Maine Department of Transportation Highway Program

GEOTECHNICAL ENGINEERING REPORT FOR THE RECONSTRUCTION of ROUTE 109 in WELLS, MAINE

Prepared by: Karen Gross Geotechnical Design Engineer

Reviewed by: Kitty Breskin, P.E. Senior Geotechnical Engineer

York County

PIN 7998.10, 7998.20 Federal Project # NH-7998(10)E Federal Project # NH-7998(20)E October 21, 2010 Soils Report 2010-117

TABLE OF CONTENTS

Section	Page
1.0 INTRODUCTION	1
2.0 PROJECT BACKGROUND	1
3.0 AS-BUILT INFORMATION	2
4.0 GEOLOGIC INFORMATION	2
5.0 SUBSURFACE CONDITIONS and EVALUATION 5.1 ROADWAY and SHOULDER BORINGS/TEST PITS 5.1.1 Surface 5.1.2 Base/Subbase 5.1.3 Subgrade 5.1.4 Shoulders 5.1.5 Bedrock 5.1.6 Organic Soils 5.1.7 Groundwater 5.2 FWD ANALYSIS	4 4 4 4 5 5 6 6
 6.0 DESIGN CONSIDERATIONS 6.1 PAVEMENT STRUCTURE 6.1.1 Frost Penetration Estimates 6.1.2 Pavement Design Considerations 6.2 HIGHWAY SUBSURFACE DRAINAGE 6.3 FROST 	7 8 8 8 8 8
7.0 HIGHWAY CONSTRUCTION CONSIDERATIONS	9
8.0 CLOSURE	9
APPENDICIES Appendix A: GENERAL INFORMATION Surficial Geology Map and Key Soil Conservation Survey Map, Key, Other Information Appendix B: SUBSURFACE EXPLORATIONS Geotechnical Investigations Summary Sheet Boring Logs Test Pit Logs FWD Logs	

Appendix C: LABORATORY TEST RESULTS

Laboratory Testing Summary Sheet Grain Size Analysis Geology Test Reports

Appendix D: DESIGN

FWD Analysis

Resilient Modulus (Mr) Calculation

Frost Depth Information

Detail - Frost Susceptible Soils over Ledge

Appendix E: PLANS and SPECIAL PROVISIONS

As-Built Plans Geoplans

1.0 Introduction

This report presents the results of the geotechnical investigations for the proposed reconstruction/rehabilitation of 7.37 km [4.58 mi] of State Route 109 in the Town of Wells.

PIN # 7998.10 begins 0.24 km [0.15 miles] north of Wells Maine Turnpike Exit #19 (RLM 1.70) and extends northerly 3.93 km [2.44 mi] to 0.08 km [0.05 mi] north of Meetinghouse Road (RLM 4.14). PIN # 7998.20 begins 1.08 km [0.05 mi] north of Meetinghouse Road (RLM 4.14) and extends northerly 3.44 km [2.14 mi] (RLM 6.28). This remainder of this report combines both PIN numbers and considered the two projects as one project, and considers the highway only and does not include any geotechnical investigations for any of the bridges that exist within the project limits.

The scope of work for this project is to reconstruct and rehabilitate the existing roadway to improve safety, ride quality, and drainage. This work will include full reconstruction and leaving the existing core of Route 109 and widening the existing shoulder. The new vertical and horizontal alignment will closely follow the existing alignments. There are also major improvements to the surface drainage where stormwater will be collected in full depth ditches or a closed drainage system where ditches are not feasible. Drainage of the pavement structure will be accomplished by daylighting of the base/subbase to ditches or by using underdrain pipe where daylighting is not possible. Subsurface drainage (lowering the groundwater table) will also be accomplished by ditching or underdrain pipe.

2.0 PROJECT BACKGROUND

This roadway is on the National Highway System (NHS) as is classified as a principal arterial. The a current AADT (2009) is 9500 vehicles from the start of the project to the intersection with Route 9A, 8770 vehicles (2009) from Route 9A north to Meetinghouse Road, and 8010 vehicles (2009) from Meetinghouse Road north to the end of the project. The AADT for the projected 20-year performance period (2029) is 12380, 11400, and 10410 vehicles respectively, with 9% being classified as heavy trucks. The mixed traffic converts to equivalent 18-kip single axel loads (at P_{2.5}) values of 435, 329, and 329 respectively. The ESAL's for the 20-year performance period calculate to 3,175,500, 2,401,700, and 2,401,700 respectively.

The existing roadway structure consists of 3.75 m [12'] travel lanes and 1.0 m [3'] unpaved shoulders. Inspections were done in the summer of 2002, and in February of 2003 to evaluate the existing pavement structure for frost related problems, pavement damage due to vehicle loading, and drainage problems.

During the summer of 2002, there was evidence of minor to severe pavement distress including cracking at the centerline joint, transverse (thermal) cracking, subsidence of the right edge of both of the travel lanes, alligator cracking, and block cracking. The roadway had a Maintenance Surface Treatment (sand mix) in 2007, so many of the distresses previously observed are no longer visible. MST's do not correct deficiencies but function to improve ride quality until the roadway is rehabilitated or reconstructed.

Frost problems were evident throughout the entire length of the project in 2003 and every winter since that time. The ride quality in the winter and early spring months is extremely rough with many substantial frost heaves occurring at cross-pipe locations and possibly at shallow bedrock locations. The general rough ride appears to be from tenting at crack locations. This tenting can be caused by the accumulation of water infiltrating into the cracks in the asphalt and freezing. The shoulders along most of the length of the project are heaved approximately 100 mm [4"] above the travel lanes in the winter months, and are very soft during the spring thaw.

Drainage ditches are shallow or non-existent for the length of the project. There are several locations where wetlands/cattails are immediately adjacent to the roadway. Wetland vegetation in drainage ditches typically indicates low soil permeability as well as poor flow/drainage conditions. After a substantial rain event, water tends to stand in any ditching.

A significant amount of bedrock outcrops can be seen along the roadside. These outcrops are located from the start of the project to the intersection with Rte. 9, and from Sawyer Road to just north of Meetinghouse Road.

3.0 AS-BUILT INFORMATION

As-built plans from the 1930's indicate that the original roadway was constructed with 3.0 m [10'] travel lanes and 1.0 m [3'] shoulders. The travel way structure consisted of 450 mm [18"] of gravel base and 75 mm [3"] of macadam for a wearing surface. A typical drawing showing a 300 mm [12"] stone base layer below the gravel base is shown on the plans, however the areas where this may have been placed are not shown on the as-built plan sheets/profiles. The pavement has been overlayed with hot mix asphalt (HMA) since the original construction, with the most recent overlays being placed in 1986 and 2007.

The shoulder pavement structure was constructed with 150 mm [6"] of gravel and 75 mm [3"] of gravel surface course. This type of construction creates a "bathtub" like pavement structure that traps water within the pavement if surrounding soils have a lower permeability that that of the pavement base materials.

The as-built plans show that a significant amount of bedrock, primarily on the southern end of the project. Bedrock was excavated at many locations for the original roadway construction. Bedrock excavation lines are shown on the profile drawings, but there is no evidence if these elevations are based on actual subsurface investigations or on interpolations. There are also several areas where substantial amounts of fill were placed to bring the existing ground to the design profile grade. As-built plans are located in Appendix XXX of this report.

4.0 GEOLOGIC INFORMATION

The source of geologic information for this report includes the Maine Geological Surficial Geology map for the North Berwick Quadrangle and the Soil Conservation Survey (SCS) for York County. These maps are located in Appendix A of this report.

The Surficial Geology map indicates that the predominant subgrade types along this project consist of a marine deposits (*Pm, Pmdi, Pmdo, Pmdi, Pmrs*), glacial till (*Pt*), and bedrock. Information on this map represents the surficial soils to a depth of approximately 1.5 m to 3.0 m [5' to 10'] below the ground surface.

Marine deposits (*Pm, Pmdi, Pmdo, Pmdi, Pmrs*) primarily consist of sand, silt, and clay size particles, and were either deposited or reworked in a marine water environment. Marine Deposits are anticipated at Stations 20+850 to 22+000, 22+400 to 23+100, and 26+930 to 27+330.

Glacial Till (*Pt*) deposits consist of a heterogeneous mixture of sand, silt, clay and various sizes of stones (cobbles to boulders). Till is deposited directly by glacial ice and usually overlies bedrock, but may overlie sand and gravel. Glacial till is anticipated at Stations 23+100 to 26+930 and 27+330 to 28+139.

Surficial Geology maps indicate that bedrock is shallow and exposed at many locations, but is primarily concentrated at the eastern end of the project. According to the surficial Geology map for this area, shallow bedrock is anticipated at Stations 20+865 to 21+500, and 23+100 to 25+200, and 27+400 to 28+000.

The SSC maps indicate that there are six soil units on this project. These soil units are: Adams (AdB, AdC), Brayton and Westbury (BsB), Colton (CoB, CoC), Hermon (HmB), Lyman (LnB, LyE), Naumburg (Na), and Raynham (Ra). Table 1 lists the soil classifications and features associated with each unit. Table 2 lists the Soil Conservation Survey soils units and the approximate locations of where they are anticipated to underlie Route 109.

Table 1: Summary of SCS Soil Classifications and Features for Rt. 109, Wells

SCS Soil Unit Symbol	AASHTO Classification	USCS Classification	Depth to Bedrock	Depth to H2O	Frost Potential
AdB, AdC	A-1, A-2, A-3, A-4	SM, SP-SM, SW-SM, SP	> 1.5 m [60"]	>1.8 m [6']	low
BsB	A-1, A-2, A-4	SM, GM, ML	> 1.5 m [60"]	0 – 0.46 m [0 -1.5']	high
CoB, CoC	A-1, A-2, A-3	SM, SP, GM, GP	> 1.5 m [60"]	>1.8 m [6']	low
CrB	A-1, A-2, A-3	SM, SP-SM, SW-SM	> 1.5 m [60"]	0.46 m – 0.60 m [1.5' – 2.0']	moderate
HmB	A-1, A-2, A-4	SM, SP-SM, GP-GM, GM	> 1.5 m [60"]	>1.8 m [6']	low
LnB, LyE	A-2, A-4	SM, ML, GM	0.25 m – 0.50 m [10" – 20"]	>1.8 m [6']	moderate
Na	A-1, A-2, A-3, A-4	SM, SP-SM, SW-SM	> 1.5 m [60"]	0 – 0.46 m [0 -1.5']	moderate
Ra	A-4	ML	> 1.5 m [60"]	0.15 m – 0.60 m [0.5 – 2.0']	high

Table 2: Approximate SCS Soil Unit Locations

SCS Soil Unit	Design Station
Symbol CoC, CoB	20+850 to 22+220
HmB, BsB	22+220 to 23+100
LnB, LyE, Ra	23+100 to 24+700
CrB, Na	24+700 to 26+700
AdB	26+700 to 27+500
CrB, Na	27+500 to 28+075

5.0 Subsurface Conditions and Evaluation

The subsurface investigations program consisted of 47 borings: 32 in the roadway, 15 in the shoulder, and 5 test pits. Hot mix asphalt (HMA) cores were collected at 4 locations. Fifty soil samples were collected and tested in the MaineDOT laboratory in Bangor. A Falling Weight Deflectometer (FWD) analysis was performed in the right hand wheelpath of the eastbound lane. No information was collected in side roads. All boring logs and pavement core information are located in Appendix B in this report, lab test data is located in Appendix C, and boring location plans are located in Appendix E.

The existing asphalt pavement and subbase depth, subgrade type, existing groundwater levels, and the resilient modulus for pavement design are determined from the field information. Boring locations, offsets, explorations depths, and the above information is summarized in a spreadsheet titled *Geotechnical Investigations Summary* and is also included in Appendix xx.

5.1 ROADWAY and SHOULDER BORINGS/TEST PITS

5.1.1 Surface

The existing HMA depth ranges from 90 mm (3.5") to 240 mm (9.4"). A 40 mm [1.5"] to 100 mm (4") macadam layer was found at most boring locations. There is no evidence that the macadam was ever removed, however it could have disintegrated during the drilling process at locations where it was not encountered. It should be noted that a Maintenance Surface Treatment (MST) was placed after these investigations were completed, therefore the existing HMA thicknesses are greater than what is reported at the time of the investigations.

5.1.2 Base/Subbase

The existing subbase ranges from 300 mm [12"] to 1360 mm [53"], with an average of 575 mm [23"). Laboratory results indicate that the existing subbase does not MaineDOT specifications. However, samples from test pits were collected so that a larger sample size could be tested. All test pit samples indicate that the existing subbase meets the gradation requirements of MaineDOT Standard Specification 703.06 Aggregate for Base and Subbase.

5.1.3 Subgrade

The subgrade consists predominately of sand and silt, with the proportions of each varying by location. The subgrade at several locations contains gravel size particles. Frost ratings range from 0 to IV, with 0 being non-frost susceptible and IV being highly frost

susceptible. The subgrade soils encountered in the borings is what was expected as per the information on the surficial geology and SCS maps.

Cobbles were encountered in FWD borings at stations 21+796, 22+396, 22+796, 23+196, 23+596, 23+998 and 24+405, and in boring HB-WELS-207 at station 22+500. Cobble sized particles encountered in the borings could indicate the locations of the stone base fill placed as part of the original roadway construction.

5.1.4 Shoulders

The borings indicate that there is 180 mm [7"] to 1400 mm [55"] of varying proportions of sand and silt on the existing shoulders that closely resembles the material placed as gravel base in the travel lane pavement structure. The original shoulder construction as indicated on the as-built plans was verified at most boring locations based on the subsurface information. Areas where the material is thicker than expected may be areas where fill was placed. Also, accumulation of sand on the shoulder that was placed for winter maintenance will skew the information.

5.1.5 Bedrock

Bedrock was encountered in several borings in the roadway and shoulder. Table 3 lists the locations bedrock was encountered in the subsurface investigations and the depth to refusal as measured below the existing ground surface.

Table 3: Refusal Summary from Borings

Boring No.	Station (m)	Offset (m)	Refusal Depth (bgs-m)
HB-WEL-202	20+940	2.5 L	0.91
HB-WEL-201	20+940	4.7 L	1.58
HB-WEL-204	21+180	2.5 L	0.98
HB-WEL-203	21+180	5 L	0.88
FWD 5202	22+194	4.3 L	2.35
HB-WEL-207	22+500	4.5 L	2.56
FWD 4200	23+196	2.5 L	2.35
FWD 4200A	23+196	4.4 L	1.71
HB-WEL-210	23+700	2.4 L	0.94
HB-WEL-209	23+700	4.3 L	0.82
FWD 3400	24+000	2.7 L	1.16
FWD 3000	24+405	2.4 L	0.98
FWD 3000A	24+405	4.5 L	1.04
FWD 2800	24+605	2.5 L	5.4
FWD 2200	25+216	2.7 L	0.79
HB-WEL-213	25+560	4.4 L	1.4

The highway design plans also illustrate where exposed bedrock exists as recorded during the survey. Locations as shown on the plans are Stations 20+920 to 20+960, 21+060 to 21+070, 21+145 to 21+220, 22+005, 24+230 to 24+250, 24+390 to 24+405

As-built plans located in Appendix E illustrate where bedrock was removed as part of the original construction project. Current design stations have been interpolated on to the as-

built plans for the reader's use, but may not be accurate due to landmark changes and slight shifts in the horizontal alignment since the time of the original construction.

5.1.6 Organic Soils

No organic soils were encountered in the investigations. The SCS map indicates that there are wet areas adjacent to the roadway. These wet areas are probably due to water perched over shallow bedrock.

5.1.6 Groundwater

Shallow groundwater was encountered at several roadway and shoulder boring locations. Table 4: Groundwater Data summarizes groundwater locations and depths below the ground surface at the time the investigations were completed. The groundwater table fluctuates seasonally and with yearly precipitation totals, therefore the actual groundwater levels at the time of construction may be different as stated in Table 4 and in this report.

Table 4: Groundwater Data

Boring No.	Station	Offset from Existing CL (ft)	Depth (bgs) to H2O (ft)
HB-WEL-207	22+500	4.5 L	1.22
HB-WEL-208	22+500	2.2 L	1.37
FWD 4600	22+796	2.7 L	2.14
FWD 3800	23+596	2.5 L	1.80
FWD 3402	23+998	2.7 L	1.60
FWD 2400	25+005	2.7 L	1.95
HB-WEL-215	26+500	3.8 L	1.98
FWD 601	26+814	2.8 L	2.00
FWD 100SB	27+315	2.4 L	2.53
HB-WEL-217	27+340	4.6 L	2.59

5.2 FWD ANALYSIS

Falling Weight Deflectometer (FWD) testing was completed by the MDOT field services crew. Existing HMA and base gravel depths were also collected immediately following the FWD field work. The FWD deflection and existing pavement structure information was processed and analyzed to determine pavement properties and to backcalculate the subgrade resilient modulus needed for the pavement design. The complete FWD analysis is located in Appendix D of this report

Through the FWD analysis and subsurface investigation information on past projects, MaineDOT has determined there is a correlation between the backcalculated resilient modulus values and certain soil properties and types. The resilient modulus values can indicate locations where the subgrade soils may be weak or wet (< 20,000 kPa [2900 psi]), may consist of stone base (40,000 to 55,000 kPa [5800 to 7975 psi]), or where shallow bedrock (>55,000 kPa [7975 psi]) may present. Values between 50,000 and 55,000 kPa [7250 and7975 psi] can indicate the presence of deeper bedrock or stone base. Shallow bedrock is defined as bedrock located within 3.05 meters [10'] below the ground surface. The higher the modulus value, the closer the bedrock is to the surface.

The following tables list areas where stone base and shallow bedrock may be present based on the resilient modulus values from the FWD data only. No resilient modulus values less than 20,000 kPa [2900 psi] were encountered. FWD information collected for this project can be viewed in Appendix D at the end of this report.

Table 5: Possible Stone Base Locations from FWD Analysis

Design Station	Mr Value (kPa)
21+796	42,082
21+896	43,699
22+396	53,310
22+696	41,541
22+796	42,773
22+996	45,197
23+096	45,162
23+396	47,135
23+596	45,822
23+796	50,813
23+896	52,703
23+996	43,931
24+096	48,129
25+196	50,958
25+796	51,610
26+096	46,648
26+196	47,391
26+296	54,693
26+396	51,928
26+496	49,840
26+596	53,741
26+796	40,907
27+197	40,709

Table 6: Possible Shallow Bedrock Locations from FWD Analysis

Design Station	Mr Value (kPa)
24+296	61,107
24+396	95,441
24+596	66,351
24+896	55,448
25+096	59,082
25+296	61,719
25+896	79,813

6.0 DESIGN CONSIDERATIONS

Geotechnical design considerations for this proposed alignment include pavement structure depth as it pertains to frost penetration, recycling options, the resilient modulus input value for the pavement design, subsurface drainage in relation to pavement performance, and the effects of frost action on the pavement structure.

6.1 PAVEMENT STRUCTURE

6.1.1 Frost Penetration Estimates

The Design Freezing Index for this location is 1200. Total frost penetration for a snow-free pavement is 63" [1.6 m] for a granular base and granular subgrade. The estimated frost penetration beneath a 760 mm [30"] pavement structure with a granular base and a fine-grained subgrade is 43" [1.1 m]. A 760 mm [30"] total structure thickness (including existing and new material) is recommended to limit the effects of frost action on the pavement. Frost penetration estimating sheets are located in Appendix D in this report.

6.1.2 Pavement Design Considerations

Due to the severity of the distresses in the HMA layer, removal of all existing HMA and macadam is recommended. The existing HMA and macadam can be used as a recycled layer, such as Plant Mixed Recycled Asphalt Pavement (PMRAP), in the new pavement structure.

Since the proposed design will leave the existing core of the roadway and add new material for the widened shoulders, a 760 mm [30"] pavement section is recommended for the widened areas to ensure the existing core will drain properly.

Since there are only slight modifications proposed for the vertical alignment, the subgrade resilient modulus values as backcalculated from the FWD field analysis are applicable for the pavement structure design for this project. The 75th percentile of all the backcalculated values and as per Chapter 13 of the Highway Design Guide is 34,610 kPa [5020 psi]. 75th percentile calculations are located in Appendix D in this report.

6.2 HIGHWAY SUBSURFACE DRAINAGE

Highway drainage improvements including provisions to remove both surface and subsurface water are recommended for the entire project length. Long term pavement performance is highly dependent on removal of water from the pavement section. Water can enter the pavement structure through cracks in the surface, from adjacent unpaved areas, from groundwater fluctuations, and by capillary action. Water can be removed by either daylighting the pavement base/subbase aggregate to roadside ditches or by collecting water in an underdrain system. In areas with exceptionally high groundwater table elevations, underdrain can be used to lower the groundwater level in conjunction with ditches to remove surface stormwater.

6.3 Frost

If the new subgrade will be constructed on bedrock, it is anticipated that a differential frost heave will develop at the soil/bedrock interface with the existing subgrade soil types. To reduce frost heave development, granular transition zones as shown in the Special Details section (Appendix 2F) in Chapter 2 of the MaineDOT Highway Design Guide are recommended at these locations. This detail is located in Appendix D. Due to the location of underground utilities, fracture blasting of the bedrock at subgrade is not recommended.

7.0 HIGHWAY CONSTRUCTION CONSIDERATIONS

Construction of the widened areas, ditches and underdrain system should be completed prior to the removal of the existing HMA and macadam layer. Because no drainage provisions exist now, the roadway could become unstable when construction traffic loads are applied due to water being trapped under the existing HMA/macadam layer. Allowing the existing subbase and subgrade time to drain will significantly increase these soils strength and stability.

No weak subgrade soil areas were identified along this alignment. If weak subgrade sections are encountered during construction, the subgrade can be undercut 0.30 mm (12") and replaced with gravel borrow (Item # 203.26), and/or a non-woven reinforcement geotextile (Item #620.54) can be placed on the subgrade surface.

Cobbles that were placed as stone fill may be encountered in the proposed subgrade at any location along the alignment. From the FWD analysis, the most probable locations are in the area of Stations 21+796, 22+396, 22+500, 22+796, 23+196, 23+596, 23+998 and 24+405. Large cobbles should be removed and replaced with gravel borrow to establish the proposed subgrade elevation.

Bedrock excavation will be needed to achieve highway subgrade elevations, drainage ditch construction, or closed-system drainage construction at various locations (as mentioned in Section 5.1.5 on this project. Bedrock is considered hard and will most probably require blasting for removal. Blasting work should be done in accordance with MaineDOT Standard and Supplemental Specifications.

8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Highway Program solely for the Wells, Route 109 project and in accordance with generally accepted soil and foundation engineering practices.

The analysis and recommendations in this report are based on limited soil explorations at discreet locations along the proposed alignment. If the soil/subsurface conditions vary at the time of construction from what was encountered during the investigations, it may be necessary to re-evaluate the recommendations made in this report. If any changes in the nature, design, or location of the project occur, this report should be reviewed by a geotechnical engineer to assess the conclusions and recommendations in this report to be sure they are still valid.

Appendix A: General Information

- Surficial Geology Map and Key
- Soil Conservation Survey and Key

- H
- Stream alluvium -Gray to brown fine and and sith with some gravel. Comprises flood plains along present streams and nvers. Extent of aluvium approximates areas of potential flooding.

Eolan deposits - Sand dunes resulting from wind ension of modern beach sediments.

He

- Wedand, swamp* Muck, pent, nilt, and sand. Poorly drained areas, often with standing water HWS
 - settings subject to tidal Wetland, saltmarsh - Mock, pear, silt, and sand. Coastal fluctuation. HWST
- Marine shoreline deposit, beach Sant, some gravel, and minor silt. Countil settings of active beach construction. Fire
- Marine deposits (andifferentiated)—Po and/or Prins deposits riugod in areas of poor access or poor exposure, or where folls units occur as areas too small to be mapped separately. Thisk newsvariable within range described for Po and Prins. Pill
- Marine neurshore deposits Areas of till that have been neworked by the sea during regressive plans of reastive strongenee. Till hash ad finer condinents (sitt and stand) renewod and redeposited as that wener over till. Bedroak community at allallow degit, Awenge fisherens probably less than 3 in. Lecally, this tunit may include marine clay and send, as well as isolated bouilders. Pmn
- Marine regressive sand deposits Massive to straiffed, and cross-straiffed, well sorted brown to grap-brown smid. Generally with gradational basisl contact to typ. Thickness between 1 and 5 m. Deposited during regressive phase of marine Pmrs
- Presumpsont Formation Menaise to luminated gray and blue-gray (weathering brown) all airned filly days. Locally may commit broughers, such and gravet. Occurs as branter deposit over bedoesk and older glacist sediments. Variable thickness from less than 1-m to mate than 50 m. Deposited during period of blue-glacist. d_d
- Marine aboreline deposit Predominantly sand with minor gravet. Beach deposits formed during seriesd of sillintand in regressive plans of susting submergence. Thickness generally less than 3 minbeach ridges. Pms

WELLS QUADRANGLE

Marine debia - Course sand and garved grading to sand and silt. Flut to gently sloping constructional surface formed by glacul stroams discharging into late slowist sea. Distait definic sediments (Pindo) conmonly grade into glacula-marine sediments (Pp. Pinrs) Fmd

Eald murraline - Course, graved and send, some till and skil. Generally occurs within glatell-tearine solutions (P.P. Party) and is conjectly interstantified with them Formed at or near the see front during reteast of warnis-based glateier. Sediments consumptly display significant deformation. Typically 5 to 10 mthick.

Till - Gray to gray havon poorly sorted mixture of sill, stard, pebbles, cobbles, and boulders. Forms blanket deposit over bedrock and is inferred to underliey outget softments where not exposed at surface. This over topographic highs, thickens in topographic how. May occarrinated over end morniness (Pent). Averages 3 to 5 multi-choses.

Bedrock - Rock units aut distinguished. Individual outcops not shown in large areas of poor access. Ruled pattern indicates at seas where sufficial materials are thin closs than 1 to 2 m) and bedrock exposures are common. Areas of bedrock exposure (givey must) are mapped in part from acids photographs.

Artificial fill - Man-made landfill

Contact - Boundary between map units (dashed where approximate).

End mornine - Ridge of sand and gravel or till deposited at margin of glacier. May be largely buried by younger sodiments.

Searp - Symbol indicates scarps formed by stream erosion, or by marine erosion during period of higher scalevel. Tacks are on downdope side of scarpline.

Area of many large bondders.

Marine fossil locality.

*NOTE: Wetland ay n'tobs followed by "t" indicate areas where peat depasits probably do not constitute a significant commercial resource, either because flery are third ("c") is not fively how an anh content greater than 25 percent. Sy mobil content ("p") subcare peat deposits that net tacker (generally > 1.5 m), with also content less than 25 percent, and thas may be suitable for commercial applications.

USES OF STRFFCIAL GEOLOGY MAPS

A surficial goology map shows all the loose materials such as till (commonly called lauthpair, as and and gravel, or cities, which were a solid ledge (bedroch.) Bedrock outcops and areas of abundant bedreick outcops are shown in the map, but writting of the bedrock are not distinguished (refer to bedrock goology map). Most of the surficial uniterials are deposits fromed by glocal and deglabral processes, such as two for the surficial uniterials are the products or personal and deglabral processes, such as two floologisms, or are artibuted to thinsus arctivity, such as they cover also the formation. The map shows is he are all distribution of the different types of glacial features.

The map shows it he area distribution of the different types of glacial features, deposits, and laufforms and secrebed in the map explaination. Features such as straintena and morainess win be and to account from the map of position of the world in the map explaination. Features such as straintena and environmental expectably as all to be described in the map explaination. Features such as the two deposits of glacial fails as of the glacial sea, now long growing more includes and the such that the quadrantity is as the true shells to the begrowing the such as the continued of glacial and the world indicate in the such in the state. The appartance in the such of the world indicates in the such as constitution of the world indicates in the such as the such as the such as the continued of the such as the such in the such of the such as the such as the such as the such of the such of the such in t

OTHER SOURCES OF INFORMATION

- Smith, G. W., 1999, Surfacial geology of the Wells 75-minus quadrangle, York Courty, Manne: Maine Geological Survey, Open-FileReport99-135, 8 p.
- Maine Geological Smith, G. W., 1998, Surficial materials of the Wells quadrangle, Mane. Survey, Open-Pile May 98-164.
- Neal, C. D., 1995, Significant sand and gravel aquifers of the Wells quadrangle, Maine: Maine Geological Survey, Open-File Map 95-130.
- Thompson, W.B., 1979, Surficial peology handbook for coastal Maine. Maine Geological Survey, 68 p. (out of print)
- Thompson, W. B., and Berns, H. W., It., 1985, Surficial geotogic map of Marine. Maine Geological Survey, scale 1:50,000
- Theoripeon, W. B., Crousen, K. J., Barre, H. W., H., and Andecsen, B. G., 1989, Glaciomarine delates of Matter and their institute to last Pictocone-Holocome error mand movements, in Anderson, W. A., and Borum, H. W., it (refs.). Neutocrincies of Matter. Matter Geological Starcy, Malletten (D., p. 47-67).

T

Freshwater marsh* - Poorly drained freshwater grandand Hwfm Wetland, beath* - Mosses, grasses and sedges are the dominant vege here. Peat thickness varies considerably. Standing water is common.

HWH

Wetland, swamp" - Muck, post, silt, and sund. Proofly drained areas, often with Hws

Marine deposits (undifferentiated) - Ps and/or Pura deposits rapped in areas of poor access or poor exposure, or where both units occur as areas too small to be report separately. Thickness variables within small obserfed for Ps and Puris.

Pin

Marine nearshore deposite - Arens of till that have been reworked by the san during regressive place of navine imbarcepance. Till has had frare constituents just and sandy formored and stable nearest-over till. Bestnock commonly at Stabilow depti. Average thickness probably less flam 3 in. Locally, this unit may include morine elay and sand, an well as include boulders. Penn

Marine regressive aund deposits - Mansove to stratified and cross-stratified, well sorted brown to gasy-brown send. Generally with graduational basis contact to Pp. Thickness between 1 and 5 m. Deposited during regressive plane of runtine. Pinne

Presumpreof Formation - Massive to Inniustred gass and blac-gray (weathering brewn) all and sitily clay. Lecally may contain hondifers, gard, and gaved. Occurs as balanted deposits over befraced and older galacist additionars. Venishlat dischess from these than 1 m to more than 50 m. Deposited during period of hate-glacist

Po

Marine delta - Coarse sand and gravel grading to sand and silt. Flat to gamfly sloping constructionals utilizes formed by glacials streams discharging non-bine glacial sea. Heads to deltas are commonly bettled (Prods) and mark the frontal positions. Sediments in thirst portions of deltas (Prods) commonly grade into glacial nature sediments (Pr. Print). Variable thickness from more than 34 m at glacial nature sediments (Pp. Print). Variable thickness from more than 34 m at Pmdo

Pmd Pmd te-contact deposits (undifferentiated) - Coarse gravel and sand in areas not mapped as deltas or Permanity kertifol glacial ensant-deposits in the immediate visionity of esdees (Pgc). Average thickness probably between 10 and 15 m.

pod

Esher - Corne gravel and sand computing distinct linear ridge forms, mostly in major valleys. Generally summerded by Pgi deposits and terminating in ico-connectedniss (Pmili). May be more than 10 methics.

HO4

End moraine - Coarse gravel and sand, some till and sile. Generally occur with glocal artises addinates 10p, Partia and are completely intenstratified with them. Formed at or near the see frest during retent of marine-based global soft statement of comments of spiles. Sediments commonly display significant deformation. Commonly 510:10m thind.

Per

NORTH BERWICK QUADRANGLE

TIB - Cirq to gray-thrown poorly sorted mixture of silt, sand, pethlos, cobbles, and boulders. Forms a blanket deposit over bedrock, and is inferred to underly symager enfinems where not exposed at surface. Thin over topographic highs, thickness in topographic laws. May occur in and over end mornines (Peru, Perus). Averages 3 to 5 min thickness. be

Bedrock - Rock units not distinguished. Individual outcrops not shown in large areas of poor access. Rudd patient indicates seras where sufficial materials are this fees that 1 to 2 m) and bedrock exposures are common. Areas of bedrock exposure (gray areas) are mapped inpart from acris platolographs.

Contact - boundary between map units (dashed where approximate)

End moraline - ridge of sand and gravel or till deposited at margin of glacier. May be largely burned by younger sediments.

Searg – sy ribol Indicates searge formed by stream etusion, or by marine etusion during period of highest sea level, as well se constructional scarge on delta mangine. Telebase on downshope side of seargh line.

Kettlehole 0 Meliwaterchannel

Glacially streamlined hill (drumlin) 0 Re-margin position - Line shows approximate position of the glacier nurgin during ice retreat, based on positions of melwater channels and/or morninal deposits.

Azimuth of glacial striation 10 Glacial marine delta - Number is surveyed elevation (in feet) of late-glacial sea level indicated by counct between delta topset and foreset beds (from Thompson and others, 1989, and W. Thompson / C. Koteff unpublished data). A350

Azimuth of corrent gitta in glacial fluvial deposits

*NOTE: Welfand symbols followed by "F indicate areas where past deposits probably do not constitute a significant commercial resource, either because they are thirty either they have an eath content genate than 25 percent. Symbols collowed by "p" indicate peat deposits that are thicker (generally >1.5 m), with any content fees than 25 percent, and thus may be suitable for commercial applications.

USES OF SURPICIAL GEOLOGY MAPS

A surficial gooling ruga yawa is all the loose materials such as illi (commonly called hurdran), and and gured, octay, which overthe solid ladge (bedrock). Bedrock outcrops and hard a children bedrock outcrops are always on the map, but wareties of the bedrock ene not distinguished (refer to bedrock goology, map). Most of the surficial materials are seriously continued by glacula and deglacial processes attring the last stage of continental glaciation, which began about 2, 000 years ago. The remainder of the surficial deposits are her producte of postglacial geologic processes a such seriver floodplans, or are attributed to her products of postglacial geologic processes. A such seriver floodplans, or are attributed to her products of postglacial geologic processes.

The map plotters that the other than the other than the different type of glacial features, deposits, and landforms at described in the map plotters that the chain existing and another as the second or the constitution of the glacial second or mines are be used to reconstitute the movement and position of the glacial and its margin, especially as the foce their meltod. Other micrial chains and the sine is the place and its margin, especially as the foce their meltod. Other micrial chains are standard as the place and deposits of glacial linkers of the gradient does, now one good from the standards are well as the standards are standard and how our expose of the world anderseent recent recent geologically algufant climatic and covironmental changes. We may then to after the larger traderstanding of past earth climatic and how our expose of the world underseent recent geologically algufant climatic and covironmental changes for long external managements are after the standard development or waster deposal.

Natificial goodogy maps are often best used in continuction with related maps such as unificial materials maps or significant assat and graved aquite for maps such as unifical materials materials may or extendible development of surface and in the search for vaster supplies, or exceeding all materials are directly related to surfacial geology. Commission propers used as changing may not be established in the surface of the surfacial geology of the site. Refer to the list of related publications below.

OTHER SOURCES OF INFORMATION

- Smith, G. W., 1999, Surficial geology of the North Berweck 7.5-mmis quadrargle, York County, Maine Gellogical Survey, Open-File Report 99-123, 8 p.
- South, G. W., 1998, Surficial materials of the North Berwick quadringle, Maine: Maine Geological Survey, Open-File Map 98-163.
- Neil, C. D., 1998, Significant sand and guivel aquifers of the North Bicroick quadrangle, Malne: Manie Geological Survey, Open-File Map 98-129.
- Thompson, W. B., 1979, Surficial goology handbook for coastal Maine. Maine Goological Sarvey, 68 p (out of print)
- Thompson, W. B., and Borne, H. W., Jr., 1983, Surficial peologic map of Maine: Geological Survey, scaled: 500,000.
- Thompson, W. B., Cholsen, K. J., Bakes, H. W., H., and Ambersen, H. G., 1989, Olacionarine debtus of Maine and their reliation to late. Pesitocenel-Hobecone, email movements, in Anderson, W. A., and Berne, H. W., Jt. (eds.), Neotochories of Maine. Maine Geological Survey, Bullellio A., p. 43-67.

SOIL SURVEY OF

York County Maine

SPECIAL SYMBOLS SOIL SURVEY SOIL DELINEATIONS AND SYMBOLS	ESCARPMENTS	Bedrock (points down slope)	Other than bedrock (points down slope)	SHORT STEEP SLOPE	GULLY	DEPRESSION OR SINK	SOIL SAMPLE SITE (normally not shown)	MISCELLANEOUS	Blowout	Clay spot	Gravelly spot	Gumbo slick or scabby snot (sodie	dullibo, silendi secos) apar (energy	non soil areas	Prominent hill or peak		Cincindes sandstone and snare)			Severely eroded spot	Slide or elia (tine point unclone)	Since of sip (tips point absorbe)	Stony spot, very stony spot	Glacial till spot							
FEATURES	•	8	Indian	Mound (Ower	WATER	+0-	жэ	С					ONES				۱ /					CANAL	1		(Ω :		TIBES	利	
MISCELLANEOUS CULTURAL FEATURES	Farmstead, house (omit in urban areas)	Church	School	Indian mound (label)	Located object (label)	Tank (label)	Wells, oil or gas	Windmill	Kitchen midden				SEGULTATE CETAVA	WAICHTEA	DRAINAGE	Perennial, double line		Perenniai, single iine	Intermittent	Drainage end	· · · · · · · · · · · · · · · · · · ·	Canals or ditches	Double-line (label)	Drainage and/or irrigation		LAKES, PONDS AND RESERVOIRS	Perennial	Intermittent	MISCELL ANEOLIS WATER FEATINES	MISCELLAINEOUS WATER I LA	WIG10:10:10:10
TURES	1			or park,				ne		Davis Airstrip		-	+						IONS	(st	[•	1)	(¥)	378]			I I I I I		i :	
CULTURAL FEATURES BOUNDARIES	National, state or province	County or parish	Minor civil division	Reservation (national forest or park,	state forest or park, and large airport)	Land grant	Limit of soil survey (label)	Field sheet matchline & neatline	AD HOC BOUNDARY (label)	Small airport, airfield, park,	oil field, cemetery, or flood pool STATE COORDINATE TICK		LAND DIVISION CORNERS (sections and land grants)	ROADS	Divided (median shown	if scale permits) Other roads		Trail	ROAD EMBLEMS & DESIGNATIONS	Interestate		Federal	State	County farm or ranch		RAILROAD	POWER TRANSMISSION LINE	(normally not shown) PIPELINE	(normally not shown)	rence (normally not shown)	
oil name. Iter if the unit Sope class.	reversors out mber 2 shows that				NAME		Lyman fine sandy loam, 3 to 8 percent slopes Lyman fine sandy loam, 8 to 15 percent slopes	Lyman mile sandy loam, 13 to 25 percent slopes Lyman-Rock outcrop complex, 3 to 8 percent slopes Lyman-Rock outcrop complex, 8 to 15 percent slopes	Lyman-Rock outcrop complex, 15 to 80 percent slopes	Madawaska Tine sandy loam, 0 to 8 percent slopes Marlow fine sandy loam, 3 to 8 percent slopes Marlow fine sandy loam, 3 to 8 percent slopes.	Marlow fine sandy loam, 15 to 25 percent slopes, eroded Marlow very story fine sandy loam, 3 to 8 percent slopes	Marlow very stony fine sandy loam, o to 19 percent stopes. Marlow very stony fine sandy loam, 15 to 25 percent slopes.	Naumburg sand	Ondawa fine sandy loam	Peru fine sandy loam, 0 to 8 percent slopes	Pits, gravei Podunk and Winooski soils	Raynham silt loam	Rock outcrop-Lyman complex, 8 to 15 percent slopes Rock outcrop-Lyman complex, 15 to 80 percent slopes	Rumney loam	Saco mucky silt loam Scantic silt toam	Scio silt loam, 3 to 8 percent slopes Scio silt loam, 8 to 15 percent slopes	Scio silt loam, 15 to 25 percent slopes Sebago peat	Skerry fine sandy loam, 0 to 8 percent slopes Skerry fine sandy loam, 8 to 15 percent slopes	Skerry very stony fine sandy loam, 0 to 8 percent slopes Skerry very stony fine sandy loam, 8 to 15 percent slopes	Sulfihemists, frequently flooded	Udipsamments-Dune land complex	Urban land Urban land-Scantic complex, 0 to 3 percent slopes	Vassalboro peat Vassalboro peat, ponded	Waskish peat		
e initial letter of the so iter but is a capital lei i, B. C. D. or E is the	neous areas. The nur				SYMBOL		1 000	Ly B	C	Mab Mr8 MrC2	MrD2 MvB	MvD	eN	uO	PeB	m C		ROE	Ru.	S S	SeC	SeD Sg	SKB SKC	Sr.B Sr.C	SO	an:	UsA	e A	Wa	2	
The first letter, always a capital, is the initial letter of the soil name. The second letter is usually a small letter but is a capital letter if the unit is broadly defined. The third letter A. B. C. D. or E is the slope class.	Most symbots without a retter for slope class are for inearly level solls but four are for units containing miscellaneous areas. The number 2 shows that the soils eroded.				NAME		Adams loamy sand, 0 to 8 percent slopes Adams loamy sand, 8 to 15 percent slopes Adams loamy sand, 15 to All naveant slopes	Adams Urban land complex, 0 to 8 percent slopes Alagash very line sandy loam, 3 to 8 percent slopes	Allegasii very iille sarioy toarii, o to 10 percent sippes Bassanos	beautes Becket fine sandy loam, 3 to 8 percent slopes Becket fine sandy loam, 8 to 15 percent slopes	Becket fine sandy loam, 15 to 25 percent slopes Becket very story fine sandy loam, 3 to 8 percent slopes Becket very story fine sandy loam, 8 to 15 nercent slopes Berket very story fine sandy loam, 8 to 15 nercent slopes	Becket very stony fine sandy loam, 15 to 25 percent slopes	Brayton and Westbury files sandy loams, 0 to 8 percent slopes Reauton and Westbury files sandy floams, 0 to 8 percent slopes		buxion siit loam, 15 to 25 percent slopes Buxton silt loam, 15 to 25 percent slopes	Chocorua peat Colton gravelly loamy coarce sand. O to 8 nercent sloves		Colton gravelly loamy coarse sand, 13 to 45 percent stopes.	Croghan loamy sand, 0 to 8 percent slopes. Crogham-Urban land complex, 0 to 8 percent slopes	Dumps	Elmwood fine sandy loam, 0 to 8 percent slopes	Elmwood fine sandy toam, 8 to 15 percent slopes	Hermon fine sandy loam, 3 to 8 percent slopes Hermon fine sandy loam, 8 to 15 percent slopes	Hermon fine sandy loam, 15 to 25 percent slopes	Hermon very stony fine sandy loam, 8 to 15 percent slopes	Hermon extremely stony fine sandy loan, 3 to 15 percent slopes	riermon extremely storif me sandy toam, 10 to ou percent stopes				
					SYMBOL		Adc	Age Alb	, i	988 BCC	0 8 8 0 8 8	BeD	BrB BrB	ang Bang	ang Bang	చ్ కి		300	CuB	Dm	EmB	Eac	HeB	Q.	HMC	HC					

F082 ****** \emptyset SPECIAL SYMBOLS FOR SOIL SURVEY Ø odic) CONVENTIONAL AND SPECIAL SYMBOLS LEGEND

Medium or small Large (to scale)

Well, artesian Well irrigation

Spring

Without road

With railroad With road

DAMS

Mine or quarry

*

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS--Continued

Soil name and map symbol	Depth	USDA texture		1	Frag- ments	P		ge pass number-		Liquid	Plas-
map symbol	In	i !	Unified		> 3 inches	4	10	40	200	limit	ticity index
Dob Doc Dob	!				Pct			1	}	Pct	
BeB, BeC, BeD Becket	1	sandy loam.	-	A-2, A-4		ł	!	!	!		
	2-23 	Fine sandy loam, sandy loam, gravelly sandy	SM 	A-2, A-4	5 - 15	70 - 90 	60-85	50-75	25-40	 	
	 23-60 	loam. Gravelly loamy sand, gravelly loamy fine sand, gravelly sandy loam.	l GM,	A-2 	5-15	60-85	55-75	25-70	 10-30 		
Bm Biddeford	14-0	 Mucky peat Silt loam, silty clay loam,	ML,	 A-8 A-4, A-6,	0	100	100	90-100	85-100	 30-62	5-25
	5-36		CL, CL-ML MH, ML	A-7 A-6, A-7 A-4, A-5	0	100	100	95-100	 90 – 100 	25-54	5-20
	36-60	Silty clay loam, silty clay, clay.	CL, CL-ML MH, ML	A-6, A-4	0	1 100	100	95-100	 90 –10 0 	25-40	5 - 15
BrB*: Brayton	0-5	Fine sandy loam		A-1,	0-15	80-90	 75-90	 45-90	 20 – 80	< 15	NP-4
·	i ! !		OL	A-2, A-4				 			! !
		Gravelly fine sandy loam, gravelly sandy loam, loam, silt loam,	GM, ML, SM	A-2, A-4, A-1	0-15	55-95	50-90 	30-90	15-80	<15	NP-4
	11-60		GM, SM, GM-GC, ML	A-2, A-4, A-1	0-15	45-75	40-90	25-85	10-70	<15	NP-4
Westbury	0-4	Fine sandy loam	SM, OL, ML	A-2, A-4, A-1	0-5	80-95	75 - 90	45 - 75	20-60	<15	NP-4
	4-23	Gravelly loam, silt loam, gravelly sandy loam.	SM, GM, ML	A-2, A-4, A-1	0-5	55-95	50-90	30-90	15-80	<15	NP-4
	23-36	Gravelly sandy		A-1, A-2, A-4	0-5	40-90	35-85	20-80	10-65	< 15	NP-4
			GM, GW-GM, SM, ML	A-1, A-2, A-4	0-5	40-90	35-85	20-80	10-65	<15	NP-4
BsB#: Brayton	0-5	Very stony fine	GM. SM.	A-4.	5_20	EE 00	 	20.75	15.50		
1	-	sandy loam.	ML, OL	A-1, A-2)-20 j	J9-0U ¦	JU-15	30-75	15-70	<15	NP-4
`	5-11	Gravelly fine sandy loam, gravelly sandy loam, loam, silt loam.	GM, ML, SM	A-2, A-4, A-1	0-15	55-95 	50-90	30-90	15-80	<15	NP-4
	11-60	<u> </u>	GM, SM, ML, GW-GM	A-2, A-4, A-1	0-15	45 - 95	40-90	25-85	10-70	<15	NP-4

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS--Continued

Soil name an	id ¦Depth	USDA texture	Classif		Frag- ments	i P∈ ¦		ge pa s si number		Liquid	Plas-
map symbol			Unified		> 3 linches	4	10		200	limit	
	In	!			Pct	!				Pct	
westbury	0-4	 Very stony fine sandy loam.	SM, ML, GM	 A-2, A-4, A-1	5-10	55-80	50-75	30-75	15 - 70	<15	NP-4
	4-23	silt loam, gravelly sandy	SM, GM,	A-2, A-4, A-1	0-5	55-95	50-90	30-90	15-80	<15	NP-4
	23-36	loam. Gravelly sandy loam, very gravelly fine sandy loam, loam.	SM, GM, GW-GM, ML	A-1, A-2, A-4	0-5	40-90	35-85	20-80	10-65	<15	NP-4
	36-60	•	GM, GW-GM, SM, ML	A-1, A-2, A-4	0-5	40-90	35-85	20-80	10-65	<15	NP-4
BuB, BuC, BuD Buxton	0-7	Silt loam	ML, MH	A-4, A-6, A-7, A-5	0	98-100	95-100	95-100	85-100	36-55	5-20
	7-19	Silt loam, silty clay loam.	ML, CL, CL-ML	A-4, A-6, A-7,	0	98-100	95-100	95-100	85-100	25-55	5-20
	19-60	 Silty clay, silty clay loam, clay.	 CL, CL-ML ML	A-5 A-6, A-4 	0	i 98–100 	95-100	95-100	 90–100 	25-40	5-15
Ch		Peat Gravelly sand, loamy sand, loamy fine sand.		A-8 A-1, A-3	0 0	100	 60-100	30-80	0-30		NP
CoB, CoC, CoD, Colton	CoE- 0-10	Gravelly loamy coarse sand.	SM, SP,	A-1, A-2, A-3	5-20	30-80	25 - 75	25-60	2-25		NP
	}	Gravelly loamy sand, very gravelly sand, cobbly sand.	SM, GM, SP, GP	A-1, A-2, A-3	5-20	30-80	25 - 75	20-50	2-20		ΝP
	18-60		GP, SP, GW, SW	A-1	10-45	20-55	15-50	10-30	0-5		NP
CrBCroghan	0-7	Loamy sand	i SM, SP-SM, SW-SM	A-1, A-3, A-4,	i 0 1	95-1.00	 95 - 100 	45 - 80	5-40		NP
	7-28	Sand, loamy sand, loamy fine sand.	SM, SP-SM, SW-SM	A-2 A-1, A-2, A-3,	i 0 	90–100	85–100	45-80	5 - 40		NP
	28-60	 Sand, loamy sand 	i SM, SP-SM, SW-SM	A-4 A-1, A-2, A-3	 0 	 90–100 	85–100	45-75	5-30	 	NP

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS--Continued

	Soil name and map symbol	Depth	USDA texture	Classif	Ţ		Frag- ments	P	ercenta sieve	ge pass number-		Liquid	T
	map symbot	1	i 	Unified	AAS	SHTO	> 3 inches	4	T 1'0	40	200	limit	Plas- ticit
		In			T		Pet		 	1	1 200	Pet	inde
	CuB*: Croghan	0-7	Loamy sand	SM, SP-SM, SW-SM	 A-1, A-3 A-4	,	0	95-100	 95-100 	 45-80 	5-40	 	NP
		7-28	 Sand, loamy sand, loamy fine sand.	SM, SP-SM, SW-SM	A-2 A-1, A-2 A-3 A-4	,	0	 90-100 	 85-100 	45-80	5-40		NP
		28-60	Sand, loamy sand	SM, SP-SM, SW-SM	A-1, A-2 A-3		0	90-100	 85–100 	45-75	5 - 30		 NP
	Urban land.	! !		<u> </u>			 -	; i !	 	<u> </u>			1
	Dm*. Dumps			!	 					, 		,	
	EmB, EmC Elmwood	0-14 14-20	Fine sandy loam Sandy loam, fine sandy loam, silt loam.	SM, ML	 A-2, A-2,			100 100	95-100 95-100	 55 – 85 55 – 95	30 - 55 30 - 75	<30 <30	NP NP
		20-60	Silty clay loam, clay loam, clay.	CL, CH	A-7,	A-6	0	100	100	90-100	90-100	35-55	 15 - 30
-	deB, HeC, HeD Hermon	0-6 6-19		SM SM	A-2, A-1, A-4	A-4 A-2	0-5 20-35	85 - 95 70 - 90	75-90 50-75	55-80 30-60	 25-45 15-40 	<40 <40	NP-1 NP-1
		19-60	sandy loam. Gravelly loamy coarse sand, very gravelly loamy sand.	SP-SM, SM GP-GM GM	A-1, A-3	A-2	20-40	45-80	40-70	20-55	5-25		NP
I	HmB, HmC, HmD Hermon	0-4	Very stony fine		A-1,	A-2	5-35	70-95 ¦	50-90 ¦	30-80	15-45	<40	NP-1
	ner mon	4-19	sandy loam. Gravelly coarse	i	A - 4	ì	i	70-90	}	!	!	<40	NP-1
		19-60	sandy loam, gravelly fine sandy loam, very gravelly sandy loam. Gravelly loamy coarse sand, very gravelly loamy sand.		A-4					1	5-25		NP
F	InC, HnEHermon	0-4	Extremely stony fine sandy loam.	SM	A-1, A-4	A-2	20-50	70-95	50-90	30-80	15-45	<40	NP-1
		4-19	Gravelly coarse sandy loam, gravelly fine sandy loam, very gravelly	SM	A-1, A-4	A-2	20-35	70-90	50 - 75	30-60	15-40	<40	NP-1
		19-60	sandy loam. Gravelly loamy coarse sand, very gravelly loamy sand.	SP-SM, SM GP-GM, GM	A-1, A-3	A-2	20-40	45-80	40-70	20-55	5-25		ΝP

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS

[The symbol < means less than; > means more than. Absence of an entry indicates that data were not estimated.

NP = nonplastic]

Soil name and	Depth	USDA texture	Classif	ication	Frag= ments	 P	ercenta sieve	ge pass number-		Liquid	! Dl
map symbol		1	Unified	AASHTO	> 3 inches	4	10	1 40	200	limit	Plas- ticity index
	In			I	Pct	<u> </u>	İ	 	1 200	Pct	Index
AdB, AdC, AdD Adams	0-3	Loamy sand	SM, SP-SM	A-1, A-2, A-3,	0	95-100	 95 - 100 	45-85	5-40		NP
	 3-18 	Loamy sand, sand, sand, loamy fine sand.	SM, SP-SM	A-4 A-1, A-2, A-3,	0	95-100	 95–100 	 35 - 95	5-40	 	NP
	18-60	Sand, coarse sand.	SP-SM, SW-SM, SP	A-4 A-1, A-2, A-3	0-1	90-100	70-100	20-90	0-10	 	 NP
AgB#:				i !				 !		!	1
Adams	0-3 	Loamy sand	SM, SP-SM	A-2, A-3,	0	95-100	95-100	45-85	5-40	 	NP
	3-18	Loamy sand, sand, loamy fine sand.	SM, SP-SM	A-2, A-3,	0	95-100	95-100	35-95	5-40		NP
	18-60	Sand, coarse sand.	SP-SM, SW-SM, SP	A-4 A-1, A-2, A-3	0-1	90-100	70-100	20-90	0-10		NP
n land.											
Alb, Alc Allagash	0-7	Very fine sandy	SM, ML	A-4, A-5	0	95-100	95-100	65-100	40-90	<44	NP-9
• •	7-20	Fine sandy loam, loam,	SM, ML	A-2, A-4	0	95-100	75-100	50-95	30-75		NP
	20-38	Fine sand, loamy fine sand, sand.	SM, SP-SM	A-1,	. 0	85-100	75-100	35-80	5-35 		NP
To the state of th	38-60	Stratified loamy fine sand to very gravelly sand.	SP, SM, SW	A-3 A-1, A-2, A-3	0-10	70-100	25-100	10-75	0-30		NP
Ba*. Beaches								!		; ;	
BcB, BcC, BcD Becket	0-6 6-23	Fine sandy loam Fine sandy loam, sandy loam, gravelly sandy	SM SM	A-2, A-4 A-2, A-4	0-15 5-15	85-95 70-90	55-90 60-85	35 - 75 50 - 75	20-50 25-40		
	23-60	loam. Gravelly loamy sand, gravelly loamy fine sand, gravelly sandy loam.	SM, SP-SM, GM, GP-GM	A-2	5-15	60-85 	55-75	25 - 70	10-30		

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS--Continued

	1	Τ	Classif	catio	on	Frag-	Pe	rcenta	e pass	ing		·
	Depth	USDA texture	Unified			ments	ļ		umber-		Liquid	Plas-
map symbol	<u> </u>	! !	OUTLIED	AASI	110	> 3 inches	i 4	10	40	i 200	TIWIC	ticity index
	<u>In</u>					Pet					Pct	
LnB, LnC, LnD Lyman		Loam, gravelly sandy loam, very fine sandy	¦SM, ML, ¦ GM				80-95 65-95				<30 <30	NP-6 NP-4
	 18 	loam. Unweathered bedrock.			•							
LyB*, LyC*, LyE*:	! ∩_# !	 Fine sandv loam	! !qw m/t	14-2	A _ 4	. 0_15	80-95	! 70_90	<u>и</u> 5_85	 25_70	 <30	NP-6
	4-18 -	Loam, gravelly sandy loam, very fine sandy loam, loam. loam. Unweathered bedrock.	SM, ML, GM	A-2,	A-4	0-15	65-95 	60-85	45-80	25-70	<30 	NP-4
Rock outerop.	; ! !	 						:				
MaB Madawa ska		Fine sandy loam Fine sandy loam, sandy loam.		A-4 A-4		0	100 100	85-100 85-100	65-95 65 - 95	35 - 75 35 - 75		N P N P
	23 – 60	Fine sand, sand, very fine sand.		A-2, A-4	A-3	0	100	85-100	50-80	5-45		NP
MrB, MrC2, MrD2 Marlow	1	ĺ	SM, ML	}			80-95				<30	NP-8
1	9-29 	Fine sandy loam, loam, gravelly sandy loam.		A-2,	A-4	0-15	70 - 95	60 - 90	50-85	30-60 	<3 0	NP-8
	29 - 60 	Fine sandy loam, loam, gravelly sandy loam.		A-2,	A-4	0-15	70 - 90	60-85	50-80	25-55	<30	NP-8
MvB, MvC, MvD Marlow	0-2		CL-ML, SM	A-2,	A-4	5-15	80-95	70-90	55-85	30-60	<30	NP-8
	2-29	Fine sandy loam, loam, gravelly	CL-ML, SM	A-2,	A-4	5-15	70-95	60-90	50-85	30-60	<30	NP-8
	29-60	sandy loam. Fine sandy loam, loam, gravelly sandy loam.		A-2,	A-4	5-15	70-90	60 - 85	50-80	25-55	<30	NP-8
Naumburg	0-5	Sand	SM, SW-SM, SP-SM	A-2,	A-4	0	95-100	95-100	50-85	5-45		NP
	5-28		SM, SW-SM,	A-1, A-2,	,	0	90-100	90-100	45-85	5-35		NP
	28-60	sand. Sand, fine sand, loamy fine sand.	SP-SM SM, SW-SM, SP-SM	A-3 A-1, A-2, A-3	•	0	90-100	90-100	45-80	5-35		NP
OnOndawa		Fine sandy loam Fine sandy loam, sandy loam, loam.		A-2, A-2,			•	95-100 95-100			<40 <40	NP NP
	30-60	Loamy fine sand, fine sand, sand.	SP, SM	A-2,	A-3	0	90-100	80-100	70-90	0-35		NP
			ı i		i	ı	ı i	ı	ı i	ı	ı i	

TABLE 14.--ENGINEERING INDEX PROPERTIES AND CLASSIFICATIONS--Continued

Soil name and	Depth	USDA texture	Classif			Frag- ments	Pe	rcentag sieve r	ge passi number		Liquid	Plas-
map symbol			Unified	AAS		> 3 inches	4	10	40	200	limit	ticit; index
	In					Pet	i i	i	i !		Pct	
PeB Peru	0-9	Fine sandy loam	CL-ML	,			80 - 95	}			<30 	NP-8
10.4	9-20	Fine sandy loam, loam, gravelly	SM, ML, SC,	A-2,	A-4	0-15	75-95	65-95	60-85	30–65	<30 	NP-8
	20-60	sandy loam. Fine sandy loam, loam, gravelly sandy loam.		A-2,	A-4	0-15	70-90	60-90	55-85	20-60	<30 	NP-8
Pg*. Pits	! ! !											
Po*: Podunk		Silt loam Fine sandy loam, sandy loam,		 A-2, A-2,					60-100 60-95		 	NP NP
·	25-60	loam, Loamy fine sand, loamy sand, gravelly coarse sand.	1	A-2, A-1 A-3	,	0	65-100	55-100	35 - 85	5-25		NP
Winooski			HL, SM	i A-4		0	100	i 95 – 100	90-100	40-90	<30	NP
-		loam. Silt loam, very fine sandy loam, loamy very fine sand.	·	A-4		0	100	95-100	90-100	40-90	<30	ΝP
Raynham		Silt loam Silt loam, silt, very fine sandy loam.	ML	A-4 A-4		0			80=100 80=100 			NP-10 NP-10
	36-60	Silt loam, silt, very fine sandy loam, silty clay loam.		A-4		0	100	95 - 100 	80-100	55 - 95 	20-35	NP-10
RoC*, RoE*: Rock outcrop.			 				1 1 1 1 1	: : : :		 		
Lyman		Fine sandy loam Loam, gravelly sandy loam, very fine sandy	SM, ML,	A-2, A-2,	A - 4 A - 4	0-15 0-15	80 - 95 65 - 95	70-90 60-85 	45-85 45-80 	25-70 25-70 	<30 <30	NP-6 NP-4
	18	loam. Unweathered bedrock.			-			 !		 	 	 !
RuRumn ey	0-9 9-25	Loam Fine sandy loam, sandy loam,	ML, SM	A-4 A-2,	A-4	0	100		70-100 50-95		<40 <40	NP NP
	25-60	loam. Stratified loamy fine sand to gravelly sand.	SP-SM, SM	A-1, A-2 A-3	,	0	80-100	55-95	25-70	5-30	<40	NP
Sa		Mucky silt loam Silt loam, very fine sandy		A-4 A-4		0	100	100 90-100	95-100 80-100		<40 <40	NP-1 NP-1
	24-44	loam. Silt loam, very fine sandy	ML	A-4		0	100	90-100	80-100	50-95	<25	NP-5
)	44-60	loam. Coarse sand, gravelly sand.	SP, SM	A-1, A-2 A-3	· ,	0	80-100	50-85	35-70	0-15		NP

TABLE 15.--PHYSICAL AND CHEMICAL PROPERTIES OF SOILS

The symbol < means less than; > means more than. Entries under "Erosion factors--T" apply to the entire profile. Entries under "Organic matter" apply only to the surface layer. Absence of an entry indicates that data were not available or were not estimated]

Soil name and	Depth	Clay <2mm	Moist bulk	Permeability	,	 Soil reaction	Shrink-swell potential	Eros fact K		Organic matter
шар бушост		7.4	density G/cm ³	In/hr	capacity In/in	pH		1		Pct
dB, AdC, AdD Adams	<u>In</u> 0-3 3-18 18-60	0-5	1.10-1.40 1.25-1.55 1.45-1.65	6.0-20 6.0-20	,	4.5-5.5 4.5-5.5	Low Low Low	10. Hi	5	1-4
gB*: Adams	 0-3 3-18 18-60	0-5	 1.10-1.40 1.25-1.55 1.45-1.65	6.0-20	10.05-0.10 10.04-0.08 10.03-0.04	4.5-5.5	 Low Low Low	10.17	5	1-4
Urban land. NIB, AlC Allagash	0-7 7-20 20-38 38-60	2 - 12 2 - 5	 0.95-1.25 1.20-1.50 1.35-1.65 1.40-1.70	2.0-6.0	0.16-0.22 0.08-0.24 0.06-0.18	1 4.5-6.5 3 4.5-6.5	Low Low Low Low	10.28		2-8
3a*. Beaches				0.6-2.0	10 10=0 2	 	 Low	0.20	 3	3-7
3cB, BcC, BcD Becket	0-6 6-23 23-60		10.90-1.20 11.20-1.50 11.65-1.80	0.6-2.0	10 05 0 16	5 ! 5 1 <u>-</u> 6 5	Low	10.28	i 	
BeB BeD	0-2 2-23 23-60)	0.90-1.20 1.20-1.50 1.65-1.80	0.6-2.0	0.10-0.2 0.05-0.10 0.03-0.00	615.0-6.5	Low	10.28 10.17	 	
Bm Biddeford	14-0 0-5 5-36 36-60		0.10-0.30 10.90-1.20 11.60-1.80 11.70-1.95	0.2-0.6	0.20-0.4 0.24-0.3 0.13-0.2 0.06-0.1	4 5.1-7.3 3 5.6-7.8	Low Moderate	·	<u> </u> 	
BrB*: Brayton	- 0-5 5-1 11-6	1 6-12	0.90-1.20 1.40-1.70 1.70-2.00	0.6-6.0	0.08-0.1	7 4.5-6.5 5 5.6-7.3	Low	-¦0.24 -¦0.24		2-8
Westbury	0-4 4-2 23-3 36-6	3 3-12 6 3-12	0.90-1.20 1.40-1.7 11.70-2.0	0.6-2.0	10.07-0.1	5 3.6-6.0	Low Low Low	-10.24 -10.24	i	2-8
BsB*: Brayton	- 0-5 5-1 11-6	1; 6-12	0.90-1.2 11.40-1.7 11.70-2.0	0.6-6.0	10.08-0.1	7 4.5-6.5 5 5.6-7.3	Low Low Low	-10.24 -10.24	i 	
Westbury	- 0-4 4-2 123-3 136-6	3 3-12 6 3-12	10.90-1.2 11.40-1.7 11.70-2.0	0 0.6-2.0	10.07-0.1	5 3.6 - 6.0	Low Low Low	-10.24 -10.24	† ; ↓ ¦	2-8
BuB, BuC, BuD Buxton	1	 15-30 9 20-40	0.90-1.2 1.20-1.5 11.75-1.9	5 0.2-0.6	0.13-0.2 0.06-0.	23 4.5-6.5 16 5.6-7.3	Low Low Moderate	- 0.49	91	4-7
ChChocorua	0-3 32-6		<0.30 <0.30	0.6-6.0 >6.0	0.20-0.2	25 3.6-4.5 11 4.5-6.0		-	-	

ee footnote at end of table.

TABLE 15.--PHYSICAL AND CHEMICAL PROPERTIES OF SOILS--Continued

Soil name and	Depth	Clay <2mm		Permeability			Shrink-swell		sion tors	Organio
map symbol			bulk density	 	water capacity	reaction	potential	K	T	matte
	<u>In</u>	Pct	G/cm ³	In/hr	In/in	pH				Pet
CoB, CoC, CoD,]]		! ! !		İ	i i ¦ ¦	_
CoE	0-10 10-18		1.10-1.40 1.25-1.55		10.03-0.07 10.02-0.05		Low			3-7
	18-60		1.45-1.65		0.01-0.02		Low			
CrB	0_7	 0 - 5	1.20-1.50	i 6.0-20	1 10.05-0.09		Low	10.17		
	7-28		1.20-1.50		10.03-0.09		Low		,	2-9
	28-60	0-5	1.20-1.50	>20	10.03-0.06	4.5-6.0	Low	0.17		
CuB*:			l I	1 1 1	1 1	i !		i I	i i	
Croghan	0-7 7-28		1.20-1.50 1.20-1.50		10.05-0.09		Low			
	28-60		1.20-1.50				Low			
Urban land.			: 		1					
			l	1 1 1	 	1 1 1		; 		
Dm*. Dumps				 		<u> </u>			ļ į	
บนแบอ	i			 	1	i !		i 1		
EmB, EmC			1.00-1.30				Low			3-7
	14-20 20-60		1.15-1.45				Low Moderate			
					;	1	}			
HeB, HeC, HeD	0-6 6-19		0.95 - 1.20	i .			Low			3-7
•	19-60		1.50-1.80				Low			
HmB, HmC, HmD	O_4	2 - 6	0.95-1.20	6.0-20	10 10-0 20	 2 6 .E E	Low	10 17		
rmon HmB	4-19	2-7	1.00-1.30	6.0-20	0.07-0.14		Low			
, , , ,	19-60	1-4	1.50-1.80	6.0-20	0.01-0.10	5.1-6.0	Low	0.17		
HnC, HnE	0-4	2-6	0.95-1.20	6.0-20	0.08-0.18	1 3.6-5.5	Low	0.17	3	
	4-19 19-60		1.00-1.30		0.07-0.14		Low			
1		1-4	1.50-1.80	6.0-20	0.01-0.10 	5.1 -0. 0	Low	(0.17)		
LnB, LnC, LnD Lyman	0-4 4-18		0.90-1.20				Low			1-4
Lyman !	18			2.0-0.0	10.07=0.18		Low			
LyB*, LyC*, LyE*:	i			1						
Lyman	0-4		0.90-1.20		0.11-0.20	3.6-6.0	Low	0.20	2	1-4
ļ	4-18 18	2 - 10	1.20-1.40	2.0-6.0			Low	0.20		
	10				;				i	
Rock outcrop.	ļ								j	
MaB			0.95-1.25	2.0-6.0	0.11-0.25	 4.5-6.0	Low	0.28	3 !	3-9
	10-23		1.20-1.50	2.0-6.0	10.09-0.18	4.5-6.0	Low	0.28	"	J ,
į	23-60	0-5	1.35-1.65	6.0-20	;0.02 - 0.08 	4.5-6.0	Low	0.28		
MrB, MrC2, MrD2			0.90-1.20				Low			3-8
	9-29	-	1.20-1.50 1.70-2.00				Low			
İ	İ	Ī							i	
MvB, MvC, MvD; Marlow	0-2 2-29		0.90-1.20 1.20-1.50				Low			
	29-60		1.70-2.00				Low			
 Na	0-5	0 - 5	1.10-1.40	2.0-6.0	 0.05=0.09	3 6-5 5	Low	0 17	5	2-7
Naumburg	5-28	0-5	1.25-1.55	6.0-20	0.06-0.08	3.6-5.5	Low	0.17	Ì	2 - 1
	28-60	0 - 5	1.45-1.65	6.0-20	0.04-0.06	4.5-6.5	Low	0.17		
On	0-9	0-10	1.10-1.40				Low			3-7
	9-30		1.20-1.50	2.0-6.0			Low			<i>J</i> .
i	30-60	0-5	1.20-1.50	2.0-20	i U . U 1 – U . 13 !	i4.5-6.5	Low	!	!	

See footnote at end of table.

Po*:
Podu
Win
Ra-Ray
RoC'
Ro
Ly
RuRi
Sa

Soil map

PeB---Peru

Pg*. Pits

TABLE 15.--PHYSICAL AND CHEMICAL PROPERTIES OF SOILS--Continued

			T	FILISICAL	AND CHEMICAL	PROPERTIES	OF SOILS-	-Continued			
	Soil name and map symbol		Clay <2m	Moist bulk density	Permeability	/ Available water capacity	Soil reaction	Shrink-swell potential	fac	sion tors	Organic matter
		In	Pct	G/cm ³	In/hr	In/in	pH	i !	! K	T	
	PeB Peru	0-9 9-20 20-60		0.90-1.20 11.20-1.50 11.70-2.00	0.6-2.0	10.00-0.20	 4.5-5.5 4.5-6.0	Low Low Low	10 10		<u>Pct</u> 3-8
	Pg*. Pits				i 						
	Po*: Podunk	0-8 8-18 18-25	0-10 0-10 0-5	1.10-1.40 11.20-1.50 11.20-1.50	2.0-6.0	10.09-0.18;	14.5-6.5 !	LowLow	i i		3-9
	Winooski	11-60		1.10-1.40	0.6-6.0	0.15-0.30	4.5-7.3	LowLowLow	0 310	3	3-9
1	Ra Rayn ham	0-6 6-36 36-60		1.10-1.40 1.20-1.50 1.30-1.60	0.2-2.0	0.20-0.25	5.1-7.3 5.1-7.3	Low Low	0.49	3	3-9
1	Roc*, RoE*: Rock outerop.								0.64	; ;	
	L yma n	2-18	2-10 2-10	0.90-1.20	2.0-6.0 2.0-6.0	10.01-0.101	3.0-0.0 H	_OW	0 201	2	
R	u Rumney	9-25 25-60 	0-10	1.10-1.40 1.20-1.50 1.20-1.50	2.0-0.0	0.15-0.27 0.11-0.19 0.01-0.13	 	.ow			4-9
	Saco	- 0-13 13-24 24-44 44-60	1-10 ;	<0.90 1.00-1.30 1.20-1.50 1.20-1.50	0.6-2.0	10.10-0.26;5	5.1-6.5 L	.0w	0.64		
		114-36	20-60 ¦	1.05-1.22 1.15-1.75 1.50-1.75	0.2-2.0 <0.2	; 0.24-0.34 5 0.13-0.23 5	5.1-7.3 L 5.1-7.3 M	ow(oderate(oderate(0.28	3	4-7
		7-26 26-60	2-15	1.20-1.50 1.20-1.50 1.45-1.65	0.6-2.0 0.6-2.0	0.18-0.21 4 0.17-0.20 4	.5-6.0 L	ow).49	3	2-8
2	ebago			0.10-0.30	2.0-6.0	0.20-0.40 3	.5-4.5				
S	B, SkCkerry	: :	3-8	0.90-1.20 1.20-1.50 1.65-1.80		0.10-0.23 4 0.06-0.16 4 0.03-0.09 4	•5-0.U ild	0 W0 0 W0	28!	3	3-7
	B, SrC kerry	0-2 2-33 33-60	3-8 ;	0.90-1.20 1.20-1.50 1.65-1.80		· · · · · · · · · · · · · · · · · · ·	.5-6.0 Lo .5-6.0 Lo	W	.24 3	3	
SU S	*. ulfihemists		; ;			0.03-0.0914.	.5-0.0 Lo	w 0	. 17		
UD:	: dipsamments.							;			
	ine land.			į		i !				-	
Ur! Ur	ban land		; ;	; !		 					ä
18	ban land.	;									

TABLE 16. -- SOIL AND WATER FEATURES

[The definitions of "flooding" and "water table" in the Glossary explain terms such as "rare," "brief," "apparent," and "perched." The symbol < means less than; > means more than. Absence of an entry indicates that the feature is not a concern]

			Flooding		HIRH	Water	table	Redrook		K - 1 - 2 0 1	
map symbol	inyarotogic group	Frequency	Duration	Months	Depth	Kind	Months	Depth	Potential frost action	Uncoated	Corrosion
					F		-}	In		steel	
AdB, AdC, AdD	⋖	No ne			0.9<	!		>60	Low	Low	High.
AgB#:	·										
Acces	∢	None	!	:	0.9<	!		>60	Low	Low	High.
										,	
AlB, AlC	Ф	No ne			>6.0	;		09<	Low	Low	High.
Ba*. Beaches											
BcB, BcC, BcDBecket	ပ် 	None	ļ	!	2.0-3.0	Perched	Nov-Mar	09<	Moderate	Low	Moderate.
BeB, BeC, BeDBecket	U	None			2.0-3.0	Perched	Nov-Mar	09<	Moderate	Low	Moderate.
BmBiddeford	Q	No ne	-		+1-0.5	Perched	Nov-Aug	09<	High	High	Moderate.
Brayton	v	None			0.0-1.5 Perched		N N				;
Westbury	υ	None			0.5-1.5	Perched	N WINCH		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n 18n	Moderate.
BsB*; Brayton	ပ	None	 			2				acuter ace	H18n.
Westbury	<u>ပ</u>	None	 			La de de de de de de de de de de de de de	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	H18h	High	Moderate.
BuB, Buc, BuD Buxton	υ	None		· I	1.0-3.0 Perched	erched	Nov-May		High	Moderate High	High. Moderate.
Chocorua	Ω	Совтоп	Very long	Nov-May	0-0.5	Apparent Jan-Dec	Jan-Dec	09<	High	Moderate	High.
CoB, CoC, CoD, CoE	≪.	No ne			0.9<		 ! !	09<	Гом	Low	High.
CrBcroghan	m	None			1.5-2.0 A	Apparent	Nov-May	09<	Moderate	Low	High.
CuoghanUrban land.	<u>α</u>	None			1.5-2.0 A	Apparent Nov-May	√ov-May	09	Moderate	Low	High.
		•	-	-	-	-			_	-	

TABLE 16.--SOIL AND WATER FEATURES--Continued

			Flooding		High	water	table	Bedrock		Riskof	Corrosion
map symbol	Hydrologic group	Frequency	Duration	Months	Depth	Kind	Months	Depth	Potential frost action	tial action Uncoated	Concrete
					ᆲ			u.I		steel	
Dumps	·•	·	·								
EmB, EmCElmwood	υ 	None			1.0-3.0	Perched	Nov-May	09<	High	Moderate	Moderate.
HeB, HeC, HeD, HmB, HmC, HmD, HnC, HnE	A	None	!	;	>6.0			09<	1 1 1 1 2 3	3300	2 0 7
LnB, LnC, LnD	υ 	None		1	0.9 2			10-20	Moderate	Low	High.
LyB*, LyC*, LyE*: Lyman	·	NO DO	! ! !		 0			6			,
Rock outcrop.							 !			 	inign.
MaB Madawa ska	Δ.	None			1.0-3.0	Apparent Nov-May	Nov-May	>60	Moderate	Moderate	High.
MrB, MrC2, MrD2, MvB, MvC, MvD Marlow	U	None			2.0-3.0	Perched	Nov-Mar	>60	Moderate		Moderate.
NaNaumburg	υ	None	 		0-1.5	Apparent	Nov-May	09<	Moderate	High	High.
Ondawa	æ	Common	Brief	Nov-Apr	3.0-6.0	3.0-6.0 Apparent Nov-May	Nov-May	09<	Moderate		Moderate.
Pe B	ڻ ٽ	None	1		1.5-3 0 1	Perched	Nov-Mar	09<	High	Moderate	Moderate.
Pg*. Pits											
Po*:	æ	Occasional	Brief	Oct-Apr	1.5-3.0	Apparent Oct-Apr	Oct-Apr	09<	Moderate	Modern atte	Σ O C c c c c c c c c c c c c c c c c c c
Winooski	<u>м</u>	Occasional	Brief		1.0-3.01	Apparent Oct-Apr	Oct-Apr	09<	High	Moderate	Moderate.
RaRayn ham	υ	None	;		0.5-5.0	0.5-2.0 Apparent Nov-Jun	Nov-Jun	09<	High	High	Moderate.
RoC*, RoE*: Rock outcrop.				*****				· • • • • • • • • • • • • • • • • • • •			
Lyman	ပ	None			0.9<			10-20	Moderate	Low	High.
Ru	υ	Frequent	Brief	Nov-May	0-1.5 A	Apparent Nov-Jun	Nov-Jun	09<	High	High	High.
·-			-								

See footnote at end of table.

TABLE 10.--BUILDING SITE DEVELOPMENT--Continued

Soil name and map symbol	Shallow excavations	Dwellings without basements	Dwellings with basements	Small commercial buildings	Local roads and streets	Lawns and landscaping
BsB*: Brayton	 Severe: wetness.	 Severe: wetness, frost action.	Severe: wetness.	Severe: wetness, frost action.		Moderate: wetness.
Westbury	Severe: wetness.	 Severe: wetness, frost action.	 Severe: wetness.	Severe: wetness, frost action.	 Severe: wetness.	Moderate: wetness, large stones.
Buxton	Severe: too clayey, wetness.	Severe: wetness, frost action.	Severe: wetness.	Severe: wetness, frost action.	Severe: frost action, low strength.	Moderate: wetness.
BuCBuxton	too clayey, wetness.	Severe: wetness, frost action.	Severe: wetness.	Severe: slope, wetness.		Moderate: slope, wetness.
Buxton	Severe: slope, too clayey, wetness.	Severe: slope, wetness, frost action.	Severe: wetness, slope.	Severe: slope, wetness.		
Chocorua	Severe: wetness, excess humus.	Severe: wetness, excess humus.	wetness.	Severe: wetness, excess humus.	Severe: wetness, excess humus.	Severe: wetness, floods.
Colton	Severe: small stones.	Slight	Slight	Moderate:	Slight	Moderate: small stones, droughty.
Colton	Severe: small stones.	Moderate: slope.	 Moderate: slope.	Severe: slope.	Moderate: slope.	Moderate: small stones, slope.
Colton	Severe: slope, small stones.	Severe: slope.	 Severe: slope.	Severe:		Severe: slope.
rB Croghan	wetness,	Moderate: wetness, frost action.	Severe: wetness.	Moderate: slope, wetness, frost action.	Moderate: frost action.	 Severe: too sandy.
uB*: Croghan	wetness.	 Moderate: wetness, frost action.	Severe: wetness.	 Moderate: slope, wetness, frost action.	Moderate: frost action.	 Severe: too sandy.
Urban land. m*. Dumps	i - - -		; ;			
mBElmwood	Severe: wetness, too clayey.		Severe: wetness.	Severe: frost action.	Severe: frost action, low strength.	Slight.
mC	Severe: wetness, too clayey.	Severe: frost action.	Severe: wetness.	 Severe: slope, frost action.		Moderate: slope.
eBHermon	Moderate: cutbanks cave.	Slight	Slight	Moderate:	Slight	Slight.
on	Moderate: slope, cutbanks cave.	Moderate:	Moderate:	Severe: slope.	Moderate:	Moderate: slope.

TABLE 10.--BUILDING SITE DEVELOPMENT--Continued

Soil name and map symbol	Shallow excavations	Dwellings without basements	Dwellings with basements	Small commercial buildings	Local roads and streets	Lawns and landscapin
						T
	 Severe:	 Severe:	 Severe:	i !Cauana.	10	!
Hermon	slope.	slope.	slope.	Severe:	Severe:	Severe:
ele.mo≀i	brope.	; stope.	i stope.	slope.	slope.	slope.
R	Moderate:	Moderate:	Moderate:	Moderate:	Slight	 Moderate:
dermon	large stones.	large stones.	large stones.	large stones.	!	large stone
	cutbanks cave.			slope.	į	i raige prone
		1	1		İ	
mC	Moderate:	Moderate:	Moderate:	Severe:	Moderate:	Moderate:
Hermon			large stones,	! slope.	slope.	! slope,
	slope.	slope.	slope.		!	large stone
	100	10	10		<u> </u>	1
mD Hermon	Severe: slope.	Severe: slope.	Severe:	Severe:	Severe:	Severe:
Met mon	i stope.	i stope.	slope.	slope.	slope.	slope.
nc	Severe:	Severe:	Severe:	Severe:	Moderate:	i Icanama.
Hermon			large stones.		slope,	¦Severe: ¦ large stone
	1	1		large stones.	large stones.	i Taige 2000e
		į			1	!
nE	Severe:	Severe:	Severe:	Severe:	Severe:	Severe:
Hermon	slope,	slope,	slope,	slope,	slope.	slope,
	large stones.	large stones.	large stones.	large stones.		large stone
	i Isanana	i 10	18-4	10		!
nB Lyman	Severe:	Severe:	Severe:	Severe:	Severe:	Severe:
LJ ma	depon to rock.	l dehen to Lock.	depth to rock.	depth to rock.	aepth to rock.	; depth to ro
n C	 Severe:	¦Severe:	! Severe:	!Severe:	i ¦Severe:	ISougne
Lyman			depth to rock.	slope.	depth to rock.	Severe:
Ī.		}	400011 00 10011	depth to rock.	!	i gebru co to
	ĺ	i			1	! !
ļ	Severe:	Severe:	Severe:	Severe:	Severe:	Severe:
Cyman	; slope,	slope,	: slope,	; slope,	slope.	slone
r S	depth to rock.	depth to rock.	depth to rock.	depth to rock.	depth to rock.	depth to ro
: yB # :	i		!			1
yp~: Lyman	i Idanama	i ! •			<u> </u>	1
Lyman	Severe:	Severe:	Severe:	Severe:	Severe:	Severe:
	! depen to rock.	depun to rock.	depth to rock.	depth to rock.	depth to rock.	depth to ro
Rock outerop.			¦	! !		! !
·	1		<u>'</u>) { !		!
yC*:	!					1
Lyman		Severe:	Severe:	Severe:		Severe:
	depth to rock.	depth to rock.	depth to rock.		depth to rock.	depth to ro
£.	,			depth to rock.		1
Rock outerop.	!	i I				
outer op.			! ! .	i I		i •
γE*:			!	! !		i i
Lyman	Severe:	Severe:	Severe:	Severe:	Severe:	!Savere.
	slope,	slope.	slope.	slope.	slone	Severe: slope,
	depth to rock.	depth to rock.	depth to rock.	depth to rock.	depth to rock.	depth to ro
		_	· ·			
lock outerop.					1	
B	i Isanana	W				
ladawaska	Severe: wetness,		Severe:	Moderate:		Slight.
uwaska		wetness, frost action.	wetness.	slope,	frost action.	
	Cuvvanko Cave.	riost action.	 -	wetness, frost action.		
				i ilose accion.) -
B	Moderate:	Moderate:	Moderate:	Moderate:	Moderate:	Slight.
larlow	wetness.	frost action.	wetness.		frost action.	PITEII.
				slope.	,	
		İ		· r		
02			Moderate:	Severe:	Moderate:	Moderate:
Marlow	wetness,	frost action,	wetness,	slope.	frost action,	slope.
ar-	slope.	slope.	slope.		slope.	•
H .	Severe:	8	g		į	
		Severe:	Severe:	Severe:	Severe:	Severe:
1	slope.	slope.	slope.	slope.	slope.	slope.

TABLE 10.--BUILDING SITE DEVELOPMENT--Continued

Soil name and map symbol	Shallow excavations	Dwellings without basements	Dwellings with basements	Small commercial buildings	Local roads and streets	Lawns and landscaping
MvB Marlow		Moderate: frost action.	 Moderate: large stones, wetness.	 Moderate: frost action, slope.	 Moderate: frost action.	Moderate: large stones
MvC Marlow	Moderate: slope, wetness.	 Moderate: frost action, slope.	Moderate: slope, wetness.	 Severe: slope.		 Moderate: large stones slope.
MvD Marlow	Severe: slope.	Severe: slope.	Severe: slope.	Severe: slope.	Severe: slope.	 Severe: slope.
Na Naumburg	Severe: wetness, cutbanks cave.	Severe: wetness.	Severe: wetness.	Severe: wetness.	Severe: wetness.	 Severe: wetness.
On Ondawa	Severe: floods.	Severe: floods.	Severe: floods.	Severe: floods.	 Severe: floods.	i Moderate: floods.
PeB Peru	Severe: wetness.	 Severe: frost action.	Severe: wetness.		Severe: frost action.	 Slight.
Pg*. Pits	! ! !	1 1 1 1	 	† 	f 1 1 1 1 1	
Po*: Podunk	 Severe: floods, wetness.	Severe: floods.	Severe: floods, wetness.	 Severe: floods.	 Severe: floods.	Severe: floods.
inooski	 Severe: floods, wetness.	 Severe: floods, frost action.	floods,		 Moderate: floods. 	 Moderate: floods.
Ra Raynham	Severe: wetness.	Severe: frost action, wetness.	· ·		 Severe: frost action, wetness.	 Moderate: wetness.
RoC*: Rock outerop.			F	!		
Lyman		 Severe: depth to rock. 	Severe: depth to rock.		depth to rock.	 Severe: depth to roc
RoE*: Rock outerop.	i 			 	 	
L yman	 Severe: slope, depth to rock.	Severe: slope, depth to rock.	slope,	slope,	; slope,	 Severe: slope, depth to roc
Ru Rumney	floods, wetness,	Severe: floods, wetness, frost action.	Severe: floods, wetness.	Severe: floods, wetness, frost action.	Severe: floods, wetness, frost action.	Severe: floods, wetness.
Sa Saco	Severe: floods, wetness, cutbanks cave.	Severe: floods, wetness, frost action.	Severe: floods, wetness.	Severe: floods, wetness, frost action.	Severe: floods, wetness, frost action.	Severe: floods, wetness.
ScScantic	Severe: wetness, too clayey.	Severe: wetness, frost action.	Severe: wetness.	Severe: wetness, frost action.	Severe: wetness, low strength, frost action.	Severe:
BScio	 Severe: wetness.	 Severe: frost action.	Severe: wetness.	 Severe: frost action.		

TABLE 12. -- CONSTRUCTION MATERIALS

[Some terms that describe restrictive soil features are defined in the Glossary. See text for definitions of "good," "fair," and "poor." Absence of an entry indicates that the soil was not rated]

Soil name and map symbol	Roadfill	Sand	Gravel	Topsoil
AdB, AdCAdams	 - Good	Good	Unsuited: excess fines.	Poor: too sandy.
AdDAdams	- Fair: slope.	Good	Unsuited: excess fines.	Poor: slope, too sandy.
AgB #: Adams	 - Good	Good	Unsuited: excess fines.	 Poor: too sandy.
Urban land.				l too sandy.
Allagash	 	Good	excess fines.	Good.
AlCAllagash	- Good	Good	Unsuited: excess fines.	Fair: slope.
Ba*. Beaches				
BcB, BcC Becket	Fair: frost action.	Poor: excess fines.	Poor: excess fines.	Poor: small stones.
3cDBecket	Fair: frost action, slope.	Poor: excess fines.	Poor: excess fines.	Poor: slope, small stones.
BeB, BeC Becket	Fair: frost action.	Poor: excess fines.	Poor: excess fines.	 Poor: large stones.
BeDBecket	Fair: slope, frost action.	Poor: excess fines.	Poor: excess fines.	Poor: large stones, slope.
BmBiddeford	Poor: wetness, low strength.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: wetness, thin layer, too clayey.
BrB*: Brayton	Poor: wetness, frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: small stones, wetness.
Westbury	Poor: frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: small stones.
sB*: Brayton	Poor: wetness, frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: large stones, wetness.
Westbury	 Poor: frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: large stones.
uB Buxton	Poor: frost action.	Unsuited: excess fines.	Unsuited: excess fines.	 Fair: too clayey.
uCBuxton	 Poor: frost action.	Unsuited: excess fines.	Unsuited: excess fines.	 Fair: slope,

See footnote at end of table.

TABLE 12.--CONSTRUCTION MATERIALS--Continued

Soil name and map symbol	Roadfill	Sand	Gravel	Topsoil
:	Poor:	Unsuited:		
Buxton	frost action.	excess fines.	Unsuited: excess fines.	Poor: slope.
Ch Chocorua	wetness, excess humus.	Unsuited: excess humus.	Unsuited: excess humus.	Poor: wetness, excess humus.
CoB, CoC Colton	Go od	Good	Good	Poor: small stones.
CoDColton	Fair:	Good	Good	1
CoEColton	Poor:	 Good	Good	Poor:
CrB	Good	 Good	 linsuited:	small stones.
CuB*:			excess fines.	Poor: too sandy.
Croghan	Good	Good	Unsuited: excess fines.	Poor: too sandy.
Dm*. Dumps				
EmBEl mwo od	Poor: frost action, low strength.	 Poor: excess fines, thin layer.	Unsuited: excess fines.	Good.
hCElmwood	Poor: frost action, low strength.	Poor: excess fines, thin layer.	Unsuited: excess fines.	Fair: slope.
HeB Hermon	Good	Poor: excess fines.	Poor: excess fines.	; Fair: small stones.
HeC Hermon	Good	Poor: excess fines.	Poor: excess fines.	Fair: slope, small stones.
HeD Hermon	slope.	Poor: excess fines.	Poor: excess fines.	Poor:
HmB, HmC Hermon	Good	Poor: excess fines, large stones.	Poor: excess fines, large stones.	Poor: large stones, small stones.
imD Hermon	Fair: slope.	Poor: excess fines, large stones.	Poor: excess fines, large stones.	Poor:
InC Hermon	Fair: large stones.	Poor: excess fines, large stones.	Poor: excess fines, large stones.	Poor: large stones, small stones.
nE Hermon	Poor: slope.	Poor: excess fines, large stones.	Poor: excess fines, large stones.	Poor: slope.
nB, LnC Lyman	Poor: thin layer, area reclaim.	Unsuited: excess fines, thin layer.	Unsuited: excess fines, thin layer.	 Poor: thin layer, area reclaim.

TABLE 12.--CONSTRUCTION MATERIALS--Continued

		The state of the s	TALSContinued	
Soil name and map symbol	Roadfill	Sand	Gravel	Topsoil
LnD Lyman	Poor: thin layer, area reclaim.	Unsuited: excess fines, thin layer.	Unsuited: excess fines, thin layer.	Poor: slope, thin layer, area reclaim.
LyB*, LyC*: Lyman	Poor: thin layer, area reclaim.	Unsuited: excess fines, thin layer.	Unsuited: excess fines, thin layer.	Poor: thin layer, area reclaim.
Rock outerop. LyE*: Lyman	Poor:	Unsuited:	Unsuited:	Poor:
Rock outerop.	thin layer, area reclaim.	excess fines, thin layer.	excess fines, thin layer.	slope, thin layer, area reclaim.
MaB Madawa ska		Fair: excess fines.	Unsuited: excess fines.	Good,
MrB, MrC2 Marlow MrD2	frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: small stones.
Marlow	frost action,	Unsuited: excess fines.	Unsuited: excess fines.	Poor: slope.
vB, MvCMarlow	!	Unsuited: excess fines.	Unsuited: excess fines.	Poor: large stones.
¶vD Marlow	slope, frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: large stones, slope.
la Naumburg	wetness, area reclaim.	Fair: excess fines.	Unsuited: excess fines.	Poor: wetness, too sandy.
n Ondawa	low strength.	Poor: excess fines.	Unsuited: excess fines.	Good.
eB Peru g*.	Poor: frost action.	Unsuited: excess fines.	Unsuited: excess fines.	Fair: small stones.
Pits o*:				
Podunk	frost action.	Fair: excess fines.	Unsuited: excess fines.	Good.
Winooski a	frost action.	Poor: excess fines.	Unsuited: excess fines.	Good.
aRaynham	- Poor: frost action, wetness.	Unsuited: excess fines.	Unsuited: excess fines.	Poor: wetness.
oC*: Rock outerop.				
Lyman)	- Poor: thin layer, area reclaim.	Unsuited: excess fines, thin layer.	Unsuited: excess fines, thin layer.	 Poor: thin layer, area reclaim.

See footnote at end of table.

Appendix B: Subsurface Explorations

- Geotechnical Investigations Summary
- Boring Logs
- Test Pit Logs
- FWD Logs

PRELIMINARY GEOTECHNICAL INVESTIGATIONS SUMMARY WELLS: RTE.109 NOTE: HB-WEL-206 has 2 pavement layers---2nd layer begins at depth of 0.88 m

SEDROCH SEDROCH WGRAVEL WGRAVEL	BEDROCK BEDROCK ND/GRAVEL/SIL1 ND/GRAVEL/SIL1 ND/GRAVEL/SIL1 ND/GRAVEL/SIL1 ND/GRAVEL/SIL1	SEDROCK SEDROCK JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT SAND/SILT JGRAVEL/SILT	BEDROCK BEDROCK JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JGRAVEL/SILT JJGRAVEL/SILT DROCK SEDROCK NGRAVEL/SILT	BEDROCK BEDROCK D/GRAVEL/SILT	SEDROCK SEDROCK JGRAVEL/SILT JG	SEDROCK SEDROCK JGRAVEL/SILT J	BEDROCK BEDROCK DIGRAVEL/SILT DIG	
SANI SANI SANI								
600 980 880 420 750 770	600 980 880 420 750 770 670 570	600 980 880 420 750 670 570 760 760 770	600 880 880 420 770 670 760 770 770 910	600 880 880 420 770 670 670 760 770 770 910 910 550	600 880 880 420 750 770 760 770 770 910 910 910 770 770 770 770 770 770 770 7	600 880 420 750 770 770 770 770 770 770 77	600 880 880 420 750 770 760 760 770 770 910 800 800 800 760 760 770 760 770 760 760 7	600 880 420 770 770 770 770 770 770 770 7
50	20 20	50 60 40	50 60 60 60 60 60 60 60 60 60 60 60 60 60	50 60 60 40 40 100	50 60 60 60 70 70 70 70	50 60 60 100 60	50 60 60 60 60 60 90	50 60 60 60 60 90
30 150 100	30 150 110 100 220 130	30 150 110 100 220 130 90 140 210	30 150 110 100 220 130 90 140 140 200 200 200 200	30 150 110 100 220 220 140 140 200 200 200 200 200 200 200 200 200 2	30 150 110 100 220 220 130 140 140 150 220 220 240 130 130 180	30 150 110 110 220 220 220 200 200 240 150 170 180 180 180	30 150 110 100 100 130 130 140 140 140 150 220 220 240 170 180 180 190 100 200 210 220 220 240 170 180 190 100 100 100 100 100 100 100 100 10	30 150 110 110 220 220 200 200 200 240 140 140 200 220 220 240 170 180 180 110 240 180 110 240 180 110 240 170 180 110 240 170 180 190 190 190 190 190 190 190 190 190 19
1.37						+++++++++++++++++++++++++++++++++++++++		
	++++	++++++						
	H						 	
	+	++++	+++++	++++++	+++++++++++++++	++++++++++++++++++		
22+500	22+	22+	22+ 23+ 23+ 23+ 24+ 24+ 24+	23+ 23+ 23+ 24+ 24+ 24+ 24+	22+ 23+ 23+ 23+ 24+ 24+ 24+ 24+ 25+ 25+ 25+	23+ 23+ 23+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24	22+ 23+ 23+ 24+ 24+ 24+ 24+ 24+ 24+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25	23+ 23+ 23+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24+ 24

Refusal Depth (m) 1.58 0.88 2.56 1.71 0.82 1.04 2.35 **4**. Subgrade Type Total (mm) Pavement Thickness

Macadam Subbase/Fill (mm) (mm) 0.58 0.83 0.94 1.40 1.37 0.55 0.24 0.18 0.73 0.27 HMA (mm) 50.00 70.00 90.00 Depth to water (m) 1.98 1.22 Exploration Depth Offset (m) (#) 92+53 100+40 1008+28 1133+67 140+30 143+71 1165+54 1183+08 206+21 206+21 206+21 206+21 206+21 206+410 244+10 244+17 274+94 302+50 As-Built Station Station (m) 20+940 21+180 21+420 22+194 22+396 22+396 22+500 23+700 23+700 23+405 24+405 25+560 25+560 25+560 26+500 HB-WEL-201
HB-WEL-203
HB-WEL-205
FWD 5202
FWD 5202
FWD 5000A
HB-WEL-207
FWD 3000A
HB-WEL-211
FWD 2002A
HB-WEL-213
HB-WEL-213
HB-WEL-213
HB-WEL-213
HB-WEL-213 Shoulders **Boring** Š

]	Main	e Dep	artment of	f Transportat	ion	Proj	ect:	ROUTE	E 109		Boring No.:	HB-WE	L-201
		•	Soil/Rock Explor	ation Log		Loca	ation:	WEL	LS, MA	INE	PIN:	799	98.10
Drille	er:		MDOT		Elevatio	n (m):		50.20			Auger ID/OD:	125 mm	
Oper	ator:		C.MANN		Datum:			NGV	D		Sampler:	OFF FLIGHTS	3
Logg	jed By:		G.LIDSTONE		Rig Type):		CME	45C		Hammer Wt./Fall:	N/A	
	Start/Fi		12/17/02-12/17/0	2	Drilling I			SOLI	D STEN	1 AUGER	Core Barrel:	N/A	
	ng Loca	tion:	20+940, 4.7 LT.		Casing I	D/OD:	:	N/A			Water Level*:	NONE OBSER	RVED
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Sp ibe Sample Sample Shear Test	oon Sample attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	t Torvar fined Co ab Vane ght of 6	ne Shea ompres e Shear 64 kg ha	ar Streng sive Stre Strength mmer	th (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		Г		Sample Information		$\overline{}$							Laboratory
o Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	ei ilev-N		Casing Blows	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	S1 S2						SSA			Brown, dry, silty fine to co	earse SAND, some gravel, l		G#128034 A-1-b, SM WC=6.1%
1.2 -	52							49.62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light brown, dry, fine to c	oarse SAND, some gravel a	0.58 and silt.	G#128035A-1 b, SM WC=3.8%
1.2								48.61	8 60 68 9 88	Bottom of Explorat	ion at 1.58 m below groun	d surface.	
2.4										REFUSAL	g		
2.4													
3.6 -													
5.0													
4.8 -													
6 -													
7.2													
8.4 -													
9.6													
Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pro	ject:	ROUTE	109		Boring No.:	HB-WEI	L-202
			/Rock Explora	ation Log		Loc	cation:	WEL	LS, MA	INE	PIN:	799	8.10
Drille	er:	MI	DOT		Elevatio	n (m)):	50.20			Auger ID/OD:	125 mm	
Oper	ator:		MANN		Datum:	<u> </u>		NGV			Sampler:	STANDARD S	SPLIT SPOON
Logg	jed By:	G.l	LIDSTONE		Rig Type	9 :		CME	45C		Hammer Wt./Fall:	63.5kg/760 mm	1
Date	Start/Fi	inish: 12/	/17/02-12/17/02	2	Drilling l	Meth	od:	SOLI	D STEN	1 AUGER	Core Barrel:	N/A	
	ng Loca	ntion: 20-	+940, 2.5 LT.		Casing I	D/OD):	N/A			Water Level*:	NONE OBSER	RVED
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test			Definitions: S_U = Insitu T_V = Pocke q_p = Uncor $S_U(lab)$ = L WOH = wei WOR = wei	t Torva ifined (ab Var ight of	ane Shea Compres ne Shear 64 kg ha	ar Strengt sive Stre Strength mmer	h (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		T	I	Sample Information	1	$\overline{}$			1				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	erilev-N		Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						-	SSA_	50.10 50.06		PAVEMENT.		0.09-	
	1D	61.0/30.5	0.30 - 0.91	24/11/17/50	28	3		50.06 49.89		MACADAM.		0.14-	G#128036 A-1-b, SP-SM
						1			9688	Brown, dry, medium dense	, sandy GRAVEL, trace silt	, (Fill). 0.30-	WC=4.3%
						#		49.28			, fine to coarse SAND, little	gravel, trace	
1.2 -										Bottom of Explorati REFUSAL	on at 0.91 m below ground	0.91- l surface.	
2.4 -						\pm							
						\pm							
						+							
3.6 -						+							
						+							
						7							
						1							
4.8 -						#							
4.0						#							
						#							
						#							
,						⇉							
6 -						\pm							
						\pm							
						+							
						+							
7.2 -						\mp							
						1							
						#							
						#							
8.4 -						\pm							
						\pm							
						_							
						\top							
9.6	oules :												
<u>kem</u>	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Dep	artment of	f Transportat	ion	Project:	ROUTI	E 109		Boring No.:	HB-WEI	L-203
		•	Soil/Rock Explora	ation Log		Location	: WEL	LS, MA	INE	PIN:	799	8.10
Drille	er:		MDOT		Elevatio	n (m):	52.60)		Auger ID/OD:	125 mm	
Oper	ator:		C.MANN		Datum:		NGV	D		Sampler:	OFF FLIGHTS	
Logg	ged By:		G.LIDSTONE		Rig Type):	CME	45C		Hammer Wt./Fall:	N/A	
Date	Start/F	inish:	12/18/02-12/18/0	2	Drilling I	Method:	SOLI	D STEN	M AUGER	Core Barrel:	N/A	
	ng Loca	tion:	21+180, 5.0 LT.		Casing I	D/OD:	N/A			Water Level*:	NONE OBSER	VED
MD = U = Th R = Ro V = In:	olit Spoon Unsuccess nin Wall Tu ock Core S	sful Split Sp ube Sample Sample Shear Test	oon Sample attempt		T _V = Pocke q _p = Uncon S _u (lab) = Li WOH = wei WOR = wei	Field Vane Sh t Torvane She fined Compre ab Vane Shea ght of 64 kg h ght of rods W	ear Streng ssive Stre ir Strength ammer	th (kPa) ength (Pa) n (kPa)	1	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		Т	1	Sample Information			_					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)			Elevation (m)	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	S3					SSA	52.55		\PAVEMENT.		0.05-	G#128037
									Brown, dry, gravelly SAN	D, little silt (Fill).		A-1-a, SW-SN WC=6.4%
1.2 -							51.72		Bottom of Explorat REFUSAL	ion at 0.88 m below ground	0.88- l surface.	
2.4 -							- - - -					
3.6 -												
4.8 -												
6 -												
7.2 -												
8.4 -												
							1					
9.6 _	arks:							1				
Kein	ai NS.											

and an order of the state of th

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pro	ject:	ROUT	TE 109	9		Boring No.:	HB-WEI	L-204
			I/Rock Explora METRIC UN	ation Log		Loc	cation:	WE	LLS, I	MA	INE	PIN:	799	8.10
Drille	r:	M	DOT		Elevatio	n (m)):	52.8	0			Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			NG	VD			Sampler:	STANDARD S	PLIT SPOON
Logg	ed By:	G.	LIDSTONE		Rig Type	e:		CM	E 45C	7		Hammer Wt./Fall:	63.5kg/760 mm	l
Date	Start/Fi	nish: 12	/17/02-12/17/02	2	Drilling I	Meth	od:	SOL	ID S	TEM	/I AUGER	Core Barrel:	N/A	
	ng Loca	tion: 21	+180, 2.5 LT.		Casing I):	N/A				Water Level*:	NONE OBSER	VED
MD = 1 U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tu ock Core S	iful Split Spoon S be Sample ample Shear Test			Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Low WOH = wei WOR = wei	Field V t Torva fined (ab Var ight of	ane Shea Compres ne Shear 64 kg ha	ar Stren sive Streng Streng	gth (kF rength th (kPa	Pa) (Pa) a)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		I		Sample Information	<u> </u>	_				_				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	9-1-0 		Casing Blows	Elevation (m)	(iii)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	PC					4	SSA_	52.7 52.6	0 200		PAVEMENT. Pavement co	re taken.	0.10-	
	1D	61.0/35.6	0.30 - 0.91	27/35/34/17	+5	0		52.5	0		MACADAM.		0.14-	G#128038 A-1-b, SW-SN
									000		Brown, dry, very dense, SA	ND, some gravel, trace silt,	(Fill)0.30-	WC=4.6%
1.2	2D	7.0/5.1	0.91 - 0.98	50(75)		+		51.8	3	1001-1-	Bottom of Explorati REFUSAL	on at 0.98 m below ground	surface.	
						\mp					KLFUSAL			
-														
						#								
2.4						#								
						#								
						+								
3.6														
						\pm								
						#								
4.8														
						\pm								
						+								
6						#								
						\mp								
						1								
						\mp								
7.2						#								
1.2						\pm								
						\pm								
						+								
						#								
8.4						\Rightarrow								
						\pm								
						+								
						1								
9.6						土								
Rem	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Dep	artment o	f Transportat	ion	Р	roject:	ROU	ΓE 109		Boring No.: _	HB-WE	L-205
			Soil/Rock Exploi METRIC UI			L	ocation	ı: WE	LLS, MA	INE	PIN:	799	98.10
Drille	er:		MDOT		Elevati	on (r	n):	55.2	20		Auger ID/OD:	125 mm	
Oper	ator:		C.MANN		Datum		•	NG			Sampler:	OFF FLIGHTS	S
	ged By:		G.LIDSTONE		Rig Ty	pe:		CM	E 45C		Hammer Wt./Fall:	N/A	
	Start/Fi	inish:	12/17/02-12/17/0)2	Drilling		hod:			I AUGER	Core Barrel:	N/A	
	ng Loca		21+420, 5.6 LT.		Casing			N/A			Water Level*:	NONE OBSER	RVED
Definit	ions:		.,		Definition	s:					Definitions:		·
MD = 1 U = Th R = Ro V = Ins	nin Wall Tu ock Core S	sful Split Spo be Sample sample Shear Test	oon Sample attempt		T _V = Poc q _p = Unc S _u (lab) = WOH = w WOR = w	ket To onfine Lab V reight	rvane She d Compre 'ane Shea of 64 kg h	ear Strei essive St ar Strenç iammer	ength (kPa ngth (kPa) rength (Pa yth (kPa) reight of ca	ing	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
			1	Sample Information				_					Laboratory
Oepth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		N-value	Casing Blows	Elevation	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	S4						_SSA_			Brown, dry, silty fine to coa	arse SAND, some gravel, lit	tle silt. (Fill).	G#128039
													A-1-b, SW-SN WC=9.4%
								54.2	25			0.94	
1.2 -								1	0 80 200 80 80 80	Brown, damp, silty fine to	coarse SAND, trace gravel.		
								1	0000				
				+				1	8 6 6 6				
								53.2	22			1.98	
									60000	Light brown, dry, fine to m silt.	edium SAND, trace coarse	sand, gravel and	
2.4								1	0.007 %	Sitt.			
							1	-					
							\forall	52.	15			3.05	
								}		Bottom of Exploration NO REFUSAL	on at 3.05 m below ground		
3.6								-		NO KEFUSAL			
5.0													
								1					
								1					
								1					
4.8 -								1					
								1					
								-					
								1					
,								1					
6 -								1					
								7					
								1					
7.2 -								-					
								1					
		<u>L</u>						1					
								-					
8.4 -								1					
							<u> </u>	-					
								-					
								1					
9.6				<u> </u>				1					<u> </u>
Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pro	oject:	R	OUTE	109		Boring No.:	HB-WEI	L-206
			/Rock Explora METRIC UN	tion Log		Loc	catio	n:	WELI	S, MA	INE	PIN:	799	8.10
Drill	er:	MI	OOT		Elevation	n (m)):		55.40			Auger ID/OD:	125 mm	
Ope	rator:	C.1	MANN		Datum:				NGVI)		Sampler:	STANDARD S	PLIT SPOON
Log	ged By:	G.I	LIDSTONE		Rig Type):			CME -	45C		Hammer Wt./Fall:	63.5kg/760 mm	l
Date	Start/Fi	nish: 12	/17/02-12/17/02	2	Drilling I	Vleth	od:		SOLII	O STEM	I AUGER	Core Barrel:	N/A	
	ng Locat	tion: 21	+420, 2.5 LT.		Casing II Definitions:	D/OE): 		N/A			Water Level*:	NONE OBSER	VED
MD = U = TI R = R V = In	plit Spoon S	ful Split Spoon S be Sample ample Shear Test		County Information	S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = La WOH = wei WOR = wei	t Torva fined (ab Var ght of	ane Sh Compre ne She 64 kg l	ear essiv ar S ham	Strengti /e Strer trength mer	h (kPa) ngth (Pa) (kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	en		Casing Blows		Elevation (m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0						\mp	SSA	4	55.25	****	PAVEMENT.		0.15-	
	1D/AB	61.0/22.9	0.30 - 0.91	27/29/38/47	+5	0		1	55.20		MACADAM.			G#128040 A-1-b, SW-SN
	2D/AB	61.0/33.0	0.91 - 1.52	26/22/20/19	42	+			54.52	21:DI&I:b	Brown, dry, very dense, SA (1D/A) 0.30-0.88 m bgs.	.ND, some gravel, little silt.	(Fill).	WC=4.0%
1.2 -	ZD/AB	01.0/33.0	0.91 - 1.32	20/22/20/19	42	#			54.49 54.27	0 0 0 0 0 0 0	(1D/B) 0.88-0.91 m bgs. Old Pavement.			G#12804 A-2-4, SM
									53.88		(2D/A) 0.91-1.19 m bgs. Light brown, dry, dense, sil (Fill?).	ty fine to coarse SAND, son		WC=7.9%
2.4 -						1		1			(2D/B) 1.19-1.52 m bgs. Brown, dry, dense, fine to c	coarse SAND, some silt, litt		
											Bottom of Exploration NO REFUSAL	on at 1.52 m below ground	-1.52- l surface.	
3.6 -														
4.8 -														
6 -														
7.2 -						\pm		$\frac{1}{2}$						
						Ŧ		7						
						7		\exists						
8.4 -						#		1						
						\pm		\exists						
						\pm		\exists						
						-		\dashv						
9.6 _	arks:							1						
rem	arks:													

.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main			f Transportat	ion	Proj	ect:	ROUT	E 109	Boring No.: H	B-WEI	L-207
			Soil/Rock Explora METRIC UN			Loc	ation	: WEL	LS, MA	PIN:	799	8.10
Drille	er:		MDOT		Elevatio	n (m):		58.90)	Auger ID/OD: 125 r	mm	
Oper	ator:		C.MANN		Datum:			NGV	D		FLIGHTS	
Logg	jed By:		G.LIDSTONE		Rig Type):		CME	45C	Hammer Wt./Fall: N/A		
Date	Start/Fi	inish:	12/18/02-12/18/02	2	Drilling I	Metho	d:	SOL	D STEN	AUGER Core Barrel: N/A		
Borir	ng Loca	tion:	22+500, 4.5 LT.		Casing I	D/OD	:	N/A		Water Level*: 1.22	m BGS.	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Sp ube Sample Sample Shear Test	oon Sample attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	t Torvai fined C ab Vane ght of 6	ne She ompres e Shear 4 kg ha	ar Streng ssive Stre r Strengtl ammer	ith (kPa) ength (Pa) n (kPa)	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	1							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	ei		Casing Blows	Elevation (m)	Graphic Log	Visual Description and Remarks		Testing Results/ AASHTO and Unified Class.
0	S5						SSA_			Brown, dry, SAND, little gravel, trace silt. (Fill).		G#128042
	S6							58.63		Brown, damp, fine to coarse SAND, some silt, little gravel.	0.27-	A-1-b, SW-SN WC=9.0% G#128043 A-2-4, SM WC=13.0%
1.2 -	S7							57.68		Similar to above, but wet.	— —1.22 ⁻	
								56.92	0.000	Similar to above, with cobbles.	1.98-	
2.4						+	\forall	56.34			2.56-	
3.6 -										Bottom of Exploration at 2.56 m below ground surfa REFUSAL	ce.	
4.8 -												
7.2 -												
8.4 -												
9.6	arks:											
(em	ains:											

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	F	Project:	ROUTE	E 109		Boring No.:	HB-WEI	L-208
		Soil	/Rock Explora METRIC UN			L	ocation:	WEL	LS, MA	INE	PIN:	799	8.10
Drille	er:	MI	DOT		Elevation	on (m):	59.00			Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			NGV	D		Sampler:	STANDARD S	PLIT SPOON
Logg	jed By:	G.I	LIDSTONE		Rig Typ	e:		CME	45C		Hammer Wt./Fall:	63.5kg/760 mm	1
Date	Start/Fi	nish: 12	/17/02-12/17/02	2	Drilling	Ме	thod:	SOLI	D STE	1 AUGER	Core Barrel:	N/A	
Boriı	ng Locat	tion: 22	+500, 2.2 LT.		Casing	ID/	OD:	N/A			Water Level*:	1.37 m BGS.	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S	ful Split Spoon S be Sample ample shear Test			T _V = Pock q _p = Unco S _u (lab) = WOH = w WOR = w	u Fiel ket To onfine Lab V	ld Vane She orvane Shea ed Compres Vane Shear of 64 kg ha	ar Strengt sive Stre Strength mmer	th (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		N-value	Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	PC						SSA_	58.90		PAVEMENT. Pavement co	ore taken.	0.10-	
	1D/AB	61.0/27.9	0.30 - 0.91	11/10/7/6		17		58.85		MACADAM.			G#128044
								58.33	O I DI PI I	Brown, dry, dense, SAND,	some gravel, little silt. (Fill)	0.15-	A-1-b, SW-SN WC=5.5%
	2D/AC	61.0/30.5	0.91 - 1.52	8/23/43/23	+	-50				(1D/A) 0.30-0.67 m bgs.		0.67-	G#128045
1.2 -	20,.10	01.0/30.5	0.51 1.02	0/23/13/23				57.93	9499	(1D/B) 0.67-0.91 m bgs.	11 CANID 1:41:14		WC=10.1%
								57.63 57.48		Brown, damp, dense, grave (2D/A) 0.91-1.07 m bgs.	ily SAND, ittle sitt.		G#128046 A-1-a, SW-SN
								37.40		(2D/B) 1.07-1.37 m bgs.		1 .07-	WC=6.3%
										Brown, dry, very dense, gra	avelly SAND, trace silt.	1.37-	
										(2D/C) 1.37-1.52 m bgs.		1.57	
2.4										Grey, wet, very dense, sand	ly GRAVEL, trace silt.	1.52-	
										Bottom of Exploration NO REFUSAL	on at 1.52 m below ground	surface.	
3.6 -													
								1					
4.8 -								1					
								1					
6 -							 	1					
								1					
							1	1					
7.2 -								1					
8.4 -													
U.T													
9.6 _	orko:												
<u>kem</u>	arks:												

statilitation info represent approximate seamantee sections con types, automore may se gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

Contract Contract	1	Main	e Depa	rtment of	Transportat	ion	Project:	ROUTI	E 109		Boring No.:	HB-WEI	L -2 09
Operation: C.AMAN				oil/Rock Explora	tion Log					INE	PIN:	799	8.10
Copped By: CALUNI (Note Pig Type: CML 150: Hammer WAF-211: NA	Drille	r:	N	MDOT		Elevation	n (m):	57.50			Auger ID/OD:	125 mm	
Description 12/17/03/12/13/22 Description Descript	Oper	ator:	(C.MANN		Datum:		NGV	D		Sampler:	OFF FLIGHTS	
Boding Location: 23 700, 434.T. Casing BIOD: NA Water Level*: NONE CHISTRYED Delivation: Casing Biograph (Paly or Paly of the Chistry of Chistry	Logg	ed By:	(G.LIDSTONE		Rig Type	:	CME	45C		Hammer Wt./Fall:	N/A	
Definition: Definition: Definition:	Date	Start/Fi	inish: 1	2/17/02-12/17/02	2	Drilling N	/lethod:	SOLI	D STEN	1 AUGER	Core Barrel:	N/A	
Do - Sel-1 Sport Surper American 1. F Novice Traver - Sport Shoreging (Rev) 1. F Novice Traver - Sport Shoregin	Borir	ng Loca	tion: 2	23+700, 4.3 LT.		Casing II	D/OD:	N/A			Water Level*:	NONE OBSER	VED
Columbia Columbia	D = Sp MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tul ick Core S itu Vane S	sful Split Spoon be Sample sample Shear Test			S_U = Insitu I T_V = Pocket q_p = Unconi $S_U(lab)$ = La WOH = weig WOR = weig	Torvane She fined Compres b Vane Shea ght of 64 kg ha	ar Streng ssive Stre r Strength ammer	th (kPa) ngth (Pa) i (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis		
9	ŀ		Ι			<u> </u>		_					
9	Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	Casing Blows	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Results/ AASHTO and Unified
Brown, dry, silty fine to coarse SAND, little gravel. 8668 Bottom of Exploration at 0.82 m below ground surface. REFUSAL 48 6 7.2 8.4	0								$\times\!\!\times\!\!\times\!\!\times$	Brown, dry, sandy GRAVI	EL, trace silt, (Fill).	0.10	
Bottom of Exploration at 0.82 m below ground surface. REFUSAL 8.48 6.6 7.2 8.44 8.44 9.66								1 37.32		Brown, dry, silty fine to co	earse SAND, little gravel.	0.18-	
48	1.2							56.68			ion at 0.82 m below ground	0.82-	
4.8	2.4												
7.2	3.6 -							-					
7.2	4.8 -							- - - - - - - -					
8.4	6 -												
9.6	7.2												
9.6 Remarks:	8.4												
Remarks:	9.6												
	P.O. I Rema	arks:	1	ı									1
		_											

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Depar	tment of	Transportat	ion	Pro	oject:	ROUT	E 109		Boring No.:	HB-WEI	L-210
			/Rock Explora METRIC UN	ation Log		Lo	cation:	: WEL	LS, MA	INE	PIN:	799	8.10
Drille	er:	MI	OOT		Elevatio	n (m):	57.50)		Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			NGV	D		Sampler:	STANDARD S	SPLIT SPOON
Logo	jed By:	G.l	LIDSTONE		Rig Type	9 :		CME	45C		Hammer Wt./Fall:	63.5kg/760 mm	1
Date	Start/Fi	nish: 12/	/17/02-12/17/02	2	Drilling I	Meth	od:	SOLI	D STE	/I AUGER	Core Barrel:	N/A	
Bori	ng Loca	tion: 23	+700, 2.4 LT.		Casing I	D/OI	D:	N/A			Water Level*:	NONE OBSER	EVED
MD = U = Th R = Ro V = In:	olit Spoon S Unsuccess	iful Split Spoon S be Sample ample Shear Test	ample attempt		Definitions: S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	t Torv fined ab Va ght of	ane Shea Compres ne Shear 64 kg ha	ar Streng ssive Stre Strength ammer	th (kPa) ength (Pa n (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		1	ı	Sample Information	1	_							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)			Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						+	_SSA	57.36		PAVEMENT.		0.14	
	1D/AB	61.0/20.3	0.30 - 0.91	16/19/16/16	35	5		57.32	$\times\!\!\times\!\!\times$	MACADAM.		0.18-	G#128047 A-1-b, SM
	MD	2.5/0.0	0.91 - 0.94	25(25)		+	—	56.92 56.56		Brown, dry, dense, sandy (1D/A) 0.30-0.58 m bgs.	GRAVEL, trace silt, (Fill).	0.18	WC=2.6% G#128048
1.2 -						4		1		(1D/B) 0.58-0.91 m bgs.	coarse SAND, little gravel, t		WC=10.8%
						1					on at 0.94 m below ground	0.94	
2.4 -													
3.6 -													
4.8 -						#							
						#							
6 -													
7.2 -													
						\pm							
						\pm		1					
8.4 -						7		1					
						\pm		1					
						$-\Gamma$		1					
						\Rightarrow		1					
						_+		1					
9.6	1							1					
Kem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Proje	ect:	ROUTE	E 109		Boring No.: _	HB-WE	L-211
			I/Rock Explora	ation Log		Loca	tion:	: WEL	LS, MA	INE	PIN:	799	98.10
Drille	er:	M	DOT		Elevation	(m):		54.70			Auger ID/OD:	125 mm	
Oper			MANN		Datum:	. ,		NGV			Sampler:	OFF FLIGHTS	3
Logg	ed By:	G.	LIDSTONE		Rig Type	:		CME	45C		Hammer Wt./Fall:	N/A	
Date	Start/Fi	inish: 12	/18/02-12/18/02	2	Drilling N	/letho	d:	SOLI	D STEN	1 AUGER	Core Barrel:	N/A	
	ng Loca	tion: 24	+500, 5.4 LT.		Casing II	D/OD:		N/A			Water Level*:	NONE OBSE	RVED
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Jnsuccess in Wall Tu ock Core S	sful Split Spoon S ube Sample Sample Shear Test	Sample attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = Lai$ $WOH = weig$ $WOR = weig$	Torvangined Co b Vane the of 64	e Shea mpres Shear kg ha	ar Streng ssive Stre r Strength ammer	th (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information									Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing	Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	S8						SA_			Brown, damp, gravelly SA	ND, trace silt, (Fill).		G#128049 A-1-b, SW-SN WC=6.3%
1.2 -	S9							53.97		Brown, damp, fine to coars	e SAND, some silt, trace g	0.73	G#128891 A-2-4, SM WC=12.9%
	S10							53.02	5.00	Light brown, damp, fine sa	ndy SILT.	1.68	G#128892 A-4, CL-ML WC=16.5%
2.4								51.65				3.05	
3.6 -										Bottom of Explorati NO REFUSAL	on at 3.05 m below groun	d surface.	
4.8 -													
6 -													
7.2 -													
8.4 -													
9.6 Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pro	oject:	ROU	JTE :	109		Boring No.: _	HB-WEI	L-212
			I/Rock Explora METRIC UN	ation Log		1	cation				NE	PIN:	799	8.10
Drille	er:	MI	DOT		Elevatio	n (m	ı):	54	.90			Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			N(GVD			Sampler:	STANDARD S	PLIT SPOON
Logg	jed By:	G.1	LIDSTONE		Rig Typ	e:		CN	ИЕ 4	5C		Hammer Wt./Fall:	63.5kg/760 mm	ı
Date	Start/Fi	nish: 12	/18/02-12/18/02	2	Drilling	Meth	od:	SC	LID	STEM	I AUGER	Core Barrel:	N/A	
	ng Locat	tion: 24	+500, 2.5 LT.		Casing		D:	N/	A			Water Level*:	NONE OBSER	VED
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Unsuccess	ful Split Spoon S be Sample ample Shear Test			Definitions: S_u = Insitu T_v = Pocke q_p = Uncor $S_u(lab)$ = L WOH = we WOR = we	Field et Torv offined ab Va ight of	rane She Compre ine Shea f 64 kg h	ear Stressive S or Stress amme	ength Streng ngth (F	(kPa) gth (Pa) kPa)	ing	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)		יא-עמומפ	Casing Blows	Elevation	(m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	PC					\dashv	SSA_		.76	XXXX	PAVEMENT. Pavement co	re taken.	0.14-	
	1D	61.0/35.6	0.30 - 0.91	18/25/30/20	+5	50		54	.71	\bowtie	MACADAM.			G#128893 A-1-b, SW-SN
						#		1	×	\bowtie	Brown, dry, very dense, gra	welly SAND, trace silt, (Fil		WC=4.0%
1.2 -	2D	61.0/7.6	0.91 - 1.52	10/9/8/7	1	7		53	.99 X		Brown, dry, medium dense	, silty fine to coarse SAND,	0.91-little gravel.	
								53	.38	1936	Bottom of Exploration NO REFUSAL	on at 1.52 m below ground	1.52-	
2.4 -						#								
2.4						1								
						#								
3.6 -														
						#								
4.8 -						1								
						#								
6 -														
						#								
						1								
7.2 -						#		1						
						\exists		1						
						\dashv		-						
						\dashv		1						
8.4 -						\dashv		1						
0.4						\pm		1						
						1		1						
						士		1						
						4		-						
9.6								丄						
	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Boring No.: HB-WEL-212

Page 1 of 1

]	Main	ie Dep	artment of	f Transportat	ion	Pro	oject:	ROUTE	109		Boring No.:	HB-WEI	L-213
		•	Soil/Rock Explora	ation Log			cation:			INE	PIN:	799	8.10
Drille	er:		MDOT		Elevatio	n (m	ı):	65.70			Auger ID/OD:	125 mm	
Oper	ator:		C.MANN		Datum:		•	NGVI)		Sampler:	OFF FLIGHTS	
Logg	ged By:		G.LIDSTONE		Rig Type	e:		CME	45C		Hammer Wt./Fall:	N/A	
Date	Start/F	inish:	12/19/02-12/19/02	2	Drilling I	Meth	od:	SOLI	O STEM	1 AUGER	Core Barrel:	N/A	
	ng Loca	ation:	25+560, 4.4 LT.		Casing I		D:	N/A			Water Level*:	NONE OBSER	VED
MD = 1 U = Th R = Ro V = Ins	olit Spoon Unsuccess nin Wall Tu ock Core S	sful Split Sp ube Sample Sample Shear Test	oon Sample attempt		Definitions: S_{u} = Insitu T_{v} = Pocke q_{p} = Uncon S_{u} (lab) = L WOH = wei WOR = wei	Field Y at Torver Infined ab Valight of	rane Shea Compressine Shear f 64 kg ha	r Strengt sive Stre Strength mmer	h (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	<u> </u>	\neg							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	9 III 8 7- N	- Adding	Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	S11						SSA_			Brown, dry, SAND, some g	gravel, trace silt. (Fill).		G#128894
1.2 - 2.4 - 3.6 - 4.8 -								64.30			on at 1.40 m below ground	1.40	A-1-b, SW-SM WC=5.0%
9.6 _	arks:												
<u>rtem</u>	ai NS.												

Station 25+566, 4.0 LT. exposed top of old concrete wall.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Dep	artı	ment of	Transportat	ion	Pro	ject:	ROUT	ГΕ	109		Boring No.: _	HB-WEL	-213A
		•	Soil/R	Rock Explora	tion Log		Loc	ation:	WE	LLS	S, MA	INE	PIN:	799	8.10
Drille	er:		MDC)T		Elevation	ı (m)	:	65.6	50			Auger ID/OD:	125 mm	
Oper	ator:		C.M	ANN		Datum:			NG	VD			Sampler:	OFF FLIGHTS	
Logg	jed By:		G.LI	DSTONE		Rig Type	:		CM	E 4	5C		Hammer Wt./Fall:	N/A	
	Start/Fi	nish:	12/19	9/02-12/19/02		Drilling N		od:				I AUGER	Core Barrel:	N/A	
Bori	ng Locat	tion:		62, 5.6 LT.		Casing II			N/A				Water Level*:	NONE OBSER	VED
Definit D = Sp MD = U = Th R = Re V = Ins	ions: blit Spoon S Unsuccess	Sample ful Split Sp be Sample ample Shear Test	oon San	nple attempt		Definitions: $S_U = Insitu I$ $T_V = Pocket$ $q_p = Unconi$ $S_U(lab) = Le$ $WOH = weig$ $WOR = weig$	Torva fined C ab Van ght of 6	ne Shea Compres e Shear 64 kg ha	r Strer sive St Streng mmer	ngth reng th (I	(kPa) gth (Pa) kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
					Sample Information	<u> </u>	$\overline{}$			Т					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)		Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value		Casing Blows	Elevation	(mm)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
0								SSA_		×××××××××		Brown, dry, sandy GRAVE 213).	L, trace silt, (Fill). (Similar	to HB-WEL-	
1.2 -	S12								64.2	23 × 8	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Brown, dry, silty fine to me gravel.	dium SAND, trace coarse s	and, trace	
2.4 -									62.5	55	6 55 8 81.99 56 6			3.05	
3.6 -												Bottom of Explorati NO REFUSAL	on at 3.05 m below ground		
4.8 -															
6 -															
7.2 -															
8.4 -															
							\pm								
9.6			$-\mathbb{F}$				+								
	arks:									_					

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

C]	Main	e Depar	tment of	Transportat	ion	Pro	ject:	ROUTE	E 109		Boring No.:	HB-WEI	L-214
Operation:			_	/Rock Explora	ation Log		Loc	cation:	: WEL	LS, MA	INE	PIN:	799	8.10
Logad By: CLIUSTON: PROF StateFlexion: 211900; 19190; 201	Drille	er:	MI	DOT		Elevatio	n (m)):	65.70			Auger ID/OD:	125 mm	
Date Start File	Oper	ator:	C.1	MANN		Datum:			NGV	D		Sampler:	STANDARD S	PLIT SPOON
Boring Location: 25 50 24 17	Logg	ed By:	G.l	LIDSTONE		Rig Typ	e:		CME	45C		Hammer Wt./Fall:	63.5kg/760 mm	1
Definition Def					2				SOLI	D STE	/I AUGER			
12 - Shift Sport Serges		-	tion: 25	+560, 2.4 LT.):	N/A				NONE OBSER	VED
Companies Comp	D = Sp MD = U U = Th R = Ro V = Ins	olit Spoon S Jnsuccess Jin Wall Tu Jock Core S Situ Vane S	sful Split Spoon S lbe Sample sample Shear Test			S_{u} = Insitu T_{v} = Pocke q_{p} = Uncor $S_{u(lab)}$ = L WOH = we WOR = we	Field Vet Torvanfined (ab Varight of	ane Shea Compres ne Shear 64 kg ha	ar Streng ssive Stre Strength ammer	th (kPa) ngth (Pa (kPa)	1	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis		
D			ı			<u> </u>	$\overline{}$			1				Laboratory
D	Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	on or			Elevation (m)	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
1D 61,033.0 0.30-0.91 13,9211/13 20	0						+	SSA_	65.60 65.54	×000	PAVEMENT.		0.10-	
Brown, dry, medium dense, gravelly SAND, trace silt, (Fill) WC-5.		1D	61.0/33.0	0.30 - 0.91	13/9/11/13	2	0	+] ""		MACADAM.			G#128895 A-1-b SW-SN
1.52 Bottom of Exploration at 1.52 m below ground surface.							1		1		Brown, dry, medium dense	, gravelly SAND, trace silt,	(Fill).	WC=5.4%
3.6	1.2 -	2D	61.0/20.3	0.91 - 1.52	17/16/10/5	2	6		64.18		Bottom of Explorati NO REFUSAL	on at 1.52 m below ground	1.52-	
3.6							+		1					
4.8	2.4						#		1					
4.8							1		1					
4.8							1							
4.8							#							
7.2	3.6						1							
7.2							+		ł					
7.2							+		1					
7.2	4.8 -													
8.4	6 -													
8.4							+							
8.4	7,						\mp		1					
9,6	′						\pm		1					
9,6	_						\pm							
9,6							\perp		}					
9,6							\mp		}					
	8.4						#		1					
							\perp							
							\pm		1					
							_F		}					
INGILIGINS.		arka]					
	<u>rem</u>	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depa	rtment of	Transportat	ion	Pro	ject:	ROUTI	E 109		Boring No.:	HB-WE	L-215
			oil/Rock Explora	ation Log					LS, MA	INE	PIN:	799	8.10
Drille	er:		MDOT		Elevation	n (m)	:	64.10			Auger ID/OD:	125 mm	
Oper			C.MANN		Datum:	(,	-	NGV			Sampler:	OFF FLIGHTS	3
-	ed By:		G.LIDSTONE		Rig Type	e:		CME			Hammer Wt./Fall:	N/A	
	Start/Fi		2/18/02-12/18/02	2	Drilling I		od:			I AUGER	Core Barrel:	N/A	
	ng Loca		26+500, 3.8 LT.		Casing I			N/A			Water Level*:	1.98 m BGS.	
MD = 1 U = Th R = Ro V = Ins	olit Spoon S Jnsuccess in Wall Tu ock Core S	sful Split Spoor be Sample sample Shear Test	n Sample attempt		Definitions: S _U = Insitu T _V = Pocke q _p = Uncon S _U (lab) = Li WOH = wei	Field V t Torva fined C ab Van ght of 6	ane Shea Compres ie Shear 64 kg ha	ar Streng sive Stre Strength mmer	th (kPa) ngth (Pa) (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	alley-N		Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0	S13						SSA_			Brown, damp, SAND, som	e gravel, trace silt. (Fill).		G#128896 A-1-b, SW-SN WC=8.7%
1.2 -	S14							63.55		Brown, damp, fine to coars	e SAND, some silt, little gr	0.55	G#128897 A-2-4, SM WC=8.3%
2.4 -								62.12		Similar to above, but wet.		— — — —1.98	
3.6 -								61.05		Bottom of Explorati NO REFUSAL	on at 3.05 m below groun	3.05-d surface.	
4.8 -													
6 -													
7.2 -													
8.4 -													
9.6 _ Rem	arks:												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Pr	oject:	ROUTE	109		Boring No.: _	HB-WEI	L-216
			/Rock Explora METRIC UNI	tion Log		Lo	cation:	WELI	LS, MA	INE	PIN:	799	8.10
Drille	er:	MI	OOT		Elevatio	n (m	າ):	64.10			Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			NGVI)		Sampler:	STANDARD S	PLIT SPOON
Logg	jed By:	G.l	LIDSTONE		Rig Typ	e:		CME	45C		Hammer Wt./Fall:	63.5kg/760 mn	1
Date	Start/Fi	nish: 12/	/18/02-12/18/02		Drilling	Meth	nod:	SOLI	D STE	1 AUGER	Core Barrel:	N/A	
	ng Locat	tion: 26-	+500, 2.4 LT.		Casing		D:	N/A			Water Level*:	NONE OBSER	VED
MD = 1 U = Th R = Ro V = Ins	olit Spoon S	ful Split Spoon S be Sample ample Shear Test		Savada Information	Definitions $S_{U} = Insitu$ $T_{V} = Pocke$ $q_{D} = Uncon$ $S_{U}(lab) = L$ $WOH = we$ $WOR = we$	Field et Ton nfined ab Va eight o	vane Shea Comprestane Shear of 64 kg ha	r Strengt sive Strer Strength mmer	h (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information		\neg							Laboratory Testing
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	G I C	N-value	Casing Blows	Elevation (m)	Graphic Log		escription and Remarks		Results/ AASHTO and Unified Class.
0						\dashv	_SSA	63.99 63.93		PAVEMENT.		0.11-	
	1D	61.0/33.0	0.30 - 0.91	17/23/25/26	4	8	-	05.75		MACADAM.		0 17-	G#128898 A-1-b, SW-SN
						-				Brown, dry, dense, SAND,	some gravel, trace silt. (Fil	1).	WC=3.7%
1.2 -	2D/AB	61.0/35.6	0.91 - 1.52	20/25/24/26	4	9		63.19 62.82	00 00 00 00 00 00 00 00 00	(2D/A) 0.91-1.28 m bgs. Brown, dry, dense, fine to	coarse SAND, little gravel,		G#128899 A-1-b, SW-SN WC=4.0%
								62.58		(2D/B) 1.28-1.52 m bgs. Brown, damp, dense, silty	fine to medium SAND, trac		
2.4										Bottom of Explorati NO REFUSAL	on at 1.52 m below ground		
2.4 -						_							
						_							
						#							
						_							
3.6 -						\exists							
						_							
						\dashv							
						\dashv							
4.8 -						\dashv							
						-							
						_							
						_							
6 -						#							
						#							
						_							
7.2 -						\dashv							
						\dashv							
						4							
						#							
8.4 -						#							
٠.١						\exists							
						_							
						\dashv							
9.6						1							
9.6 _ Pom		l				_			L				L

Pavement core taken at 26+508, 2.4 LT.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

1	Vlain	e Depa	irtment of	Transportat	ion	Pro	oject:	RC	OUTE	109		Boring No.: _	HB-WEI	J-21/
		<u>s</u>	oil/Rock Explora METRIC UN			Lo	catio	n: \	WELI	S, MA	NE	PIN:	799	8.10
Drille	r:		MDOT		Elevatio	n (m):	6	55.90			Auger ID/OD:	125 mm	
Oper	ator:		C.MANN		Datum:			1	NGVI)		Sampler:	OFF FLIGHTS	
	ed By:		G.LIDSTONE		Rig Typ	e:		(CME -	45C		Hammer Wt./Fall:	N/A	
	Start/Fi		12/19/02-12/19/02)	Drilling		od:				I AUGER	Core Barrel:	N/A	
	ng Loca		27+340, 4.6 LT.	-	Casing				N/A	5 5121		Water Level*:	2.59 m BGS.	
Definiti	-		27 - 540, 4.0 E1.		Definitions			1	V/ I L			Definitions:	2.37 III DG5.	
D = Sp MD = l U = Th R = Ro V = Ins	lit Spoon S Jnsuccess in Wall Tul ock Core S	ful Split Spoo be Sample ample Shear Test	n Sample attempt		S_U = Insitu T_V = Pocke q_p = Uncor $S_U(lab)$ = L WOH = we WOR = we	Field Y at Torver Infined ab Valight of	ane Sh Compr ne She 64 kg	near S ressive ar Str hamn	Strengtl e Strer rength ner	h (kPa) ngth (Pa) (kPa)	ng	WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
ŀ		1		Sample Information	<u> </u>	_		_						Laboratory
o Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	on co	יא-עמומכ	Casing Blows	10,010	(m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	015					4	SSA			>>>	Brown, dry, sandy GRAVE	EL, trace silt, (Fill), (Frost).	0.24	
	S15					#] '	65.66		Brown, dry, SAND, trace s	ilt and gravel.	0.24-	G#133046 A-3, SP-SM WC=5.1%
1.2	S16								65.05		Brown, dry, SAND, little si	lt, trace gravel.	0.85-	G#133047 A-2-4, SM WC=7.4%
	S17								54.07		Brown, moist, silty fine SA	ND.	1.83-	
2.4							1/		63.31		Similar to above, but wet.		- — — —2.59-	
3.6							V		62.85		Bottom of Explorati NO REFUSAL	on at 3.05 m below ground	3.05- I surface.	
4.8 -														
6 -														
7.2														
8.4 -														
-						+		+						
9.6						土		╧						
9.0	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Depar	tment of	Transportat	ion	Р	roject:	ROUTE	109		Boring No.:	HB-WEI	L-218
			I/Rock Explora METRIC UN	ation Log		L	ocation:	WELI	LS, MA	INE	PIN:	799	8.10
Drille	r:	MI	DOT		Elevation	on (r	m):	66.00			Auger ID/OD:	125 mm	
Oper	ator:	C.1	MANN		Datum:			NGVI)		Sampler:	STANDARD S	PLIT SPOON
Logg	ed By:	G.	LIDSTONE		Rig Typ	e:		CME	45C		Hammer Wt./Fall:	63.5kg/760 mm	l
Date	Start/Fi	nish: 12	/19/02-12/19/02	2	Drilling	Met	thod:	SOLI	D STE	1 AUGER	Core Barrel:	N/A	
	ng Locat	tion: 27	+340, 2.3 LT.		Casing		DD:	N/A			Water Level*:	NONE OBSER	VED
MD = 1 U = Th R = Ro V = Ins	lit Spoon S Jnsuccess	ful Split Spoon S be Sample ample Shear Test			T _V = Pock q _p = Unco S _u (lab) = WOH = we WOR = we	i Field et Toi infined Lab V eight	d Vane Shearvane Sheard Compres /ane Shear of 64 kg ha of rods WC	ar Strengt sive Stre Strength mmer	h (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
O Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)		N-value	Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0							SSA_	65.87 65.83		PAVEMENT.		0.13-	
	1D/AB	61.0/38.1	0.30 - 0.91	12/18/14/13	3	2		03.63		MACADAM.			G#128500 A-1-a, GW-GN
								65.33	XXXX	Brown, dry, dense, sandy $O(1D/A)$ 0.30-0.67 m bgs.	GRAVEL, trace silt, (Fill).	0.17	WC=4.2%
	2D	61.0/38.1	0.91 - 1.52	10/9/13/12	2	2		65.06		(1D/B) 0.67-0.91 m bgs.		0.67-	G#133048 A-3, SP
1.2											, SAND, trace silt and grave	l.	WC=4.4% G#133049
								64.48		Brown, dry, medium dense	, SAND, trace silt and grave	0.94- I.	A-3, SP-SM
=											on at 1.52 m below ground	surface.	WC=7.6%
										NO REFUSAL			
2.4													
3.6													
4.8													
6													
7.2													
ŀ													
8.4													
9.6													
Rem	arks:												

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Der	oartment (of Transportat	ion	Projec	t: R	ROUTE	E 109		Boring No.:	TP-WEI	J-101
		-	Soil/Rock Expl	oration Log		Locati	on:	WELI	LS, MA	INE	PIN:	799	8.10
Drille	er:		MDOT		Elevation	n (m):		50.20			Auger ID/OD:	N/A	
Oper	ator:		N/A		Datum:			NGVI	D		Sampler:	N/A	
Logg	jed By:		K. GROSS		Rig Type):		N/A			Hammer Wt./Fall:	N/A	
Date	Start/Fi	inish:	12/3/03-12/3/0	3	Drilling I	Method:		BACI	KHOE		Core Barrel:	N/A	
	ng Loca	tion:	20+940, 3.5 Lt.		Casing I	D/OD:		N/A			Water Level*:	NONE OBSER	VED
MD = 10 U = Th R = Ro V = Ins	olit Spoon S Unsuccess ain Wall Tu ock Core S	sful Split Sp ube Sample Sample Shear Test	oon Sample attempl		Definitions: S_{u} = Insitu T_{v} = Pocke q_{p} = Uncon $S_{u(lab)}$ = Land WOH = wei WOR = wei	t Torvane S fined Com ab Vane Sl ght of 64 k	Shear pressi hear S g han	Strengt ive Stre Strength nmer	th (kPa) ngth (Pa (kPa)		Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	<u> </u>		_		1				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing	Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						TP	<u> </u>	50.09		ASPHALT PAVEMENT.		0.11	C#17(190
							\equiv	50.01		MACADAM.		0.11-	G#176180 A-1-b, SW
						\rightarrow	\exists	49.60		Brown, damp, sandy GRA	VEL, trace silt.	0.19	WC=4.2%
						+	\dashv			Bottom of Explorati	on at 0.60 m below ground	0.60- d surface.	
1.2 -							=			•	J		
							\blacksquare						
							\equiv						
2.4 -													
							\exists						
						-	-						
2.6													
3.6													
							\blacksquare						
4.8 -							\blacksquare						
							\exists						
							╛						
6 -						\pm	\exists						
						-	\dashv						
						\blacksquare	\dashv						
						+	\dashv						
7.2 -						+	\dashv						
7.2							\exists						
							\exists						
						\pm	\exists						
							\exists						
8.4 -						1	\exists						
						\pm							
9.6 Rem	arke:												
IVEIII	<u>ui nð.</u>												

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

	Main	e Dep	artment o	f Transportat	ion	Project:	ROUT	Е 109		Boring No.:	TP-WEL	-102
			Soil/Rock Explo METRIC U	ration Log		Location			INE	PIN:	799	8.10
Drille	er:		MDOT		Elevatio	n (m):	56.7	0		Auger ID/OD:	N/A	
Ope	rator:		N/A		Datum:		NG	/D		Sampler:	N/A	
Logg	ged By:		K. GROSS		Rig Type):	N/A			Hammer Wt./Fall:	N/A	
Date	Start/Fi	nish:	12/3/03-12/3/03		Drilling I	Method:	BAG	CKHOE		Core Barrel:	N/A	
	ng Loca	tion:	22+500, 2.7 Lt.		Casing I	D/OD:	N/A			Water Level*:	NONE OBSER	VED
MD = U = Th R = Re V = In:	olit Spoon S Unsuccess	sful Split Sp be Sample sample Shear Test	oon Sample attempt		S_{U} = Insitu Field Vane Shear Strength (kPa) T_{V} = Pocket Torvane Shear Strength (kPa) q_{p} = Unconfined Compressive Strength (Pa) $S_{U(lab)}$ = Lab Vane Shear Strength (kPa) WOH = weight of 64 kg hammer WOR = weight of rods WOC = weight of casing					Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	enler-N	Casing	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0						TP			ASPHALT PAVEMENT.		0.22-	
							56.4	8 2 3	MACADAM.			G#176179
						\perp	56.1	3	Brown, damp, sandy GRA	VEL, trace silt.	0.28-	A-1-b, SW WC=3.3%
				+			┨		Bottom of Explorat	ion at 0.57 m below ground	0.57- d surface.	
1.2 -							\exists					
							7					
							1					
2.4 -							╡					
2.4							Ⅎ					
							-					
							7					
2.6							1					
3.6 -							1					
							╡					
							1					
							\exists					
4.8 -							\exists					
							7					
							7					
							1					
6 -							_					
							Ⅎ					
							\dashv					
							7					
7.2 -							1					
							1					
							1					
							\exists					
							-					
8.4 -							7					
							_					
				+		-	\dashv					
							7					
9.6												
	arks:											

statistical of the country of graduals of the country of graduals

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Dep	artment of	Transportat	tion Project: ROUTE 109					Boring No.:	EL-103	
		•	Soil/Rock Explora	ation Log		Location			INE	PIN:	7	998.10
Drille	er:		MDOT		Elevation	n (m):	54.89			Auger ID/OD:	N/A	
Oper	ator:		N/A		Datum:		NGV	D		Sampler:	N/A	
	jed By:		K. GROSS		Rig Type		N/A			Hammer Wt./Fall:	N/A	
	Start/F		12/3/03-12/3/03		Drilling I			KHOE		Core Barrel:	N/A	EDITED
Borir Definit	ng Loca	ition:	24+500, 3.4 Lt.		Casing II Definitions:	D/OD:	N/A			Water Level*: Definitions:	NONE OBS	ERVED
D = Sp MD = U U = Th R = Ro V = Ins	olit Spoon Unsuccess in Wall Tu ock Core S	sful Split Sp ibe Sample Sample Shear Test	oon Sample attempt		S_{u} = Insitu T_{v} = Pocke q_{p} = Uncon $S_{u}(lab)$ = La WOH = wei WOR = wei	Field Vane She t Torvane She fined Compre ab Vane Shea ght of 64 kg h ght of rods W	ar Strengt ssive Stre r Strength ammer	th (kPa) ngth (Pa) (kPa)	1	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticty Index G = Grain Size Analysis C = Consolidation Test		
ŀ		Т		Sample Information	<u> </u>		_	1				Laboratory
o Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	Casing Blows	Elevation (m)	Graphic Log	Visual D	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0						TP_		ושונה	ASPHALT PAVEMENT.		0	15- 64176179
							54.64		MACADAM.			G#176178 25-A-1-b, SW-SN
							34.33		Brown, damp, sandy GRA	VEL, trace silt.		WC=3.2%
							1		Bottom of Explorati	on at 0.55 m below ground	surface.	33-
1.2							1					
							1					
							1					
							1					
2.4							}					
							┨					
							}					
							}					
3.6							1					
							1					
							1					
							1					
4.8							1					
							1					
							1					
							1					
6							1					
						\pm	1					
							}					
							}					
7.2							}					
ŀ							-					
							}					
						1	1					
8.4							1					
							1					
							1					
ŀ							1					
9.6							<u>L</u>					
Rem	arks:											

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

I	Maine Department of Transport					tion	tion Project: ROUTE 109					Boring No.:	TP-V	WEL	-104
		•	Soil/Ro	ock Explora ETRIC UN	tion Log		- 1	Location:			INE	PIN:		799	8.10
Drille	r:		MDOT	Γ		Elev	/ation	(m):	64.10			Auger ID/OD:	N/A		
Opera			N/A			Datu		· /	NGVI			Sampler:	N/A		
	ed By:		K. GR	OSS			Type:		N/A			Hammer Wt./Fall:	N/A		
	Start/Fi	inish:		3-12/3/03		_		ethod:	BACI	CHOE		Core Barrel:	N/A		
	g Loca			0, 3.0 Lt.		_	ing ID		N/A	LITOL		Water Level*:	NONE O	BSFR	VFD
Definition	ons:		20.20	0, 3.0 Et.		Defini	itions:					Definitions:	1101120	Bollic	, 22
MD = U U = Thi R = Ro V = Ins	in Wall Tu ck Core S	sful Split Sp be Sample sample Shear Test	oon Samp			T _V = I q _p = I S _{u(lal} WOH WOR	Pocket 1 Unconfir b) = Lab l = weigh	eld Vane Shea Forvane Shea ned Compres Vane Shear nt of 64 kg ha nt of rods Wo	ar Strengt sive Stre Strength mmer	h (kPa) ngth (Pa) (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test			
- 1					Sample Informati			_							Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)		Sample Depth (m)	Blows (150 mm) Shear Strength (kPa)	(%)	N-value	Casing Blows	Elevation (m)	Graphic Log	Visual De	escription and Remarks			Testing Results/ AASHTO and Unified Class.
0								TP	63.99	anien	ASPHALT PAVEMENT.			0.11	
ŀ									63.90		MACADAM.			-0.11-	G#176177 A-1-b, SW-S
									63.57		Brown, damp, sandy GRA	VEL trace silt		-0.20-	WC=4.1%
ļ											L	on at 0.53 m below ground	6	-0.53-	
- 1.2											Bottom of Explorati	on at 0.55 m below ground	i suriace.		
1								1							
F															
-								1							
ļ															
2.4								+							
F															
Ŀ															
3.6								-							
J.0 F								1							
ļ								1							
								+							
F															
4.8									1						
ŀ															
ļ								1							
								1							
6								1							
F															
-															
Ŀ															
· 7.2								-							
ļ															
7		<u>L</u>						\pm							
F															
8.4															
<u> </u>															
ļ															
9.6								1							
Rema	arks:	•	<u> </u>		-		•	•							

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

]	Main	e Der	partment of	f Transportat	tion Project: ROUTE 109						Boring No.: TP-WEL-			-105
		•	Soil/Rock Explora	ation Log		1			LS, MA	INE	PIN:		799	8.10
Drille	er:		MDOT		Elevatio	n (m)):	66.00)		Auger ID/OD:	N/A		
Oper	ator:		N/A		Datum:			NGV	D		Sampler:	N/A		
Logg	jed By:		K. GROSS		Rig Type	:		N/A			Hammer Wt./Fall:	N/A		
	Start/F		12/3/03-12/3/03		Drilling I			BAC	KHOE		Core Barrel:	N/A		
	ng Loca	tion:	27+340, 3.1 Lt.		Casing I Definitions:): 	N/A			Water Level*: Definitions:	NONE O	BSER	VED
MD = I U = Th R = Ro V = Ins	olit Spoon Unsuccess ain Wall Tu ock Core S	sful Split Sp ube Sample Sample Shear Test	oon Sample attempt		S_U = Insitu T_V = Pocke q_p = Uncon $S_U(lab)$ = Li WOH = wei WOR = wei	Field \ t Torval ifined (ab Var ight of	ane She Compres ne Shea 64 kg ha	ar Streng ssive Stre r Strengt ammer	oth (kPa) ength (Pa n (kPa)		WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test			
		Т		Sample Information		_		_	1					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	9 = N		Casing Blows	Elevation (m)	Graphic Log		escription and Remarks			Testing Results/ AASHTO and Unified Class.
0						\dashv	_TP	65.90		ASPHALT PAVEMENT.			0.10-	C#176176
						#		05.80		MACADAM.			-0.10-	G#176176 A-1-b, SW-SN
						#	\downarrow	65.24		Brown, damp, sandy GRA	VEL, trace silt.			WC=4.8%
						1		1		Bottom of Explorati	on at 0.76 m below ground		-0.76-	
1.2						\pm		}						
						+		1						
						+		-						
						+		1						
2.4						1		1						
						1		1						
						1		1						
						1		1						
3.6						\pm		1						
						\pm		1						
						+		1						
						-		}						
4.8						+								
7.0						1		1						
						#		1						
						1		1						
						#		1						
6						\pm		1						
						\pm		1						
						+		1						
						-		}						
7.2						\top		1						
						#		1						
\dashv						#		1						
						\perp		1						
8.4						\pm		1						
						\perp		ł						
						7		}						
						1		1						
9.6								1						
Rem	arks:													

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 1

Station (meters)	Offset (meters)	Depth (meters)	Sample Number	Description and Remarks
FWD		Power Auger		8/29/00
100 SB		0.00 - 92 mm		Pavement
27+315, 2.4	Lt.	92 mm - 0.61 0.61 - 1.52	1	Brown silty sandy gravel (fill)
-		1.52 - 2.74	2 3	Brown fine to coarse sand with some fine gravel, some silt Brown fine sand
El. 65.5 m		2.74 - 2.90	4	Brown mottled clayey silt
-2. 00.0 m		2.53	·	Water
		2.90		No refusal
FWD		Power Auger		8/29/00
200		0.00 - 97 mm		Pavement
27+215, 2.7 %	Lt.	97 mm - 0.61		Brown silty sandy gravel (fill)
		0.61 - 1.83 1.83 - 2.13		Brown silty fine to coarse sand
El. 63.3 m		2.13 - 2.90		Gray clayey silt with some fine sand Brown mottled clayey silt
		2.90		No refusal / No water
FWD	;	Power Auger		8/29/00
400		0.00 - 220 mm		Pavement
27+015, 2.6	T+	220 mm - 0.48		Brown silty sandy gravel (fill)
2/1015, 2.0	Tit.	0.48 - 1.07		Brown fine sandy silt with some clay
ET 60.0		1.07 - 1.83 1.83 - 2.90		Brown silty fine sand Brown fine sand
E1. 60.9 m		2.90		No refusal / No water
FWD	5	Power Auger		8/29/00
601		0.00 - 85 mm		Pavement
26+814, 2.8	T#.	85 mm - 0.95		Brown silty sandy gravel (fill)
201014, 210	10.	0.95 - 1.52		Brown sandy silt with some clay
El. 60.1 m		1.52 - 2.90		Gray silty fine sand
EI. 00.1 III		2.0 2.90		Water No refusal
		2.50		No lotabal
FWD		Power Auger		8/29/00
800		0.00 - 90 mm		Pavement
26+615, 2.9	T+	90 mm - 0.58		Brown silty sandy gravel (fill)
201015, 2.9	LL.	0.58 - 2.90		Brown silty fine to medium sand with some coarse sand and fine gravel
El. 63.3 m		2.90		No refusal / No water
LII. 03.5 M				
FWD		Power Auger		8/29/00
1000		0.00 - 243 mm	_	Pavement
26+415, 2.5	Lt.	243 mm - 0.76 0.76 - 1.83	5 6	Brown silty sandy gravel (fill) Brown fine to medium sand with some coarse sand, some silt
		1.83 - 2.90	O	Brown silty fine sand
El. 64.6 m		2.90		No refusal / No water
FWD		Power Auger		8/30/00
1200		0.00 - 178 mm		Pavement
	T.	178 mm - 0.52		Brown silty sandy gravel (fill)
26+215, 1.9	TIC.	0.52 - 0.76		Brown silty fine sand
c c		0.76 - 2.43		Brown silty fine to medium sand with some coarse sand, some fine gravel
E1. 65.3 m		2.43 - 2.90 2.90		Brown silty fine sand No refusal / No water
		2.70		110 IOIGSdi / 110 Wdioi

Station (meters)	Offset (meters)	Depth (meters)	Sample Number	Description and Remarks
FWD 1400		Power Auger 0.00 - 198 mm 198 mm - 0.55		8/30/00 Pavement Brown silty sandy gravel (fill)
26+015, 2.2	Lt.	0.55 - 1.83 1.83 - 2.59		Brown silty fine to medium sand with some coarse sand, some fine gravel Brown silty fine sand
E1. 64.3 m		2.59 - 2.90 1.82 2.90		Brown fine to coarse sand with gravel Water No refusal
FWD		Power Auger		8/30/00
1601		0.00 - 205 mm		Pavement
25+814, 2.3	Lt.	205 mm - 0.52 0.52 - 1.83 1.83 - 2.90		Brown silty sandy gravel (fill) Brown silty fine to medium sand with some coarse sand, some fine gravel Brown silty fine to medium sand with gravel, occasional cobbles (till)
El. 65.4 m		2.90		No refusal / No water
Skipped 1800	m at RR Over	pass		
FWD		Power Auger		8/30/00
2002		0.00 - 178 mm 178 mm - 0.46		Pavement
25+425, 2.6	Lt.	0.46 - 0.98		Brown silty sandy gravel (fill) Brown silty fine to medium sand with some coarse sand, some fine gravel
		0.98 - 1.37		Dark brown silty fine sand
El. 64.1 m		1.37 - 2.90		Brown silty fine sand with trace fine gravel
		2.90		No refusal / No water
FWD		Power Auger		8/30/00
2002 A		0.00 - 0.37		Brown silty sandy gravel (fill) - shoulder
25.425 4.23	r.±	0.37 - 0.98		Brown silty fine to medium sand with some coarse sand, some fine gravel
25+425, 4.2	Lt.	0.98 - 1.37 1.37 - 2.90		Dark brown silty fine sand
 (4.0		2.90		Brown silty fine sand with trace fine gravel No refusal / No water
E1. 64.0 m		2.50		1.0 Iolada / 1.0 Water
FWD		Power Auger		8/30/00
2200		0.00 - 165 mm		Pavement
25+216, 2.7	Lt.	165 mm - 0.55 0.55 - 0.79 0.79		Brown silty sandy gravel (fill) Brown silty fine to medium sand Refusal / No water
E1. 62.0 m		0.77		Actual / 10 water
FWD	ţ	Power Auger		8/30/00
2400		0.00 - 125 mm		Pavement
25+005, 2.7 1	Lt.	125 mm - 260 mm		Penetrated gravel
	-	260 mm - 0.61 0.61 - 1.37		Brown silty sandy gravel (fill) Brown silty fine to medium sand with some fine gravel
El. 55.9 m		1.37 - 1.68		Brown silty fine to medium sand with some fine graver
		1.68 - 1.98	7	Brown organic silt with some sand (peat)
		1.98 - 2.90	8	Brown silty fine to coarse sand with some clay
		1.95		Water
		2.90		No refusal

Station (meters)	Offset (meters)	Depth (meters)	Sample Number	Description and Remarks
FWD 2600		Power Auger 0.00 - 235 mm		8/30/00
24+805, 2.6	Lt.	235 mm - 0.76 0.76 - 2.13		Pavement Brown silty sandy gravel (fill) Brown silty fine to medium sand with some coarse sand, some fine gravel
E1, 56.3 m		2.13 - 2.90 2.90		Brown silty fine sand with some clay No refusal / No water
FWD 2800		Power Auger 0.00 - 220 mm		8/30/00 Pavement
24+605, 2,5	Lt.	220 mm - 1.6 1.6 - 5.4 5.4		Brown silty sandy gravel with cobbles (fill) Brown silty fine to medium sand with some coarse sand, some fine gravel Refusal / No water
El. 56.0 m				,
FWD 3000	-	Power Auger 0.00 - 195 mm 195 mm - 0.58	0	8/30/00 Pavement Brown silty sandy gravel (fill)
24+405, 2.4	Lt.	0.58 - 0.98	9 10	Brown silty fine to medium sand with cobbles, some fine gravel
El. 54.7 m		0.98		Refusal / No water
FWD 3000 A		Power Auger 0.00 - 85 mm		8/30/00 Pavement - shoulder
24+405, 4.5	Lt.	85 mm - 0.52 0.52 - 1.04 1.04		Brown silty sandy gravel (fill) Brown silty fine to medium sand with cobbles, some fine gravel Refusal / No water
E1. 54.6 m				
FWD 3400		Power Auger 0.00 - 195 mm		8/30/00 Pavement
24+000, 2.7	Lt.	195 mm - 1.16 1.16		Brown silty sandy gravel (fill) Refusal (boulder?) / No water
El. 53.6 m				
FWD 3402		Power Auger 0.00 - 205 mm		8/30/00 Pavement
23+998, 2.7	Lt.	205 mm - 1.13 1.13 - 1.52 1.52 - 2.90	11	Brown silty sandy gravel (fill) Brown silty fine to medium sand with cobbles, some fine gravel Brown/gray mottled clayey silt
E1. 53.6 m		1.6 2.90	11	Water No refusal
FWD 3800		Power Auger 0.00 - 160 mm		8/30/00 Pavement
23+596, 2.5	Lt.	160 mm - 0.91 0.91 - 1.68 1.68 - 2.53		Brown silty sandy gravel (fill) Brown silty sandy gravel with cobbles Brown silty fine to medium sand
El. 57.7 m		2.53 - 2.90 1.8 2.90		Brown/gray mottled clayey silt Water No refusal
FWD		Power Auger		8/30/00
4200 23+196, 2.5 1	Γat∙ .	0.00 - 90 mm 90 mm - 170 mm		Pavement Penetrated gravel
237130, 2 ₀ 3)	uc.	170 mm - 0.91 0.91 - 1.58	13 14	Brown silty fine to coarse sand with gravel (fill) Brown silty fine sand
E1. 55.8 m		1.58 - 2.35 2.35		Brown sandy silt with gravel, cobbles (till) Refusal / No water

Station (meters)	Offset (meters)	Depth (meters)	Sample Number	Description and Remarks
FWD 4200 A 23+196, 4.4	Lt.	Power Auger 0.00 - 0.91 0.91 - 1.46 1.46 - 1.55		8/30/00 Brown silty fine to coarse sand with gravel, cobbles (fill) - shoulder Brown silty fine sand Brown sandy silt with gravel, cobbles (till)
E1. 55.8 m		1.55 - 1.71 1.71		Grind into rock Refusal / No water
11. 33.0 m				
FWD 4600		Power Auger 0.00 - 125 mm		8/30/00 Pavement
22+796, 2.7	Lt.	125 mm - 195 mm 195 mm - 1.04 1.04 - 1.43		Penetrated gravel Brown silty fine to coarse sand with gravel (fill) Dark brown sandy silt with trace clay
E1. 55.9 m		1.43 - 2.14 2.14 - 2.90		Brown sandy silt with gravel, cobbles Brown silty fine to coarse sand with gravel Water
		2.90		No refusal
FWD		Power Auger		8/30/00
5000		0.00 - 105 mm 105 mm - 205 mm		Pavement Provided arrayal
22+396, 2.5	Lt.	205 mm - 0.55	15	Penetrated gravel Brown silty fine to coarse sand with gravel (fill)
E1. 63.6 m		0.55 - 2.44	16	Brown sandy silt with gravel, cobbles
E1. 03.0 m		2.44 - 2.90 2.90	17	Brown silty fine to coarse sand No refusal / No water
FWD		Power Auger		8/30/00
5000 A		0.00 - 0.46 0.46 - 2.44		Brown silty fine to coarse sand with gravel (fill) - shoulder Brown sandy silt with gravel, cobbles
22+396, 4.1	Lt.	2.44 - 2.90 2.90		Brown salty fine to coarse sand No refusal / No water
El. 61.3 m				
FWD 5202		Power Auger 0.00 - 65 mm		8/30/00 Pavement
22+194, 4.3	Lt.	65 mm - 0.75 0.75 - 2.35 2.35		Brown silty sandy gravel (fill) Brown silty fine to coarse sand with gravel Refusal / No water
El. 65.3 m		2.53		Refusal / No water
FWD 5600		Power Auger 0.00 - 152 mm		8/30/00 Pavement
21+796, 2.4	Lt.	152 mm - 255 mm 255 mm - 2.60		Penetrated gravel Brown sandy silt with gravel, cobbles Brown silty fine to coarse sand
El. 60.2 m		2.60 - 2.90 2.90		No refusal / No water

Appendix C: Laboratory Test Results

- Laboratory Testing Summary Sheet
- Grain Size Analysis
- Geology Test Reports

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Wells

Proje	ct l	Nur	nbe	er:	7998.10
GSDC	w c	1.1	PΙ		Classification

Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	ssificatio	n
Identification Number	(Meter)	(Meter)	(Meter)	Number	Sheet				Unified	AASHTO	Frost
HB-WEL-201, S1	20+940	4.7 LT.	0.0-0.58	128034	1	6.1			SM	A-1-b	II
HB-WEL-201, S2	20+940	4.7 LT.	0.58-1.58	128035	1	3.8			SM	A-1-b	П
HB-WEL-202, 1D	20+940	2.5 LT.	0.30-0.91	128036	1	4.3			SP-SM	A-1-b	0
HB-WEL-203, S3	21+180	5.0 LT.	0.05-0.88	128037	1	6.4			SW-SM	A-1-a	0
HB-WEL-204, 1D	21+180	2.5 LT.	0.30-0.91	128038	1	4.6			SW-SM	A-1-b	0
HB-WEL-205, S4	21+420	5.6 LT.	0.0-0.94	128039	1	9.4			SW-SM	A-1-b	0
HB-WEL-206, 1D/A	21+420	2.5 LT.	0.30-0.88	128040	2	4.0			SW-SM	A-1-b	0
HB-WEL-206, 2D/B	21+420	2.5 LT.	1.19-1.52	128041	2	7.9			SM	A-2-4	=
HB-WEL-207, S5	22+500	4.5 LT.	0.0-0.27	128042	2	9.0			SW-SM	A-1-b	0
HB-WEL-207, S6	22+500	4.5 LT.	0.27-1.22	128043	2	13.0			SM	A-2-4	II
HB-WEL-208, 1D/A	22+500	2.2 LT.	0.30-0.67	128044	3	5.5			SW-SM	A-1-b	0
HB-WEL-208, 1D/B	22+500	2.2 LT.	0.67-0.91	128045	3	10.1			SW-SM	A-1-b	0
HB-WEL-208, 2D/B	22+500	2.2 LT.	1.07-1.37	128046	3	6.3			SW-SM	A-1-a	0
HB-WEL-210, 1D/A	23+700	2.4 LT.	0.30-0.58	128047	3	2.6			SM	A-1-b	II
HB-WEL-210, 1D/B	23+700	2.4 LT.	0.58-0.91	128048	3	10.8			SW-SM	A-1-b	0
HB-WEL-211, S8	24+500	5.4 LT.	0.0-0.73	128049	4	6.3			SW-SM	A-1-b	0
HB-WEL-211, S9	24+500	5.4 LT.	0.73-1.68	128891	4	12.9			SM	A-2-4	II
HB-WEL-211, S10	24+500	5.4 LT.	1.68-3.05	128892	4	16.5			CL-ML	A-4	IV
HB-WEL-212, 1D	24+500	2.5 LT.	0.30-0.91	128893	4	4.0			SW-SM	A-1-b	0
HB-WEL-213, S11	25+560	4.4 LT.	0.0-1.40	128894	4	5.0			SW-SM	A-1-b	0
HB-WEL-214, 1D	25+560	2.4 LT.	0.30-0.91	128895	4	5.4			SW-SM	A-1-b	0
HB-WEL-215, S13	26+500	3.8 LT.	0.0-0.55	128896	5	8.7			SW-SM	A-1-b	0
HB-WEL-215, S14	26+500	3.8 LT.	0.55-1.98	128897	5	8.3			SM	A-2-4	П
HB-WEL-216, 1D	26+500	2.4 LT.	0.30-0.91	128898	5	3.7			SW-SM	A-1-b	0
HB-WEL-216, 2D/A	26+500	2.4 LT.	0.91-1.28	128899	5	4.0			SW-SM	A-1-b	0
HB-WEL-217, S15	27+340	4.6 LT.	0.24-0.85	133046	6	5.1			SP-SM	A-3	0
HB-WEL-217, S16	27+340	4.6 LT.	0.85-1.83	133047	6	7.4			SM	A-2-4	=
HB-WEL-218, 1D/A	27+340	2.3 LT.	0.30-0.67	128500	6	4.2			GW-GM	A-1-a	0
HB-WEL-218, 1D/B	27+340	2.3 LT.	0.67-0.91	133048	6	4.4			SP	A-3	0
HB-WEL-218, 2D	27+340	2.3 LT.	0.91-1.52	133049	6	7.6			SP-SM	A-3	0
TP-WEL-101	20+940	3.5 Lt.	0.19-0.60	176180	7	4.2			SW	A-1-b	0
TP-WEL-102	22+500	2.7 Lt.	0.28-0.57	176179	7	3.3			SW	A-1-b	0
TP-WEL-103	24+500	3.4 Lt.	0.25-0.55	176178	7	3.2			SW-SM	A-1-b	0
TP-WEL-104	26+500	3.0 Lt.	0.20-0.53	176177	7	4.1			SW-SM	A-1-b	0
TP-WEL-105	27+340	3.1 Lt.	0.20-0.76	176176	7	4.8			SW-SM	A-1-b	0

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Wells

Project	Number:	7998.10
----------------	---------	---------

Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.		ВΙ	CI	assificatio	.n
			-			W.C.	L.L.	P.I.			
Identification Number			(Meter)	Number	Sheet				Unified	AASHTO	
FWD-100SB, 1	27+315		92 mm-0.61		8	1			SW-SM		II I
FWD-100SB, 2	27+315	2.4 Lt.	0.61-1.52	98594	8	3			GM	A-1-b	
FWD-100SB, 3	27+315	2.4 Lt.	1.52-2.74	98595	8	3			SM	A-2-4	II
FWD-100SB, 4	27+315	2.4 Lt.	2.74-2.9	98596	8	21			CL-ML	A-4	IV
FWD-1000, 5	26+415		243 mm76		8				SW-SM		II
FWD-1000, 6	26+415	2.5 Lt.	0.76-1.83	98598	8	9			SP-SM		0
FWD-2400, 7	25+005	2.7 Lt.	1.68-1.98	98599	9	60			SM	A-2-4	II
FWD-2400, 8	25+005	2.7 Lt.	1.98-2.9	98600	9	25			SM	A-1-b	II
FWD-3000, 9	24+405	2.4 Lt.	195 mm58		9	2			GM	A-1-a	l
FWD-3000, 10	24+405	2.4 Lt.	0.58-0.98	105033	9	5			SM	A-2-4	Ш
FWD-3402, 11	23+998	2.7 Lt.	1.52-2.9	105034	9	23			CL-ML	A-4	IV
FWD-4200, 13	23+196	2.5 Lt.	170 mm91		10	2			SW-SM		0
FWD-4200, 14	23+196	2.5 Lt.	0.91-1.58	105036	10	21			SM	A-4	IV
FWD-5000, 15	22+396		205 mm55		10	3			SW-SM		0
FWD-5000, 16	22+396	2.5 Lt.	0.55-2.44	105038	10	1			SM	A-1-b	П
FWD-5000, 17	22+396	2.5 Lt.	2.44-2.9	105039	10	4			SM	A-1-b	II
								1			

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

Reported by: T.White

PIN: 7998.10 Town: Wells

Keported by: Date: 7/9/01

PIN: 7998.10 Town: Wells

Reported by: T.White Date: 7/10/01

Reported by: T.White

PIN: 7998.10 **Town: Wells**

Date: 7/10/01

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/17/2002 12/22/2002 128034 HB-WEL-201/S1 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 20+940 Offset, m: 4.7 **LT** Dbfg, m: **0.0-0.58**

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis	(T 27,	
T 11)		She
Wash Method	d	Initi
Procedure A	\	Nor
SIEVE SIZE	_ %	We
U.S. [SI]	Passing	Dry
3 in. [75.0 mm]		Spe
1 in. [25.0 mm]	100.0	Орс
3/4 in. [19.0 mm]	97.8	
½ in. [12.5 mm]	92.0	
% in. [9.5 mm]	86.9	
1/4 in. [6.3 mm]	77.0	
No. 4 [4.75 mm]	72.0	
No. 10 [2.00 mm]	59.0	Wa
No. 20 [0.850 mm]	45.3	Dry
No. 40 [0.425 mm]	37.2	Voi
No. 60 [0.250 mm]	32.3	Sat
No. 100 [0.150 mm]	26.6	
No. 200 [0.075 mm]	17.5	

	Direct S	hear (Г 236)			Miscelland	eous Tests
Shear Angle, °							@ 25 blows
Initial Water Conten	t, %					(18	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	dex (T 90), %
		dation (er Conter					y, Corrected to (T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Igr	nition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				
Void Ratio			Pmax			Water Conte	ent (T 265), %
Saturation, %			Cc/C'c			6	5.1

Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth taken in	3	ln.	6 1	n.	Water	Description of Materia Various Tube			
	U. Shear	Remold	U. Shear	Remold	Content,				
tube, m	kPa	kPa	kPa	kPa	%	various rube			

Description of Material Sampled at the Various Tube Depths

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128035 HB-WEL-201/S2 GEOTECHNICAL (DISTURBED) 12/17/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 20+940 Offset, m: 4.7 LT Dbfg, m: 0.58-1.58

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,		Direct Shear (T 236)							
T 11)		Shear Angle, °							
Wash Metho	d	Initial Water Conten	ıt, %						
Procedure A	4	Normal Stress, kPa							
SIEVE SIZE	%	Wet Density, kg/m³							
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m						
1 in. [25.0 mm]									
3/4 in. [19.0 mm]		C	onsoli	dation ((T 216)				
½ in. [12.5 mm]	100.0	Trimmings, Water Content, %							
3/4 in. [9.5 mm]	89.4		igs, wat	Ci Contci	11, 70				
1/4 in. [6.3 mm]	78.6		Initial	Final		Void			
No. 4 [4.75 mm]	72.2					Ratio			
No. 10 [2.00 mm]	53.9	Water Content, %			Pmin				
No. 20 [0.850 mm]	41.5	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	35.1	Void Ratio			Pmax				
No. 60 [0.250 mm]	31.2	Saturation, %			Cc/C'c				
No. 100 [0.150 mm]	27.7		٥.	_		–			
No. 200 [0.075 mm]	20.8	Vane Shear Test on Shelby							

Miscellane	ous Tests									
Liquid Limit @ 25 blows										
<u>(T 89), %</u>										
Plastic Limit (T 90), %										
Plasticity Index (T 90), %										
Specific Gravity, Corrected to										
<u>20°C (</u>	T 100)									
Loss on Igni	ition (T 267)									
Loss, %	<u>H2O, %</u>									
Water Conte	nt (T 265), %									
3.	.8									

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3 1	n.	61	ln.	Water			
taken in	U. Shear	Remold	U. Shear Remold		Content,	Content,	Description of Material Sampled at the	
tube, m	kPa	kPa kPa kPa %		%	various rube Deptils			
tube, m	kPa	kPa	kPa	kPa	%	Various Tube Depths		

% Strain

Com	<u>ımeı</u>	nts:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/17/2002 12/22/2002 128036 HB-WEL-202/1D **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Station: 20+940 Location: ROADWAY Offset, m: 2.5 **LT** Dbfg, m: **0.30-0.91**

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,			Direct S	hear (1	Г 236)			Miscelland	eous Tests	
T 11)		Shear Angle, °							@ 25 blows	
Wash Metho	d	Initial Water Conten	t, %					(1.8)	<u>9), %</u>	
Procedure A	4	Normal Stress, kPa								
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Lim	nit (T 90), %	
U.S. [SI]	Passing	Dry Density, kg/m ³								
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Inc	dex (T 90), %	
1 in. [25.0 mm]			-,							
3/4 in. [19.0 mm]	100.0	C	Consolidation (T 216)							
½ in. [12.5 mm]	97.2	Trimmin	Trimmings, Water Content, %							
% in. [9.5 mm]	95.3		ys, wate	Conte	11, 70			20 0	(<u>T 100)</u>	
1/4 in. [6.3 mm]	92.2		Initial	Final		Void	%		(=)	
No. 4 [4.75 mm]	89.5					Ratio	Strain		ition (T 267)	
No. 10 [2.00 mm]	77.7	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>	
No. 20 [0.850 mm]	51.1	Dry Density, kg/m³			Pp					
No. 40 [0.425 mm]	27.3	Void Ratio			Pmax			Water Conte	ent (T 265), %	
No. 60 [0.250 mm]	19.1	Saturation, %			Cc/C'c			4	.3	
No. 100 [0.150 mm]	13.5	1/-	01		1 01		L /N	I-i DOT)		
No. 200 [0.075 mm]	9.0	Va	ine She	ear les	t on Sr	neiby I	upes (N	laine DOT)		

tube, m

kPa

kPa

	Trimmings, Water Content, %							(1 100)		
		Initial	Final		Void Ratio	% Strain	Loss on Ign	ition (T 267)		
Water Co	ntent, %			Pmin			Loss, %	<u>H2O, %</u>		
Dry Densi	ity, kg/m³			Рр						
Void Ratio)			Pmax			Water Content (T 265), %			
Saturation	າ, %			Cc/C'c			4	.3		
	Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth	3 1	n.	6	ln.	Water					
taken in	U. Shear	Remold	U. Shear	Remold	Conten	t, Descr	iption of Material \$ Various Tube D			
tubo m	I.D.	1.0.	I-D-	I-D-	0/_		various rube L	repuis		

kPa

%

Comments:			

kPa

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/14/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128037 HB-WEL-203/S3 GEOTECHNICAL (DISTURBED) 12/18/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 21+180 Offset, m: 5.0 LT Dbfg, m: 0.05-0.88

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis		
T 11)		Shear Angle,
Wash Metho	d	Initial Water C
Procedure A	١	Normal Stress
SIEVE SIZE	%	Wet Density,
U.S. [SI]	Passing	Dry Density, k
3 in. [75.0 mm]		Specimen Thi
1 in. [25.0 mm]		оросинон ти
3/4 in. [19.0 mm]	100.0	
½ in. [12.5 mm]	85.7	Tr
3/8 in. [9.5 mm]	76.3	
1/4 in. [6.3 mm]	66.3	
No. 4 [4.75 mm]	61.7	
No. 10 [2.00 mm]	49.9	Water Conter
No. 20 [0.850 mm]	37.9	Dry Density, k
No. 40 [0.425 mm]	29.6	Void Ratio
No. 60 [0.250 mm]	23.7	Saturation, %
No. 100 [0.150 mm]	17.2	
No. 200 [0.075 mm]	11.0	

	Miscellane	eous Tests					
Shear Angle, °							@ 25 blows
Initial Water Conten	t, %					(18	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
С	Consolidation (T 216)						y, Corrected to
Trimmin	ıgs, Wate	er Conter	nt, %				T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Ign	ition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				
Void Ratio			Pmax			Water Conte	nt (T 265), %

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3 ln.		6 ln.		Water			
taken in	U. Shear	Remold	U. Shear	Remold	Content, % Description of Material Sa Various Tube De	Description of Material Sampled at the		
tube, m	kPa	kPa	kPa	kPa		various Tube Deptils		

6.4

Cc/C'c

C	om	m	er	nts	
\sim			\sim .		

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128038 HB-WEL-204/1D GEOTECHNICAL (DISTURBED) 12/18/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 21+180 Offset, m: 2.5 LT Dbfg, m: 0.30-0.91

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis	Dire		
T 11)	Shear Angle, °		
Wash Metho	d	Initial Water Conten	t, %
Procedure A	\	Normal Stress, kPa	
SIEVE SIZE	_ %	Wet Density, kg/m³	
U.S. [SI]	Passing	Dry Density, kg/m³	
3 in. [75.0 mm]	100.0	Specimen Thicknes	s. m
1 in. [25.0 mm]	96.1	оросинон нискию	o,
3/4 in. [19.0 mm]	94.5	C	ons
½ in. [12.5 mm]	89.2	Trimmin	nae
3/4 in. [9.5 mm]	84.0		ıyə,
¼ in. [6.3 mm]	78.3		Ini
No. 4 [4.75 mm]	73.2		
No. 10 [2.00 mm]	59.9	Water Content, %	
No. 20 [0.850 mm]	44.3	Dry Density, kg/m³	
No. 40 [0.425 mm]	32.8	Void Ratio	
No. 60 [0.250 mm]	24.4	Saturation, %	
No. 100 [0.150 mm]	17.9		
No. 200 [0.075 mm]	11.5	Va	ine

	Miscelland	eous Tests					
Shear Angle, °			1				@ 25 blows
Initial Water Conten	t, %					(1.8)	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	iit (T 90), %
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
C		y, Corrected to					
	ys, wate	Conte	11, 70			200	1 1007
	Initial	Final		Void Ratio	% Strain	Loss on Ign	ition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Donoity ka/m3			Dn				

Vane Shear Test on Shelby Tubes (Maine DOT)								
3 I	In. 6 In.		n.	Water				
U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths			
kPa	kPa	kPa	kPa		various rube depuis			
	3 I U. Shear	3 In. U. Shear Remold	3 In. 6 I U. Shear Remold U. Shear	3 In. 6 In. U. Shear Remold U. Shear Remold	3 In. 6 In. Water U. Shear Remold U. Shear Remold Content,			

Pmax Cc/C'c Water Content (T 265), %

4.6

Cor	nm	ıen	ts:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/17/2003

SAMPLE INFORMATION

Sample Type: GEOLOGY Location: ROADWAY Station: 21+420 Offset, m: 5.6 LT Dbfg, m: 0.0-0.94

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

Dry Density, kg/m³

Void Ratio

Saturation, %

TEST RESULTS

Sieve Analysis (T 27, T 11)						
Wash Method	d					
Procedure A	\					
SIEVE SIZE	%					
U.S. [SI]	Passing					
3 in. [75.0 mm]	100.0					
1 in. [25.0 mm]	95.9					
3/4 in. [19.0 mm]	92.3					
½ in. [12.5 mm]	86.5					
% in. [9.5 mm]	81.7					
1/4 in. [6.3 mm]	75.4					
No. 4 [4.75 mm]	71.1					
No. 10 [2.00 mm]	60.5					
No. 20 [0.850 mm]	45.2					
No. 40 [0.425 mm]	33.7					
No. 60 [0.250 mm]	25.3					
No. 100 [0.150 mm]	17.9					
No. 200 [0.075 mm]	11.5					

	D	Pirect S	Shear (1	Г 236)			Miscelland	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Content	t, %					(18	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
	Dry Density, kg/m³							
	Specimen Thickness	s, m					Plasticity Inc	dex (T 90), %
	Trimmin	Specific Gravit	y, Corrected to (T 100)					
		Initial	Final		Void Ratio	% Strain	Loss on Igr	ition (T 267)
1	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>

Pр

Pmax Cc/C'c

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3 ln.		6 In.		Water			
taken in	U. Shear	Remold	U. Shear	Remold	Content, Warious Tube	Description of Material Sampled at the		
tube, m	kPa	kPa	kPa	kPa		various Tube Deptils		

Water Content (T 265), %

9.4

<u>C0</u>	m	<u>me</u>	nts:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/17/2002 12/22/2002 128040 HB-WEL-206/1D(A) **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 21+420 Offset, m: 2.5 LT Dbfg, m: 0.30-0.88

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,						
T 11)						
Wash Method	d					
Procedure A	\					
SIEVE SIZE	%					
U.S. [SI]	Passing					
3 in. [75.0 mm]						
1 in. [25.0 mm]	100.0					
¾ in. [19.0 mm]	91.1					
½ in. [12.5 mm]	83.7					
% in. [9.5 mm]	81.3					
1/4 in. [6.3 mm]	77.0					
No. 4 [4.75 mm]	73.4					
No. 10 [2.00 mm]	60.3					
No. 20 [0.850 mm]	42.5					
No. 40 [0.425 mm]	29.5					
No. 60 [0.250 mm]	22.9					
No. 100 [0.150 mm]	17.2					
No. 200 [0.075 mm]	11.4					

Direct Shear (T 236)	Miscellaneous Tests
Shear Angle, °	Liquid Limit @ 25 blows
Initial Water Content, %	<u>(T 89), %</u>
Normal Stress, kPa	
Wet Density, kg/m³	Plastic Limit (T 90), %
Dry Density, kg/m³	
Specimen Thickness, m	Plasticity Index (T 90), %
Consolidation (T 216)	Specific Gravity, Corrected to
Trimmings, Water Content, %	20°C (T 100)
Initial Final Void	l %

minings, water content, %							
	Initial	Final		Void Ratio	% Strain		
Water Content, %			Pmin				
Dry Density, kg/m³			Рр				
Void Ratio			Pmax				
Saturation, %			Cc/C'c				

	<u> </u>	1120, 70					
	Water Content (T 265), %						
	4.0						
ibes (Maine DOT)							

Loss on Ignition (T 267) Loss % H2O %

	Va	ane She	ear Test	on She	lby I u
Depth	3 1	n.	6 1	Water	
taken in	U. Shear	Remold	U. Shear	Remold	Content,
tube, m	kPa	kPa	kPa	kPa	%

Description of Material Sampled at the Various Tube Depths

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/8/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128041 HB-WEL-206/2D(B) GEOTECHNICAL (DISTURBED) 12/17/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 21+420 Offset, m: 2.5 LT Dbfg, m: 1.19-1.52

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis	(T 27,		Miscellane	ous Tests					
T 11)		Shear Angle, °							@ 25 blows
Wash Method	d	Initial Water Conten	t, %					(1.8)	<u>9), %</u>
Procedure A	\	Normal Stress, kPa							
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Lim	it (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Ind	ex (T 90), %
1 in. [25.0 mm]		оросии от типотиност	-,						
3/4 in. [19.0 mm]		C	Consolidation (T 216)				Specific Croyit	. Corrected t	
½ in. [12.5 mm]		Trimmin	ac Wat	er Conter	n+ 0/_			Specific Gravit	<u>y, Corrected i</u> T 100)
% in. [9.5 mm]	100.0		iys, wali	ei Contei	π, /0			20 0 (1 100)
½ in. [6.3 mm]	97.9		Initial	Final		Void	%		
No. 4 [4.75 mm]	97.0			1		Ratio	Strain	Loss on Ign	ition (T 267)
No. 10 [2.00 mm]	90.5	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
No. 20 [0.850 mm]	77.3	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	62.5	Void Ratio			Pmax			Water Conte	nt (T 265), %
No. 60 [0.250 mm]	48.0	Saturation, %			Cc/C'c			7	.9
No. 100 [0.150 mm]	34.1	37	0'		6'	=	1 /5/	L-' DOT'	
No. 200 [0.075 mm]	20.0	Va	ine Sho	ear les	t on Sr	nelby I	ubes (N	laine DOT)	

Vane Shear Test on Shelby Tubes (Maine DOT)						
Depth	3	ln.	6	ln.	Water	Description of Material Computed at the
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptilis

Cor	mments:				

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128042 HB-WEL-207/S5 GEOTECHNICAL (DISTURBED) 12/18/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 22+500 Offset, m: 4.5 LT Dbfg, m: 0.0-0.27

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

0. 4	/T 0=			\	- 000\			
_	Sieve Analysis (T 27,		Direct Shear (T 236)					
T 11)		Shear Angle, °						
Wash Method	d	Initial Water Conter	nt, %					
Procedure A	\	Normal Stress, kPa						
SIEVE SIZE	%	Wet Density, kg/m³						
U.S. [SI]	Passing	Dry Density, kg/m³						
3 in. [75.0 mm]		Specimen Thicknes	s m					
1 in. [25.0 mm]	100.0		, ·					
3/4 in. [19.0 mm]	97.0	Consolidation (T 216)						
½ in. [12.5 mm]	95.2	Trimmir	nge Wat	er Conter	nt 0/2			
% in. [9.5 mm]	93.6		igs, wat	ei Conten	11, 70			
¼ in. [6.3 mm]	88.4		Initial	Final		Void		
No. 4 [4.75 mm]	84.2					Ratio		
No. 10 [2.00 mm]	69.8	Water Content, %			Pmin			
No. 20 [0.850 mm]	51.4	Dry Density, kg/m³			Pp			
No. 40 [0.425 mm]	35.5	Void Ratio			Pmax			
No. 60 [0.250 mm]	24.4	Saturation, %			Cc/C'c			
No. 100 [0.150 mm]	16.0							
No. 200 [0.075 mm]	9.9	Va	ane Sh	ear Tes	t on Sh	nelby T		

wiscenaneous rests						
Liquid Limit @ 25 blows (T 89), %						
Plastic Limit (T 90), %						
Plasticity Index (T 90), %						
Specific Gravity, Corrected to						
20°C (T 100)						
Loss on Ignition (T 267)						
Loss, % H2O, %						
Water Content (T 265), %						
9.0						

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	Depth 3 In. 6 In. Water							
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Content,	Description of Material Sampled at the Various Tube Depths	
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptils		

%

Strain

Co	mm	าen	Its:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/18/2002 12/22/2002 128043 HB-WEL-207/S6 **GEOTECHNICAL (DISTURBED)**

Offset, m: 4.5 LT Dbfg, m: 0.27-1.22 Sample Type: GEOLOGY Location: ROADWAY Station: 22+500

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,			Miscelland	eous Tests						
T 11)	T 11)								@ 25 blows	
Wash Metho	d	Initial Water Conten	t, %					(18	<u>9), %</u>	
Procedure A	4	Normal Stress, kPa								
SIEVE SIZE	_ %.	Wet Density, kg/m³						Plastic Lim	nit (T 90), %	
U.S. [SI]	Passing	Dry Density, kg/m³								
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Ind	dex (T 90), %	
1 in. [25.0 mm]			·,							
3/4 in. [19.0 mm]	100.0	C	Consolidation (T 216)							
½ in. [12.5 mm]	100.0	Trimmin	Trimmings, Water Content, %							
% in. [9.5 mm]	97.0		ys, wall	Conte	11, 70			200	<u>(T 100)</u>	
1/4 in. [6.3 mm]	90.6		Initial	Final		Void	%		(=)	
No. 4 [4.75 mm]	87.2					Ratio	Strain	Loss on Igr	ition (T 267)	
No. 10 [2.00 mm]	79.9	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>	
No. 20 [0.850 mm]	70.0	Dry Density, kg/m³			Pp					
No. 40 [0.425 mm]	57.3	Void Ratio			Pmax			Water Conte	ent (T 265), %	
No. 60 [0.250 mm]	45.2	Saturation, %			Cc/C'c			1:	3.0	
No. 100 [0.150 mm]	34.9		01	_	. 01			·		
No. 200 [0.075 mm]	25.2	Va	ine She	ear Les	t on Si	nelby T	ubes (N	laine DOT)		

		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 				
		Plastic Limit (T 90), %				
		Plasticity Index (T 90), %				
)		Specific Gravity, Corrected to 20°C (T 100)				
Void Ratio	% Strain	Loss on Ignition (T 267)				
		Loss, % H2O, % Water Content (T 265), %				
		13.0				

Vane Shear Test on Shelby Tubes (Maine DOT)											
Depth taken in	3 ln.		6 In.		Water	Description of Material Sampled at the					
	U. Shear	J. Shear Remold U. Shear Remold C kPa kPa kPa kPa		Content,							
tube, m	kPa			kPa	%	Various Tube Depths					

Con	ıme	nts:

A N D AUTHORIZATION DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/17/2002 12/22/2002 128044 HB-WEL-208/1D(A) **GEOTECHNICAL (DISTURBED)**

Offset, m: 2.2 LT Dbfg, m: 0.30-0.67 Sample Type: GEOLOGY Location: ROADWAY Station: 22+500

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,		Direct Shear (T 236)								
T 11)		Shear Angle, °								
Wash Method	t	Initial Water Conten	t, %							
Procedure A	L	Normal Stress, kPa								
SIEVE SIZE	%	Wet Density, kg/m³								
U.S. [SI]	Passing	Dry Density, kg/m³								
3 in. [75.0 mm]		Specimen Thicknes	s, m							
1 in. [25.0 mm]	100.0									
¾ in. [19.0 mm]	88.7	Consolidation (T 216)								
½ in. [12.5 mm]	81.2	Trimmings, Water Content, %								
% in. [9.5 mm]	79.5	1111111111	193, 110	ater conten	11, 70		T			
1/4 in. [6.3 mm]	73.9		Initia	I Final		Void	%			
No. 4 [4.75 mm]	69.7					Ratio	Strain			
No. 10 [2.00 mm]	58.2	Water Content, %			Pmin					
No. 20 [0.850 mm]	39.0	Dry Density, kg/m³			Pp					
No. 40 [0.425 mm]	26.7	Void Ratio			Pmax					
No. 60 [0.250 mm]	19.9	Saturation, %			Cc/C'c					
No. 100 [0.150 mm]	15.2		01	_	. 01					
No. 200 [0.075 mm]	10.7	Vane Shear Test on Shelby Tube					ubes (I			

	Miscellane	eous Tests									
	Liquid Limit	@ 25 blows									
	(T 89	<u>9), %</u>									
	Plastic Limit (T 90), %										
-											
	Plasticity Ind	lex (T 90), %									
	Specific Gravit	y, Corrected to									
	20°C (20°C (T 100)									
1	Loss on Ign	ition (T 267)									
	Loss, %	<u>H2O, %</u>									
	Water Conte	nt (T 265), %									
	5	.5									

Vane Shear Test on Shelby Tubes (Maine DOT)										
Depth	3 ln.		6 In.		Water	- · · · · · · · · · · · · · · · · · · ·				
taken in	U. Shear	Remold	U. Shear	U. Shear Remold	Content,	Description of Material Sampled at the Various Tube Depths				
tube, m	kPa	kPa	kPa	kPa	%	various rube Deptils				

Comments:

A N D AUTHORIZATION DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/8/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128045 HB-WEL-208/1D(B) GEOTECHNICAL (DISTURBED) 12/17/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 22+500 Offset, m: 2.2 LT Dbfg, m: 0.67-0.91

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

Dry Density, kg/m³

Void Ratio

Saturation, %

TEST RESULTS

Sieve Analysis	(T 27,
T 11)	
Wash Method	d
Procedure A	١
SIEVE SIZE	%
U.S. [SI]	Passing
3 in. [75.0 mm]	
1 in. [25.0 mm]	100.0
3/4 in. [19.0 mm]	81.0
½ in. [12.5 mm]	73.4
% in. [9.5 mm]	68.0
¼ in. [6.3 mm]	63.9
No. 4 [4.75 mm]	60.5
No. 10 [2.00 mm]	52.5
No. 20 [0.850 mm]	39.9
No. 40 [0.425 mm]	29.6
No. 60 [0.250 mm]	22.7
No. 100 [0.150 mm]	17.4
No. 200 [0.075 mm]	12.1

	D	irect S	Shear (1	T 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Content	t, %					(1.8)	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
	Dry Density, kg/m³							
_	Specimen Thickness	s, m					Plasticity Inc	lex (T 90), %
	Co	onsoli	dation (T 216)			Specific Gravit	y, Corrected to
_	Trimmin	gs, Wat	er Conter	nt, %				T 100)
		Initial	Final		Void	%		
		IIIIIIai	Filiai		Ratio	Strain	Loss on Ign	ition (T 267)
	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>

Vane Shear Test on Shelby Tubes (Maine DOT)											
Depth taken in tube, m	3 ln.		6 In.		Water						
	U. Shear Remold		U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths					
	kPa	kPa	kPa	kPa	%	various Tube Deptils					

Water Content (T 265), %

10.1

Рр

Pmax Cc/C'c

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/14/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128046 HB-WEL-208/2D(B) GEOTECHNICAL (DISTURBED) 12/17/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 22+500 Offset, m: 2.2 LT Dbfg, m: 1.07-1.37

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)							
Wash Method	d						
Procedure A	\						
SIEVE SIZE	%						
U.S. [SI]	Passing						
3 in. [75.0 mm]							
1 in. [25.0 mm]	100.0						
3/4 in. [19.0 mm]	87.2						
½ in. [12.5 mm]	78.0						
% in. [9.5 mm]	75.1						
¼ in. [6.3 mm]	68.7						
No. 4 [4.75 mm]	62.7						
No. 10 [2.00 mm]	47.9						
No. 20 [0.850 mm]	36.1						
No. 40 [0.425 mm]	25.4						
No. 60 [0.250 mm]	16.4						
No. 100 [0.150 mm]	11.5						
No. 200 [0.075 mm]	7.3						

Void Ratio

Saturation, %

	Direct S	Shear (1	Г 236)			Miscellane	eous Tests
Shear Angle, °							@ 25 blows
Initial Water Conten	t, %					(1.89	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	it (T 90), %
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
C	onsoli	dation ((T 216)			Specific Gravit	v Corrected to
Trimmin		Specific Gravity, Corrected to 20°C (T 100)					
	Initial	Final		Void Ratio	% Strain	Loss on Ign	ition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				

Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth	3 ln.		6 In.		Water				
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths			
tube, m	kPa	kPa	kPa	kPa					

Pmax

Cc/C'c

Water Content (T 265), %

6.3

Co	mm	าen	Its:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128047 HB-WEL-210/1D(A) GEOTECHNICAL (DISTURBED) 12/17/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 23+700 Offset, m: 2.4 LT Dbfg, m: 0.30-0.58

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)						
Wash Method	Wash Method					
Procedure A						
SIEVE SIZE U.S. [SI]	% Passing					
3 in. [75.0 mm]	100.0					
1 in. [25.0 mm]	84.0					
¾ in. [19.0 mm]	77.9					
½ in. [12.5 mm]	70.9					
% in. [9.5 mm]	69.8					
1/4 in. [6.3 mm]	64.9					
No. 4 [4.75 mm]	62.2					
No. 10 [2.00 mm]	53.4					
No. 20 [0.850 mm]	41.1					
No. 40 [0.425 mm]	30.9					
No. 60 [0.250 mm]	24.6					
No. 100 [0.150 mm]	19.0					
No. 200 [0.075 mm]	12.6					

	Direct S	hear (Г 236)			Miscelland	eous Tests
Shear Angle, °							@ 25 blows
Initial Water Conten	t, %					(18	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	dex (T 90), %
	Consolidation (T 216) Trimmings, Water Content, %					-	y, Corrected to (T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Igr	uition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				
Void Ratio			Pmax			Water Conte	ent (T 265), %
Saturation, %			Cc/C'c			2	.6

Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth	3 ln.		6 ln.		Water				
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the			
tube, m	kPa	kPa	kPa	kPa	%	Various Tube Depths			

Comments:

Brown sandy gravel

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/16/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/17/2002 12/22/2002 128048 HB-WEL-210/1D(B) **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 23+700 Offset, m: 2.4 LT Dbfg, m: 0.58-0.91

Sampler: GROSS, KAREN L PIN: 007998.10 Town: Wells

TEST RESULTS

Sieve Analysis (T 27, T 11)			Miscellaneous Tests					
		Shear Angle, °						Liquid Limit @ 25 blows
Wash Method		Initial Water Conten	t, %					<u>(T 89), %</u>
Procedure A	Ą	Normal Stress, kPa						
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Limit (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³						
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Index (T 90), %
1 in. [25.0 mm]								
3/4 in. [19.0 mm]		C		Specific Gravity, Corrected to				
½ in. [12.5 mm]	100.0	Trimmings, Water Content, %						20°C (T 100)
% in. [9.5 mm]	95.0		ys, wan	- Conten	11, 70			=== (: ::==,
1/4 in. [6.3 mm]	89.6		Initial	Final		Void	%	
No. 4 [4.75 mm]	83.7					Ratio	Strain	Loss on Ignition (T 267)
No. 10 [2.00 mm]	73.0	Water Content, %			Pmin			Loss, % <u>H2O, %</u>
No. 20 [0.850 mm]	57.4	Dry Density, kg/m³			Pp			
No. 40 [0.425 mm]	40.3	Void Ratio			Pmax			Water Content (T 265), %
No. 60 [0.250 mm]	30.0	Saturation, %			Cc/C'c			10.8
No. 100 [0.150 mm]	20.8		0'	. .	6'		I /B/	Initial DOT)
No. 200 [0.075 mm]	11.6	Va	Vane Shear Test on Shelby Tubes (

Wilderia	,000 i 00t0						
	@ 25 blows						
<u>(T 89), %</u>							
Plastic Limit (T 90), %							
Plasticity Index (T 90), %							
Specific Gravity, Corrected to							
20°C (T 100)							
Loss on Ign	ition (T 267)						
Loss, %	<u>H2O, %</u>						
Water Conte	nt (T 265), %						
10).8						

Vane Shear Test on Shelby Tubes (Maine DOT)										
Depth	3 ln.		6 In.		Water					
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths				
tube, m	kPa	kPa	kPa	kPa	%					

Con	ıme	nts:

A N D AUTHORIZATION DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/19/2002 12/22/2002 128892 HB-WEL-211/S10 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 24+500 Offset, m: 5.4 LT Dbfg, m: 1.68-3.05

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

EST RESULTS

Sieve Analysis (T 88)				Miscellane	eous Tests					
		Shear Angle, °				@ 25 blows				
Wash Method	Initial Wa	ter Conten	ıt, %					(1.89	<u>9), %</u>	
		Normal Stress, kPa								
SIEVE SIZE	_ %	Wet Dens	sity, kg/m³						Plastic Lim	<u>it (T 90), %</u>
U.S. [SI]	Passing	Dry Densi								
3 in. [75.0 mm]			Thicknes	s, m					Plasticity Inc	lex (T 90), %
1 in. [25.0 mm]										
¾ in. [19.0 mm]			С	onsolio	dation (T 216)			Specific Gravit	y, Corrected to
½ in. [12.5 mm]			Trimmings, Water Content, %							T 100)
% in. [9.5 mm]				ıgo, mate	1	1 1				
½ in. [6.3 mm]				Initial	Final		Void Ratio	% Strain		ition (T 267)
No. 4 [4 75 mm]							Ratio	Strain	TOSS OF IGH	ILIOII (I 207)
No. 4 [4.75 mm]	100.0						itutio	Ottain		, ,
No. 10 [2.00 mm]	100.0 99.7	Water Co				Pmin	Ratio	Ottam	<u>Loss, %</u>	H2O, %
		Water Co				Pmin Pp	ratio	Otrain	Loss, %	H2O, %
No. 10 [2.00 mm]			ity, kg/m³			Pp Pmax	ratio	Otrain	Loss, %	, ,
No. 10 [2.00 mm] No. 20 [0.850 mm]	99.7	Dry Dens	ity, kg/m³			Рр	ratio	Ottum	Loss, % Water Conte	H2O, %
No. 10 [2.00 mm] No. 20 [0.850 mm] No. 40 [0.425 mm]	99.7	Dry Densi Void Ratio	ity, kg/m³ o n, %		_	Pp Pmax Cc/C'c			Loss, % Water Conte	H2O, % ent (T 265), %
No. 10 [2.00 mm] No. 20 [0.850 mm] No. 40 [0.425 mm] No. 60 [0.250 mm]	99.7	Dry Densi Void Ratio	ity, kg/m³ o n, % Va			Pp Pmax Cc/C'c			Loss, % Water Conte	H2O, % ent (T 265), %
No. 10 [2.00 mm] No. 20 [0.850 mm] No. 40 [0.425 mm] No. 60 [0.250 mm] No. 100 [0.150 mm]	99.7	Dry Densi Void Ratio Saturation	ity, kg/m³ o n, % Va 3 II	n.	6	Pp Pmax Cc/C'c	nelby T	ubes (N	Loss, % Water Conte	H2O, % ent (T 265), % 6.5
No. 10 [2.00 mm] No. 20 [0.850 mm] No. 40 [0.425 mm] No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm]	99.7 98.4 86.1	Dry Densi Void Ratio Saturation	ity, kg/m³ o n, % Va 3 II U. Shear	n. Remold	U. Shear	Pp Pmax Cc/C'c t on Sh In. Remole	nelby T Water	ubes (N	Water Conte	H2O, % ent (T 265), % 6.5 Sampled at the
No. 10 [2.00 mm] No. 20 [0.850 mm] No. 40 [0.425 mm] No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm] [0.0296 mm]	99.7 98.4 86.1 57.5	Dry Densi Void Ratio Saturation	ity, kg/m³ o n, % Va 3 II	n.	6	Pp Pmax Cc/C'c	nelby T	ubes (N	Water Conte	H2O, % ent (T 265), % 6.5 Sampled at the

Cor	nme	<u>ents:</u>

[0.0061 mm] [0.0031 mm]

[0.0013 mm]

A N D AUTHORIZATION DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/22/2003

Paper Copy: Lab File; Project File; Geotech File

33.5

24.0

19.2

SAMPLE INFORMATION

Sample Type: GEOLOGY Location: ROADWAY Station: 24+500 Offset, m: 5.4 LT Dbfg, m: 0.0-0.73

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)						
Wash Method	Wash Method					
Procedure A						
SIEVE SIZE	%					
U.S. [SI]	Passing					
3 in. [75.0 mm]	100.0					
1 in. [25.0 mm]	91.6					
3/4 in. [19.0 mm]	87.8					
½ in. [12.5 mm]	80.3					
% in. [9.5 mm]	73.0					
1/4 in. [6.3 mm]	65.6					
No. 4 [4.75 mm]	61.6					
No. 10 [2.00 mm]	50.9					
No. 20 [0.850 mm]	36.3					
No. 40 [0.425 mm]	21.7					
No. 60 [0.250 mm]	15.8					
No. 100 [0.150 mm]	11.3					
No. 200 [0.075 mm]	7.6					

	D	Pirect S	Shear (1	Г 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Conten	t, %					(1.8)	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
	Dry Density, kg/m³							
_	Specimen Thickness	s, m					Plasticity Inc	dex (T 90), %
	Co	onsoli	dation ((T 216)			Specific Gravit	y, Corrected to
	Trimmin	gs, Wat	er Conter	nt, %				(T 100)
		Initial	Final		Void	%		
1		iiiiliai	I IIIai		Ratio	Strain	Loss on Ign	ition (T 267)
1	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>

	Vane Shear Test on Shelby Tubes (Maine DOT)												
Depth	3 1	n.	6 In.		Water								
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths							
tube, m	kPa	kPa	kPa	kPa		various Tube Deptils							

Date Reported: 1/16/2003

Water Content (T 265), %

6.3

Pр

Pmax

Cc/C'c

Comments:

Brown Sandy Gravel

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN

Dry Density, kg/m³

Void Ratio

Saturation, %

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/18/2002 12/22/2002 128891 HB-WEL-211/S9 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 24+500 Offset, m: 5.4 LT Dbfg, m: 0.73-1.68

Sampler: GROSS, KAREN L PIN: 007998.10 Town: Wells

TEST RESULTS

Sieve Analysis (T 27,			Miscelland	eous Tests					
T 11)		Shear Angle, °							@ 25 blows
Wash Method	d	Initial Water Conten	t, %					(18	<u>9), %</u>
Procedure A	\	Normal Stress, kPa							
SIEVE SIZE	_ %	Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Ind	dex (T 90), %
1 in. [25.0 mm]			Openimen Thiokness, in						
3/4 in. [19.0 mm]	100.0	C	Consolidation (T 216)						
½ in. [12.5 mm]	98.7	Trimmin	Trimmings, Water Content, %						y, Corrected to
% in. [9.5 mm]	97.6		ys, wan	or Corner	11, 70			200	<u>(. 100)</u>
1/4 in. [6.3 mm]	95.4		Initial	Final		Void	%		(=)
No. 4 [4.75 mm]	93.6					Ratio	Strain		ition (T 267)
No. 10 [2.00 mm]	88.8	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
No. 20 [0.850 mm]	79.4	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	67.7	Void Ratio Pmax					Water Conte	ent (T 265), %	
No. 60 [0.250 mm]	54.5	Saturation, %	12	2.9					
No. 100 [0.150 mm]	40.5								
No. 200 [0.075 mm]	27.9	Va	laine DOT)						

	wiscenaneous rests										
	<u>Liquid Limit @ 25 blows</u> (T 89), %										
	Plastic Limit (T 90), %										
	Plasticity Index (T 90), %										
	Specific Gravity, Corrected to										
	20°C (T 100)										
	Loss on Ignition (T 267)										
	Loss, % H2O, %										
	Water Content (T 265), %										
	12.9										
_											

Vane Shear Test on Shelby Tubes (Maine DOT)												
Depth	3	In. 6 I		n.	Water							
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths						
tube, m	kPa	kPa	kPa	kPa	%	various rube beptils						

Co	mm	าen	Its:

AUTHORIZATION A N D DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/18/2002 12/22/2002 128893 HB-WEL-212/1D **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Offset, m: 2.5 LT Dbfg, m: 0.30-0.91 Location: ROADWAY Station: 24+500

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)					
Wash Method	d				
Procedure A	\				
SIEVE SIZE	%				
U.S. [SI]	Passing				
3 in. [75.0 mm]	100.0				
1 in. [25.0 mm]	95.7				
3/4 in. [19.0 mm]	90.8				
½ in. [12.5 mm]	82.2				
3/4 in. [9.5 mm]	75.5				
1/4 in. [6.3 mm]	67.2				
No. 4 [4.75 mm]	62.7				
No. 10 [2.00 mm]	50.7				
No. 20 [0.850 mm]	36.2				
No. 40 [0.425 mm]	25.5				
No. 60 [0.250 mm]	19.1				
No. 100 [0.150 mm]	14.2				
No. 200 [0.075 mm]	9.2				

	Miscellane	eous Tests					
Shear Angle, °							@ 25 blows
Initial Water Conten	t, %					(1.89	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
Consolidation (T 216)					Specific Gravit	y, Corrected to	
Trimmin	ıgs, Wate	er Conter	nt, %			-	T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Ign	ition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				
Void Ratio			Pmax			Water Conte	nt (T 265), %
Saturation, %			Cc/C'c			4	.0

	Vane Shear Test on Shelby Tubes (Maine DOT)												
Depth	3 ln.		6 In.		Water								
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths							
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptils							
			-										

Comments:

Brown sandy gravel

AUTHORIZATION A N D DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/16/2003

Paper Copy: Lab File; Project File; Geotech File

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128894 HB-WEL-213/S11 GEOTECHNICAL (DISTURBED) 12/19/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 25+560 Offset, m: 4.4 LT Dbfg, m: 0.0-1.4

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)						
Wash Method	d					
Procedure A	\					
SIEVE SIZE U.S. [SI]	% Passing					
3 in. [75.0 mm]						
1 in. [25.0 mm]	100.0					
3/4 in. [19.0 mm]	93.2					
½ in. [12.5 mm]	82.4					
3/8 in. [9.5 mm]	77.1					
1/4 in. [6.3 mm]	72.0					
No. 4 [4.75 mm]	67.7					
No. 10 [2.00 mm]	56.6					
No. 20 [0.850 mm]	42.3					
No. 40 [0.425 mm]	29.6					
No. 60 [0.250 mm]	21.4					
No. 100 [0.150 mm]	14.1					
No. 200 [0.075 mm]	8.2					

	С	irect S	hear (Г 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Conten	t, %					(1.89	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>
	Dry Density, kg/m³							
_	Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
	Consolidation (T 216)						Specific Gravit	y, Corrected to
_	Trimmin	gs, Wate	er Conter	nt, %				T 100)
		Initial	Final		Void	%		··· (T.00T)
					Ratio	Strain	Loss on Ign	ition (T 267)
1	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
	Dry Density, kg/m³			Рр				
	Void Ratio			Pmax			Water Conte	nt (T 265), %

	Vane Shear Test on Shelby Tubes (Maine DOT)												
Depth	3 ln.		6 In.		Water								
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths							
tube, m	kPa	kPa	kPa	kPa		various rube beptils							

5.0

Cc/C'c

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

Paper Copy: Lab File; Project File; Geotech File

Saturation, %

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128895 HB-WEL-214/1D GEOTECHNICAL (DISTURBED) 12/19/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 25+560 Offset, m: 2.4 LT Dbfg, m: 0.30-0.91

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)				
Wash Method	d			
Procedure A	\			
SIEVE SIZE	%			
U.S. [SI]	Passing			
3 in. [75.0 mm]	100.0			
1 in. [25.0 mm]	91.4			
3/4 in. [19.0 mm]	87.9			
½ in. [12.5 mm]	76.6			
% in. [9.5 mm]	73.5			
¼ in. [6.3 mm]	66.5			
No. 4 [4.75 mm]	63.5			
No. 10 [2.00 mm]	53.1			
No. 20 [0.850 mm]	39.6			
No. 40 [0.425 mm]	29.0			
No. 60 [0.250 mm]	21.5			
No. 100 [0.150 mm]	15.1			
No. 200 [0.075 mm]	9.6			

	Miscelland	eous Tests					
Shear Angle, °							@ 25 blows
Initial Water Conten	ıt, %					(18	<u>9), %</u>
Normal Stress, kPa							
Wet Density, kg/m³						Plastic Lim	<u>nit (T 90), %</u>
Dry Density, kg/m³							
Specimen Thicknes	s, m					Plasticity Inc	dex (T 90), %
Consolidation (T 216) Trimmings, Water Content, %							y, Corrected to (T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Igr	nition (T 267)
Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
Dry Density, kg/m³			Рр				
Void Ratio			Pmax			Water Conte	ent (T 265), %
Saturation, %			Cc/C'c			5	.4

Vane Shear Test on Shelby Tubes (Maine DOT)									
3 I	n.	6 ln.		Water					
U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the				
kPa	kPa	kPa	kPa	%	Various Tube Depths				
	3 I U. Shear	3 In. U. Shear Remold	3 In. 6 I U. Shear Remold U. Shear	3 In. 6 In. U. Shear Remold U. Shear Remold	3 In. 6 In. Water U. Shear Remold U. Shear Remold Content,				

Co	mm	าen	Its:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/18/2002 12/22/2002 128896 HB-WEL-215/S13 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 26+500 Offset, m: 3.8 **LT** Dbfg, m: **0.0-0.55**

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,					
T 11)					
Wash Method	d				
Procedure A	\				
SIEVE SIZE	%				
U.S. [SI]	Passing				
3 in. [75.0 mm]					
1 in. [25.0 mm]	100.0				
3/4 in. [19.0 mm]	85.4				
½ in. [12.5 mm]	83.0				
% in. [9.5 mm]	81.3				
1/4 in. [6.3 mm]	76.7				
No. 4 [4.75 mm]	73.6				
No. 10 [2.00 mm]	64.7				
No. 20 [0.850 mm]	51.7				
No. 40 [0.425 mm]	36.4				
No. 60 [0.250 mm]	24.8				
No. 100 [0.150 mm]	16.5				
No. 200 [0.075 mm]	9.9				

Direc	Miscellaneous Tests			
Shear Angle, °				Liquid Limit @ 25 blows
Initial Water Content, %				<u>(T 89), %</u>
Normal Stress, kPa				
Wet Density, kg/m³				Plastic Limit (T 90), %
Dry Density, kg/m³				
Specimen Thickness, m				Plasticity Index (T 90), %
Consc	Specific Gravity, Corrected to			
Trimmings, W	<u>20°C (T 100)</u>			
Initi	al Final	Void Ratio	% Strain	Loss on Ignition (T 267)

	Initial	Final		Void Ratio	% Strain
Water Content, %			Pmin		
Dry Density, kg/m³			Рр		
Void Ratio			Pmax		
Saturation, %			Cc/C'c		

LOSS OII IGIIILIOII (1 201)							
Loss, %	<u>H2O, %</u>						
Water Content (T 265), %							
8.7							

Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth	3 1	ln.	6 1	n.	Water				
taken in tube, m	U. Shear	ar Remold U. Shear	U. Shear	Remold	Content,	Description of Materia Various Tube			
	kPa	kPa	kPa	kPa	%	various rube			

Description of Material Sampled at the Various Tube Depths

Comments:

AUTHORIZATION A N DDISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/18/2002 12/22/2002 128897 HB-WEL-215/S14 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 26+500 Offset, m: 3.8 LT Dbfg, m: 0.55-1.98

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,		Г	Miscellaneous Tests					
T 11)		Shear Angle, °						Liquid Limit @ 25 blows
Wash Metho	d	Initial Water Conten	t, %					<u>(T 89), %</u>
Procedure A	4	Normal Stress, kPa						
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Limit (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³						
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Index (T 90), %
1 in. [25.0 mm]			openium mainese, iii					
3/4 in. [19.0 mm]		C	Consolidation (T 216)					
½ in. [12.5 mm]	100.0	Trimmin	na Wate	er Conter	nt %			Specific Gravity, Corrected to 20°C (T 100)
% in. [9.5 mm]	96.1		igs, wate	or Correct	11, 70			20 0 (1.100)
1/4 in. [6.3 mm]	92.1		Initial	Final		Void	%	
No. 4 [4.75 mm]	89.4					Ratio	Strain	Loss on Ignition (T 267)
No. 10 [2.00 mm]	82.5	Water Content, %			Pmin			<u>Loss, %</u> <u>H2O, %</u>
No. 20 [0.850 mm]	73.3	Dry Density, kg/m³			Pp			
No. 40 [0.425 mm]	60.9	Void Ratio			Pmax			Water Content (T 265), %
No. 60 [0.250 mm]	50.5	Saturation, %			Cc/C'c			8.3
No. 100 [0.150 mm]	39.1	17	0'	- .	61		L /B	In DOT
No. 200 [0.075 mm]	28.0	Vane Shear Test on Shelby Tubes (Maine DOT)						

	Wilderia	7040 10010							
	Liquid Limit @ 25 blows								
	(T 89	9) <u>, %</u>							
	Plastic Lim	<u>it (T 90), %</u>							
	Plasticity Index (T 90), %								
	Specific Gravity, Corrected to								
	<u>20°C (T 100)</u>								
	Loss on Ign	ition (T 267)							
	Loss, %	<u>H2O, %</u>							
	Water Conte	nt (T 265), %							
	8	.3							
_									

vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3	n.	6 1	6 ln.		6 In. Water		
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the		
tube, m	kPa	kPa	kPa	kPa	%	Various Tube Depths		
	•							

Comments:

AUTHORIZATION A N D DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128898 HB-WEL-216/1D GEOTECHNICAL (DISTURBED) 12/18/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 26+500 Offset, m: 2.4 LT Dbfg, m: 0.30-0.91

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,						
T 11)						
Wash Method	d					
Procedure A	\					
SIEVE SIZE	%					
U.S. [SI]	Passing					
3 in. [75.0 mm]						
1 in. [25.0 mm]	100.0					
3/4 in. [19.0 mm]	90.8					
½ in. [12.5 mm]	90.2					
% in. [9.5 mm]	87.3					
1/4 in. [6.3 mm]	83.1					
No. 4 [4.75 mm]	78.4					
No. 10 [2.00 mm]	64.4					
No. 20 [0.850 mm]	46.8					
No. 40 [0.425 mm]	33.3					
No. 60 [0.250 mm]						
No. 100 [0.150 mm]	16.5					
No. 200 [0.075 mm]	10.0					

Void Ratio

Saturation, %

)irect	Shear (1	Г 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Conten	t, %					(18	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>
	Dry Density, kg/m³							
	Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
_	C	oneoli	dation ((T 216)				
		UliSUli	uation	(1 2 10)			Specific Gravit	y, Corrected to
-	Trimmin	gs, Wat	er Conter	nt, %			20°C (T 100)
		1!4!1	Final		Void	%		
		Initial	Final		Ratio	Strain	Loss on Ign	ition (T 267)
	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
	Dry Density, kg/m ³			Pp				

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3 ln.		6 In.		Water			
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths		
tube, m	kPa	kPa	kPa	kPa	%	various rube Deptils		

Pmax

Cc/C'c

Water Content (T 265), %

3.7

Con	ıme	nts:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

128899 HB-WEL-216/2D(A) GEOTECHNICAL (DISTURBED) 12/18/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 26+500 Offset, m: 2.4 LT Dbfg, m: 0.91-1.28

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis	(T 27,	Direct Sh				
T 11)			Shear Angle, °			
Wash Metho	d		Initial Water Conten	t, %		
Procedure A	١		Normal Stress, kPa			
SIEVE SIZE	_ %		Wet Density, kg/m³			
U.S. [SI]	Passing		Dry Density, kg/m³			
3 in. [75.0 mm]			Specimen Thicknes	s. m		
1 in. [25.0 mm]		ľ		-,		=
3/4 in. [19.0 mm]			C	onso	lid	la
½ in. [12.5 mm]	100.0		Trimmin	as W	ate	r
% in. [9.5 mm]	94.3		111111111	90, **	atc	_
½ in. [6.3 mm]	86.0			Initia	al	
No. 4 [4.75 mm]	81.0					
No. 10 [2.00 mm]	67.1		Water Content, %			
No. 20 [0.850 mm]	48.7		Dry Density, kg/m³			
No. 40 [0.425 mm]	33.1		Void Ratio			
No. 60 [0.250 mm]	22.8		Saturation, %			
No. 100 [0.150 mm]	15.8			_		_
No. 200 [0.075 mm]	9.2		Va	ne S	ne	a

С	Miscellaneous Tests					
Shear Angle, °						Liquid Limit @ 25 blows
Initial Water Conten	t, %					<u>(T 89), %</u>
Normal Stress, kPa						
Wet Density, kg/m³						Plastic Limit (T 90), %
Dry Density, kg/m³						
Specimen Thickness, m						Plasticity Index (T 90), %
Consolidation (T 216) Trimmings, Water Content, %				Specific Gravity, Corrected to 20°C (T 100)		
	Initia	al Final		Void Ratio	% Strain	Loss on Ignition (T 267)
Water Content, %			Pmin			<u>Loss, %</u> <u>H2O, %</u>
Dry Density, kg/m³			Рр			
Void Ratio			Pmax			Water Content (T 265), %
Saturation %			Cc/C'c			4.0

Vane Shear Test on Shelby Tubes (Maine DOT)									
Depth taken in tube, m	3 In.		6 ln.		Water				
	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths			
	kPa	kPa	kPa	kPa	%	various Tube Deptils			

Co	mm	าen	Its:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/21/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/19/2002 12/22/2002 133046 HB-WEL-217/S15 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 27+340 Offset, m: 4.6 LT Dbfg, m: 0.24-0.85

Sampler: GROSS, KAREN L PIN: 007998.10 Town: Wells

TEST RESULTS

Sieve Analysis (T 27,			Miscellane	eous Tests					
T 11)		Shear Angle, °							@ 25 blows
Wash Metho	d	Initial Water Conten	ıt, %					(1.8)	<u>9), %</u>
Procedure A	4	Normal Stress, kPa							
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Lim	it (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Inc	lex (T 90), %
1 in. [25.0 mm]		оросинон тикинос	· · · · ·						
3/4 in. [19.0 mm]		C	Consolidation (T 216)						
½ in. [12.5 mm]		Trimmin	na Wate	er Conter	nt %			Specific Gravit	<u>y, Corrected it</u> T 100)
3/4 in. [9.5 mm]	100.0		igs, wat	or Corner	11, 70				<u>007</u>
1/4 in. [6.3 mm]	99.0		Initial	Final		Void	%		(=)
No. 4 [4.75 mm]	98.4					Ratio	Strain		ition (T 267)
No. 10 [2.00 mm]	96.1	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
No. 20 [0.850 mm]	90.2	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	53.7	Void Ratio			Pmax			Water Conte	nt (T 265), %
No. 60 [0.250 mm]	17.8	Saturation, % Cc/C'c						5	.1
No. 100 [0.150 mm]	9.0	\/_	01.	🛨	01		I (N	L-' DOT)	
No. 200 [0.075 mm]	5.9	Va	ine Sne	ear Tes	t on Sr	neiby I	upes (N	laine DOT)	

Liquid Limit @ 25 blows (T 89), %										
Plastic Limit (T 90), %										
Plasticity Index (T 90), %										
Specific Gravity, Corrected to										
<u>20°C (T 100)</u>										
Loss on Ignition (T 267)										
<u>Loss, %</u> <u>H2O, %</u>										
Water Content (T 265), %										
5.1										

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth	3 ln.		6 In.		Water			
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths		
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptils		

Cor	nm	ıen	ts:

A N D DISTRIBUTION AUTHORIZATION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/19/2002 12/22/2002 133047 HB-WEL-217/S16 **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Location: ROADWAY Station: 27+340 Offset, m: 4.6 LT Dbfg, m: 0.85-1.83

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,			Miscellaneous Tests					
T 11)		Shear Angle, °						Liquid Limit @ 25 blows
Wash Method	d	Initial Water Conten	t, %					<u>(T 89), %</u>
Procedure A	\	Normal Stress, kPa						
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Limit (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³						
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Index (T 90), %
1 in. [25.0 mm]			-,					
3/4 in. [19.0 mm]		C	onsoli	dation ((T 216)			Specific Gravity, Corrected to
½ in. [12.5 mm]		Trimmin	ac Wat	er Conter	at 0/-			20°C (T 100)
% in. [9.5 mm]	100.0		iys, vvai	ei Contei	π, /0			20 0 (1 100)
½ in. [6.3 mm]	99.7		Initial	Final		Void	%	
No. 4 [4.75 mm]	99.7					Ratio	Strain	Loss on Ignition (T 267)
No. 10 [2.00 mm]	99.4	Water Content, %			Pmin			<u>Loss, %</u> <u>H2O, %</u>
No. 20 [0.850 mm]	98.8	Dry Density, kg/m³			Pp			
No. 40 [0.425 mm]	97.0	Void Ratio			Pmax			Water Content (T 265), %
No. 60 [0.250 mm]	83.6	Saturation, %			Cc/C'c			7.4
No. 100 [0.150 mm]	29.5	\/	01.		1 01		. I /A	I.' DOT
No. 200 [0.075 mm]	12.6	Va	ine Sh	ear Les	t on Si	neiby i	upes (N	/laine DOT)

Vane Shear Test on Shelby Tubes (Maine DOT)							
Depth	3	ln.	6	ln.	Water	Description of Material Complete the	
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths	
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptils	

Comments:

A N D AUTHORIZATION DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/19/2002 12/22/2002 128500 HB-WEL-218/1D(A) **GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Offset, m: 2.3 LT Dbfg, m: 0.30-0.67 Location: ROADWAY Station: 27+340

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)					
Wash Method	d				
Procedure A	\				
SIEVE SIZE U.S. [SI]	% Passing				
3 in. [75.0 mm]	100.0				
1 in. [25.0 mm]	82.3				
¾ in. [19.0 mm]	72.5				
½ in. [12.5 mm]	68.0				
3/4 in. [9.5 mm]	62.5				
1/4 in. [6.3 mm]	57.4				
No. 4 [4.75 mm]	53.9				
No. 10 [2.00 mm]	43.5				
No. 20 [0.850 mm]	32.5				
No. 40 [0.425 mm]	22.6				
No. 60 [0.250 mm]	15.8				
No. 100 [0.150 mm]	12.0				
No. 200 [0.075 mm]	8.4				

	С	Direct S	hear (Г 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Conten	t, %					(1.89	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>
	Dry Density, kg/m³							
	Specimen Thicknes	s, m					Plasticity Inc	lex (T 90), %
	C	onsolio	dation ((T 216)				
+		01130110	aution	(1 2 10)			Specific Gravit	y, Corrected to
-	Trimmin	gs, Wate	er Conter	nt, %			<u>20°C (</u>	<u>T 100)</u>
		l!4!.a.l	Fin al		Void	%		
		Initial	Final		Ratio	Strain	Loss on Ign	ition (T 267)
	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
	Dry Density, kg/m³			Рр				
	Void Ratio			Pmax			Water Conte	nt (T 265), %

Vane Shear Test on Shelby Tubes (Maine DOT)							
Depth	3 1	n.	61	n.	Water		
taken in	U. Shear	Remold	U. Shear	. Shear Remoid Content	Description of Material Sampled at the Various Tube Depths		
tube, m	kPa	kPa	kPa	kPa	%	various Tube Depuis	

4.2

Cc/C'c

Comments:

Brown sandy gravel

AUTHORIZATION A N D DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/16/2003

Paper Copy: Lab File; Project File; Geotech File

Saturation, %

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

133048 HB-WEL-218/1D(B) GEOTECHNICAL (DISTURBED) 12/19/2002 12/22/2002

Sample Type: GEOLOGY Location: ROADWAY Station: 27+340 Offset, m: 2.3 LT Dbfg, m: 0.67-0.91

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,			Miscellane	eous Tests					
T 11)		Shear Angle, °							@ 25 blows
Wash Method	d	Initial Water Conten	t, %					(1.8)	<u>9), %</u>
Procedure A	\	Normal Stress, kPa							
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Lim	it (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Inc	lex (T 90), %
1 in. [25.0 mm]		оросии от типоти	-,						
3/4 in. [19.0 mm]		C	onsolid	dation (T 216)			Specific Gravit	. Corrected to
½ in. [12.5 mm]	100.0	Trimmin	ins Wate	er Conter	nt %				<u>y, Corrected to</u> T 100)
3/4 in. [9.5 mm]	99.3		igs, wan	or Corner	11, 70				<u> </u>
1/4 in. [6.3 mm]	99.0		Initial	Final		Void	%		=
No. 4 [4.75 mm]	98.5					Ratio	Strain	Loss on Ign	ition (T 267)
No. 10 [2.00 mm]	96.7	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
No. 20 [0.850 mm]	90.9	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	63.3	Void Ratio			Pmax			Water Conte	nt (T 265), %
No. 60 [0.250 mm]	19.1	Saturation, %			Cc/C'c			4	.4
No. 100 [0.150 mm]	8.9	1/-	01.	🗕	1 01		1 (N	I-' DOT)	
No. 200 [0.075 mm]	4.6	Va	Vane Shear Test on Shelby Tubes (N						

Vane Shear Test on Shelby Tubes (Maine DOT)							
Depth	3	ln.	6 In.		Water	Description of Material Consults det the	
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the Various Tube Depths	
tube, m	kPa	kPa	kPa	kPa	%	various Tube Deptilis	

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/19/2002 12/22/2002 133049 **HB-WEL-218/2D GEOTECHNICAL (DISTURBED)**

Location: ROADWAY Sample Type: GEOLOGY Station: 27+340 Offset, m: 2.3 LT Dbfg, m: 0.91-1.52

Sampler: GROSS, KAREN L PIN: 007998.10 Town: Wells

TEST RESULTS

Sieve Analysis (T 27,		Г		eous Tests					
T 11)		Shear Angle, °							@ 25 blows
Wash Method	d	Initial Water Conten	t, %					(1.8)	<u>9), %</u>
Procedure A	\	Normal Stress, kPa							
SIEVE SIZE	%	Wet Density, kg/m³						Plastic Lim	it (T 90), %
U.S. [SI]	Passing	Dry Density, kg/m³							
3 in. [75.0 mm]		Specimen Thicknes	s. m					Plasticity Inc	lex (T 90), %
1 in. [25.0 mm]			oposition rinolatioos, in						
3/4 in. [19.0 mm]		C	Consolidation (T 216)					Specific Gravit	v Corrected t
½ in. [12.5 mm]		Trimmin	na Wat	er Conter	nt %				<u>y, corrected t</u> T 100)
% in. [9.5 mm]			igs, wat	ei Contei	11, 70			<u> 20 0 (</u>	<u>. 100/</u>
1/4 in. [6.3 mm]	100.0		Initial	Final		Void	%		(=)
No. 4 [4.75 mm]	100.0					Ratio	Strain		ition (T 267)
No. 10 [2.00 mm]	99.7	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
No. 20 [0.850 mm]	99.3	Dry Density, kg/m³			Pp				
No. 40 [0.425 mm]	97.9	Void Ratio			Pmax			Water Conte	nt (T 265), %
No. 60 [0.250 mm]	86.8	Saturation, %			Cc/C'c			7	.6
No. 100 [0.150 mm]	21.0	Versa Observation Obselle T. bess (Males DOT)							
No. 200 [0.075 mm]	6.6	Vane Shear Test on Shelby Tubes (Maine DOT)							

Liquid Limit @ 25 blows								
<u>(T 89), %</u>								
Plastic Limi	t (T 90), %							
Plasticity Inde	ex (T 90), %							
Specific Gravity, Corrected to								
20°C (Г 100)							
Loss on Igni	tion (T 267)							
Loss, %	<u>H2O, %</u>							
Water Conter	nt (T 265), %							
7.	6							

Vane Shear Test on Shelby Tubes (Maine DOT)							
Depth	3 I	December of Metable Committee of the					
taken in	U. Shear Remold		U. Shear Remold		Content,	Description of Material Sampled at the Various Tube Depths	
tube, m	kPa	kPa	kPa	kPa	%	Valious Tube Deptils	

Com	<u>ımeı</u>	nts:

AUTHORIZATION A N D DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 1/6/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

176180 TP-WEL-101 GEOTECHNICAL (DISTURBED) 12/3/2003 12/8/2003

Sample Type: GEOLOGY Location: ROADWAY Station: 20+940 Offset, m: 3.5 LT Dbfg, m: 0.19-0.60

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)					
Wash Method	b				
Procedure A	\				
SIEVE SIZE	%				
U.S. [SI]	Passing				
3 in. [75.0 mm]	100.0				
1 in. [25.0 mm]	99.9				
3/4 in. [19.0 mm]	99.9				
½ in. [12.5 mm]	99.8				
3/4 in. [9.5 mm]	97.0				
1/4 in. [6.3 mm]	92.4				
No. 4 [4.75 mm]	88.5				
No. 10 [2.00 mm]	72.5				
No. 20 [0.850 mm]	38.4				
No. 40 [0.425 mm]	16.8				
No. 60 [0.250 mm]	9.0				
No. 100 [0.150 mm]	5.7				
No. 200 [0.075 mm]	3.8				

	Miscellaneous Tests					
Shear Angle, °						Liquid Limit @ 25 blows
Initial Water Conten	t, %					<u>(T 89), %</u>
Normal Stress, kPa						
Wet Density, kg/m³						Plastic Limit (T 90), %
Dry Density, kg/m³						
Specimen Thicknes	s, m					Plasticity Index (T 90), %
С	Consolidation (T 216)					
Trimmin	gs, Wate	er Conter	nt, %			20°C (T 100)
	Initial	Final		Void Ratio	% Strain	Loss on Ignition (T 267)
Water Content, %			Pmin			Loss, % H2O, %
Dry Density, kg/m³			Рр			
Void Ratio			Pmax			Water Content (T 265), %

Vane Shear Test on Shelby Tubes (Maine DOT)										
Depth	3 1	n.	6 ln.		6 In.		6 In.		Water	
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the				
tube, m	kPa	kPa	kPa	kPa		Various Tube Depths				

4.2

Cc/C'c

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 12/18/2003

Paper Copy: Lab File; Project File; Geotech File

Saturation, %

INFORMATION SAMPLE

Reference No. Boring No./Sample No. Sample Description Sampled Received 12/3/2003 12/8/2003 176179 **TP-WEL-102 GEOTECHNICAL (DISTURBED)**

Sample Type: GEOLOGY Station: 22+500 Location: ROADWAY Offset, m: 2.7 LT Dbfg, m: 0.28-0.57

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)					
Wash Method	d				
Procedure A	\				
SIEVE SIZE U.S. [SI]	% Passing				
3 in. [75.0 mm]	100.0				
1 in. [25.0 mm]	99.7				
¾ in. [19.0 mm]	99.7				
½ in. [12.5 mm]	99.6				
3/4 in. [9.5 mm]	95.0				
1/4 in. [6.3 mm]	84.2				
No. 4 [4.75 mm]	77.2				
No. 10 [2.00 mm]	56.4				
No. 20 [0.850 mm]	29.1				
No. 40 [0.425 mm]	14.3				
No. 60 [0.250 mm]	8.4				
No. 100 [0.150 mm]	5.5				
No. 200 [0.075 mm]	3.7				

Direct Shear (T 236)	Miscellaneous Tests
Shear Angle, °	Liquid Limit @ 25 blows
Initial Water Content, %	<u>(T 89), %</u>
Normal Stress, kPa	
Wet Density, kg/m³	Plastic Limit (T 90), %
Dry Density, kg/m³	
Specimen Thickness, m	Plasticity Index (T 90), %
Consolidation (T 216)	Specific Gravity, Corrected to
Trimmings, Water Content, %	20°C (T 100)

i rimmings, water Content, %					
	Initial	Final		Void Ratio	% Strain
Water Content, %			Pmin		
Dry Density, kg/m³			Рр		
Void Ratio			Pmax		
Saturation, %			Cc/C'c		

opecine Gravity, Corrected to							
20°C (T 100)							
Loss on Ignition (T 267)							
Loss, %	<u>H2O, %</u>						
Water Content (T 265), %							
3.3							

Vane Shear Test on Shelby Tubes (Maine DOT)								
Depth 3 In.		6 1	n.	Water				
taken in tube, m	U. Shear	Remold	U. Shear	Remold	Content,	Description of Materia Various Tube		
	kPa	kPa	kPa	kPa	%	various rube		

Description of Material Sampled at the Various Tube Depths

Comments:

AUTHORIZATION A N DDISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 12/18/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received 176178 TP-WEL-103 GEOTECHNICAL (DISTURBED) 12/3/2003 12/8/2003

Sample Type: GEOLOGY Location: ROADWAY Station: 24+500 Offset, m: 3.4 LT Dbfg, m: 0.25-0.55

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27, T 11)					
Wash Method	d				
Procedure A	\				
SIEVE SIZE U.S. [SI]	% Passing				
3 in. [75.0 mm]	100.0				
1 in. [25.0 mm]	99.9				
3/4 in. [19.0 mm]	99.8				
½ in. [12.5 mm]	99.7				
% in. [9.5 mm]	87.8				
1/4 in. [6.3 mm]	76.1				
No. 4 [4.75 mm]	69.3				
No. 10 [2.00 mm]	51.2				
No. 20 [0.850 mm]	32.1				
No. 40 [0.425 mm] 18.0					
No. 60 [0.250 mm] 11.8					
No. 100 [0.150 mm]	8.3				
No. 200 [0.075 mm]	5.3				

Void Ratio

Saturation, %

	D	irect S	hear (1	Г 236)			Miscellane	eous Tests
	Shear Angle, °							@ 25 blows
	Initial Water Content	:, %					(1.8)	<u>9), %</u>
	Normal Stress, kPa							
	Wet Density, kg/m³						Plastic Lim	<u>iit (T 90), %</u>
	Dry Density, kg/m³							
_	Specimen Thickness	s, m					Plasticity Inc	dex (T 90), %
	Co	neolic	dation (T 216\				
_		Jiison	iation (1 210)			Specific Gravit	y, Corrected to
_	Trimming	gs, Wate	er Conter	nt, %			20°C ((<u>T 100)</u>
_		1 141 - 1	F!1		Void	%		
		Initial	Final		Ratio	Strain	Loss on Ign	ition (T 267)
	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>
	Dry Density, kg/m³			Pp				

Vane Shear Test on Shelby Tubes (Maine DOT)										
Depth	3 1	n.	6 In.		6 In.		6 In.		Water	
taken in	U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the				
tube, m	kPa	kPa	kPa	kPa	%	Various Tube Depths				
					•					

Pmax

Cc/C'c

Water Content (T 265), %

3.2

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 12/18/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

176177 TP-WEL-104 GEOTECHNICAL (DISTURBED) 12/3/2003 12/8/2003

Sample Type: GEOLOGY Location: ROADWAY Station: 26+500 Offset, m: 3.0 LT Dbfg, m: 0.20-0.53

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis (T 27,		Direct Shear (T 236)						
T 11)		Shear Angle, °						
Wash Method	b	Initial Water Conten	t, %					
Procedure A	1	Normal Stress, kPa						
SIEVE SIZE	%	Wet Density, kg/m³						
U.S. [SI]	Passing	Dry Density, kg/m³						
3 in. [75.0 mm]	99.9	Specimen Thicknes	s, m					
1 in. [25.0 mm]	99.7							
3/4 in. [19.0 mm]	99.6	Consolidation (T 216)						
½ in. [12.5 mm]	99.5	Trimmings, Water Content, %						
3/8 in. [9.5 mm]	92.1		igs, wait	or Corner	11, 70			
1/4 in. [6.3 mm]	81.0		Initial	Final		Void	%	
No. 4 [4.75 mm]	75.3					Ratio	Strain	
No. 10 [2.00 mm]	60.8	Water Content, %			Pmin			
No. 20 [0.850 mm]	46.4	Dry Density, kg/m³			Рр			
No. 40 [0.425 mm]	35.6	Void Ratio			Pmax			
No. 60 [0.250 mm]	26.8	Saturation, %			Cc/C'c			
No. 100 [0.150 mm]	18.0		0.1	_	4 01			
No. 200 [0.075 mm]	11.4	Va	ine She	ear Tes	t on Si	nelby T	ubes (

	······································									
	Liquid Limit @ 25 blows (T 89), %									
1										
	Plastic Limit (T 90), %									
	Plasticity Ind	Plasticity Index (T 90), %								
	Consider Consider Comparts of the									
		Specific Gravity, Corrected to 20°C (T 100)								
1	Loss on Igni	tion (T 267)								
	Loss, %	<u>H2O, %</u>								
	Water Conte	Water Content (T 265), %								
	4.	1								

Miscellaneous Tests

Depth taken in tube, m Shear Remold U. Shear Remold Remold Water Content, Wa		Va	ane She	ear Test	on She	lby Tub	oes (Maine DOT)								
taken in U. Shear Remoid U. Shear Remoid Content, Various Tube Depths	Depth	3	ln.	6	ln.	Water									
tube, m kPa kPa kPa kPa %	taken in	U. Shear	Remold	U. Shear	Remold	Content,									
	tube, m	kPa	kPa	kPa	kPa	%	various rube Deptils								

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 12/18/2003

SAMPLE INFORMATION

Reference No. Boring No./Sample No. Sample Description Sampled Received

176176 TP-WEL-105 GEOTECHNICAL (DISTURBED) 12/3/2003 12/8/2003

Sample Type: GEOLOGY Location: ROADWAY Station: 27+340 Offset, m: 3.1 LT Dbfg, m: 0.20-0.76

PIN: 007998.10 Town: Wells Sampler: GROSS, KAREN L

TEST RESULTS

Sieve Analysis	(T 27,	
T 11)		Shear Angle, '
Wash Method	d	Initial Water C
Procedure A	\	Normal Stress
SIEVE SIZE	_ %	Wet Density, k
U.S. [SI]	Passing	Dry Density, k
3 in. [75.0 mm]	99.9	Specimen Thi
1 in. [25.0 mm]	99.7	
3/4 in. [19.0 mm]	99.7	
½ in. [12.5 mm]	99.6	Tr
% in. [9.5 mm]	94.8	11
1/4 in. [6.3 mm]	88.8	
No. 4 [4.75 mm]	84.8	
No. 10 [2.00 mm]	73.1	Water Conten
No. 20 [0.850 mm]	55.8	Dry Density, k
No. 40 [0.425 mm]	34.2	Void Ratio
No. 60 [0.250 mm]	14.2	Saturation, %
No. 100 [0.150 mm]	9.8	
No. 200 [0.075 mm]	7.2	

		irect S	hear (1	Г 236)			Miscellane	eous Tests					
	Shear Angle, °							@ 25 blows					
	Initial Water Conten	t, %					(1 8)	<u>9), %</u>					
	Normal Stress, kPa												
	Wet Density, kg/m³						Plastic Lim	<u>it (T 90), %</u>					
	Dry Density, kg/m³												
_	Specimen Thicknes	s, m					Plasticity Index (T 90), %						
	C	onsolic	dation ((T 216)			Consider Cravit	· Composted to					
1	- .	\A/ (0 1				-	y, Corrected to					
	1 rimmin	gs, Wate	er Conter	nt, %			<u>20 C (</u>	<u>T 100)</u>					
_		Initial	Final		Void	%							
		IIIIIIai	ГШа		Ratio	Strain	Loss on Ign	ition (T 267)					
	Water Content, %			Pmin			Loss, %	<u>H2O, %</u>					
	Dry Density, kg/m³			Рр									
	Void Ratio			Pmax			Water Conte	nt (T 265), %					

Va	ane She	ear Test	on She	lby Tub	pes (Maine DOT)							
3 1	n.	6	ln.	Water								
U. Shear	Remold	U. Shear	Remold	Content,	Description of Material Sampled at the							
kPa	kPa	kPa	kPa	%	Various Tube Depths							
	3 I U. Shear	3 In. U. Shear Remold	3 In. 6 U. Shear Remold U. Shear	3 In. 6 In. U. Shear Remold U. Shear Remold	U. Shear Remold U. Shear Remold Content,							

4.8

Cc/C'c

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: FOGG, BRIAN Date Reported: 12/18/2003

TERRY

۷	Š
×	
ŀ	Š
	8
ì	i
	ě
į	ğ
	8
į	ï
	S
Ì	ž
	K
į	Š
	Š
į	Ò
	Š
	8
į	8
8	Š
	Ĭ
	Š
	8
į	Ĭ
	Š
į	Ş
l	i
į	8
į	į
	X
į	Š
	ĺ
	Š
	Š
	į
	8
ŀ	ğ
	N
į	ì
	ě
2	i
	ě
į	ğ
	ì
į	8
į	8
8	ä
	8
Į	Š
	ě
	Ė
	Š
R	ľ
	Š
	ij
	ŝ
į	ĕ
8	
l	Š
	8
	Š
٥	ě
	×
	Š
ĺ	ú
	8
	à
	l
ì	è
Ì	ì
ļ	ì
	ú
	ì
	į
	ì
	ı
į	è
	ĕ
	Ž
	ì
	8
	Š
	Š
	ä
	8
	ì
	ě
	å
	å

Reference No. 98593

Sample Description: GEOLOGY CUP

FWD-100SB

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

100 fwd m

PIN: 7998.10 Town:

75 µm [No. 200]

Station: 27+315 Offset: 92mm WELLS

Depth: 92-6/m Washboring:

Sample:

Sample #1

9888	8888		*****	612.2	*****	******	*******	20000	*****	
	-3	g . D		88.0	- 38	.36	788	88	88.	.a. 9
	. ~		⊗	880	: 39	993	~ ∞ :	333	200	885. 38
-	8	PA. 3	8 8	880	188	-000°	. 99 1	333	233	889°. 3
- 22			20 22	w	88	-38	· 284. '	-88	133	233. J

	<u>eve Anal</u> ASHTO		Hydromete (AASH	er Analys FO T88)	<u>is</u>	М	iscellaneous Tes	sts			
SIEV	<u>/E SIZE</u> <u>Standard</u> [3 in.]		Particle Size, % mm Passing	Particle Size, mm	<u>%</u> Passing	Liquid Limit	, %, (T89):				
19 mm	[¾ in.]	100.0		ition, %, (T267):							
12.5 mm	[½ in.]	97.7				Water Conte	ent, %, (Maine DOT)	1.3			
mm	[3/8 in.]	79.2				Specific Gra	• • •				
mm	[¼ in.]	70.3				Corrected to					
4.75 mm	[No. 4]	65.9		Con	<u>isolidatio</u>	n (AASHT	<u>O T297)</u>				
2.00 mm	[No. 10]	56.2		<u>Initial</u>	<u>Final</u>	<u>V</u>	<u>′oids Rati</u>	% Strain			
850 µm	[No. 20]	43.5	GWN			Pmin	in Pmin				
425 µm	[No. 40]	29.8	Void Ratio			Рр	Рр				
250 µm	[No. 60]	21.3	ry Density, kg/m³			Pmax	Pmax				
150 µm	[No. 100]	14.8	Saturation, %			Сс	Сс				

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Depth of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> Water Content	<u>Description</u> of Tube Sample at Various Depths

Comments: brown silty sandy gravel

9.6

AUTHORIZATION

Reported by: FOGG, BRIAN

3	į
į	i
١	i
١	9
ì	į
8	Š
	ŝ
	ì
	š
i	i
8	Š
l	i
	4
	ŝ
d	ì
6	Ů
ļ	ŀ
	Ş
į	į
	ì
8	ò
	8
į	å
į	į
	2
	l
	Ö
	8
ļ	Š
	8
į	ì
į	ì
	Š
	į
	ğ
į	ì
Ì	į
	ķ
	į
	ĕ
į	ì
	ľ
	ĝ
	8
	ì
	ĕ
	ì
Š	Ì
į	Ĭ
	8
	Š
	į
	١
	١
	ě
	×
	Ĭ
	i
	Š
Į	i
	8
	8
	8
	ì
	١
	ì
	Š
	i
	8
	Š
	i
	Š
į	Š
	8
í.	8
į	i
	į
Š	ä
Į	Š
	į
į	Š
	į
	è
į	ŝ
ļ	8
Š	Ř
Š	Š
١	ì
	ĕ
	8
	3
ì	Š
	۱
į	ì
	2
	å
	8
	à
	Š
	å

Reference No.

98594

Sample Description: GEOLOGY CUP FWD-1005B

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

150 µm [No. 100]

75 µm [No. 200]

Station:

27+315 Offset: 90mm

Depth: a(1-1.52 mWashboring)

100 FWD M

PIN: 007998.10

Town: WELLS

2.4 m

Saturation, %

Sample:

Cc

Sample #2

TEST BESULTS

Sieve Ana (AASHTO		<u>Hydromete</u> (AASH	er Analys TO T88)	sis	Misc	ellaneous Te	sts
SIEVE SIZE Metric Standard 75 mm [3 in.] 25 mm [1 in.] 19 mm [¾ in.]	! % Passing	<u>Particle</u> <u>Size, %</u> <u>mm</u> Passing	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing	Liquid Limit, %, Plastic Limit, % Plasticity Index Loss on Ignition	, (T90): , %, (T90): n, %, (T267):	
12.5 mm [½ in.] mm [3/8 in.] mm [¼ in.]	100.0 96.4				Specific Gravity Corrected to 20		2.7
4.75 mm [No. 4]	91.7		Con	solidatio	n (AASHTO T	297)	
2.00 mm [No. 10]	78.2		<u>Initial</u>	<u>Final</u>	<u>Void</u> :	s Rati	% Strain
850 µm [No. 20]	57.4	GWN			Pmin	Pmin	
425 µm [No. 40]	37.3	Void Ratio			Pp	Рр	
250 µm [No. 60]	27.0	ry Density, kg/m³			Pmax	Pmax	

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Сс

Depth of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> <u>Water</u> Content	<u>Description</u> of Tube Sample at Various Depths

Comments: brown f-c sand, some gravel, some silt

19.6

13.9

AUTMORIZATION

Reported by: FOGG, BRIAN

																											ı					
																															ж	

Reference No.

98595

Sample Description: GEOLOGY CUP

FWD-100SB

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 27+315

Offset: 4:52m

Depth: 1.52-1.74 Washboring:

100 FWD M

PIN: 007998.10 Town: WELLS

Sample:

Sample #3

TEST RESULTS

<u>Sieve Analysis</u> (AASHTO T27)	<u>Hydrometer An</u> (AASHTO T		Miscellaneous Tes	<u>ts</u>
SIEVE SIZE Metric Standard % Passing 75 mm [3 in.] 25 mm [1 in.] 19 mm [¾ in.] 12.5 mm [½ in.] mm [3/8 in.] mm [¼ in.]	<u>Particle</u> <u>Part</u> <u>Size.</u> <u>% Siz</u> <u>mm</u> <u>Passing</u> <u>m</u>	<u>ze.</u> <u>%</u>	Liquid Limit, %, (T89): Plastic Limit, %, (T90): Plasticity Index, %, (T90): Loss on Ignition, %, (T267): Water Content, %, (Maine DOT) Specific Gravity (T100) Corrected to 20°C:	2.5
4.75 mm [No. 4] 100.0		Consolidatio	on (AASHTO T297)	
2.00 mm [No. 10] 99.8	<u>Initi</u>	al Final	<u>Voids Rati</u>	% Strain

2.00 mm [No. 10]	99.8		<u>Initial</u>	<u>Final</u>		<u>Voids Rati</u>	% Strain
850 μm [No. 20]	98.0	GWN			Pmin	Pmin	
425 µm [No. 40]	92.1	Void Ratio			Рр	Pp	
250 µm [No. 60]	61.7	ry Density, kg/m³			Pmax	Pmax	
150 µm [No. 100]	20.3	Saturation, %			Сс	Сс	
75 μm [No. 200]	10.7						

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

	Depth of Sample in Tube (m)	<u>Undisturbed</u> <u>Shear Strength</u> <u>Vane</u> (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> Water Content	Description of Tube Sample at Various Depths
	,						
		· · · · · · · · · · · · · · · · · · ·					
,	<u> </u>						

Comments: brown f-sand

AUTHORIZATION

Reported by: FOGG, BRIAN

Reference No.

98596

Sample Description: **GEOLOGY CUP**

FWD-100SB

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 27+315 Offset: 274-2

Depth: 2.74-2.9 m

Washboring:

100 FWD M

PIN: 007998.10 Town: WELLS

Sample:

Sample #4

							200				
ð			er	8	9000	2 73	. 26	700			80 . 10
8	Ц	8 4	× -			5 × 80		- 60	1 50		ox ∵a
٥	0.00		88. S	88			-500	100	304	1.00	200. 10
	8 88	2 4	200	₩ 1	388			· 28	100	0.000	200 2
	888	X	St	****	2333	s×		-490-	XX		2000

<u>Sieve Analysis</u> (AASHTO T27)	Hydrometer Analysis (AASHTO T88)	Miscellaneous Tests
SIEVE SIZE Metric Standard % Passing 75 mm [3 in.] 25 mm [1 in.] 19 mm [% in.] 12.5 mm [½ in.] mm [3/8 in.]	<u>Particle</u> <u>Size, % Size, %</u> <u>mm</u> Passing <u>mm</u> Passing	Liquid Limit, %, (T89): Plastic Limit, %, (T90): Plasticity Index, %, (T90): Loss on Ignition, %, (T267): Water Content, %, (Maine DOT) Specific Gravity (T100) Corrected to 20°C:
mm [¼ in.] 100.0 4.75 mm [No. 4] 99.9	Consolidat	ion (AASHTO T297)
2.00 mm [No. 10] 99.7	<u>Initial</u> <u>Fina</u>	Voids Rati % Strain
850 um [No. 20] 99.1	GWN	Pmin Pmin

2.00 mm [No. 10]	99.7		<u>Initial</u>	<u>Final</u>	Voids Rati	<u>%</u>	Str
850 μm [No. 20]	99.1	GWN		P	min	Pmin	
425 µm [No. 40]	97.8	Void Ratio			Pp	Pp	
250 µm [No. 60]	95.3	ry Density, kg/m³		Pr	nax	Pmax	
150 μm [No. 100]	89.9	Saturation, %			Сс	Сс	
75 um [No. 200]	83 A						

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

(m) (kPa) (kPa) (kPa) Content at Tanons Septing	<u>Depth</u> of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding <u>Vane</u> (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	% Water Content	<u>Description</u> of Tube Sample at Various Depths
---	---	---------------------------------------	-----------------------------------	--	----------------------------	-----------------------	---

Comments: brown mottled clayey silt

AUTHORIZATION

Reported by: FOGG, BRIAN

				œ.					
					8'9				

Reference No.

Sample Description: GEOLOGY CUP 98597

FWD-1000

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 26+415 Offset: 243m

Depth: 243 - .76 m Washboring:

FWD 1000

PIN: 007998.10 Town: WELLS

Sample:

Sample #5

	а.	æ	SF 30	22222	- 185° - 185° - 1	A5		
		88 *	S. `₩S	2000000	33 433 .	-22 88	500x 660	-2
	88	88 z	₹ `∭	\$500000	92 -88A	700 800	SSS 5350-	-3
2	8	88	× : 288	5000000	SS ~SS .	28. 'BS	***************************************	•

	eve Anal				er Analys TO T88)	<u>is</u>	Miscellaneous Tests			
		% Passing	<u>Particle</u> <u>Size,</u> 9	<u>%</u> sing	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing	Liquid Lim	nit, %, (T89): nit, %, (T90):	3 103	13
25 mm	[1 in.]	100.0	i					Index, %, (T90):		
19 mm	[¾ in.]	94.8					Loss on Ig	nition, %, (T267):		
12.5 mm [[½ in.]	82.3					Water Cor	ntent, %, (Maine [от)	12,096.3
mm [[3/8 in.]	75.4					Specific G	ravity (T100)		·
mm [[¼ in.]	67.0					Corrected	to 20°C:		
4 ب mm [[No. 4]	62.8			Con	solidatio	n (AASH)	ΓΟ T297)		······································
2.00 mm [[No. 10]	50.9			<u>Initial</u>	<u>Final</u>		Voids Rati		% Strain
850 µm [No. 20]	38.3	G	WN			Pmin	Р	min	
425 µm [[No. 40]	29.1	Void R	Ratio			Рр		Рp	
250 μm [No. 60]	23.1	ry Density, ko	g/m³			Pmax	Pr	nax	
150 µm [No. 100]	17.8	Saturation	ղ, %			Cc	• • •	Cc	
75 µm [l	No. 200]	12.8							30	

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

<u>Depth</u>	<u>Undisturbed</u>		Undisturbed			
of Sample	Shear Strength	Remolding	Shear Strength	Remolding	<u>%</u>	<u>Description</u>
in Tube	<u>Vane</u>	<u>Vane</u>	Vane	Vane	Water	of Tube Sample
<u>(m)</u>	<u>(kPa)</u>	(kPa)	(kPa)	(kPa)	Content	at Various Depths
		***************************************		· · · · · · · · · · · · · · · · · · ·		

Comments: brown silty sandy gravel

AUTNORIZATION

Reported by: FOGG, BRIAN

a	7	IJ	E					
CX.	سنقب	.X.#.	.3.3	₩. ii	8.88.J	8	833	1. A. A

Reference No.

98598

Sample Description: GEOLOGY CUP

FWD - 1000

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Void Ratio

ry Density, kg/m³

Saturation, %

Depth: .76-1.83m Washboring:

Pp

Сс

Pmax

FWD 1000

PIN: 007998.10 Town: WELLS

425 µm [No. 40]

250 µm [No. 60]

150 µm [No. 100]

75 µm [No. 200]

2.5 m

Sample:

Sample #6

			7 7				700 7 7	8 85	200
ŏ		1	1	99 00000	5 83	1999	-xxx i 3	8 889 6	2 - 2
8	88	8 .8	A 76	80 8000X	8 83	200	923 : 3	8 88 8 8	33× 733
	× ×	e we		28 28388	2 22	×35 +	32 B		8 · 8
ŏ	8. X			94			All hand	S 233 3	B

	Sieve Analysis (AASHTO T27)			ydromete (AASH)	er Analys FO T88)	is	<u>Miscellaneous Tests</u>		
Metric 75 mm 25 mm 19 mm 12.5 mm	[1 in.] [¾ in.]	% Passing 100.0 98.8	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> <u>Passing</u>	Particle Size, mm	<u>%</u> <u>Passing</u>	Liquid Limit, %, (T89): Plastic Limit, %, (T90): Plasticity Index, %, (T90) Loss on Ignition, %, (T26) Water Content, %, (Maine Specific Gravity (T100) Corrected to 20°C:	7):	9.0
45 mm	[No. 4]	97.1			Con	solidatio	n (AASHTO T297)		
2.00 mm 850 µm	•	91.8 84.4		GWN	<u>Initial</u>	<u>Final</u>	<u>Voids Rati</u> Pmin	Pmin	% Strain

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Pp

Сс

Pmax

<u>Depth</u> of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	% Water Content	Description of Tube Sample at Various Depths
			-			

Comments: red-brown f-c sand, some silt

66.1

34.9

14.6

5.9

AUTHORIZATION

Reported by: FOGG, BRIAN

SAMPLE INFORMATION

Reference No.

Sample Description: GEOLOGY CUP 98599

FWD-2400

Sampled:

08/30/2000

Sample Type: GEOLOGY

PIN: 007998.10 Town: WELLS

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 25+005Offset: 1.55m

Depth: 1.68-1.98 m Washboring:

FWD 2400

2.7m

Sample:

Sample #7

						77.70cm		VV 30.00		
X.	- 32	- SSY .	-88	- 200000		- 200	700	: 38 ×	$\sim \sim$	- 2
22	1000	4833 1		888888	. 33	1000	yaa .	1 160 3	XXX XXX	
	3.00		N			- 200	- 388	1 83 E	888	
233	- 88	4000	6.55	55000001			P 22	1 88 4	800 B00	-

Sieve Ana (AASHTO		<u>Hydromete</u> (AASH	er Analys TO T88)	is	Miscellaneous Tests		
SIEVE SIZE Metric Standard % Passing 75 mm [3 in.] 25 mm [1 in.] 19 mm [¾ in.] 12.5 mm [½ in.]		<u>Particle</u> <u>Size, % Size, %</u> <u>mm Passing mm Passing</u>		Liquid Limit, %, (T89): Plastic Limit, %, (T90): Plasticity Index, %, (T90): Loss on Ignition, %, (T267): Water Content, %, (Maine DOT) 60.3			
mm [3/8 in.]	100.0				Specific Gravity Corrected to 20	` '	
mm [¼ in.]	98.9						
4.10 mm [No. 4]	97.0		<u>Con</u>	solidatio	n (AASHTO T	<u> 297)</u>	
2.00 mm [No. 10]	90.7		<u>Initial</u>	<u>Final</u>	<u>Voids</u>	s Rati	% Strain
850 μm [No. 20]	75.1	GWN			Pmin	Pmin	
425 µm [No. 40]	56.7	Void Ratio			Рр	Pp	
250 µm [No. 60]	40.0	ry Density, kg/m³			Pmax	Pmax	
150 μm [No. 100]	26.4	Saturation, %			Сс	Сс	
75 μm [No. 200]	15.0						

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Depth of Sample in Tube (m)	<u>Undisturbed</u> <u>Shear Strength</u> <u>Vane</u> (kPa)	Remolding Vane (kPa)	<u>Undisturbed</u> <u>Shear Strength</u> <u>Vane</u> (kPa)	Remolding Vane (kPa)	<u>%</u> Water Content	Description of Tube Sample at Various Depths

Comments: brown organic silt (peat), some sand

AUTHORIZATION

Reported by: FOGG, BRIAN

SAMPLE INFORMATION

Reference No.

Sample Description: **GEOLOGY CUP** 98600

FWD - 2400

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 25 +005 Offset: 1.88m

Depth: $1.98-2.9 \, \text{m}$ Washboring:

FWD 2400

PIN: 007998.10 Town: WELLS

2.7m

Sample:

Sample #8

	22		œ		200			8.3	9888	ж.	200		2000		2000	880))		
	×		8	-200	- 3	80	- 8	w		-88			100	1.00	886.		-	×
×	2	-83	9	789	. *	331	-88	833	8	8.0	703	36	82	1 22		- 800		м
œ	×	- 83	×	400	-	-84	-	w		×	-863	œ	831	1 33	18333	- 233		88
	×		е.	-33		88	- 88	œ	9	92	-33		28.	. 88	100	-	-	

Sieve Analysis			<u>Hydromet</u>		sis_			
<u>(A</u>	ASHTO	<u>127)</u>	(AASH	<u>(887 OTI</u>		Miscellaneous Tests		
	/E SIZE Standard	% Passing	<u>Particle</u> <u>Size, %</u>	<u>Particle</u> <u>Size,</u>	<u>%</u>	Liquid Limit, %,	(T89):	
75 mm		ZELLER THIM	<u>mm</u> Passing	<u>mm</u>	<u>Passing</u>	Plastic Limit, %,	(T90):	
25 mm	[1 in.]					Plasticity Index,	%, (T90):	
19 mm	[¾ in.]					Loss on Ignition	, %, (T267):	
12.5 mm	[½ in.]	100.0				Water Content,	%, (Maine DOT)	25.0
mm	[3/8 in.]	96.5				Specific Gravity	•	
mm	[¼ in.]	89.7				Corrected to 20°	'C:	
4.75 mm	[No. 4]	85.2		Con	solidatio	on (AASHTO T	<u> 297)</u>	
2.00 mm	[No. 10]	71.7		<u>Initial</u>	<u>Final</u>	<u>Voids</u>	Rati	% Strain
850 µm	[No. 20]	61.5	GWN			Pmin	Pmin	
425 µm	[No. 40]	49.4	Void Ratio			Pp	Pp	
250 µm	[No. 60]	38.7	ry Density, kg/m³			Pmax	Pmax	
150 µm	[No. 100]	27.1	Saturation, %			Cc	Cc	
75 µm	[No. 200]	17.4						
		•	Vane Shear Test	on Shelb	v Tubes	(Maine DOT)	(T/60)/0/	70)-1-0-

vane Shear Test on Shelby Tubes (Maine DOT)

| (T/ft2)(95.76)=kPa |

Depth Undist of Sample Shear S in Tube Va (m) (kF	trength Remolding ne Vane	molding <u>%</u> Vane Water kPa) Conten	

Comments: brown f-c sand, some clay

AUTHORIZATION

Reported by: FOGG, BRIAN

Reference No.

105032

Sample Description: **GEOLOGY CUP**

FWD - 3000

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 24+405 Offset: 195m

Depth: .195 - .5%-Washboring:

FWD 3000

PIN: 007998.10 Town: WELLS

2.4m

Sample:

Sample #9

ø	933	2000	00000	333	2200000		200000		200.22	200.22	
ä,		٠.	87 °	8.	-23333	. 38	-38	. 1888	188	88.	-28 T
	8	ε	a. v	888	****	200	120.	700	- 68	2000	33A 7
88	æ		œ.	888	383333	332	2897	- 89	- 32	200	SSS***

_	eve Anal ASHTO		Hydromete (AASH	er Analys TO T88)	is	Miscellaneous Tests		
SIEV Metric 75 mm 25 mm 19 mm 12.5 mm	/E SIZE Standard [3 in.] [1 in.] [¾ in.]	% Passing 100.0 87.9 74.8 70.4	Particle Size. % mm Passing	Particle Size, mm	<u>%</u> Passing	Liquid Limit, %, (T89): Plastic Limit, %, (T90): Plasticity Index, %, (T90): Loss on Ignition, %, (T267): Water Content, %, (Maine DOT) Specific Gravity (T100) Corrected to 20°C:		
√ mm	[¼ in.]	61.1				Corrected to 2	.0 0.	
4./5 mm	[No. 4]	57.2		<u>Con</u>	solidatio	n (AASHTO	<u>T297)</u>	
2.00 mm	[No. 10]	47.7		<u>Initial</u>	<u>Final</u>	<u>Voi</u>	<u>ds Rati</u>	% Strain
850 µm	[No. 20]	37.5	GWN			Pmin	Pmin	
425 µm	[No. 40]	29.1	Void Ratio			Pp	Рр	
250 µm	[No. 60]	22.9	ry Density, kg/m³			Pmax	Pmax	
150 µm	[No. 100]	18.0	Saturation, %			Cc	Cc	
75 µm	[No. 200]	12.8			·- ,			

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Depth of Sample in Tube (m)	Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> <u>Water</u> <u>Content</u>	<u>Description</u> of Tube Sample at Various Depths

Comments: brown silty sandy gravel

AUTHORIZATION

Reported by: FOGG, BRIAN

Reference No.

105033

Sample Description: **GEOLOGY CUP**

FWD-3000

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

75 µm [No. 200]

27.2

Station: 24+405 Offset: 195m

Depth: .58 - . ₹8 - . Washboring:

FWD 3000

PIN: 007998.10 Town: WELLS

2.4m

Sample:

Sample #10

ખ નજ	-800	au	98 -88 3	20 i 28 i	880 AR	
8 SS	- 334 W	000000	20 703 7	33 F 53 3	333 XX	s. 188
1 🛭						
		80. 2000 K				

	eve Anal ASHTO		Hydromete (AASH	e <mark>r Analys</mark> TO T88)	is	<u>Miscellaneous Tests</u>			
<u>Metric</u> 75 mm 25 mm	[1 in.]	% Passing	<u>Particle</u> <u>Size, %</u> <u>mm</u> Passing	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing		t, %, (T90): dex, %, (T90):		
19 mm	Ī.,	100.0			3	•	ition, %, (T267):		
12.5 mm	[½ in.]	97.2				vvater Conti	ent, %, (Maine DOT)	4.5	
mm	[3/8 in.]	93.0				Specific Gra	• •		
mm	[¼ in.]	90.1				Corrected to) 20°C:		
4.75 mm	[No. 4]	87.1		Con	solidatio	n (AASHT	<u>O T297)</u>		
2.00 mm	[No. 10]	79.0		<u>Initial</u>	<u>Final</u>	<u>V</u>	<u>′oids Rati</u>	% Strain	
850 µm	[No. 20]	68.7	GWN			Pmin	Pmin		
425 µm	[No. 40]	56.9	Void Ratio			Pp	Рр		
250 μm	[No. 60]	48.0	ry Density, kg/m³			Pmax	Pmax		
150 µm	[No. 100]	37.9	Saturation, %			Cc	Cc		

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Depth Undisturbed		<u>Undisturbed</u>			
of Sample Shear Strength	Remolding	Shear Strength	Remolding	<u>%</u>	Description
<u>in Tube</u> <u>Vane</u>	<u>Vane</u>	<u>Vane</u>	<u>Vane</u>	Water	of Tube Sample
<u>(m)</u> (kPa)	<u>(kPa)</u>	<u>(kPa)</u>	<u>(kPa)</u>	Content	at Various Depths
				· 	

Comments: brown silty f-m sand, some cobbles, some gravel

Reported by: FOGG, BRIAN

Reference No.

105034

Sample Description: **GEOLOGY CUP**

FWD-3402

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

150 µm [No. 100]

75 µm [No. 200]

91.9

88.6

Station: 23 + 998 Offset: 1:52m

Depth: 1.52-2. Washboring:

Сс

FWD 3402

PIN: 007998.10

Town: WELLS

2.7 m

Sample:

Sample #11

90 3	88 88		2222223	32 422	.22	2000	3
	œ	a. 1888	2000000	00 BBC	*** B	6000 000	
98	84	C - 38		20 483"	. 86 . 8	SSS 300.	
853	×						

	eve Anal ASHTO		<u>Hydromete</u> (AASH	er Analys TO T88)	is_	Miscellaneous Tests			
Metric 75 mm 25 mm 19 mm 12.5 mm	n [¾ in.]		<u>Particle</u> <u>Size, <u>%</u> <u>mm</u> Passing</u>	Particle Size, mm	<u>%</u> Passing	_	%, (T90): ex, %, (T90): on, %, (T267): et, %, (Maine DOT)	23.2	
mm	[¼ in.]	99.9				Corrected to 2	20°C:		
4.75 mm	[No. 4]	99.9		Con	solidatio	n (AASHTO	T297)		
2.00 mm	[No. 10]	99.3		<u>Initial</u>	<u>Final</u>	<u>Voi</u>	<u>ds Rati</u>	% Strain	
850 µm	[No. 20]	98.2	GWN			Pmin	Pmin		
425 µm	[No. 40]	95.8	Void Ratio	•		Рр	Рр		
250 µm	[No. 60]	93.6	ry Density, kg/m³			Pmax	Pmax		

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Сс

<u>Depth</u>	<u>Undisturbed</u>		<u>Undisturbed</u>			
of Sample	Shear Strength	Remolding	Shear Strength	Remolding	<u>%</u>	<u>Description</u>
in Tube	<u>Vane</u>	<u>Vane</u>	<u>Vane</u>	<u>Vane</u>	<u>Water</u>	<u>of Tube Sample</u>
<u>(m)</u>	(kPa)	(kPa)	(kPa)	(kPa)	<u>Content</u>	at Various Depths

Saturation, %

Comments: olive brown mottled clay silt

Reported by: FOGG, BRIAN

SAMPLE INFORMATION

Reference No.

Sample Description: **GEOLOGY CUP** 105035

FWD-4200

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 23+196 Offset: 17.0m

Depth: 417 - .91 Washboring: **FWD 4200**

PIN: 007998.10 Town: WELLS

Sample:

Sample #13

	T	w88 \	æa ∞∞	× . ×	-83 C.33	\$ 220 2006	s =65 (.B
	90 HW	1 33A 1	0000 B000	83 483	703. 700	1 891 1999	800. 100
S	80 500	- CONT.	100	SS 1 SS	100000	1 88 888	989PN 7
			AN - 200				

	<u>eve Anal</u>		<u>Hy</u>	<u>dromete</u>	er Analys	<u>is</u>			
<u>(A</u>	ASHTO	<u> </u>		(AASH	TO T88)		Miscellaneous Tests		
<u>Metric</u>	/E SIZE Standard	% Passing	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing	<u>Particle</u> <u>Size,</u> mm	<u>%</u> Passing		t, %, (T89): it, %, (T90):	
75 mm	[3 in.]				1777.11				
25 mm	[1 in.]	100.0					Plasticity Ir	ndex, %, (T90):	
19 mm	[¾ in.]	95.0					Loss on Igr	nition, %, (T267):	
12.5 mm	[½ in.]	86.6					Water Con	tent, %, (Maine DOT)	1.7
← mm	[3/8 in.]	82.1						ravity (T100)	
mm	[¼ in.]	72.8					Corrected t	6 20°C:	
4 ب mm	[No. 4]	68.2			Con	solidatio	n (AASHT	O T297)	
2.00 mm	[No. 10]	55.3			<u>Initial</u>	<u>Final</u>	2	Voids Rati	% Strain
850 µm	[No. 20]	34.9		GWN			Pmin	Pmin	
425 µm	[No. 40]	19.9	Va	id Ratio			∞ P p	Pp	
250 µm	[No. 60]	14.2	ry Densit	y, kg/m³			Pmax	Pmax	
150 µm	[No. 100]	10.4	Satur	ation, %			Сс	Сс	
75 μm	[No. 200]	7.0							

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

of Sample in Tube (m)	Shear Strength Vane (kPa)	Remolding Vane (kPa)	Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> <u>Water</u> Content	<u>Description</u> of Tube Sample at Various Depths

Comments: brown f-c sand, some gravel

AUTHORIZATION

Reported by: FOGG, BRIAN

8	g.	I	8	n	m	m					m	mg S		~	¥	****	m	w	~	ς,,		***	~	M	M	Š
ä	Ò	8	8	8	8	8	9 8	×		8	8	8	8	į -	8	- 8		8		8	▩	፼		š	8	å
	×	200	82	æ.	300	****		anni	3333	200.0	٥	688		2	ess.	wx X	سه	ომა	لسلمان	×	œ		and it	ж.		

Reference No.

Sample Description: **GEOLOGY CUP** 105036

FWD-4200

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 23 + 196 Offset: .94m-

.91m Depth: ,91-1.58 m Washboring: 2.5 m RT

FWD 4200

PIN: 007998.10 Town: WELLS

Sample:

Sample #14

			TE	ST BES	ULTS			
	eve Anal		Hydromete	er Analys	is			
<u>(A</u>	ASHTO	<u>T27)</u>	(AASH	TO T88)		<u>Mi</u>	scellaneous Te	ests
<u>SIEV</u> Metric	/E SIZE Standard	% Passing	Particle Size, %	<u>Particle</u> Size,	<u>%</u>	Liquid Limit,	%, (T89):	
75 mm			<u>mm</u> Passing	<u>mm</u>	<u>Passing</u>	Plastic Limit,	%, (T90):	
25 mm	[1 in.]					Plasticity Ind	ex, %, (T90):	
19 mm	[¾ in.]					Loss on Ignit	ion, %, (T267):	
12.5 mm	[½ in.]					Water Conte	nt, %, (Maine DOT	20.8
mm	[3/8 in.]	100.0				Specific Grav	- '	
/> mm	[¼ in.]	99.7				Corrected to	20°C:	
်န ၁ mm	[No. 4]	99.3		<u>Con</u>	solidatio	n (AASHTO	T297)	
2.00 mm	[No. 10]	97.2		<u>Initial</u>	<u>Final</u>	<u>Vo</u>	ids Rati	% Strain
850 µm	[No. 20]	91.9	GWN			Pmin	Pmin	
425 µm	[No. 40]	81.3	Void Ratio			Рр	Pp	
250 µm	[No. 60]	67.8	ry Density, kg/m³			Pmax	Pmax	
150 µm	[No. 100]	54.9	Saturation, %			Сс	Cc	
75 μm	[No. 200]	41.8						

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

<u>Depth</u>	<u>Undisturbed</u>		<u>Undisturbed</u>			<u> </u>
of Sample	Shear Strength	Remolding	Shear Strength	Remolding	<u>%</u>	<u>Description</u>
in Tube	<u>Vane</u>	Vane	<u>Vane</u>	Vane	<u>Water</u>	<u>of Tube Sample</u>
<u>(m)</u>	(kPa)	(kPa)	(kPa)	(kPa)	Content	at Various Depths
1						

Comments: brown silty f-sand

AUTHORIZATION

Reported by: FOGG, BRIAN

Reference No.

105037

Sample Description: **GEOLOGY CUP**

FWD-5000

Sampled:

08/30/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 22+396 Offset:

Depth: 21m - .55 Washboring:

FWD 5000

PIN: 007998.10 Town: WELLS

2.5 m R+

Sample:

Sample #15

114		

<u>Si</u>	<u>eve Anal</u>	<u>ysis</u>	<u>Hydromete</u>	er Analys	<u>is</u>				
<u>(A</u>	<u>ASHTO</u>	<u>T27)</u>	(AASH	TO T88)		<u>N</u>	<u>liscellaneous Te</u>	<u>sts</u>	
-	/E SIZE Standard [3 in.]	% Passing	<u>Particle</u> <u>Size, %</u> <u>mm</u> Passing	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing	Plastic Lim	t, %, (T89): it, %, (T90):		
25 mm	[1 in.]	100.0				Plasticity Ir	ndex, %, (T90):		
19 mm	[¾ in.]	89.9				Loss on Igr	nition, %, (T267):		
12.5 mm	[½ in.]	80.5				Water Con	tent, %, (Maine DOT)	3.2	
mm	[3/8 in.]	73.0			:	•	ravity (T100)		
mm	[¼ in.]	64.7				Corrected t	6 20°C:		
4.75 mm	[No. 4]	59.8		<u>Con</u>	solidatio	n (AASHT	O T297)		
2.00 mm	[No. 10]	49.4		<u>Initial</u>	<u>Final</u>		Voids Rati	% Strain	
850 µm	[No. 20]	34.1	GWN			Pmin	Pmin		
425 µm	[No. 40]	21.8	Void Ratio			Рр	Рр		
250 µm	[No. 60]	15.4	ry Density, kg/m³			Pmax	Pmax		
150 µm	[No. 100]	11.5	Saturation, %			Cc	Cc		
75 µm	[No. 200]	7.7							

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Depth of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> Water Content	<u>Description</u> of Tube Sample at Various Depths

Comments: brown f-c sand, some gravel

AUTHORIZATION

Reported by: FOGG, BRIAN

SAMPLE INFORMATION

Reference No.

105038

Sample Description: **GEOLOGY CUP**

FWD - 5000

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 22+396 Offset: :55m-

Depth: ,55 - 2.44 - Washboring:

FWD 5000

PIN: 007998.10 Town: WELLS

Sample:

Sample #16

TEST RESULTS

	eve Anal		<u>Hydromet</u>	er Analys	is_			
<u>(A</u>	ASHTO	<u>T27)</u>	(AASH	TO T88)		<u>1</u>	Miscellaneous Te	sts
	<u>'E SIZE</u> <u>Standard</u>	% Passing	Particle Size, %	<u>Particle</u> <u>Size,</u>	<u>%</u> .	Liquid Lim	it, %, (T89):	
75 mm	[3 in.]		<u>mm</u> <u>Passing</u>	<u>mm</u>	<u>Passing</u>	Plastic Lim	nit, %, (T90):	
25 mm	[1 in.]					Plasticity I	ndex, %, (T90):	
19 mm	[¾ in.]	100.0				Loss on Ig	nition, %, (T267):	
12.5 mm	[½ in.]	97.4				Water Con	itent, %, (Maine DOT)	0.8
‴ ^{r,} mm	[3/8 in.]	95.3				, ,	ravity (T100)	
/ mm	[¼ in.]	84.8				Corrected	to 20°C:	
mm د	[No. 4]	79.8		Con	solidatio	n (AASHT	O T297)	
2.00 mm	[No. 10]	67.5		Initial	<u>Final</u>		Voids Rati	% Strain
850 µm	[No. 20]	53.0	GWN			Pmin	Pmin	
425 µm	[No. 40]	36.0	Void Ratio			Рр	Pp	
250 µm	[No. 60]	28.2	ry Density, kg/m³			Pmax	Pmax	
150 µm	[No. 100]	22.3	Saturation, %			Сс	Cc	
75 µm	[No. 200]	16.4						

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

	Depth of Sample in Tube (m)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	Undisturbed Shear Strength Vane (kPa)	Remolding Vane (kPa)	<u>%</u> <u>Water</u> <u>Content</u>	<u>Description</u> of Tube Sample at Various Depths
ſ	· · · · · · · · · · · · · · · · · · ·						

Comments: brown sandy silt, some gravel

AUTHORIZATION

Reported by: FOGG, BRIAN

SAMPLE INFORMATION

Reference No.

105039

Sample Description: GEOLOGY CUP

FWD-5000

Sampled:

08/29/2000

Sample Type: GEOLOGY

Sampler: GROSS, KAREN

Received:

06/26/2001

Location: ROADWAY

Station: 22+396 Offset: 244m

Depth: 2.44 - 2.9 m Washboring:

Cc

FWD 5000

PIN: 007998.10 Town: WELLS

22.4

17.4

2.5m Rt

Sample:

Sample #17

×			200	~~~~~	~937~	W-700	7 700 100	W 107 100
		9835	-333	2000000	233 653	1 (_83	88 88	5 at 40
		.223	No. 10	******	484 ⊃X	* **	988 888	0 900 V
	200	- 2		6000000	. 33 68	C 36	1 203 140	S (28)
×	. 900.		<i>-∞</i> 00.		السيلاندة	X#X	-883	a

	eve Anal ASHTO		<u>Hydromete</u> (AASH	er Analys TO T88)	<u>is</u>	Miscellaneous Tests			
Metric 75 mm 25 mm 19 mm 12.5 mm	[3 in.] [1 in.] [¾ in.]	% Passing 100.0 98.6 96.7	<u>Particle</u> <u>Size, %</u> <u>mm</u> <u>Passing</u>	<u>Particle</u> <u>Size,</u> <u>mm</u>	<u>%</u> Passing	Loss on Ignit	%, (T90): ex, %, (T90): ion, %, (T267): nt, %, (Maine DOT) vity (T100)	4.2	
ر 4. ، ی mm	-	94.7		Con	solidatio	n (AASHTO	T297)		
2.00 mm	[No. 10]	85.1		<u>Initial</u>	<u>Final</u>	<u>Vo</u>	oids Rati	% Strain	
850 µm	[No. 20]	69.1	GWN			Pmin	Pmin		
425 µm	[No. 40]	42.7	Void Ratio			Pp	Рр		
250 µm	[No. 60]	28.5	ry Density, kg/m³			Pmax	Pmax		

Vane Shear Test on Shelby Tubes (Maine DOT)

(T/ft2)(95.76)=kPa

Cc

Depth of Sample	Undisturbed Shear Strength	Remolding	<u>Undisturbed</u> <u>Shear Strength</u>	Remolding	<u>%</u> Water	<u>Description</u> of Tube Sample
in Tube (m)	<u>Vane</u> (kPa)	<u>Vane</u> (kPa)	<u>Vane</u> (kPa)	<u>Vane</u> (kPa)	Content	at Various Depths

Saturation, %

Comments: brown f-c sand

150 µm [No. 100]

75 µm [No. 200]

AUTHORIZATION

Reported by: FOGG, BRIAN

Appendix D: Design

- FWD Analysis
- Resilient Modulus (Mr) Calculation
- Frost Depth Information
- Detail Frost Susceptible Soils over Ledge

Wells 7998.10 Sta. 4+000 to 5+600

Station (Meter		Future Traffic Structural Number (mm)	Overlay Structural Number (Existing - Future)	Recommended Pavement Thickness (mm)	Existing Pavement Modulus (kPa)	Subgrade Resilient Modulus (kPa)	Pavement Depth (mm)	Pavement/ Gravel Depth (mm)	
4.400									•
4+100		119	22	•	458716	36102	90	760	
4+200		120	23	-	483624	35011	90	760	_
4+300		110	41	-	570887	45162	90	760	1
4+400	152	110	42	-	579202	45197	90	760	
4+500	144	118	26	-	487609	37005	125	760	1
- 4+600	155	112	43	-	616077	42773	125	760	Г
4+700) , 149	113	36	•	540612	41541	125	760	-
4+800	135	123	12	-	409393	32154	125	760	Ĺ
4+900	108	118	and an		550158	36630	105	550	
- 5+000	110	104	6	-	581710	53310	105	550	_
5+100	102	123			461475	32393	105	550	_
5+200	. 109	122	(A)	C)0)	557111	33582	105	550	
5+300	106	122	42 - AG	318	514077	33222	105	550	_
5+400	143	120	23		478075	35372	150	760	_
5+500		112	49	_	691217	43699	150	760	
5+600		113	41		601175	42082	150		
	10 7		71	-	601175	42002	130	760	_

							ells						
80·							8.10 SN (mm						
İ												 	
60					 								
70 60 50 30 30 10					 							 ستس	
40													
20													
10													
0													
	 		·		 			· 					
-20 L	90	4+300		4+500	 4+700	т	4+900		5+100	1	5+300	 	

FWD	-	
Test		Design
Location	ı	Station
5600		21+796
5500		21+896
5400		21+996
5300		22+096
5200		22+196
5100		22+296
5000	╛	22+396
4900	╽	22+496
4800	1	22+596
4700	l	22+696
4600	1	22+796
4500	l	22+896
4400	l	22+996
4300	l	23+096
4200	Ĺ	23+196
4100	L	23+296
4000		23+396
3900	L	23+496
3800	L	23+596
3700	L	23+696
3600	L	23+796
3500	L	23+896
3400	L	23+996
3300	L	24+096
3200	L	24+196
3100	L	24+296
3000		24+396
2900		24+496
2800		24+596
2700		24+696
2600		24+796
2500	_	24+896
2400	_	24+996
2300	_	25+096
2200		25+196
2100		25+296

Wells 7998.10 Sta. 2+000 to 4+000

Station (Meters)	Existing Structural Number (mm)	Future Traffic Structural Number (mm)	Overlay Structural Number (Existing - Future)	Recommended Pavement Thickness (mm)	Existing Pavement Modulus (kPa)	Subgrade Resilient Modulus (kPa)	Pavement Depth (mm)	Pavement/ Gravel Depth (mm)
	440	99	20		738582	61719	165	550
2+100	119		3	•	569694	50958	165	550
2+200	109	106	28	-	690319	59082	125	610
2+300	129	101			609278	30206	125	610
2+400	124	126	7	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	795145	55448	255	760
2+500	169	103	66	-	513329	34698	255	760
2+600	146	120	26	-		35666	220	490
2+700	109	119	a:=D	29	786715		220	490
2+800	112	97	15	•	855604	- 66351		
2+900	139	120	19	-	988795	34608	195	580
3+000	133	85	48	•	872047	95441	195	580
3+100	125	100	25	-	723122	61107	85	520
3+200	116	115	1	-	805279	39596	85	520
3+300	135	108	27	-	409210	48129	195	760
3+400	148	111	37	-	534474	43931	195	760
3+500	156	105	51		630543	52703	205	760
3+600	154	106	48	-	607537	50813	205	760
3+700	141	122	19	· •	464748	33249	160	760
3+800	149	110	39	_	549227	45822	160	760
3+900	144	116	28	_	495381	38466	160	760
4+000	150	109	41	-	554182	47135	160	760

Test Design Station 5600 21+796 5500 21+896 5400 21+996 5300 22+096 5200 22+196 5100 22+296 5000 22+396	
5600 21+796 5500 21+896 5400 21+996 5300 22+096 5200 22+196 5100 22+296	
5500 21+896 5400 21+996 5300 22+096 5200 22+196 5100 22+296	
5400 21+996 5300 22+096 5200 22+196 5100 22+296	
5300 22+096 5200 22+196 5100 22+296	
5200 22+196 5100 22+296	
5100 22+296	
	
5000 22+396	
4900 22+496	
4800 22+596	,
4700 22+696	
4600 22+796	_
4500 - 22+896	_
4400 22+996	
4300 23+096	
4200 23+196	
4100 23+296	_
4000 23+396	
3900 23+496	
3800 23+596	
3700 23+696	_
3600 23+796	
3500 23+896	
3400 23+996	
3300 24+096	
3200 24+196	
3100 24+296	
3000 24+396	
2900 24+496	
2800 24+596	
2700 24+696	
2600 24+796	
2500 24+896	
2400 24+996	
2300 25+096	
2200 25+196	
2100 25+296	

													L			L_	1	1		L	1	_1	1						1				<u> </u>	ــ ــــ		!					
			<u>.</u>																																						
T					Pavement	Gravel	امّا		610	610	610	480	900	760	760	580	580	760	760	520	520	550	550	520	520	520	460	460													
77						Pavement	Depth (mm)		95	95	95	220	95	85	85	06	06	240	240	180	180	200	200	205	205	205	180	180						٠	i						
					Subgrade	Resilient	Modulus (kPa)		34789	40709	29769	33778	35949	40907	37763	53741	49840	51928	54693	47391	46648	39769	79813	51610	38866	33866	38277	39489							1						
			00		Existing	Pavement	Modulus (kPa)		475117	632448	900745	844458	681766	777658	571463	860063	621873	681302	635837	667473	560877	573019	792505	999033	706476	1209509	945154	846188		-	<u> </u>	2	10	() () () () () () () ()	(WW)		•			1:1	
	Wells	7998.10	0+000 to 2+000		Recommended	Pavement	Thickness (mm)		**************************************	•	•		•	•	•		ı		•			110		•		ı		7.25			Wells	<u> </u>	7998.10		veriay⊸s						
			Sta. 0		Overlay	Structural Number	<u> </u>		**************************************	12	15			54	34	28	12	55	54	0	9-	- 2	31	20		12	6														
					Future Traffic	Structural	(mr		120	114	126	121	119	114	117	104	107	105	103	109	109	115	91	105	116	121	117	115													
					Existing	Structural	Number (mm)		114	126	141	109	127	168	151	132	119	160	157	109	103	110	122	125	111	133	108	104								55.00					_
						Station	(Meters)		0+100	0+200	0+300	0+400	0+200	009+0	0+200	0+800	006+0	1+000	1+100	1+200	1+300	1+400	1+500	1+600	1+700	1+800	1+900	2+000			1				(u 	uı 	u) 	(ə.	ını 	.n _:	
放於		.0	<u>ن</u> ئ	4	'n	٥	į,	.	. 6°	10		2	87	3	15	9		18	61	ล	27	72	23	22	52	790	27.	87 87	67) (2)	30.	33	34	35	36	37	38	39.	64 	41	-

 FWD Test
 Design

 Location
 Station

 2+000
 25+396

 1+900
 25+496

 1+800
 25+496

 1+800
 25+696

 1+700
 25+896

 1+600
 25+996

 1+300
 25+996

 1+300
 26+96

 1+100
 26+396

 1+100
 26+396

 0+900
 26+396

 0+800
 26+396

 0+700
 26+696

 0+400
 26+896

 0+300
 26+896

 0+300
 26+396

 0+300
 26+396

 0+300
 27+96

 0+300
 27+96

 0+300
 27+96

 0+300
 27+396

 0+100
 27+396

STATE OF MAINE **FILE: 109** INTERDEPARTMENTAL MEMORANDUM Also: Rte 9 Date of Request: 2/12/2009 Return: 2/20/09 Latest Date Needed By 2/19/2009 Dept.: MDOT, Bureau of Planning Dept.: **Highway Division Request for Traffic Information** Project Manager: Shawn Smith P.I.N. 7998.10 Consultant Proj ROUTE: Route 109 Starting 0.15 miles Northerly of the Wells Turnpike Exit # 19 ramp, extending northerly Roadway Changes or Relocation Turning Movement needed (Attach Sketch) (Provide Locations under Comments) Other Please Describe Under Comments X Sec. 1 Sec. 2A Sec. 2B Sec. 4 Sec. 5 Wells - SR 9/109 W/O Wells - SR 9/109 Wells - SR 109 (Sanford Ramp to Maine (Sanford Road) SE/O Road) SE/O Meeting Turnpike SR 9A (Branch Rd) House Road) 16780(2005) 9240(2007) 7990(2000) 17330 9520 8770

10090

11400

5 DHV - % of AADT 9% 9% <u>9%</u> % % 6 Design Hourly Volume 1938 1098 1047 7 % Heavy Trucks (AADT) 11% 8% 7% % % 8 % Heavy Trucks (DHV) 8% 6% <u>5%</u> % % 9 Direct.Dist. (DHV) 54% 66% 65% % % 10 18-KIP Equivalent P 2.0 1109 <u>457</u> 345 11 18-KIP Equivalent P 2.5 1056 435 329

10950

12380

Notes or Remarks: 18-Kip ESALS is based on 20 year life

PLEASE PROVIDE: (1) PIN NUMBER, (2) THE CURRENT & FUTURE YEARS FOR WHICH YOU WANT AADT CALCULATED, AND SEND TO MIKE MORGAN. (A LOCATION MAP IS NO LONGER NEEDED.) FRAFFIC REQUESTS WILL BE FILLED ON A FIRST COME / SERVE BASIS. PLEASE SEND WHEN PROJECT KICKS OFF!!! **Need Only Data Items Numbered**

To:

From:

Subject:

TOWN(S):

COUNTY:

LOCATION/

DESCRIPTION:

Please Check Box if Applicable:

Prep By: MAM

Description of Sections

1 Latest AADT (Year)

Current

Future

Future

2

Ed Hanscom

Shawn Smith

Wells

York

2009 AADT

2019 AADT

2029 AADT

19930

22530

2.33 miles.

Comments: Traffic Data and Truck Counts needed to design pavement section, and turn movements.

This is an update to exsiting Traffic Counts from 2005.

		STATE O	F MAINE		FILE: Rte 109
NHS-R	ひ= 95%INTERD	EPARTMENT	AL MEMORAN	NDUM	
Princip	d = 95%INTERD al anteria		Date of Request: Latest Date Nee	<u>2/12/2009</u> ded By	Return:2/20/09 2/19/2009
To: Ed Hanso	<u>om</u>		Dept.:	MDOT, Bureau	of Planning
From: Shawn Smi	<u>th</u>		Dept.:	Highway Divisi	<u>on</u>
Subject: Request for	Traffic Information		Project Manager:	Shawn Smith	
$TOWN(S)$: \underline{W}	<u>'ells</u>		P.I.N.	7998.20	Consultant Proj X
COUNTY: Y	<u>ork</u>		ROUTE:	Route 109	
LOCATION/ Si DESCRIPTION:	tarting 2.33miles Nort	therly of the Wel	ls Turnpike Exti	19 in Wells, exte	ending 2.25 miles
R	Roadway Changes or Relocation (Attach Sketch)		ement needed sunder Comments)	Other Please Describ	e Under Comments
Please Check Box if Applicable:				Jane Louise Descrit	Char Comments
Prep By: MAM	Sec. 3A Wells - SR	Sec. 3B			
Description of Sections	109(sanford rd) SE/O High Pine Loop	SR 109 - Wells- Sanford Town Line			
1 Latest AADT (Year)	7780(2007)	7050(2007)		***************************************	
2 Current 2009 A	ADT <u>8010</u>	<u>7260</u>			
3 Future 2019 A	ADT <u>9210</u>	<u>8350</u>			
4 Future 2029 A	ADT <u>10410</u>	9440			
5 DHV - % of AADT	<u>9%</u>	<u>10%</u>	%	<u>%</u>	<u></u> %
6 Design Hourly Volume	<u>989</u>	<u>944</u>			
7 % Heavy Trucks (AADT	<u>8%</u>	<u>9%</u>	%	<u></u> %	<u>%</u>
8 % Heavy Trucks (DHV)	<u>6%</u>	<u>7%</u>	<u>%</u>	<u></u> %	<u></u> %
9 Direct.Dist. (DHV)	<u>65%</u>	<u>65%</u>	<u></u> %	<u>%</u>	<u>%</u>
0 18-KIP Equivalent P 2.0	<u>345</u>	<u>345</u>			
1 18-KIP Equivalent P 2.5	<u>329</u>	<u>329</u>			
Notes or Remarks: 18	8-Kip ESALS is based of	on 20 year life			
PLEASE PROVIDE: (1) P AADT CALCULATED, AN FRAFFIC REQUESTS WIL Need Only Data Items No	ID SEND TO MIKE MOR .L BE FILLED ON A FIR	GAN. (A LOCATI	ON MAP IS NO LO	NGER NEEDED.)
Comments: <u>Tr</u>	raffic Data and Truck Coun	ts needed to design p	avement section. Wil	l need Turning move	ements.
<u>T1</u>	his is an update to the origin	nal counts completed	in 2005.		

ESAL'S = (329) (20) (365) = 2,401,700

Phase 1

Mr from FWD (kPa) 42082	Mr throw outs (kPa)
(kPa) 42082	
42082	outs (kPa)
43699	
35372	
33222	
33582	
32393	
53310	
36630	
32154	
41541	
42773	
34005	
45197	
35011	
36102	
47135	
38466	
45822	
33249	
50813	
52703	
43931	
48129	
39596	
	61107
	95441
34608	
	66351

Phase 2

- 1 11000 E	
35666	
34698	
30206	
59082	
50958	
61719	

75th percentile 34610 kPa

FROST INVESTIGATIONS

PREDICTION

OF

FREEZING TEMPERATURE PENETRATION

IN NEW ENGLAND

MISCELLANEOUS PAPER NO. 11,

PREPARED BY

ARCTIC CONSTRUCTION AND FROST EFFECTS LABORATORY
NEW ENGLAND DIVISION
BOSTON, MASSACHUSETTS

FOR

OFFICE OF THE CHIEF OF ENGINEERS
AIRFIELDS BRANCH
ENGINEERING DIVISION
MILITARY CONSTRUCTION

. June 1955.

Appendix E: Plans

- As-Built Plans
- Geoplans

FEB. ROAD STATE FEB. ALD FIS.

DIST. NO.

MANNE 293-A WELL TO NORTH BERWI STATION 113+00 END OF FI 17407 > 21+56 -113+00 -113+00 113+00 TO SANFORD APPROVED: U. S. BUREAU OF PUBLIC ROADS Note: Equation -- Station 98+07.08 equals 98+00.0 +7.08 feet. -00+0 -00+0 00+0 STA. STA. INDEX OF SHEETS TITLE PAGE
TYPICAL SECTIONS
PLAN AND PROFILE
GROSS-SECTIONS
BRIDGES
SPECIAL DETAILS are approximate Design Note: Stations 3—10 MAINE STATE HIGHWAY COMMISSION Marin D. Vanner SHEET NO.
SHEET NO.
SHEET NO.
SHEET NO.
SHEET NO. STATE HIGHWAY "A-SPURE NOTE:
NOTE:
NOTE:
STATION 53+50: 71+50.
NOT A PART OF THIS PROJECT.
TO BOSTON
TO BOSTON
TO BOSTON
TO BOSTON
TO BOSTON
TO BOSTON
TO BOSTON
TO BOSTON YORK COUNTY EDERAL AID PROJECT NO. 293-A HIGHWAY COMMISSION TOTAL LENGTH 1800 MILES (PLAN) PLAN AND PROFILE -NOTE: EQUATION STATION 59+56.21 EQUALS 59+50 +6.21 FT. STATE OF MAINE SHEET LAYOUT PLAN I INCH : 400 FEET WELL WELLS BEACH SCALES PROFILE SCALE TO PORTLAND NOTE: STATE WELLS STATION APPROX. SCALE INCH. I MILE 9.1 0.6 0.2 0.2 WELLS STATION の公司 TO STATE OF THE PASS OF THE PA BITUMINGUS MACADAM SURFACE COURSE 10.0° SECTION .0.9 SURVEY LINE CULVERT DROP INLET TROLLEY POLI POWER POLE TEL. POLE TREES STONE WALL SIGNS TYPICAL SCALE LINCH ╁ 1.6 3.0. 2.0. 2.0. 6.0. COCN CONVENTIONAL ¥0RK STATE OR NATIONAL LINE
GOUNTY LINE
TOWN LINE
UNENCED PROPERTY
FENCE
RIGHT OF WAY LINE
TRAVELED WAY
RAULROAD
RETAINING WALL ≯ 9 PORTION STATION 0+00 BEGINNIN F. A. PROJECT 293-A ∢ 62 HH , in eq. * PEO. ROAD STATE FEO. AID FIS DIST NO. STATE PRO. NO. YE WELL

STATE OF MAINE

PLAN AND PROFILE

STATE HIGHWAY "A"2"

YORK COUNTY WELLS

FEDERAL AID PROJECT NO_294-A

TOTAL LENGTH 1.022 MILES
PLAN
IN. 50 FT.
SCALES PROFILE VER. IN. 5 FT.
CROSS SECTIONS IN. 5 FT.

1100

TREES STONE WALL

Sta. 113+0 Beg. Fed. Aid Project No. 294-A

Sheet 3

To Wells

SURVEY LINE
CULVERT
DROP INLET
TROLLEY POLE
TEL. POLE
TEL. POLE

STATE OR NATIONAL LINE
COUNTY LINE
TOWN LINE
UNFRICED PROPERTY
FROSE
RIGHT OF WAY LINE
TRAVELED WAY
RAILROAD
RETAINING WALL

SIGNS

CONVENTIONAL

STA. 113+0 to 167+0 STA. 113+0 to 167+0 STA. 113+0 to 167+0 STA. INDEX OF SHEETS TYPICAL SECTIONS
PLAN AND PROFILE
GROSS-SECTIONS
DRIDGES SPECIAL DETAILS TITLE PAGE 3-6 SHEET NO.
SHEET NO.
SHEET NO.
SHEET NO.
SHEET NO.

24564733+210 Note: Desyn Stations are approximate

LAYOUT DLAN Scale line 3000ft

Cravel Base & deriable Grav Base Bituminous Mecedem Surface Course 10:0" 1-6, 3-0' Bituminous Treatment on Gravel Base

TYPICAL SECTION MAINE STATE HIGHWAY COMMISSION Jan (APPROVED:

APPROVED: U. S. BUREAU OF PUBLIC ROADS

STATE HIGHWAY COMMISSION

B

€ 4% F

PE I SHIM I STUMBE

805+LE 8 12 to +LE & たかりよとどう 7 + 1 2 3 8102 790 + 2 6 \$ 558 + L * \$ 5 x 0 + L C 3 46€ +6€ \$ to 20 + 7 6 - 60 90 646 8 B c +22 & 294+50 to 299+0-24" Srav Buse 122 2 \$507. Z4202 270to to 294+50. 18°Grav. Buse. 250 5.5 ຮູ້ບຸລິ

Ç that y

HAMSDELL & PERMINS

X44.13

PL

South & 70 01 2 8 8 set 8 78+64 \$ E18+68 マラム・ムと言 176465 B らっした ま 1000 M X 3 16 11 LE 3 459-42 3

S'ESE

