MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

JOCK STREAM BRIDGE OVER JOCK STREAM MONMOUTH, MAINE

Prepared by:

Kathleen Maguire, P.E. Geotechnical Engineer

Reviewed by:

Laura Krusinski, P.E. Senior Geotechnical Engineer

Kennebec County PIN 16716.00 Soils Report No. 2009-32 Bridge No. 2412

Fed No. BR-1671(600)X November 16, 2009

Table of Contents

GEO	TECHNICAL DESIGN SUMMARY	. 1
1.0	INTRODUCTION	. 3
2.0	GEOLOGIC SETTING	. 3
3.0	SUBSURFACE INVESTIGATION	. 4
4.0	LABORATORY TESTING	. 5
5.0	SUBSURFACE CONDITIONS	. 5
5.1 5.2 5.3 5.4 5.5 5.6	SAND FILL	. 5 . 5 . 6 . 6
6.0	FOUNDATION ALTERNATIVES	
7.0	FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS	. 8
7.1 7.2 7.3 7.4 7.5 7.6 7.7	INTEGRAL STUB ABUTMENT DESIGN SCOUR AND RIPRAP SETTLEMENT. FROST PROTECTION SEISMIC DESIGN CONSIDERATIONS CONSTRUCTION CONSIDERATIONS	13 14 15 15 16
8.0	CLOSURE	17
<u>Table</u>		
Table Table Table Table	 5-1 - Summary of Atterberg Limits Testing for Silt Samples 5-2 - Summary of Atterberg Limits Testing for Clayey Silt Samples 7-1 - Factored Axial Resistances for Abutment Piles at the Strength Limit State 7-2 - Factored Axial Resistances for Abutment Piles at the Service and Extreme Limit 7-3 - Equivalent Height of Soil for Vehicular Loading on Abutments Perpendicular to 7-4 - Estimated Pile Tip Elevations 	
Sheet	cs ·	

Sheet 1 - Location Map

Sheet 2 - Boring Location Plan and Interpretive Subsurface Profile

Sheet 3 - Boring Logs

Appendices

Appendix A - Boring Logs Appendix B - Laboratory Data Appendix C - Calculations

GEOTECHNICAL DESIGN SUMMARY

The purpose of this design report is to make geotechnical recommendations for the replacement of Jock Stream Bridge over Jock Stream in Monmouth, Maine. The proposed replacement bridge will consist of a single span structure founded on H-pile supported integral abutments. The following design recommendations are discussed in detail in the attached report:

Integral Abutment H-piles - The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles will be friction piles driven to an approved stopping criterion within the glacial till layer. Piles should be fitted with driving points to protect the tips and improve penetration. The H-piles shall be design for all relevant strength, service and extreme limit state load groups. The structural resistance check should include checking axial, lateral, and flexural resistance. An L-Pile® analysis is recommended to evaluate the combined axial compression and flexure with factored axial loads, moments and pile head displacements applied. As the proposed integral H-piles will be modeled as fully fixed at the pile head, the resistance of the piles should be evaluated for structural compliance with the interaction equation.

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test with a 24-hour restrike test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor, φ_{dyn} , of 0.52. The maximum factored axial pile load should be shown on the plans.

Integral Stub Abutment Design - Integral stub abutments shall be designed for all relevant strength, service and extreme limit states and load combinations. In designing integral abutments for passive earth pressure, the Rankine earth pressure coefficient (K_p) of 3.25 is allowed if the displacement of the abutment is less than 2 percent of the abutment height. All abutment designs shall include a drainage system to intercept any water. The approach slab should be positively connected to the integral abutment. Additional lateral earth pressure due to construction surcharge or live load surcharge is required if an approach slab is not specified. When a structural approach slab is specified, reduction, not elimination, of the surcharge load is permitted.

Scour and Riprap- The consequences of changes in foundation conditions resulting from the design flood for scour shall be considered at the strength and service limit states. For scour protection and protection of pile groups, the bridge approach slopes and slopes at abutments should be armored with 3 feet of riprap. The riprap shall be underlain by a Class 1 nonwoven erosion control geotextile and a 1 foot thick layer of bedding material.

Settlement - Evaluation of the potential settlement due to the placement of up to 6 inches of fill resulted in less than ½ inch of settlement. Provided the fills placed at the site are not in

excess of 6 inches, no downdrag forces will need to be accounted for in the design of the pile foundations.

Frost Protection - Integral abutments shall be embedded a minimum of 4.0 feet for frost protection. Any foundation placed on granular subgrade soils should be founded a minimum of 6.0 feet below finished exterior grade for frost protection.

Seismic Design Considerations - Seismic analysis is not required for single span bridges regardless of seismic zone. However, superstructure connections and minimum support length requirements shall be satisfied.

Construction Requirements - Construction of the abutments will require soil excavation and partial or full removal of the existing abutments. Construction activities may require cofferdams and earth support systems. Using the excavated native soils as structural backfill should not be permitted. The existing subbase and subgrade fill soils in the bridge approaches should not be used to re-base the new bridge approaches.

1.0 Introduction

A subsurface investigation for the replacement of Jock Stream Bridge in Monmouth, Maine has been completed. The purpose of the investigation was to explore subsurface conditions at the site in order to develop geotechnical recommendations for the bridge replacement. This report presents the soils information obtained at the site, geotechnical design recommendations, and foundation recommendations.

The existing bridge was constructed in 1931 and consists of a 47 foot long, two span, non continuous and non composite, concrete superstructure with timber pile supported abutments and a mass concrete pier on timber piles. The bridge has a long history of scour problems and abutment movement. In 1997, the substructure was repaired and scour countermeasures were applied to channel bed by armoring with dry grout bags. The abutments and pier are cracked and spalled and are in poor overall condition with evident water damage and staining. Year 2007 MaineDOT Bridge Maintenance inspection reports indicate a Bridge Sufficiency Rating of 33.3. Year 2007 Bridge Inspection records assign the substructures a rating of 3, or "serious". The bridge is located in an environmentally sensitive area with concerns due to endangered species and observed heavy turtle population.

The proposed bridge will consist of a single span structure founded on H-pile supported integral abutments. The proposed bridge will have a span of approximately 60 feet. The proposed bridge alignment will have a centerline approximately matching the existing bridge centerline. The roadway profile may be raised as much as 6 inches for construction of the proposed bridge. The road will be closed during construction of the proposed replacement bridge.

2.0 GEOLOGIC SETTING

Jock Stream Bridge in Monmouth crosses Jock Stream approximately 1.0 miles easterly of Sanborn Road as shown on Sheet 1 - Location Map found at the end of this report. Jock Stream flows in a northeasterly direction to Cobbosseecontee Lake.

According to the Surficial Geologic Map of Maine published by the Maine Geological Survey (1985) the surficial soils in the vicinity of the site consist primarily of till soils with glaciomarine deposits to the south. The till soils generally consist of a homogeneous mixture of sand, silt, clay and stones and may include boulders. The unit is generally deposited in a blanket deposit that conforms to the underlying bedrock surface. These soils were generally deposited by glacial ice. The glaciomarine deposits are generally comprised of silt, clay, sand and minor amounts of gravel. Sand is dominant in some areas, but may be underlain by finer-grained sediments. The unit may contain small areas of till not completely covered by marine sediments. The unit generally is deposited in areas where the topography is gently sloping except where dissected by modern streams and commonly has a branching network of steep-walled stream gullies. These soils were generally deposited as glacial sediments that accumulated on the ocean floor during the late-glacial marine submergence of lowland areas in southern Maine.

According to the Surficial Bedrock Map of Maine, published by the Maine Geological Survey (1985), the bedrock at the site is identified as interbedded pelite and sandstone of the Waterville formation bordered by interbedded pelite and limestone and/or dolostone of the Sangerville Formation.

3.0 SUBSURFACE INVESTIGATION

Subsurface conditions were explored by drilling two (2) test borings at the site. Test boring BB-MJS-101 was drilled behind the location of Abutment No. 1 (west). Test boring BB-MJS-102 behind the location of Abutment No. 2 (east). The exploration locations are shown on Sheet 2 - Boring Locations and Interpretive Subsurface Profile found at the end of this report.

The borings were drilled on between June 16 and July 14, 2009 using the Maine Department of Transportation (MaineDOT) drill rig. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A - Boring Logs and on Sheet 3 - Boring Logs found end of this report. The borings were drilled using driven cased wash boring and solid stem auger techniques. Soil samples were obtained where possible at 5-foot intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 24 inches and the hammer blows for each 6 inch interval of penetration are recorded. The standard penetration resistance. N-value, is the sum of the blows for the second and third intervals. The MaineDOT drill rig is equipped with a CME automatic hammer to drive the split spoon. The hammer was calibrated by MaineDOT in February of 2009 and was found to deliver approximately 40 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values computed by applying an average energy transfer factor of 0.84 to the raw field N-values. This hammer efficiency factor (0.84) and both the raw field N-value and the corrected N-value are shown on the boring logs.

Undisturbed tube samples were obtained in the soft soil deposits where possible. In-situ vane shear tests were made where possible in soft soil deposits to measure the shear strength of the strata. The bedrock was cored in the borings using an NQ-2 core barrel and the Rock Quality Designation (RQD) of the core was calculated. The MaineDOT Geotechnical Team member selected the boring locations and drilling methods, designated type and depth of sampling techniques and identified field and laboratory testing requirements. A Northeast Transportation Technical Certification Program (NETTCP) certified subsurface inspector logged the subsurface conditions encountered. The borings were located in the field by use of a tape after completion of the drilling program.

Details and sampling methods used, field data obtained and soil and groundwater conditions encountered are presented in the boring logs in Appendix A and on Sheet 3 – Boring Logs found at the end of this report.

4.0 LABORATORY TESTING

Laboratory testing for samples obtained in the borings consisted of six (6) standard grain size analyses, twenty-eight (28) grain size analysis with hydrometer, twenty-two (22) Atterberg Limits test, five (5) consolidation tests and five (5) standard tube openings. Laboratory test results are provided in Appendix B - Laboratory Data at the end of this report. Moisture content information and other soil test results are included on the Boring Logs in Appendix A and on Sheet 3 - Boring Logs found at the end of this report.

5.0 SUBSURFACE CONDITIONS

The general soil stratigraphy encountered at the abutments consisted of fill sand, silt, clayey silt, and sand/glacial till. The full depth of the soil strata was not penetrated in the borings due to the great depth of the borings (>100 feet) and the difficult drilling conditions within the glacial till. An interpretive subsurface profile depicting the site stratigraphy is show on Sheet 2 – Boring Location Plan and Interpretive Subsurface Profile found at the end of this report. The following paragraphs discuss the subsurface conditions encountered in detail:

5.1 Sand Fill

Beneath the pavement, a layer of sand fill materials was encountered behind the abutments. This layer was found to be brown, moist to wet, fine to coarse sand, with some silt, trace gravel, trace gravel and trace organics. The thickness of the sand fill layer ranged from approximately 8.5 feet in boring BB-MJS-101 to approximately 8.0 feet in boring BB-MJS-102. Corrected SPT N-values in the fill layer ranged from 3 to 17 blows per foot (bpf) indicating that the soil is loose to medium dense in consistency. Water contents from three (3) samples obtained within this layer range from approximately 11% to 20%. Three (3) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-2-4 or A-4 by the AASHTO Classification System and a SM or SC-SM by the Unified Soil Classification System.

5.2 Silt

Beneath the sand fill layer a layer of silt was encountered. This layer was found to be grey, wet, silt, with some to little clay, and trace fine sand in layers. A thin layer (approximately 3.5 feet thick) of dark brown, wet, soft, silt with little fine sand, little clay and trace organics was encountered in the upper portion of boring BB-MJS-102. The thickness of the overall silt layer ranged from approximately 34.5 feet in boring BB-MJS-101 to approximately 42.0 feet in boring BB-MJS-102. Vane shear testing conducted within the silt showed measured undrained shear strengths ranging from approximately 247 to 879 psf while the remolded shear strength ranged from approximately 27 to 110 psf. These shear strength values indicate that the undisturbed silt is soft to medium stiff in consistency. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the clayey silt was determined to have sensitivity ranging from approximately 3.5 to 16.0 and is classified as moderately sensitive to slightly quick. Water contents from twelve (12) samples obtained within this layer range from approximately 22% to 29%. Twelve (12) grain size analyses conducted on samples

from this layer indicate that the soil is classified as an A-4 by the AASHTO Classification System and a CL-ML by the Unified Soil Classification System.

Table 5-1 below summarizes the results of the Atterberg Limits tests from samples of the silt:

Sample No.	Water	Liquid	Plastic	Plasticity	Liquidity
	Content (%)	Limit	Limit	Index	Index
BB-MJS-101 3D	24.0		N	on Plastic	
BB-MJS-101 4D	26.0		N	on Plastic	
BB-MJS-101 5D	25.4		N	on Plastic	
BB-MJS-101 6D	26.2	23	18	5	1.64
BB-MJS-101 7D	26.8		N	on Plastic	
BB-MJS-102 7D	28.3		N	on Plastic	
BB-MJS-102 8D	29.0	25	18	7	1.57
BB-MJS-102 9D	24.7	22	17	5	1.54
BB-MJS-102 10D	28.8	22	17	5	2.36

Table 5-1 – Summary of Atterberg Limits Testing Results for Silt Samples

Interpretation of these results indicates that the silt is on the verge of being a viscous liquid as the natural water content exceeds the liquid limit. This indicates that the soils have a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick".

5.3 Sand

A thin layer (approximately 9.0 feet thick) of grey, wet, loose, fine to coarse sand with some silt, little clay and trace gravel was encountered at the bottom of the silt layer in boring BB-MJS-102. A water content from a sample obtained within this sand layer was approximately 17%. One (1) grain size analysis conducted on a sample from the sand layer indicated that the soil is classified as an A-2-4 by the AASHTO Classification System and a SC-SM by the Unified Soil Classification System. One (1) Atterberg Limits test conducted on a sample from the sand layer indicated that the soil is non-plastic. This layer was not encountered in boring BB-MJS-101.

5.4 Clavev Silt

Beneath the silt a layer of clayey silt was encountered. This layer was found to be grey, wet, clayey silt, with trace fine sand. The thickness of the clayey silt layer ranged from approximately 39.9 feet in boring BB-MJS-101 to approximately 34.5 feet in boring BB-MJS-102. Vane shear testing conducted within the clayey silt layer showed undrained shear strengths ranging from approximately 220 psf to 989 psf while the remolded shear strengths ranged from approximately 27 psf to 165 psf. These shear strength values indicate that the undisturbed clayey silt is very soft to medium stiff in consistency. Based on the ratio of peak

to remolded shear strengths from the vane shear tests, the clayey silt was determined to have sensitivities ranging from approximately 4.0 to 29.5 and is classified as sensitive to slightly quick. Water contents from thirteen (13) samples obtained within the clayey layer range from approximately 26% to 36%. Thirteen (13) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-4 or A-6 by the AASHTO Classification System and a CL-ML or CL by the Unified Soil Classification System.

Table 5-2 below summarizes the results of the Atterberg Limits tests from samples of the clayey silt:

Sample No.	Water	Liquid	Plastic	Plasticity	Liquidity
	Content (%)	Limit	Limit	Index	Index
BB-MJS-101 10D	27.8	23	17	6	1.80
BB-MJS-101 1U	33.4	25	18	7	2.20
BB-MJS-101 2U	30.7	26	18	8	1.59
BB-MJS-101 12D	26.3	24	16	8	1.29
BB-MJS-101 3U	35.6	35	21	14	1.04
BB-MJS-101 13D	28.9	31	19	12	0.83
BB-MJS-102 12D	27.6	26	18	8	1.20
BB-MJS-102 2U	28.7	23	18	5	2.14
BB-MJS-102 3U	31.6	29	19	10	1.26
BB-MJS-102 13D	28.7	30	20	10	0.87
BB-MJS-102 14D	26.6	36	21	15	0.37
BB-MJS-102 15D	26.1	30	19	11	0.65

Table 5-2 – Summary of Atterberg Limits Testing Results for Clayey Silt Samples

Interpretation of these results indicates that the clayey silt ranges from being on the verge of becoming a viscous liquid to slightly over-consolidated. For eight (8) samples the natural water content is equal to or exceeds the liquid limit and the liquidity index exceeds 1, indicating that the silty clay is on the verge of becoming a viscous liquid. These soils have a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick".

Five (5) one-dimensional consolidation tests were conducted on tube samples taken from various depths within the clayey silt layer. The results of these tests were used to calculate the anticipate settlements at the site and are included in Appendix B – Laboratory Data.

5.5 Sand/Glacial Till

Beneath the clayey silt layer a layer of sand/glacial till was encountered. This layer was found to be grey, wet, silty fine sand, fine to coarse sand, and sand/glacial till with cobbles and boulders. The thickness of the sand/glacial till layer was not fully penetrated in the borings. Corrected SPT N-values in the upper sand layer ranged from 3 to 27 bpf indicating

that the upper sand is loose to medium dense in consistency. The layer increases in density with depth and becomes cemented. Attempts to sample the cemented glacial till were unsuccessful. Water contents from five (5) samples obtained within the upper sand range from approximately 17% to 24%. Five (5) grain size analyses conducted on samples from the upper sand indicate that the sand is classified as an A-4, A-2-4 or A-3 by the AASHTO Classification System and a SM, SP-SM, or SC-SM by the Unified Soil Classification System.

5.6 Groundwater

Groundwater was observed at a depths ranging from approximately 5.5 feet to 9.0 feet below the existing ground surface. The water levels measured upon completion of drilling are indicated on the boring logs found in Appendix A. Note that water was introduced into the boreholes during the drilling operations. It is likely that the water levels indicated on the boring logs do not represent stabilized groundwater conditions. Additionally, groundwater levels are expected to fluctuate seasonally depending upon the local precipitation magnitudes.

6.0 FOUNDATION ALTERNATIVES

The subsurface conditions encountered at the site indicate that the bridge location is underlain by a significant compressible silt and clayey silt layer. Due to the soft nature and depth of the soils, shallow foundations were not considered for use at the site. The following foundation alternatives are considered viable:

- Driven H-pile supported integral abutments
- Drilled shafts

It is anticipated that the proposed replacement structure will be supported on driven H-piles. Due to the great depth of the overburden at the site location it is also anticipated that the piles will be design as friction piles driven to an approved stopping criteria within the glacial till layer. The use of drilled shafts is likely more expensive than driven H-piles and has not been pursued as a part of this report.

7.0 FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS

The following sections will discuss geotechnical design recommendations for stub abutments founded on a single row of integral friction H-piles which has been identified as the optimal substructure for the site.

7.1 Integral Abutment H-Piles

The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be designed for end bearing and friction resistance and driven to an approved stopping criterion within the glacial till layer. Piles may be HP 12x53, HP 12x74, HP 14x73, HP 14x89, or HP 14x117 depending on the factored design axial loads. Piles should be 50 ksi, Grade A572 steel H-piles. The piles should be oriented for weak axis bending. Piles should be fitted with driving points to protect the tips and improve penetration.

Pile lengths at the proposed abutments will be on the order of 110 to 115 feet based on a required pile tip penetration of 10 feet into the basal till unit. The actual pile tip penetration may exceed 10 feet at some locations. Required and estimated pile tip elevations should be provided on the plans. The piles are anticipated to be friction piles driven to an approved stopping criterion within the glacial till layer. The full depth of the glacial till layer was not penetrated in the borings due to the great depth of the overburden soils.

The H-piles shall design for the strength limit state considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of the lateral support due to scour at the design flood event. The structural resistance check should include checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed in Section 7.1.1 below.

The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and displacements considering changes in foundation conditions due to scour at the design flood event. Extreme limit state design shall check that the nominal pile resistance remaining after scour due to the check flood can support the extreme limit state loads with a resistance factor of 1.0. The design and check floods for scour are defined in AASHTO LRFD Bridge Design Specifications 4th Edition (LRFD) Articles 2.6.4.4.2 and 3.7.5.

7.1.1 Strength Limit State Design

The nominal compressive resistance (P_n) in the strength limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. For preliminary analyses the H-piles were assumed fully embedded and the column slenderness factor, λ , was taken as 0. The factored structural axial compressive resistances of the five (5) proposed H-pile sections were calculated using a resistance factor, ϕ_c , of 0.50 and a λ of 0. It is the responsibility of the structural designer to recalculate λ for the upper and lower portions of the H-pile based on unbraced length and K-values from project specific L-Pile[®] analyses and recalculate structural resistances.

For the portion of the pile which is theoretically in pure compression, i.e. below the point of fixity, the factored structural axial resistances of five (5) H-pile sections were calculated using a resistance factor, ϕ_c , of 0.50. The factored structural axial resistance may be controlled by the combined axial and flexural resistance of the pile. This is the responsibility of the structural designer.

The nominal and factored axial geotechnical resistance in the strength limit state was calculated using the FHWA software program DRIVEN which uses the α -method (Tomlinson) to calculate pile capacity versus depth for the soil profile in cohesive layers and Nordlund and Thurman methods to calculate shaft resistance and pile tip bearing resistance, respectively, in cohesion less layers. The factored geotechnical resistances of the five (5) proposed H-pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.35 for side friction resistance in the silt clay unit and 0.45 for side friction and end bearing resistance in the cohesionless lower unit.

The drivability of the five (5) proposed H-pile sections was considered. The maximum driving stresses in the pile, assuming the use of 50 ksi steel, shall be less than 45 ksi. As the piles will be friction piles driven to an approved stopping criterion within the glacial till layer a drivability analysis to determine the resistance that must be achieved was conduced. The resistance factor for a single pile in axial compression when a dynamic test is done given in LRFD Table 10.5.5.2.3-1 is φ_{dyn} = 0.65. Table 10.5.5.2.3-3 requires that no less than three to four dynamic tests be conducted for sites with low to medium variability. Per LFRD Article 10.5.5.2.3 the resistance factor 0.65 is reduced by 20% since it is applied to a nonredundant pile group, i.e., there are less than 5 piles in a group. This results in a resistance factor, φ_{dyn} , of 0.52.

For the strength limit state, the calculated factored axial compressive structural, geotechnical and drivability resistances of the five (5) proposed H-pile sections for each abutment are summarized in Table 7-1 below. Supporting calculations are included in Appendix C-Calculations found at the end of this document.

		Strength Limit State Factored Axial Pile Resistance (kips)										
Pile Section	Structural Resistance* φ _c =0.50 λ=0	Geotechnical Resistance ϕ_{stat} =0.35 and ϕ_{stat} =0.45 (10 feet pile penetration into glacial till)	Geotechnical Resistance ϕ_{stat} =0.35 and ϕ_{stat} =0.45 (20 feet pile penetration into glacial till)	Drivability Resistance φ _{dyn} =0.52	Governing Resistance Based on Static Analyses							
HP 12 x 53	388	264	333	336	264							
HP 12 x 73	545	308	390	401	308							
HP 14 x 73	535	352	447	477	352							
HP 14 x 89	653	387	491	539	387							
HP 14 x 117	860	439	559	648	439							

* based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

Table 7-1 - Factored Axial Resistances for Abutment Piles at the Strength Limit State

The factored axial geotechnical resistance is less than the factored axial structural resistance and the factored axial drivability resistance. It is recommended that the maximum factored axial pile load used in design for the strength limit state not exceed the factored geotechnical resistance based on static analyses shown in Table 7-1, above.

Since the abutment piles will be modeled with a fixed pile head and subjected to lateral and axial loads, bending moments and displacements, the piles should be analyzed for combined axial compression and flexure resistance per LRFD Articles 6.9.2.2 and 6.15. An L-Pile® analysis by the project geotechnical engineer is recommended to evaluate the soil-pile interaction for combined axial and flexure, with factored axial loads, movements and pile head displacements applied. The resistance for the piles should be determined for compliance with the interaction equation. The upper portion of the pile is defined per LRFD Figure C6.15.2-1 as that portion of the pile above the point of second infection in the movement vs. pile depth curve, or at the lowest point of zero infection. Per LRFD Article 6.5.4.2, at the strength limit state, for H-piles in compression and bending, the axial resistance factor ϕ_c =0.7 and the flexural resistance factor ϕ_f =1.0 shall be applied to the combined axial and flexural resistance of the pile in the interaction equation. The resistance of the pile in the lower zone need only be checked against axial load.

7.1.2 Service and Extreme Limit State Design

The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and displacements considering changes in foundation conditions due to scour at the design flood event. For the service limit state a resistance factor of 1.0 should be used for the calculation of structural, geotechnical and drivability axial pile resistances in accordance with LRFD Article 10.5.5.2. The overall global stability of the foundation should be investigated at the Service I Load Combination and a resistance factor of φ = 0.65.

The extreme limit state design shall include a determination that there is adequate nominal foundation resistance remaining after scour due to the check flood to resist the unfactored extreme limit state load combination with a resistance factor of 1.0.

The calculated factored axial structural, geotechnical and drivability resistances of the five (5) proposed H-pile sections were calculated for the service and extreme limit states and are summarized in Table 7-2 below. Supporting calculations are included in Appendix C-Calculations found at the end of this document.

		Service and Extreme Limit States Factored Axial Pile Resistance (kips)										
Pile Section	Structural Resistance* φ=1.0 λ=0	Geotechnical Resistance φ=1.0 (10 feet pile penetration into glacial till)	Geotechnical Resistance φ=1.0 (20 feet pile penetration into glacial till)	Drivability Resistance φ=1.0	Governing Resistance							
HP 12 x 53	775	619	772	647	619							
HP 12 x 73	1090	718	901	772	718							
HP 14 x 73	1070	822	1032	917	822							
HP 14 x 89	1305	898	1131	1037	898							
HP 14 x 117	1720	1015	1283	1247	1015							

^{*} based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

Table 7-2 - Factored Axial Resistances for Abutment Piles at the Service and Extreme Limit States

The factored axial geotechnical resistance is less than the factored axial structural and drivability resistances. It is recommended that the maximum factored axial pile load used in design for the service and extreme limit states not exceed the factored geotechnical resistance shown in Table 7-2, above.

7.1.3 Driven Pile Resistance and Pile Quality Control

Based on the anticipated pile lengths at the site, pile splices will be required. The location and number of pile splices shall be in conformance with MaineDOT Standard Specification 501 and be subject to the approval of the Resident. The splices shall be the Champion HP-30000, or approved equivalent, mechanical splicer. Evaluation of equivalent products will be based on the submission of data demonstrating the capability of transferring the full pile strength in compression and tension and developing the bending moment capacity of the pile in both the x-x and y-y axes. The splicers shall be installed and welded as recommended by the manufacturer. Welding shall not be done when the temperature in the immediate vicinity of the weld is below 0°F; when the surfaces are damp or exposed to rain, snow, or high wind; or when the welders or welding operators are exposed to inclement conditions. The pile shall be preheated to and maintained at 150°F minimum within 6 inches from the weld during welding. Formal welding procedures are not required. Welders shall be prequalified in accordance with Section 504 - Structural Steel.

The Contract documents should require the Contractor to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test with signal matching at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. Restrikes will be required as part of the pile field quality control program. With this level of quality control, the ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor, φ_{dyn} of 0.52. The maximum factored pile load should be shown on the

plans. If three to four piles are dynamically tested and if there are a minimum of five piles per group, the resistance factor may be increased by 20 percent to 0.65. Calculations for the pile resistance required by a drivability wave equation analysis are included the Appendix C-Calculations.

Piles should be driven to an acceptable penetration resistance as determined by the results of a wave equation analysis, the dynamic pile load test, the restrike pile test, the CAPWAP analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 45 ksi in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 3 to 6 inches is 8 to 13 blows per inch. If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.2 Integral Stub Abutment Design

Integral abutment sections shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. The design of pile supported abutments at the strength limit state shall consider pile group failure and structural reinforced concrete failure. Strength limit state design shall also consider change in foundation conditions and pile group resistance after scour due to the design flood.

A resistance factor of ϕ = 1.0 shall be used to assess abutment design at the service limit state including: settlement, excessive horizontal movement and movement resulting from scour at the design flood. The strength limit state loads include any debris loads occurring during the design flood event. The overall global stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, φ , of 0.65.

Extreme limit state design checks for abutments supported on piles shall include pile structural resistance, pile geotechnical resistance, pile resistance in combined axial and flexure, and overall stability. Resistance factors, ϕ , for the extreme limit state shall be taken as 1.0. Extreme limit state design shall also check that the nominal resistance remaining after scour due to the check flood can support the extreme limit state loads with a resistance factor of 1.0.

The Designer may assume Soil Type 4 (MaineDOT BDG Section 3.6.1) for backfill material soil properties. The backfill properties are as follows: $\phi = 32$ degrees, $\gamma = 125$ pcf and a soil-concrete friction coefficient of 0.45. Cast-in-place integral abutments and wingwall sections that are integral with the abutments shall be designed to withstand a maximum applied lateral load equal to the passive earth pressure state. The Coulomb passive earth pressure coefficient, K_p , of 6.89 is recommended. Developing full passive requires displacements of the abutment on the order of 2 to 5 percent of the abutment height. If the calculated displacements are significantly less than that required to develop full passive pressure, the designer may consider using the Rankine passive earth pressure case, which assumes no wall friction, or designing using a reduced Coulomb passive earth pressure coefficient, but not less than the Rankine passive earth pressure case using a Rankine passive earth pressure

coefficient, K_p , of 3.25. A load factor for passive earth pressure is not specified in LRFD. Use the maximum load factor for active earth pressure, $\gamma_{EH} = 1.50$.

Additional lateral earth pressure due to construction surcharge or live load surcharge is required per Section 3.6.8 of the MaineDOT BDG for abutments and wingwalls if an approach slab is not specified. When a structural approach slab is specified, reduction, not elimination, of the surcharge load is permitted per LRFD Article 3.11.6.5. The live load surcharge on abutments may be estimated as a uniform horizontal earth pressure due to an equivalent height (h_{eq}) taken from Table 7-3 below:

Abutment Height	h _{eq}
5 feet	4.0 feet
10 feet	3.0 feet
≥20 feet	2.0 feet

Table 7-3 - Equivalent Height of Soil for Vehicular Loading on Abutments Perpendicular to Traffic

All abutment and wingwall designs shall include a drainage system behind the abutments to intercept any groundwater. Drainage behind the structure shall be in accordance with Section 5.4.1.4 Drainage of the MaineDOT BDG. Geocomposite drainage board applied to the backsides of the abutments and wingwalls with weep holes will provide adequate drainage. The approach slab should be positively connected to the integral abutment.

Backfill within 10 feet of the abutments and wingwalls and side slope fill shall conform to Granular Borrow for Underwater Backfill - MaineDOT Specification 709.19. This gradation specifies 10 percent or less of the material passing the No. 200 sieve. This material is specified in order to reduce the amount of fines and to minimize frost action behind the structure.

Slopes in front of the pile supported integral abutments should be set back from the riverbank and should be constructed with riprap and erosion control geotextile. The slopes should not exceed 1.75H:1V.

7.3 Scour and Riprap

Grain size analyses were performed on soil samples taken at the approximate streambed elevation to generate grain size curves for determining parameters to be used in scour analysis. The samples were assumed to be similar in nature to the soils likely to be exposed to scour conditions. The following streambed grain size parameters can be used in scour analyses:

- Average diameter of particle at 50 percent passing, $D_{50} = 0.025$ mm
- Average diameter of particle at 95 percent passing, $D_{95} = 0.182$ mm
- Soil Classification AASHTO Soil Type A-4

The grain size curves are included in Appendix B- Laboratory Data found at the end of this report.

The consequences of changes in foundation conditions resulting from the design and check floods for scour shall be considered at the strength and extreme limit states, respectively. Design at the strength limit state should consider loss of lateral and vertical support due to scour. Design at the extreme limit state should check that the nominal foundation resistance due to scour at the check flood event is no less than the unfactored extreme limit state loads. At the service limit state, the design shall limit movements and overall stability considering scour at the design load.

For scour protection and protection of pile groups, the bridge approach slopes and slopes at abutments should be armored with 3 feet of riprap. Refer to MaineDOT BDG Section 2.3.11 for information regarding scour design.

Stone riprap shall conform to item number 703.26 of the MaineDOT Standard Specifications and shall be placed at a maximum slope of 1.75H:1V. The toe of the riprap section shall be constructed 1 foot below the streambed elevation. The riprap section shall be underlain by a Class 1 nonwoven erosion control geotextile and a 1 foot thick layer of bedding material conforming to item number 703.19 of the MaineDOT Standard Specifications.

7.4 Settlement

The vertical alignment of the proposed bridge may be raised as much as 6 inches for construction of the proposed replacement bridge. The soils at the site are compressible and are susceptible to consolidation if the in-situ stresses are increased above the current levels (i.e., consolidation will occur if fill is placed or if structures are supported on compressible soils). Evaluation of the potential settlement due to the placement of up to 6 inches of fill resulted in less than ½ inch of settlement. This settlement is anticipated to occur over a long period of time (years) and may require attention by a maintenance crew. Studies indicate that settlements in excess of 0.4 inches in soils where driven piles are present will result in downdrag forces on piles. Provided the fills placed at the site are not in excess of 6 inches, no downdrag forces will need to be accounted for in the design of the pile foundations. In the event that larger fills are found to be necessary during final design, the settlement induced by those fills and any downdrag considerations will need to the evaluated at that time.

7.5 Frost Protection

Integral abutments shall be embedded a minimum of 4.0 feet for frost protection per Figure 5-2 of the MaineDOT BDG.

Any foundation placed on granular subgrade soils should be designed with an appropriate embedment for frost protection. According to the MaineDOT frost depth maps for the State of Maine (MaineDOT BDG Figure 5-1) the site has a design-freezing index of approximately 1550 F-degree days. This correlates to a frost depth of 6.0 feet. Therefore, any foundations placed on granular soils should be founded a minimum of 6.0 feet below finished exterior

grade for frost protection. See Appendix C- Calculations at the end of this report for supporting documentation.

7.6 Seismic Design Considerations

In conformance with LRFD Article 4.7.4.2 seismic analysis is not required for single-span bridges regardless of seismic zone. According to Figure 2-2 of the MaineDOT BDG, the Jock Stream Bridge is not on the National Highway System (NHS). The bridge is not classified as a major structure since the construction costs will not exceed \$10 million. These criteria eliminate the MaineDOT BDG requirement to design the foundations for seismic earth loads. However, superstructure connections and minimum support length requirements shall be satisfied per LRFD Articles 3.10.9 and 4.7.4.4, respectively.

The following parameters were determined for the site from the USGS Seismic Parameters CD provided with the LRFD manual and LRFD Articles 3.10.3.1 and 3.10.6:

- Peak Ground Acceleration coefficient (PGA) = 0.084g
- Site Class E (site soils with an average N-value less than 15 bpf or any profile with more than 10 feet of soft clay and an undrained shear strength less than 500 psf)
- Acceleration coefficient $(A_s) = 0.209$
- Design spectral acceleration coefficient at 0.2-second period (S_{DS}) = 0.425g
- Design spectral acceleration coefficient at 1.0-second period $(S_{D1}) = 0.162g$
- Seismic Zone 2 (based on S_{D1} greater than 0.15g and less than or equal to 0.30g)

See Appendix C- Calculations at the end of this report for supporting documentation.

7.7 Construction Considerations

Construction of the abutments will require soil excavation and partial or full removal of the existing abutments. Construction activities may require cofferdams and earth support systems. The removal of the existing abutments may require the replacement of excavated soils with compacted granular fill prior to pile driving.

In some locations the native soils may be saturated and significant water seepage may be encountered during construction. There may be localized sloughing and surface instability in some soil slopes. The Contractor should control groundwater, surface water infiltration and soil erosion during construction.

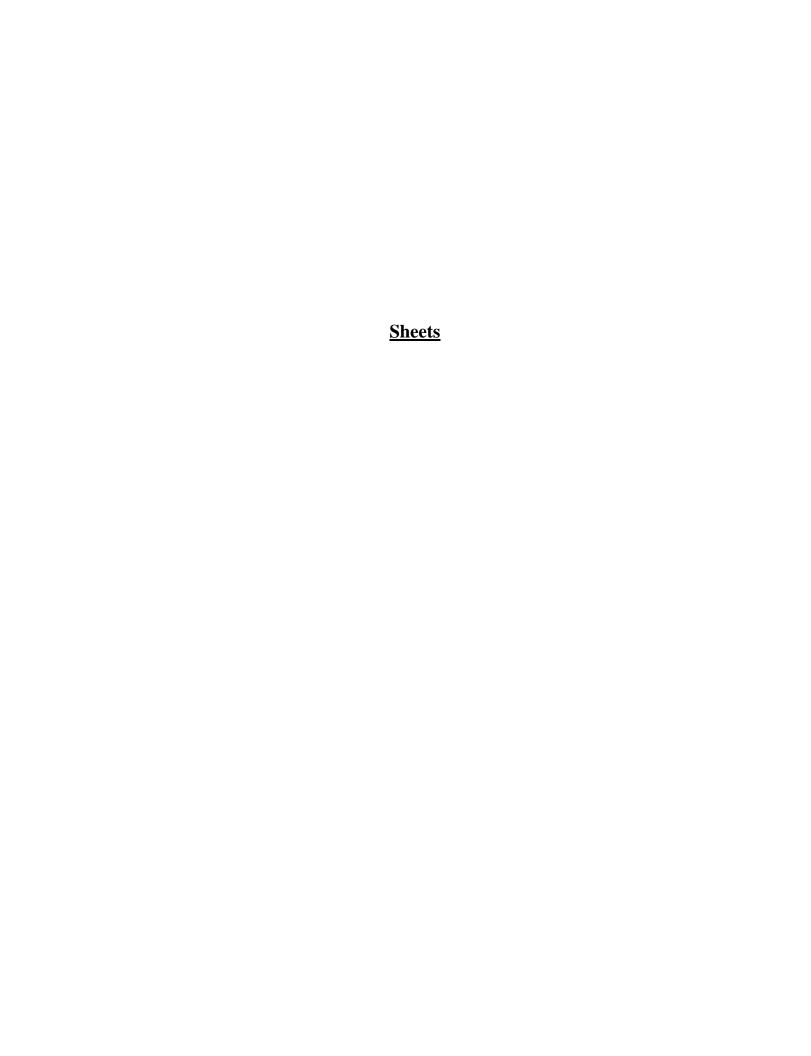
Using the excavated native soils as structural backfill should not be permitted. The native soils may only be used as common borrow in accordance with MaineDOT Standard Specifications 203 and 703.

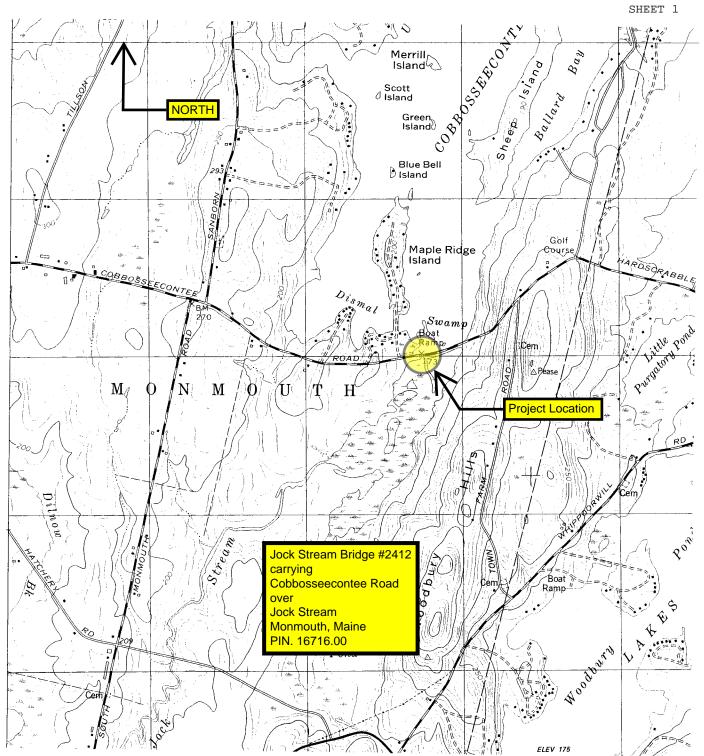
The Contractor will have to excavate the existing subbase and subgrade fill soils in the bridge approaches. These materials should not be used to re-base the new bridge approaches. Excavated subbase sand and gravel may be used as fill below subgrade level in fill areas provided all other requirements of MaineDOT Standard Specifications 203 and 703 are met.

The Construction Documents shall include the following notes and information:

1. H-piles shall be driven to at least the minimum required tip penetration elevations shown in the table below and to the required penetration resistance as determined by wave equation analysis, dynamic load testing, restrikes, and signal matching analysis. For estimating purposes, it is anticipated that the piles will penetrate approximately 10 feet into the glacial till, however, the till material is variable and the actual penetration may exceed 10 feet at some locations. The estimated typical tip penetrations do not include the allowance for an additional 10 feet of pile required for those piles that undergo dynamic testing and restrike testing.

Structure	Minimum Required Tip Penetration Elevation (NAVD 88)	Estimated Typical Tip Penetration Elevation (NAVD 88)
Abutment No. 1	53 feet	33 feet
Abutment No. 2	48 feet	28 feet

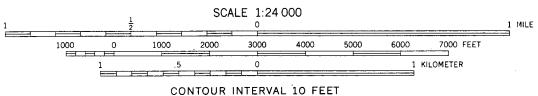

Table 7-4 – Estimated Pile Tip Elevations


2. The Contractor shall perform one (1) dynamic load test and one (1) restrike load test after 24 hours at each abutment to confirm the normal resistance of the pile. The required nominal resistance of the pile is the maximum factored axial load divided by a resistance factor of 0.52 per LRFD Specifications. Each dynamic load test and restrike will be performed on the first production pile driven at each abutment in accordance with Standard Specification 501.

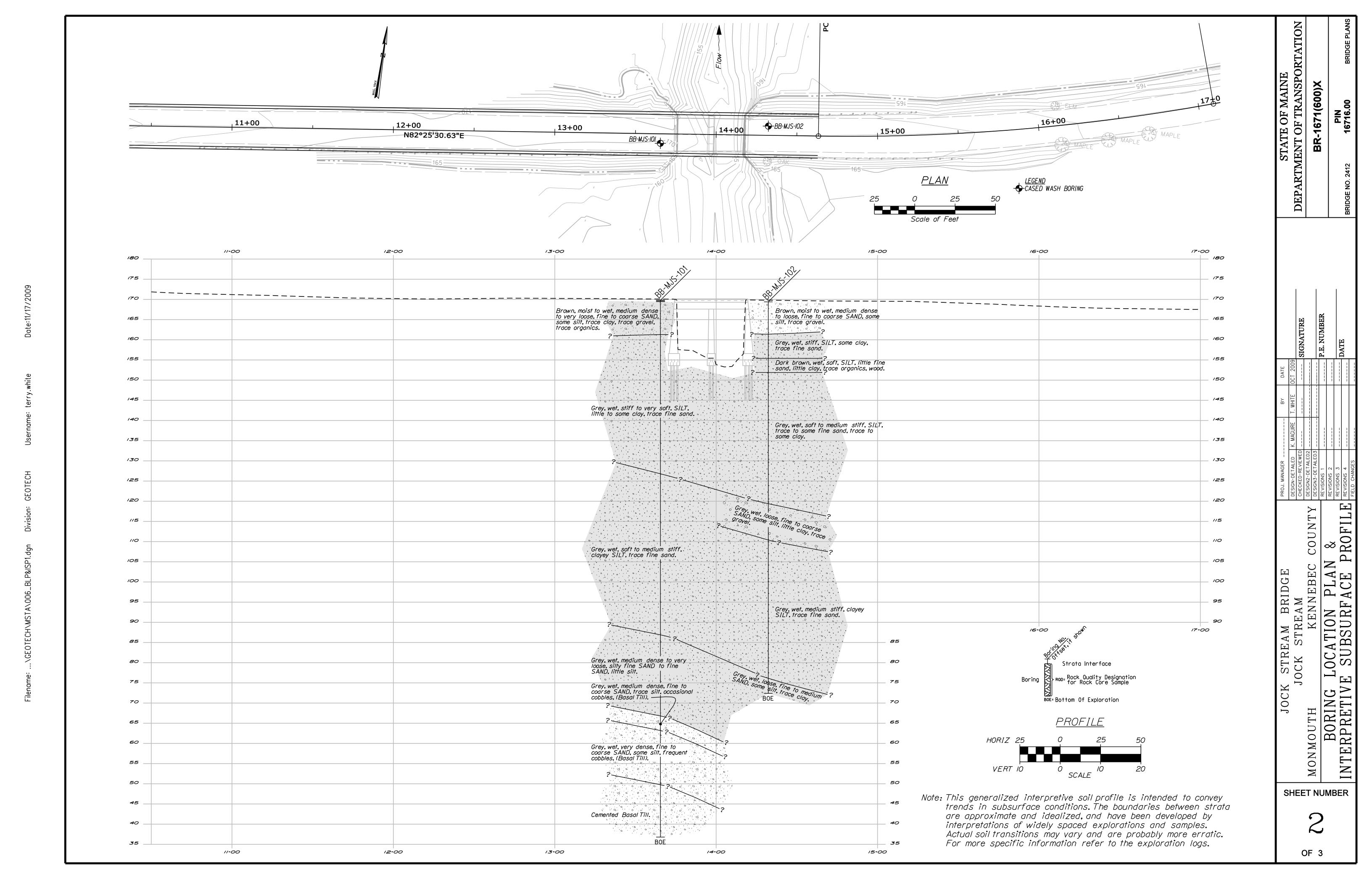
8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Bridge Program for specific application to the proposed replacement of Jock Stream Bridge in Monmouth, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use is implied. In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.

We also recommend that we be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design.



PURGATORY QUADRANGLE


MAINE

7.5 MINUTE SERIES (TOPOGRAPHIC)

NW/4 GARDINER 15' QUADRANGLE

NATIONAL GEODETIC VERTICAL DATUM OF 1929

MONITOR DESCRIPTION AND AND AND AND AND AND AND AND AND AN	Driller: MaineDOT Elevation (ft.) 169.8 Auger ID/OD: 5" Solid Stem Operator: E. Giguere, C. Giles Datum: NAVD 88 Sampler: Standard Split Spoon Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"	Driller: MaineDOT Elevation (ft.) 169.8 Auger ID/OD: 5" Solid Stem Operator: E. Giguere, C. Giles Datum: NAVD 88 Sampler: Standard Split Spoon Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"	Driller: MaineDOT Elevation (ft.) 169.4 Auger ID/OD: 5" Solid Stem Operator: E. Giguere. C. Giles Datum: NAVD 88 Sampler: Standard Split Spoon Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"	Driller: MaineDOT Elevation (ft.) 169.4 Auger ID/OD: 5" Solid Stem Operator: E. Giguere. C. Giles Datum: NAVD 88 Sampler: Standard Split Spoon Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"	XTA'
THE REPORT OF THE PROPERTY OF	Boring Location: 13+65.5, 5.9 Rt. Casing ID/OD: HW Water Level*: 9.0′ bgs. Hammer Efficiency Factor: 0.84 Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □	Boring Location: 13+65.5, 5.9 Rt. Casing ID/OD: HW Water Level*: 9.0′ bgs. Hammer Efficiency Factor: 0.84 Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □	Boring Location: 14+32.3.5.8 Lt. Casing ID/OD: HW Water Level*: 5.5′ bgs. Hammer Efficiency Factor: 0.84 Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □	Boring Location: 14+32.3, 5.8 Lt. Casing ID/OD: HW Water Level*: 5.5' bgs.	
THE TOWARD STATE OF THE TO	Definitions: R = Rock Core Sample S_u = Insitu Field Vane Shear Strength (psf) $S_{u \mid lab}$ = Lob Vane Shear Strength (psf) D = Split Spoon Sample D = SSA = Solid Stem Auger D = Pocket Torvane Shear Strength (psf) D = Unsuccessful Split Spoon Sample attempt D = Normalized Compressive Strength (ksf) D = Unsuccessful Thin Wall Tube Sample D = RC = Roller Cone D = Normalized RC = Roller Cone D = Roller Cone D = Normalized RC = Roller Cone D =	Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lob Vane Shear Strength (psf) U = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger Q = Unconfined Compressive Strength (ksf) U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample attempt WDH = weight of 140lb. hammer V = Insitu Vane Shear Test. PP = Pocket PenetrometerWDR/C = weight of one person MG = SPI Nuncorrected = Raw field SPI Nvalue PL = Plastic Limit Hommer Efficiency Factor = Annual Calibration Value Pl = Plastic Limit Hommer Efficiency Factor = Annual Calibration Value Pl = Plastic Limit NG = SPI Nuncorrected corrected for hammer efficiency G = Corion Size Analysis MG = (Hammer Efficiency Factor/60%)**MN-uncorrected C = Consolidation Test	Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf) D = Split Spoon Sample MD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample attempt WDH = weight of 1401b. hammer V = Insitu Field Vane Shear Strength (psf) WU = Unsuccessful Thin Wall Tube Sample attempt WDH = weight of 1401b. hammer V = Insitu Field Vane Shear Strength (psf) WDH = weight of 1401b. hammer WDH = Weight of rods or casing NG = SPT N-uncorrected and reficiency G = Grain Size Analysis WV = Unsitu Vane Shear Test attempt WDHP = Weight of one person NGO = SPT N-uncorrected or rected for hammer efficiency G = Grain Size Analysis	Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Sullabl = Lab Vane Shear Strength (psf) Sullabl = Lab Vane Shear Strength (psf) Sullabl = Lab Vane Shear Strength (psf) ND = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger Qb = Unconfriende Compressive Strength (ksf) U = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic Limit MU = Unsuccessful Thin Wall Tube Sample attempt WDH = weight of 1401b. hommer Hammer Efficiency Factor = Annual Calibration Value Pl = Plasticity Index NS = SPT N-uncorrected orrected for hommer efficiency C = Coin Size Analysis MV = Unsuccessful Insitu Vane Shear Test attempt WDH = Weight of one person NSD = (Hammer Efficiency Factor/60%)**N-uncorrected C = Consolidation Test	14 41 2
A COLUMN AND AND AND AND AND AND AND AND AND AN	Company Testing Results/ AASHTO and Remarks	Completed to the control of the cont	Laboratory Table 1	Consider the control of the control	TE OF T C-1671
AND STATE OF THE PROPERTY OF T	10 24/20 1:00 - 4/7/5/5 12 17 iiiii brown; morst, medium dense, time to course sand, some diazzen	77.50 Fisial Sampler 54 Grey, wet, medium stiff, Clayey SILT, trace fine sand. A-6. CL WC=35.6% LL=35 PL=21 Pl=14	1D 24/18 3.00 5/5/5/5 10 14	30 24/24 77:00 WUR/WUR 42 A-6. CL WC=31.6% LL=29 PL=19 PI=10 Y29:0/3.0 ft-lbs Y20: 31.0/6.0 ft-lbs	STA 'MEN'
G I TO THE TO TH	2D 24/18 7.00 1/1/1/50 2 3 trace clay, trace gravel, trace organics. A-4, SC-SM WC=19.9%	6#212302 A-6. CL WC=28.9% LL=31 MV 81.00 - WOR/WOR/WOR 42 81.00 - Would Not Push 42 6rey. wet. soft. Clayey SILT with 1/2" fine sand layers. Failed 65x130 mm vane attempt.	20 24/6 7.00 3/3/1/2 4 6 trace gravel.	18.43 V21 24/24 80.00 - 80.43 WGR/WGR/WGR/WGR 56 V22 82.00 81.00 - 82.4/110 psf 81.00 -	EPART
TO TO NAME AND THE PROPERTY OF	10 HD 24/0 10.00 - 2/2/2/3 A 6 23 Failed sample attempt, similar to 3D, medium stiff, off	14D 24/17 84.00 - 8/8/11/16 19 27 40 G-2/17 84.00 - 8/8/11/16 19 27 84.00 - 8/8/11/17 84.00 - 8/8/11/16 19 27 84.00 - 8/8/11/17 84.00 -	Grey, wet, stiff, SILT, some clay, trace fine sand. G#212308	85.90 47 46 85.90 B3.50	
TOTAL SECTION OF THE PROPERTY	29 25 26 Cray, wat, stiff, SUT, little clay, trace fine and		39 36 35 35	87.00 LL=36 PL=21 Pl=15 St.43 St.43	
AND MEN AND AND AND AND AND AND AND AND AND AN	3D 24/21 14:00 3/4/4/4 8 11 38 A-4. CL-ML WC=24.0% Non-plastic	90 150 24/15 91.00 2/4/4/5 8 11 27 36 36 36 36 36 37 36 37 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	4D 24/7 15.00 - WDH/WDH/2/5 2 3 39 clay, trace organics, wood.	MV 24/24 92.00 WOR/WOR/WOR/WOR Grey, wet, medium stiff, SlLT, some clay, trace fine sand in 1/2-2" layers. A-6, CL WC=26.1% LL=30 PL=19	
AND AND COLUMN AND AND AND AND AND AND AND AND AND AN	31 4D 24/17 19.00 - 1/1/WDH/WDH 1 1 29 20 - 21.00 1/1/WDH/WDH 1 1 29 Sand. Grey, wet, very soft, SILT, little clay, trace fine sand. G#212267 A-4, CL-ML WC=26.0%	113 16D 24/14 94.00 - 1/1/1/2 2 3 39 Grey, wet, very loose, fine SAND, little silt. G#212304 A-2-4, SM	36 5D 24/24 20.00 - 4/1/1/1 2 3 51 Grey, wet, soft, SILT, little fine sand, little clay. A-4, CL-ML	16D 24/20 37.00 WOR/WOR/3/8 3 4	URE
The state of the s	16 15 15 5D 24/20 24.00 - wOH/WOH/WOH 33 Grey, wet, soft, SILT, some clay, trace fine sand. G#212268 A-4, CL-ML	146 178 170 24/14 99.00 - 3/3/2/2 5 7 50 Grey, wet, loose, fine SAND, some silt. G#212305 A-2-4, SM	38 40	Bottom of Exploration at 97.00 feet below ground surface. NO REFUSAL	₽
Total Tota	V1	37 38 69	6D 24/24 25.00 - WOR/WOR/WOR/WOR 59 59 6Fey. wet. soft. SILT. some fine sand. little clay. G#212310 A-4. CL-ML		DATE 0CT 20C
Column C	6D 24/24 29.00 - 31.00 WOR/WOR/WOR 36 V3 31.00 - 31.43 Su=247/55 psf 28 V3 Su=247/55 psf 28 V4.14 0/3.5 fst-lbr	R1 92.4/24 106.60 - 155 NOI-2 R1: COBBLES and GRAVEL.	7D 24/24 30.00 - WOR/WOR/WOR/WOR 53 48 48 65x130 mm vane raw torque readings:	* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made. Boring No.: BB-MJS-102	RE T. WHITE
A	V4 32.00 32.43 Su=384/69 psf 28 28 28	190 190 110	V1		WED
WELL AND A STATE OF THE PROPERTY OF THE PROPER	V5 36.43 Su=494/41 psf 35 V6 37.00 - 37.43 Su=384/27 psf 36 33 33 V5: 18.0/1.5 ft-lbs V6: 14.0/1.0 ft-lbs	opery Hole	37.00 47 V3 37.00 - 37.43 Su=659/110 psf 43 MV 45 LL=25 PL=18 Pl=7 V3: 24.0/4.0 ft-lbs Failed 65x130 mm vane attempt.		SIGN-DETAILEI ECKED-REVIEV SIGNZ-DETAILI SIGNZ-DETAILI SIGN3-DETAILI VISIONS 1 VISIONS 2 VISIONS 3
WEST AUMBER SHEET NUMBER SHEET NUMBER	MU/8D 24/4 40.50 - 42.50 WOR/WOR/WOR/WOR 26 Failed Piston Sampler attempt. Grey, wet, soft, SILT, some clay, trace fine sand. V7 42.50 - 42.93 Su=384/55 psf 37 126.80 V7; 14.0/2.0 ft-lbs	-115	V5 42.00 Su=467/110 psf V5: 17.0/4.0 ft-lbs WC=24.7% V6: 17.0/2.0 ft-lbs UL=22 PL=17		T
Column C	V8 43.50 - 43.93 Su=494/41 psf 38 V8: 18.0/1.5 ft-lbs V8: 18.0/1.5 ft-lbs V8: 18.0/1.5 ft-lbs Failed 65x130 mm vane attempt. G#212271 A-4. CL-ML A-5.20 WDR/WDR/WDR/WDR/WDR/WDR/WDR/WDR/WDR/WDR/	-120	10D 24/24 - 31:00 WUR/WUR/WUR/WUR Sand. WC=28.8% LL=22		COUN
No.	MU 24/0 49.00 - 51.00 WOR/WOR/WOR 30 Failed Piston Sampler attempt. let tube set 45 minutes. G#212272 A-4, CL-ML fine sand. G#212272 A-4, CL-ML WC=27.8%		V7		D M
	S1.00 30 LL=23 PL=17 Pl=6		11D		BRI BRI SNN SOGS
	V12 56.00 - 56.43 Su=494/55 psf 32 V12: 18.0/2.0 ft-lbs V13: 17.0/1.5 ft-lbs V1	R2:Core Times (mintsec) 129.0-130.0' (1:42) 130.0-131.0' (1:10) 131.0-132.0' (0:30) 132.0-133.0' (0:30)	1U 24/24 55.00 - S7.00 WOR/WOR 40 cause. (The shellby tube had two large dents preventing extraction of sample for testing) Damaged 65x130 mm vane raw torque readings:		EAM STR K
	57.43 24 V14 24/24 59.00 - Su=494/82 psf 29 V15 61.00 Su=604/55 psf 60.00 - Su=604/55 psf 29 S7.43 24 65x130 mm vane raw torque readings: V14: 18.0/3.0 ft-lbs Similar to above, soft to medium stiff. V15: 22.0/2.0 ft-lbs	36.80 Bottom of Exploration at 133.00 feet below ground surface. ND REFUSAL	V12		ST Ck
	23 21 21 21 21 21 21 22 24/24 64.00 - Piston Sampler 30 21 20 24/24 64.00 - Piston Sampler 30 21 64.00 - Piston Sampler 30 21 64.00 - Piston Sampler 30 21 64.00 - Piston Sampler 30		V14 61.00 - SU=217/35 PST 44 PL=18 PL=8		JOCK 'H
18 24/24 69:00 59:00	V16 66.00 - 66.43 Su=343/27 psf 28 V16: 12.5/1.0 ft-lbs V17: 22.5/3.0 ft-lbs		2U 24/24 65.00 - WOR/WOR 42 V15 67.00 - Su=687/82 psf 30 V16 68.00 - Su=742/110 psf 30 V17 68.00 - Su=742/110 psf 30 V18 68.00 - Su=742/110 psf 30 V19 68.00 - Su=742/110 psf 30		MOUT
SHEET NUMBER	70.00 - PL=16 P1=8	145	70		MOM
75.	21 23		29		SHEET NUMBER
	Remarks:	Remarks:			3
Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present of the time measurements were made. **Boring No.: BB-MJS-101 **Boring No.: BB-MJS-101 **Totification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines represent approximate boundaries between soil typest transitions may be gradual. **Stratification lines			* Water level rendings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other		OF 3

Maine Department of Transportation

Soil/Rock Exploration Loa
US CUSTOMARY UNITS

Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth, Maine

Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth, Maine

PIN: 16716.00

Soil/Rock Exploration Log
US CUSTOMARY UNITS

Driller: MaineDOT

16716.00

Auger ID/OD: 5" Solid Stem

Maine Department of Transportation
Soil/Rock Exploration Log
US CUSTOMARY UNITS

Maine Department of Transportation Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth. Maine

Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth. Maine

PIN: 16716.00

16716.00

Auger ID/OD: 5" Solid Stem

Soil/Rock Exploration Log
US CUSTOMARY UNITS

MaineDOT

16716.00

Auger ID/OD: 5" Solid Stem

Maine Department of Transportation

Soil/Rock Exploration Loa
US CUSTOMARY UNITS

Maine Department of Transportation Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth. Maine

Project: Jock Stream Bridge #2412 carrying Cobbosseecontee Road over Jock Location: Monmouth. Maine

PIN: 16716.00

Soil/Rock Exploration Log
US CUSTOMARY UNITS

Driller: MaineDOT

16716.00

Auger ID/OD: 5" Solid Stem

Soil/Rock Exploration Log
US CUSTOMARY UNITS

Driller: MaineDOT

Appendix A

Boring Logs

	LINUELE	2 2 2 1		TION OVOTEN			DESCRIBING		
			GROUP	TION SYSTEM		DENSITY/0	CONSISTENC	Υ	
COARSE- GRAINED	JOR DIVISION GRAVELS	CLEAN GRAVELS	SYMBOLS GW	TYPICAL NAMES Well-graded gravels, gravelsand mixtures, little or no fines	sieve): Includes (clayey or gravelly	soils (more than half of 1) clean gravels; (2) si sands. Consistency i	ilty or clayey gravels	s; and (3) silty,	
SOILS	(more than half of coarse fraction is larger than No. 4 sieve size)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines	t	Modified B otive Term race	C	on of Total % - 10%	
is ze)	re than half on is larger sieve siz	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures.	little some adjective (e.g. sandy, clayey)		11% - 20% 21% - 35% 36% - 50%		
of material 00 sieve si	(mol	(Appreciable amount of fines)	GC Clayey gravels, gravel-sand-clay mixtures.		<u>Density of</u> <u>Cohesionless Soils</u> Very loose			tetration Resistance (blows per foot) 0 - 4 5 - 10	
(more than half of material is arger than No. 200 sieve size)	SANDS	CLEAN SANDS	SW	Well-graded sands, gravelly sands, little or no fines	Mediu De	oose m Dense ense Dense		11 - 30 31 - 50 > 50	
(mor	of coars of the co		SP	Poorly-graded sands, gravelly sand, little or no fines.		ls (more than half of n			
	(more than half of coarse fraction is smaller than No. 4 sieve size)	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures		inorganic and orgar (3) clayey silts. Cons ted.			
	(more fraction	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value blows per foot	Undrained Shear Strength (psf)	<u>Field</u> <u>Guidelines</u>	
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity.	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily Penetrates Thumb easily penetrates Thumb penetrates with moderate effort	
FINE- GRAINED SOILS	(liquid limit l	ess than 50)	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnai Indented by thumbnail with difficulty	
is size)			OL	Organic silts and organic silty clays of low plasticity.	Rock Quality De		of intact pieces of ength of core adv NQ rock core (1.	ance	
(more than half of material is naller than No. 200 sieve size)	SILTS AN	ID CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.	Correlation of RQD to Rock Mass Quality Rock Mass Quality Very Poor <25%			Quality RQD	
re than hal er than No.			СН	Inorganic clays of high plasticity, fat clays.	F	y Poor Poor Fair Good	51	<25% 6% - 50% 6% - 75% 6% - 90%	
(mo smallt	(liquid limit gr	eater than 50)	ОН	Organic clays of medium to high plasticity, organic silts	n to Excellent 91% - 100% illts Desired Rock Observations: (in this order) Color (Munsell color chart)				
		ORGANIC IILS	Pt	Peat and other highly organic soils.	Lithology (igned Hardness (very	itic, fine-grained, et ous, sedimentary, m hard, hard, mod. h esh, very slight, sligh	netamorphic, etc.) ard, etc.)		
	oil Observat		is order)		1	severe, etc.)			
Moisture (d Density/Con Name (sand Gradation (Plasticity (n	d, silty sand well-graded on-plastic, s	oist, wet, sa om above ri , clay, etc., i , poorly-grad slightly plasti	ght hand si ncluding po ded, uniforn c, moderat	ortions - trace, little, etc.)	Geologic discontinuities/jointing: -dip (horiz - 0-5, low angle - 5-35, mod. dipping -				
Structure (la Bonding (w Cementatio Geologic O Unified Soil Groundwate	ell, moderat on (weak, mo rigin (till, ma Classificatio	ely, loosely, oderate, or s irine clay, al	etc., if app trong, if ap luvium, etc.	plicable, ASTM D 2488)					
Ke	y to Soil :	Geotech	nical Sec Descrip	tions and Terms	Sample Cont PIN Bridge Name Boring Numb Sample Numb Sample Depti	er ber	Requirements. Blow Counts Sample Reco Date Personnel Ini	very	

-	Main	e Den	artment	of Transporta	ation	,	Project:	Iock 9	tream l	Bridge #2412 carrying	Boring No.:	BB-M	JS-101
•		•	Soil/Rock Exp US CUSTOM	loration Log			Locatio	Cobbe	sseeco	ntee Road over Jock Stream	PIN:		16.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	169	8		Auger ID/OD:	5" Solid Stem	
	ator:		E. Giguere, C.	Giles	+	tum:	()		/D 88		Sampler:	Standard Split	Spoon
	ged By:		B. Wilder		Rig Type: CME 45C						Hammer Wt./Fall:	140#/30"	
	Start/Fi	inish:	6/16,19,24/09			lling M				h Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	13+65.5, 5.9 F	Rt.	\rightarrow	sing ID		HW			Water Level*:	9.0' bgs.	
Ham	mer Effi	iciency F	actor: 0.84		Hai	mmer 1	Гуре:	Autom	ıtic ⊠	Hydraulic □	Rope & Cathead □		
MD = U = Th MU = V = In	olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spo be Sample sful Thin Wal Shear Test,	oon Sample attemp II Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rol woh = w netrometer	olid Stem ollow Ster ler Cone reight of ' weight o	Auger m Auger 140lb. ha	casing		$T_V = Po$ $q_p = Un$ N-uncor Hamme $N_{60} = S$	itu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value r Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ur	WC = LL = l PL = l on Value PI = F mer efficiency G = G	o) = Lab Vane Shear S water content, percen- i.quid Limit Plastic Limit Plasticity Index rrain Size Analysis onsolidation Test	trength (psf) t
		Τ _		Sample Information				ı —	1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class
0							SSA	169.45		Pavement		0.25	
	1D	24/20	1.00 - 3.00	4/7/5/5	12	17		-		Brown, moist, medium dense gravel.	e, fine to coarse SAND, s	——————————————————————————————————————	G#212264 A-2-4, SM WC=10.5%
5 -	2D	24/18	5.00 - 7.00	1/1/1/50	2	3		161.30		Brown, wet, very loose, fine gravel, trace organics.	to coarse SAND, some s	ilt, trace clay, trace	G#212265 A-4, SC-SM WC=19.9%
10 -										Failed sample attempt, simile	er to 3D, madium stiff of	f auger flight	
	MD	24/0	10.00 - 12.00	2/2/2/3	4	6	22			Tancu sample attempt, simila	ar to 3D, medium sum, or	r auger mgm.	
							29 25						
							26						
15 -	3D	24/21	14.00 - 16.00	3/4/4/4	8	11	38			Grey, wet, stiff, SILT, little of	clay, trace fine sand.		G#212266 A-4, CL-ML WC=24.0% Non-plastic
							36						
							31						
							31						
20	4D	24/17	19.00 - 21.00	1/1/WOH/WOH	1	1	29			Grey, wet, very soft, SILT, la	ittle clay, trace fine sand.		G#212267 A-4, CL-ML
20 -							22						WC=26.0% Non-plastic
							20						r
							16						
							15			0 0 0 0			Quara-
25	5D	24/20	24.00 - 26.00	WOH/WOH/WOH/ WOH			33			Grey, wet, soft, SILT, some	clay, trace fine sand.		G#212268 A-4, CL-ML

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 6

	Main	e Dep	artment	of Transporta	ation	ı	Project:	Jock S	tream	Bridge #2412 carrying	Boring No.:	BB-M	JS-101
		_	Soil/Rock Exp US CUSTOM/	loration Log			Location			ntee Road over Jock Stream , Maine	PIN:	1671	16.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	169	8		Auger ID/OD:	5" Solid Stem	
	ator:		E. Giguere, C.	Giles		tum:	() /		VD 88		Sampler:	Standard Split S	Spoon
	ged By:		B. Wilder		Rig	Type:	<u> </u>	CM	E 45C		Hammer Wt./Fall:	140#/30"	•
Date	Start/Fir	nish:	6/16,19,24/09		$\overline{}$		ethod:	hod: Cased Wash Boring Core Barrel: NQ-2"					
Bori	ng Locat	ion:	13+65.5, 5.9 R	Rt.	Cas	sing ID	/OD:	HW			Water Level*:	9.0' bgs.	
		ciency F	actor: 0.84			mmer ⁻	Туре:	Autom			Rope & Cathead □		
MD = U = TI MU = V = In	olit Spoon S Unsuccessf nin Wall Tub Unsuccessf situ Vane Sl	ul Split Spo be Sample ul Thin Wa hear Test,	oon Sample attemp Il Tube Sample att PP = Pocket Per ine Shear Test atte	RC = Rol empt $WOH = w$ netrometer $WOR/C =$	olid Stem ollow Ster ler Cone veight of 1 weight o	Auger m Auger 140lb. ha of rods or	casing		$T_V = Pc$ $q_p = Ur$ N -unco $Hamme$ $N_{60} = S$	situ Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value r Efficiency Factor = Annual Calibratic PST N-uncorrected corrected for hamm Hammer Efficiency Factor/60%)*N-un	WC = wa LL = Liqu PL = Plas on Value PI = Plas ner efficiency G = Grair		trength (psf)
				Sample Information		ı							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Des	scription and Remarks		Testing Results/ AASHTO and Unified Class
25							26			Roller Coned ahead to 27.0' b	ogs.		WC=25.4% Non-plastic
	V1		26.00 - 26.37	Su=312/89 psf			25			55x110 mm vane raw torque V1: 7.0/2.0 ft-lbs	readings:		
	V2		27.00 - 27.37	Su=312/45 psf			22			V2: 7.0/1.0 ft-lbs			
							19						
20	6D	24/24	29.00 - 31.00	WOR/WOR/WOR/ WOR			36			Grey, wet, soft, SILT, some of	clay, trace fine sand.		G#212269 A-4, CL-ML
30 -				WOK			33						WC=26.2% LL=23 PL=18
	V3		31.00 - 31.43	Su=247/55 psf			28			65x130 mm vane raw torque V3: 9.0/2.0 ft-lbs	readings:		PI=18 PI=5
	V4		32.00 - 32.43	Su=384/69 psf			28			V4: 14.0/2.5 ft-lbs			
							28						
35 -	MU/7D	24/12	34.00 - 36.00	WOR/WOR/WOR/ WOR			38			Failed Piston Sampler attemp Grey, wet, soft, SILT, some of			G#212270 A-4, CL-ML WC=26.8%
							32						Non-plastic
	V5		36.00 - 36.43	Su=494/41 psf			35			65x130 mm vane raw torque V5: 18.0/1.5 ft-lbs V6: 14.0/1.0 ft-lbs	readings:		
	V6		37.00 - 37.43	Su=384/27 psf			36			Vo: 14.0/1.0 It-los			
							33 aHP			aHP=Hydraulic Push			
40 -			40.70	WOR/WOR/WOR/			 						
	MU/8D	24/4	40.50 - 42.50	WOR			26			Failed Piston Sampler attemp Grey, wet, soft, SILT, some of			
							50			Grey, wet, soft, SiL1, some e	riay, trace fine saild.		
	V7		42.50 - 42.93	Su=384/55 psf			37	126.80		65x130 mm vane raw torque	readings:		
	V8		43.50 - 43.93	Su=494/41 psf			38			V8: 18.0/1.5 ft-lbs		43.00-	
							38			V 6. 18.0/1.3 It-lbs			
45 -	MV 9D	24/20	45.00 - 45.20 45.00 - 47.00	Would Not Push WOR/WOR/WOR/			38			Failed 65x130 mm vane atter Grey, wet, soft, Clayey SILT	npt. with 1/2" fine sand layer.		G#212271 A-4, CL-ML
			17.00	WOR			31						WC=32.4%
							28						
							30			Failed Distan Samular ar	at lot tube get 45		G#212272
50	MU	24/0	49.00 - 51.00	WOR/WOR/WOR/ WOR			30			Failed Piston Sampler attemp Grey, wet, soft to medium sti		sand.	A-4, CL-ML

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilisation into represent approximate seamanes services to it types, transmitte may se gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 6

	Main	e Dep	artment	of Transporta	ation	n	Project:			ridge #2412 carrying	Boring No.:	BB-M	MJS-101	
			Soil/Rock Expl US CUSTOMA				Locatio			tee Road over Jock Stream Maine	PIN:	167	16.00	
Drille	er:		MaineDOT		Ele	vation	(ft.)	169.	8		Auger ID/OD:	5" Solid Stem		
Ope	ator:		E. Giguere, C.	Giles	Dat	tum:		NAV	/D 88		Sampler:	Standard Split	Spoon	
Log	ged By:		B. Wilder		Rig	ј Туре:		CMI	E 45C		Hammer Wt./Fall:	140#/30"		
Date	Start/Fi	inish:	6/16,19,24/09		Dri	lling M	ethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"		
Bori	ng Loca	tion:	13+65.5, 5.9 R	t.	Cas	sing ID	/OD:	HW			Water Level*:	9.0' bgs.		
		iciency F	actor: 0.84			mmer 1	Гуре:	Automa		-	Rope & Cathead			
MD = U = TI MU = V = In	olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spo lbe Sample sful Thin Wa Shear Test,	oon Sample attemp Il Tube Sample atte PP = Pocket Pen ine Shear Test atte	RC = Roll empt	olid Stem ollow Ster er Cone reight of 1 weight o	Auger m Auger 140lb. hai of rods or	casing		$T_V = Poole q_p = Uncorrect N-uncorrect Hammer N_{60} = SF$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati T7 N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur		b) = Lab Vane Shear S water content, percen Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test		
		I		Sample Information				i	4				Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class	
50	10D	24/24	49.00 - 51.00				30						WC=27.8% LL=23	
	V10		51.00 - 51.43	Su=220/55 psf			27			65x130 mm vane raw torque V10: 8.0/2.0 ft-lbs	readings:		PL=17 PI=6	
	V11		52.00 - 52.43	Su=522/69 psf			26			V11: 19.0/2.5 ft-lbs				
							25							
	1U	24/14	54.00 - 56.00	Piston Sampler			32			Grey, wet, soft, Clayey SILT	r, trace fine sand. Let tub	e set 60 minutes.	G,C#212273 A-4, CL	
55 -							29			45 v.120 mm vono rovy torovo	, mondim on		WC=33.4% LL=25 PL=18	
	V12		56.00 - 56.43	Su=494/55 psf			32			65x130 mm vane raw torque readings: V12: 18.0/2.0 ft-lbs			PI=7	
	V13		57.00 - 57.43	Su=467/41 psf			24			V13: 17.0/1.5 ft-lbs				
							24							
60 -	V14 11D	24/24	59.00 - 59.43 59.00 - 61.00	Su=494/82 psf WOR/WOR/WOR/			29			65x130 mm vane raw torque V14: 18.0/3.0 ft-lbs Similar to above, soft to med	· ·			
	V15		60.00 - 60.43	WOR Su=604/55 psf			29			V15: 22.0/2.0 ft-lbs				
							23							
							21							
							21							
	2U	24/24	64.00 - 66.00	Piston Sampler			30			Grey, wet, soft to medium st set 20 minutes.	iff, Clayey SILT, trace fi	ne sand. Let tube	G,C#212274 A-4, CL	
65 -							28						WC=30.7% LL=26	
	V16		66.00 - 66.43	Su=343/27 psf			28			65x130 mm vane raw torque V16: 12.5/1.0 ft-lbs	readings:		PL=18 PI=8	
	V17		67.00 - 67.43	Su=618/82 psf			20			V17: 22.5/3.0 ft-lbs				
							22							
70 -	V18 12D	24/24	69.00 - 69.43 69.00 - 71.00	Su=796/27 psf WOR/WOR/WOR/			31			65x130 mm vane raw torque V18: 29.0/1.0 ft-lbs Grey, wet, medium stiff, Cla	, and the second	ı	G#212275 A-4, CL WC=26.3%	
. •	V19		70.00 - 70.43	WOR Su=687/96 psf			28			V19: 25.0/3.5 ft-lbs	., -, s.z., trace time same		LL=24 PL=16	
							26						PI=8	
							21							
							23							

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilisation into represent approximate seamanes services to it types, transmitte may se gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 6

]	Main	e Dep	artment	tion		Project:	Jock	Stream E	Bridge #2412 carrying	Boring No.:	BB-M	MJS-101	
		_	Soil/Rock Exp US CUSTOM	loration Log			Location			tee Road over Jock Stream Maine	PIN:	167	16.00
Drille	er:		MaineDOT		Eleva	ation	(ft.)	169	.8		Auger ID/OD:	5" Solid Stem	
Oper			E. Giguere, C.	Giles	Datur		()		VD 88		Sampler:	Standard Split	Spoon
	ed By:		B. Wilder		Rig T	ype:		CM	E 45C		Hammer Wt./Fall:	140#/30"	•
	Start/Fi	inish:	6/16,19,24/09		Drillin	ng M	ethod:	Cas	ed Wasł	Boring	Core Barrel:	NQ-2"	
Borir	ng Loca	tion:	13+65.5, 5.9 R	Rt.	Casir	ng ID	/OD:	HW	7		Water Level*:	9.0' bgs.	
Ham	mer Effi	iciency F	actor: 0.84		Hamr	mer 1	Гуре:	Autom	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = I U = Th MU = I V = Ins	lit Spoon S Jnsuccess in Wall Tu Jnsuccess situ Vane S	sful Split Spo lbe Sample sful Thin Wal Shear Test,	oon Sample attemp II Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rolle empt WOH = we netrometer WOR/C =	id Stem Au low Stem A er Cone eight of 140 weight of ro	iger Auger Olb. har ods or	casing		$T_V = Poole q_p = Une N-uncore Hammer N_{60} = S$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) sonfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-un	WC = wa LL = Liqu PL = Plat ion Value Pl = Plat mer efficiency G = Grai	E Lab Vane Shear S ater content, percen- uid Limit stic Limit sticity Index n Size Analysis solidation Test	trength (psf)
		<u>.</u>		p				1				Laboratory Testing	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Results/ AASHTO and Unified Class
75	3U	24/20	75.50 - 77.50	Piston Sampler			54			Grey, wet, medium stiff, Cla	yey SILT, trace fine sand.		G,C#212301
							54						A-6, CL WC=35.6%
	V20		77.50 - 77.93	Su=536/41 psf			50			65x130 mm vane raw torque	readings:		LL=35 PL=21
	MV			Would Not Push			43			V20: 19.5/1.5 ft-lbs Failed 65x130 mm vane atte	-		PI=14
	13D	24/24	79.00 - 81.00	WOR/WOR/WOR/			54			Grey, wet, soft, Clayey SILT			G#212302 A-6, CL
- 80 -				WOR			46						WC=28.9% LL=31
	MV		81.00 - 81.30	Would Not Push			42			Failed 65x130 mm vane atte	mpt.		PL=19 PI=12
							58	86.90					
							66			Grey, wet, medium dense, Silty fine SAND.		82.90	
	14D	24/17	84.00 - 86.00	8/8/11/16	19	27	40					G#212303 A-4, SM	
- 85 -							41						WC=23.0%
							47						
							64						
							73						
00	15D	24/15	89.00 - 91.00	2/4/4/5	8	11	27			Similar to above.			
- 90 -							36						
							69						
							97						
							113						
0.5	16D	24/14	94.00 - 96.00	1/1/1/2	2	3	39			Grey, wet, very loose, fine S	AND, little silt.		G#212304 A-2-4, SM
- 95 -							45						WC=22.8%
							111						
							146						
							178			_			
100	17D	24/14	99.00 - 101.00	3/3/2/2	5	7	50			Grey, wet, loose, fine SAND	o, some silt.		G#212305 A-2-4, SM
Rem	arks:												

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 6

1	Main	e Den	artment	of Transporta	ation	1	Proje	ct:	lock S	oring No.:	BB-M	JS-101		
-		_	Soil/Rock Exp	-			-	(Cobbo	sseecon	ee Road over Jock Stream	_		
			US CUSTOM	ARY UNITS			Locat	uon:	Mon	mouth, l	Pi	IN:	167	16.00
Drille	r:		MaineDOT		Ele	vation	(ft.)		169.	3	Au	uger ID/OD:	5" Solid Stem	
Oper	ator:		E. Giguere, C.	. Giles	Dat	tum:			NAV	'D 88	Sa	ampler:	Standard Split	Spoon
Logg	ed By:		B. Wilder		Rig	ј Туре	:		CMI	E 45C	Ha	ammer Wt./Fall:	140#/30"	
Date	Start/Fi	inish:	6/16,19,24/09		Dri	lling N	lethod	l:	Case	d Wash	Boring Co	ore Barrel:	NQ-2"	
Borir	g Loca	tion:	13+65.5, 5.9 I	Rt.	Ca	sing IE	O/OD:		HW		W	ater Level*:	9.0' bgs.	
		iciency F	actor: 0.84			mmer	Type:	Α	utoma			e & Cathead □		
MD = l U = Th MU = l V = Ins	lit Spoon S Jnsuccess in Wall Tu Jnsuccess itu Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample attem Il Tube Sample att PP = Pocket Per une Shear Test atte	RC = Rol tempt	olid Stem ollow Ster ller Cone veight of ' = weight o	Auger m Auger 140lb. ha of rods or	casing			T _V = Pocl q _p = Uncorre N-uncorre Hammer N ₆₀ = SP	u Field Vane Shear Strength (psf) tet Torvane Shear Strength (psf) forfined Compressive Strength (ksf) cted = Raw field SPT N-value Efficiency Factor = Annual Calibration V T N-uncorrected corrected for hammer ammer Efficiency Factor/60%)*N-uncorre	WC = wa LL = Liqu PL = Pla: /alue PI = Plas efficiency G = Grain		trength (psf)
ł				Sample Information	-	Ι	1	$\overline{}$						Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Descri _l	ption and Remarks		Testing Results/ AASHTO and Unified Clas
100							37							WC=23.5%
							38							
							69	,						
							183	\dashv	66.80				— ——103.00	
105	18D	24/17	104.00 - 106.00	7/3/15/32	18	25	330	О			Grey, wet, medium dense, fine to occasional cobbles.	o coarse SAND, little gr	avel, trace silt,	G#212306 A-3, SP-SM
103							88							WC=17.4%
	R1	92.4/24	106.60 - 114.30				155 NQ- 215		63.20		R1: COBBLES and GRAVEL. R1:Core Times (min:sec) 106.6-107.6' (2:45)		— — —106.60·	
							190	\dashv			107.6-108.6' (1:10) 108.6-109.6' (1:53) 109.6-110.6' (2:40)			
- 110 -							477	\dashv		. ;	110.6-111.6' (3:20) 111.6-112.6' (2:49)			
							430	0		•	112.6-113.6' (1:20) 113.6-114.3' (2:00)			
							800	0						
							OPE HOL RC	E-		**	Roller Coned ahead to 129.0' bgs	s		
- 115 -							RC				Roller Colled alledd to 125.0 bg.	3.		

										.				
120 -									49.80		Cemented TILL at 120.0' bgs.		— ——120.00	
										99 3 .0				
										8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
										200				
125										w8 - 6				
Rem	arks:													

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 5 of 6

I	Main	tion	ì	Proj	ect:			1456 112 6411 71115	IJS-101			
		_	Soil/Rock Exp				Loca	ation		sseecon mouth,	ee Road over Jock Stream Maine PIN: 1671	6.00
Drille	r·		MaineDOT		Fle	vation	(ft)		169.	8	Auger ID/OD: 5" Solid Stem	
Oper			E. Giguere, C	Giles	-	um:	(11.7)			VD 88	Sampler: Standard Split S	noon
	ed By:		B. Wilder	. Gires	_	Туре				E 45C	Hammer Wt./Fall: 140#/30"	poon
	Start/Fi	inieh:	6/16,19,24/09	<u> </u>	┿			٠d٠		ed Wash		
						-						
	g Loca		13+65.5, 5.9 1	Kt.	+				HW		<u> </u>	
Definiti		iciency i	actor: 0.84	R = Rock		mmer '	ype	:	Autom		Hydraulic ☐ Rope & Cathead ☐ a Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Str	renath (nsf)
D = Sp $MD = U$ $U = Th$ $MU = U$ $V = Ins$	lit Spoon S Insuccess In Wall Tu Insuccess itu Vane S	sful Split Sp lbe Sample sful Thin Wa Shear Test,	ooon Sample attem all Tube Sample at PP = Pocket Pe ane Shear Test att	SSA = So	lid Stem Illow Ster er Cone eight of 1 weight o	Auger m Auger I 40lb. ha of rods or	casing	9		$T_V = Poc$ $q_p = Unc$ N -uncorr $Hammer$ $N_{60} = SF$	et Torvane Shear Strength (psf) et Torvane Shear Strength (psf) infined Compressive Strength (ksf) toted = Raw field SPT N-value FL = Plastic Limit Fliciency Factor = Annual Calibration Value T N-uncorrected corrected for hammer efficiency immer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test	origin (por)
ŀ		1		Sample Information	1		1			4		Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Clas
125										:5: 3		
130 -	R2	48/6	129.00 - 133.00				NO	2-2	36.80		R2: Grey, very dense, COBBLES and Cemented TILL. Put sample in jar. R2:Core Times (min:sec) 129.0-130.0' (1:42) 130.0-131.0' (1:10) 131.0-132.0' (0:30) 132.0-133.0' (0:30) Bottom of Exploration at 133.00 feet below ground surface. NO REFUSAL	
135 -												
140												
145 +												
150 Rema	ırks:						1					
- CIIIC	NJ.											

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialinoalion into represent approximate bearingine between een types, transmitte may be gradien

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 6 of 6

ľ	Main	e Dep	artment	of Transporta	tion	1	Project:			Bridge #2412 carrying	Boring No.: BB-M		JS-102	
			Soil/Rock Expl US CUSTOM	oration Log			Location			ntee Road over Jock Stream Maine	PIN:	167	16.00	
Drille	r:		MaineDOT		Ele	vation	(ft.)	169.	4		Auger ID/OD:	5" Solid Stem		
Oper	ator:		E. Giguere, C.	Giles	Da	tum:		NAV	/D 88		Sampler:	Standard Split	Spoon	
	ed By:		B. Wilder		 	Туре			E 45C		Hammer Wt./Fall:	ammer Wt./Fall: 140#/30"		
	Start/Fi		7/1,14/09		_		lethod:		d Was	n Boring	Core Barrel:	NQ-2"		
	g Loca		14+32.3, 5.8 L	t.	_	sing IE mmer		HW	D	Hydraulic □	Water Level*:	5.5' bgs.		
Definiti D = Sp MD = U U = Th MU = U V = Ins	ons: lit Spoon S Jnsuccess in Wall Tu Jnsuccess itu Vane S	Sample Iful Split Spo be Sample Iful Thin Wal	on Sample attemp I Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Roll WOH = w etrometer WOR/C = w wO1P = w w wO1P = w w w wO1P = w w w	Core Sa lid Stem ollow Ste er Cone eight of weight o	imple Auger m Auger 140lb. ha of rods oi	mmer casing		S _u = Ins T _v = Po q _p = Un N-uncor Hamme N ₆₀ = S	WC LL = PL = ion Value	ab) = Lab Vane Shear S = water content, percen Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test			
⊃ Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks	3	Laboratory Testing Results/ AASHTO and Unified Class	
							SSA	168.95		Pavement		0.45		
	1D	24/18	1.00 - 3.00	5/5/5/5	10	14				Brown, moist, medium dens gravel.	e, fine to coarse SAND,	some silt, trace	G#212307 A-2-4, SM WC=12.1%	
· 5 -	2D	24/6	5.00 - 7.00	3/3/1/2	4	6				Brown, wet, loose, fine to co	parse SAND, some silt,	trace gravel.		
10 -	20	24/21	10.00 10.00	CIFIAIC	0	12	38	161.40		Grey, wet, stiff, SILT, some	clay, trace fine sand.	8.00	G#212308	
	3D	24/21	10.00 - 12.00	6/5/4/6	9	13	38 39 36						A-4, CL-ML WC=22.1%	
}							+	-						
15 -							35 28							
1.5	4D	24/7	15.00 - 17.00	WOH/WOH/2/5	2	3	39			Dark brown, wet, soft, SILT wood.	, little fine sand, little cla	ay, trace organics,		
							34							
							31							
							40							
ŀ							26	-						
20	5D	24/24	20.00 - 22.00	4/1/1/1	2	3	36 51			Grey, wet, soft, SILT, little f	ine sand, little clay.		G#212309 A-4, CL-ML	
İ							47						WC=22.4%	
							44							
							38							
25							40							
Rema	arks:													

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

oradinoation into represent approximate boardanes between our types, translation may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 4

-	Main	e Dep	artment	of Transport	ation	1	Project:	Jock S	trear	Boring No.: BB-M	IJS-102
		_	Soil/Rock Exp US CUSTOM.	loration Log			Location			contee Road over Jock Stream ch, Maine PIN: 167	16.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	169.	4	Auger ID/OD: 5" Solid Stem	
Ope	ator:		E. Giguere, C.	Giles	Dat	tum:		NAV	/D 8	Sampler: Standard Split	Spoon
Logo	jed By:		B. Wilder		Rig	ј Туре:	:	CMI	E 450	Hammer Wt./Fall: 140#/30"	
Date	Start/Fi	inish:	7/1,14/09		Dri	lling M	ethod:	Case	d W	ash Boring Core Barrel: NQ-2"	
Bori	ng Loca	tion:	14+32.3, 5.8 I	ıt.	Cas	sing ID	/OD:	HW		Water Level*: 5.5' bgs.	
		iciency F	actor: 0.84			mmer [·]	Туре:	Automa		1	
MD = U = Th MU = V = In	olit Spoon S Unsuccess in Wall Tu Unsuccess situ Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample attemple att II Tube Sample att PP = Pocket Per une Shear Test atte	SSA = Si that HSA = H RC = Roi empt WOH = v work = work = wor	c Core Sa olid Stem ollow Ster ller Cone veight of 1 = weight of Weight of	Auger m Auger 140lb. ha of rods or	casing		T _V = q _p = N-un Ham N ₆₀ :	nsitu Field Vane Shear Strength (psf) Pocket Torvane Shear Strength (psf) U(lab) = Lab Vane Shear Strength (psf) WC = water content, percer LL = Liquid Limit porrected = Raw field SPT N-value PI = Plastic Limit PI = Plastic Limit PI = Plasticity Index SPT N-uncorrected corrected for hammer efficiency (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test	Strength (psf)
				Sample Information		l		1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Craphio I		Testing Results/ AASHTO and Unified Class
25	6D	24/24	25.00 - 27.00	WOR/WOR/WOR/ WOR			59			Grey, wet, soft, SILT, some fine sand, little clay.	G#212310 A-4, CL-ML WC=27.2%
							37				WC=27.2%
							43				
							35				
30 -				WOR/WOR/WOR/			37			Grey, wet, soft, SILT, some clay, trace fine sand.	G#212311
	7D	24/24	30.00 - 32.00	WOR			53				A-4, CL-ML WC=28.3%
	371		22.00 22.42	C., 204/41f			48			65x130 mm vane raw torque readings:	Non-plastic
	V1 V2		32.00 - 32.43 33.00 - 33.43	Su=384/41 psf Su=453/82 psf			43			V1: 14.0/1.5 ft-lbs V2: 16.5/3.0 ft-lbs	
	V 2		33.00 - 33.43	3u-433/82 psi			37				
35 -	8D	24/24	35.00 - 37.00	WOR/WOR/WOR/ WOR			58			Grey, wet, medium stiff, SILT, some clay, with 1/4-1/2" sand layers. Failed tube attempt.	G#212312 A-4, CL-ML
	MU	24/0	35.00 - 37.00	Piston Sampler			47				WC=29.0% LL=25
	V3		37.00 - 37.43	Su=659/110 psf			43			65x130 mm vane raw torque readings: V3: 24.0/4.0 ft-lbs	PL=18 PI=7
	MV						45			Failed 65x130 mm vane attempt.	
40 -							33				
40 -	9D V5	24/24	40.00 - 42.00 40.00 - 40.43	WOR/WOR/WOR/ WOR			57			Grey, wet, soft, SILT, some clay, trace fine sand. 65x130 mm vane raw torque readings: V5: 17.0/4.0 ft-lbs	G#212313 A-4, CL-ML
	V6		41.00 - 41.43	Su=467/110 psf Su=467/55 psf			48			V3. 17.0/4.0 11-108 V6: 17.0/2.0 ft-lbs	WC=24.7% LL=22 PL=17
							42				PI=5
							40				
45 -							31			Eviled tube attaunt	C#212214
	MU 10D	24/0 24/24	45.00 - 47.00 45.00 - 47.00				41			Failed tube attempt. Grey, wet, medium stiff, SILT, some clay, trace fine sand.	G#212314 A-4, CL-ML WC=28.8%
				WOR			39			65x130 mm vane raw torque readings:	LL=22 PL=17
	V7		47.00 - 47.43	Su=604/82 psf			37			65x130 mm vane raw torque readings: V7: 22.0/3.0 ft-lbs V8: 22.5/3.0 ft-lbs	PI=5
	V8		48.00 - 48.43	Su=618/82 psf			36				
50 _							35				

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 4

	Main	e Dep	artment	of Transporta	ation		Project:	Jock S	Strea	am B	ridge #2412 carrying	Boring No.:	BB-M	JS-102	
		•	Soil/Rock Exp US CUSTOM	loration Log			Locatio				tee Road over Jock Stream Maine	PIN:	167	16.00	
Drille	er:		MaineDOT		Ele	vation	(ft.)	169	0.4			Auger ID/OD:	5" Solid Stem		
	ator:		E. Giguere, C.	Giles		um:	<u> </u>	NA		88		Sampler:	Standard Split	Spoon	
Logg	ged By:		B. Wilder		Rig	Type:		CM	E 45	5C		Hammer Wt./Fall:	140#/30"		
Date	Start/Fi	inish:	7/1,14/09		Dril	ling M	ethod:	Cas	ed V	Vash	Boring	Core Barrel:	NQ-2"		
Bori	ng Loca	tion:	14+32.3, 5.8 L	ıt.	Cas	sing ID	/OD:	HW	I			Water Level*:	5.5' bgs.		
		iciency F	actor: 0.84			nmer 1	Гуре:	Autom				Rope & Cathead □			
MD = U = Th MU = V = In	olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spo lbe Sample sful Thin Wal Shear Test,	oon Sample attemp II Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rol empt WOH = w netrometer WOR/C = empt WO1P =	olid Stem A ollow Sten Ier Cone weight of 1 weight o	Auger n Auger 40lb. har f rods or	casing		T _V = q _p = N-u Har	= Poc = Unc incorr mmer n = SF	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur	WC =	b) = Lab Vane Shear S water content, percentiquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test		
		T _		Sample Information					4					Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)		Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class	
H	V9 11D	24/24	50.00 - 50.43 50.00 - 52.00	Su=879/55 psf WOR/WOR/WOR/			57				65x130 mm vane raw torque V9: 32.0/2.0 ft-lbs	· ·	o alay tropo groyal	G#212315 A-2-4, SC-SM	
	MV			WOR			60				Grey, wet, loose, fine to coar Failed vane attempt.	ise sand, some siit, iiti	e ciay, trace graver.	WC=17.0% Non-plastic	
							70								
							42								
55 -							39				Similar to above. Two dents	in side of tube by unknown	wn cause. (The	#212316	
	1U	24/24	55.00 - 57.00	WOR/WOR			40				shelby tube had two large de testing)	•		Tube Damaged	
							52				65x130 mm vane raw torque	e readings:			
	V11		57.00 - 57.43	Su=618/82 psf			40				V11: 22.25/3.0 ft-lbs V12: 22.5/2.0 ft-lbs				
	V12		58.00 - 58.43	Su=618/55 psf			43	110.40	0						
60 -				WOR/WOR/WOR/			36				Grey, wet, medium stiff, Cla	1.	G#212317		
	12D V13	24/24	60.00 - 62.00 60.00 - 60.43	WOR			55				65x130 mm vane raw torque V13: 22.0/3.0 ft-lbs		A-4, CL		
	V14		61.00 - 61.43	Su=604/82 psf Su=577/55 psf			44				V14: 21.0/2.0 ft-lbs		WC=27.6% LL=26 PL=18		
							33							PI=8	
							31								
65 -							29				Grey, wet, medium stiff, Cla	avey SILT trace fine sand	1	G.C#212318	
	2U	24/24	65.00 - 67.00	WOR/WOR			42				Grey, wet, mediani stiri, era	iyey 51121, trace time sainc		A-4, CL-ML WC=28.7%	
							36				65x130 mm vane raw torque	readings:		LL=23 PL=18	
	V15		67.00 - 67.43	Su=687/82 psf			30				V15: 25.0/3.0 ft-lbs V16: 27.0/4.0 ft-lbs	readings.		PI=5	
	V16		68.00 - 68.43	Su=742/110 psf			30				V10. 27.0/1.0 It los				
70 -							22				65x130 mm vane raw torque	e readings:			
	V17 —MD	24/0	70.00 - 70.43 70.00 - 72.00				32	-			V17: 24.0/3.0 ft-lbs Failed sample attempt. V18: 24.0/2.5 ft-lbs				
	V18		71.00 - 71.43	WOR Su=659/69 psf			38	_		V18: 24.0/2.5 ft-lbs					
							32								
		-					29	-							

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

onamicanion mos represent approximate soundance services, types, namicanion may so gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 4

	Main	e Dep	artment	of Transporta	ation		Project:			nage #2112 carrying	3-MJS-102	,	
			Soil/Rock Exp US CUSTOM				Locatio			tee Road over Jock Stream Maine PIN:	16716.00	716.00	
Drill	er:		MaineDOT		Elev	ation	(ft.)	169	.4	Auger ID/OD: 5" Solid	tem		
Ope	rator:		E. Giguere, C.	Giles	Datu	um:		NA	VD 88	Sampler: Standard	Split Spoon		
Log	ged By:		B. Wilder		Rig	Type:		CM	E 45C	Hammer Wt./Fall: 140#/30"			
Date	Start/Fi	nish:	7/1,14/09		Drill	ling M	ethod:	Cas	ed Wash	Boring Core Barrel: NQ-2"			
Bori	ng Locat	tion:	14+32.3, 5.8 L	ıt.	Casi	ing ID	/OD:	HW		Water Level*: 5.5' bgs.			
Ham	mer Effi	ciency F	actor: 0.84		Ham	nmer '	Туре:	Autom	atic 🛛	Hydraulic □ Rope & Cathead □			
Defini D = S MD = U = T MU = V = In	tions: olit Spoon S Unsuccess nin Wall Tul Unsuccess situ Vane S	Sample ful Split Sp be Sample ful Thin Wa Shear Test,	oon Sample attemp all Tube Sample att PP = Pocket Per ane Shear Test atte	SSA = So ot HSA = Ho RC = Rol empt WOH = w netrometer WOR/C =	COre Sam olid Stem A ollow Stem ller Cone veight of 14 = weight of Weight of 0	Auger Auger 40lb. ha rods or	casing		$T_V = Poole q_p = Uncorr Hammer N_{60} = SF$	ur Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) ket Torvane Shear Strength (psf) wC = water content, onflined Compressive Strength (ksf) beted = Raw field SPT N-value Efficiency Factor = Annual Calibration Value PI = Plastic Limit PI = Plasticity Index PI = Plasticity Index G = Grain Size Analy ammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Te	ercent)	
				Sample Information							Labora	tory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Testir Resul AASH and Unified C	ng Its/ TO I	
75	3U	24/24	75.00 - 77.00	WOR/WOR			42			Grey, wet, medium stiff, Clayey SILT, trace fine sand.	G,C#212 A-6, G	CL	
							45				WC=31 LL=2	29	
	V19		77.00 - 77.43	Su=796/82 psf			42			65x130 mm vane raw torque readings: V19: 29.0/3.0 ft-lbs	PL=1 PI=1		
	V20		78.00 - 78.43	Su=851/165 psf			39			V20: 31.0/6.0 ft-lbs			
80							42			65v120 mm yana gayı tagaya gadinger	G#212	220	
	V21 13D	24/24	80.00 - 80.43 80.00 - 82.00	Su=824/82 psf WOR/WOR/WOR/			56	- -		65x130 mm vane raw torque readings: V21: 30.0/3.0 ft-lbs Grey, wet, medium stiff, Clayey SILT, trace fine sand.	A-6, C WC=28	CL	
	V22		81.00 - 81.43	WOR Su=824/110 psf			53			V22: 30.0/4.0 ft-lbs	LL=3 PL=2	30	
							47				PI=1	0	
							46	85.90			33.50		
85 -							47			D. 100 011 07 17			
0.5	MU 14D	24/0 24/24	85.00 - 87.00 85.00 - 87.00	WOR/WOR WOR/WOR/WOR/ WOR			OPEN HOLE-			Dark grey, wet, medium stiff, Silty CLAY, trace fine sand. Washed ahead to 87.0' bgs, then took vanes.	G#212: A-6, C WC=26 LL=3	CL 5.6% 36	
	V23		87.00 - 87.43	Su=989/110 psf						65x130 mm vane raw torque readings: V23: 36.0/4.0 ft-lbs	PL=2 PI=1		
	V24		88.00 - 88.43	Su=961/110 psf			RC			V24: 35.0/4.0 ft-lbs Roller Coned ahead to 90.0' bgs.			
90 -	MV 15D	24/24	90.00 - 92.00	WOR/WOR/WOR/ WOR						Failed 65x130 mm vane attempt. Grey, wet, medium stiff, SILT, some clay, trace fine sand in 1/2-2 layers.	G#212: A-6, C WC=26 LL=3 PL=1	CL 5.1% 30	
											PI=1		
								75.90			93.50-		
95 -	16D	24/20	95.00 - 97.00	WOR/WOR/3/8	3	4	,			Grey, wet, loose, fine to medium SAND, some silt, trace clay.	G#212: A-4, SC WC=21	C-SM	
								72.40	1	Bottom of Exploration at 97.00 feet below ground surface. NO REFUSAL	97.00-		

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 4

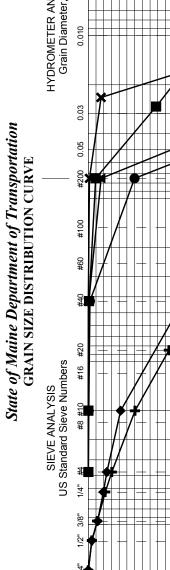
Appendix B

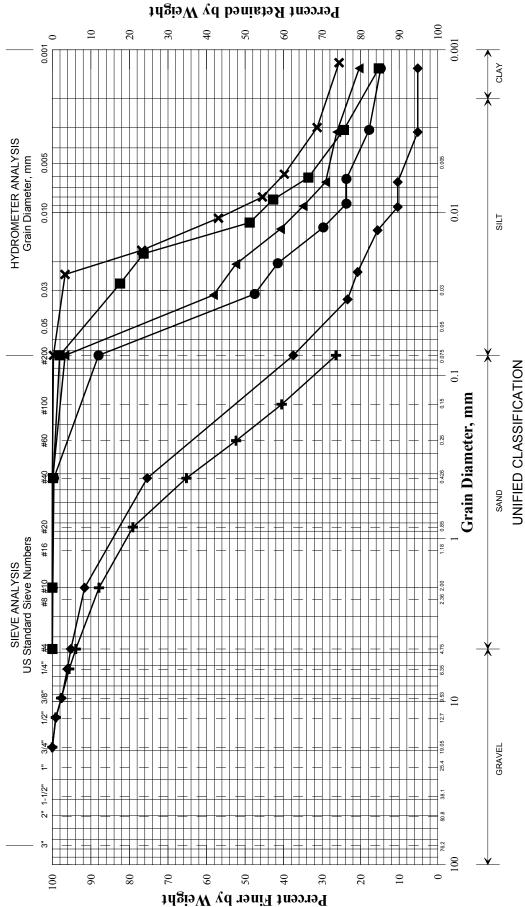
Laboratory Data

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Monmouth Project Number: 16716.00

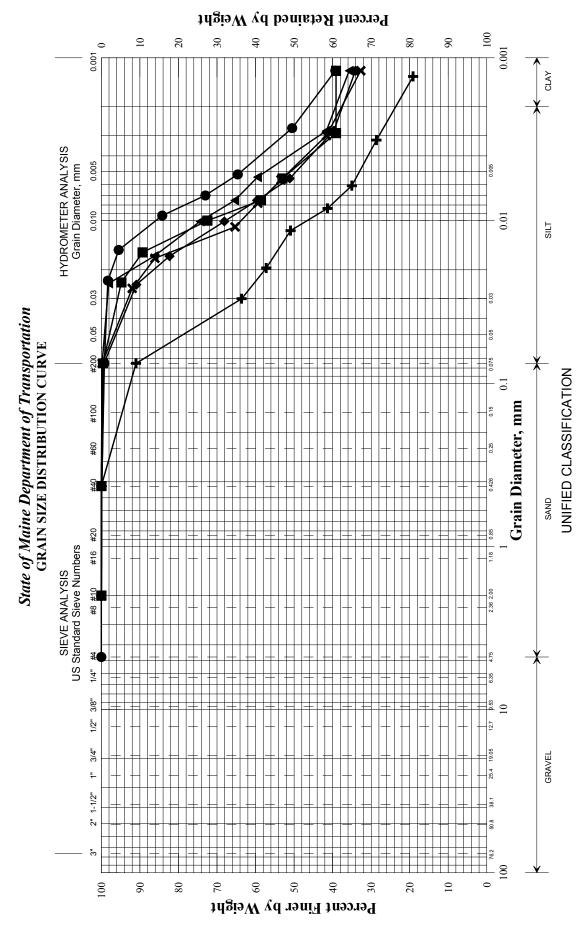
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	ssificatio	n
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%				AASHTO	
BB-MJS-101, 1D	13+65.5	5.9 Rt.	1.0-3.0	212264	1	10.5			SM	A-2-4	II
BB-MJS-101, 2D	13+65.5	5.9 Rt.	5.0-7.0	212265	1	19.9			SC-SM		III
BB-MJS-101, 3D	13+65.5	5.9 Rt.	14.0-16.0	212266	1	24.0	-N	P-	CL-ML	A-4	IV
BB-MJS-101, 4D	13+65.5	5.9 Rt.	19.0-21.0	212267	1	26.0	-N	P-	CL-ML	A-4	IV
BB-MJS-101, 5D	13+65.5	5.9 Rt.	24.0-26.0	212268	1	25.4	-N	P-	CL-ML	A-4	IV
BB-MJS-101, 6D	13+65.5	5.9 Rt.	29.0-31.0	212269	1	26.2	23	5	CL-ML	A-4	IV
BB-MJS-101, 7D	13+65.5	5.9 Rt.	34.0-36.0	212270	2	26.8	-N	P-	CL-ML	A-4	IV
BB-MJS-101, 9D	13+65.5	5.9 Rt.	45.0-47.0	212271	2	32.4			CL-ML	A-4	IV
BB-MJS-101, 10D	13+65.5	5.9 Rt.	49.0-51.0	212272	2	27.8	23	6	CL-ML	A-4	IV
BB-MJS-101, 1U	13+65.5	5.9 Rt.	54.0-56.0	212273	2	33.4	25	7	CL	A-4	IV
BB-MJS-101, 2U	13+65.5	5.9 Rt.	64.0-66.0	212274	2	30.7	26	8	CL	A-4	IV
BB-MJS-101, 12D	13+65.5	5.9 Rt.	69.0-71.0	212275	2	26.3	24	8	CL	A-4	IV
BB-MJS-101, 3U	13+65.5	5.9 Rt.	75.5-77.5	212301	3	35.6	35	14	CL	A-6	III
BB-MJS-101, 13D	13+65.5	5.9 Rt.	79.0-81.0	212302	3	28.9	31	12	CL	A-6	III
BB-MJS-101, 14D	13+65.5	5.9 Rt.	84.0-86.0	212303	3	23.0			SM	A-4	IV
BB-MJS-101, 16D	13+65.5	5.9 Rt.	94.0-96.0	212304	3	22.8			SM	A-2-4	П
BB-MJS-101, 17D	13+65.5	5.9 Rt.	99.0-101.0	212305	3	23.5			SM	A-2-4	П
BB-MJS-101, 18D	13+65.5	5.9 Rt.	104.0-106.0	212306	3	17.4			SP-SM	A-3	0
BB-MJS-102, 1D	14+32.3	5.8 Lt.	1.0-3.0	212307	4	12.1			SM	A-2-4	
BB-MJS-102, 3D	14+32.3	5.8 Lt.	10.0-12.0	212308	4	22.1			CL-ML	A-4	IV
BB-MJS-102, 5D	14+32.3	5.8 Lt.	20.0-22.0	212309	4	22.4			CL-ML	A-4	IV
BB-MJS-102, 6D	14+32.3	5.8 Lt.	25.0-27.0	212310	4	27.2			CL-ML	A-4	IV
BB-MJS-102, 7D	14+32.3	5.8 Lt.	30.0-32.0	212311	4	28.3	-N	P-	CL-ML	A-4	IV
BB-MJS-102, 8D	14+32.3	5.8 Lt.	35.0-37.0	212312	4	29.0	25	7	CL-ML	A-4	IV
BB-MJS-102, 9D	14+32.3	5.8 Lt.	40.0-42.0	212313	5	24.7	22	5	CL-ML	A-4	IV
BB-MJS-102, 10D	14+32.3	5.8 Lt.	45.0-47.0	212314	5	28.8	22	5	CL-ML	A-4	IV
BB-MJS-102, 11D	14+32.3	5.8 Lt.	50.0-52.0	212315	5	17.0	-N	P-	SC-SM	A-2-4	Ш
BB-MJS-102, 1U	14+32.3	5.8 Lt.	55.0-57.0	212316				Tube	e Damaç	jed	
BB-MJS-102, 12D	14+32.3	5.8 Lt.	60.0-62.0	212317	5	27.6	26	8	CL	A-4	IV
BB-MJS-102, 2U	14+32.3	5.8 Lt.	65.0-67.0	212318	5	28.7	23	5	CL-ML	A-4	IV
BB-MJS-102, 3U	14+32.3	5.8 Lt.	75.0-77.0	212319	6	31.6	29	10	CL	A-6	IV
BB-MJS-102, 13D	14+32.3	5.8 Lt.	80.0-82.0	212320	6	28.7	30	10	CL	A-6	IV
BB-MJS-102, 14D	14+32.3	5.8 Lt.	85.0-87.0	212321	6	26.6	36	15	CL	A-6	II
BB-MJS-102, 15D			90.0-92.0	212322	6	26.1	30	11		A-6	IV
BB-MJS-102, 16D	14+32.3	5.8 Lt.	95.0-97.0	212323	6	21.2			SC-SM	A-4	II

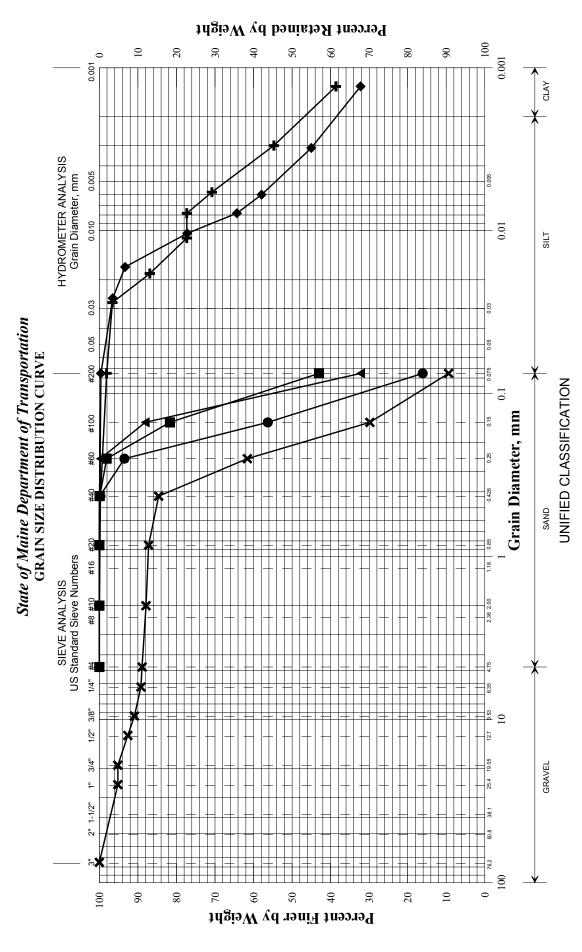

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible). The "Frost Susceptibility Rating" is based upon the MaineDOT and Corps of Engineers Classification Systems.

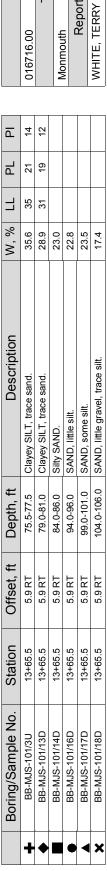

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

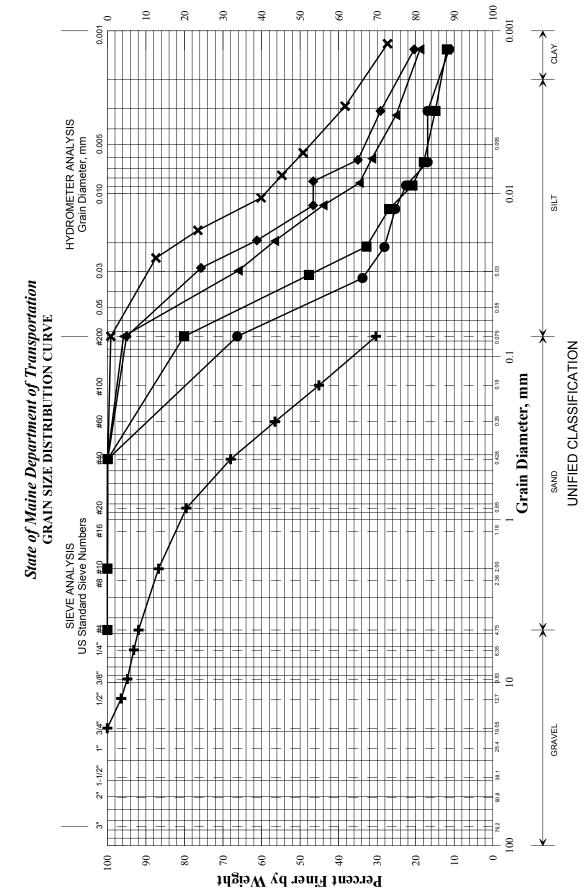
WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

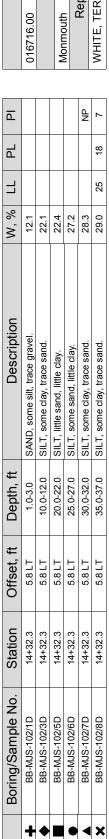

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

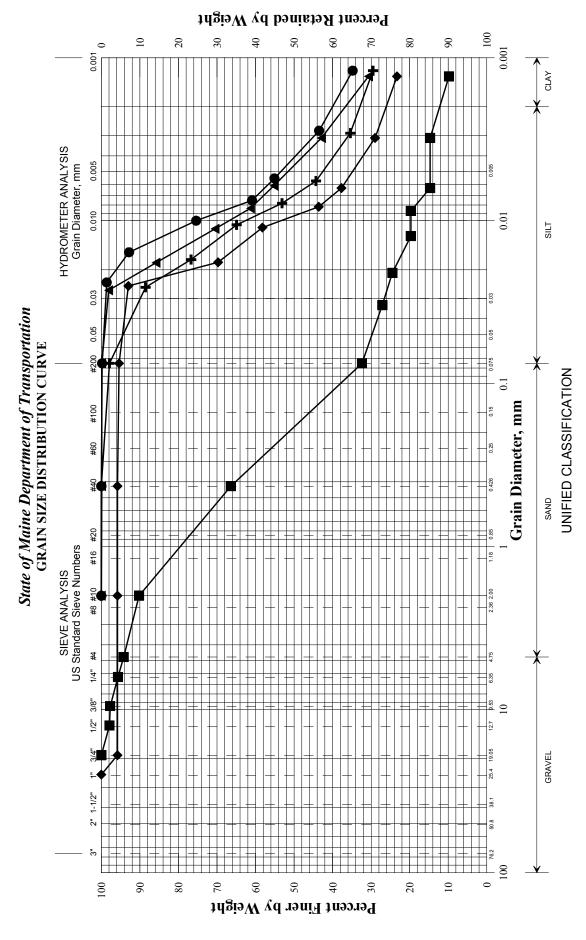

	Boring/Sample No.	Station	Offset, ft Depth, ft	Depth, ft	Description	W, % LL PL	Ⅎ		⊒	
+	BB-MJS-101/1D	13+65.5	5.9 RT	1.0-3.0	SAND, some silt, trace gravel.	10.5				016716.00
•	BB-MJS-101/2D	13+65.5	5.9 RT	5.0-7.0	SAND, some silt, trace clay, trace gravel.	19.9				
	BB-MJS-101/3D	13+65.5	5.9 RT	14.0-16.0	14.0-16.0 SILT, little clay, trace sand.	24.0			M	Mommonth
•	BB-MJS-101/4D	13+65.5	5.9 RT	19.0-21.0	19.0-21.0 SILT, little clay, little sand.	26.0			M	
4	BB-MJS-101/5D	13+65.5	5.9 RT	24.0-26.0	24.0-26.0 SILT, some clay, trace sand.	25.4			M	Kebor
×	BB-MJS-101/6D	13+65.5	5.9 RT	29.0-31.0	29.0-31.0 SILT, some clay, trace sand.	26.2	26.2 23 18	18	2	WHITE, TERRY

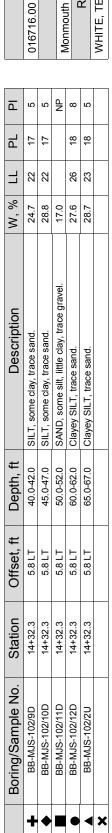

Town Monmouth Reported by/Date WHITE, TERRY A 8/27/2009
--


	016716.00		Moman		Кер	WHITE, TERF
					•	
Ы	NP		9	7	8	8
PL			17	18	18	16
LL			23	22	56	24
W, % LL PL	26.8	32.4	27.8	33.4	30.7	26.3
Description	SILT, some clay, trace sand.	Clayey SILT, trace sand.	49.0-51.0 Clayey SILT, trace sand.	Clayey SILT, trace sand.	Clayey SILT, trace sand.	69.0-71.0 Clayey SILT, trace sand.
Offset, ft Depth, ft	34.0-36.0	45.0-47.0	49.0-51.0	54.0-56.0	64.0-66.0	69.0-71.0
Offset, ft	5.9 RT	5.9 RT	5.9 RT	5.9 RT	5.9 RT	5.9 RT
Station	13+65.5	13+65.5	13+65.5	13+65.5	13+65.5	13+65.5
Boring/Sample No.	BB-MJS-101/7D	BB-MJS-101/9D	BB0MJS-101/10D	BB-MJS-101/1U	BB-MJS-101/2U	BB-MJS-101/12D
	+	♦		•	◀	×

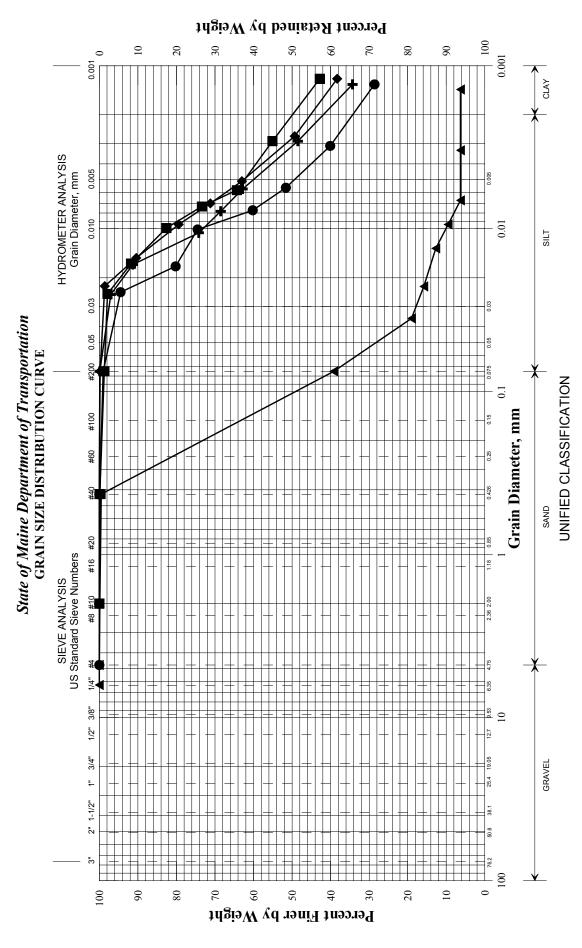
Nd	016716.00	Town	Monmouth	Reported by/Date	WHITE, TERRY A 8/27/2009	
----	-----------	------	----------	------------------	--------------------------	--

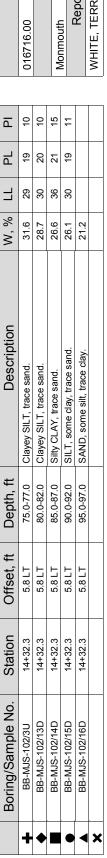


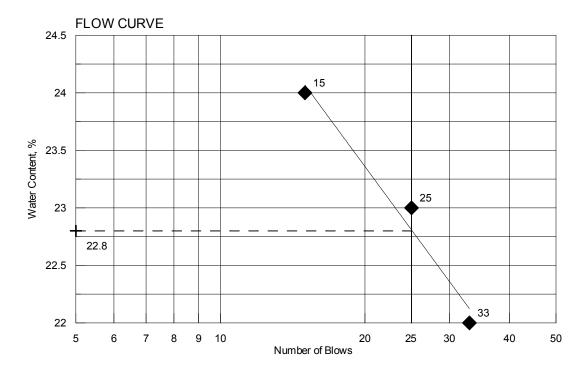

D16716.00 Town	Reported by/Date WHITE, TERRY A 8/27/2009
----------------	---

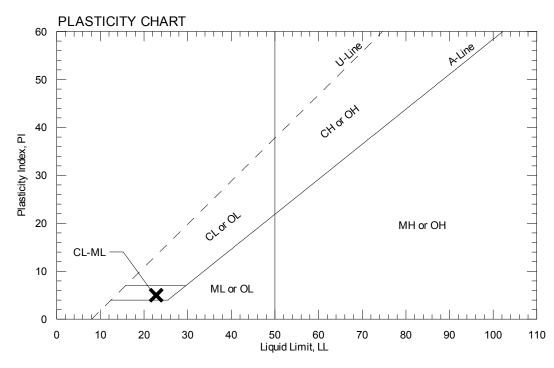


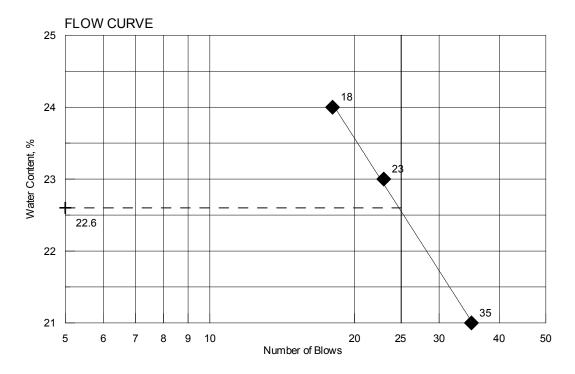
Percent Retained by Weight

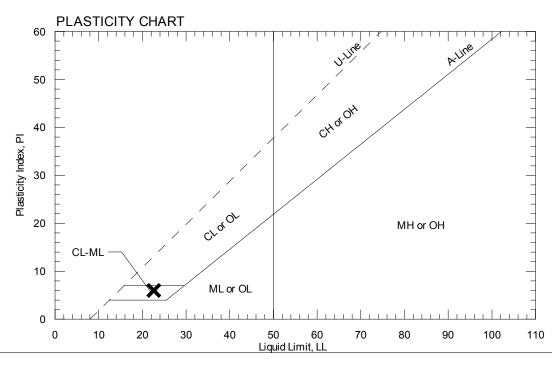


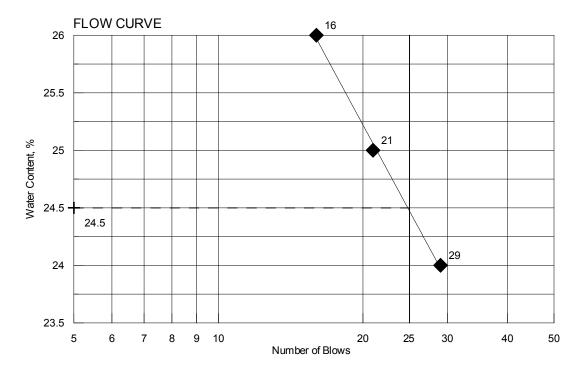

PIN 016716.00 Town Monmouth Reported by/Date WHIE. TERRY A 8/27/2009
--

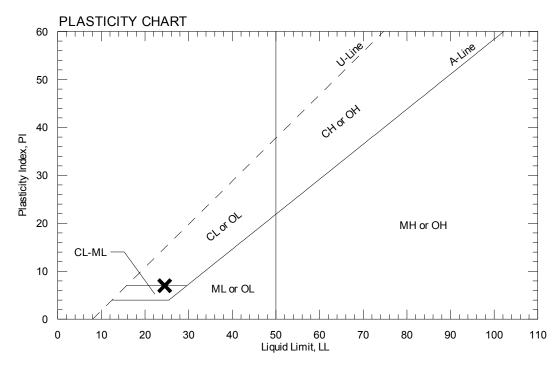

NIA
016716.00
Town
Monmouth
Reported by/Date
WHITE, TERRY A 8/27/2009

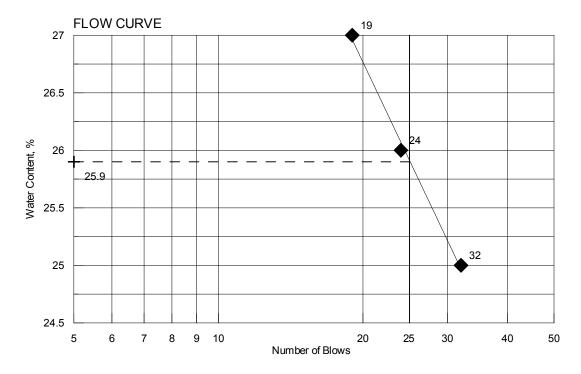


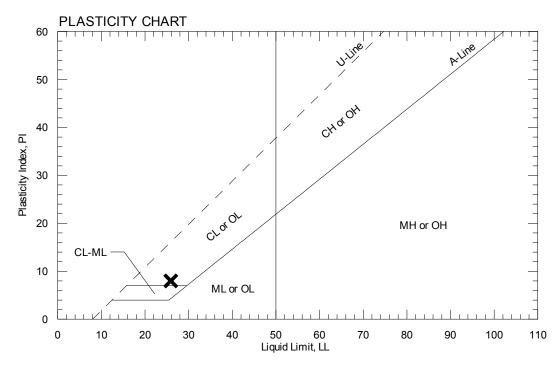

PIN 016716.00 Town	Monmouth	Reported by/Date	WHITE, TERRY A 8/27/2009
--------------------------	----------	------------------	--------------------------

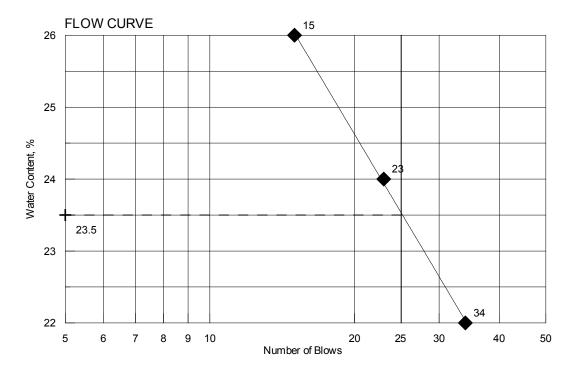

TOWN	Monmouth	Reference No.	212269
PIN	016716.00	Water Content, %	26.2
Sampled	6/19/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-101/6D	Liquid Limit	23
Station	13+65.5	Plasticity Index	5
Depth	29.0-31.0	Tested By	BBURR

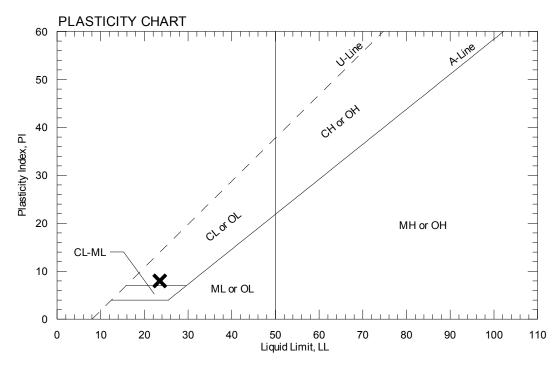


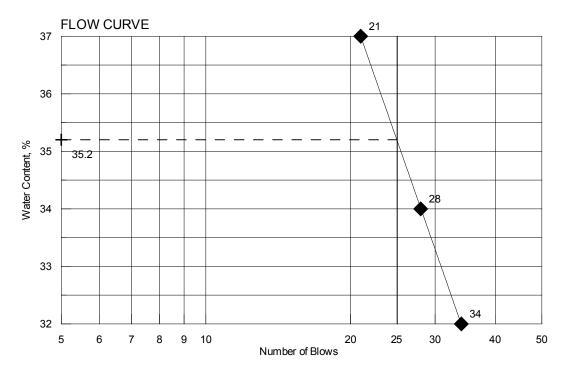

TOWN	Monmouth	Reference No.	212272
PIN	016716.00	Water Content, %	27.8
Sampled	6/17/2009	Plastic Limit	17
Boring No./Sample No.	BB0MJS-101/10D	Liquid Limit	23
Station	13+65.5	Plasticity Index	6
Depth	49.0-51.0	Tested By	BBURR

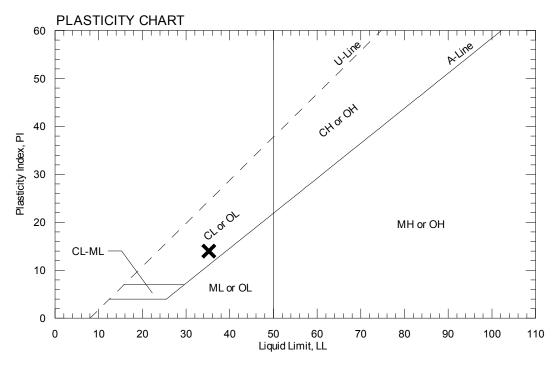


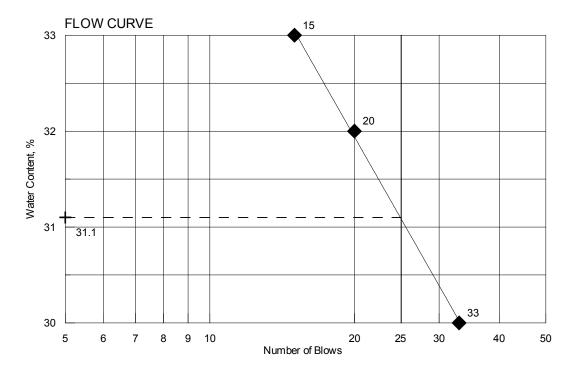

TOWN	Monmouth	Reference No.	212273
PIN	016716.00	Water Content, %	33.4
Sampled	7/14/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-101/1U	Liquid Limit	25
Station	13+65.5	Plasticity Index	7
Depth	54.0-56.0	Tested By	BBURR

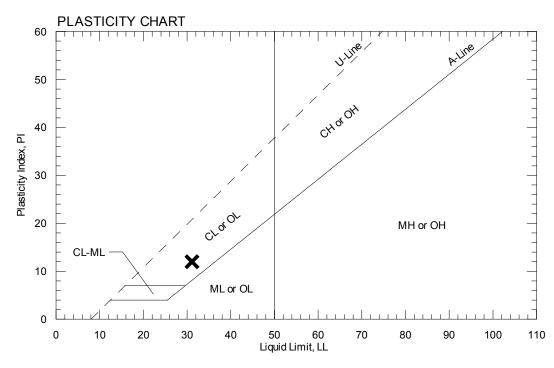


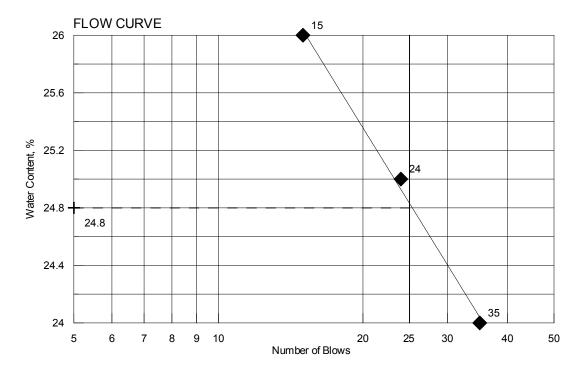

TOWN	Monmouth	Reference No.	212274
PIN	016716.00	Water Content, %	30.7
Sampled	7/14/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-101/2U	Liquid Limit	26
Station	13+65.5	Plasticity Index	8
Depth	64.0-66.0	Tested By	BBURR

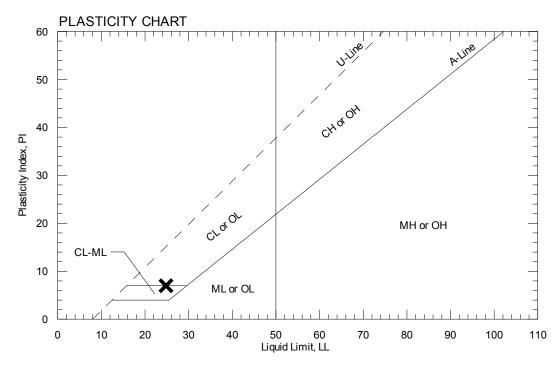


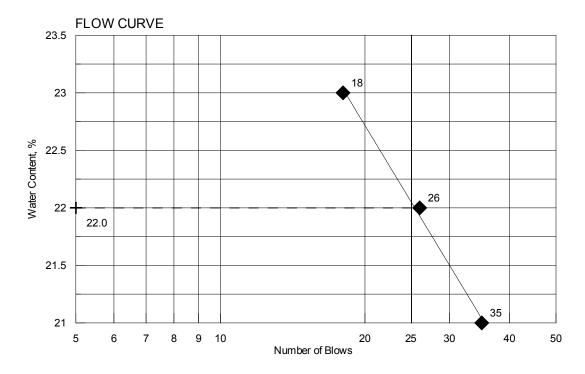

TOWN	Monmouth	Reference No.	212275
PIN	016716.00	Water Content, %	26.3
Sampled	6/17/2009	Plastic Limit	16
Boring No./Sample No.	BB-MJS-101/12D	Liquid Limit	24
Station	13+65.5	Plasticity Index	8
Depth	69.0-71.0	Tested By	BBURR

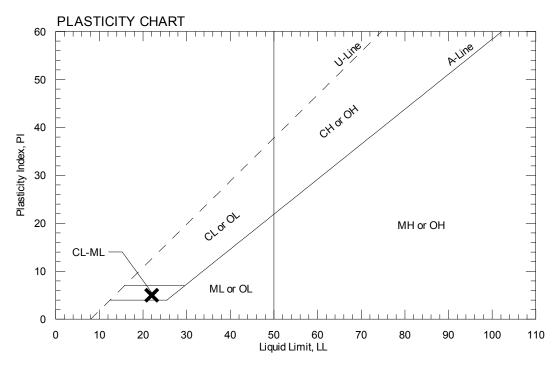


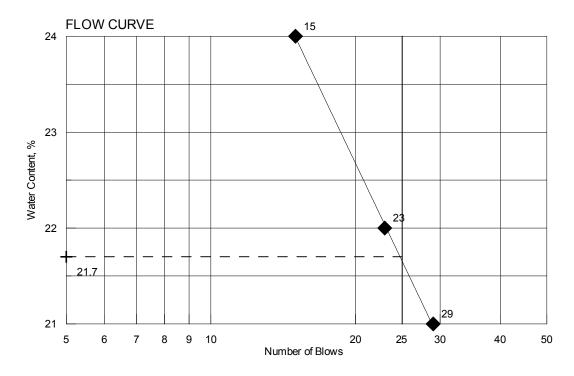

TOWN	Monmouth	Reference No.	212301
PIN	016716.00	Water Content, %	35.6
Sampled	7/14/2009	Plastic Limit	21
Boring No./Sample No.	BB-MJS-101/3U	Liquid Limit	35
Station	13+65.5	Plasticity Index	14
Depth	75.5-77.5	Tested By	BBURR

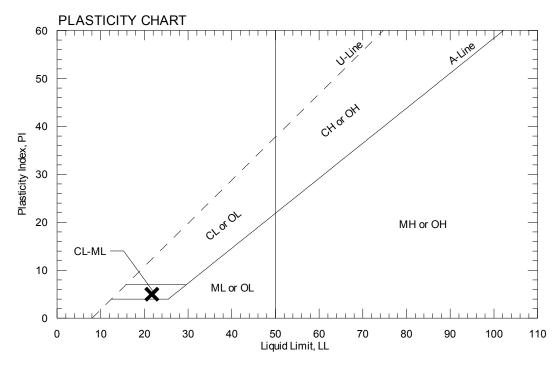


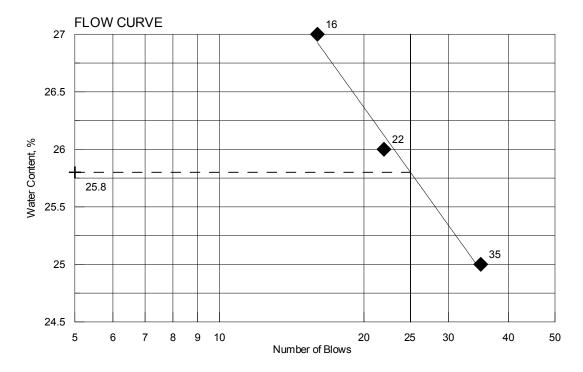

TOWN	Monmouth	Reference No.	212302
PIN	016716.00	Water Content, %	28.9
Sampled	6/23/2009	Plastic Limit	19
Boring No./Sample No.	BB-MJS-101/13D	Liquid Limit	31
Station	13+65.5	Plasticity Index	12
Depth	79.0-81.0	Tested By	BBURR

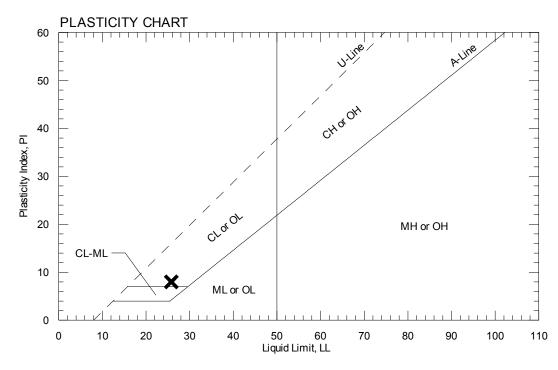


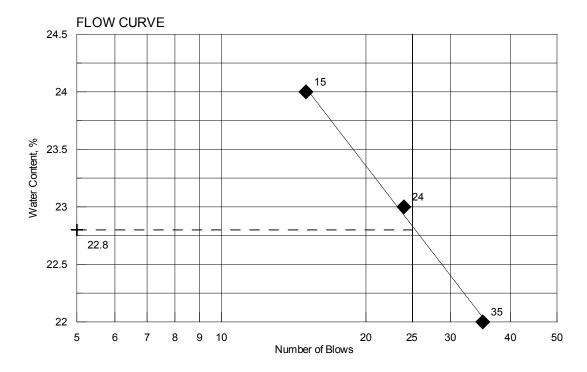

TOWN	Monmouth	Reference No.	212312
PIN	016716.00	Water Content, %	29
Sampled	7/1/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-102/8D	Liquid Limit	25
Station	14+32.3	Plasticity Index	7
Depth	35.0-37.0	Tested By	BBURR

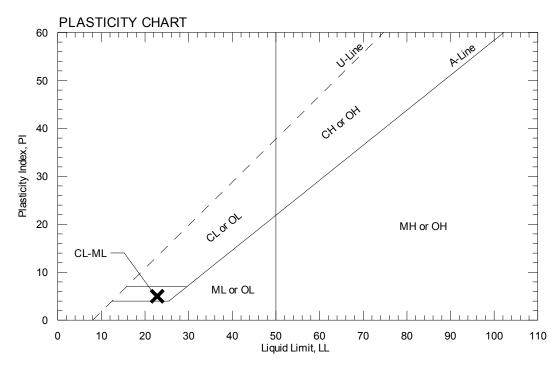


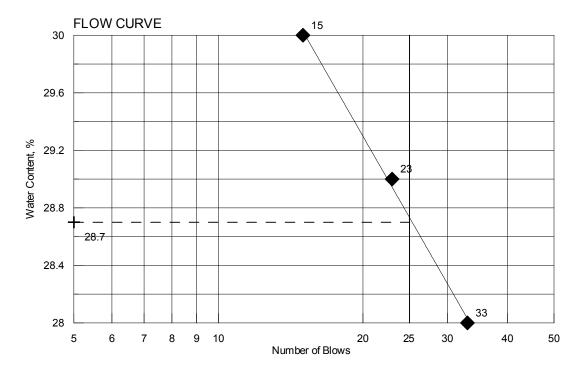

TOWN	Monmouth	Reference No.	212313
PIN	016716.00	Water Content, %	24.7
Sampled	7/1/2009	Plastic Limit	17
Boring No./Sample No.	BB-MJS-102/9D	Liquid Limit	22
Station	14+32.3	Plasticity Index	5
Depth	40.0-42.0	Tested By	BBURR

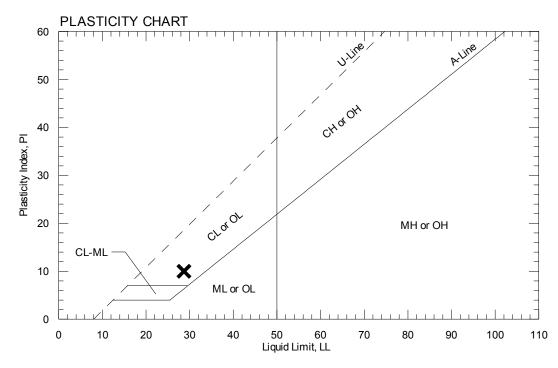


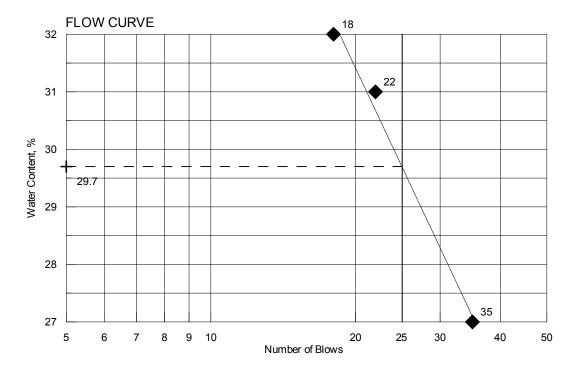

TOWN	Monmouth	Reference No.	212314
PIN	016716.00	Water Content, %	28.8
Sampled	7/1/2009	Plastic Limit	17
Boring No./Sample No.	BB-MJS-102/10D	Liquid Limit	22
Station	14+32.3	Plasticity Index	5
Depth	45.0-47.0	Tested By	BBURR

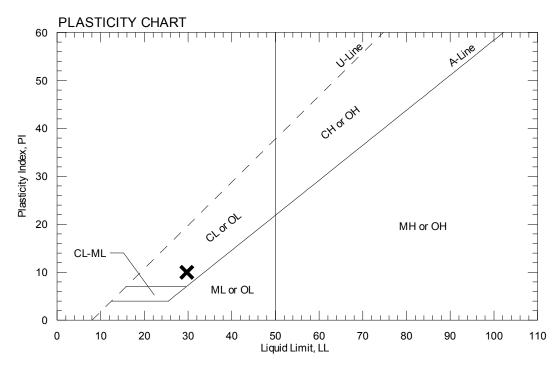


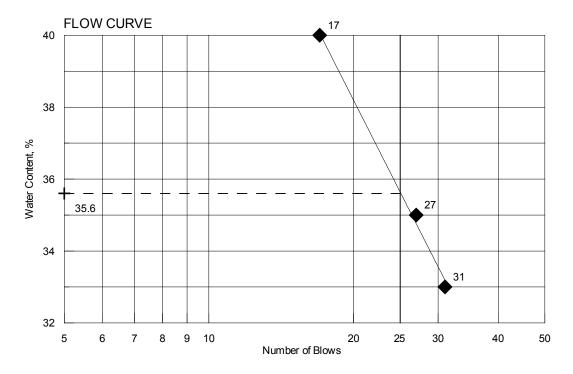

TOWN	Monmouth	Reference No.	212317
PIN	016716.00	Water Content, %	27.6
Sampled	7/14/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-102/12D	Liquid Limit	26
Station	14+32.3	Plasticity Index	8
Depth	60.0-62.0	Tested By	BBURR

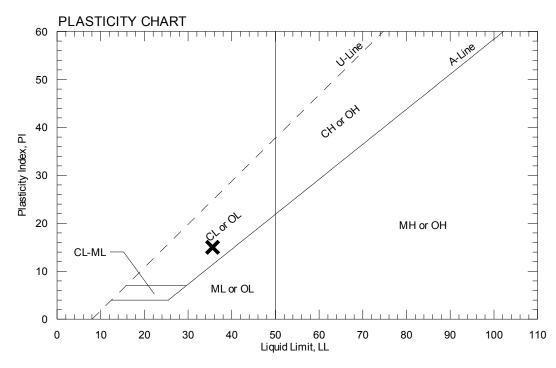


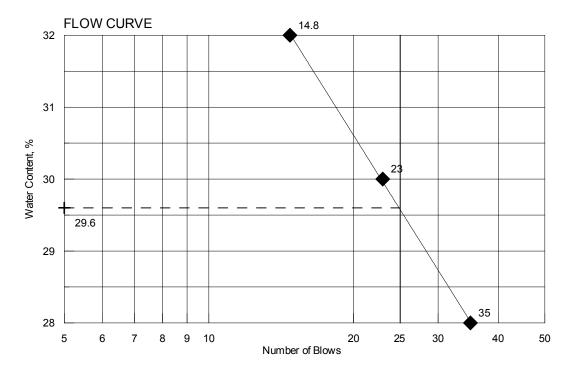

TOWN	Monmouth	Reference No.	212318
PIN	016716.00	Water Content, %	28.7
Sampled	7/14/2009	Plastic Limit	18
Boring No./Sample No.	BB-MJS-102/2U	Liquid Limit	23
Station	14+32.3	Plasticity Index	5
Depth	65.0-67.0	Tested By	BBURR

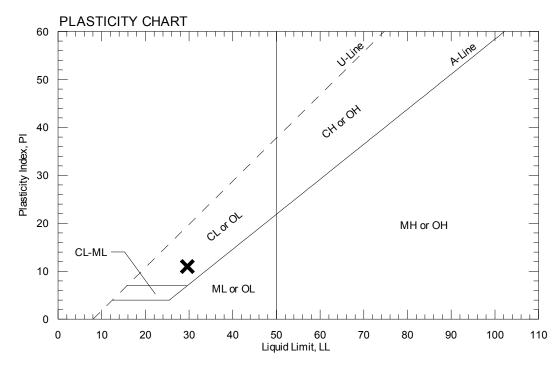


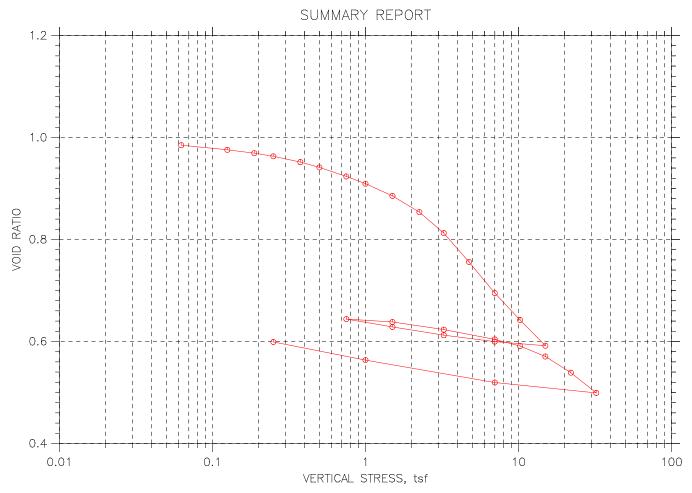

TOWN	Monmouth	Reference No.	212319
PIN	016716.00	Water Content, %	31.6
Sampled	7/14/2009	Plastic Limit	19
Boring No./Sample No.	BB-MJS-102/3U	Liquid Limit	29
Station	14+32.3	Plasticity Index	10
Depth	75.0-77.0	Tested By	BBURR

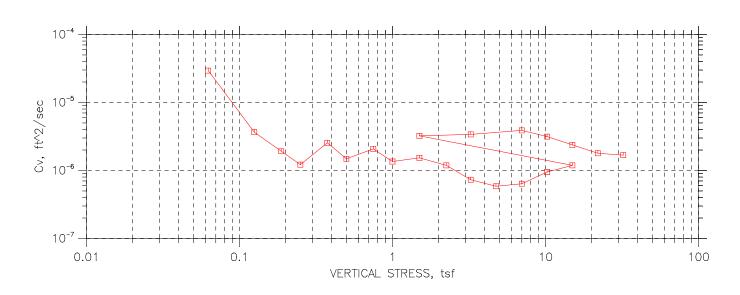



TOWN	Monmouth	Reference No.	212320
PIN	016716.00	Water Content, %	28.7
Sampled	7/14/2009	Plastic Limit	20
Boring No./Sample No.	BB-MJS-102/13D	Liquid Limit	30
Station	14+32.3	Plasticity Index	10
Depth	80.0-82.0	Tested By	BBURR




TOWN	Monmouth	Reference No.	212321
PIN	016716.00	Water Content, %	26.6
Sampled	7/14/2009	Plastic Limit	21
Boring No./Sample No.	BB-MJS-102/14D	Liquid Limit	36
Station	14+32.3	Plasticity Index	15
Depth	85.0-87.0	Tested By	BBURR





TOWN	Monmouth	Reference No.	212322
PIN	016716.00	Water Content, %	26.1
Sampled	7/14/2009	Plastic Limit	19
Boring No./Sample No.	BB-MJS-102/15D	Liquid Limit	30
Station	14+32.3	Plasticity Index	11
Depth	90.0-92.0	Tested By	BBURR

Project: Jock Stream Bridge	Location: Monmouth	Project No.: 16716.00			
Boring No.: BB-MJS-101	Tested By: Brian Fogg	Checked By: km			
Sample No.: 1U	Test Date: 7/27/09	Depth: 54-56 ft			
Test No.: 212273	Sample Type: Shelby Tube	Elevation: 114.8 ft			
Description: Clayey Silt					
Remarks: OCR = 1.5 ; Cc = 0.35	541; C'c = 0.1771; Cr = 0.04				

Project: Jock Stream Bridge Boring No.: BB-MJS-101

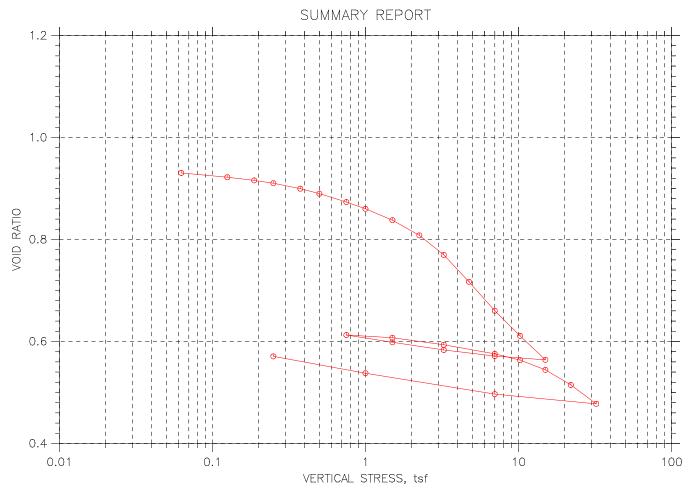
Sample No.: 1U Test No.: 212273 Location: Monmouth Tested By: Brian Fogg Test Date: 7/27/09 Sample Type: Shelby Tube

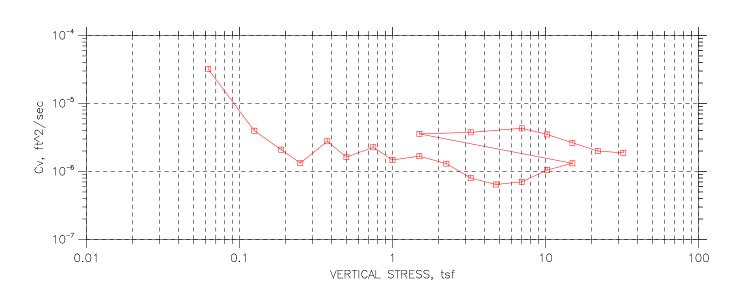
Project No.: 16716.00 Checked By: km Depth: 54-56 ft Elevation: 114.8 ft

Soil Description: Clayey Silt Remarks: OCR = 1.5; Cc = 0.3541; C'c = 0.1771; Cr = 0.04

Measured Specific Gravity: 2.75 Liquid Limit: 25
Initial Void Ratio: 1.00 Plastic Limit: 18
Final Void Ratio: 0.60 Plasticity Index: 7

Initial Height: 1.04 in Specimen Diameter: 2.48 in


	Before Consolidation		After Co	nsolidation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	162	RING	RING	89
Wt. Container + Wet Soil, gm	212.12	414.22	400.29	191.43
Wt. Container + Dry Soil, gm	177.6	375.54	375.54	166.72
Wt. Container, gm	66.87	262.23	262.23	53.57
Wt. Dry Soil, gm	110.73	113.31	113.31	113.15
Water Content, %	31.17	34.13	21.84	21.84
Void Ratio		1.00	0.60	
Degree of Saturation, %		94.13	100.26	
Dry Unit Weight, pcf		85.963	107.37	


Project: Jock Stream Bridge Boring No.: BB-MJS-101

Sample No.: 1U Test No.: 212273 Location: Monmouth Project No.: 16716.00
Tested By: Brian Fogg Checked By: km
Test Date: 7/27/09 Depth: 54-56 ft
Sample Type: Shelby Tube Elevation: 114.8 ft

Soil Description: Clayey Silt Remarks: OCR = 1.5; Cc = 0.3541; C'c = 0.1771; Cr = 0.04

	Applied	Final	Void	Strain		itting		cient of Cons	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		왕	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.00634	0.985	0.61	0.2	0.2	2.45e-005	3.69e-005	2.94e-005
2	0.125	0.01108	0.976	1.07	1.6	0.0	3.65e-006	0.00e+000	3.65e-006
3	0.188	0.01445	0.969	1.40	3.4	2.9	1.78e-006	2.08e-006	1.92e-006
4	0.25	0.01764	0.963	1.70	4.9	0.0	1.22e-006	0.00e+000	1.22e-006
5	0.375	0.02351	0.952	2.27	2.3	2.3	2.58e-006	2.52e-006	2.55e-006
6	0.5	0.02894	0.941	2.80	4.5	3.3	1.28e-006	1.77e-006	1.49e-006
7	0.75	0.0381	0.924	3.68	3.6	1.9	1.60e-006	2.97e-006	2.08e-006
8	1	0.04543	0.909	4.39	4.6	3.7	1.22e-006	1.52e-006	1.35e-006
9	1.5	0.0579	0.885	5.59	3.6	3.6	1.55e-006	1.52e-006	1.53e-006
10	2.25	0.07442	0.854	7.19	5.0	4.1	1.08e-006	1.32e-006	1.19e-006
11	3.25	0.09569	0.813	9.24	7.1	7.0	7.23e-007	7.36e-007	7.29e-007
12	4.75	0.1251	0.756	12.08	9.2	7.5	5.33e-007	6.49e-007	5.85e-007
13	7	0.1567	0.695	15.13	7.0	7.3	6.48e-007	6.29e-007	6.38e-007
14	10.3	0.1841	0.642	17.78	4.8	4.3	8.99e-007	1.00e-006	9.48e-007
15	15	0.2102	0.592	20.30	3.4	3.4	1.19e-006	1.19e-006	1.19e-006
16	7	0.2061	0.600	19.90	0.2	0.0	2.54e-005	0.00e+000	2.54e-005
17	3.25	0.1994	0.612	19.26	0.7	0.0	5.58e-006	0.00e+000	5.58e-006
18	1.5	0.1911	0.629	18.45	1.8	2.4	2.30e-006	1.71e-006	1.97e-006
19	0.75	0.1831	0.644	17.69	4.8	4.3	8.50e-007	9.63e-007	9.03e-007
20	1.5	0.1861	0.638	17.97	1.3	0.0	3.23e-006	0.00e+000	3.23e-006
21	3.25	0.1938	0.623	18.72	1.2	0.0	3.39e-006	0.00e+000	3.39e-006
22	7	0.2038	0.604	19.68	1.0	0.0	3.88e-006	0.00e+000	3.88e-006
23	10.3	0.2106	0.591	20.34	1.2	1.3	3.33e-006	2.99e-006	3.15e-006
24	15	0.2212	0.570	21.36	1.6	1.6	2.38e-006	2.37e-006	2.38e-006
25	22	0.2376	0.539	22.95	2.1	2.1	1.80e-006	1.78e-006	1.79e-006
26	32.3	0.2582	0.499	24.94	1.7	2.5	2.12e-006	1.39e-006	1.68e-006
27	7	0.2476	0.520	23.91	0.1	0.0	2.81e-005	0.00e+000	2.81e-005
28	1	0.2248	0.563	21.71	2.4	2.8	1.52e-006	1.30e-006	1.40e-006
29	0.25	0.2064	0.599	19.93	18.9	0.0	2.03e-007	0.00e+000	2.03e-007

Project: Jock Stream	Bridge	Location: Monmouth	Project No.: 16716.00
Boring No.: BB-MJS-	101	Tested By: Brian Fogg	Checked By: km
Sample No.: 2U		Test Date: 7/27/09	Depth: 64-66 ft
Test No.: 212274		Sample Type: Shelby Tube	Elevation: 104.8 ft
Description: Clayey S	ilt		
Remarks: OCR = 1.3	5; Cc = 0.31	74; C'c = 0.1636; Cr = 0.0463	

Project: Jock Stream Bridge Boring No.: BB-MJS-101

Sample No.: 2U Test No.: 212274 Location: Monmouth Location: Monmouth
Tested By: Brian Fogg
Test Date: 7/27/09
Sample Type: Shelby Tube Test Date: 7/27/09

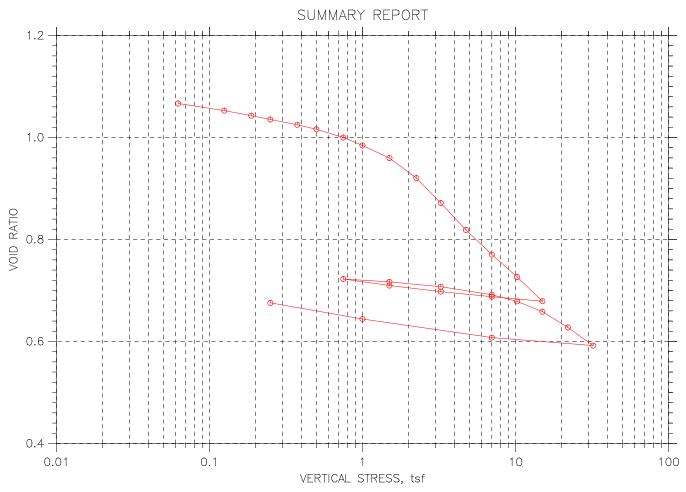
Project No.: 16716.00 Checked By: km Depth: 64-66 ft Elevation: 104.8 ft

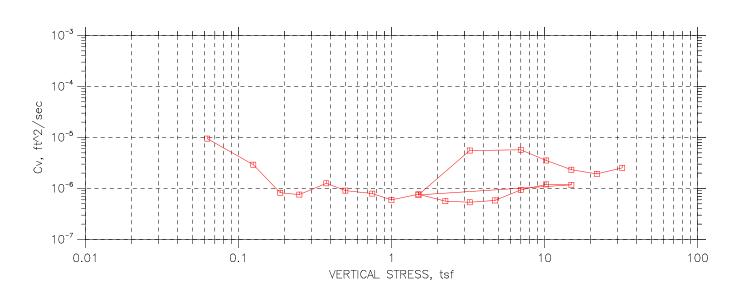
Soil Description: Clayey Silt Remarks: OCR = 1.35; Cc = 0.3174; C'c = 0.1636; Cr = 0.0463

Measured Specific Gravity: 2.73 Liquid Limit: 26
Initial Void Ratio: 0.94 Plastic Limit: 18
Final Void Ratio: 0.57 Plasticity Index: 8

Initial Height: 1.08 in Specimen Diameter: 2.48 in

	Before Consolidation		After Conso	lidation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	35	RING	RING	89
Wt. Container + Wet Soil, gm	189.74	418	408.21	197.28
Wt. Container + Dry Soil, gm	159.84	382.98	382.98	172.44
Wt. Container, gm	64.69	262.29	262.29	53.59
Wt. Dry Soil, gm	95.15	120.69	120.69	118.85
Water Content, %	31.42	29.01	20.90	20.90
Void Ratio		0.94	0.57	
Degree of Saturation, %		84.09	99.96	
Dry Unit Weight, pcf		87.764	108.5	


Project: Jock Stream Bridge Boring No.: BB-MJS-101 Sample No.: 2U


Test No.: 212274

Location: Monmouth Project No.: 16716.00
Tested By: Brian Fogg Checked By: km
Test Date: 7/27/09 Depth: 64-66 ft
Sample Type: Shelby Tube Elevation: 104.8 ft

Soil Description: Clayey Silt Remarks: OCR = 1.35; Cc = 0.3174; C'c = 0.1636; Cr = 0.0463

	Applied	Final	Void	Strain		Fitting		cient of Cons	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		%	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.00634	0.930	0.59	0.2	0.2	2.66e-005	4.02e-005	3.20e-005
2	0.125	0.01108	0.922	1.03	1.6	0.0	3.98e-006	0.00e+000	3.98e-006
3	0.188	0.01445	0.916	1.34	3.4	2.9	1.94e-006	2.26e-006	2.09e-006
4	0.25	0.01764	0.910	1.63	4.9	0.0	1.33e-006	0.00e+000	1.33e-006
5	0.375	0.02351	0.900	2.18	2.3	2.3	2.81e-006	2.75e-006	2.78e-006
6	0.5	0.02894	0.890	2.68	4.5	3.3	1.40e-006	1.93e-006	1.62e-006
7	0.75	0.0381	0.873	3.53	3.6	1.9	1.75e-006	3.24e-006	2.27e-006
8	1	0.04543	0.860	4.21	4.6	3.7	1.33e-006	1.66e-006	1.48e-006
9	1.5	0.0579	0.838	5.36	3.6	3.6	1.70e-006	1.66e-006	1.68e-006
10	2.25	0.07442	0.808	6.89	5.0	4.1	1.18e-006	1.45e-006	1.30e-006
11	3.25	0.09569	0.770	8.86	7.1	7.0	7.92e-007	8.07e-007	8.00e-007
12	4.75	0.1251	0.717	11.58	9.2	7.5	5.86e-007	7.13e-007	6.43e-007
13	7	0.1567	0.660	14.50	7.0	7.3	7.15e-007	6.93e-007	7.04e-007
14	10.3	0.1841	0.611	17.04	4.8	4.3	9.95e-007	1.11e-006	1.05e-006
15	15	0.2102	0.564	19.46	3.4	3.4	1.32e-006	1.32e-006	1.32e-006
16	7	0.2061	0.571	19.08	0.2	0.0	2.82e-005	0.00e+000	2.82e-005
17	3.25	0.1994	0.583	18.46	0.7	0.0	6.20e-006	0.00e+000	6.20e-006
18	1.5	0.1911	0.598	17.69	1.8	2.4	2.55e-006	1.90e-006	2.18e-006
19	0.75	0.1831	0.613	16.95	4.8	4.3	9.42e-007	1.07e-006	1.00e-006
20	1.5	0.1861	0.607	17.22	1.3	0.0	3.57e-006	0.00e+000	3.57e-006
21	3.25	0.1938	0.593	17.94	1.2	0.0	3.76e-006	0.00e+000	3.76e-006
22	7	0.2038	0.576	18.86	1.0	0.0	4.31e-006	0.00e+000	4.31e-006
23	10.3	0.2106	0.563	19.49	1.2	1.3	3.70e-006	3.32e-006	3.50e-006
24	15	0.2212	0.544	20.48	1.6	1.6	2.65e-006	2.64e-006	2.64e-006
25	22	0.2376	0.515	22.00	2.1	2.1	2.01e-006	1.98e-006	1.99e-006
26	32.3	0.2582	0.478	23.91	1.7	2.5	2.36e-006	1.56e-006	1.88e-006
27	7	0.2476	0.497	22.92	0.1	0.0	3.14e-005	0.00e+000	3.14e-005
28	1	0.2248	0.538	20.81	2.4	2.8	1.70e-006	1.45e-006	1.57e-006
29	0.25	0.2064	0.571	19.11	18.9	0.0	2.25e-007	0.00e+000	2.25e-007

Project: Jock Stream Bridge	Location: Monmouth	Project No.: 16716.00
Boring No.: BB-MJS-101	Tested By: Brian Fogg	Checked By: km
Sample No.: 3U	Test Date: 8/3/09	Depth: 75.5-77.5FT
Test No.: 212301	Sample Type: Shelby Tube	Elevation: 93.3 ft
Description: Clayey Silt		
Remarks: OCR = 1.22; Cc = 0.3	043; C'c = 0.1429; Cr = 0.0374	

Project: Jock Stream Bridge Boring No.: BB-MJS-101 Sample No.: 3U

Test No.: 212301

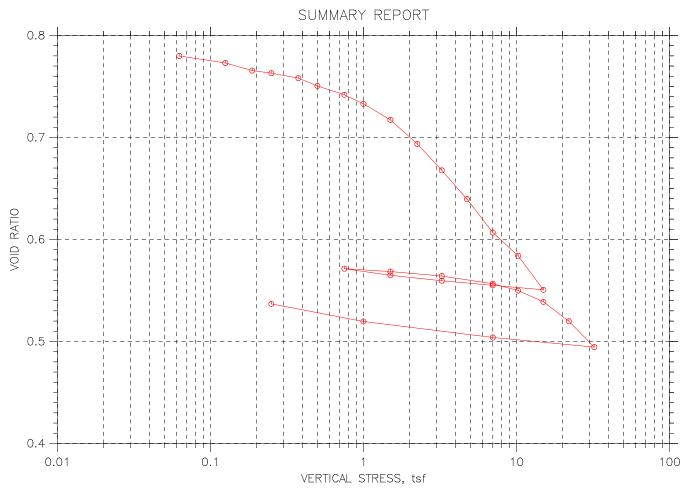
Location: Monmouth Tested By: Brian Fogg
Test Date: 8/3/09
Sample Type: Shelby Tube

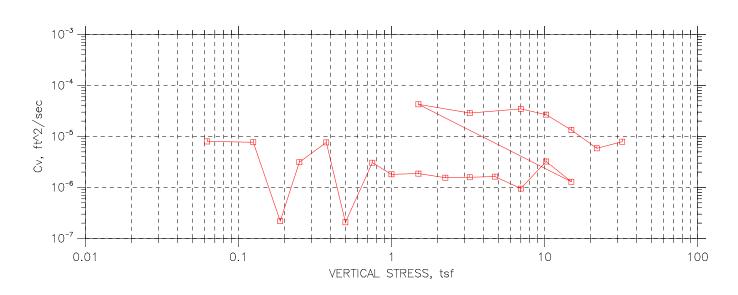
Project No.: 16716.00 Checked By: km Depth: 75.5-77.5FT Elevation: 93.3 ft

Soil Description: Clayey Silt Remarks: OCR = 1.22; Cc = 0.3043; C'c = 0.1429; Cr = 0.0374

Measured Specific Gravity: 2.76 Liquid Limit: 35
Initial Void Ratio: 1.13 Plastic Limit: 21
Final Void Ratio: 0.68 Plasticity Index: 14

Initial Height: 1.05 in Specimen Diameter: 2.48 in


	Before Consolidation		After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	203	RING	RING	203
Wt. Container + Wet Soil, gm	181.57	410.92	396.16	197.96
Wt. Container + Dry Soil, gm	149.87	369.76	369.76	171.59
Wt. Container, gm	64.17	262.23	262.23	64.17
Wt. Dry Soil, gm	85.7	107.53	107.53	107.42
Water Content, %	36.99	38.27	24.55	24.55
Void Ratio		1.13	0.68	
Degree of Saturation, %		93.31	100.27	
Dry Unit Weight, pcf		80.812	102.82	


Project: Jock Stream Bridge Boring No.: BB-MJS-101

Sample No.: 3U Test No.: 212301 Location: Monmouth Project No.: 16716.00
Tested By: Brian Fogg Checked By: km
Test Date: 8/3/09 Depth: 75.5-77.5FT
Sample Type: Shelby Tube Elevation: 93.3 ft

Soil Description: Clayey Silt Remarks: OCR = 1.22; Cc = 0.3043; C'c = 0.1429; Cr = 0.0374

	Applied	Final	Void	Strain		itting		cient of Cons	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		૪	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.0321	1.067	3.07	0.7	0.5	8.37e-006	1.10e-005	9.51e-006
2	0.125	0.03896	1.053	3.73	2.0	0.0	2.93e-006	0.00e+000	2.93e-006
3	0.188	0.04381	1.043	4.19	6.7	7.3	8.56e-007	7.91e-007	8.22e-007
4	0.25	0.04745	1.035	4.54	7.5	7.6	7.63e-007	7.55e-007	7.59e-007
5	0.375	0.05256	1.025	5.03	4.8	4.2	1.18e-006	1.35e-006	1.26e-006
6	0.5	0.05693	1.016	5.45	6.6	5.7	8.47e-007	9.76e-007	9.07e-007
7	0.75	0.06477	1.000	6.20	5.2	8.8	1.07e-006	6.30e-007	7.93e-007
8	1	0.0724	0.984	6.93	9.1	0.0	5.97e-007	0.00e+000	5.97e-007
9	1.5	0.08452	0.960	8.09	6.9	0.0	7.68e-007	0.00e+000	7.68e-007
10	2.25	0.1038	0.920	9.93	9.2	0.0	5.63e-007	0.00e+000	5.63e-007
11	3.25	0.1278	0.871	12.23	9.2	0.0	5.36e-007	0.00e+000	5.36e-007
12	4.75	0.1537	0.819	14.70	7.0	9.0	6.66e-007	5.18e-007	5.82e-007
13	7	0.1773	0.770	16.96	4.7	4.7	9.46e-007	9.32e-007	9.39e-007
14	10.3	0.1988	0.727	19.02	3.5	3.5	1.21e-006	1.19e-006	1.20e-006
15	15	0.2222	0.679	21.26	3.4	3.3	1.16e-006	1.19e-006	1.18e-006
16	7	0.2178	0.688	20.84	0.1	0.0	2.64e-005	0.00e+000	2.64e-005
17	3.25	0.2129	0.698	20.37	0.5	0.2	8.36e-006	2.09e-005	1.19e-005
18	1.5	0.2071	0.710	19.81	1.5	2.1	2.64e-006	1.86e-006	2.18e-006
19	0.75	0.2008	0.723	19.21	4.7	4.0	8.66e-007	1.02e-006	9.35e-007
20	1.5	0.2036	0.717	19.48	5.4	0.0	7.46e-007	0.00e+000	7.46e-007
21	3.25	0.2082	0.707	19.92	0.7	0.0	5.54e-006	0.00e+000	5.54e-006
22	7	0.216	0.692	20.66	0.7	0.6	5.31e-006	6.21e-006	5.73e-006
23	10.3	0.2223	0.679	21.27	1.2	1.0	3.38e-006	3.72e-006	3.54e-006
24	15	0.2322	0.658	22.21	1.7	1.6	2.22e-006	2.45e-006	2.33e-006
25	22	0.2474	0.627	23.67	2.0	1.9	1.88e-006	1.98e-006	1.93e-006
26	32.3	0.2648	0.592	25.34	1.2	1.6	2.99e-006	2.20e-006	2.53e-006
27	7	0.2571	0.608	24.60	0.0	0.0	1.70e-004	0.00e+000	1.70e-004
28	1	0.2392	0.644	22.89	2.3	2.3	1.56e-006	1.59e-006	1.58e-006
29	0.25	0.2237	0.676	21.41	14.0	0.0	2.70e-007	0.00e+000	2.70e-007

Project: Jock Stream Bridge	Location: Monmouth	Project No.: 16716.00			
Boring No.: BB-MJS-102	Tested By: Brian Fogg	Checked By: km			
Sample No.: 2U	Test Date: 8/5/09	Depth: 65-67 ft			
Test No.: 212318	Sample Type: Shelby Tube	Elevation: 103.4 ft			
Description: Clayey Silt					
Remarks: OCR =1.51; Cc = 0.1831; C'c = 0.0974; Cr = 0.179					

Project: Jock Stream Bridge Location: Monmouth Project No.: 16716.00
Boring No.: BB-MJS-102 Tested By: Brian Fogg Checked By: km
Sample No.: 2U Test Date: 8/5/09 Depth: 65-67 ft
Test No.: 212318 Sample Type: Shelby Tube Elevation: 103.4 ft

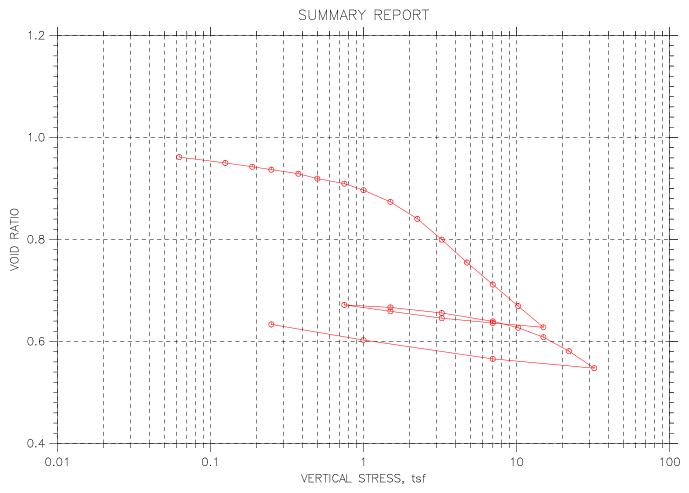
Soil Description: Clayey Silt

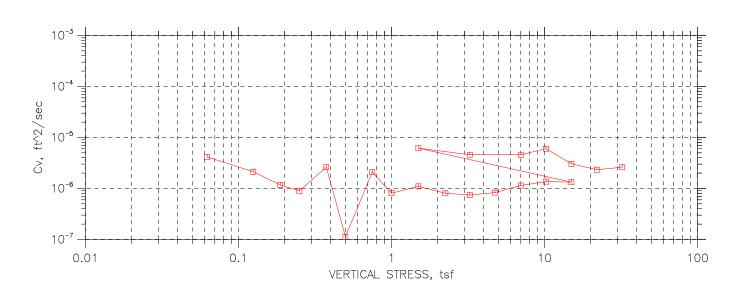
Remarks: OCR =1.51; Cc = 0.1831; C'c = 0.0974; Cr = 0.179

Measured Specific Gravity: 2.87 Liquid Limit: 23 Initial Height: 1.03 in Initial Void Ratio: 0.88 Plastic Limit: 18 Specimen Diameter: 2.48 in Final Void Ratio: 0.54 Plasticity Index: 5

	Before Consolidation		After Conso	lidation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	231	RING	RING	89
Wt. Container + Wet Soil, gm	221.17	421.24	410.52	201.78
Wt. Container + Dry Soil, gm	190.91	387.13	387.13	178.41
Wt. Container, gm	66.66	262.3	262.3	53.66
Wt. Dry Soil, gm	124.25	124.83	124.83	124.75
Water Content, %	24.35	27.32	18.73	18.73
Void Ratio		0.88	0.54	
Degree of Saturation, %		88.78	100.00	
Dry Unit Weight, pcf		95.06	116.4	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


Project: Jock Stream Bridge Boring No.: BB-MJS-102 Sample No.: 2U


Test No.: 212318

Location: Monmouth Project No.: 16716.00
Tested By: Brian Fogg Checked By: km
Test Date: 8/5/09 Depth: 65-67 ft
Sample Type: Shelby Tube Elevation: 103.4 ft

Soil Description: Clayey Silt Remarks: OCR =1.51; Cc = 0.1831; C'c = 0.0974; Cr = 0.179

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		8	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.05587	0.780	5.42	0.8	0.7	7.65e-006	8.34e-006	7.98e-006
2	0.125	0.0596	0.773	5.78	0.7	0.0	7.71e-006	0.00e+000	7.71e-006
3	0.188	0.06374	0.766	6.18	24.5	0.0	2.19e-007	0.00e+000	2.19e-007
4	0.25	0.0651	0.763	6.31	1.4	2.0	3.79e-006	2.66e-006	3.13e-006
5	0.375	0.06777	0.758	6.57	0.7	0.0	7.66e-006	0.00e+000	7.66e-006
6	0.5	0.07199	0.750	6.98	25.5	0.0	2.07e-007	0.00e+000	2.07e-007
7	0.75	0.07673	0.742	7.44	1.6	1.8	3.27e-006	2.88e-006	3.06e-006
8	1	0.08157	0.733	7.91	3.2	2.5	1.59e-006	2.09e-006	1.81e-006
9	1.5	0.0902	0.717	8.74	3.0	2.5	1.71e-006	2.07e-006	1.87e-006
10	2.25	0.1032	0.694	10.00	4.5	1.9	1.11e-006	2.60e-006	1.55e-006
11	3.25	0.1173	0.668	11.37	3.4	2.7	1.41e-006	1.80e-006	1.58e-006
12	4.75	0.1328	0.640	12.87	3.4	2.3	1.38e-006	2.01e-006	1.63e-006
13	7	0.1507	0.607	14.61	4.8	0.0	9.50e-007	0.00e+000	9.50e-007
14	10.3	0.1632	0.584	15.83	1.1	1.6	3.89e-006	2.75e-006	3.23e-006
15	15	0.1815	0.551	17.60	3.3	0.0	1.30e-006	0.00e+000	1.30e-006
16	7	0.1791	0.555	17.36	0.0	0.0	4.71e-004	0.00e+000	4.71e-004
17	3.25	0.1767	0.559	17.13	0.0	0.0	1.12e-004	0.00e+000	1.12e-004
18	1.5	0.1737	0.565	16.84	0.5	0.0	9.28e-006	0.00e+000	9.28e-006
19	0.75	0.1702	0.571	16.50	1.0	0.8	4.07e-006	4.99e-006	4.48e-006
20	1.5	0.1717	0.569	16.65	0.1	0.1	3.08e-005	6.92e-005	4.26e-005
21	3.25	0.1741	0.564	16.88	0.2	0.1	2.74e-005	3.03e-005	2.88e-005
22	7	0.1783	0.557	17.28	0.2	0.1	2.62e-005	5.14e-005	3.47e-005
23	10.3	0.1819	0.550	17.64	0.2	0.1	1.90e-005	4.59e-005	2.68e-005
24	15	0.188	0.539	18.23	0.5	0.2	8.86e-006	2.69e-005	1.33e-005
25	22	0.1984	0.520	19.24	1.1	0.3	3.69e-006	1.42e-005	5.86e-006
26	32.3	0.2123	0.495	20.58	0.7	0.3	5.52e-006	1.39e-005	7.91e-006
27	7	0.2071	0.504	20.08	0.0	0.0	2.25e-004	0.00e+000	2.25e-004
28	1	0.1986	0.520	19.25	0.5	0.0	8.34e-006	0.00e+000	8.34e-006
29	0.25	0.1891	0.537	18.33	3.5	3.5	1.16e-006	1.14e-006	1.15e-006

Project: Jock Stream Bridge	Location: Monmouth	Project No.: 16716.00				
Boring No.: BB-MJS-102	Tested By: Brian Fogg	Checked By: km				
Sample No.: 3U	Test Date: 8/5/09	Depth: 75-77 ft				
Test No.: 212319	Sample Type: Shelby Tube	Elevation: 93.4 ft				
Description: Clayey Silt						
Remarks: OCR = 1.28; Cc = 0.2588; C'c = 0.1307; Cr = 0.0419						

CONSOLIDATION TEST DATA

Project No.: 16716.00 Checked By: km Project: Jock Stream Bridge Location: Monmouth Boring No.: BB-MJS-102 Tested By: Brian Fogg Sample No.: 3U Depth: 75-77 ft Test Date: 8/5/09 Test No.: 212319 Sample Type: Shelby Tube Elevation: 93.4 ft

Soil Description: Clayey Silt Remarks: OCR = 1.28; Cc = 0.2588; C'c = 0.1307; Cr = 0.0419

Measured Specific Gravity: 2.67 Initial Height: 1.03 in Liquid Limit: 29 Initial Void Ratio: 0.98 Plastic Limit: 19 Specimen Diameter: 2.48 in Final Void Ratio: 0.63 Plasticity Index: 10

	Before Consolidation		After Consolidation		
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	40	RING	RING	47	
Wt. Container + Wet Soil, gm	274.57	412.36	399.39	188.11	
Wt. Container + Dry Soil, gm	225.67	373.11	373.11	161.9	
Wt. Container, gm	61.62	262.23	262.23	51.29	
Wt. Dry Soil, gm	164.05	110.88	110.88	110.61	
Water Content, %	29.81	35.39	23.70	23.70	
Void Ratio		0.98	0.63		
Degree of Saturation, %		96.90	100.00		
Dry Unit Weight, pcf		84.438	102.16		

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

CONSOLIDATION TEST DATA

Project: Jock Stream Bridge Boring No.: BB-MJS-102 Sample No.: 3U

Test No.: 212319

Location: Monmouth Project No.: 16716.00
Tested By: Brian Fogg Checked By: km
Test Date: 8/5/09 Depth: 75-77 ft
Sample Type: Shelby Tube Elevation: 93.4 ft

Soil Description: Clayey Silt Remarks: OCR = 1.28; Cc = 0.2588; C'c = 0.1307; Cr = 0.0419

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		용	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.007709	0.962	0.75	1.5	0.0	4.15e-006	0.00e+000	4.15e-006
2	0.125	0.01371	0.950	1.33	3.4	2.2	1.76e-006	2.71e-006	2.13e-006
3	0.188	0.0176	0.943	1.71	6.9	3.1	8.52e-007	1.88e-006	1.17e-006
4	0.25	0.02058	0.937	2.00	6.8	6.3	8.67e-007	9.23e-007	8.94e-007
5	0.375	0.02478	0.929	2.40	2.2	0.0	2.62e-006	0.00e+000	2.62e-006
6	0.5	0.02975	0.919	2.88	50.7	0.0	1.14e-007	0.00e+000	1.14e-007
7	0.75	0.03491	0.909	3.38	2.3	3.1	2.48e-006	1.81e-006	2.09e-006
8	1	0.04157	0.897	4.03	7.0	0.0	8.06e-007	0.00e+000	8.06e-007
9	1.5	0.05354	0.874	5.19	4.6	5.5	1.21e-006	1.00e-006	1.10e-006
10	2.25	0.07092	0.840	6.88	6.9	6.4	7.76e-007	8.40e-007	8.07e-007
11	3.25	0.09224	0.800	8.94	6.9	6.9	7.44e-007	7.41e-007	7.43e-007
12	4.75	0.1157	0.755	11.21	6.9	4.9	7.12e-007	9.96e-007	8.30e-007
13	7	0.1381	0.712	13.39	4.6	3.6	1.03e-006	1.29e-006	1.14e-006
14	10.3	0.1602	0.669	15.53	3.4	3.1	1.31e-006	1.42e-006	1.36e-006
15	15	0.1819	0.628	17.64	3.5	2.8	1.20e-006	1.49e-006	1.33e-006
16	7	0.1775	0.636	17.21	0.1	0.0	4.22e-005	0.00e+000	4.22e-005
17	3.25	0.1726	0.646	16.74	0.5	0.2	8.94e-006	2.16e-005	1.26e-005
18	1.5	0.1656	0.659	16.05	1.7	2.2	2.43e-006	1.89e-006	2.13e-006
19	0.75	0.1591	0.672	15.42	3.6	3.3	1.21e-006	1.32e-006	1.26e-006
20	1.5	0.1615	0.667	15.66	0.7	0.0	6.15e-006	0.00e+000	6.15e-006
21	3.25	0.1673	0.656	16.22	0.9	0.0	4.59e-006	0.00e+000	4.59e-006
22	7	0.1758	0.639	17.04	0.9	0.0	4.59e-006	0.00e+000	4.59e-006
23	10.3	0.1824	0.627	17.68	0.7	0.7	5.78e-006	6.24e-006	6.00e-006
24	15	0.192	0.608	18.62	1.3	1.4	3.13e-006	2.96e-006	3.04e-006
25	22	0.2063	0.581	20.00	1.6	1.8	2.48e-006	2.20e-006	2.33e-006
26	32.3	0.2237	0.548	21.69	1.4	1.5	2.75e-006	2.48e-006	2.61e-006
27	7	0.2142	0.566	20.77	0.0	0.0	1.86e-004	0.00e+000	1.86e-004
28	1	0.195	0.603	18.90	2.0	2.3	1.92e-006	1.67e-006	1.79e-006
29	0.25	0.179	0.633	17.35	16.9	0.0	2.40e-007	0.00e+000	2.40e-007

Appendix C

Calculations

LIQUIDITY INDEX (LI):

natural water content - Plastic Limit Liquidity Index = ---Liquid Limit -Plastic Limit

wc is close to LL

Soil is normally consolidated Soil is some-to-heavily over consolidated wc is close to PL

Soil is over consolidated wc is intermediate

Soil is on the verge of being a viscous liquid when remolded wc is greater than LL

Sample	WC	LL	PL	PI	11	
BB-MJS-101/6D	26.2	23	18	5	1.64	Viscous liquid when remolded
BB-MJS-101/10D	27.8	23	17	6	1.80	Viscous liquid when remolded
BB-MJS-101/1U	33.4	25	18	7	2.20	Viscous liquid when remolded
BB-MJS-101/2U	30.7	26	18	8	1.59	Viscous liquid when remolded
BB-MJS-101/12D	26.3	24	16	8	1.29	Viscous liquid when remolded
BB-MJS-101/3U	35.6	35	21	14	1.04	Normally consolidated
BB-MJS-101/13D	28.9	31	19	12	0.83	Over consolidated
BB-MJS-102/8D	29.0	25	18	7	1.57	Viscous liquid when remolded
BB-MJS-102/9D	24.7	22	17	5	1.54	Viscous liquid when remolded
BB-MJS-102/10D	28.8	22	17	5	2.36	Viscous liquid when remolded
BB-MJS-102/12D	27.6	26	18	8	1.20	Viscous liquid when remolded
BB-MJS-102/2U	28.7	23	18	5	2.14	Viscous liquid when remolded
BB-MJS-102/3U	31.6	29	19	10	1.26	Viscous liquid when remolded
BB-MJS-102/13D	28.7	30	20	10	0.87	Over consolidated
BB-MJS-102/14D	26.6	36	21	15	0.37	Over consolidated
BB-MJS-102/15D	26.1	30	19	11	0.65	Over consolidated

CONSOLIDATION TEST RESULTS

BB-MJS-101 Sample 1U

 $tsf := g \cdot \left(\frac{ton}{ft^2}\right)$

Determine in-situ over burden stress:

Sample depth = 54.0 ft below ground surface

Groundwater table at 9.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.0$

Clay is overlain by:

8.5 ft of sand at 125 pcf 34.5 ft of silt at 115 pcf 11.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} &:= 8.5 \cdot ft \cdot 125 \cdot pcf + 0.5 \cdot ft \cdot (125 - 62.4) \cdot pcf + 34 \cdot ft \cdot (115 - 62.4) \cdot pcf + 11 \cdot ft \cdot (115 - 62.4) \cdot pcf \\ \sigma'_{vo} &= 3461 \cdot psf \quad \text{or} \quad \sigma'_{vo} = 1.73 \cdot tsf \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_p := 2.6 \cdot tsf$

Determine OCR: $OCR := \frac{\sigma'_p}{\sigma'_{vo}}$ OCR = 1.5025 over consolidated

Determine Cc:

from consolidation curve and lab results:

 $p_1 := 3.25 \cdot tsf \qquad e_1 := 0.813 \qquad p_2 := 7 \cdot tsf \qquad e_2 := 0.695$ $C_c := \frac{e_1 - e_2}{\log \left(\frac{p_2}{p_1}\right)} \qquad C_c = 0.3541$

Determine C'c:

from consolidation curve and lab results:

 $\varepsilon_1 := \frac{9.24}{100} \qquad \qquad \varepsilon_2 := \frac{15.13}{100} \qquad \text{strain is given in percent}$ $C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.1768 \quad \text{or:} \qquad C'_c := \frac{C_c}{1 + e_0} \qquad \qquad C'_c = 0.1771$

Determine Cr:

BB-MJS-101 Sample 2U

Determine in-situ over burden stress:

Sample depth = 64.0 ft below ground surface

Groundwater table at 9.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.94$

Clay is overlain by:

8.5 ft of sand at 125 pcf 34.5 ft of silt at 115 pcf 21.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} &:= 8.5 \cdot ft \cdot 125 \cdot pcf + 0.5 \cdot ft \cdot (125 - 62.4) \cdot pcf + 34 \cdot ft \cdot (115 - 62.4) \cdot pcf + 21 \cdot ft \cdot (115 - 62.4) \cdot pcf \\ \sigma'_{vo} &= 3987 \cdot psf \quad \text{or} \quad \sigma'_{vo} = 1.993 \cdot tsf \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_p := 2.7 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{VO}}$$
 $OCR = 1.3545$ over consolidated

$$OCR = 1.3545$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf$$
 $e_1 := 0.770$

$$p_2 := 10.3 \cdot tsf$$
 $e_2 := 0.611$

$$C_c := \frac{e_1 - e_2}{log\left(\frac{p_2}{p_1}\right)} \qquad \qquad C_c = 0.3174$$

$$C_c = 0.3174$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{8.86}{100}$$
 $\varepsilon_2 :=$

$$\varepsilon_2 := \frac{17.04}{100}$$
 strain is given in percent

$$C'_{c} := \frac{\varepsilon_{2} - \varepsilon_{1}}{\log \left(\frac{p_{2}}{p_{1}}\right)} \qquad \qquad C'_{c} = 0.1633 \quad \text{or:} \qquad C'_{c} := \frac{C_{c}}{1 + e_{0}} \qquad \qquad C'_{c} = 0.1636$$

$$C'_{c} = 0.1633$$
 or:

$$C'c := \frac{C_c}{1 + e_0}$$

$$C'c = 0.1636$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.607$

$$e_1 := 0.607$$

$$p_2 := 7 \cdot tsf$$
 $e_2 := 0.576$

$$e_2 := 0.576$$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0463$$

$$C_r = 0.0463$$

BB-MJS-101 Sample 3U

Determine in-situ over burden stress:

Sample depth = 75.5 ft below ground surface

Groundwater table at 9.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.13$

Clay is overlain by:

8.5 ft of sand at 125 pcf 34.5 ft of silt at 115 pcf 32.5 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} &:= 8.5 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 0.5 \cdot \text{ft} \cdot (125 - 62.4) \cdot \text{pcf} + 34 \cdot \text{ft} \cdot (115 - 62.4) \cdot \text{pcf} + 32.5 \cdot \text{ft} \cdot (115 - 62.4) \cdot \text{pcf} \\ \sigma'_{vo} &= 4592 \cdot \text{psf} \quad \text{or} \quad \sigma'_{vo} &= 2.296 \cdot \text{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_p := 2.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.2196$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf$$
 $e_1 := 0.92$

$$e_1 := 0.92$$

$$p_2 := 7 \cdot tsf$$

$$e_2 := 0.77$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.3043$

$$C_c = 0.3043$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{9.93}{100}$$

$$\varepsilon_2 := \frac{16.96}{100}$$

 $\varepsilon_1 \coloneqq \frac{9.93}{100} \hspace{1cm} \varepsilon_2 \coloneqq \frac{16.96}{100} \hspace{1cm} \text{strain is given in percent}$

$$C'_{c} := \frac{\varepsilon_{2} - \varepsilon_{1}}{\log\left(\frac{p_{2}}{p_{1}}\right)}$$

$$C'_{c} = 0.1426 \text{ or: } C'_{c} := \frac{C_{c}}{1 + e_{0}}$$

$$C'_{c} = 0.1429$$

$$C'_{c} = 0.1426$$
 or

$$C'c := \frac{C_c}{1 + e_0}$$

$$C'c = 0.1429$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf \qquad \qquad e_1 := 0.717 \qquad \qquad p_2 := 7 \cdot tsf \qquad \qquad e_2 := 0.692$$

$$e_1 := 0.717$$

$$p_2 := 7 \cdot tst$$

$$e_2 := 0.692$$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0374$$

$$C_r = 0.0374$$

BB-MJS-102 Sample 2U

Determine in-situ over burden stress:

Sample depth = 65 ft below ground surface

Groundwater table at 5.5 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.88$

Clay is overlain by:

8 ft of sand at 125 pcf 51 ft of silt at 115 pcf 6 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} &:= 5.5 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} + 2.5 \cdot \mathrm{ft} \cdot (125 - 62.4) \cdot \mathrm{pcf} + 51 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} + 6 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} &= 3842 \cdot \mathrm{psf} \quad \text{or} \quad \sigma'_{vo} = 1.921 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_p := 2.9 \cdot tsf$

Determine OCR: $OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.5096 \qquad over consolidated$

Determine Cc:

from consolidation curve and lab results:

 $p_1 := 3.25 \cdot tsf$ $e_1 := 0.668$ $p_2 := 7 \cdot tsf$ $e_2 := 0.607$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.1831$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{11.37}{100} \qquad \qquad \varepsilon_2 := \frac{14.61}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.0972 \quad \text{or:} \qquad C'_c := \frac{C_c}{1 + e_0} \qquad \qquad C'_c = 0.0974$$

Determine Cr:

from consolidation curve and lab results:

 $p_1 := 1.5 \cdot tsf$ $e_1 := 0.569$ $p_2 := 7 \cdot tsf$ $e_2 := 0.557$

 $C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)} \qquad \qquad C_r = 0.0179$

BB-MJS-102 Sample 3U

Determine in-situ over burden stress:

Sample depth = 75 ft below ground surface

Groundwater table at 5.5 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.98$

Clay is overlain by:

8 ft of sand at 125 pcf 51 ft of silt at 115 pcf 16 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 5.5 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} + 2.5 \cdot \mathrm{ft} \cdot (125 - 62.4) \cdot \mathrm{pcf} + 51 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} + 16 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} = 4368 \cdot \mathrm{psf} \quad \text{or} \quad \sigma'_{vo} = 2.184 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_{p} := 2.8 \cdot \text{tsf}$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.282$ over consolidated

$$OCR = 1.282$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf$$
 $e_1 := 0.84$

$$p_2 := 10.3 \cdot tsf$$
 $e_2 := 0.669$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)} \qquad C_c = 0.2588$$

$$C_c = 0.2588$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{6.88}{100}$$

$$\varepsilon_2 := \frac{15.53}{100}$$

$$\frac{88}{00} \qquad \qquad \varepsilon_2 := \frac{15.53}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.1309 \quad \text{or:} \qquad C'_c := \frac{C_c}{1 + e_0} \qquad \qquad C'_c = 0.1307$$

$$C'_{c} = 0.1309$$
 or

$$C'c := \frac{C_c}{1 + e_0}$$

$$C'c = 0.1307$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$

$$e_1 := 0.667$$

$$p_2 := 7 \cdot tsf$$
 $e_2 := 0.639$

$$e_2 := 0.639$$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0419$$

$$C_r = 0.0419$$

Abutment Foundations: Integral driven H-piles

Axial Structural Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at the following piles:

HP 12 x 53

HP 12 x 74

Note: All matrices set up in this order

HP 14 x 73

HP 14 x 89

HP 14 x 117

H-pile Steel area:

$$A_{s} := \begin{pmatrix} 15.5 \\ 21.8 \\ 21.4 \\ 26.1 \end{pmatrix} \cdot \text{in}^{2}$$

yield strength: $F_y := 50 \cdot ksi$

eq. 6.9.4.1-3

Nominal Compressive Resistance $P_n = 0.66^{\lambda *} F_v^* A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

$$\lambda = (KI/r_s\pi)2*F_v/E$$

as I unbraced length is 0 $\lambda := 0$

$$P_{n} := 0.66^{\lambda} \cdot F_{y} \cdot A_{s} \qquad P_{n} = \begin{pmatrix} 775 \\ 1090 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot kip \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 12 x 74} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Resistance:

Strength Limit State Axial Resistance factor for piles in compression under severe driving conditions:

From Article 6.5.4.2 $\phi_c := 0.5$

Factored Compressive Resistance:

eq. 6.9.2.1-1
$$P_f := \phi_c \cdot P_n$$

$$P_{f} = \begin{pmatrix} 388 \\ 545 \\ 535 \\ 653 \\ 860 \end{pmatrix} \cdot \text{kip}$$

HP 12 x 53 HP 12 x 74 HP 14 x 73 HP 14 x 89 HP 14 x 117

Strength Limit State

SERVICE/EXTREME LIMIT STATES:

Service and Extreme Limit States Axial Resistance

Nominal Compressive Resistance $P_n = 0.66^{\lambda *} F_v^* A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

 $\lambda = (KI/r_s\pi)2*F_v/E$ eq. 6.9.4.1-3

 $\lambda := 0$ as I unbraced length is 0

$$P_n := 0.66^{\lambda} \cdot F_y \cdot A_s \qquad P_n = \begin{pmatrix} 775 \\ 1090 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 12 x 74} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

 $\phi := 1.0$

Factored Compressive Resistance for Service and Extreme Limit States:

eq. 6.9.2.1-1 $P_f := \varphi \cdot P_n$ $P_f = \begin{pmatrix} 775 \\ 1090 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot kip$ $HP \ 12 \ x \ 53 \\ HP \ 14 \ x \ 73 \\ HP \ 14 \ x \ 89 \\ HP \ 14 \ x \ 117$ Service/Extreme Limit States

Jock Stream Bridge Monmouth, Maine PIN 16716.00 By: Kate Maguire September 2009 Checked by: <u>LK 11/2009</u>

Geotechnical Resistance

Assume piles will be friction piles driven through overlying silt and clayey silt to required resistance in the glacial till.

For Side Friction in clay - for the α method LRFD code specifies:

Tomlinson 1987; Skempton 1951 (LRFD Table 10.5.5.2.3-1) $\phi_{sideinclay} := 0.35$

For Side Friction in cohesionless soils LRFD code specifies:

Nordlund (Hannigan et al., 2005) (LRFD Table 10.5.5.2.3-1) ϕ sideinsand := 0.45

For End Bearing in cohesionless soils LRFD code specifies:

Thurman (Hannigan et al., 2005) (LRFD Table 10.5.5.2.3-1 $\varphi_{endbearinginsand} := 0.45$

References:

AASHTO LRFD Bridge Design Specifications 4th Edition 2007

2. Design and Construction of Driven Pile Foundations Reference Manual - Volume 1

Axial Geotechnical Resistance of H-piles

Look at these piles:

HP 12 x 53

HP 12 x 74

HP 14 x 73 Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

Use FHWA Driven software to determine capacity.

Driven uses the α -method to calculate the pile capacity versus depth for the silt-clay soil profile (Tomlinson).

Driven uses Nordlund method to calculate the side resistance in the sand and basal till deposit.

Driven uses Thurman method to calculate the point resistance in the basal till.

Determine the % Driving strength loss for each layer:

% Driving strength loss = 1 - [1/setup factor]

Setup Factor found in Section 9.10.1.1 Table 9-19 of Reference 2

Layer 1 = silt

Setup factor = 1.0 Therefore, % driving loss = 0%

Layer 2 = clayey silt

Setup factor = 1.0 Therefore, % driving loss = 0%

Layer 3 = glacial till (sand)

Setup factor = 1.0 Therefore, % driving loss = 0%

Determine undrained shear strength for Layers 1 & 2 from field testing:

Layer 1 - Average undrained shear strength = 450 psf

Layer 2 - Average undrained shear strength = 650 psf

Choose graph for cohesive soil layer properties:

Use "Piles driven through soft clay" (Tomlinson 1980)

This correlates to Figure 9.19 graph c of Reference 2.

PILE INFORMATION

Pile Type: H Pile - HP12X53 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 9.00 ft - Driving/Restrike 9.00 ft

- Ultimate: 9.00 ft
Ultimate Considerations: - Local Scour: 0.00 ft
- Long Term Scour: 0.00 ft

- Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	37.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.44 Kips	0.45 Kips	
9.01 ft	8.57 Kips	0.44 Kips	9.00 Kips	
18.01 ft	24.94 Kips	0.44 Kips	25.38 Kips	
27.01 ft	40.44 Kips	0.44 Kips	40.88 Kips	
36.01 ft	53.92 Kips	0.44 Kips	54.36 Kips	
42.99 ft	64.37 Kips	0.44 Kips	64.81 Kips	
43.01 ft	64.40 Kips	0.63 Kips	65.03 Kips	
52.01 ft	75.57 Kips	0.63 Kips	76.20 Kips	
61.01 ft	98.71 Kips	0.63 Kips	99.34 Kips	
70.01 ft	120.51 Kips	0.63 Kips	121.14 Kips	
79.01 ft	139.21 Kips	0.63 Kips	139.84 Kips	
82.99 ft	147.48 Kips	0.63 Kips	148.11 Kips	
83.01 ft	(147.60 Kips)	16.32 Kips	163.91 Kips	
92.01 ft	242.50 Kips	16.32 Kips	258.82 Kips	
101.01 ft	347.66 Kips	16.32 Kips	363.98 Kips	
110.01 ft	463.09 Kips	16.32 Kips	479.41 Kips	
119.01 ft	588.78 Kips	16.32 Kips	605.10 Kips	Cahaaianlaaa
119.99 ft	(603.09 Kips)	16.32 Kips	619.40 Kips	Lohesionless

10 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay12x53} := 147.6 \cdot kip \cdot \varphi_{sideinclay}$ $R_{sideinclay12x53} = 52 \cdot kip$

Side Friction in sand: $R_{sideins and 12x53} := (603.09 \cdot kip - 147.6 \cdot kip) \cdot \phi_{sideins and}$ $R_{sideins and 12x53} = 205 \cdot kip$

 $\label{eq:control_control_control} \text{Total Geotechnical Capacity:} \quad R_{str_geotech12x53} \coloneqq R_{sideinclay12x53} + R_{sideinsand12x53} + R_{endbearing12x53}$

 $R_{\text{str_geotech12x53}} = 264 \cdot \text{kip}$

Service Limit State: $R_{\text{ser_geotech12x53}} := 619 \cdot \text{kip}$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1274.DVN

Project Name: Monmouth Project Client: Jock Stream Bridge Computed By: km

Project Manager: JWentworth

Project Date: 11/02/2009

PILE INFORMATION

Pile Type: H Pile - HP12X74 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

 Water Table Depth At Time Of:
 - Drilling:
 9.00 ft

 - Driving/Restrike
 9.00 ft

 - Ultimate:
 9.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	37.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.61 Kips	0.62 Kips	
9.01 ft	8.75 Kips	0.61 Kips	9.37 Kips	
18.01 ft	25.24 Kips	0.61 Kips	25.85 Kips	
27.01 ft	41.33 Kips	0.61 Kips	41.94 Kips	
36.01 ft	55.10 Kips	0.61 Kips	55.71 Kips	
42.99 ft	65.78 Kips	0.61 Kips	66.39 Kips	
43.01 ft	65.81 Kips	0.89 Kips	66.69 Kips	
52.01 ft	77.22 Kips	0.89 Kips	78.11 Kips	
61.01 ft	100.48 Kips	0.89 Kips	101.36 Kips	
70.01 ft	123.14 Kips	0.89 Kips	124.02 Kips	
79.01 ft	142.24 Kips	0.89 Kips	143.13 Kips	
82.99 ft	150.69 Kips	0.89 Kips	151.58 Kips	
83.01 ft	(150.83 Kips)	22.95 Kips	173.79 Kips	
92.01 ft	264.22 Kips	22.95 Kips	287.17 Kips	
101.01 ft	389.87 Kips	22.95 Kips	412.82 Kips	
110.01 ft	527.78 Kips	22.95 Kips	550.73 Kips	
119.01 ft	677.95 Kips	22.95 Kips	700.90 Kips	Cohesionless
119.99 ft	(695.04 Kips)	22.95 Kips	717.99 Kips	00110310111033

10 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay12x74} := 150.83 \cdot kip \cdot \varphi_{sideinclay}$ $R_{sideinclay12x74} = 53 \cdot kip$

Side Friction in sand: $R_{sideins and 12x74} := (695.04 \cdot kip - 150.83 \cdot kip) \cdot \varphi_{sideins and}$ $R_{sideins and 12x74} = 245 \cdot kip$

End Bearing: $R_{endbearing12x74} := 22.95 \cdot kip \cdot \varphi_{endbearinginsand}$ $R_{endbearing12x74} = 10 \cdot kip$

 $\label{eq:control_control_control} \textbf{Total Geotechnical Capacity:} \quad R_{str_geotech12x74} \coloneqq R_{sideinclay12x74} + R_{sideinsand12x74} + R_{endbearing12x74} \\$

 $R_{\text{str geotech}12x74} = 308 \cdot \text{kip}$

Service Limit State: $R_{\text{ser_geotech12x74}} := 718 \cdot \text{kip}$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1473.DVN

Project Name: Monmouth Project Date: 11/02/2009

Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth

PILE INFORMATION

Pile Type: H Pile - HP14X73 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

Ultimate Considerations:

ULTIMATE CONSIDERATIONS

- Drilling: - Driving/Restrike Water Table Depth At Time Of:

- Soft Soil:

9.00 ft 9.00 ft 9.00 ft Ultimate: 0.00 ft - Local Scour: - Long Term Scour:

106.00 ft

ULTIMATE PROFILE

Thickness Driving Loss Unit Weight Ultimate Curve Туре Strength Layer Cohesive 43.00 ft 115.00 pcf 450.00 psf T-80 Clay 0.00% T-80 Clay Cohesive 40.00 ft 0.00% 115.00 pcf 650.00 psf 2 3 Cohesionless 37.00 ft 0.00% 125.00 pcf 36.0/36.0 Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	,
0.01 ft	0.01 Kips	0.60 Kips	0.61 Kips	
9.01 ft	10.14 Kips	0.60 Kips	10.74 Kips	
18.01 ft	25.88 Kips	0.60 Kips	26.48 Kips	
27.01 ft	47.86 Kips	0.60 Kips	48.47 Kips	
36.01 ft	63.81 Kips	0.60 Kips	64.41 Kips	
42.99 ft	76.18 Kips	0.60 Kips	76.78 Kips	
43.01 ft	76.21 Kips	0.87 Kips	77.08 Kips	
52.01 ft	89.43 Kips	0.87 Kips	90.30 Kips	
61.01 ft	111.24 Kips	0.87 Kips	112.11 Kips	
70.01 ft	142.61 Kips	0.87 Kips	143.48 Kips	
79.01 ft	164.74 Kips	0.87 Kips	165.61 Kips	
82.99 ft	174.53 Kips	0.87 Kips	175.40 Kips	
83.01 ft	(174.69 Kips)	22.53 Kips	197.22 Kips	
92.01 ft	304.84 Kips	22.53 Kips	327.37 Kips	
101.01 ft	449.07 Kips	22.53 Kips	471.60 Kips	
110.01 ft	607.37 Kips	22.53 Kips	629.90 Kips	Cohes
119.01 ft	779.74 Kips	22.53 Kips	802.27 Kips	001163
119.99 ft	(799.36 Kips)	22.53 Kips	821.89 Kips	

Cohesionless

10 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay14x73} := 174.69 \cdot kip \cdot \phi_{sideinclay}$ $R_{\text{sideinclay}14x73} = 61 \cdot \text{kip}$

Side Friction in sand: $R_{sideins and 14x73} := (799.36 \cdot kip - 174.69 \cdot kip) \cdot \phi_{sideins and}$ $R_{sideins and 14x73} = 281 \cdot kip$

End Bearing: $R_{endbearing14x73} := 22.53 \cdot kip \cdot \phi_{endbearingins}$ $R_{endbearing14x73} = 10 \cdot kip$

 $\label{eq:control_control_control_control} \textbf{Total Geotechnical Capacity:} \quad R_{str_geotech14x73} \coloneqq R_{sideinclay14x73} + R_{sideinsand14x73} + R_{endbearing14x73}$

 $R_{\text{str_geotech14x73}} = 352 \cdot \text{kip}$

Service Limit State: $R_{\text{ser_geotech14x73}} := 822 \cdot \text{kip}$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1489.DVN

Project Name: Monmouth Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth Project Date: 11/02/2009

PILE INFORMATION

Pile Type: H Pile - HP14X89 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:

- Drilling: 9.00 ft - Driving/Restrike 9.00 ft - Ultimate: 9.00 ft - Local Scour: 0.00 ft - Long Term Scour: 0.00 ft - Soft Soil: 106.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	37.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

DRIVING - SUMMART OF CAPACITIES									
Depth	Skin Friction	End Bearing	Total Capacity						
0.01 ft	0.01 Kips	0.73 Kips	0.75 Kips						
9.01 ft	10.25 Kips	0.73 Kips	10.99 Kips						
18.01 ft	26.05 Kips	0.73 Kips	26.78 Kips						
27.01 ft	48.42 Kips	0.73 Kips	49.16 Kips						
36.01 ft	64.56 Kips	0.73 Kips	65.29 Kips						
42.99 ft	77.07 Kips	0.73 Kips	77.81 Kips						
43.01 ft	77.11 Kips	1.06 Kips	78.17 Kips						
52.01 ft	90.48 Kips	1.06 Kips	91.54 Kips						
61.01 ft	112.34 Kips	1.06 Kips	113.40 Kips						
70.01 ft	144.28 Kips	1.06 Kips	145.34 Kips						
79.01 ft	166.67 Kips	1.06 Kips	167.73 Kips						
82.99 ft	176.57 Kips	1.06 Kips	177.63 Kips						
83.01 ft	(176.75 Kips)	27.48 Kips	204.22 Kips						
92.01 ft	321.35 Kips	27.48 Kips	348.83 Kips						
101.01 ft	481.59 Kips	27.48 Kips	509.07 Kips						
110.01 ft	657.47 Kips	27.48 Kips	684.94 Kips						
119.01 ft	848.98 Kips	27.48 Kips	876.46 Kips	01 1					
119.99 ft	(870.78 Kips)	27.48 Kips	898.26 Kips	Lohesionless					

10 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay14x89} := 176.75 \cdot kip \cdot \phi_{sideinclay}$ $R_{sideinclay14x89} = 62 \cdot kip$

Side Friction in sand: $R_{sideins and 14x89} := (870.78 \cdot kip - 176.75 \cdot kip) \cdot \varphi_{sideins and}$ $R_{sideins and 14x89} = 312 \cdot kip$

End Bearing: $R_{endbearing14x89} := 27.48 \cdot kip \cdot \varphi_{endbearinginsand}$ $R_{endbearing14x89} = 12 \cdot kip$

 $\begin{tabular}{ll} \textbf{Total Geotechnical Capacity:} & R_{str_geotech14x89} \coloneqq R_{sideinclay14x89} + R_{sideinsand14x89} + R_{endbearing14x89} \\ \end{tabular}$

 $R_{str_geotech14x89} = 387 \cdot kip$

Service Limit State: $R_{\text{ser_geotech14x89}} := 898 \cdot \text{kip}$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON14117.DVN

Project Name: Monmouth

Project Client: Jock Stream Bridge

Computed By: km Project Manager: JWentworth

Project Date: 11/02/2009

PILE INFORMATION

Pile Type: H Pile - HP14X117 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:

- Drilling: - Driving/Restrike - Ultimate: - Local Scour:

- Long Term Scour: - Soft Soil:

9.00 ft 9.00 ft 9.00 ft 106.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	37.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.97 Kips	0.98 Kips	
9.01 ft	10.46 Kips	0.97 Kips	11.43 Kips	
18.01 ft	26.34 Kips	0.97 Kips	27.31 Kips	
27.01 ft	49.39 Kips	0.97 Kips	50.36 Kips	
36.01 ft	65.85 Kips	0.97 Kips	66.82 Kips	
42.99 ft	78.61 Kips	0.97 Kips	79.58 Kips	
43.01 ft	78.65 Kips	1.40 Kips	80.04 Kips	
52.01 ft	92.29 Kips	1.40 Kips	93.68 Kips	
61.01 ft	114.24 Kips	1.40 Kips	115.64 Kips	
70.01 ft	147.16 Kips	1.40 Kips	148.56 Kips	
79.01 ft	170.00 Kips	1.40 Kips	171.40 Kips	
82.99 ft	180.10 Kips	1.40 Kips	181.49 Kips	
83.01 ft	(180.30 Kips)	36.22 Kips	216.51 Kips	
92.01 ft	346.62 Kips	36.22 Kips	382.84 Kips	-
101.01 ft	530.94 Kips	36.22 Kips	567.15 Kips	
110.01 ft	733.24 Kips	36.22 Kips	769.46 Kips	_
119.01 ft	953.53 Kips	36.22 Kips	989.74 Kips	Ľ.
119.99 ft	(978.60 Kips)	36.22 Kips	1014.82 Kips	U

Cohesionless

10 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay14x117} := 180.3 \cdot kip \cdot \phi_{sideinclay}$

 $R_{sideinclay14x117} = 63 \cdot kip$

Side Friction in sand:

 $R_{sideins and 14x117} := (978.6 \cdot kip - 180.3 \cdot kip) \cdot \phi_{sideins and}$

 $R_{sideins and 14x117} = 359 \cdot kip$

End Bearing:

 $R_{endbearing14x117} := 36.22 \cdot kip \cdot \phi_{endbearinginsand}$

 $R_{endbearing14x117} = 16 \cdot kip$

 $\begin{tabular}{ll} \textbf{Total Geotechnical Capacity:} & R_{str_geotech14x117} \coloneqq R_{side inclay14x117} + R_{side ins and 14x117} + R_{end bearing14x117} \\ \end{tabular}$

 $R_{\text{str geotech}14x117} = 439 \cdot \text{kip}$

Service Limit State:

 $R_{\text{ser_geotech14x117}} := 1015 \cdot \text{kip}$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1253.DVN

Project Name: Monmouth Project Date: 11/02/2009

Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth

PILE INFORMATION

Pile Type: H Pile - HP12X53 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 9.00 ft - Driving/Restrike 9.00 ft

- Driving/Restrike 9.00 ft - Ultimate: 9.00 ft

 Ultimate Considerations:
 - Local Scour:
 0.00 ft

 - Long Term Scour:
 0.00 ft

 - Soft Soil:
 106.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	47.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.44 Kips	0.45 Kips	
9.01 ft	8.57 Kips	0.44 Kips	9.00 Kips	
18.01 ft	24.94 Kips	0.44 Kips	25.38 Kips	
27.01 ft	40.44 Kips	0.44 Kips	40.88 Kips	
36.01 ft	53.92 Kips	0.44 Kips	54.36 Kips	
42.99 ft	64.37 Kips	0.44 Kips	64.81 Kips	
43.01 ft	64.40 Kips	0.63 Kips	65.03 Kips	
52.01 ft	75.57 Kips	0.63 Kips	76.20 Kips	
61.01 ft	98.71 Kips	0.63 Kips	99.34 Kips	
70.01 ft	120.51 Kips	0.63 Kips	121.14 Kips	
79.01 ft	139.21 Kips	0.63 Kips	139.84 Kips	
82.99 ft	147.48 Kips	0.63 Kips	148.11 Kips	
83.01 ft	(147.60 Kips)	16.32 Kips	163.91 Kips	
92.01 ft	242.50 Kips	16.32 Kips	258.82 Kips	
101.01 ft	347.66 Kips	16.32 Kips	363.98 Kips	
110.01 ft	463.09 Kips	16.32 Kips	479.41 Kips	
119.01 ft	588.78 Kips	16.32 Kips	605.10 Kips	01 . 1
128.01 ft	724.73 Kips	16.32 Kips	741.05 Kips	Lohesionless
129.99 ft	(756.02 Kips)	16.32 Kips	772.34 Kips	

20 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay12x53a} := 147.6 \cdot kip \cdot \varphi_{sideinclay}$ $R_{sideinclay12x53a} = 52 \cdot kip$

 $\text{Side Friction in sand:} \quad R_{side in sand 12x53a} := (756.02 \cdot kip - 147.6 \cdot kip) \cdot \varphi_{side in sand} \\ \quad R_{side in sand 12x53a} = 274 \cdot kip$

End Bearing: $R_{endbearing12x53a} := 16.32 \cdot kip \cdot \varphi_{endbearinginsand}$ $R_{endbearing12x53a} = 7 \cdot kip$

 $\begin{tabular}{ll} \textbf{Total Geotechnical Capacity:} & R_{str_geotech12x53a} := R_{sideinclay12x53a} + R_{sideinsand12x53a} + R_{endbearing12x53a} \\ \end{tabular}$

 $R_{str_geotech12x53a} = 333 \cdot kip$

Service Limit State: $R_{ser_geotech12x53a} := 772 \cdot kip$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1274.DVN

Project Name: Monmouth

Project Date: 11/02/2009

Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth

PILE INFORMATION

Pile Type: H Pile - HP12X74 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

9.00 ft 9.00 ft - Drilling: - Driving/Restrike - Ultimate:

Ultimate Considerations:

9.00 ft - Local Scour: 0.00 ft - Long Term Scour: - Soft Soil: 106.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
2	Cohesive Cohesive	43.00 ft 40.00 ft	0.00% 0.00%	115.00 pcf 115.00 pcf	450.00 psf 650.00 psf	T-80 Clay T-80 Clay
3	Cohesionless	47.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

DRIVING SOMMARY OF CAFACITES								
Depth	Skin Friction	End Bearing	Total Capacity					
0.01 ft	0.01 Kips	0.61 Kips	0.62 Kips					
9.01 ft	8.75 Kips	0.61 Kips	9.37 Kips					
18.01 ft	25.24 Kips	0.61 Kips	25.85 Kips					
27.01 ft	41.33 Kips	0.61 Kips	41.94 Kips					
36.01 ft	55.10 Kips	0.61 Kips	55.71 Kips					
42.99 ft	65.78 Kips	0.61 Kips	66.39 Kips					
43.01 ft	65.81 Kips	0.89 Kips	66.69 Kips					
52.01 ft	77.22 Kips	0.89 Kips	78.11 Kips					
61.01 ft	100.48 Kips	0.89 Kips	101.36 Kips					
70.01 ft	123.14 Kips	0.89 Kips	124.02 Kips					
79.01 ft	142.24 Kips	0.89 Kips	143.13 Kips					
82.99 ft	150.69 Kips	0.89 Kips	151.58 Kips					
83.01 ft	(150.83 Kips)	22.95 Kips	173.79 Kips					
92.01 ft	264.22 Kips	22.95 Kips	287.17 Kips					
101.01 ft	389.87 Kips	22.95 Kips	412.82 Kips					
110.01 ft	527.78 Kips	22.95 Kips	550.73 Kips					
119.01 ft	677.95 Kips	22.95 Kips	700.90 Kips					
128.01 ft	840.38 Kips	22.95 Kips	863.33 Kips	Cohesionless				
129.99 ft	(877.76 Kips)	22.95 Kips	900.71 Kips	00110310111033				

20 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay12x74a} := 150.83 \cdot kip \cdot \phi_{sideinclay}$

 $R_{\text{sideinclay}12x74a} = 53 \cdot \text{kip}$

Side Friction in sand: $R_{sideins and 12x74a} := (877.76 \cdot kip - 150.83 \cdot kip) \cdot \phi_{sideins and}$

 $R_{sideins and 12x74a} = 327 \cdot kip$

End Bearing:

 $R_{endbearing12x74a} \coloneqq 22.95 \cdot kip \cdot \varphi_{endbearingins}$

 $R_{endbearing12x74a} = 10 \cdot kip$

 $\begin{tabular}{ll} \textbf{Total Geotechnical Capacity:} & R_{str_geotech12x74a} := R_{sideinclay12x74a} + R_{sideinsand12x74a} + R_{endbearing12x74a} \\ \end{tabular}$

 $R_{\text{str_geotech12x74a}} = 390 \cdot \text{kip}$

Service Limit State:

 $R_{ser_geotech12x74a} := 901 \cdot kip$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1473.DVN

Project Name: Monmouth

Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth

Project Date: 11/02/2009

PILE INFORMATION

Pile Type: H Pile - HP14X73 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

- Drilling: - Driving/Restrike 9.00 ft 9.00 ft - Ultimate:

Ultimate Considerations:

9.00 ft - Local Scour: - Long Term Scour: 0.00 ft - Soft Soil: 106.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	47.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

	Depth	Skin Friction	End Bearing	Total Capacity
	0.01 ft	0.01 Kips	0.60 Kips	0.61 Kips
	9.01 ft	10.14 Kips	0.60 Kips	10.74 Kips
	18.01 ft	25.88 Kips	0.60 Kips	26.48 Kips
	27.01 ft	47.86 Kips	0.60 Kips	48.47 Kips
	36.01 ft	63.81 Kips	0.60 Kips	64.41 Kips
	42.99 ft	76.18 Kips	0.60 Kips	76.78 Kips
	43.01 ft	76.21 Kips	0.87 Kips	77.08 Kips
	52.01 ft	89.43 Kips	0.87 Kips	90.30 Kips
	61.01 ft	111.24 Kips	0.87 Kips	112.11 Kips
	70.01 ft	142.61 Kips	0.87 Kips	143.48 Kips
	79.01 ft	164.74 Kips	0.87 Kips	165.61 Kips
	82.99 ft	174.53 Kips	0.87 Kips	175.40 Kips
	83.01 ft	(174.69 Kips)	22.53 Kips	197.22 Kips
-	92.01 ft	304.84 Kips	22.53 Kips	327.37 Kips
	101.01 ft	449.07 Kips	22.53 Kips	471.60 Kips
	110.01 ft	607.37 Kips	22.53 Kips	629.90 Kips
	119.01 ft	779.74 Kips	22.53 Kips	802.27 Kips Cohesionless
	128.01 ft	966.20 Kips	22.53 Kips	000.70 Tape
	129.99 ft	(1009.11 Kips)	22.53 Kips	1031.64 Kips

20 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay14x73a} := 174.69 \cdot kip \cdot \phi_{sideinclay}$ $R_{\text{sideinclay}14x73a} = 61 \cdot \text{kip}$

Side Friction in sand: $R_{side in sand 14x73a} := (1009.11 \cdot kip - 174.69 \cdot kip) \cdot \phi_{side in sand}$ $R_{sideins and 14x73a} = 375 \cdot kip$

End Bearing: $R_{endbearing14x73a} := 22.53 \cdot kip \cdot \phi_{endbearingins}$ $R_{endbearing14x73a} = 10 \cdot kip$

 $\begin{tabular}{ll} \textbf{Total Geotechnical Capacity:} & R_{str_geotech14x73a} := R_{sideinclay14x73a} + R_{sideinsand14x73a} + R_{endbearing14x73a} \\ \end{tabular}$

 $R_{str_geotech14x73a} = 447 \cdot kip$

Service Limit State: $R_{ser_geotech14x73a} := 1032 \cdot kip$

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON1489.DVN

Project Name: Monmouth

Project Client: Jock Stream Bridge

Computed By: km

Project Manager: JWentworth

PILE INFORMATION

Pile Type: H Pile - HP14X89 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilli

- Drilling: 9.00 ft - Driving/Restrike 9.00 ft - Ultimate: 9.00 ft - Local Scour: 0.00 ft

Project Date: 11/02/2009

Ultimate Considerations:

- Local Scour: 0.00 ft - Long Term Scour: 0.00 ft - Soft Soil: 106.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	47.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.73 Kips	0.75 Kips	
9.01 ft	10.25 Kips	0.73 Kips	10.99 Kips	
18.01 ft	26.05 Kips	0.73 Kips	26.78 Kips	
27.01 ft	48.42 Kips	0.73 Kips	49.16 Kips	
36.01 ft	64.56 Kips	0.73 Kips	65.29 Kips	
42.99 ft	77.07 Kips	0.73 Kips	77.81 Kips	
43.01 ft	77.11 Kips	1.06 Kips	78.17 Kips	
52.01 ft	90.48 Kips	1.06 Kips	91.54 Kips	
61.01 ft	112.34 Kips	1.06 Kips	113.40 Kips	
70.01 ft	144.28 Kips	1.06 Kips	145.34 Kips	
79.01 ft	166.67 Kips	1.06 Kips	167.73 Kips	
82.99 ft	176.57 Kips	1.06 Kips	177.63 Kips	
83.01 ft	(176.75 Kips)	27.48 Kips	204.22 Kips	
92.01 ft	321.35 Kips	27.48 Kips	348.83 Kips	
101.01 ft	481.59 Kips	27.48 Kips	509.07 Kips	
110.01 ft	657.47 Kips	27.48 Kips	684.94 Kips	
119.01 ft	848.98 Kips	27.48 Kips	876.46 Kips	
128.01 ft	1056.14 Kips	27.48 Kips	1083.61 Kips	Lohesionless
129.99 ft	(1103.81 Kips)	27.48 Kips	1131.29 Kips	00.10010111000

20 foot penetration into glacial till

Strength Limit State:

Side Friction in silt and clay: $R_{sideinclay14x89a} := 176.75 \cdot kip \cdot \phi_{sideinclay}$ $R_{sideinclay14x89a} = 62 \cdot kip$

Side Friction in sand: $R_{sideins and 14x89a} := (1103.81 \cdot kip - 176.75 \cdot kip) \cdot \varphi_{sideins and 14x89a} = 417 \cdot kip$

End Bearing: $R_{endbearing14x89a} := 27.48 \cdot kip \cdot \varphi_{endbearinginsand}$ $R_{endbearing14x89a} = 12 \cdot kip$

 $\label{eq:control_control_control} \textbf{Total Geotechnical Capacity:} \quad R_{str_geotech14x89a} := R_{sideinclay14x89a} + R_{sideinsand14x89a} + R_{endbearing14x89a}$

Service Limit State: $R_{ser_geotech14x89a} := 1131 \cdot kip$ $R_{str_geotech14x89a} = 491 \cdot kip$

By: Kate Maguire September 2009 Checked by: LK 11/2009

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\MON14117.DVN

Project Name: Monmouth Project Date: 11/02/2009

Project Name: Monificati Project Client: Jock Stream Bridge Computed By: km Project Manager: JWentworth

PILE INFORMATION

Pile Type: H Pile - HP14X117 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 9.00 ft - Driving/Restrike 9.00 ft

- Driving/Restrike 9.00 ft - Ultimate: 9.00 ft - Local Scour: 0.00 ft

 Ultimate Considerations:
 - Local Scour:
 0.00 ft

 - Long Term Scour:
 0.00 ft

 - Soft Soil:
 106.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	43.00 ft	0.00%	115.00 pcf	450.00 psf	T-80 Clay
2	Cohesive	40.00 ft	0.00%	115.00 pcf	650.00 psf	T-80 Clay
3	Cohesionless	47.00 ft	0.00%	125.00 pcf	36.0/36.0	Nordlund

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity	
0.01 ft	0.01 Kips	0.97 Kips	0.98 Kips	
9.01 ft	10.46 Kips	0.97 Kips	11.43 Kips	
18.01 ft	26.34 Kips	0.97 Kips	27.31 Kips	
27.01 ft	49.39 Kips	0.97 Kips	50.36 Kips	
36.01 ft	65.85 Kips	0.97 Kips	66.82 Kips	
42.99 ft	78.61 Kips	0.97 Kips	79.58 Kips	
43.01 ft	78.65 Kips	1.40 Kips	80.04 Kips	
52.01 ft	92.29 Kips	1.40 Kips	93.68 Kips	
61.01 ft	114.24 Kips	1.40 Kips	115.64 Kips	
70.01 ft	147.16 Kips	1.40 Kips	148.56 Kips	
79.01 ft	170.00 Kips	1.40 Kips	171.40 Kips	
82.99 ft	180.10 Kips	1.40 Kips	181.49 Kips	
83.01 ft	(180.30 Kips)	36.22 Kips	216.51 Kips	
92.01 ft	346.62 Kips	36.22 Kips	382.84 Kips	
101.01 ft	530.94 Kips	36.22 Kips	567.15 Kips	
110.01 ft	733.24 Kips	36.22 Kips	769.46 Kips	
119.01 ft	953.53 Kips	36.22 Kips	989.74 Kips	Cohesionless
128.01 ft	1191.80 Kips	36.22 Kips	1228.02 Kips	00116310111633
129.99 ft	(1246.64 Kips)	36.22 Kips	1282.85 Kips	

20 foot penetration into glacial till

Strength Limit State:

Side Friction in sand: $R_{sideins and 14x 117a} := (1246.64 \cdot kip - 180.3 \cdot kip) \cdot \varphi_{sideins and}$ $R_{sideins and 14x 117a} = 480 \cdot kip$

End Bearing: $R_{endbearing14x117a} := 36.22 \cdot kip \cdot \phi_{endbearinginsand}$ $R_{endbearing14x117a} = 16 \cdot kip$

 $\label{eq:control_control_control_control} \textbf{Total Geotechnical Capacity:} \quad R_{str_geotech14x117a} := R_{sideinclay14x117a} + R_{sideinsand14x117a} + R_{endbearing14x117a} \\ \\ = R_{sideinclay14x117a} + R_{endbearing14x117a} \\ \\ = R_{endbearing14x117a} + R_{endbearing14x117a} + R_{endbearing14x117a} \\ \\ = R_{endbearing14x117a} +

 $R_{\text{str_geotech14x117a}} = 559 \cdot \text{kip}$

Service Limit State: $R_{ser_geotech14x117a} := 1283 \cdot kip$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Nominal Geotechnical Resistance, Rstr_geotech:

10 foot penetration into glacial till

R_{str_geotech_10} :=
$$\begin{pmatrix} 264 \\ 308 \\ 352 \\ 387 \\ 439 \end{pmatrix} \cdot \text{kip} \quad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 12 x 74} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{pmatrix}$$

20 foot penetration into glacial till

$$R_{str_geotech_20} := \begin{pmatrix} 333 \\ 390 \\ 447 \\ 491 \\ 559 \end{pmatrix} \cdot \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 12 x 74} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

10 foot penetration into glacial till

20 foot penetration into glacial till

$$R_{servext_geotech_20} := \begin{pmatrix} 772\\901\\1032\\1131\\1283 \end{pmatrix} \cdot \begin{array}{l} \text{HP 12 x 53}\\ \text{HP 12 x 74}\\ \text{HP 14 x 73}\\ \text{HP 14 x 89}\\ \text{HP 14 x 117} \\ \end{array}$$

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension σ_{dr} = 0.9 x ϕ_{da} x f_v (eq. 10.7.8-1)

 $f_v := 50 \cdot ksi \qquad \text{yield strength of steel}$

 $\phi_{da} := 1.0$ resistance factor from LRFD Table 10.5.5.2.3-1 Pile Drivability Analysis, Steel piles

 $\sigma_{dr} \coloneqq 0.9 \cdot \varphi_{da} \cdot f_v \qquad \qquad \sigma_{dr} = 45 \cdot ksi \qquad \qquad \text{driving stresses in pile cannot exceed 45 ksi}$

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dyn} :

$$\phi_{dyn} := 0.65$$

Table 10.5.5.2.3-3 requires no less than 3 to 4 piles dynamically tested for a site with low to medium site variability. There will probably only be 4 to 5 piles total at each abutment. Only 1 or 2 piles will be tested - one per abutment will be requested. Therefore, reduce the ϕ by 20%

 $\phi_{dyn.reduced} := 0.65 \cdot 0.8$

 $\phi_{\text{dyn.reduced}} = 0.52$

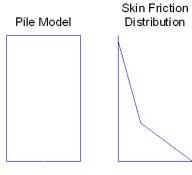
Pile Size = 12×53 Assume Contractor will use a Delmag D 36-32 hammer to install 12×53 piles

State of Maine Dept. Of Transportation 02-Nov-2009 Monmouth Jock Stream Drivability 12x53 GRLWEAP (TM) Version 2003					
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
645.0	37.02	3.86	14.0	7.82	50.65
646.0	37.03	3.87	14.6	7.83	50.56
647.0	37.07	3.88	14.8	7.82	50.63
648.0	37.08	3.88	15.4	7.83	50.54
649.0	37.13	3.89	15.2	7.84	50.74
650.0	37.13	3.89	16.3	7.83	50.52
651.0	37.18	3.90	16.1	7.84	50.70
652.0	37.20	3.91	16.8	7.85	50.64
653.0	37.23	3.92	17.1	7.84	50.69
654.0	37.25	3.92	17.8	7.85	50.63

DELMAG D 36-32

Limit blow count to 15 blows per inch

Strength Limit State:


 $R_{dr_12x53_factored} \coloneqq 647 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_{12x53}_{factored}} = 336 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{12x53}_servext} := 647 \cdot kip$

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	•
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 110.00 15.50	ft

Res. Shaft = 90 % (Proportional)

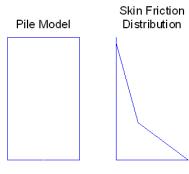
Pile Size = 12×74 Assume Contractor will use a Delmag D 36-32 hammer to install 12×74 piles

	e Dept. Of Transp ck Sttream Drivab	Gl	02-Nov-2009 GRLWEAP (TM) Version 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
770.0 771.0 772.0 773.0 774.0 775.0 776.0 777.0 778.0	33.48 33.46 33.50 33.56 33.56 33.53 33.55 33.60 33.58	2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94	14.4 14.7 15.0 14.7 15.1 15.4 15.7 15.4 16.0	7.84 7.84 7.85 7.85 7.86 7.86 7.86 7.86 7.88	45.70 45.67 45.65 45.84 45.80 45.76 45.74 45.94 45.83

Limit blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_12x74_factored} \coloneqq 772 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_{12x74_factored}} = 401 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{12x74_servext}} := 772 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 110.00 21.80	ft

Res. Shaft = 90 % (Proportional)

Pile Size = 14×73

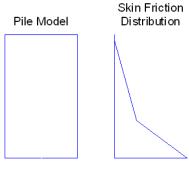
Assume Contractor will use a Delmag D 46-32 hammer to install 14 x 73 piles

State of Maine Dept. Of Transportation Monmouth Jock Stream Drivability 14x73				02-Nov-2009 GRLWEAP (TM) Version 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
915.0 916.0 917.0 918.0 919.0 920.0 921.0 922.0 923.0 924.0	38.79 38.75 38.79 38.84 38.78 38.76 38.79 38.83 38.82 38.82	2.07 2.05 2.04 2.07 2.06 2.05 2.04 2.06 2.05 2.05 2.08	14.2 14.6 14.9 14.6 15.1 15.4 15.8 15.5 16.0 15.6	8.91 8.92 8.92 8.91 8.91 8.92 8.93 8.93 8.94	66.73 66.62 66.53 66.84 66.66 66.60 66.52 66.75 66.66 66.93	

Limit blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_14x73_factored} \coloneqq 917 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_14x73_{factored}} = 477 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x73_servext} := 917 \cdot kip$

DELMAG D 46-32

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	•
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 110.00 21.40	ft

Res. Shaft = 90 % (Proportional)

Pile Size = 14 x 89

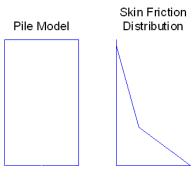
Assume Contractor will use a Delmag D 46-32 hammer to install 14 x 89 piles

	ie Dept. Of Transp ock Stream Drivabi		GF	02-Nov-2009 GRLWEAP (TM) Version 2003			
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft		
1030.0 1031.0 1032.0 1033.0 1034.0 1035.0 1036.0 (1037.0 1038.0 1039.0	37.69 37.70 37.72 37.72 37.74 37.75 37.75 37.70 37.74	2.25 2.26 2.26 2.27 2.27 2.28 2.28 2.29 2.28	14.1 14.3 14.1 14.2 14.4 14.6 14.8 15.0	9.02 9.03 9.04 9.04 9.04 9.05 9.03 9.04 9.04	63.60 63.56 63.80 63.79 63.73 63.69 63.66 63.51		

DELMAG D 46-32

Limit blow count to 15 blows per inch

Strength Limit State:


 $R_{dr_14x89_factored} \coloneqq 1037 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_14x89_{factored}} = 539 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x89_servext} := 1037 \cdot kip$

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	•
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 110.00 26.10	ft

Res. Shaft = 90 % (Proportional)

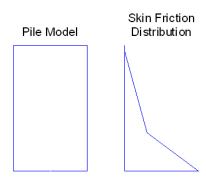
Pile Size = 14×117 Assume Contractor will use a Delmag D 46-32 hammer to install 14×117 piles

02-Nov-2009 /EAP (TM) Version 2003		State of Maine Dept. Of Transportation Monmouth Jock Stream Drivability 14x117				
Stroke Energy feet kips-ft		Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips	
9.24 60.03 9.24 59.99 9.24 59.93 9.25 59.88 9.25 59.86 9.25 60.16 9.25 60.16 9.26 60.10 9.26 60.08 9.26 60.04		14.5 14.6 14.9 15.0 14.7 14.8 15.0 15.1	2.71 2.70 2.69 2.68 2.67 2.70 2.70 2.68 2.68 2.67	36.28 36.30 36.30 36.31 36.32 36.36 36.36 36.36 36.36	1240.0 1241.0 1242.0 1243.0 1244.0 1245.0 1246.0 (1247.0 1248.0 1249.0	

Limit driving stress to 45 ksi

Strength Limit State:

 $R_{dr_14x117_factored} \coloneqq 1247 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_14x117_factored} = 648 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x117_servext} := 1247 \cdot kip$

DELMAG D 46-32

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	•
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 110.00 34.40	ft

Res. Shaft = 90 % (Proportional)

Abutment and Wingwall Passive and Active Earth Pressure:

For cases where interface friction is considered (for gravity structures) use Coulomb Theory

Coulomb Theory - Passive Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.6 pg 3-8

Angle of back face of wall to the horizontal: $\alpha := 90 \cdot deg$

Angle of internal soil friction: $\phi := 32 \cdot \deg$

Friction angle between fill and wall:

From LRFD Table 3.11.5.3-1 range from 17 to 22 $\delta := 20 \cdot deg$

Angle of backfill to the horizontal $\beta := 0 \cdot \deg$

$$\begin{split} K_p \coloneqq \frac{\sin(\alpha - \varphi)^2}{\sin(\alpha)^2 \cdot \sin(\alpha + \delta) \cdot \left(1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi + \beta)}{\sin(\alpha + \delta) \cdot \sin(\alpha + \beta)}}\right)^2} \\ K_p &= 6.89 \end{split}$$

Rankine Theory - Passive Earth Pressure from Bowles 5th Edition Section 11-5 pg 602

Angle of backfill to the horizontal $\beta := 0 \cdot deg$

Angle of internal soil friction: $\phi := 32 \cdot \deg$

$$K_{p_rank} := \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\phi)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\phi)^2}}$$

$$K_{p_rank} = 3.25$$

Bowles does not recommend the use of the Rankine Method for K_p when $\beta>0$.

Rankine Theory - Active Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.5.2 pg 3-7

For a horizontal backfill surface:

$$\varphi := 32 \cdot \deg$$

$$K_a := \tan \left(45 \cdot \deg - \frac{\varphi}{2}\right)^2$$

$$K_a = 0.307$$

Settlement Analyses:

Reference: FHWA Soils and Foundations Reference Manual - Volume 1 (FHWA NHI-06-088) Hough pg 7-16

The roadway grade at centerline may be raised by as much as 0.5 feet . Look at a simplified soil profile based on BB-MJS-101:

_____ Finished Grade

Proposed Fill - Look at 0.5 feet of fill N = 25 bpf (medium dense) γ = 125 pcf

Existing Grade

Existing Fill/Native sand - fine to coarse sand

 $H_1 := 9.0 \cdot \text{ft}$ $\gamma_{\text{sand}} := 125 \cdot \text{pcf}$ $N_{\text{sand1}} := 10$

Groundwater at top of silt

Silt - Su=450 psf (soft) $H_2 := 43.0 \cdot \text{ft}$ $\gamma_w := 62.4 \text{pcf}$

Total Layer height: H = 43.0 ft - divide into 5 layers

 $H_{2silt1} := 7.0 \cdot \text{ft}$ $\gamma_{silt} := 115 \cdot \text{pcf}$ $N_{silt1} := 9$ $H_{2silt2} := 9.0 \cdot \text{ft}$ $N_{silt2} := 1$

 $H_{2silt3} := 9.0 \cdot ft \qquad \qquad N_{silt3} := 1$

 $H_{2silt4} := 9.0 \cdot ft \qquad \qquad N_{silt4} := 1$

 $H_{2silt5} := 9.0 \cdot ft$ $N_{silt5} := 1$

Clayey Silt - Su=650 psf (medium stiff) $H_3 := 40.0 \cdot ft$ Total Layer height: H = 40.0 ft - divide into 4 layers

 $H_{3claysilt1} := 10.0 \cdot \text{ft} \quad \gamma_{claysilt} := 115 \cdot \text{pcf} \quad C_{c_claysilt1} := 0.3514 \qquad C_{r_claysilt1} := 0.04 \qquad \quad e_{oclaysilt1} := 1.0 \cdot \text{pcf} \quad C_{c_claysilt1} := 0.3514 \quad \quad C_{r_claysilt1} := 0.04 \quad \quad e_{oclaysilt1} := 0.04 \quad \quad e_{oclaysilt2} := 0.04 \quad \quad e_{oclaysilt3} := 0.04 \quad \quad e_{oclaysilt4} := 0.04 \quad \quad e_{oclaysilt5} := 0.04 \quad \quad e_{oclaysilt5} := 0.04 \quad \quad e_{oclaysilt6} := 0.04 \quad \quad e_{oclaysilt7} := 0.04 \quad \quad e_{oclaysilt7} := 0.04 \quad \quad e_{oclaysilt8} := 0.04 \quad$

 $H_{3\text{claysilt2}} := 10.0 \cdot \text{ft}$ $C_{\text{c_claysilt2}} := 0.3514$ $C_{\text{r_claysilt2}} := 0.04$ $e_{\text{oclaysilt2}} := 1.0$

 $H_{3claysilt3} := 10.0 \cdot ft \qquad \qquad C_{c_claysilt3} := 0.3174 \qquad C_{r_claysilt3} := 0.0463 \qquad e_{oclaysilt3} := 0.94$

 $H_{3claysilt4} := 10.0 \cdot ft$ $C_{c_claysilt4} := 0.3043$ $C_{r_claysilt4} := 0.0374$ $e_{oclaysilt4} := 1.13$

Glacial Till - Sand - fine sand, medium dense

 $H_4 := 40.0 \cdot ft$ $\gamma_{sand} := 125 \cdot pcf$ $N_{sand2} := 15$

LOADING ON AN INFIN	NITE STRIP - VERTIC	AL EMBANKMENT LOAD	DING
Project Name: Jock S Project Number: Date: 10/22/0	16716.00	ent: Monmouth Project Manager: mputed by: km	Wentworth
Embank	slope a = 10.00(ft) width b = 27.00(ft) hit area = 62.50(psf)		
INCREMEN X =	NT OF STRESSES FO 20.00(ft)	R Z-DIRECTION	
Z	Vert. Δz		
(ft)	(psf)		
(11)	(601)		at 4.5 ft
0.50	62.49		$\Delta \sigma_{\rm zsand1} := 59.79 \cdot \rm psf$
4.50	59.79		_
8.50	52.74		at 12.5 ft
12.50	45.49		$\Delta \sigma_{zsilt1} := 45.49 \cdot psf$
16.50	39.35		at 20.5 ft
20.50 24.50	34.36 30.32		$\Delta \sigma_{zsilt2} := 34.36 \cdot psf$
28.50	27.03		
32.50	24.33		at 29.5 ft
36.50	22.07		$\Delta \sigma_{zsilt3} := 26.31 \cdot psf$
40.50	20.18		at 38.5 ft
44.50	18.57		$\Delta \sigma_{zsilt4} := 21.09 \cdot psf$
48.50	17.18		
52.50	15.98		at 47.5 ft
56.50 60.50	14.93 14.01		$\Delta \sigma_{zsilt5} := 17.51 \cdot psf$
64.50	13.19		at 57.0 ft
68.50	12.46		$\Delta \sigma_{\text{zclaysilt1}} := 14.81 \cdot \text{psf}$
72.50	11.80		at 67.0 ft
76.50	11.21		
80.50	10.67		$\Delta \sigma_{\text{zclaysilt2}} := 12.72 \cdot \text{psf}$
84.50	10.18		at 77.0 ft
88.50	9.74		$\Delta \sigma_{\text{zclaysilt3}} := 11.14 \cdot \text{psf}$
92.50	9.33		•
96.50	8.95		at 87.0 ft
100.50 104.50	8.61 8.28		$\Delta \sigma_{\text{zclaysilt4}} := 9.90 \cdot \text{psf}$
104.50	8.28 7.98		at 112.0 ft
112.50	7.71		$\Delta \sigma_{zsand2} := 7.74 \cdot psf$

By: Kate Maguire September 2009 Checked by: LK 11/2009

Existing Fill/Sand

$$tsf := psf \cdot 1000$$

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:
$$\sigma_{sand1o} := \frac{H_1}{2} \cdot \left(\gamma_{sand}\right)$$
 $\sigma_{sand1o} = 0.563 \cdot tsf$

$$\sigma_{sand1o} = 0.563 \cdot tsf$$

Corrected SPT N₆₀-value (bpf)

$$N_{sand1} = 10$$

At
$$P_0 = 0.563$$
 tsf

At P_o = 0.563 tsf
$$C_{Nsand1} := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_{sand1o}} \right)$$
 Eq. 10.4.6.2.4 LRFD

$$C_{Nsand1} = 1.426$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsand1} \cdot N_{sand1}$ $N1_{60} = 14$

$$N1_{60} = 14$$

From Eq 3-3 pg 3-36

From Figure 7-7 pg 7-17 using the "clean well graded fine to coarse sand" curve

Bearing Capacity Index:

$$C1 := 57$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsand1} = 59.79 \cdot psf$$

Silt - 5 layers

Silt Layer 1:

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{silt1o} := \left[\frac{H_{2silt1}}{2} \cdot \left(\gamma_{silt} - \gamma_w\right)\right] + H_1 \cdot \left(\gamma_{sand}\right) \\ \sigma_{silt1o} = 1.3091 \cdot tsf \\ \text{at mid-point}$$

$$\sigma_{\text{silt1o}} = 1.3091 \cdot \text{tsf}$$

Corrected SPT N_{60} -value (bpf) $N_{silt1} = 9$

At
$$P_0 = 1.3 \text{ tsf}$$

$$C_{Nsilt1} \coloneqq 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_{silt1o}} \right) \hspace{1cm} \text{Eq. 10.4.6.2.4 LRFD}$$

$$C_{Nsilt1} = 1.1435$$

From Eq 3-3 pg 3-36

 $N1_{60} = 10$

From Figure 7-7 pg 7-17 using the "Inorganic silt" curve

Bearing Capacity Index:

$$C2_{silt1} := 29$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsilt1} \cdot N_{silt1}$

$$\Delta \sigma_{zsilt1} = 45.49 \cdot psf$$

Silt Layer 2:

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{silt2o} := \left[\frac{H_{2silt2}}{2} \cdot \left(\gamma_{silt} - \gamma_w\right)\right] + H_{2silt1} \cdot \left(\gamma_{silt} - \gamma_w\right) + H_1 \cdot \left(\gamma_{sand}\right) \\ \sigma_{silt2o} = 1.7299 \cdot tsf \\ \text{at mid-point}$$

Corrected SPT N_{60} -value (bpf) $N_{silt2} = 1$

$$N_{silt2} = 1$$

At
$$P_0 = 1.7 \text{ tsf}$$

$$C_{\text{Nsilt2}} := 0.77 \cdot \log \left(\frac{40 \cdot \text{ksf}}{\sigma_{\text{silt2o}}} \right)$$
 Eq. 10.4.6.2.4 LRFD
$$C_{\text{Nsilt2}} = 1.0503$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsilt2} \cdot N_{silt2}$ $N1_{60} = 1$ From Eq 3-3 pg 3-36

From Figure 7-7 pg 7-17 using the "Inorganic silt" curve

Bearing Capacity Index:

$$C2_{silt2} := 17$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsilt2} = 34.36 \cdot psf$$

Silt Layer 3:

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{\text{silt3o}} := \left[\frac{\text{H}_{2\text{silt3}}}{2} \cdot \left(\gamma_{\text{silt}} - \gamma_{\text{w}} \right) \right] + \left(\text{H}_{2\text{silt2}} + \text{H}_{2\text{silt1}} \right) \cdot \left(\gamma_{\text{silt}} - \gamma_{\text{w}} \right) + \text{H}_{1} \cdot \left(\gamma_{\text{sand}} \right)$$

$$\sigma_{\text{silt3o}} = 2.2033 \cdot \text{tsf}$$
at mid-point

Corrected SPT N₆₀-value (bpf)

$$N_{silt3} = 1$$

At
$$P_0 = 2.2 \text{ tsf}$$

$$\begin{aligned} &C_{Nsilt3} \coloneqq 0.77 \cdot log \!\! \left(\frac{40 \cdot ksf}{\sigma_{silt3o}} \right) \end{aligned} \qquad \text{Eq. 10.4.6.2.4 LRFD} \\ &C_{Nsilt3} = 0.9694 \end{aligned}$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsilt3} \cdot N_{silt3}$ $N1_{60} = 1$ From Eq 3-3 pg 3-36

From Figure 7-7 pg 7-17 using the "Inorganic silt" curve

Bearing Capacity Index: $C2_{silt3} := 15$

$$\Delta \sigma_{zsilt3} = 26.31 \cdot psf$$

Silt Layer 4:

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{\text{silt4o}} := \left[\frac{H_{2\text{silt4}}}{2} \cdot \left(\gamma_{\text{silt}} - \gamma_{\text{w}} \right) \right] + \left(H_{2\text{silt3}} + H_{2\text{silt2}} + H_{2\text{silt1}} \right) \cdot \left(\gamma_{\text{silt}} - \gamma_{\text{w}} \right) + H_{1} \cdot \left(\gamma_{\text{sand}} \right)$$

$$\sigma_{\text{silt4o}} = 2.6767 \cdot \text{tsf}$$
at mid-point

Corrected SPT N_{60} -value (bpf) $N_{silt4} = 1$

$$N_{silt4} = 1$$

At
$$P_0 = 2.7 \text{ tsf}$$

$$C_{Nsilt4} := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_{silt4o}} \right)$$
 Eq. 10.4.6.2.4 LRFD
$$C_{Nsilt4} = 0.9043$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsilt4} \cdot N_{silt4}$ $N1_{60} = 1$ From Eq 3-3 pg 3-36

From Figure 7-7 pg 7-17 using the "Inorganic silt" curve

Bearing Capacity Index: $C2_{silt4} := 15$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsilt4} = 21.09 \cdot psf$$

Silt Layer 5:

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{silt5o} := \begin{bmatrix} \frac{H_{2silt5}}{2} \cdot \left(\gamma_{silt} - \gamma_w\right) \end{bmatrix} + \left(H_{2silt4} + H_{2silt3} + H_{2silt2} + H_{2silt1}\right) \cdot \left(\gamma_{silt} - \gamma_w\right) + H_1 \cdot \left(\gamma_{sand}\right) \\ \text{Corrected SPT N}_{60}\text{-value (bpf)} \\ N_{silt5} = 1 \\ \text{at mid-point}$$

At $P_0 = 3.2 \text{ tsf}$

$$C_{Nsilt5} \coloneqq 0.77 \cdot log \! \left(\frac{40 \cdot ksf}{\sigma_{silt5o}} \right) \hspace{1cm} \text{Eq. 10.4.6.2.4 LRFD}$$

Corrected N-value normalized for overburden N1₆₀: $N1_{60} := C_{Nsilt5} \cdot N_{silt5}$ $N1_{60} = 1$ From Eq 3-3 pg 3-36

From Figure 7-7 pg 7-17 using the "Inorganic silt" curve

Bearing Capacity Index: $C2_{silt5} := 15$

$$\Delta \sigma_{zsilt5} = 17.51 \cdot psf$$

Clayey Silt - 4 layers

Clayey Silt Layer 1:

Average values from lab data: $e_{oclaysilt1} = 1$ $C_{r_claysilt1} = 0.04$

$$\sigma_{claysilt1o} := \frac{H_{3claysilt1}}{2} \cdot \left(\gamma_{claysilt} - \gamma_w\right) + H_2 \cdot \left(\gamma_{silt} - \gamma_w\right) + H_1 \cdot \left(\gamma_{sand}\right) \\ \sigma_{claysilt1o} = 3.65 \cdot tsf \quad \text{at mid-point}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zclaysilt1} = 14.81 \cdot psf$$

Clayey Silt Layer 2:

Average values from lab data: $e_{oclaysilt2} = 1$ $C_{r_claysilt2} = 0.04$

$$\sigma_{claysilt2o} \coloneqq \frac{H_{3claysilt2}}{2} \cdot \left(\gamma_{claysilt} - \gamma_w\right) + H_{3claysilt1} \cdot \left(\gamma_{claysilt} - \gamma_w\right) + H_2 \cdot \left(\gamma_{silt} - \gamma_w\right) + H_1 \cdot \left(\gamma_{sand}\right) + H_2 \cdot \left(\gamma_{silt} - \gamma_w\right) + H_3 \cdot \left(\gamma_{sand}\right) + H_3 \cdot \left(\gamma_{san$$

$$\sigma_{clavsilt2o} = 4.18 \cdot tsf$$
 at mid-point

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zclavsilt2} = 12.72 \cdot psf$$

Clayey Silt Layer 3:

Average values from lab data: $e_{\text{oclavsilt3}} = 0.94$ $C_{\text{r. clavsilt3}} = 0.0463$

$$\sigma_{claysilt3o} := \frac{H_{3claysilt3}}{2} \cdot \left(\gamma_{claysilt} - \gamma_{w}\right) + \left(H_{3claysilt2} + H_{3claysilt1}\right) \cdot \left(\gamma_{claysilt} - \gamma_{w}\right) + H_{2} \cdot \left(\gamma_{silt} - \gamma_{w}\right) + H_{1} \cdot \left(\gamma_{sand}\right)$$

 $\sigma_{clavsilt30} = 4.7 \cdot tsf$ at mid-point

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{\text{zclaysilt3}} = 11.14 \cdot \text{psf}$$

Clayey Silt Layer 4:

Average values from lab data: $e_{\text{oclavsilt4}} = 1.13$ $C_{\text{r. clavsilt4}} = 0.0374$

$$\sigma_{claysilt4o} \coloneqq \frac{H_{3claysilt4}}{2} \cdot \left(\gamma_{claysilt} - \gamma_{w}\right) + \left(H_{3claysilt3} + H_{3claysilt2} + H_{3claysilt1}\right) \cdot \left(\gamma_{claysilt} - \gamma_{w}\right) + H_{2} \cdot \left(\gamma_{silt} - \gamma_{w}\right) + H_{1} \cdot \left(\gamma_{sand}\right)$$

$$\sigma_{claysilt4o} = 5.23 \cdot tsf \qquad \text{at mid-point}$$

$$\Delta \sigma_{zclaysilt4} = 9.9 \cdot psf$$

Glacial Till - Sand

Determine corrected N-value normalized for overburden N160:

Calculate vertical stress:

$$\sigma_{\text{sand2o}} := \frac{\text{H}_4}{2} \left(\gamma_{\text{sand}} - \gamma_{\text{w}} \right) + \text{H}_3 \cdot \left(\gamma_{\text{claysilt}} - \gamma_{\text{w}} \right) + \text{H}_2 \cdot \left(\gamma_{\text{silt}} - \gamma_{\text{w}} \right) + \text{H}_1 \cdot \left(\gamma_{\text{sand}} \right) \qquad \sigma_{\text{sand2o}} = 6.7428 \cdot \text{tsf}$$

$$\text{at mid-point}$$

Corrected SPT N_{60} -value (bpf) $N_{sand2} = 15$

AT P_o = 6.7 tsf
$$C_{Nsand2} := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_{sand2o}} \right)$$
 Eq. 10.4.6.2.4 LRFD
$$C_{Nsand2} = 0.5954$$

Corrected N-value normalized for overburden N160:

From Eq 3-3 pg 3-36
$$N1_{60} := C_{Nsand2} \cdot N_{sand2} \qquad N1_{60} = 9$$

From Figure 7-7 pg 7-17 using the "clean well graded fine to coarse sand" curve

Bearing Capacity Index: $C4_{sand2} := 47$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsand2} = 7.74 \cdot psf$$

Calculate Settlement:

$$\text{Fill/Sand:} \qquad \qquad \Delta H_1 := H_1 \cdot \frac{1}{C1} \cdot log \Bigg(\frac{\sigma_{sand1o} + \Delta \sigma_{zsand1}}{\sigma_{sand1o}} \Bigg) \qquad \Delta H_1 = 0.0831 \cdot in$$

$$\text{Silt Layer 1:} \qquad \Delta H_{2silt1} := H_{2silt1} \cdot \frac{1}{C2_{silt1}} \cdot log \left(\frac{\sigma_{silt1o} + \Delta \sigma_{zsilt1}}{\sigma_{silt1o}} \right) \qquad \Delta H_{2silt1} = 0.043 \cdot in$$

$$\text{Silt Layer 2:} \qquad \Delta H_{2silt2} := H_{2silt2} \cdot \frac{1}{C2_{silt2}} \cdot log \left(\frac{\sigma_{silt2o} + \Delta \sigma_{zsilt2}}{\sigma_{silt2o}} \right) \qquad \Delta H_{2silt2} = 0.0543 \cdot in$$

Silt Layer 3:
$$\Delta H_{2silt3} := H_{2silt3} \cdot \frac{1}{C2_{silt3}} \cdot log \left(\frac{\sigma_{silt30} + \Delta \sigma_{zsilt3}}{\sigma_{silt30}} \right) \qquad \Delta H_{2silt3} = 0.0371 \cdot in$$

$$\text{Silt Layer 4:} \qquad \Delta H_{2silt4} := H_{2silt4} \cdot \frac{1}{C2_{silt4}} \cdot log \left(\frac{\sigma_{silt4o} + \Delta \sigma_{zsilt4}}{\sigma_{silt4o}} \right) \qquad \Delta H_{2silt4} = 0.0245 \cdot in$$

Silt Layer 5:
$$\Delta H_{2silt5} := H_{2silt5} \cdot \frac{1}{C2_{silt5}} \cdot log \left(\frac{\sigma_{silt5o} + \Delta \sigma_{zsilt5}}{\sigma_{silt5o}} \right) \\ \Delta H_{2silt5} = 0.0173 \cdot in$$

$$\text{Clayey Silt Layer 1:} \quad \Delta H_{3cs1} := H_{3claysilt1} \cdot \left(\frac{C_{r_claysilt1}}{1 + e_{oclaysilt1}} \right) \cdot log \left(\frac{\sigma_{claysilt1o} + \Delta \sigma_{zclaysilt1}}{\sigma_{claysilt1o}} \right) \\ \qquad \Delta H_{3cs1} = 0.0042 \cdot in$$

$$\text{Clayey Silt Layer 2:} \quad \Delta H_{3cs2} := H_{3claysilt2} \cdot \left(\frac{C_{r_claysilt2}}{1 + e_{oclaysilt2}} \right) \cdot \log \left(\frac{\sigma_{claysilt2o} + \Delta \sigma_{zclaysilt2}}{\sigma_{claysilt2o}} \right) \qquad \Delta H_{3cs2} = 0.0032 \cdot \text{in}$$

$$\text{Clayey Silt Layer 3:} \quad \Delta H_{3cs3} := H_{3claysilt3} \cdot \left(\frac{C_{r_claysilt3}}{1 + e_{oclaysilt3}} \right) \cdot \log \left(\frac{\sigma_{claysilt3o} + \Delta \sigma_{zclaysilt3}}{\sigma_{claysilt3o}} \right) \qquad \Delta H_{3cs3} = 0.0029 \cdot \text{in}$$

$$\text{Clayey Silt Layer 4:} \quad \Delta H_{3cs4} := H_{3claysilt4} \cdot \left(\frac{C_{r_claysilt4}}{1 + e_{oclaysilt4}} \right) \cdot \log \left(\frac{\sigma_{claysilt4o} + \Delta \sigma_{zclaysilt4}}{\sigma_{claysilt4o}} \right) \qquad \Delta H_{3cs4} = 0.0017 \cdot \text{in}$$

$$\text{Glacial Till - Sand:} \quad \Delta H_4 := H_4 \cdot \frac{1}{C4_{sand2}} \cdot \log \left(\frac{\sigma_{sand2o} + \Delta \sigma_{zsand2}}{\sigma_{sand2o}} \right) \qquad \Delta H_4 = 0.0051 \cdot \text{in}$$

Total Settlement =

$$\Delta H_T := \Delta H_1 + \Delta H_{2silt1} + \Delta H_{2silt2} + \Delta H_{2silt3} + \Delta H_{2silt4} + \Delta H_{2silt5} + \Delta H_{3cs1} + \Delta H_{3cs2} + \Delta H_{3cs3} + \Delta H_{3cs4} + \Delta H_{4silt5} + \Delta H_{3cs4} +$$

 $\Delta H_T = 0.2765 \cdot in$ 6 inches of fill results in settlements of less than 0.4 inches Therefore, downdrag will not be an issue.

Frost Protection:

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table are in BDG Section 5.2.1.

From the Design Freezing Index Map: Monmouth, Maine DFI = 1550 degree-days

From the lab testing: the upper fill soils are coarse grained have a water content = ~14%

From Table 5-1 MaineDOT BDG for Design Freezing Index of 1550 at wc = 14% frost penetration = 77.7 inches

Frost_depth := 77.7in Frost_depth = $6.475 \cdot ft$

Method 2 - Check Frost Depth using Modberg Software

Closest Station is Gardiner

Air Design Freezing Index N-Factor Surface Design Freezing Index Mean Annual Temperature Design Length of Freezing Season			= 44.1 deg F					
Layer #:Type	t	w%	d	Cf	Cu	Kf	Ku	L
1-Coarse	75.9	14.0	125.0	30	39	2.8	1.8	2,520
t = Layer w% = Moi d = Dry d Cf = Heat	sture con ensity, ir Capacity Capacit	ntent, in Ibs/cub y of froze ty of thav	percentagic ft. en phase, ved phas	in BTL e, in BT		ft degre	e F).	

Use Modberg Frost Depth = 6.0 feet for design

Seismic:

```
Monmouth Jock Stream Bridge PIN 16716.00
Date and Time: 10/20/2009 11:03:08 AM
```

Conterminous 48 States 2007 AASHTO Bridge Design Guidelines AASHTO Spectrum for 7% PE in 75 years State - Maine Zip Code - 04259 Zip Code Latitude = 44.221800 Zip Code Longitude = -070.016600Site Class B Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 PGA - Site Class B 0.084 0.170 Ss - Site Class B 0.2 S1 - Site Class B 1.0 0.046

Conterminous 48 States 2007 AASHTO Bridge Design Guidelines Spectral Response Accelerations SDs and SD1 State - Maine Zip Code - 04259 Zip Code Latitude = 44.221800 Zip Code Longitude = -070.016600 As = FpgaPGA, SDs = FaSs, and SD1 = FvS1 Site Class E - Fpga = 2.50, Fa = 2.50, Fv = 3.50 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.209 As - Site Class E 0.2 0.425 SDs - Site Class E SD1 - Site Class E 1.0 0.162

Seismic Design Parameters for 2007 AASHTO Seismic Design Guidelines

Purpose - The ground motion parameters obtained in this analysis are for use with the design procedures described in AASHTO Guidelines for the Seismic Design of Highway Bridges (2007) The user may calculate seismic design parameters and response spectra (both for period and displacement), for Site Class A through E.

Description - This program allows the user to obtain seismic design parameters for sites in the 50 states of the United States, Puerto Rico and the U.S. Virgin Islands. In most cases the user may perform an analysis for a site by specifying location by either latitude-longitude (recommended) or zip code. However, locations in Puerto and the Virgin Islands may only be specified by latitude-longitude.

Ground motion maps are included in PDF format. These maps may be opened using a map viewer that is part of the software package.

Data - The 2007 AASHTO maps are based on 5% in 50 year probabilistic data from the U.S.
Geological Survey data sets for the following regions: 48 conterminous states (2002), Alaska (2006), Hawaii (1998), Puerto Rico and the Virgin Islands (2003). These were the most recent data available at the time of preparation of the AASHTO maps. The AASHTO maps are labelled with a probability of exceedance of 7% in 75 years which is approximately equal to the 5% in 50 year data.

Disclaimer - Correct application of the data obtained from the use of this program and/or maps is the responsibility of the user. This software is not a substitute for technical knowledge of seismic design and/or analysis.