

REPORT

Preliminary Geotechnical Data Report - Addendum 1

Interstate 95 Bridges 1427 and 5800 over Stillwater Avenue, Bangor, Maine (WIN 027176.00)

Submitted to:

Maine Department of Transportation

Submitted by:

WSP USA, Inc. 428 Dow Highway Eliot, Maine 03903

207.865.4024

WIN 027176.00 / WSP US0025840.3905

January 30, 2025

Table of Contents

1.0	INTRODUCTION	1
2.0	BORING PROGRAM	1
3.0	LABORATORY TESTING PROGRAM	2
4.0	SUBSURFACE CONDITIONS	2
5.0	REPORT AND EXPLORATION LIMITATIONS	3

TABLES (embedded)

Table 3-1: Number and Type of Laboratory Tests Performed2	
Table 4-1: Summary of Subsurface Fill and Soil Encountered in 200-series Borings	

TABLE (attached)

Table 1: Summary of Subsurface Explorations

FIGURES (attached)

Figure 1: Site Location Plan

Figure 2: Boring Location Plan

APPENDICES

APPENDIX A Boring Logs

APPENDIX B Laboratory Testing Results

1.0 INTRODUCTION

This Addendum 1 to the Preliminary Geotechnical Data Report (PGDR) summarizes the results of an additional geotechnical subsurface investigation and laboratory testing program of site soils that WSP USA Inc. (WSP) performed to support the replacement of Bridge No. 1427 & No. 5800 that carries Interstate 95 (I-95) over Stillwater Avenue in Bangor, Maine. Figure 1 (attached) shows the site location. The goal of this additional investigation was to identify the potential presence of compressible clays in areas not previously evaluated as discussed in the Preliminary Geotechnical Data Report.¹

2.0 BORING PROGRAM

WSP completed four (4) borings (BB-BSA-201, BB-BSA-202, BB-BSA-203, and BB-BSA-204) within the median of I-95 northbound and southbound on either side of Stillwater Avenue on December 16 and December 17, 2024. The boring locations with respect to existing site features are illustrated in the Boring Location Plan in Figure 2 (attached).

The boring program included Standard Penetration Testing (SPT) of fine-grained and coarse-grained soils. A WSP geotechnical engineer monitored drilling activities, selected sampling intervals, logged subsurface conditions encountered, and obtained soil samples for use in visual descriptions and subsequent laboratory testing and classification.

WSP subcontracted Seaboard Drilling, LLC (Seaboard) of Bangor, Maine, to complete the borings. Borings BB-BSA-201, -202, and -203 were advanced using hollow stem augers with continuous SPT sampling to a depth of 4.5 feet to 14.0 bgs. BB-BSA-204 was advanced using solid stem augers to a depth of 10 feet bgs and then with driven casing and wash boring methods to a depth of 19 feet bgs with continuous SPT sampling between 10 feet and 19 feet bgs.

SPT was performed using a calibrated automatic hammer system and standard 2-inch split spoon sampler in general accordance with American Society for Testing and Materials (ASTM) D1586. Sampling was conducted continuously, where split spoons were advanced 24 inches with a 140-pound hammer dropped 30 inches. WSP recorded the number of hammer blows required to advance the sampler through each 6-inch increment. Measured, uncorrected N-values, calculated as the sum of the hammer blows to advance the sampler during the 6-inch to 12-inch and 12-inch to 18-inch penetration intervals. WSP used a calibrated hammer energy transfer ratio of 98.5% provided by Seaboard² to covert the measured N-values to N₆₀ values. Uncorrected N-values and N₆₀ are shown on the boring logs (Appendix A). WSP collected and stored soil samples in sealed glass jars for later evaluation and laboratory testing.

The boring logs provided in Appendix A present details of the sampling methods used, field data obtained, and soil conditions encountered during the investigation. A description of the boring log symbols and terms used for the soil descriptions precedes the boring logs. A WSP geotechnical engineer monitored drilling activities, selected sampling intervals, logged subsurface conditions encountered, and obtained soil samples for use in visual descriptions and subsequent laboratory testing and classification WSP field characterized the soils in general accordance with ASTM D2488.

¹ WSP USA, Inc., Preliminary Geotechnical Data Report REV01, Interstate 95 Bridges 1427 ad 5800 over Stillwater Avenue, Bangor, Maine (WIN 027176.00), Submitted to Maine Department of Transportation, November 4, 2024.

² SPT Energy Calibration Report prepared for Seaboard Drilling. LLC by GRL Engineers, Inc., Dated October 23, 2024.

3.0 LABORATORY TESTING PROGRAM

After reviewing the collected samples in the office, WSP transferred select samples to GeoTesting Express (GTX) of Acton, Massachusetts for geotechnical laboratory testing in accordance with applicable AASHTO and ASTM testing procedures. The types and numbers of each of the laboratory tests conducted on soil samples are presented in Table 3-1. Soil testing results are included on the boring logs in Appendix A. Complete soil and rock laboratory testing results are provided in Appendix B.

Table 3-1: Number and Type of Laboratory Tests Performed

Laboratory Test	Test Standard	No. Tests Completed
Grain size analysis (sieve & hydrometer)	AASHTO T88, ASTM D6913 / ASTM D 7928	7
Atterberg limits	AASHTO T89 / T90, ASTM D4318	7

4.0 SUBSURFACE CONDITIONS

The boring logs in Appendix A provide detailed descriptions of the soil and measured groundwater conditions encountered in the borings.

Soils: The soils encountered in the borings generally consist of fill materials placed during construction of the bridge and roadway and naturally occurring sand deposits, clay deposits, and sand and gravel interpreted as glacial till. These units are discussed in more detail in the PGDR¹. Table 4-1 summarizes the major stratigraphic units, the range of thicknesses, and generalized material descriptions for soils encountered in this addendum to the preliminary geotechnical investigation.

Stratigraphic Unit	Approximate Range in Encountered Thickness (feet)	Generalized Description ¹
Topsoil	0.2 to 0.3	Topsoil (<i>Encountered in all borings</i>)
Sand	0.3 to 2.0	Brown, dry, medium dense, fine to medium silty SAND, little fine gravel. USCS: SM. AASHTO: A-2-4 <i>(Encountered in BB-BSA-203)</i>
Silt, Clay	4.3 to 11.7	Grey to brown to olive, wet to moist, very stiff to hard, Silty CLAY, trace fine sand USCS: CL. AASHTO: A-6 (13, 14, 15, 16, 17, 18) <i>(Encountered in BB-BSA-201, -202, -203, and -204)</i> Grey to brown to olive, wet to moist, very stiff to stiff, Clayey SILT, trace fine to medium sand <i>(Encountered in BB-BSA-202 and -204)</i>

Table 4-1: Summary of Subsurface Fill and Soil Encountered in 200-series Borings

Stratigraphic Unit	Approximate Range in Encountered Thickness (feet)	Generalized Description ¹
Glacial Till	6.0 to 7.0 ²	Grey to brown, wet, very dense to medium dense, fine to medium silty SAND, fine to coarse gravel, trace clay, interbedded with coarse sand seams. USCS: SM. AASHTO: A-4 <i>(Encountered in BB-BSA-201, -203, and -204)</i>

Notes:

1. USCS classification from laboratory testing in accordance with ASTM D2487. AASHTO classification from laboratory testing and includes Group Classification and Group Index in parentheses in accordance with AASHTO M145. 2. Borings terminated within this layer.

Groundwater: Groundwater was encountered at the ground surface in BB-BSA-201 and BB-BSA-202 (EL 139.8 feet and EL 140.2 feet, respectively). Groundwater levels were measured in BB-BSA-203 and BB-BSA-204 at 11.1 feet bgs (EL 125.6 feet) and 4.2 feet bgs (EL 122.6 feet), respectively. Groundwater was measured before the augers or casing was withdrawn at the time the boring was completed. Groundwater levels encountered at the time of drilling may have been influenced by the drilling methods used and will also fluctuate due to soil conditions and topography and seasonal variations in precipitation. Groundwater levels encountered during construction may differ from those recorded from the borings.

5.0 REPORT AND EXPLORATION LIMITATIONS

This Addendum to the Preliminary Geotechnical Data Report (PGDR) was prepared for the use of MaineDOT for the replacement of I-95 Bridge No. 1427 & Bridge No. 5800 over Stillwater Ave in Bangor, Maine. The professional services provided by WSP for this project include only the geotechnical aspects of the subsurface conditions at this site. The presence or implications of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from offsite sources are outside the terms of reference for this report and have not been investigated or addressed.

Signature Page

WSP USA, Inc.

lelist ane

Melissa E. Landon, PhD, PE Lead Consultant, Geotechnical Engineering

Jul

Jeffrey D. Lloyd, PE Assistant Vice President, Geotechnical Engineering

DEB/MEL/JDL

https://wsponlinenam.sharepoint.com/sites/us-win02609500/shared documents/06 deliverables/stillwater supplemental data report/hntb stillwater ave bangor win 027176.00 wsp pgdr addendum 1.docx

TABLE

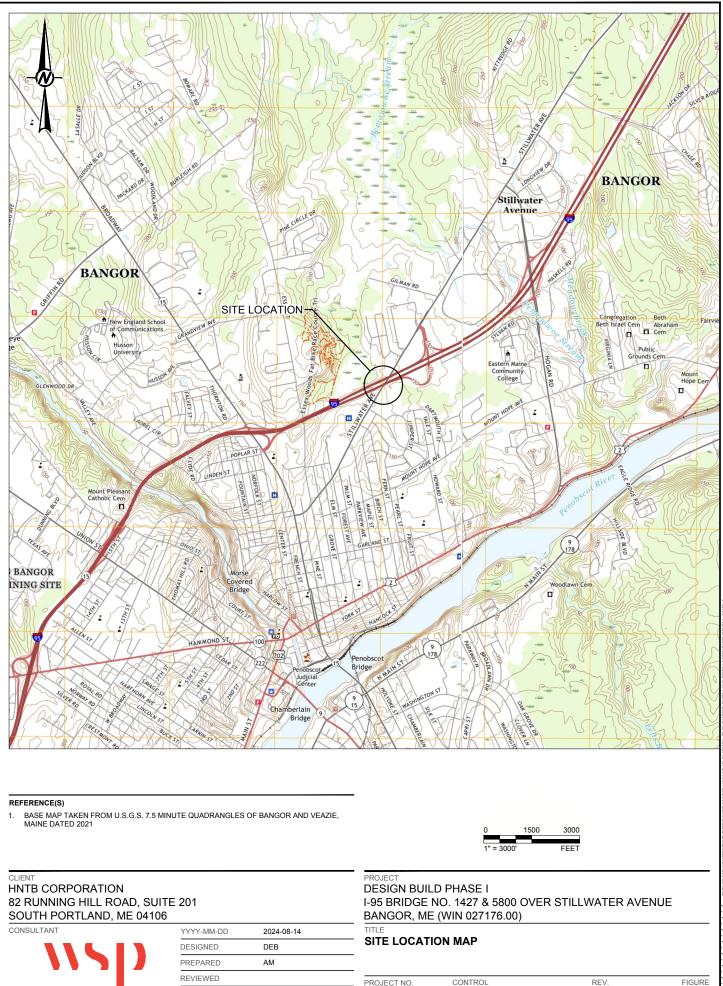
Table 1: Summary of Adddendum Subsurface Exploration Prelimimary Geotechnical Data Report - Addendum 1 MaineDOT I-95 Bridge Over Stillwater Avenue, Bangor, Maine MaineDOT WIN 027176.00

		As-Drilled			Approximate Strata Thickness (feet)							Approximate	Approximate	Approximate	
									Approximate Top of Bedrock Depth	Elevation of Top of Bedrock	Bottom of Exploration Depth (ft)	Elevation of Bottom of Exploration			
	Test Boring No. ^{1,2,3}	Northing ⁴	Easting ⁴	(feet NAVD88)	Asphalt	Top Soil	Fill	Sand	Silt, Clay	Glacial Till	Weathered Bedrock	(feet bgs ⁵)	(feet NAVD88)	(feet bgs ⁵)	(feet NAVD88)
an	BB-BSA-201	482953.13	1735654.60	139.8	NE⁵	0.2	NR^{6}	NR^{6}	7.8	3.3	NR ⁶	11.3	128.5	11.3	128.5
Median	BB-BSA-202	482904.38	1735517.56	140.2	NE⁵	0.2	NR^6	NR^{6}	4.3	0.0	NR^{6}	4.5	135.7	4.5	135.7
I-95 N	BB-BSA-203	482750.75	1735245.03	136.7	NE⁵	0.3	NR^6	1.7	6.0	6.0	NE⁵	NE⁵	NE⁵	14.0	122.7
<u> </u>	BB-BSA-204	482665.46	1735086.35	126.8	NE⁵	0.3	NR^{6}	NR^6	11.7	7.0	NE⁵	NE⁵	NE⁵	19.0	107.8

Notes:

1. Boring locations are shown in Figure 2 - Boring Location Plan of the Preliminary Geotechnical Data Report Addendum 1

2. 200-series Borings were performed by Seaboard Drilling, LLC in December, 2024.

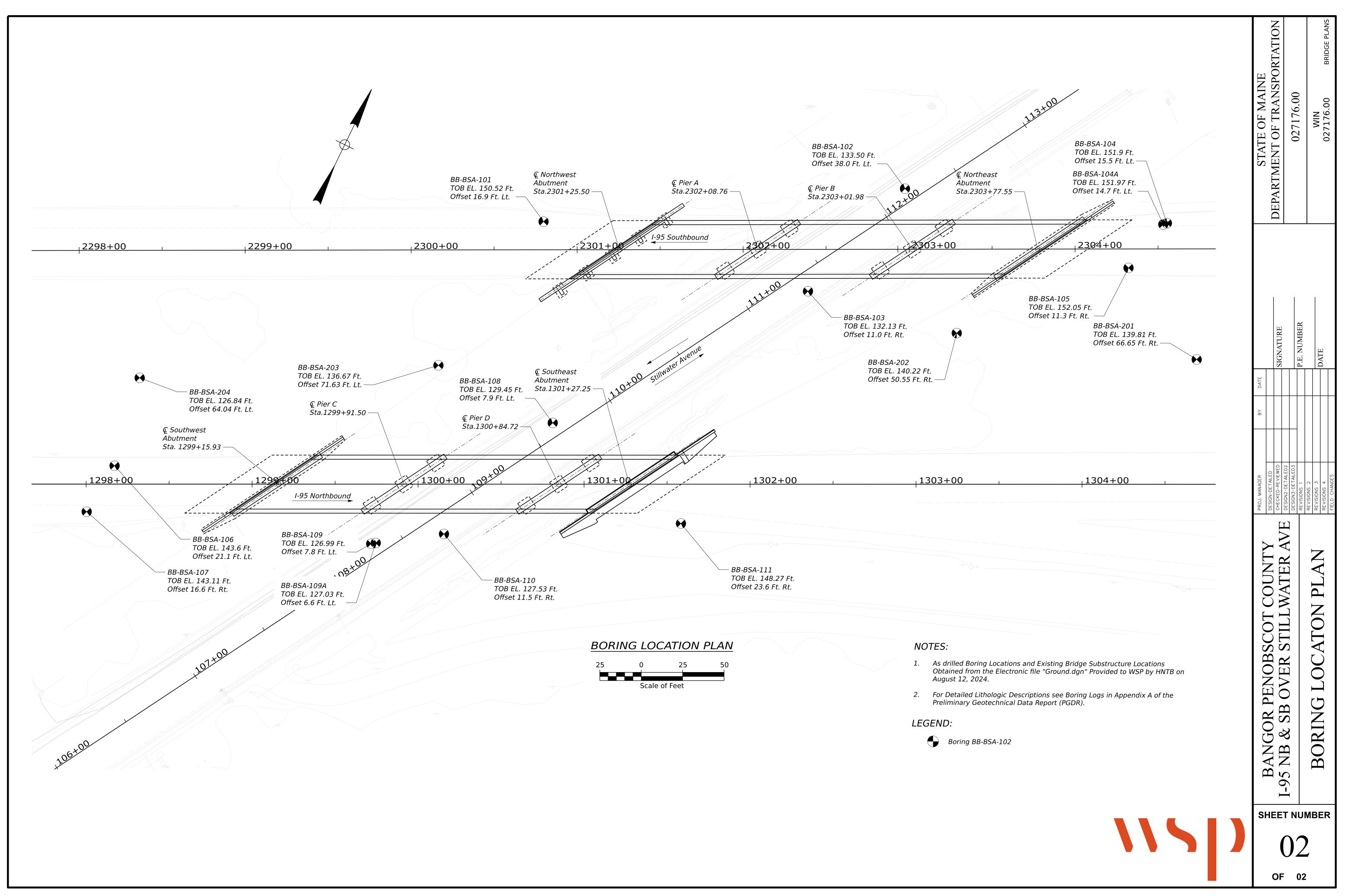

3. Boring logs are presented in Appendix A of the Preliminary Geotechnical Data Report Addendum 1

4. Boring locations marked and recorded using cellular telephone mapping application with an on-site accuracy between 1 and 2 feet. Elevations were extrapolated from site survey data provided on the Boring Location Plan.

5. bgs = below ground surface, NE = not encountered

Prepared by: LDN Checked By: DEB Reviewed By: MEL

FIGURES



US0025840.3905 0001-001

APPROVED

RE 1

0

Filename: c:\bms\wsp-pb-us-pw-02\wsp__nevin.gomez\d0895958\03_Stillwater_BorPlan.dgn

1/13/2025

Date:

APPENDIX A

Boring Logs

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM		MODIFIED B	URMISTER S	YSTEM		
			GROUP							
MAJ COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS (little or no	GW GP	TYPICAL NAMES Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel	tr li	<u>tive Term</u> race ittle ome . Sandy, Clayey)	<u>Porti</u>	<u>on of Total (%)</u> 0 - 10 11 - 20 21 - 35 36 - 50		
	alf of coan er than No size)	fines)		sand mixtures, little or no fines.	(0.g.	TERMS		3		
is larger ize)	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable amount of	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	DENSITY/CONSISTENCY <u>Coarse-grained soils</u> (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).					
(more than half of material is larger than No. 200 sleve size)		fines) CLEAN	SW	Well-graded sands, Gravelly	<u>Cohesion</u> Very	<u>isity of</u> <u>nless Soils</u> / loose pose		enetration Resistance ue (blows per foot) 0 - 4 5 - 10		
e than hal than No.	SANDS			sands, little or no fines Poorly-graded sands, Gravelly	De	m Dense ense Dense		11 - 30 31 - 50 > 50		
(mor	(more than half of coarse fraction is smaller than No. 4 sieve size)	fines)		sand, little or no fines.	Fine-grained soil	ls (more than half of n 1) inorganic and orgar		an No. 200		
	ire than h∉ on is small sieve s	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	or Silty clays; and strength as indica	., ,,	<u>Approximate</u>	ording to undrained shear		
	(mo fracti	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N ₆₀ -Value	<u>Undrained</u> <u>Shear</u> Strength (psf)	<u>Field</u> <u>Guidelines</u>		
			ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily penetrates Thumb easily penetrates Thumb penetrates with		
FINE- GRAINED	SILTS AND CLAYS		CL	slight plasticity. Inorganic clays of low to medium plasticity, Gravelly clays, Sandy	Stiff Very Stiff	9 - 15 16 - 30	1000 - 2000 2000 - 4000	moderate effort Indented by thumb with great effort Indented by thumbnail		
SOILS			OL	clays, Silty clays, lean clays. Organic silts and organic Silty	Hard Rock Quality Des	>30 signation (RQD):	over 4000	Indented by thumbnail with difficulty		
ial is e size)			МН	clays of low plasticity. Inorganic silts, micaceous or	RQD (%) =	sum of the lengths *Minimu	of intact pieces of length of core ad im NQ rock core (*	lvance		
(more than half of material is smaller than No. 200 sieve size)	SILTS AND CLAYS		SILTS AND CLAYS diatomaceous fine Sandy or SILTS AND CLAYS Silty soils, elastic silts. CH Inorganic clays of high			Rock Quality Ba <u>Rock Quality</u> Very Poor Poor	<u>RQD (%)</u> ≤25 26 - 50			
(more the smaller tha	(liquid limit gr	eater than 50)	ОН	plasticity, fat clays. Organic clays of medium to high plasticity, organic silts.	Fair 51 - 75 Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable):					
		ORGANIC	Pt	Peat and other highly organic soils.	Color (Munsell Texture (aphan Rock Type (gra		tc.) one, etc.)			
Desired Se	il Observet	tions (in thi	s order if	annlicable):			ht, moderate, mod	l. severe, severe, etc.)		
Color (Muns Moisture (dr Density/Cor Texture (fin Name (San Gradation (Plasticity (n Structure (la Bonding (w Cementatio Geologic Or	Desired Soil Observations (in this order, if applicable): Color (Munsell color chart) Moisture (dry, damp, moist, wet) Density/Consistency (from above right hand side) Texture (fine, medium, coarse, etc.) Name (Sand, Silty Sand, Clay, etc., including portions - trace, little, etc.) Gradation (well-graded, poorly-graded, uniform, etc.) Plasticity (non-plastic, slightly plastic, moderately plastic, highly plastic) Structure (layering, fractures, cracks, etc.) Bonding (well, moderately, loosely, etc.,) Cementation (weak, moderate, or strong) Geologic Origin (till, marine clay, alluvium, etc.)					Geologic discontinuities/jointing: -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - <2 inch, close - 2-12 inch, mod. close - 1-3 feet, wide - 3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))				
Key	y to Soil a	Geotechi	<i>nical</i> Sec Descrip	tions and Terms	Sample Cont WIN Bridge Name Boring Numbe Sample Numb Sample Depth	er ber	Requirements: Blow Counts Sample Recove Date Personnel Initia	ery		

I	Maine	e Depa	tion	Project: MaineDOT I-95 Bridges Over Stillwa					95 Bridges Over Stillwater	Boring No.:	BB-B	SA-201		
			Soil/Rock Exp	•			Locatio		venu Bang		ine			
			JS CUSTOM	<u>ARY UNITS</u>					2	,,		WIN:	0271	76.00
Drill	er.		Seaboard		Elevati	ion	(ft)	1	39.8	81		Auger ID/OD:	2-1/4 in I.D.	
	rator:		R. Hackett		Datum		()			e East	Zone	Sampler:	Standard Split	Spoon
<u> </u>	ged By:		D. Burgess		Rig Ty					rich D-		Hammer Wt./Fall:	140lb/30in	opoon
	Start/Fi	nish:	12/17/24 (8:1	2); (8:50)	Drilling	·			ISA			Core Barrel:		
Bori	ng Loca	tion:		6, E: 1735654.604	Casing							Water Level*:	0.0' 7:48 AM 1	2/17/24
Ham	mer Effi	ciency F	actor: 0.985		Hamm	er 1	Гуре:	Aut	oma	tic 🖂	Hydraulic 🗆	Rope & Cathead □		
Defini D = S	tions: plit Spoon :	Sample		R = Rock C SSA = Solid	ore Sample Stem Auger						molded Field Vane Undrained She Vane Undrained Shear Strength (= Liquidity Index C = Water Content, per	cent
MD =	Unsuccess	sful Split Sp	oon Sample Atter		w Stem Aug			q	$l_{D} = l$	Jnconfir	d = Raw Field SPT N-value	LL	= Liquid Limit = Plastic Limit	
MU =	Unsuccess		II Tube Sample A	Attempt WOH = Wei	ght of 140lb.			H	lamr	ner Effic	iency Factor = Rig Specific Annual	Calibration Value PI	= Plasticity Index	
			PP = Pocket Pe ne Shear Test At		eight of Rod			۸ (psf) N	•60 = •60 =	: SPT N : (Hamn	-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor	er Efficiency G = rrected C =	Grain Size Analysis Consolidation Test	
				Sample Information			1							Laboratory
	d	(in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected					bc				Testing
Depth (ft.)	Sample No.	Pen./Rec.	e D	(/6 D (%	orre		5	io		Graphic Log	Visual De	scription and Remark	6	Results/ AASHTO
epth	d m	n./F	Idm (ows lear reng sf) RQ	nuc	0	Casing Blows	Elevation	(aph				and Unified Class.
	Sa	Pe	Sa (ft.	ដ្ឋ ស៊ី ស៊ី ម៉ី	żź	09NI	ပိရ	_	_	- 5				Unineu Class.
0	1D	24/2	0.00 - 2.00	1-6-6-8	12 2	0	H\$A	13	9.6		2" Topsoil		0.2-	
	2D	24/20	2.00 - 4.00	7-9-12-12	21 3	4					Grey to brown, wet, very st plasticity [SILTY CLAY].	iff, Silty CLAY, trace f	ne sand, low	WC = 26.0% Fines = 97.6%
											$q_p = 3.0$ to 5.0 tsf (pocket p	penetrometer)		LL = 37
	3D	24/24	4.00 - 6.00	3-5-6-8	11 1	8					Brown, wet, very stiff, fine	Sandy CLAY, low plas	ticity [SILTY	PL = 20 PI = 17
- 5 -	50	21/21	4.00 0.00	5500		<u> </u>		-			CLAY].			LI = 0.4
								-			Grey to brown, wet, hard, S	Silty CLAY, trace fine s	and seams, low	A-6 (17), CL WC = 25.0%
	4D	24/24	6.00 - 8.00	8-11-11-13	22 3	6		_			plasticity [SILTY CLAY].	-		Fines = 96.3%
								13	1.8		$q_p = 3.5$ to 4.5 tsf (pocket p	penetrometer)		LL = 33 PL 20
	5D	24/24	8.00 - 10.00	7-16-11-13	27 4	4		15	1.0		Brown, wet, dense, fine to			PI = 13
											gravel, trace clay [GLACL	AL TILLJ.		LI = 0.4 A-6 (13), CL
- 10 -	6D	14/10	10.00 - 11.17	6-34-50/2"	R		$\left[M \right]$				Brown, wet, medium dense to coarse gravel, trace clay		SAND, some fine	
							₩	12	8.5					
											Bottom of Exploration Boring backfilled with drill	n at 11.3 feet below gro cuttings to surface.	und surface.	
								-						
								-						
- 15 -								-						
								_						
- 20 -														
								-						
								-						
								-						
- 25 -														
23														
								1						
Rem	arks:													
		fficiency	factor provided	hy Seaboard and taken t	rom "2024	рл	00175	Seeb	hard	- SPT	Report" by GRL Engineers In	c dated 10/23/2024		
2. A	s-drilled	boring loc	ations were ma								and surface elevations were of		file "Ground.dgn" re	ecieved from
		igust 12, 1 el reading		/24 at 07:48 and was take	n before di	rilli	ng was s	started	1.					
I														
Stratif	ication line	s represent	approximate bou	indaries between soil types; t	ansitions ma	ay be	e gradual					Page 1 of 1		

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	
than those present at the time measurements were made.	Boring No.: BB-BSA-201

Ι	Maine	e Depa	of Transporta	tion	Project: MaineDOT I-95 Bridges Over Stillwate					Boring No.:	BB-BS	SA-202	
		<u> </u>	Soil/Rock Exp	bloration Log			atio	Aven	ue Igor, M	ine			
		<u>l</u>	JS CUSTOM	ARY UNITS		1.00	Janoi	1. Dui	.goi, 10		WIN:	0271	76.00
Drill	er.		Seaboard		Elevatio	n (ft	<u>, </u>	140	22		Auger ID/OD:	2-1/4 in I.D.	
	rator:		R. Hackett		Datum:		,		ne Eas	Zone	Sampler:	Standard Split	Spoon
<u> </u>	ged By:		D. Burgess		Rig Type	e:			drich D		Hammer Wt./Fall:	140lb/30in	~
	Start/Fi	nish:	12/17/24 (7:4	8); (8:07)	Drilling		od:	HS	4		Core Barrel:		
Bori	Boring Location: N: 482904.381, E: 1735517.562					D/O):				Water Level*:	0.0' 8:12 AM 1	2/17/24
Ham	mer Effi	ciency F	actor: 0.985		Hammer	r Тур	e:	Autom	atic 🖂	Hydraulic 🗆	Rope & Cathead □		
Defini	tions: plit Spoon \$	Sample		R = Rock Co SSA = Solid						emolded Field Vane Undrained Sho Vane Undrained Shear Strength (Liquidity Index = Water Content, per	cent
MD =	Unsuccess	sful Split Spo	oon Sample Atter	mpt HSA = Hollo	w Stem Auger			q _p =	Unconf	ned Compressive Strength (ksf)	LL :	= Liquid Limit	oon
MU =	Unsuccess		II Tube Sample A		ght of 140lb. H			Ham	mer Effi	d = Raw Field SPT N-value iency Factor = Rig Specific Annua	I Calibration Value PI =	= Plastic Limit Plasticity Index	
			PP = Pocket Pe ne Shear Test At		eight of Rods Torvane Shea			N ₆₀ sf) N ₆₀	= SPT N = (Ham	-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-unco	er Efficiency G = rrected C =	Grain Size Analysis Consolidation Test	
		_		Sample Information									Laboratory
.	ġ	:. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected N60			_	Log	Visual Do	scription and Remarks		Testing Results/
h (ft	ple 1	Rec	ple [s (/6 gth QD (corr		n S	atior	hic	visual De		•	AASHTO and
Depth (ft.)	Sample No.	Pen./Rec.	aml t.)	blow blead btrer strer r R(N-UN	ioc	Blows	Elevation (ft.)	Graphic Log				Unified Class.
								ш с 140.0		∖2" Topsoil.			WC = 23.0%
	1D	24/24	0.00 - 2.00	1-4-4-4	8 13		I\$A			Grey to brown, wet, stiff, S	ilty CLAY trace fine sa	0.2-	Fines = 99.2%
									\mathbb{V}/\mathbb{I}	[SILTY CLAY].		id, low plasticity	LL = 35 PL = 17
	2D	14/10	2.00 - 3.17	6-43-50/2"	R				\mathbb{V}/\mathbb{I}	$q_p = 3.0$ to 3.5 tsf (pocket p Olive with brown mottled,	penetrometer). wet, stiff, Clayey SILT,	trace fine sand, low	PI = 18
									V//	plasticity [SILTY CLAY].		*	LI = 0.3 A-6 (18), CL
							\overline{V}	135.7	, <i>ΥΠ</i>	$q_p = 3.0$ to 4.0 tsf (pocket p			
- 5 -										Bottom of Exploration Boring backfilled with drill	n at 4.5 feet below grou cuttings to surface.	ind surface.	
										Ŭ	0		
- 10 -													
10													
- 15 -						_							
- 20 -													
- 25 -													
23													
	—					+							
Rem	arks:								1				
		fficiency	factor provide	t by Seaboard and taken f	rom "2024P	A001	75 °	eaboar	1_ CDT	Report" by GRL Engineers In	uc dated 10/23/2024		
2. A	As-drilled	boring loc	ations were m							und surface elevations were of		ile "Ground.dgn" re	ecieved from
		igust 12, 2 el reading		7/24 at 08:12 and was take	en before dri	llino '	was si	arted					
		g			uli								
Stratif	ication line	s represent	approximate bou	Indaries between soil types; tr	ansitions may	be gra	adual.				Page 1 of 1		

	-
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	
than those present at the time measurements were made.	Boring No.: BB-BSA-202

I	Maine Department of Transport					ion Project: MaineDOT I-95 Bridges Over Stillwater					Boring No.:	BB-BS	SA-203
		-	Soil/Rock Exp	-			l ocati	Ave	nue ngor, M	aine			
		ļ	US CUSTOM	ARY UNITS			Local	UII. D.	ing01, 10		WIN:	0271	76.00
Drill	or.		Seaboard		FIA	/ation	(ft)	13	6.7		Auger ID/OD:	4-1/2 in O.D.	
	rator:		R. Hackett		Dati		()		aine Eas	Zone	Sampler:	Standard Split	Spoon
<u> </u>	ged By:		D. Burgess		-	Type:			edrich D		Hammer Wt./Fall:	140lb/30in	opoon
	Start/Fi	nish:	12/16/24 (10:3	30); (11:25)			ethod				Core Barrel:		
Bori	ng Loca	tion:		3, E: 1735245.028	-	ing ID					Water Level*:	11.1' 11:05 AN	1 12/16/24
Ham	nmer Effi	ciency F	actor: 0.985		Han	nmer [·]	Туре:	Auto	natic 🖂	Hydraulic 🗆	Rope & Cathead □		
D = S MD = U = T MU = V = F	hin Wall Tu Unsuccess ield Vane S	ful Split Sp be Sample ful Thin Wa hear Test,	oon Sample Atter III Tube Sample A PP = Pocket Pe ne Shear Test At	$\begin{array}{l} RC = Roller\\ WOH = Wei\\ netrometer & WOR/C = W\\ tempt & T_V = Pocket \end{array}$	Stem Au ow Stem J Cone ght of 14 /eight of	uger Auger Olb. Hai Rods or	Casing	S _u q _p N-I Ha N ₆	(lab) = La = Unconfi uncorrecte mmer Effi 0 = SPT N	emolded Field Vane Undrained Sh v Vane Undrained Shear Strength ned Compressive Strength (ks) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua l-uncorrected Corrected for Hamm ner Efficiency Factor/60%)'N-unco	(psf) WC LL = PL = Il Calibration Value PI = er Efficiency G =	Liquidity Index = Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	S-1	24/9	0.00 - 2.00	2-3-6-6	9	15	SSA	136	.5	Top 3" Topsoil.			
									_	Brown, dry, medium dense gravel [SAND].	, fine to medium silty SA	ND, little fine	
	S-2	24/20	2.00 - 4.00	15-15-15-14	30	49		134	'	Grey to brown, moist, hard	Silty CLAV trace fine s	and low plasticity	WC = 15.0% Fines = 93.9%
										[SILTY CLAY].	, only CLAT, thee line a	and, low plasticity	LL = 34
	S-3	24/24	4.00 - 6.00	6-7-7-6	14	23			\///	Olive, wet, very stiff, Silty [SILTY CLAY].	CLAY, trace fine sand, lo	ow plasticity	PL = 19 PI = 15
- 5 -									V//	$q_p = 2.5 tsf (pocket penetro$	ometer).		LI = 0.3 A-6 (14), CL
	S-4	24/24	6.00 - 8.00	9-10-11-18	21	34		-		Brown with olive mottled,		Y, trace fine sand,	WC = 22.0% Fines = 98.4%
						-		-		low plasticity [SILTY CLA $q_p = 2.5$ to 3.5 tsf (pocket			LL = 35
	S-5	24/14	8.00 - 10.00	9-13-13-15	26	43		128	7	Brown, moist to wet, dense		ND little fine	PL = 18 PI = 17
	3-5	24/14	8.00 - 10.00	9-13-13-13	20	45		-		gravel [GLACIAL TILL].	, fine to mean find sity 57	avb, nuie nue	LI = 0.3 A-6 (17), CL
- 10 -	0.6	24/14	10.00 10.00	16.16.17.15	22	5.4		_		Brown, moist to wet, very	dense, fine to medium Sil	ty SAND, little	A-0 (17), CL
	S-6	24/14	10.00 - 12.00	16-16-17-15	33	54	$\left \right\rangle \left \right\rangle$			fine to coarse gravel [GLA	CIAL TILL].		
								_		Silty SAND with gravel (S	M). Brown, moist to wet.	verv dense, fine	
	S-7	24/14	12.00 - 14.00	9-12-21-41	33	54		_		to medium Silty SAND, lit coarse sand seams [GLAC	tle fine to coarse gravel, w		
								122	.7			14.0	
- 15 -								_		Bottom of Exploratio Boring backfilled with dril	n at 14.0 feet below grou l cuttings to surface.	ind surface.	
								_					
20													
- 20 -													
								-					
- 25 -								-					
								-					
	<u> </u>							-					
								-					
Rem	arks:												
		ficience	factor provided	by Seeboard and taken 4	From "2	02/04	00175	Sacher	rd CDT	Report" by GRL Engineers Ir	ac dated 10/22/2024		
2. A	As-drilled	boring loc	cations were ma							und surface elevations were o		le "Ground.dgn" re	ecieved from
		igust 12, 1 el reading		5/24 at 11:05 and was tak	en after	drillin	g was c	omplete	d.				
<u> </u>							8 us C	mpien					

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-BSA-203

I	Maine	e Dep	artment	of Transporta	atior	1	Projec	t: N	Maine	DOT I-	95 Bridges Over Stillwater	Boring No.:	BB-BS	SA-204
			Soil/Rock Expl	•			Locati		Avenu Bang	ie gor, Ma	ine			
		<u> </u>	JS CUSTOM	<u>ARY UNITS</u>								WIN:	0271	76.00
Drill	er:		Seaboard		Elev	vation	(ft.)		126.8	8		Auger ID/OD:	4-1/2 in O.D.	
Ope	rator:		R. Hackett		-	um:	. ,		Mair	ne East 2	Zone	Sampler:	Standard Split	Spoon
Log	ged By:		D. Burgess		Rig	Type	Diedrich D-50			50	Hammer Wt./Fall:	140lb/30in		
Date	e Start/Fi	nish:	12/16/24 (7:53	3); (9:45)	Dril	lling N	lethod	:	SSA	, Driver	casing and washed methods	Core Barrel:		
Bori	Boring Location: N: 482665.455, E: 1735086.352 Casing ID/OD: Water Level*: 4.2' 9:35 AM 12/16/2							2/16/24						
		ciency F	actor: 0.985			nmer	Туре:	A	utoma			Rope & Cathead □		
Definitions: R = Rock Core Sample S_U = Peak/Remolded Field Vane Undrained Shear Strength (psf) LI = Liquidity Index D = Split Spoon Sample SSA = Solid Stem Auger $S_U(lab)$ = Lab Vane Undrained Shear Strength (psf) LL = Liquid Limit M = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger q_p = Unconfined Compressive Strength (ksf) LL = Liquid Limit U = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw Field SPT N-value PL = Plastic Limit MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140b. Hammer Hammer Efficiency Factor = Rig Specific Annual Calibration Value PI = Plastici Limit V = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Rods or Casing N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency Factor(80%)'N-uncorrected C = Consolidation Test W = Unsuccessful Field Vane Shear Test Attempt T _v = Pocket Torvane Shear Strength (psf) N _{ND} = (Hammer Efficiency Factor(80%)'N-uncorrected C = Consolidation Test								= Water Content, pero Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis	cent					
		~		Sample Information			1							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows		Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/9	0.00 - 2.00	2-3-4-4	7	11	SSA	1	126.6		Top 3" Topsoil.		0.3	
- 5 - - 10 -	1D 2D 3D 4D 5D 6D MV 7D 8D 8D	24/9 24/24 24/24 24/24 24/24 24/24 24/24 24/24 24/12 24/12 24/12 24/12	0.00 - 2.00 2.00 - 4.00 4.00 - 6.00 6.00 - 8.00 8.00 - 10.00 10.00 - 12.00 12.00 - 14.00 15.00 - 17.00 17.00 - 19.00	2-3-4-4 5-5-4-5 3-5-6-8 8-8-8-10 3-4-3-4 4-6-4-9 Would Not Push 16-14-8-10 8-13-13-20 19-20-13-18	7 9 11 16 7 7 10 22 22 26 26	11 15 18 26 11 10 16 36 43 54		· 	114.8		Top 3" Topsoil. 1D: Grey to olive, moist, s sand, low plasticity [SILTY $q_p = 3.0$ to 3.5 tsf (pocket p 2D: Olive with grey and ora- trace fine to medium sand, $q_p = 3.0$ to 4.0 tsf (pocket p 3D: Olive with grey and ora- SILT, trace fine to medium $q_p = 2.0$ to 2.5 tsf (pocket p Plasticity [SILTY CLAY]. $q_p = 2.0$ to 2.5 tsf (pocket p Districty [SILTY CLAY]. $q_p < 1.0$ tsf (pocket penetroc 6D: Olive to grey, wet, very- plasticity [SILTY CLAY]. $q_p < 1.0$ tsf (pocket penetroc Missed Field Vane at 12 fea 7D: Grey, wet, dense, finn- rounded gravel [GLACIAL 8D: Grey with brown, wet, fine rounded gravel [GLACIAL	Y CLAY]. penetrometer) ange mottled, moist, stiff, low plasticity [SILTY CI penetrometer) ange mottled, moist, very sand, low plasticity [SIL penetrometer) y stiff, Silty CLAY, trace penetrometer) CLAY, trace fine sand, 1 penetrometer) y stiff, Silty CLAY, trace penetrometer) y stiff, Silty CLAY, trace penetrometer) et bgs. e to medium Silty SAND TILLJ. dense, fine to medium SILA TILLJ.	Clayey SILT, AY]. stiff, Clayey TY CLAY]. fine sand, low ow plasticity fine sand, low 12.0- , with fine Silty SAND, with	
- 20 -									107.8		fine rounded gravel [GLAC Bottom of Exploration Boring backfilled with drill	n at 19.0 feet below grou	nd surface.	
1. H 2. A HN	As-drilled TB on Au	boring loc igust 12, 2	ations were ma		curacy	of 1 to	2 feet a	ınd a	ıs-drill	led grou	Report" by GRL Engineers In nd surface elevations were ol		le "Ground.dgn" re	cieved from

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-BSA-204

APPENDIX B

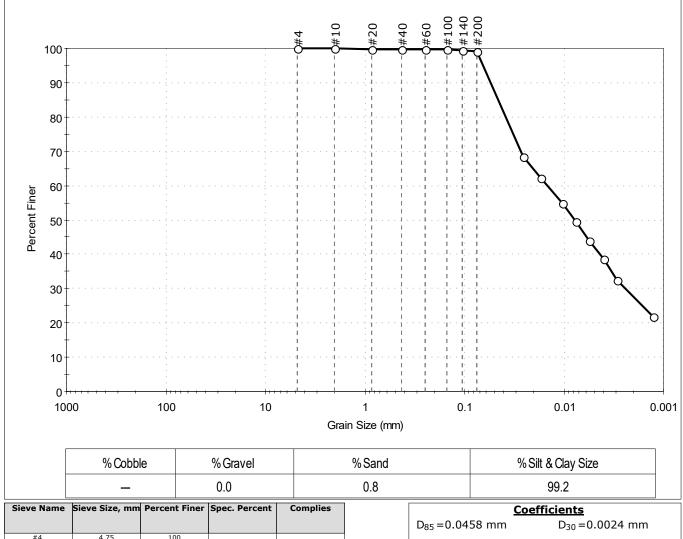
Laboratory Testing Results

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge ov	er Stillwater			
Location:	Merrimack	, NH			Project No:	GTX-319180
Boring ID:	BB-BSA-20	01	Sample Type:	Jar	Tested By:	ajl
Sample ID	: 2D (S-2)		Test Date:	01/03/25	Checked By:	jsc
Depth :	2-4'		Test Id:	797951		
Test Comm	ent:					
Visual Desc	cription:	Moist, grayish	brown clay			
Sample Co	mment:					

Particle Size Analysis - ASTM D6913/D7928 #100 #140 #200 #40 #60 #20 100 90 80 70 60 Percent Finer 50 40 30 r 20 10 0 1000 100 10 0.01 0.001 1 0.1 Grain Size (mm)

-	% Cobble % Gravel			% Sand	% Silt & Clay Size				
		0.0			2.4			97.6	
Sieve Name	Sieve Size, mm	Percent Fi	ner Spec. Percent	Complies]		<u>Coeff</u> i	icients	
						D ₈₅ = 0.03	57 mm	D ₃₀ =0.0021 mm	
#4	4.75	100				$D_{60} = 0.009$	95 mm	$D_{15} = N/A$	
#10	2.00	100			_	$D_{50} = 0.000$			
#20	0.85	100			_	$D_{50} = 0.000$	52 11111	$D_{10} = N/A$	
#40	0.42	99			_	$C_u = N/A$		$C_c = N/A$	
#80	0.25	99			_		Classif	fication	
#100	0.11	98			_	ASTM	Lean CLAY (C	L)	
#200	0.075	98			_				
Hydrometer	Particle Size (mm)	Percent Fin	er Spec. Percent	Complies	1		Clayey Soils (۸ 6 (17))	
	0.0266	80			-	AASITIO	Clayey Solis (A-0 (17))	
	0.0175	72			1				
	0.0106	62			-		Sample/Tes	t Description	
	0.0077	56			1	Sand/Grav	el Particle Sha	ape :	
	0.0057	48				Sand/Gray	el Hardness :		
	0.0041	41							
	0.0030	35				Dispersion	Device : Appa	aratus A - Mech Mixer	
	0.0013	23			_	Dispersion	Period: 1 mi	nute	
						Est. Specif	ic Gravity : 2.	65	
						Separation	of Sample: #	200 Sieve	

Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge ov	/er Stillwater			
Location:	Merrimack	, NH			Project No:	GTX-319180
Boring ID:	BB-BSA-20	01	Sample Type:	Jar	Tested By:	ajl
Sample ID:	: 4D (S-4)		Test Date:	01/03/25	Checked By:	jsc
Depth :	6-8'		Test Id:	797952		
Test Comm	ent:					
Visual Desc	cription:	Moist, grayish	n brown clay			
Sample Co	mment:					


Particle Size Analysis - ASTM D6913/D7928 #100 #140 #200 #40 #60 #20 4 100 90 80 70 60 Percent Finer 50 40 30 20 D 10 0 1000 100 10 0.01 0.001 1 0.1 Grain Size (mm)

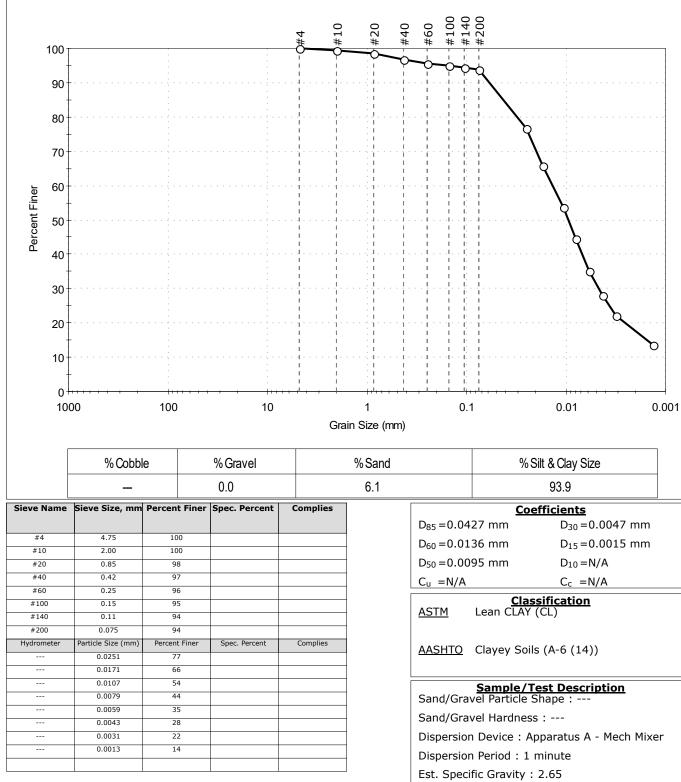
	% Cobble		% Gravel		% Sand			% Silt & Clay Size		
	_	- 0.0			3.7		96.3			
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies	1	Coefficients				
						D ₈₅ =0.04	12 mm	D ₃₀ =0.0037 mm		
#4	4.75	100				$D_{60} = 0.01$	35 mm	D ₁₅ =0.0013 mm		
#10	2.00	100			1					
#20	0.85	100			1	$D_{50} = 0.00$	88 mm	$D_{10} = N/A$		
#40	0.42	100			1	$C_u = N/A$		$C_c = N/A$		
#60	0.25	100]	,	<u> </u>			
#100	0.15	99			1	ASTM	Classif Lean CLAY (CL	<u>ication</u>		
#140	0.11	98			1	ASTM	Lean CLAT (CL	-)		
#200	0.075	96			1					
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies	1	AASHTO	Clayey Soils (N-6 (13))		
	0.0267	77				<u>AA31110</u>	Clayey Jolis (/	ς Ο (15 <i>)</i>)		
	0.0178	66			1					
	0.0109	55					Sample/Test	Description		
	0.0080	47			1	Sand/Grav	vel Particle Sha	pe:		
	0.0058	40								
	0.0043	32			1	Sand/Grav	vel Hardness :			
	0.0031	27			1	Dispersior	n Device : Appa	aratus A - Mech Mixe	er	
	0.0013	15			-	Dispersior	n Period : 1 mir	nute		
						Est. Speci	fic Gravity : 2.0	65		
						Separatio	n of Sample: #	200 Sieve		

Client: WSP L	SA, Inc.				
Project: Mainel	OOT I-95 Bridge o	ver Stillwater			
Location: Merrin	nack, NH			Project No:	GTX-319180
Boring ID: BB-BS	A-202	Sample Type	Jar	Tested By:	ajl
Sample ID: 1D (S-	1)	Test Date:	01/03/25	Checked By:	jsc
Depth : 0-2'		Test Id:	797950		
Test Comment:					
Visual Description:	Moist, grayis	h brown clay			
Sample Comment					

Particle Size Analysis - ASTM D6913/D7928

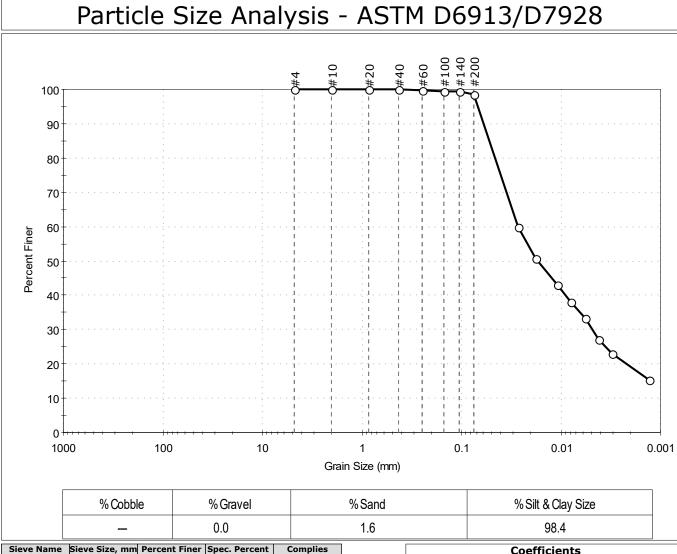
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	99		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0258	68		
	0.0171	62		
	0.0104	55		
	0.0076	50		
	0.0055	44		
	0.0040	39		
	0.0029	33		
	0.0013	22		

	<u>Coefficients</u>	
D ₈₅ =0.0458 mm	D ₃₀ =0.0024 mm	
D ₆₀ =0.0146 mm	$D_{15} = N/A$	
D ₅₀ =0.0078 mm	$D_{10} = N/A$	
C _u =N/A	$C_c = N/A$	


ASTM	Classification Lean CLAY (CL)
AASHTO	Clayey Soils (A-6 (18))

Sample/Test Description Sand/Gravel Particle Shape : ---Sand/Gravel Hardness : ---

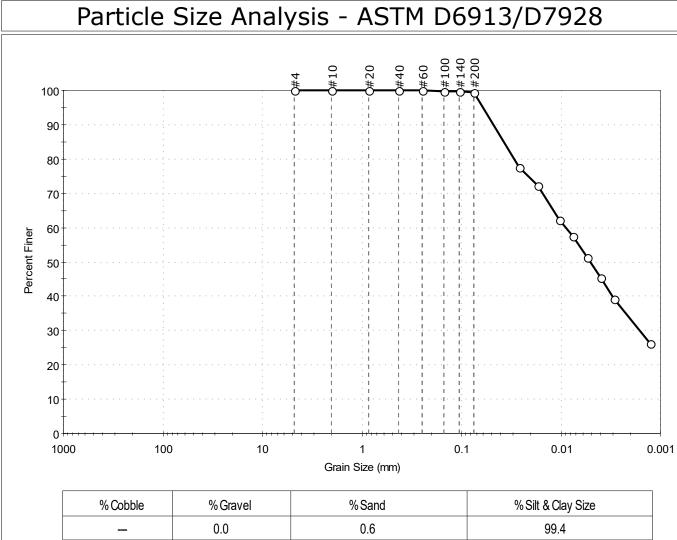
Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge ov	er Stillwater			
Location:	Merrimack	, NH			Project No:	GTX-319180
Boring ID:	BB-BSA-20	03	Sample Type:	Jar	Tested By:	ajl
Sample ID:	: 2D (S-2)		Test Date:	01/03/25	Checked By:	jsc
Depth :	2-4'		Test Id:	797948		
Test Comm	ent:					
Visual Desc	cription:	Moist, grayish	brown clay			
Sample Co	mment:					


Particle Size Analysis - ASTM D6913/D7928

Separation of Sample: #200 Sieve

Client:	WSP USA,	Inc.					
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater					
Location:	Merrimack	, NH			Project No:	GTX-319180	
Boring ID:	BB-BSA-20	03	Sample Type:	Jar	Tested By:	ajl	
Sample ID:	: 3D (S-3)		Test Date:	01/03/25	Checked By:	jsc	
Depth :	4-6'		Test Id:	797949			
Test Comm	ent:						
Visual Desc	cription:	Moist, olive cl	ау				
Sample Co	mment:						
L							

o' N	k: c:			a 11
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	99		
#140	0.11	99		
#200	0.075	98		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0267	60		
	0.0179	51		
	0.0109	43		
	0.0079	38		
	0.0058	33		
	0.0042	27		
	0.0030	23		
	0.0013	15		

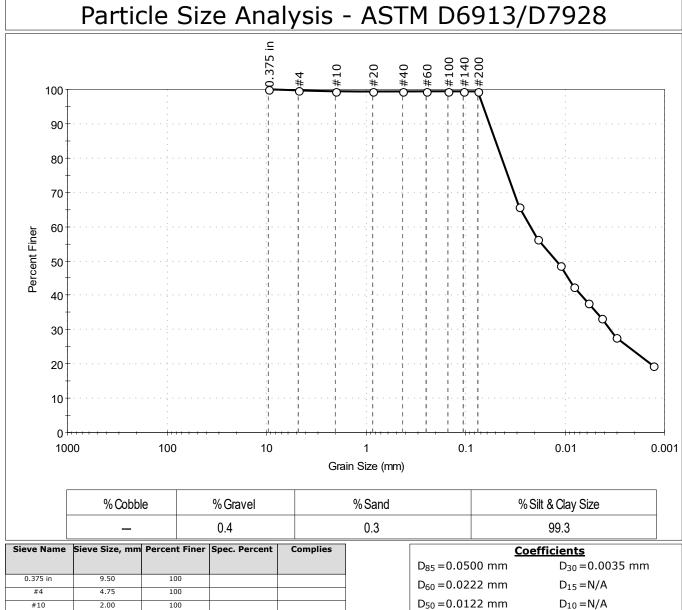

_			
		<u>Coefficients</u>	
	D ₈₅ =0.0523 mm	D ₃₀ =0.0048 mm	
	D ₆₀ =0.0268 mm	$D_{15} = N/A$	
	D ₅₀ =0.0170 mm	$D_{10} = N/A$	
	C _u =N/A	$C_{c} = N/A$	

<u>ASTM</u>	Classification Lean CLAY (CL)
<u>AASHTO</u>	Clayey Soils (A-6 (17))

Sample/Test Description Sand/Gravel Particle Shape : ---Sand/Gravel Hardness : ---

[Client:	WSP USA,	Inc.				
	Project:	MaineDOT	aineDOT I-95 Bridge over Stillwater				
	Location:	Merrimack	1errimack, NH				GTX-319180
<u> </u>	Boring ID:	BB-BSA-20	04	Sample Type:	Jar	Tested By:	ajl
	Sample ID:	4D (S-4)		Test Date:	01/03/25	Checked By:	jsc
	Depth :	6-8'		Test Id:	797946		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, olive	gray clay			
	Sample Cor	nment:					
		•				2 / D 7 0	~ ~

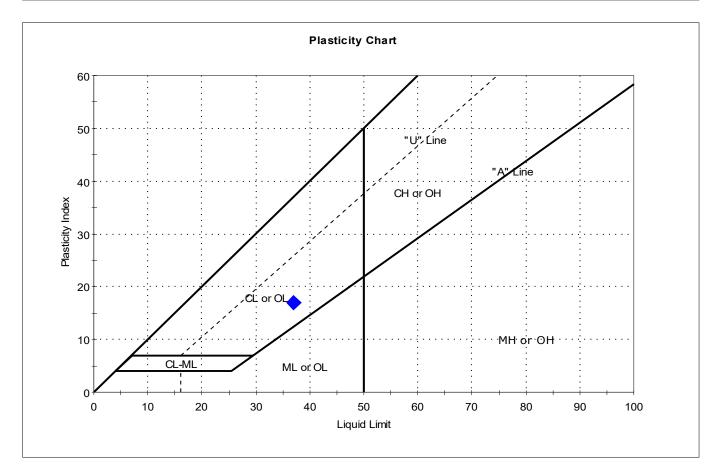
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	100		
#200	0.075	99		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0264	78		
	0.0171	72		
	0.0104	62		
	0.0075	58		
	0.0055	51		
	0.0040	45		
	0.0029	39		
	0.0013	26		
-				


	<u>C</u>	oefficients	
D ₈₅ = 0.03	77 mm	D ₃₀ =0.0016 mm	
$D_{60} = 0.00$	89 mm	$D_{15} = N/A$	
D ₅₀ = 0.00	51 mm	$D_{10} = N/A$	
C _u =N/A		C _c =N/A	

<u>ASTM</u>	Classification Lean CLAY (CL)
<u>AASHTO</u>	Clayey Soils (A-6 (14))

Sample/Test Description Sand/Gravel Particle Shape : ---Sand/Gravel Hardness : ---

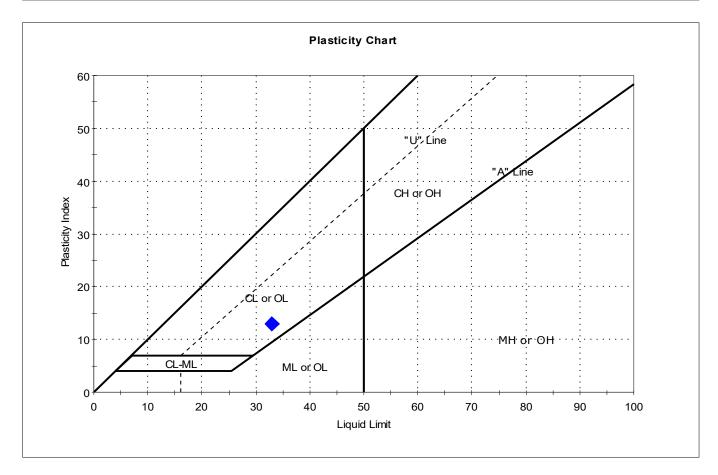
Client:	WSP USA,	Inc.				
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater				
Location:	Merrimack	:, NH			Project No:	GTX-319180
Boring ID:	BB-BSA-20	04	Sample Type:	Jar	Tested By:	ajl
Sample ID:	6D (S-6)		Test Date:	01/03/25	Checked By:	jsc
Depth :	10-12'		Test Id:	797947		
Test Comm	ent:					
Visual Desc	Visual Description: Moist, dark gr			У		
Sample Cor	mment:					
La Cina Analyzia ACTM DC012/D7020						



#4	4.75	100		
#10	2.00	100		
#20	0.85	99		
#40	0.42	99		
#60	0.25	99		
#100	0.15	99		
#140	0.11	99		
#200	0.075	99		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0289	66		
	0.0187	56		
	0.0112	49		
	0.0082	43		
	0.0059	38		
	0.0042	33		
	0.0031	28		
	0.0013	19		
				1

		0.0	
	Coeffic	cients	
$D_{85} = 0.05$	00 mm	D ₃₀ =0.0035 mm	
$D_{60} = 0.02$	22 mm	$D_{15} = N/A$	
$D_{50} = 0.01$	22 mm	$D_{10} = N/A$	
$C_u = N/A$		C _c =N/A	
<u>ASTM</u>			
<u>AASHTO</u>	Clayey Soils (A	-6 (15))	
	Sample/Test	Description	_
Sand/Grav	vel Particle Shap	be :	
Sand/Grav	vel Hardness : -		
	$D_{60} = 0.02$ $D_{50} = 0.01$ $C_{u} = N/A$ $ASTM$ $AASHTO$ Sand/Grav	$\begin{tabular}{ c c c c } \hline \hline Coeffic \\ \hline \hline Coeffic \\ \hline D_{85} = 0.0500 \mmmode mmmode \\ \hline D_{60} = 0.0222 \mmmode mmmode \\ \hline D_{50} = 0.0122 \mmmode mmmode \\ \hline D_{50} = 0.0122 \mmmode mmmode \\ \hline \hline C_u = N/A \end{tabular}$	$\begin{array}{c c} D_{60} = 0.0222 \text{ mm} & D_{15} = \text{N/A} \\ D_{50} = 0.0122 \text{ mm} & D_{10} = \text{N/A} \\ \hline C_u = \text{N/A} & C_c = \text{N/A} \\ \hline $

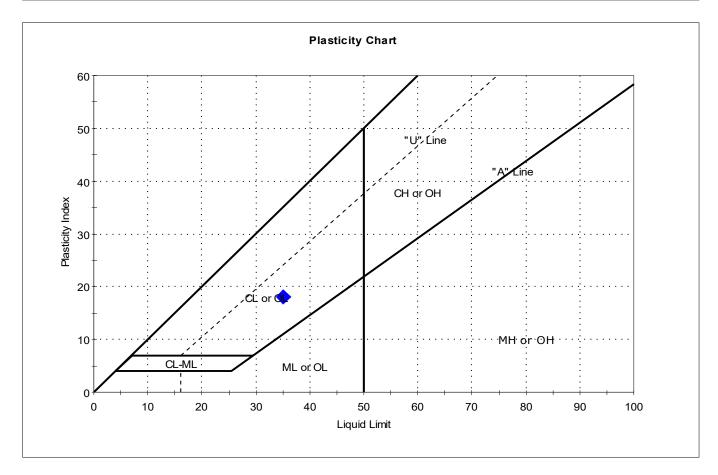
Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge ov	er Stillwater			
Location:	Merrimack	Merrimack, NH Project No: GTX-319180				
Boring ID:	BB-BSA-20)1	Sample Type:	Jar	Tested By:	cam
Sample ID	: 2D (S-2)		Test Date:	01/06/25	Checked By:	jsc
Depth :	2-4'		Test Id:	797940		
Test Comm	ent:					
Visual Desc	cription:	Moist, grayish	brown clay			
Sample Co	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	2D (S-2)	B-BSA-20	2-4'	26	37	20	17	0.4	Lean CLAY (CL)

Sample Prepared using the WET method 1% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

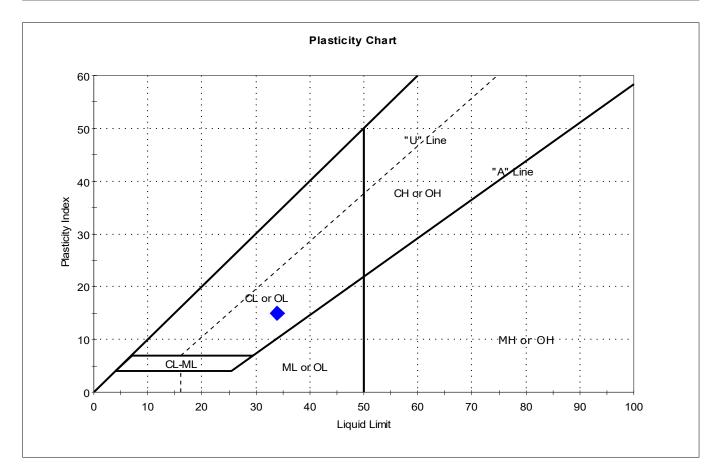
Client:	WSP USA,	Inc.									
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater									
Location:	Merrimack	, NH			Project No:	GTX-319180					
Boring ID:	BB-BSA-20)1	Sample Type:	Jar	Tested By:	cam					
Sample ID:	: 4D (S-4)		Test Date:	01/03/25	Checked By:	jsc					
Depth :	6-8'		Test Id:	797941							
Test Comm	ent:										
Visual Desc	cription:	Moist, grayish	brown clay								
Sample Co	mment:										



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	4D (S-4)	B-BSA-20	6-8'	25	33	20	13	0.4	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

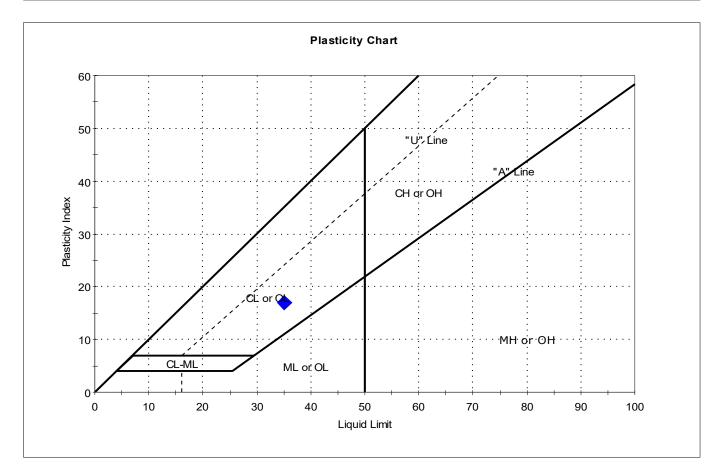
Client:	WSP USA,	Inc.				
Project:	MaineDOT	I-95 Bridge ov	er Stillwater			
Location:	Merrimack	, NH			Project No:	GTX-319180
Boring ID:	BB-BSA-20)2	Sample Type:	Jar	Tested By:	cam
Sample ID	: 1D (S-1)		Test Date:	01/03/25	Checked By:	jsc
Depth :	0-2'		Test Id:	797939		
Test Comm	nent:					
Visual Dese	cription:	Moist, grayish	brown clay			
Sample Co	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	1D (S-1)	B-BSA-20	0-2'	23	35	17	18	0.3	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

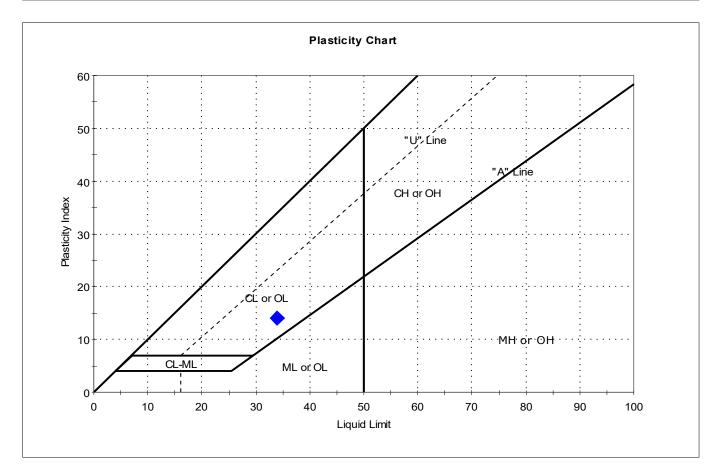
Client:	WSP USA,	Inc.									
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater									
Location:	Merrimack	, NH			Project No:	GTX-319180					
Boring ID:	BB-BSA-20)3	Sample Type:	Jar	Tested By:	cam					
Sample ID:	: 2D (S-2)		Test Date:	01/03/25	Checked By:	jsc					
Depth :	2-4'		Test Id:	797937							
Test Comm	ent:										
Visual Desc	cription:	Moist, grayish	brown clay								
Sample Co	mment:										



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	2D (S-2)	B-BSA-20	2-4'	15	34	19	15	-0.3	Lean CLAY (CL)

Sample Prepared using the WET method 3% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

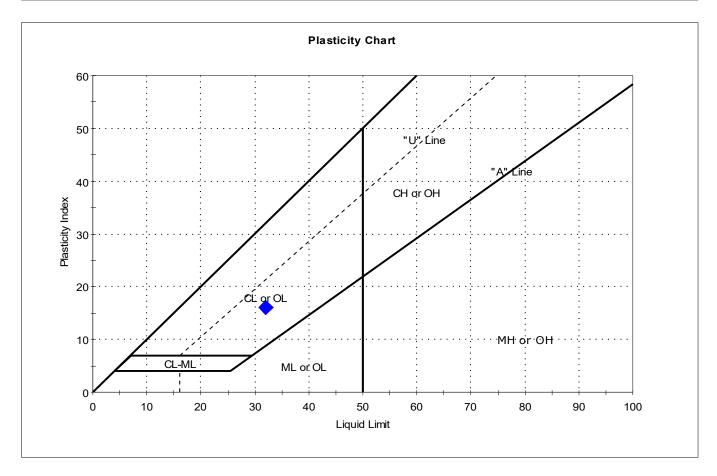
Client:	WSP USA,	Inc.									
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater									
Location:	Merrimack	Merrimack, NH Project No: GTX-319180									
Boring ID:	BB-BSA-20)3	Sample Type:	Jar	Tested By:	cam					
Sample ID:	: 3D (S-3)		Test Date:	01/03/25	Checked By:	jsc					
Depth :	4-6'		Test Id:	797938							
Test Comm	ent:										
Visual Desc	cription:	Moist, olive cla	ау								
Sample Co	mment:										



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	3D (S-3)	B-BSA-20	4-6'	22	35	18	17	0.3	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	WSP USA,	Inc.									
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater									
Location:	Merrimack	Merrimack, NH Project No: GTX-319180									
Boring ID:	BB-BSA-20	04	Sample Type:	Jar	Tested By:	cam					
Sample ID:	: 4D (S-4)		Test Date:	01/06/25	Checked By:	jsc					
Depth :	6-8'		Test Id:	797935							
Test Comm	ent:										
Visual Desc	cription:	Moist, olive g	ray clay								
Sample Co	mment:										



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	4D (S-4)	B-BSA-20	6-8'	27	34	20	14	0.5	Lean CLAY (CL)

Sample Prepared using the WET method 0% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	WSP USA,	Inc.									
Project:	MaineDOT	MaineDOT I-95 Bridge over Stillwater									
Location:	Merrimack	, NH			Project No:	GTX-319180					
Boring ID:	BB-BSA-20	04	Sample Type:	Jar	Tested By:	cam					
Sample ID:	: 6D (S-6)		Test Date:	01/03/25	Checked By:	jsc					
Depth :	10-12'		Test Id:	797936							
Test Comm	ent:										
Visual Desc	cription:	Moist, dark gr	у								
Sample Co	mment:										

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	6D (S-6)	B-BSA-20	10-12'	25	32	16	16	0.6	Lean CLAY (CL)

Sample Prepared using the WET method 1% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

