MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

FISH BRIDGE GARLAND ROAD OVER PATTEE POND BROOK WINSLOW, MAINE

Laura Krusinski, P.E. Senior Geotechnical Engineer

Kennebec County WIN 22268.00 Soils Report 2023-22 Bridge No. 0509

Federal Project No. 2226800 October 23, 2023

Table of Contents

1.0	INTRODUCTION	.1
2.0	GEOLOGIC SETTING	. 1
3.0	SUBSURFACE INVESTIGATION	. 2
4.0	LABORATORY TESTING	. 2
5.0	SUBSURFACE CONDITIONS	.3
5.1	FILL	. 3
5.2	GLACIOMARINE AND MARINE SAND DEPOSITS	
5.3	Bedrock	. 5
5.4	GROUNDWATER	. 5
6.0	FOUNDATION ALTERNATIVES	. 5
7.0	GEOTECHNICAL DESIGN CONSIDERATIONS AND	
RECO	MMENDATIONS	. 6
7.1	INTEGRAL ABUTMENT H-PILES	. 6
7.1.1		
7.1.2	2 AXIAL PILE RESISTANCE – SERVICE AND EXTREME LIMIT STATE	. 9
7.1.3	B LATERAL PILE RESISTANCE/BEHAVIOR	10
7.1.4	(
7.2	INTEGRAL ABUTMENT AND WINGWALL DESIGN	
7.3	ABUTMENT SECTIONS	
7.4	SETTLEMENT AND EMBANKMENT CONSTRUCTION	
7.5	FROST PROTECTION	
7.6	SEISMIC DESIGN CONSIDERATIONS	13
8.0	CONSTRUCTION RECOMMENDATIONS AND CONSIDERATIONS	13
9.0	CLOSURE	14

Sheets

Sheet 1 – Location Map Sheet 2 – Boring Location Plan Sheet 3 – Interpretive Subsurface Profile Sheet 4 – Boring Logs

Appendices

Appendix A – Boring Logs Appendix B – Rock Core Photographs Appendix C – Laboratory Test Results Appendix D – Calculations

1.0 INTRODUCTION

The purpose of this Geotechnical Design Report is to present subsurface information and provide geotechnical design recommendations for the replacement of Fish Bridge which carries Garland Road over Pattee Pond Brook in Winslow, Maine. This report presents the subsurface information obtained at the site during the subsurface investigation, geotechnical design recommendations for the new substructures.

The existing Fish Bridge was constructed in 1921 and is a 20-foot span concrete frame bridge/culvert with concrete foundation pads with heels for the wingwalls. The foundation footings may bear directly on soil (there are no historical bridge plans) and portions of the footings are exposed due to scour and erosion. According to the 2021 Maine Department of Transportation (MaineDOT) Bridge Inspection Report, the structure has exposed rebar, large spalls, and heavy scaling and is rated a 4. The frame culvert has a FHWA Sufficiency Rating of 70.0 and is classified as Structurally Deficient.

The proposed replacement structure consists of a 65-foot, single-span concrete NEXT beam bridge founded on integral abutments on steel H-piles driven to bedrock. 2.0H:1V (horizontal:vertical) riprap slopes will be constructed in front of the new integral abutments.

The new bridge will be located on a similar horizontal alignment as the existing bridge, with an increased span length. The new bridge will have a raise in grade of less than 0.5 foot.

The existing bridge will be closed during construction and traffic detoured.

2.0 GEOLOGIC SETTING

Fish Bridge carries Garland Road over Pattee Pond Brook as shown on Sheet 1 – Location Map.

The Maine Geological Survey (MGS) Surficial Geology Map of the Fairfield Quadrangle, Open-File No. 15-12 (2015), indicates the surficial soils in the vicinity of the bridge project consist of the Presumpscot Formation with glacial till mapped nearby. The Presumpscot Formation consists of glaciomarine silts, clays, and sands, deposited on the late-glacial sea floor and commonly overlies glacial till. Glacial till typically consists of very compact sand, silt, and gravel.

The MGS Geological Map and Structural Sections of the Waterville-Vassalboro Area (1961) maps the bedrock at the project site as thinly bedded Pelite and Quartzite of the Waterville Formation. Greywacke and thin beds of Phyllite of the Vassalboro Formation are mapped nearby.

3.0 SUBSURFACE INVESTIGATION

Five test borings were drilled to explore subsurface conditions at the site in September 2020. Boring BB-WPPB-101 was drilled behind the southwest corner of the existing structure. Borings BB-WPPB-102, -102A, B-102B and BB-WPPB-103 were drilled behind the northeast corner of the existing structure. Borings BB-WPPB-102, -102A, and -102B refused on cobbles or boulders at approximately 6 to 8 feet below the ground surface (bgs). The remaining two borings were advanced to bedrock and terminated with 10-foot bedrock cores.

The boring locations are shown on Sheet 2 – Boring Location Plan. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A – Boring Logs and on Sheet 4– Boring Logs.

Borings were performed by using solid stem auger, cased wash boring and rock coring techniques. Soil samples were typically obtained at 5-foot intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 24 inches and the hammer blows for each 6-inch interval of penetration are recorded. The sum of the blows for the second and third intervals is the N-value, or standard penetration resistance. The drill rig used in the subsurface investigation was equipped with an automatic hammer to drive the split spoon. The hammer was calibrated per ASTM D 4633 "Standard Test Method for Energy Measurement for Dynamic Penetrometers" in June 2020. All N-values discussed in this report are corrected N-values computed by applying an average energy transfer of 0.89. The hammer efficiency factor (0.89) and both the raw field N-value and corrected N-value (N₆₀) are shown on the boring logs.

Bedrock was cored using an NQ-2" core barrel and the Rock Quality Designation (RQD) of the core calculated. A MaineDOT geotechnical engineer selected the boring locations and drilling methods, designated type and depth of sampling techniques, logged the subsurface conditions encountered in the borings, and identified field testing requirements. The borings were located in the field using taped measurements at the completion of the drilling program and then located by MaineDOT survey.

4.0 LABORATORY TESTING

A laboratory testing program was conducted on selected soil samples recovered from the test borings to assist in soil classification, evaluation of engineering properties of the soils, and geologic assessment of the project site. Laboratory testing on soil samples consisted of one standard grain size analyses with natural water content, six grain size analysis with hydrometer and natural water content, six Atterberg limits tests and two consolidation tests.

Soil laboratory testing was performed at the MaineDOT Lab in Bangor, Maine. The results of soil tests are included in Appendix C – Laboratory Test Results. Moisture content information and other soil test results are also presented on the boring logs provided in Appendix A – Boring Logs and on Sheet 4 - Boring Logs.

5.0 SUBSURFACE CONDITIONS

Subsurface conditions encountered in the test borings generally consisted of Fill and Glaciomarine Deposits, underlain by metamorphic bedrock. The boring logs are provided in Appendix A – Boring Logs and on Sheet 4 – Boring Logs. A generalized subsurface profile is shown on Sheet 3 – Interpretive Subsurface Profile. The following paragraphs discuss the subsurface conditions encountered.

5.1 Fill

Fill materials were encountered below approximately 8-inches of asphalt in the borings. The thickness of the fill unit encountered was approximately 10 to 14 feet at the boring locations and generally consisted of granular soils and reworked, native clays and silts, described as:

- Olive-brown CLAY, some silt, trace fine sand;
- Olive, Clayey SILT, trace fine sand;
- Brown SAND, little gravel;
- Brown, Gravelly SAND, little silt, trace organics.

Cobbles were encountered in the fill layer in borings BB-WPPB-101 and BB-WPPB-103. Three borings (BB-WPPB-102, -102A and -102B) refused on boulders or cobbles at depths of 6 to 8 ft bgs. Wood was encountered in BB-WPPB-103 at approximately 13 feet bgs.

Corrected SPT N-values in the fill ranged from 13 to 18 blows per foot (bpf) indicating the fill is medium dense in consistency. Two grain size analyses performed on samples resulted in A-1-a and A-6 material classifications according to the AASHTO Soil Classification System and SM and CL classifications according to the Unified Soil Classification System (USCS). The natural water content of the samples tested ranged from approximately 20 to 25 percent.

5.2 Glaciomarine and Marine Sand Deposits

Glaciomarine and Marine Sand Deposits were encountered beneath the Fill layer. The encountered thickness was approximately 15 to 25 feet at the boring locations. The Deposits encountered consisted of:

- Grey, Silty CLAY;
- Grey, very soft CLAY, little silt, trace fine sand;
- Grey, very soft, Clayey SILT, trace fine SAND, trace gravel;
- Grey, Silty SAND, trace clay, trace gravel; and
- Grey and dark grey, Clayey SILT, trace fine to medium sand.

In-situ vane shear tests were conducted with Geonor rectangular vanes in the Glaciomarine Deposit. A 55 x 110 mm vane was used. Twelve (12) successful vane shear tests conducted within the glaciomarine deposit showed measured undisturbed undrained shear strengths ranging from approximately 491 psf to 1295 psf, indicating that the deposit is soft to stiff in consistency. The remolded shear strengths at the test intervals ranged from approximately 134 to 277 psf. Based on the ratio of peak to remolded shear strength at all test intervals, the deposit has a sensitivity ranging from 2.4 to 5.3 and is classified as moderately sensitive to sensitive.

Undisturbed vane shear test results within the Glaciomarine Deposit indicate the deposit is soft to medium stiff, with one stiff reading in the clay "crust". Five grain size analyses conducted on samples of the deposit indicated the material is classified as A-4, A-6, or A-7-6 under the AASHTO Soil Classification System and CL under the USCS.

Boring No. and Sample No.	Soil Description	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index
BB-WPPB-101, 1D	CLAY	25	38	22	16	0.19
BB-WPPB-101, 3D	CLAY	42	50	24	26	0.71
BB-WPPB-101, 4D	Clayey SILT	36	33	23	10	1.27
BB-WPPB-101, 3U	Clayey SILT	36	40	24	16	0.72
BB-WPPB-103, 3D	Clayey SILT	38	36	23	13	1.13
BB-WPPB-103, 1U	Clayey SILT	40	38	24	14	1.14

Atterberg limits tests were conducted on six samples of the Glaciomarine Deposit and are summarized below:

The plasticity indices of the samples indicate that the clay and silty clays have medium to high plasticity (Burmister, 1949). The natural water contents of the tested samples ranged from approximately 25 to 42 percent and liquid limits ranged from 33 to 50. The resulting liquidity indices are generally close to, or in excess of, 1.0, and the natural water contents generally exceed the liquid limits. Interpretation of these results indicates that most of the deposit has the potential to convert into a viscous fluid with the slightest disturbance. Soils with liquidity indices in excess of 1 have a high liquefaction or "quick" potential.

5.3 Bedrock

Boring	Station	Offset (feet)	Approximate Depth to Bedrock (feet)	Approximate Elevation of Bedrock Surface (feet)	RQD (%) (R1, R2)
BB-WPPB-101	51+21.3	8.5 Lt	39.8	24.1	16, 22
BB-WPPB-103	51+82.5	8.8 Rt	33.0	29.0	23, 52

Bedrock was encountered and cored in borings BB-WPPB-101 and BB-WPPB-103. The table below summarizes the depth to bedrock, corresponding top of bedrock elevations and RQD's.

The bedrock of the site consisted of black and grey banded, very fine-grained, hard, fresh to slightly weathered, PHYLLITE to METASILTSTONE with calcite veins, closely spaced breaks along steep foliation/bedding, with a second, close, subhorizontal joint set. The RQD of the bedrock cores ranged from 16 to 52 percent, corresponding to a rock quality of very poor to fair.

Detailed bedrock descriptions and RQD's are provided in Appendix A – Boring Logs and on Sheet 4 – Boring Logs. Rock core photographs are provided in Appendix B – Rock Core Photographs.

5.4 Groundwater

Groundwater was measured at 25 feet below the roadway surface upon completion of the borings. Note that water was introduced into the boreholes during drilling operations and the measured levels may not represent stabilized groundwater elevations. Groundwater levels will fluctuate with seasonal changes, precipitation, runoff, river levels and construction activities.

6.0 FOUNDATION ALTERNATIVES

Single-span precast voided slab or concrete NEXT F bridges, both supported on pile-supported integral abutments, were considered as bridge replacement alternatives, as well as a do nothing alternative. A full replacement option was selected due to the age and condition of the bridge. The NEXT F beams on pile-supported integral abutments option was chosen due to cost, availability, and ease of construction.

7.0 GEOTECHNICAL DESIGN CONSIDERATIONS AND RECOMMENDATIONS

The following sections provide geotechnical design considerations and recommendations for H-pile supported integral abutments which is the proposed substructure type for the Fish Bridge replacement project.

7.1 Integral Abutment H-Piles

Abutments No. 1 and 2 will be integral abutments founded on a single row of H-piles. Piles will be driven to the required nominal resistance on or within bedrock.

Piles may be HP 14x89 or 14x117 depending on the factored design axial loads and behavior under lateral loading. H-piles shall be 50 ksi, Grade A572 steel. The piles shall be fitted with driving pile points conforming to MaineDOT Standard Specification 711.10 to protect pile tips and improve penetration into bedrock.

Abutment	Approximate Bottom Elevation of Proposed Abutment (feet)	Approximate Top of Bedrock Elevation (feet)	Estimated Pile Lengths ¹ (feet)
Abutment No. 1	54.4	24.1	33
Abutment No. 2	53.0	29.0	26

Pile lengths at the proposed abutments may be estimated based on the following table.

The estimated pile lengths in the table above do not take into account damaged pile, the additional five feet of pile required for dynamic testing instrumentation (per ASTM D4945), additional pile length needed to accommodate leads and driving equipment or variations in the bedrock surface.

The design of piles at the strength limit state shall consider;

- compressive axial geotechnical resistance of piles,
- drivability resistance of piles,
- structural resistance of piles in axial compression, and
- structural resistance of piles in combined axial loading and flexure.

The pile groups should be designed to resist all lateral earth loads, vehicular loads, dead and live loads, and lateral forces transferred through the pile caps.

¹ Estimated pile lengths include 2-foot embedment into the pile cap.

Per AASHTO LRFD Bridge Design Specifications 9th Edition (LRFD) Article 6.5.4.2, at the strength limit state, the axial resistance factor $\phi_c = 0.50$ (severe driving conditions) shall be applied to the structural compressive resistance of the pile. Since the H-piles will be subjected to lateral loading, the piles shall also be checked for combined axial compression and flexure as prescribed in LRFD Articles 6.9.2.2 and 6.15.2. This design axial load may govern the design. Per LRFD Article 6.5.4.2, at the strength limit state, the axial resistance factor $\phi_c = 0.70$ and the flexural resistance factor $\phi_f = 1.0$ shall be applied to the combined axial and flexural resistance of the pile in the interaction equation (LRFD Eq. 6.9.2.2-1 or -2). H-piles shall also be analyzed for fixity using LPile[®] v2016 (LPile) software, or similar.

7.1.1 Axial Pile Resistance – Strength Limit State

<u>Structural Resistance</u>. Preliminary estimates of the factored structural axial resistance of two H-pile sections were calculated for the lower braced pile segment in pure axial compression. The factored structural axial resistance shown in the table below is for the lower braced pile segment, using a resistance factor, $\phi_c = 0.50$, for severe driving conditions. It is the responsibility of the structural engineer to calculate the factored axial structural compressive resistances based on the lengths of the upper and lower unbraced pile segments, as determined from LPile, using a resistance factor of $\phi_c = 0.70$ for combined axial and bending and appropriate effective length factors (K). These resistances may be the controlling values.

<u>Geotechnical Resistance</u>. The nominal axial geotechnical resistance of driven piles at the strength limit state was calculated using the guidance in LRFD Article 10.7.3.2.3, which states the nominal bearing resistance of piles driven to point bearing on hard rock shall not exceed the nominal structural pile resistances obtained from LRFD Article 6.9.4.1 with a resistance factor, ϕ_c , of 0.50, for severe driving conditions applied. The resulting limiting factored geotechnical axial compressive resistances are provided in the table below.

<u>Drivability Analyses</u>. Drivability analyses were performed to determine the pile resistance that might be achieved considering available diesel hammers. LRFD 10.7.8 limits driving stresses to 0.90 f_y, which for 50 ksi steel piles is 45 ksi. The drivability resistances were calculated using the resistance factor, φ_{dyn} , of 0.65, for a single pile in axial compression when a dynamic test is performed as specified in LRFD Table 10.5.5.2.3-1.

	Strength Limit State Factored Axial Pile Resistance									
Pile Section	Structural Resistance ¹ φ _c =0.50 (kips)	Controlling Geotechnical Resistance ² $\phi_c=0.50$ (kips)		•	Governing Axial Pile Resistance (kips)					
HP 14 x 89	652	652	403 ⁴	390 ⁵	403 ⁴					
HP 14 x 117	860	860	468 ⁴	520 ⁵	468 ⁴					

A summary of the calculated factored axial compressive structural, geotechnical, and drivability resistances of driven H-piles at the strength limit states are summarized below.

LRFD Article 10.7.3.2.3 states that the nominal axial compressive resistance of piles driven to hard rock is typically controlled by the structural resistance with a resistance factor for severe driving conditions applied. However, for the site conditions, the estimated factored axial pile resistances from the drivability analyses for the H-pile sections are less than the controlling factored axial compressive resistances. Local experience also supports the estimated factored resistances from the drivability analyses. Therefore, drivability controls and the recommended governing resistances for pile design are the resistances provided in the rightmost column "Governing Axial Pile Resistance (kips)" in the table.

The maximum applied factored axial pile load should not exceed the governing factored axial pile resistance shown in the table above.

¹ Structural resistances were calculated for a braced pile segment in pure axial compression, using a resistance factor, ϕ_c , for severe driving conditions. Factored structural resistances should be calculated for upper and lower unbraced pile segments based upon L-Pile results using a resistance factor of $\phi_c = 0.70$ for combined axial loading and bending. These resistances may be the controlling values.

² Based on guidance in LRFD Article 10.7.3.2.3., *Piles Driven to Hard Rock*. The nominal axial geotechnical resistance in the strength limit state was calculated using the guidance in LRFD Article 10.7.3.2.3 which states the nominal bearing resistance of piles driven to point bearing on hard rock shall not exceed the nominal structural resistance values obtained from LRFD Article 6.9.4.1 with a resistance factor ϕ_c , of 0.50, for severe driving conditions applied when computing the factored resistance.

³ Drivability analyses were performed to determine the pile resistance that might be achieved considering available diesel hammers. Nominal drivability resistances were determined based on limiting driving criteria of 15 bpi and a maximum driving stress of 45 ksi. These theoretical pile resistances may not be achievable if piles walk out of position before reaching the specified driving criteria. The drivability resistances were calculated using the resistance factor, φ_{dyn} , of 0.65, for a single pile in axial compression when a dynamic test is performed as specified in LRFD Table 10.5.5.2.3-1.

⁴ Drivability resistance based on a Delmag D19-42 at Full Fuel Setting.

⁵ Drivability resistance based on a Delmag D25-52 at Fuel Setting 3.

7.1.2 Axial Pile Resistance – Service and Extreme Limit State

The design of H-piles at the service limit state shall consider tolerable transverse and longitudinal movement of the piles and pile group movements/stability. For the service limit state, resistance factors of $\phi = 1.0$ should be used in accordance with LRFD Article 10.5.5.1. The exception is the overall global stability of the foundation which should be investigated at the Service I load combination and a resistance factor, ϕ , of 0.65.

Extreme limit state design checks for the driven H-piles shall include pile axial compressive resistance, overall global stability of the pile group, pile failure by uplift in tension, and structural failure. The extreme event load combinations are those related to seismic forces and vehicle collision. Resistance factors for extreme limit states, per LRFD Article 10.5.5.3, shall be taken as $\phi = 1.0$ with the exception of uplift of piles, for which the resistance factor, ϕ_{up} , shall be 0.80 or less per LRFD Article 10.5.5.3.2.

The calculated factored axial structural, geotechnical and drivability resistances of two (2) Hpile sections for the service and extreme limit states are summarized below.

	Service and Extreme Limit State Factored Axial Pile Resistance									
Pile Section	Structural Resistance ¹ $\phi = 1.0$ (kips)	Controlling Geotechnical Resistance ² $\phi = 1.0$ (kips)	Beotechnical Resistance2 $\phi = 1.0$ Drivability Resistance3 $\phi = 1.0$ Gover Axial Resist (kins)							
HP 14 x 89	1,305	1,305	620 ⁴	600 ⁵	620 ⁴					
HP 14 x 117	1,720	1,720	720^{4}	800 ⁵	7204					

¹ Nominal structural resistances were calculated for the lower, braced pile segment in pure axial compression. Factored structural resistances should be calculated for upper and lower unbraced pile segments in combined axial loading and bending, based on LPile results. These resistances may be the controlling values.

² Based on guidance in LRFD Article 10.7.3.2.3., *Piles Driven to Hard Rock*. The nominal axial geotechnical resistance in the strength limit state was calculated using the guidance in LRFD Article 10.7.3.2.3 which states the nominal bearing resistance of piles driven to point bearing on hard rock shall not exceed the nominal structural resistance values obtained from LRFD Article 6.9.4.1

³ Drivability analyses were performed to determine the pile resistance that might be achieved considering available diesel hammers. Nominal drivability resistances were determined based on limiting driving criteria of 15 bpi and a maximum driving stress of 45 ksi. These theoretical pile resistances may not be achievable if piles walk out of position before reaching the specified driving criteria.

¹³ Drivability resistance based on a Delmag D19-42 at Full Fuel Setting.

¹⁴ Drivability resistance based on a Delmag D25-52 at Fuel Setting 3.

LRFD Article 10.7.3.2.3 states that the nominal axial compressive resistance of piles driven to hard rock is typically controlled by the structural resistance. However, the estimated factored axial pile resistances from the drivability analyses for the H-pile sections are less than the controlling factored axial geotechnical resistance and the structural resistance calculated for a braced pile segment. Therefore, drivability controls and the recommended governing resistances for pile design are the resistances provided in the rightmost column "Governing Axial Pile Resistance (kips)" in the table above.

The maximum applied factored axial pile load for the service and extreme limit states shall not exceed the governing factored axial pile resistance shown in the table above.

7.1.3 Lateral Pile Resistance/Behavior

In accordance with LRFD Article 6.15.1, the structural analysis of pile groups subjected to lateral loads shall include explicit consideration of soil-structure interaction effects as specified in LRFD Article 10.7.3.12. Assumptions regarding a fixed or pinned condition at the pile tip should be also confirmed with soil-structure interaction analyses.

A series of lateral pile resistance analyses should be performed to evaluate pile behavior at the abutments using LPile, or similar, software. Lateral pile analyses should be utilized to evaluate the associated pile stresses, bending moments, and fixity due to factored pile head loads and displacements. The models developed should emulate appropriate structural parameters and pile-head boundary conditions for the pile section(s) being analyzed.

7.1.4 Driven Pile Quality Control

The contract plans shall require the contractor to perform a wave equation analysis of the proposed pile-hammer system and conduct dynamic pile load tests with signal matching. The first pile driven at each abutment should be dynamically tested to confirm nominal pile resistance and verify the stopping criteria developed by the contractor in the wave equation analysis. Minimum 24-hour restrike tests will be required to verify time-dependent loss of pile resistance does not occur. If a loss in pile resistance does occur, the driving criteria shall be adjusted. Restrikes or additional dynamic tests may be required as part of the pile field quality control program should pile behavior vary radically between adjacent piles, should the pile tip be not firmly embedded in bedrock, or if piles "walk" out of position.

With this level of quality control, the ultimate resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor, ϕ_{dyn} , of 0.65. The maximum factored axial pile load should be shown on the plans.

Piles should be driven to an acceptable penetration resistance as determined by the contractor based on the results of a wave equation analysis, dynamic pile testing, and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 45 ksi, in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required pile resistance when the penetration resistance for the final 3 to 6 inches is 3 to 15 blows per inch (bpi). If an abrupt increase in driving resistance is encountered, the driving may be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.2 Integral Abutment and Wingwall Design

Integral abutment sections shall be designed for all relevant strength, service, and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. A resistance factor (ϕ) of 1.0 shall be used to assess abutment design at the service limit state, including: settlement and excessive horizontal movement. The overall stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, ϕ , of 0.65. Resistance factors for extreme limit state shall be taken as 1.0.

The designer may assume Soil Type 4 (MaineDOT Bridge Design Guide (BDG) Section 3.6.1) for abutment backfill material soil properties. The backfill properties are as follows:

- Internal Friction Angle $(\phi) = 32^{\circ}$
- Total Unit Weight (γ) = 125 pcf
- Soil-Concrete Interface Friction Angle (δ) = 17° (ref: LRFD Table 3.11.5.3-1)

Integral abutments and in-line wingwalls shall be designed to withstand a lateral earth load equal to the passive pressure state. Estimation of passive earth pressure should consider LRFD C3.11.5.4, which states that the relative wall movement to induce full passive pressure is approximately 0.05 for dense backfill, and FHWA NHI-06-089 Figure 10-4 which supports a K_p of 6.0 and greater for dense backfills and wall rotations equal to or greater than 0.02. Using MassDOT LRFD Bridge Design Manual Figure 3.10.8-1, a lateral earth pressure coefficient of 3.93 is recommended, assuming a ratio of thermal expansion to abutment height (δ /H) of 0.005 and a level backfill. In general, when the calculated ratio of lateral movement to wall height is less than or greater than 0.01, a passive earth pressure coefficient can be estimated using MassDOT Figure 3.10.8-1. This figure is reproduced in Appendix D – Calculations. A load factor for passive earth pressure is not specified in LRFD. For purposes of the integral abutment backwall reinforcing steel design, use a maximum load factor (γ_{EH}) of 1.50 to calculate factored passive earth pressures.

Additional lateral earth pressure due to live load surcharge is required per Section 3.6.8 of the MaineDOT BDG for abutments if an approach slab is not specified. When a structural approach slab is specified, reduction, not elimination of the surcharge load, is permitted per LRFD Article 3.11.6.5. The live load surcharge may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (h_{eq}) taken from the table, below:

Abutment Height	h _{eq} (feet)
(feet)	(feet)
5	4.0
10	3.0
≥20	2.0

In-line wingwalls shall be designed considering a live load surcharge equal to a uniform horizontal earth pressure due to an equivalent height of soil of 2.0 feet. An at-rest earth pressure coefficient, K_o , of 0.47 should be used for live load surcharge loads placed upon wingwalls cantilevered off of abutments with the top of the wall restrained from movement.

7.3 Abutment Sections

The abutment design shall include a drainage system behind the abutment to intercept any groundwater. Drainage behind the structure shall be in accordance with MaineDOT BDG Section 5.4.2.13.

Backfill within 10 feet of the abutments and side slope fill shall conform to MaineDOT Specification 703.19 – Granular Borrow for Underwater Backfill. The gradation of this material specifies 7 percent or less of the material passing the No. 200 sieve. Limiting the amount of fines is intended to minimize frost action and eliminate the need to design for hydrostatic forces by promoting drainage behind the structure.

Slopes in front of the pile-supported integral abutments should be constructed with riprap and erosion control geotextile. The slopes should not exceed 1.75H:1V in accordance with MaineDOT Standard Detail 610(03).

7.4 Settlement and Embankment Construction

The existing bridge approach embankments overlay soft to medium stiff silty clay. Raises in grade of 0.1 and 2.0 inches (not including 4.0 inches of asphalt) are proposed at Abutments No. 1 and No. 2, respectively. Estimated post-constructions settlements will be provided in a subsequent geotechnical memorandum. It is anticipated that these settlements will be minimal and will be mitigated by the use of an approach slab.

The proposed bridge span will be 45 feet greater than the existing frame culvert. The implication of the proposed widened structure is a net unloading of vertical overburden pressures in front of the proposed abutments. Earth fill approach embankments reconstructed using MaineDOT Standard Specifications, with side slopes of 2H:1V or flatter, are anticipated to satisfy stability requirements. Slopes steeper than 2H:1V should be treated with riprap using MaineDOT standard details. Disturbance of the sensitive Marine Clay subgrade at the toe of the embankment slopes should be avoided during the reconstruction process.

Settlement of the steel H-piles bearing on bedrock will be limited to elastic compression of the piles and is anticipated to be minimal.

7.5 Frost Protection

Foundations placed on soil should be designed with an appropriate embedment for frost protection. According to MaineDOT BDG Figure 5-1, Maine Design Freezing Index Map, Winslow has a design freezing index (DFI) of approximately 1600 F-degree days. The anticipated coarse-grained fill soil was assigned a water content of 20%, and the anticipated fine-grained fill soil was assigned a water content of 25%. These components correlate to a frost depth of 4.1 to 5.9 feet. It is recommended that any foundation bearing on soils be embedded 5.9 feet for frost protection.

Pile-supported integral abutments shall be embedded a minimum of 5.9 feet for frost protection per MaineDOT BDG Section 5.2.1.

Riprap is not to be considered as contributing to the overall thickness of soils required for frost protection.

7.6 Seismic Design Considerations

The United States Geological Survey Seismic Design CD (Version 2.1) provided with the 2014 LRFD Code (7th Edition), and LRFD Articles 3.10.3.1 and 3.10.6 were used to develop parameters for seismic design. Based on site coordinates, the software provided the recommended AASHTO Response Spectra for a 7 percent probability of exceedance in 75 years. These results are summarized in the table below:

Parameter	Design Value
Peak Ground Acceleration (PGA)	0.075g
Acceleration Coefficient (A _S)	0.187g
S_{DS} (Period = 0.2 sec)	0.39g
S_{D1} (Period = 1.0 sec)	0.16g
Site Class	Е
Seismic Zone	2

In conformance with LRFD Table 4.7.4.3-1 seismic analysis is not required for single-span bridges regardless of seismic zone. However, superstructure connections and minimum support length requirements shall be designed per LRFD Articles 3.10.9.2 and 4.7.4.4, respectively.

8.0 CONSTRUCTION RECOMMENDATIONS AND CONSIDERATIONS

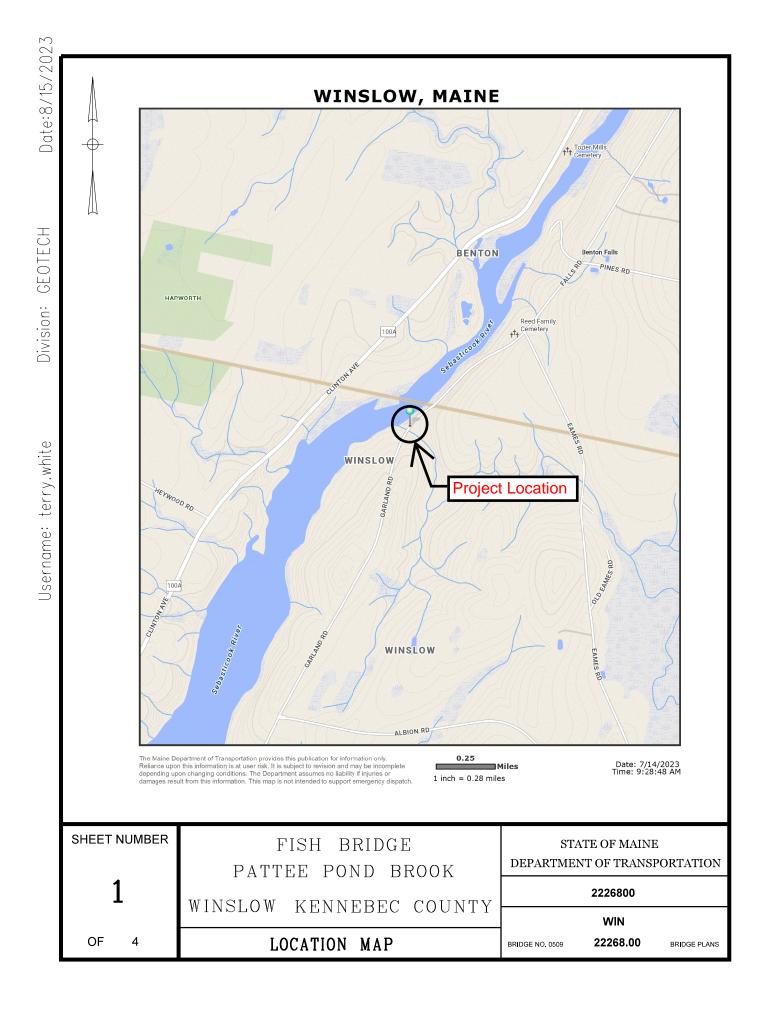
The new abutments will be constructed approximately 20 feet behind the existing structure and will require pile driving. The contractor shall be responsible for excavating the existing substructures in their entirety.

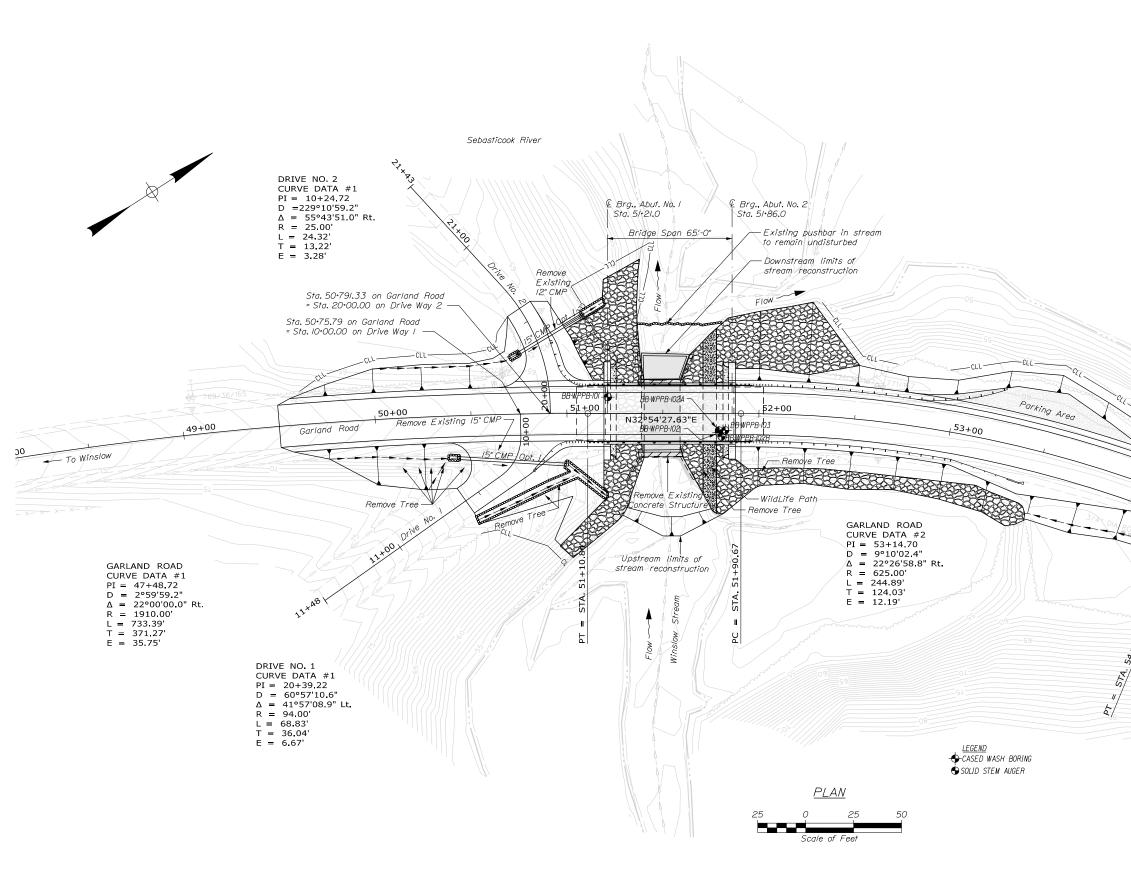
The subgrade at the proposed abutments is anticipated to consist of soft, sensitive clay and sandy fill soils. Use of a crushed stone mat or a flowable fill (mud) mat to provide a stable subgrade will be required for pile driving and construction of the pile cap. The subgrade soils are expected to be sensitive, so care should be taken to limit disturbance to the subgrade surface. The subgrade should be protected from unnecessary construction traffic and disturbance from heavy equipment.

The underlying sensitive Marine Clay deposit is subject stain-softening (liquefaction) when disturbed. Therefore, ground vibration by heavy equipment should be avoided.

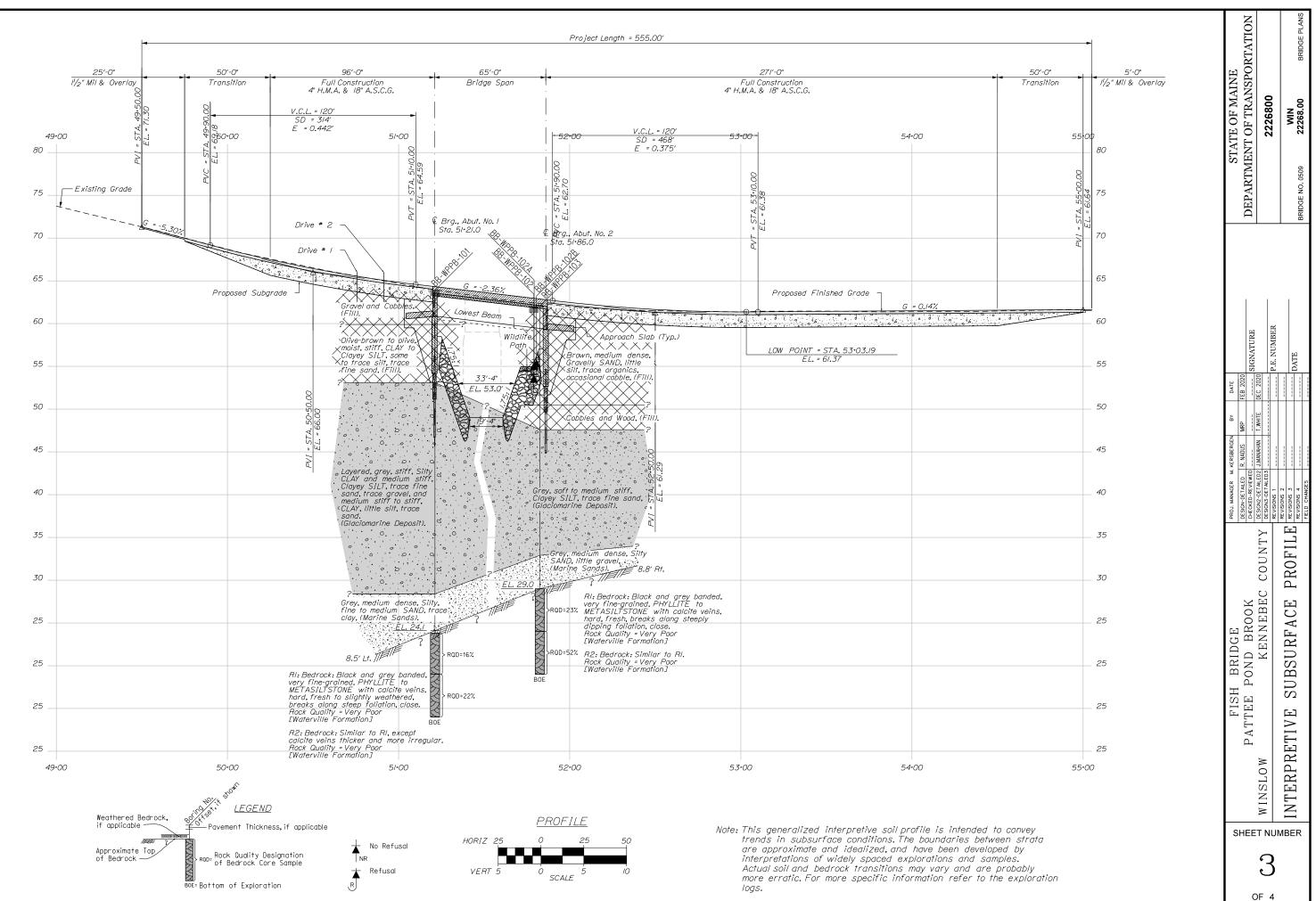
Any loose or soft soil, and organics, encountered at the abutment subgrades shall be removed and replaced with Granular Borrow – Material for Underwater Backfill and the exposed subgrade then compacted.

Excavation for the abutments is anticipated to be accomplished using sloped open cut methods in accordance with MaineDOT and OSHA requirements. Excavations will expose soils that may become saturated and water seepage may occur during construction. There may be localized sloughing and instability in some excavations and cut slopes. The contractor should control groundwater, surface water infiltration, and soil erosion. Water should be controlled by pumping from sumps.


9.0 CLOSURE


This report has been prepared for the use of the MaineDOT Bridge Program for specific application to the proposed replacement of Fish Bridge in Winslow, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use or warranty is expressed or implied.

In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. These analyses and recommendations are based in part upon limited subsurface investigations at discrete exploratory locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.


It is recommended that a geotechnical engineer be provided the opportunity for a review of the final design and specifications in order that the earthwork and foundation recommendations and construction considerations presented in this report are properly interpreted and implemented in the design and specifications.

<u>Sheets</u>

	STATE OF MAINE DEPARTMENT OF TRANSPORTATION	2226800	WIN BRIDGE NO. 0509 22268.00 BRIDGE PLANS
To service to call of the tree to remain the tree t	FISH BRIDGE PPOJ. MANAGER M. KERSBERGEN BY DESIGN-DETALED R. MOIS MAP DESIGN-DETALED R. MOIS MAP COLCORD-REVEWED	WINSLOW KENNEBEC COUNTY	BORING LOCATION PLAN FELD CHANGES 2 DATE PELD CHANGES DATE

Maine Department of Transportation Projectifies Bridge #050% corries Coride Boring No.: Bood and Patte Parts Parts Ford Brook. Locational Transportation Britieri Maines Department of Transportation Projectifies Interior Motion Win: Britieri Maines Department of Transportation Elevation Interior Motion Win: Britieri Maines Department of Transportation Elevation Interior Motion Win: Bertieri DogetiveTition Date Motion Sompler: Moment Min/Fills Date Struction Structure Definition Arger D//2020 Sompler: Moment Min/Fills Moment Min/Fills Bering Location Structure Definition Arger D//2020 Sompler: Moment Min/Fills Bering Location Structure Definition Market Min/Fills Moment Min/Fills Moment Min/Fills Bering Location Structure Definition Market Min/Fills Moment Min/Fills Water Locatific Bering Location Structure Min/Fills Market Min/Fills Moment Min/Fills Moment Min/Fills	N0-2* 25.0 ft bgs.	Moine Department of Transportation Projectifian arise association arise associati arise association aris associati arise association arise associa
US_CUSTOWARY_MAILS Location Will No. Kins Kins Kins Dr11wr1 MohadD1 Exevation (fr.) 63.9 Auger (D/00: Operators: Dogen/virial Operators: Dogen/virial Operators: Ope	51 Solid Stem Strander Spirt Sport 1640/30 NO-2 f Strander Spirt Sport NO-2 f Strander Spirt Sport NO-2 f Strander Spirt Sport Strander Spirt Spirt Strander Spirt Spi	US_CUSTOMMET_UNITS Locations Encode from threations Millins 22268.00 US_CUSTOMMET_UNITS Locations Millins 22268.00 Dritiers Mainwaldt Elevation (fr.) 62.0 Auger (D/00) 5° bits. Dritiing Contractoralarinabit Elevation (fr.) 62.0 Auger (D/00) 5° bits.
Interference Provide	.:B8-₩PP8-101	Strett/tention the represent operations isource to solve the solve and it types transitions may be greated. Fogs 1 of 1 • new ream reacting has been made if these or uses constitute strets. Grandwater fruituations may court as to sectifient and been made to the solve constitute strets. Fogs 1 of 1 • non-meass present or the the measurements ware meas. Bor ling No.: 88-WPP8-1028

10/24/2023

Mai	ne (of Transpor Jocation Log ARY UNITS	tati		Project Locatic	:Fish i Road n: Wins	Brīdgi over i	1 #0509 carries Carland Tattee Pand Brook Malne		PB-103		TOTAL	UEFAKIMENT OF IKANSPOKIAIION				BRIDGE PLANS
ir î i i Ipero	tors		MaineDOT Daggett/Wi		Dat	tum	eton (ft.) 62.0 Auger 10/00: 5° Solfd Stem me NAVD88 Sampler: Standard Spift Spoon						ЫÄ						
016	d By: Start/ g Loca	inish:	J. Manahan 9/15/2020 51+82.5. 8	\$ 9/16/2020	Dri	g Type: Tilling sing 10	Nethods			n Boring 1-3*	Hommer Mt./Fall: 140#/30" Core Barrel: NO-2" Water Level#: None Observ	red	I		<u>ŝ</u>	~	5		_
orme	r Effi	clency Fo	actor: 0.89		Har	mmer Ty		Automo	tic 🛛	Hydroulic molded Field Yone Undrofined S		sr Strangth (pail)		F	국	08	5	z	8
	eld Vone	fui Info Na Shear Test fui Ffeid V	ipeon Somple J III Tube Sompl PP = Poc Ione Shear Tea	Arrenot BUH = Bar exet Penetrometer BDR/C it Attempt BDTP = Bar Sample Information	ght of 1 Metant	dib. H	er Costr Ion	40 1 40 1 N-unit Homme N60 1	Unconf corrects y Efficient SPT N (Home	nes Campressive Strength Ikaf d = Row Fleid SPT N-volue Jency Foster = Rig Spesific A undertected Corrected for Hot r Efficiency Foster/60%14N-un	Rope & Cothead Paror Strength (set 1) = Postet Torrons Shoe In (set) Strength (set 2) = Postet Torrons Shoe L = Caulo Lifet not control to the strength (set 2) = Caulo Lifet new Citic Cancey C = Caulo Lifet (set 5) mer Citic Cancey C = Caulo Lifet (set 5) corrected C = Cancel Torton Ina	Laboratory	STATE OF MAINE		OF	2226800	0777	Ν	22268 00
d Depth (ft.)	Somple No.	Pen./Rec. Llr	Somple Depth (ft.)	Blows (/6 In. Shear Strength (psf) or R00 (11)	N-uncorrected	N60	Casting Biows	Elevation (ft.)	Graphic Log	Visual Dea Brawn Sand and Gravel	scription and Remarks	Testing Results/ AASHTO and Uhified Class	STA		MEN				6
							SSA								UEFAKI.				BRIDGE NO. 0509
								-											B
0	10	18/12	10.00 - 11.50	6/6/6	12	18	80 32 092 N HOLE	50.5		Brown, domp, medium d trace organics, (fil Cobbles at 11.5-13.2	ense. Gravelly SAND. lîttle sîlt.) ft bgs.	WC=19.9%							
										Wood in cuttings at 1 Cobble from 13.7-14.4	ft bgs.								
5	20	24/24	15.00 - 17.00	3/2/4/4	6	9		47.6		Olive grey, moist, me fine sond, (Glaciómar	dium stiff. Cloyey SLLT. trace ine Deposit).	-			(7)		ßR		
	10	24/24	20.00 -							Cuttings become grey - Grey, moist, soft to		G#336996			SIGNATURE		P.E. NUMBER		DAIE
	30 V1 V2		22.00 20.63 21.00 21.63 - 22.00	WOR/WOR/WOH/WOH Sum191/201 psf Sum536/134 psf						55x10 mm vane raw to V1: 11.0/4.5 ft-ibs V2: 12.0/3.0 ft-ibs	medium stiff. Clayey SLLT. trace (Glasiamerine Deposit). rque readings:	A-6. CL WC=37.7% LL=36 PL=23 Pl=13	DATE	3 2020		C2U2	P.E		
5	10	24/24	25.00 - 27.00	MOR						Dark grey, moist, sof trace fine sand, (Cla	t to medium stiff. Clayey SiLT. ciomarine Depositi.	C.C#336997 A-6.CL WC-39.9% LL=38 PL=24 Pl=14	BY	P FEB			i	i i	i
	V3 MV		27.63 - 28.00 28.63 - 28.63	Su=759/223 psf Would Not Push			$\backslash /$	32.9		55x110 mm vane raw ta V3: 17.0/5.0 ft-lbs Failed 55x110 mm vane			L L	MRP	1 -	-			
0 .	40	24/3	30.00 - 32.00	9/9/7/10	16	24	¥ 14 43	52.9		Grey, wat, medium den (Marine Sand),	sa, Sfity SAND, lfttla groval,		M. KERSBERGEN	R. NAOUS	0				
5 -	R1	60/60	33.00 - 38.00	R0D = 23%			100 NQ-2	29.0		Top of Bedrack at Ele R1: Bedrack: Black an PHYLLITE to METASILTS fresh-breaks along s bedding, low angle br Rock Quality = Very P	v. 29.0 ft. — 33.0 d gray bonded, very-graned. Tolke with callet weins. hard. Teep. very close. tight foliation decrore picnor and close.	/	MANAGER	DE SIGN-DE TAILED	CHECKED-REVIEWED	DESIGN3-DETAILED3		IONS 2	CONS 4
	R2	60/60	38.00 - 43.00	R0D = 52%						R1: Core Times (minis 33.0-34.0 ft (1153) 34.0-35.0 ft (1154) 35.0-36.0 ft (213) 36.0-37.0 ft (2146) 37.0-28.0 ft (3150) 1007 Recovery (ministration)	lec)		PROJ. I	DESIG			REVISIONS	RE VISIONS RE VISIONS	REVISIONS
0							\/			massive and lower co bedding. Rock Quality = Fair R2: Core Times (minis 38.0-39.0 ft (3:12) 39.0-40.0 ft (3:02) 40.0-41.0 ft (3:03) 41.0-42.0 ft (3:30) 42.0-43.0 ft (5:19)	to R1 except upper core 1s more re 1s more fractured along finer ec)					COUNTY			
15							V	19.0	9759		43.0 at 43.0 feet below ground surface.).							
								-							вкоок	KENNEBEC		V	2
io emor	ks:												日で		'n	Z		5	2
Nate	r level i	eadings ha	we been mode	Tette Sundor Fes Salvaan at 1 faas ond under candt anwents ware exist.						my eccur dus to constitiens e	Pope 1 of 1 How Boring No.: 88-WPPB	-103	FISH BRIDGE	: ^	PATTEE FUND	KI		SUDI JUBUR	
																WINSLOW			

SHEET NUMBER

4 OF 4

<u>Appendix A</u>

Boring Logs

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM	MODIFIED BURMISTER SYSTEM								
МА	JOR DIVISI		GROUP SYMBOLS	TYPICAL NAMES									
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS (little or no	GW	Well-graded gravels, gravel- sand mixtures, little or no fines.	Descriptive TermPortion of Total (%)trace0 - 10little11 - 20some21 - 35adjective (e.g. Sandy, Clayey)36 - 50								
	alf of coar er than N size)	fines)	<u> </u>	sand mixtures, little or no fines.	TERMS DESCRIBING								
(more than half of material is larger than No. 200 sieve size)	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable amount of fines)	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	DENSITY/CONSISTENCY Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value). Density of Standard Penetration Resistance Cohesionless Soils N-Value (blows per foot)								
han half of an No. 200	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Very loose 0 - 4 Loose 5 - 10 Medium Dense 11 - 30								
(more the larger the	f coarse nan No. 4	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Dense 31 - 50 Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200								
	(more than half of coarse fraction is smaller than No. 4 sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated.								
	(more fraction	FINES (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Approximate Undrained Consistency of SPT N-Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines								
	FINE- GRAINED SOILS (liquid limit less than 50)		ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with elight pleoticity	Very Soft WOH, WOR, WOP, <2 0 - 250 Fist easily penetrates Soft 2 - 4 250 - 500 Thumb easily penetrates Medium Stiff 5 - 8 500 - 1000 Thumb penetrates with moderate effort								
GRAINED			CL	slight plasticity. Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff 9 - 15 1000 - 2000 Indented by thumb with great effort Very Stiff 16 - 30 2000 - 4000 Indented by thumbnail Hard >30 over 4000 Indented by thumbnail with difficulty								
l is size)			OL	Organic silts and organic Silty clays of low plasticity.	Rock Quality Designation (RQD): RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance *Minimum NQ rock core (1.88 in. OD of core)								
than half of material is than No. 200 sieve size)	SILTS AN	SILTS AND CLAYS		SILTS AND CLAYS		SILTS AND CLAYS		SILTS AND CLAYS		SILTS AND CLAYS		Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high plasticity, fat clays.	Rock Quality Based on RQD <u>Rock Quality</u> <u>RQD (%)</u> Very Poor ≤25 Poor 26 - 50 Fair 51 - 75
(more t smaller tt	(liquid limit greater than 50)			(liquid limit greater than 50) OH Organic clays of r			Organic clays of medium to high plasticity, organic silts.	Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable): Color (Munsell color chart)					
		ORGANIC	Pt	Peat and other highly organic soils.	Texture (aphanitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.) Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.)								
			s order, if	applicable):	Geologic discontinuities/jointing:								
Gradation (Plasticity (n Structure (la Bonding (w Cementatio	ry, damp, m nsistency (fr e, medium, d, Silty Sand well-graded, on-plastic, s ayering, frac ell, moderatu n (weak, mo rigin (till, ma	oist, wet) om above rid coarse, etc.) d, Clay, etc., poorly-grad lightly plasti tures, crack ely, loosely, oderate, or s) including p led, uniforn c, moderati s, etc.) etc.,) trong)	portions - trace, little, etc.) n, etc.) ely plastic, highly plastic)	 -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - 22 inch, close - 2-12 inch, mod. close - 1-3 feet, wide -3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))) 								
Ke	y to Soil a	Geotechi	<i>nical</i> Sec Descrip	tions and Terms	Sample Container Labeling Requirements: WIN Blow Counts Bridge Name / Town Sample Recovery Boring Number Date Sample Number Personnel Initials Sample Depth Sample Depth								

Ι	Aaino	e Depa	artment	of Transport	Project: Fish Bridge #0509 carries Garland Road over Pattee Pond Brook Location: Winslow, Maine							Boring No.:	BB-WF	PB-101
			<u>Soil/Rock Exp</u> JS CUSTOM				Loca	atior				14/1N1-	222	CQ 00
		<u> </u>	<u>13 CUSTOM</u>	ART UNITS								WIN:	2220	58.00
Drille	er:		MaineDOT		Elev	vation	1 (ft.)		63.9			Auger ID/OD:	5" Solid Stem	
<u> </u>	ator:		Daggett/Wild	er		um:				/D88		Sampler:	Standard Split	Spoon
	jed By:		J. Manahan	2/14/2020	_	Туре				E 45C		Hammer Wt./Fall:	140#/30"	
	Start/Fi		9/10/2020 & 9 51+21.3, 8.5 1		_	ling N sing ID				-4" & N	h Boring	Core Barrel: Water Level*:	NQ-2" 25.0 ft bgs.	
	-		actor: 0.89	lt Lt.	_	nmer			Autom		Hydraulic 🗆	Rope & Cathead	25.0 ft bgs.	
Definit	ions:		401011 0.09	R = Rock C	ore Sam	ple	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		S _u =	Peak/Re	emolded Field Vane Undrained She	ear Strength (psf) T _v =	Pocket Torvane She	
MD = U = Th MU = V = Fi	iin Wall Tu Unsuccess eld Vane S	ful Split Spo be Sample ful Thin Wa hear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	$\begin{array}{l} RC = Roller \\ WOH = We \\ enetrometer \\ tempt \\ WO1P = W \\ \hline \end{array}$	ow Stem r Cone eight of 14 Veight of	Auger 40lb. Ha Rods o	r Casin	g	q _p = N-ur Ham N ₆₀	Unconfii correcte mer Effic = SPT N	Vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme her Efficiency Factor/60%)*N-uncor	LL = PL = I Calibration Value PI = er Efficiency G =	= Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or ROD (%)	N-uncorrected	N ₆₀	Casing	lows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
	S	۵.	S Ŧ	0 0 0 U 0	z	Z			ш€	U U	7" HMA.			
							SS	A	63.3 59.9		Brown, dry to moist, Grave Cobble from 1.0-1.3 ft bgs. Cobbles from 1.5-2.2 ft bgs		0.6-	
- 5 -	1D	24/24	5.00 - 7.00	6/3/6/8	9	13					Olive brown, moist, stiff, C Reworked Native Soils)	LAY, some silt , trace fit	ne sand. (Fill;	G#336991 A-6, CL WC=25.0% LL=38 PL=22 PI=16
10							$ \setminus$	/						
- 10 -	2D MV	24/24	10.00 - 12.00 10.63 - 10.63	3/4/5/4 Would Not Push	9	13	Н	Р	53.1		(2D/A 10.0-10.8 ft bgs) Oli sand. HP = Hydraulic Push		ILT, trace fine	
	1U	24/24	12.00 - 14.00	Hydraulic Push							Failed 55x110 mm vane att (2D/B 10.8-12.0 ft bgs) Gree Deposit)	1	10.8- Y. (Glaciomarine	
								/			800-900# down pressure			
	V1		14.63 - 15.00	Su=1295/246 psf			3	8			55x110 mm vane raw torqu	a readings.		
- 15 -	MV		15.63 - 15.63	Would Not Push			OP HO				V1: 29.0/5.5 ft-lbs Failed 55x110 mm vane att	-		
	3D V2	24/24	16.00 - 18.00 16.63 - 17.00					55			(3D 16.00-18.00 ft bgs) Gra little silt, trace fine sand. (C	ey, moist, medium stiff to Ilaciomarine Deposit)	stiff, CLAY,	G#336992 A-7-6, CL
	V3		17.63 - 18.00							Ŧ	55x110 mm vane raw torqu V2: 24.5/5.0 ft-lbs V3: 21.5/6.2 ft-lbs	e readings:		WC=42.4% LL=50 PL=24
											V 5. 21.5/0.2 It-103			PI=26
- 20 -											Similar, expect medium stil	ff (Glaciomarine Denosi	a	
	2U	24/24	20.00 - 22.00	Hydraulic Push							Shinai, expect neurani sui		.,	
	V4		22.63 - 23.00	Su=603/156 psf										
	V5		23.63 - 24.00	Su=625/134 psf							55x110 mm vane raw torqu V4: 13.5/3.5 ft-lbs	ie readings:		
											V5: 14.0/3.0 ft-lbs			
25 <u>Rem</u>	arks:	I	1							MUMU	1			
Stratif	cation line	s represent	approximate bou	ndaries between soil types;	transition	is may b	e grad	ual.				Page 1 of 3		
		-	been made at tim me measuremen	nes and under conditions sta its were made.	ted. Gro	undwate	er flucti	uatior	ns may o	ccur due	to conditions other	Boring No	.: BB-WPPI	3-101

Ι	Aain	-		of Transport	tation Project: Fish Bridge #0509 carries Garland Road over Pattee Pond Brook Location: Winslow, Maine						Boring No.:	BB-WF	PB-101		
		-	Soil/Rock Exp JS CUSTOM				Locati				WIN:	2224	58.00		
		<u>.</u>	53 0031010	ART ONTS							VVIIN.	2220	08.00		
Drille	er:		MaineDOT		_	vatior	n (ft.)	6	63.9		Auger ID/OD:	5" Solid Stem			
<u> </u>	ator:		Daggett/Wilde	er		tum:			NAVD88		Sampler:	Standard Split	Spoon		
	jed By:	iniah.	J. Manahan	2/14/2020	_	J Type			CME 45C	h Danima	Hammer Wt./Fall: Core Barrel:	140#/30"			
	Start/Fing Loca		9/10/2020 & 9 51+21.3, 8.5 f		-	sing I	lethod		Cased Wa HW-4" &	-	Water Level*:	NQ-2" 25.0 ft bgs.			
	-		actor: 0.89		_	mmer			tomatic 🖂	Hydraulic 🗆	Rope & Cathead	23.0 11 0 gs.			
Definit D = Sp MD = U = Th MU = V = Fie	ions: blit Spoon Unsuccess hin Wall Tu Unsuccess bld Vane S	Sample sful Split Spo ube Sample sful Thin Wa Shear Test,	oon Sample Atten II Tube Sample A PP = Pocket Pe <u>ne Shear Test At</u> t	RC = Rolle ttempt WOH = We WOR/C = W WO1P = W	d Stem A ow Stem r Cone ight of 1 Veight ol	Auger Auger 40 lb. Ha f Rods o	r Casing	2 2 1 1 1	S _u = Peak/I S _{u(lab)} = La q _p = Uncon N-uncorrect Hammer Ef N ₆₀ = SPT	emolded Field Vane Undrained Sh b Vane Undrained Shear Strength ned Compressive Strength (ksf) sd = Raw Field SPT N-value ciency Factor = Rig Specific Annua k-uncorrected Corrected for Hamm mer Efficiency Factor/60%)'N-unco	ear Strength (psf) T _V = (psf) WC = LL = PL = al Calibration Value PI = I er Efficiency G = C	Pocket Torvane She Water Content, peri Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test			
		· ·		Sample Information	q			Т					Laboratory		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psť) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(ft.) Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.		
25	4D	24/24	25.00 - 27.00	WOR/WOR/WOR/ WOH						(4D) Grey, moist, medium gravel. (Glaciomarine Dep		ne sand, trace	G#336993 A-4, CL		
	V6 V7		25.63 - 26.00 26.63 - 27.00	Su=580/179 psf Su=603/179 psf				-		55x110 mm vane raw torqu V6: 13.0/4.0 ft-lbs V7: 13.5/4.0 ft-lbs	ue readings:	WC=35.7% LL=33 PL=23 PI=10			
- 30 -	3U	24/24	30.00 - 32.00	WOR/WOR/WOR/ WOR						Dark grey, moist, soft, Cla Deposit).	yey SILT, trace fine sand.	G,C#336994 A-7-6, CL WC=35.5% LL=40			
	VO		22 (2 22 00	Sec. 714/124 mef							PL= PL= PI=				
	V8		32.63 - 33.00	Su=714/134 psf			+++	_		Similar, exept medium stif	ır, exept medium stiff. 0 mm vane raw torque readings:				
	V9		33.63 - 34.00	Su=714/179 psf			$\perp \parallel /$			V8: 16.0/3.0 ft-lbs	ue readings.				
										V9: 16.0/4.0 ft-lbs					
- 35 -	5D	24/20	35.00 - 37.00	2/7/12/20	19	28			28.4			35.5-			
	MV		35.63 - 35.63	Would Not Push	-	-	55	-		(5D) Grey, moist, medium clay, (Marine Sand).	dense, Silty, fine to mediu	im SAND, trace			
							55	-		Weathered Rock 35.5-39.8 Failed 55x110 mm vane at					
							66	_			tempt.				
							76								
							a284	_ [24.1	a284 blows for 0.8 ft.					
- 40 -	6D	1/0	40.00 - 40.08	20(1")			NQ-2			Top of Bedrock at Elev. 24					
	R1	57.6/57.6	40.10 - 44.90	RQD = 16%				-		R1: Bedrock: Black and gr to METASILTSTONE, wi					
										fresh, breaks along steep for planar and tight.	pliation/bedding, very clos	edly spaced,			
										Rock Quality = Very Poor [Waterville Formation]					
										R1: Core Times (min:sec)					
	R2	60/51	44.90 - 49.90	RQD = 22%						40.1-41.1 ft (2:24) 41.1-42.1 ft (3:02)					
- 45 -								1		42.1-43.1 ft (1:45) 43.1-44.1 ft (2:32)					
								-		44.1-44.9 ft (2:49) Core Bl 100% Recovery	ocked				
								4	ji ji	R2: Bedrock: Similar to R1 low angle breaks at close s		and additional			
										Rock Quality = Very Poor					
										R2: Core Times (min:sec) 44.9-45.9 ft (1:16)					
							$\top \forall $	1		45.9-46.9 ft (2:38) 46.9-47.9 ft (2:48)					
<u>50</u> <u>Rem</u>	arks:	I	1			<u> </u>	¥		PUCH	₩					
Stratifi	cation line	s represent	approximate bou	ndaries between soil types;	transitior	ns may b	oe gradua	I.			Page 2 of 3				
		-	been made at tim me measuremen	es and under conditions sta ts were made.	ted. Gro	oundwat	er fluctua	ions m	nay occur di	e to conditions other	Boring No.	: BB-WPPI	3-101		

Ι	Main	e Dep	artment	of Trar	nsporta	tion	Project			0509 carries Garland Road	Boring No.:	BB-WF	PB-101
			Soil/Rock Exp				Locatio			ond Brook Iaine			
			US CUSTOM	IARY UNITS							WIN:	2226	58.00
Drille	er:		MaineDOT			Elevatio	n (ft.)	63.9			Auger ID/OD:	5" Solid Stem	
Oper	rator:		Daggett/Wild	ler		Datum:		NAV	/D88		Sampler:	Standard Split	Spoon
Logo	ged By:		J. Manahan			Rig Typ	e:	CME	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	inish:	9/10/2020 &	9/14/2020		Drilling	Method:	Case	d Wasl	n Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	51+21.3, 8.5	ft Lt.		Casing	D/OD:	HW-	4" & N	IW-3"	Water Level*:	25.0 ft bgs.	
Ham Definit		iciency F	actor: 0.89		R = Rock Co	Hamme	Туре:	Automa		Hydraulic molded Field Vane Undrained She	Rope & Cathead	= Pocket Torvane She	ar Otrongth (nof)
D = SI MD = U = TH MU = V = Fi	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	oon Sample Atter Il Tube Sample A PP = Pocket Pe ne Shear Test At	Attempt enetrometer	SSA = Solid 3 HSA = Hollow RC = Roller (WOH = Weig WOR/C = Weig WO1P = Weig	Stem Auger w Stem Auge Cone ht of 140 lb. eight of Rods	lammer or Casing	S _{u(lai} q _p = I N-uno Hamr N ₆₀ =	b) = Lab Unconfir correcte ner Effic = SPT N	Vane Undrained Shear Strength ned Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamme ref Efficiency Factor/60% ¹ N-unco	psf) WC LL PL I Calibration Value PI = er Efficiency G =	= Water Content, percenter of the second secon	
1010 -				Sample Info		gint of one f	Joon						Loborotony
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength	(psf) or RQD (%)	N-uncorrected N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks	3	Laboratory Testing Results/ AASHTO and Unified Class.
50								14.0		47.9-48.9 ft (2:35) 48.9-49.9 ft (4:28) 85% Recovery			
								-			n at 49.9 feet below gro	49.9- und surface.	
								-					
- 55 -													
	5												
- 60 -													
								-					
								-					
- 65 -													
								-					
- 70 -													
								1					
75 <u>Rem</u>	arks:	1	1	1	I	<u> </u>		1	I	L			
Stratif	ication line	s represent	approximate bou	undaries betwee	n soil types; tra	ansitions may	be gradual.				Page 3 of 3		
			been made at tin ime measuremer		onditions state	d. Groundwa	ter fluctuatio	ons may o	ccur due	to conditions other	Boring No	.: BB-WPPI	3-101

Ι	Maine	e Dep	artment	of Tran	sporta	over Pattee Pond Brook							Boring No.:	BB-WF	PB-102
			Soil/Rock Exp US CUSTOM					Loca	tior	over F 1: Win			WIN:	2226	58.00
Drill			MaineDOT			Eleva	tion	(f+)		62.0			Auger ID/OD:	5" Dia.	
	rator:		Daggett/Wild	er		Datu		(i)			/D88		Sampler:	Standard Split	Spoon
<u> </u>	ged By:		J. Manahan			Rig T		-			E 45C		Hammer Wt./Fal		opoon
	Start/Fi	nish	9/15/2020; 07	7-30-08-30		Drilli			٩٠			Auger	Core Barrel:	N/A	
	ng Loca		51+79.1, 10.0			Casir	-			N/A	a bien	ruger	Water Level*:	None Observed	1
	-		actor: 0.89			Hamr	-			Automa	atic 🕅	Hydraulic 🗆	Rope & Cathead	Tone Observed	
Defini	tions:		0.09		R = Rock Cor	re Sample	Э	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		S., =	Peak/F	emolded Field Vane Undrained Sh	ear Strength (psf)	T _V = Pocket Torvane She	ar Strength (psf)
MD = U = TI MU = V = Fi	nin Wall Tu Unsuccess eld Vane S	sful Split Sp be Sample sful Thin Wa shear Test,	oon Sample Atter III Tube Sample A PP = Pocket Pe ne Shear Test At	mpt Attempt enetrometer	SSA = Solid S HSA = Hollow RC = Roller C WOH = Weig WOR/C = Weig WO1P = Weig	v Stem Au Cone ht of 1401 eight of Re	uger b. Ha ods o	r Casin	g	q _p = N-un Ham N ₆₀ :	Unconf correctorner Eff = SPT I	vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua l-uncorrected for Hamm en Efficiency Factor/60%)*N-unco	I Calibration Value er Efficiency	\dot{WC} = Water Content, pero LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	cent
				Sample Infor	rmation										Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength	or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Rem	arks	Testing Results/ AASHTO and Unified Class.
0								SS	А	61.3		8" HMA.			
									_	01.5				0.7	
_ ح															
- 5 -	1D	24/1	1	10	15					Brown, damp, medium den	se, SAND, little grav	vel. (Fill)			
				-	+										
									, 	54.0		Bottom of Exploratio	on at 8.0 feet below	8.0-	
								_	_			REFUSAL	in at one rect below ;	Gi ounu sui iuce.	
10															
- 10 -															
								-	_						
									_						
- 15 -															
									_						
								-	_						
200															
- 20 -															
25															
	arks:														
Stratif	ication line	s represent	approximate bou	Indaries between	soil types: tra	ansitions	mav	e arad	ual				Page 1 of 1		
										ne mou a	cour de	e to conditions other		-	
			ime measuremen		namons state	a. Groun	uwali		auOf	is mety 0			Boring	No.: BB-WPPI	8-102

	Main			of Transpo	ortat	over Pattee Pond Brook						Boring No.:	BB-WP	PB-102A
			Soil/Rock Exp US CUSTOM				Locat	ove i on: W				WIN:	2226	58.00
Drill	or:		MaineDOT			Elevatio	n (ft)	6	2.0			Auger ID/OD:	5" Dia.	
L	rator:		Daggett/Wild	or		Datum:	n (i)			D88		Sampler:	N/A	
<u> </u>	ged By:		J. Manahan			Rig Typ	0.			45C		Hammer Wt./Fall:	N/A N/A	
	Start/F		9/15/2020; 08	2-30 08-50		Drilling					Auger	Core Barrel:	N/A N/A	
	ng Loca		51+79.2, 8.8			Casing			/A	Stem	Auger	Water Level*:	None Observed	1
			actor: 0.89	n Ki.		Hamme		Auto		tic M	Hydraulic 🗆	Rope & Cathead	None Observed	
Defini	tions:		uctor: 0.07	R = R	ock Core	Sample		S	, = F	Peak/Re	emolded Field Vane Undrained Sh	ear Strength (psf) T	, = Pocket Torvane Shea	
	plit Spoon Unsucces		oon Sample Atter			tem Auger Stem Auger		S _i 9r	u(lab	_{i)} = Lat Inconfii	Vane Undrained Shear Strength ned Compressive Strength (ksf)	(psf) W LL	C = Water Content, pere . = Liquid Limit	cent
		ube Sample sful Thin Wa	all Tube Sample A		Roller Co = Weigh	one t of 140lb. H	lammer				d = Raw Field SPT N-value siency Factor = Rig Specific Annua		= Plastic Limit = Plasticity Index	
V = F	ield Vane S	Shear Test,	PP = Pocket Pe ane Shear Test At	enetrometer WOR	C = Weig	ght of Rods ht of One P	or Casing	N	50 =	SPT N	-uncorrected Corrected for Hammer er Efficiency Factor/60%)*N-unco	er Efficiency G	= Grain Size Analysis = Consolidation Test	
				Sample Informat				.,	- 00	(Tricarities				
		n.)	oth			eq				-				Laboratory Testing
ť.)	Sample No.	Pen./Rec. (in.)	Dep	6 in (%)		N-uncorrected		L C		Graphic Log	Visual De	escription and Remark	S	Results/
Depth (ft.)	ple	/Re	ble	oD ugt			ing %	atio		phic		·		AASHTO and
Dep	Sam	Pen	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)		-z Veo	Casing	Elevation	Ê.	Gra				Unified Class.
0							SSA			***	Brown, Sandy cuttings with	h gravel. (Fill)		
							554							

							++	-						
								_		***				

- 5 -														
				_		++/	/							
								55	5.5	~~~~	Bottom of Exploration	on at 6.5 feet below gro	6.5- ound surface.	
											REFUSAL	_		
- 10 -								-						
								-						
								_						
					_			_						
								_						
- 15 -								_						
					+			_						
					+			_						
					+			-						
					+			-						
- 20 -					+		_	-						
					+			-						
					+			_						
				+			-							
					_			_						
25 Rem	arks:													
<u> </u>				adata () (141 -						Dama 4 - 4 4		
	ratification lines represent approximate boundaries between soil types; transitions may be gradual. Page 1 of 1 Nater level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other													
			ime measuremer									Boring N	o.: BB-WPPI	B-102A

	Maine	e Dep	artment	of Trans	sporta	over Pattee Pond Brook						Boring No.:	BB-WP	PB-102B	
			Soil/Rock Exp US CUSTOM					Locatio				WIN:	2226	58.00	
			N: DOT					(6) \	(1.0				C " D.		
Drill	er: rator:		MaineDOT	~*		Elevat Datum		(ft.)	61.8	/D88		Auger ID/OD: Sampler:	5" Dia. N/A		
· ·	ged By:		Daggett/Wild J. Manahan	CI		Rig Ty				E 45C		Hammer Wt./Fall			
	Start/Fi	nich	9/15/2020; 08	2.50-00.00		Drillin	-	athod:			Auger	Core Barrel:	N/A N/A		
	ng Loca		51+80.6, 12.0			Casing	-		N/A	i bten	Tugor	Water Level*:	None Observed	1	
			actor: 0.89			Hamm			Automa	ntic 🛛	Hydraulic 🗆	Rope & Cathead			
Defini D = S MD = U = T	tions: plit Spoon \$ Unsuccess hin Wall Tu	Sample ful Split Sp be Sample	oon Sample Atter	s mpt F F	R = Rock Cor SSA = Solid S HSA = Hollow RC = Roller C	e Sample Stem Auge / Stem Aug Cone	r ger		S _u = S _{u(la} q _p = N-un	Peak/F b) = La Unconf correcte	emolded Field Vane Undrained Sh b Vane Undrained Shear Strength ined Compressive Strength (ksf) ed = Raw Field SPT N-value	ear Strength (psf)	Γ _V = Pocket Torvane Shea NC = Water Content, pero L = Liquid Limit PL = Plastic Limit		
V = F	eld Vane S	hear Test,	II Tube Sample A PP = Pocket Pe ne Shear Test At	enetrometer V ttempt V	NOH = Weigh NOR/C = We NO1P = Weig	ight of Roo	ds or	Casing	N60 =	= SPT I	ciency Factor = Rig Specific Annua N-uncorrected Corrected for Hamm mer Efficiency Factor/60%)*N-unco	er Efficiency	PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (nst)		N-uncorrected	-	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Rema	rks	Laboratory Testing Results/ AASHTO and	
	San	Pen	San (ft.)	She Stre Stre	2 2 2 2	ż :	09N	Cas Blov	Ele (ft.)	Gra		ND and GRAVEL cuttings. (Fill)			
0								SSA			Brown SAND and GRAVE	EL cuttings. (Fill)			
							_								
- 5 -															
								\bigvee	55.8		Dettern of Ferritoret		6.0-		
							_				Bottom of Exploration REFUSAL	on at 6.0 feet below gi	ound surface.		
- 10 -															
10															
- 15 -															
15															
							_								
- 20 -															
20															
25															
	arks:									-					
Stratit	ication line	s represent	approximate bou	Indaries between :	soil types; tra	insitions m	ay be	e gradual.				Page 1 of 1			
			been made at tim		nditions stated	d. Ground	water	fluctuation	ns may o	ccur du	e to conditions other		lo.: BB-WPPI	3-102B	

Ι	Maine	e Depa	artment	of Transport	atior	1	Proje	ct:			0509 carries Garland Road	Boring No.:	BB-WF	PPB-103
			Soil/Rock Exp				Loca	tior	over P I: Win		ond Brook Iaine			
		<u> </u>	US CUSTOM	<u>ARY UNITS</u>								WIN:	2226	58.00
Drille	er:		MaineDOT		Elev	vation	(ft.)		62.0			Auger ID/OD:	5" Solid Stem	
Oper	ator:		Daggett/Wilde	er	Dat	um:			NAV	D88		Sampler:	Standard Split	Spoon
Log	jed By:		J. Manahan		Rig	Туре			CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	9/15/2020 & 9	0/16/2020	Dril	ling N	lethoo	:	Case	d Wasł	1 Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	51+82.5, 8.8 f	t RT.	Cas	sing ID)/OD:		HW	4" & N	IW-3"	Water Level*:	None Observed	d
		ciency F	actor: 0.89			nmer	Type:		Automa			Rope & Cathead □		
	olit Spoon			R = Rock C SSA = Soli					S _{u(la}	o) = Lab	molded Field Vane Undrained She Vane Undrained Shear Strength (psf) WC =	Pocket Torvane She Water Content, per	
		sful Split Spo be Sample	oon Sample Atten	npt HSA = Holl RC = Rolle		Auger					ed Compressive Strength (ksf) d = Raw Field SPT N-value		Liquid Limit Plastic Limit	
			II Tube Sample A PP = Pocket Pe					1			iency Factor = Rig Specific Annua -uncorrected Corrected for Hamme		Plasticity Index Grain Size Analysis	
			ne Shear Test Att	tempt WO1P = W	eight of C	One Per	son		N ₆₀ :	= (Hamm	ner Efficiency Factor/60%)*N-unco	rrected C = C	Consolidation Test	
				Sample Information	σ									Laboratory
_	O	Pen./Rec. (in.)	Depth	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected					-og				Testing Results/
Depth (ft.)	Sample No.	Rec	le l	s (/6 r DD (Sorre		b	<i>"</i>	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		AASHTO
epth	amp	en./	Sample I (ft.)	lows hea tren ssf) r RG	oun-	N60	Casing	Ň	leva t.)	irapl				and Unified Class.
	S	<u>م</u>	ς f	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	z	z			Ш£	о ХХХХХ	Brown Sand and Gravel cu	ttings (Fill)		
							SSA	4			biown band and Graver ea	uiiigs, (1 iii).		
								_						
- 5 -							+	_						
								_		****				
								/						
							$ \rangle $	/						
- 10 -	1D	18/12	10.00 - 11.50	6/6/6	12	18	80				Brown, damp, medium den	se, Gravelly SAND, little	silt, trace	G#336995
	10	10/12	10.00 - 11.50	0/0/0	12	10					organics. (Fill)			A-1-a, SM WC=19.9%
							32 OPE		50.5		Cobbles at 11.5-13.2 ft bgs			
							HOI					-		
								_			Wood in cuttings at 13.2 ft	bgs.		
								_			Cobble from 13.7-14.4 ft b	gs.		
- 15 -									47.6	HH			14.4-	
15	2D	24/24	15.00 - 17.00	3/2/4/4	6	9				00	Olive grey, moist, medium (Glaciomarine Deposit).	stiff, Clayey SILT, trace	fine sand,	
										HH				
							+	_		00				
										HH				
							$ \top$							
							+	_			Cuttings become grey at 19	0.0 ft bgs.		
- 20 -				WOD AVOD AVOU							Grey, moist, soft to medium	n stiff Clavev SII T trace	fine to medium	G#336996
	3D 	24/24	20.00 - 22.00 20.63 - 21.00	WOR/WOR/WOH/ WOH						HH	sand, (Glaciomarine Depos	it).	to medium	A-6, CL
	V2		21.63 - 22.00	Su=491/201 psf Su=536/134 psf			$ \top$				55x110 mm vane raw torqu V1: 11.0/4.5 ft-lbs	ie readings:		WC=37.7% LL=36
				F			+	_			V2: 12.0/3.0 ft-lbs			PL=23
										HH				PI=13
										HH				
25 Rem	arks:									MUNI				l
Stratif	cation line	s represent	approximate bou	ndaries between soil types;	transition	s may b	e gradu	ial.				Page 1 of 2		
		-		es and under conditions sta	ted. Gro	undwate	er fluctu	atior	ns may o	ccur due	to conditions other	Boring No.	• BR_W/DDI	3-103
man	mose pres	sem at the ti	me measurement	is were made.									. DD-WILI	5.102

1	Main	e Dep	artment	of Transport	over Pattee Pond Brook						Boring No.:	BB-WI	PPB-103
			Soil/Rock Exp				Locatio					222	c0.00
			US CUSTOM	<u>ARY UNITS</u>							WIN:	2220	58.00
Drill	er:		MaineDOT		Ele	vatior	n (ft.)	62.0			Auger ID/OD:	5" Solid Stem	
Оре	rator:		Daggett/Wilde	er	Dat	tum:		NAV	/D88		Sampler:	Standard Split	Spoon
Log	ged By:		J. Manahan		Rig	у Туре	:	CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	e Start/Fi	inish:	9/15/2020 & 9	9/16/2020	Dri	lling N	lethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"	
	ng Loca		51+82.5, 8.8 f	t RT.	Ca	sing II	D/OD:	HW	4" & N	W-3"	Water Level*:	None Observed	đ
Ham Defini		iciency F	actor: 0.89	R = Rock C		mmer	Туре:	Automa		Hydraulic molded Field Vane Undrained Sho	Rope & Cathead	Pookot Tonyono Sho	or Strongth (pof)
D = S MD = U = T MU = V = F	plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	sful Split Sp ibe Sample sful Thin Wa Shear Test,	oon Sample Atten III Tube Sample A PP = Pocket Pe <u>ne Shear Test At</u>	SSA = Solid npt HSA = Holl RC = Rolle ttempt WOH = We netrometer WOR/C = V	d Stem A ow Stem r Cone ight of 1 Veight ol	Auger Auger 40 lb. H f Rods o	r Casing	S _{u(la} q _p = N-uno Hamr N ₆₀ =	b) = Lab Unconfin corrected ner Effic = SPT N-	Molded Field Vane Undrained Sha Vane Undrained Sheas Strength (ed Compressive Strength (ksf) = Raw Field SPT N-value iency Factor = Rig Specific Annua uncorrected Corrected for Hamme er Efficiency Factor/60%)'N-unco	(psf) WC LL = PL = I Calibration Value PI = er Efficiency G =	Pocket Torvane She = Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		Î			p								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psť) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
25	1U	24/24	25.00 - 27.00	WOR						Dark grey, moist, soft to m (Glaciomarine Deposit).	edium stiff, Clayey SILT,	trace fine sand,	G,C#336997 A-6, CL WC=39.9%
													WC=39.9% LL=38 PL=24
	V3 MV		27.63 - 28.00 28.63 - 28.63	Su=759/223 psf Would Not Push						55x110 mm vane raw torqu V3: 17.0/5.0 ft-lbs	U U		PI=14
							$\uparrow \mathbb{V}$	32.9		Failed 55x110 mm vane att	tempt.	29.1-	
- 30 ·	4D 24/3 30.00 - 32.00 9/9/7/10				16	24	14			Grey, wet, medium dense,	Silty SAND, little gravel,	(Marine Sand).	
							43						
		60/60	33.00 - 38.00	ROD = 23%			100 NQ-2	29.0		Top of Bedrock at Elev. 29	9.0 ft.	33.0	
- 35 -		R1 60/60 33.00 - 38.00 RQD = 23%							PHYLLITE to reaks along steep, are planar and				
										Rock Quality = Very Poor [Waterville Formation] R1: Core Times (min:sec) 33.0-34.0 ft (1:53) 34.0-35.0 ft (1:54)			
	R2	60/60	38.00 - 43.00	RQD = 52%						35.0-36.0 ft (2:13) 36.0-37.0 ft (2:46) 37.0-28.0 ft (3:50)			
- 40 -										100% Recovery R2: Bedrock: Similar to R1	except upper core is mor	e massive, and	
									90	lower core is more fracture		,	
										Rock Quality = Fair R2: Core Times (min:sec)			
							\mathbb{W}			38.0-39.0 ft (3:12) 39.0-40.0 ft (3:02) 40.0-41.0 ft (3:08)			
								19.0	ciciaci	41.0-42.0 ft (3:30) 42.0-43.0 ft (5:19)			
- 45 -										100% Recovery Bottom of Exploration	n at 43.0 feet below grou	-43.0- nd surface.	
50													
	arks:												
Stratif	ication line	s represent	approximate bou	ndaries between soil types;	transitior	ns may l	oe gradual.				Page 2 of 2		
		-	been made at tim ime measuremen	es and under conditions sta ts were made.	ted. Gro	oundwat	er fluctuatio	ns may o	ccur due	to conditions other	Boring No	: BB-WPPI	3-103

<u>Appendix B</u>

Rock Core Photographs

Fish Bridge #0509 Carries Garland Road Over Pattee Pond Brook Winslow, ME Rock Core Photographs

Boring No. Pentration (in) Recovery (in) RQD (in) RQD (%) Depth (ft) Rock Type Run **Box Row** PHYLLITE to BB-WPPB-101 R1 40.1-44.9 58 58 9 16 1 METASILTSONE PHYLLITE TO BB-WPPB-101 R2 44.9-49.9 60 51 13 22 2 METASILTSTONE PHYLLITE to R1 BB-WPPB-103 33.0-38.0 60 60 14 23 3 METASILTSTONE PHYLLITE to R2 60 BB-WPPB-103 38.0-43.0 60 31 52 4 METASILTSTONE

Notes: 1. "Box row" indicates the section of the box where the core run is contained: 1 = top, 4 = bottom.

2. Top of rock core is placed on left side of core box.

<u>Appendix C</u>

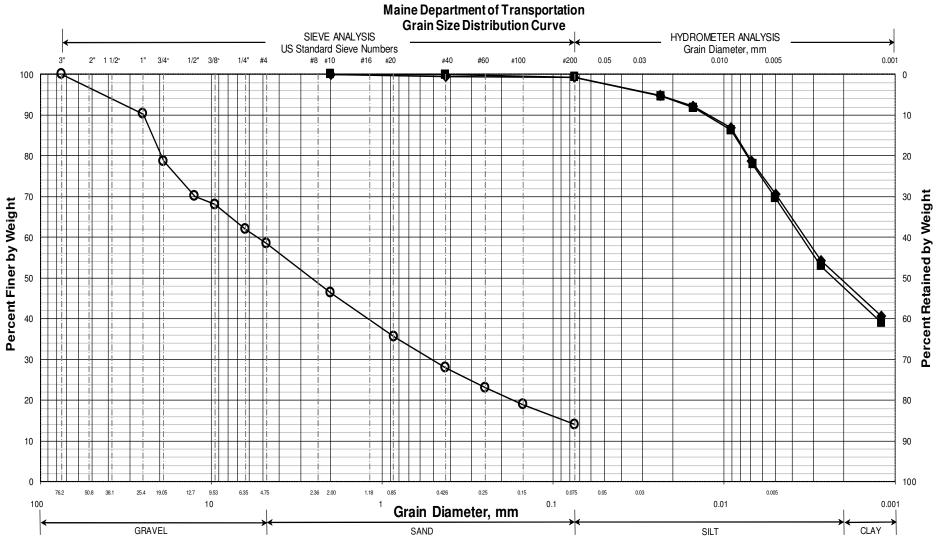
Laboratory Test Results


State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	Winsl	ow			Worl	κNι	ımk	ber	: 222	68.00	
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	assification	า
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-WPPB-101, 1D	51+21.3	8.5 Lt.	5.0-7.0	336991	1	25.0	38	16	CL	A-6	
BB-WPPB-101, 3D	51+21.3	8.5 Lt.	16.0-18.0	336992	1	42.4	50	26	CL	A-7-6	
BB-WPPB-101, 4D	51+21.3	8.5 Lt.	25.0-27.0	336993	1	35.7	33	10	CL	A-4	IV
BB-WPPB-101, 3U	51+21.3	8.5 Lt.	30.0-32.0	336994	1	35.5	40	16	CL	A-7-6	
BB-WPPB-103, 1D	51+82.5	8.8 Rt.	10.0-11.5	336995	2	19.9			SM	A-1-a	
BB-WPPB-103, 3D	51+82.5	8.8 Rt.	20.0-22.0	336996	2	37.7	36	13	CL	A-6	
BB-WPPB-103, 1U	51+82.5	8.8 Rt.	25.0-27.0	336997	2	39.9	38	14	CL	A-6	
Classification of th	-					-					
is followed by the	-	-	-		-				-		
The "Frost Sus											
GSDC = Grain Size Distribu	ution Curve as	determined	by AASHTO T	88-93 (1996)	and/or AS	TM D 4	22-63	(Reap	proved 199	98)	
WC = water content as dete	ermined by AA	SHTO T 26	5-93 and/or AS	STM D 2216-9	8						

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98 NP = Non Plastic


PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	BB-WPPB-101/1D	51+21.3	8.5 LT	5.0-7.0	CLAY, some silt, trace sand.	25	38	22	16
۲	BB-WPPB-101/3D	51+21.3	8.5 LT	16.0-18.0	CLAY, little silt, trace sand	42.4	50	24	26
	BB-WPPB-101/4D	51+21.3	8.5 LT	25.0-27.0	Clayey SILT, trace sand, trace gravel.	35.7	33	23	10
	BB-WPPB-101/3U	51+21.3	8.5 LT	30.0-32.0	Clayey SILT, trace sand.	35.5	40	24	16
X									

WI	N
022268.00	
Tow	/n
Winslow	
Reported	by/Date
WHITE, TERRY A	10/30/2020

SHEET 1

UNIFIED CLASSIFICATION

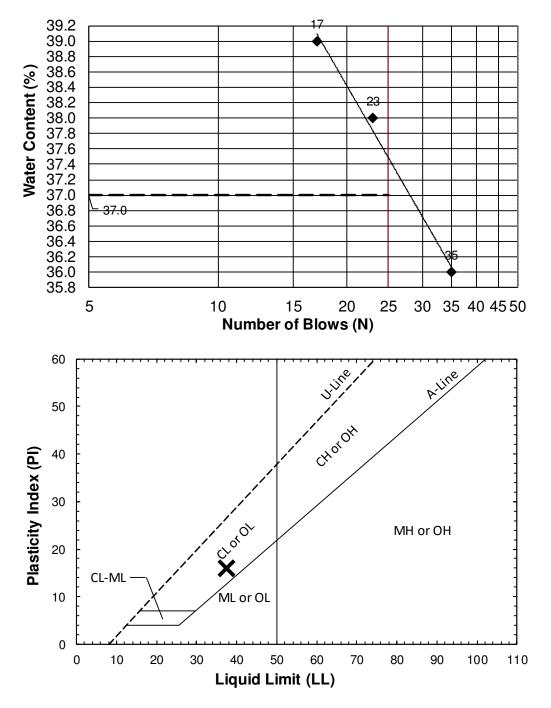
		Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
	C	BB-WPPB-103/1D	51+82.5	8.8 RT	10.0-11.5	Gravelly SAND, little silt.	19.9			
		BB-WPPB-103/3D	51+82.5	8.8 RT	20.0-22.0	Clayey SILT, trace sand.	37.7	36	23	13
		BB-WPPB-103/1U	51+82.5	8.8 RT	25.0-27.0	Clayey SILT, trace sand.	39.9	38	24	14
>	ĸ									

WI	N
022268.00	
Tow	/n
Winslow	
Reported	by/Date
WHITE, TERRY A	10/30/2020

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

Reference No.	Borina	No./Samp	le No.			Sa	ample D	escriptio	on		Sampled	Receive
336991	-	/PPB-10)	GEOTECHNICAL (DISTURBED)					۱	9/10/2020	9/30/202
Sample Type: GEO			ation:	,		Station:			fset, ft:	_	.T Dbfg, ft:	5070
			alion.			Station	51+21		-		•	
VIN/Town 022268.0	0 - WINS	LOW							Sample	r: JAME	ES MANAH	AN
			T	Ε :	ST	RES	UL	TS				
Sieve Analysis (T 88)		[Mi	scella	neous	Tests			
	,		-	Liquid Limit @ 25 blows (T 89), %						38		
Wash Method			-	Plastic	Limit (T §	90), %					22	
Wash Wethou				Plastic	ity Index (T 90), %					16	
SIEVE SIZE %				Specif	ic Gravity,	Corrected	to 20°C (T 100)			2.67	
U.S. [SI] Passing				Loss c	n Ignition,	% (T 267)						
3 in. [75.0 mm]				Water Content (T 265), %						25.0		
1 in. [25.0 mm]			L									
⁄₄ in. [19.0 mm]												
∕₂ in. [12.5 mm]			[Co	neolid	lation	T 216	•		
∕₃ in. [9.5 mm]									(1210)	/		
4 in. [6.3 mm]						rimmings,	Water Co	ontent, %				
No. 4 [4.75 mm]							Initial	Final		Void	% Strain	
lo. 10 [2.00 mm]	100.0			\M/ato	r Content,	0/			Pmin	Ratio	Strain	
lo. 20 [0.850 mm] lo. 40 [0.425 mm]	100.0				ensity, lbs				Рр			
No. 60 [0.250 mm]	100.0			Void	• ·	5/1L ⁻			Pmax	_		
lo. 100 [0.150 mm]					ation, %				Cc/C'c			
	99.7				, ,							
lo. 200 [0.075 mm]	97.7			Va	ne She	ear Tes	t on S	helby	Tubes	(Main	e DOT)	
	••••			3 In	•	6	i In.	Wat	er 🕞			
).0226 mm]	95.2	Depth		Shear Bemold U Shear Bemold Content Description of Material					ent,		of Material S rious Tube D	
).0226 mm]).0145 mm]		taken in					tons/f	t² %				
0.0226 mm] 0.0145 mm] 0.0084 mm]	95.2		U. Sh tons		tons/ft ²	tons/ft ²	10113/1					
No. 200 [0.075 mm] 0.0226 mm] 0.0145 mm] 0.0084 mm] 0.0061 mm] 0.0045 mm]	95.2 92.6	taken in			tons/ft ²	tons/ft ²	10113/1					
0.0226 mm] 0.0145 mm] 0.0084 mm] 0.0061 mm]	95.2 92.6 90.0	taken in			tons/ft ²	tons/ft ²	tons/i		i			


Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

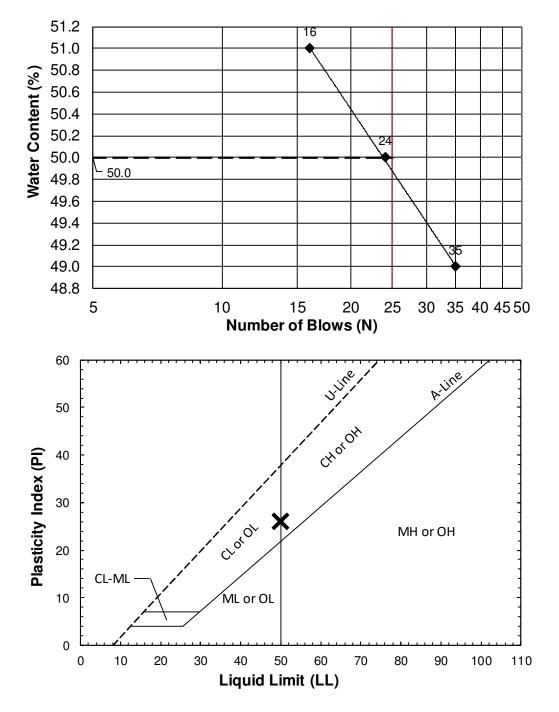
Date Reported: 10/14/2020

TOWN	Winslow	Reference No.	336991
WIN	022268.00	Water Content, %	25
Sampled	9/10/2020	Liquid Limit @ 25 blows (T 89), %	38
Boring No./Sample No.	BB-WPPB-101/1D	Plastic Limit (T 90), %	22
Station	51+21.3	Plasticity Index (T 90), %	16
Depth	5.0-7.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

						-						
		S A	MP	LE <u>I</u>	NFO	RM	ΑΤΙ	O N				
Reference No.	Boring	No./Sampl	e No.		Sa	mple De	scriptio	n		Sampled	Rece	
336992	BB-W	PPB-10	1/3D		GEOTEC		(DISTL	JRBED)	9/10/2020	9/30/2	
Sample Type: GEO			ation:			51+21.3		set, ft:	_	T Dbfg, ft:	16.0-18	
WIN/Town 022268.0						•••=•	-			S MANAH		
	/0 - WIN3L	_011						Jampie				
				EST	RES	ULI	8					
Sieve Analysis (T 88)				Mi	scellan	scellaneous Tests					
Oleve Analysis (1 00)	Liquid Limit @ 25 blows (T 89), %							50			
Wash Metho	d		Plastic Limit (T 90), %							24		
Wash Wether	<u> </u>		Pla	asticity Index (T 90), %					26		
SIEVE SIZE	Sp	ecific Gravity,	Corrected	to 20°C (T	100)		2	2.75				
U.S. [SI]	Lo	ss on Ignition,	% (T 267)									
3 in. [75.0 mm]			Wa	Water Content (T 265), %						42.4		
l in. [25.0 mm]												
¼ in. [19.0 mm]												
⁄₂ in. [12.5 mm]					Co	nsolida	ation (T 216				
/ <u>a in. [9.5 mm]</u>				-			•	1 210)				
/4 in. [6.3 mm]					rimmings,	water Con	tent, %					
No. 4 [4.75 mm]	100.0					Initial	Final		Void Ratio	% Strain		
No. 10 [2.00 mm] No. 20 [0.850 mm]	100.0		W	/ater Content,	%			Pmin	Tatio	Juan		
VO. 20 [0.050 mm]				`					-			
lo 40 [0 425 mm]	99.9		D	Dry Density, lbs/ft ³				Pp				
No. 40 [0.425 mm]	99.9			ry Density, Ibs oid Ratio	s/ft ³			Pp Pmax				
No. 60 [0.250 mm]	99.9		V		5/ft ³			•				
	99.9 99.8		V	oid Ratio	////			Pmax				
No. 60 [0.250 mm] No. 100 [0.150 mm]			Vi	oid Ratio		t on Sh	elby T	Pmax Cc/C'c	(Maine	DOT)		
No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm]	99.8	Depth		oid Ratio aturation, % Vane She 3 In.	ear Tes	In.	Wate	Pmax Cc/C'c ubes	•		ampled at	
No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm] 0.0223 mm] 0.0143 mm] 0.0083 mm]	99.8 99.2 96.6 93.9	taken in	Vi Si U. Shea	oid Ratio aturation, % Vane She 3 In. r Remold	ear Tes 6 U. Shear	In. Remold	Wate I Conte	Pmax Cc/C'c ubes	escription	e DOT) of Material S ious Tube D		
No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm] 0.0223 mm] 0.0143 mm] 0.0083 mm] 0.0061 mm]	99.8 99.2 96.6			oid Ratio aturation, % Vane She 3 In. r Remold	ear Tes	In.	Wate I Conte	Pmax Cc/C'c ubes	escription	of Material S		
No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm] 0.0223 mm] 0.0143 mm] 0.0083 mm] 0.0061 mm] 0.0044 mm]	99.8 99.2 96.6 93.9 91.2 88.5	taken in	Vi Si U. Shea	oid Ratio aturation, % Vane She 3 In. r Remold	ear Tes 6 U. Shear	In. Remold	Wate I Conte	Pmax Cc/C'c ubes	escription	of Material S		
No. 60 [0.250 mm] No. 100 [0.150 mm] No. 200 [0.075 mm] 0.0223 mm] 0.0143 mm] 0.0083 mm] 0.0061 mm]	99.8 99.2 96.6 93.9 91.2	taken in	Vi Si U. Shea	oid Ratio aturation, % Vane She 3 In. r Remold	ear Tes 6 U. Shear	In. Remold	Wate I Conte	Pmax Cc/C'c ubes	escription	of Material S		


Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

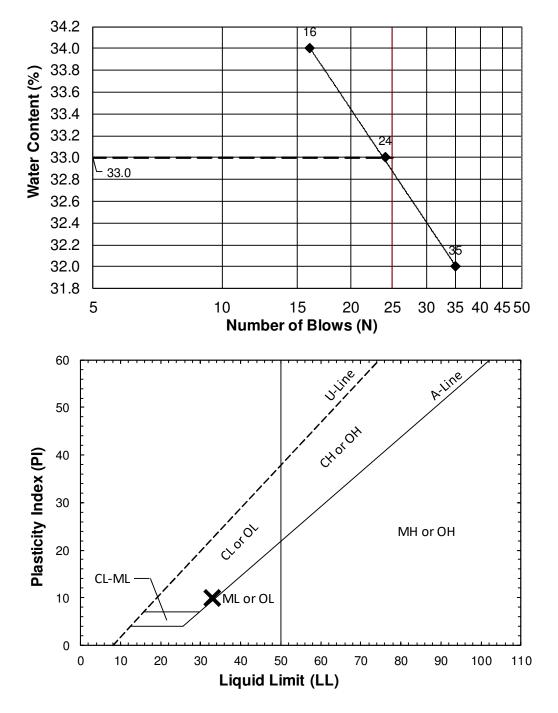
Date Reported: 10/14/2020

TOWN	Winslow	Reference No.	336992
WIN	022268.00	Water Content, %	42.4
Sampled	9/10/2020	Liquid Limit @ 25 blows (T 89), %	50
Boring No./Sample No.	BB-WPPB-101/3D	Plastic Limit (T 90), %	24
Station	51+21.3	Plasticity Index (T 90), %	26
Depth	16.0-18.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

							-				
		S A	ΜP	LEI	NFO	RM	ΑΤΙ	ΟΝ			
Reference No.	Boring	No./Sampl	e No.	Sample Description						Sampled	Receive
336993	BB-W	PPB-10	1/4D	GEOTECHNICAL (DISTURBED)))	9/10/2020	9/30/202
Sample Type: GEO	TECHNIC	AL Loca	ation:		Station:			fset, ft:	_	T Dbfg, ft:	25.0-27.0
WIN/Town 022268.0								-		S MANAH	
		2011	Ŧ	гот				oampio	or the		
				EST	RES	UL	15				
Sieve Analysis (T 88)				Mis	cella	neous	Tests	;		
Sieve Analysis (1 00)		L	iquid Limit @ 2	5 blows (T 8	9), %				33	
Wash Metho	h		P	lastic Limit (T 9	90), %					23	
wash wetho	P	lasticity Index (T 90), %					10			
SIEVE SIZE	%		S	pecific Gravity,	Corrected t	o 20°C (1	Г 100)			2.71	
U.S. [SI]	Passing		L	Loss on Ignition, % (T 267)							
3 in. [75.0 mm]	V	Water Content (T 265), %					:	35.7			
1 in. [25.0 mm]											
¾ in. [19.0 mm]	100.0										
¹ / ₂ in. [12.5 mm]	99.5				Cor	hiloar	ation (T 216)		
¾ in. [9.5 mm]	99.5		_		rimmings, V			1 210	/		
¹ / ₄ in. [6.3 mm]	99.5				nininings, v	valer Co	mem, %				
No. 4 [4.75 mm] No. 10 [2.00 mm]	99.5 99.5					nitial	Final		Void Ratio	% Strain	
No. 20 [0.850 mm]	99.5		,	Water Content,	%			Pmin	Tutto	otrain	
No. 40 [0.425 mm]	99.3			Dry Density, Ibs				Рр			
No. 60 [0.250 mm]				Void Ratio				Pmax			
No. 100 [0.150 mm]				Saturation, %				Cc/C'c			
No. 200 [0.075 mm]	99.0										
[0.0234 mm]	95.7			Vane She			helby ⁻	Tubes	(Maine	e DOT)	
[0.0151 mm]	93.1	Depth		3 In.	6		Wate		escription	of Material S	ampled at the
[0.0084 mm]	88.2	taken in tube, ft	U. She		U. Shear tons/ft ²	Remol tons/ft		ent,		rious Tube D	
[0.0063 mm]	80.6		tons/1		10115/112	lons/n	/0				
[0.0048 mm]	70.5										
[0.0028 mm]	55.4										
[0.0012 mm]	37.8										


Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 10/14/2020

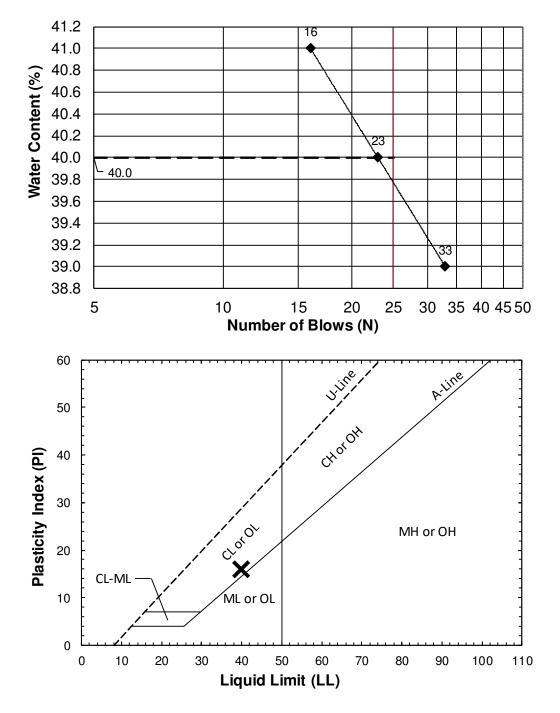
TOWN	Winslow	Reference No.	336993
WIN	022268.00	Water Content, %	35.7
Sampled	9/10/2020	Liquid Limit @ 25 blows (T 89), %	33
Boring No./Sample No.	BB-WPPB-101/4D	Plastic Limit (T 90), %	23
Station	51+21.3	Plasticity Index (T 90), %	10
Depth	25.0-27.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

							<u> </u>					
		S A	MP	LEI	NFO	RM	Α	ΤI	ΟΝ			
Reference No.	Boring	No./Sample	e No.		Sa	ample D)esc	riptio	า		Sampled	Receive
336994	BB-W	PPB-10	1/3U	G	EOTECH	INICAL	(UN	IDIST	URBEI	D)	9/15/2020	9/30/202
Sample Type: GEO					Station				set, ft:		r Dbfa. ft:	30.0-32.0
WIN/Town 022268.0						•••=•					S MANAH	
	- WING						T 0		ampici			
				EST	RES	UL	18	5				
Sieve Analysis ((T 88)				Mi	scella	neo	bus	Tests			
Sieve Analysis	(100)		Lic	quid Limit @ 2	5 blows (T	89), %					40	
Wash Metho	d		Plastic Limit (T 90), %								24	
vvasii metro	u		Pla	asticity Index (T 90), %						16	
SIEVE SIZE	%		Specific Gravity, Corrected to 20°C (T 100)							2	.70	
U.S. [SI] Passing				ss on Ignition,	% (T 267)							
3 in. [75.0 mm]					Water Content (T 265), %						35.5	
1 in. [25.0 mm]												
¾ in. [19.0 mm]												
1/2 in. [12.5 mm]					Co	nsolid	lati	on (Г 216)			
³ / ₆ in. [9.5 mm]					rimmings,			· ·		13.4		
¹ / ₄ in. [6.3 mm]					mmmys,	Water Ct	Jillen	ι, 7ο			•	
No. 4 [4.75 mm] No. 10 [2.00 mm]	100.0					Initial	Fi	nal		Void Ratio	% Strain	
No. 20 [0.850 mm]	100.0		N	later Content,	%	44.5	30	.61	Pmin	Thatio	otrain	
No. 40 [0.425 mm]	99.6			ry Density, lbs		77.916			Рр			
No. 60 [0.250 mm]				oid Ratio		1.16			Pmax			
No. 100 [0.150 mm]			S	aturation, %		103.28			Cc/C'c			
No. 200 [0.075 mm]	98.8										-йй 	
[0.0242 mm]	97.4			Vane She			hel	by T	ubes	(Maine	DOT)	
[0.0159 mm]	91.5	Depth	U. Shea	3 In. r Remold	U. Shear	in. Remo		Wate		scription	of Material S	ampled at the
[0.0097 mm]	82.7	taken in tube, ft	tons/ft ²		tons/ft ²	tons/f		Conter %	π,		ious Tube D	
[0.0071 mm]	76.8						•		Me	dium dark	grey clay, bla	ack streaks an
0.0053 mm]	67.9 52.1	0-6	0.115	0	0.167	0		45.1		spots,	trace shell fr	agments
0.0028 mm] 0.0012 mm]	53.1 38.4	75 10	0.00	0.01	0.04	0.00	-	40.0			As above	
	30.4	7.5-12	0.23	0.01	0.24	0.02	1	42.6)			
		12-18	0.251	0.01	0.219	0.01	1	43.9)		As above	
		18-24	0.24	0.01	0.199	0.02	1	44.7	,		As above	

Comments:


Maine Sensitive Loading Sequence

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

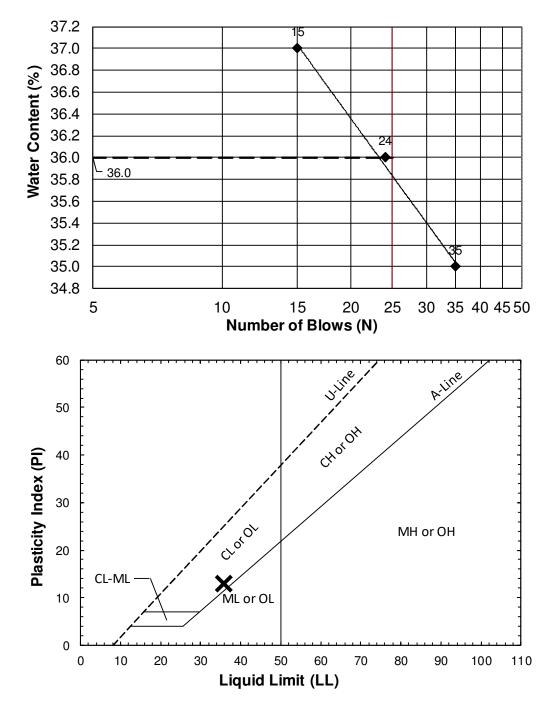
Date Reported: 10/28/2020

TOWN	Winslow	Reference No.	336994
WIN	022268.00	Water Content, %	35.5
Sampled	9/15/2020	Liquid Limit @ 25 blows (T 89), %	40
Boring No./Sample No.	BB-WPPB-101/3U	Plastic Limit (T 90), %	24
Station	51+21.3	Plasticity Index (T 90), %	16
Depth	30.0-32.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

Reference No.	Boring	No./Sampl	le No.		Sa	mple Des	scriptior	ı		Sampled	Receiv
336996	BB-W	PPB-10	3/3D		GEOTEC	HNICAL	(DISTU	RBED)		9/15/2020	9/30/2
Sample Type: GEO			ation:			51+82.5		set, ft:	-	T Dbfg, ft:	20.0-22.0
VIN/Town 022268.0							S	ampler		S MANAHA	
			т	EST	RES	пт		I	-	-	
Sieve Analysis (T 88)				Mis	scellane	eous	Fests			
			L	iquid Limit @ 2	5 blows (T 8	39), %				36	
Wash Metho	d		F	Plastic Limit (T 9	90), %					23	
	-		F	Plasticity Index	(T 90), %					13	
SIEVE SIZE	%		S	Specific Gravity	, Corrected	to 20°C (T 1	00)		2	.67	
U.S. [SI]	Passing		L	oss on Ignition	, % (T 267)						
3 in. [75.0 mm]			V	Vater Content (T 265), %				3	7.7	
l in. [25.0 mm]											
¼ in. [19.0 mm]											
₂ in. [12.5 mm]					Cal	nsolida	tion (7	C 016)			
∕₃ in. [9.5 mm]							· · · ·	210)			
⁄4 in. [6.3 mm]					Frimmings, V	Nater Conte	ent, %				
No. 4 [4.75 mm]						Initial	Final		Void	%	
lo. 10 [2.00 mm]	100.0								Ratio	Strain	
No. 20 [0.850 mm]			16	Water Content,				Pmin			
No. 40 [0.425 mm]	99.5			Dry Density, Ibs	s/ft ³			Pp			
No. 60 [0.250 mm]				Void Ratio				Pmax			
lo. 100 [0.150 mm] lo. 200 [0.075 mm]	00.0			Saturation, %				Cc/C'c			
NO 20010.075 mmi	99.3 94.9			Vane She	oar Toel	on Sh	alby T	uhas	(Maino		
	94.9 92.2	Deville		3 In.					(manie	501)	
0.0237 mm]		Depth	U. She	-	U. Shear	Remold	Water Conten			of Material S	
).0237 mm]).0152 mm]		taken in			1 /612	tons/ft ²	%		Var	ious Tube De	epths
0.0237 mm] 0.0152 mm] 0.0091 mm]	86.8	taken in tube, ft	tons/f	t ² tons/ft ²	tons/ft ²	tons/it					
0.0237 mm] 0.0152 mm] 0.0091 mm] 0.0069 mm]	86.8 78.7		tons/f	tons/ft ²	tons/ft²	tons/n					
0.0237 mm] 0.0152 mm] 0.0091 mm] 0.0069 mm] 0.0050 mm] 0.0027 mm]	86.8		tons/f	t ² tons/ft ²	tons/Itt²	10113/11					


Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 10/14/2020

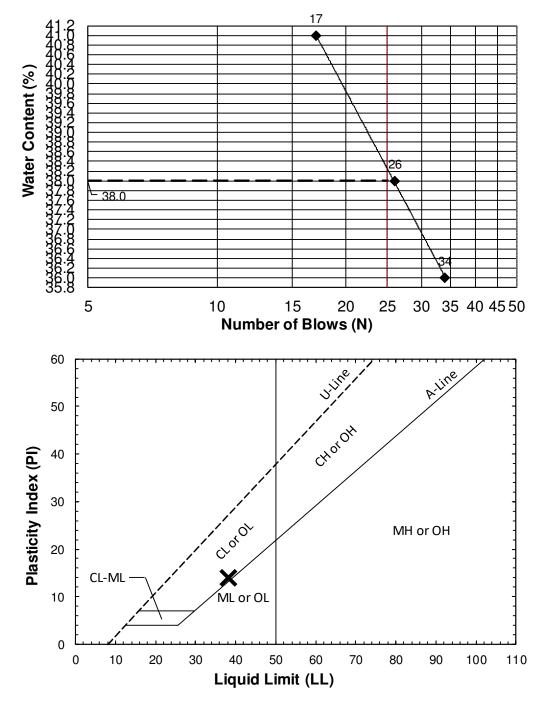
TOWN	Winslow	Reference No.	336996
WIN	022268.00	Water Content, %	37.7
Sampled	9/15/2020	Liquid Limit @ 25 blows (T 89), %	36
Boring No./Sample No.	BB-WPPB-103/3D	Plastic Limit (T 90), %	23
Station	51+82.5	Plasticity Index (T 90), %	13
Depth	20.0-22.0	Tested By	GLIDS

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

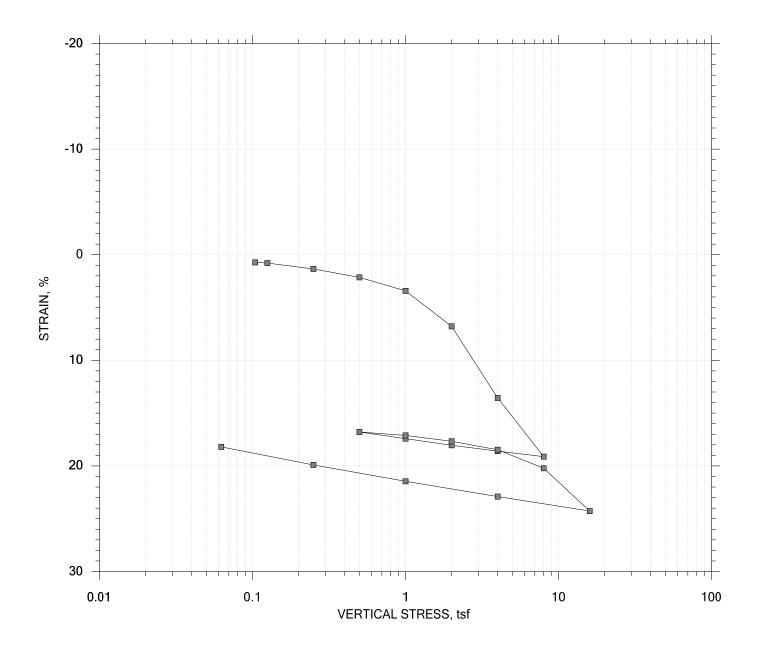
		S A	MPL	ΕI	NFO	RM	ΑΤΙ	ΟΝ			
Reference No.	Boring	No./Sample	e No.		Sa	ample D	escriptio	on		Sampled	Receiv
336997	BB-W	PPB-10	3/1U	G	EOTECH	INICAL	(UNDIS	TURB	ED)	9/15/2020	9/30/20
Sample Type: GEO						: 51+82				RT Dbfa, ft:	25.0-27.0
WIN/Town 022268.0										ES MANAH	
				<u>о т</u>				oump			
			IE	ST	RES	UL	15				
Sieve Analysis ((T 88)				Mi	iscella	neous	Test	S		
Sieve Analysis	1 00)		Liqu	id Limit @ 2	25 blows (T	89), %				38	
Wash Metho	d		Plas	tic Limit (T s	90), %					24	-
Wash Wetho	u		Plas	ticity Index	(T 90), %					14	-
SIEVE SIZE	%		Spe	cific Gravity	, Corrected	to 20°C (T 100)			2.75	
U.S. [SI]	Passing		Loss	on Ignition	, % (T 267)]
3 in. [75.0 mm]			Wat	er Content (T 265), %					39.9]
1 in. [25.0 mm]											
³ / ₄ in. [19.0 mm]											
∕₂ in. [12.5 mm]					Со	nsolic	lation	(T 21	6)		
/₄ in. [9.5 mm]				-	Trimmings,			<u></u>	42.8		
/4 in. [6.3 mm]					i i i i i i i i i i i i i i i i i i i	Water Ot				0/	
No. 4 [4.75 mm] No. 10 [2.00 mm]	100.0					Initial	Final		Void Ratio	% Strain	
No. 20 [0.850 mm]	100.0		Wa	ter Content,	%	43.96	29.97	Pmin			
No. 40 [0.425 mm]	99.9		Dry	Density, Ibs	s/ft ³	78.155	94.106	Рр			
No. 60 [0.250 mm]			Voi	d Ratio		1.2	0.824	Pmax			
No. 100 [0.150 mm]			Sat	uration, %		101.02	100	Cc/C'c	;		
No. 200 [0.075 mm]	99.3					_]
0.0233 mm]	94.6						helby	Tube	s (Main	e DOT)	
0.0151 mm]	91.8	Depth	3 U. Shear	In. Remold	U. Shear	6 In. Remo	Wat	-	Description	of Material	Sampled at th
0.0091 mm]	86.3	taken in tube, ft	tons/ft ²	tons/ft ²	tons/ft ²	tons/			Va	rious Tube D	Depths
0.0068 mm]	77.9							_	Medium darl	k grey clay, bl	ack streaks ar
0.0050 mm] 0.0027 mm]	69.6 52.9	0-6	0.251	0.021	0.24	0.03	1 42	.8	spots	, trace shell f	ragments
0.0027 mm]	39.0	7.5-12	0.199	0.01	0.188	0.02	1 44	0		As above	
	00.0	1.0-12	0.199	0.01	0.100	0.02	- 44	.0			
		12-18	0.199	0.01	0.219	0.01	44	.4	As a	bove, silt line	at 16.5"
		18-24	0.188	0.01	0.178	0.01	46	.2		k grey clay, bl s, trace shell f	ack streaks ar ragments

Comments:


Maine Sensitive Loading Sequence

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE


Date Reported: 10/27/2020

TOWN	Winslow	Reference No.	336997
WIN	022268.00	Water Content, %	39.9
Sampled	9/15/2020	Liquid Limit @ 25 blows (T 89), %	38
Boring No./Sample No.	BB-WPPB-103/1U	Plastic Limit (T 90), %	24
Station	51+82.5	Plasticity Index (T 90), %	14
Depth	25.0-27.0	Tested By	BBURR

One-Dimensional Consolidation by ASTM D2435 - Method B

SUMMARY REPORT

					Before Test	After Test
Current Vertical Effective Stress:			Water Content, %	44.50	30.61	
Preconsolidation Stre	Preconsolidation Stress:			Dry Unit Weight, pcf	77.916	92.288
Compression Ratio:	-			Saturation, %	103.28	100.00
Diameter: 2.495 in	meter: 2.495 in Height: 0.9921 in			Void Ratio	1.16	0.83
LL: 40	PL: 24	PI: 16	GS: 2.70			

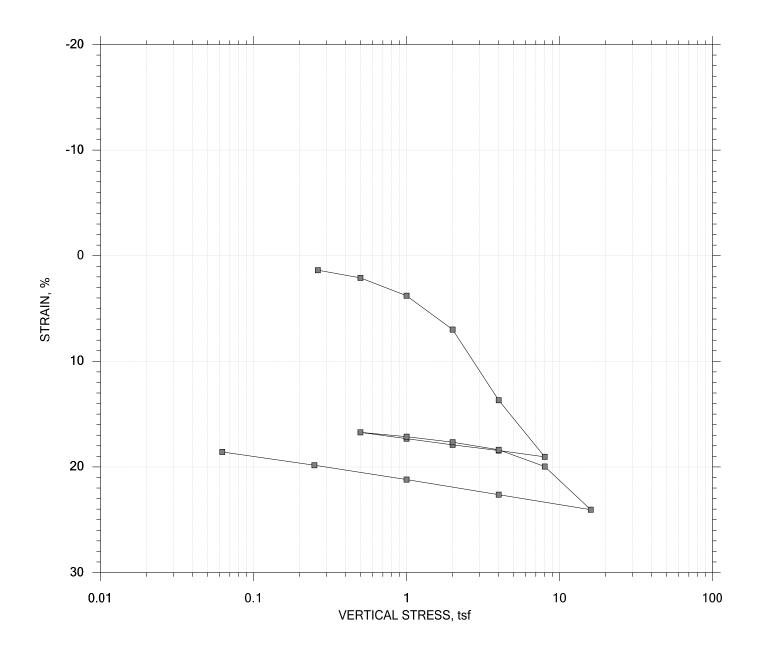
Project: Winslow	Location:	Project No.: 022268.00			
Boring No.: BB-WPPB-101	Tested By: GSL	Checked By:			
Sample No.: 3U	Test Date: 10/9/2020	Test No.: 336994			
Depth: 30.0-32.0 FT	Sample Type: Undisturbed	Elevation: –			
Description: Grey Clay					
Remarks: Maine Sensitive Load/Unload/Reload/Unl	oad Consolidation Test				
Displacement at End of Increment					

Project: Winslow Boring No.: BB-WPPB-101 Sample No.: 3U Test No.: 336994 Location: --Tested By: GSL Test Date: 10/9/2020 Sample Type: Undisturbed

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Measured Specific Gravity: 2.70 Initial Void Ratio: 1.16 Final Void Ratio: 0.826	Liquid Limit: 4 Plastic Limit: Plasticity Inde	24 ex: 16	Specimen Diameter: 2.50 in Initial Height: 0.99 in Final Height: 0.84 in After Consolidation		
		onsolidation			
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	205	RING	RING	218	
Wt. Container + Wet Soil, gm	90.320	405.56	391.78	194.98	
Wt. Container + Dry Soil, gm	82.620	361.42	361.42	164.66	
Wt. Container, gm	64.890	262.21	262.21	65.600	
Wt. Dry Soil, gm	17.730	99.205	99.205	99.060	
Water Content, %	43.43	44.50	30.61	30.61	
Void Ratio		1.16	0.826		
Degree of Saturation, %		103.28	100.00		
Dry Unit Weight, pcf		77.916	92.288		

Project: Winslow Boring No.: BB-WPPB-101 Sample No.: 3U Test No.: 336994 Location: --Tested By: GSL Test Date: 10/9/2020 Sample Type: Undisturbed Project No.: 022268.00 Checked By: --Depth: 30.0-32.0 FT Elevation: --


Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Displacement at End of Increment

	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt T90 min	Cv ft²/sec	Mv 1/tsf	k ft/day	
1	0.104	0.007215	1.15	0.727	34.333	6.98e-007	6.99e-002	1.32e-004	
2	0.125	0.007807	1.15	0.787	0.000	0.00e+000	2.85e-002	0.00e+000	
3	0.250	0.01335	1.13	1.35	9.711	2.43e-006	4.47e-002	2.94e-004	
4	0.500	0.02127	1.12	2.14	5.008	4.66e-006	3.19e-002	4.01e-004	
5	1.00	0.03397	1.09	3.42	7.045	3.24e-006	2.56e-002	2.24e-004	
6	2.00	0.06725	1.02	6.78	18.495	1.18e-006	3.35e-002	1.06e-004	
7	4.00	0.1345	0.870	13.6	22.807	8.54e-007	3.39e-002	7.82e-005	
8	8.00	0.1897	0.750	19.1	8.914	1.90e-006	1.39e-002	7.11e-005	
9	4.00	0.1845	0.761	18.6	0.838	1.90e-005	1.30e-003	6.66e-005	
10	2.00	0.1790	0.773	18.0	1.351	1.19e-005	2.77e-003	8.90e-005	
11	1.00	0.1728	0.787	17.4	3.307	4.94e-006	6.30e-003	8.39e-005	
12	0.500	0.1665	0.800	16.8	10.192	1.63e-006	1.26e-002	5.53e-005	
13	1.00	0.1698	0.793	17.1	5.764	2.89e-006	6.51e-003	5.08e-005	
14	2.00	0.1752	0.781	17.7	2.117	7.78e-006	5.54e-003	1.16e-004	
15	4.00	0.1832	0.764	18.5	2.218	7.31e-006	4.02e-003	7.92e-005	
16	8.00	0.2006	0.726	20.2	6.012	2.61e-006	4.37e-003	3.08e-005	
17	16.0	0.2408	0.638	24.3	4.776	3.06e-006	5.07e-003	4.18e-005	
18	4.00	0.2272	0.668	22.9	0.780	1.81e-005	1.14e-003	5.58e-005	
19	1.00	0.2128	0.699	21.5	5.142	2.84e-006	4.81e-003	3.69e-005	
20	0.250	0.1975	0.733	19.9	28.601	5.31e-007	2.06e-002	2.95e-005	
21	0.0625	0.1805	0.770	18.2	111.586	1.42e-007	9.12e-002	3.49e-005	
	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Log T50 min	Cv ft²/sec	Mv 1/tsf	k ft/day	Ca %
1	0.104	0.007215	1.15	0.727	0.000	0.00e+000	6.99e-002	0.00e+000	0.00e+000
2	0.125	0.007807	1.15	0.787	0.000	0.00e+000	2.85e-002	0.00e+000	0.00e+000
3	0.250	0.01335	1.13	1.35	1.971	2.79e-006	4.47e-002	3.36e-004	0.00e+000
4	0.500	0.02127	1.12	2.14	1.177	4.60e-006	3.19e-002	3.96e-004	0.00e+000
5	1.00	0.03397	1.09	3.42	1.560	3.40e-006	2.56e-002	2.35e-004	0.00e+000
6	2.00	0.06725	1.02	6.78	0.000	0.00e+000	3.35e-002	0.00e+000	0.00e+000
7	4.00	0.1345	0.870	13.6	4.763	9.51e-007	3.39e-002	8.69e-005	0.00e+000
8	8.00	0.1897	0.750	19.1	2.123	1.85e-006	1.39e-002	6.93e-005	0.00e+000
9	4.00	0.1845	0.761	18.6	0.000	0.00e+000	1.30e-003	0.00e+000	0.00e+000
10	2.00	0.1790	0.773	18.0	0.362	1.03e-005	2.77e-003	7.72e-005	0.00e+000
11						1.000 000			
12 13 14	1.00 0.500 1.00 2.00	0.1728 0.1665 0.1698	0.787 0.800 0.793	17.4 16.8 17.1	1.030 0.000 0.000	3.69e-006 0.00e+000 0.00e+000	6.30e-003 1.26e-002 6.51e-003	6.26e-005 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000
	0.500	0.1728 0.1665	0.787 0.800	17.4 16.8	1.030 0.000	3.69e-006 0.00e+000	6.30e-003 1.26e-002	6.26e-005 0.00e+000	0.00e+000 0.00e+000

One-Dimensional Consolidation by ASTM D2435 - Method B

SUMMARY REPORT

					Before Test	After Test
Current Vertical Effective Stress:			Water Content, %	43.96	29.97	
Preconsolidation Stress:			Dry Unit Weight, pcf	78.155	94.106	
Compression Ratio:	-			Saturation, %	101.02	100.00
Diameter: 2.495 in	meter: 2.495 in Height: 0.9988 in			Void Ratio	1.20	0.82
LL: 38	PL: 24	PI: 14	GS: 2.75			

Project: Winslow	Location:	Project No.: 22268.00			
Boring No.: BB-WPPB-103	Tested By: GSL	Checked By:			
Sample No.: 1U	Test Date: 10/3/2019	Test No.: 336997			
Depth: 25.0-27.0 FT	Sample Type: Undisturbed	Elevation: -			
Description: Grey Clay					
Remarks: Maine Sensitive Load/Unload/Reload/Unl	nload Consolidation Test				
Displacement at End of Increment					

Project: Winslow Boring No.: BB-WPPB-103 Sample No.: 1U Test No.: 336997 Location: --Tested By: GSL Test Date: 10/3/2019 Sample Type: Undisturbed

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Measured Specific Gravity: 2.75 Initial Void Ratio: 1.20 Final Void Ratio: 0.824	Liquid Limit: 3 Plastic Limit: Plasticity Inde	24 ex: 14	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.83 in After Consolidation		
		nsolidation			
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	41	RING	RING	129	
Wt. Container + Wet Soil, gm	101.17	406.40	392.39	191.68	
Wt. Container + Dry Soil, qm	89.820	362.36	362.36	161.70	
Wt. Container, gm	63.270	262.18	262.18	61.680	
Wt. Dry Soil, gm	26.550	100.18	100.18	100.02	
Water Content, %	42.75	43.96	29.97	29.97	
Void Ratio		1.20	0.824		
Degree of Saturation, %		101.02	100.00		
Dry Unit Weight, pcf		78.155	94.106		

Project: Winslow Boring No.: BB-WPPB-103 Sample No.: 1U Test No.: 336997 Location: --Tested By: GSL Test Date: 10/3/2019 Sample Type: Undisturbed Project No.: 22268.00 Checked By: --Depth: 25.0-27.0 FT Elevation: --

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Displacement at End of Increment

	Applied	Final	Void	Strain	Sq.Rt				
	Stress		Ratio	at End	Т90	Cv	Mv	k	
	tsf	in		00	min	ft²/sec	1/tsf	ft/day	
1	0.263	0.01368	1.17	1.37	14.663	1.65e-006	5.20e-002	2.31e-004	
2	0.500	0.02089	1.15	2.09	2.709	8.73e-006	3.05e-002	7.19e-004	
3	1.00	0.03780	1.11	3.78	13.412	1.72e-006	3.39e-002	1.57e-004	
4	2.00	0.06983	1.04	6.99	15.367	1.43e-006	3.21e-002	1.23e-004	
5	4.00	0.1366	0.896	13.7	16.209	1.21e-006	3.34e-002	1.10e-004	
6	8.00	0.1902	0.778	19.0	7.554	2.27e-006	1.34e-002	8.19e-005	
7	4.00	0.1842	0.791	18.4	55.823	2.90e-007	1.48e-003	1.16e-006	
8	2.00	0.1788	0.803	17.9	1.654	9.91e-006	2.72e-003	7.28e-005	
9	1.00	0.1730	0.816	17.3	2.660	6.25e-006	5.82e-003	9.81e-005	
10	0.500	0.1670	0.829	16.7	14.889	1.13e-006	1.20e-002	3.65e-005	
11	1.00	0.1711	0.820	17.1	27.728	6.09e-007	8.19e-003	1.35e-005	
12	2.00	0.1763	0.809	17.7	2.549	6.55e-006	5.23e-003	9.24e-005	
13	4.00	0.1835	0.793	18.4	1.403	1.17e-005	3.61e-003	1.14e-004	
14	8.00	0.1993	0.758	20.0	3.599	4.44e-006	3.95e-003	4.73e-005	
15	16.0	0.2402	0.668	24.1	4.302	3.46e-006	5.12e-003	4.78e-005	
16	4.00	0.2260	0.700	22.6	0.760	1.89e-005	1.19e-003	6.07e-005	
17	1.00	0.2116	0.731	21.2	3.369	4.43e-006	4.78e-003	5.71e-005	
18	0.250	0.1981	0.761	19.8	24.565	6.30e-007	1.80e-002	3.06e-005	
19	0.0625	0.1856	0.788	18.6	78.392	2.04e-007	6.70e-002	3.68e-005	
	Applied	Final	Void	Strain	Log				
	Applied Stress	Final Displacement	Void Ratio	Strain at End	Log T50	Cv	Mv	k	Ca
						Cv ft²/sec	Mv 1/tsf	k ft/day	Ca ۶
1	Stress	Displacement		at End	Т5Ō				
2	Stress tsf	Displacement in	Ratio	at End %	T50 min	ft²/sec	1/tsf	ft/day	40
2	Stress tsf 0.263	Displacement in 0.01368	Ratio 1.17	at End % 1.37	T50 min 0.000	ft²/sec 0.00e+000	1/tsf 5.20e-002	ft/day 0.00e+000	% 0.00e+000
	Stress tsf 0.263 0.500	Displacement in 0.01368 0.02089	Ratio 1.17 1.15	at End % 1.37 2.09	T50 min 0.000 0.000	ft²/sec 0.00e+000 0.00e+000	1/tsf 5.20e-002 3.05e-002	ft/day 0.00e+000 0.00e+000	% 0.00e+000 0.00e+000
2 3	Stress tsf 0.263 0.500 1.00	Displacement in 0.01368 0.02089 0.03780	Ratio 1.17 1.15 1.11	at End % 1.37 2.09 3.78	T50 min 0.000 0.000 0.000	ft ² /sec 0.00e+000 0.00e+000 0.00e+000	1/tsf 5.20e-002 3.05e-002 3.39e-002	ft/day 0.00e+000 0.00e+000 0.00e+000	% 0.00e+000 0.00e+000 0.00e+000
2 3 4	Stress tsf 0.263 0.500 1.00 2.00	Displacement in 0.01368 0.02089 0.03780 0.03780 0.06983	Ratio 1.17 1.15 1.11 1.04	at End % 1.37 2.09 3.78 6.99 13.7	T50 min 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.21e-002	ft/day 0.00e+000 0.00e+000 0.00e+000 0.00e+000	% 0.00e+000 0.00e+000 0.00e+000 0.00e+000
2 3 4 5	Stress tsf 0.263 0.500 1.00 2.00 4.00	Displacement in 0.01368 0.02089 0.03780 0.06983 0.1366	Ratio 1.17 1.15 1.11 1.04 0.896	at End % 1.37 2.09 3.78 6.99	T50 min 0.000 0.000 0.000 0.000 4.406	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.04e-006	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.21e-002 3.34e-002	ft/day 0.00e+000 0.00e+000 0.00e+000 0.00e+000 9.36e-005	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00	Displacement in 0.01368 0.02089 0.03780 0.06983 0.1366 0.1902	Ratio 1.17 1.15 1.11 1.04 0.896 0.778	at End % 1.37 2.09 3.78 6.99 13.7 19.0	T50 min 0.000 0.000 0.000 4.406 1.964	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.21e-002 3.34e-002 1.34e-002	ft/day 0.00e+000 0.00e+000 0.00e+000 9.36e-005 7.32e-005	% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
2 3 4 5 6 7	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00	Displacement in 0.01368 0.02089 0.03780 0.06983 0.1366 0.1902 0.1842	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4	T50 min 0.000 0.000 0.000 0.000 4.406 1.964 0.000	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.34e-002 1.34e-002 1.48e-003	ft/day 0.00e+000 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00	Displacement in 0.01368 0.02089 0.03780 0.06983 0.1366 0.1902 0.1842 0.1788	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 0.00e+000 1.05e-005	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.34e-002 1.34e-002 1.48e-003 2.72e-003	ft/day 0.00e+000 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.34e-002 1.34e-002 1.48e-003 2.72e-003 5.82e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 5 6 7 8 9 10	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000	1/tsf 5.20e-002 3.05e-002 3.39e-002 3.21e-002 1.34e-002 1.34e-003 2.72e-003 5.82e-003 1.20e-002	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005 0.00e+000	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00	Displacement in 0.01368 0.02089 0.03780 0.06983 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1711	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829 0.820	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.000	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-005 0.00e+000 0.00e+000	1/tsf 5.20e-002 3.05e-002 3.21e-002 3.34e-002 1.34e-002 1.48e-003 2.72e-003 5.82e-003 1.20e-002 8.19e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00 2.00	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1711 0.1763	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829 0.820 0.809	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1 17.7	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.000 0.481	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000 0.00e+000 8.07e-006	1/tsf 5.20e-002 3.05e-002 3.21e-002 3.34e-002 1.34e-003 2.72e-003 5.82e-003 1.20e-003 5.23e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005 0.00e+000 0.00e+000 1.14e-004	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12 13	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00 2.00 4.00	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1711 0.1763 0.1835	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829 0.829 0.820 0.809 0.809 0.793	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1 17.7 18.4	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.938 0.000 0.481 0.330	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000 0.00e+000 8.07e-006 1.16e-005	1/tsf 5.20e-002 3.05e-002 3.21e-002 1.34e-002 1.48e-003 5.82e-003 1.20e-002 8.19e-003 5.23e-003 3.61e-003	ft/day 0.00e+000 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005 0.00e+000 0.00e+000 1.14e-004 1.13e-004	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12 13 14	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 1.00 0.500 1.00 2.00 4.00 8.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 0.500 0.500 0.500 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 4.00 2.00 1.00 2.00 4.00 2.00 0.00 2.00 4.00 2.00 4.00 2.00 1.00 2.00 1.00 2.00 4.00 2.00 1.00 2.00 4.00 2.00 1.00 2.00 4.00 2.00 1.00 2.00 2	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1711 0.1763 0.1835 0.1993 0.2402	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829 0.820 0.820 0.820 0.820 0.758 0.668	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1 17.7 18.4 20.0	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.362 0.938 0.000 0.481 0.330 0.600 1.118	ft ² /sec 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000 0.00e+000 8.07e-006 1.16e-005 6.19e-006	1/tsf 5.20e-002 3.05e-002 3.21e-002 3.34e-002 1.34e-003 2.72e-003 1.20e-002 8.19e-003 5.23e-003 3.61e-003 3.95e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 0.00e+000 0.00e+000 1.14e-004 1.13e-004 6.60e-005	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00 2.00 4.00 8.00	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1670 0.1711 0.1763 0.1835 0.1993	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.791 0.803 0.816 0.829 0.820 0.820 0.829 0.793 0.758	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1 17.7 18.4 20.0 24.1 22.6	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.000 0.481 0.330 0.600	ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000 8.07e-006 1.16e-005 6.19e-006 3.09e-006	1/tsf 5.20e-002 3.05e-002 3.21e-002 1.34e-002 1.48e-003 2.72e-003 5.82e-003 5.23e-003 3.61e-003 3.95e-003 5.12e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 0.00e+000 0.00e+000 1.14e-004 1.13e-004 6.60e-005 4.27e-005	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Stress tsf 0.263 0.500 1.00 2.00 4.00 8.00 2.00 1.00 0.500 1.00 2.00 4.00 8.00 4.00 8.00 4.00	Displacement in 0.01368 0.02089 0.03780 0.1366 0.1902 0.1842 0.1788 0.1730 0.1670 0.1670 0.1711 0.1763 0.1835 0.1993 0.2402 0.2260	Ratio 1.17 1.15 1.11 1.04 0.896 0.778 0.778 0.803 0.816 0.829 0.820 0.820 0.809 0.793 0.758 0.668 0.700	at End % 1.37 2.09 3.78 6.99 13.7 19.0 18.4 17.9 17.3 16.7 17.1 17.7 18.4 20.0 24.1	T50 min 0.000 0.000 0.000 4.406 1.964 0.000 0.362 0.938 0.000 0.000 0.481 0.330 0.600 1.118 0.000	ft²/sec 0.00e+000 0.00e+000 0.00e+000 1.04e-006 2.03e-006 0.00e+000 1.05e-005 4.12e-006 0.00e+000 8.07e-006 1.16e-005 6.19e-006 0.09e+000	1/tsf 5.20e-002 3.05e-002 3.21e-002 3.34e-002 1.34e-002 1.48e-003 5.82e-003 1.20e-002 8.19e-003 5.23e-003 3.61e-003 3.95e-003 5.12e-003 1.19e-003	ft/day 0.00e+000 0.00e+000 9.36e-005 7.32e-005 0.00e+000 7.73e-005 6.46e-005 0.00e+000 1.14e-004 1.13e-004 6.60e-005 4.27e-005 0.00e+000	<pre>% 0.00e+000 0.00e+000</pre>

<u>Appendix D</u>

Calculations

Liquidity Index

Winslow Fish Bridge Br #0509 22268.00

Liquidity Index

$LI := \frac{WC - PL}{UC - PL}$	Das, Principles of Engineering, 7th Edition,
LL - PL	Equation 4.16

BB-WPPB-101, 1D

WC := 25

LL := 38

$$LI := \frac{WC - PL}{LL - PL} = 0.19$$

BB-WPPB-101, 3D

PL := 24

$$LI := \frac{WC - PL}{LL - PL} = 0.71$$

BB-WPPB-101, 4D

PL := 23

$$LI := \frac{WC - PL}{LL - PL} = 1.27$$

Winslow Fish Bridge Br #0509 22268.00

BB-WPPB-101, 3U

WC := 35.5 LL := 40

PL := 24

$$LI := \frac{WC - PL}{LL - PL} = 0.72$$

BB-WPPB-103, 3D

$$LI := \frac{WC - PL}{LL - PL} = 1.13$$

BB-WPPB-103, 1U

$$LI := \frac{WC - PL}{LL - PL} = 1.14$$

Sensitivity

BB-WPPB-101/V1

Su := 1295psf

$$Su_{re} := 246psf$$

$$\frac{Su}{Su_{re}} = 5.26$$

BB-WPPB-101/V2

Su := 1094psf

Su_{re} := 223psf

$$\frac{Su}{Su_{re}} = 4.91$$

BB-WPPB-101/V3

Su := 692 psf

 $Su_{re} := 277 psf$

$$\frac{Su}{Su_{re}} = 2.5$$

BB-WPPB-101/V4

Su := 603psf

 $Su_{re} := 156psf$

$$\frac{Su}{Su_{re}} = 3.87$$

BB-WPPB-101/V5

Su := 625psf

 $Su_{re} := 134 psf$

 $\frac{Su}{Su_{re}} = 4.66$

BB-WPPB-101/V6

Su := 580 psf

 $Su_{re} := 179psf$

$$\frac{Su}{Su_{re}} = 3.24$$

BB-WPPB-101/V7

Su := 603 psf

 $Su_{re} := 179 psf$

$$\frac{Su}{Su_{re}} = 3.37$$

BB-WPPB-101/V8

Su := 714psf

 $Su_{re} := 134 psf$

$$\frac{Su}{Su_{re}} = 5.33$$

BB-WPPB-101/V9

Su := 714psf

 $Su_{re} := 179psf$

 $\frac{\mathrm{Su}}{\mathrm{Su}_{\mathrm{re}}} = 3.99$

Winslow Fish Bridge Br #0509 22268.00

<u>Sensitivity</u>

BB-WPPB-103/V1

Su := 491psf

$$Su_{re} := 201 psf$$

$$\frac{Su}{Su_{re}} = 2.44$$

BB-WPPB-103/V2

Su := 536psf

$$Su_{re} := 134psf$$

$$\frac{Su}{Su_{re}} = 4$$

BB-WPPB-103/V3

Su := 759 psf

$$Su_{re} := 233psf$$

$$\frac{Su}{Su_{re}} = 3.26$$

Driven H-Pile Resistance

Design of H-piles

Reference: AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.

Bedrock Properties

Rock Type: Phyllite

 ϕ = 20-34 (AASHTO LRFD Table C.10.4.6.4-1, between slate, 27-34, and schist, 20-27); Phyllite Co = 3,500 - 35,000 psi (AASHTO Standard Specifications for Bridges 17th Edition, Table 4.4.8.1.2B)

For Design Purposes, use bedrock data from BB-WPPB-101 R1: RQD = 16% and an Unconfined Compressive Strength of 3,500 psi based on the lower bound of Phyllite Co.

Pile Properties

Use the following piles: 14x89, 14x117

$$A_{s} := \begin{pmatrix} 26.1 \\ 34.4 \end{pmatrix} \cdot in^{2} \qquad \qquad d := \begin{pmatrix} 13.8 \\ 14.2 \end{pmatrix} \cdot in \qquad \qquad b := \begin{pmatrix} 14.7 \\ 14.9 \end{pmatrix} \cdot in$$

$$A_{box} := \overrightarrow{(d \cdot b)}$$
 $A_{box} = \begin{pmatrix} 202.86\\ 211.58 \end{pmatrix} \cdot in^2$

Note: All matrices set up in this order 14x89 14x117

$$r_s = radius of gyration$$
 $r_s := \begin{pmatrix} 3.53 \\ 3.59 \end{pmatrix} \cdot in$ radius of gyration about the Y-Y or weak axis per LRFD Article C6.9.4.1.2.

Pile yield strength $F_v := 50 \cdot ksi$

1. Nominal and Factored Structural Compressive Resistance of H-piles

Use LRFD Equation 6.9.2.1-1 $Pr = \phi Pn$

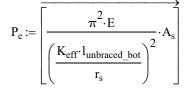
Nominal Axial Structural Resistance

Determine equivalent yield resistance $P_0 = F_V A_s$ (LRFD 6.9.4.1.1)

$$P_{o} := F_{y} \cdot A_{s} \qquad \qquad P_{o} = \begin{pmatrix} 1305\\1720 \end{pmatrix} \cdot kip$$

A. Structural Resistance of lower "braced" segment of pile

Determine elastic critical buckling resistance P_e , LRFD eq. 6.9.4.1.2-1


E = Elastic Modulus	E := 29000·ksi	
K = effective length factor	K _{eff} := 0.65	LRFD Table C4.6.2.5-1. Use K=0.65 for assumed segment in pure compression. Fixed top and bottom

I = "unbraced" length

 $l_{unbraced_bot} := 0.1 \cdot ft$

Assume in pure compression

LRFD eq. 6.9.4.1.2-1

$$P_{e} = \begin{pmatrix} 2 \times 10^{8} \\ 2 \times 10^{8} \end{pmatrix} \cdot kip$$

LRFD Article 6.9.4.1.1

$$\frac{P_{e}}{P_{o}} = \begin{pmatrix} 1.172 \times 10^{5} \\ 1.213 \times 10^{5} \end{pmatrix}$$
 If Pe/Po > or = 0.44, then:
$$P_{n} := \begin{pmatrix} \frac{P_{o}}{P_{e}} \\ 0.658 \\ \frac{P_{e}}{P_{o}} \end{pmatrix}$$
 LRFD Eq.
6.9.4.1.1-1

then:

this applies to all pile sizes

р	(1305)	1
$P_n =$	(1720)	·кıр

Factored Axial Structural Resistance for the Strength Limit State

Resistance factor for H-pile in pure compression, severe driving conditions, per LRFD 6.5.4.2 for the case where pile tip is necessary	$\phi_c := 0.5$
The Factored Structural Resistance (Pr) per LRFD 6.9.2.1-1 is	$P_r := \varphi_c \cdot P_n$

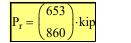
Factored structural compressive resistance, Pr

D _	(652)	lin
$P_r =$	860	•кір

LRFD 10.7.3.2.3 - Piles Driven to Hard Rock -

Article 10.7.3.2.3 states "The nominal resistance of piles driven to point bearing on hard rock where pile penetration into the rock formation is minimal is controlled by the structural limit state. The nominal bearing resistance shall not exceed the values obtained from Article 6.9.4.1 with the resistance factors specified in Article 6.5.4.2 and Article 6.15 for severe driving conditions. A pile driving acceptance criteria shall be developed that will prevent pile damage."

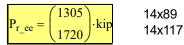
Therefore limit the nominal axial geotechnical pile resistance to the nominal structural resistance with a resistance factor for severe driving conditions of 0.50 applied per 10.7.3.2.3.


Nominal Structural Resistance Previously Calculated:

$$P_n := \binom{1305}{1720} kip$$

The factored geotechnical compressive resistance (P_r) for the **Strength Limit State**, per LRFD 6.9.2.1-1 is

$$\phi_c := 0.5$$


$$\mathbf{P}_{\mathbf{r}} := \boldsymbol{\phi}_{\mathbf{c}} \cdot \mathbf{P}_{\mathbf{n}}$$

14x89 14x117

The factored geotechnical compressive resistance (P_r) for the **Extreme Service Limit States**, per LRFD 6.9.2.1-1 is

$$\phi_c := 1.0$$
$$P_{r_ee} := \phi_c \cdot P_n$$

Drivability Analyses

Ref: LRFD Article 10.7.8

For steel piles in compression or tension, driving stresses are limited to 90% of f_v

$\phi_{da} \coloneqq 1.0$	Resistance factor from LRFD Table 10.5.5.2.3-1, Drivablity Analysis, steel piles
$\sigma_{dr} := 0.90 \cdot 50 \cdot (ksi)$)· ϕ_{da}
$\sigma_{dr} = 45 \cdot ksi$	Driving stress cannot exceed 45 ksi

Limit driving stress to 45 ksi or limit blow count to 15 blows per inch (bpi).

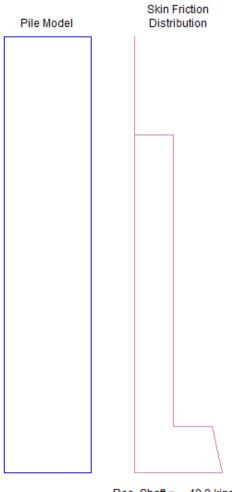
Compute the resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivablity analysis will be the maximum factored pile load divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

$\phi_{\rm dvn} := 0.65$	Reference LRFD Table 10.5.5.2.3-1 - for Strength Limit State
$\Psi dvn = 0.05$	······································

 $\phi := 1.0$ For Extreme and Service Limit States

GRLWeap Soil and Pile Model Assumptions


Based on proposed bottom of footing of elevations of approximately 54.9 at abutment 1 and 53.6 at abutment 2, estimated pile lengths will be approx. 31 ft at abutment 1 and 25 feet at abutment 2. Sensitivity analysis shows abutment 1 governs. Therefore, assume 31 ft of pile embedment. Assume contractor drives pile lengths of 40 ft (extra length accommodates for attachment of dynamic testing equipment, embedment into abutment, variation in bedrock surface).

Use constant shaft resistances so that GRLWeap will assign approx. 40 kips as skin friction.

Pile Size is 14 x 89

The 14x89 pile can be driven to the resistances below with a D 19-42 hammer at fuel setting 1 (100% of Max) and 1.9 kip helmet at a reasonable blow count and level of driving stress. See GRLWEAP results below:

DELMAG D 19-42		
Ram Weight Efficiency Pressure	4.00 0.800 1600 (100%)	
Helmet Weight Hammer Cushion COR of H.C.	1.90 60155 0.800	kips kips/in
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.070 0.200 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	40.00 31.00 26.10	ft

Blow Count (blows/in)

Maine DOT Winslow Fish Bridge Abutment 1 14x89			0 GRLWEAP V	9-May-2023 ersion 2010	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke ft	Energy kips-ft
400.0	35.26	1.20	6.1	9.19	18.35
500.0	40.19	1.59	8.8	9.78	19.77
600.0	44.26	2.34	12.8	10.35	21.11
610.0	44.58	2.40	13.3	10.40	21.20
620.0	44.96	2.43	13.8	10.45	21.36
630.0	45.27	2.23	14.4	10.50	21.47
640.0	45.59	2.07	15.0	10.55	21.55
660.0	46.26	2.11	16.0	10.64	21.75
680.0	47.10	2.74	16.8	10.81	22.17
700.0	47.42	2.88	18.3	10.81	22.22

Limit to 45 ksi

 $R_{ndr} := 620 \cdot kip$

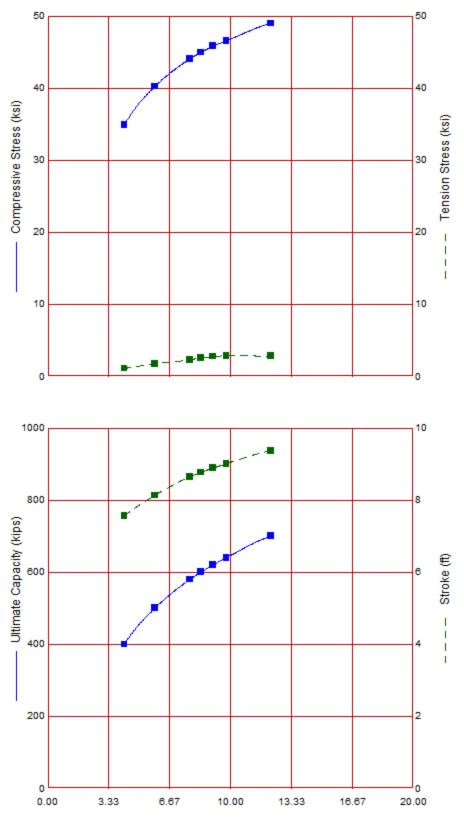
Strength Limit State

 $R_{fdr} \coloneqq R_{ndr} \cdot \varphi_{dyn}$

$$R_{fdr} = 403 \cdot kip$$

Extreme and Service Limit States

 $R_{dr} := R_{ndr} \cdot \phi$


 $R_{dr} = 620 \cdot kip$

Pile Size is 14 x 89

The 14x89 pile can be driven to the resistances below with a D 25-52 hammer at fuel setting 3 (81% of Max) and 1.9 kip helmet at a reasonable blow count and level of driving stress. See GRLWEAP results below:

DELMAG D 25-52		
Ram Weight Efficiency Pressure	5.51 0.800 1215 (81%)	
Helmet Weight Hammer Cushion COR of H.C.	1.90 60155 0.800	kips kips/in
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.070 0.200 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	40.00 31.00 26.10	ft

Blow Count (blows/in)

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke ft	Energy kips-ft
400.0	34.90	1.11	4.2	7.56	21.59
500.0	40.22	1.75	5.9	8.13	23.09
580.0	44.07	2.32	7.8	8.65	24.76
600.0	44.96	2.58	8.4	8.77	25.18
620.0	45.82	2.76	9.0	8.89	25.60
640.0	46.55	2.89	9.8	9.01	26.01
700.0	48.98	2.83	12.2	9.37	27.23

Limit to 45 ksi

 $R_{ndr} := 600 \cdot kip$

Strength Limit State

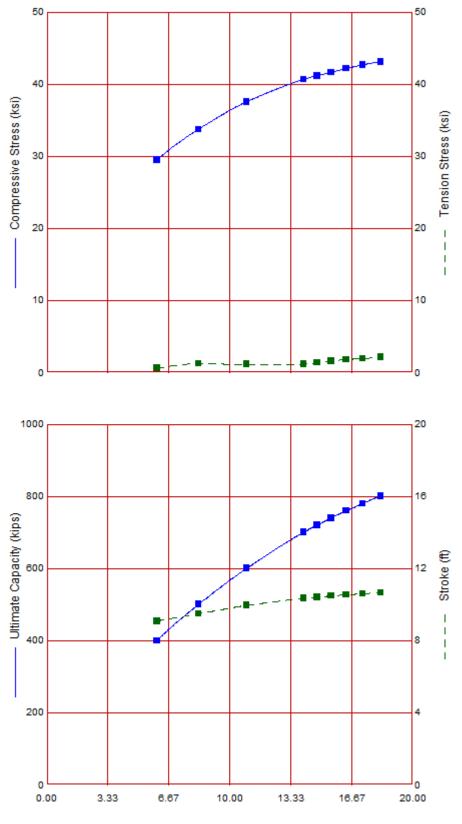
 $R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$

 $R_{fdr} = 390 \cdot kip$

Extreme and Service Limit States

 $R_{dr} := R_{ndr} \cdot \phi$

 $R_{dr} = 600 \cdot kip$


Abutments Driven H Pile Design

Pile Size is 14 x 117

The 14x117 pile can be driven to the resistances below with a D 19-42 hammer at fuel setting 1 (100% of Max) and 1.9 kip helmet at a reasonable blow count and level of driving stress. See GRLWEAP results below:

DELMAG D 19-42 Ram Weight Efficiency Pressure Helmet Weight Hammer Cushion COR of H.C. Skin Quake Toe Quake Skin Damping Toe Damping Pile Length Pile Penetration Pile Top Area	4.00 kips 0.800 1600 (100%) psi 1.90 kips 60155 kips/in 0.800 0.100 in 0.200 sec/ft 0.150 sec/ft 40.00 ft 31.00 ft 34.40 in2
Pile Model	Skin Friction Distribution
	Res. Shaft = 40.0 kips

Res. Shaft = 40.0 kips (Constant Res. Shaft)

Blow Count (blows/in)

Abutments Driven H Pile Design

Maine DOT 09-May-2023 **GRLWEAP Version 2010** Winslow Fish Bridge 14x117 D19-42 Maximum Maximum Ultimate Blow Compression Tension Capacity Stress Stress Count Stroke Energy kips ksi ksi blows/in ft kips-ft 400.0 6.0 9.09 17.63 29.46 0.62 500.0 33.73 1.24 8.3 9.49 18.49

600.0	37.55	1.17	10.9	9.95	19.58
700.0	40.66	1.18	14.0	10.34	20.45
720.0	41.18	1.38	14.8	10.41	20.62
740.0	41.63	1.59	15.5	10.48	20.80
760.0	42.18	1.84	16.4	10.54	20.94
780.0	42.69	1.95	17.3	10.60	21.07
800.0	43.10	2.13	18.2	10.66	21.20

Limit to 15 bpi

 $R_{ndr} := 720 \cdot kip$

Strength Limit State

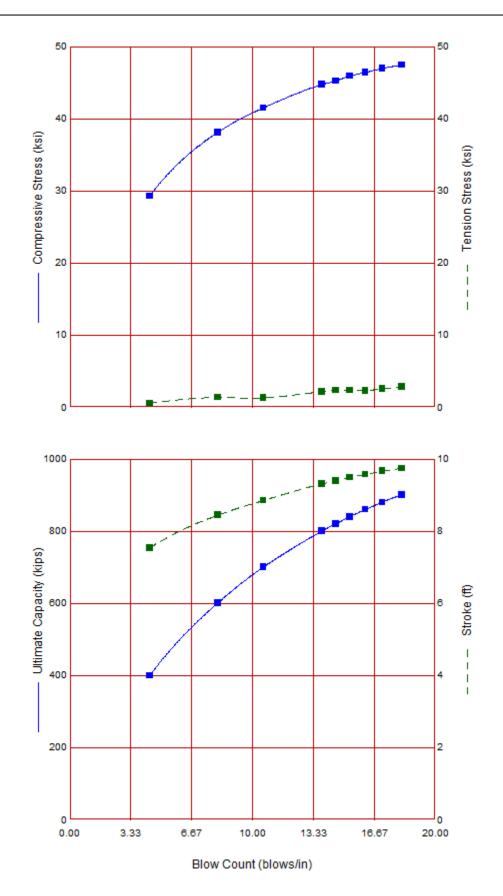
 $R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$

 $R_{fdr} = 468 \cdot kip$

Extreme and Service Limit States

 $R_{dr} := R_{ndr} \cdot \phi$

R_{dr} = 720 ⋅ kip


Abutments Driven H Pile Design

Pile Size is 14 x 117

The 14x117 pile can be driven to the resistances below with a D 25-52 hammer at fuel setting 3 (81% of Max) and 1.9 kip helmet at a reasonable blow count and level of driving stress. See GRLWEAP results below:

DELMAG D 25-52 Ram Weight Efficiency Pressure Helmet Weight Hammer Cushion COR of H.C. Skin Quake Toe Quake Skin Damping Toe Damping Pile Length Pile Penetration Pile Top Area	5.51 kips 0.800 1215 (81%) psi 1.90 kips 60155 kips/in 0.800 0.100 in 0.200 sec/ft 0.150 sec/ft 40.00 ft 31.00 ft 34.40 in2
Pile Model	Skin Friction Distribution
	Res Shaft = 40.0 kins

Res. Shaft = 40.0 kips (Constant Res. Shaft)

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke ft	Energy kips-ft
400.0	29.30	0.59	4.4	7.54	20.54
600.0	38.09	1.40	8.1	8.44	23.23
700.0	41.51	1.29	10.6	8.85	24.58
800.0	44.74	2.18	13.8	9.31	26.04
820.0	45.24	2.37	14.5	9.39	26.33
840.0	45.91	2.35	15.3	9.49	26.67
860.0	46.42	2.34	16.2	9.57	26.96
880.0	46.96	2.56	17.1	9.66	27.24
900.0	47.44	2.84	18.2	9.74	27.46

Limit to 45 ksi

 $R_{ndr} := 800 \cdot kip$

Strength Limit State

 $R_{fdr} := R_{ndr} \cdot \varphi_{dyn}$

Extreme and Service Limit States

 $R_{dr} := R_{ndr} \cdot \varphi$

Earth Pressure

Earth Pressure:

Backfill engineering strength parameters

Soil Type 4 Properties from MaineDOT Bridge Design Guide (BDG)

Unit weight	$\gamma_1 \coloneqq 125 \cdot \text{pcf}$
Internal friction angle	$\phi' := 32 \cdot \text{deg}$
Cohesion	$c_1 := 0 \cdot psf$

Integral Abutment - Passive Earth Pressure - Coulomb Theory

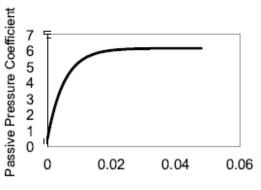
α = Angle of fill slope to the horizontal	$\alpha \coloneqq 1 \cdot \text{deg}$
ϕ_1 = Angle of internal friction	$\varphi' = 32 \cdot \text{deg}$
$\beta =$ Angle of back face of wall to the horizontal	$\beta := 90 \cdot \text{deg}$

Use Coulomb for cases where interface friction is considered; typically gravity shaped structures, and integral abutments where the ratio of wall height to wall movement is .020 or greater. Coulomb should also be used when the fill slope is greater than horizontal.

For formed concrete IAB abutment against clean sand, silty sand-gravel mixture use δ = 17, per LRFD Table 3.11.5.3-1

 δ = friction angle between fill and wall taken as specified in LRFD Table 3.11.5.3-1

 $\delta' \coloneqq 17 \cdot \text{deg}$ $K_{p_coulomb} \coloneqq \frac{\sin(\beta - \phi')^2}{\sin(\beta)^2 \cdot \sin(\beta + \delta') \cdot \left(1 - \sqrt{\frac{\sin(\phi' + \delta') \cdot \sin(\phi' + \alpha)}{\sin(\beta + \delta') \cdot \sin(\beta + \alpha)}}\right)^2} \qquad \text{Das, Principles of Foundation Engineering 7th Ed. p. 366 Eq. 7.71}$ $K_{p_coulomb} = 6.34$


Integral Abutment and Wingwall - Passive Earth Pressure - Rankine Theory

Use Rankine only if the ratio of wall height to wall movement is 0.005 or less and the fill slope is horizontal to the top of the wall. Bowles does not recommend use of Rankine method for K_p when $\alpha > 0$.

$$\begin{split} \alpha &= \text{Angle of fill slope to the horizontal} \\ \kappa_{p_rank} &:= \cos(\alpha) \cdot \frac{\cos(\alpha) + \sqrt{\cos(\alpha)^2 - \cos(\varphi')^2}}{\cos(\alpha) - \sqrt{\cos(\alpha)^2 - \cos(\varphi')^2}} \\ \hline \\ \text{Das, Principles of Foundation Engineering 7th Ed. p. 363 Eq. 7.67} \\ \hline \\ \hline \\ \text{K}_{p_rank} &= 3.25 \\ \hline \\ \end{array}$$

Integral Abutment - Passive Pressure Coefficient per MassDOT LRFD Bridge Manul Part 1

 $K = 0.43 + 5.7[1 - e^{-190(\delta_T/H)}]$

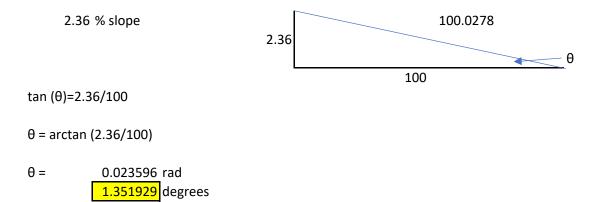

Relative Wall Displacement

Figure 3.10.8-1: Plot of Passive Pressure Coefficient, K, vs. Relative Wall Displacement, δ_T/H.

Based on an estimated Relative Wall Displacement of 0.5"/102"=0.005:

 $\mathsf{K} := 0.43 + 5.7 \cdot [1 - \exp[-190(0.005)]]$

K = 3.93

	Friction	Coefficient of
	Angle, δ	Friction, tan δ
Interface Materials	(degrees)	(dim.)
Mass concrete on the following foundation materials:		
Clean sound rock	35	0.70
Clean gravel, gravel-sand mixtures, coarse sand	29 to 31	0.55 to 0.60
• Clean fine to medium sand, silty medium to coarse sand, silty or clayey		
gravel	24 to 29	0.45 to 0.55
• Clean fine sand, silty or clayey fine to medium sand	19 to 24	0.34 to 0.45
• Fine sandy silt, nonplastic silt	17 to 19	0.31 to 0.34
• Very stiff and hard residual or preconsolidated clay	22 to 26	0.40 to 0.49
Medium stiff and stiff clay and silty clay	17 to 19	0.31 to 0.34
Masonry on foundation materials has same friction factors.		
Steel sheet piles against the following soils:		
• Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	22	0.40
• Clean sand, silty sand-gravel mixture, single-size hard rock fill	17	0.31
• Silty sand, gravel or sand mixed with silt or clay	14	0.25
• Fine sandy silt, nonplastic silt	11	0.19
Formed or precast concrete or concrete sheet piling against the following		
soils:		
	22 to 26	0.40 to 0.49
• Clean gravel, gravel-sand mixture, well-graded rock fill with spalls	17 to 22	0.31 to 0.40
• Clean sand, silty sand-gravel mixture, single-size hard rock fill	+ 17	0.31
• Silty sand, gravel or sand mixed with silt or clay	·14	0.25
• Fine sandy silt, nonplastic silt		
Various structural materials:		
• Masonry on masonry, igneous and metamorphic rocks:		
• dressed soft rock on dressed soft rock	35	0.70
• dressed hard rock on dressed soft rock	33	0.65
o dressed hard rock on dressed hard rock	29	0,55
Masonry on wood in direction of cross grain	26	0.49
• Steel on steel at sheet pile interlocks	17	0.31

Table 3.11.5.3-1—Friction Angle for Dissimilar Materials (U.S. Department of the Navy, 1982a)

3.11.5.4—Passive Lateral Earth Pressure Coefficient, k_p

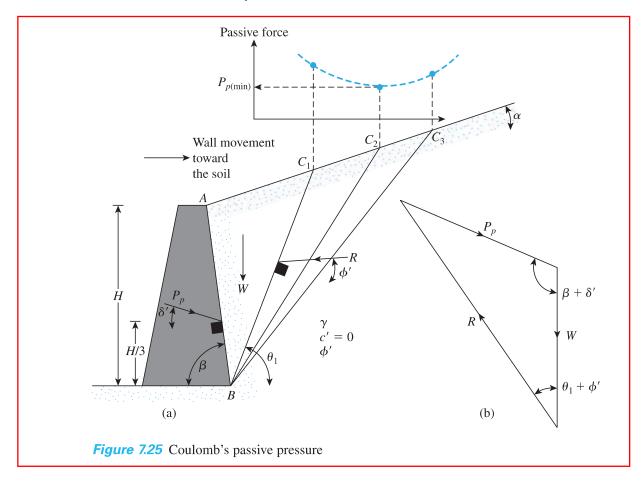
For noncohesive soils, values of the coefficient of passive lateral earth pressure may be taken from Figure 3.11.5.4-1 for the case of a sloping or vertical wall with a horizontal backfill or from Figure 3.11.5.4-2 for the case of a vertical wall and sloping backfill. For conditions that deviate from those described in Figures 3.11.5.4-1 and 3.11.5.4-2, the passive pressure may be calculated by using a trial procedure based on wedge theory, e.g., see Terzaghi et al. (1996). When wedge theory is used, the \limiting value of the wall friction angle should not be taken larger than one-half the angle of internal friction, ϕ_f .

For cohesive soils, passive pressures may be estimated by:

C3.11.5.4

The movement required to mobilize passive pressure is approximately 10.0 times as large as the movement needed to induce earth pressure to the active values. The movement required to mobilize full passive pressure in loose sand is approximately five percent of the height of the face on which the passive pressure acts. For dense sand, the movement required to mobilize full passive pressure is smaller than five percent of the height of the face on which the passive pressure acts, and five percent represents a conservative estimate of the movement required to mobilize the full passive pressure. For poorly compacted cohesive soils, the movement required to mobilize full passive pressure is larger than five percent of the height of the face on which the pressure acts.

Table 7.9 (Continued) c' /γz						
ϕ' (deg)	α (deg)	0.025	0.050	0.100	0,500	
30	0	3.087	3.173	3.346	4.732	
	5	3.042	3.129	3.303	4.674	
	10	2.907	2.996	3.174	4.579	
	15	2.684	2.777	2.961	4.394	


7.12

Coulomb's Passive Earth Pressure

Coulomb (1776) also presented an analysis for determining the passive earth pressure (i.e., when the wall moves *into* the soil mass) for walls possessing friction (δ' = angle of wall friction) and retaining a granular backfill material similar to that discussed in Section 7.5.

To understand the determination of Coulomb's passive force, P_p , consider the wall shown in Figure 7.25a. As in the case of active pressure, Coulomb assumed that the potential failure surface in soil is a plane. For a trial failure wedge of soil, such as ABC_1 , the forces per unit length of the wall acting on the wedge are

- 1. The weight of the wedge, W
- 2. The resultant, R, of the normal and shear forces on the plane BC_1 , and
- 3. The passive force, P_p

	δ' (deg)				
$oldsymbol{\phi}'$ (deg)	0	5	10	15	20
15	1.698	1.900	2.130	2.405	2.735
20	2.040	2.313	2.636	3.030	3.525
25	2.464	2.830	3.286	3.855	4.597
30	3.000	3.506	4.143	4.977	6.105
35	3.690	4.390	5.310	6.854	8.324
40	4.600	5.590	6.946	8.870	11.772

Table 7.10	Values of K	, [from Eq.	(7.71)] for β	$= 90^{\circ}$ and $\alpha = 0^{\circ}$
------------	-------------	-------------	------------------------	---

Figure 7.25b shows the force triangle at equilibrium for the trial wedge ABC_1 . From this force triangle, the value of P_p can be determined, because the direction of all three forces and the magnitude of one force are known.

Similar force triangles for several trial wedges, such as ABC_1 , ABC_2 , ABC_3 , ..., can be constructed, and the corresponding values of P_p can be determined. The top part of Figure 7.25a shows the nature of variation of the P_p values for different wedges. The *minimum value of* P_p in this diagram is *Coulomb's passive force*, mathematically expressed as

$$P_p = \frac{1}{2}\gamma H^2 K_p \tag{7.70}$$

where

7.13

$$K_{p} = \text{Coulomb's passive pressure coefficient}$$

$$= \frac{\sin^{2}(\beta - \phi')}{\sin^{2}\beta \sin (\beta + \delta') \left[1 - \sqrt{\frac{\sin (\phi' + \delta')\sin (\phi' + \alpha)}{\sin (\beta + \delta')\sin (\beta + \alpha)}}\right]^{2}}$$
(7.71)

The values of the passive pressure coefficient, K_p , for various values of ϕ' and δ' are given in Table 7.10 ($\beta = 90^\circ, \alpha = 0^\circ$).

Note that the resultant passive force, P_p , will act at a distance H/3 from the bottom of the wall and will be inclined at an angle δ' to the normal drawn to the back face of the wall.

Comments on the Failure Surface Assumption for Coulomb's Pressure Calculations

Coulomb's pressure calculation methods for active and passive pressure have been discussed in Sections 7.5 and 7.12. The fundamental assumption in these analyses is the acceptance of *plane failure surface*. However, for walls with friction, this assumption does not hold in practice. The nature of *actual* failure surface in the soil mass for active and passive pressure is shown in Figure 7.26a and b, respectively (for a vertical wall with a horizontal backfill). Note that the failure surface *BC* is curved and that the failure surface *CD* is a plane.

Although the actual failure surface in soil for the case of active pressure is somewhat different from that assumed in the calculation of the Coulomb pressure, the results are not greatly different. However, in the case of passive pressure, as the value of δ' increases, Coulomb's At this depth, that is z = 2 m, for the bottom soil layer

$$\sigma'_{p} = \sigma'_{o}K_{p(2)} + 2c'_{2}\sqrt{K_{p(2)}} = 31.44(2.56) + 2(10)\sqrt{2.56}$$
$$= 80.49 + 32 = 112.49 \text{ kN/m}^{2}$$

Again, at z = 3 m,

$$\sigma'_{o} = (15.72)(2) + (\gamma_{sat} - \gamma_{w})(1)$$

= 31.44 + (18.86 - 9.81)(1) = 40.49 kN/m²

Hence,

$$\sigma'_{p} = \sigma'_{o}K_{p(2)} + 2c'_{2}\sqrt{K_{p(2)}} = 40.49(2.56) + (2)(10)(1.6)$$

= 135.65 kN/m²

Note that, because a water table is present, the hydrostatic stress, u, also has to be taken into consideration. For z = 0 to 2 m, u = 0; z = 3 m, $u = (1)(\gamma_w) = 9.81$ kN/m².

The passive pressure diagram is plotted in Figure 6.24b. The passive force per unit length of the wall can be determined from the area of the pressure diagram as follows:

Area no.	Area	
1	$(\frac{1}{2})$ (2)(94.32)	= 94.32
2	(112.49)(1)	= 112.49
3	$\left(\frac{1}{2}\right)(1)(135.65 - 112.49)$	= 11.58
4	$(\frac{1}{2})$ (9.81)(1)	= 4.905
		$P_P \approx 223.3 \text{ kN/m}$

7.11

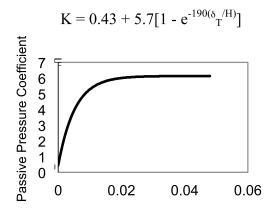
Rankine Passive Earth Pressure: Vertical Backface and Inclined Backfill

Granular Soil

For a frictionless vertical retaining wall (Figure 7.10) with a granular backfill (c' = 0), the Rankine passive pressure at any depth can be determined in a manner similar to that done in the case of active pressure in Section 7.4. The pressure is

$$\sigma_p' = \gamma z K_p \tag{7.65}$$

and the passive force is


$$P_p = \frac{1}{2}\gamma H^2 K_p \tag{7.66}$$

where

$$K_p = \cos \alpha \frac{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \phi'}}{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \phi'}}$$
(7.67)

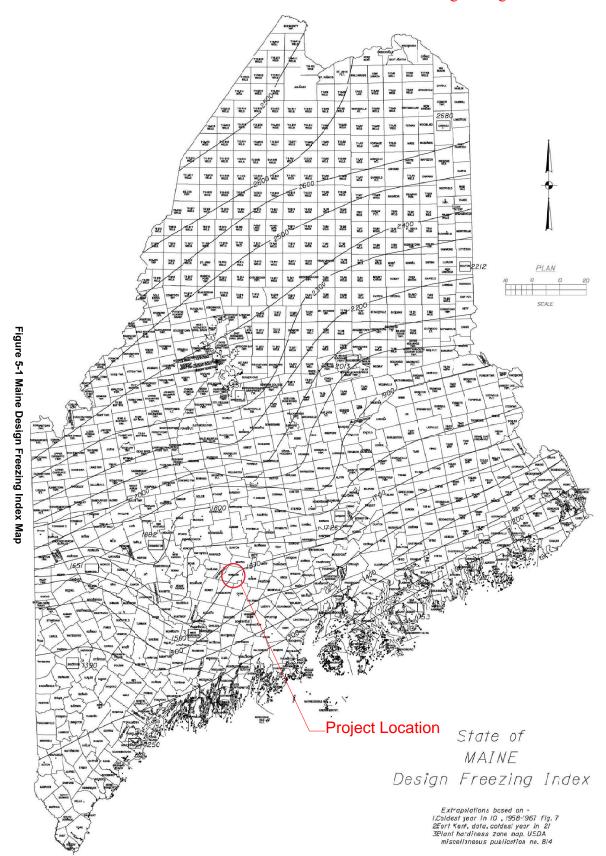
using compacted gravel borrow backfill shall be estimated using the equation:

Relative Wall Displacement

Figure 3.10.8-1: Plot of Passive Pressure Coefficient, K, vs. Relative Wall Displacement, δ_T/H.

The simplified approach may be used to calculate moments and shears in the abutment walls, assuming the abutment wall acting as a simple span between piles and then taking 80% of simple span moments to account for continuity. Shears may be taken equal to simple span shears. Due to the relatively large dimensions of the abutment walls, minimum reinforcement is usually sufficient to satisfy the strength requirements.

The longitudinal reinforcement of the pile cap shown in Chapter 12 of Part II of this Bridge Manual represents an upper-bound for the required reinforcement assuming the girders are located at the positions that produce maximum effects on the pile cap and assuming a conservative value of other dead loads on the abutment wall.


Stirrups intended to resist horizontal shear forces acting on the pile cap due to soil passive pressure shall be provided as shown in Part II of this Bridge Manual.

L-shaped connection reinforcing bars indicated in the standard drawings of Chapter 12 of Part II and Chapter 2 of Part III of this Bridge Manual shall be provided to transfer the maximum expected connection moment between the abutment and the superstructure. These bars shall be #6 @ 9" for girders up to 8 feet deep. For deeper girders they shall be designed. The vertical leg of the connection bars shall be placed as close as practical to the back face of the abutment. The horizontal leg shall be extended into the deck beyond the inside face of the abutment diaphragm at the elevation of the deck top longitudinal reinforcement for a length equal to 10% of the span plus the development length, for simple span bridges. For continuous span bridges the bars shall be extended to 10% of the end span plus the development length.

Refer to Chapter 12 of Part II and Chapter 2 of Part III of this Manual for more information on the integral abutment reinforcement.

Frost Depth

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table, BDG Section 5.2.1. From Design Freezing Index Map: Winslow, Maine DFI = 1600 degree-days. Case 1 - fine grained fill soils W=25% (BB-WPPB-101, 1D). Case 2 - coarse grained granular fill soils W=20% (BB-WPPB-103, 1D) Depth of Frost Penetration - Case 1 For DFI = 1600 at w=20% d₁ := 51.9in at w=30% $d_2 := 46.9in$ Depth of Frost Penetration - Case 2 $\mathbf{d} \coloneqq \frac{\mathbf{d}_2 + \mathbf{d}_1}{2}$ $d = 49.4 \cdot in$ $d = 4.1 \cdot ft$ For DFI = 1600 at w=20% $d_3 := 70.2in$ $d_3 = 5.85 ft$ Recommend Depth of Frost Penetration - Case 2 $d_3=70.2\!\cdot\!in\qquad \qquad d_3=5.9\!\cdot\!ft$

5.2 General

MaineDOT Bridge Design Guide

5.2.1 Frost

Any foundation placed on seasonally frozen soils must be embedded below the depth of frost penetration to provide adequate frost protection and to minimize the potential for freeze/thaw movements. Fine-grained soils with low cohesion tend to be most frost susceptible. Soils containing a high percentage of particles smaller than the No. 200 sieve also tend to promote frost penetration.

In order to estimate the depth of frost penetration at a site, Table 5-1 has been developed using the Modified Berggren equation and Figure 5-1 Maine Design Freezing Index Map. The use of Table 5-1 assumes site specific, uniform soil conditions where the Geotechnical Designer has evaluated subsurface conditions. Coarse-grained soils are defined as soils with sand as the major constituent. Fine-grained soils are those having silt and/or clay as the major constituent. If the make-up of the soil is not easily discerned, consult the Geotechnical Designer for assistance. In the event that specific site soil conditions vary, the depth of frost penetration should be calculated by the Geotechnical Designer.

Design	Frost Penetration (in)						
Freezing	Coarse Grained			Fine Grained			
Index	w=10%	w=20%	w=30%	w=10%	w=20%	w=30%	
1000	66.3	55.0	47.5	47.1	40.7	36.9	
1100	69.8	57.8	49.8	49.6	42.7	38.7	
1200	73.1	60.4	52.0	51.9	44.7	40.5	
1300	76.3	63.0	54.3	54.2	46.6	42.2	
1400	79.2	65.5	56.4	56.3	48.5	43.9	
1500	82.1	67.9	58,4	58.3	50.2	45.4	
1600	84.8	70.2	60.3	60.2	51.9	46.9	
1700	87.5	72.4	62.2	62.2	53.5	48.4	
1800	90.1	74.5	64.0	64.0	55.1	49.8	
1900	92.6	76.6	65.7	65.8	56.7	51.1	
2000	95.1	78.7	67.5	67.6	58.2	52.5	
2100	97.6	80.7	69.2	69.3	59.7	53.8	
2200	100.0	82.6	70.8	71.0	61.1	55.1	
2300	102.3	84.5	72.4	72.7	62.5	56.4	
2400	104.6	86.4	74.0	74.3	63.9	57.6	
2500	106.9	88.2	75.6	75.9	65.2	58.8	
2600	109.1	89.9	77.1	77.5	66.5	60.0	

Table 5-1 Depth of Frost Penetration

Seismic Parameters

BB-WPPB-101						
Depth	N ₆₀	di	di/N			
5	13	11	0.85			
25	1	25	25.00			
35	28	4	0.14			
39.8	100	60.0	0.60			
SUM		100	26.59			
		di/di/N	3.76			

BB-WPPB-102, 103						
Depth	N ₆₀	di	di/N			
5	15	14	0.93			
10	9	4	0.44			
15	1	11	11.00			
30	24	4	0.17			
33	100	67	0.67			
SUM		100	13.21			
		di/di/N	7 57			

di/di/N 7.57

SUM Nav. 5.66

N_{av}. < 15 bpf Conclusion: Site Class E

Site Classification per LRFD Table C3.10.3.1-1 - Method B

Winslow Fish Bridge #0509 WIN 22268.00 June 6, 2023

Seismic Parameters

Conterminous 48 States 2007 AASHTO Bridge Design Guidelines AASHTO Spectrum for 7% PE in 75 years Latitude = 44.569927 Longitude = -069.563583 Site Class B Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.075 PGA - Site Class B 0.2 0.157 Ss - Site Class B 1.0 0.046 S1 - Site Class B

Conterminous 48 States 2007 AASHTO Bridge Design Guidelines Spectral Response Accelerations SDs and SD1 Latitude = 44.569927 Longitude = -069.563583 As = FpgaPGA, SDs = FaSs, and SD1 = FvS1 Site Class E - Fpga = 2.50, Fa = 2.50, Fv = 3.50 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.187 As - Site Class E 0.2 0.394 SDs - Site Class E 1.0 0.160 SD1 - Site Class E