Maine Department of Transportation

Geotechnical Group

Report of

SUBSURFACE INVESTIGATION FOR RECONSTRUCTION OF ROUTE 4/117 IN THE TOWNS OF LIVERMORE FALLS IN ANDROSCOGGIN COUNTY AND JAY IN FRANKLIN COUNTY

Prepared by

Kitty Breskin, P.E. Geotechnical Design Engineer

Reviewed by

Karen Gross Geotechnical Design Engineer

Androscoggin and Franklin Counties

PIN 10018.00 Federal NH-1001(800)E September 1, 2010 Soils Report 2010-22

Table of Contents

Section	on		Page No.
1.0	INTRO 1.1 1.2	ODUCTION General Summary of Recommendations	1 1 1
2.0	2.1 2.2 2.3 2.4 2.5 2.6 2.7	AND SUBSURFACE CONDITIONS General Site Conditions Mapped Information Existing Retaining Walls Subsurface Investigation Existing Soils Existing Pavement Subsurface Bedrock	2 2 2 2 3 3 4 4
3.0	3.1 3.2 3.3 3.4 3.5	Bedrock Excavation Subgrade Soils	5 5 5 6 6 7
	ndices: ndix A	Resource Maps Surficial Geology NRCS Soils Map	
Apper	ndix B	Geoplans	
Apper	ndix C	Field Exploration Data Soils Descriptions Boring Logs FWD Summary and Analysis	
Apper	ndix D	Lab Test Data Lab Testing Summary Sheet Grain Size Curves	
Apper	ndix E	Retaining Wall Photographs	

1.0 INTRODUCTION

1.1 General

The Maine Department of Transportation (MDOT) is planning highway improvements to a 1.75 km (1.1 mile) section of Route 4/17 in the Towns of Livermore Falls in Androscoggin County and Jay in Franklin County, Maine. This portion of the highway is on the National Highway System. The project begins at the intersection of Bridge Street in Livermore Falls and extends north to Pineau Street in Jay. The project is needed to improve the horizontal and vertical alignment, add and improve sidewalks and drainage, and pave shoulders. The original subbase has been damaged by underground utility construction over the years since this highway was built. The scope includes reconstruction for the full length of the project. The land slopes steeply up to the east, and many of the abutting properties have existing retaining walls to create a flat area for buildings and lawns above the roadway. This report summarizes the site subsurface conditions and discusses our recommendations for the proposed reconstruction.

1.2 Summary of Recommendations

These recommendations are discussed in detail in Section 3.0, Evaluation and Recommendations.

- All existing Portland Cement Concrete Pavement should be removed.
- Sections of this project will require solid pipes in the drainage system to prevent migration of petroleum contamination from prior spills.
- We recommend that a wet-cast small-block concrete block retaining wall system be used to replace the deteriorated existing walls. Any temporary shoring of structures above the existing walls must be arranged between the Contractor and abutting property owners.
- Extreme caution will be required in excavation for construction of retaining walls supporting houses close to the highway.

2.0 SITE AND SUBSURFACE CONDITIONS

2.1 General Site Conditions

Route 4/17 runs north and south along the east side of the Androscoggin River through the Towns of Livermore Falls and Jay. The portion of this highway project in the Town of Jay was originally built in 1926 as State Highway "F"; as-built plans do not exist for this section of highway in Livermore Falls. The highway is well above flood stage in the river, and the surrounding land is fully developed with industrial, commercial and residential uses. Most of the commercial uses along this project are in Livermore Falls, with a paper mill and residential use predominant in Jay. Abutting land is owned by Maine Central Railroad in some areas of this project, and drainage will outlet to pipes under the tracks.

On-street parking is presently allowed along much of this highway. The existing pavement is at least 8.5 meters wide and is 11 meters wide or more in some areas to allow adequate width to park large trucks. Some of the on-street parking will be eliminated at the request of the Town.

Ledge outcrops are visible along the east side of the roadway in the northern part of the project. There are several areas where existing subbase and native subgrade soils have been contaminated by petroleum spills at existing or former gas stations. Contamination and required remediation is discussed in "Phase I & Phase II Environmental Study, State Route 4 (Main Street) – Livermore Falls and Jay, Maine, MDOT – Project # NH-1001(800)E." by Hillier & Associates, Inc, December 2003.

Municipal water and sewer serve all abutting properties. Underground water and sewer pipes will be replaced at the same time this project is built. Underground utility construction and repair has taken place since the original highway was built, and trenching activities have disturbed the subbase and subgrade soils.

2.2 Mapped Information

Surficial soils mapping in the Livermore Falls area shows the native soils to be glacial Till, with Till over shallow ledge in the northern part of the project. NRCS mapping shows disturbed "urban land" soils north of Gagnon Street and Hollis and Adams sandy loams for the southern part of the project. No wetlands are indicated on the National Wetlands Inventory map in the area of this project. Portions of the NRCS and Surficial Geology maps are included in Appendix A.

2.3 Existing Retaining Walls

The land rises steeply on the east side of the highway, and many buildings on the right are set behind retaining walls of different heights. Most of these walls are in poor condition and some are extremely close to the structures they support. Replacement of some of these walls may require temporary shoring of structures above the walls. Many buildings on the left are very close to the roadway. Most retaining walls along this project will need to be rebuilt or replaced, although there are cast-in-place concrete walls at Stations 40+ 885, 41+120 and 41+380 that can be patched as needed and left in place. Fences will be required above the taller walls. Photographs of existing retaining walls along this project are included in Appendix E.

2.4 Subsurface Investigation

Our subsurface investigation included 22 solid stem auger borings and a Falling Weight Deflectometer (FWD) analysis in June, 2003, to support design of the pavement structure. An additional 14 power auger borings were done to profile the top of ledge in an area where shallow bedrock is known to exist. A separate subsurface investigation was done to explore areas of potential environmental contamination, and some subsurface information was obtained from those explorations. It was not possible to drill in many places due to overhead or underground utilities, seismic refraction surveys were not feasible in this urban environment and GPR proved impractical to profile the bedrock surface as a result of past utility work. All highway borings were done in or near the existing roadway. Boring locations are shown on the Geoplans, Appendix B. Boring logs are in Appendix C and lab test data is included in Appendix D.

2.5 Existing Soils

Native soils encountered in our investigation included sand and silt of varying densities. A boring at Station 41+630 encountered peat soils at a depth of 1.22 meters but no other organic soils were encountered. A summary of native soils and pavement materials found in our borings is shown in the following table.

Table 1. Soils and Pavement

		HMA,	PCC,	Gravel,	
Station	<u>Offset</u>	<u>mm</u>	<u>mm</u>	<u>mm</u>	native soils
					Medium dense SAND over
40+130	3.0 RT	120		340	SILT
40+160	5.5 RT	120	180		medium dense fine SAND
40+280	3.5 RT	240		220	medium to very dense SAND
40+380	3.5 RT	120		340	medium dense SAND
40+440	7.0 LT	120		270	medium dense SAND
40+520	5.5 RT	60		240	SILT
40+580	3.1 RT	180			SAND over SILT
40+610	5.0 RT	120			SAND over SILT
40+630	5.2 RT	60			SILT
40+680	CL	21			SAND
40+740	7.6 LT				SAND
40+810	8.0 RT	30	210	160	SAND over SILT
40+880	6.0 RT	60	120	800	SAND
40+930	1.5 RT	150			Black SAND over SAND
41+020	1.8 LT	240		520	SAND over CLAY-SILT
41+130	1.4 LT				silty SAND
41+131	1.0 LT	460		390	
41+231	5.0 RT	180		430	silty SAND to SAND, little SILT
41+320	2.3 LT	240		670	SAND, trace silt
41+340	1.0 R	180			
41+390	2.0 RT	150			
41+430	2.0 RT	180			
41+470	2.5 RT	180			
41+580	4.5 RT				SAND over SILT
41+630	1.7 RT	210			SAND, PEAT layer, silty SAND
41+730	2.5 RT	180			
41+801	2.5 LT	270		640	SILT over loose SAND

2.6 Existing Pavement

The existing pavement is in fair to poor condition. Original 1926 plans for the highway in Jay show both an 200 mm gravel section and a section with 150 mm gravel over stone base. Our drill crew found existing pavement thickness to vary between 125 mm and 240 mm. This range of variation may be a result of past utility repair work, or the variation may be partly due to the difficulty of measuring the thickness of pavement in this condition. The existing pavement was overlaid by MDOT Maintenance in the summer of 2003; it had been 7 or 8 years since the last Maintenance overlay prior to 2003. Concrete pavement was encountered under the sidewalk in several borings, but it was not possible to determine the extent of this concrete due to conflicts with utilities.

2.7 Subsurface Bedrock

Bedrock outcrops are visible in the northern part of the project. Shallow bedrock refusals were encountered in several borings, and an irregular surface is indicated. We anticipate that bedrock excavation will be required for both subbase and underdrain construction. The following table shows the locations and depths of explorations to bedrock.

Table 2. Depth to Bedrock

		Depth	
Station	Offset	m	
40+122	6.7 RT	2.3	
40+132	6.1 RT	3.6	
40+270	2.7 RT	3.3	
40+282	2.7 RT	3.3	
40+288	2.7 RT	4.0	
40+630	1.0 RT	2.56	
41+130	1.5 RT	8.0	
41+230	3.8 RT	4.6	No Refusal
41+280	4.2 LT	4.1	
41+340	2.0 RT	3.81	
41+350	2.0 RT	4.18	
41+360	2.0 RT	4.57	No Refusal
41+370	2.0 RT	4.36	
41+380	2.0 RT	0.64	
41+390	2.0 RT	1.22	
41+400	2.0 RT	4.21	
41+410	2.0 RT	1.89	
41+420	2.5 RT	6.1	No Refusal
41+430	2.0 RT	2.26	
41+440	2.5 RT	2.53	
41+450	2.5 RT	3.96	
41+460	2.5 RT	3.87	
41+460	4.6 LT	4.6	No Refusal
41+468	4.5 LT	3.0	
41+470	2.5 RT	2.26	
41+730	2.5 RT	0.52	

3.0 EVALUATION AND RECOMMENDATIONS

3.1 Pavement Design

The resilient modulus (M_r) determined by FWD testing is variable along this project, with some very low deflections indicating areas of bedrock or shallow boulders within the soil matrix. Some high deflections may indicate areas with subsurface drainage problems or damaged pipes and catchbasins. These exceptional deflection values do not relate to the properties of the soil, and were not considered in calculating the M_r . The occasional low M_r values generally result from drainage problems or tests over the disturbed soils in utility trenches; these values will be improved by the construction of this project. An M_r of 34,000 kPa is appropriate for this project where the subgrade soils are generally sand or sand with some gravel of varying densities.

The bearing capacity of the shoulder pavement is a concern on this project. A substantial pavement should be used on the shoulders to support turning traffic and the heavy trucks that are likely to park there. We recommend that a single pavement structural section be used across the full width of this roadway.

Portland cement concrete pavement was encountered under the sidewalk in borings at the following Stations:

Station	Offset
40+160	5.5 RT
40+810	8.0 RT
40+880	6.0 RT

The extent of these areas could not be determined in the subsurface investigation due to conflicts with existing utilities, but this PCC should be removed before construction of the new sidewalks. Final quantities will need to be determined in the field.

3.2 Retaining Walls

Retaining walls will be needed to support land above the sidewalks and shoulders along this project. For some of these walls, shoring of the adjacent buildings may be required during construction. Any access beyond MDOT Right-of-Way must be arranged between the Contractor and each property owner.

The cast-in-place (CIP) retaining wall alongside church property on Jewell Street will remain in place, but existing spalled concrete will be patched to improve the structural integrity of this wall.

A new wall will be built extending from Elm Street, Station 41+006, 23m Right to Station 41+038, 10.5 m Right. Excavation to build this wall is expected to extend under the front porches of the houses above the wall. Based on standard loadings for residential houses (Total loading of 976 to 1952 kg/m2 – Foundation Behavior and Repair, Residential and Light Commercial, pg 83, Brown1992.) it does not appear that the necessary excavation will undermine the existing foundations, but these foundations are built of stone below the existing ground surface and their stability is not known. The contractor will need to use extreme caution in this area.

A new wall will be built from a driveway along Main Street at Station 41+058, 12.4m Right to Maple Street, Station 41+074, 10.5 m Right. The front entry steps to the building above this wall are directly on the existing stone wall. The contractor will need to ensure that all residents of the building have access at all times during construction.

The stone wall in the area of Station 41+090 will remain in place, but the corner will be altered to match changes in vertical alignment and radius at Maple Street. This wall will be rebuilt by a mason experienced in mortared stone construction using new stones to match the existing wall.

The CIP retaining wall from Station 41+103 to Otis Street will remain in place but the corner at Otis Street will be cut and replaced with a short section of small precast block wall to allow for changes in the radius and vertical alignment of the intersection. No plans exist for this wall, but it is not tipped, cracked or spalled, and appears to be in good condition. It appears to be a gravity or cantilever wall with adequate embedment. A clean cut of this concrete will be required, and if it appears that support of the cut end is required, geosynthetic reinforcement can be added to the back of the wall during construction.

The CIP wall at Station 41+380 will not be altered in any way.

We recommend the use of a small block retaining wall system with blocks made of wetcast concrete for the other walls on this project. This type of wall can be built quickly and would enhance the appearance of the streetscape as compared to existing retaining wall structures. The soils along this project are variable, and retaining walls should be designed for ϕ =30 and γ_t =125. This will be conservative for many of the walls, but since most walls are low, there will be very little difference in reinforcement length between this and a stronger soil.

Steps will be required on many retaining walls, and should be built to match the walls and copings. Any free-standing wall elements will need a finished face on all exposed sides, and any copings and stairs should be attached with adhesive to ensure that they cannot be picked up and moved.

3.3 Bedrock Excavation

Bedrock excavation is anticipated for construction of the drainage system for this project. It was not possible to do an adequate drilling program due to the presence of above and below ground utilities, but the available borings indicate that bedrock excavation at subgrade may be required in the areas of Station 40+130, Station 41+380, and Station 41+730. FWD data does not provide an indication of depth to bedrock, however shallow bedrock typically appears as low deflection in FWD data. This data indicates that shallow bedrock may be encountered in the area of Station 40+630, between Stations 41+380 and 41+440, and at Station 41+730 under the existing outer wheel path on the Right. Bedrock at subgrade should be fracture blasted to ensure that pockets of water are not trapped between the bedrock surface and the pavement structure.

3.4 Subgrade Soils

Subgrade soils were generally sand, however areas of damp and wet silty soils were encountered at Stations 40+520, 41+020 and 41+800. A non-woven

stabilization/reinforcement geotextile may be needed to support these soils during construction.

3.5 Frost Action

Frost penetration into granular subgrade is estimated as 1150 mm, with a design frost penetration of 1450 mm.

Appendix A
Resource Maps
Surficial Geology
NRCS Soils Survey

KILOMETER 0 I I I I

CONTOUR INTERVAL 10 FEET

Quadrangle Location

Stream alluvium - Sand, silt, gravel, and organic sedimen. Deposited on the flood plain of the Androscoggin River and other modern streams. Unit includes some wetland areas.

Ξa

Wetland deposits - Peat, muck, silt, and clay. Deposited by accumulation of organic-rich sediments in poorly drained areas on valley floors. Unit may grade into or include areas of stream alluvium.

Ž

Stream terraces - Sand and gravel terraces in the Androscoggin River valley. Formed by postglacial erosion and deposition along the river.

Qst

g

Includes longitudinal dunes oriented parallel to the prevailing wind direction when the dunes formed. Unmapped areas of eolian sand occur extensively in the quadrangle, especially east Eolian deposits - Windblown sand derived from sediments in the Androscoggin River basin. of the AndroscogginRiver. These deposits typically are very irregular in thickness and extent.

Glaciolacustrine deposit - Sand and gravel deposited in a small glacial lake.

굽

Plc2

Glacial Lake Canton deposits - Sand, gravel, silt, and clay deposited in a lake that occupied part of the Androscoggin River valley and its tributaries. Includes sand and gravel deposited An earlier and higher stage of Lake Canton (PIc,) drained southward through a spillway at an elevation of ~ 480 ft, on the divide between Bog Brook and Leavitt Brook in the Canton quadrangle. Plc, deposits are not present in the Livermore Falls quad. The lower lake stage (**Plc**₂) drained eastward through a spillway at an elevation of $\sim 410 \, \mathrm{ft}$. This spillway may have been located along the drainage channel that is followed by Route 140 in the northeast corner of the Canton quad. The Plc, stage of Lake Canton was dammed by glacial sediments that as deltas and subaqueous fans, and finer-grained lake-bottom sediments (sand, silt, and clay). emporarily blocked a narrow stretch of the Androscoggin Valley between Canton and Jay. .ake Canton may have persisted into postglacial time.

Glaciomarine sediments, undifferentiated - Sand, gravel, and clay-silt deposited in the lateglacial sea. May irclude deposits formed in a variety of marine environments and locally nodified by postglacial erosion.

Pm

Presumpscot Formation - Glaciomarine silt, clay, and sand deposited on the late-glacial sea

Рр

Pgi

Ice-contact deposits - Miscellaneous sand and gravel deposits formed in contact with remants of glacial ice. May include glacial-stream and glacial-lake sediments, and probably some glacial-marine deltaic deposits (the latter in SW corner of quadrangle).

Pge

ద

Esker deposits - Ridges of sand and gravel deposited by glacial meltwater streams in subglacial tunnels.

and gravel-size rock debris deposited by glacial ice. Locally includes lenses of waterlaid sand Fill - Loose to very compact, poorly sorted, massive to weakly stratified mixture of sand, silt, and gravel. **Bedrock outcrops / thin-drift areas -** Ruled pattern indicates areas where outcrops are common and/or surficial sediments are generally less than 10 ft thick (mapped partly from air photos). Dots show individual outcrops.

Artificial fill - Earth, rock, and/or man-made fill along roads and railroads.

ਕ

Contact - Boundary between map units. Dashed where approximately located.

Glacial striation locality - Arrow shows ice-flow direction inferred from striations on bedrock. Dot marks point of observation. Number is azimuth (in degrees) of flow direction. 135

Kettle - Depression created by melting of buried glacial ice and collapse of overlying sediments.

Grooved till surface - Narrow ridges and grooves in till sculpted by flow of glacial ice.

Glacially streamlined hill - Symbol shows trend of long axis of hill, which is parallel to former glacial ice-flow direction. Ø

Meltwater channel - Channel eroded by glacial meltwater stream. Arrow shows inferred lirection of water flow. Crest of esker - Chevrons show trend of esker ridge and point in direction of glacial meltwater ^^^^

70° 12' 20"

44° 29' 18" 44° 29' 19"

44° 28' 16"

44° 28' 17"

Severely Eroded Spot Miscellaneous Water Closed Depression Marsh or swamp Perennial Water Mine or Quarry Soil Map Units Special Point Features Rock Outcrop **Gravelly Spot** Saline Spot Slide or Slip Sandy Spot Sodic Spot Stony Spot **Borrow Pit** Spoil Area Clay Spot **Gravel Pit** Lava Flow Sinkhole Blowout Landfill

Interstate Highways

Rails

Fransportation

Major Roads

US Routes

Local Roads

>

MAP INFORMATION

Map Scale: 1:9,180 if printed on A size (8.5" × 11") sheet.

Very Stony Spot

8

Area of Interest (AOI)

Soils

Area of Interest (AOI)

MAP LEGEND

Wet Spot

Other

The soil surveys that comprise your AOI were mapped at scales ranging from 1:15,840 to 1:20,000. Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83

Short Steep Slope

Other

{

X

Political Features

Cities

Special Line Features

Gully

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Androscoggin and Sagadahoc Counties, Maine Version 13, Jul 27, 2009 Survey Area Data: Soil Survey Area:

Franklin County Area and Part of Somerset Survey Area Data: Version 14, Sep 23, 2009 Soil Survey Area: County, Maine

Streams and Canals

Oceans

Nater Features

a different land use in mind, at different times, or at different levels Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with interpretations that do not completely agree across soil survey area of detail. This may result in map unit symbols, soil properties, and boundaries.

Date(s) aerial images were photographed: 5/1/1998

imagery displayed on these maps. As a result, some minor shifting The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background of map unit boundaries may be evident.

Map Unit Legend

	Androscoggin and Sagadahoc Counties,	Maine (ME606)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AaB	Adams loamy sand, 0 to 8 percent slopes	2.4	0.6%
AaC	Adams loamy sand, 8 to 15 percent slopes	15.4	3.9%
HrC	Hollis fine sandy loam, 8 to 15 percent slopes	37.1	9.5%
HrD	Hollis fine sandy loam, 15 to 45 percent slopes	18.5	4.7%
HsC	Hollis very rocky fine sandy loam, 8 to 15 percent slop es	4.4	1.1%
HsD	Hollis very rocky fine sandy loam, 15 to 45 percent slo pes	25.5	6.5%
Md	Made land, loamy materials	6.5	1.7%
Mf	Made land, sanitary fill	23.0	5.9%
W	Water	28.6	7.3%
Subtotals for Soil Surve	ey Area	161.5	41.3%
Totals for Area of Intere	est	390.8	100.0%

	Franklin County Area and Part of Somerset Co	ounty, Maine (ME610)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BrB	Brayton fine sandy loam, 0 to 8 percent slopes, very stony	6.9	1.8%
CPC	Colonel-Dixfield association, strongly sloping, very stony	9.4	2.4%
DfC	Dixfield fine sandy loam, 8 to 15 percent slopes	10.6	2.7%
LmE	Lyman-Rock outcrop-Tunbridge complex, 15 to 45 percent slopes, very stony	40.6	10.4%
LyC	Lyman-Tunbridge-Rock outcrop complex, 3 to 15 percent slopes, very stony	39.9	10.2%
TuB	Tunbridge-Lyman complex, 3 to 8 percent slopes	18.7	4.8%
Ud	Udorthents-Urban land complex	86.9	22.2%
W	Water	16.4	4.2%
Subtotals for Soil Surv	ey Area	229.3	58.7%
Totals for Area of Inter	est	390.8	100.0%

Appendix B Geoplans

Appendix C Field Exploration Data Soils Descriptions

Boring Logs
FWD Analysis

	UNIFIE	SOIL CLA		TION SYSTEM			DESCRIBING CONSISTENC	
MA	OR DIVISION	SNC	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravelsand mixtures, little or no fines	sieve): Includes (1	soils (more than half of the color of the co	Ity or clayey gravel	s; and (3) silty,
	of coarse than No. ze)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines	tı	otive Term race		ion of Total)% - 10%
s (e:	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-sill mixtures.	S	ittle ome . sandy, clayey)	2	1% - 20% 1% - 35% 6% - 50%
of material i	(moi fracti	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand-clay mixtures.	<u>Cohesio</u> Very	nsity of nless Soils / loose		netration Resistance (blows per foot) 0 - 4
(more than half of material is arger than No. 200 sieve size)	SANDS			Well-graded sands, gravelly sands, little or no fines	Mediu De	Loose 5 - 10 Medium Dense 11 - 30 Dense 31 - 50 Very Dense > 50		
(more	coarse an No. 4	(little or no fines)	SP	Poorly-graded sands, gravelly sand, little or no fines.		ls (more than half of m	natarial is smallar t	
	(more than half of coarse fraction is smaller than No. sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1	inorganic and organ (3) clayey silts. Cons	nic silts and clays; (istency is rated acc	2) gravelly, sandy
	(more fraction	FINES (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value blows per foot	Approximate Undrained Shear Strength (psf)	<u>Field</u> Guidelines
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity.	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily Penetrates Thumb easily penetrates Thumb penetrates with moderate effort
FINE- GRAINED SOILS	<i>(</i> 1	4 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnai Indented by thumbnail
(e)	(liquia limit i	ess than 50)	OL	Organic silts and organic silty clays of low plasticity.	Rock Quality Des	sum of the lengths	of intact pieces	
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.		Correlation of RQI ass Quality	NQ rock core (1.	Quality RQD
ore than hal er than No.			СН	Inorganic clays of high plasticity, fat clays.	P	y Poor Poor Fair Bood	5 ⁻	<25% 6% - 50% 1% - 75% 6% - 90%
(mc small	(liquid limit gr	eater than 50)	OH	Organic clays of medium to high plasticity, organic silts	Desired Rock C Color (Munsell of	cellent Observations: (in t color chart)	91 his order)	% - 100%
		ORGANIC IILS	Pt	Peat and other highly organic soils.	Lithology (igned Hardness (very	itic, fine-grained, et ous, sedimentary, m hard, hard, mod. h sh, very slight, sligh	netamorphic, etc. ard, etc.)	,
		ions: (in th	is order)		1	severe, etc.)		
Gradation (ry, damp, m nsistency (fr d, silty sand, well-graded,	oist, wet, sa om above ri , clay, etc., ii , poorly-grad	ght hand sid ncluding po led, uniform	rtions - trace, little, etc.)	Geologic discor	-spacing (very clos close 30-100 cr	o - 55-85, vertical se - <5 cm, close m, wide - 1-3 m, v	- 85-90) - 5-30 cm, mod.
Structure (la Bonding (w Cementatio Geologic O	ayering, frac ell, moderat n (weak, mo rigin (till, ma	tures, crack ely, loosely, oderate, or s rine clay, all	s, etc.) etc., if appl trong, if app uvium, etc.	olicable, ASTM D 2488)	RQD and correl ref: AASHTO	-tightness (tight, op -infilling (grain size erville, Ellsworth, C ation to rock mass Standard Specifica	, color, etc.) ape Elizabeth, e quality (very poo	r, poor, etc.)
Unified Soil Groundwate		on Designati	on		17th Ed. Table Recovery			
Ke	y to Soil	Geotechi	<i>nical Sec</i> Descrip	tions and Terms	Sample Cont PIN Bridge Name Boring Numbe Sample Numb Sample Depth	er oer	Requirements Blow Counts Sample Reco Date Personnel Ini	overy

	Main	e Depar	ion	Pro	oject:	Route	4/1	17, Ma	n Street	Boring No.:	HGT-	-1		
			/Rock Explora METRIC UNI	tion Log		Lo	cation	: Liv	erm	nore Fa	ls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	ine Test Boring	ţ	Elevatio	n (m):	114	.90			Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:		NGVD					Sampler:	Standard Split S	Spoon
	ged By:		ad Tirone/HAI		Rig Typ	e:		Mo	bile	Drill		Hammer Wt./Fall:	63.5 kg/760 mm	n
	Start/F		0/03-6/10/03		Drilling					Stem	Auger	Core Barrel:	N/A	
Bori: Definit	ng Loca	ation: 40	+130, 3.0 Rt.		Casing Definitions): 	N/A	1			Water Level*: Definitions:	Boring dry	
D = Sp MD = U = Th R = Ro V = In:	olit Spoon Unsuccess nin Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test			S_U = Insitu Field Vane Shear Strength (kPa) T_V = Pocket Torvane Shear Strength (kPa) q_p = Unconfined Compressive Strength (Pa) $S_U(lab)$ = Lab Vane Shear Strength (kPa) WOH = weight of 64 kg hammer WOR = weight of rods WOC = weight of casing							WC = water content, percer LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	it	
		T		Sample Information	<u> </u>	$\overline{}$		_	_					Laboratory
Oepth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	9		Casing Blows	Elevation	(m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						1	HSA_	114.	78		ASPHALT.		0.12-	
	1D	61.0/45.7	0.46 - 1.07	8/7/6/6	1	3		114.4	44		Brown SAND and GRAVE	EL.	0.46-	G#176760
1.2 -											Brown-tan, dry to damp, m silt, trace gravel.	edium dense, fine to medi	um SAND, little	A-1-b, SM WC=3.8%
	2D	61.0/55.9	1.52 - 2.13	7/8/8/11	1	6		113.3	38		Tan, dry to damp, medium	dense, SILT, little sand, to	1.52-race gravel.	G#176761 A-4, ML WC=18.5%
2.4 -							\ /	112.3	31		Brown SAND and GRAVE	EL.	2.59	
							\bigvee	111.8	•			on at 3.05 m below grou	3.05-nd surface.	
3.6 -														
4.8 -														
6 -								-						
7.2 -								- - - - - -						
8.4 -														
		<u> </u>				+		+						
9.6						1		1						
	arks:	1	1		1	_			_					<u> </u>
	_													

and an interest of the contract of the contrac

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

			ion	Proj	ject:	Route 4	/17, Ma	in Street	Boring No.: _	HGT-	-2		
			/Rock Explorati METRIC UNI	tion Log		Loc	ation:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	nine Test Boring		Elevation	n (m):	:	115.2	0		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:		NGVD				Sampler:	Standard Split S	Spoon
Logg	ged By:	Br	ad Tirone/HAI		Rig Type):		Mobil	le Drill		Hammer Wt./Fall:	63.5 kg/760 mn	1
Date	Start/Fi	inish: 6/1	0/03-6/10/03		Drilling N	Metho	od:	Hollo	w Stem	Auger	Core Barrel:	N/A	
	ng Loca	ation: 40	+160, 5.5 Rt.		Casing ID/OD: N/A Definitions:						Water Level*:	Boring dry	
MD = I U = Th R = Ro V = Ins	olit Spoon S Unsuccess nin Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test			S _U = Insitu Field Vane Shear Strength (kPa) T _V = Pocket Torvane Shear Strength (kPa) q _p = Unconfined Compressive Strength (Pa) S _{U(lab)} = Lab Vane Shear Strength (kPa) WOH = weight of 64 kg hammer WOR = weight of rods WOC = weight of casing						Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticty Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information		$\overline{}$							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	· .	Casing Blows	Elevation (m)	Graphic Log	Visual Do	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						Ŧ	HSA	115.08	21.7.4 6: 2	ASPHALT. Two layers asp	phalt each 61 mm thick.	0.12-	
	1D	61.0/40.6	0.46 - 1.07	6/5/5/8	10	\perp		114.90		CONCRETE.		0.12	G#176762
	ID	01.0/40.0	0.40 - 1.07	0/3/3/8	10	'				Tan, dry to damp, medium gravel.	dense, very fine SAND, son	ne silt, trace	A-2-4, SM WC=7.2%
1.2						\perp	$\downarrow \downarrow$						
	2D	61.0/61.0	1.52 - 2.13	10/9/8/10	17	7		113.68		Brown, damp, medium den	nse, fine SAND, trace silt.	1.52-	
						\perp		113.07	1111111111	Bottom of Explorati	ion at 2.13 m below ground	2.13-	
2.4						1				No Refusal	g		
						\pm							
						+							
						+							
3.6						1							
						1							
						#							
						\pm							
4.8						#							
						\pm							
						+							
						-							
6						1							
Ĭ						#							
						1							
						\pm							
						\pm							
7.2						+							
						+							
						+							
						+							
8.4						\pm							
						\pm							
						+							
						\mp							
9.6	- ul-a -												
Rem	<u>ai NS.</u>												

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	`Transportat	ion	P	roje	:t:]	Route 4	1/17, Ma	in Street	Boring No.:	HGT-3			
			/Rock Explora METRIC UN	tion Log		L	ocat	ion:	Live	more Fa	lls/Jay, Maine	PIN:	1001	8.00		
Drille	er:	Ma	nine Test Boring		Elevati	on (r	n):		116.2	20		Auger ID/OD:	106/156 mm			
	ator:		el Coffin		Datum				NGV			Sampler:	Standard Split S	Spoon		
	jed By:		ad Tirone/HAI		Rig Ty					le Drill		Hammer Wt./Fall:	63.5 kg/760 mn	•		
	Start/Fi		2/03-6/12/03		Drilling		hod			w Stem	Auger	Core Barrel:	N/A	-		
	ng Loca		+280, 3.5 Rt.		Casing				N/A	ow Stein	rugor	Water Level*:	Boring dry			
Definit			200, 5.5 Rt.		Definition				14/11			Definitions:	Boring dry			
MD = U = Th R = Ro V = In:		iful Split Spoon S be Sample ample Shear Test	ample attempt		T_V^- = Pocket Torvane Shear Strength (kPa) q_P^- = Unconfined Compressive Strength (Pa) $S_{U(ab)}^-$ = Lab Vane Shear Strength (kPa) WOH = weight of 64 kg hammer WOR = weight of rods WOC = weight of casing							WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test				
		<u> </u>	1	Sample Information	<u> </u>			_		1				Laboratory		
⊃ Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		N-value	Casing		Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.		
0	1D	21.6/17.8	0.24 - 0.46	36/13(61)			_HS	$A \square$	115 0/		ASPHALT PAVEMENT.		0.24			
				, ,					115.90 115.74		Dense, dry, coarse to fine g	ravelly SAND.	0.24-			
	2D	61.0/40.6	0.46 - 1.07	25/21/21/13		42			115.4		Light brown, dry, dense, gr	avelly coarse to fine SAND				
1.2 -										00000	Brown, damp, medium dense, medium to fine SAND, little silt, tra gravel.					
	3D	61.0/53.3	1.52 - 2.13	21/55/42/35		97			114.6 114.5		\Brown, dry, SILT, little fine	e sand.	1.58-			
									114.07	,		avelly coarse to fine SAND.	1.68-			
2.4 -									114.0	0.00.00	Brown, dry, medium to fine	e SAND, trace gravel.	2.13-			
2.7							\	$\overline{}$		80 080 80 00						
							\forall	eg	110.1	\$ \$500 000			2.05			
							_		113.15	,	Bottom of Exploration	on at 3.05 m below ground	3.05- surface.			
3.6 -											No Refusal					
5.0																
4.8 -																
7.0																
6 -																
0																
7.0																
7.2 -								\dashv								
8.4 -																
								\exists								
9.6								\exists								
	arks:															

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	Project: Route 4/17, Main Street							Boring No.: HGT-		-4		
			I/Rock Explora METRIC UN	tion Log		l					lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	aine Test Boring	7	Elevation	n (m):	118	3.20			Auger ID/OD:	106/156 mm	
Ope	ator:	Me	el Coffin		Datum:	NGVD			VD			Sampler:	Standard Split S	Spoon
Logo	ged By:	Br	ad Tirone/HAI		Rig Type):		Mo	bile	Drill		Hammer Wt./Fall:	63.5 kg/760 mm	n
Date	Start/Fi	inish: 6/1	2/03-6/12/03		Drilling N	Vleth	od:	Hol	llow	Stem	Auger	Core Barrel:	N/A	
Bori	ng Loca	tion: 40	+380, 3.5 Rt.		Casing ID/OD: N/A V							Water Level*:	Boring dry	
MD = U = Th R = Re V = In:	olit Spoon S Unsuccess	sful Split Spoon S lbe Sample sample Shear Test			Definitions: S _U = Insitu Field Vane Shear Strength (kPa) T _V = Pocket Torvane Shear Strength (kPa) q _D = Unconfined Compressive Strength (Pa) S _U (lab) = Lab Vane Shear Strength (kPa) WOH = weight of 64 kg hammer WOR = weight of rods WOC = weight of casing							Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-Value		Casing Blows	Elevation	(m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	30.5/27.9	0.15 - 0.46			\perp	HSA_	118.		0.50	ASPHALT PAVEMENT.		0.12	
	1D			18/17			\perp	117.	74		Light brown, dry, dense, co	parse to fine SAND, little gr	0.12- avel.	CHARGE
	2D	61.0/33.0	0.46 - 1.07	17/9/10/7	19) 		117.			Brown, dry, medium dense gravel.		0.46- e silt, trace	G#176763 A-2-4, SM WC=5.1%
1.2 -						+	1	ł			Brown, damp, coarse to fin	e SAND.		
2.4 -								116.	83 🗀		Bottom of Explorati Refusal, material unknown	on at 1.37 m below ground	1.37-	
3.6 -														
4.8 -														
6 -														
7.2 -														
8.4 -														
9.6 _ Rem	arks:	<u>I</u>												
IZEIII	<u>ui N3.</u>													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Maine Department of Transportati				ion Project: Route 4/17, Main Street							Boring No.:	HGT-	-5
			/Rock Explora METRIC UN	tion Log		1					lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	ine Test Boring	5	Elevatio	n (m	1):	119	.20			Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:			NG	VD			Sampler:	Standard Split S	Spoon
Logg	jed By:	Bra	ad Tirone/HAI		Rig Type: Mobile Drill							Hammer Wt./Fall:	63.5 kg/760 mn	n
	Start/Fi		2/03-6/12/03		Drilling I					Stem	Auger	Core Barrel:	N/A	
Bori Definit	ng Locat	tion: 40-	+440, 7.0 Lt.									Water Level*: Definitions:	Boring dry	
D = Sp MD = U = Th R = Ro V = Ins	olit Spoon S Unsuccess	ful Split Spoon S be Sample ample Shear Test			S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = L WOH = wei WOR = wei	Field t Torv fined ab Va ght o	rane She Compres ine Shear f 64 kg ha	ar Strei ssive St Streng ammer	ngth (trengt gth (k	kPa) th (Pa) Pa)	ing	WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	<u> </u>	\neg			<u> </u>					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	ei ile v-N		Casing Blows	Elevation	(m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/45.7	0.15 - 0.76	13/14/13/13	2	7	HSA_	119.0 118.9	08	200	ASPHALT PAVEMENT.		0.12-	
	1D	01.0/15.7	0.15 0.70	13/11/13/13		7		1118.	93		Brown, dry, medium dense silt.	, fine to medium SAND, litt		
						7		1			Brown, dry, medium dense	4- £ CAND	0.27-	
						7					Brown, dry, medium dense	, coarse to fine SAND.		
1.2 -						#		1						
	2D	61.0/40.6	1.52 - 2.13	4/6/9/9	15	5		117.0	68		Brown, moist, medium den	se, coarse to fine SAND.	- — — —1.52 ⁻	
						\dashv	-V	117.0	07	:::::	Pottom of Evnlorati	on at 2.13 m below ground	2.13	
2.4 -						\pm		ł			No Refusal	on at 2.15 in below ground	surface.	
						\perp								
						-								
						\dashv		1						
3.6 -						4		1						
						4		1						
						7		1						
						7		1						
4.8 -						1								
						1								
						#								
						1								
- 6 -						\pm		}						
						+								
						\dashv		1						
						4		1						
7.2 -						7		1						
						7		1						
						1								
						\Rightarrow		1						
8.4 -						1		1						
∪. †						\pm		1						
								1						
						\dashv		1						
9.6						7		1						
Rem	arks:					_								

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pro	oject	: R	oute 4	/17, Ma	in Street	Boring No.: _	HGT-6	
			ation Log ITS	Location: Livermore Falls/Jay, Maine							PIN:	1001	18.00	
Drille	er:	Elevation (m): 116.40							Auger ID/OD:	106/156 mm				
					Datum:	(<i>,</i> .		NGVI			Sampler:	Standard Split S	Spoon
						e:				e Drill		Hammer Wt./Fall:	63.5 kg/760 mm	
							od:	_			Augar	Core Barrel:	N/A	
						Meth				w Stem	Augei	Water Level*:		
Definit		ation: 40	+520, 5.5 Rt.		Casing I Definitions		J.		N/A			Definitions:	Boring dry	
D = Sp MD = U = Th R = Ro V = In:	olit Spoon Unsuccess nin Wall Tu ock Core S situ Vane S Solid Ste	S_u = Insitu T_v = Pocke q_p = Uncor $S_u(lab)$ = L WOH = we WOR = we	Field Y et Torvenfined ab Varight of	ane SI Compi ne She 64 kg	hear ressi ear S ham	Strengt ive Stre Strength nmer	h (kPa) ngth (Pa (kPa)	ing	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test					
				Sample Information	<u> </u>	_		_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	on los	- Aaide	Casing Blows		Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						\mp	HSA		116.34		ASPHALT PAVEMENT.		0.06-	
	1D	61.0/43.2	0.30 - 0.91	7/8/8/8	1	6		₫:	116.10		Brown, dry, fine to coarse S	SAND, some gravel, little si	ilt, trace gravel.	G#176764
						+		-			Brown, damp, medium den	se, fine to coarse SAND, so	0.30- me silt_trace	A-1-b, SM WC=10.8%
						1		٦,	115.49	1000	gravel.	.,,	0.91-	W C-10.670
1.2 -								1			Brown, damp, SILT, trace	n, damp, SILT, trace fine sand.		
	2D	39.4/22.9	1.52 - 1.92	13/45/50(75)		=		₫:	114.88 114.72	0 % 0 % 0 %	¬Brown, dense, wet, SILT, s	ome gravel	1.52	
						\pm		—	114.48		Brown, moist SILT.	B	1.68-	
						+		4					1.92-	
2.4						#					same as above but, with tra	ce clay.		
						\pm		\exists						
						+	+	4						
						1		= 1	113.35	ииии	Bottom of Exploration	on at 3.05 m below ground	3.05- l surface.	
						1					No Refusal	8		
3.6						+		┥						
						4		4						
						1								
						+		+						
4.8 -						\dashv		4						
7.0						1								
						+		\exists						
						+		4						
						#								
6 -						\pm								
						+		+						
						4		4						
						#								
						+		-						
7.2 -						4		\exists						
						#								
						\pm								
						\dashv		\exists						
8.4 -						#								
∪. ⊤						\pm		\exists						
						\blacksquare		7						
						\dashv		\exists						
						_+		\dashv						
9.6	aules:							\Box						
<u>kem</u>	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	Transportat	ion	Proj	ect:	Route	4/17, 1	ain Street	Boring No.:	HGT-7		
			tion Log ITS	Location: Livermore Falls/Jay, Maine						PIN:	1001	18.00	
Driller: Maine Test Boring					Elevation	n (m):		113.	00		Auger ID/OD:	106/156 mm	
Operator: Mel Coffin					Datum:			NGVD			Sampler:	Standard Split Spoon	
Logged By: Brad Tirone/HAI						:		Mob	ile Dr	[Hammer Wt./Fall:	63.5 kg/760 mm	n
Date Start/Finish: 6/23/03-6/23/03 Dri						Drilling Method: Hollow Stem Auger					Core Barrel:	N/A	
	ng Loca	tion: 40	+580, 3.1 Rt.		Casing II	D/OD:		N/A			Water Level*:	Boring dry	
MD = Unsuccessful Split Spoon Sample attempt U = Thin Wall Tube Sample R = Rock Core Sample V = Insitu Vane Shear Test						t Torvar fined Co ab Vane ght of 6	ne Shea ompres e Shear 4 kg ha	ear Stre ar Stren ssive Str Streng ammer OC = we	gth (kP ength (th (kPa	a)	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		<u> </u>	\neg				1			Laboratory			
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	_	Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						$+^{\scriptscriptstyle \mathrm{I}}$	HSA_	112.8		ASPHALT PAVEMENT.		0.18-	
	1D	61.0/45.7	0.46 - 1.07	27/22/17/28	39				8 6	Grey brown, dry, dense, co	arse to fine SAND, some gr		
1.2 -						1		111.9	P.:89	Brown, dry, coarse to fine SAND, little gravel.			
	MD	61.0/0.0	1.52 - 2.13	2/2/7/17	9				000 000 000 000 000 000	No Recovery			
2.4 -								110.8	7	Brown, moist, SILT, trace	fine sand.	2.13	
							\bigvee	109.9				3.05-	
3.6 -						+		109.9		Bottom of Explorati No Refusal	on at 3.05 m below ground		
4.8 -													
6 -													
7.2 -													
8.4 -													
						+							
9.6						土							
Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	ion Project: Route 4/17, Main Street							oring No.:	HGT	-8		
		<u>Soil</u>	Location: Livermore Falls/Jay, Maine							N:	10018.00			
Driller: Maine Test Boring					Elevation (m): 112.20)	Aug	ger ID/OD:	106/156 mm	
Operator: Mel Coffin					Datum:				NGVI)	Sar	mpler:	Standard Split	Spoon
Logged By: Brad Tirone/HAI						Rig Type:				e Drill	Har	mmer Wt./Fall:	63.5 kg/760 mr	n
Date Start/Finish: 6/23/03-6/23/03						Drilling Method: Hollow Stem					Auger Cor	re Barrel:	N/A	
	ng Loca	ition: 40	+610, 5.0 Rt.		Casing ID/OD: N/A							iter Level*:	Boring dry	
MD = U = Th R = Ro V = In:	ions: olit Spoon Unsuccess in Wall Tu ock Core S situ Vane S Solid Ster	T_V = Pocket Torvane Shear Strength (kPa) q_p = Unconfined Compressive Strength (Pa) $S_{u(lab)}$ = Lab Vane Shear Strength (kPa)							initions: = water content, percent = Liquid Limit = Plastic Limit = Plasticity Index Grain Size Analysis Consolidation Test					
			<u> </u>	_		_		_				Laboratory		
⊃ Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	diley-N	an a a	Casing Blows		Elevation (m)	Graphic Log	Visual Descrip	otion and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/35.6	0.15 - 0.76	10/10/8/10	18		HSA		12.08	J. 190 o	ASPHALT PAVEMENT.		0.12-	G#176765
	10	01.0/33.0	0.13 - 0.76	10/10/8/10		0					Brown, dry, medium dense, coar silt.	rse to fine SAND, some		A-1-b, SW-SN WC=3.4%
1.2 -	2D	49.0/45.7	1.37 - 1.86	21/40/39/30(25)	79	9		_	110.83		REFUSAL, moved to Sta. 40+60 Brown, damp, SILT, some sand,			G#176766 A-4, ML WC=14.2%
2.4 -] 	110.34	1111805511	Bottom of Exploration at Refusal Note: Concrete pieces in tip of sp	_		WC 11.270
3.6 -														
4.8 -														
6 -														
7.2 -														
8.4 -														
9.6														
Rem	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Pro	ject:	Route 4	4/17, M	in Street	Boring No.: _	HGT-	.9
		<u>Soil</u>	/Rock Explora METRIC UN			Loc	ation	: Live	more F	ılls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	nine Test Boring	9	Elevation	ı (m)	:	112.0	00		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:			NGV	D		Sampler:	Standard Split S	Spoon
Logg	ed By:	Bra	ad Tirone/HAI		Rig Type	:		Mob	ile Drill		Hammer Wt./Fall:	63.5 kg/760 mn	n
Date	Start/Fi	inish: 6/2	4/03-6/24/03		Drilling N	/letho	od:	Hollo	w Sten	Auger	Core Barrel:	N/A	
Borir	ng Loca	tion: 40	+630, 5.2 Rt.		Casing II	D/OD	:	N/A			Water Level*:	Boring dry	
MD = l U = Th R = Rc V = Ins	olit Spoon S Jnsuccess in Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test	ample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = La$ WOH = weig WOR = weig	Torva fined C b Van ght of 6	ne She compres e Shea 64 kg ha	ar Streng ssive Stre r Strengt ammer	yth (kPa) ength (Pa n (kPa))	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
- }		Τ	Ι	Sample Information		_		_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation (m)	Graphic Log	Visual Do	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/33.0	0.15 - 0.76	7/9/10/19	19		HSA_	111.94	1 38 0.	ASPHALT PAVEMENT.		0.06-	
1.2	2D	61.0/50.8	1.52 - 2.13	13/26/62/58	88			110.48	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brown, damp, medium der		ome gravel.	G#176767
2.4 -	2D	01.0/30.8	1.32 - 2.13	13/20/02/36	000			109.87	988	Brown, damp, very dense, Brown, dry, SILT, trace fir Bottom of Explorati Refusal		2.13- 2.56-	A-1-b, SM WC=4.7%
3.6													
4.8 -													
6 -													
7.2 -													
8.4 -													
ŀ						士		1					
9.6 Rem a	arke:									<u> </u>			
- VGIII	<u></u>												

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pi	rojed	ct: 1	Route 4	/17, Ma	n Street	Boring No.: _	HGT-	10
			/Rock Explora METRIC UN	ation Log		1					lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	ine Test Boring	3	Elevation	on (n	n):		112.2	0		Auger ID/OD:	106/156 mm	
Oper	ator:	Мє	el Coffin		Datum:				NGV	D		Sampler:	Standard Split S	Spoon
Logo	jed By:	Bra	ad Tirone/HAI		Rig Typ	e:			Mobil	e Drill		Hammer Wt./Fall:	63.5 kg/760 mn	n
Date	Start/Fi	nish: 6/2	4/03-6/24/03		Drilling	Met	hod	:	Hollo	w Stem	Auger	Core Barrel:	N/A	
Bori	ng Loca	tion: 40-	+680, CL		Casing	ID/C	D:		N/A			Water Level*:	Boring dry	
MD = U = Th R = Ro V = In:	olit Spoon S Unsuccess	ful Split Spoon S be Sample ample Shear Test		Sample Information	Definitions $S_{U} = Insitu$ $T_{V} = Pock$ $q_{p} = Unco$ $S_{U}(lab) = V$ $WOH = WO$ $WOR = WO$	u Field et Tor Infined Lab V eight d	vane d Com ane S of 64 I	Sheanpress Shear kg hai	r Strengt sive Stre Strength mmer	h (kPa) ngth (Pa) (kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Oepth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)		N-value	Casing	Blows	Elevation (m)	Graphic Log	Visual Do	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0							HS		111.99		ASPHALT PAVEMENT.		0.21	
									111.74		Grey brown, dry, coarse to	fine SAND, some silt, trac		
	1D	61.0/48.3	0.46 - 1.07	36/42/61/35	1	03			111./4		Light brown, damp, very digravel.	ense, coarse to fine SAND,	0.46- little silt, trace	G#176768 A-1-b, SM WC=7.8%
1.2 -									111.13	- 300	Black, damp, silty coarse to	o fine SAND, some gravel.	1.07-	
	2D	61.0/40.6	1.52 - 2.13	2/1/2/2		3			110.68	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Brown, damp, very loose, o	coarse to fine SAND, little	——1.52- silt, trace gravel.	G#176769 A-1-b, SM WC=3.3%
									110.07		Bottom of Explorati	on at 2.13 m below groun	2.13- d surface.	
2.4 -											No Refusal			
						-		\dashv						
3.6														
						\dashv		\dashv						
4.8 -														
1.0														
						\dashv		\dashv						
6 -														
						\dashv		\dashv						
7.2 -														
1.2														
						\dashv		\dashv						
								=						
8.4 -								\dashv						
						\Box		\Box						
						\dashv		-						
9.6 . Rem	arks:			I										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Proj	ject:	Route 4	/17, Ma	in Street	Boring No.:	HGT-	11
		<u>Soil</u>	/Rock Explora METRIC UN			Loc	ation:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	18.00
Drille	r:	Ma	ine Test Boring	g	Elevation	n (m):	:	111.8	0		Auger ID/OD:	106/156 mm	
Oper	ator:	Мє	el Coffin		Datum:			NGV	D		Sampler:	Standard Split S	Spoon
Logg	ed By:	Bra	ad Tirone/HAI		Rig Type	:		Mobi	le Drill		Hammer Wt./Fall:	63.5 kg/760 mr	n
Date	Start/Fi	inish: 6/2	4/03-6/24/03		Drilling N	/lethc	od:	Hollo	w Stem	Auger	Core Barrel:	N/A	
	ng Loca	tion: 40	+740, 7.6 Lt.		Casing II	D/OD	:	N/A			Water Level*:	Boring dry	
MD = 1 U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test	ample attempt		Definitions: $S_U = Insitu$ $T_V = Pocket$ $q_p = Uncon$ $S_U(lab) = La$ WOH = weighted with the work WOR = weighted with the work M M	Torva fined C ab Van ght of 6	ne Shea compres e Shear 64 kg ha	ar Streng sive Stre Strength mmer	th (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		T		Sample Information		_			ı				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	-	Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/35.6	0.00 - 0.61	1/2/2/2	4		HSA_			Brown, dry, very loose, coa	arse to fine SAND.		
1.2 -								111.19		No description given.		0.61	
	2D	61.0/53.3	1.52 - 2.13	2/2/3/5	5			110.28 109.67		gravel.	se, coarse to fine SAND, trac	2.13	G#176770 A-1-b, SP-SN WC=9.5%
2.4 -										Bottom of Explorati No Refusal	on at 2.13 m below ground	l surface.	
3.6 -													
4.8 -													
6 -													
7.2 -													
8.4 -													
9.6	aules -												
Rem	arks:												

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pro	oject:	Rou	te 4/	17, Ma	n Street Boris	ng No.:	HGT-	12
		_	il/Rock Explora METRIC UNI	tion Log							lls/Jay, Maine PIN:		1001	8.00
Drille	er:	M	aine Test Boring	9	Elevatio	n (m):	11	2.20)	Auger	· ID/OD:	106/156 mm	
Oper	rator:	M	el Coffin		Datum:			NO	GVI)	Sampl	ler:	Standard Split S	Spoon
Logg	ged By:	Bı	rad Tirone/HAI		Rig Type	э:		M	obil	e Drill	Hamm	ner Wt./Fall:	63.5 kg/760 mn	ı
Date	Start/Fi	nish: 6/	24/03-6/24/03		Drilling I			Н	ollov	v Stem	Auger Core E	Barrel:	N/A	
	ng Loca	tion: 40)+810, 8.0 Rt.		Casing I		D:	N/	Ά			Level*:	Boring dry	
MD = U = Th R = Ro V = Ins	olit Spoon S Unsuccess	ful Split Spoon S be Sample ample Shear Test	Sample attempt	0	Definitions: $S_U = Insitu$ $T_V = Pocke$ $q_p = Uncon$ $S_U(lab) = Li$ $WOH = wei$ $WOR = wei$	Field t Torv fined ab Va ight of	ane She Compres ne Shea 64 kg ha	ar Str ssive s r Strei amme	engtl Strer ngth er	h (kPa) ngth (Pa (kPa)	LL = Liqı PL = Pla PI = Plas G = Grai	ater content, percent		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	elle elle		Casing Blows	Elevation	(m)	Graphic Log	Visual Description	n and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0						1	HSA_	112	2.17	13.475 23.77	ASPHALT PAVEMENT.		0.03-	
	1D	61.0/45.7	0.30 - 0.91	14/9/5/6	14	4		111 111	.80	්ල්ර්සි :	CONCRETE PAVEMENT.			
						#		1			Dark brown, dry, medium dense, coa	arse to fine SAND,		
						1		111	.29		Brown, dry, medium dense, coarse to	o fine SAND, trace		
1.2 -						\pm		}			Brown, damp, coarse to fine SAND.		0.91-	
	2D		1.52 - 2.13	5/39/30/40	69	9	\bigvee	110	.68		D 1 1	CAND	1.52-	
						+		110).43	186	Brown, damp, dense, coarse to fine S		1.77-	
						1		110	.07		Light brown, damp, stiff, SILT, trace staining and inclusions.	e fine to medium gr		
2.4 -						1		1			Bottom of Exploration at 2.1	3 m below ground	surface.	
						#		1			No Refusal	, and the second		
						1		1						
						\pm		1						
3.6 -						+		1						
						\dashv		1						
						4		1						
						1		1						
4.0						#		1						
4.8 -						1		1						
						1		1						
						\pm		1						
						+		ł						
6 -						7		}						
						1		1						
						#		1						
						1		1						
7.2 -						\pm		1						
						+		┨						
						\exists		1						
						#		1						
8.4 -						#		1						
∪.¬r						\pm		1						
						\mp		1						
						1		1						
0.1						#		1						
9.6 . Rem	arks:			l		_								

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pr	ojec	: t : I	Route 4	/17, Ma	n Street	Boring No.:	HGT-	13
		_	/Rock Explora METRIC UN	ution Log		Lo	cati	on:	Liven	nore Fa	ls/Jay, Maine	PIN:	1001	18.00
Drille	er:	Ma	ine Test Boring	2	Elevation	n (m	1):		112.20)		Auger ID/OD:	106/156 mm	
	ator:		el Coffin		Datum:	•	<u>, </u>		NGVI			Sampler:	Standard Split S	Spoon
	ed By:	Bra	ad Tirone/HAI		Rig Typ	e:			Mobil	e Drill		Hammer Wt./Fall:	63.5 kg/760 mr	
	Start/Fi	inish: 6/2	25/03-6/25/03		Drilling		nod:		Hollo	w Stem	Auger	Core Barrel:	N/A	
Borii	ng Loca	tion: 40	+880, 6.0 Rt.		Casing	ID/O	D:		N/A			Water Level*:	Boring dry	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Jnsuccess in Wall Tu ock Core S	sful Split Spoon S lbe Sample Sample Shear Test			Definitions $S_{U} = Insitu$ $T_{V} = Pock$ $q_{p} = Unco$ $S_{U}(lab) = I$ $WOH = we$ $WOR = we$	Field et Ton nfined ab Va eight o	vane S Compane Sl of 64 k	Shea press hear g har	r Strengt sive Stre Strength nmer	h (kPa) ngth (Pa) (kPa)	ng	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	t	
		<u> </u>		Sample Information	<u> </u>	_		_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	1	N-vaiue	Casing		Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						-	_HS.	A	112.14 112.02	. 3. V. 4 b. 4	ASPHALT PAVEMENT.		0.06-	
	1D	61.0/40.6	0.37 - 0.98	6/7/7/8	1	4					CONCRETE PAVEMENT		0.18-	G#176771
									111.23		Brown, damp, medium den gravel.	se, coarse to fine SAND, t	race silt, trace	A-1-b, SP-SM WC=4.7%
1.2 -								\overline{A}			Brown, damp, coarse to fin	e SAND.		
	2D	61.0/48.3	1.52 - 2.13	11/13/15/19	2	8			110.68		Same as above but, Light b	rown.	— — — —1.52 ⁻	
2.4	arke:								110.07		Bottom of Explorati	on at 2.13 m below groun	2.13	
	arks:													

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pı	ojec	t: 1	Route 4	/17, Ma	in Street	Boring No.: _	HGT-	14
			I/Rock Explora METRIC UN	ation Log		Lo	ocati	on:	Liverr	nore Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	aine Test Boring	σ	Elevation	n (n	າ):		112.60)		Auger ID/OD:	106/156 mm	
	ator:		el Coffin	9	Datum:		-,-		NGVI			Sampler:	Standard Split S	Spoon
	jed By:		ad Tirone/HAI		Rig Typ				Mobil			Hammer Wt./Fall:	63.5 kg/760 mm	*
	Start/F		25/03-6/25/03		Drilling		hod.			w Stem	Auger	Core Barrel:	N/A	•
	ng Loca		+930, 1.5 Rt.		Casing				N/A	W Btem	rugor	Water Level*:	Boring dry	
Definit		10	1,50, 1.5 14.		Definitions				14/21			Definitions:	Borning dry	
MD = U = Th R = Ro V = In:	in Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test	Sample attempt		S_U = Insitu T_V = Pock q_p = Unco $S_U(lab)$ = WOH = w WOR = w	et Tor infined Lab Va eight o	vane S I Compane SI of 64 k	Shea press hear g hai	r Strengt sive Strei Strength mmer	h (kPa) ngth (Pa (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		1		Sample Information	1	_		_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		N-value	Casing	Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						\dashv	_HS.	A =	112.45		ASPHALT PAVEMENT.		0.15-	
	1D	61.0/48.3	0.46 - 1.07	25/43/38/36	8	31					Grey-brown, dry, very dens gravel.	se, fine to medium SAND,		G#176772 A-2-4, SM WC=8.3%
						\dashv			111.53				1.07-	
1.2 -								\neq			Black, coarse to fine SANI), trace ash.		
	2D	61.0/53.3	1.52 - 2.13	7/11/12/12	2	23			110.98				1.62-	
						\dashv		\dashv	110.89 110.71	1.000	Red-brown, damp, medium	dense, coarse to fine SAN	D. 1.71-	
						\dashv			110.47		Light brown, damp, silty, f	ne SAND, some gravel.	1.89-	
2.4 -											Tan, damp, medium dense,	silty fine SAND, (Native S	soils).	
						\dashv		\dashv			Bottom of Explorati	on at 2.13 m below groun	d surface.	
											No Refusal	_		
3.6 -						-								
						\dashv								
						=								
						\exists								
4.8 -						\dashv		-						
0														
						\exists								
						\dashv		\dashv						
6 -														
						\dashv		\dashv						
7.0						\exists								
7.2 -								\dashv						
						\dashv								
						=								
8.4 -						\dashv		\dashv						
						=		4						
						\dashv		\dashv						
								\exists						
9.6 . Rem	arks:		<u> </u>	l		!		_						

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Pro	oject:	Route	e 4/1	17, Ma	n Street	Boring No.:	HGT-	15
		Soil Soil	/Rock Explora METRIC UN			Lo	cation	: Liv	/erm	ore Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	r:	Ma	ine Test Boring	g	Elevation	i (m)):	117	7.00			Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:		-	NG	iVD			Sampler:	Standard Split S	Spoon
Logg	ed By:	Bra	ad Tirone/HAI		Rig Type	:		Мо	bile	Drill		Hammer Wt./Fall:	63.5 kg/760 mn	n
Date	Start/Fi	nish: 6/2	25/03-6/25/03		Drilling N	/leth	od:	Но	llow	Stem	Auger	Core Barrel:	N/A	
Borir	ıg Loca	tion: 41-	+020, 1.8 Lt.		Casing II	0/0	D:	N/A	A			Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tu ck Core S	sful Split Spoon S lbe Sample sample Shear Test	ample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = La$ WOH = weig WOR = weig	Torva ined on the Vari the of	ane She Compre ne Shea 64 kg h	ear Stre ssive S ir Stren ammer	ength Streng Igth (I	(kPa) gth (Pa) kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
-		T	Ι	Sample Information		_		_	_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation	(m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/30.5	0.15 - 0.76	76/19/19/16	38		HSA_	116.	76		ASPHALT PAVEMENT.		0.24-	
_		01.0/20.0	0.10	7 6/13/13/10		1			!		Brown, dry, dense, coarse t	o fine gravelly SAND.		
1.2								116.	.24		Brown, moist, silt coarse to	fine SAND.	0.76-	
1.2						+	\bigvee],,,	40				1.52	
	2D	61.0/61.0	1.52 - 2.13	6/7/13/7	20			115.	.48		Light brown, damp, stiff, C	LAY SILT, trace sand, trac	e gravel.	G#176773 A-4, CL-ML WC=26.9%
						1		114.	.87	KKKK		on at 2.13 m below ground	2.13-	
2.4						#		1			No Refusal			
						#		1						
ļ						#		1						
3.6						7		1						
3.0						1		1						
						1		1						
						#		1						
, J						#		1						
4.8						#		1						
ŀ						\pm		1						
						\pm		1						
						\pm		}						
6						+		+						
- [\mp		7						
\dashv						#		1						
ļ						1		1						
7.2						#		1						
ŀ						#		1						
-						\pm		1						
-						+		\exists						
8.4						丰		1						
ļ						#		1						
						\pm		1						
}						\pm		1						
9.6						Ŧ		-						
Rema	arks:				•	•								-

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Pro	oject:	Route 4	l/17, Ma	in Street	Boring No.: _	HGT-	16
			/Rock Explora METRIC UN	tion Log		Lo	cation:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	ine Test Boring	2	Elevatio	n (m):	122.0	0		Auger ID/OD:	106/156 mm	
Oper			l Coffin		Datum:	•	<u>, </u>	NGV			Sampler:	Standard Split S	Spoon
	ed By:		nd Tirone/HAI		Rig Type	:			le Drill		Hammer Wt./Fall:	63.5 kg/760 mn	
	Start/Fi		5/03-6/25/03		Drilling I		od:		w Stem	Auger	Core Barrel:	N/A	
	ng Locat		+130, 1.4 Lt.		Casing I			N/A			Water Level*:	Boring dry	
Definiti D = Sp MD = U U = Th R = Ro V = Ins	ions: olit Spoon S	Sample ful Split Spoon Sa be Sample ample shear Test	•		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = L WOH = wei WOR = wei	Field ' t Torv ifined ab Va ight of	Vane Shear ane Shear Compres ne Shear 64 kg ha	ear Stren ar Streng sive Stre Strength mmer	th (kPa) ength (Pa n (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
-				Sample Information	1	_							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	مار کر مار کرد		Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						1	HSA_			No description given.			
	1D	15.2/15.2	0.46 - 0.61	69		=		121.54 121.39		¬ Grey brown, dry, dense, sil	ty . coarse to fine SAND.	0.46	
						#	\	121.21		ROCK.	.,,	0.61-	
1.2						#					on at 0.79 m below ground	0.79- surface.	
ŀ						\dashv				Refusal			
						\pm							
						#							
2.4						#							
						#							
						#							
3.6						7							
3.0						+							
						\exists							
						\pm							
4.8						\pm							
						#							
						#							
ļ						1							
6						7							
						\exists							
						\perp							
7,						\pm							
7.2						\pm							
						1							
}						\pm							
ا ۵۰						\pm							
8.4						+							
ļ						1							
						_+							
ļ						7							
9.6						_			L				
Rem	arks:								•				

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Pr	oject:	Route 4	/17, M	in Street	Boring No.:	HGT-1	6A
			I/Rock Explora METRIC UNI	tion Log		1				lls/Jay, Maine	PIN:	1001	8.00
Drille	r:	M	aine Test Boring	ţ	Elevatio	n (m	1):	122.1	0		Auger ID/OD:	106/156 mm	
Oper			el Coffin		Datum:	•	<u>, </u>	NGV			Sampler:	Standard Split S	poon
	ed By:	Br	ad Tirone/HAI		Rig Type	e:		Mobi	le Drill		Hammer Wt./Fall:	63.5 kg/760 mn	
	Start/Fi		25/03-6/25/03		Drilling		nod:		w Sten	Auger	Core Barrel:	N/A	
	g Loca		+131.5, 1.0 Lt.		Casing I			N/A	w Sten	ruger	Water Level*:	Boring dry	
Definiti		+1	1131.3, 1.0 Et.		Definitions:			14/11			Definitions:	Borning dry	
D = Sp MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tu ick Core S	sful Split Spoon S abe Sample Sample Shear Test			S_u = Insitu T_v = Pocke q_p = Uncor $S_u(lab)$ = L WOH = we WOR = we	Field et Torv offined ab Va ight of	ane Shea Compres ne Shear f 64 kg ha	ar Streng ssive Stre Strength ammer	th (kPa) ngth (Pa n (kPa)	1	WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
H		Γ		Sample Information	<u> </u>	_		_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	o lov. N	וא-עמומפ	Casing Blows	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						4	HSA_			ASPHALT PAVEMENT.			
ļ	10	(1.0/20.1	0.46 1.07	20/40/61/01		\dashv		121.64	lelelelele			0.46	G#176774
	1D	61.0/38.1	0.46 - 1.07	28/40/61(91)		_		1		Grey-brown, dry, dense, ve	ery sandy GRAVEL, little si	lt.	A-1-b, GM
ŀ						\dashv	\	121.25 121.12		ROCK.		0.85	WC=4.2%
1.2						1		1		\	ion at 0.98 m below ground	0.98	
į						1		1		Refusal	ion at 0.98 m below ground	i surface.	
						+		ł					
F						\dashv		}					
ļ						#		1					
2.4						⇉							
F						\dashv							
						4		1					
į													
3.6						+		-					
J.0						4		1					
ļ						1		1					
						_		1					
F						\dashv							
4.8						#		1					
ŀ						╛							
						\dashv		ł					
F						\dashv		1					
						#		1					
6						\exists		ł					
ŀ						\dashv		ł					
						#		1					
ŀ						_		ł					
· 7.2 -						+		-					
ļ						#		1					
ŀ								1					
						+		ł	1				
ļ						1		1					
8.4						士		1					
F						\mp		ł					
						\dashv		1	1				
- }						+		ł	1				
<u>,</u> [#		1	1				
9.6 Rema	arks:					_		<u> </u>					

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pro	ject:	R	oute 4	17, Ma	n Street	Boring No.:	HGT-	17
		<u>Soil</u>	I/Rock Explora METRIC UN			Loc	atio	n:	Liverr	nore Fa	lls/Jay, Maine	PIN:	100	18.00
Drille	er:	Ma	aine Test Boring	9	Elevation	n (m)	:		119.90)		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:				NGVI)		Sampler:	Standard Split	Spoon
Logg	jed By:	Br	ad Tirone/HAI		Rig Type) :			Mobil	e Drill		Hammer Wt./Fall:	63.5 kg/760 mr	n
Date	Start/Fi	inish: 6/2	26/03-6/26/03		Drilling I	Vieth	od:		Hollov	w Stem	Auger	Core Barrel:	N/A	
Boriı	ng Loca	tion: 41	+231.5, 5.0 Rt.		Casing I	D/OE):		N/A			Water Level*:	Boring dry	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test	sample attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	t Torva fined (ab Var ght of	ane Sh Compr ne She 64 kg	near Tessivear S ham	Strengt ve Strer strength imer	h (kPa) ngth (Pa) (kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	1	_		_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	ei		Casing Blows		Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0							HSA	Т	19.72	***************************************	ASPHALT PAVEMENT.		0.10	
	1D	61.0/48.3	0.46 - 1.07	12/12/13/8	25	5	+	1	19.29	05 05 05 06 05 06 05	Brown, damp, medium den gravel.	se, silty, medium to fine SA	0.18- AND, little 	
						1		╡.			Brown, damp, medium to f	ine silty SAND.		
1.2 -						+	\[\]	4	118.83		Brown, damp, fine to medi	um SAND, little silt.	1.07	
	2D	61.0/61.0	1.52 - 2.13	7/10/13/15	23	3] 	118.38		Light brown, damp, mediun trace gravel.	m dense, fine to medium SA	AND, little silt,	G#176775 A-2-4, SM WC=15.9%
2.4 -									17.77	111111111	Bottom of Explorati No Refusal	on at 2.13 m below groun	d surface.	
						+								
3.6 -								1						
4.8 -														
								╡						
6 -						+		1						
								1						
7.2 -														
						+		╡						
						#		\exists						
8.4 -						\mp		\exists						
						\pm		\exists						
						+		\dashv						
						#		\exists						
9.6						╛		Ⅎ						<u> </u>
	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pro	oject:	Ro	oute 4/	17, Ma	n Street	Boring No.:	HGT-	18
		_	/Rock Explora METRIC UN	ation Log		Loc	catio	n: 1	Livern	nore Fa	lls/Jay, Maine	PIN:	100	18.00
Drille	er:	Ma	nine Test Boring	9	Elevatio	n (m)):	1	119.50)		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:			1	NGVE)		Sampler:	Standard Split	Spoon
Logg	jed By:	Br	ad Tirone/HAI		Rig Type	e:		l	Mobile	e Drill		Hammer Wt./Fall:	63.5 kg/760 mi	n
Date	Start/Fi	inish: 6/2	26/03-6/26/03		Drilling I	Meth	od:]	Hollov	v Stem	Auger	Core Barrel:	N/A	
	ng Loca	tion: 41	+320.5, 2.3 Lt.		Casing I):]	N/A			Water Level*:	Boring dry	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Spoon S ibe Sample Sample Shear Test	ample attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = L WOH = wei WOR = wei	Field \ t Torval ifined (ab Var ight of	ane Sh Compre ne She 64 kg l	ear S essiv ar St hamn	Strength e Stren rength ner	n (kPa) igth (Pa) (kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		<u> </u>	1	Sample Information	1	_		_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	el le		Casing Blows	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						-	HSA 		19.26		ASPHALT PAVEMENT.		0.24	
	1D	61.0/30.5	0.30 - 0.91	8/14/5/4	19)]	17.20		Brown, damp, medium den gravel.	se, coarse to fine SAND, l		G#176776 A-1-b, SM WC=5.2%
1.2 -	2D	61.0/30.5	0.91 - 1.52	2/3/3/6	6			11	18.59	0 0 0 0 0 0 0 0 0 0 0 0	Brown, moist, loose, coarse	e to fine SAND, some silt,	0.91-trace gravel.	
	3D	61.0/61.0	1.52 - 2.13	9/3/5/8	8	+	<u></u>	1	17.67	60 00 00 00 00 00 00 00 00 00 00 00 00 0	Deddish amora dama lasa	J 4- C CAND	1.83	G#176777 A-2-4, SM WC=16.8%
						-		1	17.37		Reddish orange, damp, loos		2.13	
2.4 -						7		1			Bottom of Explorati No Refusal	on at 2.13 m below groun	id surface.	
						#		1						
						1		1						
						1								
3.6						+		+						
						+		-						
						1		1						
						#		1						
						#		1						
4.8 -						\pm								
						+		7						
								1						
6 -						1		7						
						1		1						
						#		╡.						
						1								
7.2 -						\pm		Ⅎ						
						+		┨						
						+								
						#		7						
8.4 -						1		1						
~. '						\pm								
						\pm		\exists						
						1		-						
0.						#		1						
9.6 Rem	arks:		1	l		_		_						

Additional materials approximate soundaries section our types, automore may se gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Proje	ct:	Route	4/17, M	nin Street	Boring No.: _	HGT-	19
		Soil	/Rock Explora METRIC UN			Locat	ion:	Live	rmore F	alls/Jay, Maine	PIN:	1001	8.00
Drille	er:	Ma	ine Test Boring	7	Elevation	n (m):		119.	50		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:			NGV	/D		Sampler:	Standard Split S	Spoon
Logg	ed By:	Bra	ad Tirone/HAI		Rig Type	:		Mob	ile Drill		Hammer Wt./Fall:	63.5 kg/760 mn	n
Date	Start/Fi	nish: 6/2	26/03-6/26/03		Drilling N	/lethod	:	Holl	ow Sten	Auger	Core Barrel:	N/A	
Bori	ng Locat	tion: 41-	+580, 4.5 Rt.		Casing II	D/OD:		N/A			Water Level*:	Boring dry	
MD = U = Th R = Ro V = Ins	lit Spoon S Jnsuccess	ful Split Spoon S be Sample ample Shear Test			Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Uncont$ $S_U(lab) = Lat$ WOH = weig WOR = weig	t Torvane fined Con ab Vane S ght of 64	Shean Shear kg ha	ar Stren sive Str Strengt mmer	gth (kPa) ength (Pa h (kPa))	Definitions: WC = water content, percen LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	t	
				Sample Information	<u> </u>	_	_			-			Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	61.0/43.2	0.00 - 0.61	10/8/10/15	18	HS	SA_		::::::	Black, dry, medium dense,			
								119.1	7	Brown, moist, coarse to fin	e SAND.	— — — —0.34-	
1.2 -	2D	61.0/53.3	0.91 - 1.52	8/8/10/47	18			118.5 118.2		Black, moist, medium dens	e, medium to fine SAND,		G#176778 A-2-4, SM WC=20.6%
								117.9		Grey, damp, hard, gravelly	SILT.	1.25-	W C-20.076
										1	on at 1.52 m below groun	1.52- nd surface.	
2.4 -													
3.6													
						+							
4.8 -													
- 6 -													
7.2 -													
						-							
						\blacksquare							
8.4 -													
						\pm							
						\pm	=						
0.4													
9.6 Rem	arks:	I								!			1

.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

Driller: Maine Test Boring Elevation (m): 119.40 Auger ID/OD: 106/156 mm		Main	e Depar	tment of	Transportat	ion	Pr	oject:	Route	4/17, Ma	in Street	Boring No.:	HGT-	20
Operation: Mol. Cross Mol			_	/Rock Explora	ation Log		Lo	cation	: Live	rmore Fa	lls/Jay, Maine	PIN:	1001	18.00
Logard By: Book Investigation Depth StartFillish Co. Sept	Drille	er:	Ma	nine Test Boring	9	Elevatio	n (m	1):	119.	40		Auger ID/OD:	106/156 mm	
Date Start Principle Corporation Cor	Ope	rator:	Me	el Coffin		Datum:			NGV	'D		Sampler:	Standard Split S	Spoon
Boring Location: 44-60, 1.7 Rc. Casing DIOD: NA Water Lovel*; 1.55 m bgs Destination	Logg	ged By:	Bra	ad Tirone/HAI		Rig Typ	е:		Mob	ile Drill		Hammer Wt./Fall:	63.5 kg/760 mr	n
Definition Def	Date	Start/Fi	inish: 6/2	26/03-6/26/03		Drilling	Meth	nod:	Holl	ow Stem	Auger	Core Barrel:	N/A	
De 5 io 5 good 18mae Septiment Septim		-	tion: 41	+630, 1.7 Rt.				D:	N/A				1.55 m bgs.	
11	D = Sp MD = U = Th R = Ro V = In:	olit Spoon S Unsuccess nin Wall Tu ock Core S situ Vane S	sful Split Spoon S ube Sample Sample Shear Test			S_U = Insitu T_V = Pocke q_p = Uncor $S_U(lab)$ = L WOH = we WOR = we	Field et Torv offined ab Va ight o	ane She Compre ne Shea f 64 kg h	ear Stren ssive Str ar Strengt ammer	gth (kPa) ength (Pa h (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis		
12						1	\neg		T	T				Laboratory
12	Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm Shear Strength (kPa) or RQD (%)	o do N	מומס	Casing Blows	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Results/ AASHTO and Unified
10	0						\dashv	HSA_	119.1	9	ASPHALT PAVEMENT.		0.21-	
2.4 - 117.27 Bottom of Exploration at 2.13 m below ground surface. 1.52 - 4.4 S.M. C.=13.3%. 2.4 - 1.7 S.M. C.=13.3%. 3.6 - 1.7 S.M. C.=13.3%. 4.8 - 1.7 S.M. C.=13.3%. 4.8 - 1.7 S.M. C.=13.3%. 8.4 - 1.7 S.M. C.=13.3%. 9.6 - 1.7 S.M. C.=13.3%. 8.4 S.M. C.=13.3%. 9.6 S.M. C.=13.3%. 9.7 S.M. C.=13.3%. 9.8 S.M. C.=13.3%. 9.9 S.M. C.=13.3%. 9.1 S.M. C.=13.3		1D	61.0/50.8	0.46 - 1.07	18/21/10/6	3	1				Dark brown, damp, dense,	coarse to fine gravelly SAN		
2D 61.0508 1.52-2.13 13/28/32/35 60 117.88 Brown, moist, very dense, silty, very fine SAND, little gravel. 117.27 8 Brown, moist, very dense, silty, very fine SAND, little gravel. 2.13 No Refusal 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	1.2 -						1		118.1	8	Dark brown, PEAT.		1.22	
2.13 Retion of Exploration at 2.13 m below ground surface. 8.4 8.4 9.6		2D	61.0/50.8	1.52 - 2.13	13/28/32/35	6	0	-	117.8	8	· · · · · · · · · · · · · · · · · · ·	silty very fine SAND little	gravel 1.52	G#176779
2.4 Bottom of Exploration at 2.13 m below ground surface. No Refusal 4.8 -							#		117 2	7	Brown, moist, very dense,	sinty, very line of tive, nate		A-4, SM WC=13.3%
3.6	2.4 -						_		1	´		on at 2.13 m below ground	l surface.	
4.8							\pm		1		110 Itelusur			
4.8							+		+					
4.8							\dashv		7					
4.8	36-						\dashv		7					
7.2	5.0						1		1					
7.2							#		1					
7.2							#		1					
7.2	4.0						#		1					
7.2	4.8						1		1					
7.2							\Rightarrow		1					
7.2							\exists		1					
7.2							\pm		Ⅎ					
8.4	6 -						\dashv		-					
8.4							\dashv		7					
8.4							\dashv		7					
8.4							7		7					
9.6	7.2 -						#		1					
9.6							#		1					
9.6							\dashv		1					
9.6							\pm		1					
	8.4						\exists		1					
							\exists		-					
							7		7					
							#		1					
Remarks:		ــــــــــــــــــــــــــــــــــــــ												
	Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depai	rtment of	Transportat	ion	Proj	ject:	Route 4	/17, Ma	in Street	Boring No.:	HGT-2	21
			oil/Rock Explora METRIC UNI	tion Log		Loc	ation:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	er:	N	faine Test Boring	ţ	Elevation	n (m):		121.1	0		Auger ID/OD:	106/156 mm	
Oper	ator:	N	Iel Coffin		Datum:			NGV	D		Sampler:	Standard Split S	Spoon
Logg	jed By:	В	rad Tirone/HAI		Rig Type	:		Mobil	le Drill		Hammer Wt./Fall:	63.5 kg/760 mn	n
Date	Start/Fi	nish: 6	/26/03-6/26/03		Drilling N			Hollo	w Stem	Auger	Core Barrel:	N/A	
	ng Locat	tion: 4	1+730, 2.5 Rt.		Casing II	D/OD:	:	N/A			Water Level*:	Boring dry	
MD = 10 U = Th R = Ro V = Ins	olit Spoon S	ful Split Spoon be Sample ample Shear Test	Sample attempt		Definitions: $S_U = Insitu$ I $T_V = Pocket$ $q_p = Uncon$ $S_U(lab) = Late$ WOH = weigners	t Torvar fined C ab Vane ght of 6	ne Shea compres e Shear 64 kg ha	ar Strengt sive Stre Strength mmer	th (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		I		Sample Information	<u> </u>	$\overline{}$							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value		Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						+I	HSA_	120.92		ASPHALT PAVEMENT.		0.18-	
	MD	6.1/6.1	0.46 - 0.52	40(61)		1		120.58		Brown, dry, medium to fine	e SAND, trace silt, trace gra		
	IVID	0.1/0.1	0.40 - 0.32	40(01)				120.49	/////	ROCK.		0.61-	
										Bottom of Explorati Refusal	on at 0.61 m below ground		
1.2 -										Kerusai			
						\pm							
						\pm							
2.4 -						\pm							
						+							
						\blacksquare							
						+							
3.6													
- 4.8 -						\perp							
						\pm							
						\pm							
- 6 -													
						+							
						-							
						+							
- 7.2 -													
,.2													
						\pm							
. ,						\pm							
8.4 -						\mp							
						+							
						+							
						\pm							
9.6 Rem	arks:	<u> </u>	1						<u> </u>				<u> </u>
	_												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Project:	Route 4	/17, Ma	in Street	Boring No.:	HGT-2	1A
			/Rock Explora	tion Log		1			ılls/Jay, Maine	PIN:	1001	18.00
Drille	r:	Ma	ine Test Boring	3	Elevation	n (m):	121.1	0		Auger ID/OD:	106/156 mm	
Oper	ator:		el Coffin		Datum:	. ,	NGV			Sampler:	Standard Split S	Spoon
	ed By:	Br	ad Tirone/HAI		Rig Type):	Mobi	le Drill		Hammer Wt./Fall:	63.5 kg/760 mr	
	Start/Fi		26/03-6/26/03		Drilling I			w Stem	Auger	Core Barrel:	N/A	
	ng Loca		+731, 2.5 Rt.		Casing I		N/A	w Stell	rugei	Water Level*:	Boring dry	
Definiti		HIOII. 41	1731, 2.3 Kt.		Definitions:	D/OD.	14/11			Definitions:	Dornig dry	
D = Sp MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tul ock Core S	sful Split Spoon S lbe Sample sample Shear Test	ample attempt		S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	Field Vane SI t Torvane Sho fined Compre ab Vane Shea ght of 64 kg h ght of rods V	ear Streng essive Stre ar Strength nammer	th (kPa) ngth (Pa ı (kPa))	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
ŀ		Ι		Sample Information			1	1				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		Casing Blows	Elevation (m)	Graphic Log	Visual Di	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						HSA	120.92		ASPHALT PAVEMENT.		0.19	
ŀ							1 20.52		No descriptin given.		0.18-	
\dashv	MD	15.2/12.7	0.46 - 0.61	60(152)		+	120.49	,			0.61	
ļ							1		Bottom of Explorati Refusal	ion at 0.61 m below ground	l surface.	
1.2							1					
						_	-					
ļ												
							1					
ŀ							1					
2.4							1					
ļ							1					
							1					
Ī							1					
3.6							1					
							-					
							1					
ŀ							1					
- 4.8						+	1					
							1					
ļ							1					
Ŧ						_	\pm					
F												
- 6							1					
ŀ							1					
							-					
ļ						1	1					
							1					
7.2							-					
							1					
-+							1					
ſ							-					
8.4							1					
Ŭ. T							1					
ļ						1						
							1					
ŀ					_	+	1					
9.6												
Rema	arks:											

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Proj	ect:	Route 4	/17, Ma	in Street	Boring No.: _	HGT-	22
		<u>Soil</u>	/Rock Explora METRIC UN	-		Loca	ation:	Liver	nore Fa	lls/Jay, Maine	PIN:	1001	18.00
Drille	r:	Ma	ine Test Boring	9	Elevation	n (m):		119.4	0		Auger ID/OD:	106/156 mm	
Oper	ator:	Me	el Coffin		Datum:			NGV	D		Sampler:	Standard Split S	Spoon
Logg	ed By:	Bra	ad Tirone/HAI		Rig Type	:		Mobil	e Drill		Hammer Wt./Fall:	63.5 kg/760 mr	n
	Start/Fi	inish: 6/2	27/03-6/27/03		Drilling N		d:	Hollo	w Stem	Auger	Core Barrel:	N/A	
Borii	ng Loca	tion: 41	+801, 2.5 Lt.		Casing II			N/A			Water Level*:	Boring dry	
Definit	ons:				Definitions:			01			Definitions:		
MD = 10 U = Th R = Ro V = Ins	in Wall Tu ock Core S	sful Split Spoon S lbe Sample Sample Shear Test	ample attempt		S_u = Insitu I T_V = Pocket q_p = Uncont $S_{u(lab)}$ = La WOH = weig WOR = weig	Torvan fined Co ab Vane ght of 64	ne Shea ompres Shear 4 kg ha	r Strengt sive Stre Strength mmer	h (kPa) ngth (Pa) (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
			ı	Sample Information									Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						III.	ISA_	110.12		ASPHALT PAVEMENT.		0.25	
	1D	61.0/48.3	0.30 - 0.91	10/11/16/11	27	'		119.13	8 6 6	Dark brown, damp, mediur	n dense, SAND, some grave	el, little silt.	G#176780 A-2-4, SM WC=10.1%
						-		118.49	380	D 11 1 1 1		0.91	
1.2 -						\perp	\perp			Dark brown, wet, sandy SI	zT.		
	•	61.0/61.0	1.50.010	1/2/2/2			\checkmark	117.88				1.52	C#17/701
	2D	61.0/61.0	1.52 - 2.13	1/3/2/3	5					Dark brown, moist, loose S organics, (Bark).	AND, some silt, trace grave	el, trace	A-2-4, SM WC=46.5%
								117.27	8:E 6 9:E		on at 2.13 m below ground	d surface.	
2.4 -										No Refusal			
						-							
						\perp							
3.6													
						+							
						-							
4.8						-							
						+							
- 6 -													
Ŭ													
						+							
7.2 -													
						+							
						\bot							
						士							
		-				+							
8.4 -						+							
						土							
						_							
						\mp							
9.6													
Rem	arks:												

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depai	rtment of	Transportat	ion	Proje	ect:	Route 4	4/17, Ma	in Street	Boring No.:	P-1	
			il/Rock Explora METRIC UN	ation Log		Loca	ation:	Live	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	r:	N	Iaine Test Boring	9	Elevation	ı (m):		119.4	10		Auger ID/OD:	106 mm	
Oper	ator:	N	Iel Coffin		Datum:			NGV	'D		Sampler:	N/A	
Logg	ed By:	В	rad Tirone/HAI		Rig Type	:		Mob	ile Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish: 7	1/03-7/1/03		Drilling N	/letho	d:	Solic	Stem A	uger	Core Barrel:	N/A	
Borin	ig Locat	tion: 4	1+340, 1.0 Rt.		Casing II	D/OD:		N/A			Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess	ful Split Spoon be Sample ample shear Test	Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = La$ $WOH = weig$ $WOR = weig$	Torvan fined Co ab Vane ght of 64	e Shea ompres Shear 4 kg ha	ar Streng sive Stre Strengt mmer	gth (kPa) ength (Pa h (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
H				Sample Information	1	\neg			1				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						s	SA_	119.22	2 1818581931	ASPHALT PAVEMENT.		0.18-	
- 1.2 -										Light brown, dry, gravelly	SAND.	0.10	
- 2.4 -								116.60	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Reddish brown, medium to	fine SAND, trace gravel, tr	2.74- race silt.	
- 4.8 -								115.59		Bottom of Explorati Refusal	on at 3.81 m below ground	3.81- l surface.	
- 6 -													
- 7.2 -													
- 8.4 -													
_ [士							
9.6 Rem a	arks:			l					1				
		Breskin/M	DOT										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

Solitions Experiment Log Marine Table Division M	I	Main	e Depai	tment of	Transportat	ion	Proj	ect:	Route	4/17	, Mai	n Street	Boring No.: _	P-2	
Operator: Mod Collis				il/Rock Explora	tion Log		Loca	ation:	Live	ermo	re Fal	lls/Jay, Maine	PIN:	1001	8.00
Operator: Mod Colling	Drille	r:	M	aine Test Boring	2	Elevation	n (m):		119	.40			Auger ID/OD:	106 mm	
Logged By: Brad Times/IAM No.	Opera	ator:					. ,							N/A	
Date							·:				Orill				
Description								٩.				lger			
Definition Def											2111 7 10	igoi			
10		-		1 - 330, 1.3 Kt.			D/OD.		IN/ A	`				Bornig dry	
117.88 118.29 1	MD = U U = Thi R = Ro V = Ins	Insuccessi in Wall Tub ck Core Sa itu Vane S	ful Split Spoon s be Sample ample shear Test	Sample attempt		T _V = Pocke q _p = Uncon S _u (lab) = La WOH = wei WOR = wei	t Torvar fined Co ab Vane ght of 6	ne Shea ompres Shear 4 kg ha	ar Strer sive St Streng mmer	ngth (I trengtl gth (kF	kPa) h (Pa) Pa)	ing	LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis		
117.38 Light brown, dy, medium to fine SAND, some gravel, trace silt. Dark brown, medium to fine, silty SAND. Cobble at 2.59 m bgs. Light brown, dump, medium to fine SAND, trace silt. Bottom of Exploration at 4.18 m below ground surface. 4.8 - 4.8 - 7.2 - 7.2 - 8.4						<u> </u>	_			_	\dashv				Laboratory
117.38 Light brown, dy, medium to fine SAND, some gravel, trace silt. Dark brown, medium to fine, silty SAND. Cobble at 2.59 m bgs. Light brown, dump, medium to fine SAND, trace silt. Bottom of Exploration at 4.18 m below ground surface. 4.8 - 4.8 - 7.2 - 7.2 - 8.4		Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation	(111)	Graphic Log	Visual De	escription and Remarks		Results/ AASHTO and Unified
Light brown, day, medium to fine SAND, some gravel, trace sit. 117.88 Dark brown, medium to fine, sitly SAND. 116.35 Light brown, damp, medium to fine SAND, trace sit. 116.35 Bottom of Exploration at 4.18 m below ground surface. 8.4 8.4 9.6	0						— [SSA_	119.2	22	60:IA:I:	ASPHALT PAVEMENT.		0.19	
24	12								117.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light brown, dry, medium	to fine SAND, some gravel,		
Cobble at 2.59 m bgs. 3.6	1.2								117.8	88	8	Dark brown, medium to fin	e, silty SAND.	1.52-	
3.6 -	- 2.4 -											Cobble at 2.59 m bgs.			
115.22 HBBH	- 3.6 -								116.3	35		Light brown, damp, mediun	n to fine SAND, trace silt.	3.05-	
- 6	- 4.8 -							¥	115.2	22			on at 4.18 m below ground		
8.4															
- 8.4 -	- 6 -														
9.6	- 7.2 -														
	8.4														
	- }			+			+								
							士								
Kemarks:	9.6														
	Rema	<u>ırks:</u>													

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depai	rtment of	Transportat	ion	Proje	ect:	Route	4/1	7, Mai	n Street	Boring No.: _	P-3	
			il/Rock Explora METRIC UN	tion Log		Loca	tion:	Live	ermo	ore Fal	ls/Jay, Maine	PIN:	1001	18.00
Drille	r:	M	Iaine Test Boring	3	Elevation	n (m):		119.	.70			Auger ID/OD:	106 mm	
Oper	ator:	M	Iel Coffin		Datum:			NG	VD			Sampler:	N/A	
Logg	ed By:	В	rad Tirone/HAI		Rig Type	:		Mot	oile l	Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish: 7/	1/03-7/1/03		Drilling N	/letho	d:	Soli	d St	em Aı	ıger	Core Barrel:	N/A	
Borin	g Locat	tion: 41	1+360, 2.0 Rt.		Casing II	D/OD:		N/A				Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Insuccessi	ful Split Spoon be Sample ample thear Test	Sample attempt		Definitions: S _U = Insitu I T _V = Pocket q _p = Unconi S _U (lab) = La WOH = weig WOR = weig	Torvangined Co b Vane the of 64	e Shea mpres Shear I kg ha	ar Stren sive Streng Streng	ngth (rengt jth (k	(kPa) th (Pa) Pa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
ŀ				Sample Information					_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	(111)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						S	SA_	119.5		1624124111	ASPHALT PAVEMENT.		0.19	
- 1.2 -								117.5	20000000000000000000000000000000000000	800 800 800	Brown, dry, silty SAND, so	ome gravel.	0.18-	
1.2						+			ô					
ļ								118.1	8		Brown, silty SAND.		1.52-	
2.4														
ŀ						\pm		117.1	1		Light brown, medium to fir	ne SAND trace silt	2.59	
								116.6	5				3.05-	
ŀ								110.0	"		Brown, damp, medium to f	ine SAND, little silt.	5.05	
3.6						+								
						-								
						\rightarrow	1/							
ŀ						\pm	V	115.1	13 🖽	11111111	Pottom of Evnlorati	on at 4.57 m balow ground	4.57-	
4.8						+					No Refusal	on at 4.57 m below ground	i sui iacc.	
F						+								
\dashv						+								
ļ														
- 6						\pm								
ŀ														
						+								
F						\perp								
. _{7.2} -						1								
,. <u>-</u>						\bot								
ŀ														
						\pm								
, [+								
8.4						#								
<u> </u>						1								
-						\pm								
F						+								
9.6	arke:													
Rema		Droskin/MI	DOT											

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Dep	art	ment of	Transportat	ion	Proj	ject:	Route	e 4/1	7, Ma	n Street	Boring No.:	P-4	
		•	Soil/F	Rock Explora METRIC UN	tion Log		Loc	ation:	Liv	ermo	ore Fa	lls/Jay, Maine	PIN:	100	18.00
Drille	r:		Mair	ne Test Boring	ţ	Elevation	n (m):	:	119	0.80			Auger ID/OD:	106 mm	
Oper	ator:			Coffin		Datum:			NG	VD			Sampler:	N/A	
Logg	ed By:		Brad	Tirone/HAI		Rig Type	:		Mo	bile	Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish:	7/1/0	03-7/1/03		Drilling I	Metho	od:	Sol	id St	tem A	ıger	Core Barrel:	N/A	
Borin	ıg Loca	tion:	41+3	370, 2.0 Rt.		Casing I	D/OD	:	N/A	١			Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tu ick Core S	ful Split Sp be Sample ample Shear Test	oon Sar	mple attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = La WOH = wei WOR = wei	t Torva fined C ab Vand ght of 6	ne Shea compres e Shear 64 kg ha	ar Stre sive S Streng mmer	ngth (treng gth (k	(kPa) ith (Pa) (Pa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		Ι			Sample Information	<u> </u>	_			_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)		Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation	(m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0							#	SSA_	119.	62		ASPHALT PAVEMENT.		0.18	
- 1.2 -										•		Light brown, gravelly, coan	rse to fine SAND.		
							+								
- 2.4 -									118.	28		Brown, damp, medium to f	ine SAND, trace silt.	1.52	
- 3.6 -															
- 4.8 -								V	115.	44		Bottom of Explorati Bedrock Refusal	on at 4.36 m below ground	4.36 surface.	
- 6 -															
- 7.2 -															
8.4															
							+								
ŀ							\pm								
9.6			7				+								
Rema	arks:								_						!

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Dep	artment of	Transportat	ion	Project	Route	4/17, M	in Street	Boring No.: _	P-5	
			Soil/Rock Explora METRIC UN	ation Log		Locatio	n: Live	ermore F	alls/Jay, Maine	PIN:	100	18.00
Drille	er:		Maine Test Boring	9	Elevation	n (m):	119	90		Auger ID/OD:	106 mm	
Oper	ator:		Mel Coffin	-	Datum:		NG	VD		Sampler:	N/A	
Logg	ed By:		Brad Tirone/HAI		Rig Type	:	Mol	ile Drill		Hammer Wt./Fall:	N/A	
	Start/Fi	nish:	6/30/03-6/30/03		Drilling N		Soli	d Stem A	uger	Core Barrel:	N/A	
Borir	ng Locat	tion:	41+380, 2.0 Rt.		Casing II		N/A		_ -	Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccessi	ful Split Spo be Sample ample Shear Test	on Sample attempt		Definitions: $S_U = Insitu F$ $T_V = Pocket$ $q_D = Unconf$ $S_U(lab) = La$ WOH = weig WOR = weig	Torvane Si fined Comp b Vane Sho tht of 64 kg	near Strer ressive St ear Streng hammer	gth (kPa) rength (Pa th (kPa))	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		ı	1	Sample Information	<u> </u>	_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing	Elevation	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						SSA	119.7		ASPHALT PAVEMENT.		0.10	
							4		Brown, dry, SILT, some g	ravel.	0.18	
							119.2	.0	Bottom of Explorat Bedrock Refusal	ion at 0.64 m below ground	0.64- l surface.	
- 1.2 -							1					
]					
- 2.4 -												
- 3.6 -												
3.0												
- 4.8 -												
- 6 -												
							1					
							7					
7.2							1					
		<u> </u>				\pm	\exists					
						1	7					
							_					
							\dashv					
8.4							1					
						\pm	\exists					
							4					
						-	\dashv					
							7					
9.6	orko:			l								<u> </u>
Rema												
Rev	ised By K	. Breskin/	MDOT.									

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

Defilier	1	Main	e Depa	artment of	f Transportat	ion	Pro	oject:	Route	4/17, Ma	in Street	Boring No.: _	P-6	
Destroit: Med Coffin				Soil/Rock Explora	ation Log		Lo	cation:	Live	rmore Fa	lls/Jay, Maine	PIN:	1001	8.00
Destroit: Med Coffin	Drille	r:		Maine Test Borin	g	Elevatio	n (m	n):	119.	90		Auger ID/OD:	106 mm	
Logged By: Bod TimocEkil Page Start Finish: 678013 Optiling Method: Solid Nem Auger Core Barrel: N/A					<u> </u>			<u>, </u>						
Date Sard Finish: 6-3004-59083 Drilling Method: Solid Stem August Core NA							٠.					•		
Boring Location: 41+300_2.0 Rt. Casing DIOD: NA Water Stevens: Boring day								. a d .						
Definitions										i Stem A	uger			
D - Self-Sign Sample Part Part			tion:	41+390, 2.0 Rt.		_		D:	N/A				Boring dry	
12 18.18 19.24 19.24 19.24 19.25	D = Sp MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccessi in Wall Tub ock Core Sa situ Vane S	ful Split Spoo be Sample ample Shear Test	on Sample attempt	Complete formation	S_u = Insitu T_v = Pocke q_p = Uncor $S_u(lab)$ = L WOH = we WOR = we	Field et Torv ofined ab Va ight of	ane Shea Compres ne Shear f 64 kg ha	ar Streng ssive Str Strengt ammer	gth (kPa) ength (Pa h (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis		
118.88 Weathered ROCK. 1.22 118.88 Bottom of Exploration at 1.52 m below ground surface. 18.52 Bottom of Exploration at 1.52 m below ground surface. 18.48	ŀ						\neg		<u> </u>					Laboratory
118.88 Weathered ROCK. 1.22 118.88 Bottom of Exploration at 1.52 m below ground surface. 18.52 Bottom of Exploration at 1.52 m below ground surface. 18.48		Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	er leve N	מממ		Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
1.1.2 -	0						\dashv	_SSA	119.7	5 Дине	ASPHALT PAVEMENT.		0.15	
118.38 Bottom of Exploration at 1.52 m below ground surface. 2.4 3.6 - 4.8 - 7.2 - 8.4 - 9.6	1.2										Light reddish brown, grave	lly SILT, some cobbles.		
Bottom of Exploration at 1.52 m below ground surface. Bedrock Refusal 4.8	ŀ						\dashv	\forall	ł		Weathered ROCK.			
- 4.8	2.4								110.3			on at 1.52 m below ground		
8.4	· 3.6 -													
- 7.2	· 4.8 -													
8.4 -	. 6 -													
9.6	· 7.2 -													
9.6 Remarks:	· 8.4 -													
9.6 Remarks:	ļ						\dashv		1					
Remarks:	96				+	-	\dashv		ł					
	Rema	arks:			•				•	1				·
Revised By K. Breskin/MDOT.			K. Breskin/l	MDOT.										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depa	rtment of	Transportat	ion	Proje	ect:	Route	4/17	7, Mai	n Street	Boring No.:	P-7	
			il/Rock Explora METRIC UN	ation Log		Loca	tion:	Live	ermo	ore Fal	lls/Jay, Maine	PIN:	1001	18.00
Drille	r:	N	Iaine Test Boring	g	Elevation	n (m):		120.	.00			Auger ID/OD:	106 mm	
Oper	ator:	N	Iel Coffin		Datum:			NG	VD			Sampler:	N/A	
Logg	ed By:	В	rad Tirone/HAI		Rig Type	:		Mob	oile I	Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish: 6	/30/03-6/30/03		Drilling N	/letho	d:	Soli	d Ste	em Aı	ıger	Core Barrel:	N/A	
Borin	g Locat	tion: 4	1+400, 2.0 Rt.		Casing II	D/OD:		N/A				Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S Insuccessi	ful Split Spoon be Sample ample shear Test	Sample attempt		Definitions: $S_U = Insitu F$ $T_V = Pocket$ $q_p = Unconf$ $S_U(lab) = La$ $WOH = weig$ $WOR = weig$	Torvan fined Co ab Vane ght of 64	e Shea mpres Shear 4 kg ha	ar Stren sive Streng Streng	ngth (I rengt jth (kl	kPa) th (Pa) Pa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
			1	Sample Information	<u> </u>	_			_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing	Blows	Elevation (m)	(,,,,)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						S	SA_	119.8	2	·/OHHH	ASPHALT PAVEMENT.		0.10	
								117.0	7 88 8 8 8 8	90 50 00 90 50 00 90 50 00 90 00 90 90 00 90 00	Light brown, dry, silty SAN	ND, some gravel.	0.18-	
- 1.2 -								118.0)2	20 00 00 00 00 00 00 00 00 00 00 00 00 0	-,		- — — —1.98	
- 2.4 -									00-4-50-05	0 00 00 00 00 00 00 00 00 00 00 00 00 0	Same as above but, Brown.			
- 3.6 -								115.7	79		Cobble at 3.96 m bgs.	on at 4.21 m below ground	4.21-	
- 4.8 -											Bedrock Refusal.	77 III SOOM GOUNG	. sur nec.	
- 6 -														
7.2														
- 8.4 -														
9.6														
Rema		Drockin/M												

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depa	artment of	Transportat	ion	Projec	ct: I	Route 4	/17, Ma	in Street	Boring No.:	P-8	
			Soil/Rock Explora METRIC UN	ation Log		Locat	ion:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	er:		Maine Test Boring	g	Elevation	n (m):		120.0	0		Auger ID/OD:	106 mm	
Oper	ator:		Mel Coffin		Datum:			NGV	D		Sampler:	N/A	
Logg	jed By:		Brad Tirone/HAI		Rig Type	:		Mobil	le Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish:	6/30/03-6/30/03		Drilling N	/lethod	:	Solid	Stem A	uger	Core Barrel:	N/A	
	ng Locat	tion:	41+410, 2.0 Rt.		Casing II	D/OD:		N/A			Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S	ful Split Spoo be Sample ample thear Test	on Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_P = Unconi$ $S_U(lab) = Le$ WOH = weig WOR = weig	Torvane fined Com to Vane South of 64 l	Shea npress Shear kg har	r Strengt sive Stre Strength nmer	th (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	<u> </u>	_	_						Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						SS	1 1	119.82	180%	ASPHALT PAVEMENT.		0.18-	
									6 00 00 00 6 00 00 00 6 00 00 00 6 00 00 00 6 00 00 00	Light brown, silty SAND,	some gravel.	0.18-	
- 1.2 -									000 000 000 000 000 000 000 000 000				
- 2.4 -								118.11		Bottom of Explorati Bedrock Refusal.	on at 1.89 m below ground	1.89- l surface.	
- 3.6 -													
- 4.8 -													
- 6 -													
- 7.2 -													
- 8.4 -													
0.4													
						\pm							
9.6	orko:												
Rema													
Rev	ised By K	. Breskin/N	MDOT.										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Dep	artment o	f Transportat	ion	Proje	ect:	Route 4	/17, Ma	in Street	Boring No.: _	P-9	
			Soil/Rock Explo METRIC U	ration Log		Loca	tion:	Liver	more Fa	lls/Jay, Maine	PIN:	1001	8.00
Drille	r:		Maine Test Bori	ng	Elevation	ı (m):		119.9	0		Auger ID/OD:	106 mm	
Oper	ator:		Mel Coffin		Datum:			NGV	D		Sampler:	N/A	
Logg	ed By:		Brad Tirone/HA	I	Rig Type	:		Mobi	le Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish:	6/30/03-6/30/03		Drilling N	/lethod	d:	Solid	Stem A	uger	Core Barrel:	N/A	
Borin	ıg Locat	tion:	41+420, 2.5 Rt.		Casing II	D/OD:		N/A			Water Level*:	4.94 m bgs.	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccesst	ful Split Spo be Sample ample thear Test	oon Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Uncont$ $S_U(lab) = Lat$ WOH = weig WOR = weig	Torvane ined Co b Vane tht of 64	e Shea mpres Shear kg ha	ar Streng sive Stre Strength mmer	th (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
ŀ				Sample Information									Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						S	SA_	119.72		ASPHALT PAVEMENT.		0.18-	
- 1.2 -										Brown, silty SAND, some	gravel.		
- 3.6 -									100 Sept 18 10 Sept 18				
- 4.8 -								114.96	38 080 00 800 800 800 800 800 800 800 80	Same as above but, wet.		- — — —4.94-	
- 6 -							¥	113.80		Bottom of Explorati No Refusal.	on at 6.10 m below ground	6.10- l surface.	
- 7.2 -													
- 8.4 -													
9.6				_		+							
Rema	arks:		1		-								
Revi	sed By K	. Breskin	MDOT.										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depai	rtment of	Transportat	ion	Pro	ject:	Route 4	l/17, Ma	in Street	Boring No.:	P-1	0
			il/Rock Explora METRIC UN	ation Log		Loc	cation:	Liver	more Fa	lls/Jay, Maine	PIN:	100	18.00
Drille	er:	M	aine Test Boring	<u> </u>	Elevation	1 (m)):	119.9	0		Auger ID/OD:	106 mm	
	rator:		lel Coffin	<u> </u>	Datum:	. ,		NGV			Sampler:	N/A	
Logg	ged By:	В	rad Tirone/HAI		Rig Type	:		Mobi	le Drill		Hammer Wt./Fall:	N/A	
	Start/Fi	nish: 6/	30/03-6/30/03		Drilling N		od:	Solid	Stem A	uger	Core Barrel:	N/A	
Bori	ng Loca	tion: 4	1+430, 2.0 Rt.		Casing II			N/A			Water Level*:	Boring dry	
MD = U = Th R = Ro V = In:	olit Spoon S Unsuccess	ful Split Spoon be Sample ample Shear Test	Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_D = Unconi$ $S_U(lab) = Lactorials$ WOH = weig WOR = weig	Torva fined C ab Van ght of 6	ane Shea Compres ne Shear 64 kg ha	r Streng sive Stre Strength mmer	th (kPa) ength (Pa) n (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		I		Sample Information		_							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0							SSA_	119.72		ASPHALT PAVEMENT.		0.18	
- 1.2 -									8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Light brown, silty SAND, s	some gravel.	0.10	
- 2.4 -								117.64		Bottom of Explorati Bedrock Refusal	on at 2.26 m below ground	2.26	
- 3.6 -													
- 4.8 -													
- 6 -													
- 7.2 -													
- 8.4 -													
						\mp			1				
9.6 Rem	arks:			I					1				<u> </u>
		C Breskin/MI	OT										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depar	tment of	Transportat	ion	Pro	oject:	Route	4/17, N	Лаіı	n Street	Boring No.: _	P-11	
			I/Rock Explora METRIC UN	tion Log		Lo	cation:	Live	ermore	Fall	ls/Jay, Maine	PIN:	1001	8.00
Drille	r:	M	aine Test Boring	9	Elevation	1 (m):	119.	70			Auger ID/OD:	106 mm	
Oper	ator:	M	el Coffin		Datum:			NGV	VD			Sampler:	N/A	
Logg	ed By:	Br	ad Tirone/HAI		Rig Type	:		Mob	ile Dri	11		Hammer Wt./Fall:	N/A	
Date	Start/Fir	nish: 7/	1/03-7/1/03		Drilling N	/leth	od:	Soli	d Stem	Au	ger	Core Barrel:	N/A	
Borin	g Locat	tion: 41	+440, 2.5 Rt.		Casing II	0/0	D:	N/A				Water Level*:	Boring dry	
MD = U U = Th R = Ro V = Ins	lit Spoon S	ful Split Spoon S be Sample ample hear Test	Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Uncont$ $S_U(lab) = Lat$ WOH = weig WOR = weig	Torverined of the Torverined of the Torverined of the Torverine of the Tor	ane Shea Compres ne Shear 64 kg ha	ar Stren sive Str Streng mmer	gth (kPa rength (f th (kPa)	a) Pa)	ng	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	<u> </u>	_			_	4				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Casing Blows	Elevation (m)	Graphic Log	-	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						+	SSA_	119.5	2	d:k	ASPHALT PAVEMENT.		0.18-	
										00.00	Light brown, dry, coarse to Cobble at 0.91 m bgs.	fine SAND, little silt, trace		
1.2								118.1	8		_		1.52 ⁻	
2.4							 		000		Same as above but, with co	ooies.		
2.4							V	117.1	7		Bottom of Exploration Bedrock Refusal	on at 2.53 m below ground	2.53- l surface.	
- 3.6 -														
- 4.8 -														
- 6 -														
7.2														
8.4														
9.6														
Rema														
Revi	sed By K	. Breskin/MD	OT.											

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

N	Main	e Depar	tment of	Transportat	ion	Proje	ect:	Route 4	4/17, Ma	nin Street	Boring No.: _	P-12	2
			I/Rock Explora METRIC UN	tion Log		Loca	ation:	Live	more Fa	alls/Jay, Maine	PIN:	1002	18.00
Drille	r:	M	aine Test Boring	2	Elevation	ı (m):		119.6	50		Auger ID/OD:	106 mm	
Opera	ator:	M	el Coffin		Datum:			NGV	D		Sampler:	N/A	
Logg	ed By:	Br	ad Tirone/HAI		Rig Type	:		Mob	ile Drill		Hammer Wt./Fall:	N/A	
Date	Start/Fir	nish: 7/	1/03-7/1/03		Drilling N	/letho	d:	Solid	Stem A	uger	Core Barrel:	N/A	
Borin	g Locat	tion: 41	+450, 2.5 Rt.		Casing ID/OD: N/A						Water Level*:	11.3' bgs.	
MD = U U = Thi R = Ro V = Insi	lit Spoon S Insuccessf	ful Split Spoon S be Sample ample thear Test	Sample attempt		Definitions: $S_U = Insitu F$ $T_V = Pocket$ $q_p = Unconf$ $S_U(lab) = La$ $WOH = weig$ $WOR = weig$	Torvan fined Co b Vane oht of 64	e Shea ompres Shear 4 kg ha	ar Streng sive Stre Strengt mmer	oth (kPa) ength (Pa n (kPa))	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
ŀ			<u> </u>	Sample Information	<u> </u>	_			1				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value		Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						S	SSA_	119.42		ASPHALT PAVEMENT.		0.18	
- 1.2 -										Light reddish brown, grave	lly, coarse to fine SAND, to	———0.18- race silt.	
1.2						\perp			1				
- 2.4 -								118.08	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Brown, sandy SILT, some	gravel.	1.52	
- 3.6 -						\		115.64	1	Bottom of Explorati Bedrock Refusal	on at 3.96 m below ground	3.96-	
- 4.8 -													
. 6 -													
- 7.2 -													
8.4													
9.6													
Rema	rks:												
Davi	J D IZ	Drockin/ME	OT										

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilisation into represent approximate seamatines settles to the types, transitions may se gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Main	e Depai	tment of	Transportat	ion	Proje	ect:	Route	4/17,	Mai	n Street	Boring No.:	P-1.	3
			il/Rock Explora METRIC UN	tion Log		Loca	tion:	Live	ermore	e Fal	ls/Jay, Maine	PIN:	100	18.00
Drille	r:	M	aine Test Boring	9	Elevation	n (m):		119	.50			Auger ID/OD:	106 mm	
Oper	ator:	М	el Coffin		Datum:			NG	VD			Sampler:	N/A	
Logg	ed By:	В	rad Tirone/HAI		Rig Type	:		Mol	oile Di	rill		Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish: 7/	1/03-7/1/03		Drilling N	/letho	d:	Soli	d Sten	m Au	iger	Core Barrel:	N/A	
Borin	ıg Locat	tion: 41	+460, 2.5 Rt.		Casing II	D/OD:		N/A				Water Level*:	9.6' bgs.	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccesst	ful Split Spoon s be Sample ample shear Test	Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = Le$ $WOH = weig$ $WOR = weig$	Torvangined Co Topy Sand Topy Topy Sand Topy Sand Topy Sand Topy S	e Shea mpres Shear I kg ha	ar Strer sive St Streng mmer	ngth (kF rength th (kPa	Pa) (Pa) a)	ng	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
			1	Sample Information	ı	_				_				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing	Blows	Elevation	(III.)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						S	SA_	119.3		90000	ASPHALT PAVEMENT.		0.10	
- 1.2 -								117.	1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Light brown, silty, coarse to	o fine SAND, little gravel.	-0.18	
- 2.4 -								116.4	20	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brown, sandy SILT, little g	ravel.	3.05	
- 4.8 -							<u> </u>	115.6	53	000	Bottom of Exploration Bedrock Refusal	on at 3.87 m below ground	3.87 surface.	
- 6 -														
- 7.2 -														
- 8.4 -														
9.6	- ul													
Rema		Proglein/MI	NOT.											

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

N	Main	e Depa	rtment of	Transportat	ion	Pro	ject:	Route	1/17, M	in Street	Boring No.:	P-14	1
			oil/Rock Explora METRIC UN			Loc	ation:	Live	more F	ılls/Jay, Maine	PIN:	1002	18.00
Drille	r:	N	Maine Test Boring	2	Elevation	n (m)):	119.	30		Auger ID/OD:	106 mm	
Opera	ator:		Mel Coffin		Datum:			NGV	D		Sampler:	N/A	
Logg	ed By:	F	Brad Tirone/HAI		Rig Type):		Mob	le Dril		Hammer Wt./Fall:	N/A	
	Start/Fi	nish: 7	7/1/03-7/1/03		Drilling N		od:	Solic	Stem A	uger	Core Barrel:	N/A	
Borin	g Locat	tion: 4	1+470, 2.5 Rt.		Casing II	D/OD):	N/A			Water Level*:	Boring dry	
MD = U U = Thi R = Roo V = Insi	it Spoon S Insuccess	ful Split Spoon be Sample ample thear Test	Sample attempt		Definitions: $S_U = Insitu$ $T_V = Pockei$ $q_p = Uncon$ $S_U(lab) = La$ WOH = wein WOR = wein	t Torva fined (ab Var ght of	ane Shea Compres ne Shear 64 kg ha	ar Streng sive Strengt Strengt	ith (kPa) ength (Pa n (kPa))	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
(m)	e No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)			-	noi	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and
Depth (m)	Sample No.	Pen/R	Sampl (m)	Blows Shear Streng (KPa) or RQI	N-value		Casing Blows	Elevation (m)	Graphi				Unified Class.
0							SSA_	119.1		ASPHALT PAVEMENT.		0.10	
										Brown, damp, silty, coarse	to fine SAND.	0.18-	
1.2													
								117.7		Brown, damp, silty, coarse	SAND, trace gravel.	1.52	
						-	\bigvee		0 0 0 0 0 0 0 0 0 0 0				
- 2.4 -						#		117.0	1 mmsa	Bottom of Explorati Bedrock Refusal	on at 2.26 m below ground	2.26- l surface.	
3.6													
-						1							
10													
4.8 -													
						+							
- 6 🕇						+							
						+							
F						\mp							
7.2						+							
						\pm							
						+							
8.4						\mp							
						#							
ļ						#							
9.6						士		L_	\perp				
Rema	rks:									-			-
P ovi	and Dy V	: Breskin/M	DOT										

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

August 27, 2003

		.00.0.		
		Route #4	4-17	
Station (Meters)	Existing Pavement Modulus (kPa)	Subgrade Resilient Modulus (kPa)	Pavement Depth (mm)	* Combined Pavement/Gravel Depth Used for Calculation (mm)
40+087	665,228	27,807	125	460
40+137	497,390	30,948	125	460
40+187	774,869	42,281	125	460
40+237	796,270	35,095	240	460
40+287	486,263	29,881	240	460
40+337	614,238	33,743	125	460
40+387	535,312	36,371	125	460
40+437	803,360	28,870	125	460
40+487	773,475	37,859	125	460
40+537	881,497	31,946	125	460
40+587	551,878	35,965	180	460
40+637	978,736	59,147	180	460
40+687	727,432	27,198	210	460
40+737	877,294	32,966	210	460
40+787	1,181,207	36,170	210	460
40+837	680,833	27,704	210	460

150

150

240

240

460

460

760

760

Livermore-Jay

10018.00

29,032

30,730

36,589

32,608

40+887

40+937

40+987

41+037

561,116

533,651

542,691

460,533

^{*} For actual Gravel Depths, see attached logdraft forms

Livermore-Jay 10018.00 Route #4-17

Station (Meters)	Existing Pavement Modulus (kPa)	Subgrade Resilient Modulus (kPa)	Pavement Depth (mm)	* Combined Pavement/Gravel Depth Used for Calculation (mm)
41+087	562,813	30,984	240	760
41+137	475,804	57,446	240	760
41+187	600,740	50,606	180	610
41+237	357,290	36,419	180	610
41+287	648,739	45,840	240	760
41+337	784,844	41,566	240	760
41+387	846,320	80,099	240	760
41+437	960,175	86,395	240	760
41+487	671,033	51,684	240	760
41+537	795,645	45,023	210	460
41+587	666,238	38,082	210	460
41+637	856,045	38,695	210	460
41+687	860,880	34,603	210	460
41+737	1,133,974	82,213	180	460
41+787	606,184	56,445	180	460

^{*} For actual Gravel Depths, see attached logdraft forms

Appendix D Lab Test Data Lab Testing Summary Sheet Grain Size Curves

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Livermore Falls-Jay Project Number: 10018.00

Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	assificatio	n
Identification Number	(Meter)	(Meter)	(Meter)	Number	Sheet				Unified	AASHTO	Frost
HGT-1, 1D	40+130	3.0 Rt.	0.46-1.07	176760	1	3.8			SM	A-1-b	II
HGT-1, 2D	40+130	3.0 Rt.	1.52-2.13	176761	3	18.5			ML	A-4	IV
HGT-2, 1D	40+160	5.5 Rt.	0.46-1.07	176762	1	7.2			SM	A-2-4	II
HGT-4, 2D	40+380	3.5 Rt.	0.46-1.07	176763	1	5.1			SM	A-2-4	П
HGT-6, 1D	40+520	5.5 Rt.	0.30-0.91	176764	1	10.8			SM	A-1-b	II
HGT-8, 1D	40+610	5.0 Rt.	0.15-0.76	176765	1	3.4			SW-SM	A-1-b	0
HGT-8, 2D	40+610	5.0 Rt.	1.37-1.86	176766	3	14.2			ML	A-4	IV
HGT-9, 2D	40+630	5.2 Rt.	1.52-2.13	176767	3	4.7			SM	A-1-b	II
HGT-10, 1D	40+680	CL	0.46-1.07	176768	1	7.8			SM	A-1-b	II
HGT-10, 2D	40+680	CL	1.52-2.13	176769	3	3.3			SM	A-1-b	II
HGT-11, 2D	40+740	7.6 Lt.	1.52-2.13	176770	3	9.5			SP-SM	A-1-b	0
HGT-13, 1D	40+880	6.0 Rt.	0.37-0.98	176771	2	4.7			SP-SM	A-1-b	0
HGT-14, 1D	40+930	1.5 Rt.	0.46-1.07	176772	2	8.3			SM	A-2-4	П
HGT-15, 2D	41+020	1.8 Lt.	1.52-2.13	176773	3	26.9			CL-ML	A-4	IV
HGT-16A, 1D	41+131.5	1.0 Lt.	0.46-1.07	176774	2	4.2			GM	A-1-b	I
HGT-17, 2D	41+231.5	5.0 Rt.	1.52-2.13	176775	4	15.9			SM	A-2-4	II
HGT-18, 1D	41+320.5	2.3 Lt.	0.30-0.91	176776	2	5.2			SM	A-1-b	II
HGT-18, 3D	41+320.5	2.3 Lt.	1.52-2.13	176777	4	16.8			SM	A-2-4	II
HGT-19, 2D	41+580	4.5 Rt.	0.91-1.52	176778	4	20.6			SM	A-2-4	II
HGT-20, 2D	41+630	1.7 Rt.	1.52-2.13	176779	4	13.3			SM	A-4	III
HGT-22, 1D	41+801	2.5 Lt.	0.30-0.91	176780	2	10.1			SM	A-2-4	Ш
HGT-22, 2D	41+801	2.5 Lt.	1.52-2.13	176781	4	46.5			SM	A-2-4	Ш

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

Appendix E Existing Retaining Wall Photographs

