This watershed area determined by manual delineation; other parameters taken from StreamStats

ver. 2018 Jul 09

207-557-1052

Worksheet prepared by:

Augusta, ME 04333-0016

Charles.Hebson@maine.gov

Charles S. Hebson, PE

Environmental Office Maine Dept. Transportation

WIN:	24247.00							
Town:	T6 R8							
Route No.	Grand Lake Rd							
Asset ID:	46554							
Lat:	46.12699	Long:	68.72238					

Project Name: Stream Name: trib to Hay Lake **Bridge Name:** CSH Analysis by: 3/06/25 & 7/29/2019 Date:

Peak Flow Calculations by USGS Regression Equations (Hodgkins, 1999 & Lombard/Hodgkins, 2015)

	Enter data	lis only!	
	km²	mi ²	ac
Α	1.30	0.50	320.0
W	0.06	0.0	14.5
P_c	520921	5108084	

Enter data in [mi²] Watershed Area DRNAREA Wetlands area (by NWI)

Aroostook S County A (km²) 1.30 Conf LvI 0.7 4.53 W (%)

watershed centroid (E, N; UTM 19N; meters) choose county from drop-down menu mean annual precipitation (inches; by look-up)

References: NWI Wetlands % STORNWI

Hodgkins, G.A., 1999. Estimating the magnitude of peak flows for streams

 $Q_T = b \times A^a \times 10^{-wW}$

in Maine for selected recurrence intervals WRIR 99-4008. USGS Augusta, ME

Watershed Characteristics for Monthly & Daily Flows

EAVG	758
SLOPE	3.29
EMAX	808
WATER	0
PRECIP	38.2
SG	0.00
HGA	0
DIST	143.00

pptA

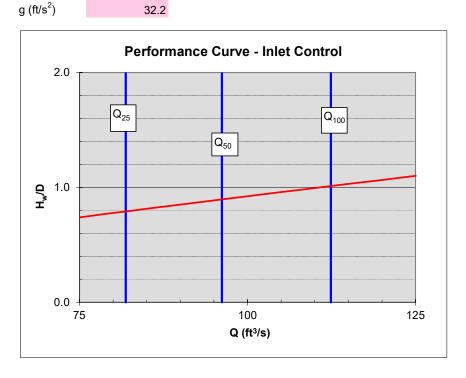
mean basin elevation (ft) mean basin slope (%) maximum basin elevation (ft) percent of drainage basin land cover classified as open water mean annual precipitation sand & gravel aquifer as decimal fraction of watershed A mean basin percentage of hydrological soil group A distance from the coast (mi)

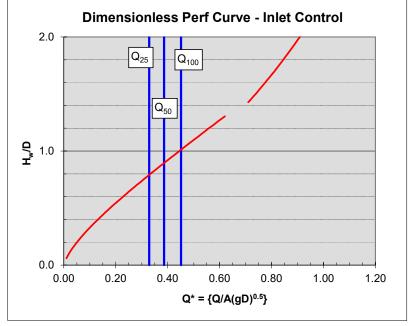
Peak Flow Estimate

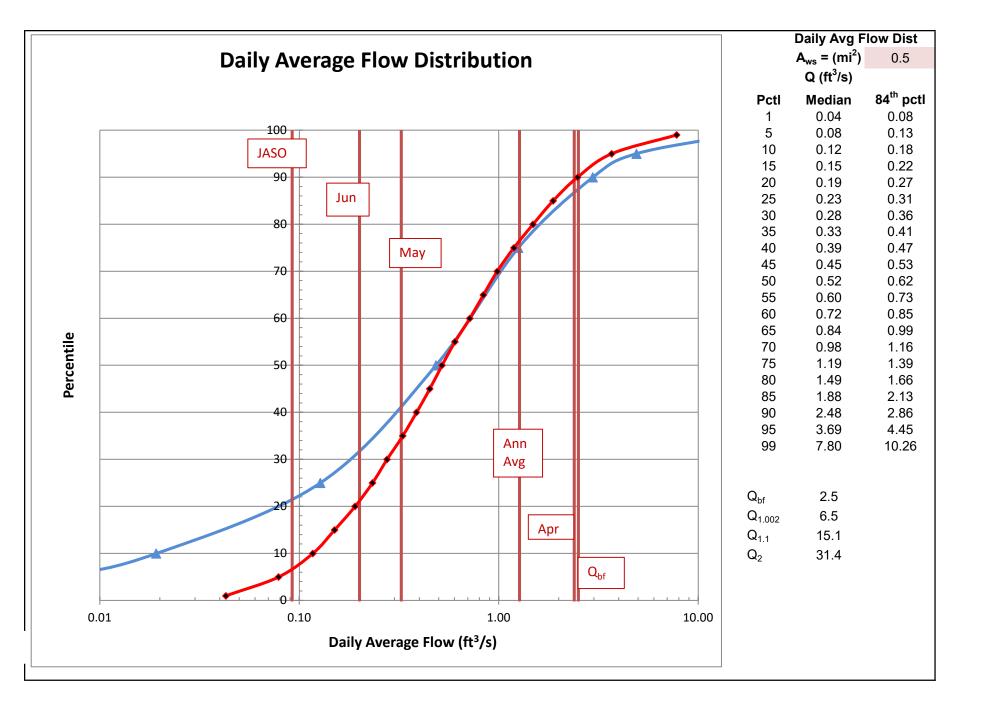
T (yr)	Lower	Q _T (m³/s)	Upper
1.1		0.43	
2		0.89	
5		1.40	
10		1.78	
25		2.32	
50		2.72	
100		3.18	
500		4.31	

$Q_T (ft^3/s)$	
	15.1
	31.4
	49.6
	62.8
	81.9
	96.2
	112.4
	152.2

Lombard, P.J. & G.A. Hodgkins, 2015. Peak flow regression equations for small, ungaged streams in Maine - Comparing map-based to field-based variables SIR 2015-4059, USGS, Augusta, ME


NOTE: This page is for preliminary sizing only. Final design should be done with HY8 or HDS-5


Preliminary Culvert Sizing - Round & Box Culverts


32.2

Shape:	Round					
Type:	Circ CMP Proj		Q_{25}	81.9		
D or R (ft)	5		Q_{50}	96.2	trial D / R =	5.2
w (ft)	15	box width	Q ₁₀₀	112.4	trial w: BFW =	7.9
Slope (ft/ft)	0.02					
A (ft ²)	19.63					

Note: culvert dimensions are for open flow area; adjust for lost capacity due to embedding / backfilling (min {2' / 25% rise} embedment)

WIN: 24247.00

Town: T6 R8

Route No. Grand Lake Rd

Asset ID: 46554

Lat: 46.12699 Long: 68.72238

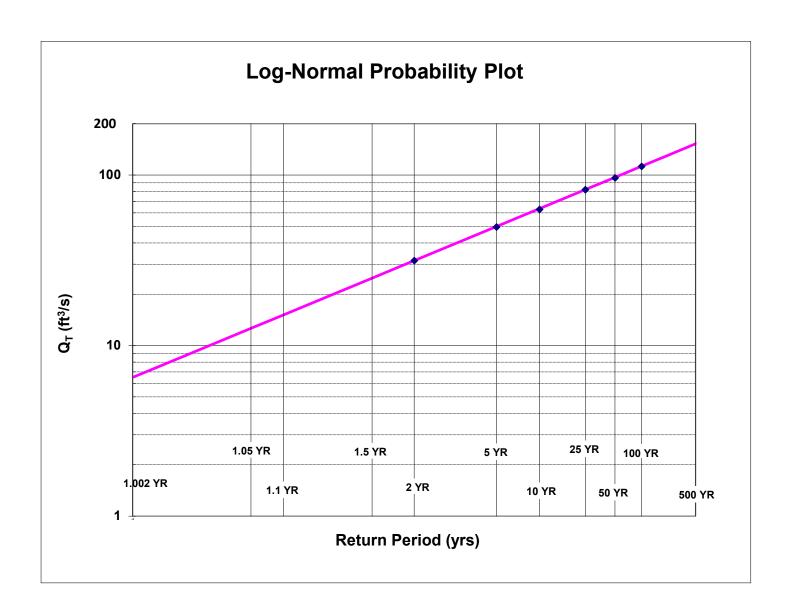
Project Name: 0
Stream Name: trib to Hay Lake
Bridge Name: 0
Analysis by: CSH
Date: 3/06/25 & 7/29/2019

DO NOT ENTER ANY DATA ON THIS PAGE; EVERYTHING IS CALCULATED

MAINE MONTHLY MEDIAN FLOWS and HYDRAULIC GEOMETRY BY USGS REGRESSION EQUATIONS (2004, 2013, 2015)

Value Variable Explanation Area (mi²) 0.50 Α P_c 5108084 520921 Watershed centroid (E,N; UTM; Zone 19; meters) Distance from Coastal reference line (mi) 142.42 DIST 38.2 Mean Annual Precipitation (inches) pptA 0.00 SG Sand & Gravel Aquifer (decimal fraction of watershed area)

Month	$\mathbf{Q}_{\text{median}}$						M	adia	n Ma	nthly	y Flo	we				
	(ft3/s)	(m^3/s)					1011	caia	411 141	,,,,,,,	y 1 10	•••				
Jan	0.55	0.0156		2.5	(10 mm)	1000	D LILE	1200708	2076	//	LATERA,	0600000		NETA:	LONDA.	100 to 150
Feb	0.14	0.0041				-		8	2	-				600	100	-
Mar	0.50	0.0142		2.0			10 10	1	MANUAL PROPERTY.		200	Serial All	4	A SE	100	
Apr	2.39	0.0678		2.0	A COL	SOA	DOM:	4 3	2:60	OR CALL	The Law	No. of Street, or other party of the		STA MIN	6000	DIE
May	0.32	0.0092					(a) as		1000		janos.				100	
Jun	0.20	0.0057	(S)	1.5	(0)	000	37/8			90	1/900	- 40		931	365	a Pily
Jul	0.06	0.0018	Flow (ft³/s)	1.0	200	390		2 8				1000		900		200
Aug	0.02	0.0006	≥		200	100				O Car	a second	0	400	200	2000	
Sep	0.03	0.0008	<u> </u>	1.0 -	Nach O	100		7	W 200	1.0	(h (h	100 A 100 B	A 100 10	6	0	7
Oct	0.26	0.0073	ш		A COSTON	10 Tab			Series	// 3	1		100	Tak H		
Nov	1.01	0.0286		0.5	We will	60	90.0	8 9		60				50 6	F- 2	
Dec	1.00	0.0284		0.5			4	A	W.W.		- 6	(A) (A)	1000	1	8 3	F .
					36	9	N.	3	40 E			8 30			8 8	100
Q_{bf}	2.5			0.0		125	7,01	8	200	2 Kg		42 400	F - 2 HI	Ø 2	8 2	EAV B
ann avg	1.3				1	2	3	4	5	6	7	8	9	10	11	12
ann med	0.5				•	_	Ū	•	Ū			Ü	Ū	.0	• •	
Q _{1.002}	6.5									Mo	nth					
Q _{1.01}	8.8															
Q _{1.05}	12.6															

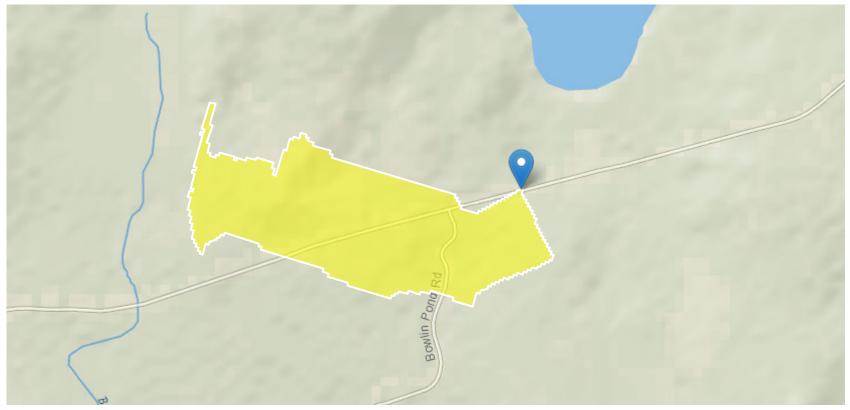

W _{bf}	7.9 estimated bankf	ull width (ft)
d_{bf}	0.5 estimated bankf	,
A_{bf}	2.5 estimated bankf	ull flow area (ft ²)


14.7 assume v = 4ft/s

 Q_{bf}

References

Dudley, R.W., 2013. FY2013 Progress Report - Phase 1 ..., USFWS QRP Project
Dudley, R.W., 2004. Estimating Monthly Streamflows ..., SIR 2004-5026
Dudley, R.W., 2015. Regression Equations for Monthly and Annual Mean..., USGS SIR 2015-5151


T6 R8 24247 Grand Lake Rd 46554

Region ID: ME

Workspace ID: ME20190729231510379000

Clicked Point (Latitude, Longitude): 46.12699, -68.72238

Time: 2019-07-29 19:15:31 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.1	square miles
STORNWI	Percentage of storage (combined water bodies and wetlands) from the National Wetlands Inventory	4.53	percent
SANDGRAVAF	Fraction of land surface underlain by sand and gravel aquifers	0	dimensionless
ELEV	Mean Basin Elevation	758.3	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	3.29	percent
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	520920.78	feet
CENTROIDY	Basin centroid vertical (y) location in state plane units	5108083.9	feet
COASTDIST	Shortest distance from the coastline to the basin centroid	143	miles
ELEVMAX	Maximum basin elevation	807.9	feet
LC06WATER	Percent of open water, class 11, from NLCD 2006	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	7.47	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0.2	percent
PRECIP	Mean Annual Precipitation	38.2	inches
SANDGRAVAP	Percentage of land surface underlain by sand and gravel aquifers	0	percent
STATSGOA	Percentage of area of Hydrologic Soil Type A from STATSGO	0	percent

Peak-Flow Statistics Parameters[Statewide Peak Flow DA LT 12sqmi 2015 5049]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.1	square miles	0.31	12

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
STORNWI	Percentage of Storage from NWI	4.53	percent	0	22.2

Peak-Flow Statistics Disclaimers[Statewide Peak Flow DA LT 12sqmi 2015 5049]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Statewide Peak Flow DA LT 12sqmi 2015 5049]

Statistic	Value	Unit
1.01 Year Peak Flood	2.77	ft^3/s
2 Year Peak Flood	8.63	ft^3/s
5 Year Peak Flood	13.5	ft^3/s
10 Year Peak Flood	17	ft^3/s
25 Year Peak Flood	22.1	ft^3/s
50 Year Peak Flood	25.9	ft^3/s
100 Year Peak Flood	30.2	ft^3/s
250 Year Peak Flood	34.3	ft^3/s
500 Year Peak Flood	40.6	ft^3/s

Peak-Flow Statistics Citations

Lombard, P.J., and Hodgkins, G.A.,2015, Peak flow regression equations for small, ungaged streams in Maine—Comparing map-based to field-based variables: U.S. Geological Survey Scientific Investigations Report 2015-5049, 12 p. (http://dx.doi.org/10.3133/sir20155049)

Annual Flow Statistics Parameters[Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.1	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0	dimensionless	0	0.212
ELEV	Mean Basin Elevation	758.3	feet	239	2120

Annual Flow Statistics Disclaimers[Statewide Annual SIR 2015 5151]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report[Statewide Annual SIR 2015 5151]

Statistic	Value	Unit
Mean Annual Flow	0.271	ft^3/s

Annual Flow Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Flow-Duration Statistics Parameters[Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.1	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0	dimensionless	0	0.212
ELEV	Mean Basin Elevation	758.3	feet	239	2120

Flow-Duration Statistics Disclaimers[Statewide Annual SIR 2015 5151]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report[Statewide Annual SIR 2015 5151]

Statistic	Value	Unit
1 Percent Duration	0.0000561	ft^3/s
5 Percent Duration	0.000654	ft^3/s
10 Percent Duration	0.00261	ft^3/s
25 Percent Duration	0.0228	ft^3/s
50 Percent Duration	0.098	ft^3/s
75 Percent Duration	0.257	ft^3/s
90 Percent Duration	0.623	ft^3/s
95 Percent Duration	1.05	ft^3/s
99 Percent Duration	3.72	ft^3/s

Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software

is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

WIN: Town: Route No. Asset ID: Lat:	24263.00 T6 R8 Grand Lak 995797 46.12788	Long:	68.71753	Project Name: Stream Name: Bridge Name: Analysis by: Date:	trib to Hay Lake CSH 7/29/2019	Watershed area by manual delineation, other parameters from StreamStats
Peak Flo	ow Calc	ulations	by USG	SS Regression Equation	S (Hodgkins, 1999 & Lomba	rd/Hodgkins, 2015)
A W	Enter data km ² 1.30 0.06	n in blue ce mi ² 0.50	ac 320.0	Enter data in [mi ²] Watershed Area DRNAREA Wetlands area (by NWI)		ver. 2018 Jul 09 Worksheet prepared by: Charles S. Hebson, PE Environmental Office
P _c County pptA	521432 Aroostook S			watershed centroid (E, N; UTN choose county from drop-down mean annual precipitation (inc	n <i>menu</i> hes; by look-up)	Maine Dept. Transportation Augusta, ME 04333-0016 207-557-1052 Charles.Hebson@maine.gov
A (km²) W (%) Watershed	1.30 5.00 Characteris		Conf Lvl	NWI Wetlands % STORNWI	in Maine for s	1999. nagnitude of peak flows for streams elected recurrence intervals USGS Augusta, ME
EAVG SLOPE EMAX WATER PRECIP SG HGA DIST	737 2.42 808 0 38.4 0.00 0 143.00			mean basin elevation (ft) mean basin slope (%) maximum basin elevation (ft) percent of drainage basin land mean annual precipitation sand & gravel aquifer as decin mean basin percentage of hyd distance from the coast (mi)	cover classified as open water	
Ret Pd T (yr) 1.1 2 5 10 25	Lower	VEstimate Q _T (m³/s) 0.42 0.88 1.38 1.75 2.28	Upper	Q _T (ft ³ /s) 14.9 30.9 48.7 61.7 80.4	Lombard, P.J. & Peak flow regre Maine - Comp	G.A. Hodgkins, 2015. ssion equations for small, ungaged streams in aring map-based to field-based variables USGS, Augusta, ME

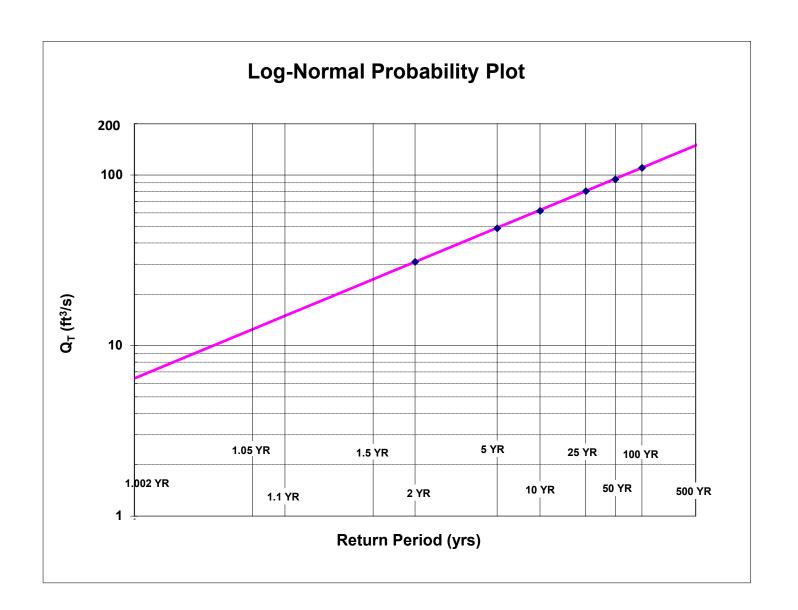
94.3

 $Q_T = b \times A^a \times 10^{-wW}$

110.2

149.1

50


100

500

2.67

3.12

4.22

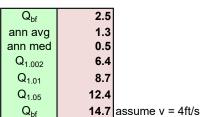
WIN: 24263.00

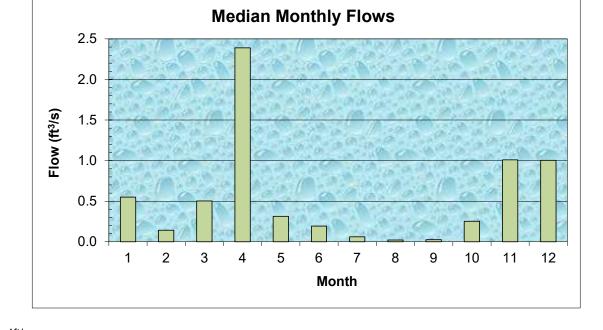
Town: T6 R8

Route No. Grand Lake Rd

Asset ID: 995797

Lat: 46.12788 Long: 68.71753


Project Name: 0
Stream Name: trib to Hay Lake
Bridge Name: 0
Analysis by: CSH
Date: 7/29/2019


DO NOT ENTER ANY DATA ON THIS PAGE; EVERYTHING IS CALCULATED

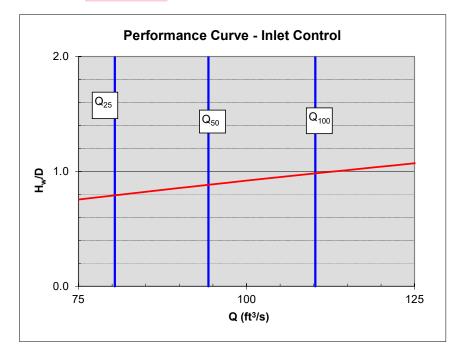
MAINE MONTHLY MEDIAN FLOWS and HYDRAULIC GEOMETRY BY USGS REGRESSION EQUATIONS (2004, 2013, 2015)

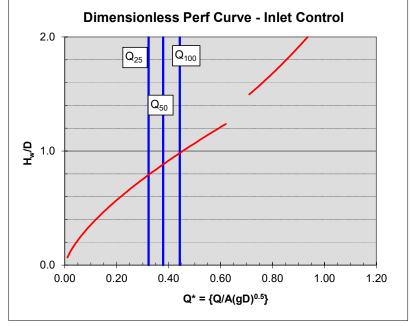
Value Variable Explanation Area (mi²) 0.50 Α 5107522 P_c 521432 Watershed centroid (E,N; UTM; Zone 19; meters) Distance from Coastal reference line (mi) 141.96 DIST 38.4 Mean Annual Precipitation (inches) pptA 0.00 SG Sand & Gravel Aquifer (decimal fraction of watershed area)

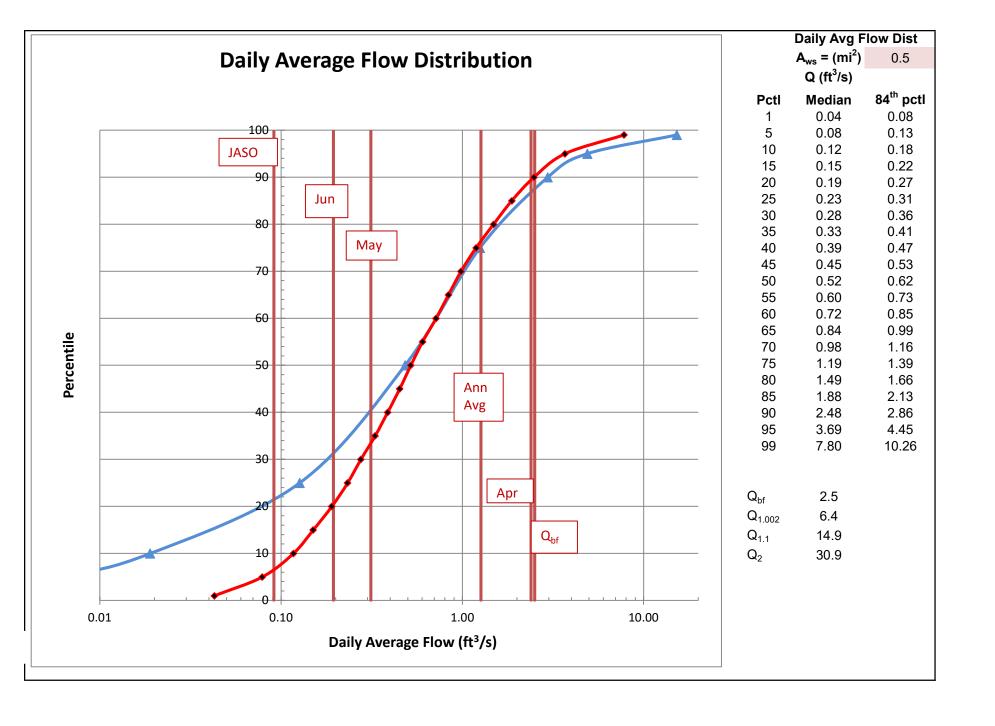
Month	$\mathbf{Q}_{\mathrm{median}}$	
	(ft3/s)	(m ³ /s)
Jan	0.55	0.0156
Feb	0.14	0.0040
Mar	0.50	0.0143
Apr	2.39	0.0677
May	0.31	0.0089
Jun	0.19	0.0055
Jul	0.06	0.0018
Aug	0.02	0.0006
Sep	0.03	0.0008
Oct	0.25	0.0072
Nov	1.01	0.0286
Dec	1.00	0.0284

W _{bf}	7.9 estimated bankfull width (ft)	
d_{bf}	0.5 estimated bankfull depth (ft)	
A_{bf}	2.5 estimated bankfull flow area (ft	²)

References


Dudley, R.W., 2013. FY2013 Progress Report - Phase 1 ..., USFWS QRP Project
Dudley, R.W., 2004. Estimating Monthly Streamflows ..., SIR 2004-5026
Dudley, R.W., 2015. Regression Equations for Monthly and Annual Mean..., USGS SIR 2015-5151

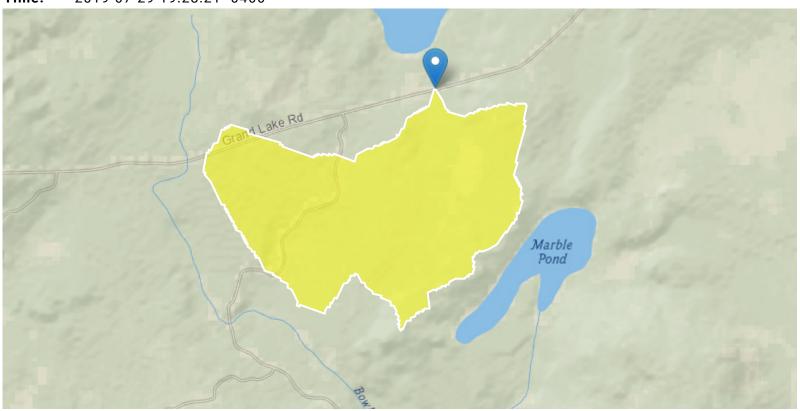

NOTE: This page is for preliminary sizing only. Final design should be done with HY8 or HDS-5


Preliminary Culvert Sizing - Round & Box Culverts


Shape:	Round					
Type:	Box 0 ww		Q_{25}	80.4		
D or R (ft)	5		Q_{50}	94.3	trial D / R =	5.1
w (ft)	15	box width	Q ₁₀₀	110.2	trial w: BFW =	7.9
Slope (ft/ft)	0.02					
A (ft ²)	19.63					
g (ft/s²)	32.2					

Note: culvert dimensions are for open flow area; adjust for lost capacity due to embedding / backfilling (min {2' / 25% rise} embedment)

T6 R8 24263.00 Grand Lake Rd 995797


This watershed delineation superceded by manual delineation

Region ID: ME

Workspace ID: ME20190729232757984000

Clicked Point (Latitude, Longitude): 46.12788, -68.71753

Time: 2019-07-29 19:28:21 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.8	square miles
STORNWI	Percentage of storage (combined water bodies and wetlands) from the National Wetlands Inventory	15.21	percent
SANDGRAVAF	Fraction of land surface underlain by sand and gravel aquifers	0	dimensionless
ELEV	Mean Basin Elevation	737	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	2.42	percent
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	521432.29	feet
CENTROIDY	Basin centroid vertical (y) location in state plane units	5107521.5	feet
COASTDIST	Shortest distance from the coastline to the basin centroid	143	miles
ELEVMAX	Maximum basin elevation	804.2	feet
LC06WATER	Percent of open water, class 11, from NLCD 2006	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	2.26	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0.0432	percent
PRECIP	Mean Annual Precipitation	38.4	inches
SANDGRAVAP	Percentage of land surface underlain by sand and gravel aquifers	0	percent
STATSGOA	Percentage of area of Hydrologic Soil Type A from STATSGO	0	percent

Peak-Flow Statistics Parameters [Statewide Peak Flow DA LT 12sqmi 2015 5049

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	0.31	12

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
STORNWI	Percentage of Storage from NWI	15.21	percent	0	22.2

Peak-Flow Statistics Flow Report [Statewide Peak Flow DA LT 12sqmi 2015 5049]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
1.01 Year Peak Flood	10	ft^3/s	38
2 Year Peak Flood	31.7	ft^3/s	34
5 Year Peak Flood	48.9	ft^3/s	35
10 Year Peak Flood	60.5	ft^3/s	37
25 Year Peak Flood	79	ft^3/s	39
50 Year Peak Flood	90.6	ft^3/s	41
100 Year Peak Flood	106	ft^3/s	42
250 Year Peak Flood	118	ft^3/s	44
500 Year Peak Flood	140	ft^3/s	47

Peak-Flow Statistics Citations

Lombard, P.J., and Hodgkins, G.A.,2015, Peak flow regression equations for small, ungaged streams in Maine—Comparing map-based to field-based variables: U.S. Geological Survey Scientific Investigations Report 2015–5049, 12 p. (http://dx.doi.org/10.3133/sir20155049)

Flow-Duration Statistics Parameters[Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	14.9	1419

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0	dimensionless	0	0.212
ELEV	Mean Basin Elevation	737	feet	239	2120

Flow-Duration Statistics Disclaimers[Statewide Annual SIR 2015 5151]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errorsOne or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report[Statewide Annual SIR 2015 5151]

Statistic	Value	Unit
1 Percent Duration	0.00135	ft^3/s
5 Percent Duration	0.0107	ft^3/s
10 Percent Duration	0.0339	ft^3/s
25 Percent Duration	0.209	ft^3/s
50 Percent Duration	0.77	ft^3/s
75 Percent Duration	1.99	ft^3/s
90 Percent Duration	4.66	ft^3/s
95 Percent Duration	7.67	ft^3/s
99 Percent Duration	23	ft^3/s

Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Annual Flow Statistics Parameters[Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0	dimensionless	0	0.212
ELEV	Mean Basin Elevation	737	feet	239	2120

Annual Flow Statistics Disclaimers[Statewide Annual SIR 2015 5151]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errorsOne or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report[Statewide Annual SIR 2015 5151]

Statistic	Value	Unit
Mean Annual Flow	1.99	ft^3/s

Annual Flow Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Low-Flow Statistics Parameters[Statewide LowFlow SIR 2004 5026]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	9.79	1418
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0	dimensionless	0	0.455

Low-Flow Statistics Disclaimers[Statewide LowFlow SIR 2004 5026]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errorsOne or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide LowFlow SIR 2004 5026]

Statistic	Value	Unit
7 Day 10 Year Low Flow	0.0177	ft^3/s

Low-Flow Statistics Citations

Dudley, R.W.,2004, Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2004-5026, 22 p. (http://water.usgs.gov/pubs/sir/2004/5026/pdf/sir2004-5026.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8