

GEOTECHNICAL DATA REPORT DRUMMOND ROAD BRIDGE NO. 5784 OVER INTERSTATE 95 MAINE DOT WIN 29486.00 (LEGACY WIN 25469.00) SIDNEY, MAINE

June 2025 09.0026242.00

Prepared for: Maine Department of Transportation Augusta, Maine

Prepared by: GZA GeoEnvironmental, Inc. 707 Sable Oaks Drive | Suite 150 | South Portland, Maine 04106 207.879.9190

31 Offices Nationwide www.gza.com

Copyright© 2025 GZA GeoEnvironmental, Inc.

Known for excellence Built on trust.

TABLE OF CONTENTS

Page

Page i

1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 OBJECTIVES AND SCOPE OF SERVICES	1
2.0	SUBSURFACE EXPLORATIONS	1
	2.1 PREVIOUS (1958) BORING	2
	2.2 RECENT BORINGS	2
3.0	LABORATORY TESTING	2
4.0	SUBSURFACE CONDITIONS	3
	4.1 SURFICIAL AND BEDROCK GEOLOGY	3
	4.2 SUBSURFACE PROFILE	3
	4.2.1 Bedrock	F
	4.2.1 Dedrock	J
	4.2.3 Groundwater	

TABLES

TABLE 1	Summary of Subsurface Explorations
TABLE 2	Summary of Rock Core

FIGURES

FIGURE 1Locus PlanFIGURE 2Boring Location Plan

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Historic Geotechnical Data and Foundation Drawings
APPENDIX C	Recent Test Boring Logs
APPENDIX D	Laboratory Test Results
APPENDIX E	Rock Core Photographs

1.0 INTRODUCTION

We are pleased to provide this Geotechnical Data Report, which includes geotechnical data related to the replacement of Maine Department of Transportation (MaineDOT) Drummond Road Bridges No. 5784 in Sidney, Maine. Our work was completed in accordance with GZA GeoEnvironmental, Inc.'s Project Contract for the above referenced project dated July 22, 2024, and our Proposal No. 09.P000130.24d, dated December 18, 2023, and the Limitations included in **Appendix A** of this report.

1.1 BACKGROUND

The existing Drummond Road Bridge No. 5784 was constructed circa 1958 and spans west to east carrying Drummond Road over Interstate 95 (I-95), as shown in **Figure 1**. Bridge No. 5784 is a 245-foot-long, four-span, continuous bridge with steel beams and a reinforced concrete deck. The bridge is 29 feet wide and supported by concrete piers and concrete stub abutments.

The 1958 as-built plans indicate that the two stub abutments are supported by HP 10x42 piles that are either plumb or battered at 2.5:12. Abutments 1 and 2 are each supported by 10 piles. The plans indicate an allowable pile design capacity of 30 tons. The piles supporting the abutments were estimated to be between 20 and 42 feet long. The three pier stems are shown to be supported by spread footings bearing on bedrock. A design bearing capacity is not shown on the plans. The existing approach embankments are approximately 17 to 20 feet above original grades. The available historic foundation drawings are attached in **Appendix B**.

Elevations referenced in this report are in feet and refer to the North American Vertical Datum of 1988 (NAVD88) unless noted otherwise. Elevations shown on the 1958 drawings are in feet and refer to the National Geodetic Vertical Datum of 1929 (NGVD29). Stantec indicated that a datum shift of approximately - 0.7 feet can be used to convert from NGVD29 to NAVD88.

It is GZA's understanding that a full bridge replacement is planned for this project. The bridge will be designed and constructed as part of a Design-Build bundle. Requirements for on- or off-alignment bridge replacement alternatives will be specified in the MaineDOT Design-Build Request for Proposals (RFP).

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to collect data on the subsurface conditions as the Owner's Geotechnical Consultant to be provided to prospective Design-Build teams in the MaineDOT Design-Build Request for Proposals (RFP). To meet these objectives, GZA completed the following Scope of Services:

- Conducted a site visit to observe surficial conditions and reviewed existing bridge plans, historical topography, historical geotechnical reports, and mapped surficial and bedrock geology of the site;
- Coordinated and observed a subsurface exploration program, consisting of three test borings, to evaluate subsurface conditions for the bridge;

- Conducted a laboratory testing program to evaluate engineering and index properties of the site soils and bedrock; and
- Prepared this report summarizing our findings.

2.0 SUBSURFACE EXPLORATIONS

Details of the previous and current subsurface explorations are provided in the following sections.

2.1 PREVIOUS (1958) BORING

In 1958, MaineDOT conducted seven test borings, designated Boring #1 through #7 and three soundings designated as #1 through #3, to explore subsurface conditions for bridge construction. All borings drilled for the design of the existing bridges were drilled prior to construction of I-95. At the time, the grades were approximately 17 to 20 feet lower than Drummond Road is today. All of the borings were drilled through the overburden and to bedrock, and approximately 5 feet of core was collected.

The boring log sheets from the 1958 geotechnical report are included in **Appendix B**.

2.2 RECENT BORINGS

GZA completed a preliminary subsurface exploration program consisting of three (3) test borings designated as BB-SDRR-101 through BB-SDRR-103, the locations and designations of which are shown on the attached **Boring Location Plan, Figure 2**. Borings BB-SDRR-101 and -103 were drilled through the approach, about 15 feet behind the face of each abutment, and boring BB-SDRR-102 was drilled through the bridge deck between Pier 3 and Abutment 2. The as-drilled boring locations and elevations were surveyed by MaineDOT, provided to GZA, and are shown on the logs, and on **Figure 2**.

The borings were drilled to depths of approximately 25 to 63 feet below ground surface (bgs) and terminated approximately 10 to 11 feet into bedrock. Seaboard Drilling of Bangor, Maine provided drilling services and coordinated utility clearance. The drilling was completed between July 8 and July 10, 2024. GZA personnel monitored the drilling work and prepared logs of each boring that are included in **Appendix C**.

The borings were drilled using solid stem augers followed by 3-inch or 4-inch casing and drive-and-wash techniques through the overburden and coring equipment in the bedrock. Standard Penetration Testing (SPT) and split-spoon sampling were performed at 5-foot typical intervals in overburden soils. SPTs were conducted according to MaineDOT requirements using an automatic hammer system calibrated in accordance with ASTM D4633-05 and MaineDOT procedures. SPTs were conducted using automatic hammer Seaboard SN367, which had a rated hammer energy transfer ratio of 1.066 at the time of drilling. The drilling subcontractor backfilled the approach boreholes with cuttings or sand and topped them with asphalt cold patch upon completion. The bridge deck was patched with quick-set concrete. Rock core was taken from each boring using NQ2 (2.0-inch diameter) coring equipment.

3.0 LABORATORY TESTING

GZA retained Thielsch Engineering's Geotechnical Laboratory in Cranston, Rhode Island to complete a laboratory testing program to assess the gradation and index properties of the soil and the strength and elastic modulus of bedrock. The testing program is summarized in the table below:

COMPLETED LABORATORY TESTS										
Laboratory Test	ASTM Standard	Number of Tests								
Grain Size Analysis	D6913	9								
Hydrometer	D7928	5								
Atterberg Limits	D4318	3								
Moisture Content	D2216	12								
Unconfined Compressive Strength (with axial and lateral strain)	D7012 Method D	2								

Results of the testing are included in **Appendix D**.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

Based on available surficial geologic mapping¹, the surficial soil unit at the site is Presumpscot Formation, which consists of a marine silt, clay, and local sand beds deposited on the late-glacial sea floor. Glacial Till is mapped to the east and west of the site and consists of a poorly sorted mixture of clay, silt, and sand and can include cobbles and boulders. Bedrock outcroppings are mapped to the south of the site.

Bedrock in the vicinity of the site is mapped² as the Waterville Formation. The Waterville formation is characterized as fine to medium grained siltstone and claystone pelite and fine grained to very fine grained, non-foliated, quartz-plagioclase, metasandstone.

4.2 SUBSURFACE PROFILE

Three soil units, Fill, Marine Clay, and Glacial Till, were encountered in the test borings underlying approximately 7 to 8 inches of asphalt pavement (in Drummond Road approaches) or 3 inches of topsoil, and overlying bedrock. The thicknesses and generalized descriptions of the soil units are presented in the following table, in descending order from existing ground surface. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in **Appendix C**.

¹ Hildreth, Carol T., 2005, Surficial geology of the Vassalboro quadrangle, Maine: Maine Geological Survey, Open-File Map 05-8, Map, scale 1:24,000. *Maine Geological Survey Maps*. 1505. http://digitalmaine.com/mgs_maps/1505

²Osberg, Philip H., 1968, Stratigraphy, structural geology, and metamorphism of the Waterville-Vassalboro area, Maine: Maine Geological Survey (Department of Economic Development), Bulletin 20, 64 p. report, color map, cross section, scale 1:62,500. Maine Geological Survey Maps. 80. http://digitalmaine.com/mgs_maps/80

6/24/2025 GEOTECHNICAL DATA REPORT DRUMMOND ROAD BRIDGE NO. 5784 OVER INTERSTATE 95 Stantec

		INTERPRETED SUBSURFACE CONDITIONS
Soil Unit	Approximate Encountered Thickness (ft)	Generalized Description
		Varies <u>from</u> : Brown, loose to very dense, fine to coarse SAND, trace to some gravel, Silty to trace silt <u>to</u> : very dense, GRAVEL, some sand, trace silt road base only.
		A 10-inch layer of concrete (apparent approach slab) was encountered in boring BB-SDRR-103 at 2.5 to 3.4 feet bgs.
Fill	17 to 20	Typical MaineDOT Frost Classification Range= I to III
		 Results of 4 Grain Size, 1 Hydrometer, and 4 Moisture Content Analyses: AASHTO Classifications: A-1-b, A-1-a USCS Classifications: SM, GW-GM, GM Moisture Content: 2.0 to 12.6% Encountered in borings BB-SDRR-101 and BB-SDRR-103
		Brown to grey, very soft to very stiff, Clayey SILT to Silty CLAY, trace to some sand, trace gravel.
		Typical MaineDOT Frost Classification Range = III to IV Results of 3 Grain Size, 3 Hydrometer, 3 Atterberg Limits, and 6 Moisture Content Analyses:
Marine Clay	5 to 19	 AASHTO Classification: A-4(0) USCS Classifications: CL, ML Liquid Limit: 32 to 34 Plastic Limit: 18 to 20 Plasticity Index: 14 to 16 Moisture Content: 20.9 to 30.3%
		Encountered in all borings
Glacial Till	< 1 to 9	 Brown to grey, dense to very dense, Silty fine to coarse SAND, some gravel. Typical MaineDOT Frost Classification Range= III to IV Results of 2 Grain Size, 1 Hydrometer, and 2 Moisture Content Analyses: AASHTO Classification: A-4(0) USCS Classification: SM Moisture Content: 8.2 to 13.3% Encountered in all borings
Estimated Top of Bedrock*		Approx. El. 150 to 133 (32 to 52 feet bgs)
		s based on recent borings. Depths to bedrock refer to ground surface at n/abutment borings) or I-95 (pier borings).

4.2.1 Bedrock

Bedrock was encountered beneath the glacial till stratum in each boring and was described as Pelite of the Waterville Formation. Pelite was generally described as medium hard to hard, slightly weathered, medium grained, and grey. Joints in the Pelite were characterized as very close to moderately spaced, horizontal to moderately dipping, rough, undulating, discolored, and tight to partially open, with occasional Quartzite laminae and intrusions up to approximately 1.5 feet thick. The RQD ranged from 53 to 97 percent, indicating a Rock Quality of Fair to Excellent. The bedrock core data are summarized in **Table 2**. Wet and dry photographs of the collected rock core are included in **Appendix E**.

Unconfined compressive strength and elastic modulus tests were conducted on two rock specimens, the results of which are summarized in the following table.

	SUMMARY OF BEDROCK STRENGTH TEST RESULTS											
Boring	Depth below Existing Ground (ft)	Depth below Top of Rock (ft)	Unconfined Compressive Strength (psi)	Secant Modulus @ 50% of Failure Stress (ksi)	Unit Weight (pcf)	Rock Type						
BB-SDRR-102	18.8	3.0	5,548	2,030	174.0	Pelite						
BB-SDRR-103	56.4	4.3	5,442	5,130	175.9	Pelite						

4.2.3 Groundwater

Groundwater depth was measured in all borings. Groundwater depths ranged from approximately 0 to 23.5 feet, corresponding to approximately El. 166.1 to El. 169.9. Groundwater levels in the borings were measured during or immediately after drilling and were likely affected by cased drilling procedures, which included introduction of water for drilling purposes.

The groundwater observations were made at the times and under the conditions stated in the boring logs. Fluctuations in groundwater level occur due to variations in season, precipitation, and construction activities in the area. Consequently, water levels during construction are likely to vary from those encountered at the time the observations were made.

BMC/ARB/CLS:cc

P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 025469.00 Drummond Rd Report\FINAL 26242.00-Drummond Rd Bridge #5784 GDR 06.24.2025.docx

SIGNATURE PAGE

This report has been prepared and reviewed by:

GZA GEOENVIRONMENTAL, INC.

Blaine Cardali Senior Project Manager

Mm 75m

Christopher L. Snow, P.E. Consultant/Reviewer

Andrew R. Blaisdell, P.E. Associate Principal

TABLES

TABLE 1Summary of Subsurface ExplorationsDrummond Road Bridge #5784 over I-95Sidney, MEWIN 25469.00

					То	p of Stratu	m Elevation				St	ratum Thicl	kness					Groun	dwater
Boring ID	Northing	Easting	Ground Surface El. (ft)	Asphalt	Topsoil	Fill	Marine Clay	Glacial Till	Bedrock	Asphalt	Topsoil	Fill	Marine Clay	Glacial Till	Bedrock		Bottom of Boring El. (ft)	El. (ft)	Depth (ft)
BB-SDRR-101	600945.8	1158464.5	187.9	187.9	NE	187.3	169.4	164.4	155.4	0.6	NE	17.9	5.0	9.0	32.5	42.8	145.1	169.9	18.0
BB-SDRR-102	600904.6	1158678.7	166.1	NE	166.1	NE	165.8	150.6	150.3	NE	0.3	NE	15.2	0.3	15.8	25.5	140.6	166.1	0.0
BB-SDRR-103	600892.7	1158738.1	187.8	187.8	NE	187.1	167.5	148.8	135.7	0.7	NE	19.6	18.7	13.1	52.1	63.0	124.8	164.3	23.5

Notes:

1. Refer to the boring logs in Appendix C for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD88), unless noted otherwise.

3. Project coordinates are in survey feet and reference the North American Datum of 1983 (NAD83) Maine Coordinate System 2000 West, unless noted otherwise.

4. As-drilled locations were surveyed by MaineDOT and provided to GZA.

5. Stratum depths, thickness and elevations are rounded to the nearest 0.1 foot as interpreted on the boring logs, but this does not represent the precision of the data.

TABLE 2

Summary of Bedrock Data

Drummond Road Bridge #5784 Over I-95

Sidney, ME WIN 25469.00

			Depth of Co	ore Run below GS (ft)		•	low Top of k (ft)								Ele	ev. (ft)				LAB				
Boring ID	Core Run	Ground Surface El. (ft)	Тор	Bottom	Depth to Rock (ft)	Тор	Bottom	Length of Core Run (in)	Rec (in)	Rec (%)	RQD (in)	RQD %	Joint Spacing (in)	Joint Aperture (in)	Тор	Bottom	Depth of Sample (ft)	Depth of Sample into Rock (ft)	Elev Top of Sample (ft)	UCS (psi)	Poissons Ratio	Modulus (ksi)	Unit Wt (pcf)	Rock Type
BB-SDRR-101	R1	187.9	32.8	- 37.8	32.5	0.3	- 5.3	60.0	60	100%	58	97%	0.75-2.5	0.004-0.02	155.1	150.1								
BB-SDRR-101	R2	187.9	37.8	- 42.8	32.5	5.3	- 10.3	60.0	60	100%	54	90%	2.5-8	0.004-0.02	150.1	145.1								
BB-SDRR-102	R1	166.1	15.8	- 20.8	15.8	0.0	- 5.0	60.0	60	100%	42	70%	2.5-2.5	0.01-0.02	150.3	145.3	18.8	3.0	147.3	5,548	0.14	2,030	174.0	Pelite
BB-SDRR-102	R2	166.1	20.8	- 25.5	15.8	5.0	- 9.7	56.0	48	86%	30	53%	2.5-2.5	0.01-0.02	145.3	140.6								
BB-SDRR-103	R1	187.8	53.0	- 58.0	52.1	0.9	- 5.9	60.0	58	97%	33	55%	2.5-2.5	0.004-0.02	134.8	129.8	56.4	4.3	131.4	5,442	0.31	5,130	175.9	Pelite
BB-SDRR-103	R2	187.8	58.0	- 63.0	52.1	5.9	- 10.9	60.0	57	95%	44	73%	2.5-8	0.004-0.02	129.8	124.8								

Notes:

1. Refer to the boring logs in Appendix C for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD88), unless noted otherwise.

3. As-drilled locations were surveyed by MaineDOT and provided to GZA.

FIGURES

© 2025 - GZA GeoEnvironmental, Inc. P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Figures\GIS\APRX\APRX.aprx, April 08, 2025 - 2:02 PM, Elizabeth.Fulton

5/15/2025

Date:

APPENDIX A - LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our

evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 025469.00 Drummond Rd Report\FINAL 26242.00-Drummond Rd Bridge #5784 GDR 06.24.2025.docx

APPENDIX B - HISTORIC GEOTECHNICAL DATA AND FOUNDATION DRAWINGS

APPENDIX C - TEST BORING LOGS

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM	MODIFIED BURMISTER SYSTEM
			GROUP		
MAJ COARSE- GRAINED SOILS	GRAVELS	ONS CLEAN GRAVELS (little or no fines)	GW GP	TYPICAL NAMES Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel sand mixtures, little or no fines.	Descriptive TermPortion of Total (%)trace0 - 10little11 - 20some21 - 35adjective (e.g. Sandy, Clayey)36 - 50
iger	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay	Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).
(more than half of material is larger than No. 200 sleve size)		amount of fines)		mixtures.	Density of Standard Penetration Resistance Cohesionless Soils N ₆₀ -Value (blows per foot) Very loose 0 - 4
ian half of an No. 200	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Loose 5 - 10 Medium Dense 11 - 30 Dense 31 - 50
(more th tha	(more than half of coarse fraction is smaller than No. 4 sieve size)	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200 sign(x), lashidae (1) increasing and exception silts and player (2) Converting Sector
	e than hali n is smalle sieve si:	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated. <u>Approximate</u>
	(mor fractio	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Undrained Consistency of SPT N ₆₀ -Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.	Very SoftWOH, WOR, WOP, <20 - 250Fist easily penetratesSoft2 - 4250 - 500Thumb easily penetratesMedium Stiff5 - 8500 - 1000Thumb penetrates with moderate effortStiff0 - 1510002000
FINE- GRAINED SOILS	(liquid limit l	ess than 50)	CL	Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff9 - 151000 - 2000Indented by thumb with great effortVery Stiff16 - 302000 - 4000Indented by thumbnailHard>30over 4000Indented by thumbnail with difficulty
is ze)			OL	Organic silts and organic Silty clays of low plasticity.	Rock Quality Designation (RQD): RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance length of core advance
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	мн	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high	*Minimum NQ rock core (1.88 in. OD of core) Rock Quality Based on RQD <u>Rock Quality</u> <u>RQD (%)</u> Very Poor ≤25 Poor 26 - 50
(more the smaller that	(liquid limit gr	eater than 50)	ОН	plasticity, fat clays. Organic clays of medium to high plasticity, organic silts.	Fair 51 - 75 Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable):
		ORGANIC	Pt	Peat and other highly organic soils.	Color (Munsell color chart) Texture (aphanitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.)
Color (Muns Moisture (dr Density/Cor Texture (find Name (Sand Gradation (sell color cha ry, damp, m nsistency (fr e, medium, d, Silty Sand well-graded on-plastic, s ayering, frac ell, moderat n (weak, mo rigin (till, ma	art) oist, wet) om above ri coarse, etc. d, Clay, etc. , poorly-grad slightly plast etures, crack ely, loosely, oderate, or s	ght hand s) , including ded, unifor ic, modera s, etc.) etc.,) strong)	portions - trace, little, etc.) m, etc.) tely plastic, highly plastic)	 Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.) Geologic discontinuities/jointing: -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - 22 inch, close - 2-12 inch, mod. close - 1-3 feet, wide - 3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))
Key	/ to Soil a	Geotechi	<i>nical</i> Seo Descrip	tions and Terms	Sample Container Labeling Requirements:WINBlow CountsBridge Name / TownSample RecoveryBoring NumberDateSample NumberPersonnel InitialsSample DepthSample Depth

Ν	Maine	-		of Transport	atioi	n	Project:	Drummo	d Road Bridge No. 5784	Boring No.:	BB-SD	RR-101
			Soil/Rock Expl US CUSTOM	-			Locatio	n: Sidney,	Maine	WIN:	0254	69.00
							(4.)					
Drille			Seaboard Drill	ling	_	vatior	. ,	187.9		Auger ID/OD:	4.25" OD	
	rator:		K. Hanscom			tum:		NAVD88		Sampler:	Standard Splits	poon
	ged By:		L. Hailey			ј Туре		ATV		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	7-10-24/7-10-2	24		-			Auger/Drive & Wash	Core Barrel:	NQ2	
	ng Loca		N: 600945.8 E	2: 1158464.5	Cas	sing II	D/OD:	4.0/4.5", 3	0/3.5"	Water Level*:	18.0	
		ciency F	actor: 1.066			mmer	Туре:	Automatic	5	Rope & Cathead 🗆		
MD = U = Th MU = V = Fie	olit Spoon S Unsuccess nin Wall Tu Unsuccess eld Vane S	ful Split Sp be Sample ful Thin Wa hear Test,	oon Sample Atten II Tube Sample A PP = Pocket Per <u>ne Shear Test At</u>	RC = Rolle ttempt WOH = We netrometer WOR/C = W wont WO1P = W	id Stem A low Stem er Cone eight of 14 Weight of	Auger Auger 40lb. Ha f Rods o	r Casing	S _{u(lab)} = q _p = Uno N-uncorr Hammer N ₆₀ = Sl	k/Remolded Field Vane Undrained She Lab Vane Undrained Shear Strength (p onfined Compressive Strength (ksf) steted = Raw Field SPT N-value Efficiency Factor = Rig Specific Annual T N-uncorrected Corrected for Hamme ammer Efficiency Factor/60%)*N-uncor	wc = LL = L PL = I Calibration Value r Efficiency G = G	Pocket Torvane Shea Water Content, pero iquid Limit Plastic Limit 'lasticity Index rain Size Analysis onsolidation Test	
				Sample Information	70							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)		scription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	10/4	0.6 - 1.4	9-17/1"			SSA	187.3	Top 7": Asphalt		0.6-	
									Brown, dry, fine to medium Casing refusal at 1.8' on cot		l).	
- 5 -	2D	24/11	5.0 - 7.0	6-2-1-2	3	5			Brown, moist, loose, fine to (Fill).	coarse SAND, some silt,	trace gravel,	G#24-S-3362 A-1-b, SM WC = 8.8%
									8			
									8			
10												
- 10 -	3D	24/14	10.0 - 12.0	5-8-22-25	30	53	55		(Top 6"): Brown, moist, fine (Bottom 8"): Brown, wet, ve			
										cry dense, Sinty SAID, so	ine gravei, (Pin).	
							107		8			
							85		₩			
									8			
							104		8			
							57		8			
- 15 -									Brown, wet, dense, fine to c	coarse SAND, some grave	l, some silt,	G#24-S-3363
	4D	24/12	15.0 - 17.0	7-7-11-17	18	32	28		(Fill).	-		A-1-b, SM
							54		8			WC = 11.2%
							100		₩			
							123		8			
							79	169.4	×			
							48					
- 20 -							40		Brown, wet, very stiff, Clay	ev SILT (Marine Clav)		G#24-S-3364
	5D	24/21	20.0 - 22.0	5-5-6-6	11	20	36		Brown, wet, very suit, eldy	c, SILI, (maine Clay).		CL
							58					LL = 34 PL = 18
												PI = 16
							64					WC = 26.8%
							73	164.4				
25							59					
1. Fine percen 2. Aut 3. Wat	itages passi omatic han ter level me	ing specific nmer Seabo easured befor s represent	grain sizes. ard Drilling #D50 ore removal of 4" approximate bour	re based on plasticity estim , Energy Transfer Ratio = 1 casing on 7/10/24. ndaries between soil types; es and under conditions sta	.066 transitior	ns may t	pe gradual.		hniques of laboratory Atterberg Limit T	Page 1 of 2		
		•	ime measurement					,		Boring No.	BB-SDRF	R-101

I	Aaino	e Depa	artment	of Transport	ation	l I	Project:	Drumr	nond F	oad Bridge No. 5784	Boring No.:	BB-SD	RR-101
		<u> </u>	Soil/Rock Exp	loration Log			Location	1: Sidn	ev. Ma	ine			
		Ţ	JS CUSTOM	ARY UNITS					- ,		WIN:	0254	69.00
Drille	er:		Seaboard Dril	ling	Elev	atior	n (ft.)	187.	9		Auger ID/OD:	4.25" OD	
Oper	ator:		K. Hanscom	-	Datu	um:		NAV	/D88		Sampler:	Standard Splits	spoon
Logo	jed By:		L. Hailey		Rig	Туре	:	ATV	r		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	7-10-24/7-10-	24	Drill	ing N	lethod:	Solic	l Stem	Auger/Drive & Wash	Core Barrel:	NQ2	
Bori	ng Loca	tion:	N: 600945.8 H	E: 1158464.5	Casi	ing II	D/OD:	4.0/4	.5", 3.	0/3.5"	Water Level*:	18.0	
		ciency F	actor: 1.066				Туре:	Automa			Rope & Cathead □		
MD = U = Th MU =	blit Spoon Unsuccess hin Wall Tu Unsuccess	ful Split Spo be Sample ful Thin Wa	oon Sample Atter II Tube Sample A PP = Pocket Pe	RC = Roller WOH = We	I Stem Au ow Stem A Cone ight of 140	iger Auger 0 lb. H		S _{u(la} q _p = I N-uno Hamr	_{b)} = Lab Unconfii correcte ner Effic	emolded Field Vane Undrained She Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual -uncorrected Corrected for Hamme	psf) WC = LL = L PL = I Calibration Value PI = F	Pocket Torvane Shea Water Content, pero iquid Limit Plastic Limit Ilasticity Index rain Size Analysis	
MV =	Jnsuccess	ful Field Va	ne Shear Test At	tempt WO1P = W Sample Information	eight of O	ne Per	rson			ner Efficiency Factor/60%)*N-uncor		onsolidation Test	
		<u>.</u>			σ								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class.
25	6D	24/18	25.0 - 27.0	14-29-37-78	66	117	RC	162.9		Brown, wet, very dense, Sil (Glacial Till).	ty fine to coarse SAND, so	25.0 ome gravel,	G#24-S-3365 A-4(0), SM WC = 13.3%
- 30 -	7D	24/14	30.0 - 32.0	26-30-41-98	71	126				Brown, wet, very dense, Sil (Glacial Till).	ty fine to medium SAND,	some gravel,	
	R1	60/60	32.8 - 37.8	RQD = 97%			NQ2	155.4		Roller cone resistance incre			
- 35 -										probable top of rock at 32.5 to core. R1: Medium hard, slightly Joints are very close to clos discolored, tight. Recovery = 100% Rock Quality = Very Poor Rock Core Times (min:sec)	weathered, medium graine ely spaced, low angle, und : 32.8-33.8' (2:38), 33.8-3-	d, grey, PELITE. lulating, rough,	
	R2	60/60	37.8 - 42.8	RQD = 90%						35.8' (2:15), 35.8-36.8' (2:2 R2: Medium hard, slightly v Joints are close to moderate discolored, tight.	weathered, medium graine	.0.,	
- 40 -										Recovery = 100% Rock Quality = Good Rock Core Times (min:sec) 40.8' (2:20), 40.8-41.8' (2:3		9.8' (2:45), 39.8-	
								145.1	es rue	Bottom of Exploration	n at 42.8 feet below grour	42.8- ad surface.	
- 45 -													
50 Rem	arks:												
		l Soil Descri	ptions on this log	g are based on plasticity estin	nated usin	ıg visu	al manual cla	assificatio	on techn	iques of laboratory Atterberg Limit	Tests if available, rather than	the MaineDot Stand	ard based

Pine Oraneu Son Descriptorio on ans log are cased on practicity commune of percentages passing specific grain sizes.
 Automatic hammer Seaboard Drilling #D50, Energy Transfer Ratio = 1.066
 Water level measured before removal of 4" casing on 7/10/24.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Deriver Mer, DD (DDD 101
than those present at the time measurements were made.	Boring No.: BB-SDRR-101

N	Aaine			of Transport	atio	n	Project	: Drumr	nond R	Road Bridge No. 5784	Boring No.:	RR-102	
			Soil/Rock Expl			ļ	Locatio	n: Sidn	ey, Mə	ine		0054	60.00
		<u>[</u>	US CUSTOM/	<u>ARY UNITS</u>		ļ	i				WIN:	0254	69.00
Drille	er:		Seaboard Drill	ling	Ele	evation) (ft.)	166.1			Auger ID/OD:	4.25" OD	
Oper			K. Hanscom		_	itum:	. ,	NAVD8	88		Sampler:	Standard Splits	poon
	ed By:		L. Hailey			g Type:		ATV			Hammer Wt./Fall:	140#/30"	poon
	Start/Fi	inich:	7-10-24/7-10-2	24	_		/lethod:		- Wash		Core Barrel:	NQ	
	ng Locat		N: 600904.6 E		_	ising ID		4.0/4.5"			Water Level*:	0.0	
	-		actor: 1.066			mmer '		Automa			Rope & Cathead	0.0	
Definiti	ions:		401011 1100	R = Rock C	Core Sam	mple	· 7F ·	S _u = F	Peak/Re	emolded Field Vane Undrained She	ear Strength (psf) T _v = F	Pocket Torvane Shea	
MD = l		sful Split Spo	oon Sample Atten		llow Stem			q _D = l	Unconfir	vane Undrained Shear Strength (p ned Compressive Strength (ksf)	LL = L	Water Content, pero iquid Limit	ænt
		ube Sample sful Thin Wa	all Tube Sample A	Attempt RC = Roller		140lb. Ha	ammer			d = Raw Field SPT N-value ciency Factor = Rig Specific Annual		Plastic Limit lasticity Index	
V = Fie	eld Vane S	Shear Test,	PP = Pocket Per	enetrometer WOR/C = V	Weight of	of Rods or	or Casing	N ₆₀ =	= SPT N	I-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor	r Efficiency G = G	rain Size Analysis onsolidation Test	
	///////////////////////////////////////			Sample Information	Cigin 2								Laboratory
		(in.)	Ę	<u> </u>	eq		T	Γ !					Laboratory Testing
(;)	Ň	Sc. (i	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected			ے ا	Graphic Log	Visual De	scription and Remarks		Results/ AASHTO
Depth (ft.)	Sample No.	Pen./Rec.	nple	ws (/ jar i) XQD	nco		Casing Blows	Elevation (ft.)	phic				and
Dep	San	Pen	(ft.)	Blov Stre or F	n-r Z	09 _N	Cas Blov	(ft.)	Gra				Unified Class.
0	1D	24/10	0.0 - 2.0	6-5-3-4	8	14	8	165.8	////	(Top 4"): Brown, wet, Silty material (Topsoil)	fine to medium SAND, so	ome organic	
							17			(Bottom 6"): Tan, wet, stiff,	, Silty CLAY, trace gravel	, trace organic	
					,ļ		9			material (Marine Clay)			
							5	1 !	V///				
			+ +		ļ	<u> </u>	12	1 !					
- 5 -	2D	24/14	5.0 - 7.0	1-1-WOH-1	1	2	12			Tan, wet, soft, Silty CLAY,	trace gravel (Marine Clay	G#24-S-3366 CL	
					 	<u> </u>	13	1 !				LL = 33 $PL = 18$	
			+		ļ	├──	18	{ !				PL = 18 PI = 15 WC = 25.9%	
			+		ļ	 		{ !	////			WC = 25.770	
]	<u> </u>	14		V//				
- 10 -	3D	24/6	10.0 - 12.0	1-WOH-WOH-1		<u> </u>				Tan, wet, very soft to soft, C	Clayey SILT, little fine sar	nd, trace gravel	G#24-S-3367
	30	24/6	10.0 - 12.0	I-WUH-WUH-I		<u> </u>	16	{ !	V///	(Marine Clay)			A-4(0), ML WC = 22.5%
		<u> </u>]	──	14	- I	V///				
					ļ		R/C	!	V///				
					ļ								
			+		ļ	<u> </u>	+	1 !					
- 15 -	4D	10/9	15.0 - 15.8	3-34/4"	0	0	NQ2	150.6		(Top 6"): Grey, wet, Clayey	SILT, some sand (Marine		G#24-S-3368
		60/60	15.8 - 20.8	RQD = 70%	0			150.6 150.3		(Bottom 5). Fun, wet, dens	se, Silty fine to medium SA	15.5- AND, some	A-4(0), ML WC = 20.9%
]		+	- I	<u> </u>	gravel (Glacial Till) Roller cone refusal at 15.8	on probable top of rock. S	15.8- et up to core at	q _p =799 ksf
		<u> </u>			,ļ	 	++-	- P	<u>9</u> 12	15.8'. R1: Hard, slightly weathere		•	-P
					ļ				<u> USB</u>	occasional quartzite laminad	e or intrusions. Joints are o	closely spaced,	
					ļ				616	low angle, undulating, roug Recovery = 100%	h, discolored, partially ope	en.	
- 20 -	R2	56/48	20.8 - 25.5	RQD = 53%	ļ	<u> </u>	+	1 !	6CM	Rock Quality = Fair	15.0.16.01(2.00), 16.0.1	7 01 (2 25) 17 0	
		50/48	20.8 - 23.3	KQD = 33%		<u> </u>	+	- I		Rock Core Times (min:sec) 18.8' (3:14), 18.8-19.8' (5:0	6), 19.8-20.8' (5:21)		
					ļ			!	<u>UN</u>	R2: Hard, slightly weathere occasional quartzite laminad	d, medium grained, grey,	PELITE, with	
							T	!	<u>UM</u>	low angle, undulating, roug			
			+		ļ	\vdash	++	1 !	ANS!	into hole at 56". Recovery = 86%			
		<u> </u>]	──	++-	- I	(U)	Rock Quality = Fair	20.0.01.01/5.14) 01.0 0	2 01 /7 00\ 00 Q	
25					ļ			<u> </u>	919	Rock Core Times (min:sec) 23.8' (4:37), 23.8-24.8' (3:50		2.8 (7:02), 22.0-	
Rema	arks:												
		Soil Descript		ire based on plasticity estimate	ated usin	g visual	manual clas	ssification	techniq	ues of laboratory Atterberg Limit T	ests if available, rather than th	e MaineDot Standar	d based
2. Auto	omatic ham	nmer Seaboa		0, Energy Transfer Ratio = 1.	.066.								
			noval of casing.	surrace.									
Stratifi * Wate	r level read	s represent idings have f	approximate bour been made at tim	Indaries between soil types; nes and under conditions sta	transition ated. Gro	ns may b oundwate	e gradual. er fluctuatic	ons may or	ccur due	e to conditions other	Page 1 of 2		
than	those pres	sent at the ti	ime measurement	its were made.							Boring No.	: BB-SDKK	(-102

Ι	Aain	e Dep	artment	ation		Project:	Drum	mond F	oad Bridge No. 5784	Boring No.: BB-SDRR-102			
		-	Soil/Rock Exp US CUSTOM	bloration Log			Locatio	n: Sidn	iey, Ma	ine	WIN:	0254	69.00
					-							-	
Drille			Seaboard Dri	lling	Eleva		(ft.)	166.			Auger ID/OD:	4.25" OD	
	ator:		K. Hanscom		Datur				/D88		Sampler:	Standard Splits	spoon
	ged By:		L. Hailey	24	Rig T			ATV		,	Hammer Wt./Fall:	140#/30"	
	Start/Fi		7-10-24/7-10 N: 600904.6		_	-	ethod:		e & W 4.5", 3.		Core Barrel: Water Level*:	NQ 0.0	
	ng Loca				Casin Hamn	-					Rope & Cathead	0.0	
Definit D = Sp MD = U = Th MU = V = Fie	ions: blit Spoon Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split Sp ibe Sample sful Thin Wa Shear Test,	all Tube Sample / PP = Pocket Pe ane Shear Test A	R = Rock C SSA = Soli mpt HSA = Holl RC = Rolle Attempt WOH = We enetrometer WOR/C = N	Core Sample d Stem Aug ow Stem Au	er iger lb. Hai ods or	mmer Casing	S _{u(la} q _p = N-un Hami Neo :	Peak/Ro (b) = Lat Unconfin correcte mer Effic = SPT N	Hydraulic □ emolded Field Vane Undrained She Vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value siency Factor = Rig Specific Annua -uncorrected Corrected for Hammer her Efficiency Factor/60%)*N-unco	ear Strength (psf) T _V = (psf) WC LL = PL : I Calibration Value PI = er Efficiency G =	Pocket Torvane She = Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
25 Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
25							V	140.6	20152	Bottom of Fundametic	n at 25.5 feet below gro	25.5	
- 30 -											B.v.		
- 25 -													
- 35 -													
- 40 -													
- 45 -													
_ 50 _													
1. Fi perce 2. Au 3. M	entages pa utomatic h easured 23	ssing specif ammer Sea 3.2' from br	ic grain sizes.	050, Energy Transfer Ratio = nd surface.		visual	manual cl	assificati	on techn	iques of laboratory Atterberg Limi	t Tests if available, rather tha	n the MaineDot Stand	ard based

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-SDRR-102

I	Aaine			of Transporta	ation		Project	Drummond R	oad Bridge No. 5784	Boring No.:	BB-SD	RR-103		
			Soil/Rock Expl JS CUSTOM/	•			Locatio	n: Sidney, Ma	ine	WIN:	0254	69.00		
Drille	er:		Seaboard Drill	ing	Eleva	ation	(ft.)	187.8		Auger ID/OD:	4.25" OD			
	ator:		K. Hanscom	iiiig	Datu		(10)	NAVD88		Sampler:	Standard Splits	noon		
	ged By:		L. Hailey		Rig			ATV		Hammer Wt./Fall:	140#/30"	F		
	Start/Fi	nish:	7-8-24/7-9-24		<u> </u>		lethod:		ger/Drive & Wash	Core Barrel:	NQ			
	ng Loca		N: 600892.7 E	: 1158738 1	-	-)/OD:	4.0/4.5", 3.0/3	~	Water Level*:	23.5'			
	•		actor: 1.066		-	-	Type:	Automatic 🛛		Rope & Cathead	20.0			
Definit D = Sp MD = U = Th MU = V = Fid	ions: blit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split Spo ibe Sample sful Thin Wa Shear Test,	oon Sample Attern II Tube Sample A PP = Pocket Per ne Shear Test Att	RC = Roller ttempt WOH = We netrometer WOR/C = V	ore Sampl d Stem Aug ow Stem A Cone ight of 140 Veight of R	le ger luger Nb. Ha Rods ol	mmer r Casing	$S_u = Peak/Re S_u(lab) = Labq_p = Unconfir N-uncorrecter Hammer Effic N60 = SPT N$	emolded Field Vane Undrained She Vane Undrained Shear Strength (led Compressive Strength (ksf) 4 = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pocket Torvane She Water Content, per iquid Limit Plastic Limit 'lasticity Index rain Size Analysis onsolidation Test	cent		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log		scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.		
0							SSA	187.1	Top 8": Asphalt					
	1D	7/4	1.0 - 1.6	20-39/1"	R				Brown, dry, very dense, GF silt, (Fill). Spoon refusal at 1.7'.	se Sand, trace	G#24-S-3369 A-1-a, GW- GM			
								185.3	Encountered concrete at 2.5	i'. (Approach Slab)	2.5	WC = 2.0%		
- 5 -	2D	24/18	3.5 - 5.5	5-6-5-3	11	20		184.3	Brown, dry, medium dense, silt, (Fill).	rown, dry, medium dense, fine to medium SAND, some grave t, (Fill).				
5	3D	24/13	5.5 - 7.5	2-2-2-2	4	7			Brown, dry, loose, fine to n (Fill).	ose, fine to medium SAND, some gravel, trace silt,				
							22							
							53							
							73	1 🗱						
- 10 -	4D	24/13	10.0 - 12.0	10-8-8-10	16	28			Brown, wet, medium dense silt, (Fill).	, fine to coarse SAND, so	ne gravel, some	G#24-S-3370 A-1-b, SM WC = 12.6%		
- 15 -	5D	24/10	15.0 - 17.0	9-11-12-15	23	41	52		Brown, wet, dense, Silty SA	AND, some gravel, (Fill).				
							48							
							66							
							78 84							
- 20 -	6D	24/15	20.0 - 22.0	8-4-5-6	9	16	55	167.5	(Top 3"): Brown, wet, Silty	SAND, some gravel, (Fil)20.3-	G#24-S-3371		
	0.0	2013	20.0 22.0	0130		10	57		(Bottom 12"): Grey, wet, st Clay).	iff, Clayey SILT, some sa		A-4(0), ML WC = 30.1%		
							65	////						
							104							
							79	///						
25 Rem	arks:													
1. Fine percen 2. Aut 3. Wat	e Grained S itages pass omatic han ter level me	ing specific nmer Seabo easured at th s represent	grain sizes. ard Drilling #D50 he beginning of dr approximate bour	, Energy Transfer Ratio = 1.	066.	may b	e gradual.		ues of laboratory Atterberg Limit T	Yests if available, rather than the provided that the provided tha	e MaineDot Standar	d based		

Ι	Aaine	e Depa	artment	of Transporta	ation	l I	Project	Drum	mond R	d Road Bridge No. 5784 Boring No.: BB-S			RR-103
			Soil/Rock Exp	-			Locatio	n: Sidr	ney, Ma	ine		0.05	60.00
		<u>[</u>	JS CUSTOM/	ARY UNITS							WIN:	0254	69.00
Drille	er:		Seaboard Dril	ling	Elev	/ation	(ft.)	187.	.8		Auger ID/OD:	4.25" OD	
Oper	ator:		K. Hanscom		Dati	um:		NA	VD88		Sampler:	Standard Splits	spoon
Logo	jed By:		L. Hailey		Rig	Туре		ATV	V		Hammer Wt./Fall	: 140#/30"	
Date	Start/Fi	nish:	7-8-24/7-9-24		Drill	ling N	lethod:	Soli	d Stem	Auger/Drive & Wash	Core Barrel:	NQ	
Bori	ng Loca	tion:	N: 600892.7 E	E: 1158738.1	Cas	ing IC)/OD:	4.0/	4.5", 3.0)/3.5"	Water Level*:	23.5'	
		ciency F	actor: 1.066	D. Dask C			Туре:	Autom			Rope & Cathead		an Otran ath (ant)
	lit Spoon S			R = Rock C SSA = Solid	Stem Au	uger		S _{u(la}	ab) = Lab	molded Field Vane Undrained She Vane Undrained Shear Strength (psf)	$T_v = Pocket Torvane ShearWC = Water Content, per$	
U = Th	in Wall Tu	be Sample	oon Sample Atten	RC = Roller	Cone	-		N-un	corrected	ed Compressive Strength (ksf) d = Raw Field SPT N-value		LL = Liquid Limit PL = Plastic Limit	
V = Fi	eld Vane S	hear Test,	II Tube Sample A PP = Pocket Pe	netrometer WOR/C = W	eight of	Rods o	r Casing	N ₆₀	= SPT N	iency Factor = Rig Specific Annual uncorrected Corrected for Hamme	PI = Plasticity Index G = Grain Size Analysis		
MV =	Jnsuccess	ful Field Va	ne Shear Test Att	tempt WO1P = We Sample Information	eight of C	ne Per	son	N ₆₀	<u>= (Hamn</u>	er Efficiency Factor/60%)*N-uncor	rrected	C = Consolidation Test	
		·.			σ				1				Laboratory
	ġ	c. (in	Dept	().in.)	ecte				Log	Visual De	scription and Rema	rke	Testing Results/
h (ft	ple I	/Rec	ple	s (/6 ar DD (corr		р р	atior	hic		senption and reema		AASHTO and
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log				Unified Class.
25	7D	24/24	25.0 - 27.0	5-6-6-6	12	21	25/6"		V///	Grey, moist, very stiff, Silty	y CLAY, trace fine sa	nd, (Marine Clay).	
	70	24/24	23.0 - 27.0	5-0-0-0	12	21	25/0	-					
							85	_					
							75		V///				
							85						
							70		V///				
- 30 -							79	-		Grey, wet, stiff, Silty CLAY	V trace fine sand (M	arine Clav)	G#24-S-3372
	8D 24/24 30.0 - 32.0 2-3-2-3				5	9	31/6"			Grey, wet, suit, Sitty CLAT	, truce fille suile, (ivi	anne Chuy).	CL
					64						LL = 32 PL = 18		
							57	-					PI = 14 WC = 30.3%
								-					WC - 50.570
							54	-					
- 35 -							48		V///				
55	1U	24/22	35.0 - 37.0	PUSH			RC			1U: Grey, wet, Silty CLAY	(Marine Clay)		
	MV1		37.6 - 38.0					-					
	IVI V I		37.0 - 38.0					-		55 x 110 mm vane raw torq MV1: Vane refusal, Could			
								148.8					
40													
- 40 -	9D	24/8	40.0 - 42.0	14-16-20-13	36	64				Grey, wet, very dense, Silty (Glacial Till).	medium to coarse SA	AND, some gravel,	
								-					
- 45 -	100	04/10	45.0 47.0	10.00.40.50		110		-		Grey, wet, very dense, Silty	fine to coarse SANE	, some gravel	G#24-S-3373
	10D	24/13	45.0 - 47.0	19-20-42-52	62	110				(Glacial Till)			A-4(0), SM WC = 8.2%
													110 012/0
					\rightarrow		+	1					
							+	-					
_ 50													
	arks:												
perce	entages pas	sing specifi	c grain sizes.			ng visua	l manual c	lassificati	on techn	ques of laboratory Atterberg Limit	Tests if available, rather	than the MaineDot Stand	ard based
				50, Energy Transfer Ratio = 1 drilling on 7/9/24.	.066.								

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 3
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Boring No.: BB-SDRR-103
than those present at the time measurements were made.	Boring No.: BB-SDRR-103
	-

Ι	Aaine	e Depa	artment	of Transporta	ation Project: Drummond Road Bridge No. 5784							Boring No.:	RR-103	
		<u>-</u>	Soil/Rock Exp	loration Log			Loca	tio	1: Sidn	ev Mai	ne			
		Ĺ	JS CUSTOM	ARY UNITS					. Sian	<i>cj</i> , <i>a</i>		WIN:	0254	69.00
Drille	er:		Seaboard Dril	ling	Ele	vation	(ft.)		187.	8		Auger ID/OD:	4.25" OD	
Oper	ator:		K. Hanscom		Dat	um:			NAV	/D88		Sampler:	Standard Splits	spoon
Logo	ged By:		L. Hailey		Rig	Туре			ATV	r		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	7-8-24/7-9-24	Ļ	Dri	lling N	letho	d:	Solic	Stem A	Auger/Drive & Wash	Core Barrel:	NQ	
Bori	ng Loca	tion:	N: 600892.7 I	E: 1158738.1	Cas	sing ID)/OD:		4.0/4	.5", 3.0	/3.5"	Water Level*:	23.5'	
		ciency Fa	actor: 1.066			nmer	Туре		Automa		2	Rope & Cathead 🗆		
MD = U = Th MU = V = Fie	olit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	ful Split Spo be Sample ful Thin Wal bear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	RC = Roller WOH = We enetrometer WOR/C = W	Stem A ow Stem Cone ight of 14 Veight of	Auger Auger 40 lb. Ha	r Casin	g	S _{u(la} q _p = N-uno Hamr N ₆₀ =	b) = Lab Unconfin corrected ner Effici = SPT N-	molded Field Vane Undrained She Vane Undrained Shear Strength (ed Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	osf) WC = LL = I PL = Calibration Value PI = F or Efficiency G = C	Pocket Torvane She Water Content, per Liquid Limit Plastic Limit Plasticity Index Brain Size Analysis Consolidation Test	
				Sample Information	-									Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log		scription and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.	
50	11D 22/14 50.0 - 51.8 26-65-74-55				139	247					Grey, wet, very dense, Silty (Glacial Till).	fine to coarse SAND, so	ne gravel,	
									135.7				52.1	
								1		96	Roller cone resistance at 52 52.1'. Advanced roller cone	to 53.0' and set up to core	2.	
	R1	60/58	RQD = 55%			NC	2		SE ST	R1: (53.0'-58.0'): Medium h grey, PELITE, with occasio	ard, slightly weathered, n	nedium grained,		
							\square	/			intrusion 54.5 to 56.1'. Joint	ts are very close to close,	low angle,	
- 55 -							ľ			9120	rough, undulating, discolore R1: (53.6'-55.6'): Hard, slig	ed, tight to moderately wid htly weathered, aphanitic,	de. white,	
										19919	QUARTZITE. Joints are ve	ry close, horizontal, rough		
										96	discolored, moderately wide Recovery = 97%	<i>.</i>		
										5016	Rock Quality = Fair Rock Core Times (min:sec)	· 53 0 54 0' (2·17) 54 0 5	5 0' (4:42) 55 0	
											56.0' (4:01), 56.0-57.0' (2:3	4), 57.0-58.0' (2:11)		qp=784 ksf
	R2	60/57	58.0 - 63.0	RQD = 73%						91,20	R2: Hard, slightly weathere occasional quartzite lamina			~
										96610	horizontal to moderately dip to partially open.	pping, undulating, rough,	discolored, tight	
- 60 -										96	Recovery $= 95\%$			
										5C)[5	Rock Quality = Fair Rock Core Times (min:sec)	· 58 0-59 0' (3·07) 59 0-6	0.0' (3.58) 60.0-	
								/			61.0' (3:41), 61.0-62.0' (3:1	2), 62.0-63.0' (3:25)	0.0 (5.56), 00.0-	
							$ \rangle$	/						
									124.8		Bottom of Exploration	at 63.0 feet below groun	63.0- nd surface.	
- 65 -														
- 70 -														
							+							
75														
	arks:			·										
			ptions on this log c grain sizes.	g are based on plasticity estin	nated usi	ng visua	l manu	al cl	assificatio	on techni	ques of laboratory Atterberg Limit	Tests if available, rather than	the MaineDot Stand	ard based

Automatic hammer Seaboard Drilling #D50, Energy Transfer Ratio = 1.066.
 Water level measured at the beginning of drilling on 7/9/24.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 3 of 3
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Dering Me , DD CDDD 102
than those present at the time measurements were made.	Boring No.: BB-SDRR-103

APPENDIX D - LABORATORY TESTING RESULTS

	195 Frances Avenue	Client Inf	ormation:	Project Information:				
	Cranston RI, 02910	GZA GeoEnvi	ronmental, Inc.	Drummond Road Bridge #5784 Sidney, Maine				
Thielsch 迷	Phone: (401)-467-6454	South Po	rtland, ME					
	Fax: (401)-467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026242.00 Task 3			
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Blaine Cardali	Summary Page:	1 of 1			
	Let's Build a Solid Foundation	Collected By:	GZA	Report Date:	9/9/2024			

LABORATORY TESTING DATA SHEET, Report No.: 7424-H-256

					Identification Tests										Pro	ctor / CBR /	Permeabilit	y Tests			
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	Sand %	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	318			D6913		D2974	D4792	D1	557							
BB-SDRR- 101	2D	5-7	24-S-3362	8.8				1.4	77.7	20.9											Dark Brown f-c SAND, some Silt, trace fine Gravel
BB-SDRR- 101	4D	15-17	24-S-3363	11.2				31.0	45.0	24.0											Brown f-c SAND, some fine Gravel, some Silt
BB-SDRR- 101	5D	20-22	24-S-3364	26.8	34	18															Brown CLAY & SILT
BB-SDRR- 101	6D	25-27	24-S-3365	13.3				22.7	37.8	39.5											Brown SILTY f-c SAND, some f-c Gravel
BB-SDRR- 102	2D	5-7	24-S-3366	25.9	33	18															Brown CLAY & SILT
BB-SDRR- 102	3D	10-12	24-S-3367	22.5				7.0	12.8	80.2											Olive SILT & CLAY, little f-c Sand, trace fine Gravel
BB-SDRR- 102	4D	15-17	24-S-3368	20.9				25.8	23.0	51.2											Olive SILT & CLAY, some f-c Gravel, some f-c Sand
BB-SDRR- 103	1D	0-2	24-S-3369	2.0				62.2	29.3	8.5											Dark Brown f-c GRAVEL, some f-c Sand, trace Silt
BB-SDRR- 103	4D	10-12	24-S-3370	12.6				27.1	47.8	25.1											Dark Brown f-c SAND, some f-c Gravel, some Silt
BB-SDRR- 103	6D	20-22	24-S-3371	30.1				7.8	5.4	86.8											Brown SILT & CLAY, trace fine Gravel, trace f-c Sand
BB-SDRR- 103	8D	30-32	24-S-3372	30.3	32	18															Brown CLAY & SILT
BB-SDRR- 103	10D	45-47	24-S-3373	8.2				21.8	35.8	42.4											Grey CLAYEY SILT, some f-c Sand, some fine Gravel

Date Received:

8/23/2024

Reviewed By:

that

Date Reviewed:

9/9/2024

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Project ID:	Bridge	nond Ro #5784	ad	MDOT	Project	Nur	nber					
Town(s):	Sidney	, ME		GZA Pro	oject Nun	nber:		09.0	026242.	00 Task ()3	
Boring & Sample	Station	Sample	Depth	Lab	Organic	wc	LL	PI	Classification			
ID Number	(Feet)	No.	(Feet)	Number	%	%			Unified	AASHTO	Frost	
BB-SDRR-101		2D	5-7	S-3362		8.8	NV	NP	SM	A-1-b	Ш	
BB-SDRR-101		4D	15-17	S-3363		11.2	NV	NP	SM	A-1-b	Ш	
BB-SDRR-101		5D	20-22	S-3364		26.8	34	16	CL			
BB-SDRR-101		6D	25-27	S-3365		13.3	NV	NP	SM	A-4(0)	Ш	
BB-SDRR-102		2D	5-7	S-3366		25.9	33	15	CL	A-4(0)		
BB-SDRR-102		3D	10-12	S-3367		22.5			ML	A-4(0)	IV	
BB-SDRR-102		4D	15-17	S-3368		20.9			ML	A-4(0)	IV	
BB-SDRR-103		1D	0-2	S-3369		2.0	NV	NP	GW-GM	A-1-a	I	
BB-SDRR-103		4D	10-12	S-3370		12.6	NV	NP	SM	A-1-b		
BB-SDRR-103		6D	20-22	S-3371		30.1			ML	A-4(0)	IV	
BB-SDRR-103		8D	30-32	S-3372		30.3	32	14	CL			
BB-SDRR-103		45-47	S-3373		8.2			SM	A-4(0)	IV		
Classi		•	s is in accordanc							cation		

Classification of these soil samples is in accordance with AASHTO Classification System M-145-95. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible). The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-19 and/or ASTM D 7928-21e1 (Last Updated June 2021)

WC = water content as determined by AASHTO T 265-19 and/or ASTM D 2216-19

LL = Liquid limit as determined by AASHTO T 89-17 and/or ASTM D 4318-17E01

PI = Plasticity Index as determined by AASHTO 90-16 and/or ASTM D4318-17E01

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approvel from the Agency, as defined in ASTM E329.

Checked By: Kris Roland

Tested By: RB/MCS

Checked By: Kris Roland

Checked By: Kris Roland

	195 Frances Avenue	Client Ir	formation:	Project Information: Sidney Bridges			
	Cranston RI, 02910		nvironmental				
Thielsch 🌉	Phone: (401)-467-6454	South P	ortland, ME	Sidney, ME			
	Fax: (401)-467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026242.00 T3		
DIVISION OF THE RISE GROUP	thielsch.com	Assigned By:	Blaine Cardali	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	Luis Navarrete	Report Date:	09.06.24		

LABORATORY TESTING DATA SHEET, Report No.: 7424-H-253

					Specimen Data						Compressive Strength Tests							
Boring No.	Sample No.	Depth (ft)	Laboratory No.	Mohs Hard- ness	Diameter (in)	Length (in)	(1) Unit Weight (PCF)	(2) Wet Density (PCF)	Bulk G₅	(3) Other Tests	(4) Strength PSI	(5) Strain %	(6) E sec PSI EE+06	(7) Poisson's Ratio	st PSI	Is ₅₀ PSI	(8) s _c PSI	Rock Formation or Description or Remarks
BB-SDRR- 101		32.8- 33.8	24-S-3345															No Data
Sample broke along foliation when setting it in the trimmer																		
BB-SDRR- 102		18.8- 19.4	24-S-3346		1.988	4.600	174.0			U	5548	0.314	2.03	0.14				Grey Slate
Fresh Break along foliation																		
BB-SDRR- 103		56.4- 57.0	24-S-3347		1.964	4.431	175.9			U	5442	0.426	5.13	0.31				Grey Slate
								Fres	sh Breal	k along t	foliation							
(1) Volume I	Determined	By Meas	suring Dimensi	ons		(3) PLD=	Point Loa	ad (diametri	ical),				(5) Strain at Peak Deviator Stress					
(2) Determir	ned by Meas	suring Di	mensions and		Notes	PLA= Po	int Load ((Axial) ST=	Splittin	ıg Tensil	ensile (6) Represents Secant Modulus at 50% of Total Failure Stress					ailure Stress		
Weight of Sa	aturated Sar	nple			~	U= Unc	onfined C	Compressive	e Streng	gth		2	(7) Repres	ents Seca	nt Poisson	's Ratio at	50% of ⁻	Total Failure Stress
						(4) Taken at Peak Deviator Stress						(8) Estimated UCS from Table 1 of ASTM D5731 for NX cores (Is x 24)				for NX cores (ls x 24)		
Date Re	eceived:		08.22.24		-		Rev	viewed E	By:	1	lifet					Date R	eview	09.06.24

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	ormation:	Project Ir	formation:	
	Cranston, Rhode Island 02910	GZA GeoEn	vironmental	Sidney Bridges Sidney, ME		
Thielsch 🌉	Phone: (401) 467-6454	South Port	land, ME			
	Fax: (401) 467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026242.00 T3	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	Blaine Cardali	Technician:	AV	
	Let's Build a Solid Foundation	Collected by:	L. Navarrete	Report Date:	09.06.24	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Sample	e Information	Compressive Test In	nformation		
Boring ID:	BB-SDRR-101	Unit Weight (pcf):			
Sample #:		Failure Stress (psi):			1
Depth (ft):	32.8-33.8	Failure Mode:	Fresh		0.9
Tested Depth (ft)	:	Time to Failure (min)			0.9
Rock Type:	Grey Slate				0.8
Features:	Fresh Break				
Test Specin	men Information	Elastic Moduli Test	Information	(si)	0.7
Diameter, D (in):	:	Poisson's Ratio @ 50%:		Stress (ksi)	
Length, L (in):		Strain %:		Stre	0.6
L:D Ratio:		E sec PSI @ 50%:			0.5
	Thielsch	Client Information: GZA GeoEnvironmental, Inc.			0.0
	Cranston, Rhode Island 02910 Phone: (401) 467-6454	South Portland, ME Project Manager: Blaine Cardali			0.4
	www.thielsch.com Let's Build a Solid Foundation	Assigned by: Blaine Cardali Collected by: Client			
		33	recently a		0.3
					0.0
References and					0.2
PR. AFFD. 8 222 TO	T TF. 15 1	17, 3 17, 3 17, 4 17, 4 17, 5 17, 6 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,	TF. 7 - 1F. 8 F. 8 - 1F. 9 - 1F. 1		0.1
kalan ka Kalan kalan kala	Project Information Sidney Bridges	Sample Information Boring Number: BB-SDRR-101			
	Sidney, ME Project Number 09.002624	Sample Number: 42.00 T3 Depth: 32.8-33.8			
	Technician: A	/ TEI Sample Number EM-3345			_
	and the second	The second s			

Testing Notes:

Sample broke along foliation when setting it into trimmer

	195 Frances Avenue	Client Info	ormation:	Project Information:		
	Cranston, Rhode Island 02910	GZA GeoEnv	vironmental	Sidney Bridges		
Thielsch 🌉	Phone: (401) 467-6454	South Port	land, ME	Sidney, ME		
	Fax: (401) 467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026242.00 T3	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	Blaine Cardali	Technician:	AV	
	Let's Build a Solid Foundation	Collected by:	L. Navarrete	Report Date:	09.06.24	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes:

	195 Frances Avenue	Client Info	ormation:	Project Ir	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	vironmental	Sidney Bridges Sidney, ME		
Thielsch 🌉	Phone: (401) 467-6454	South Port	land, ME			
	Fax: (401) 467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026242.00 T3	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	Blaine Cardali	Technician:	AV	
	Let's Build a Solid Foundation	Collected by:	L. Navarrete	Report Date:	09.06.24	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes:

6/24/25 GEOTECHNICAL DATA REPORT DRUMMOND ROAD BRIDGE NO. 5784 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX E – ROCK CORE PHOTOGRAPHS

					Drum	DOT Bridge N Imond Rd ove Sidney, ME WIN 25469.00	er I-95 0			
					Rock	Core Photog	raphs			
	Boring No.	Run		Depth (ft)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
-	BB-SDRR-101	R1	32.8		60	100%	58	97%	PELITE	1
L	BB-SDRR-101	R2	37.8	- 42.8	60	100%	54	90%	PELITE	2
- By 3-	4 512-677 7 8	9 10 11 HF	11 12 1	3 14 15 1-80-17	18 19 110 111 g = 1	+2 +3 +4 ≠5 -6	8 - 9 - 10 - 11	32 33 34 15 20 27	-8 -9 - 10 - 11	* * *4 =5 =0
and the second	ALC N VALA	- d	1-	States and succession		- Anna		mal ma		
ters and			(ing		and the second	Share	and the second second		1.0	
K		NUS NO	t general Class					ME -3	12	
1		1 200		1			1 - 1	1 20 0		Cherry .
	1	8-1-1-	-6			States .	14 - S.	1.1		
3	32			1 de la	P. 3. 1. 1. 1.	CARLET.				
ALT. 21	3-4 55677	9 10 11 4	F:1 1.5	+3 1-4 1-5 1-8	18 19 110 111 SEM	22 23 24 25 28	*8 *9 *10*11 9 = 1	+2 +3 +4 +5 + 0	+8 +9 +10 +11 +4 ++4 +s =s	4 0 3 +4 +5 +0 +7 +8 +9 +10
1-1-		and the second	ing the second	and the second second		The second prover	Children and Children	and the state		
1- 1-2				Parties Supervised	and the second sec					Silim Lo
A.					and the second second	100-		Mar Ir-	45.	te Notor
4						199 - 191.	2. + ·]	10 - IL 0	All .	5
-			- 6	17.1	· · · · · ·	Des Trick	1		4 4 4 4 4	
100	-		C		A CONTRACT OF			and the second		· · · · · · ·

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.

MaineDOT Bridge No. 5784 Drummond Rd over I-95 Sidney, ME WIN 25469.00 Rock Core Photographs

Boring No.	Run	Depth (ft)		Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row	
BB-SDRR-103	R1	53.0	-	58.0	58	97%	33	55%	PELITE/QUARTZITE	1
BB-SDRR-103	R2	58.0	-	63.0	57	95%	44	73%	PELITE	2
BB-SDRR-102	R1	15.8	-	20.8	60	100%	42	70%	PELITE	3
BB-SDRR-102	R2	20.8	-	25.5	48	86%	30	53%	PELITE	4

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.