

GEOTECHNICAL DATA REPORT DINSMORE ROAD BRIDGE NO. 5782 OVER INTERSTATE 95 MAINE DOT WIN 29486.00 (LEGACY WIN 25473.00) SIDNEY, MAINE

June 2025 09.0026242.00

Prepared for: Maine Department of Transportation Augusta, Maine

Prepared by: GZA GeoEnvironmental, Inc. 707 Sable Oaks Drive | Suite 150 | South Portland, Maine 04106 207.879.9190

31 Offices Nationwide www.gza.com

Copyright© 2025 GZA GeoEnvironmental, Inc.

Built on trust.

TABLE OF CONTENTS

Page

Page i

1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 OBJECTIVES AND SCOPE OF SERVICES	1
2.0	SUBSURFACE EXPLORATIONS	2
	2.1 PREVIOUS (1958) BORINGS	2
	2.2 PRELIMINARY DESIGN BORINGS	2
3.0	LABORATORY TESTING	3
4.0	SUBSURFACE CONDITIONS	3
	4.1 SURFICIAL AND BEDROCK GEOLOGY	3
	4.2 SUBSURFACE PROFILE	4
	4.2.1 Bedrock	5
	4.2.3 Groundwater	-
	4.2.3 Groundwater	

TABLES

TABLE 1	Summary of Subsurface Explorations
TABLE 2	Summary of Rock Core

FIGURES

FIGURE 1	Locus Plan
FIGURE 2	Boring Location Plan

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Historic Geotechnical Data and Foundation Drawings
APPENDIX C	Recent Test Boring Logs
APPENDIX D	Laboratory Test Results
APPENDIX E	Rock Core Photographs

1.0 INTRODUCTION

We are pleased to provide this Geotechnical Data Report, which includes geotechnical data related to the replacement of Maine Department of Transportation (MaineDOT) Dinsmore Road Bridge No. 5782 in Sidney, Maine. Our work was completed in accordance with GZA GeoEnvironmental, Inc.'s Project Contract for the above referenced project dated July 22, 2024, and our Proposal No. 09.P000130.24c, dated December 18, 2023, and the Limitations included in **Appendix A** of this report.

1.1 BACKGROUND

The existing Dinsmore Road Bridge No. 5782 was constructed circa 1958 and spans west to east, carrying Dinsmore Road over Interstate 95 (I-95), as shown in **Figure 1**. Bridge No. 5782 consists of a 364-foot-long, six-span, continuous bridge with steel beams and a reinforced concrete deck. The bridge is 29 feet wide and supported by concrete piers and concrete stub abutments.

The 1958 as-built plans indicate that Abutment 1 is supported by nine, HP 10x42 piles driven to bedrock and are either plumb or battered at 2.5:12. The piles notes indicate a maximum design load of 37 tons and an estimated length of 40 feet. Piers 1 and 2 are each supported by twelve, HP 10x42 piles and are either plumb or battered at 2:12 depending on the location. The piles have a maximum design load of 37 tons and an estimated length of 18 feet. Abutment 2 and Piers 3, 4, and 5 are supported by spread footings on bedrock. The piers are cast-in-place concrete columns bearing on spread footings with a maximum footing bearing pressures of 3 tons per square foot (tsf) shown on the 1958 plans. The existing approach embankments are approximately 14 to 25 feet above original grades. The available historic foundation drawings are attached in **Appendix B**.

Elevations referenced in this report are in feet and refer to the North American Vertical Datum of 1988 (NAVD88) unless noted otherwise. Elevations shown on the 1958 drawings are in feet and refer to the National Geodetic Vertical Datum of 1929 (NGVD29). Stantec indicated that a datum shift of approximately -0.7 feet can be used to convert from NGVD29 to NAVD88.

It is GZA's understanding that a full bridge replacement is planned for this project. The bridge will be designed and constructed as part of a Design-Build bundle. Requirements for on- or off-alignment bridge replacement alternatives will be specified in the MaineDOT Design-Build Request for Proposals (RFP).

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to collect data on the subsurface conditions as the Owner's Geotechnical Consultant to be provided to prospective Design-Build teams in the MaineDOT Design-Build Request for Proposals (RFP). To meet these objectives, GZA completed the following Scope of Services:

- Conducted a site visit to observe surficial conditions and reviewed existing bridge plans, historical topography, historical geotechnical reports, and mapped surficial and bedrock geology of the site;
- Coordinated and observed a subsurface exploration program, consisting of five test borings, to evaluate subsurface conditions for the bridge;
- Conducted a laboratory testing program to evaluate engineering and index properties of the site soils and rock; and
- Prepared this report summarizing our findings.

2.0 SUBSURFACE EXPLORATIONS

Details of the previous and current subsurface explorations are provided in the following sections.

2.1 PREVIOUS (1958) BORINGS

In 1958, MaineDOT conducted sixteen test borings, designated Boring #1 through #16, to explore subsurface conditions for bridge construction. These borings were drilled prior to construction of I-95. At the time, the grades were 14 to 25 feet lower than Dinsmore Road is today. Each boring was drilled through the overburden and to bedrock, and approximately 5 feet of core was collected from each boring.

The boring log sheets from the 1958 geotechnical report are included in **Appendix B**.

2.2 PRELIMINARY DESIGN BORINGS

GZA completed a preliminary subsurface exploration program consisting of five (5) test borings designated as BB-SDER-101 through BB-SDER-104, and BB-SDER-104A. The locations and designations are shown on the attached **Boring Location Plan, Figure 2**. Borings BB-SDER-101, -104, and 104A were completed about 15 to 20 feet behind the face of each abutment. Boring BB-SDER-102 was drilled through the bridge adjacent to Pier 2, and boring BB-SDER-103 was drilled through the bridge adjacent to Pier 4. All five borings were drilled from Dinsmore Road. The as-drilled boring locations and elevations were surveyed by MaineDOT, provided to GZA, and are shown on the logs and **Figure 2**.

The borings were drilled to depths of approximately 18 to 49 feet below ground surface (bgs) and terminated approximately 10 to 11 feet into bedrock, other than boring BB-SDER-104, which was terminated at 12 feet bgs due to broken casing. Seaboard Drilling of Bangor, Maine provided drilling services and coordinated utility clearance. The drilling was completed from July 11 through July 15, 2024. GZA personnel monitored the drilling work and prepared logs of each boring, included in **Appendix C**.

The borings were drilled using solid stem augers followed by 3-inch or 4-inch casing and drive-and-wash techniques through the overburden and coring equipment in the bedrock. Standard Penetration Testing (SPT) and split-spoon sampling were performed at 5-foot typical intervals in overburden soils. SPTs were conducted according to MaineDOT requirements using an automatic hammer system calibrated in

accordance with ASTM D4633-05 and MaineDOT procedures. SPTs were conducted using automatic hammer Seaboard SN367, which had a rated hammer energy transfer ratio of 1.066 at the time of drilling. The drilling subcontractor backfilled the approach boreholes with cuttings or sand and topped them with asphalt cold patch upon completion. The bridge deck was patched with quick-set concrete. Rock core was taken from each boring using NQ (2.0-inch diameter) coring equipment.

3.0 LABORATORY TESTING

GZA retained Thielsch Engineering's Geotechnical Laboratory in Cranston, Rhode Island to complete a laboratory testing program to assess the gradation and index properties of the soil and the strength and elastic modulus of bedrock. The testing program is summarized in the table below:

COMPLETED LABORATORY TESTS												
Laboratory Test	ASTM Standard	Number of Tests										
Grain Size Analysis	D6913	8										
Hydrometer	D7928	5										
Atterberg Limits	D4318	2										
Moisture Content	D2216	14										
Unconfined Compressive Strength (with axial and lateral strain)	D7012 Method D	3										

Results of the testing are included in Appendix D.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

Based on available surficial geologic mapping¹, the surficial unit at the site is mapped as Glacial Till, which consists of a poorly sorted mixture of clay, silt, and sand and can include cobbles and boulders. Thin Drift Glacial Till, usually around 10 feet thick or less with bedrock outcroppings, is mapped on the eastern side of the site. The Presumpscot Formation, which consists of marine silt, clay, and local sand beds is mapped to the east and west of the site.

Bedrock in the vicinity of the site is mapped² as the Waterville Formation. The Waterville formation is characterized as fine to medium grained siltstone and claystone metapelite and fine grained to very fine grained, non-foliated, quartz-plagioclase and metasandstone.

¹ Thompson, W.B., 2009. Surficial Geologic of the Augusta quadrangle, Maine: Maine Geological Survey, map 09-7, scale 1:24,000.

² Osberg, Philip H., 1968, Stratigraphy, structural geology, and metamorphism of the Waterville-Vassalboro area, Maine: Maine Geological Survey (Department of Economic Development), Bulletin 20, 64 p. report, color map, cross section, scale 1:62,500. Maine Geological Survey Maps. 80. http://digitalmaine.com/mgs_maps/80

4.2 SUBSURFACE PROFILE

Three soil units, Fill, Marine Clay, and Glacial Till were encountered in the test borings underlying approximately 5 to 7 inches of asphalt pavement (in Dinsmore Road approaches) or 3 inches of topsoil and overlying bedrock. The thicknesses and generalized descriptions of the soil units are presented in the following table, in descending order from existing ground surface. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in **Appendix C**.

Soil Unit	Approximate Encountered Thickness (ft)	Generalized Description and Summary of Laboratory Test Results
Fill	3 to 23	 Varies <u>from</u>: Brown to black, dry, medium dense to dense, GRAVEL, some sand, little silt <u>to</u>: fine to coarse SAND, some gravel, some silt Typical MaineDOT Frost Classification Range= I to III Results of 8 Grain Size, 2 Hydrometer and 10 Moisture Content Analyses: AASHTO Classification: A-1-a, A-1-b, A-2-4(0) USCS Classifications: SP-SM, SM, GP-GM, GM Moisture Content: 3 to 8.9% Encountered in all borings.
Marine Clay	5 to 13	 Brown-grey, wet, very stiff to hard, Silty CLAY to Clayey SILT, trace to some sand, trace gravel. Typical MaineDOT Frost Classification Range = III to IV Results of 2 Hydrometer, 2 Atterberg Limits, and 3 Moisture Content Analyses: AASHTO Classification: A-4, A-6 USCS Classifications: CL, CL-ML, ML Moisture Content: 28.8 to 31.5% Liquid Limit: 36 to 37 Plastic Limit: 19 to 20 Plasticity Index: 16 to 18 Encountered in BB-SDER-101 and BB- SDER-102.
Glacial Till Estimated	2 to 6	 Varies <u>from</u>: Brown, wet, very dense, fine SAND, some silt, some gravel <u>to</u>: SILT, some sand, little gravel. Typical MaineDOT Frost Classification = III to IV Results of 1 Hydrometer and 1 Moisture Content Analyses: AASHTO Classification: A-4(0) USCS Classifications: SP-SM, SM, ML Moisture Content: 12.9% Encountered in BB-SDER-101 and BB- SDER-102.
Top of Bedrock		Approx. El. 225.5 to 259.8 (7 to 39 feet bgs) k is based on recent borings. Depths to bedrock refer to ground surface at

4.2.1 Bedrock

Bedrock was encountered beneath the glacial till stratum in borings BB-SDER-101 and -102 and below fill in BB-SDER-103 and -104A. Bedrock was cored in each test boring other than BB-SDER-104 and was described as Pelite of the Waterville Formation. Pelite was generally described as medium hard, slightly weathered, medium grained, and grey to blue. Joints in the Pelite were generally characterized as very close to closely spaced, moderate to high angle, rough, undulating, discolored, and partially open. The RQD ranged from 20 to 82 percent, indicating a Rock Quality of Very Poor to Good. The bedrock core data are summarized in **Table 2**. Wet and dry photographs of the collected rock core are included in **Appendix E**.

SUMMARY OF BEDROCK STRENGTH TEST RESULTS													
Boring	Depth below Existing Ground (ft)	Depth below Top of Rock (ft)	Unconfined Compressive Strength (psi)	Secant Modulus @ 50% of Failure Stress (ksi)	Unit Weight (pcf)	Rock Type							
BB-SDER-102	17.2	2.1	6,148	4,510	175.7	Pelite							
BB-SDER-103	11.6	4.9	7,428	5,830	176.7	Pelite							
BB-SDER-104A	18.9	3.6	6,252	330	178.3	Pelite							

Unconfined compressive strength and elastic modulus tests were conducted on three rock specimens, the results of which are summarized in the following table.

4.2.3 Groundwater

The groundwater depth was measured in all borings. Groundwater depths ranged from approximately 0 to 16.2 feet, corresponding to approximately El. 244.1 to El. 259.4. Groundwater levels in the borings were measured during or immediately after drilling and were likely affected by cased drilling procedures, which included introduction of water for drilling purposes.

The groundwater observations were made at the times and under the conditions stated in the boring logs. Fluctuations in groundwater level occur due to variations in season, precipitation, and construction activities in the area. Consequently, water levels during construction are likely to vary from those encountered at the time the observations were made.

SIGNATURE PAGE

This report has been prepared and reviewed by:

GZA GEOENVIRONMENTAL, INC.

Blaine Cardali Senior Project Manager

Andrew R. Blaisdell, P.E. Associate Principal

Christopher L. Snow, P.E. Consultant/Reviewer

BMC/ARB/CLS:cc

P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 025473.00 Dinsmore Rd Report\FINAL 26242.00-Dinsmore Rd Bridge #5782 GDR 06.24.2025.docx

TABLES

TABLE 1Summary of Subsurface ExplorationsDinsmore Road Bridge #5782 over I-95Sidney, MEWIN 25473.00

			Cround	Top of Stratum Elevation							St	ratum Thicl	kness					Groun	dwater
Boring ID	Northing	Easting	Ground Surface El. (ft)	Asphalt	Topsoil	Fill	Marine Clay	Glacial Till	Bedrock	Asphalt	Topsoil	Fill	Marine Clay	Glacial Till	Bedrock		Bottom of Boring El. (ft)	El. (ft)	Depth (ft)
BB-SDER-101	579950.3	1149797.6	269.6	269.6	NE	269.0	246.1	233.2	230.7	0.6	NE	22.9	12.9	2.5	38.9	49.0	220.6	253.4	16.2
BB-SDER-102	579926.3	1149925.9	248.9	NE	248.9	248.6	245.4	240.4	234.1	NE	0.3	3.2	5.0	6.3	14.8	25.1	223.8	248.9	0.0
BB-SDER-103	579886.7	1150049.7	251.5	NE	NE	251.5	NE	NE	244.8	NE	NE	6.7	NE	NE	6.7	18.4	233.1	244.1	7.4
BB-SDER-104	579859.8	1150186.9	274.2	274.2	NE	273.8	NE	NE	NE	0.4	NE	>12.0	NE	NE	NE	12.0	262.2	NM	NM
BB-SDER-104A	579859.6	1150189.5	274.2	274.2	NE	273.8			258.5	0.4	NE	15.3	NE	NE	15.3	25.5	248.7	259.4	14.8

NE = Not Encountered, NM = Not Measured

Notes:

1. Refer to the boring logs in Appendix C for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. Project coordinates are in survey feet and reference the North American Datum of 1983 (NAD83) Maine Coordinate System 2000 West, unless noted otherwise.

4. As-drilled locations were surveyed by MaineDOT and provided to GZA.

5. Stratum depths, thickness and elevations are rounded to the nearest 0.1 foot as interpreted on the boring logs, but this does not represent the precision of the data.

TABLE 2

Summary of Bedrock Data

Dinsmore Road Bridge #5782 Over I-95

Sidney, ME WIN 25473.00

			Depth of Co	ore Ru (ft)	un below GS		Depth Belo Rock	•								Elev	/. (ft)				LAB				
Boring ID	Core Run	Ground Surface El. (ft)	Тор		Bottom	Depth to Rock (ft)	Тор	Bottom	Length of Core Run (in)	Rec (in)	Rec (%)	RQD (in)	RQD %	Joint Spacing (in)	Joint Aperture (in)	Тор	Bottom	Depth of Sample (ft)	Depth of Sample into Rock (ft)	Elev Top of Sample (ft)	UCS (psi)	Poissons Ratio	Modulus (ksi)	Unit Wt (pcf)	Rock Type
BB-SDER-101	R1	269.6	39.4	-	44.4	38.9	0.5 -	5.5	60.0	53	88%	42	70%	0.75-2.5	0.01-0.02	230.2	225.2								PELITE
BB-SDER-101	R2	269.6	44.4	-	49.4	38.9	5.5 -	10.5	60.0	60	100%	49	82%	0.75-2.5	0.01-0.02	225.2	220.2								PELITE
BB-SDER-102	R1	248.9	15.1	-	20.1	14.8	0.3 -	5.3	60.0	60	100%	17	28%	0.75-2.5	0.01-0.02	233.8	228.8	17.2	2.4	231.4	6,148	0.20	4,510	175.7	PELITE
BB-SDER-102	R2	248.9	20.1	-	25.1	14.8	5.3 -	10.3	60.0	57	95%	12	20%	0.75-2.5	0.01-0.02	228.8	223.8								PELITE
BB-SDER-103	R1	251.5	8.4	-	13.4	6.7	1.7 -	6.7	60.0	60	100%	36	60%	0.75-2.5	0.01-0.02	243.1	238.1	11.6	4.9	238.2	7,428	1.03	5,830	176.7	PELITE
BB-SDER-103	R2	251.5	13.4	-	18.4	6.7	6.7 -	11.7	60.0	59	98%	29	48%	0.75-2.5	0.01-0.02	238.1	233.1								PELITE
BB-SDER-104A	R1	274.2	15.5	-	20.5	15.3	0.2 -	5.2	60.0	55	92%	32	53%	0.75-2.5	0.01-0.02	258.7	253.7	18.9	3.6	255.1	6,252	0.22	330	178.3	PELITE
BB-SDER-104A	R2	274.2	20.5	-	25.5	15.3	5.2 -	10.2	60.0	54	90%	26	43%	0.75-2.5	0.01-0.02	253.7	248.7								PELITE

Notes:

1. Refer to boring logs in Appendix C for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. As-drilled locations and elevations were surveyed by MaineDOT and provided to GZA.

FIGURES

© 2025 - GZA GeoEnvironmental, Inc. P:\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Figures\GIS\APRX\APRX.aprx, April 08, 2025 - 2:03 PM, Elizabeth.Fulton

11/1 ||||11111 | / / / / / | | | | | ///// <u>|||||</u> ////// ////// 95 ////// ////// ノ SOUTHBOUND , ////// ////// ///// 1111 //// ____. i di BB-SDER-101 11+00 <u>1|13+00/ j /</u> DWSMORE ROAD || | | T_{II} ____ /// <u>||||</u> 1114 | | | | | iiii

NOTES

1) Base map developed from the Work Set electronic files provided by Stantec on April 7, 2025.

2) The as-drilled locations of the test borings were surveyed by Maine DOT and provided by Stantec in an electronic file (Topo.dgn) on April 7, 2025.

BORING LOCATION PLAN LEGEND

Location and designation of BB-SDER-100 series boring Bangor, Maine and observed by GZA personnel betwee

	ngs performed by Seaboard Drilling, LLC of een July 11 and 15, 2024.	104 116+00 BB-SDER-104A	
SHEET	DINSMORE ROAD BRIDGE	PROJ. MANAGERJ. BRASKBYDATEDESIGN-DETAILEDNVWNVW5/15/2025CHECKED-REVIEWEDARBCLS5/16/2025DESIGN-DETAILEDARBCLS5/16/2025	STATE OF MAINE DEPARTMENT OF TRANSPORTATION
2	SILVINE I, MAUNE	DESIGN2-DETAILED2 DESIGN3-DETAILED3 REVISIONS 1 P.E. NUMBER	25473.00
/IBER	BORING LOCATION PLAN	REVISIONS 2 DATE REVISIONS 4 DATE FIELD CHANGES DATE	WIN BRIDGE NO. 5782 25473.00 HIGHWAY PLANS
		FIELD CHANGES	

APPENDIX A - LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our

evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

P::\09 Jobs\0026200s\09.0026242.00 - Stantec - Sidney 5 Bridges Bundle\Report\WIN 025473.00 Dinsmore Rd Report\FINAL 26242.00-Dinsmore Rd Bridge #5782 GDR 06.24.2025.docx

APPENDIX B - HISTORIC GEOTECHNICAL DATA AND FOUNDATION DRAWINGS

. B. P. R. STATE PROJECT NUMBER SHEET TOTAL SHEETS I MAINE 1-95-6 (12) 13 22 7@1-0"=7'0"(8-P//)7i NoTES: Dross bearing areas 1" larger all around than bearing plates to exact elevation. Place rainforcing steel in bridge Seats to clear anchor bolts. 10"x10" x 42# steel H-Piles Pier#1 - 12 regd Estlength-18' Pier *2 - 12 reg d " " -18' Pile cut-off elevation * 245.00 Max Pile load-37 Tons Piles shownthus: Hotobe battered 2" Perfoot in the direction indicated by the arrow. A 11"x 7 x 0'-11" PILE CAP DETAIL Typical 5 V 2-6 Pile Plate II"x Zx o'-11"- 24 Royd. For Ioxiox42#steel H Piles For Piers #1 & #2001y SIGN - PORTER ACE-BLANCHARI ECK - Marine BRIDGE N SURVEY -PLOT -STATE HIC IWAY COMMISSION BRIDGE DIVISION DENSMORE ROAD BRIDGE OVER INTERSTATE HIGHWAY SIDNEY KENNEBEC COUNTY PIERS I & 2 SHEET /3 OF 22 AUGUSTA, MAINE 1958 71-14

APPENDIX C – TEST BORING LOGS

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM	MODIFIED BURMISTER SYSTEM				
			GROUP						
MAJ COARSE- GRAINED SOILS	GRAVELS	ONS CLEAN GRAVELS (little or no fines)	GW GP	TYPICAL NAMES Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel sand mixtures, little or no fines.	Descriptive TermPortion of Total (%)trace0 - 10little11 - 20some21 - 35adjective (e.g. Sandy, Clayey)36 - 50				
iger	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay	Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).				
(more than half of material is larger than No. 200 sleve size)		amount of fines)		mixtures.	Density of Standard Penetration Resistance Cohesionless Soils N ₆₀ -Value (blows per foot) Very loose 0 - 4				
ian half of an No. 200	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Loose 5 - 10 Medium Dense 11 - 30 Dense 31 - 50				
(more th tha	(more than half of coarse fraction is smaller than No. 4 sieve size)	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200 sign(x), lashidae (1) increasing and exception silts and player (2) Converting Sector				
	e than hali n is smalle sieve sit	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated. <u>Approximate</u>				
	(mor fractio	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Undrained Consistency of SPT N ₆₀ -Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines				
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.	Very SoftWOH, WOR, WOP, <20 - 250Fist easily penetratesSoft2 - 4250 - 500Thumb easily penetratesMedium Stiff5 - 8500 - 1000Thumb penetrates with moderate effortStiff0 - 1510002000				
FINE- GRAINED SOILS	(liquid limit l	plas		Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff9 - 151000 - 2000Indented by thumb with great effortVery Stiff16 - 302000 - 4000Indented by thumbnailHard>30over 4000Indented by thumbnail with difficulty				
is ze)			OL	Organic silts and organic Silty clays of low plasticity.	Rock Quality Designation (RQD): RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance *Minimum NQ rock core (1.88 in. OD of core)				
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	мн	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high	Rock Quality Based on RQD <u>Rock Quality</u> <u>RQD (%)</u> Very Poor ≤25 Poor 26 - 50				
(more the smaller that	(liquid limit gr	eater than 50)	ОН	plasticity, fat clays. Organic clays of medium to high plasticity, organic silts.	Fair 51 - 75 Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable):				
		ORGANIC	Pt	Peat and other highly organic soils.	Color (Munsell color chart) Texture (aphanitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.)				
Color (Muns Moisture (dr Density/Cor Texture (find Name (Sand Gradation (sell color cha ry, damp, m nsistency (fr e, medium, d, Silty Sand well-graded on-plastic, s ayering, frac ell, moderat n (weak, mo rigin (till, ma	art) oist, wet) om above ri coarse, etc. d, Clay, etc. , poorly-grad slightly plast etures, crack ely, loosely, oderate, or s	ght hand s) , including ded, unifor ic, modera (s, etc.) etc.,) strong)	portions - trace, little, etc.) m, etc.) tely plastic, highly plastic)	 Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.) Geologic discontinuities/jointing: -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - <2 inch, close - 2-12 inch, mod. close - 1-3 feet, wide - 3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec)) 				
Key	/ to Soil a	Geotechi	<i>nical</i> Seo Descrip	tions and Terms	Sample Container Labeling Requirements:WINBlow CountsBridge Name / TownSample RecoveryBoring NumberDateSample NumberPersonnel InitialsSample DepthSample Depth				

	Main	-		t of Transpor	tatio	n	Projec	t: Dins	more R	oad Bridge #5782	Boring No.: BB-S	DER-101
				ploration Log MARY UNITS			Locati	on: Sid	lney, M	aine	WIN: 25473	00
			000000									.00
Dri	-		Seaboard Dr	illing	_	evatior	ו (ft.)	269				5" OD
-	erator:		E. Baron			atum:			VD88		•	ndard
	ged By:		L. Hailey		_	g Type		AT)#/30"
	e Start/F		7-15-24/7-15			-	lethod:			Auger, Drive & Wash	Core Barrel: NQ	
	ing Loc			79950.3 Easting: 114979	-	asing II			/4.5", 3		Water Level*: 16.2'	
Defir D = 3 MD = U = MU = V = 1	hitions: Split Spoor = Unsucces Thin Wall T = Unsucces nsitu Vane	n Sample ssful Split Sp Tube Sample ssful Thin W Shear Test	all Tube Sample	R = Roc SSA = S empt HSA = I RC = R attempt WOH = WOR = attempt WO1P :	ck Core S Solid Ster Hollow St oller Con weight of weight of	n Auger em Auge e f 140lb. h	r ammer	Auton	$T_V = Pc$ $q_p = Ui$ N-unco Hamme $N_{60} = 3$	Hydraulic □ situ Field Vane Shear Strength (psf) ocket Torvane Shear Strength (psf) nconfined Compressive Strength (ks rrected = Raw field SPT N-value er Efficiency Factor = Annual Calibra SPT N-uncorrected corrected for hau- Hammer Efficiency Factor/60%)*N-	wC = wate wC = wate pL = Liquic PL = Plasti ation Value PI = Plasti mmer efficiency G = Grain	er content, percent I Limit c Limit
				Sample Information	70			<u> </u>	-			Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descriptio	n and Remarks	Testing Results/ AASHTO and Unified Class.
0							SSA	269.0	××××	0'-0.6': Asphalt	0.6	
	1D	24/14	1.0 - 3.0	16-12-8-6	20	36		-		Brown, dry, dense, Sandy Gl		G#24-S-3620 A-1-a, GM WC = 3.3%
	2D	24/11	3.0 - 5.0	5-4-3-2	7	12		-		Brown, moist, medium dense some gravel, some silt, (Fill)		G#24-S-3621 A-2-4(0), SM WC = 8.9%
- 5 -	3D	24/12	5.0 - 7.0	4-3-3-3	6	11		-		Brown, moist, medium dense gravel, (Fill).	e, Silty fine SAND, some	
- 10 -	4D	24/12	10.0 - 12.0	26-18-20-23	38	68		-		Brown, dry, very dense, Gra little silt, (Fill).	velly fine to coarse SAND,	G#24-S-3622 A-1-b, SM WC = 4.9%
- 15 -	5D	24/14	15.0 - 17.0	8-9-13-14	21	37	68 76	-		Brown, dry, dense, fine to m some silt, (Fill).	edium SAND, some gravel,	
							95 119 125	-				
- 20 -	6D	24/12	20.0 - 22.0	20-18-15-11	33	59	R/C	-		Brown, wet, very dense, GR. sand, little silt, (Fill).	AVEL, some fine to coarse	G#24-S-3623 A-1-a, GM WC = 9.8%
- 25								246.1				
Rer 1. rat 2.	her than t Automati	he Mainel c hammer	Dot Standard b Seaboard Dril	this log are based on pl ased percentages passin ling #D50 Energy Trans noval of casing.	g specif	ic grain	sizes.	visual m	anual c	lassification techniques of labo	ratory Atterberg Limit Tests	if available,

Ι	Main	e Dep	artmen	t of Transport	ation	Proj	ect	: Dins	nore Ro	bad Bridge #5782	Boring No.: BB-SDER-101	
				ploration Log //ARY UNITS		Loca	atio	on: Sid	ney, M	aine	WIN: 25473.00	
Drill	er:		Seaboard Dr	illing	Elevatio	n (ft)		269	0.6		Auger ID/OD: 4.2	5" OD
	rator:		E. Baron	iiiiig	Datum:				VD88		J	ndard
<u> </u>	ged By:		L. Hailey		Rig Type	ρ·		AT			· ·)#/30"
	Start/F		7-15-24/7-1	5-24	Drilling		d:			Auger, Drive & Wash	Core Barrel: NQ	
	ng Loc			9950.3 Easting: 1149797					4.5", 3	-	Water Level*: 16.2'	
	•		Factor: 1.060	5	Hammer				natic 🛛	Rope & Cathead		
Definit D = Sj MD = U = TI MU = V = In	tions: plit Spoon Unsucces hin Wall T Unsucces situ Vane	n Sample ssful Split Sp ube Sample ssful Thin W Shear Test	boon Sample atte all Tube Sample	R = Rocl SSA = S empt HSA = H RC = Ro attempt WOH = v WOR = v	Core Sample olid Stem Auger ollow Stem Aug ller Cone veight of 140lb. I veight of rods	er hammer	r		Su(lab) = Lab Vane Shear WC = wate f) LL = Liquic PL = Plast ation Value PI = Plast mmer efficiency G = Grain	er content, percent I Limit ic Limit city Index Size Analysis		
	Unsucces		ane Shear Test	Sample Information	Weight of one p				1160 = (Hammer Efficiency Factor/60%)*N-		lidation Test
Depth (ft.)	. . <td>N-uncorrected N₆₀</td> <td>Casing</td> <td colspan="2">B Blows B Blows Casing (ft:) Craphic Log Graphic Log</td> <td>n and Remarks</td> <td>Laboratory Testing Results/ AASHTO and Unified Class.</td>		N-uncorrected N ₆₀	Casing	B Blows B Blows Casing (ft:) Craphic Log Graphic Log		n and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.				
25	7D	24/22	21 37					Brown-grey, wet, hard, Silty medium sand, (Marine Clay)	G#24-S-3624 A-6, CL LL = 36 PL = 20 PI = 16 WC = 28.8%			
- 30	8D	24/10	30.0 - 32.0	11-9-8-8	17 30					Brown, wet, very stiff, Silty gravel, (Marine Clay).	CLAY, some sand, some	G#24-S-3625 CL LL = 37 PL = 19 PI = 18 WC = 31.5%
- 35 -	9D	24/24	35.0 - 37.0	10-18-27-32	45 80			233.2		(Top 17"): Brown, wet, hard, some gravel, (Marine Clay). (Bottom 7"): Brown, wet, ve	36.4	
								230.7		silt, some gravel, (Glacial T		
- 40	R1	60/53	39.0 - 44.0	RQD = 70%			2		APONTARONANO APONTARONANO	Increase in roller cone resista rock at 38.9'. Advanced rolle core. R1: Medium hard, slightly w grey, PELITE. Joints are ver moderately dipping, moderat rough, discolored, partially o Recovery = 88% Rock Quality = Fair Rock Core Times (min:sec): 39.0-40.0' (1:42), 40.0-41.0'	er cone to 39.0' and set up to reathered, medium grained, y close to closely spaced, te to high angle, undulating, ppen.	
- 45	R2	60/60	44.0 - 49.0	RQD = 82%				220.6	ENTERED TERED T	42.0-43.0' (1:36), 43.0-44.0' R2: Medium hard, slightly w grey, PELITE. Joints are ver moderately dipping, moderat rough, discolored, partially o Recovery = 100% Rock Quality = Good Rock Core Times (min:sec): 44.0-45.0' (1:27), 45.0-46.0' 47.0-48.0' (1:30), 48.0-49.0'	(1:41) eathered, medium grained, y close to closely spaced, te to high angle, undulating, pen. (1:25), 46.0-47.0' (1:39), (1:07) 49.0	
50										Bottom of Exploration at	49.0 feet below ground	
Rem 1. F rath 2. A 3. V	er than t Automati Vater lev	he Mainel c hammer vel measur	Dot Standard b Seaboard Dril ed after the rer	this log are based on pla ased percentages passing ling #D50 Energy Transf noval of casing.	specific grair er Ratio = 1.0	1 sizes. 66.		isual m	anual c	lassification techniques of labor	ratory Atterberg Limit Tests	if available,

3. Water level measured after the removal of ca	sing
---	------

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 3
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those	
present at the time measurements were made.	Boring No.: BB-SDER-101
product and anno includeronionio were inade.	

	Mai	ine De	partmen	t of Transport	ation	Projec	t: Dinsi	nore R	oad Bridge #5782	Boring No.: BB-SDER-101	
				xploration Log MARY UNITS		Locatio	on: Sid	ney, M	laine	WIN: 25473	3.00
Dril	ller:		Saahaard D	rilling	Elevatio	n (#)	269	16		Auger ID/OD: 4.	25" OD
	erator	•	Seaboard D E. Baron	ninng	Datum:	n (it.)		.0 VD88			25" OD
- ·	gged E		L. Hailey		Rig Type	<u>.</u>	AT			-	40#/30"
		rt/Finish:	7-15-24/7-1	5-24	Drilling				n Auger, Drive & Wash	Core Barrel: N	
		ocation:		79950.3 Easting: 1149797				4.5", 3	Water Level*: 16.2'	Q	
-			Factor: 1.06	-	Hammer			natic 🛛	Rope & Cathead \Box		
Defir	nitions:		100101. 1.00	R = Rock	Core Sample		ruton	S _u = Ir) S _{u(lab)} = Lab Vane She	ar Strength (psf)	
MD =	= Unsuc		Spoon Sample att	tempt HSA = H	olid Stem Auger ollow Stem Auge			$q_{D} = U$	ocket Torvane Shear Strength (psf) Inconfined Compressive Strength (ks	sf) LL = Liqu	
		all Tube Samp cessful Thin 1	ole Wall Tube Sample	e attempt WOH = v	ller Cone veight of 140lb. I	hammer		Hamm	orrected = Raw field SPT N-value er Efficiency Factor = Annual Calibra		stic Limit ticity Index
		ane Shear Te cessful Insitu	st Vane Shear Test		veight of rods Weight of one p	erson			SPT N-uncorrected corrected for ha (Hammer Efficiency Factor/60%)*N-		n Size Analysis solidation Test
				Sample Information		1	1				Laboratory
		(in.)	Sample Depth (ft.)		ted			0			Testing
(ft.)	Sample No.	Pen./Rec. (in.)	e De	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N60		ч	Graphic Log	Visual Description	n and Remarks	Results/ AASHTO
Depth (ft.)	- du	n./R	mple	ws (ear engt f) 3QD	o luco	Casing Blows	Elevation (ft.)	aphi			and
	Sa	Pe	Sai (ft.)	Str. Str. Os	N-ur N60	Bo Bo	Ele (ft.)	Ü			Unified Class
50	50								surfa	ice.	
- 55 -											
- 60 -											
- 65 -											
	<u> </u>										
- 70 -	1										
_ 75											
	marks	_									
				n this log are based on pla based percentages passing			visual m	anual c	lassification techniques of labo	ratory Atterberg Limit Tests	s if available,
2.	Autom	atic hamme	er Seaboard Dri	lling #D50 Energy Transf							
5.	w ater	ievel measu	neu after the re	moval of casing.							
Strat	tification	lines represe	ent approximate b	oundaries between soil types;	transitions mav	be gradual			F	Page 3 of 3	

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.		BB-SDER-101
present at the time measurements were made.	Bonnig Hon	DD DDER 101

	Maine Department of Transportation							t: Dinsi	nore Ro	oad Bridge #5782	Boring No.: BB-SDER-102	
				ploration Log			Locati	on: Sid	ney, M	aine	MINI. 25 472 00	
			US CUSTON	<u>MARY UNITS</u>							WIN: 25473	.00
Dril	ler:		Seaboard Dr	illing	Ele	vatio	n (ft.)	248	8.9		Auger ID/OD: 4"/4	4.5"
Оре	erator:		K. Hanscom		Dat	tum:		NA	VD88		Sampler: Sta	ndard
Log	ged By:		L. Hailey		Rig	ј Туре):	AT	V		Hammer Wt./Fall: 140	#/30"
Dat	e Start/F	-inish:	7-11-24/7-1	1-24	Dri	lling N	Method:	Sol	id Stem	Auger, Drive & Wash	Core Barrel: NQ	
Bor	ing Loc	ation:	Northing: 57	9926.3 Easting: 1149925	.9 Ca	sing I	D/OD:	4.0	/4.5", 3	0/3.5"	Water Level*: 0	
Har	nmer Ef	ficiency	Factor: 1.06	6	Ha	mmer	Type:	Auton	natic 🖂	Hydraulic 🗆	Rope & Cathead □	
	itions:	Comolo		R = Rock						situ Field Vane Shear Strength (psf)		Strength (psf)
	Split Spoor = Unsucces		boon Sample atte	empt SSA = So			er		$q_p = Ur$	ocket Torvane Shear Strength (psf) aconfined Compressive Strength (ks		r content, percent Limit
		ube Sample ssful Thin W	e all Tube Sample	RC = Ro attempt WOH = v			ammer			rrected = Raw field SPT N-value er Efficiency Factor = Annual Calibra	tion Value PL = Plasti PI = Plastic	
V = 1	nsitu Vane	Shear Test		WOR = v	eight of	rods			$N_{60} = 3$	SPT N-uncorrected corrected for har Hammer Efficiency Factor/60%)*N-r	nmer efficiency G = Grain	Size Analysis lidation Test
	Olisucces			Sample Information	weight o		615011		1460 - (
		(;	÷		ð				1			Laboratory Testing
	No	i.	Dep	3 in. (%)	ecte			_	Log	Visual Descriptio	n and Remarks	Results/
h (ft	ple	/Rei	ple	s (/6 ngth DD (corr		рс s	atio	hic	vieda Beechpile		AASHTO and
Jept	Depth (ft.) Sample No. Pen./Rec. (in.)		Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log			Unified Class.
0	0							248.6	~~~~	(Top 3"): Brown, moist, fine	to coarse SAND, some	G #24 G 2626
	1D	24/6	0.0 - 2.0	4-2-3-4	5	9	23			organics, trace silt, (Topsoil)		G#24-S-3626 A-1-b, SW-SM
							20			(Bottom 3"): Black, dry, loos		WC = 14.6%
							27					
							15	245.4			3.5	
							28					
- 5 -	2D	24/23	5.0 - 7.0	3-5-6-7	11	20	31	-		Brown, wet, very stiff, Claye	y SILT, little fine to medium	
	20	24/23	5.0 - 7.0	3-3-0-7	11	20		-		sand, (Marine Clay).		A-4(0), ML WC = 26.0%
							52	-				
							76					
							80	240.4			8.5-	
							73					
- 10 -	3D	24/19	10.0 - 12.0	16-24-18-18	42	75	R/C			Brown, wet, very dense, SIL (Glacial Till).	T, little fine to coarse sand,	G#24-S-3628 A-4(0), ML
												WC = 12.9%
								-				
								-				
- 15 -							$ \downarrow \downarrow$	234.1		Increase in roller cone resista	14.8 Ince at 14.8' rock chips in	
	R1	60/60	15.1 - 20.1	RQD = 28%			NQ			wash return, probable top of	rock at 14.8'. Advanced	q _p =885 ksf
									<u>MU</u>	roller cone to 15.1' and set up R1: Medium hard, slightly w	eathered, medium grained,	
									<u>9</u>	grey, PELITE. Joints are ver moderate to high angle, undu		
								-	St 60	partially open. Recovery = 100%		
								4		Rock Quality = Poor		
									SE 115	Rock Core Times (min:sec): 15.1-16.1' (1:49), 16.1-17.1'	(2.06) 17 1 18 1' (2.37)	
- 20 -	R2	60/57	20.1 - 25.1	RQD = 20%						18.1-19.1' (1:49), 19.1-20.1' R2: Medium hard, slightly w	(2:07)	
								1		grey, PELITE. Joints are very	y close to closely spaced,	
								1		moderate to high angle, undu Recovery = 95%	naung, rough, partially open.	
								-	0150	Rock Quality = Very Poor Rock Core Times (min:sec):		
									ALGH A	20.1-21.1' (2:12), 21.1-22.1'		
2-							$\left \right\rangle$	1		23.1-24.1' (2:47), 24.1-25.1'	(1:54)	
25 <u>Re</u> r	narks:	1	1		1		I W		euritei			

1. Fine Grained Soil Descriptions on this log are based on plasticity estimated using visual manual classification techniques of laboratory Atterberg Limit Tests if available, rather than the MaineDot Standard based percentages passing specific grain sizes. 2. Automatic hammer Seaboard Drilling #D50 Energy Transfer Ratio = 1.066.

3. Water level measured after removal of casing.

4. 3" asphalt, 6" concrete, 24.7' measured from bridge deck to ground surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

	Main	e Dep	artmen	tatio	n	Project	: Dinsi	nore R	oad Bridge #5782	Boring No.: BB-SDER-102		
				ploration Log MARY UNITS			Locatio	on: Sid	ney, M	aine	WIN: 25473.00	
Dril	1011		Casha and Da	:11:	Ele	votion	(64.)	248				4.5"
	erator:		Seaboard Dr K. Hanscom	0	_	evation	i (it.)		.9 VD88			4.5" ndard
· ·	ged By:		L. Hailey			g Type		AT			•)#/30"
	e Start/F		7-11-24/7-1	1-24			lethod:			n Auger, Drive & Wash	Core Barrel: NC	
	ing Loc			79926.3 Easting: 114992:	_	sing I			4.5", 3	-	Water Level*: 0	
			Factor: 1.06		_	mmer			natic 🛛		Rope & Cathead 🗆	
Defir	nitions: Split Spoon			R = Roc	k Core Sa Solid Stem				S _u = In	situ Field Vane Shear Strength (psf) ocket Torvane Shear Strength (psf)	S _{u(lab)} = Lab Vane Shear	Strength (psf) er content, percent
MD =	Unsucces	ssful Split Sp	ooon Sample atte	empt HSA = H	Iollow Ste	em Auge	r		q _p = U	nconfined Compressive Strength (ks	f) LL = Liquid	d Limit
MU =	= Unsucces		all Tube Sample	attempt WOH =	oller Cone weight of	140lb. h	ammer		Hamm	prrected = Raw field SPT N-value er Efficiency Factor = Annual Calibra		city Index
		Shear Test	ane Shear Test		weight of • Weight c		erson			SPT N-uncorrected corrected for har (Hammer Efficiency Factor/60%)*N-r		Size Analysis Ilidation Test
		1		Sample Information								Laboratory
	ö	Pen./Rec. (in.)	Sample Depth (ft.)	(; , ,	N-uncorrected				bc			Testing Results/
(ft.)	e X	ec.	еD	(/6 i 0 (%	orree		5	ion	ic Lo	Visual Descriptio	n and Remarks	AASHTO
Depth (ft.)	Sample No.	en./F	(.	Blows (/6 in.) Shear Strength (psf) or RQD (%)	ņuo	N60	Casing Blows	Elevation (ft.)	Graphic Log			and Unified Class.
ے 25	ů	4	ů ť	ឌ ភ្ ស្ ទ ខ	ż	ž	ů ā	面 ま 223.8	Ū		25.1	
25								225.0		Bottom of Exploration at	25.1 feet below ground	
										surfa	ice.	
- 30 -												
- 35 -												
- 40 -												
- 45 -												
_ 50												
	Remarks:											
rat	1. Fine Grained Soil Descriptions on this log are based on plasticity estimated using visual manual classification techniques of laboratory Atterberg Limit Tests if available, rather than the MaineDot Standard based percentages passing specific grain sizes.											
2.4	Automatic	c hammer	Seaboard Drill ed after remov	ing #D50 Energy Transf	er Ratio	= 1.066	5.					
4.	3" asphal	t, 6" concr	ete, 24.7' mea	sured from bridge deck to	o ground	l surfac	e.					
Strat	ification lin	es represen	t approximate bo	oundaries between soil types	; transition	ns may b	e gradual.			P	age 2 of 2	

Stratification lines represent approximate boundaries between son types, iransitions may be gradual.		
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those		
present at the time measurements were made.	Boring No.:	BB-SDER-102

	Main	e Dep	atior	1	Projec	: Dins	more Ro	oad Bridge #5782	Boring No.: BB-SDER-103			
				ploration Log IARY UNITS			Locatio	on: Sid	lney, Ma	aine	WIN: 25473.00	
			0000010								23473	.00
Dril	ler:		Seaboard Dr	illing	Ele	vatior	n (ft.)	251	1.5		Auger ID/OD: 4.0	4.5"
Оре	erator:		K. Hanscom		Dat	um:		NA	VD88	Sampler: Sta	ndard	
	ged By:		L. Hailey			Туре		AT	'V		Hammer Wt./Fall: 140	#/30"
	e Start/F		7-12-24/7-12		_	-	lethod:			Auger, Drive & Wash	Core Barrel: NQ	
	ing Loc			9886.7 Easting: 115004	-		D/OD:		/4.5", 3.		Water Level*: 7.4'	
	nmer Ef	ficiency	Factor: 1.066		Har k Core Sa		Туре:	Auton	$natic \square$	Hydraulic 🗆 situ Field Vane Shear Strength (psf)	Rope & Cathead □ S _{u(lab)} = Lab Vane Shear	Strongth (pcf)
D = \$	Split Spoor			SSA = S	olid Stem	Auger			T _v = Po	cket Torvane Shear Strength (psf)	WC = wate	r content, percent
U = 1	Thin Wall T	ube Sample		RC = R0	Iollow Stei Iller Cone	0			N-uncor	confined Compressive Strength (ks rrected = Raw field SPT N-value	PL = Plasti	c Limit
		ssful Thin W Shear Test	all Tube Sample		weight of 1 weight of r		ammer			er Efficiency Factor = Annual Calibra SPT N-uncorrected corrected for har		city Index Size Analysis
MV =	Unsucces	ssful Insitu V	ane Shear Test	attempt WO1P = Sample Information	Weight of	f one pe	erson		N ₆₀ = (I	Hammer Efficiency Factor/60%)*N-	uncorrected C = Conso	lidation Test
					σ				1			Laboratory
	9	i. (in	Dept	(in.) %)	ecte			_	-bo		n and Romarka	Testing Results/
ר (ft.	ole h	Rec	ole [s (/6 gth DD (corr		pg "	ation	hic I	Visual Descriptio		AASHTO and
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log			Unified Class.
0								ШЭ		Brown, dry, medium dense,	Gravelly SAND, little silt,	G#24-S-3629
	1D	24/7	0.0 - 2.0	10-4-2-6	6	11	36			(Fill).	•	A-1-a, SP-SM WC = 3.0%
							19					WC = 3.0%
							22					
							10					
							19					
_							21					
- 5 -	2D	20/8	5.0 - 6.7	7-8-15-50/2"	23	41	32			Grey, wet, dense, GRAVEL, little silt, (Fill).	some fine to coarse sand,	G#24-S-3630 A-1-b, GM
										nuie sint, (1 iii).		WC = 8.3%
								244.8		Splitspoon refusal at 6.7', inc	6.7- rease in roller cone	
										resistance. Probable top of ro	ock at 6.7'. Advanced roller	
	R1	60/60	8.4 - 13.4	RQD = 60%			NQ		<u>999</u>	cone to 8.4' and set up to con R1: Medium hard, slightly w		q _p =1070 ksf
				-					2120	grey, PELITE. Joints are very	y close to closely spaced,	τ μ
- 10 -									96619	low to high angle, undulating open.	, rough, discolored, partially	
									66	Recovery = 100% Rock Quality = Fair		
										Rock Core Times (min:sec):		
										8.4-9.4' (2:03), 9.4-10.4' (1:5 12.4' (1:39), 12.4-13.4' (1:35		
	R2	60/59	13.4 - 18.4	RQD = 48%					<u>UMU</u>	R2: Medium hard, slightly w grey, PELITE. Joints are ver		
									6155	low to high angle, undulating		
- 15 -									(USA)	partially open. Recovery = 98%		
									ae	Rock Quality = Poor		
										Rock Core Times (min:sec): 13.4-14.4' (1:37),14.4-15.4' (1:42), 15.4-16.4' (2:12),	
							/		<u>()]][]</u>	16.4-17.4' (1:47), 17.4-18.4'	(2:40)	
							$\vdash \mathbb{V}$	233.1	9982			
										Bottom of Exploration at surfa		
- 20 -										Sui la	ice.	
20												
								1				
25 Ren	narks:											
		ined Soil E	Descriptions on	this log are based on pla	sticity e	stimate	ed using v	visual m	anual cl	assification techniques of labor	ratory Atterberg Limit Tests i	f available,
rat	her than t	the MaineI	Dot Standard b	ased percentages passing ling #D50 Energy Trans	specific	grain	sizes.			*	· -	
3.	Water lev	el measur	ed after remov	al of casing.	or ratio	- 1.00						
4.	Measured	1 23.8 feet	from bridge de	eck to ground surface.								

	Maine Department of Transportati						Proj	ject	: Dinsı	nore Ro	oad Bridge #5782	Boring No.: BB-SDER-104		
				ploration Log IARY UNITS			Loca	atio	n: Sid	ney, Ma	aine	WIN: 25473.00		
Dri	ller:		Saabaard Dr	illing	Elo	vatio) . (ft)		274	2		Auger ID/OD: 4.0,	4.5"	
-	erator:		Seaboard Dr K. Hanscom	-	_	um:	1 (IL.)			2 VD88		-	4.5 ndard	
	ged By:		L. Hailey			Туре			AT			•	#/30"	
	e Start/F		7-12-24/7-12	2-24		ling N		od:			Auger, Drive & Wash	Core Barrel: NQ		
	ring Loc			9859.8 Easting: 115018		sing I			4.0/	Water Level*: not mea				
-	-		Factor: 1.060	-	_	nmer				natic 🖂	Rope & Cathead □			
Defi D = MD U = MU V =	nitions: Split Spoor = Unsucces Thin Wall T = Unsucces Insitu Vane	n Sample ssful Split Sp Tube Sample ssful Thin W Shear Test	poon Sample atte all Tube Sample <u>(ane Shear Test</u>	R = Roc SSA = S empt HSA = I RC = Rc attempt WOH = WOR =	oller Cone weight of 1 weight of r	em Auger Stem Auger ne of 140lb. hammer				$S_u = Int T_v = Pcq_p = UrN-uncoHammeN_{60} = S$	situ Field Vane Shear Strength (psf) icket Torvane Shear Strength (psf) icconfined Compressive Strength (ks rrected = Raw field SPT N-value or Efficiency Factor = Annual Calibra SPT N-uncorrected corrected for har <u>Hammer Efficiency Factor/60%)*N-t</u>	Su(lab) = Lab Vane Shear WC = wate if) LL = Liquic PL = Plastic ation Value PI = Plastic mmer efficiency G = Grain	r content, percent Limit c Limit	
Depth (ft.)			N-uncorrected	N ₆₀	Casing Blows		Elevation (ft.)	Graphic Log	Visual Descriptio	n and Remarks	Testing Results/ AASHTO and Unified Class.			
0	1D	24/14	0.4 - 2.4	32	57	SSA	A	273.8	××××	0'-0.4': Asphalt		G#24-S-3631		
											Brown, dry, very dense, fine gravel, some silt, (Fill).		A-1-b, SM WC = 6.7%	
- 5 -	2D	24/12	5.0 - 7.0	10-9-6-5	15	27					Dark brown, dry, medium de trace gravel, some silt, (Fill)		G#24-S-3632 A-2-4(0), SM	
- 10 -													WC = 6.9%	
10	3D	24/22	10.0 - 12.0	3-1-2-3	3	5	¥				Brown, moist, medium stiff t fine to medium sand, trace gr		G#24-S-3633 A-4(0), ML	
									262.2	***	Hole drilled at an angle, 4" c Boring was terminated and o SDER-104A. Bottom of Exploration at surfa	ffset 2.7', see boring BB- 12.0- 12.0 feet below ground	WC = 24.8%	
- 15 -														
- 20 -														
_25														
	emarks:													
ra	. Fine Grained Soil Descriptions on this log are based on plasticity estimated using visual manual classification techniques of laboratory Atterberg Limit Tests if available, ather than the MaineDot Standard based percentages passing specific grain sizes. Automatic hammer Seaboard Drilling #D50 Energy Transfer Ratio = 1.066.													

]	Main	e Dep	artment	tion	Pro	oject	: Dinsi	nore R	oad Bridge #5782	Boring No.:BB-SDER-104A		
				ploration Log		Lo	catio	on: Sid	ney, M	aine		
			US CUSTON	<u>IARY UNITS</u>					5,		WIN: 25473.	.00
Dril	er:		Seaboard Dr	illing	Elevation	ו ר (ft.	.)	274	.2		Auger ID/OD: 4.0	/4.5"
Оре	rator:		K. Hanscom		Datum:		-	NA	VD88		Sampler: Sta	ndard
Log	ged By:		L. Hailey		Rig Type	:		AT	V		Hammer Wt./Fall: 140	#/30"
Date	e Start/F	inish:	7-12-24/7-12	2-24	Drilling N	/leth	od:	Sol	id Sten	n Auger, Drive & Wash	Core Barrel: NQ	
Bor	ing Loca	ation:	Northing: 57	9859.6 Easting: 1150189.5	Casing I	D/OI	D:	4.0	/4.5", 3	Water Level*: 14.8'		
Han	nmer Ef	ficiency	Factor: 1.066	5	Hammer	Тур						
	itions: Split Spoon	Sample			ore Sample d Stem Auger					situ Field Vane Shear Strength (psf) ocket Torvane Shear Strength (psf)		Strength (psf) r content, percent
MD =	Unsucces		boon Sample atte		ow Stem Auge	r			$q_p = U$	nconfined Compressive Strength (ks prrected = Raw field SPT N-value		Limit
MU =	Unsucces	sful Thin W	all Tube Sample	attempt WOH = we	ight of 140lb. h	amm	er		Hamme	er Efficiency Factor = Annual Calibra	tion Value PI = Plastic	city Index
		Shear Test sful Insitu V	ane Shear Test	WOR = we attempt WO1P = W	eight of one pe	erson				SPT N-uncorrected corrected for har (Hammer Efficiency Factor/60%)*N-u		Size Analysis lidation Test
				Sample Information								Laboratory
		(in.)	Sample Depth (ft.)		ted				0			Testing
(H.)	Sample No.	Pen./Rec. (in.)	De	/6 ir 0 (%	N-uncorrected			ы	Graphic Log	Visual Description	n and Remarks	Results/ AASHTO
Depth (ft.)	nple	J./R	nple	ws (ear engt f) ROD		sing	Blows	Elevation (ft.)	aphic			and
Del	Sar	Per	Sar (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N60	C S	Blo	Ele (ft.)	Gra			Unified Class.
0						SS	SA			See boring log BB-SDER-10	4 for information between 0	
							-			and 10'.		
_												
- 5 -												
							/					
						$ \rangle$						
- 10 -						2	.1					
						2	.4					
						3	0					
							57					
						0)/					
						7	4					
- 15 -	1D	4/4	15.0 - 15.3	50/4"		N	Q	259.2 258.9	XX	\Brown, wet, dense, Silty, GR		q_885 ksf
	R1	60/55	15.5 - 20.5	RQD = 53%	_	-	-		EL IV	Splitspoon refusal at 15.3'. In	15.3- acreased resistance of roller	4=000 K81
									UNU	cone, probable top of rock at	15.3'. Set up to core at 15.5'.	
									60KS)	R1: Medium hard, slightly w grey, PELITE. Joints are ver		
									(USA)	moderate to high angle, undu Recovery = 92%		
					_					Rock Quality = Fair		
- 20									<u>UN</u>	Rock Core Times (min:sec): 15.5-16.5' (1:08), 16.5-17.5'	(1.20) 17.5.18.5' (1.51)	
- 20 -	R2	60/54	20.5 - 25.5	ROD = 43%					<u>UM</u>	18.5-19.5' (1:35), 19.5-20.5'	(2:27)	
									AN S	R2: Medium hard, slightly w grey, PELITE. Joints are very		
									SUM .	moderate to high angle, undu		
									SIL.	partially open. Recovery = 90%		
									01120	Rock Quality = Poor		
									ABBH	Rock Core Times (min:sec): 20.5-21.5' (2:10), 21.5-22.5'	(2.21) 22 5-23 5' (1.45)	
25						$ \rangle$	/		ala -	23.5-24.5' (1:50), 24.5-25.5'		
	narks:			I	1				- * * * * * * *			
								visual m	anual c	lassification techniques of labor	ratory Atterberg Limit Tests	f available,
				ased percentages passing sp ling #D50 Energy Transfer			s.					
			ed after remov									

Maine De	partment of Tr	ansportatio	n	Project	: Dinsr	nore Re	bad Bridge #5782	Boring No.:BB-SI	<u>DER-104A</u>	
	Soil/Rock Exploration I US CUSTOMARY UNI			Locatio	on: Sid	ney, M	aine	WIN: 25473	.00	
Driller:	Seaboard Drilling	E	levation	- (ft)	274	2		Auger ID/OD: 4.0	/4.5"	
Operator:	K. Hanscom		atum:	1 (11.)		VD88		-	ndard	
Logged By:	L. Hailey		ig Type:		AT			•)#/30"	
Date Start/Finish:	7-12-24/7-12-24		rilling N				Auger, Drive & Wash	Core Barrel: NQ		
Boring Location:	Northing: 579859.6 Eas		asing ID			4.5", 3	-	Water Level*: 14.8'	<u>.</u>	
Hammer Efficiency		-	ammer		Autom			Rope & Cathead □		
V = Insitu Vane Shear Te	ple Wall Tube Sample attempt est J Vane Shear Test attempt	R = Rock Core S SSA = Solid Ster HSA = Hollow St RC = Roller Con WOH = weight of WOR = weight of WOR = Weight MOTP = Weight	m Auger item Auger ne of 140lb. ha of rods	ammer		$T_V = Pc$ $q_p = Ui$ N-unco Hamme $N_{60} = 3$	situ Field Vane Shear Strength (psf) pcket Torvane Shear Strength (psf) nconfined Compressive Strength (ks rrected = Raw field SPT N-value ar Efficiency Factor = Annual Calibra SPT N-uncorrected corrected for har (Hammer Efficiency Factor/60%)*N-t	WC = wate WC = wate LL = Liqui PL = Plast tion Value PI = Plast nmer efficiency G = Grain	er content, percent d Limit ic Limit	
Depth (ft.) Sample No. Pen./Rec. (in.)	_	Strength (psf) or RQD (%) N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descriptio	n and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.	
25				V		201621	Bottom of Exploration at surfa			
- 30 -										
- 35										
- 40										
- 45										
rather than the Main 2. Automatic hamme 3. Water level measu Stratification lines represe	eDot Standard based percer er Seaboard Drilling #D50 ured after removal of casing ent approximate boundaries bet ave been made at times and unc	entages passing specifi Energy Transfer Ration g. etween soil types; transition	fic grain s io = 1.06	sizes. 56. be gradual.			e to conditions other than those	atory Atterberg Limit Tests age 2 of 2 Boring No.: BB-SJ		

present at the time measurements were made.	Boring No.:

APPENDIX D – LABORATORY TESTING RESULTS

	195 Frances Avenue	Client Inf	ormation:	Project Information:			
	Cranston RI, 02910	GZA GeoEnvi	ronmental, Inc.	Dinsmore Road Bridge #5782 Sidney, Maine Project Number: 09.0026242.00 Task 4			
Thielsch 🌉	Phone: (401)-467-6454		rtland, ME				
	Fax: (401)-467-2398	Project Manager:	Logan Hailey	Project Number:	09.0026242.00 Task 4		
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Logan Hailey	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	GZA	Report Date:	9/23/2024		

LABORATORY TESTING DATA SHEET, Report No.: 7424-J-165

				Identification Tests								Proctor / CBR / Permeability Tests									
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	Sand %	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	318			D6913		D2974	D4792	D1:	557							
BB-SDER- 101	1D	0-2	24-S-3620	3.3				45.2	40.4	14.4											Brown SANDY GRAVEL, little Silt
BB-SDER- 101	2D	3-5	24-S-3621	8.9				24.9	47.1	28.0											Brown f-c SAND, some Silt, some fine Gravel
BB-SDER- 101	4D	10-12	24-S-3622	4.9				40.4	42.0	17.6											Brown f-c GRAVELLY SAND, little Silt
BB-SDER- 101	6D	20-22	24-S-3623	9.8	NV	NP		56.4	30.4	13.2											Brown f-c GRAVEL, some f-c Sand, little Silt
BB-SDER- 101	7D	25-27	24-S-3624	28.8	36	20		0.0	8.9	91.1											Brown CLAY & SILT, trace f-m Sand
BB-SDER- 101	8D	30-32	24-S-3625	31.5	37	19															Olive CLAY & SILT
BB-SDER- 102	1D	0-2	24-S-3626	14.6				22.6	68.2	9.2											Dark Brown f-c SAND, some fine Gravel, trace Silt
BB-SDER- 102	2D	5-7	24-S-3627	26.0				0.0	12.8	87.2											Olive CLAYEY SILT
BB-SDER- 102	3D	10-12	24-S-3628	12.9				12.2	33.7	54.1											Brown CLAYEY SILT, some f-c Sand, little f-c Gravel

Date Received:

9/10/2024

Reviewed By:

that

Date Reviewed:

9/23/2024

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

Tested By: RB/SBR

Tested By: RB/SBR

	195 Frances Avenue	Client Inf	ormation:	Projec	t Information:		
	Cranston RI, 02910	GZA GeoEnvi	ronmental, Inc.	Densmore Road Bridge #5782			
Thielsch 🌉	Phone: (401)-467-6454	South Po	rtland, ME	Sidney, Maine			
	Fax: (401)-467-2398	Project Manager:	Logan Hailey	Project Number:	09.0026242.00 Task 4		
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Logan Hailey	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	GZA	Report Date:	9/23/2024		

LABORATORY TESTING DATA SHEET, Report No.: 7424-J-166

							Ide	ntificatio	n Tests						Pro	ctor / CBR /	Permeabilit	y Tests			
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	%	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4.	318			D6913		D2974	D4792	D1:	557		-	1	1			
BB-SDER- 103	1D	0-2	24-S-3629	3.0				39.0	49.8	11.2											Dark Brown GRAVELLY SAND, little Silt
BB-SDER- 103	2D	5-6.7	24-S-3630	8.3				53.0	30.0	17.0											Olive f-c GRAVEL, some f-c Sand, little Silt
BB-SDER- 104	1D	0-2	24-S-3631	6.7				33.1	44.5	22.4											Brown f-c SAND, some fine Gravel, some Silt
BB-SDER- 104	2D	5-7	24-S-3632	6.9				17.6	56.7	25.7											Brown f-c SAND, some Silt, little f-c Gravel
BB-SDER- 104	3D	10-12	24-S-3633	24.8				2.9	23.7	73.4											Brown SILT & CLAY, some f-m Sand, trace fine Gravel
104																					some initi sana, trace nne Graver

Date Received:

9/10/2024

Reviewed By:

that

Date Reviewed:

9/23/2024

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

Tested By: RB/SBR

	195 Frances Avenue	Client Ir	formation:	Project	Information:		
	Cranston RI, 02910		nvironmental	Sidney Bridges Dinsmore Road, Sidney, ME			
Thielsch 🌉 🛛	Phone: (401)-467-6454	South Pe	ortland, ME				
E(SC) >=<	Fax: (401)-467-2398	(207)	879-9190	Project Number:	09.0026242.00 Task 4		
DIVISION OF THE RISE GROUP	thielsch.com	Project Contact:	Blaine Cardali	Summary Page:	2 of 3		
	Let's Build a Solid Foundation	Collected By:	B. Cardali	Report Date:	5/21/2025		

LABORATORY TESTING DATA SHEET, Interim Report No.: 7425-E-142

						Specime	en Data					Cor	npressive S	Strength Te	ests	•		
Boring No.	Sample No.	Depth (ft)	Laboratory No.	Mohs Hard- ness	Diameter (in)	Length (in)	(1) Unit Weight (PCF)	(2) Wet Density (PCF)	Bulk G _s	(3) Other Tests	(4) Strength PSI	(5) Strain %	(6) E sec PSI EE+06	(7) Poisson's Ratio	st PSI	Is ₅₀ psi	(8) s _c PSI	Rock Formation or Description or Remarks
BB-SDER-103	R1	11.6- 13.2	25-S-1717		4.971	4.478	176.7			U	7428	0.243	5.83	1.03				Grey Slate
Fresh Break along foliation, minor break at about 4000 psi																		
BB-SDER-104A	-104A R1 18.9- 19.7 25-S-1718 1.963 4.250 178.3 U 6252 1.35										1.351	0.33	0.22				Grey Slate	
Broke along foliation, evidence of weathering																		
BB-SDER-102	R1	17.2- 18.4	25-S-1719		1.983	4.610	175.7			U	6148	0.147	4.51	0.20				Grey Slate
							Fresh B	reak along	foliatio	n, minoi	r break at 4	4500 psi						
(1) Volume Dete	ermined By	Measurin	g Dimensions	i		(3) PLD=	Point Loa	d (diametri	ical),				(5) Strain	at Peak De	eviator Stro	ess		
(2) Determined	by Measurir	ng Dimer	isions and		Notes	PLA= Po	int Load (Axial) ST=	Splittir	ıg Tensil	e	Notes	(6) Repres	ents Secar	nt Modulu	ıs at 50% c	of Total F	ailure Stress
Weight of Satur	ated Sample	е			2	U= Unc	onfined C	ompressive	e Streng	jth			(7) Repres	ents Secar	nt Poisson	's Ratio at	50% of 1	otal Failure Stress
						(4) Taken at Peak Deviator Stress							(8) Estimated UCS from Table 1 of ASTM D5731 for NX cores (Is					or NX cores (Is x 24)
Date Received: 5/13/2025 Reviewed By:									lifet		-			Date R	eview	5/21/2025		

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	rmation:	Project I	nformation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Sidney Bridges		
Thielsch 迷	Phone: (401) 467-6454	S. Portlan	d, ME	Sidney, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026242.00 Task 1/2/4	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	SBR	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	5.19.25	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes: Partial break around 12000 pounds, 4000 psi.

	195 Frances Avenue	Client Info	rmation:	Project I	nformation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Sidney Bridges		
Thielsch 🌉	Phone: (401) 467-6454	S. Portlan	d, ME	Sidney, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026242.00 Task 1/2/4	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	SBR	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	5.19.25	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Testing Notes:

	195 Frances Avenue	Client Info	rmation:	Project I	nformation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Sidne	y Bridges	
Thielsch 🌉	Phone: (401) 467-6454	S. Portlan	id, ME	Sidney, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026242.00 Task 1/2/4	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	SBR	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	5.20.25	

ASTM D7012 Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

6/24/25 GEOTECHNICAL DATA REPORT DINSMORE BRIDGE NO. 5782 OVER INTERSTATE 95 MaineDOT 09.0026242.00

APPENDIX E – ROCK CORE PHOTOGRAPHS

MaineDOT Densmore Bridge No. 5782 Dinsmore Road over Interstate 95 Sidney, ME WIN 25473.00 Rock Core Photographs

Boring No.	Run	De	epth (ft)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-SDER-102	R1	15.1	-	20.1	60	100%	17	28%	PELITE	1
BB-SDER-102	R2	20.1	-	25.1	57	95%	12	20%	PELITE	2
BB-SDER-103	R1	8.4	-	13.4	60	100%	36	60%	PELITE	3
BB-SDER-103	R2	13.4	-	18.4	59	98%	29	48%	PELITE	4

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.

MaineDOT Densmore Bridge No. 5782 Dinsmore Road over Interstate 95 Sidney, ME WIN 25473.00 Rock Core Photographs

Boring No.	Run	D	epth (ft)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-SDER-104A	R1	15.5	-	20.5	55	92%	32	53%	PELITE	1
BB-SDER-104A	R2	20.5	-	25.5	54	90%	26	43%	PELITE	2
BB-SDER-101	R1	39.0	-	44.0	53	88%	42	70%	PELITE	3
BB-SDER-101	R2	44.0	-	49.0	60	100%	49	82%	PELITE	4

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet

Page 2 of 2