NOAA Lidar Contours for Drainage Design - ORD

- 1. Request Contour data from NOAA Data Access Viewer.
 - a. NOAA's data access viewer has aerial LiDAR data for the vast majority of the state of Maine. The data can be viewed at <u>NOAA: Data Access Viewer</u>.

DATA A	ACCESS V	IEWER
	owered by DIGITAL COA	डर
	Choose a Data Type to Explore	
Imagery	Land Cover	Elevation/Lidar

For the purpose of drainage design, the relevant data can be found by clicking on the "Elevation/Lidar" button. From here, you are directed to a map of the US. Anything shaded in orange falls within the available database from NOAA.

- b. From within this window, you can search in the address bar at the top left by address or latitude/longitude, or you can simply zoom to the extent that you wish to view.
- c. Once you've found your project location, select the draw button next to the address bar and draw a polygon around the area of interest.

Make sure to select enough area that the full drainage areas can be drawn on the contours – otherwise you'll be running through this process again

Also, if your project is longer or has a large drainage basin, you may want to divide your lidar request into two or three sections to reduce the chance of creating a file that is large and cumbersome for ORD to load.

d. The polygon automatically generates a list of available data on the right side of the screen. **DO NOT SELECT BULK DOWNLOAD!** Instead, click the icon featuring the shopping cart to the right of the desired data set.

e. With the desired set(s) in your cart, you can now click to view your shopping cart at the top right of the screen.

f. From here, verify that the correct data set(s) are in your cart and click next. This will direct you to a page where data selection occurs.

			Help
Lidar			
Link to December 2021 new outpu	it products information.		
Projection & Datum Options:			
Projection:		Zone:	
State Plane 1983	~	Zone 1802 Maine West	~
Horizontal Datum:		Horizontal Units:	
NAD83	~	U.S. Feet	~
Vertical Datum:	What's this?	Vertical Units:	
NAVD88	~	Feet	~
Output Options:			
Output Product:	What's this?	Output Format:	What's this?
Contour	~	Contour - DXF	~
Contour Format:	What's this?	Interval:	
Interval	~	(2)	
		Feet	
Data Options:			

For the purposes of drainage design, the Horizontal Units should be changed to "U.S. Feet", the Output Product should be changed to "Contour", the Output Format should be changed to "Contour-DXF", and you can set your desired contour interval, which will likely be 2 feet. Also note which zone your data will be in: Maine West or Maine East. This will be needed for step 3. With these set, click "Next" at the bottom of the screen.

- g. At the next page, simply enter and confirm the email address to which you want the data sent then click "Next" at the bottom of the screen. This brings you to a verification page, summarizing the option you selected from the previous step. If all looks correct, click "Submit" at the bottom of the screen. Once submitted, you will shortly receive a confirmation email that your request has been received. Typically, within 15 minutes (depending on traffic at the website) you will receive another email with your data packet. Your data package will be zipped and require extraction. Extract the data to a known location, typically within the project file. You are mostly interested in the .dxf file.
- 2. Create required DGN for Drainage Areas
 - a. Use Create DGNs as needed to create a Highway Drainage_Areas file. This is the file where we will reference in our contours and draw drainage areas for flow calculations
 - b. Once open, check that the appropriate references are referenced in
 - i. This includes topo, alignments, highway, drainage, contours, and any other working files that may influence drainage design.

MaineDOT 11/7/24

c. Turn off all references and add the appropriate geographic coordinate system to the file. *Note that the State of Maine uses *three* geographic zones and the correct one needs to be selected for the Drainage_Areas file (See Mapviewer for designation at project location). NOAA only recognizes *two* geographic zones and the converted contour file (step 3) needs to use the one listed in MyCart from step 1f.

Go to Utilities Tab -> Geographic -> Coordinate System. Then turn your references back on.

- d. Now that you have a file with a global coordinate system and the DXF file from your NOAA email, you can create a useable contour file for reference.
- 3. Convert DXF file into a useable DGN
 - a. Open the DXF file in ORD
 - b. Before you do anything else, Select File -> Export -> 2D
 - i. A 'Save 3D to 2D' window will pop up showing the name of the file and the location it is being saved to as well as File Type (V8 Design File [*.dgn]

	Save SD as 2D		
	Directory	Directories:	
<	18_19_crownOfMaine_Job1091188_2D.dgn	\Fort Kent 26025.00\NOAA Lidar Contour Data\	
	2018_19_crownOfMaine_Job1091188_2D 2018_19_crownOfMaine_Job1091189_2D	 R:\ Region0 Highway Public Scommon-Highway Team North For Kent 26025.00 NOAA Lidar Contour Data 	
	< >	OK	-
$\left(\right)$	List Files of Type:	Drives:	

- c. Open the newly created DGN.
- d. Set the geographic coordinate system to match that chosen by NOAA Step 1f:

Select desgraphic coordinate system	
Library Search	
Favorites	Coordinate
MDOT	Name
Maine East Feet - NAD 1983 / Maine East(1801)	Description Projection
Maine West - NAD83 / Maine West (1802)	Source
ME2K Central 2007 - NAD83(2007) / Maine 2000 Central	Units Control Mariali
ME2K Central 2007 F - NAD83(2007) / Maine 2000 Central	Central Meridi

e. Here is the key step to all of this: When the "coordinate system changed" warning pops up, you need to select the 2nd option to change the storage units from inch to survey foot.

📷 Geographic Coordinate System Changed		\times
į)	The units of Geographic Coordinate System Maine West Feet are Survey Foot, but the Storage Units in the model are Inch. Please review the units used in the source data for this design.	
0	The graphic elements are correctly drawn in Inch. The storage units should not be changed.	
Change the storage units in the model from Inch to Survey Foot to match the Geographic Coordinate System. The physical size of graphic elements will be changed.		
	<u>O</u> K Cancel	

Check the survey units: Settings –> File -> Design File –> Working Units Sometimes the converted data from NOAA will be in survey inches and sometimes in survey feet. Which won't matter too much for drawing areas unless you're trying to read a contour elevation and see 8448 instead of 704.00.

- Move the converted 2D contour file into the appropriate sharepoint project folder.
 *Recommend colorizing every 5th contour (5' or 10' line) for ease of analysis. Go to level manager and select contour level by name (which is elevation) and change the color. Traditionally it has been green #3 but can be whichever you choose.
- 5. Reference this file into your Highway Drainage_Areas file.
 - a. Go to Add Reference -> Select Contour File -> Geographic Reprojected as reference type
- 6. If you want to check, you can export the contour file to a Google Earth KML/KMZ file.
 - a. Go to Utilities Tab -> Geographic -> Export Google Earth File

MaineDOT 11/7/24

Note: In some instances, exporting to Google Earth can show a slight shift in the data. This is usually due to the fact that your project vertical datum doesn't match that of the Google Earth datum, and thus is floating up in space, giving the illusion of a shift. One way to fix that visual is to select File -> Export -> 2D, create a 2D drawing of the contours, and export that DGN to a KML/KMZ. The 2D drawing will be forced to drape onto the Google Earth surface and it should look pretty close.

*<u>Once Drainage Areas are drawn</u> – You can export the area shapes to a google earth file to determine the land covers more easily within each area. Or use the Aerial Reference dgn if it exists for your project.