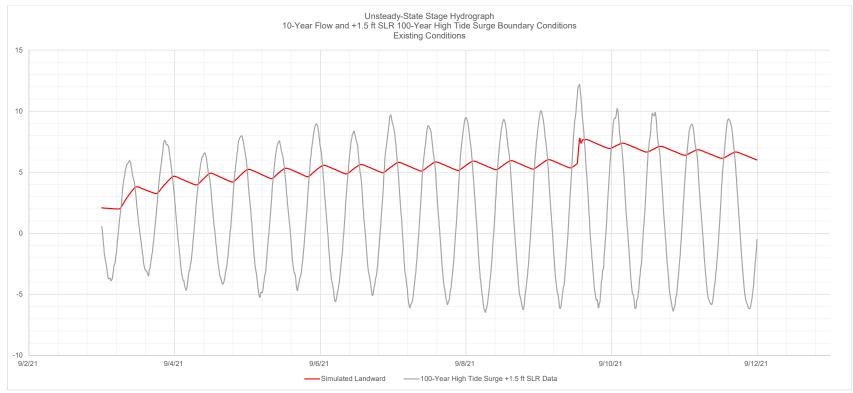


Figure A.40 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

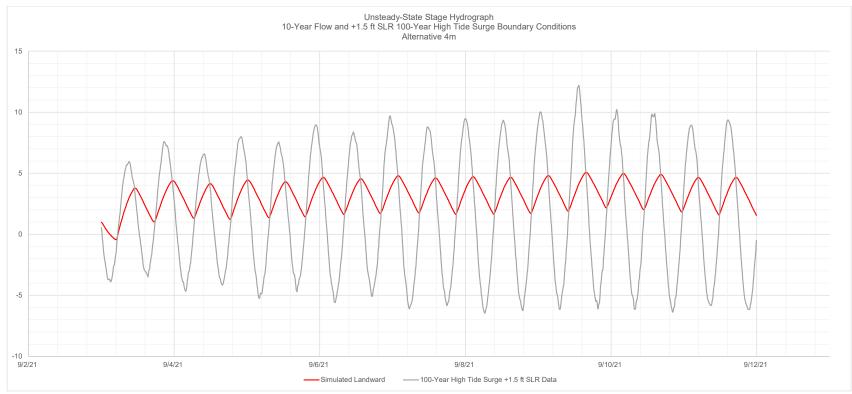


Figure A.41 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

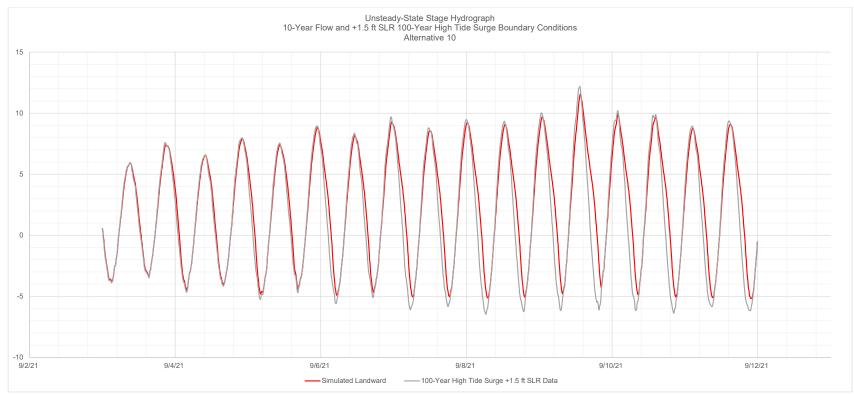


Figure A.42 - Unsteady-state stage hydrograph for 10-year riverine flow and +1.5 ft sea-level rise on the 100-year high tide surge boundary conditions.

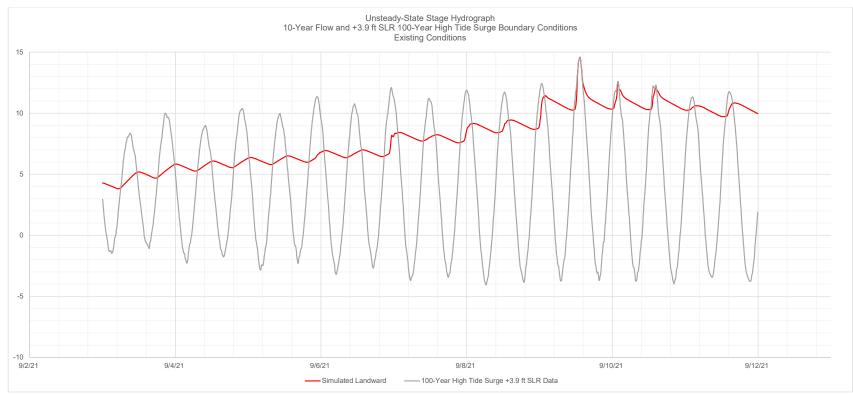


Figure A.43 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

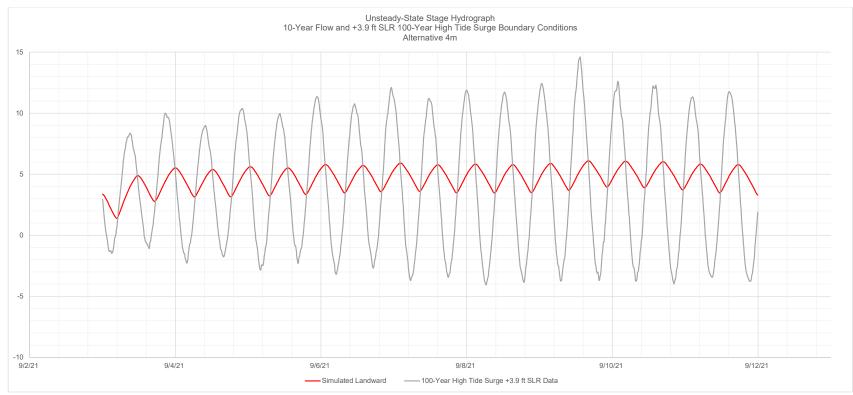


Figure A.44 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

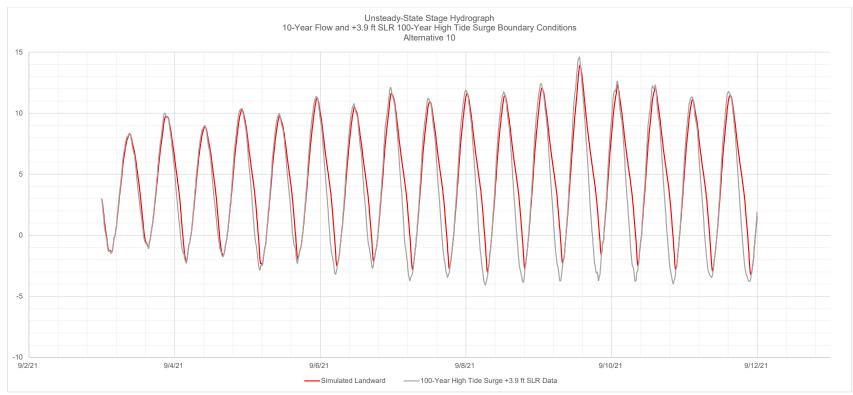
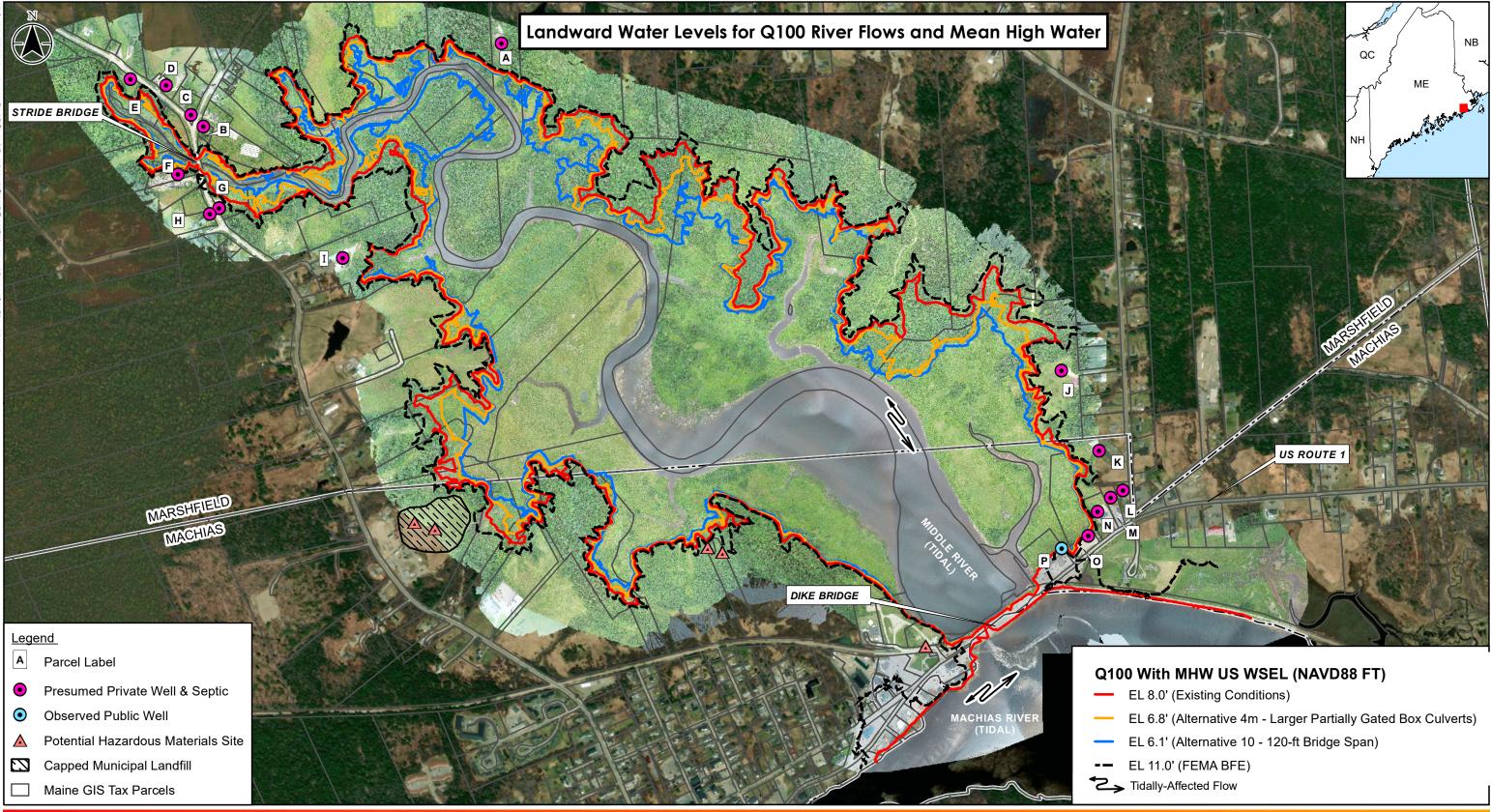



Figure A.45 - Unsteady-state stage hydrograph for 10-year riverine flow and +3.9 ft sea-level rise on the 100-year high tide surge boundary conditions.

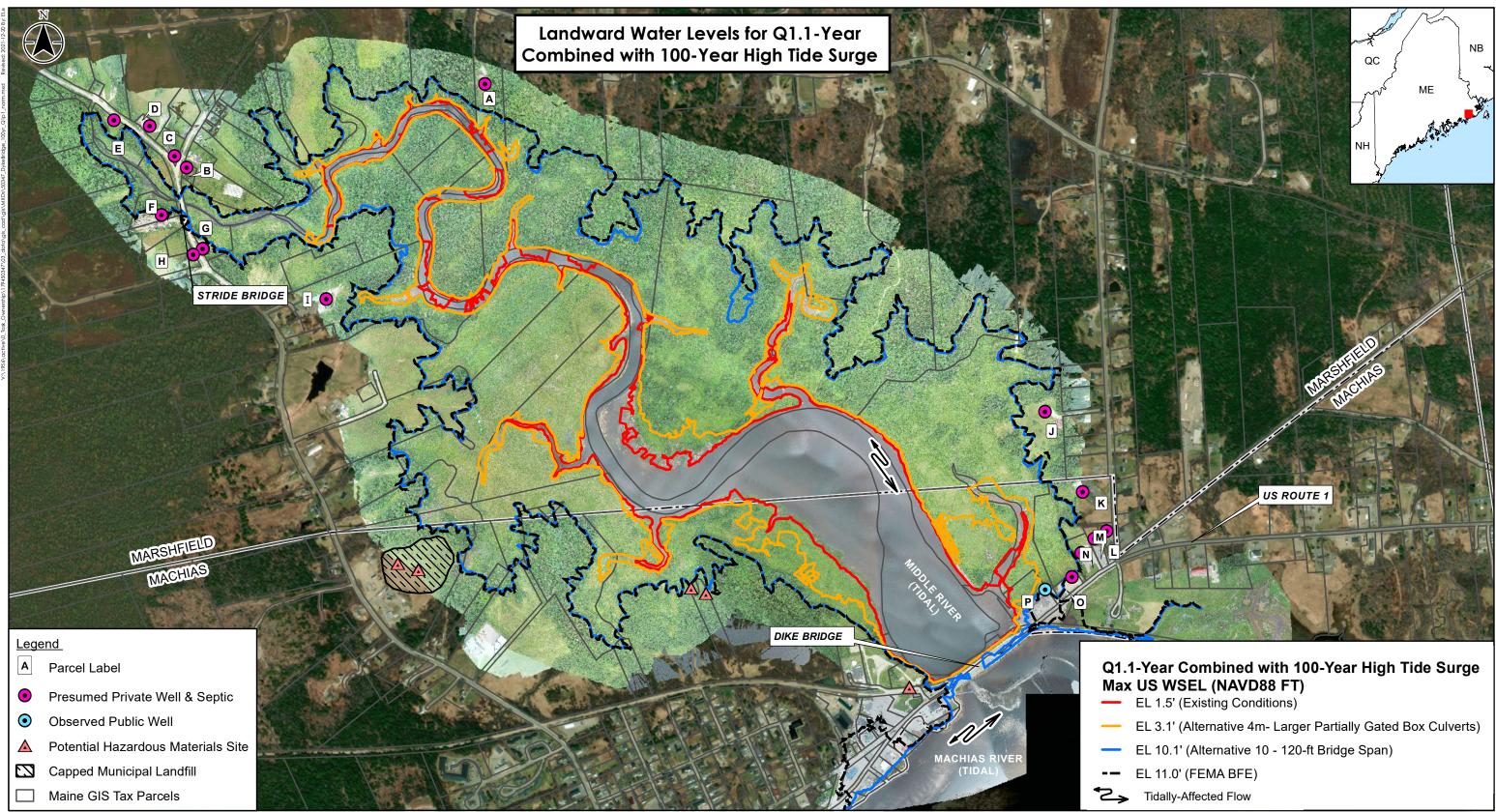
APPENDIX B INUNDATION FIGURES

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2021-12-06 Reviewed by TM on 2021-12-06 50347_DykeBridge_Q100_MHW.mxd

<u>Notes</u>

ity for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and complete

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service


(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

0

agents, from any and all claims arising in any way from the content or provision of the data

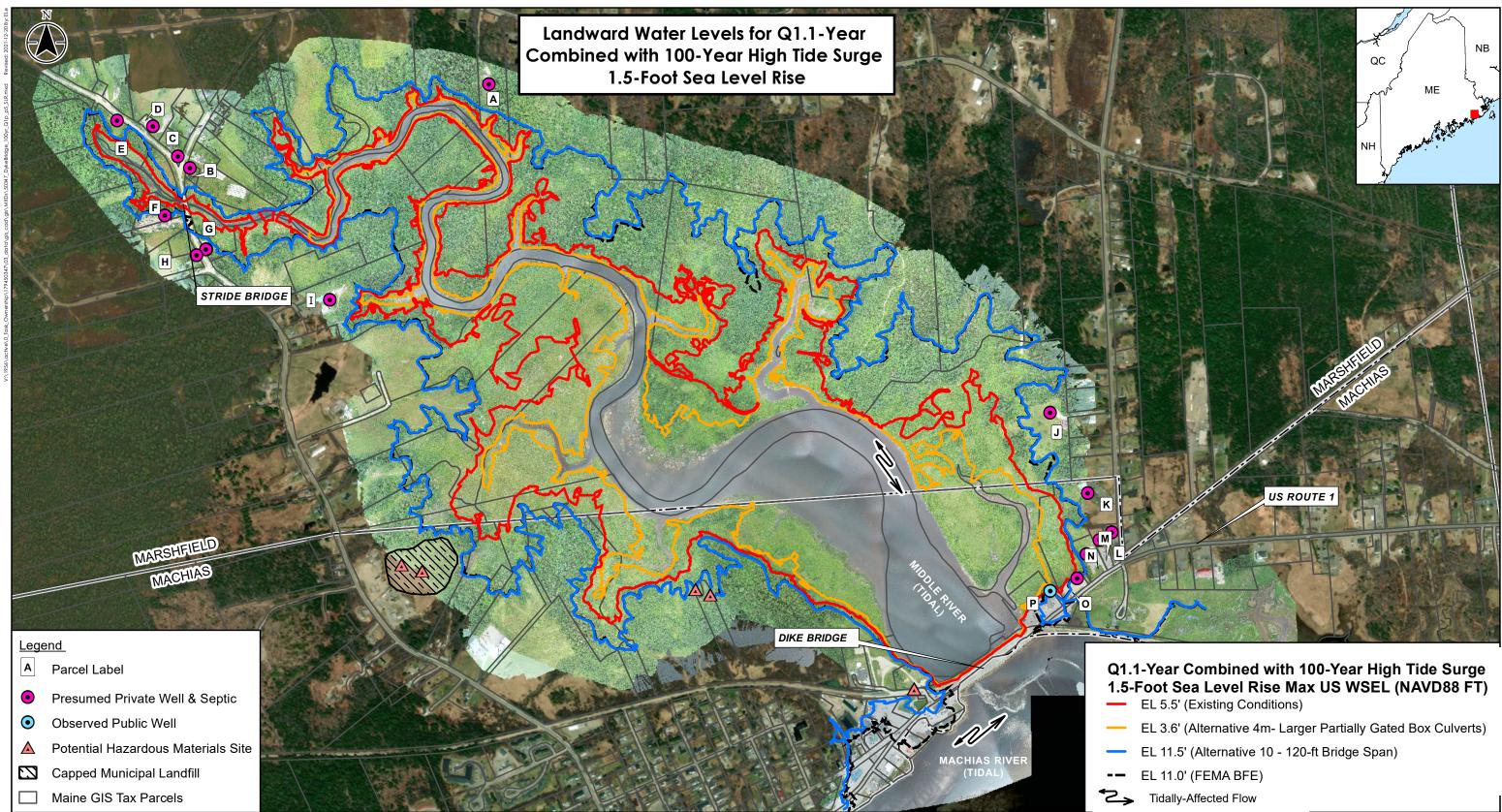
800 Feet :h = 833 feet (At page size of 11"x17")	Client/Project Maine DOT Dike Bridge Machias, Maine	179450347
	Figure No. B.1	
DRAFT	Title Landward Water Leve Q100 River Flows and 12/20/2021	

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2021-12-06 Reviewed by TM on 2021-12-06 50347_DykeBridge_100yr_Q1p1_norm.mxd

<u>Notes</u>

or data supplied in electronic format. The recipient accepts full responsibility for verifying the

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service


(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

om any and all claims arising in any way from the content or provision of the data

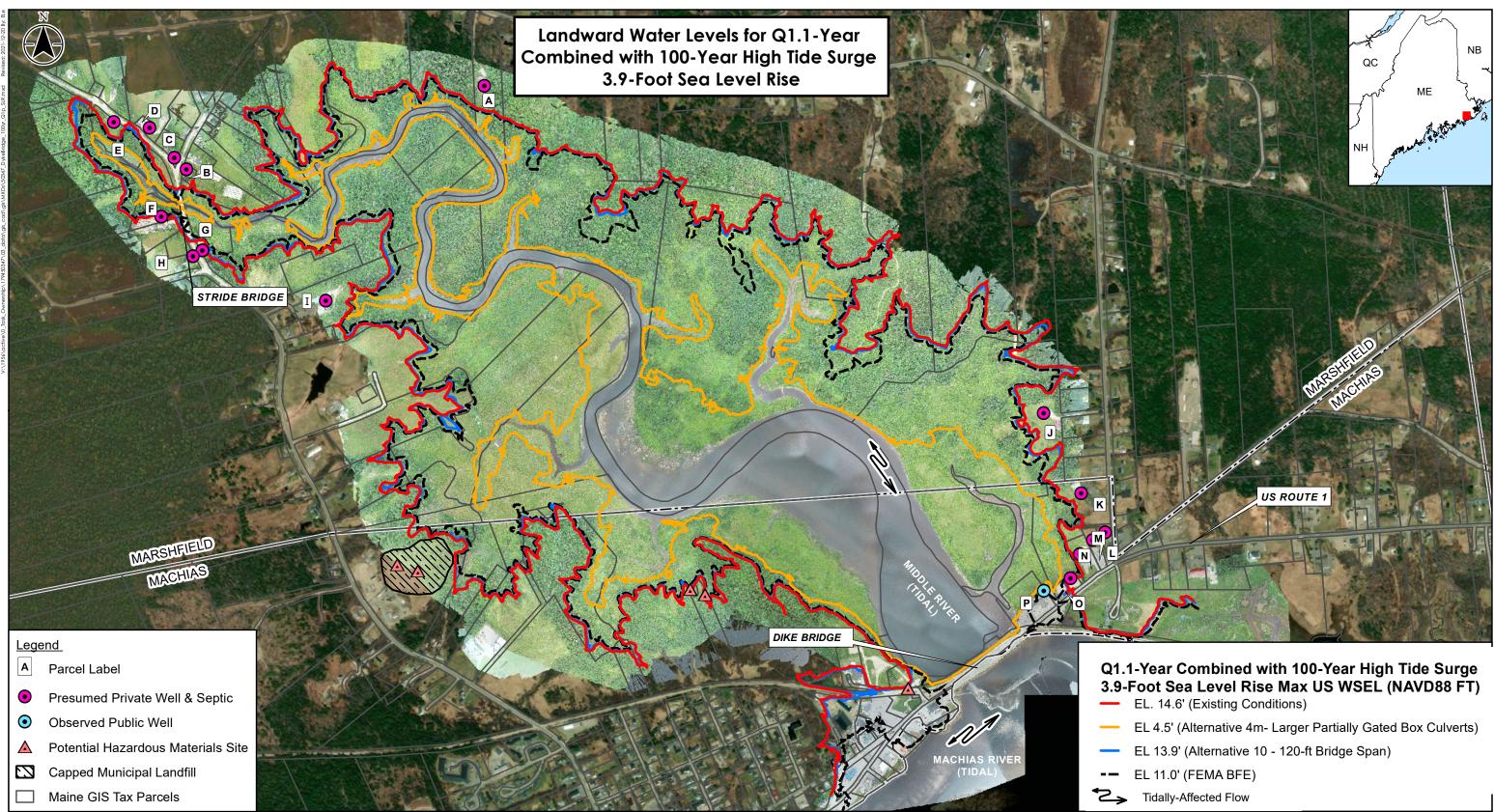
800 Feet a = 833 feet (At page size of 11"x17")	Client/Project Maine DOT Dike Bridge Machias, Maine	179450347
	Figure No. B.2	
DRAFT	Landward Water Le Combined with 100	

12/20/2021

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2021-12-06 Reviewed by TM on 2021-12-06 50347_DykeBridge_100yr_Q1p_p5_SLR.mxd

<u>Notes</u>

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service


(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

0

any and all claims arising in any way from the content or provision of the data

	Client/Project	179450347
800 Feet th = 833 feet (At page size of 11"x17")	Maine DOT Dike Bridge _Machias, Maine_	
	Figure No. B.3	
DRAFT	Title Landward Water Levels for Combined with 100-Year H 1.5-Foot Sea Level Rise	

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2021-12-06 Reviewed by TM on 2021-12-06 50347_DykeBridge_100yr_Q1p_SLR.mxd

<u>Notes</u>

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service

(http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

0

any and all claims arising in any way from the content or provision of the data

800 Feet th = 833 feet (At page size of 11%17)	Client/Project Maine DOT Dike Bridge Machias, Maine	179450347
	Figure No. B.4	
DRAFT	Landward Water Level Combined with 100-Ye 3.9-Foot Sea Level Rise	

APPENDIX C CONCEPTUAL LANDWARD CHANNEL FIGURE

Stantec Consulting Services Inc. 30 Park Drive Topsham ME 04086 U.S.A. Tel: 207.729.1199 www.stantec.com

Project No. 179450347

re e Department of	<image/>	
e Department of	Conceptual so Channel	
portation Bridge		
hias, Maine	Revision	Date
.,	V ANPIOLI	Date 2021.12.15
)347	Reference Sheet	Figure No.
/U 1/		1 1

Cut/Fill Report

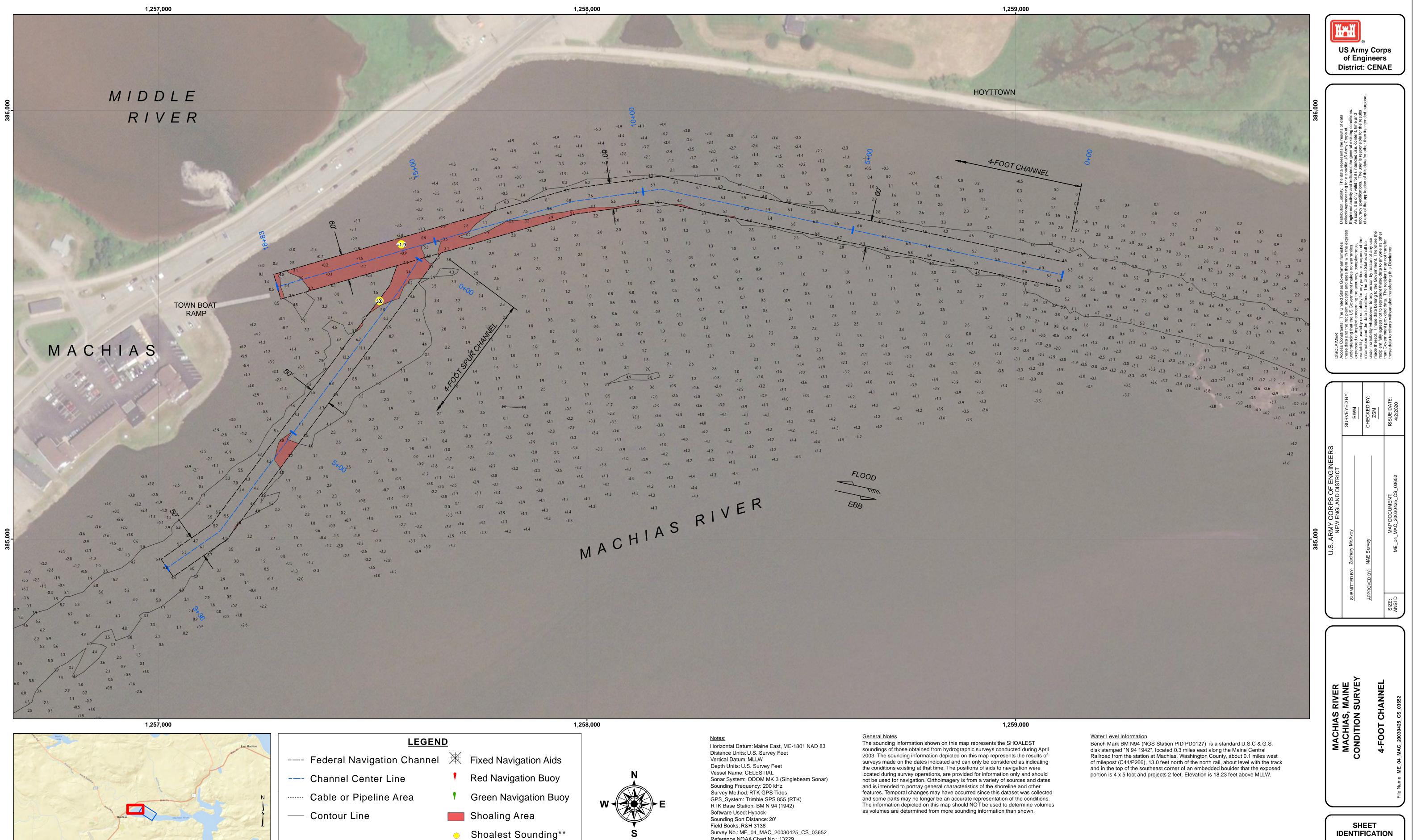
Generated: 2021-12-15 11:47:47

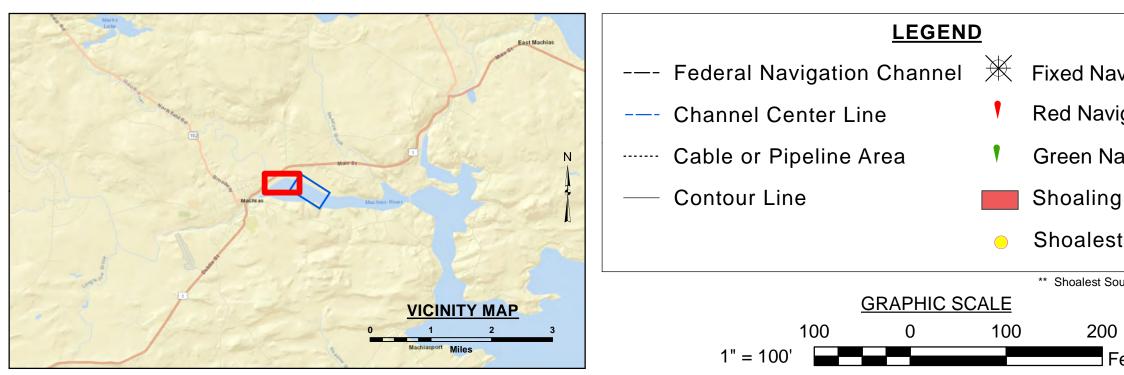
By user: ELe

 $\label{eq:callactive} Drawing: V: \label{eq:callactive} D's \label{c$

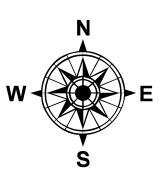
Volume Summary	T						
Name	Туре	Cut Factor	Fill Factor	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)
Scour Volume	full	1.000	1.000	138700.07	18516.66	0.00	18516.66 <cut></cut>

Totals				
	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)
Total	138700.07	18516.66	0.00	18516.66 <cut></cut>


* Value adjusted by cut or fill factor other than 1.0



APPENDIX D USACE NAVIGATION CHANNEL FIGURES


CORPS OF ENGINEERS

** Shoalest Sounding per Quarter per Reach

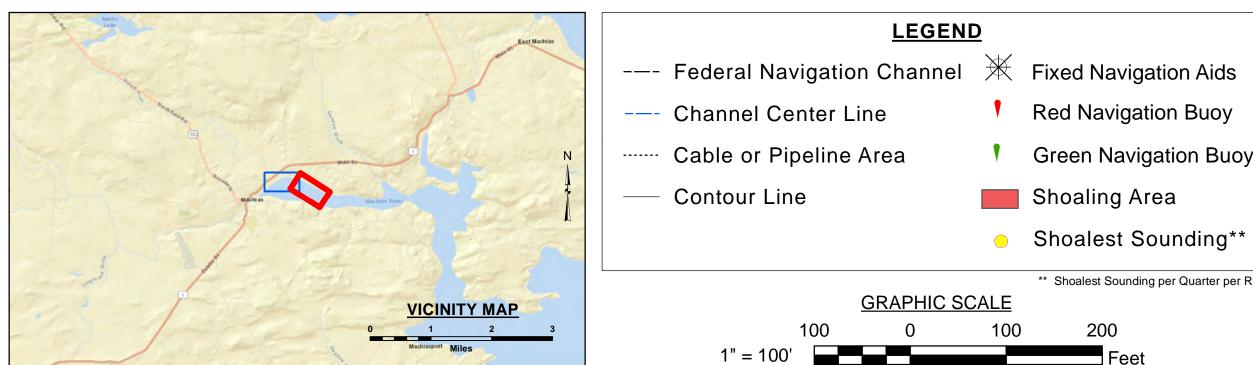
Reference NOAA Chart No.: 13229

The information depicted on these charts represents the results of surveys made on the dates indicated, and can only be considered as indicating the conditions existing at that time.

Project Remarks None

U.S. ARMY

Revison Number: 4.1-20191105


Machias River

Sheet 1 of 1

CORPS OF ENGINEERS

1,259,000

HOYTTOWN

and the second in the second

MACHIAS RIVER

 1
 1
 2
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 <th 29 X 21 31 31 31 31 41 45 46 42 57 52 51 80 54 55 7 52 51 80 54 55 7 55 70 70 66 80 70 2 71 57 70 76 66 80 70 2 71 75 71

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 <th
 12
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15<

 65
 75
 65
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75

MESERVE HEAD

MACHIAS

1,260,000

384,000

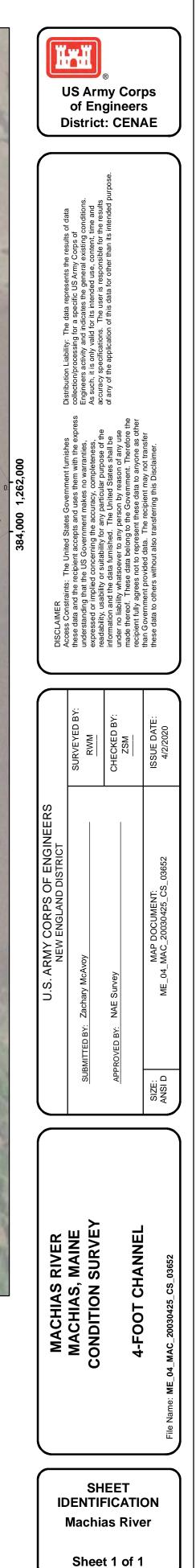
Green Navigation Buoy

** Shoalest Sounding per Quarter per Reach

Notes:

Horizontal Datum: Maine East, ME-1801 NAD 83 Distance Units: U.S. Survey Feet Vertical Datum: MLLW Depth Units: U.S. Survey Feet Vessel Name: CELESTIAL Sonar System: ODOM MK 3 (Singlebeam Sonar) Sounding Frequency: 200 kHz Survey Method: RTK GPS Tides GPS_System: Trimble SPS 855 (RTK) RTK Base Station: BM N 94 (1942) Software Used: Hypack Sounding Sort Distance: 20' Field Books: R&H 3138 Survey No.: ME_04_MAC_20030425_CS_03652 Reference NOAA Chart No.: 13229

The information depicted on these charts represents the results of surveys made on the dates indicated, and can only be considered as indicating the conditions existing at that time.


General Notes

The sounding information shown on this map represents the SHOALEST soundings of those obtained from hydrographic surveys conducted during April 2003. The sounding information depicted on this map represents the results of surveys made on the dates indicated and can only be considered as indicating the conditions existing at that time. The positions of aids to navigation were located during survey operations, are provided for information only and should not be used for navigation. Orthoimagery is from a variety of sources and dates and is intended to portray general characteristics of the shoreline and other features. Temporal changes may have occurred since this dataset was collected and some parts may no longer be an accurate representation of the conditions. The information depicted on this map should NOT be used to determine volumes as volumes are determined from more sounding information than shown.

Project Remarks None

1,262,000

U.S. ARMY

1,261,000

Water Level Information

Bench Mark BM N94 (NGS Station PID PD0127) is a standard U.S.C & G.S. disk stamped "N 94 1942", located 0.3 miles east along the Maine Central Railroad from the station at Machias, Washington County, about 0.1 miles west of milepost (C44/P266), 13.0 feet north of the north rail, about level with the track and in the top of the southeast corner of an embedded boulder that the exposed portion is 4 x 5 foot and projects 2 feet. Elevation is 18.23 feet above MLLW.

Revison Number: 4.1-20191105

STATE OF MAINE

MEMORANDUM

December 28, 2022

To:	Julie Senk, ENV/Maine Department of Transportation
From:	Kirk F. Mohney, State Historic Preservation Officer KFM
Subject:	WIN 16714.00; Machias, Bridge Replacement; MHPC #1269-08

In response to your recent request, I have reviewed the information received December 8, 2022 to continue consultation on the above referenced undertaking pursuant to the Maine Programmatic Agreement and Section 106 of the National Historic Preservation Act of 1966, as amended.

In order to continue consultation, please provide the following additional information about the sea level rise (SLR) hydraulic study:

- What SLR scenarios were considered during the hydraulic study?
- Did MaineDOT explore SLR scenarios with astronomical high tides for the existing structure and each of the proposed alternatives?
- What is the water level difference between existing high tides and expected high tides under the various alternatives?
- What is the existing water level difference at astronomical high tides without accounting for SLR?

Alternatives of In-Kind Replacement (1), Partially-Gated Culvert Replacement (4 &4M), Open Box Culvert Replacement (A9) and Bridge Replacement (A10) discuss the vertical alignment increase to account for SLR. From the two cross sections provided, it is unclear what the exact proposed vertical alignment height is compared to the existing conditions. Please confirm the proposed vertical alignment height including the causeway for these five alternatives.

Please contact Megan M. Rideout of our office if we can be of further assistance in this matter.

STATE OF MAINE Memorandum

Date: December 8, 2022

To: Kirk F. Mohney, MHPC From: Julie Senk, MaineDOT Historic Coordinator Subject: Section 106 request for concurrence Project: Machias 16714.00, MHPC #1269-08 Scope: Bridge Improvements

The Maine DOT has reviewed this project pursuant to the Maine Programmatic Agreement (PA) and Section 106 of the National Historic Preservation Act of 1966, as amended.

The proposed project consists of bridge improvements to the Dike Bridge #2246 that carries Main Street/Route 1 over the Middle River in Machias, Washington County, Maine.

In accordance with 36 CFR Part 800.4, the following identification efforts of historic properties were made:

- 800.4(a) (1) The Area of Potential Effect (APE) includes properties/structures adjacent to the bridge and bypass alternative within the project limits. The project limits are defined by the bridge and the immediately adjacent area. Properties/structures adjacent to this project limit are considered to be within the APE. The APE is shown as a defined polygon on the attached map.
- 800.4(a) (2) Review of existing information consisted of researching the National Register and MHPC survey databases. The Maine Historic Preservation Commission's archaeological staff has also reviewed the undertaking.
- 800.4(a) (3) The Town of Machias and applicable historical societies were contacted via email and asked to comment on knowledge of, or concerns with, historic properties in the area, and any issues with the undertaking's effect on historic properties. The Town was also requested to provide information regarding local historic societies or groups. See Public Involvement section in the attached memo.
- 800.4(a) (4) Emails outlining project location and scope were sent to the 4 federally recognized Tribes in Maine. The Penobscot Nation and the Passamaquoddy Tribe replied with no concern.
- 800.4(c) The MaineDOT did conduct historic architectural surveys within the APE and determined that one resource is eligible for listing in the National Register of Historic Places and one resource is listed in the National Register of Historic Places. The Maine Historic Preservation Commission's archaeological staff also reviewed this undertaking and recommended 'no archaeological properties affected'.

In accordance with 36 CFR Part 800.4, the MaineDOT requests concurrence on the finding of effect for each alternative under consideration for the proposed undertaking.

In accordance with the PA and 36 CFR Part 800, please reply within 30 days.

Please contact me at Julie.Senk@maine.gov if you have any questions. Thank you.

cc: CPD e-file

enc: Supplemental Supporting Information for a Finding of Effect

Supplemental Supporting Information for a Finding of Effect

Project: Machias 16714.00 **Scope:** Bridge Improvements

Project Description

The proposed project consists of bridge improvements to the Dike Bridge #2246 that carries Main Street/Route 1 over the Middle River in Machias, Washington County, Maine. The Middle River joins the tidal portion of the Machias River immediately downstream of the bridge. The Dike Bridge consists of four box culverts within an embankment structure (causeway). The causeway also carries a section of the Downeast Sunrise Trail.

Federal Action

Federal funding.

Purpose and Need

The primary purpose of the project is to achieve an overall structure rating of Good and to preserve the Calais Branch Rail Corridor in the area in accordance with the State Railroad Preservation Act.

The need for this project is because the Dike Bridge's culverts and flap gates show significant deterioration.

Per the project's purpose, a structure rating of Good equates to 7 or better on a scale 0-9 in accordance with Federal Highway's Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridge (NBIS). The desired structure rating of at least 7 indicates there are no noticeable or noteworthy deficiencies which affect the condition of the structure.

Secondary Goals of the action and other desirable outcomes include:

- To improve fish passage through the transportation asset;
- To account for Sea Level Rise (SLR) in accordance with Maine's Climate Council guidance to manage for 1.5 feet of relative SLR by 2050 and to assess 3.9 feet of SLR by the year 2100;
- To minimize inundation of land upstream from Dike Bridge that may result from increased tidal exchange from the project;
- To accommodate existing transportation uses of the causeway (trail/railroad);
- To accommodate existing community uses of the causeway (parking/local markets and trade); and
- To coordinate with the ongoing Town of Machias flood protection project.

Project Background

The Dike Bridge #2246 was constructed in 1868; however, the current structure was built in 1930 and widened in 1944. It consists of four box culverts within an embankment structure (causeway). The culverts are constructed of timber and stone masonry and are approximately 130' long, 6' wide, and 5' high. Each culvert has a top-hinged flap gate installed on its seaward side. The flap gates close during incoming (flood) tides to prevent tidal waters from moving upland. They open during outgoing (ebb) tides to allow upland water to flow through the culvert and into the Machias River. The causeway is constructed of timber cribbing with rubble and earthen fill and is over 1,000' long. The causeway is approximately 100' wide and includes 2-12' travel lanes, 2-8' shoulders, 20' of parking and 13'-16' of the Downeast Sunrise Trail on the former rail bed.

In 2008 a concrete slab was placed over the culverts to support the roadway. The repair was necessary as material loss through the timber culvert was causing the roadway to sag. The MaineDOT completed a dive inspection of the Dike Bridge in 2016 and routine inspections in 2016 and 2020. The inspections indicated large spalls, heavy scaling, wide cracks, loss of and rotten timber members, and roadway settlement. The MaineDOT replaced broken flap gates in 2012 and repaired pavement in 2017.

In 2009 the subject project was initiated and the MaineDOT hosted its first public meeting. The removal of the flap gates was a serious concern for upstream property owners at this meeting. The MaineDOT recognized that the range of potential solutions had flooding impacts that warranted further study. In 2015, the MaineDOT completed a Planning Feasibility Study. The study included hydrologic and hydraulic analyses to evaluate bridge and culvert alternatives. The study concluded that a culvert solution could provide improved fish passage while limiting flooding; and the installation of a bridge could provide tidal exchange and fish passage, but would result in substantial inundation of land upstream of the Dike Bridge, including the NRHP-eligible Trotting Park. In addition, the MaineDOT legal interpretations suggested limited ability to compensate affected upstream property owners.

Based on this information, the MaineDOT presented a replacement in-kind alternative as a preference at a public meeting held in 2018. This alternative was received favorably by meeting attendants. However, a series of developments arose in the following years that required continuous re-evaluations of alternatives.

- In November of 2018, the Town of Machias completed a Waterfront Study that proposed a seawall to lower the risk of flood damage to downtown Machias. The proposed seawall and the potential for SLR produced implications that required consideration for the Dike Bridge project.
- In August of 2020, permitting agencies expressed concerns that the replacement in-kind option would further inhibit fish passage between the Middle River and Machias River. The Dike Bridge does not currently allow landward flow of tides into the Middle River except by leakage through the flap gates and the causeway during flood tides. Residents have indicated anecdotally that some fish passage occurs at the Dike Bridge, however, it is generally considered a barrier to fish passage.

In September 2020, the MaineDOT received written comments from the National Oceanic and Atmospheric Administration (NOAA). The agency administers the Endangered Species Act (ESA) for coastal species, as well as other laws that guide

marine conservation and management. They are charged with coordinating local recovery efforts for Atlantic salmon in Downeast Maine.

NOAA stated substantial concerns over the in-kind replacement alternative, stating it "would provide even less opportunity for fish passage than exists now and will not remedy ongoing impacts". In addition, it would likely have detrimental effects on physical and biological features of critical habitat for Endangered Atlantic salmon. The ESA requires federal agencies to ensure that their actions do not jeopardize the continued existence of any listed species. Actions may not destroy or adversely modify any designated critical habitat. The National Marine Fisheries Service (NMFS) noted that under the ESA federal agencies are expected to go beyond minimizing project effects and proactively seek opportunities to work towards recovery of listed species. The letter suggested that working through ESA consultation and successfully permitting the in-kind replacement would be difficult.

• In August 2021, the MaineDOT sought legal clarification and determined that it would be possible to compensate upstream property owners for property inundated as a result of the project.

In order to address the concerns over fish passage through the Dike Bridge and the potential for SLR, the MaineDOT transferred the project from its Bridge Design Program to the Bureau of Planning.

Between September 2020 and April 2022, the MaineDOT completed the following tasks:

- Re-examined the project's purpose & need statement;
- Held a virtual public meeting to update the public on the change in direction and present the updated purpose and need statement;
- Reconsidered alternatives from the previous feasibility study and identified new variations to try to improve fish passage while minimizing flooding;
- Completed refined hydrology and hydraulic modeling of the alternatives;
- Completed further assessment of property impacts, including potential impacts to wells, septic systems, and known solid waste disposal sites;
- Requested technical assistance from NOAA to evaluate culvert alternatives for fish passage performance;
- Conferred with Federal Highway Administration (FHWA) and the Maine Historic Preservation Commission (MHPC) regarding the potential effects (by inundation) to the Machias/Riverside Park Trotting Park; and
- Held a public open house at the causeway to share information on alternatives and potential impacts and to collect public comment.

Based on preliminary analysis, the alternatives under consideration are focused to Alternative 1 (in-kind replacement), Alternative 4 and Alternative 4 Modified (partially-gated culvert options), Alternative 9 (open culverts), and Alternative 10 (120-150' bridge replacement).

The MaineDOT has initiated an Environmental Assessment that will discuss the environmental impacts of the bridge and culvert alternatives. To ensure that the final decision is informed by best available information on Section 106 effects, the MaineDOT is requesting concurrence from MHPC on effects for all alternatives.

Definition of Area of Potential Effect (APE)

The proposed project is located at the crossing over Middle River along Route 1, located 0.17 of a mile north of Route 1A in Machias. The map below shows the APE.

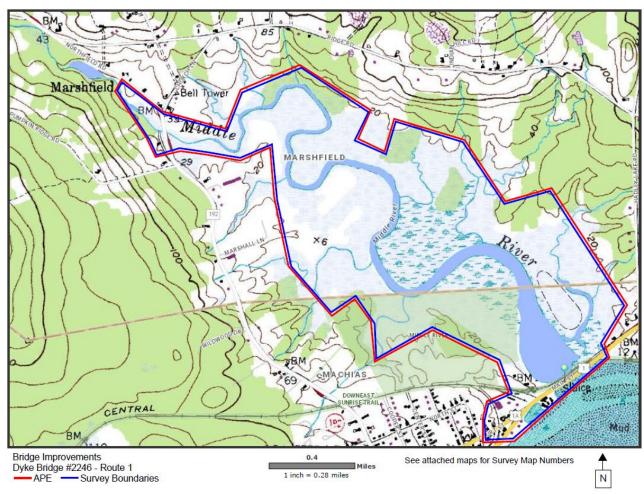


Figure 1. Machias 16714.00 Area of Potential Effect

Historic Properties

The proposed project is located in Machias. The following descriptions of historic properties found within the APE are based on the MaineDOT survey package submitted to and concurred with by the MHPC.

Machias Railroad Station (Town of Machias)

National Register-listed

Criteria A and C, Architecture and Transportation

The Machias Railroad Station is a one-story rectangular building with a side-gabled roof. The roof has overhanging eaves with knee braces. The building is covered in clapboard siding and wainscoting. It has four-over-one wood windows in simple wood frames. The north elevation, along the former rail line, has a projecting box bay, windows, and freight bays. The building is one of five railroad stations built in a specific design for the Washington County Railroad. Its period of significance is c. 1898 – 1942.

Figure 2. Machias Railroad Station

Machias/Riverside Park Trotting Track (Sprague, Christopher & Lauren)

National Register-eligible

Criterion C, Engineering

The Machias/Riverside Park Trotting Track is eligible for listing in the National Register of Historic Places. The track is a pear-shaped track located north of Route 1 on the eastern bank of the Middle River. The track consists of the track bed which is covered with grass.

The edges of the track are covered in thick vegetation. The track is a rare example of a pear-shaped trotting park. Its period of significance is c. 1883 – 1887.

Figure 3. Machias/Riverside Park Trotting Track

Archeological Resources

There are no archaeological resources in the APE.

Impacts to Historic Properties

The following addresses potential impacts to properties as a result of the evaluated alternatives.

<u>Machias Railroad Station (Town of Machias)</u> National Register-listed Criteria A and C; Architecture and Transportation

No Build:

The No Build Alternative would result in **No Historic Properties Affected** to the Machias Railroad Station. The alternative would take no action and would not affect the historic property. The No Build Alternative presumes the existing structure would remain unchanged except for required regular maintenance activities.

In-Kind Replacement (Alternative 1):

Alternative 1 would result in **No Historic Properties Affected** to the Machias Railroad Station. Alternative 1 would replace the existing structure with four new box culverts that would match the existing culverts' length and width. Flap gates would be installed to prevent landward flow. The horizontal alignment of the causeway would be approximate to the existing. The vertical alignment would be slightly increased to account for sea level rise; however, the proposed vertical alignment would tie into the existing roadway grade before the Machias Railroad Station. This alternative would avoid the historic property.

Partially-Gated Culvert Replacement (Alternative 4)¹

Alternative 4 would result in **No Historic Properties Affected** to the Machias Railroad Station. Alternative 4 would replace the existing structure with five new box culverts with flap gates on four of the culverts. The horizontal alignment of the causeway would be approximate to the existing. The vertical alignment would be slightly increased to account for sea level rise; however, the proposed vertical alignment would tie into the existing roadway grade before the Machias Railroad Station. This alternative would avoid the historic property.

Partially-Gated Culvert Replacement (Alternative 4M)²

> Alternative 4M would result in **No Historic Properties Affected** to the Machias Railroad Station. Alternative 4M would replace the existing structure with three larger culverts with flap gates on two of the culverts. The horizontal alignment of the causeway would be approximate to the existing. The vertical alignment would be slightly increased to account for sea level rise; however, the proposed vertical alignment would tie into the existing roadway grade before the Machias Railroad Station. This alternative would avoid the historic property.

¹ Alternative 4 is shown as the blue line on attached aerial map of predicted landward water levels

² Alternative 4M is shown as the green line on attached aerial map of predicted landward water levels

Open Box Culvert Replacement (Alternative 9)³

Alternative 9 would result in **No Historic Properties Affected** to the Machias Railroad Station. Alternative 9 would replace the existing structure with four open box culverts. The horizontal alignment of the causeway would be approximate to the existing. The vertical alignment would be slightly increased to account for sea level rise; however, the proposed vertical alignment would tie into the existing roadway grade before the Machias Railroad Station. The Machias Railroad Station would not be physically impacted by the significant flooding caused by Alternative 9, as it lies outside of the daily max landward water levels for typical tides and river flows. This alternative would avoid the historic property.

Bridge Replacement

(Alternative 10)⁴

Alternative 10 would result in **No Adverse Effect** to the Machias Railroad Station. The proposed action would replace the Dike Bridge #2246 with a single-span 120' - 150' bridge. The Machias Railroad Station would not be physically impacted by the significant flooding caused by Alternative 10, as it lies outside of the daily max landward water levels for typical tides and river flows. The vertical alignment would be moderately increased to account for sea level rise; however, the proposed vertical alignment would tie in to the existing before the Machias Railroad Station. Additionally, the new bridge span would be built on the existing horizontal alignment and avoid direct impacts to the property. These actions would not significantly impact the historic property's integrity of setting.

<u>Machias/Riverside Park Trotting Track (Sprague, Christopher & Lauren)</u> National Register-eligible Criterion C; Engineering

No Build:

The No Build alternative would result in **No Historic Properties Affected** to the Trotting Track. The alternative would take no action and would not affect the historic property. The No Build Alternative presumes the existing structure would remain unchanged except for required regular maintenance activities.

³ Alternative 9 is shown as the orange line on attached aerial map of predicted landward water levels

⁴ Alternative 10 is shown as yellow and purple lines on attached aerial map of predicted landward water levels

In-Kind Replacement (Alternative 1):

Alternative 1 would result in **No Historic Properties Affected** to the Trotting Track. Alternative 1 would replace the existing structure with four new box culverts that would match the existing culverts' length and width. Flap gates would be installed to prevent landward flow. This alternative would avoid the historic property.

<u>Partially-Gated</u> <u>Culvert Replacement</u> (Alternative 4)

Alternative 4 would result in **No Adverse Effect** to the Trotting Track. Alternative 4 would replace the existing structure with five new box culverts with flap gates on four of the culverts. Hydraulic studies conducted by MaineDOT in 2021 show the landward water levels for typical tides and river flows would not significantly exceed current levels⁵ under this alternative. The Trotting Track would not experience daily flooding under this alternative.

Partially-Gated Culvert Replacement (Alternative 4M)

Alternative 4M would result in **No Adverse Effect** to the Trotting Track. Alternative 4M would replace the existing structure with three larger culverts with flap gates on two of the culverts. Hydraulic studies conducted by MaineDOT in 2021 show the landward water levels for typical tides and river flows would not significantly exceed current levels under this alternative. The Trotting Track would not experience daily flooding under this alternative.

Open Box Culvert Replacement (Alternative 9)

Alternative 9 would result in an **Adverse Effect** to the Trotting Track. Alternative 9 would replace the existing structure with four open box culverts. Hydraulic studies conducted by MaineDOT in 2021 show the landward water levels for typical tides and river flows would exceed current levels under this alternative, thus flooding the Track twice a day at high tide. The regular flooding would cause the Track's natural features to erode and would diminish the historic resource's integrity of design, location, setting, association, materials, and workmanship.

⁵ Existing tide condition is shown as the red line on attached aerial map of predicted landward water levels. The dotted red line represents the tide condition before the culvert leak was addressed in 2021.

Bridge Replacement (Alternative 10)

Alternative 10 would result in an **Adverse Effect** to the Trotting Track. The proposed action would replace the Dike Bridge #2246 with a single-span 120' - 150' bridge built on the existing horizontal alignment. The vertical alignment would be increased from the existing in order to address sea level rise. Hydraulic studies conducted by MaineDOT in 2021 show the landward water levels for typical tides and river flows would exceed current levels under this alternative, thus flooding the Track twice a day at high tide. The regular flooding would cause the Track's natural features to erode and would diminish the historic resource's integrity of design, location, setting, association, materials, and workmanship.

Archaeological Resources

No archaeological resources would be impacted by the proposed action.

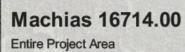
Alternative	Effect
No Build	No Historic Properties Affected
In-Kind Replacement (A1)	No Historic Properties Affected
Partially-Gated Culvert Replacement (A4)	No Adverse Effect
Partially-Gated Culvert Replacement	No Adverse Effect
(A4M)	
Open Box Culvert Replacement (A9)	Adverse Effect
Bridge Replacement (A10)	Adverse Effect

Determination of Effect for Each Alternative

Public Involvement

The MaineDOT contacted the four federally recognized Native American Tribes in Maine on January 24, 2011. The Penobscot Nation and the Passamaquoddy Tribe replied with no concerns. On July 1, 2022, the Tribes were provided updates on the project since they received the original notification. No replies were received.

The MaineDOT contacted the Town of Machias on January 25, 2011, regarding the initiation of the Section 106 review. Letters were received from a local historian, the Town Manager, and the Machias Historical Society, all of whom expressed concern over the proposed project.


The MaineDOT held public meetings in 2009, 2018, 2021, and 2022. Information on the Section 106 review and the historic properties was described during the public meetings. During the 2009 and 2018 public meetings, the owner of the Machias/Riverside Park Trotting Track expressed interest in the track's preservation with regard to the potential impacts of the proposed project.

The MaineDOT posted a public notice in the Bangor Daily News to solicit public comments and questions regarding the historic review. This report was posted to the MaineDOT Environmental Office's public involvement webpage and was sent to the Town of Machias, the Washington County Historical & Genealogical Society, and the Washington County Manager. No comments were received.

Additional information on the historic review and effects to historic properties will be shared with the public and interested parties when this report is refined to one preferred alternative.

Attachments

Aerial Map of Project Area Aerials Map of Landward Water Level for Typical Tides and River Flows Approximate Elevations for Bridge and Culvert Alternatives Kirk Mohney, MHPC, to Julie Senk, MaineDOT, September 20, 2021 J. N. Leith Smith, MHPC, to Julie Senk, MaineDOT, July 26, 2022

192 , /

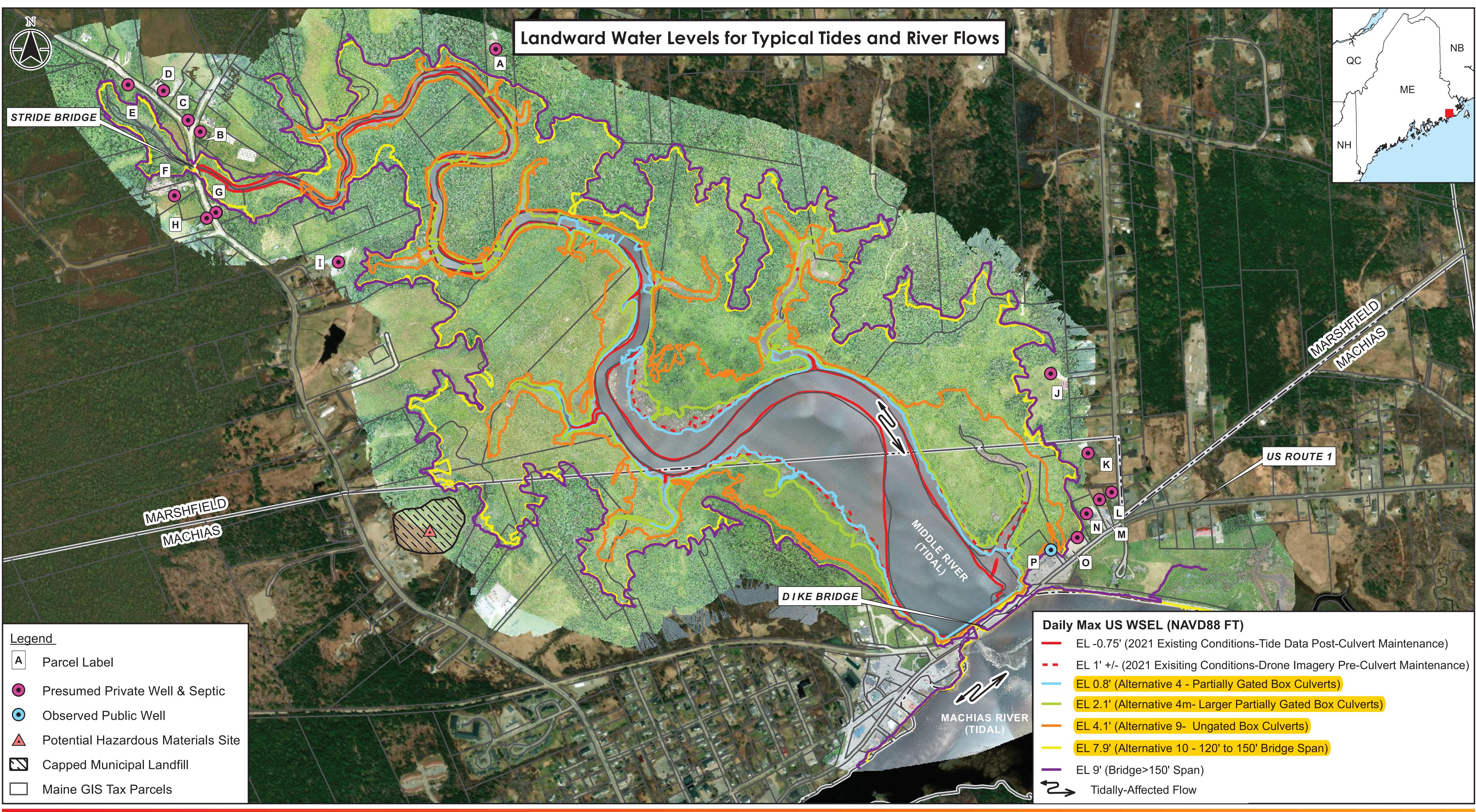
Marshfield

192

192

192

Trotting Track


Machias RR Station

Google Earth

© 2022 Google

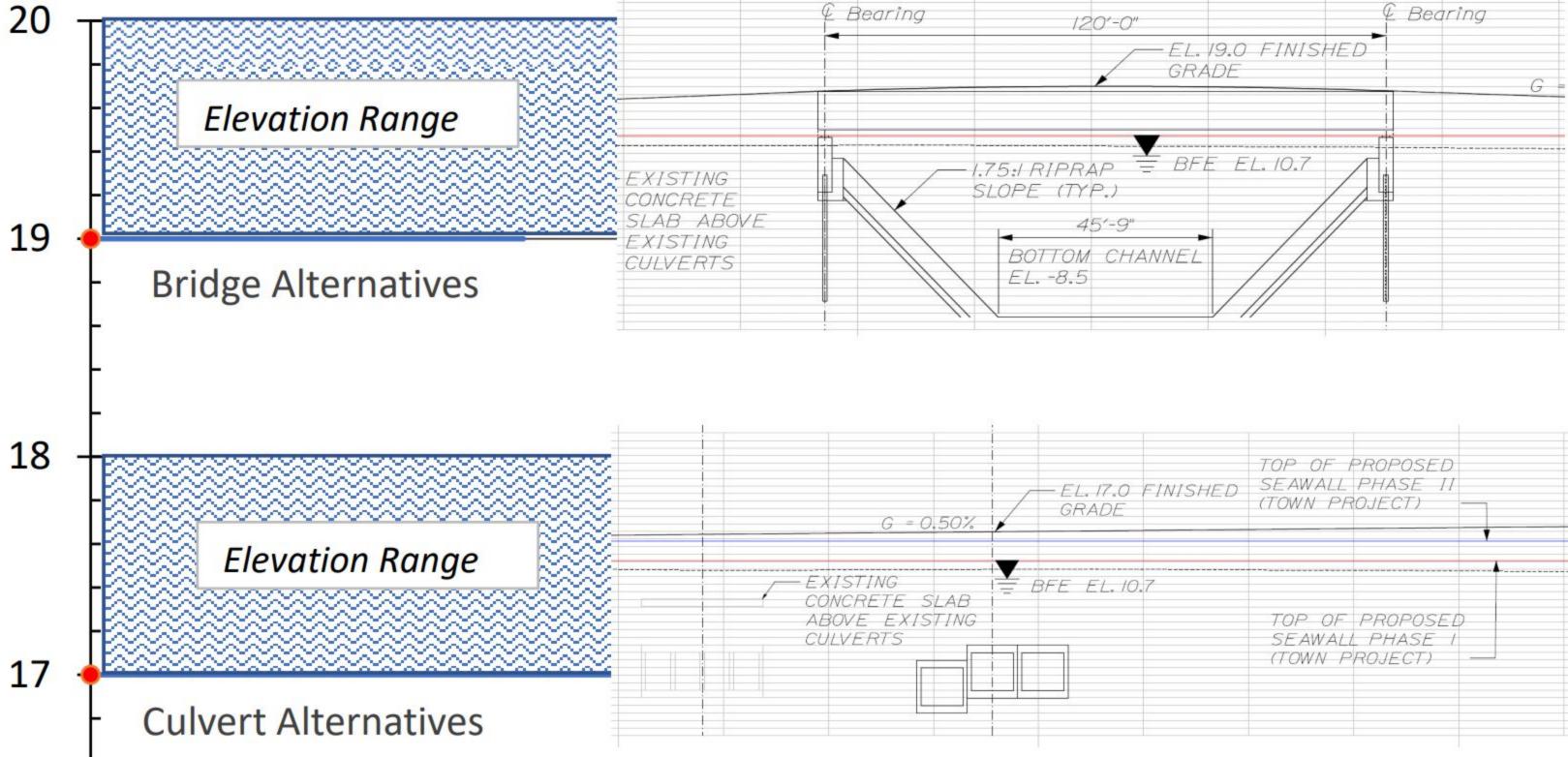
3000 ft

∧ N

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Prepared by EPL on 2021-12-06 Reviewed by TM on 2021-12-06 50347_DikeBridge_11x17_Alt-Cont_20211206.mxd <u>Notes</u>

1. Existing conditions are based on 2021 tidal stage data that was collected after leaking gates were fixed and 2021 drone imagery collected by MaineDOT before the leaking gates were fixed and represent a range of potential existing conditions. 2. Approximate water surface elevations (WSEL) for proposed alternatives are based on the 2021 Phase 1 and Phase 2 hydraulics analyses using tidal stage data collected by MaineDOT in 2021. 3. Coordinate System: NAD 1983 UTM Zone 19N FT 4. Vertical Datum: NAVD88 5. Aerial imagery in the project area was obtained by unmanned aircraft vehicle (UAV) by MaineDOT on July 20, 2021. 6. Aerial imagery surrounding the project area is provided by ArcGIS Online World Imagery Mapping Service (http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServer).

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient accepts full responsibility for verifying the accuracy and completeness of the data.


7. TIN Surface information is based on survey data provided by the Maine Department of Transportation.

800 Feet 1 inch = 833 feet (At page size of 11"x17")

Client/Project Maine DOT Dike Bridge Machias, Maine Figure No. B-1 Title Landward Water Levels for Typical Tides and River Flows 2/3/2022

179450347

INISHED	TOP OF PROPOSED SEAWALL PHASE II (TOWN PROJECT)
	TOP OF PROPOSED SEAWALL PHASE I (TOWN PROJECT)

STATE OF MAINE

MEMORANDUM

September 20, 2021

10:	Julie Senk, ENV/Maine Department of Transportation	
From:	Kirk F. Mohney, State Historic Preservation Officer KFM	
Subject:	PIN 16714.00, Machias, Bridge Improvements; Architectural Survey Report; MHPC #1269-08	

In response to your recent request, I have reviewed the information received September 14, 2021 to continue consultation on the above referenced undertaking pursuant to the Maine Programmatic Agreement and Section 106 of the National Historic Preservation Act of 1966, as amended.

The Maine Historic Preservation Commission (Commission) staff reviewed the subject report, and we agree that the Machias Railroad Station (SM #3) is listed in the National Register of Historic Places.

With regard to Riverside Trotting Park (SM #5), on February 25, 2016, the MaineDOT supplied additional information on this and other trotting parks which included information about the past grading activity that removed the track's clay surface. The Commission determined the resource was eligible for listing in the National Register under Criterion C in the area of Engineering, on March 2, 2016. As we noted then, the pear-shaped tracks of the late 19th and early 20th century required a level of skill and horsemanship that was different from running on a symmetrical oval. Then and now, it is unclear how many of this type of pear-shaped track still exist in a distinguishable condition. As noted in the architectural survey report, "a property is not eligible, however, simply because it has been identified as the only such property ever fabricated." Riverside Trotting Park must be considered not as the only example of a type but as a rare surviving example. To summarize page 47 of National Register Bulletin 15, rare examples of a property type may be eligible based on comparison to other surviving examples. Rarity and poor condition in other examples may justify accepting a greater degree of alteration in a resource. Therefore, we continue to hold the opinion that even without the historically associated buildings on the site and with much of the track's surfacing removed, the former Riverside Trotting Park retains sufficient integrity of design, location, setting and association (and possibly materials and workmanship) when compared to other known tracks to merit nomination to the National Register under Criterion C at the local level of significance. The Commission also concludes that there is insufficient information potential for the track to be eligible under Criterion D.

Please contact Michael Goebel-Bain or me if you wish to discuss this matter.

STATE OF MAINE Memorandum

Date: July 26, 2022

To: Julie Senk, Historic Preservation Coordinator, Maine DOT/ENV

From: J. N. Leith Smith, MHPC

Subject: Final Archaeology Review

Project: MHPC #1269-08, WIN 16714.00: Machias Machias Dike Bridge (#2246) Project carrying Route 1 over the mouth of the Middle River.

Dear Julie,

An archaeological survey for the above referenced project was conducted in June of 2021. The goals of the survey were to determine potential effects of increased tidal flow on archaeological sites resulting from work on the Dike Bridge. Initial focus was on the site of the former trotting track where archaeological deposits associated with track construction and use were identified. The deposits were initially determined to maintain the potential to provide information important to the history of the trotting track, potentially making the site eligible for National Register listing under Criterion D. The track was already determined to be National Register eligible under Criterion C due to its unique design. Further assessment of the potential contribution that the archaeological deposits could provide beyond what was historically documented for the track resulted in a determination that the potential of the deposits to provide additional historic information was minimal. This resulted in a determination that the trotting track was not NR eligible under Criterion D.

The component of the 2021 archaeological survey that focused on potential impacts to precontact Native American archaeological sites found no evidence for prehistoric occupation within the pre-dike bridge intertidal zone. These findings suggested early Native American sites may have been located along the banks of the Middle River prior to sea level rise (now inundated) and at upper elevations bordering the intertidal zone prior to construction of the dike bridge.

The archaeological survey and follow-up assessment finds that no archaeological properties will be affected by the proposed undertaking.

APPENDIX 8 - SECTION 4(f)

Maine Department of Transportation

Memo

To:	Kristen Chamberlain, Eric Ham, Julie Senk	
From:	Charles Hebson	
CC:	David Gardner	
Date:	2021 October 21	
Re:	16714 Machias – Potential Racetrack Inundation Due to Tidal Restoration	

Executive Summary

The frequency of racetrack inundation under Alternative 10 (tidal transparency) has been evaluated using 2011 data, 2021 data and modeling results provided by Stantec. The following discussion pertains to "normal" (i.e., non-storm) tides. Most generally, under Alternative 10 the track will see water twice daily, on every high tide. Using a racetrack elevation of 3-ft NAVD88 as the threshold for flooding, the data show that we can expect "flooding" about 33% of the time. This is somewhat conservative, since it assumes that the entire track is instantaneously covered with water as soon as the tide exceeds 3-ft. Mean High Water (MHW) is estimated at 6.40-ft from the 2021 data set, further confirming that the track will be inundated on a twice-daily basis if tidal transparency is established. Under the Alternative 4M model simulation (culverts allowing some tidal exchange), landward water levels never exceed 3-ft under "normal", non-storm conditions. There may be localized areas in the track domain below 3-ft with drainage connectivity to the Middle River that will flood at water levels less that 3-ft. The 4M simulated landward water levels (not measured data) are very similar to the August 2021 data period corresponding to a leaky flapper gate. Once the gate was repaired in late August, the subsequent 2021 landward levels reverted to 2011 conditions.

Discussion

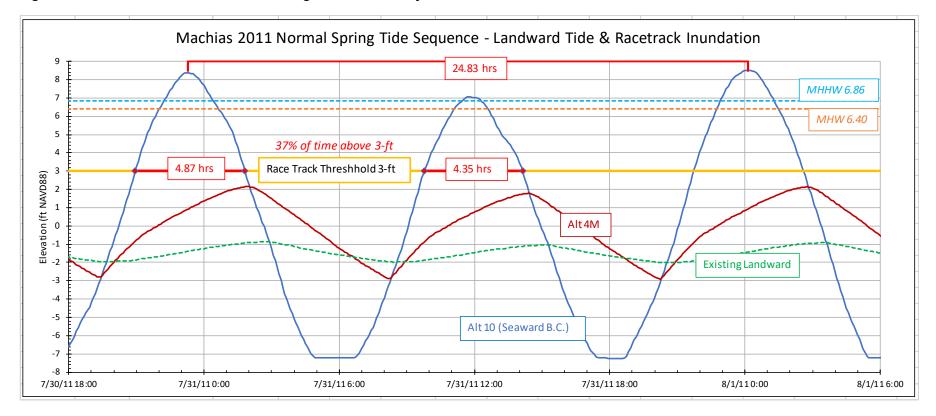

Alternative 10 consists of an opening large enough so that tidal hydrology is restored landward (upstream) of the causeway. This has been referred to as "tidal transparency". The type of hydraulic structure (culvert or span) is immaterial, though to date Alternative 10 has been treated as a span. The idea is that the structure has no effect on tidal flow moving in and out of the Middle River. Under this scenario we can assume that the tides as measured seaward of the causeway in the Machias River will be duplicated landward (upstream) in the Middle River.

Figure 1 shows one complete tidal cycle spanning 31 July 2011. This is a "normal" spring tide, "normal" indicating "not a storm event"; the spring tides are the high tides that occur monthly. The tidal period is 24.83 hours; the water level exceeds 3-ft NAVD88 for (4.87 + 4.35) = 9.22 hours. This gives a water level exceedance duration of 37% above 3-ft for this cycle. The duration would be somewhat smaller for average and lower neap tides. Under Alternative 4M (culverts allowing some tidal exchange) high tides never exceed 3-ft. The tidal datums (MHW and MHHW) were calculated using the NOAA Tidal Datum Calculator and the 8/12 - 10/06/2021 data set used for Figure 2.

Figure 2 shows the Machias River tidal stage frequency distribution, based on the 8/12 - 10/06/2021 data set. As described above, we assume that this data is representative of what would result in the Middle River under Alternative 10. Since this data record covers a full range of tides, the calculated exceedance frequency is somewhat lower than for a single spring tide (35% vs. 37%) as in Figure 1.

Figure 3 shows the 2021 landward tidal data collected in the impoundment upstream of the causeway. The tides are significantly higher than the 2011 and the post-August 2021 landward data; the range is also larger (-0.75 to 1.25 ft; 2-ft range). This was due to a leaky flapper gate. These elevated water levels are consistent with aerial photos taken in the July 2021 drone flight, observations in the course of project field work prior to repair of the faulty gate, and anecdotal comments from local residents.

Model simulation results for Alternative 4M (two 10S x 5R culverts with flappers, one 10S x 5R open culvert) for a 2011 model period are superimposed on the 2021 data segment in Figure 4. The measured 2021 leaky hydrology is remarkably similar to the model results, particularly the peak water levels. Thus, the actual landward tidal experience through August 2021 gives a good idea of what Alternative 4M would be like if constructed. The gate was repaired around August 30 and the hydrology reverted almost immediately to what was seen in the 2011 data set. In Figure 5, 2011 measured landward water levels are superimposed over 2021 measurements. The post-repair water levels are essentially identical to what was measured in 2011 and indicates only a small amount of leakage.

Figure 1. Racetrack Inundation Illustrated Using 7/31/2011 Tidal Cycle

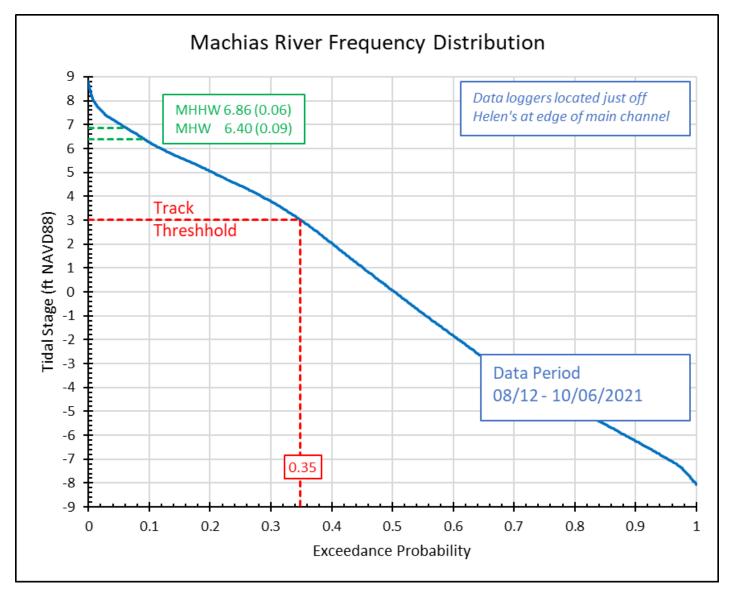
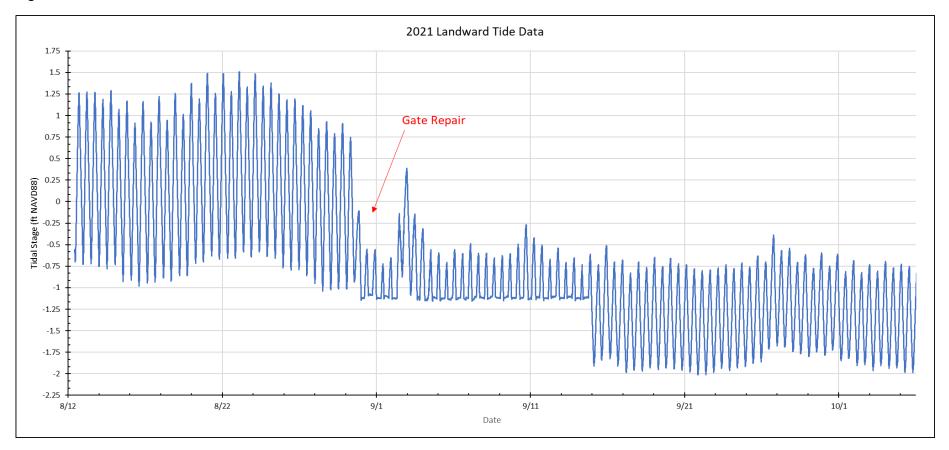



Figure 2. Machias River Tidal Stage Frequency Distribution

Figure 3. 2021 Landward Tide Data

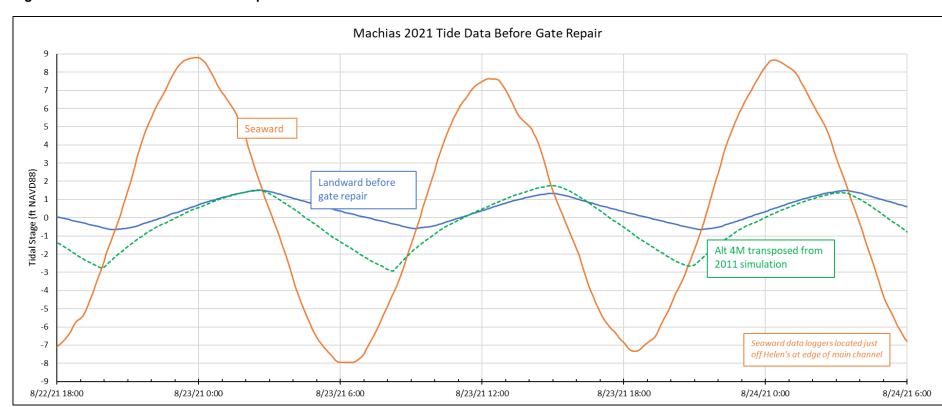
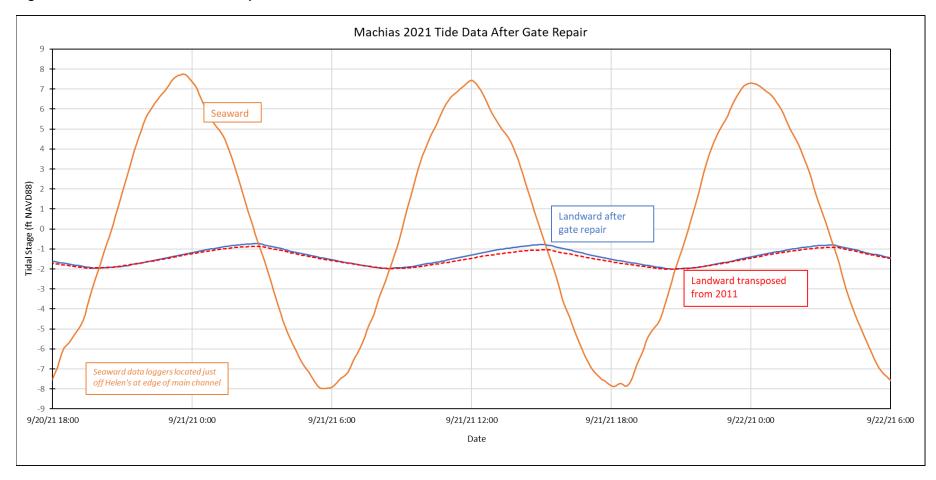



Figure 4. 2021 Tide Data Before Gate Repair

Figure 5. 2021 Tide Data After Gate Repair

Appendix A. Output from NOAA Tidal Datum Calculator

Run Time: 2021-10-19 16:58:15	TIDAL DATUMS BY Monthly Means Simultaneous Comparison:
Using DS-WL-for-Datum-Calc.csv	Using Cutler Farris ref station
Time Zone = EDT-UTC4	C C
13256 data points loaded.	From 9 / 2021 to 9 / 2021
Interval: 0:06:00	1 Months of control station means retrieved.
FEET	1 months in the analysis
All calculations and results are in Feet	Mean Diff MSL = -12.99
	Mean Diff MTL = -13.04
Gulf/East coast station:	Mean Diff $DTL = -13.04$ Mean Diff $DTL = -13.03$
÷	
Using Modified Range Ratio Method	Mean_Ratio_MN = 0.98
	Mean Ratio GT = 0.98
Sampling Rate: 240.0 per day. Using cutoff frequency of 4.0 per day	Mean_Diff_MHHW = -13.17
107 highs 106 lows	Mean_Diff_MHW = -13.17
Data Start: 2021-08-12 10:30:00	Mean_Diff_MLW = -12.90
Data End : 2021-10-06 16:00:00	Mean_Diff_MLLW = -12.90
Mean Water Level: 0.10	
Highest Water Level: 8.80	Corrected values for MN, GT, MTL, DTL
Lowest Water Level: -8.04	13.44 14.29 -0.31 -0.29
Duration: 55 days, 5:30:00	Corrected values for MHHW, MHW, MLW, MLLW
High Tides Found: 107	6.86 6.41 -7.04 -7.44
Low Tides Found : 106	
Tides per day: 3.9	Datums by Monthly Means Simultaneous Comparison (MMSC):
Semi-Diurnal - Using EXHL	HWL = 8.83 (2021/08/22 23:48)
54 Highs	MHHW = 6.86
53 Higher Highs	MHW = 6.40
53 Lows	
	DTL = -0.29
53 Lower Lows	MTL = -0.31
	MSL = -0.32
3 Monthly plots generated	MLW = -7.03
Control Datums for: 8411060	MLLW = -7.43
	DHQ = 0.46
MHHW, MHW, DTL, MTL, MSL, MLW, MLLW	DLQ = 0.40
20.03 19.58 12.75 12.72 12.66 5.87 5.47	GT = 14.29
GT, MN, DHQ, DLQ, NAVD, LWI, HWI	MN = 13.44
14.56 13.71 0.45 0.40 12.99 9.51 3.25	LWL = -8.08 (2021/08/22 05:30)
SUBORDINATE MONTHLY MEANS:	Feet
9 / 2021 :	
HWL = 8.33	That is all.
MHHW = 7.10	
MHW = 6.66	
MSL = 0.09	
MDL = -0.03 MLW = -6.49	
MLW = -6.81	
LWL = -7.94	

APPENDIX 9 – NATURAL RESOURCE AGENCY CORRESPONDENCE

From: David Bean - NOAA Federal <<u>david.bean@noaa.gov</u>>
Sent: Friday, May 26, 2023 2:07 PM
To: Ham, Eric <<u>Eric.Ham@maine.gov</u>>
Cc: LeVee, Rachel (FHWA) <<u>rachel.levee@dot.gov</u>>; jennifer.anderson@noaa.gov; Rory <<u>rory.saunders@noaa.gov</u>>; Gardner, David <<u>David.Gardner@maine.gov</u>>; Chamberlain, Kristen <<u>Kristen.Chamberlain@maine.gov</u>>; Todd
Jorgensen <<u>Todd.Jorgensen@dot.gov</u>>; julie.crocker <<u>julie.crocker@noaa.gov</u>>
Subject: Re: Request for Consultation on Machias Dike Bridge MaineDOT WIN 16714.00

EXTERNAL: This email originated from outside of the State of Maine Mail System. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks Eric. I wanted to pass along a recently published paper that I think is relevant to this project in particular. I know we talked a lot about sea level rise and how it may impact the project during early consultation. This paper does a good job of laying out some of the changes to operation of the tide gate that may occur over the life of the project that should be considered in the BA.

Have a great weekend, Dave

On Tue, May 2, 2023 at 3:44 PM Ham, Eric <<u>Eric.Ham@maine.gov</u>> wrote:

Hey Dave and Rory,

Thanks for the time today. Below is my interpretation of what we would like to start working on ASAP vs what is required to start the BA.

We agree to start working on, but not necessary for initiation of consultation.

We had a lot of discussion around the monitoring of some of the assumptions needed for an accurate take calculation for the life of the project. You had multiple comments on this for species concerns and critical habitat concerns. MaineDOT (and FHWA) has known that these complication long term monitoring request we going to be a part of the alternative that we is proposed in the most recent BA. We are happy to start discussions on this as soon as we can get together again. However, I contend that that information is not typically the responsibility of the action agency to have in the BA in order to initiate consultation.

We understand the take calculation is likely going to be challenging. There is not a lot known about the migratory behavior of Atlantic salmon in the action area. Working the action agency, I tried to clarify the extension, duration, and severity of the effects. Following that, I do not believe it is FHWA/ MaineDOT responsibility to figure out the number of Atlantic salmon that may be effected.

You had a comment below about the Maintenance and Operations plan that wasn't in the attachment. We did not get to discuss it today. I added additional information the most recent BA and the operation of the tide gates and how MaineDOT plans to maintain them. I would contend that we have made the intended operation of the gates pretty clear.

We know we need to engage with the EFH folks. It is common for us to start the consultation process for ESA first do to timeframes. Once we have that consultation moving, we will start working with the EFH folks. They have been involved in discussions along the way.

Need for BA

The project team is helping me understand the ramifications of the work window commitment that was discussed. If it is ok, we will update the BA with. I will circle back when I get an answer either way.

You requested the combination of a table in the attachment. I had actually done that at one point. I may not have done a good job 😊 because I thought it was to busy and confusing. We will tackle that again in the updated BA.

I will add the BMP about the soft start for pile driving. I can use the language out of the FHWA/NMFS programmatic consultation.

Eric Ham

MaineDOT Environmental Office

Senior Environmental Manager

207-215-7356

Eric.Ham@maine.gov

From: David Bean - NOAA Federal <<u>david.bean@noaa.gov</u>>

Sent: Friday, April 14, 2023 4:05 PM

To: LeVee, Rachel (FHWA) <<u>rachel.levee@dot.gov</u>>

Subject: Re: Request for Consultation on Machias Dike Bridge MaineDOT WIN 16714.00

Cc: <u>jennifer.anderson@noaa.gov</u>; Rory <<u>rory.saunders@noaa.gov</u>>; Gardner, David <<u>David.Gardner@maine.gov</u>>; Chamberlain, Kristen <<u>Kristen.Chamberlain@maine.gov</u>>; Todd Jorgensen <<u>Todd.Jorgensen@dot.gov</u>>; Ham, Eric <<u>Eric.Ham@maine.gov</u>>

EXTERNAL: This email originated from outside of the State of Maine Mail System. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Rachel,

After reviewing the draft BA dated March 16, 2023 we felt the information did not fully describe the potential for take to occur as a result of the operation of the proposed project (see attached comments). For example, you have stated several impacts to Critical Habitat features in the action area after the construction phase has been completed, and the operation of the project may cause further harm (long term migration barrier), but did not provide any information to better understand the extent of that incidental take or how you were proposing to monitor for those impacts. Additionally, if there are measures you can implement into the project that would avoid or minimize the potential for effects to adversely affect T&E species (i.e., incidental take), these should also be fully described in the BA. Accordingly, if the effects are such that they cannot be effectively reduced to a level that is considered to not likely adversely affect the species, then the stressor needs to be monitored in order to determine the extent of the take and whether take has been exceeded during the life of the project. We recognize it is early in the planning process, however, the BA should also include some type of operation, maintenance and monitoring plans to demonstrate that the project will be installed and operated as designed and any potential stressor (noise, turbidity, false attraction etc.) from construction and operation will not cause further harm, injury, and/or mortality, above what was determined/anticipated to occur as described in the BA and determined/estimated in the BO as part of the incidental take statement. Without these plans, we would not have a good understanding of how the project is being operated and if take was kept below any anticipated threshold and not exceeded as described in the BO. We need this type of monitoring information because if take is exceeded, then the action agency needs to re-initiate consultation with NOAA.

At this time, we would like to discuss our comments and concerns on a call with MEDOT and FHWA to see if we can come up with a reasonable monitoring approach that would work at this site. Please feel free to reach out if you have any questions.

Dave

On Thu, Mar 16, 2023 at 7:09 PM LeVee, Rachel (FHWA) <<u>rachel.levee@dot.gov</u>> wrote:

Hello Jennifer,

Please see the attached Biological Assessment for the Machias Dike Bridge project (MaineDOT WIN 16714.00) and FHWA's request to initiate consultation pursuant to Section 7 of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.).

Rachel LeVee, PE, PMP

Deputy Division Administrator

FHWA Maine Division

O: (207) 512-4912 | C: (202) 306-7665

--

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

Forecasting Sea Level Rise-driven Inundation in Diked and Tidally Restricted Coastal Lowlands

K. M. Befus^{1,2} · A. P. D. Kurnizki² · K. D. Kroeger³ · M. J. Eagle³ · T. P. Smith⁴

Received: 27 September 2022 / Revised: 17 December 2022 / Accepted: 10 January 2023 © The Author(s) 2023

Abstract

Diked and drained coastal lowlands rely on hydraulic and protective infrastructure that may not function as designed in areas with relative sea-level rise. The slow and incremental loss of the hydraulic conditions required for a well-drained system make it difficult to identify if and when the flow structures no longer discharge enough water, especially in tidal settings where two-way flows occur through the dike. We developed and applied a hydraulic mass-balance model to quantify how water levels in the diked and tidally restricted coastal wetlands and water bodies dynamically respond to sea-level rise, specifically applied to the Herring River Estuary in MA, USA, from 2020 to 2100. Sensitivity testing of the model parameters indicated that primary outcomes were not sensitive to many of the chosen input values, though the terrestrial water input rate to the estuary and the flow coefficient for the hydraulic infrastructure were important. The relative importance of parameters, however, is expected to be site specific. We introduced a drainability metric that quantifies the net water volume drained over every tidal cycle to monitor and forecast how rising water levels on either side of the dike affected the net draining or impounding conditions of the system. Ensembles of model results across parameter and sea-level scenario uncertainties indicated that substantial impoundment of the Herring River Estuary was expected within ~20 years with the existing flow structures, a sluice and two flap gates. Simulations with up to three additional gates did not dampen this trend toward impoundment, suggesting that rising impounded water levels are likely even with major construction upgrades. Increasingly impounded diked coastal waterbodies present a hydrologic challenge with socioecological implications due to projected flooding and ecosystem impacts. Solutions to this challenge may be to allow coastal wetland restoration pathways or require substantial and recurring infrastructure improvement projects.

Keywords Impoundment · Hydraulics · Sea-level rise · Dike · Tidal restriction · Restoration · Wetland drainage

Introduction

A substantial fraction of coastal wetlands today is impacted to varying degrees by human activities (Gedan et al. 2009; Burdick and Roman 2012; Pendleton et al. 2012; Kroeger

Communicated by David K. Ralston

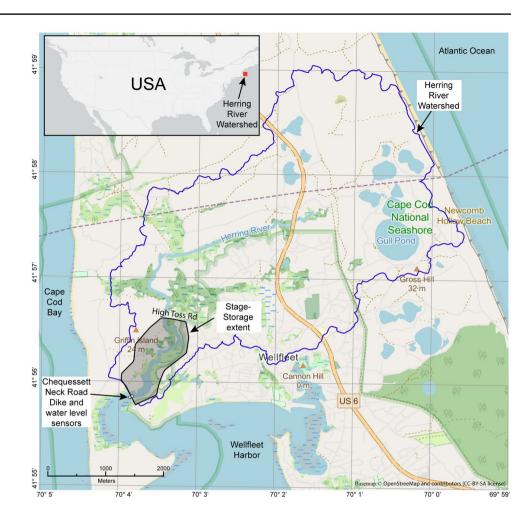
K. M. Befus kmbefus@uark.edu

- ¹ Department of Geosciences, University of Arkansas, Fayetteville, AR, USA
- ² Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, USA
- ³ Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, MA, USA
- ⁴ National Park Service, Cape Cod National Seashore, Wellfleet, MA, USA

et al. 2017; Crooks et al. 2018). In both urban and rural settings, wetlands that have not been destroyed by filling or dredging commonly persist within disturbed hydrologic regimes. Such disturbances result from diking to restrict tidal inundation, ditching to drain either tidal or meteoric water more efficiently, and other alterations. Coastal hydraulic structures, such as dikes, are designed for the hydrologic setting when built. Performance of such infrastructure may decline as climate change, subsidence, and sea-level rise alter the hydrologic regime and raise the tidal frame (Spencer et al. 2016; Schuerch et al. 2018). Due to sensitivity to hydrology, changes in hydrologic regimes are likely to drive changes in the ecological and biogeochemical functioning of diked ecosystems, creating positive feedbacks in both climatic and hydrologic drivers by altering greenhouse gas fluxes and relative soil elevation (Portnoy 1999; Wang et al. 2019; Eagle et al. 2022). Further, aging dikes designed for historic hydrology could exacerbate flooding hazards and damage coastal infrastructure. Predictions and models are lacking for the hydrology, ecology, and carbon cycle processes in diked landscapes, and thus, as sea levels rise, the future hydrologic states and fates of widespread coastal diked lands are critical, and yet highly uncertain.

Coastal dikes are intended to protect low-lying areas from inundation or short-term flooding from marine, often tidal, waters. However, dikes can also impound freshwater flows and tidally exchanged water caused by storms and/or wave overtopping, requiring adequately sized outlet flow control structures to drain stored water. Depending on the diked system, the flow control structures can be limited to draining only during low tides with one-way features, such as flap gates, effectively maintaining low salinity in impounded water or discharge saline water intruded during extreme events. If some tidal exchange is allowed across the dike, culverts or sluices (i.e., gate with an adjustable height opening at the bottom) can be sized to limit the volumes of exchange. One-way flow control structures also commonly lead to more stable and overall lower water levels on the inland side of the dike and a drier landscape. We refer to these two inland diked conditions as either impounded (i.e., insufficient outflow) or drained (i.e., enhanced outflow and restricted inflow) dike systems, depending on the degree to which diked water levels remain consistently higher or lower than a natural tidal setting.

We anticipate that most dike systems were designed to protect or alter a specific area, such as by draining upland areas and restricting tidal inundation to expand coastal agricultural land and reduce mosquito habitat (Kroeger et al. 2017; Crooks et al. 2018). Higher sea levels would reduce the amount of time during each low tide for diked systems to drain. Among our hypotheses is that, without changes to the dike infrastructure, such reductions in drainage will eventually convert drained systems into impounded systems. This transition may take decades to manifest and may be obscured by tidal and sea level dynamics. Watershed morphology, hydrology, weather, and infrastructure complicate the magnitude and timing of the hydrologic changes and combine to create unique conditions for how each diked system will respond.


Transitioning hydrologic regimes feedback into coastal ecosystem dynamics, blue carbon cycling, and associated greenhouse gas emissions. With additional freshwater impoundment, increased terrestrial inundation and more extensive freshwater features could replace brackish or saltwater wetlands, expanding the potential for methanogenic conditions (Warren et al. 2002; Kroeger et al. 2017; Sanders-DeMott et al. 2022). In addition, while drained former coastal wetlands emit sequestered soil carbon, it is not straightforward to predict the impact of a transition to an impounded condition on the rate of carbon storage, since impounded coastal wetlands have suppressed rates of soil carbon storage relative to rates in natural tidal wetlands (Turner 2004; Eagle et al. 2022).

The focus of this study is to investigate how coastal diked systems respond to sea-level rise and test how the drainage performance of existing hydraulic infrastructure changes in the future. We develop a simplified water balance approach to model flow through hydraulic control structures and water level in a diked system. We test this model with observations from the Herring River Estuary in MA, USA, for presentday and future sea-level rise scenarios. We hypothesize that drained diked systems will become impounded with sealevel rise if existing infrastructure remains functional but not upgraded. For our study site, we forecast when the system converts from drained to impounded, and we test a methodology to perform such an analysis on other diked systems. We further demonstrate the potential of several alternative water control structure scenarios to change the impoundment forecasts of the Herring River Estuary.

Site Description

Our study used the diked Herring River Estuary (HRE; Fig. 1) watershed to develop and test the model framework. The HRE watershed spans ~ 19 km^2 of sandy glacial till deposits. A dike was constructed across the HRE in 1909, resulting in reduced tidal inflow, lower average water level, and drainage of the HRE (Portnoy and Giblin 1997; Portnoy 1999). The current flow controls consist of two identical flap gates and one static sluice gate that was historically adjustable. The flap gates allow the HRE to discharge to Wellfleet Harbor at lower tidal conditions and are otherwise closed. Wellfleet Harbor tides at the dike are semidiurnal and mesotidal with a principal lunar semidiurnal (M2) amplitude of 1.23 m (Mullaney et al. 2020). The elevation of the top of the dike is 3.6 m above the North American Vertical Datum of 1988 (NAVD88), which was also used as the datum for all other elevations and water levels. The sluice allows flow in both directions resulting in a dampened tidal response in the HRE with an M2 amplitude of 0.33 m (Mullaney et al. 2020). The underlying unconfined aquifer discharges an annual average of approximately 0.03 m³/s of baseflow to the HRE based on numerical simulations (Masterson 2004).

Water levels have been recorded at a 5-min interval on each side of the flow control structure from September 2017 to present (site number 011058798)(U.S. Geological Survey 2022). Measurements of water level and discharge began in June 2015, but the discharge measurements were discontinued in September 2017 when a tidal radar water level measurement device was installed on the downstream side of the flow control structure. Without coincident discharge Fig. 1 Herring River watershed and diked estuary study area near Wellfleet, MA. The stagestorage extent approximately follows the 5-m topographic contour and terminates at an elevated road berm (i.e., High Toss Road). The Herring River watershed outline was extracted from the National Hydrography Dataset Plus, version 2 (McKay et al. 2012). Basemap data copyrighted OpenStreet-Map contributors and available with explanations of basemap patterns and symbols at https:// www.openstreetmap.org

observations with water level measurements on each side of the dike, we only tested the model performance with the water levels and not with discharge. Note, however, that the water level measurements on the harborside of the dike are raised by the discharge from the HRE during low tide, such that the water levels at this location remain above low tide levels farther offshore from the dike within Wellfleet Harbor. This water level difference with the harbor required an approximation for forecasting water levels using tide gauge measurements and sea-level rise rates for Cape Cod Bay described in the "Sea-Level Rise Forecasts" section.

Methods

In the following sections, we develop the formulation of the hydraulic flow model within the context of tidally restricted and diked coastal systems ("Hydraulic Flow Model" section), we establish how the model results for hindcast simulations are tested for accuracy while quantifying the uncertainty of the outputs using Sobol sensitivity testing ("Sobol Sensitivity Testing" section), and we introduce a framework for applying and analyzing the hydraulic flow model with future sea-level rise and alternative infrastructure for the HRE ("Sea-Level Rise Forecasts" section).

Hydraulic Flow Model

We developed a hydraulic mass-balance model for the flow through the two flap gates and sluice. The objective of the model was to solve for the water level in the HRE with the water level in Wellfleet Harbor as the main boundary condition. For the development of the model, we selected a present-day 2-year period with continuous water level observations on either side of the dike control structure, from 27 February 2020 to 27 February 2022. First, water level observations were downsampled from a 5-min interval to a 30-min interval, balancing a high enough resolution to simulate tidal levels and flow with computational efficiency. Second, we modeled the volumetric flow rate through the control structure using a series of hydraulic equations based on the relative water level difference between the HRE and the outflow to Wellfleet Harbor. Finally, the water level in the HRE was updated for each 30-min time step using a stage-storage relationship for the HRE upstream to the embankment of High Toss Road, up to approximately the 5-m elevation contour, and the dike (Fig. 1). The stage-storage relationship was developed with a low-tide 1-m spatial resolution elevation model with additional surveyed bathymetry extracted from a hydrodynamic model (WHG Inc. 2012) and higher elevations bilinearly interpolated from a 10-m resolution digital elevation model (U.S. Geological Survey 2018). The stage-storage relationship was developed across the elevation range -2.5 to 3.6 m with the low value set below the invert elevation and the latter equaling the height of the dike. The net flow into or out of the HRE was calculated for each time step by summing the flow through each dike control structure with the amount of streamflow and groundwater discharge entering the HRE from its contributing watershed, q_{in} . We kept q_{in} constant in time, but it was varied between model runs, which was estimated in an earlier analysis to be a constant 0.34 m³/s (WHG Inc. 2012). Once flow through each culvert bay was calculated, the volume of water stored in the HRE was calculated by multiplying the net flow rate by the time step. Finally, the stage-storage relationship proparameters with definitions dependent on the flow regime are *H* and *n*. Additional head loss, H_{loss} , was subtracted within the *H* for free flow conditions and all flap gate flow regimes to account for energy lost in flow against the structures with (WHG Inc. 2012):

$$H_{loss} = H_{loss_max} \left(1 - \frac{\frac{Z_M + Z_L}{2}}{D_{HL}} \right)$$
(2)

where H_{loss} decreases linearly from the maximum head loss, H_{loss_max} , as the water depth on the marine, Z_M , and land side, Z_L , approaches a minimum water depth difference, D_{HL} , where head losses created by the flow become negligible. Head losses in the culvert leading up to the gates were not considered.

The two rectangular flap gates were modeled using a moment balance to calculate the flap opening angle, θ , created by water flowing out of the HRE acting against both the weight of the flap and hydrostatic pressure on the outer side of the submerged portion of the flap with:

$$0 = -Wsin(\theta + \theta_0)\frac{h_{flap}}{\rho g} - w_{out}\left(\left[h_{flap}^2 cos^2(\theta + \theta_0) - 2h_{flap}d_{down}cos(\theta + \theta_0) + \frac{d_{down}^2}{cos(\theta + \theta_0)}\right]\left[h_{flap} - \frac{1}{3}(h_{flap} - \frac{1}{3}(h_{flap} - \frac{d_{down}}{cos(\theta + \theta_0)})\right]\right) + w_{in}\left(\left[h_{flap}^2 cos^2(\theta + \theta_0) - 2h_{flap}d_{up}cos(\theta + \theta_0) + \frac{d_{up}^2}{cos(\theta + \theta_0)}\right]\left[h_{flap} - \frac{1}{3}(h_{flap} - \frac{d_{up}}{cos(\theta + \theta_0)})\right]\right)$$
(3)

vided the new HRE water level for the calculated volume.

We modeled the sluice gate using a series of hydraulic equations for five flow regimes that could occur in either flow direction (Fig. 2). The relative water levels on either side of the sluice gate controlled the flow direction and the flow regime with the relationships provided in Fig. 2 based on the implementation of sluice and weir flow in the HEC-RAS River Analysis System (Brunner 2016). All the equations for the flow followed the form (Brunner 2016):

$$Q = CA\sqrt{2ngH} \tag{1}$$

where Q is the volumetric flow rate of water flowing across the sluice, C is a unitless discharge coefficient, Ais the cross-sectional area of the sluice or gate opening, H is the relative height of water driving flow, n is a unitless flow factor based on the hydraulic setting equal to one unless otherwise noted in Fig. 2 (Brunner 2016), and g is Earth's gravitational acceleration. For low water levels in the sluice, A is dependent on H. When submerged, A was calculated by the multiplication of the sluice gate width, w = 1.829 m, and its opening height, B = 0.485 m. For lower harborside water levels, A is equal to H multiplied by w. The height of the invert above the harborside bed, P, was not included in the calculations (Fig. 2a). The two

The moment balance included the weight of the gate materials, W, assumed to be uniformly distributed over the gate having a vertical length of h_{flap} . The forces of the water acting on each side of the gate were set by the wetted width of the gate on the Wellfleet Harbor side, w_{out} , and on the HRE side, w_{in} . On the Wellfleet Harbor side, the height of the gate hinge above the harbor water level at a given time was d_{down} . On the HRE side of the gate, the height of the gate hinge above the estuarine water level at a given time was d_{up} . The flap gates were not vertical when closed, having a starting angle, θ_0 . We used the density of seawater, ρ , for water flowing out of the HRE, as the sluice gate allows seawater inflow during high tides that maintains high salinity across tides from salinity observations at the dike. The flap opening angle was solved numerically by finding the root of the zero-sum moment balance equation with the opensource Python SciPy package nonlinear function, optimize.fsolve (Virtanen et al. 2020). Once the flap opening angle was solved, the flow through the flap opening was modeled with weir equations (Eq. (1)) with an additional headloss term in H_{loss} (Eq. (2)). No flow was allowed to occur through the flap gates when they were closed (i.e., $\theta = 0$), although some leakage through the aging flaps was observed during a site visit in 2019.

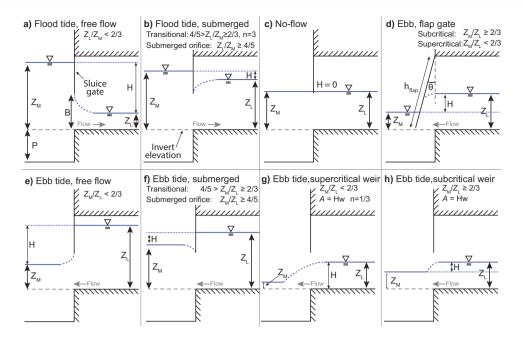


Fig. 2 Cross-sectional dike flow control structure hydraulic conditions used to simulate the HRE for **a**, **b** a sluice during flood tide, **c** instantaneous no-flow conditions, **d** a variably open flap gate allowing flow only during ebb tide, and **e–h** sluice flow conditions during ebb tide. The black hashed boundaries outline the cross-section view of the dike structures with the location of the sluice gate labeled in

Sobol Sensitivity Testing

A global sensitivity test was performed for the HRE application of the flow control structures with the Sensitivity Analysis Library in Python (Herman and Usher 2017). Flap gate and sluice flow coefficients, head loss terms, initial estuarine water level, and q_{in} were sampled for individual Sobol sensitivity tests using the extended form of the quasi-random samples of the parameter space including second order sensitivities (Saltelli 2002). The sampling routine was used 2^{10} times with the 18 hydraulic and initial condition parameters to produce 38,912 parameter combinations. Each parameter was allowed to range between a value of 0.01 to 2 with parameter-specific units. The values and ranges of C are dependent on the type, construction dimensions, and hydraulic regime (i.e., conditions in Fig. 2), where C for sluice gates is often in the range of 0.5–0.7 and for weirs between 2.6 and 4.1 (Brunner 2016). For infrastructure with available specification sheets, the C value for certain flow conditions may be available for different construction geometries from experiments performed by the manufacturer. Previous work at the HRE found that C under the weir conditions remained below 2.0 (WHG Inc. 2012), but testing with

(a). See the discussion of the hydraulic equations in the "Hydraulic Flow Model" section for further explanation of variables. Z_M : harborside water depth; Z_L : upstream water depth; P: invert height above bed; B: gate opening height; H: water height difference driving flow; A: opening cross-sectional area; w: opening width; n: unitless flow factor; h_{flag} : vertical flap length; and θ : flap opening angle

higher *C* values may be needed in other systems. Similarly, q_{in} is dependent on the site hydrology, climate, and size of the watershed, where an upper limit of 2 m³/s would only apply for relatively small systems like the HRE. Since q_{in} integrates the combination of all rivers, streams, and groundwater to the diked or tidally restricted system being modeled, the range of q_{in} required will depend on the total freshwater influx.

For each parameter combination, the observed water levels within the HRE and outside of the dike in Wellfleet Harbor were run through the model with a 10-min time step over 30 days to calculate a non-parametric model efficiency, R_{NP} (Pool et al. 2018):

$$R_{NP} = 1 - \sqrt{(\beta - 1)^2 + (\alpha_{NP} - 1)^2 + (r_s - 1)^2}$$
(4)

with:

$$\beta = \frac{\mu_{sim}}{\mu_{obs}} \tag{5}$$

$$\alpha_{NP} = 1 - \frac{1}{2} \sum_{k=1}^{n} \left| \frac{h_{sim}(I(k))}{n\mu_{sim}} - \frac{h_{obs}(J(k))}{n\mu_{obs}} \right|$$
(6)

$$r_{s} = \frac{\sum_{i=1}^{n} \left[(R_{obs}(i) - \overline{R}_{obs})(R_{sim}(i) - \overline{R}_{sim}) \right]}{\sqrt{\left(\sum_{i=1}^{n} (R_{obs}(i) - \overline{R}_{obs})^{2} \right) \left(\sum_{i=1}^{n} (R_{sim}(i) - \overline{R}_{sim})^{2} \right)}}$$
(7)

 β is the ratio of the mean observed, μ_{obs} , and mean simulated, μ_{sim} , water levels in the HRE. The normalized variability, α_{NP} , in the HRE simulated and observed water levels, h_{sim} and h_{obs} , used the difference between the ranked water levels, I and J. The Spearman rank correlation, r_s , described the similarity in the dynamics of the water levels using the difference between the rank, R_{sim} and R_{obs} , and the mean rank, \overline{R}_{sim} and \overline{R}_{obs} , in the simulated and observed time series, respectively.

The sensitivity of the efficiency criteria to the flow coefficients can be used to identify which parameters influenced the accuracy of the model. Multiple output parameter combinations that yield high efficiency values (e.g., $R_{NP} > 0.8$) demonstrate the non-uniqueness of the hydraulic parameters in the model. These parameter combinations could be used for the remainder of the analysis for a quantification of model uncertainties. We adopted the R_{NP} as the goodness-of-fit criteria, although other efficiency metrics could serve the same overall purpose to constrain hydraulic parameter uncertainties. In addition to R_{NP} , we calculated the Nash-Sutcliffe efficiency, the relative efficiency, and the Kling-Gupta efficiency during model development with little effect on the total number of "good" model results (Nash and Sutcliffe 1970; Krause et al. 2005; Gupta et al. 2009). We focus on how these parameter combinations are tied to the implications of sea level changes on the operations of the existing and alternative flow control structures. Hence, we use multiple parameter combinations with high efficiency criteria from the sensitivity testing, with "good" defined as $R_{NP} > 0.9$, in the following analyses to constrain uncertainty introduced by the model parameters.

We further tested these parameter combinations for the present-day 2-year period with water level observations, 27 February 2020 to 27 February 2022, at the longer 30-min time step used for the forecasting models. We calculated a new R_{NP} for the longer model for all $R_{NP} > 0.9$ models from the sensitivity testing. Models that performed well, with $R_{NP} > 0.8$, for the 2-year simulation were included in the sea-level rise forecast models.

Sea-level Rise Forecasts

To quantify how the HRE water levels respond to sea-level rise, we constructed synthetic water level time series on the Wellfleet Harbor side, hereafter referred to as harborside, of the flow control structure. To accomplish this, we first calculated the amplitudes and phases of the tidal harmonic constituents with a least squares regression from the dikeadjacent harborside water level observations during the 2-year present-day simulation period (27 February 2020 to 27 February 2022) with the Python package pytides (https:// github.com/sam-cox/pytides). Because the harborside water levels are influenced by discharge through the dike, the tidal reconstruction created lower low tide water levels compared to observations (Fig. 3a). We developed a method to restrict low harborside water levels based on an apparent linear relationship between the minimum harborside and HRE water levels. This rough linear relationship physically represents the role of relative water level differences controlling discharge to the harbor and setting the water level of the outflow. Thus, if both water levels are known, the harborside water level could be maintained above a minimum elevation and used to correct harborside tidal reconstructions. For the present-day simulation period, we found little change in the model performance for the tidal reconstructions with and without the minimum harborside water level linear relationship. Given this similarity in present-day results and the need for HRE water levels to be known to perform the correction, we chose to perform the sea-level rise forecasts with the uncorrected tidal reconstructions. Additionally, this simplification does not require the same linear stage-discharge relationship to hold as sea-level rises, which would intersect fewer tidal conditions as the harborside water levels increase with sea level.

Once the tidal reconstructions for the harborside water levels were made, we added future scenarios of sea-level rise. We used decadal relative sea level forecasts for the nearby Boston Harbor tide gauge (National Oceanic and Atmospheric Administration site 8,443,970) extending from 2020 to 2100 from a joint agency sea level change viewer (https:// geoport.usgs.esipfed.org/terriaslc/). We selected three global mean sea-level rise scenarios of 0.3, 0.5, and 1.0 m, and we included the low, medium, and high sub-scenarios spanning climate projection uncertainties (Sweet et al. 2017). These sea level forecasts for Boston Harbor were relative to the year 2000 tide gauge water level, so we approximated that the relative increase from 2000 to 2020 for Boston Harbor was consistent with the increase for Wellfleet Harbor and that the discharge from the dike maintained a constant relationship with Wellfleet Harbor water levels in those forecasts. This allowed us to add the sea-level rise projections directly with the tidal reconstructions for the harborside water levels. We used a second-order polynomial interpolation of the decadal sea level projections to a 30-min sampling interval to be consistent with the tidal reconstructions. Together, these steps resulted in nine time series for the harborside water levels with sea-level rise from 2020 to 2100 to set the main boundary condition for the flow model (Fig. 3b).

We ran the hydraulic flow model for each parameter combination with $R_{NP} > 0.8$ from the 2-year simulations and

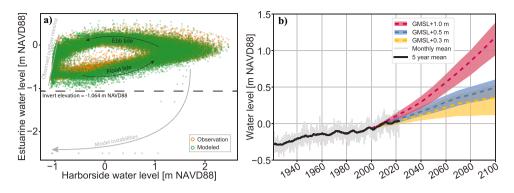
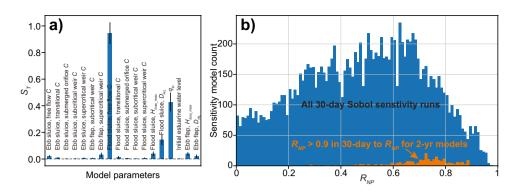


Fig. 3 a Tidal water level relationship on either side of the HRE dike with outflow effect at low tides. b Water level history and global mean sea-level (GMSL) rise projections for Boston Harbor used for the Wellfleet Harbor projections extending to 2100. Dashed GMSL

curves represent the 50th percentile medium sub-scenario, and the light shaded areas span the 17th to 83rd percentile low to high sub-scenarios (Sweet et al. 2017)

each sea-level rise scenario with a 30-min time step from 1 January 2020 to 1 January 2100. We developed several metrics to quantify how the water level in the HRE responds to sea-level rise. First, we used the model outputs directly to provide HRE water level, water volume, and water surface area trajectories through 2100 and calculated moving annual arithmetic means to remove the substantial tidal variability in these values. Second, we used the modeled discharge time series to quantify how well the HRE drains over one tidal cycle. We introduce and have defined "drainability" as a new metric to track the draining or impounding behavior of a diked system, but the drainability alone does not quantify the volume stored beyond the drainage capacity of a given tidal cycle. To quantify this drainability, we separated periods of flow into and out of the HRE, representing flood and ebb tide conditions, and we integrated the discharge to yield the volume of water exchanged within each period. The water volumes contributing to the drainability included both flow through the dike structures and freshwater discharge from the contributing watershed (i.e., q_{in}). Starting with the first flood tide in the time series, we calculated the difference between the flood tide volume entering the HRE with the following ebb tide volume discharged from the HRE. If the ebb tide conditions discharge more water than entered the HRE during the preceding flood tide, we labeled that tidal cycle as drained. We quantify the long-term drainability behavior of the HRE from 2020 to 2100 by calculating the proportion of tides within a year that are drained. Thus, an annual drainability value of one indicates that all tides were net draining, and an annual drainability of zero indicates that, in that year, none of the ebb tides could effectively drain the water flowing into the estuary over the preceding flood tide. Decreasing drainability values track incipient and increasing impounding behavior for a diked system. Annual drainability values of zero establish the complete impoundment of a diked system.

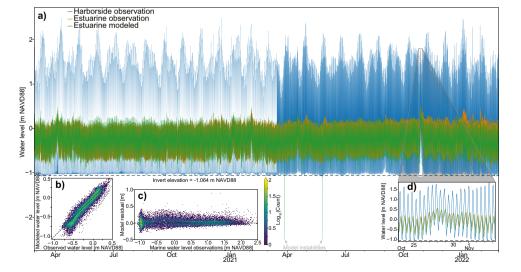

We additionally demonstrate the application of the hydraulic flow model by testing how alternative infrastructure affects the response of the HRE to sea-level rise. These tests illustrate how the model could be used to develop water-level based restoration or infrastructure plans. We altered the number of sluices and flap gates in the forecast models, keeping the construction and properties of the existing infrastructure constant. We used a single parameter combination based on the best fit of the sensitivity testing ($R_{NP} = 0.97$). We ran the models with the infrastructure introduced in 2020, although the infrastructure could have been introduced at any time in the forecasts. We explored the drainage and water storage behavior of the HRE with only a sluice or only flap gates, increasing to five flap gates with one sluice, increasing to three sluices with two flap gates, and adding one sluice and one flap gate to the existing infrastructure.

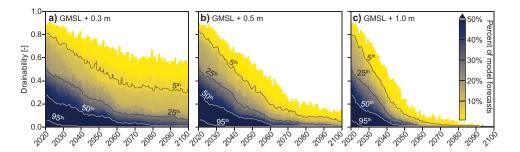
Results

Parameterized Present-day Model

Sensitivity testing for the HRE dike flow control structures identified the sluice free-flow flow coefficient, *C*, during the flood stage as the most sensitive model parameter of all parameters tested (Fig. 4a). The upstream flow input into the HRE, q_{in} , was the next most important parameter followed by the sluice free-flow headloss terms (i.e., H_{loss_max} and D_{HL}). These results show the importance of the two hydrologic inputs to the HRE, q_{in} and *C* during flood stages, with the parameters controlling the drainage contributing less to the diked water levels. Our sensitivity results are site-dependent and controlled by the flow control structure construction (e.g., culvert dimensions, gate properties, and factors influencing *C* in Eq. (1)) as well as the hydrologic setting.

Fig. 4 Sobol sensitivity test results for the **a** parameter total sensitivity, S_T , with all 38,912 models and the **b** R_{NP} distributions for all 38,912 models and the resulting 2-year R_{NP} distribution for the 249 30-day models with an original $R_{NP} > 0.9$. All model parameters considered in the Sobol sensitivity test were included in (**a**)




Next, we confirm that the hydraulic model can accurately reproduce observed water levels within the HRE. A total of 249 30-day sensitivity testing models out of the 38,912 resulted in $R_{NP} > 0.9$ (Fig. 4b), with 1035 with $R_{NP} > 0.8$ and 27 with $R_{NP} > 0.95$. Of those 249 models, 45 models resulted in a $R_{NP} > 0.8$ for the 2-year, 30-min time step present-day models. Models with $R_{NP} < 0.8$ for the 2-year simulations generally predicted overly high water levels in the HRE with insufficient drainage capacity during low tides. The 45 higher efficiency model results matched the amplitude and timing of observed HRE water levels with residuals near zero (i.e., modeled values subtracted from observations) (Fig. 5). The median interquartile range (25th to 75th) for the residuals across the 249 high R_{NP} models was -0.02 m (i.e., overprediction) to 0.11 m (i.e., underprediction). For 166 of the high R_{NP} models, flow instabilities resulting from too much drainage to the harbor led to short-lived (e.g., one tidal cycle) and unrealistically low modeled HRE water levels with residuals reaching > 1.5 m (Figs. 3a and 5a). Such excesses of outflow could be reduced by using a shorter time step or by enforcing a minimum water level allowed for outflow equal to the lowest invert elevation. A subset of 69 of the 249 high R_{NP} models resulted in residuals always < 0.5 m. The maximum overprediction of HRE water levels in each high R_{NP} models had a median of -0.35 m. Overall, the hydraulic flow model provides useful information and forecasts estuarine water levels accurately for most tidal conditions (Fig. 5). The ensemble of numerous parameter combinations leading to high-efficiency models contained some short-term artifacts that did not influence the longterm water level forecasts. High-efficiency models did not demonstrate a clustering of hydraulic parameter values and instead spanned nearly the full range of the parameters input to the Sobol sensitivity analysis ("Sobol Sensitivity Testing" section). We used the 45 2-year high efficiency parameter combinations in the following analyses to constrain the long-term sea-level rise and alternative infrastructure scenario HRE water level forecasts. Each sea-level rise scenario consisted of 135 models, and 405 sea-level rise models with the existing infrastructure were run from 2020 to 2100.

Sea-level Rise Scenarios

All sea-level rise scenarios for the HRE with the existing infrastructure indicated a conversion from somewhat drained conditions in 2020 to nearly complete impounded

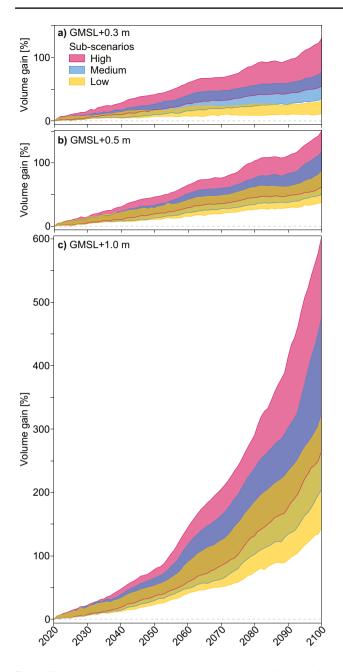
Fig. 5 a Present-day HRE simulated water levels for Sobol model scenario 20,255 (30-day sensitivity test $R_{NP} = 0.900$; 2-year present-day $R_{NP} = 0.868$). HRE water level performance **b** relative to observations and c residuals (i.e., observed estuarine water level-modeled estuarine water level) for the Sobol model scenario. d Example of shorter-term model performance during a storm in October 2021. Model instabilities are labeled for short-lived water level artifacts (i.e., two low tides) caused by excessive drainage in models with certain parameter combinations

Fig.6 Annual proportion of net-draining tides, or drainability, in the HRE decreases steeply to 2060 with the existing infrastructure for **a** GMSL+0.3 m, **b** GMSL+0.5 m, and **c** GMSL+1.0 m for ensembles

of 135 models per scenario. Each sea-level rise result combined the uncertainty from the low, medium, and high sub-scenarios and used the 45 R_{NP} > 0.8 parameter combinations from the 2-year simulations

conditions by 2100 (Fig. 6). Across the parameter combinations, the present-day simulated median drainability was ~0.3, signifying that on an annual basis only 30% of the tides today lead to net water removal from the HRE. The 95th percentile for present-day drainability was ~0.8 and the maximum simulated current drainability was ~0.9. The present-day low drainability results show that the existing infrastructure, designed to create net draining conditions in the HRE, are already under performing for a majority of tides. However, the drainability metric does not account for integrated drainage occurring over or across multiple tides. The simulated net annual storage change in the HRE also suggested the existing infrastructure would be incapable of draining the HRE in the future (Fig. 7). The water volume stored in the HRE was simulated to increase by 3-20% by 2030, 7-77% by 2050, and 11-600% by 2100 across the wide range of sealevel rise scenarios examined relative to the mean 2020 HRE volume. These results support the hypothesis that the HRE will become increasingly impounded with sealevel rise if no changes are made to the flow structures or system hydrology.

Alternative Infrastructure Scenarios

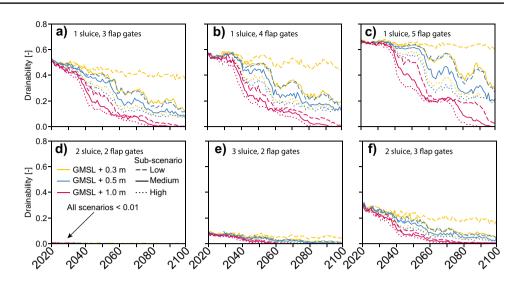

With the impoundment of the HRE likely with the existing hydraulic infrastructure in the dike, we tested several alternative infrastructure solutions to improve drainability in the future. Introducing more flap gates with the same construction as the existing flap gates extended the drained conditions within the HRE by up to several decades. Each extra flap gate accounted for roughly a decade extension of drained condition with the uncertainty in sea-level rise subscenarios leading to also about a decade of uncertainty for major losses in drainability (Fig. 8a–c). Additional sluice gates with the same construction as the existing sluice resulted in more rapid and severe impoundment relative to the existing infrastructure (Fig. 8d–f). None of the alternative infrastructure scenarios tested provides clear maintenance of the existing drainability conditions at the HRE, although the use of five flap gates with the lowest sea-level rise scenario and climate sub-scenario was effectively stable to 2100 (Fig. 8c). More hydraulic structure scenarios could be tested to optimize the drainability of the HRE, including testing more gates or gates with different designs and flow coefficients.

Discussion

Model Limitations and Opportunities for Enhancement

The implementation of the hydraulic flow model is computationally efficient, allowing rapid and numerous simulations with relatively few input parameters. Conceptually, the model consisted of a prescribed water level on one side of the hydraulic flow structures and the volumetric flow rates through those structures for a water level difference across the structures. The representation of how the diked water levels responded to input flow was simply a stage-storage relationship for the HRE. The stage-storage relationship removed the hydrologic complexities of flow within the estuary, not accounting for observed spatially varying water levels, flow velocities, salinities, or groundwater feedbacks (WHG Inc. 2012; S. M. Smith and Medeiros 2019; Mullaney et al. 2020). The model output within each time step is simply the volumetric flow rate across the dike flow control structure. This flow rate could be used to set a flux boundary condition in more advanced models that aim to understand spatially varying hydrology within the diked system, as was previously done for the HRE (WHG Inc. 2012).

Similarly, we tested the simulation using constant flow from the contributing Herring River watershed. Despite this simplification, the present-day modeled HRE water levels generally performed well, even without seasonal or event-based changes in streamflow in the Herring River. The hydraulic flow model was built to allow a time-dependent source term, which could also sum the streamflow and direct


Fig. 7 Simulated water storage changes in the HRE with the existing infrastructure for the **a** GMSL+0.3 m, **b** GMSL+0.5 m, and **c** GMSL+1.0 m sea-level rise scenarios. All storage changes were positive, representing an increase in the water volume of the HRE. Overlapping semi-transparent shaded areas result from the ensemble of 45 high R_{NP} parameter combinations applied to each sea-level rise scenario and climate sub-scenario. Bold lines border each shaded area to highlight the forecast boundaries for a sub-scenario

surface runoff to the waterbody of interest with any other direct water inputs (e.g., groundwater discharge, storm sewer inflows, precipitation). This flow input could also be used to simulate the long-term effects of climate change on precipitation or the water balance more generally. Such a study could investigate the feedback between climate change and sea-level rise on diked water levels.

For the HRE, increasing and more extreme precipitation is predicted for the next century (Massachusetts Environmental Policy Act Office 2018). Thus, q_{in} would be expected to rise over our future scenario simulations, unless groundwater pumping from local municipalities reduced groundwater inputs to the HRE. The additional freshwater influx with climate change would likely accelerate the loss of drainability and create more impoundment than forecasted in our static q_{in} scenarios. Shorter-term variability in q_{in} related to the seasonality of precipitation, evapotranspiration, and pumping would influence the drainability calculations on weekly to monthly timescales. Additional feedbacks could occur with sea-level rise, where rising groundwater levels could lead to more baseflow to the HRE (Masterson and Garabedian 2007). Since the average magnitude of q_{in} is less than ~1/10th of the present-day outflow from the existing infrastructure (WHG Inc. 2012), we anticipate q_{in} dynamics and increases caused by climate change to be less influential on drainability than sea-level rise. Therefore, we chose to focus on the sea-level rise scenarios in the absences of these other hydrologic drivers to understand the long-term implications of the hydraulic infrastructure at the HRE. However, changes in the terrestrial hydrologic system and marine hydrodynamics with climate change could create sufficiently different fluxes and water levels to require incorporation in more detailed studies or for other diked or tidally restricted systems.

For the sea-level rise and alternative infrastructure scenarios, we tested how the HRE water budget would respond to specific forcing or structural changes to the system. Additional studies could investigate how incremental or delayed changes to the infrastructure could stabilize drainage and water levels. For example, additional flap gates could be installed every year to counter the time-dependent drainability losses. Adjustable flow control features could be tested and allow dynamic management of opening sizes or number of outlets. Precipitation or storm surge events could also be developed to simulate shorter-term diked system drainage performance, although more complex hydrodynamic models would be needed for constraining the exterior or harborside water levels. Under diked system restoration plans, this modeling framework could also be used to simulate incremental dike opening effects on surface water levels, although only basic salinity estimates could be calculated from the volume of tidal exchanges.

The model was developed to understand how the HRE would change with sea-level rise, but we generalized the model to allow it to be applied to other diked systems. As an open-source Python library (see Code and Data Availability), the model scripts and functions can be altered and expanded upon for other analyses and to incorporate other Fig. 8 Drainability forecasts for alternative infrastructure scenarios that consider different combinations of sluice and flap gates with the same dimensions as the existing infrastructure and hydraulic parameters from the highest R_{NP} Sobol test, 38,834 (a-f). All infrastructure initiated in the simulations with the first time step in 2020. The existing infrastructure (2 flap gates and 1 sluice) drainability results are shown in Fig. 6. All drainability results in (d) were effectively zero, and the legend therein applies to all panels

flow structure types (e.g., round flap gates). Our intention was to share the simple model as a useful screening tool that could later justify more complex hydrodynamic modeling or observation network development. The application of the model is site-specific, with hydrologic, topographic, and infrastructure-based inputs to parameterize for each system. We provided one example of how to use Sobol sensitivity testing to quantify the uncertainty of the model parameterization, but alternative sensitivity testing or optimization methods could be used to further understand dike flow control structure systems.

Socio-ecological Implications

Understanding how diked coastal hydrologic features respond to sea-level rise remains a challenging and a coupled problem across ecological and socioeconomic scales. Fundamentally, most diked systems today were the product of human socioeconomic and political choices, where environmental and ecological considerations have only been recognized in recent decades (Roman et al. 1984; Dionne et al. 1998). Such human choices will determine how, when, or if diked or otherwise tidally restricted systems are neglected, expanded, retrofit, managed, or otherwise restored to natural conditions in the next several decades. Coastal infrastructure could have been historically designed under the incorrect expectation of long-term hydrologic stationarity or for shorter operational lifetimes than their eventual tenure. The application of modeling the current and future drainability of such systems could identify priority systems for improvement of ecosystem function and/or flood control. The removal or alteration of existing diked systems could also be designed to slowly change hydrologic conditions, such as enhanced tidal mixing and increased salinity, allowing gradual ecosystem changes. For example, managed hydrologic conditions could aim to restore a salt marsh where hydrologic management actions have resulted in freshwater wetlands as displaced ecotones within the environment. In addition, as is planned for the HRE, ecosystem restoration could include initial elevation enhancement (e.g., sediment augmentation) to overcome subsidence and provide sufficient elevation capital to avoid flooded conditions with the removal of flow control structures (Cape Cod National Seashore and Herring River Restoration Committee 2012; Smith et al. 2020). Thus, maintaining existing or historic drainability is not a management goal for the HRE. Modeling changes in drainability could also be used to transition from gray infrastructure to more natural or nature-based strategies for currently diked systems (Sutton-Grier et al. 2015).

New coastal infrastructure that enables a return to more natural hydrology may provide pathways to avoid the physiochemical diked ecosystem conversion (Cadier et al. 2020). In the short term, additional infrastructure to allow more drainage only during low tide could maintain drained freshwater conditions. Over the long term, rising low tide elevation with sea-level rise would eventually require raising the barriers and flow structures or require pumping. Alternatively, restoring a tidal connection to diked lowlands can expand the habitat for saltmarsh ecosystems that sequester carbon, providing both protective function and a suite of other ecosystem services (e.g., Miller et al. 2008; Karberg et al. 2018; Janousek et al. 2021). The stored soil carbon can aid saltmarsh soil elevations to keep pace with sea-level rise and subsidence, offering a potentially longer-term solution than infrastructure upgrades.

Conclusions

We used a simple hydraulic flow model to forecast water levels of the HRE in Wellfleet, MA, to 2100 with expected trajectories of sea-level rise. We found that the HRE may already be incapable of draining the tidal, riverine, and groundwater inputs it receives over each tidal cycle. Simulation ensembles forecast increasing impoundment with sea-level rise over the next several decades. To further understand this conversion from drained to impounded conditions, we developed and demonstrated the application of a novel metric for monitoring and forecasting the drainability of diked systems with sealevel change. The drainability quantifies the net drainage or impoundment state occurring over tidal cycles. In our analysis, the ensemble median present-day annual drainability of the HRE was only 30% and decreased to below 10% by 2060. Fewer low tides per year that allow drainage of diked water leads to increasing water levels and net impoundment. Drainability can also be used in diked systems with one-way flow (e.g., tide gates only) to quantify freshwater or upland drainage performance across tides, as well as in natural or built tidally restricted systems. Similarly, the drainability metric could be calculated over different time spans, including lunar cycles or seasons, to provide shorter-term management and plan-

ning insights. The drainability metric that we introduced can be used as a normalized criterion for monitoring, managing, and forecasting the behavior of diked lowland systems. Drainability can aid in water level and volume analyses to develop site-specific thresholds for systems facing impoundment with relative increases in sea level.

Acknowledgements This project is funded, in part, by the US Coastal Research Program (USCRP) as administered by the US Army Corps of Engineers® (USACE), Department of Defense (Grant W912HZ2120006). This project was also supported by the US Geological Survey Coastal and Marine Hazards and Resources Program, and the USGS-NPS Natural Resource Preservation Program, Project Identifier 2021-07. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Code and Data Availability The dike hydraulic flow model code, supportive functions, and post-processing algorithms are available at github.com/kbefus/dike-flow-hydraulic. All other datasets are either produced by these scripts or are available from the original citations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Brunner, G.W. 2016. HEC-RAS River Analysis System: hydraulic reference manual, version 5.0.

- Burdick, D.M., and C.T. Roman. 2012. Salt marsh responses to tidal restriction and restoration. In *Tidal marsh restoration*, 373–382. Washington, DC: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-229-7_22.
- Cadier, C., E. Bayraktarov, R. Piccolo, and M.F. Adame. 2020. Indicators of coastal wetlands restoration success: a systematic review. *Frontiers in Marine Science* 7. https://doi.org/10.3389/fmars. 2020.600220.
- Cape Cod National Seashore and Herring River Restoration Committee. 2012. Herring River Restoration Project final environmental impact statement/environmental impact report: Wellfleet, Mass.
- Crooks, S., A.E. Sutton-Grier, T.G. Troxler, N. Herold, B. Bernal, L. Schile-Beers, and T. Wirth. 2018. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. *Nature Climate Change* 8. Springer US: 1109–1112. https://doi.org/10.1038/s41558-018-0345-0.
- Dionne, M., D.M. Burdick, R. Cook, R. Buchsbaum, and S. Fuller. 1998. Physical alterations to water flow and salt marshes: protecting and restoring flow and habitat in Gulf of Maine salt marshes and watersheds. Final draft of working paper for Secretariat of the Commission for Environmental Cooperation. Montreal, Canada.
- Eagle, M.J., K.D. Kroeger, A.C. Spivak, F. Wang, J. Tang, O.I. Abdul-Aziz, K.S. Ishtiaq, J. O'Keefe Suttles, and A.G. Mann. 2022. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. *Science of The Total Environment* 848: 157682. https://doi.org/10.1016/j.scitotenv.2022.157682.
- Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. *Annual Review* of Marine Science 1: 117–141. https://doi.org/10.1146/annurev. marine.010908.163930.
- Gupta, H.V., H. Kling, K.K. Yilmaz, and G.F. Martinez. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. *Journal of Hydrology* 377: 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
- Herman, J., and W. Usher. 2017. SALib: an open-source Python library for sensitivity analysis. *The Journal of Open Source Software* 2: 97. https://doi.org/10.21105/joss.00097.
- Janousek, C.N., S.J. Bailey, and L.S. Brophy. 2021. Early ecosystem development varies with elevation and pre-restoration land use/ land cover in a Pacific Northwest tidal wetland restoration project. *Estuaries and Coasts* 44: 13–29. https://doi.org/10.1007/ s12237-020-00782-5.
- Karberg, J.M., K.C. Beattie, D.I. O'Dell, and K.A. Omand. 2018. Tidal hydrology and salinity drives salt marsh vegetation restoration and Phragmites australis control in New England. *Wetlands* 38: 993–1003. https://doi.org/10.1007/s13157-018-1051-4.
- Krause, P., D.P. Boyle, and F. Bäse. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5: 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
- Kroeger, K.D., S. Crooks, S. Moseman-Valtierra, and J. Tang. 2017. Restoring tides to reduce methane emissions in impounded wetlands: a new and potent blue carbon climate change intervention. *Scientific Reports* 7. Springer US: 1–12. https://doi.org/10.1038/ s41598-017-12138-4.
- Massachusetts Environmental Policy Act Office. 2018. Climate change projections for major drainage basins in Massachusetts. 215 pp. https://www.mass.gov/doc/climate-change-projections-for-majordrainage-basins-in-massachusetts. Accessed 6 Dec 2022.
- Masterson, J.P. 2004. Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, Lower Cape Cod Aquifer System, Massachusetts. U.S. Geological Survey Scientific Investigations Report 2004–5014: 72. https://doi.org/10.3133/sir20045014.
- Masterson, J.P., and S.P. Garabedian. 2007. Effects of sea-level rise on ground water flow in a coastal aquifer system. *Ground Water* 45 (2): 209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x.

- McKay, L., T. Bondelid, T. Dewald, J. Johnston, R. Moore, and A. Rea. 2012. *NHDPlus version 2: user guide*.
- Miller, R., M.S. Fram, R. Fujii, and G. Wheeler. 2008. Subsidence reversal in a re-established wetland in the Sacramento-San Joaquin Delta, California, USA. San Francisco Estuary and Watershed Science 6. https://doi.org/10.15447/sfews.2008v6iss3art1.
- Mullaney, J.R., J.R. Barclay, K.L. Laabs, and K.D. Lavallee. 2020. Hydrogeology and interactions of groundwater and surface water near Mill Creek and the Herring River, Wellfleet, Massachusetts, 2017–18. U.S. Geological Survey scientific investigations report 2019–5145: 60. https://doi.org/10.3133/sir20195145.
- Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I-a discussion of principles. *Journal of Hydrol*ogy 10: 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, et al. 2012. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems. Edited by Simon Thrush. *PLoS ONE* 7. Public Library of Science: e43542. https://doi.org/10.1371/journal.pone.0043542.
- Pool, S., M. Vis, and J. Seibert. 2018. Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. *Hydrological Sciences Journal* 63. Taylor & Francis: 1941–1953. https://doi.org/10.1080/02626667.2018.1552002.
- Portnoy, J.W., and A.E. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry. *Biogeochemistry* 36: 275–303. https://doi.org/10.1023/A:1005715520988.
- Portnoy, J.W. 1999. Salt marsh diking and restoration: Biogeochemical implications of altered wetland hydrology. *Environmental Man*agement 24: 111–120. https://doi.org/10.1007/s002679900219.
- Roman, C.T., W.A. Niering, and R.S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction. *Environmental Man*agement 8: 141–149. https://doi.org/10.1007/BF01866935.
- Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices. *Computer Physics Communications* 145: 280– 297. https://doi.org/10.1016/S0010-4655(02)00280-1.
- Sanders-DeMott, R., M.J. Eagle, K.D. Kroeger, F. Wang, T.W. Brooks, J.A. O'Keefe Suttles, S.K. Nick, A.G. Mann, and J. Tang. 2022. Impoundment increases methane emissions in Phragmites-invaded coastal wetlands. *Global Change Biology* 28: 4539–4557. https:// doi.org/10.1111/gcb.16217.
- Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. McOwen, et al. 2018. Future response of global coastal wetlands to sea-level rise. *Nature* 561. Springer US: 231– 234. https://doi.org/10.1038/s41586-018-0476-5.

- Smith, D.R., M.J. Eaton, J.J. Gannon, T.P. Smith, E.L. Derleth, J. Katz, K.F. Bosma, and E. Leduc. 2020. A decision framework to analyze tide-gate options for restoration of the Herring River Estuary, Massachusetts. U.S. Geological Survey open-file report 2019–1115: 42. https://doi.org/10.3133/ofr20191115.
- Smith, S.M., and K.C. Medeiros. 2019. Recent groundwater and lakestage trends in Cape Cod National Seashore: Relationships with sea level rise, precipitation, and air temperature. *Journal of Water and Climate Change* 10: 953–967. https://doi.org/10.2166/wcc.2018.016.
- Spencer, T., M. Schuerch, R.J. Nicholls, J. Hinkel, D. Lincke, A.T. Vafeidis, R. Reef, L. McFadden, and S. Brown. 2016. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. *Global and Planetary Change* 139. Elsevier B.V.: 15–30. https://doi.org/10.1016/j.gloplacha. 2015.12.018.
- Sutton-Grier, A.E., K. Wowk, and H. Bamford. 2015. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. *Environmental Science and Policy* 51. Elsevier Ltd: 137–148. https://doi.org/10.1016/j.envsci.2015.04.006.
- Sweet, W.V., R.E. Kopp, C.P. Weaver, J. Obeysekera, R.M. Horton, E.R. Thieler, and C. Zervas. 2017. *Global and regional sea level rise scenarios for the United States. NOAA Technical Report*. Vol. NOS CO-OPS.
- Turner, R.E. 2004. Coastal wetland subsidence arising from local hydrologic manipulations. *Estuaries* 27: 265–272. https://doi. org/10.1007/BF02803383.
- U.S. Geological Survey. 2018. National elevation dataset.
- U.S. Geological Survey. 2022. USGS water data for the Nation, U.S. Geological Survey National Water Information System database. https://doi.org/10.5066/F7P55KJN. Accessed 28 Feb 2022.
- Virtanen, P., R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al. 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. *Nature Methods* 17: 261–272. https://doi.org/10.1038/s41592-019-0686-2.
- Wang, F., X. Lu, C.J. Sanders, and J. Tang. 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. *Nature Communications* 10. Springer US: 5434. https://doi.org/10.1038/s41467-019-13294-z.
- Warren, R.S., P.E. Fell, R. Rozsa, A.H. Brawley, A.C. Orsted, E.T. Olson, V. Swamy, and W.A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. *Restoration Ecology* 10: 497–513. https://doi.org/10.1046/j.1526-100X.2002.01031.x.
- WHG Inc. 2012. Herring River hydrodynamic modeling report.

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE GREATER ATLANTIC REGIONAL FISHERIES OFFICE 55 Great Republic Drive Gloucester, MA 01930

April 15, 2022

Bruce Van Note, Commissioner Maine Department of Transportation 16 State House Station Augusta, ME 04333-0016

Todd Jorgensen, Administrator Federal Highways Administration, Maine Division Edmund S. Muskie Federal Building 40 Western Avenue, Room 614 Augusta, ME 04330

Dear Mr. Van Note and Mr. Jorgensen:

This responds to a March 21, 2022, letter from the Maine Department of Transportation (ME DOT) (attachment 1) that included several questions in relation to the Machias Dyke bridge replacement project located on the Middle River along Route 1 in Machias, Maine. Staff from ME DOT, NOAA's National Marine Fisheries Service (NMFS), and the Federal Highway Administration (FHWA) discussed these questions in a March 31, 2022, meeting. At that meeting, ME DOT requested that we also provide written responses.

As noted in previous correspondence, the project is located within the range of the endangered Gulf of Maine distinct population segment (GOM DPS) of Atlantic salmon. Additionally, the project is located within critical habitat designated for the GOM DPS of Atlantic salmon. Consultation pursuant to section 7 of the Endangered Species Act (ESA) will be required to consider effects of the proposed action on the GOM DPS of Atlantic salmon and its critical habitat. Here, we address the questions raised in the letter from March 21.

"1. Your technical assistance letter stated concerns with the culvert alternative providing safe, timely, and effective fish passage. MaineDOT shares these concerns (as noted above). If the understood fish passage standard (95% of all approaching fish pass within a 48-hour period) required for safe, timely, and efficient passage can't be met or committed to, is that likely to result in a jeopardy or an adverse modification determination?"

In a number of ESA consultations considering effects of hydroelectric dams, we have determined that an action that includes a fishway that ensures that 95 percent of all salmon pass upstream within 48 hours is not likely to jeopardize the continued existence of the GOM DPS of Atlantic salmon or result in the destruction or adverse modification of designated critical habitat. That said, it is important to note that "95 percent in 48 hours" is not a jeopardy standard, and the conclusions reached in those consultations were based on the specifics of those proposed actions and the passage rate was only one factor among many considered in the analysis. During our

ESA section 7 consultation process, we consider whether the effects of the proposed action reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and recovery of the listed species in the wild by reducing the reproduction, numbers, or distribution of the GOM DPS of Atlantic salmon. The purpose of this analysis is to determine whether the proposed action, in the context established by the status of the species, environmental baseline, and cumulative effects, would jeopardize the continued existence of the GOM DPS of Atlantic salmon. In addition, the analysis will determine whether the proposed action will adversely modify designated critical habitat for Atlantic salmon.

"2. The technical assistance process was clear that future monitoring of fish passage efficacy would be required for a culvert alternative. MaineDOT would like to understand how NOAA will use the monitoring results and what happens if the results do not meet passage standards."

If, in the context of an ESA consultation, we determine that a proposed action is likely to result in the "incidental take" of ESA listed species (e.g., injury, mortality, harm, harassment), and that take is not likely to jeopardize the continued existence of the species, an Incidental Take Statement (ITS) would be included with our Biological Opinion. An ITS serves two functions: (1) It provides an exemption from the section 9 prohibitions for any taking incidental to the proposed action that is in compliance with the terms and conditions; and (2) it provides the means to insure the action as it is carried out as proposed and is not jeopardizing the continued existence of any ESA species by monitoring and reporting the progress of the action and its impact on the species such that consultation can be reinitiated if any of the criteria in 50 CFR 402.16 are met (e.g., if the amount or extent of take is exceeded). If take is anticipated, monitoring to document that take would be required. It is important to note that both short-term and long-term monitoring can be conditions of an ITS, depending on the extent and duration of take anticipated.

Considering the proposed Machias Dyke replacement project, we anticipate that the extent and duration of incidental take, and the associated monitoring requirements, would be significantly different depending on which alternative is selected. If a channel-spanning bridge is chosen as the preferred alternative, we anticipate that some monitoring would be required during construction. However, if consistent with our expectations, the bridge does not impact the passage of Atlantic salmon, long-term monitoring of fish passage would not be required.

If culverts and/or tide gates are chosen as the preferred alternative, we anticipate that long-term monitoring to evaluate the efficiency of fish passage through the structure would be needed to document the amount or extent of take of Atlantic salmon resulting from passage delays and/or disruptions. We expect that an ESA consultation that considered a culvert/tide gate alternative would anticipate ongoing effects to Atlantic salmon to result from at least the following mechanisms: (1) False attraction for adult Atlantic salmon attempting to enter the Machias River; (2) low upstream passage efficiency for adult Atlantic salmon attempting to enter the Middle River; (3) low downstream passage efficiency for smolts emigrating from the Middle River; (4) injury and mortality incurred by emigrating smolts given very high velocities at some flows; and (5) increased predation on adult Atlantic salmon by seals resulting from delayed passaged attempts and false attraction. It is important to note that the amount or extent of take over the life

of the culvert and/or tide gates would likely be very difficult to estimate and any analysis would need to address significant uncertainty because this type of flow conveyance is largely untested in regards to passage efficiency for Atlantic salmon and other diadromous fish in Maine. As such, fish passage monitoring to document the effects of the structure on Atlantic salmon would be an extensive undertaking (see attachment 2). As noted above, monitoring would be required to document the amount and extent of take over the life of the structure. If monitoring indicates that the amount of take exempted by the ITS is exceeded, ESA section 7 consultation would need to be reinitiated. This could result in new analyses or additional measures to reduce the amount or extent of take. Predicting the outcome of the monitoring and any future measures to reduce take levels (if the extent of take identified in the ITS is exceeded) is not possible at this time.

Ensuring the long-term viability of Atlantic salmon is a high priority for NMFS and improving fish passage is a critical effort to improving the likelihood of the survival and recovery of this species, particularly within designated critical habitat. Given this, we encourage FHWA and ME DOT to select the alternative that would maximize fish passage and opportunities for recovery of Atlantic salmon and the ecosystem on which they depend. If you have any further questions about the ESA, please contact Julie Crocker in our Protected Resources Division (Julie.Crocker@noaa.gov).

Please note that in addition to the requirements to carry out ESA section 7 consultation, an Essential Fish Habitat (EFH) assessment for the proposed project will be required to initiate an EFH consultation. Characterizing and quantifying the habitats affected by the proposed project alternatives, both during construction and over the operational life of the project, will be necessary. Because this proposed project has implications related to climate change, we will require a climate assessment of future effects to habitats from a range of climate factors, including projected sea level rise, higher temperatures, and changes in precipitation patterns. The assessment should also include information for the project alternatives on implications for potential carbon sequestration gains and losses in salt marsh habitats within the Middle River over the life of the project. Questions regarding the EFH assessment should be directed to Chris Boelke in our Habitat and Ecosystem Services Division (Christopher.Boelke@noaa.gov).

Sincerely,

Mil PJ

Michael Pentony Regional Administrator

ec: Bean, Saunders, Johnson – GAR Ham, Taylor – ME DOT

Attachment 1. March 21, 2022 ME DOT letter Attachment 2. November 22, 2021 NMFS letter

STATE OF MAINE DEPARTMENT OF TRANSPORTATION 16 STATE HOUSE STATION AUGUSTA, MAINE 04333-0016

Bruce A. Van Note COMMISSIONER

March 21, 2022

Ms. Jennifer Anderson Assistant Regional Administrator for Protected Resources National Marine Fisheries Service Greater Atlantic Regional Fisheries Office 55 Great Republic Drive Gloucester, MA 01930

Dear Ms. Anderson:

Thank you for the technical assistance letter, dated November 22, 2021, regarding MaineDOT's Machias Dike Bridge project. National Marine Fisheries Service (NMFS) assistance over the past year has been valuable in understanding the requirements of Endangered Atlantic salmon and NMFS concerns. The MaineDOT Commissioner, Bruce Van Note, has requested that I follow-up with you regarding the technical assistance.

MaineDOT has put significant effort into understanding the available fish passage conditions for the culvert alternative (4M). MaineDOT has modelled various culvert sizes, arrangements, invert elevations, and gate combinations (including no tide gates) to ensure the culvert alternative carried forward represent optimized fish passage.

Alternative 4M consists of three box culverts (10 ft span x 5 ft rise) with tide gates on two of the culverts that would allow seaward flow but would not allow landward flow. The third box culvert would have no flow control so water can flow both directions. The invert of the open box culvert would be installed 2 feet below the existing inverts. As modeled, Alternative 4M would promote fish passage during periods of landward flow (approximately 50% of a 24-hour period).

The model showed that water velocities for the culvert alternatives effectively offer no fish passage during seaward flow for weak and moderate swimming fish. Comparing fish swimming capabilities to expected velocities during normal tides show that fish passage for weak and moderate swimming fish species is available for \sim 12 hours a day. Strong swimming fish may have available passage window of up to \sim 15 hours a day. As noted in your letter, the behavioral issues with the passage opportunities provided by Alternative 4M make the prediction of passage efficacy challenging.

NMFS has clearly stated a preference for the bridge alternatives and MaineDOT has noted and fully understands the preference. MaineDOT continues to seek guidance on the regulatory requirements of the Endangered Species Act as they would apply to the culvert alternatives to inform a legally defensible decision on a preferred alternative. Specifically, we need to understand the following items:

1. Your technical assistance letter stated concerns with the culvert alternative providing safe, timely, and effective fish passage. MaineDOT shares these concerns (as noted above). If the understood fish passage standard (95% of all approaching fish pass within a 48-hour period) required for safe, timely,

and efficient passage can't be met or committed to, is that likely to result in a jeopardy or an adverse modification determination?

2. The technical assistance process was clear that future monitoring of fish passage efficacy would be required for a culvert alternative. MaineDOT would like to understand how NOAA will use the monitoring results and what happens if the results do not meet passage standards.

The MaineDOT project team and the Federal Highway Administration would like to meet with you and your staff to discuss these items. The answers you provide are crucial as we continue to assess the potential impacts of culvert and bridge alternatives on natural resource, cultural, and social impacts of the alternatives.

Sincerely, Saylor

Joyce Taylor, Chief Engineer

cc: Todd Jorgenson, Administrator, FHWA Maine Division Eva Birk, FHWA Maine Division Patrick Keliher, Commissioner, Maine Department of Marine Resources

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE GREATER ATLANTIC REGIONAL FISHERIES OFFICE 55 Great Republic Drive Gloucester, MA 01930

November 22, 2021

Bruce Van Note, Commissioner Maine Department of Transportation 16 State House Station Augusta, ME 04333-0016

Todd Jorgensen, Administrator Federal Highways Administration, Maine Division Edmund S. Muskie Federal Building 40 Western Avenue, Room 614 Augusta, ME 04330

Dear Mr. Van Note and Mr. Jorgensen:

This letter provides the technical assistance requested by the Maine Department of Transportation (DOT) regarding the proposed construction design plan for the Machias Dyke bridge replacement project located on the Middle River along Route 1 in Machias, Maine. Our agency's staff have continued to coordinate and meet virtually throughout 2021; we appreciate your staff's willingness to discuss and explore design alternatives while balancing the many challenging issues your agencies face with this project.

As we have previously noted, the project site is within or near areas that support a number of NOAA trust resources, including designated critical habitat for the endangered Gulf of Maine Distinct Population Segment (GOM DPS) of Atlantic salmon, Essential Fish Habitat (EFH), and habitat for a number of diadromous fish species. We have also previously expressed the importance of developing a design alternative that provides safe, timely, and effective fish passage that will fully restore the function of these habitats and trust resources that occur in the Middle River watershed upstream of the existing Machias Dyke Bridge.

Technical Assistance

On September 21, 2021, DOT provided us information to gain a better understanding of the alternatives being considered and how these may affect our trust resources. As described, DOT is considering two preliminary design alternatives: A pile supported single span bridge (Alternative 10) or a solid-fill dyke bridge with a series of culverts and tide gates (Alternative 4M). Our preferred alternative here is one that will: minimize effects to diadromous fish, including endangered Atlantic salmon; maximize passage opportunities; maximize opportunities for tidal habitat restoration; and minimize negative effects on critical habitat designated for the Gulf of Maine DPS of Atlantic salmon. Alternative 10 appears to provide a better opportunity to meet these goals than Alternative 4M.

Safe, Timely, and Effective Fish Passage

One of our primary considerations in evaluating the different alternatives is the potential for it to provide safe, timely, and effective passage for fish species. Our goals are always to minimize the potential for migratory delay or deterrence for endangered species, including Atlantic salmon. For a project such as this one, we would expect designs to allow for passage of all diadromous species at least 95% of the time (between the 5% and 95% exceedance flows) during the entire migratory window.

While the Machias Dyke Bridge is not a nature-like fishway (NLF), passage criteria for depth, width, and velocity referenced in the *Federal Interagency Nature-like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes* (Turek 2016) is relevant and should be fully considered here. Based on body length, depth, and swim speeds for Atlantic salmon, the guidelines recommend a minimum depth of passage of 2.25 feet, a minimum width of passage of 6.25 feet, and a maximum velocity of 13.75 feet per second (fps). Given the high swim speed of adult salmon, we expect that they might attempt passage at velocities that would deter other species. The NLF guidelines indicate that if passage for other diadromous fish is to be achieved most of the time, channel widths and depths should be greater than for Atlantic salmon, and velocities should be lower. For example, striped bass have a wider minimum width requirement (9.25 feet) and deeper minimum depth requirement (3.25 feet) than Atlantic salmon (note that if Atlantic sturgeon are to be afforded passage, the minimum depth should be 4.50 feet). Similarly, volitional passage of species with slower swimming speeds requires maximum velocities as low as 0.75 fps (Rainbow smelt, Atlantic tomcod, river herring and American eel \leq 15 cm).

Alternative 4M

Alternative 4M includes three, 10-foot by 10-foot culverts with flap-gates on two of the culverts and bidirectional flow in the third culvert. According to the information presented by DOT on August 17, 2021, the use of culverts would substantially alter the flow regime and decrease the volitional passage opportunities for diadromous fish entering and exiting the Middle River to approximately 50% of the daily tidal cycle. As such, we remain concerned that this altered flow regime and constricted area with increased velocities through the culverts and tide gates would likely limit volitional passage opportunities to a much smaller percentage of time, mostly occurring around ebb and flood slack tides.

In addition, placing a structure such as a tide gate within a boxed culvert could have significant implications to fish passage. As documented by Rillahan (2021) and Alcotte et al. (2021), tide gates at the Herring River in Massachusetts have had a deleterious effect on fish behavior including unsuccessful passage and delay, injury and mortality and increased exposure to predators like striped bass. Any tide gate, whether fully open or partially open, is likely to provide an attraction flow that fish may try to use for passage. Additionally, partially open or fully open tide gates can create high velocities that sweep fish through narrow openings. When velocities exceed the burst speeds of fish, they cannot make evasive maneuvers away from predators and obstacles in the water, like debris, increasing the risk of injury and mortality. In particular, high velocity flow through the narrow openings of flap gates promotes collisions with the gate structure itself, including the gate and frame. Furthermore, the use of submerged orifices for fish passage can create high velocities that exceed the burst speeds of diadromous fish. The proposed culverts for a replacement dyke structure would be similar to the existing

length of the tide gate culverts (reportedly 110 feet), likely exceeding the distance that most fish could sustain burst speeds.

Submerged passage also limits natural light in the flow conveyance which can adversely affect fish behavior. That is, even if velocities were manageable, many sea-run fish would be reluctant to enter these confined dark spaces volitionally. Deeply submerged passages can also introduce delay by requiring fish to sound or search for a narrow opening, making repeated attempts at entry. Therefore, given the potential to adversely change fish behavior during migration, or even cause injury or mortality, we recommend that no tide gates be used in the Machias Dyke Bridge replacement.

The uncertain performance of culverts, including tide gates, in passing diadromous species in Maine, especially endangered Atlantic salmon, would require more baseline information and long-term monitoring to better understand the potential effects from extensive operation using a type of flow conveyance that has largely been untested in regards to passage efficiency for diadromous fish within the GOM DPS. As such, we anticipate that should you pursue this alternative, we would recommend fish passage monitoring to document the effects of the structure on Atlantic salmon, their critical habitat, and the other diadromous fish in the project area.

Sea Level Rise

The effects of future sea level rise on the operation of the tide gates and fish passage is uncertain at this time. Under normal operation, the two flap gates would presumably stay in an open position and allow flow from the Middle River to Machias River when the water elevation on the Middle River side of the dyke bridge is higher than the Machias River (approximately 50% of the daily tidal cycle). The flap gates would be closed when water elevations are equal on both sides of the dyke bridge or higher in the Machias River. The only tidal exchange when the flap gates are closed would be through the single open box culvert. However, higher sea levels projected for the Gulf of Maine can impact flows in tidal structures such as tide gates and culverts. It will be critical to assess the effectiveness of fish passage over the full range of the normal tide cycle and during predicted storm water elevations from sea level rise. The assessment should evaluate the predicted water velocity through the tide gates and the open box culvert, and the estimated duration of gate closure during normal tide cycles with higher mean sea levels. At a minimum, sea level rise projections should be consistent with the Maine Climate Council's "commit to manage" recommendation of 1.5 feet of relative sea level rise by 2050, relative to the year 2000, and 3.9 feet of sea level rise by the year 2100. The assessment should also include the Maine Climate Council's "prepare to manage" recommended sea level rise projection of 3.0 feet of relative sea level rise by 2050, and 8.8 feet of sea level rise by the year 2100 (Maine Climate Council. 2020). In addition, the National Climate Assessment projects more extreme precipitation events in the Northeast U.S. and parts of New England with corresponding higher air temperature (Easterling et al. 2017). In an assessment of four unregulated rivers in Maine, Hodgkins and Dudley (2013) reported increases in maximum peak river flows based on projected higher temperature and precipitation rates by the end of the century. More extreme precipitation and river flows will also affect the operation of the dyke bridge tide gates, and hence flow rates and patterns for fish passage.

If you continue to pursue this alternative, a climate change assessment should be conducted to evaluate future sea level rise and increases in extreme precipitation and peak flows on the solid-fill dyke bridge with tide gates and box culverts, and its effects on fish passage.

Tidal Habitat Restoration

According to an October 2021 updated analysis conducted by Stantec and provided to us, this project has the potential to restore over 400 acres of tidal habitats, including salt marsh wetlands, intertidal mudflats, tidal streams, and other resources that provide important ecosystem services. Salt marsh wetlands not only serve as important nursery habitat for federally-managed species and their prey, but they provide the capacity to sequester atmospheric CO₂ (18–1,713 g of carbon per meter per year, according to Mcleod et al. 2011).

The DOT has indicated up to 100 acres of tidal habitat is currently available due to the existing state of the Machias dyke allowing some tidal flow into the Middle river during a flood tide. Furthermore, according to the updated Stantec analysis, design alternative 4M may re-establish approximately 116 acres of unvegetated intertidal/subtidal, low, and high marsh habitats in the Middle River compared to the no action alternative. This estimate includes approximately 60 acres and 13 acres of re-established low and high marsh habitats, respectively, and assumes the salinity range within the Middle River will be equivalent to the Machias River. However, this condition may not exist given the limitation of tidal flow through one, 10-foot by 10-foot culvert and the depressed tidal regime in the Middle River (i.e., -2.7 to +2.0 feet NAVD88) compared to tidal transparency (i.e., -6.7 to +7.4 feet NAVD88). We recommend that in light of this new information, the effects of Alternative 4M on the tidal regime and salinity, and the subsequent potential for salt marsh restoration in the Middle River be re-evaluated.

Preference for Alternative 10

According to recent information presented by DOT, Alternative 10 would provide unrestricted tidal flow between the Machias River and the Middle River (i.e. tidal transparency), which in turn would afford more time for fish to enter the Middle River estuary during daily tides. As in freshwater rivers, inverts should be set at the natural grades of riverbeds to allow fish passage even during low flow and low tide conditions. Since the channel velocity will largely be determined by the differential between water levels upstream and downstream of the Machias Dyke Bridge, the best way to minimize velocities over a range of flows and tide levels is for the structure to provide tidal transparency, as would be provided by a single span bridge. Specifically, tidally-influenced water levels upstream and downstream of the bridge structure should track closely in amplitude and period. According to hydraulic modeling results provided by DOT, tidal transparency would furthermore appear to maintain minimum depth and width requirements for diadromous fish per the guidelines. We also expect this alternative would provide the most effective fish passage conditions, and therefore reduce the potential need for additional fish passage monitoring.

A comparative climate change assessment, including sea level rise projections and changes in extreme precipitation and peak flows, should also be conducted for this alternative as it applies to the effectiveness of fish passage.

With regards to tidal habitat restoration, the Stantec analysis indicated the potential to reestablish approximately 403 acres of unvegetated intertidal/subtidal, low, and high marsh habitats in the Middle River for design Alternative 10. This amount of tidal habitat reestablishment is approximately three times the projected amount calculated for Alternative 4M. Salt marsh wetlands have a higher capacity to sequester carbon compared to terrestrial vegetation and soils, and have the capacity to migrate inland as sea levels rise (Chmura et al. 2003). In addition, coastal marshes have been shown to reduce wave heights, attenuate storm surge and higher sea levels, and reduce property damage compared to unvegetated or hardened shorelines (Gedan et al. 2011; Shepard et al. 2011; Arkema et al. 2013; Temmerman et al. 2013; Narayan et al. 2016). Therefore, this alternative appears to provide the best approach to restoring the habitat and stream function of the Middle River, as well as increasing the capacity for carbon sequestration by tidal marsh vegetation. This alternative also appears to be most consistent with two primary strategies in the Maine Climate Action Plan: protecting and promoting natural climate solutions that increase carbon sequestration and investing in climate-ready infrastructure (Maine Climate Council 2020).

Next Steps

In our view, Alternative 10 is the preferred opportunity for achieving an ecologically sound and climate resilient approach to the replacement of the Machias Dyke Bridge. We encourage you to pursue this alternative to provide safe, timely and effective fish passage while at the same time allowing for restoration of tidal wetland habitats. We recognize the complexity of this project and the need to consider multiple factors as you move this project forward. We look forward to continuing to provide assistance to you and your staff. Should you have any questions regarding the Endangered Species consultation process for this project should be referred to David Bean (David.Bean@noaa.gov), while questions regarding the EFH consultation process should be referred to Mike Johnson (mike.r.johnson@noaa.gov).

Sincerely,

Jennifer Anderson

Jennifer Anderson Assistant Regional Administrator for Protected Resources

cc. Eva Birk (FHWA) Joyce Noel Taylor (MDOT) Patrick Keliher (MDMR)

References

- Alcott DJ, Goerig E, Rillahan C, He P, Castro-Santos T. 2021. Tide gates form physical and ecological obstacles to river herring (*Alosa* spp.) spawning migrations. Canadian Journal of Fisheries and Aquatic Sciences 78: 869–80. dx.doi.org/10.1139/cjfas-2020-0347.
- Arkema KK, Guannel G, Verutes G, Wood SA, Guerry A, Ruckelshaus M, Kareiva P, Lacayo M, Silver JM. 2013. Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change 3(10):913-8.
- Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4):1-12.
- Easterling DR, Kunkel KE, Arnold JR, Knutson T, LeGrande AN, Leung LR, Vose RS, Waliser DE, F. WM. 2017. Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment. [Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds)]. U.S. Global Change Research Program. p. 207-30.
- Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106(1):7-29.
- Hodgkins GA, Dudley RW. 2013. Modeled future peak streamflows in four coastal Maine rivers. U.S. Department of the Interior, U.S. Geological Survey. U.S. Geological Survey Scientific Investigations Report 2013-5080. p. 1-18.
- Maine Climate Council. 2020. Maine Won't Wait: A Four-year Plan for Climate Action. Maine Climate Council, December 2020.
- Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10):552-60.
- Narayan S, Beck MW, Reguero BG, Losada IJ, van Wesenbeeck B, Pontee N, Sanchirico JN, Ingram JC, Lange G-M, Burks-Copes KA. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11(5):e0154735.
- Rillahan CB, Alcott D, Castro-Santos T, He P. 2021. Activity patterns of anadromous fish below a tide gate: observations from high-resolution imaging sonar. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:200–12. 10.1002/mcf2.10149
- Shepard CC, Crain CM, Beck MW. 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6(11):e27374.
- Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ. 2013. Ecosystembased coastal defence in the face of global change. Nature 504(7478):79-83.

Turek, J., Haro A, Towler B. 2016. Federal Interagency Nature-like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes. Interagency Technical Memorandum. 47 pp.

Janet T. Mills GOVERNOR

October 20, 2020

STATE OF MAINE Department of Transportation 16 State House Station Augusta, Maine 04333-0016

Bruce A. Van Note

Michael Pentony, Regional Administrator United States Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service 55 Great Republic Drive Gloucester, MA 01930

Dear Mr. Pentony:

Thank you for your letter dated September 30, 2020, regarding the Maine Department of Transportation's (MaineDOT) Machias Dyke Bridge project located on the Middle River along Route 1 in Machias.

MaineDOT values NOAA's willingness to have on-going communication with our staff and the Federal Highway Administration (FHWA). MaineDOT understands your concern that the in-kind replacement will have detrimental effects on the physical and biological features of Atlantic salmon critical habitat; and a negative impact on Atlantic salmon recovery goals, which would be contrary to federal agency responsibility under Section 7(A)1 and 7(A)2 of the Endangered Species Act. MaineDOT also understands your concerns with Essential Fish Habitat under the Magnuson-Stevens Fishery Conservation and Management Act and the effects of projected sea-level rise on the project and surrounding area.

MaineDOT has considered NOAA's concerns and decided to move the project from our Bureau of Project Development to our Bureau of Planning. This will pause design work on the in-kind alternative. Planning will work closely with our Office of Environmental Services and FHWA to re-evaluate the project purpose and need and reconsider a larger range of alternatives through the National Environmental Policy Act (NEPA) process. MaineDOT staff will continue to work closely and collaborate with NOAA as well as other state and federal agencies and the community to meet the purpose, need, and goals of the project.

Sincerely,

ma A. V. Total

Bruce A. Van Note, Commissioner

cc. Todd Jorgensen (FHWA) Eva Birk (FHWA) Patrick Keliher (ME DMR)

THE MAINE DEPARTMENT OF TRANSPORTATION IS AN AFFIRMATIVE ACTION - EQUAL OPPORTUNITY EMPLOYERPHONE: (207) 624-3000TTY USERS CALL MAINE RELAY 711FAX: (207) 624-3001

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE GREATER ATLANTIC REGIONAL FISHERIES OFFICE 55 Great Republic Drive Gloucester, MA 01930

September 30, 2020

Bruce Van Note, Commissioner Maine Department of Transportation 16 State House Station Augusta, ME 04333-0016

Todd Jorgensen, Administrator Federal Highways Administration, Maine Division Edmund S. Muskie Federal Building 40 Western Avenue, Room 614 Augusta, ME 04330

Dear Mr. Van Note and Mr. Jorgensen:

I am writing to express concern regarding a proposed construction plan for the Machias Dyke Bridge replacement project located on the Middle River along Route 1 in Machias, Maine. It is our understanding that this project will be carried out by the Maine Department of Transportation, be partially funded by the Federal Highway Administration, and will require permits from the U.S. Army Corps of Engineers. Please note that this letter follows a letter we sent to the Maine Department of Transportation on May 8, 2018 (Enclosure 1). This letter is also consistent with a letter sent to your agencies from the Downeast Coordination Committee (a group, including staff from NOAA's National Marine Fisheries Service, charged with coordinating local recovery efforts for Atlantic salmon in Downeast Maine) expressing concerns about the project's impacts to the Middle River (Enclosure 2). Both letters highlighted the project's potential negative impact on our ability to achieve our recovery goals outlined in the 2019 Atlantic Salmon Recovery Plan. The complete Recovery Plan can be found at https://www.fisheries.noaa.gov/resource/document/recovery-plan-2019-gulf-maine-distinctpopulation-segment-atlantic-salmon-salmo. The Machias Dyke Bridge is listed as site-specific threat number 10.0 in the existing work plan for the Downeast Coastal Salmon Habitat Recovery Unit (SHRU; Enclosure 3).

We appreciate your staff's willingness to discuss the matter with my staff and other agency representatives in a meeting on August 19, 2020. In particular, we are very appreciative of the leadership of Eric Ham and Eva Birk and their communication regarding the many challenging issues your agencies face with this project. At this meeting, we were concerned to learn that the preferred alternative remains a replacement in-kind. We have substantial concerns about the proposed alternative given that it would provide even less opportunity for fish passage than exists now and will not remedy ongoing impacts to our trust resources.

As you may be aware, the project site is within or near areas that support a number of NOAA trust resources, including designated critical habitat for the endangered Gulf of Maine Distinct

Population (GOM DPS) of Atlantic salmon, Essential Fish Habitat (EFH), and habitat for a range of diadromous fish species. In addition, this project area contains salt marsh, intertidal mudflats, and other important habitats that provide important ecosystem services. A replacement in-kind would negatively affect these public resources and would reduce opportunities to restore functions in the watershed.

Endangered Species Act

Atlantic salmon are listed as endangered under the Endangered Species Act of 1973 (ESA), as amended. The Middle River is designated critical habitat for the GOM DPS and occurs within the Downeast Coastal SHRU.

Section 7(a)(2) of the ESA, as amended, requires that federal agencies ensure that actions they authorize, fund, or carry out are not likely to jeopardize the continued existence of any listed species or destroy or adversely modify any designated critical habitat. Based on the information currently available to us, the preferred alternative is likely to have detrimental effects on the following physical and biological features of designated critical habitat: Freshwater and estuary migratory sites free from physical and biological barriers that delay or prevent access of adult salmon seeking spawning grounds needed to support recovered populations; freshwater and estuary migration sites with abundant, diverse native fish communities to serve as a protective buffer against predation; and, freshwater and estuary migration sites free from physical and biological barriers to the marine environment. As such, we are concerned about the effects of the proposed in-kind replacement. We expect that many, if not all, of these negative outcomes could be avoided with selection of a different alternative that allows for fish passage and minimizes effects to sensitive habitats.

Section 7(a)(1) of the ESA directs federal agencies to utilize their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. In other words, it is expected that federal action agencies will go beyond minimizing project effects and will proactively seek opportunities to contribute to the recovery of listed species. We encourage FHWA to pursue an alternative that would support the recovery of Atlantic salmon while also addressing regional transportation and infrastructure needs.

The in-kind replacement of the Machias Dyke Bridge would prevent fish passage into the Middle River for the foreseeable future. Our 2019 Recovery Plan for the GOM DPS identifies a number of recovery criteria that must be achieved before we can consider downlisting Atlantic salmon to threatened or removing the species from the endangered species list. One criterion for recovery is having 30,000 units of suitable rearing habitat fully accessible in the Downeast SHRU. If accessible, the Middle River would provide up to 259 units of rearing habitat for Atlantic salmon. An alternative design that allowed for fish passage would directly contribute to attaining the goal of 30,000 accessible and suitable habitat units in the Downeast SHRU.

Magnuson-Stevens Fishery Conservation and Management Act

The Magnuson-Stevens Fishery Conservation and Management Act (MSA) and the Fish and Wildlife Coordination Act (FWCA) require federal agencies to consult with one another on projects such as this. Insofar as a project involves EFH, as this project does, this consultation process mandates the preparation of EFH assessments and generally outlines each agency's

obligations in this consultation procedure. Machias Bay is EFH for a number of federallymanaged species, including all life stages of winter flounder, windowpane flounder, and Atlantic cod. In addition, Machias Bay and the Machias River are EFH for Atlantic salmon that may use the project area as a migratory pathway and for foraging before and after spawning. The Machias River is also one of eleven rivers in Maine designated as a Habitat Area of Particular Concern (HAPC) for Atlantic salmon because it supports some of the only remaining U.S. populations of naturally spawning Atlantic salmon that have historic river-specific characteristics. These river populations harbor an important genetic legacy that is vital to the persistence of these populations and to the continued existence of the species in the United States. Furthermore, the Middle River contains historic spawning habitat for a number of other diadromous fish species, including rainbow smelt, blueback herring, alewife, and American eel. These species are important prey for federally-managed species and, therefore, are considered a component of EFH pursuant to the MSA.

The Middle River and the Machias Bay contain important habitats that are critical to a healthy marine ecosystem, including salt marsh wetlands, intertidal mudflats and fringing salt marshes, subtidal habitats, and eelgrass beds. The proposed in-kind replacement would effectively eliminate passage of fish through the structure and convert tidal habitats, including intertidal mud flats and salt marsh wetlands, to freshwater habitats. An alternative design that allows for fish passage and tidal exchange would minimize the potential for these negative impacts.

Climate Change

We are also concerned that an in-kind replacement would not adequately address concerns in regards to projected sea level rise (SLR) and flooding. We continue to question the efficacy and cost-benefit analysis of rebuilding the dyke as proposed with the explicit objective of preventing or reducing flooding of properties landward of the structure. In fact, it appears that flooding during high tides and storm surge events will not be reduced by the project as proposed and, as a result of SLR, these flooding occurrences will increase in frequency and intensity. Specifically, over the expected design life of the project (~75 years), sea level is projected to increase in this area (Eastport, Maine) under a 1.0 and 2.0 global SLR scenario by 2100 by about 4.0 and 8.9 feet, respectively (Sweet et al. 2017). According to information provided by the Maine Department of Transportation, the proposed finished grade of the causeway is between 11.1 feet and 11.9 feet NAVD 88, and the existing mean high high water line is 7.4 feet NAVD 88. This provides an approximate 4-foot freeboard on the highest average high tides in 2020. However, if the 4.0-foot SLR scenario occurs, the freeboard will be eliminated altogether, and under an 8.9foot SRL scenario, the proposed structure would be inundated by almost 5 feet of water on the highest average high tides. Neither of these SLR projections accounts for higher water levels from spring tides or storm surge that occur multiple times per year. Furthermore, inland flooding of properties adjacent to the Middle River due to higher tides from areas on Route 1 beyond the Machias Dyke Bridge would continue unabated. As such, it does not appear that the in-kind replacement is an appropriate design to mitigate impacts of predicted SLR and flooding.

Potential Opportunities and Next Steps

As you may be aware, we have previously worked collaboratively with the Maine DOT on road crossings to improve public infrastructure and restore fish passage and habitat. For example, NOAA contributed significant federal funding for the replacement of two crossings over

Muscongus Brook in Bremen, Maine. The NOAA Restoration Center is also currently engaged with the Maine DOT in an interdisciplinary, interagency team on a feasibility study to raise Route 1 in Woolwich and restore tidal flow to Back River Creek, an important tributary to the lower Kennebec River, in conjunction with a FHWA-funded replacement of the Station 46 Bridge. Both projects underscore the importance of interagency collaboration in order to leverage technical assistance and federal funding to help build safe, resilient infrastructure that supports coastal communities, like Machias.

We would like to continue to work collaboratively to achieve an ecologically sound and climate resilient approach to the replacement of the Machias Dyke Bridge and would strongly encourage the state and federal agencies involved to pursue alternatives beyond an in-kind replacement. We hope to work together to find a solution that improves the resilience of our coastal marine ecosystem, protects and conserves EFH, advances the recovery of endangered Atlantic salmon, and ensures the economic vitality of Downeast Maine.

Sincerely,

Michael Pentony Regional Administrator

Enclosures (3)

cc. Eva Birk (FHWA) Joyce Noel Taylor (MDOT) Patrick Keliher (MDMR)

References

Sweet WV, Kopp RE, Weaver CP, Obeysekera J, Horton RM, Thieler ER, Zervas C. 2017. Global and regional sea level rise scenarios for the United States. National Oceanic and Atmospheric Administration, National Ocean Service. NOAA Technical Report NOS CO-OPS 083. p. 1-56

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE GREATER ATLANTIC REGIONAL FISHERIES OFFICE 55 Great Republic Drive Gloucester, MA 01930-2276

MAY - 8 2018

Michael Wight, P.E. Senior Project Manager Maine Department of Transportation Bridge Program – North Team 16 State House Station Augusta, Maine 04333-0016

Re: Maine Department of Transportation's preferred alternative for the proposed Machias Dyke Bridge (#2466) project

Dear Mr. Wight:

In April of 2018 you held a public meeting at the University of Maine in Machias to present the details of the Maine Department of Transportation's (DOT) preferred alternative for the replacement of the Route 1 bridge over the Middle River in the town of Machias, Maine. The existing structure is comprised of four box culverts with flap gates that are designed to block tidal flow into the Middle River. In your presentation, you described alternatives ranging from an in-kind replacement to the construction of a 60-foot bridge span. You presented the DOT's preferred alternative as an in-kind replacement of the existing structure. Below, we provide our comments on this alternative.

The Middle River was historically accessible to diadromous fish species, including Atlantic salmon, rainbow smelt, alewife, and blueback herring. In addition, the Middle River estuary supported a functioning saltmarsh ecosystem. The existing structure significantly limits migration of diadromous fish, and inhibits the functioning of the saltmarsh. Your preferred alternative would perpetuate this condition through the installation of flap gates that will provide minimal, if any, fish passage, and will not make any improvements regarding the restoration of tidal flow into the river. The preferred alternative is, in effect, a proposal to reconstruct a dam that will block fish access into the Middle River watershed for the next 75 years.

The Middle River is designated critical habitat for the critically endangered Gulf of Maine Distinct Population Segment of Atlantic salmon, and occurs within the Downeast Coastal Salmon Habitat Recovery Unit (SHRU). Atlantic salmon has been designated as federally endangered under the Endangered Species Act of 1973 (ESA). It is one of the eight species managed by NMFS that are most at risk of extinction in the near future, and as such, is one of the species highlighted in our "Species in the Spotlight: Survive to Thrive" initiative. Addressing the impacts of dams on Atlantic salmon and the ecosystems on which it depends is highlighted in the Species in the Spotlight action plan, the ESA listing determination and recent draft recovery plan.

This project has been specifically identified as a restoration priority within the draft Atlantic salmon recovery plan. As with all dam projects, our expectation is that your project on the Middle River will provide safe, timely, and effective upstream and downstream passage for endangered Atlantic salmon. According to the draft recovery workplan, the restoration objective for the Machisas Dike Dam is to "restore safe and effective passage for diadromous fish at the Machias Dike and at Marks Lake Dam on the Middle River" (USFWS and NMFS 2016). Therefore, we consider passage into the Middle River a restoration priority for our agency.

It is our understanding that this project will be partially funded by the FHWA, and will require permits from the Army Corps of Engineers (ACOE). Section 7(a)(2) of the Endangered Species Act of 1973 (ESA), as amended, requires that federal agencies ensure that any actions they authorize, fund or carry out are not likely to jeopardize the continued existence of any listed species or destroy or adversely modify any designated critical habitat. Furthermore, section 7(a)(1) of the ESA directs federal agencies to utilize their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. In other words, it is expected that federal action agencies will go beyond minimizing project effects, and will proactively seek opportunities to contribute to the recovery of listed species.

We are concerned that the preferred alternative, as presented, will not achieve safe, timely, and effective passage for diadromous fish. We look forward to working with DOT and the federal action agencies during the section 7 process to develop minimization measures that will provide adequate fish passage for Atlantic salmon and other diadromous fish. If you have any questions concerning these comments, please contact Dan Tierney (207-866-3755 or Dan.Tierney@noaa.gov).

Sincerely,

Julie Crocker

Julie Crocker Endangered Fish Recovery Branch Chief

Ec: Cheryl Martin-FHWA Jay Clement-ACOE Eric Ham-MDOT Mark Murray-Brown-NMFS Max Tritt-NMFS

File Code: Sec 7 technical assistance 2018 – Machias Dike Bridge/Dam

Eric Ham

Maine Department of Transportation

Environmental Office

Re: Machias Dike Bridge (#2466) project

June 30th, 2020

Dear Eric:

The Downeast Atlantic Salmon (*Salmo salar*) Habitat Recovery Unit (DESHRU) Coordination Committee (DCC) has been tasked with developing a 5-Year Work Plan of actions necessary to advance the DESHRU towards delisting criteria identified in the final recovery plan (2019).

DESHRU Work Plans initiated in 2015, identified the dike bridge in Machias as a connectivity threat (D10.1) to Atlantic salmon recovery. Specifically, the following action is identified: "Restore safe and effective passage for diadromous fish at the Machias Dike and at Marks Lake Dam on the Middle River."

Historically, the Middle River was accessible to a wide array of sea-run fish species, including Atlantic Salmon, Rainbow Smelt, Alewife, and Blueback Herring. The existing structure prevents upstream migration of sea-run fish, most notably, the endangered Atlantic Salmon. The lack of safe, timely, and effective passage at this site and its potential to disrupt efforts to recover Atlantic Salmon were recently highlighted by the National Marine Fisheries Service (attachment 1).

Securing fish passage into the Middle River would benefit recovery efforts for Atlantic Salmon in at least four ways. First, the Middle River may provide up to 259 units of rearing habitat for Atlantic Salmon. Opening this habitat would directly contribute to attaining the goal of 30,000 accessible and suitable habitat units in the DESHRU. Second, one of the essential features of <u>critical habitat</u> for Atlantic Salmon are migration corridors that include abundant, diverse native fish communities to serve as a protective buffer against predation. Once fish passage at Marks Lake is established, abundance of Alewives in the Middle River should soon exceed 56,000 adults if targets of 235 adults/acre are realized. Third, the Middle River should once again host a substantial population of Rainbow Smelt once passage is secured. Rainbow Smelt are a key prey item of post-spawn Atlantic Salmon (often referred to as "kelts"). The availability of anadromous Rainbow Smelt partially sustains the viability of this key life stage. Conversely, the broad declines in Rainbow Smelt populations may be partially responsible for the declining occurrence of repeat spawners in Maine's salmon rivers. Lastly, these anadromous species require a fully functioning estuarine ecosystem to maximize their life history requirements and enhancing tidal flow into the Middle River above the dike will help achieve that goal.

The DCC is aware that the current preferred alternative by Maine DOT would maintain the status quo and provide minimal, if any, fish passage, and will not make any improvements regarding the restoration of tidal flow into the Middle River. The preferred alternative is, in effect, a proposal to reconstruct a dam that will block fish access into the Middle River watershed for the next 75 years.

The DCC is keenly interested in working with you to find ways to improve the ecology of the Middle River for the benefit of salmon and their ecosystem. We urge you to consider a different alternative that would provide safe, timely and effective fish passage and we are interested in meeting with you to discuss potential alternatives. Thank you for your interest in helping the DCC preserve, protect and enhance Critical Habitat within the Gulf of Maine Endangered Atlantic Salmon Distinct Population Segment.

DCC Chair:

Ernie Atkinson, Maine Marine Resource – Division of Sea-run Fisheries

Sim Aflinson

DCC Members:

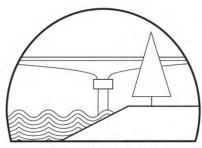
Colby Bruchs, Maine Marine Resource – Division of Sea-run Fisheries Denise Buckley, USFWS Craig Brook National Fish Hatchery Scott Craig, USFWS Maine Fish and Wildlife Conservation Office Rory Saunders, NOAA Fisheries, Maine-Orono Field Station

Enclosure 3

DOWNEAST SHRU SITE-SPECIFIC THREATS AND RECOVERY ACTIONS

				ACTIONS			1			RECOVERY ACTION IN THE
SITE SPECIFIC THREATS	SUB-BASIN	WATERSHED	THREAT NUMBER	RECOVERY ACTIVITY	ACTIVITY NUMBER	REPORTING ACTION TEAM	IMPLEMENTING ENTITIES	DATE LISTED	STATUS/DATE COMPLETED	RECOVERY PLAN THAT THE ACTIVITY ADDRESSES
The Dennys River stock has much lower return rates than other rivers in the DPS that may be a function of natural or manmade conditions in the freshwater and/or estuary of the Dennys, or me be a function of a loss of genetic fitness within the Dennys River stock.	Dennys River	Dennys River	D1.0	Design and implement study to identify the cause for low return rates for the Dennys River Stock	D1.1	CHAT	NMFS, MEDMR	2015		
The Greatworks Dam, Moddybenpy Dam, and Cultance: Late Dam impire bablea quality and majore access of aleview and salamon to habitar resources		Dennys and Cathance	D2.0	Conduct feasibility study of Greatworks Dum in Cathance to improve habitat quality and habitat access for salmon and river herring Review IFIM for the operations of Meddybemps	D2.1 D2.2	CAT	NGO's, NMFS, MEDMR, MEDIF&W NMFS	2015		
			Dam to assure that it accounts for climate change Maintain and improve passage at Meddybemps and Cathance Dams to maximize passage efficiency of salmon and alewives	D2.3	CAT	MEDMR, MEDOT	2015			
Curry and Preston Brooks are important sources of cold water to the Dennys River. Road crossings can impair access and water quality within	Dennys River	Curry and Preston Brooks	D3.0	Work with landowners along Curry Brook to identify ways to minimize the impacts of road crossings on water quality and connectivity Work with landowners along Preston Brook to identify ways to minimize the impacts of road	D3.1 D3.2	CAT	NGO's, USFWS	2015		
these tributaries.				crossings on water quality and connectivity Identify and remove passage barriers in Beaver Dam			1007,01110			
tributaries of the East Machias, particularly Beaver Dam Stream, Chase Mill Stream and Northern Stream, reduce water quality and	East Machias River	Beaver Dam Stream, Chase Mill Stream,	D4.0	Identify and remove passage barriers in Beaver Dam	D4.1	CAT	NGO's	2015		
access to the most abundant and most suitable nursery habitat in the watershed, likely impeding survival of the East Machias stock.		Northern Stream		Stream. Identify and remove passage barriers in Northern Streams.	D4.2 D4.3	CAT	NGO's	2015		
The fishway at Pokey Dam, if not maintained, can impede or block passage to significant alewife spawning and nursery habitats as well as Atlantic salmon resting and nursery	East Machias River	East Machins River	D5.0	Streams. Maintain, and if necessary, improve passage at Pokey Dam to maximize passage of salmon and alewives	D5.1	CAT	MEDMR, Crawford Lake Association	2015		
habitats The Gardner Lake Fish Hatchery on Chase Mill Stream may still be leaking some fish from the hatchery that may pose a genetic risk to the East Machias locally adapted stock of Atlantic salmon	East Machias River	Chase Mill Stream	D6.0	Gather genetic samples of parr in Chase Mill stream to look for escapes from the Gardner Lake Hatchery	D6.1	GDAT	MEDMR	2015		
Storm and waste water discharge from the town of East Machias may impair water quality that could affect Atlantic salmon	East Machias River	East Machias River	D7.0	Assure storm and waste water discharge does not impair water quality necessary for salmon survival	D7.1	FWAT	Town of East Machias, USDA, USFWS, NMFS	2015		
The outlet dam at Sabao Lake on the West Branch Machias, Chain Lake dam on Chain Lake Stream, and Wizgig Dam on Old Stream block or	Machias River	West Branch Machias, Chain Lake Stream, and	D8.0	Remove or improve passage at Sabao Lake Dam, to allow unimpeded passage of salmon and river herring.	D8.1	CAT	NGO's, dam owners	2015		
impede access to nursery habitats for Atlantic salmon and alewives and affect water quality by reducing stream flow.	Macinas River	Old Stream	18.0	Remove or improve passage at Chain Lake Dam, to allow unimpeded passage of salmon and river herring Remove or improve passage at the Wizgig Dam to	D8.2	CAT	NGO's, dam owners	2015		
On 3rd lake stream in the Machias, wing dams were constructed on side channels during the log drive era in an	Machias River	3rd Lake Stream	D9.0	allow unimpeded passage of salmon and river herring Remove wing dams on 3rd lake stream and assess changes to water quality, sediment transport, and	D8.3 D9.1	CAT	NGO's, dam owners DMR, NGO's, land	2015		
effort to straighten the channel and prevent log jams. On the Middle River, the Machias Dike and Marks Lake Dam block access for migratory fish, particularly	Machias River	Middle River	D10.0	habitat use by salmon to determine its value towards salmon recovery. Restore safe and effective passage for diadromous fish at the Machias Dike and at Marks Lake Dam on	D10.1	CAT	owners MDOT, NGO's, NMFS	2015		
access for migratory tish, particularly alewives				the Middle River						
Access to freshwater habitats and water quality are impaired by culverts, especially in Colonel Brook which has some of the more productive salmon habitats in the Pleasant River The fishway at Saco Falls is in need of	Pleasant River	Colonel Brook	D11.0	Remove or improve passage at culverts and remnant dams, especially in Colonel Brook to improve passage and water quality Make improvements at the Saco Falls fishway to	D11.1	CAT	NGO's, Landowners	2015		
maintenance which may impair fish passage	Pleasant River	Pleasant River	D12.0	Make improvements at the Saco Faits fishway to ensure safe and effective passage of salmon and river herring	D12.1	CAT	MEDMR	2015		
Agricultural practices and irrigation may be affecting water quality, water temperature and water quantity in the Pleasant River.	Pleasant River	Pleasant River	D13.0	Assess the effectiveness of the WUMP in protecting the Pleasant from the effects of water withdrawal	D13.1	FWAT	MEDEP, USGS	2015		
The Addison tide gates impairs access to the West Branch Pleasant River and significantly reduces the ecological function of the adjacent salt marsh	Pleasant River	West Branch Pleasant River	D14.0	Remove the Addison Tide gates to restore diadromous fish access to the West Branch Pleasant River and restore the ecological function of the salt marsh	D14.1	CAT	MEDOT, NGO's	2015		
The Stillwater Dam in Cherryfield delays and sometimes blocks passage of Atlantic salmon, shad and river herring. Passage delays increases opportunities for predation by birds. The dam may also affect water quality	Narraguagus River	Narraguagus River	D15.0	Conduct a feasibility study/alternatives analysis for the Stillwater Dam	D15.1	CAT	ACOE, USGS, NOAA,, MEDMR, NGO's, Town of Cherryfield ACOE, USGS, NOAA,	2015		
and its head pond covers a historically important holding pool for adults.				Implement the best fit alternative at the Stillwater Dam that results from the feasibility study	D15.2	CAT	MEDMR, NGO's, Town of Cherryfield	2015		
The Narraguagus River estuary has deposits of wood chips and saw dust from 19th and early 20th century saw mills that, in areas, is several feet deep. These deposits alter benthic habitats and may alter stream flow and morphology that may affect salmon.	Narraguagus River	Narraguagus River estuary	D16.0	Research the benthic habitats in the Narraguagus estuary and the role that dredging might play in estuary restoration	D16.1	MEAT	NOAA	2015		
Birds observed in the Narraguagus estuary are known to prey on emigrating smokls. Mammade features such as brdges, piers and dams can give pendators a competitive advantage by creating obstructions that show fuh imgraritonic cuusing fish to congregate, or creating roosting sites that increase opportunities for birds to spot and feed on prey.	Narraguagus River	Narraguagus River estuary	D17.0	Identify and remove artifical barriers or features that increase opportunities for predation.	D17.1	CAT	NGO's, NOAA	2015		
Thermal issues appear to be a problem in the mainstem Narraguagus. This may be a function of clearing of nearby forests for agriculture, irrigation, problems with stream channel morphology, climate change,	Narraguagas River	Narraguagus River	D18.0	Remove dams, culverts and remnant dams, especially in the upper Narraguagus, Shorey, and Humphack Brook to improve water quality. Assess the effectiveness of the WUMP in protecting the Narraguagus from the effects of water	D18.1	CAT	NGO's, MEDMR	2015		
channel morphology, climate change, and remnant dams, dams and culverts that slow down water.				withdrawal Ensure land managers implement BMP's that are protective of Atlantic salmon and salmon habitat	D18.3	FWAT	MEDEP, USFWS, Land Managers	2015		
Portions of the Narraguagus appear to be over wide and void of structure including boulders and large wood. Despite abundant glacial erratic's in the ripatria marcs, there are long stretches of mainstem habitats with very few if any large boulders or large wood features that would help support habitat features that juvenile salmon select for.	Narraguagas River	Narraguagus River	D19.0	Design and Implement a large wood/boulder project in the Narraguages around Rt. 9 and assess its benefits to fish and water quality	D19.1	FWAT	NGO's, land managers, MEDMR, USFWS	2015		
The Ellsworth Dam impairs upstream and downstream passage efficiency of adult salmon, smolts, and other diadromous fish, and decreases water				Continue to provide fry to the Union River Salmon Association to support stock rebuilding efforts in the Union River	D20.1	CHAT	USFWS, MEDMR	2015		
quality above the dam. Graham Station does not have an upstream fishway blocking all upstream migratory fish. Current operations	Union River	Union River	D20.0	Ensure hydro operations at the Ellsworth Dam minimizes harm to Atlantic salmon and adverse effects to their Critical Habitat	D20.2	CAT	NMFS, USFWS, FERC, Hydro-Developers	2015		
block upstream migration of diadromous fish and may delay or				Ensure hydro operations at the Graham Station minimizes harm to Atlantic salmon and adverse effects to their Critical Habitat	D20.3	CAT	NMFS, USFWS, FERC, Hydro-Developers	2015		
block downstream migration of emigrating smolts and other diadromous fish				Precess to their Crinical Habitat Develop a stock rebuilding and management plan for the Union River	D20.4	CHAT, GDAT	MEDMR, USFWS, NMFS	2015		
Limited resources restrict our ability to evaluate habitats within these areas to check for occupancy and ensure protections of those fish and the	Boise Bubert, Chandler River, Grand Manan, Lamoine Coastal, Mt. Desert, Roque Bluff, and	Boise Bubert, Chandler River, Grand Manan, Lamoine Coastal, Mt. Desert, Roque Bluff.	D21.0	Every five years monitor areas that have accessible and suitable habitats where straying might occur to check for occupancy.	D21.1	FWAT	MEDMR	2015		
protections of those lish and the habitats that they occupy	Tunk Stream	Desert, Roque Bluff, and Tunk Stream		In areas with suitable habitats, implement proactive restoration when opportunities arise (e.g. a dam owner willing to remove his/her dam).	D21.2	FWAT, CAT	NGO's, MEDMR, USFWS, MEDOT, NMFS, Landowners, Municipalities	2015		

APPENDIX 10 - ADJACENT PROJECTS


- 1. Town Flood Protection & Boat Ramp Project
- 2. Schoppee Marsh
- 3. Wastewater Treatment Plant

Town Flood Protection & Boat Ramp Project

Town of Machias, Maine

Waterfront Resilience Study

BAKER DESIGN CONSULTANTS Civil, Marine, & Structural Engineering

In Partnership With:

Acknowledgements

The following individuals and groups are thanked for their valuable contributions to the development of this plan:

Leaders

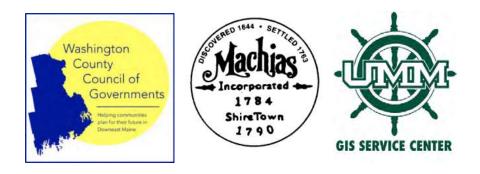
Judy East - Washington County Council of Governments

Christine Therrien - Machias Town Manager

Tora Johnson - University of Maine at Machias GIS Service Center

Key Stakeholders and Advisors

Anne Ball – Maine Development Foundation, Maine Downtown Center Angela Fochesato – Chair, Machias Downtown Revitalization Committee Ann Fuchs- State Hazard Mitigation Officer, Maine Emergency Management Agency Charles Rudelitch – Sunrise County Economic Council Pete Slovinsky – Maine Geological Survey


Consultant Team

Baker Design Consultants- Daniel Bannon, Barney Baker Ransom Consulting- Nathan Dill West Falls Surveying- Andrew Mulholland

This report was prepared for the Town of Machias and was made possible by a matching grant from the Maine Coastal Program with support from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the Department of Commerce.

© 2019, Baker Design Consultants

Contents

Acknov	wledgements	i
1. Exe	ecutive Summary	1
1.a.	Introduction	1
1.b.	Work undertaken for this Study	2
1.c.	The need for Flood Protection to the Downtown Area`	4
1.a.	Recommended Design Height for the Seawall System	6
1.b.	Seawall System Design Summary and Cost	7
2. Ba	ckground, Purpose, and Need	9
2.a.	Flood Risk	10
2.b.	Bank Erosion	10
2.C.	Stormwater Management	10
2.d.	Critical Infrastructure (WWTP) At Risk of Flooding	11
2.e.	Revitalization	11
3. Pre	edicting Future Flood Elevations	12
3.a.	Historical Data Review	12
3.b.	Sea Level Rise	15
3.C.	Determining Economic Losses from Future Flood Events	15
3.d.	Determining Economic Losses from Future Flood Events	17
4. De	esign Development of the Seawall System	19
4.a.	Flood Protection Options Considered	19
4.b.	Design Elevations (for the Project Area	
4.c.	Levee (Seawall System) Design and Accreditation Criteria	
4.d.	Regulatory Review/Permit Requirements	22
4.e.	Concept Design Development	23
5. Ne	ext Steps to Move the Project Forward	24
5.a.	Field Investigation	24
5.b.	Coastal Protection System Design Development	25
5.C.	Stormwater/Wastewater System Assessment	25
5.d.	ROW Acquisition	25
5.e.	Regulatory Permitting	

5.f. Co	struction Phase Preparation	6
---------	-----------------------------	---

Appendicies

Appendix A – References	27
Appendix B – Present and Future Flood Risk Assessment Memo	30
Appendix C – Flood Impacts to Machias Downtown Property	31
Appendix D – Seawall System Program Costs	32
Appendix E –Seawall System Concept Design Drawings	33

Figures

Figure 1 – Down town Machias on 2017 FEMA Flood Insurance Rate Map1
Figure 2 -Historical Development on Machias River looking downstream. Downtown Area is on left of River
Figure 3 –2018 picture looking upstream with remnants of cribwork that supported former docks.3
Figure 4 – Mapped SFHA's vs Surveyed Areas above BFE; Building Inundation shown in red
Figure 5 – Effective Base Flood Elevation;
Figure 6 –Base Flood Elevation plus 2-FT5
Figure 7 – Base Flood Elevation plus 4-FT5
Figure 8 – Base Flood Elevation plus 6-FT
Figure 9 – SLR Predictions for Cutler Tidal Station based on NOAA 2017 Model
Figure 10 – Machias Downtown Seawall System Overview Plan
Figure 10 - Location Map of Machias, ME (Source: Town of Machias 2006 Comprehensive Plan). 9
Figure 11 - Section of Machias Zoning Map10
Figure 13 – 1.4.18 Winter Storm Grayson Pictures- Flooding approaches BFE14
Figure 14 – SLR Predictions for Cutler Tidal Station based on NOAA 2017 Model (produced by BDC using Corps Climate Sea Level Change Curve Calculator)

Tables

Table 1 – Building Inundation and Estimated Costs per Flood Event	4
Table 2 - Determination of Seawall Design Height	7
Table 3 - Tidal Elevations at Machias and Nearby Locations	. 12
Table 4 – Winter Storm Grayson Water Elevations	. 13
Table 5 – Future Year Flood Water Levels (Ransom Consulting)	. 16
Table 6 -Machias Downtown Building Inventory impact by Flood Scenario	. 18
Table 7 – Machias Downtown Elevation Table	. 20
Table 8 – Next Steps Summary- Tasks, Timeline, And Cost	. 24

1. Executive Summary

The Machias Downtown Resilience and Renewal Study was made possible by a Maine Coastal Program Community Grant awarded to the Town Machias. The grant enabled the Town to retain a consultant team led by Baker Design Consultants, Inc. (BDC) to investigate and define the risk of flood damage to downtown Machias and to develop a concept engineering design for a flood protection system. On the BDC Team were West Falls Surveying (WFS) and Ransom Consulting (Ransom) who provided topographic survey and flood analysis respectively.

This study has drawn from related work programs undertaken and in progress by the Town of Machias, the Washington County Council of Governments and the University of Maine at Machias GIS Service Center. Refer to the APPENDIX located on page 27.

1.a. Introduction

The catalyst for this study is the periodic flooding that occurs in the historic Machias Downtown Area. The section of the 2017 FEMA Flood Map provided in Figure 1 below shows areas mapped as Special Flood Hazard Areas (1SFHAs). One SFHA extends east from the Route 1 Dyke into the Machias Downtown Area. Another isolated SFHA is next to the Machias Waste Water Treatment Plant. These areas and adjacent properties define the area considered for this project.

A separate initiative, in progress by the Maine Department of Transportation, includes design development for rehabilitation or replacement of the Route 1 Dyke with consideration of the Dyke location within the SFHA and tidal flow on the Middle River.

Figure 1 – Down town Machias on 2017 FEMA Flood Insurance Rate Map

¹ Special Flood Hazard Areas are where a flood that exceeds the Base Flood Elevation (BFE) is expected to occur with a probability of 1%. The BFE = 11 NAVD88 for the isolated Zone AE SFHA on the Town WWTP property. The BFE = 10.7 NAVD88 for those downtown area along the Machias River and across the Dyke.

1.b. Work undertaken for this Study

A summary of the concurrent activities that have been undertaken by the Baker Design Consultants Team and stakeholder are summarized below.

- West Falls Surveying (WFS) provided detailed mapping of the Machias downtown area using aerial survey drone technology rectified by and supplemented with detail ground measurements to determine building floor elevations.
- Ransom Consulting (Ransom) completed a flood hazard synopsis that considered current conditions, historical events and future sea level rise modeling to generate probability predictions for future flooding with sea level rise. This work is described in a report that is in APPENDIX B-Present and Future Flood Risk.
- The BDC team completed an inventory of buildings and properties in the downtown area in order to evaluate the impacts associated from a variety of flood inundation events that ranged from BFE+0-ft to BFE+6-ft.
- Staff and students from the University of Maine at Machias GIS Department completed a damage assessment modeling for the same series of flood inundation scenarios based on the building inventory, infrastructure and resources impacted by the flooding. This information provides an early cost-benefit indicator for the flood protection system concept design.
- The Washington County Council of Governments provided project management. Stakeholder selection and communication and collected oral history narratives referencing conditions in the Downtown area. Several Public Meetings were scheduled and well attended.
- BDC developed a concept design for a seawall system to protect the Downtown area based on the research, fieldwork and stakeholder input to date. The design is illustrated in drawings that are provided in Appendix E of this report.
- BDC prepared an estimate of construction cost based on the concept design presented in Appendix E. Refer to <u>Appendix D – Seawall System Program Costs</u>
- To move the project forward, BDC worked with the Town of Machias, Washington Council
 of Governments and the Maine Emergency Management Agency to define a Pre-Disaster
 Mitigation Advance Assistance Program for additional fieldwork and design necessary to
 move the project forward. Program tasks, costs and timeline are provided in <u>Section 6Next Steps to move the Project forward.</u>

Figure 2 -Historical Development on Machias River looking downstream. Downtown Area is on left of River

Figure 3 -2018 picture looking upstream with remnants of cribwork that supported former docks.

1.c. The need for Flood Protection to the Downtown Area`

Based on the work completed for this study, a seawall system is needed to protect the Machias Downtown Area from flooding and associated property damage.

The Machias Downtown Area is primarily comprised of commercial development and includes the Waste Water Treatment Plant that is considered critical infrastructure. Highway Route 1 runs through this area and is considered the primary regional artery for north-south traffic.

The cost and property impact for single storm events at several flood inundation levels were estimated by staff and students from the University of Maine at Machias GIS Service Center. Inventory information for each property and plans that illustrate the extent of flooding for each inundation event are provided in <u>APPENDIX C- Flood Impacts to Machias Downtown Property</u>. It is not surprising that the number of properties impacted, and the cost associated with each storm event increases exponentially as the flood inundation level increases. What is also apparent is the acute reduction in primary road network access to the area that directly impacts fire, rescue and emergency response. Not only will a seawall protection system make the area safer by reducing the risk of flooding, but it will also reduce costs to property owners by effectively eliminating flood damage. With the installation of a Seawall System, the mapped SFHA areas are effectively removed from the FEMA FIRM with a Zone X designation.

Flood Event/Elevation	Total Economic Impact		No of Buildings Inundated	Route 1 Status	Notes	
Base Flood	\$ 713,297		1	Passable	Court Street Flooded	
Base Flood Plus 2-ft	\$	7,918,338	12	Eleaded for Length	Many Buidings surrounded by water	
Base Flood Plus 4-ft	\$	16,889,819	22 including WWTP	Flooded for Length of Dyke	Significant Risk to Shellfish Habitat	
Base Flood Plus 6-ft	\$	23,699,916	23 including WWTP			

Flood scenarios are summarized in the Table 1 below and illustrated in Figures 2 to 6 that follow.

Table 1 - Building Inundation and Estimated Costs per Flood Event

The Downtown Area topography was mapped using drone technology that resulted in a very detailed survey that allowed for a more accurate determination of the Base Flood boundary and corresponding SFHA areas than currently shown on the 2017 FEMA FIRM (larger light blue area in . Figure 2 below.

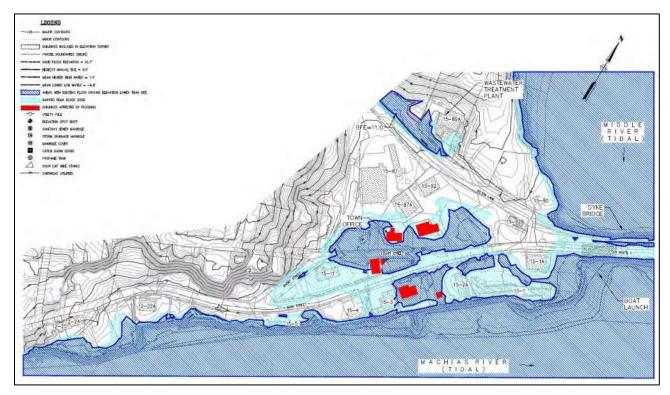


Figure 4 – Mapped SFHA's vs Surveyed Areas above BFE; Building Inundation shown in red.

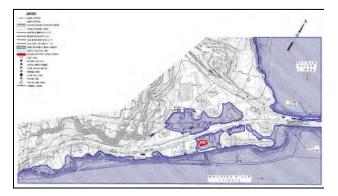


Figure 5 – Effective Base Flood Elevation;

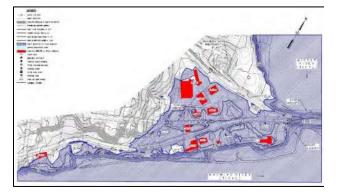


Figure 6 -Base Flood Elevation plus 2-FT

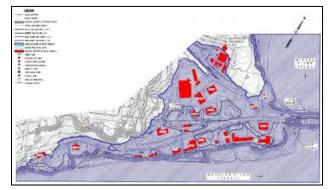


Figure 7 – Base Flood Elevation plus 4-FT

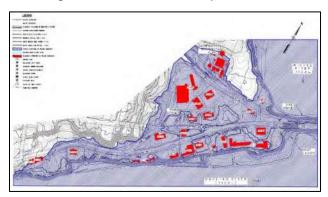



Figure 8 – Base Flood Elevation plus 6-FT

1.a. Recommended Design Height for the Seawall System

The primary goal of the seawall system is to protect property for the life of the structure. The basis for design height selection is discussed in detail in12 Section 3 Predicting Future Flood Elevations that starts on page12.

Freeboard and Sea Level Rise (SLR) are used to determine the height of the seawall protection system for Machias. Freeboard is the clearance of the seawall crest above the design flood elevation and is easily determined using standards established by FEMA. However, SLR will affect the future design flood elevation, so it is paramount to include some provision for SLR in determination of the height of the seawall. While existing FEMA determination of Base Flood Elevation is based on historical data, SLR can only be predicted by probability models.

A summary of SLR predictions for Cutler, Maine is tabulated and shown graphically in Figure 2.

Figure 9 - SLR Predictions for Cutler Tidal Station based on NOAA 2017 Model

The basis for the recommended seawall system design height selected for this study is summarized in Table 2 on the next page with the primary factors being as follows.

- A minimum freeboard² of 2-ft is required to maintain a FEMA certification for a seawall shown on the FEMA FIRM maps.
- A minimum freeboard of 3-ft is required to protect the Machias Waste Water Treatment Plant which is considered critical infrastructure in compliance with the New

² The minimum 2-ft Freeboard above BFE was selected because the flooding in this area is more influenced by coastal storm surge than riverine conditions.

England Interstate Water Pollution Control Commission TR-16 Guides for the Design of Wastewater Treatment Works.

- If properly constructed, managed and maintained, a flood protection structures will effectively have an indefinite life span. Therefore, the Seawall System design must include provision for Sea Level Rise (SLR) over the life of the structure. A minimum of 2-ft SLR has been applied to the design with the understanding that this is an 'intermediate' model prediction over the next 80 years and with the understanding that the seawall system will include some provisions to increase height during this period if higher increases in SLR occur.
- It is recognized that the lowest cost opportunity to increase future seawall height is to incorporate adaptability features into the seawall system that would allow it to be modified in the future to increase flood protection in a cost-effective manner that did not require total reconstruction. Future height adaptability to accommodate a higher SLR should be considered in final design of the seawall system.

The Concept Design developed for this report was for a seawall system that provides protection in accordance with the Tabulated elevations in Table 2 below. Protection against overtopping is BFE + 4-ft for the entire downtown area with additional protection (BFE+ 5-ft for the WWTP which is considered critical infrastructure. The Seawall System concept design includes provisions to increase the height to maintain recommended freeboard.

Flood Protection	2017 BFE		a for FEMA signated (Levee)	Pollution	ate Water n Control ion TR-16	SLR Allowance	2020 Design Seawall Ht	Futu Adapt	
	NAVD88	BFE Freeboard (FT)	Min Seawall Ht NAVD88	BFE Freeboard (FT)	Min Seawall Ht NAVD88	(FT)	(Nearest FT)	Increased SLR	Seawall Ht NAVD88
Downtown Buildings	10.7	2	12.7			2	15	2	17
WWTP (Critical Infrastructure)	11			3	14	2	16	2	18

Table 2 – Determination	of Seawall Design Height

1.b. Seawall System Design Summary and Cost

The concept design for the seawall system is illustrated in the Appendix E –Seawall System Concept Design Drawings. An overview plan is provided below. The design is discussed in detail in Section 4 Design Development of the Seawall System.

Downtown Resilience and Renewal Preliminary Engineering Study Town of Machias, Maine

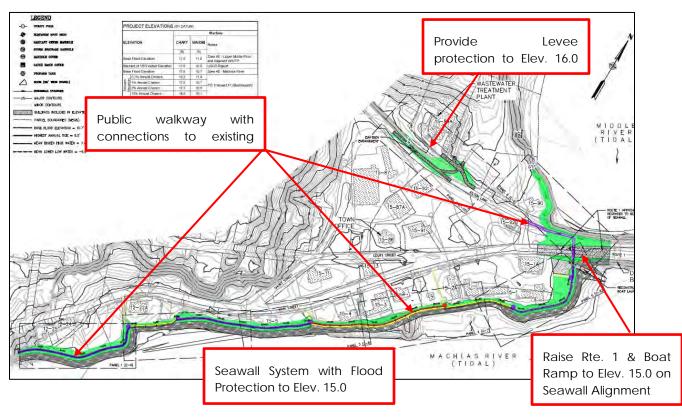


Figure 10 - Machias Downtown Seawall System Overview Plan

Three (3) distinct cross-sections combine to form contiguous elements of a perimeter flood protection system around the downtown area. One section is an earthen embankment, one incorporates a shorefront bulkhead and the third section includes an elevated timber walkway in combination with the bulkhead. In accordance with the Machias Comprehensive Plan, the seawall system is integrated with a pedestrian walkway with links to internal sidewalks within the downtown area and connections to an established and popular trail corridor that is used extensively by Town residents and visitors to the area.

The alignment for the seawall system was selected to minimize impacts to existing upland properties and to address coastal embankment erosion which extends into an intertidal area that has a history of marine development. Today, the remnants of former docks that lined the Machias River are deteriorating exposing the shorefront properties to coastal erosion. The proposed seawall system is intended to stabilize the shore. While stone armoring is used extensively as an effective measure against wave action and river scour, the seawall system is intended to include 'living shoreline' features such as plantings, vegetation and habitat restoration.

The cost for the Seawall system based on the Concept Design Drawings provided in APPENDIX E estimated to be in the range of \$11 Million Dollars. Refer to the Construction Cost Estimate provided in <u>Appendix D – Seawall System Program Costs</u>.

2. Background, Purpose, and Need

The Town of Machias is in Washington County, Maine with a historic downtown waterfront along the Machias River.

The focus of this study is the Downtown Waterfront area which includes low-lying areas on the north/west side of the Machias River downstream of Bad Little Falls, and west of the Middle River, with the Dyke on the Downstream end.

The Downtown Waterfront area has a long and storied history dating back to the 1600's that includes shipbuilding, log driving, and other water-dependent commerce that has relied on connections to the Machias River and the Gulf of Maine downstream. In more recent history, marine traffic has been limited to smaller vessels due to the construction of a fixed bridge downstream in Machiasport in 1971 with limited vertical clearances.

As a transportation corridor, this area is important locally and regionally. US Route 1 (Main Street) passes through the Downtown Waterfront area before it crosses the Dyke and continues into East Machias.

Figure 11 - Location Map of Machias, ME (Source: Town of Machias 2006 Comprehensive Plan)

Today, a range of upland uses are present in the Downtown Waterfront area that includes residential homes, commercial businesses, municipal buildings (the Town Office), and open space. The Town's Shoreland Zoning Map delineates downtown areas as General Development and Maritime, or Commercial Fisheries/ Marine Activities. These zones generally allow dense development with support for water-dependent and traditional maritime uses of the waterfront.

Downtown Resilience and Renewal Preliminary Engineering Study Town of Machias, Maine

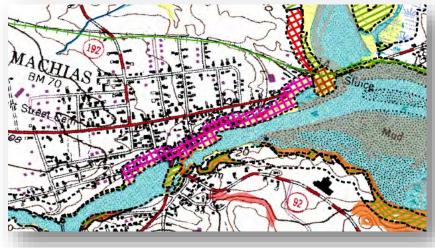


Figure 12 - Section of Machias Zoning Map

The geographical setting and development history of the Downtown Waterfront area each contribute to current flood exposure and increasing an vulnerability that will occur with sea level rise (SLR). The purpose of this study has been to evaluate current flood stage conditions, model the impact of Sea Level

Rise and to identify solutions to improve flood resiliency. The report considers each of these items in detail and concludes that a **Disaster Mitigation Plan** that includes a flood protection seawall is needed to address flood resiliency for the Downtown Waterfront Area. The outline below provides a summary of the critical findings/components of this plan:

2.a. Flood Risk

Much of the Downtown Waterfront area is located below or only slightly above the Base Flood Elevation (BFE) as established by FEMA. The location of the BFE serves as a benchmark from which to compare historical and recent flooding and defines the regulatory standards for an evaluation of current building compliance within the Town's Floodplain Management Ordinance.

It is recognized that both buildings and non-building infrastructure (roads and utilities) are currently impacted by flooding in the Downtown Waterfront area. The report presents damage estimates for costs that have occurred in recent storm events that approach the BFE and makes projections for costs associated with flooding associated with an increase in Sea Level Rise (SLR).

2.b. Bank Erosion

The immediate shoreline along the Machias Waterfront has been heavily altered during a long history of waterfront development where fill, timber cribs and wharves were used to create upland above tidal wetlands and an armored shorefront along the river. Today, there are sections where structures are deteriorating, resulting in the exposure and erosion of fill material. Stabilization is primarily needed to protect upland property and to reduce migration of fines into the coastal wetland. A secondary goal that goes beyond the scope of this study is to incorporate 'living shoreline' concepts to restore sections of the intertidal resource.

2.c. Stormwater Management

Ineffective stormwater management contributes to flooding issues in Downtown Machias. For example, low area ponding on Court Street in front of the Town Office effectively close that road to access during flood stage conditions.

An inventory of storm drain grate inlets in the Downtown Waterfront area found many to be at elevations only 1'+/- above the highest annual tide which is significantly below the BFE. Clearly, the storm water system needs to be upgraded with improvements that include backflow prevention and storage and/or pumping infrastructure to address flood stage stormwater runoff.

2.d. Critical Infrastructure (WWTP) At Risk of Flooding

The Wastewater Treatment Plant is in the Downtown Waterfront Area and is partially within a FEMA mapped Special Flood Hazard Area. Currently, the facility outfall discharges by gravity when tidal elevations are low, but during normal high water (and flood stage conditions) the outfall must be pumped to prevent back-flow through the system. Clearly, any increase in the duration or height of flooding will put greater stress on the facility.

2.e. Revitalization

The Downtown Waterfront area is ripe for revitalization, and the completion of shoreline stabilization and installation of flood protection structures provides an opportunity to extend an existing coastal trail, to create public spaces on the shore, and to improve waterfront access for recreational and commercial boating. These enhancements would serve to increase public access and interest in a beautiful setting and contribute the transformation into a vibrant downtown.

In summary, this study provides a survey and an assessment of downtown infrastructure to support flood risk and damage projections and considers a new seawall system to protect downtown Machias, along with associated improvements to stormwater and transportation networks.

3. Predicting Future Flood Elevations

3.a. Historical Data Review

The Machias River experiences fluctuations in daily and seasonal water level that are influenced by semi-diurnal tides in the Atlantic Ocean, as well as riverine conditions in the 60-mile-long Machias River that originates at Fifth Lake in T36 MD BPP.

Several sources were referenced to establish the range of potential water levels in Downtown Machias, including normal tides, storms of record, and regulatory flood elevations. Additionally, a review of recent storm surge modeling completed by Ransom Consulting Engineers (included in Appendix B) provides a candid review of potential future water levels in consideration of sea level rise, storm surge, and uncertainty with future projections.

In 2011, Maine DOT completed tidal monitoring in the Machias River just downstream of the Dyke as part of a Hydrology and Hydraulic study associated with the replacement of the Dyke Bridge. For this study, the Maine DOT data was used to establish MLLW, MLW, MHW, and MHHW elevations. The total tidal range based on this data is 14.2'.

For comparison, tidal data in Eastport and Machiasport are provided in Table 3, along with predicted tidal elevations using NOAA's online vertical datum transformation tool. The data suggest that the tidal data established by Maine DOT are appropriate.

Location	Eastport	Machiasport, Machias River	Machias River Downstream of Dyke	Machias River, Downstream of Dike
Source	NOAA Tidal Station 8410140	NOAA Tidal Station 8411467*	Maine DOT 2011 Tidal Monitoring	Predicted using NOAA VDATUM
мннw	9.34	6.44	7.40	6.88
MHW	8.86	6.11	6.50	6.46
NAVD88	0.00	0.00	0.00	0.00
MLW	-9.49	-6.55	-6.40	-6.62
MLLW	-9.93	-6.85	-6.80	-6.93
Tidal Range	19.27	13.29	14.2	13.81

Table 3 – Tidal Elevations at Machias and Nearby Locations
--

*Subordinate Station of Eastport, Tidal elevations predicted by multiplying values at Eastport by a conversion factor of 0.69.

The report "Coastal Flood of February 7, 1978 in Maine, Massachusetts, and New Hampshire" published by U.S. Geological Survey lists a water elevation of 10.8' (converted to NAVD88 from the published elevation of 11.51' in NGVD29) observed at the Sears store on Route 1.

FEMA has published a new Flood Insurance Study and corresponding Flood Insurance Rate Maps as of summer 2017. Based on the mapping for the Machias River, the Base Flood Elevation is 10.7'.

Additionally, some of the most severe coastal flooding in recent history occurred during Winter Storm Grayson on January 4, 2018. During this time, the following verified elevations were recorded or predicted at nearby tidal stations on the Maine Coast:

Location	Bar Harbor	Cutler	Eastport	Machiasport				
Winter Storm Grayson	9.07	11.06	13.46	10.5 (Estimated from Photographs ³)				
Predicted	7.33	9.33	12.37	8.54				
мннw	5.40	7.01	9.34	6.44				
Difference betw	een recorded water	elevation and:						
Predicted	1.74	1.73	1.09	1.66 to 1.96				
МННЖ	3.67	4.05	4.12	3.76 to 4.06				

Photo evidence from the Machias Downtown area during the storm event, combined with survey data from this study, show the water level to be in the range of 10.5'+/-. Localized conditions may have caused the water level to exceed the Base Flood Elevation. Several photos are shown for reference on the following page.

³ From the data that was recorded at Bar Harbor and Cutler, and the predictions for Machiasport during the corresponding tide cycle, it can be estimated that the water level in Machias likely reached an elevation in the range of 10.2' - 10.5'.

Typical Conditions

Winter Storm Grayson, Jan. 4, 2018

Machias Boat Ramp

Parking Lot Adjacent Machias River Inn

Machias River Redemption Figure 13 – 1.4.18 Winter Storm Grayson Pictures- Flooding approaches BFE

3.b. Sea Level Rise

In addition to regular tidal fluctuations, storm surge, wave action, and riverine flooding, another potentially significant factor in the future water elevations experienced in Downtown Machias is Sea Level Rise.

The plot below shows projections for Sea Level Rise at the Cutler tidal station based on NOAA's 2017 model. The plot provides a range of scenarios that can be considered, however provides no basis for assessing how likely any of these scenarios is to occur.

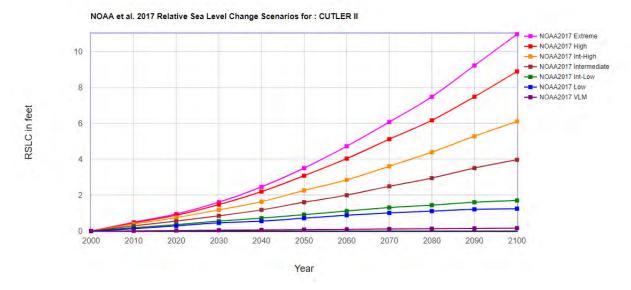


Figure 14 – SLR Predictions for Cutler Tidal Station based on NOAA 2017 Model (produced by BDC using Corps Climate Sea Level Change Curve Calculator)

In order to develop a more detailed understanding of potential future water levels that may be experienced by the Downtown Machias area, a review was completed by Ransom Consulting Engineers. This review considers the complex factors contributing to sea level rise, as well as statistical variability in mean sea level, potential storm surge events, and reasonable levels of uncertainty, to develop projected Total Water Levels at future times and at a range of recurrence intervals. This data is presented in <u>APPENDIX B-Present and Future Flood Risk</u>.

3.c. Determining Economic Losses from Future Flood Events

Flood damage assessments are traditionally tied to the BFE mapped by FEMA. The Ransom report provided in <u>Appendix B – Present and Future Flood Risk Assessment Memo</u> contains water surface elevations for various recurrence intervals that change by decade to incorporate long-term sea level rise and/or changing storm intensities (e.g., a 100-year recurrence interval has a BFE of 10.7 ft today but the 100-year recurrence interval has a BFE of 12.2 ft in 2050). Therefore, an assessment of future flood damages should consider and increase in BFE. Furthermore, an estimate of the cumulative economic losses that the proposed flood protection structures would protect against throughout their useful life would have two distinct components

• An estimate of the frequency and magnitude of flood events that may occur throughout the lifespan of the flood protection structures

тw	L in Feet			Av	erage Recurren	ce Interval (ye	ars)			
NAVD88		2	5	10	20	50	100 (BFE)	250	500	
	2020	8.3	9.5	10.1	10.7	11.3	11.7	12.3	12.7	
	2030	8.8	10.0	10.6	11.2	11.7	12.1	12.7	13.1	.7 .1 .3 .7 .0 .8 .2 .1 .1 .5
	2040	9.0	10.3	10.9	11.5	12.1	12.5	13.0	13.3	
	2050	9.3	10.5	11.2	11.8	12.4	12.9	13.4	13.7	
/ear	2060	9.5	10.8	11.5	12.1	12.7	13.2	13.7	14.0	
Future Year	2070	9.7	11.1	11.8	12.4	13.1	13.6	14.2	14.8	
Fut	2080	10.0	11.4	12.1	12.8	13.5	13.9	14.7	15.2	
	2090	10.2	11.7	12.4	13.1	14.0	14.5	15.3	16.1	
	2100	10.4	12.0	12.8	13.6	14.4	15.2	16.2	17.8	
	2110	10.7	12.3	13.2	14.0	15.0	15.9	17.4	18.5	
	2120	10.9	12.6	13.5	14.4	15.4	16.4	17.5	19.4	
		-Scenario1: Floo	od Elevation =	10.7' (Current Bl	FE)					
		- Scenario 2: Flo	od Elevation =	12.7' (Current Bl	FE + 2')					
		Scenario 3: Flo	od Elevation =	14.7' (Current B	FE + 4')					
		Scenario 4: Flo	od Elevation =	16.7+A4:J23' (C	urrent BFE + 6')					

• An estimate of economic losses resulting from these flood events.

Table 5 - Future Year Flood Water Levels (Ransom Consulting)

In the Table above, the Ransom report (located in Appendix B) is shaded to coincide with the specific flood scenarios considered for the damage assessment by the University of Maine Machias GIS Service Center. The table provides predicted water levels and average recurrence interval over for future years.

For example: if you consider a Scenario 1 event, this would be a 20 to 50-year ARI in 2020, a 10-20year ARI in 2030, a 5 to 10-year ARI in 2040-2050, and a 2 to 5 year ARI from 2060-2100. Altogether, this method would predict that you may see anywhere from approximately 12 to 30 Scenario 1 events between 2020 and 2100. A similar approach would result in a prediction of approximately 0 to 6 Scenario 3 events between 2020 and 2100.

The estimation of economic losses becomes more complicated, as you must consider not only the damages that could occur from a single flood event, but also what remedial actions may be taken after that flood event that would alter the potential for future flood damage and economic impact projections. For example, it may be that multiple severe (say, Scenario 3) flood events will

Downtown Resilience and Renewal Preliminary Engineering Study Town of Machias, Maine

occur in the next 100 years, however after the first event of this magnitude many buildings and roads that are substantially damaged would likely (hopefully) be rebuilt in a more resilient manner so the losses from future similar flood events would be lessened. On the other hand, multiple Scenario 1 storms may occur and due to the less severe nature of damages, owners may elect to repair in-kind or not at all, leaving the structures still susceptible to similar damages from future events.

There are several methods that could be used to come up with a cumulative damage estimate that could be used in a Benefit Cost analysis. These are considered beyond the scope of this study and they require more refinement in the construction cost estimate for the seawall system. That said, the comparison of damages for single storm events with the concept design construction estimate would indicate that the Benefit Cost ratio for a seawall protection system is significantly greater than 1.

3.d. Determining Economic Losses from Future Flood Events

Depth damage assessments were developed in collaboration with Dr. Tora Johnson and her students at the University of Maine at Machias GIS Service Center and Laboratory (UMM-GIS). To weigh costs of alternative designs against risks, UMM-GIS gathered best available data on flood impacts and applied best practices for mapping and science communication to estimate potential impacts for a variety of flood scenarios. The approach involved co-production of knowledge, focus on local priorities and vulnerabilities, and scaling maps and economic information to local needs.

UMM-GIS found inundation at the base flood elevation (BFE = 10.7 feet) could cause \$700,000 in damage and take two months for recovery with relatively minor ecosystem impacts. The Town had experienced two floods near BFE in recent years. With floods two or more feet above BFE---increasingly likely due to climate change--potential impacts rise dramatically: BFE plus two feet could cost \$8 million with six months recovery. BFE plus 4 feet could cost \$17 million with 11 months recovery and major impacts on shellfisheries.

Downtown Resilience and Renewal Preliminary Engineering Study Town of Machias, Maine

	6	Mashias Doumtour Duild's - Issued			Lowest Within		Inundat	tion Scenario	o (Flooding ex	ceeds level in	dicated)	
IVIa	p/Lot	Machias Downtown Building Invento	Р	roperty Value	Floor Elev	SFHA ?	Scenario 1 BFE	BFE+1-ft	Scenario 2 BFE+2-ft	Scenario 3 BFE+4-ft	Scenario 4 BFE+6-ft	
12	24	Machias Hardware		95,200.00	11.9		No	No	Yes	Yes	Yes	
12	25	Barber Shop	\$	24,300.00	16.0		No	No	No	No	Yes	
15	1A	Helen's Restaurant	\$	727,200.00	13.3	AE 10.7	No	No	No	Yes	Yes	
15	2A	Berry Vines	\$	75,800.00	14.0	AE 10.7	No	No	No	Yes	Yes	
15	2A	Rivers Edge Drive-In/Shake Pit	\$	75,800.00	11.5	AE 10.7	No	Yes	Yes	Yes	Yes	
15	11	Bluebird Restaurant	\$	283,600.00	13.3	AE 10.7	No	No	No	Yes	Yes	
15	91	US Cellular, Subway, Etc.	\$	209,000.00	10.9	AE 10.7	No	Yes	Yes	Yes	Yes	
15	92	Pellon Center	\$	216,700.00	11.9		No	No	Yes	Yes	Yes	
15	92B	Machias Bay Chamber of Commerce	\$	15,000.00	13.0		No	No	No	Yes	Yes	
15	1	Machias River Inn, East	\$	1,171,100.00	12.4	AE 10.7	No	No	Yes	Yes	Yes	
15	1	Machias River Inn, West			13.6	AE 10.7	No	No	No	Yes	Yes	
15	2	Living Innovations	\$	166,800.00	10.1	AE 10.7	Yes	Yes	Yes	Yes	Yes	
12	22A	Bar Harbor Bank & Trust	\$	209,700.00	14.08		No	No	No	Yes	Yes	
15	3	Wall's Appliance	\$	135,700.00	11.7	AE 10.7	No	No	Yes	Yes	Yes	
15	4	Irving*	\$	530,000.00	13.7		No	No	No	Yes	Yes	
15	13	Skywalker's Bar & Grille	\$	143,000.00	11.0	AE 10.7	No	Yes	Yes	Yes	Yes	
15	86	Machias Town Office	\$	134,500.00	11.14	AE 10.7	No	Yes	Yes	Yes	Yes	
15	87/87A	EBS Building Supplies, Back			12.0		No	No	Yes	Yes	Yes	
15	87/87A	EBS Building Supplies, Side	\$	137,900.00	12.1	AE 10.7	No	No	Yes	Yes	Yes	
15	87/87A	EBS Building Supplies, Main	\$	416,100.00	12.3		No	No	Yes	Yes	Yes	
15	5	Machias River Redemption	\$	43,900.00	13.51	AE 10.7	No	No	No	Yes	Yes	
15	89	Wastewater Treatment Plant	\$	1,024,800.00	16.0	AE 10.7	No	No	No	No	Yes	
15	90	Private Residence	\$	45,000.00	13.4		No	No	No	Yes	Yes	
15	85	Private Garage 13 Court St	\$	4,500.00	8.1		Yes	Yes	Yes	Yes	Yes	
15	84	Private Abandoned 15 Court	\$	14,000.00	10.1							
Notes	<u>.</u>		\$	5,899,600.00		14	2	6	13	22	24	
2 3	LAG - Lo Properti	tions are to NAVD88 Vertical Datum west adjacent finished grade next to bu es identified as "Mapped within SFHA" b	ase	d on 2017 FEMA	FIRMs for Ma	achias, ME						
4		n Town of Machias Floodplain Managen ny Corps of Engineers (Table 43) (http://v							AE Zone			

Table 6 - Machias Downtown Building Inventory impact by Flood Scenario

4. Design Development of the Seawall System

This section reviews options to provide flood protection to the Machias Downtown Area,

4.a. Flood Protection Options Considered

Coastal flood protection can be accomplished through a variety of techniques that can be summarized in the categories below. Notes on the practicality of incorporating these measures in the Machias Downtown area are provided.

• Elevate – increase the elevation of flood prone properties and/or buildings in order to reduce their effective flood risk. This will generally involve setting building elevations or finish grades above a reference flood elevation, with some additional accommodation for freeboard.

Raising the entire downtown area would require a cost prohibitive full-scale reconstruction of the urban environment with the attendant loss in character and history of the downtown.

• Floodproof – In-place floodproofing that does not reduce the risk of flooding but reduces the risk of damage associated with flooding.

Refer to the flood inundation scenarios depicted in the flood inundation scenarios on page 5, Currently, large sections of the Downtown are within a Special Flood Hazard Area (SFHA). These areas will increase significantly with sea level rise. The ability to flood proof existing buildings and infrastructure is at best, a short-term solution to flood protection.

• Permanent Flood Protection – Installation of levees or floodwalls that protect from flooding by providing perimeter protection for low-lying areas at risk of flooding.

This is the most practical long-term solution. The geographical setting of the downtown favors a perimeter seawall running along the shore to protect landward properties. The seawall will provide flood protection, stabilize an eroding shore and will support a public walkway. Providing flood protection will serve to revitalize the downtown and ensure safe passage along the major Route 1 corridor that runs through the area.

• Temporary Flood Protection – Installation of temporary flood wall panels and/or dams that can be installed in advance of a severe storm event and removed after the event is complete.

It is recommended that a permanent seawall system for Machias include some provisions for increasing the height of protection in the future. The practicality of installing temporary panels needs to be weighed against the manpower requirements, the timing required to put these measures in place and the feasibility of doing the work in winter/freezing conditions.

• Retreat – abandon a facility or location and relocate to higher ground with less flood risk.

Retreat will be necessary if a seawall system is not put into place. Relocation of the history and character of the area would not be possible.

4.b. Design Elevations (for the Project Area

A summary for key elevations that define the project area are included in the Table below. These elevations guide the design of a seawall system by providing flood and tidal parameters and are also used to establish the regulatory limits of the coastal wetland.

			Machias									
ELEVATION		CHART	NAVD88	Notes								
		(ft)	(ft)	1								
Base	Flood Elevation	17.8	11.0	Zone AE - Upper Middle River and Adjacent WWTP								
Blizza	ard of 1978 Water Elevation	17.6	10.8	USGS Report								
Base	Flood Elevation	17.5	10.7	Zone AE - Machias River								
_ s	0.2% Annual Chance	18.2	11.4									
Stillwater	1% Annual Chance	17.5	10.7	FIS Transect 41 (Machiasport)								
Stillwater Elevations	2% Annual Chance	17.3	10.5	FIS Transect 41 (Machiasport)								
ш	10% Annual Chance											
Highe	est Annual Tide	15.30	8.50	Maine DEP 2018 HAT (Machiasport, Machias River)								
MHH	W	14.20	7.40									
MHM	I	13.30	6.50									
NAV	D88	6.80	0.00	Maine DOT 2011 Tidal Monitoring Data								
MLW	1	0.40	-6.40	Dulu								
MLL\	N	0.00	-6.80									
1. BA	SE FLOOD INFORMATION T		M FEMA FL	OOD INSURANCE RATE MAP								
2. HI	GHEST ANNUAL TIDE TAKEN	FROM MA		UBLISHED PREDICTIONS								
3. TII	DAL INFORMATION TAKEN F	ROM MDOT		ED DATA								

Table 7 - Machias Downtown Elevation Table

4.c. Levee (Seawall System) Design and Accreditation Criteria

The regulations governing the certification of a levee or floodwall by FEMA are contained in 44 CFR 65.10 which includes standards for riverine and coastal conditions. The FEMA mapping for Machias presents flood elevations to the nearest decimal suggesting riverine conditions. However, the features and exposure of the Downtown Waterfront area are more representative of a coastal environment and throughout this study, it is assumed that conditions in Machias are Coastal, and the appropriate conditions apply.

Requirements for certification (for both riverine and coastal) are summarized below:

- 1. Design Requirements for levees to be recognized by FEMA include the following:
 - o Freeboard
 - Riverine conditions

A minimum of 3-ft above the water surface of the base flood with an additional 1-ft within 100-ft of structures or wherever the flow is restricted.

Coastal Conditions

No less than the greater of:

- 1-ft above the 1% wave height
- 1-ft above the 1% annual chance wave runup
- 2-ft above the Stillwater surge elevation
- o Closures
 - All openings must be provided with closure devices. This includes any penetrations in the seawall system that includes:
 - Drainage, Outfalls, vents.
 - Openings in the seawall system for use during non-flood stage conditions for access or maintenance.
- o Embankment Protection
 - Embankment must be designed so that no appreciable erosion of the embankment can be expected during the Base Flood.
- o Embankment and Foundation Stability
 - Engineering analysis of embankment and foundation stability must be submitted
- o Settlement analysis
 - An engineering assessment is required that assess the potential magnitude of future losses of freeboard as a result of levee settlement.
- o Interior drainage
 - An engineering analysis must be completed to size stormwater infrastructure (e.g. drainage lines and pumps) needed to address secondary and cumulative interior flooding that would occur during the design storm event.
- 2. Operations plans and criteria
 - For a levee system to be accredited by FEMA, a comprehensive Operations Plan is required that includes:
 - flood warning system protocol
 - provisions for levee maintenance, monitoring and management. Current and Future Water Levels
 - The plan must be officially adopted by the operator under the jurisdiction of a federal or state agency (likely to be the Maine Emergency Management Agency).

4.d. Regulatory Review/Permit Requirements

Town, State and Federal regulatory permits will be required for a flood protection system. The lead agencies are listed below together with permit considerations that have been discussed for this project. Moving forward into design development, it will be necessary to continue to engage lead and sub agencies in design development.

Town of Machias

The seawall system, stormwater improvements and public walkway will have a significant impact on downtown property within the General Development and Maritime, or Commercial Fisheries/ Marine Activities Districts and the Shoreland Overlay Districts. As a minimum, the proposed work will require Planning Board approval, a Flood Hazard Development permit and a Shoreland permit. It is anticipated that property owner and stakeholder communication and participation will be a key component of the public and municipal project review process.

Maine Department of Environmental Protection (MeDEP)

MeDEP is the clearing house for all state agencies that are concerned with the impact of the proposed seawall system on the coastal wetland and intertidal area. The work will require a Natural Resource Protection Act (NRPA) permit. A coastal wetland and wildlife assessment will be required. Wetland impacts greater than 500 SF may need to be mitigated at the discretion of the MeDEP. The seawall system outlined in the concept design drawings located in Appendix E does exceed the 500 SF threshold but stays within the area of shoreline that has been previously altered by development.

Separate permits will need to be obtained for new or modified outfalls for the Municipal Stormwater System and the Waste Water Treatment Plant.

Maine Department of Transportation

It is anticipated that the design associated with the Dyke/Route 1 improvements that are currently being considered by the Department will overlap with the Seawall System design to address the need to elevate Route I at the intersection with the seawall system so that flood protection is maintained for the Downtown Area.

US Army Corps of Engineers

A Department of the Army permit will be required for the construction program that develops. The Army Corps of Engineers has federal jurisdiction for any work that extends seaward of the highwater line. All federal agencies (Environmental Protection Agency (EPA), US Fish &Wildlife (USF&W), National Marine Fisheries and the US Coast Guard) will review the proposed development for compliance with federal Standards. Historic Preservation and Tribal Nations will have input.

It is likely that the coastal Wetland impacts will require a Public Hearing to be orchestrated by the Maine Project Office of the Army Corps of Engineers.

A joint review of the proposed seawall system design will likely be undertaken by the Army Corps and FEMA as part of the levee (seawall) certification process to make sure the design follows Federal standards

Federal Emergency Management Agency and Maine Emergency Management Agency

FEMA and MEMA will coordinate the certification review of the seawall system and the Map changes that develop.

4.e. Concept Design Development

Refer to Drawings provided in Appendix E which illustrate the proposed Seawall System, Public walkway, Boat Ramp, Route 1 Corridor Improvements, Stormwater and Outfall provisions and associated impacts to the Downtown area.

The mitigation strategy recommended by the conclusions reached in the assessments listed in #2 is a flood protection structure that will protect the downtown and the wastewater treatment plant from a Base Flood Elevation (BFE)+4 flood event. Advance Assistance is requested to complete additional fieldwork and design development to optimize the project footprint as highlighted at the start of this section. This information will be the basis for discussions with local properties on the need for Right of Way acquisition and will establish the parameters needed to develop a fully engineered design.

The Downtown area that will be protected by the proposed seawall system will benefit from a seawall system that protects current businesses and critical infrastructure (Waste Water Treatment Plant) from current and future flood events. The seawall construction will also address existing coastal erosion associated with sections of unstable shore and will incorporate a public waterfront walkway that will connect with an existing trail network for the enjoyment of the public. The sum of the improvements will serve to increase the economic vitality and interest in the downtown area.

5. Next Steps to Move the Project Forward

The next steps needed to move the flood protection project beyond concept design for the Machias Downtown is discussed in this section.

The tasks, timeline and estimated cost for this work is summarized in the Table below and has been used as the basis for a **Pre-Disaster Advance Assistance** grant application to FEMA. Getting the grant maintain the project momentum. With a successful grant award, A Request for Proposals will be issued to obtain the services of a qualified engineering consultant team.

Pre-Disaster Mitigation	Tow	n Contribu	tion	Consultant	Progra	m Cost					Т	imeli	ine (n	nontl	hs)						
Cost Breakdown & Timeline by Task	Staff/UMM	Materials	SHIP	Services	Task	Summary	1 2	3 4 5	67	89	10	11 1	2 13	14 1	5 16	17 1	8 19	20 3	21 22	23 2	4 25
Project Management						\$ 16,300															
Consultant RFP; Grant Monitoring;	\$ 1,500				\$ 1,500																
Program Coordination/Management	\$ 4,800			\$ 10,000	\$ 14,800																
Field Investigation						\$ 60,000															
Coastal Wetland Survey				\$ 15,000	\$ 15,000																
Geotechnical Investigation				\$ 30,000	\$ 30,000																
Survey Support				\$ 15,000	\$ 15,000								mm								
Coastal Protection System Design De	velopment					\$138,962															
Concept Design & Alignment Review				\$ 10,000	\$ 10,000																
Seawall Footprint Assessment/Optim	ization			\$ 10,000	\$ 10,000																
Public Walkway Parameters				\$ 2,500	\$ 2,500																
MDOT Route 1 Coordination				\$ 5,000	\$ 5,000																
Boat Ramp Design (SHIP Program)	\$ 2,160	\$ 9,503	\$ 66,800	\$ 14,000	\$ 92,462																
Living Shoreline Opportunities	\$ 1,000			\$ 3,000	\$ 4,000																
Value Engineering and Cost Benefit A	nalysis			\$ 15,000	\$ 15,000						TIM		mm								
Stormwater/Waste Water Treatmen	t Plant Asse	ssment				\$ 15,000															
Existing Network Infrastructure				\$ 5,000	\$ 5,000																
Pump System & Outfall Location				\$ 10,000	\$ 10,000							Ш									
ROW Acquisition						\$ 15,000									M						
Landowner Outreach/Education				\$ 5,000	\$ 5,000																
Easement Negotiation				\$ 10,000	\$ 10,000										M						
Regulatory Permitting						\$ 13,000															
Town of Machias	Pern	nit Fees Wa	ived	\$ 3,000	\$ 3,000																
Maine DEP				\$ 5,000	\$ 5,000																
Army Corps of Engineers				\$ 5,000	\$ 5,000																
Construction Phase Preparation						\$ 34,200															
Design Build Documents				\$ 31,200	\$ 31,200																T
2020 FEMA Grant Application				\$ 3,000	\$ 3,000																
Total	\$ 9,460	\$ 9,503	\$ 66,800	\$ 206,700	\$ 292,462	\$292,462															
	\$ 85,762	29%				\$ 292,462															
PROJECT FUNDING			NOTES																-	\square	+
FEMA Pre-Disaster Mitigation Grant	\$200,000		1. Project	Funding dep	endent on p	ending Sma	ll Harbo	or Improv	ement	Progra	am (S	SHIP)	gran	t con	sider	atior	with	n Mai	neDC	ЭT.	
25% Town Match (SHIP Funds)	\$ 73,116	\$92.462	2. SHIP fu	nding progra	m is 100% f	unded by th	e State	of Maine	e with i	no fed	eral f	fund	supp	ort.							
SHIP Balance	\$ 19,347	ş92,4o2	3. The Sch	edule may ne	eed to be ac	ljusted once	the gra	ant is awa	rded a	s it is r	not p	ractio	cal to	con	nplete	e son	ne ele	emer	its of	field	
Total	\$292,462																				
			4. Timelin	e extensions	to Task Ite	ms indicate l	built in	flexibility	to acc	ommo	date	e time	e dela	iys.							
			5. Task ite	em costs are	based on be	est available	inform	ation. Re	balanc	ing wi	th ne	ew inf	orma	ation	is an	ticipa	ated.				

Table 8 - Next Steps Summary- Tasks, Timeline, And Cost

5.a. Field Investigation

Undertake an assessment of environmental impacts associated with the concept design footprint by wetland scientists and wildlife biologists to provide the basis of an environmental

assessment. Include an assessment of site opportunities and habitat potential for coastal stabilization using living shoreline techniques.

Complete an investigation of subsurface conditions to obtain the parameters necessary to analyze the quality and depth of native soils, the presence and quality of fill material, subsurface permeability, groundwater infiltration, bearing capacity and settlement to mitigate seawall structure behavior and performance.

Review the presence and extent of historical cribwork structures that were constructed to define the waterfront.

5.b. Coastal Protection System Design Development

Complete seawall and walkway alignment optimization to achieve regulatory requirements for 'avoidance' and 'minimization' of resource impacts and to support stable embankment construction that addresses existing coastal erosion.

The concept design is based on providing a FEMA certified flood protection structure with an elevation of BFE +4-ft (BFE + 5-ft for the Waste Water Treatment Plant). While fully reasoned and based on detailed topographic survey, predictions for sea level rise and thorough analysis of damage assessments for several flood scenarios, the concept design has been based on limited fieldwork. It is important to take a step back once the fieldwork has been completed to confirm the optimum seawall/levee crest elevations together with a review of the cost benefit analysis that develops with further design.

Prepare Maintenance Plan and Operation Criteria for seawall certification.

5.c. Stormwater/Wastewater System Assessment

Evaluate the existing Stormwater and Waste Water Treatment Facility piping network to determine requirements to upgrade collection, storage and outfall infrastructure with consideration of a perimeter seawall.

Determine the design basis for a pump system to operate in conjunction with the seawall in periods of flooding.

5.d. ROW Acquisition

Review the impact of new construction with local property owners to convey an understanding of the benefits of seawall (flood protection, coastal erosion control, shorefront walkway).

Continue one-on-one contact with affected landowners,

Identity impacts to property frontage and Right of Way acquisition.

5.e. Regulatory Permitting

Meet with Local, State and Federal regulatory representatives to discuss regulatory permit requirements for the project.

File applications with property owner and stakeholder support.

5.f. Construction Phase Preparation

Prepare Design-Build bid documents and support grant applications for a future construction phase. These documents, together with project permits provide the parameters needed for final design and construction of the seawall system. The Design-Build method of project delivery will allow the successful team to tailor the project to respective equipment and personnel expertise to achieve a certified seawall system.

Appendix A – References

- 1. Project Documentation
 - a. Public Forum Notices/Presentations/Meeting Minutes- APRIL 9, 2018; June 11, 2018; JUNE 27, 2018; September 17, 2018; October 15, 2018
- 2. Beginning with Habitat Mapping (BWH) -https://www.beginningwithhabitat.org/the_maps/.
 - a. Data Sets for Machias Maine
 - i. Map2 -Rare, Threatened and Endangered Wildlife, Rare or Exemplary Plants and Natural Communities; Essential Wildlife Habitats; Significant Wildlife Habitats; Atlantic Salmon Spawning/Rearing Habitat: 2018.
 - ii. Shape Files- Tidal Marshes.
- 3. Federal Emergency Management Agency (FEMA).
 - a. Code of Federal Regulations
 - i. Title 44, Chapter 1, Section 65.10 (44 CFR 65.10); "Mapping of areas protected by levee systems."
 - b. Flood Insurance Studies (FIS)
 - i. Washington County Maine; Vol 1 of 1; Effective 18Juy 2017.
 - ii. Machias Maine- Community Number 230140; 11.18.1988.
 - c. Flood Insurance Rate Maps- (FIRMS)
 - i. Washington County Maine; PANELS 1627 & 1629 of 2075; Machias Town of- 230140; Version No. 2.2.2.1 Map Nos. 23029C1627E/23029C1629E; Effective 18Juy 2017.
 - ii. Town of Machias Maine; Washington County; Community Number 230140; 11.18.1988.
 - d. Guidelines, Memorandums and Fact Sheets
 - i. Meeting the Criteria for Accrediting Levee Systems on NFIP Flood Maps; How to guide for Floodplain Managers and Engineers; Nov 2008.
 - ii. LEVEE MAPPING- COMPLYING WITH 44 CFR 65.10; Oct 2012.
 - iii. FEMA Coastal Flood Hazard- ANALYSIS AND MAPPING GUIDELINES; Feb 2005.
- 4. GROWashington-Aroostook
 - a. Climate Vulnerability Assessment for Washington County; University of Maine at Machias GIS Service Center; Washington County Council of Governments; June 2014.
- 5. Maine Department of Transportation
 - a. WIN 16714 Machias Dyke Bridge #2226- Replacement Alternatives
 - i. Bridge Inspection Reports.
 - ii. Existing Bridge Plans
 - iii. Alternatives Matrix

- iv. Geotechnical Logs and Grain Size Distribution Curve; BB-MMR-101; BB-MMR-101A; 11.4.2014.
- v. Historic Bridge Inventory and Management Plan.
- vi. HYDROLOGIC ANALYSES AND ALTERNATIVES EVALUATIONS, DYKE BRIDGE AND STRIDE BRIDGE, MIDDLE RIVER, MACHIAS, MAINE; Stantec; 6.30.2015.
- vii. Preliminary Public Meeting; Machias Dyke Bridge #2246 (Route 1 over Middle River).
- 6. Maine Flood Management Program.
 - a. UPDATES TO COASTAL FLOOD INSURANCE RATE MAPS: WHAT A LOCAL OFFICIAL SHOULD KNOW; Presentation by Jennifer Curtis; Sept 2016
- 7. Maine Geological Survey
 - a. A SUMMARY OF CLIMATE CHANGE TRENDS, SEA LEVEL RISE, AND SOME HIGHLIGHTED LOCAL EFFORTS TO ADDRESS VULNERABILITY OF TRANSPORTATION INFRASTRUCTURE; Presentation to Maine DOT; 1.28.2014.
 - b. Maine Sea Level Rise Storm Surge Scenarios 2018 -Spatial Datasets; https://mgsmaine.opendata.arcgis.com/datasets/maine-sea-level-rise-storm-surge-scenarios
- 8. Maine Interagency Climate Adaptation Work Group (MICA)
 - a. MAINE PREPARES FOR CLIMATE CHANGE; MICA; Jan2018 Update
- 9. National Society of Professional Engineers (NSPE)
 - a. NSPE Position Statement (No. 07-1771- FEMA Levee Certification; July 2018.
- 10. New England Interstate Water Pollution Control Commission
 - a. TR-16 GUIDES FOR THE DESIGN OF WASTEWATER TREATMENT WORKS; May 2016.
- 11. NOAA CHART 13326- Machias Bay to Tibbett Narrows.
- 12. Ransom Consulting
 - a. PRELIMINARY FLOOD RATE INSURANCE MAPS INITIAL REVIEW; 24Feb2017; Memo to Town of Machias 24Feb 2017.
 - b. MACHIAS FLOOD RESILIENCE STUDY, PRESENT AND FUTURE FLOOD RISK; 24Feb2017; Memo to Baker Design Consultants; 24Sept 2018. Refer to Appendix B.
- 13. Town of Machias
 - a. Machias Downtown and Riverfront Master Plan; Coplon Associates; 7.15.2009.
 - b. Town of Machias Shoreland Zoning Map.
 - c. Ordinances
 - i. Flood Hazard Development Ordinance
 - ii. Floodplain Ordinance
 - iii. Shoreland Zoning Ordinance.
 - d. Olver Associates Inc. Environmental Engineers; Winterport, Maine.
 - i. Machias Pollution Control Facility; Town of Machias; Peak Flow Upgrade Project; Oct 2013

- 1. Sheet C-2 Proposed Site Plan
- 2. Sheet C-4 Proposed Outfall Sewer Plan
- 3. Sheet C-7 Sewer Plan and Profile
- 4. Sheet C-8A Main St (US Route 1) Services & Court St Sanitary Sewer Plan & Profile
- 5. Sheet C-9 Main St (US Route 1) Sanitary Sewer Abandonment Plan & Profile
- ii. East Side Sewer Extension- Phase I; Oct 2013
 - 1. Sheet C-1 Sanitary Sewer Plan & Profile.
 - 2. Sheet C-2 Sanitary Sewer Plan & Profile.

14. US Army Corps of Engineers (ACOE)

- a. Machias River Federal Navigation Project
 - i. Map; MACHIAS RIVER ME; 9.30.1976; Showing limits of FNP.
 - ii. Narrative Description of Machias River Federal Navigation Project- Author Unknown.
- b. Design Manuals
 - i. EM 1110-2-1913; DESIGN AND CONSTRUCTION OF LEVEES; Engineering and Design; 4.30.2000.
 - ii. EM 1110-2-2502; RETAINING AND FLOOD WALLS; Engineering and Design; 9.29.1989.
 - iii. EC 1110-2-6067; USACE PROCESS FOR THE NATIONAL FLOOD INSURANCE PROGRAM (NFIP) LEVEE SSTEM EVALUATION; Engineering and Design; 8.31.2010.
- c. Technical Reports
 - i. CERC-89-15; CRITERIA FOR EVALUATING COASTAL FLOOD PROTECTION STRUCTURES; Dec 1989.
- d. Presentations
 - i. Levee Accreditation for the NFIP; 11.2.2015 15; Presentation with FEMA.
 - ii. Upcoming Changes for EM 1110-2-1913 Design Construction and Evaluation of Levees; 11.3.2015.
- e. Condition Surveys
 - i. MEMO; RESULTS OF MACHIAS RIVER SURVEY; CENAE-EP-DS(11-2-240a); 5.12.2005.
 - ii. SHEETS V-1/V-2; MACHIAS RIVER CONDION SURVEY 4-FT CHANNEL; 5.7.2005.
- 15. US Environ mental Protection Agency (EPA)
 - a. EPA 817-B-14-006; FLOOD RESLILIENCE- A Basics Guide for Water and Wastewater Utilities; Sept 2014.
- 16. U.S. Geological Survey
 - a. Coastal flood of february 7, 1978 in Maine, Massachusetts, and New Hampshire".

Appendix B – Present and Future Flood Risk Assessment Memo

a. MACHIAS FLOOD RESILIENCE STUDY, PRESENT AND FUTURE FLOOD RISK; 24Feb2017; Memo to Baker Design Consultants; 24Sept 2018