MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

MAIN STREET BRIDGE OVER EAST BRANCH SEBASTICOOK RIVER NEWPORT, MAINE

Prepared by: Laura Krusinski, P.E. Senior Geotechnical Engineer

Reviewed by: Kathleen Maguire, P.E. Geotechnical Engineer

Penobscot County PIN 15625.00 Soils Report No. 2009-30 Bridge No. 2501

Fed No. BH-1562(500)X October 16, 2009

Table of Contents

GEOT	FECHNICAL DESIGN SUMMARY	1
1.0	INTRODUCTION	4
2.0	GEOLOGIC SETTING	4
3.0	SUBSURFACE INVESTIGATION	5
4.0	LABORATORY TESTING	6
5.0	SUBSURFACE CONDITIONS	6
5.1	INTERBEDDED RIVER BOTTOM SEDIMENTS AND ALLUVIUM	6
5.2	ALLUVIUM	6
5.3	GLACIAL TILL	7
5.4	Bedrock	7
5.5	Groundwater	8
6.0	FOUNDATION ALTERNATIVES	8
7.0	GEOTECHNICAL DESIGN RECOMMENDATIONS	9
7.1	GENERAL - INTEGRAL ABUTMENT FOUNDED ON DRIVEN H-PILES	9
7.2	Integral Pile Design	9
7	.2.1 Strength Limit State Design	10
7	.2.2 Service and Extreme Limit State Design	11
7	.2.3 Driven Pile Resistance and Pile Quality Control	12
7.3	INTEGRAL STUB ABUTMENT DESIGN	13
7.4	SCOUR AND RIPRAP	14
7.5	Settlement	15
7.6	FROST PROTECTION	16
7.7	SEISMIC DESIGN CONSIDERATIONS	16
7.8	CONSTRUCTION CONSIDERATIONS	16
8.0	CLOSURE	17
Tables		
	1 - Estimated Settlement	
Table	2 - Approximate Elevation of Bedrock Surface at Exploration Locations	

- Surface at Exploration Locations Table 3 - Estimated Pile Lengths after cut-off
- Table 4 Factored Axial Resistances for H-Pile Sections for Service Limit State Design
- Table 5 Factored Axial Resistances for H-Pile Sections for Service and Extreme Limit States Design
- Table 6 Equivalent Height of Soil for Estimating Live Load Surcharge
- Table 7 Estimated Settlement

Appendices

Appendix A - Boring Logs

Appendix B – Laboratory Test Results

Appendix C – Calculations

Sheets

Sheet 1 - Location Map

Sheet 2 - Boring Location Plan

Sheet 3 - Interpretive Subsurface Profile

Sheet 4 - Boring Logs

GEOTECHNICAL DESIGN SUMMARY

The purpose of this report is to present subsurface information and make geotechnical recommendations for the replacement of Main Street Bridge which carries State Route 2/100 over East Branch Sebasticook River in Newport, Maine. Main Street Bridge was built in 1930 and consists of two independent bridges (east bridge and west bridge) separated by an earth causeway. The proposed replacement east bridge will be a 120-foot single span, fully integral bridge. The proposed structure will have a centerline approximately matching the existing bridge centerline. The roadway profile will be raised approximately 2 feet along the west bridge approach. The shortened span of the replacement bridge will require filling in that portion of the riverbed between the existing east abutment and the third river pier. The west bridge will be removed and the canal it spans filled in. The following design recommendations are discussed in detail in this report.

Integral Pile Design - The piles should be end bearing and driven to the required resistance on, or within, bedrock. Piles may be HP 12x53, 14x73, 14x89, or 14x117 depending on the factored design pile loads. Piles should be 50 ksi, Grade A572 steel. Driven piles should be fitted with driving points to protect the tips, and improve penetration

H-piles shall be designed for all relevant strength, service and extreme limit state load groups. The structural resistance check should include checking axial, lateral and flexural resistance.

The maximum factored axial pile load should not exceed the calculated factored drivability pile resistances provided in this report. An L-Pile® analysis is recommended to evaluate the combined axial compression and flexure, with factored axial loads, moments and pile head displacements applied. As the proposed integral H-piles will be modeled as fully fixed at the pile head, the resistance of the piles should be evaluated for structural compliance with the interaction equation.

Driven Pile Quality Control - The contractor is required to perform a wave equation analysis of the proposed pile-hammer system. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the contractor in the wave equation analysis. The ultimate resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor, ϕ_{dyn} , of 0.65. The maximum factored pile load and the resistance factor should be shown on the plans.

Integral Stub Abutment Design - Integral abutment sections shall be designed for all relevant strength, service and extreme limit states. Integral abutment sections and wingwall sections that are integral with the abutment shall be designed to withstand a maximum applied lateral load equal to the passive earth pressure calculated using a passive pressure coefficient, K_p , of 7.33, calculated using Coulomb Theory. A load factor for passive earth pressure, γ_{EH} , of 1.5 should be applied.

GEOTECHNICAL DESIGN SUMMARY – CONTINUED

Developing full passive pressure requires displacements of the abutment or wingwall on the order of 2 to 5 percent of the abutment or wingwall height. If the calculated displacements are significantly less than that required to develop full passive pressure, the designer may consider using the Rankine passive earth pressure case, which assumes no wall friction. In general, wall friction acts downward in the passive case, and increase passive pressure as considered in the Coulomb Theory. All abutment designs shall include a drainage system behind the abutments to intercept any groundwater. The approach slab should be positively attached to the integral abutment.

Additional lateral earth pressure due to construction surcharge or live load surcharge is required for the abutments and wingwalls if an approach slab is not specified. If a structural approach slab is specified, some reduction of the surcharge loads is permitted.

Scour and Riprap - For scour protection and protection of pile groups, the bridge approach slopes and slopes at abutments and wingwalls should be armored with 3 feet of riprap. Riprap shall be underlain by a Class 1 nonwoven erosion control geotextile and a 1-foot thick layer of bedding material.

Settlement – There are three (3) areas where settlement is of concern on this project. The existing west bridge spans a canal which will be filled in with 13 feet of fill. The grade of the roadway approach to Abutment No. 1 will be raised approximately 2 feet. The portion of streambed below the fourth span of the east bridge will be filled in with 13 feet of fill. Settlements due to elastic compression of the foundation soils in these areas of concern were calculated and are provided in Table 1 below. Settlement of the granular foundation soils will be elastic and occur primarily during construction. Any settlement of the bridge abutments will be due to elastic settlement of the bedrock or piles, which is assumed to occur during construction and will be negligible.

Location	Estimated Elastic Settlement (inches)
West bridge over canal (approx. Sta. 6+00) with 13 feet of new fill	1.3
Abutment No. 1 approach (approx. Sta 7+25) with 2 feet of new fill	0.5
Riverbank between the existing pier 3 and east abutment (approx. Sta. 9+00) with 13 feet of fill	1.5

Table 1. Estimated Settlement

GEOTECHNICAL DESIGN SUMMARY – CONTINUED

Frost Protection - Integral abutments shall be embedded a minimum of 4.0 feet for frost protection. Riprap is not to be considered as contributing to the overall thickness of soils required for frost protection. Any foundations placed on granular fill soils should be founded a minimum of 7.0 feet below finished exterior grade for frost protection.

Seismic Design Considerations – Seismic analysis is not required for single-span bridges, regardless of seismic zone, however superstructure connections and bridge seat dimensions shall be satisfied.

Construction Considerations – Construction of the pile foundations and abutments will require soil excavation and bridge substructure removal. Construction activities may require cofferdams and earth support systems. The existing west abutment wingwall and third river pier will obstruct installation of piles. Removal of all or some of the existing substructures will be necessary. The pile foundation area may require placement and compaction of granular fill up to the abutment subgrade level.

1.0 Introduction

The purpose of this Geotechnical Design Report is to present geotechnical recommendations for the replacement of Main Street Bridge which carries State Route 2/100 over the East Branch Sebasticook River, in Newport, Maine. This report presents the soils information obtained at the site during the subsurface investigations, foundation recommendations and geotechnical design parameters for replacement bridge foundations.

Main Street Bridge was built in 1930 and consists of two independent bridges (east bridge and west bridge) separated by an earth causeway. The bridges incorporate several split stone with masonry substructures from the steel truss bridges that the 1930 bridge replaced. The shorter west bridge spans a canal that acts as an overflow channel and is a 38-foot single span concrete T-beam superstructure on stone and masonry abutments. The east bridge is a 4-span concrete T-beam superstructure with a total length of 162 feet. Abutment 1 of the east bridge is a stacked stone and masonry abutment on timber cribbing and Abutment 2 of the east bridge is mass concrete with a spread footing on soil. Piers 1 and 3 of the east bridge are mass concrete on spread footings bearing on soil. Pier 2 of the east bridge consists of a pre-1930 stacked stone and masonry pier on timber cribbing, with concrete extension and cap. A concrete dam located immediately downstream was partially removed in 2002.

Maine Department of Transportation (MaineDOT) Bridge Maintenance inspection reports for the east bridge indicate substructure distress in areas in the form of large cracks in the pier breastwalls, heavy deterioration of the pier noses, deep scaling and heavy cracking in the east abutment, and mortar missing between the dry laid granite stone of the west abutment. 2008 MaineDOT Bridge Maintenance inspection reports assign the substructure a condition rating of 5 – fair, and the channel protection a rating of 8 – bank protected. The bridge has Bridge Sufficiency Rating of 58.3.

The MaineDOT Bridge Program is currently proposing a replacement structure for the east bridge consisting of a 120-foot single-span welded steel plate girder integral bridge founded on pile-supported integral abutments. The west bridge will be entirely removed and the canal filled in. The proposed replacement structure will have a centerline approximately matching the existing bridge centerline. The roadway profile will be raised approximately 2 feet along the west approach to the bridge, and the shortened span of the replacement bridge will require filling in the fourth span of the existing bridge.

2.0 GEOLOGIC SETTING

Main Street Bridge located on State Routes 2 and 100 in Newport, Maine crosses the East Branch Sebasticook River as shown on Sheet 1 - Location Map, presented at the end of this report.

The Maine Geologic Survey "Surficial Geology of Pittsfield Quadrangle, Maine, Open-file No. 86-35" (1986) indicates that the surfical soils at the Main Street Bridge site consist of

predominantly glacial till. Glacial till is a heterogeneous mixture of sand, silt, clay and stone. The unit was deposited directly by glacial ice, and commonly conforms to the bedrock surface.

According to the Bedrock Geologic Map of Maine, Maine Geologic Survey, 1985, the site is underlain by bedrock of the Vassalboro Formation, which consists of interbedded calcareous sandstone and impure limestone.

3.0 SUBSURFACE INVESTIGATION

Subsurface conditions at the site were explored by drilling three (3) test borings. The borings were terminated with bedrock cores. Test borings BB-NSR-101, BB-NSR-102 and BB-NSR-201 were all drilled through the bridge deck and into the streambed. Test boring BB-NSR-102 was drilled approximately 6 feet west of the proposed Abutment No 2. Test boring BB-NSR-201 was drilled approximately 4 feet west of proposed Abutment No. 1 centerline. Test boring BB-NSR-101 was drilled approximately 40 feet east of the proposed Abutment No. 1 centerline of bearing. The boring locations are shown on Sheet 2 - Boring Location Plan, found at the end of this report.

Borings BB-NSR-101 and BB-NSR-102 were drilled on June 3 and 4, 2008 and boring BB-NSR-201 on June 15 and 25, 2009, using the MaineDOT drill rig. The borings were drilled using cased wash boring techniques. Soil samples were typically obtained at 5-foot intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 24 inches and the hammer blows for each 6 inch interval of penetration are recorded. The sum of the blows for the second and third intervals is the N-value, or standard penetration resistance.

The MaineDOT drill rig is equipped with a Central Mine Equipment (CME) automatic hammer. The hammer was calibrated by MaineDOT in August of 2007 and subsequently in February of 2009 and was found to deliver approximately 30 percent, and subsequently in 2009, 40 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values computed by applying average energy transfer factors of 0.77 or 0.84 to the raw field N-values. These hammer efficiency factors, 0.77 and 0.84, and both the raw field N-value and the corrected N-value are shown on the boring logs.

The bedrock was cored in two borings using an NQ-2 or BX core barrel and the Rock Quality Designation (RQD) of the core was calculated for the NQ cores. The MaineDOT Geotechnical Team member selected the boring locations and drilling methods, designated type and depth of sampling techniques, reviewed field logs for accuracy and identified field and laboratory testing requirements. The MaineDOT Geotechnical Team Member or a New England Transportation Technical Certification Program (NETTCP) Certified Subsurface Inspector logged the subsurface conditions encountered. The borings were located in the field by taping to site features after completion of the drilling program.

Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A – Boring Logs and on Sheet 4 – Boring Logs, found at the end of this report.

4.0 LABORATORY TESTING

Laboratory testing for samples obtained in the borings consisted of seven (7) standard grain size analyses, two (2) grain size analyses with hydrometer, nine (9) natural water contents and one (1) Atterberg Limits test. The results of soil laboratory tests are included as Appendix B - Laboratory Data, at the end of this report. Laboratory test information is also shown on the boring logs provided in Appendix A – Boring Logs and on Sheet 4 – Boring Logs.

5.0 Subsurface Conditions

Subsurface conditions encountered at test borings BB-NSR-101, BB-NSR-102 and BB-NSR-201 generally consisted of river bottom sediments and alluvium underlain by glacial till and metamorphic bedrock. An interpretive subsurface profile depicting the detailed soil stratigraphy across the site is shown on Sheet 3 – Interpretive Subsurface Profile, found at the end of this report. The boring logs are provided in Appendix A – Boring Logs. A brief summary description of the strata encountered follows:

5.1 Interbedded River Bottom Sediments and Alluvium

A layer of interbedded river bottom sediments and alluvial soils was encountered in borings. The encountered layer is approximately 3.5 to 9.65 feet thick. The deposit generally consisted of brown and dark brown, damp to wet, silty sand, sandy gravel, gravel and gravelly sand, with minor portions of organic silt and root fibers, and dark brown, wet, sandy organic silt with slight odor. Isolated boulders, cobbles and wood fragments were encountered in BB-NSR-101 and BB-NRS-201.

Corrected SPT N-values in the unit ranged from 6 to greater than 50 blows per foot (bpf), indicating a soil that is loose to very dense in consistency.

Grain size analyses were conducted on two (2) samples from the river bottom sediments and alluvial unit. Grain size analyses resulted in the soil being classified as A-1-a under the AASHTO Soil Classification System and SM and GP-GM under the Unified Soil Classification System. Measured natural water contents of samples tested ranged from approximately 12 to 18 percent.

5.2 Alluvium

An alluvial deposit was encountered below the interbedded river bottom deposits and alluvium deposit. The encountered thickness of the unit was approximately 2.35 to 9 feet thick. The lower alluvial unit consisted of grey, moist to wet, gravelly sand, sand with some

gravel, and sandy gravel, with trace to some silt. Occasional cobbles were noted in the alluvium deposit in BB-NSR-201.

Corrected SPT N-values in alluvium ranged from 18 to greater than 50 bpf, indicating that the soil deposit is medium dense to very dense in consistency.

Grain size analyses were conducted on three (3) samples from the alluvial unit. Grain size analyses resulted in the soil being classified as an A-1-a and A-1-b under the AASHTO Soil Classification System and SM, SW-SM and GM under the Unified Soil Classification System. The natural water contents were approximately 11 and 17 percent.

5.3 Glacial Till

Glacial till was encountered underlying the alluvium in the borings. The encountered thickness of the deposit was approximately 6 to 14.7 feet at the boring locations. The glacial till generally consisted of grey to brown, moist to wet, silty sand and sand, some silt, little to some gravel, trace clay, and olive-grey, damp to wet, silty sand and sand, with lesser portions of gravel and clay; and olive-grey, mottled, damp to wet, gravelly silt and sandy silt, some sand, little clay.

Corrected SPT N-values in the glacial till unit were greater than 50 bpf with the exception of one SPT N-value of 32 bpf. This indicates a soil of generally very dense consistency, but some subunits are dense in consistency.

Grain size analyses were conducted on four (4) samples from the glacial till unit. Grain size analyses resulted in the soil being classified as an A-2-4, and A-4 under the AASHTO Soil Classification System and SC-SM, SM and CL-ML under the Unified Soil Classification System. The natural water contents ranged from approximately 9 to 11 percent.

One Atterberg Limits test on a sample from the deposit determined the moisture content was approximately 11 percent and plastic limit was 17. The natural water content did not exceed the liquid limit of 22 or the plastic limit. The calculated value of liquidity index for the soil tested was 11.16, meaning the soil is heavily preconsolidated.

5.4 Bedrock

Bedrock was encountered and cored beginning at a depths ranging from approximately 18 feet below ground surface (bgs) and approximate Elevation 167.60 feet in boring BB-NSR-101 to a depth of approximately 25 feet bgs and approximate Elevation 163.6 feet in boring BB-NSR-102.

The bedrock at the site is identified as grey to dark grey, fine grained, metasedimentary hornfels, moderately hard, moderately weathered to fresh, no foliation to foliated at steep angles, tight, weathered and stained surfaces, with occasional weathered zones, fractured

zones and quartz seams. The RQD of the bedrock was determined to range from 26 to 96 percent, correlating to a rock mass quality of very poor to excellent.

Table 2 summarizes approximate top of bedrock elevations at the exploration locations.

Proposed	Boring	Station	Approximate	Approximate
Substructure			Depth to	Elevation of
			Bedrock	Bedrock Surface
			(feet)	(feet)
Abutment 1	BB-NSR-201	7+47.8	27.2	165.3
none	BB-NSR-101	7+92.6	18.0	167.6
Abutment 2	BB-NSR-102	8+60.9	25.0	163.6

Table 2. Approximate Elevation of Bedrock Surface at Exploration Locations

5.5 Groundwater

The water level in boring BB-NSR-101 was consistent with the river level elevation. The groundwater level in BB-NSR-102 was inferred to be at a depth of approximately 2 feet bgs or approximately Elevation 187 feet. The groundwater level in BB-NSR-201 ranged from approximately 9 to 16 feet bgs. Groundwater levels will fluctuate with seasonal changes, runoff, and adjacent construction activities.

6.0 FOUNDATION ALTERNATIVES

The following foundations were considered for the replacement bridge substructures and evaluated for practicality and effectiveness during preliminary design:

- Full height, cantilever-type concrete abutments supported on pile groups driven to bedrock.
- Integral abutments supported on piles driven to bedrock.

The MaineDOT Bridge Program Preliminary Design Report proposes a replacement bridge consisting of a 120-foot single-span welded steel plate girder integral bridge founded on H-pile supported abutments. This report addresses this selected foundation alternative. The west bridge will be removed and the canal filled in.

7.0 GEOTECHNICAL DESIGN RECOMMENDATIONS

This section provides geotechnical design recommendations for pile-supported integral abutments.

7.1 General - Integral Abutment Founded on Driven H-piles

A 120-foot span integral structure will require an estimated girder depth of approximately 5 feet and abutment breastwall height of approximately 6 feet. This results in a depth of approximately 11 feet to accommodate the superstructure and stub abutment. The depth to bedrock below the existing roadway elevation is approximately 36 feet in the vicinity of Abutment No. 1 and approximately 38 feet in the vicinity of Abutment No. 2. The substructure design, considering pile embedment in the abutment, will require pile lengths of approximately 32 to 34 feet. This data is summarized in Table 3.

Proposed Structure	Approximate Bedrock Elevation (feet)	Estimated Pile Cap Elevation (feet)	Estimated Pile Embedment in Abutment (feet)	Estimated Pile Lengths after cut-off (feet)
Abutment No. 1	165.30	191.5	6.0	32
Abutment No. 2	163.60	191.0	6.0	34

Table 3. Estimated Pile Lengths after cut-off

7.2 Integral Pile Design

The piles should be end bearing and driven to the required resistance on bedrock or within bedrock. Piles may be HP 12x53, 14x73, 14x89, or 14x117 depending on the factored design axial loads. Piles should be 50 ksi, Grade A572 steel. The piles should be oriented for weak axis bending. Piles should be fitted with driving pile points to protect the tips and improve penetration.

H-piles shall be designed at the strength limit states considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of lateral support due to scour at the design flood event. The structural resistance check should include checking axial, lateral and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed in Section 7.2.1 below.

The design of H-piles at the service limit state shall consider tolerable horizontal movement of the piles, and overall stability of the pile group and displacements considering changes in foundation conditions due to scour at the design flood event. Extreme limit state design shall

check that the nominal pile resistance remaining after scour due to the check flood can support the extreme limit state loads with a resistance factor of 1.0.

7.2.1 Strength Limit State Design

The nominal compressive resistance (P_n) in the structural limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. For preliminary analyses, the H-piles were assumed fully embedded, and the column slenderness factor, λ , was taken as 0. The factored structural axial compressive resistances of the four proposed H-pile sections presented in this report were calculated using a resistance factor, ϕ_c , of 0.60 and a λ of 0. It is the responsibility of the Structural Designer to recalculate λ for the upper and lower portions of the H-pile based on unbraced length and K-values from project specific L-Pile analyses and recalculate structural resistances.

For the portion of the pile which is theoretically in pure compression, i.e. below the point of fixity, the factored structural axial resistances of four H-pile sections were calculated using a resistance factor, ϕ_c , of 0.60. The factored structural axial resistance may be controlled by the combined axial and flexural resistance of the pile. This analysis is the responsibility of the Structural Designer.

The nominal and factored axial geotechnical resistance in the strength limit state was calculated using the Canadian Geotechnical Society method and a resistance factor, φ_{stat} , of 0.45. The calculated factored geotechnical resistances of four (4) H-pile sections are provided in Table 4, below.

Drivability analyses of the four (4) proposed H-pile sections were conducted. The maximum driving stresses in the pile, assuming the use of 50 ksi steel, shall be no more that 45 ksi. The resistance factor for a single pile in axial compression when a dynamic test is performed given in LRFD Table 10.5.5.2.3-1 is $\phi_{dyn} = 0.65$. LRFD Table 10.5.5.2.3-3 requires that no less than three to four dynamic tests be conducted for sites with low to medium variability. When a pile group is nonredundant, i.e., there are less than five (5) piles, LRFD Article 10.5.5.2.3 dictates a 20 percent reduction of the resistance factor value of 0.65. The factored pile resistances provided in this report assume a five-pile group, and therefore are factored by resistance factor, ϕ_{dyn} , of 0.65.

For the strength limit state, the calculated factored axial compressive structural, geotechnical and drivability resistances of four (4) proposed H-piles sections are summarized in Table 4 below. Supporting calculations can be found in Appendix C – Calculations, at the end of this report.

		Strength Limit State Factored Axial Pile Resistance (kips)										
	Structural Resistance ϕ_c =0.60 λ = 0	Geotechnical Resistance $\phi_{\text{stat}} = 0.45$	Drivablity Resistance $\phi_{\text{stat}} = 0.65$	Governing Pile Resistance								
HP 12 x 53	465	47	285	285								
HP 14 x 73	642	64	373	373								
HP 14 x 89	783	78	413	413								
HP 14 x 117	1032	103	465	465								

Table 4. Factored Axial Compressive Resistances for H-Pile Sections for Strength Limit State Design

LRFD Article 10.7.3.2.3 states that the nominal compressive resistance of piles driven to hard rock is controlled by the structural limit state. However, the calculated factored axial drivability resistance is less than the calculated factored axial structural resistance, and local experience supports the estimated factored resistance from the drivability analyses. Therefore, the recommended governing resistance for pile design should be the factored drivability resistance in Table 4.

Since the abutment piles will be modeled with a fixed pile head and subjected to lateral and axial loads, bending moments and displacement, the piles should be analyzed for combined axial compression and flexure resistance as prescribed in LRFD Articles 6.9.2.2 and 6.15. An L-Pile® analysis by the project geotechnical engineer is recommended to evaluate the soil-pile interaction for combined axial and flexure, with factored axial loads, moments and pile head displacements applied. The resistance for the piles should be determined for compliance with the interaction equation. The upper portion of the pile is defined per LRFD Figure C6.15.2-1 as that portion of the pile above the point of second inflection in the moment vs. pile depth curve, or at the lowest point of zero deflection. For strength limit state load combinations, resistance factors of 0.70 for axial resistance (ϕ_c) and 1.0 for flexural resistance (ϕ_f) should be applied to the combined axial and flexural resistance of the pile in the interaction equation. The resistance of the pile in the lower zone need only be checked against axial load, but only if the piles are fully fixed.

7.2.2 Service and Extreme Limit State Design

The design of piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and the consequences of changed foundation conditions resulting from scour at the design flow event. For the service limit states, a resistance factor of 1.0 should be used for the calculation of structural, geotechnical and drivability axial pile resistances in accordance with LRFD Article 10.5.5.2. The overall

global stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, ϕ , of 0.65.

The extreme limit state design shall include a determination that there is adequate nominal foundation resistance remaining after scour due to the check flood to resist the unfactored extreme limit state load combination with a resistance factor of 1.0.

The calculated factored axial structural, geotechnical and drivablity resistances of four (4) H-pile sections were calculated for the service and extreme limit states and are provided below in Table 5. Supporting documentation is provided in Appendix C – Calculations.

	Service and Extreme Limit State Factored Axial Pile Resistance (kips)											
	Structural Resistance, assuming $\lambda = 0$	Geotechnical Resistance	Drivability Resistance	Governing Pile Resistance								
HP 12 x 53	775	105	438	438								
HP 14 x 73	1070	143	574	574								
HP 14 x 89	1305	174	636	636								
HP 14 x 117	1720	229	716	716								

Table 5. Factored Axial Pile Resistance for H-Piles Sections for Service and Extreme Limit State Design

LRFD Article 10.7.3.2.3 states that the nominal compressive resistance of piles driven to hard rock is controlled by the structural limit state. However, the calculated factored axial drivability resistance is less than the calculated factored axial structural resistance, and local experience supports the estimated factored resistance from the drivability analyses. Therefore, it is recommended that the governing resistance used in design be the factored drivability resistance in Table 5

7.2.3 Driven Pile Resistance and Pile Quality Control

Based on the anticipated depth to bedrock pile splices should not be permitted.

Contract documents should require the contractor to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test with signal matching at each substructure. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the contractor in the wave equation analysis. Restrikes will be not be required as part of the pile field quality control program.

With this level of quality control, the ultimate resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a

resistance factor, ϕ_{dyn} , of 0.65 provided that a minimum of three piles out of the total number of piles driven at the project site are dynamically tested, in accordance with LRFD Tables 10.5.5.2.3-1 and -3. LRFD Article 10.5.5.2.3 further specifies that the resistance factor, ϕ_{dyn} , of 0.65 be reduced by 20 percent when applied to nonredundant pile groups, i.e. pile groups with less than five (5) piles. Although a resistance factor, ϕ_{dyn} , of 0.65 cannot be justified where only two dynamic pile load tests are planned, a pile resistance factor of 0.65 is used in the pile analyses because past practice has been to perform one dynamic pile test at each abutment at conventional, single span integral bridges.

Piles should be driven to an acceptable penetration resistance as determined by the contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than $0.90\phi_{da}$ F_y, where ϕ_{da} is equal to 1.0, in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required pile resistance when the penetration resistance for the final 3 to 6 inches is 5 to 15 blows per inch (bpi). If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.3 Integral Stub Abutment Design

Integral abutment sections shall be designed for all relevant strength, service and extreme limit states specified in LRFD Articles 3.4.1 and 11.5.5. The design of abutments at the strength limit state shall consider pile group failure and structural reinforced concrete failure. Strength limit state shall also consider changed in foundation conditions and pile group resistance after scour due to the design flood. The design of cantilevered, in-line wingwalls at the strength limit state shall consider structural reinforced concrete failure.

A resistance factor of 1.0 shall be used for abutment design at the service limit state, including: settlement, excessive horizontal movement and movement resulting from scour at the design flood. The overall global stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, φ , of 0.65

Extreme limit state design shall also check that the nominal foundation resistance remaining after scour due to the check flood can support the extreme limit state loads with a resistance factor of 1.0.

The Designer may assume Soil Type 4 MaineDOT Bridge Design Guide (BDG) Section 3.6.1) for backfill material. The backfill properties are as follows: $\phi = 32$ degrees, $\gamma = 125$ pcf and a soil-concrete friction coefficient of 0.45. Cast-in-place integral abutment and wingwall sections shall be designed to withstand a maximum applied lateral load equal to the passive earth pressure. The Coulomb passive earth pressure coefficient, K_p , of 7.33 is recommended. Developing full passive pressure requires displacements of the abutment on the order of 2 to 5 percent of the abutment height. If the calculated displacements are significantly less than that required to develop full passive pressure, the designer may consider using the Rankine passive earth pressure case, which assumes no wall friction, or designing using a reduced

Coulomb passive earth pressure coefficient, but in no case should the passive earth pressure case be less than the Rankine passive earth pressure coefficient, K_p , of 3.3.

A load factor for passive earth pressure is not specified in LRFD. Use the maximum load factor for active earth pressure, γ_{EH} =1.50.

Additional lateral earth pressure due to construction surcharge or live load surcharge is required per Section 3.6.8 of the MaineDOT BDG for the abutments and walls if an approach slab is not specified. When a structural approach slab is specified, reduction, not elimination, of the surcharge loads is permitted per LRFD Article 3.11.6.5. The live load surcharge on walls may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (H_{eq}) of 2.0 feet, per LRFD Table 3.11.6.4-2. The live load surcharge on abutments may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (H_{eq}) taken from Table 6 below:

Abutment Height (feet)	H _{eq} (feet)
5	4.0
10	3.0
>=20	2.0

Table 6. Equivalent Height of Soil for Estimating Live Load Surcharge

All abutment designs shall include a drainage system behind the abutments to intercept any groundwater. Drainage behind the structure shall be in accordance with Section 5.4.1.4 Drainage, of the MaineDOT BDG. The approach slab should be positively attached to the integral abutment.

Backfill within 10 ft of the abutments and wingwalls and side slope fill shall conform to Granular Borrow for Underwater Backfill - MaineDOT Standard Specification 709.19. This gradation specifies 10 percent or less of the material passing the No. 200 sieve. This material is specified in order to minimize frost action behind the structure.

Slopes in front of pile supported integral abutments should be set back from the riverbank and should be constructed with riprap and erosion control geotextile and not exceed 1.75H:1V.

7.4 Scour and Riprap

The consequences of changes in foundation conditions resulting from the design and check floods for scour shall be considered at the strength and extreme limits states, respectively. Design at the strength limit state should consider loss of lateral and vertical support to due to scour. Design at the extreme limit state should check that the nominal foundation resistance due to scour at the check flood event is no less than the unfactored extreme limit state loads. At the service limit state the design shall limit movements and overall stability considering scour at the design flood.

In general, for scour protection, any footings which are constructed on soil deposits should be embedded at least 2 feet below the design scour depth and armored with 3 feet of riprap for scour protection. Refer to MaineDOT BDG Section 2.3.11 for information regarding scour design.

For scour protection, bridge approach slopes and slopes at wingwalls should be armored with 3 feet of riprap as per Section 2.3.11.3 of the MaineDOT BDG. Stone riprap shall conform to item number 703.26 Plain and Hand Laid Riprap of the Standard Specification and be placed at a maximum slope of 1.75H:1V. The toe of the riprap section shall be constructed 1 foot below the streambed elevation or terminated at the surface of bedrock-exposed streambeds. The riprap section shall be underlain by a Class 1 nonwoven erosion control geotextile and a 1 foot thick layer of bedding material conforming to item number 703.19, of the Standard Specification. Riprap may be placed at the toes of abutments, wingwalls and retaining walls, as required.

7.5 Settlement

There are three (3) areas where settlement is of concern on this project. The existing west bridge spans a canal which will be filled in with 13 feet of soil. The grade of approach roadway to Abutment No. 1 will be raised approximately 2 feet. The riverbank below the existing fourth bridge span of the east bridge, between the existing pier 3 and abutment 2, will be filled in with 13 feet of soil. Settlements due to elastic compression of the soils in these areas of concern were calculated and are provided in Table 7 below. Settlement of the granular foundation soils will be elastic and occur primarily during construction. Supporting calculations are provided in Appendix C – Calculations.

Location	Estimated Elastic Settlement (inches)
West bridge over canal (approx. Sta. 6+00) with 13 feet of fill	1.3
Abutment 1 approach (approx. Sta 7+25) with 2 feet of new fill	0.5
Riverbank between the existing pier 3 and east abutment (approx. Sta. 9+00) with 13 feet of fill	1.5

Table 7. Estimated Settlement

Any settlement of the proposed bridge abutments will be due to elastic settlement of the bedrock or piles, which is assumed to occur during construction and will be negligible.

7.6 Frost Protection

Integral abutments shall be embedded a minimum of 4.0 feet for frost protection per Figure 5-2 of the MaineDOT BDG.

It is anticipated that return wingwalls at the corners of the abutments will be straight extension wings. However, should any walls be founded on spread footings on compacted granular borrow, the foundations should be designed with an appropriate embedment for frost protection. According to the MaineDOT BDG, Newport, Maine has a design freezing index of approximately 1800 F-degree days. A water content of 15% from laboratory data was used for coarse grained granular fill soil above the water table. These components correlate to a frost depth of approximately 6.9 feet. Modberg, a computer program, developed by U.S. Army Cold Regions Research and Engineering Laboratory, was used to check the calculated maximum depth of frost penetration. The calculated depth of frost according to the Modberg solution, which is based on the Modified Berggren Equation, is 7.3 feet.

It is recommended that foundations placed on granular fill soil should be founded a minimum of 7.0 feet below finished exterior grade for frost protection.

7.7 Seismic Design Considerations

In conformance with LRFD Article 4.7.4.2, seismic analysis is not required for single-span bridges, regardless of seismic zone. Main Street Bridge is not on the National Highway System, and is therefore not classified as functional important. Furthermore, the bridge is not classified as a major structure, since the bridge construction costs will not exceed \$10 million. These criteria eliminate the MaineDOT BDG requirement to design the foundations for seismic earth loads. However, superstructure connections and bridge seat dimensions shall be satisfied per LRFD Articles 3.10.9 and 4.7.4.4, respectively.

The following parameters were determined for the site from the USGS Seismic Parameters CD provided with the LRFD Manual and LRFD Articles 3.10.3.1 and 3.10.6:

- Peak ground acceleration coefficient (PGA) = 0.072g
- Design spectral acceleration coefficient at the 0.2-second period, $S_{DS} = 0.248g$
- Design spectral acceleration coefficient at the 1.0-second period, $S_{D1} = 0.110g$
- Site Class D (site soils with an average blow count between 5 and 50 bpf or an undrained shear strength between 1000 and 2000 psf)
- Seismic Zone 1 (based on a $S_{D1} \le 0.15g$)

7.8 Construction Considerations

Construction of the abutments will require soil excavation and excavation of the existing substructures. Construction activities may require cofferdams and earth support systems. Portions of existing abutments, retaining walls and piers that are left in place may obstruct installation of piles. Removal of all of the existing substructures may be necessary, in

particular at the proposed pile locations at Abutment No. 1 and Abutment No. 2. This may also necessitate the replacement of excavated backfill soils and old substructure locations with compacted granular fill before pile driving can commence.

In some locations, the native soils may be saturated and significant water seepage may be encountered during construction. There may be localized sloughing and surface instability in some soil slopes. The contractor should control groundwater, surface water infiltration, and soil erosion.

Using the excavated native soils as structural backfill should not be permitted, and may only be used as common borrow in accordance with MaineDOT Standard Specifications Sections 203 and 703.

The contractor will have to excavate the existing subbase gravel and the subgrade fill soils. These materials should not be used to re-base the new bridge approaches, but excavated subbase sand and gravel may be used as fill below subgrade level in fill embankments provided all other requirements of MaineDOT Standard Specifications Sections 203 and 703 are met.

8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Bridge Program for specific application to the proposed replacement of Main Street Bridge in Newport, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use or warranty is implied. In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.

We also recommend that we be provided the opportunity for a general review of the final design plans and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design.

Appendix A

Boring Logs

	Maine Department of Transportation						Project: Main Street Bridge #2501 over East Brand				Boring No.: BB-N		SR-101	
		-	Soil/Rock Exp US CUSTOM	loration Log			Location		ticook R vport, M		PIN:	1562	25.00	
Drill	er:		MaineDOT		Elev	vation	(ft.)	185	.6		Auger ID/OD:	N/A		
Ope	rator:		E. Giguere/C.	Giles	Date	um:		NA	VD 88		Sampler:	Standard Split	Spoon	
Log	ged By:		L. Krusinski		Rig	Туре	:	CM	E 45C		Hammer Wt./Fall:	140#/30"		
Date	Start/Fi	nish:	6/4/08; 11:00-	16:30	Dril	ling N	lethod:	Cas	ed Wash	Boring	Core Barrel:	NQ-2"		
Bori	ng Locat	tion:	7+92.6, 9.6 Rt	-	Cas	sing IE	D/OD:	NW	& HW		Water Level*:	Stream Elev.		
Ham	mer Effi	ciency Fa	actor: 0.77		Han	nmer	Туре:	Autom	atic ⊠	Hydraulic □	Rope & Cathead □			
Defini D = S MD = U = T MU = V = In	tions: plit Spoon S Unsuccessi hin Wall Tut Unsuccessi situ Vane S	Sample ful Split Spo be Sample ful Thin Wal Shear Test,	on Sample attem I Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = S ot	ck Core San Solid Stem A Hollow Stem coller Cone weight of 14 = weight of = Weight of	Auger n Auger 40lb. ha f rods or	casing		$T_V = Poc$ $q_p = Unc$ N -uncorn $Hammer$ $N_{60} = SF$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ur		= Lab Vane Shear S vater content, percen quid Limit lastic Limit asticity Index ain Size Analysis nsolidation Test		
			٦ -	•					1				Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class	
0	1D	24/3	0.00 - 2.00	10/8/2/2	10	13	47			Dark brown, moist, medium and fibers, slightly organic, t				
							33			Sediments).				
	2D	24/7	2.00 - 4.00	9/22/20/14	42	54	46			Dark brown, wet, very dense SAND, trace organic silt, fev	, ,		A-1-a, GP-GM	
							604			Riverbottom Sediments).			WC=11.8%	
							19	-		Hit wood at 4.0' bgs. Wood i	in wash water from 4.0-5.0)' bgs.		
5 -							17	-		Brown, wet, loose, medium	to coarse SAND, some wo	od, little silt, trace		
	3D	24/3	5.00 - 7.00	3/2/3/8	5	6	26			clay and fine angular gravel. Telescoped NW Casing into				
								-	*****					
							25	177.35		$_{\sim}$ a31 blows for 3", then 220 b	lows after coring.			
	R1	24/17	8.25 - 10.25	RQD = N/A%			a31 -NQ-2-	177.55		R1: Granite BOULDER 1.4'		8.25		
							134	175.95		R1:Core Times (min:sec)				
10							CORE-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
							''			(4D/A) 11.0-12.0' bgs.		9.65	G#210011	
	4D/AB	24/19	11.00 - 13.00	7/16/27/36	43	55	102	173.60		Grey, moist, very dense, ang (Alluvium). Changed to brown in wash w		SAND, trace silt,		
										(4D/B) 12.0-13.0' bgs.	vacci at 113.	12.00		
							255			Olive-brown, damp to moist clay, little fine angular grave		edium sand, little		
15	5D	24/20	15.00 - 17.00	24/33/43/36	76	98	b _{RC}			bRoller Coned ahead to 18.0 Brown, moist, very dense, fi coarse angular gravel, trace of (Till).	ne to coarse SAND, some		G#210012 A-2-4, SC-SM WC=9.4%	
								167.66		(1111).		10.00		
	R2	60/53	18.00 - 23.00	RQD = 26%			NQ-2	167.60	Miles	Top of Bedrock at Elev. 167		18.00		
20 -							_CORE_			R2: Bedrock: Grey, fine grai moderately hard to hard, mo at steep angles, tight, weathe fractured and weathered zon	derately weathered, cleave ered and stained surfaces; r	s along folliation moderately		
										10", pegmatite veins in lowe				
									1871	Quality: Poor. R2:Core Times (min:sec)				
								162.60		18.0-19.0' (3:08) 19.0-20.0' (2:26) 20.0-21.0' (2:40)				
										21.0-22.0' (2:31) 22.0-23.0' (2:40) 88% Recov	/ery	23 00-		

Large cobble moved to side at Ground Surface. 16.8' from Bridge Deck to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialinoalion intes represent approximate boundaries between son types, transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

	Maine Department of Transport								Street B	ridge #2501 over East Branch	Boring No.:	BB-N	BB-NSR-101	
		_	<u>Soil/Rock Exp</u> <u>US CUSTOM</u>	loration Log			Location	Sabast	icook R	iver	PIN:	156	5625.00	
Drille	er:		MaineDOT		Eleva	tion	(ft.)	185.	6		Auger ID/OD:	N/A		
Ope	rator:		E. Giguere/C.	Giles	Datun	n:		NAV	/D 88		Sampler:	Standard Split	Spoon	
	ged By:		L. Krusinski		Rig Type: CME 45C						Hammer Wt./Fall:	140#/30"	•	
	Start/F		6/4/08; 11:00-	·16:30	+		lethod:			Boring	Core Barrel:	NQ-2"		
	Boring Location: 7+92.6, 9.6 Rt.				Casin				& HW		Water Level*:	Stream Elev.		
			actor: 0.77	••	Hamn			Automa		Hydraulic □	Rope & Cathead □	Stream Biev.		
Definitions: R = Rock C D = Split Spoon Sample SSA = Soli MD = Unsuccessful Split Spoon Sample attempt HSA = Holl U = Thin Wall Tube Sample RC = Rolle MU = Unsuccessful Thin Wall Tube Sample attempt WOH = we						le ger luger lb. ha			S _u = Ins T _V = Poo q _p = Uno N-uncorr Hammer	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham	S _{u(lab)} WC = v LL = Lit PL = Pl ion Value PI = Pl	= Lab Vane Shear S vater content, percen quid Limit astic Limit asticity Index ain Size Analysis		
			ne Shear Test att	empt WO1P = V	Veight of on					lammer Efficiency Factor/60%)*N-ui		nsolidation Test	1	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Clas	
25	0)	-	0, 5	шиисв			ТОШ	ш		Bottom of Exploration	at 23.00 feet below groun	nd surface.	 	
- 30 -														
- 40 -														
. 45 .														
- 45 -														
50														

Large cobble moved to side at Ground Surface. 16.8' from Bridge Deck to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilioanon inico represent approximate beartaches between con types, transmission may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 2

	Maine Department of Transportat										Boring No.: BB-1		ISR-102	
			Soil/Rock Expl US CUSTOM/				Location		icook R port, M		PIN:	156	25.00	
Drille	er:		MaineDOT		Ele	evation	(ft.)	188	6		Auger ID/OD:	N/A		
Ope	ator:		E. Giguere/C.	Giles	Da	tum:		NA	/D 88		Sampler:	Standard Split	Spoon	
Logo	ged By:		L. Krusinski		Rig	Rig Type: CME 45C					Hammer Wt./Fall:	140#/30"		
	Start/Fi		6/3/08-6/4/08			Drilling Method: Cased Wash Boring					Core Barrel:	NQ-2"		
	ng Locat		8+60.9, 10.9 L	t.	$\overline{}$	sing II			& HW		Water Level*:	2.0' bgs.		
Ham Definit		ciency Fa	actor: 0.77	R = Rock		mmer	туре:	Autom		Hydraulic ☐ tu Field Vane Shear Strength (psf)	Rope & Cathead ☐	o) = Lab Vane Shear S	Strength (psf)	
MD = U = TI MU = V = In	nin Wall Tub Unsuccessi situ Vane S	ful Split Spo be Sample ful Thin Wal hear Test,	on Sample attemp I Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Roll empt WOH = v etrometer WOR/C =	ollow Ste ller Cone veight of weight of	em Auger 140lb. ha of rods o	ammer r casing		q _p = Und N-uncorr Hammer N ₆₀ = SF	ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur		water content, percentiquid Limit Plastic Limit Plasticity Index rain Size Analysis onsolidation Test		
		_		Sample Information									Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Testing Results/ AASHTO and Unified Class	
0	1D/AB	24/7	0.00 - 2.00	11/10/3/3	13	17	8		颜	(1D/A) Brown, damp, medic	ım dense, sandy GRAVE	L.		
							14	186.60		(1D/B) Grey, damp, angular little fine to medium sand.	coarse GRAVEL (broker	rock fragments),		
	2D	24/8	2.00 - 4.00	2/2/4/3	6	8	5	100.00		Dark brown, wet, loose, fine brown, moist, fine to coarse Bottom Sediment and Alluvi	SAND, trace gravel, sligh	ding to very dark		
							8			Washing out to 5.0' bgs, hit i	<i>'</i>			
5 -							50	183.60						
3	3D	24/8	5.00 - 7.00	12/17/20/12	37	47	59	183.00		Dark olive-grey, saturated, d little silt, (gravel is broken ro Sediment and Alluvium).		se gravelly SAND,	G#209970 A-1-a, SM WC=18.4%	
							93			Sediment and Alluvium).				
-							77							
							70	179.60				9.00	-	
10 -							100			Grey, moist, very dense, fine	a to goorsa SAND, soma f	ino angular graval	G#209971	
	4D	24/10	10.00 - 12.00	15/18/24/20	42	54	81			little silt, well sorted, (Alluv Telescoped NW Casing into	ium).	me angulai gravei,	A-1-b, SM WC=10.6%	
							65			released for the custing line	Trivi Cuonig ut Trivi Ogo.			
							71							
							109	174.60	8			14.00	1	
15 -	5D/BA	24/12	15.00 - 17.00	27/34/43/32	77	99	71			(5D/B) Olive grey, damp to gravel, some staining, (Glaci		AND, trace angular	A-4, SM	
							95			(5D/A) Olive grey, damp, ve little fine angular gravel and			WC=11.1% G#209972	
							140						A-2-4, SM WC=10.1%	
							172							
20 -							265			(D()) 0!!				
	6D/AB	24/18	20.00 - 22.00	33/53/52/49	105	135	63			(6D/A) Olive grey and brow gravel fine to coarse, angular	r, including weathered roo			
							70			fine sand, little clay, (Glacia Roller Coned ahead to 23.8' ahead to 25.0' bgs.		roller coned		
							79		00000	(6D/B) Brown, moist, very of to coarse angular gravel, trace		SAND, some fine		
							88			NWG : 245				
25	ı					İ	1	i	11数11数比	NW Casing to 24.5' bgs.			I	

13.9' from Bridge Deck to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

graduit and the represent approximate boundaries between son types, transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

]	Maine Department of Transport				Project: Main Street Bridge #2501 over East Branch Sabasticook River							Boring No.: BB-NS		SR-102
			Soil/Rock Exp JS CUSTOM/				Loca	atio		port, M		PIN:	1562	25.00
Drille	er:		MaineDOT		Eleva	ation	(ft.)		188	.6		Auger ID/OD:	N/A	
Oper	ator:		E. Giguere/C.	Giles	Datu	ım:			NA	VD 88		Sampler:	Standard Split	Spoon
Logo	jed By:		L. Krusinski		Rig 1	Гуре:			CM	E 45C		Hammer Wt./Fall:	140#/30"	_
	Start/F	inish:	6/3/08-6/4/08		Drilli			d:		ed Wash	Boring	Core Barrel:	NQ-2"	
	ng Loca		8+60.9, 10.9 L	t	Casi					& HW		Water Level*:	2.0' bgs.	
			ctor: 0.77	···	Ham				Autom		Hydraulic □	Rope & Cathead □	-11 -801	
Definit		iciency i a	0.77	R = Rock C			. , po		Autom		tu Field Vane Shear Strength (psf)) = Lab Vane Shear S	Strength (psf)
MD = U = Th MU = V = In:	nin Wall Tu Unsuccess situ Vane S	sful Split Spoo ube Sample sful Thin Wall Shear Test,	on Sample attemp Tube Sample att PP = Pocket Per le Shear Test atte	RC = Rolle empt	ow Stem or Cone ight of 140 veight of r	Auger 0lb. ha rods or	casing	g 		q _p = Unc N-uncorr Hammer N ₆₀ = SF	ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur		water content, percen iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	
				Sample Information			_		1	4				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Clas
25	R1	60/57.6	25.00 - 30.00	RQD = 96%			NC		163.60	W.	Top of Bedrock at Elev. 163	.6 ft.	25.00	1
							co	RE			R1: Bedrock: Dark grey, fine moderately hard, fresh, occa along quartz veins, one open some vuggy seams. Vassalbe Excellent. R1:Core Times (min:sec) 25.0-26.0' (10:40)	e grained, metasedimentar sional quartz veins, no fol seam 8" from top, upper	iation, drill breaks 8" quartz disolved,	
											26.0-27.0' (5:00)			
30 -										13,211	27.0-28.0' (4:25)			
	R2	58.8/58.8	30.00 - 34.90	RQD = 86%							28.0-29.0' (5:15) 29.0-30.0' (6:27) 96% Recov R2: Bedrock: Same as R1, o veins, surfaces stained with s veins. Vassalboro Formation R2:Core Times (min:sec)	nly less fractured, fracture some oxidation, drill breal	ks along quartz	
								/			30.0-31.0' (6:30) 31.0-32.0' (5:50) 32.0-33.0' (3:30) 33.0-34.0' (4:05)			
35 -							,		. 153.70	, אינייאים	34.0-34.9' (2:33) 100 % Rec Bottom of Exploration	at 34.90 feet below grou	34.90 nd surface.	
		+							1					
40 -														
		1												
							-							
45 -									1					
		-							ł					
		1							1					
					-		-							
				+					1					
50 _														
Rem	arks:										· · · · · · · · · · · · · · · · · · ·			

13.9' from Bridge Deck to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilioator into represent approximate searcance settles represent the respective fields

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 2

	Main	e Dep	artment	of Transport	ation	1	Project:			ridge #2501 over East Branch	Boring No.:	BB-N	SR-201
			Soil/Rock Exp US CUSTOM				Location		icook R port, M		PIN:	1562	25.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	192	5		Auger ID/OD:	N/A	
Ope	ator:		E. Giguere/C.	Giles	Dat	tum:		NA	VD 88		Sampler:	Standard Split	Spoon
Logg	ged By:		B. Wilder		Rig	у Туре		CM	E 45C		Hammer Wt./Fall:	140#/30"	
	Start/Fi		6/15/09, 6/25/	09	_		lethod:	Cas	ed Wash	Boring	Core Barrel:	BX	
	ng Loca		7+47.8, 12.9 F	tt.	-	sing IE		NW	& HW		Water Level*:	16.0'-6/15, 9.0'	6/25 bgs.
Definit D = SI MD = U = TI MU = V = In	ions: olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	Sample sful Split Spo lbe Sample sful Thin Wal Shear Test,	on Sample attempt I Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = S ot	Hall ck Core Sa Solid Stem Hollow Ster bller Cone weight of weight of Weight of	Auger m Auger 140lb. ha of rods or	immer casing	Autom	$S_u = Ins$ $T_v = Poole$ $q_p = Uncorrected Normal Manuscript Hammer Normal	Hydraulic □ itu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ur		= Lab Vane Shear S vater content, percen quid Limit lastic Limit asticity Index ain Size Analysis nsolidation Test	
				Sample Information				1					Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Testing Results/ AASHTO and Unified Class
0	1D	7.2/5	0.00 - 0.60	1/50(1.2")			2			Brown, wet, very dense, grave cobbles.	velly fine to coarse SAND	, some silt, roots,	
							50			Boulder from 1.4-2.5' bgs. R	coller Coned ahead to 5.0' l	ogs.	
							15						
							OPEN	189.00				3.50	-
							HOLE-						
5 -	2D	24/10	5.00 - 7.00	6/11/16/11	27	38	15			Dark grey, wet, dense, sandy slight odor. Switched to NW			G#212332 A-1-a, GM
							81			sight odor. Switched to ivw	cusing. Roller Colled allo	au 10 7.0 0gs.	WC=16.6%
							142						
							171	-					
	3D	24/1	9.00 - 11.00	3/7/6/7	13	18	150			Similar to above, except med	dium dense.		
10 -							44						
							59						
							64	180.00				12.50	-
							51						
	4D	24/8	14.00 - 16.00	19/13/10/18	23	32	37		60	Olive-grey, wet, dense, silty	fine to coarse SAND, som	e gravel, (Till).	
15 -							76		36				
							88						
							125						
							146						
20 -	5D	18/16	19.00 - 20.50	42/33/52	85	119	56			Olive-grey, wet, very dense, coarse gravel, blocky	•	, some fine to	
20 -							73		5900 o	Roller Coned ahead to 24.0'	bgs.		
							99						
							130	169.50				23.00	
							166	109.30					
25	6D	24/17	24.00 - 26.00	21/31/29/30	60	84	14		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brown, moist, very dense, S. (Till).	AND, some silt, some grav	vel, little clay,	G#212333 A-4, CL-ML

11.0' from Bridge Deck to Ground. Bridge Deck Concrete 12" thick.

Used BX Core Barrel, casing was bent to much to get NQ-2 Core Barrel down hole.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 2

-	Main	- 3	artment Soil/Rock Exp US CUSTOM		ation		Project:	Sabast	ticook R	ver	NSR-201 625.00
Drille	ar.	-	MaineDOT		Eleva	ation	/f+ \	192.	5	Auger ID/OD: N/A	
	rator:		E. Giguere/C.	Giles	Datu		(11.)		VD 88	Sampler: Standard Spl.	it Spoon
•	ged By:		B. Wilder	Giles	Rig 1				E 45C	Hammer Wt./Fall: 140#/30"	и ороон
	Start/F	inish:	6/15/09, 6/25/0	ng	-		lethod:		ed Wash		
	ng Loca		7+47.8, 12.9 F				D/OD:		& HW	Water Level*: 16.0'-6/15, 9.	0' 6/25 has
			actor: 0.84		_		Type:	Automa		Hydraulic ☐ Rope & Cathead ☐	0 0/25 065.
Definit D = Sp MD = U = Th MU = V = In	tions: olit Spoon Unsucces nin Wall Tu Unsucces situ Vane	Sample sful Split Spo ube Sample sful Thin Wall Shear Test,	on Sample attemp I Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = Sc t HSA = Hc RC = Rol empt WOH = w hetrometer WOR/C = empt WO1P =	Core Samp olid Stem Au ollow Stem	ple uger Auger Olb. ha rods or	ammer r casing		S_u = Insi T_V = Pool q_p = Uncorr N-uncorr Hammer N_{60} = SI	In Fided Vane Shear Strength (psf) Let Torvane Shear Strength (psf) Let Torvane Shear Strength (psf) Let Torvane Shear Strength (psf) Let Torvane Shear Strength (ksf) Let Liquid Limit Let Liquid Limit Let Let Liquid Limit Let Liquid Limit Let Let Liquid Limit	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Clas
25							RC	165.30		Roller Coned ahead from 25.0-27.2' bgd.	WC=11.2% LL=22 PL=17 PI=5
•	R1	44.4/34	27.20 - 30.90				BX	-		Top of Bedrock at Elev. 165.3'. R1:Bedrock: Grey, fine grained, metasedimentary (HORNFELS) with quartz veins, moderately hard, moderately weathered. Joint breaks at close spacing. Vassalboro Formation. Rock Mass Quality: very poor, based on an estimated NQ RQD of 21%.	
30 -	R2	60/60	30.90 - 35.90							R1:Core Times (min:sec) 27.2-28.2' (4:30) 28.2-29.2' (3:00) 29.2-30.2' (3:30) 30.2-30.9' (4:12) 76% Recovery Core Blocked R2: Bedrock: Same as R1, except fresh, joint set moderately close to	
35 -								- 156.60		close. Rock Mass Quality: good, based on an estimated NQ RQD of 68%. R2:Core Times (min:sec) 30.9-31.9' (4:25) 31.9-32.9' (4:00) 32.9-33.9' (4:12) 33.9-34.9' (4:35) 34.9-35.9' (4:50) 100% Recovery	
40 -										Could not get Core Barrel back down, casing bent. 35.9 Bottom of Exploration at 35.90 feet below ground surface.	0-
40 -											
45 -								-			
50								-			

11.0' from Bridge Deck to Ground.
Bridge Deck Concrete 12" thick.
Used BX Core Barrel, casing was bent to much to get NQ-2 Core Barrel down hole.

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 2

Appendix B

Laboratory Test Results

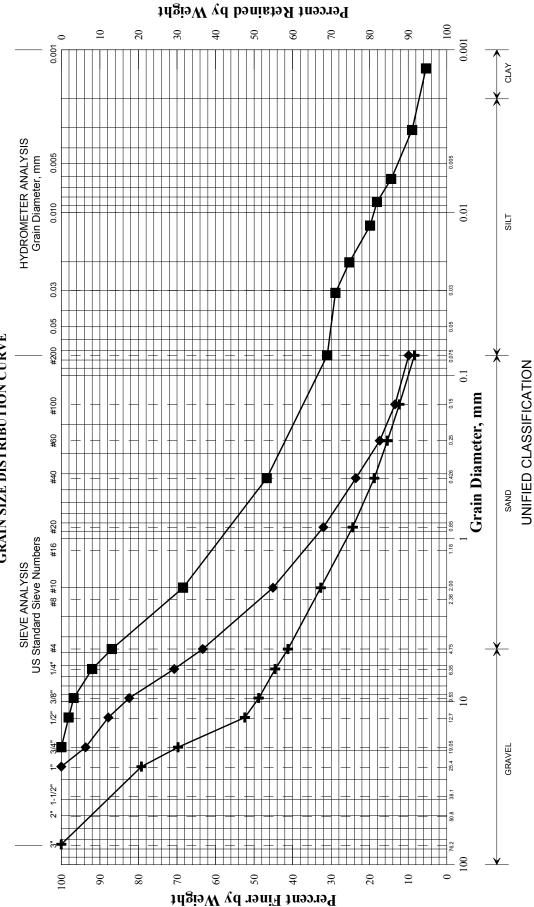
State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Newport

Project N	aumber.	13023.00

(-)						_		_			
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.		ssification	
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-NSR-201, 2D	7+47.8	12.9 Rt.	5.0-7.0	212332	3	16.6			GM	A-1-a	ı
BB-NSR-201, 6D	7+47.8	12.9 Rt.	24.0-26.0	212333	3	11.2	22	5	CL-ML	A-4	Ш
BB-NSR-101, 2D	7+92.6	9.6 Rt.	2.0-4.0	209975	1	11.8			GP-GM	A-1-a	0
BB-NSR-101, 4D/A	7+92.6	9.6 Rt.	11.0-12.0	210011	1	10.7			SW-SM	A-1-a	0
BB-NSR-101, 5D	7+92.6	9.6 Rt.	15.0-17.0	210012	1	9.4			SC-SM	A-2-4	Ш
BB-NSR-102, 3D	8+60.9	10.9 Lt.	5.0-7.0	209970	2	18.4			SM	A-1-a	П
BB-NSR-102, 4D	8+60.9	10.9 Lt.	10.0-12.0	209971	2	10.6			SM	A-1-b	II
BB-NSR-102, 5D/B	8+60.9	10.9 Lt.	15.0-17.0	209973	2	11.1			SM	A-4	Ш
BB-NSR-102, 5D/A	8+60.9	10.9 Lt.	15.0-17.0	209972	2	10.1			SM	A-2-4	П
								 			

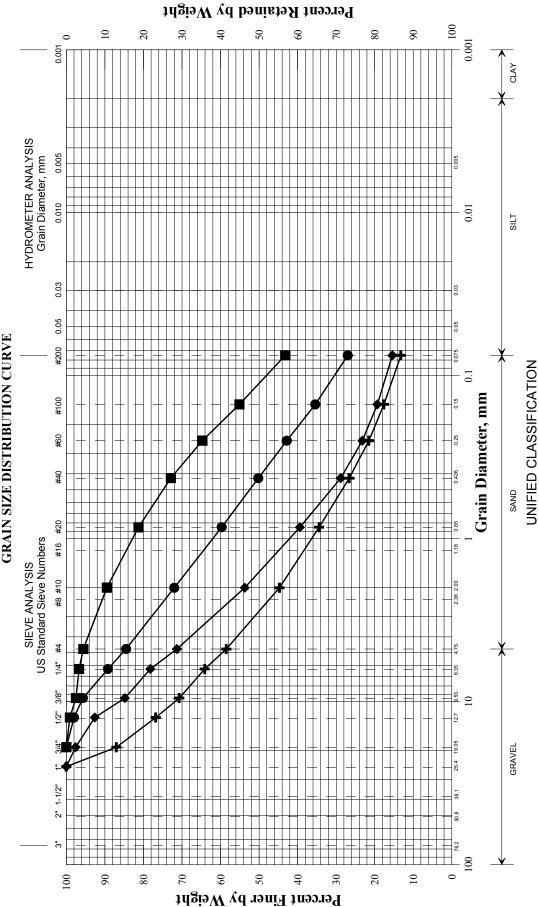
Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible). The "Frost Susceptibility Rating" is based upon the MaineDOT and Corps of Engineers Classification Systems.


GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98


State of Maine Department of Transportation GRAIN SIZE DISTRIBUTION CURVE

spth, ft Description W, % LL PL PI	2.0-4.0 GRAVEL, some sand, trace silt. 11.8 015625.00	11.0-13.0 Gravelly SAND, trace silt.	15.0-17.0 SAND, some silt, little gravel, trace clay. 9.4	lodwali	WHITE, TERRY A
۸۷, ۸۷	11.8	10.7	9.4		
Description	GRAVEL, some sand, trace silt.	Gravelly SAND, trace silt.	SAND, some silt, little gravel, trace clay.		
Depth, ft	2.0-4.0	11.0-13.0	15.0-17.0		
Offset, ft	9.6 RT	9.6 RT	9.6 RT		
Station	7+92.6	7+92.6	7+92.6		
Boring/Sample No.	BB-NSR-101/2D	BB-NSR-101/4D/A	BB-NSR-101/5D		

PIN 015625.00 Town Newport	Reported by/Date	WHITE, TERRY A 9/8/2008
-------------------------------------	------------------	-------------------------

Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	W, % LL PL	7	₫	NIG
BB-NSR-102/3D	8+60.9	10.9 LT	5.0-7.0	Gravelly SAND, little silt.	18.4			015625.00
BB-NSR-102/4D	6.09+8	10.9 LT	10.0-12.0	10.0-12.0 SAND, some gravel, little silt.	10.6			MOT
BB-NSR-102/5D/B	6.09+8	10.9 LT	15.0-17.0	15.0-17.0 Silty SAND, trace gravel.	11.1			todio
BB-NSR-102/5D/A	6.09+8	10.9 LT	15.0-17.0	15.0-17.0 SAND, some silt, little gravel.	10.1			Jodan
								Керопед
								WHITE, TERRY A

NIG
015625.00
Town
Newport
Reported by/Date
WHITE, TERRY A 9/8/2008

HYDROMETER ANALYSIS Grain Diameter, mm 0.005 0.010 0.01 0.03 State of Maine Department of Transportation GRAIN SIZE DISTRIBUTION CURVE 0.05 #200 Grain Diameter, mm #100 09# #4 SAND #16 #20 SIEVE ANALYSIS US Standard Sieve Numbers #8 #10 1/4" #4 1/2" 3/8" 3/4" 2" 1-1/2"

Percent Retained by Weight

50

2

9

10

0

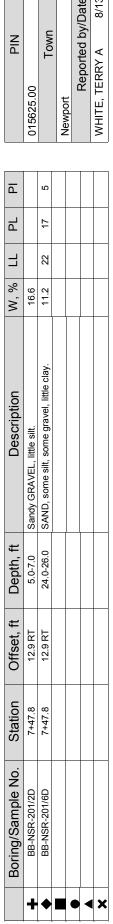
100

90

80

70

50


Percent Finer by Weight

9

0.001

20

30

100

0.001

CLAY

SILT

UNIFIED CLASSIFICATION

GRAVEL

100

0

10

20

30

40

8

80

GEOTECHNICAL TEST REPORT Central Laboratory

SAMPLE INFORMATION

Reference No.Boring No./Sample No.Sample DescriptionSampledReceived212333BB-NSR-201/6DGEOTECHNICAL (DISTURBED)6/25/20097/24/2009

Sample Type: GEOTECHNICAL Location: OTHER Station: 7+47.8 Offset, ft: 12.9 RT Dbfg, ft: 24.0-26.0

PIN: 015625.00 Town: Newport Sampler: GIGUERE, ERVIN M

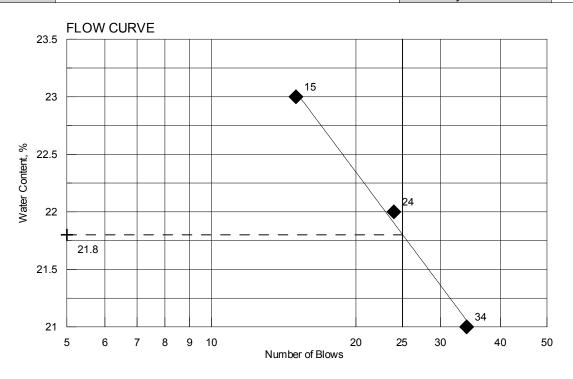
TEST RESULTS

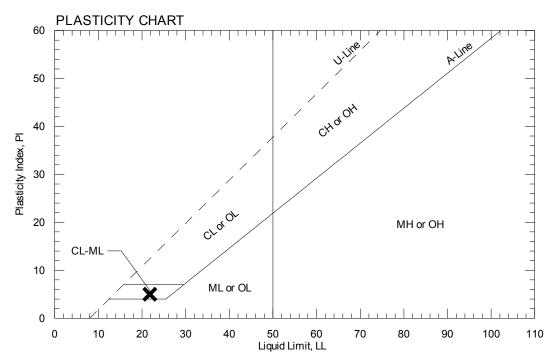
Sieve Analys	sis
(T-88)	
SIEVE SIZE U.S. [SI]	% Passing
3 in. [75.0 mm]	100.0
1 in. [25.0 mm]	95.8
3/4 in. [19.0 mm]	92.2
½ in. [12.5 mm]	88.0
3/₃ in. [9.5 mm]	83.3
1/4 in. [6.3 mm]	78.7
No. 4 [4.75 mm]	74.7
No. 10 [2.00 mm]	66.2
No. 20 [0.850 mm]	
No. 40 [0.425 mm]	52.4
No. 60 [0.250 mm]	
No. 100 [0.150 mm]	
No. 200 [0.075 mm]	39.9
[0.0299 mm]	35.7
[0.0192 mm]	33.9
[0.0118 mm]	26.3
[0.0084 mm]	24.5
[0.0060 mm]	20.7
[0.0031 mm]	15.0
[0.0013 mm]	9.4

Direc	t Shear (T	236)	
Shear Angle, °			
Initial Water Content, %			
Normal Stress, psi			
Wet Density, lbs/ft3			
Dry Density, lbs/ft³			
Specimen Thickness, in			

Trimmings, Water Content, % Initial Final Void Ratio Strain Water Content, % Dry Density, Ibs/ft³ Void Ratio Pmin Pp Void Ratio Pmax Saturation, % Cc/C'c

Consolidation (T 216)


Miscellaneous Tests
Liquid Limit @ 25 blows
(T 89)
22
Plastic Limit (T 90)
17
Plasticity Index (T 90)
5
Specific Gravity,
Corrected to 20°C (T 100)
2.75
Loss on Ignition (T 267)
<u>Loss, %</u> <u>H2O, %</u>
Water Content (T 265), %
11.2


Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth taken in tube, ft	3 ln.		6 In.		Water				
	U. Shear	Remold	U. Shear	Remold	Content, %	Description of Material Sampled at the Various Tube Depths			
	tons/ft²	tons/ft²	tons/ft²	tons/ft²					

Wash Method

Comments:

TOWN	Newport	Reference No.	212333
PIN	015625.00	Water Content, %	11.2
Sampled	6/25/2009	Plastic Limit	17
Boring No./Sample No.	BB-NSR-201/6D	Liquid Limit	22
Station	7+47.8	Plasticity Index	5
Depth	24.0-26.0	Tested By	BBURR

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 8/4/2009

Paper Copy: Lab File; Project File; Geotech File

Appendix C

Calculations

Bedrock Properties at the Site

RQD of bedrock cores 26% in BB-NSR-101 BX core in BB-NSR-201 (if NQ, 21% to 68%) 96% to 86% in BB-NSR-102

Rock Type: Metasedimentary (Hornfels)

 ϕ = 20-27 (AASHTO LRFD Table C.10.4.6.4-1);

uniaxial compressive strength = Co= 1400 to 21,000 psi - use **10,000 psi** for design AASHTO TABLE 4.4.8.1.2.B

Pile Properties

Use the following piles: 12x53, 14x73, 14x89, 14x117

$$A_{s} := \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot \text{in}^{2} \qquad d :=$$

$$\begin{array}{c}
.78 \\
3.6 \\
.83 \\
.21
\end{array}$$

$$\begin{array}{c}
.12.045 \\
14.585 \\
14.695 \\
14.885
\end{array}$$

$$A_{box} := \overrightarrow{(d \cdot b)}$$

$$A_{box} = \begin{pmatrix} 141.89 \\ 198.356 \\ 203.232 \\ 211.516 \end{pmatrix} \cdot in^{2}$$

Nominal and Factored Structural Compressive Resistance of HP piles

Axial pile resistance may be controlled by structural resistance if driven to sound bedrock Use LRFD Equation 6.9.2.1-1

Normalized column slenderness factor, λ , in equation 6.9.4.1-1 is assumed to be zero since the unbraced length is zero.

$$F_v := 50 \cdot ksi$$

$$\lambda := 0$$

Nominal Axial Structural Resistance

$$P_n := 0.66^{\lambda} \cdot F_y \cdot A_s$$

$$P_{n} = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot \text{kip}$$

Factored Axial Structural Resistance of single H pile

Resistance factor or H-pile in compression, no damage anticipated, LRFD 6.5.4.2

 $\phi_c := 0.6$

Factored Structural Resistance (Pr) per LRFD 6.9.2.1-1

 $P_r := \varphi_c \cdot P_n$

Factored structural compressive resistance, Pr

$$P_{r} = \begin{pmatrix} 465 \\ 642 \\ 783 \\ 1032 \end{pmatrix} \cdot kip$$

Nominal and Factored Axial Geotechnical Resistance of HP piles

Geotechnical axial pile resistance for pile end bearing on rock is determined by CGS method (LRFD Table 10.5.5.2.3-1) and outlined in Canadian Foundation Engineering Manual, 4th Edition 2006, and FHWA LRFD Pile Foundation Design Example in FHWA-NHI-05-094.

Nominal unit bearing resistance of pile point, qp

Design value of compressive strength of rock core

Hornfels $q_{u\ 1} \coloneqq \ 10000 \cdot psi$

Spacing of discontinuities $s_d := 4 \cdot in$

Width of discontinuities. Joints are open to tight per boring logs $t_d := \frac{1}{64} \cdot in$

Pile width is b - matrix D := b

Embedment depth of pile in socket - pile is end bearing on rock $H_s := 0.ft$

Diameter of socket: $D_s \coloneqq 12 \cdot in$

Depth factor $\mbox{dd} := 1 + 0.4 \cdot \frac{H_s}{D_{\rm o}} \qquad \mbox{ and dd < 3} \label{eq:dd}$

dd = 1 OK

Ksp

$$K_{sp} := \frac{3 + \frac{s_d}{D}}{10 \cdot \left(1 + 300 \cdot \frac{t_d}{s_d}\right)^{0.5}}$$

$$K_{sp} = \begin{pmatrix} 0.226 \\ 0.222 \\ 0.222 \\ 0.222 \end{pmatrix}$$

Ksp has a factor of safety of 3.0 in the CGS method. Remove in calculation of pile tip resistance, below.

Geotechnical tip resistance.

$$q_{p-1} := 3 \cdot q_{u-1} \cdot K_{sp} \cdot dd$$

$$q_{p_{1}} = \begin{pmatrix} 977 \\ 960 \\ 959 \\ 958 \end{pmatrix} \cdot ksf$$

Nominal geotechnical tip resistance, Rp - <u>Extreme Limit States and Service Limit States</u>

Case I $R_{p_1} := \overrightarrow{\left(q_{p_1} \cdot A_s\right)}$

$$R_{p_{1}} = \begin{pmatrix} 105 \\ 143 \\ 174 \\ 229 \end{pmatrix} \cdot kip$$

Factored Axial Geotechnical Compressive Resistance - Strength Limit States

Resistance factor, end bearing on rock Candadian Geotechnical Society method

$$\varphi_{stat} := \, 0.45$$

Factored Geotechnical Tip Resistance (Rr)

$$R_{r p1} := \phi_{stat} \cdot R_{p1}$$

$$R_{r_p1} = \begin{pmatrix} 47 \\ 64 \\ 78 \\ 103 \end{pmatrix} \cdot \text{kip}$$

Drivability Analysis

Ref: LRFD Article 10.7.8

For steel piles in compression or tension, driving stresses are limited to 90% of fy

 $\varphi_{da} \coloneqq 1.0 \qquad \text{resistance factor from LRFD Table 10.5.5.2.3-1, Drivablity Analysis, steel piles}$

$$\sigma_{dr} := 0.90 \cdot 50 \cdot (ksi) \cdot \phi_{da}$$

 $\sigma_{dr} = 45 \cdot ksi$ driving stress cannot exceed 45 ksi

Compute the resistance that can be achieved in a drivablity analysis:

The resistance that must be achieved in a drivablity analysis will be the maximum factored pile load divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

$$\phi_{dvn} := 0.65$$

Table 10.5.5.2.3-3 requires no less than 3 to 4 piles dynamically tested for a site with low to medium variablity. Only 2 piles will be tested, and the pile group would be nonredundant, i.e. less than five piles. Therefore reduce Φ by 20%.

$$\varphi_{dyn\ red} := 0.65 \cdot 0.8 \qquad \qquad \varphi_{dyn\ red} = 0.52$$

Pile Size is 12 x 53

The 12x53 pile can be driven to the resistances below with a D 19-42 at a reasonable blow count and level of driving stress. See GRLWEAP results below:

State of Maine Dept. Of Transportation Newport 12 x 53 fuel set reduced 21-Jul-2009 GRLWEAP (TM) Version 2003

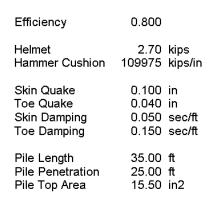
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
100.0	19.70	0.16	1.1	4.92	12.82
200.0	26.81	0.45	2.7	5.90	12.28
300.0	34.39	2.97	4.4	6.62	13.35
350.0	37.71	3.58	5.6	6.97	14.01
400.0	42.25	4.00	6.9	7.47	15.11
450.0	45.84	4.43	9.0	7.81	15.73
500.0	49.11	4.83	11.7	8.21	16.56

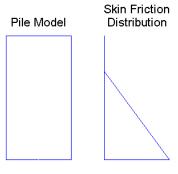
DELMAG D 19-42

Limiting driving stress to 45 ksi:

$$R_{ndr} := \left(\frac{45 - 42.25}{45.84 - 42.25}\right) \cdot (450 \cdot kip - 400 \cdot kip) + 400 \cdot kip$$

$$R_{ndr} = 438.3 \cdot kip$$


$$R_{fdr} := R_{ndr} \cdot \phi_{dyn red}$$


$R_{fdr} = 228 \cdot kip$

For a resistance factor for dynamic test of 0.65:

$$R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$$

$$R_{fdr} = 285 \cdot kip$$

Res. Shaft = 30 % (Constant Res. Shaft)

Pile Size is 14 x 74

The 14x 73 pile can be driven to the resistances below with a D 19-42 at a reasonable blow count and level of driving stress. See GRLWEAP results below:

State of Maine Dept. Of Transportation 14 x 73 fuel set 9 ft str

21-Jul-2009 GRLWEAP (TM) Version 2003

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
100.0	19.46	0.07	1.0	5.51	15.43
300.0	29.82	1.21	3.9	7.23	14.87
400.0	35.77	3.08	5.8	7.87	15.92
500.0	41.38	4.11	8.3	8.71	17.54
550.0	43.49	4.41	10.4	8.99	17.99
600.0	45.66	5.00	12.9	9.35	18.64
700.0	49.59	6.05	20.6	10.05	20.22

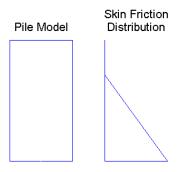
Limiting driving stress to 45 ksi:

$$R_{ndr} := \left(\frac{45 - 43.49}{46.66 - 43.49}\right) \cdot (600 \cdot \text{kip} - 550 \cdot \text{kip}) + 550 \cdot \text{kip}$$

$$R_{ndr} = 574 \cdot kip$$

$$R_{fdr} := R_{ndr} \cdot \varphi_{dyn red}$$

$$R_{fdr} = 298 \cdot kip$$


For a resistance factor for dynamic test of 0.65:

$$R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$$

$$R_{fdr} = 373 \cdot kip$$

DELMAG D 19-42

Efficiency	0.800	
Helmet Hammer Cushion	2.70 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.060 0.100 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	35.00 25.00 21.40	ft

Res. Shaft = 30 % (Constant Res. Shaft)

July 17, 2009 by: L. Krusinski Checked by: KM Oct. 2009 Sheet 7 of 9

Pile Size is 14 x 89

The 14 x 89 pile can be driven to the resistances below with a D 19-42 at a reasonable blow count and level of driving stress. See GRLWEAP results below:

State of Maine Dept. Of Transportation 14 x 89 Delmag 19-42 helmet 2.7 kip

21-Jul-2009 GRLWEAP (TM) Version 2003

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
100.0 300.0 610.0	19.67 27.96 43.95	0.35 0.80 3.65	0.9 3.5	5.93 7.78	17.68 16.30 20.09
630.0	44.77	3.86	9.0 9.6	9.89 10.02	20.38
640.0 665.0	<u>45.16</u> 46.16	3.99 4.26	<u>9.9</u> 10.8	10.08 10.23	20.55 20.93
700.0	47.43	4.62	12.2	10.43	21.39

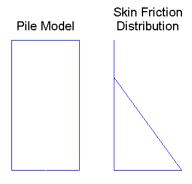
DELMAG D 19-42

Limiting driving stress to 45 ksi:

$$R_{ndr} := \left(\frac{45 - 44.77}{45.16 - 44.77}\right) \cdot (640 \cdot \text{kip} - 630 \cdot \text{kip}) + 630 \cdot \text{kip}$$

$$R_{ndr} = 635.9 \cdot kip$$

$$R_{fdr} \coloneqq \, R_{ndr} \cdot \varphi_{dyn_red}$$


$$R_{fdr} = 331 \cdot kip$$

For a resistance factor for dynamic test of 0.65:

$$R_{fdr} \coloneqq R_{ndr} \cdot \varphi_{dyn}$$

$$R_{fdr} = 413 \cdot kip$$

Efficiency	0.800	
Helmet Hammer Cushion	2.70 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.040 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	35.00 25.00 26.10	ft

Res. Shaft = 30 % (Constant Res. Shaft)

Sheet 8 of 9

Pile Size is 14 x 117

The 14 x 117 pile can be driven to the resistances below with a D 36-32 at Fuel Setting 3 and a 2.7 kip helmet, at a reasonable blow count and level of driving stress. See GRLWEAP results below:

State of Maine Dept. Of Transportation 14 x 117 fuel setting 3

21-Jul-2009 GRLWEAP (TM) Version 2003

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
100.0	16.16	0.59	0.5	4.18	32.67
300.0	26.34	0.17	1.9	6.01	26.48
500.0	35.50	0.90	3.6	6.76	26.29
650.0	42.27	1.79	4.9	7.38	28.22
700.0	44.32	2.53	5.5	7.60	28.91
750.0	46.44	2.68	6.1	7.84	29.76

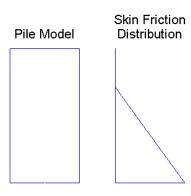
DELMAG D 36-32

Limiting driving stress to 45 ksi:

$$R_{ndr} := \left(\frac{45 - 44.32}{46.44 - 44.32}\right) \cdot (750 \cdot \text{kip} - 700 \cdot \text{kip}) + 700 \cdot \text{kip}$$

$$R_{ndr} = 716 \cdot kip$$

$$R_{fdr} := R_{ndr} \cdot \varphi_{dyn_red}$$


$$R_{fdr} = 372 \cdot kip$$

For a resistance factor for dynamic test of 0.65:

$$R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$$

$$R_{fdr} = 465 \cdot kip$$

Res. Shaft = 30 % (Constant Res. Shaft)

Sheet 9 of 9

Calibration back to ASD - Structural Capacity

Geotechnical design capacity shall not exceed the pile structural allowable design load, based on allowable steel stress for integral piles, use 50 ksi steel, therefore 0.25Fy is the allowable stress.

$$F_v := 50 \cdot ksi$$

For 50 ksi steel
$$F_y \coloneqq 50 \cdot ksi \qquad \qquad \sigma_a \coloneqq \frac{F_y}{4} \qquad \qquad Q_{all} \coloneqq \sigma_a \cdot A_s$$

$$Q_{all} := \sigma_a \cdot A_s$$

$$Q_{all} = \begin{pmatrix} 194 \\ 268 \\ 326 \\ 430 \end{pmatrix} \cdot kip$$

50 ksi steel piles driven to 2.25 times the structural capacity

$$Q_{ult} := Q_{all} \cdot 2.25$$

$$Q_{ult} = \begin{pmatrix} 436 \\ 602 \\ 734 \\ 968 \end{pmatrix} \cdot kip$$

Assume the above equals the nominal geotechnical capacity

Factored resistance = 2.25 times the structural capacity times a resistance factor of 0.65

$$R_{factored} \coloneqq Q_{ult} \cdot 0.65$$

$$R_{factored} = \begin{pmatrix} 283 \\ 391 \\ 477 \\ 629 \end{pmatrix} \cdot kip$$

PIN 15625.00 15625 Newport elastic settle canal.xmcd

Calculation of Elastic Settlement due to 13 of fill from filling in existing west bridge - Soil profile based on strata encountered at BB-NSR-201

Soil properties & groundwater conditions; unit weight per LRFD 3.5.1-1

$$\gamma_t \coloneqq 120 \cdot \text{pcf} \qquad \qquad \gamma_w \coloneqq 62.4 \cdot \text{pcf} \qquad \gamma' \coloneqq \gamma_t - \gamma_w \qquad \gamma' = 57.6 \cdot \text{pcf} \qquad \qquad D_w \coloneqq 9 \cdot \text{ft}$$

N values already corrected for hammer efficiency

$$N := \begin{pmatrix} 38 \\ 18 \\ 32 \\ 119 \\ 84 \end{pmatrix}$$

Drained friction angles per LRFD 10.4.6.2.4-1				
<u>N160</u> <4	<u>φ</u> 25-30			
4	27-32			
10	30-35			
30	35-40			
50	38-43			

Soil Profile at BB-NSR-201

First Layer- alluvium and riverbottom sediments

0-3.5 feet, gravelly sand, some silt, roots cobbles. H=3 feet

Second Stratum - alluvium

3.5 - 12.5 feet, sandy gravel, little silt, occassional cobble (alluvium). H=9 ft

Third Stratum - glacial till

12.5 to 27 feet bgs - H=15 ft

silty sand, some gravel

sandy silt, some gravel

sand, some silt, some gravel, little clay

Settlement Computation for Cohesionless Soils

Reference: FHWA Soils and Foundation Workshop Manual NHI-06-088, 2006

Existing Vertical Overburden Stress and Change in vertical stress due to 13 feet of filling in the west bridge.

See last sheet for STRESS output for change in stress.

Break soil profile into six layers:

Layer 1 - 3 feet of alluvium w/ riverbottom sediments, 120 pcf, 32 degrees

Layer 2 - 4 feet of alluvium, 125 pcf, 36 degrees

Layer 3 - 5 feet of alluvium, 120 pcf 30 degrees

Layer 4 - 5 feet of till, 120 pcf, 32 degrees

Layer 5 - 5 feet of till, 125 pcf, 38 degrees

Layer 6 - 5 feet of till, 125 pcf, 38 degrees

The change in stresses below are at the center of each layer

$$\Delta \sigma z := \begin{pmatrix} 1624.86 \\ 1620.19 \\ 1596.01 \\ 1541.11 \\ 1464.58 \\ 1377.79 \end{pmatrix} \cdot psf$$

Layer 1

No Field SPT (bpf) use N=15 N1 := 15

If SPT at 1-3 feet $\sigma_2 := 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf}$ $\sigma_2 = 240 \cdot \text{psf}$ at 2 ft bgs

N - value correction for overburden per LRFD 10.4.6.2.4

 $CN_2 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_2} \right)$ Should not exceed 2.0

 $CN_2 = 1.711$

 $Ncor1 := CN_2 \cdot N1$

Ncor1 = 25.662

August 26, 2009 by: L. Krusinski Checked by: KM 10/09

PIN 15625.00 15625 Newport elastic settle canal.xmcd

FHWA NHI-06-088, Figure 7-7, Curve for Well graded fine to medium silty SAND

Bearing Capacity Index $C_2 := 70$

Layer $H_2 := 3 \cdot \text{ft}$

Effective overburden stress at midpoint of layer

$$\sigma'_2 := 1.5 \cdot \text{ft} \cdot 120 \cdot \text{pcf}$$
 $\sigma'_2 = 180 \cdot \text{psf}$

$$\sigma'_2 = 180 \cdot pst$$

Do not use a σv less than 200 psf

$$\sigma'_2 := 200 \cdot psf$$

Settlement

$$\Delta H_2 := \boxed{H_2 \cdot \frac{1}{C_2} \cdot log \left[\frac{\left(\sigma'_2\right) + \Delta \sigma z_0}{\sigma'_2} \right]}$$

$$\Delta H_2 = 0.494 \cdot in$$

Layer 2

Field SPT (bpf) $N_0 = 38$ at 6 ft bgs

Overburden pressure at SPT elevation $\sigma_3 := 3.0 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 3 \cdot \text{ft} \cdot 125 \cdot \text{pcf}$

$$\sigma_3 = 735 \cdot psf$$

N - value correction for overburdent per LRFD 10.4.6.2.4

 $CN_3 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_3} \right)$ Should not exceed 2.0

 $CN_3 = 1.337$

 $Ncor1 := CN_3 \cdot N_0$

Ncor1 = 50.789

NHI-08-088, Figure 7-7, Curve for Well graded silty SAND & GRAVEL

Bearing Capacity Index $C_3 := 173$

Layer $H_3 := 4 \cdot ft$

August 26, 2009 by: L. Krusinski Checked by: KM 10/09

PIN 15625.00 15625 Newport elastic settle canal.xmcd

Effective overburden stress at midpoint of layer

$$\sigma'_3 := 1.5 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 1.5 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 2 \cdot \text{ft} \cdot 125 \cdot \text{pcf}$$

$$\sigma'_3 = 610 \cdot psf$$

Settlement

$$\Delta H_3 := \boxed{H_3 \cdot \frac{1}{C_3} \cdot log \left[\frac{\left(\sigma'_3\right) + \Delta \sigma z_1}{\sigma'_3} \right]}$$

$$\Delta H_3 = 0.156 \cdot in$$

Layer 3

Field SPT (bpf)

$$N_1 = 18$$

Note: groundwater at the middle of this 5 foot thick layer (at a depth of 9.0 ft)

Overburden pressure at SPT elevation

(SPT from 9-11' - use 10 ft)

$$\sigma_4 := \sigma_3 + 1 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 2.0 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 1 \cdot \text{ft} \cdot (120 \cdot \text{pcf} - 62.4 \cdot \text{pcf})$$

$$\sigma_4 = 1157.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_4 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_4} \right)$$
 Should not exceed 2.0

$$CN_4 = 1.185$$

$$Ncor1 := CN_4 \cdot N_1$$

$$Ncor1 = 21.324$$

NHI-06-088, Figure 7-7, Curve for Well graded silty SAND & GRAVEL

Bearing Capacity Index

$$C_4 := 77$$

Layer

$$H_4 := 5 \cdot ft$$

Effective overburden stress at midpoint of layer (9.5 feet bgs)

$$\sigma_4' := \sigma_3' + 2 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 0.5 \cdot \text{ft} \cdot (120 \cdot \text{pcf} - 62.4 \cdot \text{pcf})$$

$$\sigma'_4 = 1128.8 \cdot psf$$

Settlement

$$\Delta H_4 := \boxed{H_4 \cdot \frac{1}{C_4} \cdot log \left\lceil \frac{\left(\sigma'_4\right) + \Delta \sigma z_2}{\sigma'_4} \right\rceil}$$

$$\Delta H_4 = 0.298 \cdot in$$

Layer 4

Field SPT (bpf)

$$N_2 = 32$$

 $N_2 = 32$ SPT from 14-16, use 15 ft

Overburden pressure at SPT elevation

$$\sigma_5 := \sigma_4 + 2 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_w\right) + 3 \cdot \text{ft} \cdot \left(\left(120 \cdot \text{pcf} - \gamma_w\right)\right)$$

$$\sigma_5 = 1445.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_5 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_5} \right)$$
 Should not exceed 2.0

$$CN_5 = 1.11$$

$$Ncor1 := CN_5 \cdot N_2$$

$$Ncor1 = 35.531$$

FHWA NHI-06-088 Figure 7-7, Curve for silty SAND

Bearing Capacity Index

$$C_5 := 87$$

Layer

$$H_5 := 5 \cdot ft$$

Effective overburdent stress at midpoint of layer

$$\sigma'_5 := \sigma'_4 + \left[2.5 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_w\right) + 2.5 \cdot \text{ft} \cdot \left(\left(120 \cdot \text{pcf} - \gamma_w\right)\right)\right]$$

$$\sigma'_{5} = 1416.8 \cdot psf$$

Settlement

$$\Delta H_5 := \left[H_5 \cdot \frac{1}{C_5} \cdot \log \left[\frac{\left(\sigma'_5\right) + \Delta \sigma z_3}{\sigma'_5} \right] \right]$$

$$\Delta H_5 = 0.22 \cdot in$$

Layer 5

Field SPT (bpf) from 19-21 ft bgs)

$$N_2 = 119$$

 $N_3 = 119$ use d=20 ft for calculation below

Overburden pressure at SPT elevation

$$\sigma_6 := \sigma_5 + 2.0 \cdot \text{ft} \cdot (120 \cdot \text{pcf} - \gamma_w) + 3 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w)$$

$$\sigma_6 = 1748.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_6 := 0.77 \cdot log\left(\frac{40 \cdot ksf}{\sigma_6}\right)$$

Should not exceed 2.0

$$CN_6 = 1.047$$

$$Ncor1 := CN_6 \cdot N_3$$

$$Ncor1 = 124.559$$

Figure 7-7 Curve for inorganic SILT

Bearing Capacity Index

$$C_6 := 160$$

Layer

$$H_6 := 5 \cdot ft$$

Effective overburdent stress at midpoint of layer d=19.5 ft bgs

$$\sigma_{6}' := \sigma_{5}' + \left[2.5 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_{w}\right) + 2.5 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_{w}\right)\right)\right]$$

$$\sigma'_{6} = 1717.3 \cdot psf$$

Settlement

$$\Delta H_6 := \boxed{H_6 \cdot \frac{1}{C_6} \cdot log \left[\frac{\left(\sigma'_6\right) + \Delta \sigma z_4}{\sigma'_6}\right]}$$

$$\Delta H_6 = 0.1 \cdot in$$

Layer 6

Field SPT (bpf)

$$N_{4} = 84$$

$$N_4 = 84$$
 at d = 25 ft bgs

Overburden pressure at SPT elevation

$$\sigma_7 \coloneqq \sigma_6 + 2. \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w\right) + 3 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_w\right)\right)$$

August 26, 2009 by: L. Krusinski Checked by: KM 10/09

PIN 15625.00 15625 Newport elastic settle canal.xmcd

$$\sigma_7 = 2061.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_7 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_7} \right)$$
 Should not exceed 2.0

 $CN_7 = 0.992$

$$Ncor1 := CN_7 \cdot N_4$$

$$Ncor1 = 83.298$$

NHI-06-088 Figure 7-7, Curve for silty SAND

Bearing Capacity Index $C_7 := 200$

 $\text{Layer} \qquad \qquad H_7 \coloneqq \, 5 \cdot \text{ft}$

Effective overburdent stress at midpoint of layer

$$d = 24.4$$
 ft bgs

$$\sigma'_7 := \sigma'_6 + \left\lceil 2.5 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w \right) + 2.5 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_w \right) \right) \right\rceil$$

$$\sigma'_7 = 2030.3 \cdot psf$$

Settlement

$$\Delta H_7 := \left\lceil H_7 \cdot \frac{1}{C_7} \cdot log \left\lceil \frac{\left(\sigma'_7\right) + \Delta \sigma z_5}{\sigma'_7} \right\rceil \right\rceil$$

$$\Delta H_7 = 0.067 \cdot in$$

Total Elastic Settlement

$$\Delta H_T := \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7$$

$$\Delta H_{\rm T} = 1.337 \cdot \text{in}$$

PIN 15625.00 15625 Newport elastic settle canal.xmcd

Load := $13.0 \cdot \text{ft} \cdot 125 \cdot \text{pcf}$

Load = $1625 \cdot psf$

LOADING ON AN INFINITE STRIP - VERTICAL EMBANKMENT LOADING

Stress due to filling in existing west bridge with 13–ft high fill embankment at Station 6+00

3	Embank.	slope a = 25.00(ft) width b = 72.00(ft)		
3	p load/unit area = 1625.00(psf)			
3		T OF STRESSES FOR Z-D	IRECTI	ON
3	X = Z (ft)	50.00(ft) Vertical Stress (psf)		
3	1.00	1624.96	3	
3	1.50	1624.86	3	Layer 1
3	2.00	1624.68	3	
3	2.50	1624.37	3	
3	3.00	1623.92	3 3	
3	3.50	1623.30 1622.49	3	
3	4.00 4.50	1621.45	3	
3	5.00	1620.19	3	Layer 2
3	5.50	1618.66	3	Layer 2
3	6.00	1616.87	3	
3	6.50	1614.79	3	
3	7.00	1612.43	3	
3	7.50	1609.76	3	
3	8.00	1606.79	3	
3	8.50	1603.50	3	
3	9.00	1599.91	3 3	1 0
3	9.50	1596.01	3	Layer 3
3	10.00 10.50	1591.79 1587.28	3	
3	11.00	1582.46	3	
3	11.50	1577.35	3	
3	12.00	1571.96	3	
3	12.50	1566.30	3	
3	13.00	1560.37	3	
3	13.50	1554.19	3	
3	14.00	1547.77	3	
3	14.50	1541.11	3	Layer 4
3	15.00	1534.24	3	
3	15.50 16.00	1527.16 1519.89	3	
3	16.50	1519.69	3	
3	17.00	1504.81	3	
3	17.50	1497.03	3	
3	18.00	1489.11	3	
3	18.50	1481.05	3	
3	19.00	1472.87	3	
3	19.50	<mark>1464.58</mark>	3	Layer 5
3	20.00	1456.19	3	
3	20.50	1447.72	3	
3	21.00 21.50	1439.16 1430.53	3	
3	22.00	1421.85	3	
3	22.50	1413.11	3	
3	23.00	1404.32	3	
3	23.50	1395.50	3	
3	24.00	1386.66	3	
3	24.50	<mark>1377.79</mark>	3	Layer 6
3	25.00	1368.91	3	
3	25.50	1360.02	3	

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

Calculation of Elastic Settlement due to raise in grade of 2 ft at Abutment 1 - Soil profile based on strata encountered at BB-NSR-201

Soil properties & groundwater conditions; unit weight per LRFD 3.5.1-1

$$\gamma_t := 120 \cdot pcf$$

$$\gamma_{xy} := 62.4 \cdot pcf$$

$$\gamma_w := 62.4 \cdot \text{pcf}$$
 $\gamma' := \gamma_t - \gamma_w$ $\gamma' = 57.6 \cdot \text{pcf}$ $D_w := 19 \cdot \text{ft}$

$$\gamma' = 57.6 \cdot \text{pcf}$$

$$D_w := 19 \cdot ft$$

N values already corrected for hammer efficiency

$$N := \begin{pmatrix} 38 \\ 18 \\ 32 \\ 119 \\ 84 \end{pmatrix}$$

Drained friction angles per LRFD 10.4.6.2.4-1

<u>N160</u>	$\underline{\phi}$
<4	25-30
4	27-32
10	30-35
30	35-40
50	38-43

Soil Profile at BB-NSR-201

Existing Approach Fills - not sampled in Boring BB-NRS-201

assume 10 feet of silty sand, some gravel

First Layer- alluvium and riverbottom sediments

0-3.5 feet, gravelly sand, some silt, roots cobbles. H=3 feet

Second Stratum - alluvium

3.5 - 12.5 feet, sandy gravel, little silt, occassional cobble (alluvium). H=9 ft

Third Stratum - glacial till

12.5 to 27 feet bgs - H=15 ft

silty sand, some gravel

sandy silt, some gravel

sand, some silt, some gravel, little clay

Settlement Computation for Cohesionless Soils

Reference: FHWA Soils and Foundation Workshop Manual NHI-06-088, 2006

Existing Vertical Overburden Stress and Change in vertical stress due to 2 foot raise in bridge approach embankment at Abutment 1

See last sheet for STRESS output for change in stress.

Break soil profile into seven layers:

Layer 1 - 10 feet of existing fill, 120 pcf, 32 degrees

Layer 2 - 3 feet of alluvium w/ riverbottom sediments, 120 pcf, 32 degrees

Layer 3 - 4 feet of alluvium, 125 pcf, 36 degrees

Layer 4 - 5 feet of alluvium, 120 pcf 30 degrees

Layer 5 - 5 feet of till, 120 pcf, 32 degrees

Layer 6 - 5 feet of till, 125 pcf, 38 degrees

Layer 7 - 5 feet of till, 125 pcf, 38 degrees

The change in stresses below are at the center of each layer

$$\Delta \sigma z := \begin{pmatrix} 239.58 \\ 235.6 \\ 231.27 \\ 223.70 \\ 213.48 \\ 202.29 \\ 190.89 \end{pmatrix} \cdot psf \qquad \qquad \begin{array}{c} z \text{ (depth) of midpoint} \\ 5 \\ 11.5 \\ 15 \\ 19.5 \\ 24.5 \\ 29.5 \\ 34.5 \\ \end{array}$$

Layer 1

Overburden pressure at midpoint of 10-ft of fill

$$\sigma'_0 := 120 \cdot pcf \cdot 5 \cdot ft$$

$$\sigma'_0 = 600 \cdot psf$$

No SPT information, assume corrected N value of 15 bpf and 32 degrees

Curve for "Well graded fine to medium silty SAND"

Based on Figure 7-7 of FHWA NHI-06-088:

Bearing Capacity Index
$$C_1 := 50$$

Layer
$$H_1 := 10 \cdot \text{ft}$$

PIN 15625.00

15625 Newport elastic settle Abut 1.xmcd

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

Settlement

$$\Delta H_1 := \boxed{H_1 \cdot \frac{1}{C_1} \cdot log \left[\frac{\left(\sigma'_o\right) + \Delta \sigma z_0}{\sigma'_o} \right]}$$

$$\Delta H_1 = 0.35 \cdot in$$

Layer 2

Boring BB-NSR-201 was drilled in front of abutment 1 - will need to add overburdern pressure of existing 10 feet of approach fill to all calculations of overburden pressure but **not** overburden calculations associated with correction of SPT for overburden pressure.

No Field SPT (bpf) use N=15

$$N1 := 15$$

If SPT at 1-3 feet

$$\sigma_2 := 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf}$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_2 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_2} \right)$$

Should not exceed 2.0

$$CN_2 = 1.711$$

$$Ncor1 := CN_2 \cdot N1$$

$$Ncor1 = 25.662$$

FHWA NHI-06-088, Figure 7-7, Curve for Well graded fine to medium silty SAND

Bearing Capacity Index

$$C_2 := 70$$

Layer

$$H_2 := 3 \cdot ft$$

Effective overburden stress at midpoint of layer

at depth of 11.5 ft bgs

$$\sigma'_2 := 120 \cdot pcf \cdot 10 \cdot ft + 1.5 \cdot ft \cdot 120 \cdot pcf$$

$$\sigma'_2 = 1380 \cdot psf$$

PIN 15625.00

15625 Newport elastic settle Abut 1.xmcd

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

Settlement

$$\Delta H_2 := \left[H_2 \cdot \frac{1}{C_2} \cdot log \left[\frac{\left(\sigma'_2\right) + \Delta \sigma z_1}{\sigma'_2} \right] \right]$$

$$\Delta H_2 = 0.035 \cdot in$$

Layer 3

Field SPT (bpf)

$$N_0 = 38$$

Overburden pressure at SPT elevation

$$\sigma_3 := 3.0 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 3 \cdot \text{ft} \cdot 125 \cdot \text{pcf}$$

6 ft bgs

$$\sigma_3 = 735 \cdot psf$$

N - value correction for overburdent per LRFD 10.4.6.2.4

$$CN_3 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_3} \right)$$

Should not exceed 2.0

$$CN_3 = 1.337$$

$$Ncor1 := CN_3 \cdot N_0$$

$$Ncor1 = 50.789$$

NHI-08-088, Figure 7-7, Curve for Well graded silty SAND & GRAVEL

Bearing Capacity Index

$$C_3 := 173$$

Layer

$$H_3 := 4 \cdot ft$$

Effective overburden stress at midpoint of layer

$$\sigma'_3 := \sigma'_2 + 1.5 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 2 \cdot \text{ft} \cdot 125 \cdot \text{pcf}$$

$$z = 15 \text{ ft}$$

$$\sigma'_3 = 1810 \cdot psf$$

Settlement

$$\Delta H_3 := \boxed{H_3 \cdot \frac{1}{C_3} \cdot log \left[\frac{\left(\sigma'_3\right) + \Delta \sigma z_2}{\sigma'_3} \right]}$$

$$\Delta H_3 = 0.014 \cdot in$$

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

PIN 15625.00 15625 Newport elastic settle Abut 1.xmcd

Layer 4

Field SPT (bpf)

d = 10 ft bgs

$$N_1 = 18$$

Note: groundwater at the middle of this 5 foot thick layer

Overburden pressure at SPT elevation

$$\sigma_4 := \sigma_3 + 1 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 1 \cdot \text{ft} \cdot \left\lceil 120(\text{pcf}) - \gamma_w \right\rceil$$

$$\sigma_4 = 1157.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_4 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_4} \right)$$
 Should not exceed 2.0

$$CN_4 = 1.185$$

$$Ncor1 := CN_4 \cdot N_1$$

$$Ncor1 = 21.324$$

NHI-06-088, Figure 7-7, Curve for Well graded silty SAND & GRAVEL

Bearing Capacity Index

$$C_4 := 77$$

Layer

$$H_4 := 5 \cdot ft$$

Effective overburdent stress at midpoint of layer z = 19.5 ft

$$\sigma'_4 := \sigma'_3 + 2 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 0.5 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_w\right)$$

$$\sigma'_4 = 2328.8 \cdot psf$$

Settlement

$$\Delta H_4 := \boxed{H_4 \cdot \frac{1}{C_4} \cdot log \left[\frac{\left(\sigma'_4\right) + \Delta \sigma z_3}{\sigma'_4} \right]}$$

$$\Delta H_4 = 0.031 \cdot in$$

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

PIN 15625.00 15625 Newport elastic settle Abut 1.xmcd

Layer 5

Field SPT (bpf)

$$N_2 = 32$$

 $N_2 = 32$ at 15 ft bgs (SPT 14-16 ft)

Overburden pressure at SPT elevation

$$\sigma_5 := \sigma_4 + 2 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_w\right) + 3.0 \cdot \text{ft} \cdot \left(\left(120 \cdot \text{pcf} - \gamma_w\right)\right)$$

$$\sigma_5 = 1445.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_5 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_5} \right)$$
 Should not exceed 2.0

 $CN_5 = 1.11$

$$Ncor1 := CN_5 \cdot N_2$$

$$Ncor1 = 35.531$$

FHWA NHI-06-088 Figure 7-7, Curve for silty SAND

Bearing Capacity Index

$$C_5 := 87$$

Layer

$$H_5 := 5 \cdot ft$$

Effective overburdent stress at midpoint of layer

$$\sigma_{5}^{\prime} \coloneqq \sigma_{4}^{\prime} + \left[2.5 \cdot ft \cdot \left(120 \cdot pcf - \gamma_{w}\right) + 2.5 \cdot ft \cdot \left(\left(120 \cdot pcf - \gamma_{w}\right)\right)\right]$$

$$\sigma'_5 = 2616.8 \cdot psf$$

Settlement

$$\Delta H_5 := \left[H_5 \cdot \frac{1}{C_5} \cdot log \left[\frac{\left(\sigma'_5\right) + \Delta \sigma z_4}{\sigma'_5} \right] \right]$$

$$\Delta H_5 = 0.023 \cdot in$$

Layer 6

Field SPT (bpf)

$$N_3 = 119$$

SPT from 19-20.5 use z = 20 ft

PIN 15625.00 15625 Newport elastic settle Abut 1.xmcd

Overburden pressure at SPT elevation

$$\sigma_6 := \sigma_5 + 2.0 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_w\right) + 3 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w\right)$$

$$\sigma_6 = 1748.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_6 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_6} \right)$$

Should not exceed 2.0

$$CN_6 = 1.047$$

$$Ncor1 := CN_6 \cdot N_3$$

$$Ncor1 = 124.559$$

Figure 7-7 Curve for inorganic SILT

Bearing Capacity Index

$$C_6 := 160$$

Layer

$$H_6 := 5 \cdot ft$$

Effective overburdent stress at midpoint of layer

$$\sigma_{6}' := \sigma_{5}' + \left[2.5 \cdot \text{ft} \cdot \left(120 \cdot \text{pcf} - \gamma_{w}\right) + 2.5 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_{w}\right)\right)\right]$$

$$\sigma'_{6} = 2917.3 \cdot psf$$

Settlement

$$\Delta H_6 := \left\lceil H_6 \cdot \frac{1}{C_6} \cdot log \left\lceil \frac{\left(\sigma'_6\right) + \Delta \sigma z_5}{\sigma'_6} \right\rceil \right\rceil$$

$$\Delta H_6 = 0.011 \cdot in$$

Layer 7

Field SPT (bpf)

$$N_4 = 84$$

Overburden pressure at SPT elevation

SPT from 24-25 ft bgs, use z = 25 ft

$$\sigma_7 := \sigma_6 + 2 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w) + 3 \cdot \text{ft} \cdot ((125 \cdot \text{pcf} - \gamma_w))$$

$$\sigma_7 = 2061.6 \cdot psf$$

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

PIN 15625.00 15625 Newport elastic settle Abut 1.xmcd

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_7 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_7} \right)$$
 Should not exceed 2.0

$$CN_7 = 0.992$$

$$Ncor1 := CN_7 \cdot N_4$$

$$Ncor1 = 83.298$$

NHI-06-088 Figure 7-7, Curve for silty SAND

Bearing Capacity Index $C_7 := 200$

 $\text{Layer} \qquad \qquad H_7 \coloneqq \, 5 \cdot \text{ft}$

Effective overburdent stress at midpoint of layer

$$\sigma'_7 := \sigma'_6 + \left\lceil 2.5 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w \right) + 2.5 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_w \right) \right) \right\rceil$$

$$\sigma'_7 = 3230.3 \cdot psf$$

Settlement

$$\Delta H_7 := \boxed{H_7 \cdot \frac{1}{C_7} \cdot log \left[\frac{\left(\sigma'_7\right) + \Delta \sigma z_6}{\sigma'_7} \right]}$$

$$\Delta H_7 = 0.007 \cdot in$$

Total Elastic Settlement

$$\Delta H_T := \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7$$

$$\Delta H_{\rm T} = 0.473 \cdot \text{in}$$

15625 Newport elastic settle Abut 1.xmcd

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

LOADING ON AN INFINITE STRIP VERTICAL EMBANKMENT LOADING

³ Project Name: Newport Main St. Br. Client: MaineDOT Bridge ³ Project Number: 15625.00 Project Manager: D. Anderson 3 Date: 09/09/09 Computed by : LK 3 Embank. slope a = 35.00(ft)3 Embank. width b = 85.00(ft)3 p load/unit area = 240.00(psf) INCREMENT OF STRESSES FOR Z-DIRECTION - STATION 7+50 X = 55.00(ft)3 3 Ζ Vertical Stress 3 (ft) (psf) 3 3 1.00 240.00 3 2.00 239.97 3 3.00 239.91 3 4.00 239.78 3 5.00 239.58 Layer 1, z=5' (Fill) 3 6.00 239.29 3 238.89 7.00 3 8.00 238.38 3 9.00 237.75 3 10.00 236.99 Ground Surface for overburden correction of SPT values 3 236.10 11.00 3 Layer 2, z=11.5' 12.00 235.08 3 13.00 233.93 3 14.00 232.66 3 15.00 231.27 Layer 3, z=15' 3 229.76 16.00 3 228.15 17.00 3 226.44 18.00 3 224.64 19.00 3 20.00 222.76 Layer 4, z=19.5' (Groundwater at middle of Layer 4) 3 21.00 220.80 3 22.00 218.78 3 23.00 216.70 3 24.00 214.57 3 25.00 212.40 Layer 5, z=24.5 3 26.00 210.19 3 27.00 207.96 3 28.00 205.70 3 29.00 203.43 3 201.15 30.00 Layer 6, z=29.5 198.87 3 31.00 3 32.00 196.58 3 33.00 194.30 3 34.00 192.02 3 35.00 189.76 Layer 7, z=34.5' 3 36.00 187.50 37.00 185.27

Calculation of Elastic Settlement due to filling in between exisiting pier 3 and Abutment 2 - Soil profile based on strata encountered at BB-NSR-102

Soil Properties & Groundwater conditions- unit weight per LRFD 3.5.1-1

$$\gamma_t := 120 \cdot pcf$$
 $\gamma_w :=$

$$\gamma_w := 62.4 \cdot pcf$$
 $\gamma' := \gamma_t - \gamma_w$ $\gamma' = 57.6 \cdot pcf$ $D_w := 2 \cdot ft$

$$\gamma' = 57.6 \cdot \text{pcf}$$

$$D_w := 2 \cdot ft$$

N values already corrected for hammer efficiency

$$N := \begin{pmatrix} 17 \\ 8 \\ 47 \\ 54 \\ 99 \\ 135 \end{pmatrix}$$

Drained friction angles per LRFD 10.4.6.2.4-1

<u>N160</u>	$\underline{\phi}$
<4	25-30
4	27-32
10	30-35
30	35-40
50	38-43

Soil Profile at BB-NSR-102:

Proposed Approach Fills

13 feet of granular borrow

First Layer- alluvium and riverbottom sediments

- 0-2 feet, gravel N=17
- 3 feet, silt to sand N=8
- 4 feet, gravelly sand, little silt N=47

Second Stratum - alluvium

5 feet, sand, some gravel, little silt, N=54

Third Stratum - glacial till

- 6 feet silty sand, tr. gravel to sand, some silt, little gravel N=99
- 5 ft gravelly silt and silty sand some gravel, N=135

Settlement Computation for Cohesionless Soils

Reference: FHWA Soils and Foundation Workshop Manual NHI-06-088, 2006

Existing Vertical Overburden Stress and Change in vertical stress due to 13 feet of fill between existing pier 3 and existing abutment 2

See last sheet for STRESS output for change in stress.

Break soil profile into six layers.

- Layer 1 2 feet of alluvium with riverbottom sediments, 120 pcf, 32 degrees
- Layer 2 3 feet of alluvium w/ riverbottom sediments, 115 pcf, 27 degrees
- Layer 3 4 feet of alluvium w/ riverbottom sediments, 120 pcf, 32 degrees
- Layer 4 5 feet of alluvium, 125 pcf 34 degrees
- Layer 5 6 feet of till, 125 pcf, 34 degrees
- Layer 6 5 feet of till, 125 pcf, 34 degrees

The change in stresses below are at the center of each layer

z - direction, depth (ft)

$$\Delta \sigma z := \begin{pmatrix} 1559.96 \\ 1558.14 \\ 1547.06 \\ 1511.56 \\ 1440.4 \\ 1352.44 \end{pmatrix} \cdot psf$$

$$\begin{array}{c} 1.0 \\ 3.5 \\ 7.0 \\ 11.5 \\ 17 \\ 22.5 \\ \end{array}$$

Layer 1

Overburden presure for overburden correction of SPT N-value $\sigma'_1 := 120 \cdot pcf \cdot 1 \cdot ft$

Field SPT (bpf)
$$N_0 = 17$$
 at z = 1 ft

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_1 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma'_1} \right)$$
 Should not exceed 2.0
$$CN_1 = 1.943$$

$$Ncor1 := CN_1 \cdot N_0$$

$$Ncor1 = 33.024$$

FHWA NHI-06-088 Figure 7-7, Curve for SAND and GRAVEL

Bearing Capacity Index

$$C_1 := 110$$

Layer

$$H_1 := 2 \cdot ft$$

Settlement

since σ' is < 200 psf, override σ' 1 with 200 psf per FHWA NHI-06-088 page 7-16

$$\sigma'_1 := 200 \cdot psf$$

$$\Delta H_1 := \boxed{H_1 \cdot \frac{1}{C_1} \cdot log \left[\frac{\left(\sigma'_1\right) + \Delta \sigma z_0}{\sigma'_1} \right]}$$

$$\Delta H_1 = 0.206 \cdot in$$

Layer 2

Field SPT (bpf)

$$N_1 = 8$$

at SPT interval 2-4 ft, use z=3 ft

Overburden presure for overburden correction of SPT N-value

$$\sigma'_2 := 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 1 \cdot \text{ft} \cdot \left(115 \cdot \text{pcf} - \gamma_w\right)$$

$$\sigma'_2 = 292.6 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_2 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma'_2} \right)$$

Should not exceed 2.0

$$CN_2 = 1.645$$

$$Ncor1 := CN_2 \cdot N_1$$

$$Ncor1 = 13.156$$

FHWA NHI-06-088 Figure 7-7, Curve for SILT

Bearing Capacity Index

$$C_2 := 32$$

Layer

$$H_2 := 3 \cdot ft$$

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

Effective overburden stress at midpoint of layer

$$z = 3.5 \text{ ft}$$

$$\sigma'_2 := 2 \cdot \text{ft} \cdot 120 \cdot \text{pcf} + 1.5 \cdot \text{ft} \cdot \left(115 \cdot \text{pcf} - \gamma_w\right)$$

$$\sigma'_2 = 318.9 \cdot psf$$

Settlement

$$\Delta H_2 := \overline{\left[H_2 \cdot \frac{1}{C_2} \cdot log \left[\frac{\left(\sigma'_2\right) + \Delta \sigma z_1}{\sigma'_2} \right] \right]}$$

$$\Delta H_2 = 0.866 \cdot in$$

Layer 3

Field SPT (bpf) $N_2 = 47$ at SPT interval 5-7 ft, z=6 ft bgs

Overburden pressure at SPT elevation $\sigma_3 \coloneqq \left(\sigma'_2\right) + 1.5 \cdot \mathrm{ft} \cdot \left(115 \cdot \mathrm{pcf} - \gamma_w\right) + 1 \cdot \mathrm{ft} \cdot \left(120 \cdot \mathrm{pcf} - \gamma_w\right)$ $\sigma_3 = 455.4 \cdot \mathrm{psf}$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_3 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_3} \right)$$
 Should not exceed 2.0
 $CN_3 = 1.497$

$$Ncor1 := CN_3 \cdot N_2$$

$$Ncor1 = 70.341$$

FHWA NHI-06-088 Figure 7-7 - Curve for Well graded silty SAND & GRAVEL

Bearing Capacity Index $C_3 := 265$

Layer $H_3 := 4 \cdot \text{ft}$

Effective overburden stress at midpoint of layer $\sigma'_3 := \sigma'_2 + 1.5 \cdot \mathrm{ft} \cdot \left(115 \cdot \mathrm{pcf} - \gamma_w\right) + 2 \cdot \mathrm{ft} \cdot \left(120 \cdot \mathrm{pcf} - \gamma_w\right)$ $\sigma'_3 = 513 \cdot \mathrm{psf}$

Settlement

$$\Delta H_3 := \left[H_3 \cdot \frac{1}{C_3} \cdot log \left[\frac{\left(\sigma'_3\right) + \Delta \sigma z_2}{\sigma'_3} \right] \right]$$

 $\Delta H_3 = 0.109 \cdot in$

Layer 4

Field SPT (bpf)

$$N_3 = 54$$

 $N_3 = 54$ SPT interval 10-12 ft, use z = 11 ft

Overburden pressure at SPT elevation (11'bgs)

$$\sigma_4 := \sigma'_3 + 2 \cdot \text{ft} \cdot (120 \cdot \text{pcf} - \gamma_w) + 2 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w)$$

$$\sigma_4 = 753.4 \cdot psf$$

N - value correction for overburdent per LRFD 10.4.6.2.4

Should not exceed 2.0

$$CN_4 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_4} \right)$$

$$CN_4 = 1.328$$

$$Ncor1 := CN_4 \cdot N_3$$

$$Ncor1 = 71.727$$

NHI-06-088 Figure 7.7, Curve for well graded fine to coarse SAND

Bearing Capacity Index

$$C_4 := 210$$

Layer

$$H_4 := 5 \cdot ft$$

Effective overburden stress at midpoint of layer

$$\sigma'_4 := \sigma'_3 + 2 \cdot \text{ft} \cdot (120 \cdot \text{pcf} - \gamma_w) + 2.5 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w)$$

$$\sigma'_4 = 784.7 \cdot psf$$

Settlement

$$\Delta H_4 := \boxed{H_4 \cdot \frac{1}{C_4} \cdot log \left[\frac{\left(\sigma'_4\right) + \Delta \sigma z_3}{\sigma'_4}\right]}$$

$$\Delta H_4 = 0.133 \cdot in$$

Layer 5

Field SPT (bpf)

$$N_4 = 99$$

$$N_4 = 99$$
 at z=16 ft bgs

Overburden pressure at SPT elevation

$$\sigma_5 := \sigma'_4 + 2.5 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w\right) + 2 \cdot \text{ft} \cdot \left(\left(125 \cdot \text{pcf} - \gamma_w\right)\right)$$

$$\sigma_5 = 1066.4 \cdot psf$$

N - value correction for overburdent per LRFD 10.4.6.2.4

$$CN_5 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_5} \right)$$
 Should not exceed 2.0

$$CN_5 = 1.212$$

$$Ncor1 := CN_5 \cdot N_A$$

$$Ncor1 = 119.997$$

NHI-06-088 Figure 7-7 Curve for fine to medium silty SAND

Bearing Capacity Index

$$C_5 := 250$$

Layer

$$H_5 := 6 \cdot ft$$

Effective overburdent stress at midpoint of layer $\sigma'_5 := \sigma'_4 + 2.5 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w\right) + 3 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_w\right)$

$$\sigma'_5 = 1129 \cdot psf$$

Settlement

$$\Delta H_5 := \boxed{H_5 \cdot \frac{1}{C_5} \cdot log \left[\frac{\left(\sigma'_5\right) + \Delta \sigma z_4}{\sigma'_5} \right]}$$

$$\Delta H_5 = 0.103 \cdot in$$

Layer 6

$$N_{5} = 133$$

$$N_5 = 135$$
 at z = 21 ft

Overburden pressure at SPT elevation

$$\sigma_6 := (\sigma'_5) + 3 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w) + 1 \cdot \text{ft} \cdot (125 \cdot \text{pcf} - \gamma_w)$$

$$\sigma_6 = 1379.4 \cdot psf$$

N - value correction for overburden per LRFD 10.4.6.2.4

$$CN_6 := 0.77 \cdot log \left(\frac{40 \cdot ksf}{\sigma_6} \right)$$
 Should not exceed 2.0

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

$$CN_6 = 1.126$$

$$Ncor1 := CN_6 \cdot N_5$$

$$Ncor1 = 152.013$$

FHWA NHI-06-088 Figure 7-7 Curve for inorganic SILT

Bearing Capacity Index

$$C_6 := 160$$

Layer

$$H_6 := 5 \cdot ft$$

Effective overburden stress at midpoint of layer

$$\sigma'_{6} := \sigma'_{5} + 3 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_{w}\right) + 2.5 \cdot \text{ft} \cdot \left(125 \cdot \text{pcf} - \gamma_{w}\right)$$

$$\sigma'_6 = 1473.3 \cdot psf$$

Settlement

$$\Delta H_6 := \overline{\left[H_6 \cdot \frac{1}{C_6} \cdot log \left[\frac{\left(\sigma'_6\right) + \Delta \sigma z_5}{\sigma'_6} \right] \right]}$$

$$\Delta H_6 = 0.106 \cdot in$$

Total Elastic settlement

$$\Delta H_T := \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6$$

$$\Delta H_{\rm T} = 1.524 \cdot \text{in}$$

August 26 2009 by: L. Krusinski Checked by: KM 10/2009

Stress Computer Ouput

³ Project Name: Newport Main St. Br. ³ Project Number: 15625.00 Client: MaineDOT Bridge Project Manager : D. Anderson Computed by : LK

³ Date: 09/16/09

For Settlement Analysis for Filling in between Pier 1-Abutment 2
--

3	For Settlement Analy	ysis for Filling in between	Pier 1-Abutment 2		
3	Embank	clope 2 = 20 00(ft)			
3	Embank. slope a = 29.00(ft) Embank. width b = 76.00(ft)				
3	p load/unit area = 1560.00(psf)				
3	p load/aili	ταισα 1000.00(μαι)			
3	INCREMEN ⁻	T OF STRESSES FOR Z	-DIRECTION		
3	X =	55.00(ft)			
3					
3	Z	Vertical Stress Co	omponent		
3	(ft)	(psf)	·		
3	. ,	,			
3	1.00	1559.96	Layer 1, t=2', γ=120, Φ=32		
3	2.00	<u> 1559.66</u>			
3	3.00	1558.88			
3	4.00	1557.40	Layer 2, t=3', γ=115, Φ=27		
3	5.00	1555.02			
3	6.00	1551.61			
3	7.00	1547.06	Layer 3, t=4', γ=120, Φ=34		
3	8.00	1541.32			
3	9.00	1534.34			
3	10.00	1526.15			
3	11.00	1516.79			
3	12.00	1506.32	Layer 4, t=5', γ=125, Φ=34		
3	13.00	1494.81			
3	14.00	1482.37			
3	15.00	1469.08			
3	16.00	1455.06	L = = 5 t= 6' 105 th= 20		
3	17.00	1440.40	Layer 5, t=6', γ=125, Φ=36		
3	18.00 19.00	1425.20 1409.56			
3	20.00	1393.55			
3	21.00	1377.26			
3	22.00	1360.76			
3	23.00	1344.12	Layer 6, t=5', γ=125, Φ=36		
3	24.00	1327.39	Layer 0, ι-3 , γ-123, Ψ-30		
3	25.00	1310.63			
	20.00	1310.03			

Newport Main Street Bridge PIN 15625.00

By: L. Krusinski Date: August 2009 Page 1 Check by: KM 10-2009

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table, BDG Section 5.2.1.

From Design Freezing Index Map:

Newport, Maine

DFI = 1800 degree-days

Case I - Soils at elevation of possible footings of WC=15% and coarse-grained

Interpolate between frost depth of 90.1 for WC=10% at 1800 DFI and 74.5 inches for WC=20%

Depth of Frost Penetration =

$$d := \frac{90.1 - 74.5}{2} \cdot in + 74.5 \cdot in \qquad \qquad d = 82.3 \cdot in \qquad \qquad d = 6.858 \cdot ft$$

Method 2 - ModBerg Software

Newport lies on the same Design Freezing Index contour as Madision, Maine, BDG Fig. 5-1

Case 1 - coarse grained soils with water content of 15%

--- ModBerg Results ---

Project Location: Madison, Maine

Air Design Freezing Index = 1847 F-days

N-Factor = 0.80 Surface Design Freezing Index = 1478 F-days

Mean Annual Temperature = 42.4 deg F Design Length of Freezing Season = 136 days

Layer

#:Type t w% d Cf Cu Kf Ku L

1-Coarse 87.7 15.0 125.0 31 40 2.9 1.8 2.700

t = Layer thickness, in inches.

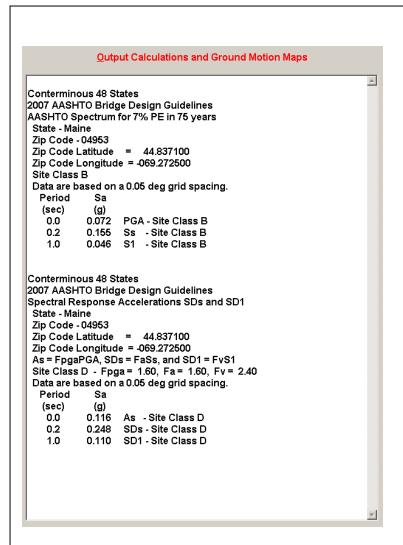
w% = Moisture content, in percentage of dry density.

d = Dry density, in lbs/cubic ft.

Cf = Heat Capacity of frozen phase, in BTU/(cubic ft degree F).

Cu = Heat Capacity of thawed phase, in BTU/(cubic ft degree F).

Kf = Thermal conductivity in frozen phase, in BTU/(ft hr degree).


Ku = Thermal conductivity in thawed phase, in BTU/(ft hr degree).

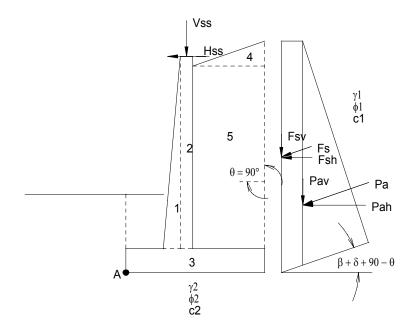
L = Latent heat of fusion, in BTU / cubic ft.

************** Total Depth of Frost Penetration = 7.30 ft = 87.7 in.

Recommendation: use 7.0 feet for for design for foundations not founded on bedrock

Newport Main Street Bridge 15625.00 August 29, 2009 Prepared by: L. Krusinski Check by: KM 10-2009

Abutment and Wingwall Active Earth Pressure


Backfill engineering strength parameters

Soil Type 4 Properties from Bridge Design Guide (BDG)

Unit weight $\gamma_1 := 125 \cdot pcf$

Internal friction angle $\phi_1 := 32 \cdot \deg$

Cohesion $c_1 := 0 \cdot psf$

Active Earth Pressure - Rankine Theory

Either Rankine or Coulomb may be used for **long heeled** cantilever walls, where the failure surface is uninterupted by the top of the wall stem. In general, use Rankine though. The earth pressure is applied to a plane extending vertically up from the heel of the wall base, and the weight of the soil on the inside of the vertical plane is considered as part of the wall weight. The failure sliding surface is not restricted by the top of the wall or back face of wall.

• For cantilever walls with horizontal backslope

$$K_a := \tan\left(45 \cdot \deg - \frac{\varphi_1}{2}\right)^2 \qquad K_a = 0.307$$

For a sloped backfill

 β = Angle of fill slope to the horizontal

$$\beta := 0 \cdot \deg$$

L. Krusinski September 2009 Check: KM 10-09

$$\mathsf{K}_{\mathsf{aslope}} \coloneqq \frac{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\varphi_1)^2}}{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\varphi_1)^2}} \qquad \mathsf{K}_{\mathsf{aslope}} = 0.307$$

• Pa is oriented at an angle of β to the vertical plane

Coulomb Theory

In general, for cases where the back face of the wall interferes with the development of a full sliding surface in the backfill, as assumed by Rankine Theory, use Coulomb.

- Coulomb theory applies for gravity, semigravity and prefab modular walls with steep back faces
- Coulomb theory also applies to concrete cantilever walls with short heels where the sliding surface in restricted by the top of wall - the wedge of soil does not move.
- Interface friction is considered in Coulomb.

Angle of back face of wall to the horizontal, θ :

$$\theta := 90 \cdot \text{deg}$$

Friction angle between fill and wall, δ :

Per LRFD Table 3.11.5.3-1, for "Clean sand, silty sand-gravel mixture, single-size hard rock fill against Formed or precast concrete" δ = 17 to 22 degrees; select 20 degrees.

$$\delta \coloneqq 20 \cdot \text{deg} \qquad \qquad \text{for a gravity shaped wall where the interface friction is} \\ \text{between soil and concrete}$$

to
$$\delta := 24 \cdot \text{deg}$$
 per BDG Table 3-3

Per LRFD Figure C3.11.5.3-1, for a cantilever wall where the sliding surface is a plane from the footing heel to the top of the wall, δ =1/3 to 2/3 Φ

$$\delta := \frac{2}{3} \cdot \phi_1$$

$$\delta = 21.333 \cdot \text{deg}$$

(If δ is taken as 0 and the slope of the backslope is horizontal, there is no difference in the active earth pressure coefficient when using either Rankine or Coulomb)

$$\mathsf{K}_{ac} := \frac{\sin\left(\theta + \phi_1\right)^2}{\sin\left(\theta\right)^2 \cdot \sin\left(\theta - \delta\right) \cdot \left(1 + \sqrt{\frac{\sin\left(\phi_1 + \delta\right) \cdot \sin\left(\phi_1 - \beta\right)}{\sin\left(\theta - \delta\right) \cdot \sin\left(\theta + \beta\right)}}\right)^2} \quad \mathsf{K}_{ac} = 0.275$$

Calculation of Active Earth Pressure for substructure design

L. Krusinski September 2009 Check: KM 10-09

Orientation of Coulomb Pa

- In the case of gravity shaped walls and prefab walls, Pa is oriented δ degrees up from a perpendicular line to the backface.
- In the case of short heeled cantilever walls where the top of the wall interferes with the failure surface, Pa is oriented at an angle of $\phi/3$ to $2/3^*\phi$ to the normal of a vertical line extending up from the heel of the wall

Passive Earth Pressure - Rankine Theory

Bowles does not recommend use of Rankine method for Kp when B>0.

 β = Angle of fill slope to the horizontal

$$\beta := 0 \cdot \text{deg}$$

$$\mathsf{K}_{\mathsf{pslope}} \coloneqq \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos\left(\varphi_1\right)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos\left(\varphi_1\right)^2}}$$

$$K_{pslope} = 3.255$$

Pp is oriented at an angle of β to the vertical plane

Passive Earth Pressure - Coulomb Theory

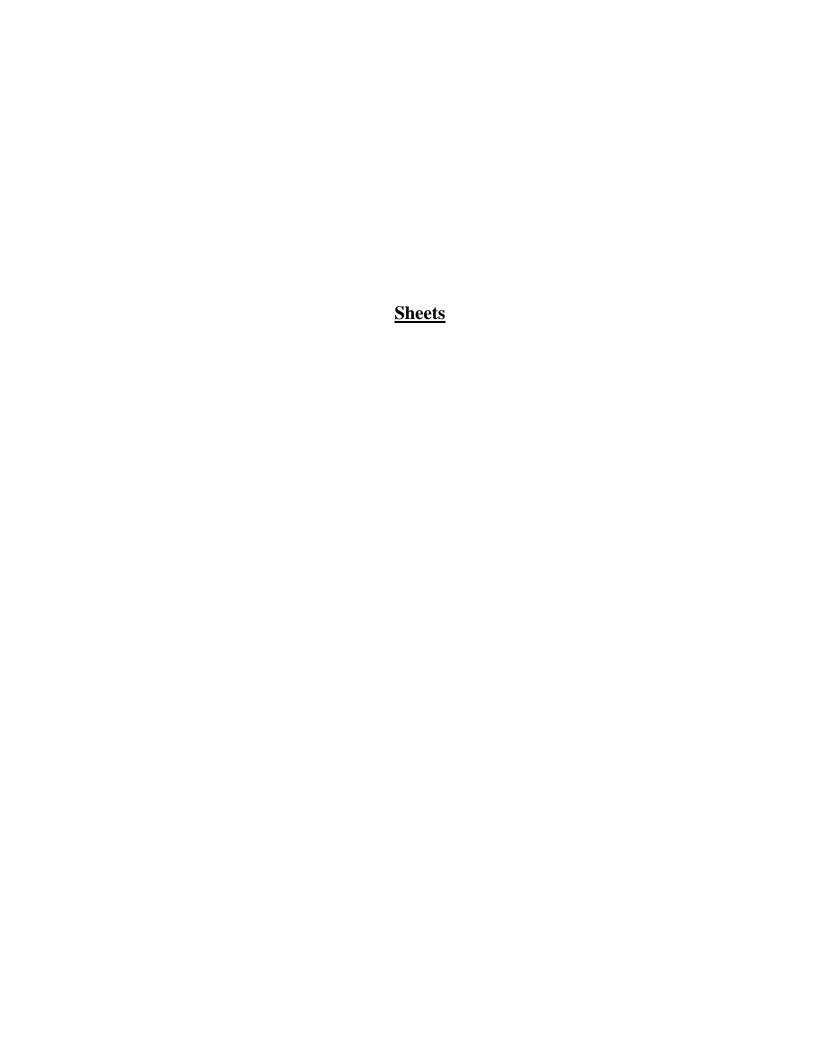
For cases where the back face of the wall interferes with the development of a full sliding surface in the backfill, as assumed by Rankine Theory.

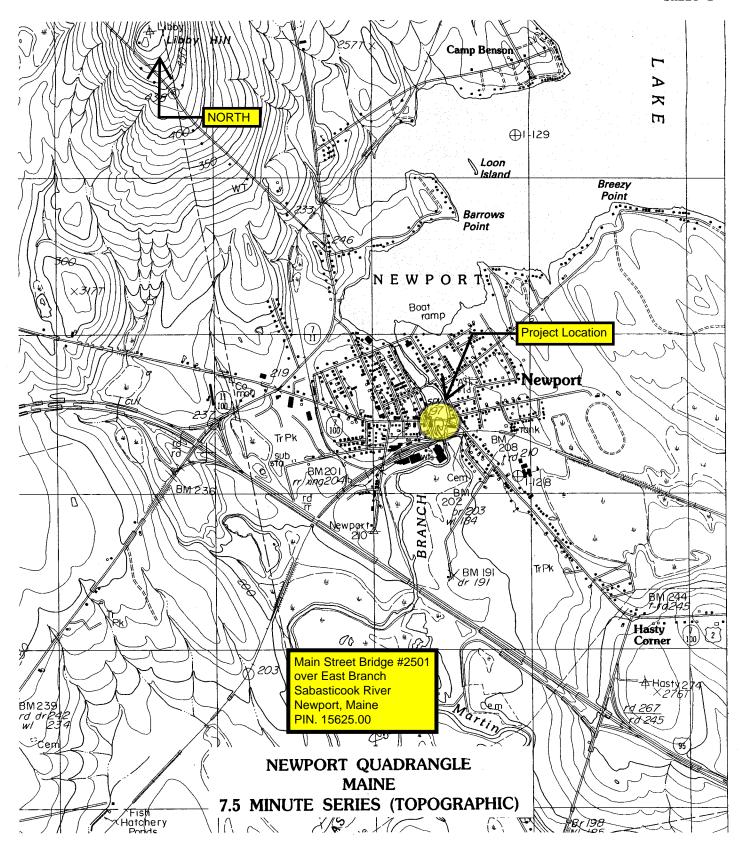
- Coulomb theory applies for gravity, semigravity and prefab modular walls with steep back faces
- Coulomb theory also applies to concrete cantilever walls with short heels where the sliding surface in restricted by the top of wall - the wedge of soil does not move.

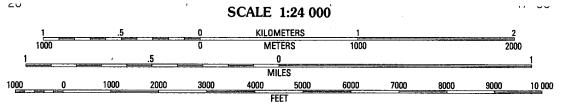
Interface friction is considered in Coulomb.

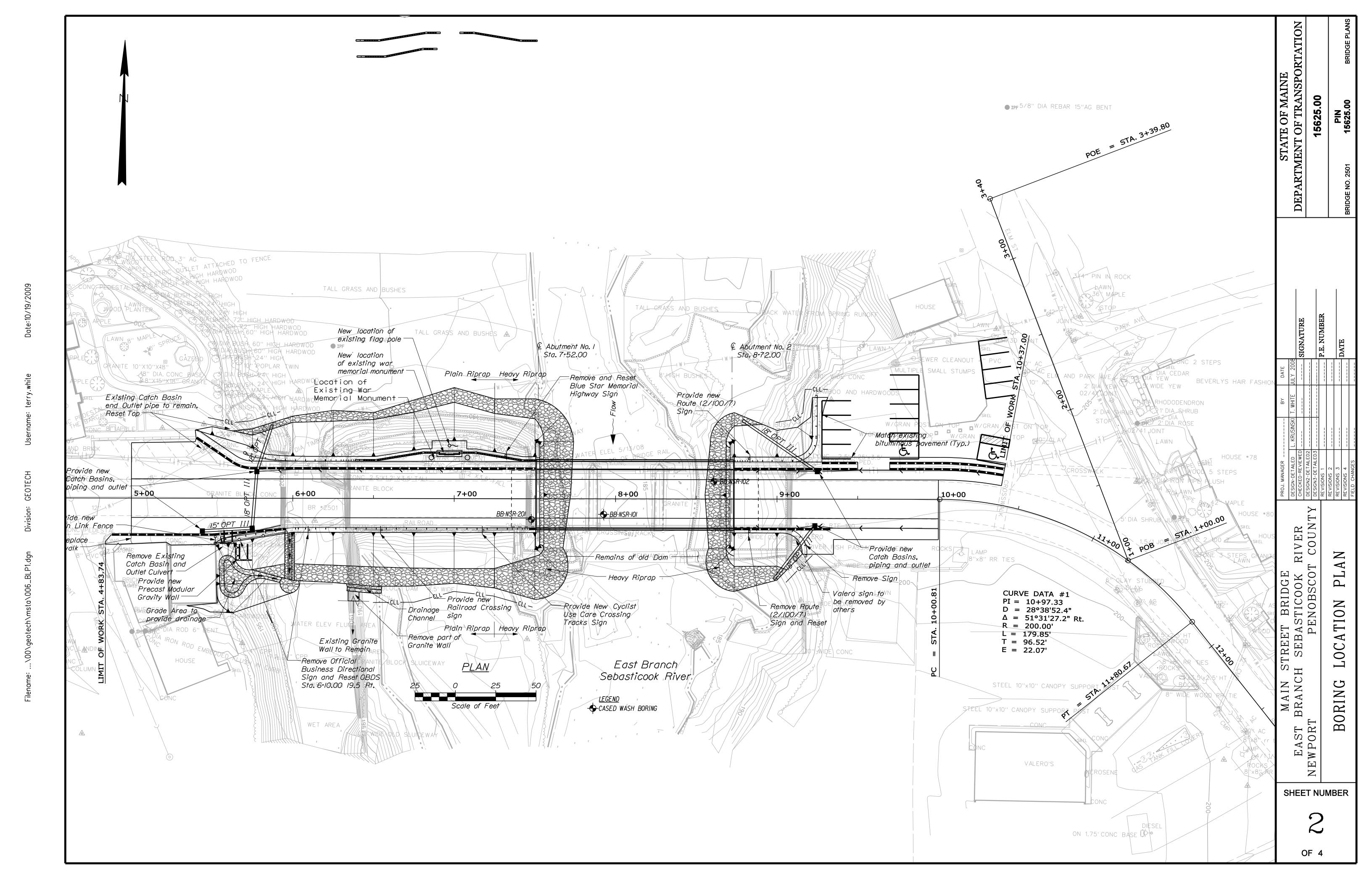
For a smooth vertical wall with horizontal backfill δ = β = 0 and θ = 90 degrees (refer: Bowles, 5th edition, pag 596

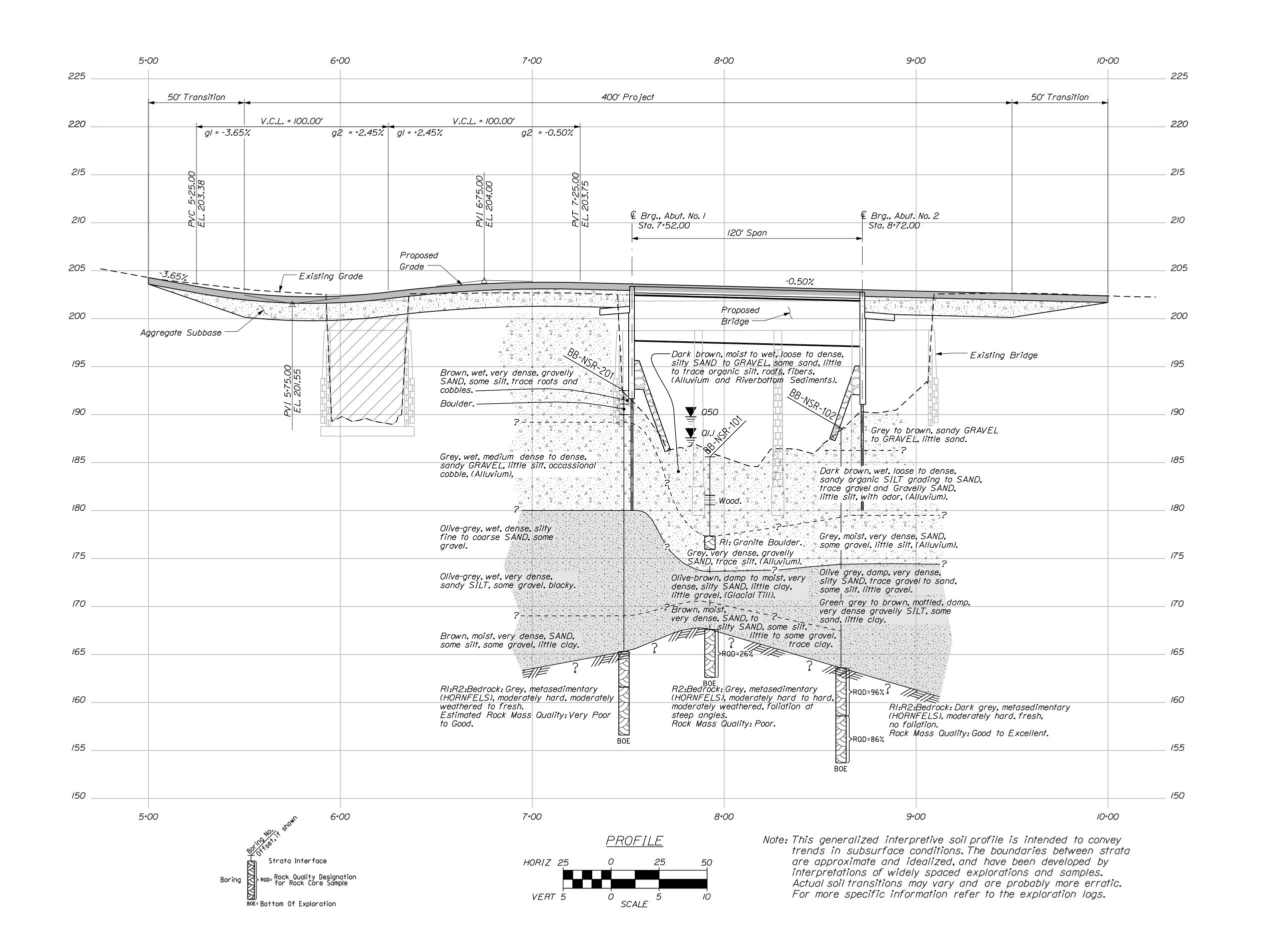
 θ = Angle of back face of wall to the horizontal


$$\theta := 90 \cdot \text{deg}$$


 δ = friction angle between fill and wall taken as specified in LRFD Table 3.11.5.3-1 (degrees)


$$\delta := \frac{2}{3} \cdot \phi_1 \qquad \qquad \delta = 0.372$$


$$K_{pc} := \frac{\sin(\theta - \phi_1)^2}{\sin(\theta)^2 \cdot \sin(\theta + \delta) \cdot \left(1 - \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 + \beta)}{\sin(\theta + \delta) \cdot \sin(\theta + \beta)}}\right)^2}$$


$$K_{pc} := \frac{\sin(\theta - \phi_1)^2}{\sin(\theta - \phi_1)^2}$$

P.E. NUMBER RIVER COUNTY PROFILE MAIN STREET BRIDGE RANCH SEBASTICOOK R PENOBSCOT ACE SUBSURF TERPRETIV EAST | NEWPORT Z SHEET NUMBER

3

OF 4

		Soi	US CUSTOMAR			ľ	Locatio	n: Newp	Branch ort.	PIN:	1562	5.00
rill	er:		MaineDOT		Εle	evation	(ft.)	192.	5	Auger ID/OD:	N/A	
	itor:		E. Giguere/	C. Giles	-	um:		NAV(Sampler:	Standard Spl	it Spoon
	d By:		B. Wilder 6/15/09. 6/	25 (09		Type:	Method:	CME		Hammer Wt./Fall: Boring Core Barrel:	140#/30" BX	
	g Loca		7+47.8. 12.		_	sing ID		NW 8		Boring Core Barrel: Water Level*:	16.0°-6/15.	9.0' 6/25
amme	r Effi		ctor: 0.84		Han	mmer Ty		Automo	ıtic ⊠	Hydraulic Rope & Cathead		
= Sp) = U = Th I = U = In	in Wall ' nsuccess situ Van	ful Split S Tube Sample ful Thin Wa e Shear Tes	II Tube Sample	SSA = State	ck Core S Solid Ste Hollow St Oller Con weight of weight o Weight o	m Auger em Auger e 1401b. of rods	hammer or casing	ı	T _v = Po q _p = Un N-uncor Hammer N ₆₀ = Si	ket Torvane Shear Strength (psf) WC = wc onfined Compressive Strength (ksf) LL = Li sected = Raw field SPT N-value PL = Pl fficiency Foctor = Annual Calibration Value $P =P $ T N-uncorrected corrected for hammer efficiency $C=P =P $	= Lab Vane Shear tter content, perc quid Limit astic Limit asticity Index tin Size Analysis solidation Test	
Ī		ı ĉ		Sample Information	_	1	1					Laborator
Depth (ft.)	Sample No.	Pen./Rec. (in	Sample Depth (ff.)	Blows (/6 in. Shear Strength (psf) or ROD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	U	Testing Results/ AASHTO and nified Cla
$^{\circ}$	1 D	7.2/5	0.00 - 0.60	1/50(1.2")			2			Brown, wet, very dense, gravelly fine to c some silt, roots, cobbles.	oarse SAND.	
							50			Boulder from 1.4-2.5' bgs. Roller Coned ah	ead to 5.0'	
İ							15			bgs.		
ŀ					 			189.00			3.50-	
ŀ					-		OPEN HOLE	189.00			3.50-	
, 			5.05			_		1		Dark grey, wet, dense, sandy GRAVEL, littl	e silt.	G#212332
	2D	24/10	5.00 - 7.00	6/11/16/11	27	38	15			occasional cobble, slight odor. Switched t Roller Coned ahead to 9.0' bgs.		A-1-a. GI WC=16.6%
ſ							81					
İ							142	1				
ł					+		171	1				
ŀ	70	24.0	9.00 -	7 /7 /6 /7	 	<u> </u>		1		Similar to above, except medium dense.		
۰	3D	24/1	11.00	3/7/6/7	13	18	150	1				
							44					
							59		B			
							64	180.00			12.50-	
ŀ							51	1				
ŀ	40	24.0	14.00 -	40.43.40.40		7.0		ł		Olive-grey, wet, dense, silty fine to coar	se SAND, some	
5	4D	24/8	16.00	19/13/10/18	23	32	37	4		gravel, (Till).		
							76					
							88					
j							125	1				
ľ					1		146	1				
ŀ	5D	18/16	19.00 -	42/33/52	85	119	56	1		Olive-grey, wet, very dense, fine to coars some fine to coarse gravel, blocky	e sandy SILT.	
∘╁	30	10710	20.50	42733732	1 03	1113		-		Roller Coned ahead to 24.0' bgs.		
ļ							73					
ı							99					
-							130					
ı							166	169.50	30		- 23.00-	
ŀ	6D	24/17	24.00 -	21/31/29/30	60	84	14			Brown, moist, very dense, SAND, some silt, little clay, (Till).	some gravel.	G#212333 A-4. CL-M
5 🖁			26.00		+ **	ļ .				Roller Coned ahead from 25.0-27.2' bgd.		WC=11.2%
ŀ					1		RC	4				LL=22 PL=17
								165.30			27.20	P I =5
	R1	44.4/34	27.20 - 30.90				Вх	165.30		Top of Bedrock at Elev. 165.3'. R1:Bedrock: Grey, fine grained, metasedim	27.20-	
									96:11. H. 150.	(HORNFELS) with quartz veins. moderately h moderately weathered. Joint breaks at clos	ard.	
ţ					1			1	Mari	Vassalboro Formation. Rock Mass Quality: v based on an estimated NO ROD of 21%.		
∘ 	R2	60/60	30.90 -				\vdash	1		R1:Core Times (min:sec) 27.2-28.2' (4:30)		
ŀ		33780	35.90				\vdash	1	Mille	28.2-29.2' (3:00) 29.2-30.2' (3:30)		
-					1	<u> </u>	\vdash	1	UND.	30.2-30.9' (4:12) 76% Recovery Core Blocked		
							\Box	1	Mark.	R2: Bedrock: Same as R1, except fresh, joi moderately close to close. Rock Mass Quali		
						L				based on an estimated NO ROD of 68%. R2:Core Times (min:sec)		
İ								1	arill	30.9-31.9' (4:25) 31.9-32.9' (4:00)		
5								1	HAR HAR	32.9-33.9' (4:12) 33.9-34.9' (4:35)		
ŀ							├	156.60	CH VITTE	34.9–35.9' (4:50) 100% Recovery Could not get Core Barrel back down, casin	35.90	
ļ					1		<u> </u>	-		Bottom of Exploration at 35.90 feet bell surface.	ow ground	
ļ						<u> </u>		1				
						L	L]				
İ								1				
¹ †					<u> </u>			1				
ŀ					+	\vdash		1				
ļ					1	_	 	1				
ļ					1	<u> </u>						
						L	L]				
İ								1				
5					<u> </u>			1				
ŀ					\vdash	-		1				
					_		<u> </u>	-				
ļ								1				
		<u></u>				L	L					
ı								1	1			
١			l l		1							

tratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Boring No.: BB-NSR-201

US CUSTOMARY UNITS						L		_	PIN:	
riller: MaineDOT						n (ft.)	185		Auger ID/OD: N/A	
r:				_					Sampler: Standard Spl	it Spoon
				_					•	
				-					<u> </u>	
ons: F Spoon uccessf Wall T uccessf tu Vane	s Sample ul Split S ube Sample ul Thin Wa s Shear Tes	poon Sample at II Tube Sample t• PP = Poc Vane Shear Tes	SSA = : tempt	Solid Ste Hollow St oller Con weight of weight Weight o	m Auger em Auge e 1401b. of rods	hammer or casing	9	S _u = [n T _v = Po q _p = Un N-uncor Hammer N60 = S	situ field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf) WC = water content, perc confined Compressive Strength (ksf) Hz = Liquid Limit PL = Plastic Limit PL = Plastic Limit PL = Plasticity Index PT N-uncorrected or nommer efficiency 6 = Crain Size Analysis	
	Ë							1		Laboratory
Sample No.	Pen./Rec. (Sample Depti (ft.)		N-uncorrect	09 _N	Casing Blows	Elevation (ft.)	Graphic Log		Testing Results/ AASHTO and nified Clas
1D	24/3	0.00 - 2.00	10/8/2/2	10	13	47 33			Dark brown, moist, medium dense, silty fine to coarse SAND, little roots and fibers, slightly organic, two 1" rock fragments, (River Bottom Sediments).	
2D	24/7	2.00 - 4.00	9/22/20/14	42	54	46			Dark brown, wet, very dense, fine angular GRAVEL, some fine to coarse SAND, trace organic silt, few rock fragments, (Alluvium with Riverbottom Sediments).	G#209975 A-1-a. GP-G WC=11.8%
				1		604				
						19	1		Hit wood at 4.0' bgs. Wood in wash water from 4.0-5.0' bgs.	
3D	24/3	5.00 - 7.00	3/2/3/8	5	6	6			Brown, wet, loose, medium to coarse SAND, some wood, little silt, trace clay and fine angular gravel, Telescoped NW Casing into HW Casing at 5.0' bgs.	
						26				
						25				
R1	24/17	8.25 -	ROD = N/A%			031	177.35			
		10.23					1		R1:Core Times (min:sec)	
						CORE	175.95	THE	\9.25-10.25' (2:38)	
						77		\$E		
)/AB	24/19	11.00 - 13.00	7/16/27/36	43	55	102	173.60		Grey, moist, very dense, angular fine to coarse	G#210011 A-1-a. SW-S WC=10.7%
						142			(4D/B) 12.0-13.0' bgs.	
						255			Olive-brown, damp to moist, silty fine SAND, some medium sand, little clay, little fine angular gravel, some staining. (Till).	
5D	24/20	15.00 - 17.00	24/33/43/36	76	98	bRC			silt. little fine to coarse angular gravel. trace clay.	G#210012 A-2-4. SC-S WC=9.4%
									well bonded, some staining/ oxidation, (Till),	-
	60.453	18.00 -	B00 - 202	+		1 110 2	167.60		Top of Bedrock at Elev. 167.6 ft.	
r/	60/53	23.00	KUU = 26%			CORE			R2: Bedrock: Grey. fine grained. metasedimentary (HORNFELS). moderately hard to hard. moderately weathered. cleaves along folliation at steep angles.	
									fractured and weathered zone 3.6-4.2'. no foliation or cleavage in upper 10". pegmatite veins in lower 6".	
				_		+	-		R2:Core Times (min:sec) 18.0-19.0' (3:08)	
						$\perp \vee$	162.60	Elliss)	20.0-21.0' (2:40)	
				1					21.0-22.0' (2:31) 22.0-23.0' (2:40) 88% Recovery	
				1			1			
	By: Gart/F Locat Efficients Spoons Sp	By:	By: L. Krusinsk part/Finish: 6/4/08: 11: Location: 7+92.6. 9.6 Efficiency Factor: 0.77 In Spoon Sample uccessful Split Spoon Sample at wall Tube Sample uccessful Thin Wall Tube Sample uccessful Insitu Vane Shear Test In State Shear Test 2	By: L. Krusinski part/Finish: 6/4/08: 11:00-16:30 Location: 7+92.6. 9.6 Rt. Efficiency Factor: 0.77 Distance Superior Superio	By: L. Krusinski Rid part/Finish: 6/4/08: 11:00-16:30 Dri Location: 7+92.6. 9.6 Rt. Cas Efficiency Factor: 0.77 Har mist R = Rock Core S SSA = Solid Ste scessful Spilt Spoon Sample attempt RC = Roller Core script Vane Shear Test. PP = Pocket PenetrometerWOV = weight of the Vane Shear Test. PP = Pocket PenetrometerWOV = weight of the Vane Shear Test attempt MOV = weight of the Vane Shear Test attempt MOV = weight of the Value Shear Test attempt MOV = weight of the Val	By: L. Krusinski Rig Type art/Finish: 6/4/08: 11:00-16:30 Drilling Location: 7+92.6. 9.6 Rt. Casing I Efficiency Factor: 0.77 Hammer T ans:	By: L. Krusinski Rig Type: ort/Finish: 6/4/08: 11:00-16:30 Drilling Method: Location: 7+92.6. 9.6 Rt. Casing 10/00: Efficiency Factor: 0.77 Hammer Type: Osa: Spoon Sample Spoon Spoon Sample Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample Spoon Spoon Sample	By: L. Krusinski Rig Type: CME Ort/Finish: 6/4/08: 11:00-16:30 Drilling Method: Casi Location: 7+92.6, 9.6 Rt. Casing ID/00: NW Efficiency Factor: 0.77 Hammer Type: Automoses In the Common Supple of tempt SSA = Solid Stem Auger RC = Roller Cone Not Stem Tust In the Sample attempt Not II tube Sample attempt Not II tube Sample attempt Not II tube Sample attempt Not II tube Sample attempt Not II tube Sample attempt Not II tube Sample attempt Not II tube Sample Information Sample Information Sample Information Sample Information Sample Information Sample Information 2	By: L. Krusinski Rig Type: CME 45C ort/Finish: 6/4/08: 11:00-16:30 Drilling Method: Cased Was Location: 7+92.6. 9.6 Rt. Casing ID/0D: NW & HW Efficiency Factor: 0.77 Hommer Type: Automatic ⊠ Spon Somple Spon Somple offens Spon Somple Spon Somple offens Research Spill Spon Somple offens Research Spill Spon Somple offens Research Spill Spon Somple offens Research Spill Spon Somple offens Research Spill Spon Somple offens Research Spill Spon Somple offens Research Res	By

Dril	ler:		MaineDOT		Εle	vation	(ft.)	188	. 6	Auger ID/OD: N/A	
Operator: E. Giguere/C. Giles Logged By: L. Krusinski Date Start/Finish: 6/3/08-6/4/08 Boring Location: 8+60.9, 10.9 Lt.			_	um:			0 88 45.0	Sampler: Standard Sp Hammer Wt./Fall: 140#/30"	olit Spoon		
				Rig Type: CME 45C Drilling Method: Cased Wa							
			Cas	Casing ID/OD: NW & HW				Water Level*: 2.0' bgs.			
	er Effic	ciency Fo	ictor: 0.77	R = Roo	Han	nmer Ty	pe:		otic⊠ Su=In	Hydraulic Rope & Cathead Stringth (psf) Su(lab) = Lab Vane She	ar Strength (psf
) = S	olit Spoor		poon Sample at		Solid Ster				T _v = Poo	cket Torvane Shear Strength (psf) WC = water content, per confined Compressive Strength (ksf) LL = Liquid Limit	
WU = I	Insuccess	ube Sample ul Thin Wa	II Tube Sample		oller Conveight of	1401b. I			Hammer I	rected = Row field SPT N-value PL = Plastic Limit (fficiency Factor = Annual Calibration Value Pl = Plasticity Index PT N-uncorrected corrected for hommer efficiency C = Grain Size Analysi	_
			Vane Shear Tes		Weight o				N ₆₀ = (1	dammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test	
_		ċ		ċ	_				6		Laboratory Testing
÷.	NO.) Depth	_	rrec		_	<u>6</u>	c Log	Visual Description and Remarks	Results/ AASHTO
Depth (ft.)	Sample	Pen./Rec.	Sample (ft.)	Blows (/6 Shear Strength (psf) or ROD (%	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic		and Unified Class
0	び 1D/AB	24/7	0.00 -	<u> </u>	13	17	ပ <u>ို</u> 8	ωč		(1D/A) Brown, damp, medium dense, sandy GRAVEL.	
	107 A6	2471	2.00	11/10/3/3	113	''				(1D/B) Grey, damp, angular coarse GRAVEL (broken rock	
			2.00 -		<u> </u>	_	14	186.60		fragments). little fine to medium sand.)-
	20	24/8	4.00	2/2/4/3	6	8	5			grading to very dark brown, moist, fine to coarse SAND trace gravel, slight odor, (River Bottom Sediment and	•
							8			Alluvium). Washing out to 5.0' bgs. hit rock fragment at 4.5' bgs	
5 -							50	183.60			
	3D	24/8	5.00 - 7.00	12/17/20/12	37	47	59			Dark olive-grey, saturated, dense, angular fine to coarse gravelly SAND, little silt, (gravel is broken	A-1-a. SM WC=18.4%
					$oldsymbol{ol}}}}}}}}}}}}}} $		93			rock fragments). slight odor. (River Bottom Sediment and Alluvium).	
							77				
							70	1			
							100	179.60		9.00)-
10 -	4D	24/10	10.00 -	15/18/24/20	42	54	81			Grey. moist. very dense. fine to coarse SAND. some fin angular gravel. little silt. well sorted. (Alluvium).	e G#209971 A-1-b. SM
			12.00		Ė		23	1		Telescoped NW Casing into HW Casing at 11.1' bgs.	WC=10.6%
							65	1			
							71				
					<u> </u>			174.60		14.00)-
15 -			15.00				109		0.0	(5D/B) Olive grey, damp to moist, very dense, silty	G#209973
	5D/BA	24/12	15.00 - 17.00	27/34/43/32	77	99	71			SAND, trace angular gravel, some staining, (Glacial Till).	A-4. SM WC=11.1%
							95			(SD/A) Dlive grey, damp, very dense, fine to coarse SAND, some silt, little fine angular gravel and weathered rock fragments. (Glacial Till).	G#209972 A-2-4. SM WC=10.1%
							140			weathered rock tragments, toldclai iiii.	WC=10.1%
							172				
							265				
20	6D/AB	24/18	20.00 -	33/53/52/49	105	135	63			(6D/A) Olive grey and brown, mottled, damp, very dense gravelly SILT, gravel fine to coarse, angular,	•
			22.00				70			including weathered rock fragments, some fine sand, little clay, (Glacial Till).	
							79			Roller Coned ahead to 23.8' bgs., hit something hard, roller coned ahead to 25.0' bgs. (6D/B) Brown, moist, very dense, silty fine to coarse	
							88			SAND, some fine to coarse angular gravel, trace clay. (Glacial Till).	
					-		**				
25 -			25.00 -				1.	163.60		NW Casing to 24.5' bgs)-
	R1	60/57.6	30.00	ROD = 96%			NO-2 CORE			Top of Bedrock at Elev. 163.6 ft. R1: Bedrock: Dark grey, fine grained, metasedimentary (HORNFELS) moderately hard, fresh, occasional quartz	
										veins, no foliation, drill breaks along quartz veins, one open seam 8" from top, upper 8" quartz disolved,	
									196.112 11.15	some vuggy seams. Vassalboro Formation. Rock Mass Quality: Excellent.	
										Ri:Core Times (min:sec) 25.0-26.0' (10:40) 26.0-27.0' (5:00)	
30 -									Hill.	27.0-28.0' (4:25) 28.0-29.0' (5:15)	
-	R2	58.8/ 58.8	30.00 - 34.90	ROD = 86%						29.0-30.0' (6:27) 96% Recovery R2: Bedrock: Same as R1, only less fractured, fracture	s
					L				Mills.	along quortz veins, surfaces stained with some oxidation, drill breaks along quartz veins. Vassalboro Formation. Rock Mass Quality: Good.	
										R2:Core Times (min:sec) 30.0-31.0' (6:30)	
							\ /			31.0-32.0' (5:50) 32.0-33.0' (3:30)	
							$\square \bigvee$			33.0-34.0' (4:05) 34.0-34.9' (2:33) 100 % Recovery	J
35 -							,	153.70	,	34.90 Bottom of Exploration at 34.90 feet below ground surface.	1
								1			
								1			
								1			
					+						
40 -								1			
								-			
45 •											
								1			
٠.,											
								1			
								1			
								1			
50 Rema	rks:								1		1
13.	9′ from	Bridge [eck to Grou	und.							

STATE OF MAINE
DEPARTMENT OF TRANSPORTATION
15625.00 P.E. NUMBER MAIN STREET BRIDGE BRANCH SEBASTICOOK RIVER PENOBSCOT COUNTY TOGS BORING EAST INEWPORT

SHEET NUMBER

OF 4