
Lubec Breakwater

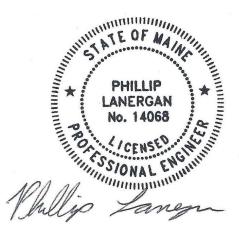
Subsurface Geotechnical Investigation Report

Submitted to: Maine Department of Transportation

Submitted by: Jacobs Engineering Group Inc. 120 St. James Avenue 5th Floor Boston, MA 02166

August 30, 2024

Project No:	E2X97600
Document Title:	Lubec Breakwater – Subsurface Geotechnical Investigation Report
Revision:	3
Date:	August 30, 2024
Client Name:	Maine Department of Transportation
Project Manager:	Erika Rosenstein
Author:	Michael Kullmann / Sam Nauss
File Name:	Subsurface Geotechnical Investigation Report – Lubec Breakwater.docx
la sala En sin suita d	


Jacobs Engineering Group Inc. 120 St. James Avenue 5th Floor Boston, MA 02166

www.jacobs.com

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Revision	Date	Description	Author	Checked	Reviewed	Approved
0	09/28/23	Preliminary Geotechnical Report	МК	SN	PL	ER
1	12/1/23	Interim Geotechnical Data Report	МК	SN	PL	ER
2	05/17/24	Subsurface Geotechnical Investigation Report - Draft	МК	SY, SN	PL	ER
3	08/30/24	Subsurface Geotechnical Investigation Report - Final	МК	SY, SN	PL	ER

Document history and status

i

Contents

Execut	ive Summary	iv
1.	Introduction	1
2.	Site Description	2
3.	Project Description	3
4.	Geotechnical Investigation	4
4.1	Overview	4
4.2	On-Water Boring Exploration	4
4.3	Test Pit Exploration	6
4.4	Haley & Aldrich Plan-Level Geotechnical Memorandum (Nov 2020)	6
5.	Geology and Seismicity	8
5.1	Area Geology	8
5.2	Seismic Data	8
6.	Subsurface Conditions	9
6.1	General	9
6.2	Subsurface Profile	9
6.2.1	Stratum 1 – Organic Silt	9
6.2.2	Stratum 2 – Clay and Silt	9
6.2.3	Stratum 3 – Glacial Till	9
6.2.4	Stratum 4 – Bedrock	9
6.3	Haley & Aldrich Subsurface Investigation Data	.10
6.4	Water Levels	. 12
7.	Laboratory Testing	. 13
7.1	Overview	.13
8.	Geotechnical Design Parameters	. 14
9.	Geotechnical Evaluations and Design Recommendations	. 15
9.1	Rubble-Mound Breakwater	.15
9.2	Pile-Supported Platform	.20
9.2.1	Axial Capacity of the Piles Supporting the Platform	.21
9.2.2	Lateral Resistance of the Pile Supporting the Platform	.23
9.3	Floating Dock Guide Piles	.23
10.	Construction Support Recommendations	. 25
10.1	Onshore Earthwork	.25
10.1.1	Subgrade Preparation and Proof Rolling	.25
10.1.2	Granular Fill Material Installation	.25
10.1.3	Common Fill Material Installation	.25
10.1.4	Excavation	.26

Jacobs

10.1.5	Support of Excavation	26
10.1.6	Dewatering	26
10.2	Rubble Mound Breakwater	.27
10.2.1	Material Specification	27
10.2.1.	1 Rock Armor	27
10.2.1.	2 Underlayer/Filter Rock and Core Material	27
10.3	Pile-Supported Platform	28
10.3.1	Pile Driving	28
10.3.2	Rock Socket Construction	28
11.	Limitations	. 29

APPENDICES

Appendix A. Boring Location Plan
Appendix B. Boring Logs
Appendix C. Subsurface Profiles
Appendix D. Haley & Aldrich Geotechnical Design Memorandum
Appendix E. Laboratory Test Results
Appendix F. Rubble-Mound Breakwater Slope Stability
Appendix G. Rubble-Mound Breakwater Settlement
Appendix H. Rock Socket Axial Capacity Evaluation

Executive Summary

Jacobs Engineering Group Inc. (Jacobs) is performing geotechnical engineering services for the Maine Department of Transportation (MaineDOT) as part of the design and construction of a breakwater structure in Johnson Bay, Lubec, Maine. The proposed breakwater will offer local fisherman improved marine infrastructure to facilitate their vessels and fishing economy. The breakwater will be made from two types of structures: a rubble-mound breakwater and a pile-supported platform with a precast concrete wave screen. The project also includes construction of pile guided floats that will be used for berthing the fishing vessels, and a ramp for placement and removal of the fishing vessels.

Two geotechnical investigations were performed to explore the subsurface soil conditions on-site and determine the nature and competency of the subsurface materials to support the breakwater structures. A preliminary investigation was performed in July 2023 for the initial breakwater layout and a supplemental investigation was performed in February 2024 after the breakwater layout was finalized. In total, fourteen (14) water borings and nine (9) onshore test pits were conducted in conjunction with geotechnical laboratory testing on representative soil and rock samples. Data collected from the two investigations were combined with data documented in the Haley and Aldrich (H&A) Geotechnical Design Memorandum from a subsurface investigation that was performed in September of 2020. Geotechnical evaluations were completed by assessing the subsurface soil conditions at the site for the purpose of developing foundation support for the proposed breakwater systems.

This report includes detailed information related to the subsurface geotechnical investigations conducted on site. The subsurface investigations consisted of drilling borings using a drill rig atop a floating barge and collection of soil and rock samples. Field data such as SPT N-values, soil and rock sample collection/description along with laboratory test data gathered from field investigation, were used to determine the engineering properties of the overburden soil and bedrock to discern the most feasible breakwater rubble-mound geometry and pile rock socket lengths.

Subsurface conditions at the project site consisted of very soft Organic Silt, underlain by very soft to very stiff Clay and Silt with varying amounts of sand and gravel. Below the Clay and Silt layer is a loose to very dense Glacial Till layer composed mostly of sand with varying amounts of gravel, clay, and silt. The natural overburden is underlain with Quoddy Formation siliceous shale, sandstone, and tuff. The bedrock is defined as moderately hard, extremely close to moderately fractured, and completely weathered to fresh rock.

This report also includes geotechnical evaluations performed by Jacobs to provide recommendations for the rubble-mound breakwater and pile-supported platform structures. Evaluations of the rubble mound breakwater include global stability analyses performed using the software Slide (developed by Rocscience) and settlement analyses performed using the software Settle3 (developed by Rocscience). It was determined that the proposed geometry of the rubble mound breakwater is stable against slope stability for both static and seismic loading conditions. Settlements of the rubble mound were predicted to be between 18 and 25 inches. These large settlements are mainly due to the presence of compressible, fine-grained material at seabed under the breakwater. Although these settlements are consolidation settlements, it is anticipated that they will mostly occur during the construction of the breakwater due to the rock displacing the soft sediment, and can be corrected by placement of additional armor stone.

Axial and lateral capacity analyses were performed for piles supporting the wave screen platform portion of the breakwater. Rock socketed steel pipe piles are required because the subsurface investigations indicated soft overburden soils overlying shallow bedrock. Based on unconfined compression strength data collected on the rock core samples and loads provided from Jacobs' Structural engineering team, rock socket lengths were determined to range from 8 ft to 25 ft. Pile lateral resistance was estimated using LPILE by Ensoft and presented in terms of a point of fixity for the structural team to accurately model the pile end conditions in STAAD.

Construction recommendations including onshore subgrade preparation, excavating, and backfilling, as well as pile driving and rock socket construction recommendations are also included in this report.

1. Introduction

The State of Maine Department of Transportation (MaineDOT) has retained Jacobs Engineering Group Inc. (Jacobs) for engineering services associated with the construction of the Lubec Breakwater. The Lubec Breakwater will be a new breakwater located in Johnson Bay, within the Town of Lubec, Washington County, Maine. As part of the scope of the project, Jacobs conducted two geotechnical investigation campaigns, in July of 2023 and in February of 2024, to support providing geotechnical design and construction recommendations for the proposed breakwater design.

This Subsurface Geotechnical Investigation Report summarizes the findings from the subsurface geotechnical investigations and geotechnical related recommendations for the design and construction of the Lubec Breakwater. The subsurface investigations included two separate field investigations: a preliminary phase conducted at the beginning of the project in early stages of design, and a final phase conducted once the final breakwater layout was determined. Field explorations included advancing fourteen (14) on-water soil test borings and nine (9) on-shore test pits. The results of these investigations will be combined with pile probe information collected as part of a Haley and Aldrich plan-level geotechnical investigation. Laboratory testing was also conducted on the soil and rock samples collected from the 14 on-water borings. Specific objectives of the geotechnical investigations include:

- Confirm and profile the types and depths of subsurface soils at the site;
- Characterize the encountered soils on the basis of the Burmister Classification System, Unified Soil Classification System (USCS), and the Munsell Color System, and determine the soils' index properties, including particle size distribution and plasticity;
- Define the top of rock elevation and estimate the bedrock properties for breakwater design;
- Provide design and engineering recommendations; and
- Provide construction recommendations.

The purpose of this report is to provide evaluations and recommendations based on the results of the geotechnical investigations performed at the site.

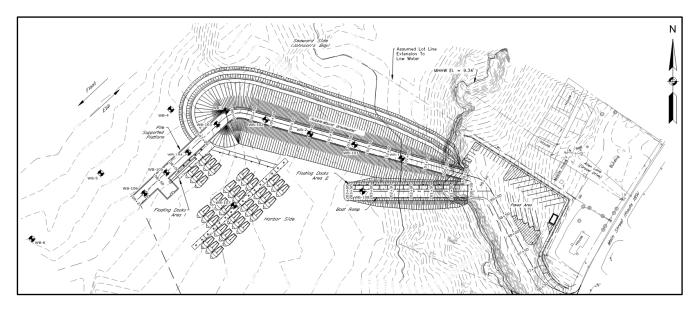
2. Site Description

The proposed Lubec Breakwater is located in the town of Lubec, Washington County, Maine. The site is west of the Main Street and South Street intersection, and southwest of Allen Lane. Lubec is known for its fishing industry which has been heavily impacted by environmental factors such as strong winds, a large tidal differential, and currents. As such, the town is in need of breakwater infrastructure to allow fisherman safe launching, mooring, and berthing of vessels.

The site surface elevations range from about 47 ft to 9 ft (NAVD 88) along the shore towards Johnson Bay. All elevations in this report refer to NAVD 88 Datum. The location of the project site is shown in Figure 2-1.

Figure 2-1. Lubec Breakwater Site Location

This geotechnical investigation was undertaken at locations highlighted in support of the Project described below in Section 3.


3. Project Description

The project consists of the construction of a new breakwater structure extending out into Johnson Bay, west of the Lubec shoreline. The breakwater will be designed to provide a safe harbor for launching, recovering, and tie up of 35 vessels, up to 40 ft in length. The proposed breakwater structure is approximately 925 ft in length with a top elevation of 23 ft above the North American Vertical Datum of 1988 (NAVD88). The structure will extend approximately 600 ft from land before turning at a 45° angle heading towards the southwest direction. From there, the structure will extend an additional 325 ft.

The first leg of the breakwater will be a rubble-mound embankment-type structure. The rubble-mound will be composed of three layers of rock armor stone. The structure is proposed to slope at 2H:1V towards the seaward side and 1.5H:1V towards the harbor side. The second leg of the breakwater will be a pile-supported platform with a precast concrete wave screen panel to protect the harbor from waves. The breakwater will be designed to have a 2-way access road along the crest and platform. This road can be used for transporting catch as well as for recreation. The access road will be provided with a concrete parapet wall for protection, and a turning area. The designed crest level will be sufficient for pedestrians and vehicles to use the access road safely during 1-year return period storms. The access road will be safe from overtopping waves only for vehicles during a 100-year return period storm.

In support of the final design of the Lubec Breakwater, Jacobs has conducted two geotechnical investigations, consisting of a total of fourteen (14) water borings located in Johnson Bay and nine (9) test pits on the adjacent shoreline. The geotechnical data collected during the investigation will provide information for the design of the breakwater structure. Laboratory testing was undertaken on representative soil and rock samples as part of the investigation. Boring locations for the geotechnical investigations are shown on Figure 3-1.

A previous geotechnical investigation program was performed at the project site by Haley & Aldrich on September 28th and 29th of 2020 as part of a planning level geotechnical design evaluation. The Haley & Aldrich investigation consisted of twenty-two (22) pile probes. The probes were located within the original footprint of proposed breakwater structure as well as within the toe of slope for the rubble-mound portion.

A detailed boring location and test pit plan is included in Appendix A.

4. Geotechnical Investigation

4.1 Overview

Two geotechnical investigations were conducted to support the Lubec Breakwater project. The first investigation was performed from July 10th to July 17th of 2023 during the preliminary stages of design. After numerous iterations of the breakwater were evaluated, and its layout was finalized; a second investigation was performed from February 22nd to March 6th of 2024 mainly to address the revised layout. Between the two investigations, a total of fourteen (14) water borings, identified as WB-1 to WB-6 (initial investigation) and WB-101 to WB-108 (final investigation), were performed. Borings WB-1, WB-101, WB-2, WB-102 and WB-3 represent subsurface soil information beneath the rubble-mound embankment section of the breakwater. These borings were advanced to top of rock. Where rock was encountered, 5 ft of rock was cored. Borings WB-103, WB-104, WB-105, and WB-106 represent the subsurface soil information beneath the pile-supported platform section of the breakwater. These borings were advanced to top of rock, wherein 30 ft of rock was cored thereafter. Borings WB-4, WB-5, and WB-6 were advanced at locations for a previous iteration of the breakwater layout and were therefore given less consideration when conducting the final geotechnical evaluations. These borings were also advanced to top of rock, wherein 30 ft of rock was advanced to represent the subsurface conditions at the floating docks and WB-108 was advanced to represent the subsurface conditions at the boat launch ramp. All borings were performed by New England Boring and logged by a Jacobs Geologist.

In addition to the borings, nine test pits were excavated onshore adjacent to the breakwater. The test pits were conducted under the supervision of MaineDOT in support of environmental permitting needs for the Project. The data collected during the test pit investigation will be used to identify the top of bedrock and for the proposed parking lot design. This data will also assist in determining the quantity of overburden soil and bedrock required to be removed as part of the cut and fill operations.

4.2 On-Water Boring Exploration

Field activities associated with the geotechnical investigations were conducted with the general objective of defining the subsurface soil profile at the site, collecting disturbed/undisturbed samples and rock cores for laboratory testing, and identifying the depth from mudline to bedrock level. Actual borings depths are noted in Table 4-1.

Boring ID	Proposed Structure	Approx. Mudline Elev. (ft, NAVD 88)	Approx. Bedrock Elev. (ft, NAVD 88)	Total Borehole Depth (ft)
WB-1	Rubble-Mound	-12.5	-45.5	40.3
WB-2	Rubble-Mound	-17.0	-22.7	12
WB-3	Rubble-Mound	-24.4	-29.4	10
WB-4	N/A	-27.7	-38.5	44
WB-5	N/A	-28.1	-69.6	75
WB-6	N/A	-28.6	-99.5	105
WB-101	Rubble-Mound	-14.8	-31.8	21.6
WB-102	Rubble-Mound	-19.1	-25.1	11
WB-103	Pile-Supported Platform	-23.2	-29.7	37
WB-104	Pile-Supported Platform	-24.8	-34.3	39.5
WB-105	Pile-Supported Platform	-24.8	-34.8	41
WB-106	Pile-Supported Platform	-25.3	-39.3	44
WB-107	Floating Docks	-20.5	-39.0	48.5
WB-108	Boat Launch Ramp	-15.3	-44.3	34.5

Table 4-1. Boring Drilling Schedule

All borings were advanced using mud-rotary drilling techniques with a Gefco Stratastar 5 drill rig mounted with an automatic hammer mounted on a barge. Soil samples were obtained via a 24-inch long split-spoon sampler (2-inch O.D., 1-3/8-inch I.D.), driven by a 140-pound automatic hammer free falling 30 inches. The number of blows required for penetration of the middle 12 inches of the sampler is the Standard Penetration Test (SPT) N-value (blows per foot). Soil samples were obtained by SPT testing in accordance with ASTM D1586, "Standard Test Method for Penetration Testing and Split-Barrel Sampling of Soils". SPT testing was performed continuously to depths of approximately 12 feet and at 5-foot intervals thereafter until bedrock was encountered. Where soft cohesive soils were encountered, select undisturbed samples were acquired with a 3 in O.D. thin-walled Shelby Tube penetrating 24 inches in accordance with ASTM D1587, "Standard Practice for Thin-Walled Tube Sampling of Fine-Grained Soils for Geotechnical Purpose". Rock coring started once refusal was encountered, and was performed in accordance ASTM D2113, "Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration". Rock coring was performed using an NX size double core barrel to collect rock core samples.

All borings were advanced to the scheduled depths noted in Table 4-1.

Soil samples were visually classified in the field at the time of sampling by Jacobs personnel and described on borings logs using the Burmister System of Soil Identification (Burmister 1949). The Unified Soil Classification System symbols were also provided. Additionally, soil color was classified using the Munsell Color System notation to distinguish color chroma, value, and hue. Samples from the split-spoons were placed in appropriate jar containers for storage and transported to the laboratory for testing and detailed identification.

The boring logs, presenting the subsurface soil descriptions, type of sampling used, and additional field data are presented in Appendix B. Additionally, subsurface profiles depicting the subsurface strata are included in Appendix C.

4.3 Test Pit Exploration

Nine test pits, identified as TP-1 through TP-9, were excavated using a backhoe on land at the parking lot area adjacent to the proposed breakwater location. The depths of the test pits ranged from 5.5 feet to 10.5 feet below existing grade. The test pits were performed to support environmental permitting needs of the Project and also to identify the top of rock at the shoreline and assist the civil designers with the ideal cut and fill operations, and the required pavement section for the proposed parking lot. Table 4-2 below summarizes the test pits performed. The test pit locations are presented in Appendix A.

Test Pit ID	Existing Ground Surface Elev. (ft, NAVD 88)	Approx. Bedrock Elev.	Total Borehole Depth (ft)
TP-1	47.78	Not Encountered	10.0
TP-2	45.80	38.30	7.5
TP-3	37.47	31.97	5.5
TP-4	38.91	Not Encountered	10.5
TP-5	37.21	27.21	10.0
TP-6	31.97	21.97	10.0
TP-7	29.64	21.64	8.0
TP-8	26.03	16.53	9.5
TP-9	29.66	23.66	6.0

Table 4-2. Test Pit Schedule

4.4 Haley & Aldrich Plan-Level Geotechnical Memorandum (Nov 2020)

An initial subsurface investigation was conducted by Haley & Aldrich in September of 2020. The field investigation consisted of 22 pile probes, designated HA20-P1 through HA20-P22, that were used to collect subsurface information.

The pile probes were completed by Prock Marine Company, Inc (Prock) of Rockland, Maine. Prock utilized a Link-Belt LS-518 crawler crane and an H&M Model 3208T vibratory hammer placed on an approximate 50 ft by 120 ft spud barge. An HP12x53 steel H-pile approximately 55 ft long was used to probe each location.

The pile probes were advanced using the vibratory hammer to depths ranging from approximately 1 to 30 ft below estimated mudline and were terminated into dense/hard soil or refusal. The presence and thickness of soil layers and apparent refusal surface were judged by Haley & Aldrich based on visual observation of pile probe advancement and rate of penetration. Pile probe location plan is presented in Figure 4-1. However, note that the layout investigated was the initial footprint of the breakwater, which has since been revised. Therefore, the collected information is more applicable to the rubble mound breakwater portion of the revised structure where the footprint still overlaps the probes.

A separate Geotechnical Design Memorandum documenting the findings from the Haley & Aldrich investigation is provided in Appendix D.

Jacobs

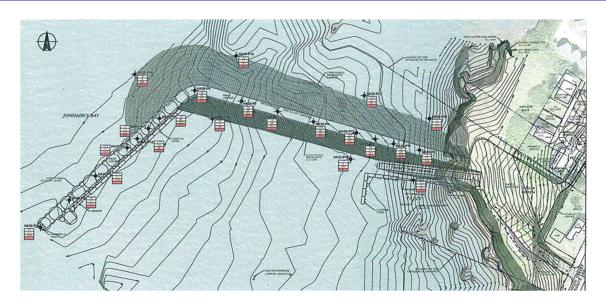


Figure 4-1. Haley & Aldrich Pile Probe Location Plan (from Haley & Aldrich 2020)

5. Geology and Seismicity

5.1 Area Geology

The Lubec Breakwater site is located within the Silurian Period aged Quoddy Formation. The Quoddy Formation is composed primarily of dark gray to black, fine grained siliceous siltstone, argillite, and shale with laminated to very thinly bedded, steeply dipping to vertical bedding planes. Minor tuff deposits and diabase mafic intrusions are also present within the Quoddy Formation. The Quoddy shale is prominently exposed in outcrops across Johnson Bay on Campobello Island, New Brunswick, Canada. Glaciomarine sediment comprising of layered fines and glacial till moraine deposits overly bedrock, and multiple northeast trending faults cut through the project site and Johnson Bay.

Figure 5-1. Quoddy Formation, Campobello Island, New Brunswick, Canada

5.2 Seismic Data

The subsurface soils encountered within the site are generally medium stiff to very stiff clays and loose to dense/very dense granular soils overlying bedrock of the Quoddy formation. Therefore, the site can be considered as Seismic Site Class D. The following Seismic Parameters were derived for the site from ASCE 7-16:

PGA – 0.126g for bedrock level Design PGA – 0.130g for ground surface

 $\begin{array}{l} S_s = 0.222g \mbox{ for bedrock level} \\ S_1 = 0.062g \mbox{ for bedrock level} \\ F_{pga} = 1.548 \\ F_a = 1.6 \\ F_v = 2.4 \\ S_{DS} = 0.236 \mbox{ for ground surface} \\ S_{D1} = 0.099 \mbox{ for ground surface} \end{array}$

6. Subsurface Conditions

6.1 General

Detailed descriptions of the subsurface strata encountered in the borings are recorded on the individual boring logs included in Appendix B. The information includes sample depth, blow counts per 6-inches, and classification of individual samples in accordance with the Burmister Soil Classification Method. The Unified Soil Classification System (USCS) symbols are also provided. Colors were described in accordance with the Munsell Color System. Additionally, the encountered stratigraphy is provided on the boring logs.

6.2 Subsurface Profile

Four distinct layers were encountered and are described below in order of increasing depth.

6.2.1 Stratum 1 – Organic Silt

At the mudline, an Organic Silt layer is the prevalent surficial layer in all borings. The thickness of this layer ranges from 2 to 8 ft. The layer generally consisted of dark gray organic silt with varying amounts of sand. The SPT N-values within this layer generally ranged from 0 to 6 blows per foot, indicating a consistency of very soft to medium stiff. Due to its presence on the mudline, shells are found intermixed with the soil. Atterberg Limits performed on the organic silt indicated cohesive material with a Liquid Limit ranging from of 27% to 38%, Plastic Limits of 18% to 26%, and a Plasticity Index ranging from 6% to 15%.

6.2.2 Stratum 2 – Clay and Silt

This stratum was encountered immediately beneath the Organic Silt in all borings except for WB-3. This Clay and Silt layer consists of dark gray glaciomarine clay with varying amounts of silt, sand, and gravel. The thickness of this layer ranges from 2 to 38 ft. The SPT N-values within this layer generally ranged from 0 to 25 blows per foot, indicating a consistency of very soft to very stiff cohesive soil. Atterberg Limits performed on the Clay and Silt layer indicated low-plasticity clay with a Liquid Limits ranging from of 14% to 42%, Plastic Limits of 10% to 22%, and a Plasticity index of 4% to 25%.

6.2.3 Stratum 3 – Glacial Till

The glacial till layer is found beneath the Clay layer in all borings except WB-5. The till layer generally consists of coarse to fine, rounded to subangular dark gray gravel with varying amounts of silt, clay, and sand. The thickness of the till layer ranges from not present to 31 ft. The SPT N-values within this layer ranged from 9 blow per 12 inches to 100 blows over 6 inches indicating loose to very dense granular material. Particle Size Distribution tests performed on the till layer indicated a fines content ranging from 13.6% to 40.9%

6.2.4 Stratum 4 – Bedrock

Bedrock was encountered beneath the glacial till layer in all borings at depths ranging from 5 ft to 71.25 ft below mudline. The rock encountered at the site was predominantly medium gray to dark gray shale, sandstone, and tuff with calcite veining. The rock encountered at the rubble-mound breakwater was mostly shale, while the rock encountered at the revised pile-supported platform location is tuff.

The shale bedrock is laminated to thinly bedded, fine-grained, sedimentary rock and the rock cores were described as moderately hard, extremely close to moderately fractured, and ranged from completely weathered to fresh rock.

Vertical to highly steep bedding was prominent in most rock cores samples. Rock core recoveries of shale samples varied from 66% to 100%, and the Rock Quality Designation (RQD) ranged from 0% to 93%.

The tuff bedrock is massive, mafic intrusive rock and the rock cores were described as moderately hard, extremely to moderately fractured, and ranged from completely weathered to fresh rock. Shallow to steeply dipping joints with calcite veining were prominent in most rock cores samples. Rock core recoveries of tuff samples varied from 94% to 100%, and the Rock Quality Designation (RQD) ranged from 0% to 100%.

For rock cores classified as shale and sandstone, unconfined compressive strengths ranged from 828 psi to 9,043 psi. For rock cores classified as tuff, unconfined compressive strengths ranged from 3,818 psi to 22,085 psi.

6.3 Haley & Aldrich Subsurface Investigation Data

As part of the Haley & Aldrich geotechnical investigation, layer thickness and relative density was classified based on field observation of probe pile advancement. The classification was split up into "soft/loose" soils and "hard/dense" soils. Table 6-1 summarizes the classifications based on the pile probe advancement.

		Approxir	nate Strata Thickn	iess (ft) ¹		Approximate Probe Depth Below Mudline (ft, NAVD 88)	
Probe ID	Approx Mudline Elev. (ft, NAVD 88)	"Soft/Loose" Soil	"Hard/Dense" Soil	Total	Approximate Elev. Of Refusal (ft, NAVD 88) ²		
HA20-P1	-27.0	11.6	>21.0	>32.6		32.6	
HA20-P2	-28.0	8.7	>18.0	>26.7		26.7	
HA20-P3	-27.5	10.9	>15.0	>25.9		25.9	
HA20-P4	-27.5	8.3	>16.0	>24.3		24.3	
HA20-P5	-27.0	NE	11.2	12.8	-39.8	12.8	
HA20-P6	-26.0	NE	7.7	9.3	-35.3	9.3	
HA20-P7	-22.0	NE	9.2	8.1	-30.1	8.1	
HA20-P8	-19.0	NE	5.2	6.4	-25.4	6.4	
HA20-P9	-17.5	NE	2.5	1.6	-19.1	1.6	
HA20-P10	-15.5	NE	2.9	2.8	-18.3	2.8	
HA20-P11	-12.0	NE	20.5	22.6	-34.6	22.6	
HA20-P12	-27.5	6.4	24.0	31.8	-59.3	31.8	
HA20-P13	-27.0	7.5	12.5	21.9	-48.9	21.9	
HA20-P14	-30.0	8.0	9.5	17.5	-47.4	17.5	
HA20-P15	-19.0	1.1	0.0	1.6	-20.6	1.6	

		Approxir	nate Strata Thickn		Approximate		
Probe ID	Approx Mudline Elev. (ft, NAVD 88)	"Soft/Loose" Soil	"Hard/Dense" Soil	Total	 Approximate Elev. Of Refusal (ft, NAVD 88)² 	Probe Depth Below Mudline (ft, NAVD 88)	
HA20-P16	-25.0	6.0	1.5	6.1	-31.1	6.1	
HA20-P17	-11.5	4.0	4.5	11.0	-22.5	11.0	
HA20-P18	-17.0	6.0	6.5	12.2	-29.2	12.2	
HA20-P19	-14.0	3.7	11.0	15.4	-29.4	15.4	
HA20-P20	-5.0	0.5	11.5	12.9	-17.9	12.9	
HA20-P21	-7.0	1.5	13.6	17.0	-24.0	17.0	
HA20-P22	-7.5	1.5	10.0	14.9	-22.4	14.9	

2. Indicates probe not advanced deep enough to determine presence or thickness of stratum.

When comparing Jacobs boring investigation with Haley & Aldrich Pile probe pile investigation, the approximated elevation of bedrock from Jacobs' borings are relatively consistent with the elevation of refusal of Haley & Aldrich pile probes that are close in proximity to one another, especially when the bedrock was found to be relatively shallow. At locations where the bedrock is deep, the Haley & Aldrich probes were not very accurate due to the limitations of the method used for the investigation. Comparative bedrock elevations from both investigations are shown in Table 6-2. Borings WB-104 through WB-108 are not included in the table as no probes were conducted near those locations.

Jacobs Boring	Approx. Elevation of Top of Bedrock (ft, NAVD 88)	Haley & Aldrich Probes	Approx. Elevation of Refusal (ft, NAVD 88)
		HA20-P11	-34.6
		HA20-P19	-29.4
WB-1	-45.5	HA20-P20	-17.9
		HA20-P21	-24
		HA20-P22	-22.4
W/D 101	21.0	HA20-P18	-29.2
WB-101	-31.8	HA20-P17	-22.5
	22.7	HA20-P9	-19.1
WB-2	-22.7	HA20-P10	-18.3
		HA20-P7	-30.1
WB-102	-25.1	HA20-P8	-25.4
		HA20-P15	-20.6
WB-3 / WB-103	-29.4	HA20-P6	-35.3
		HA20-P5	-39.8
WB-4	-38.5	HA20-P13	-48.9
VVD-4	-38.5	HA20-P14	-47.5
		HA20-P16	-31.1

Jacobs Boring	Approx. Elevation of Top of Bedrock (ft, NAVD 88)	Haley & Aldrich Probes	Approx. Elevation of Refusal (ft, NAVD 88)
		HA20-P3	
WB-5	-69.6	HA20-P4	
		HA20-P12	-59.3
WB-6	-99.5	HA20-P1	
0-0	-99.5	HA20-P2	

6.4 Water Levels

E

Water level data from NOAA station (Station 841040 – Eastport, ME) is presented in Table 6-3.

Datum	Description	Elevation (ft, NAVD88)
Highest Observed Tide	Historic highest water level observed (04/10/2020 08:54)	14.44
мннw	Mean Higher-High Water	9.34
мнพ	Mean High Water	8.86
NAVD 88	North American Vertical Datum of 1988	0.00
MSL	Mean Sea Level	-0.23
MLW	Mean Low Water	-9.49
MLLW	Mean Lower-Low Water	-9.93
Lowest Observed Tide	Historic Lowest water level observed (08/09/1972 00:00)	-14.61

7. Laboratory Testing

7.1 Overview

The objective of the laboratory testing program was to obtain data for assessing the physical and mechanical properties of the site soils and rock encountered during drilling. The testing program was performed in general accordance with applicable ASTM standard test methods. The laboratories of Geotechnical Services, Inc. and Geotesting Express conducted testing on collected soil and rock samples. The tests and quantity of each test performed for the program are summarized in Table 7-1.

Test	ASTM Standard	Number of Test
Moisture Content	ASTM D2216	35
Atterberg Limits	ASTM D4318	27
Grain Size Analysis (Sieve Only)	ASTM D6913	6
Consolidation Test	ASTM D2435	5
Unconfined Compressive Strength (Soil)	ASTM D2166	3
Unconsolidated-Undrained Triaxial Compression	ASTM D2850	5
Unconfined Compressive Strength (Rock)	ASTM D7012	19

Table 7-1. Schedule of Laboratory Testing Program

Samples chosen for testing were selected by Jacobs for the purpose of supporting the design recommendations of the Lubec Breakwater structure. The laboratory testing program was conducted to finalize the field classification of the soils encountered, and was based on soil gradation and index testing, as well as for developing shear strength and consolidation data of cohesive soils to support the geotechnical design of the proposed structures. Compressive strength data of the bedrock was also collected under the laboratory testing program.

All laboratory test results on selected soil and rock samples are included in Appendix E.

8. Geotechnical Design Parameters

Engineering design parameters of the encountered soil and rock were determined based on subsurface geotechnical investigation data, laboratory tests, and published correlations or based on engineering judgement. SPT-N values along with the soils' physical properties, including gradation and index properties such as Liquid Limit, Plastic Limit, and moisture contents were used for correlation of engineering parameters. Rock core recovery, Rock Quality Designation (RQD), and rock core laboratory testing results were used to determine the on-site bedrock engineering properties.

Table 8-1 below provides generalized engineering parameters for the soil and rock strata encountered at the site. It is to note that these parameters are best estimates for strata encountered and conditions may slightly vary at different locations. Therefore, this table may be used in conjunction with the information provided in Sections 6 and 7 to establish the soil and rock parameters to be used in specific areas of the site.

Stratum	Total Unit Weight (pcf)	Effective Friction Angle, φ' (Degrees)	Effective Cohesion, c' (psf)	Undrained Shear Strength, S _u (psf)	Unconfined Compressive Strength, q _u (psi)
Organic Silt	90	22	0	200	-
Clay ²	110 – 125	24 - 30	0	300 – 1,000	-
Glacial Till	125	37	0	0	-
Decomposed to Weathered Bedrock (0% RQD)	145	45	0	0	-
Bedrock – Shale ³	150	-	-	-	800 - 9000
Bedrock – Tuff ³	170	-	-	-	4000 - 9000

Notes:

1. Undrained strength parameters are for short-term loading conditions. Effective strength parameters are for long-term (drained) loading conditions.

2. The clay layer varies across the site. Therefore, lower bound and upper bound engineering design parameters are provided. Individual boreholes and lab testing data shall be utilized when developing parameters for the clay layer at specific locations.

3. The lower and upper bound unconfined compressive strengths are provided for the bedrock strata.

9. Geotechnical Evaluations and Design Recommendations

The Lubec breakwater will be composed of two primary structures. The first leg of the breakwater, extending out perpendicular to the shoreline, will be a sloped rubble-mound embankment structure. The second leg of the breakwater will turn Southwest and be parallel with the shoreline and transition from the rubble-mound structure to a pile-supported platform with a precast wave screen panel. The proposed breakwater is depicted in Figure 9-1. In this section, a discussion is provided regarding the geotechnical design considerations and recommendations, which are based on the results from the subsurface investigation and subsequent analyses.

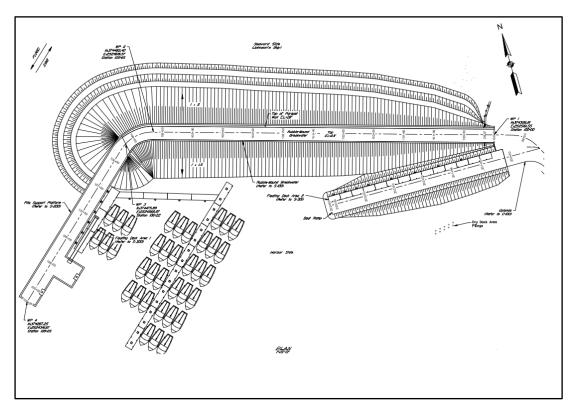


Figure 9-1. Lubec Breakwater Plan

9.1 Rubble-Mound Breakwater

The first leg of the breakwater is a rubble-mound structure composed of three different layers of varying rock sizes. In general, the rubble-mound will be made up of an outer armor layer, followed by an underlayer, and finally an inner core layer. The rubble-mound section is proposed to be sloped at 1.5H:1V toward the harbor side, and at 2H:1V toward the seaward side. A typical cross-section of the rubble-mound can be seen in Figure 9-2 below.

+9.34 MHI

<u>EI. 0.0</u>

-9.93 MLLV

Ground El. – 15

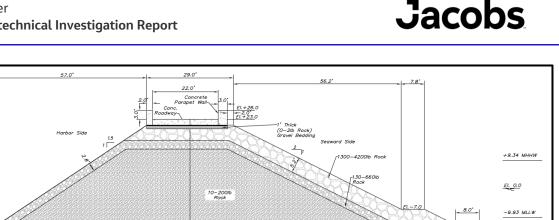


Figure 9-2. Typical Section of Rubble Mound Breakwater

C Breakwater

Geotechnical considerations for the breakwater include its global slope stability under static and seismic loading conditions and anticipated settlement during its design life. This is further discussed below.

9.1.1 **Rubble-Mound Global Slope Stability**

The breakwater must remain stable under various loading situations expected during service. To assess the stability of the breakwater, geotechnical slope stability analyses were performed using Slide2, a two-dimensional limitequilibrium slope stability software (Rocscience Inc., 2021). Three sections were analyzed in Slide since both the soil conditions and height of the breakwater vary along its alignment. The sections analyzed included the breakwater at STA 101+75 (mudline El. -12.5'), STA 103+00 (mudline El. -15), and STA 106+00 (mudline El. -23), which will be noted as Section 1, Section 2 and Section 3, respectively.

The analyses were conducted using non-circular slip surfaces evaluated with the Spencer method (which satisfies both force and moment equilibrium). The slope stability was analyzed for each section towards the harbor side and seaward side of the breakwater since the geometry of each side differs. The proposed concrete parapet walls and concrete roadway on top of the breakwater were modeled in the Slide as equivalent surcharges. Three load cases were analyzed for each section, which are as follows:

- Static Case: This case consisted of analyzing design sections for static loading against both drained and undrained soil conditions. For the static case, a design surcharge of 250 psf was considered on top of the breakwater since there will be a pavement on top of the breakwater to support vehicular traffic. The water level was modeled at MLLW or EL. -9.93' (NAVD 88).
- 100-yr Storm Case: This case consisted of analyzing design sections under static loading against both • drained and undrained soil conditions. For the 100-yr storm case, the water level was modeled at El. +16.57 and no vehicular surcharge was considered.
- Seismic Case: This case consisted of analyzing design sections for one-half (1/2) of the design PGA applied as a horizontal seismic load. Undrained soil conditions were modeled and no vehicular surcharge was considered for the seismic load case. The water level was modeled at MLLW or EL. -9.93' (NAVD 88).

The minimum required factor of safety (FOS) values for static, 100-yr storm, and seismic loading conditions based on the limit-equilibrium analyses are 1.3, 1.1, and 1.0, respectively. For seismic loading, if the computed FOS is less than 1.0, Newmark Block seismic displacement analysis is to be used to estimate seismic-induced slope displacement. Slip surfaces less than 5 feet in depth were ignored as shallow surficial sloughing since they are unrealistic, and even if they would occur, would only require minor repairs.

-15.0

It is to note that 2 to 4 feet of organic silt is present at the mudline. The geotechnical investigation indicated this material to be weight-of-hammer (WOH) material and therefore has very little strength. For the slope stability analyses of the rubble-mound breakwater, it was assumed that during construction of the breakwater, the armor stone will penetrate this layer and therefore increase its strength. For conservatism in the analyses, the organic silt below the rubble-mound breakwater was modeled with a friction angle of 32 degrees plus a small cohesion of 50 psf. In reality, the parameters of this layer could be much higher.

In summary, the rubble-mound breakwater shows acceptable factor of safety (FOS) against global failure for static, 100-year storm, and seismic cases. The results of the slope stability analyses are summarized in Table 9-1 below and Slide outputs are included in Appendix F.

Breakwater Section ¹	Case	Slip Surface Direction	Global Minimum Factor of Safety (Spencer Method) ²
		Towards the Harbor Side (Right to Left)	1.33
	Static - Undrained	Towards the Seaward Side (Left to Right)	1.37
	Statia Drainad	Towards the Harbor Side (Right to Left)	1.50
	Static - Drained	Towards the Seaward Side (Left to Right)	1.83
Section 1 – Mudline Elevation at - 12.5'	100-yr Storm -	Towards the Harbor Side (Right to Left)	1.50
(STA 101+75)	Undrained	Towards the Seaward Side (Left to Right)	1.75
	100-yr Storm - Drained	Towards the Harbor Side (Right to Left)	1.50
		Towards the Seaward Side (Left to Right)	1.99
	Seismic	Towards the Harbor Side (Right to Left)	1.20
		Towards the Seaward Side (Left to Right)	1.15
	Static - Undrained	Towards the Harbor Side (Right to Left)	1.32
	Static - Ondrained	Towards the Seaward Side (Left to Right)	1.82
Section 2 – Mudline Elevation at -15'	Static - Drained	Towards the Harbor Side (Right to Left)	1.42
(STA 103+00)	Static - Draineu	Towards the Seaward Side (Left to Right)	1.81
	100-yr Storm -	Towards the Harbor Side (Right to Left)	1.51
	Undrained	Towards the Seaward Side (Left to Right)	2.08

Table 9-1. Rubble-Mound Breakwater Slope Stability Results

Jacobs

Breakwater Section ¹	Case	Slip Surface Direction	Global Minimum Factor of Safety (Spencer Method) ²
	100-yr Storm -	Towards the Harbor Side (Right to Left)	1.52
	Drained	Towards the Seaward Side (Left to Right)	1.96
	Seismic	Towards the Harbor Side (Right to Left)	1.16
	Seismic	Towards the Seaward Side (Left to Right)	1.57
	Static - Undrained	Towards the Harbor Side (Right to Left)	1.45
	Static - Undrained	Towards the Seaward Side (Left to Right)	1.78
	Static - Drained	Towards the Harbor Side (Right to Left)	1.44
		Towards the Seaward Side (Left to Right)	1.80
Section 3 – Mudline Elevation at -23'	100-yr Storm -	Towards the Harbor Side (Right to Left)	1.51
(STA 106+00)	Undrained	Towards the Seaward Side (Left to Right)	2.02
	100-yr Storm -	Towards the Harbor Side (Right to Left)	1.50
	Drained	Towards the Seaward Side (Left to Right)	1.96
	Coinnia	Towards the Harbor Side (Right to Left)	1.25
	Seismic	Towards the Seaward Side (Left to Right)	1.49

Multiple breakwater sections were analyzed due to the deepening mudline along the alignment of the breakwater and because 1. the thickness of the clay stratum varies along the alignment of the breakwater.

2. The global minimum factor of safety considers deep seated failures and non-circular slip surfaces.

3. The water level in the SLIDE models was taken as EL. -9.97', NAVD 88 (MLLW) for the static and seismic load cases, and EL. +16.57', NAVD 88 for the 100-yr Storm load case.

For the seismic loading condition, the horizontal seismic coefficient, kh = 0.5*PGAm = 0.065. No surcharge was considered. 4.

9.1.2 **Rubble-Mound Settlement**

For a rubble-mound breakwater, settlement is largely an issue for the determination of the breakwater crest elevation. The expected settlement, especially the long-term settlement, is added to the design height of the structure as an over-build where necessary. From the subsurface investigation, it appears the rubble-mound breakwater will be placed on up to 20 ft of compressible soils, which will undergo long-term consolidation settlements. Settlement analyses was performed for the rubble-mound breakwater at three sections where specific borings were located along the breakwater:

- WB-01, STA 101+75 (mudline at El. 12.5') profile includes 30 ft of compressible soils;
- WB-101, STA 103+00 (mudline at El. 15') profile includes 8 ft of compressible soils; •

WB-102, STA 105+00 (mudline at El. 19') – profile includes 6 ft of compressible soils.

The software Settle3, by Rocscience Inc., was used for the analyses which accounts for varying subsurface conditions and modeling of the exact breakwater geometry. Settlement calculations were conducted to capture both the expected settlements within the organic silt layer, and long-term consolidation settlements within the clay and silt layer. However, it is proposed that during construction the rubble-mound breakwater rock is placed in the middle first and then placed outwards. Placement of the core material may create a "mud wave" of the very soft organic silt material, displacing the organic silt to the sides of the breakwater. Due to this phenomenon, the organic silt layer was modeled in Settle3 two different ways for each section to capture the possible range of settlements that may occur. The lower bound settlement was computed for the case that the rubble-mound rock completely displaces the organic silt when it is placed and therefore the organic silt layer was ignored in Settle3. The upper bound settlement was computed for the case that the rubble-mound rock is placed directly on the organic silt layer and no soil is displaced, therefore the organic silt layer was fully modeled in Settle3. Using this approach, the range of possible settlements can be fully captured.

To compute the long-term settlements of the rubble-mound breakwater, certain assumptions were made about construction sequence of the breakwater. It was assumed that the construction of the entire breakwater will take 24 months and the following sequence was used in Settle3 to estimate settlements:

- 1. 0 6 months: Construct rubble-mound core and underlayer
- 2. 6 9 months: Waiting period of 3 months for a significant portion of the settlement to be completed
- 3. 9 12 months: Adjust grade with additional underlayer as necessary, and construct rubble-mound armor layer
- 4. 12 18 months: Waiting a minimum period of 6 months
- 5. 18 24 months: Construct breakwater roadway and finish construction

The geotechnical design parameters used for the settlement analyses are summarized in Table 9-2. These parameters were determined based on subsurface information collected during the investigations including soil classifications and laboratory test results, and based on published correlations documented in NAVFAC DM 7.1 (1982) and EPRI (1990). The results of the Settle3 analyses are summarized in Table 9-3 and included in Appendix G.

Stratum	Total Unit Weight (pcf)	Elastic Modulus (ksf)	Cc	Cr	eo	OCR	c _v (in²/s)	Cα
Organic Silt	90	-	0.3	0.06	1.0	1	0.0001	0.01
Upper Silt and Clay	125	-	0.16	0.035	0.73	3	0.00048	0.005
Lower Clay and Silt ²	115	-	0.25	0.05	0.73	1	0.0001	0.005
Till	125	1000	-	-	-	-	-	-
Bedrock ³	170	-	-	-	-	-	-	-

Table 9-2. Geotechnical Parameters for Settle3 Model

Notes:

1. Abbreviations: Cc = Soil compression Index; Cr = Soil recompression Index; $e_0 = Initial void ratio$, OCR = Over-consolidation ratio; $c_v = Coefficient of consolidation$, $C\alpha = Secondary compression Index$.

2. In a few borings, the lower extent of the Clay and Silt Stratum shows very low blow counts. At these locations, the layer was split into two layers in the Settle3 models, and the lower Clay and Silt was modeled as normally consolidated (OCR = 1).

3. Bedrock was included in the Settle3 models for presentation purposes only. This layer is not expected to settle and therefore, no parameters were modeled.

Table 9-3. Results of Settle3 Analyses

Scenario	Section	Boring used in Analysis	Estimated Settlement at end of Construction ² (in)	Estimated Post- Construction Settlement 1 year after Construction (in)	Estimated Post- Construction Settlement 5 years after Construction (in)	Estimated Post- Construction Settlement 50 years after Construction (in)
Lower Bound	STA 101+75 (Mudline El12.5')	WB-01	17.5	0.62	1.06	1.61
Scenario – Organic Silt	STA 103+00 (Mudline El15')	WB-101	7.67	0.04	0.11	0.28
Completely Displaced	STA 105+00 (Mudline El19')	WB-102	3.84	0.02	0.05	0.12
Upper Bound Scenario –	STA 101+75 (Mudline El12.5')	WB-01	23.8	0.82	1.45	2.20
Organic Silt Fully Present (N	STA 103+00 (Mudline El15')	WB-101	17.8	0.11	0.28	0.70
under Breakwater	STA 105+00 (Mudline El19')	WB-102	17.6	0.10	0.26	0.60

Notes:

1. Analyses were conducted assuming the water table is at MLLW or about El. -9'.

2. Construction of rubble-mound breakwater was assumed to take 24 months.

3. Settlements summarized above are maximum settlements which will occur at the center of the breakwater.

Settlements will be much less toward the breakwater toe and can be seen in Appendix G.

As summarized in Table 9-3, a large range of total settlements of the Rubble-Mound breakwater is expected due to the varying thicknesses of the clay strata. For the portion of the breakwater closest to the shoreline, settlements range from 19 to 26 inches. For the portion of the breakwater further out from the shoreline, settlements range from 4 to 18 inches. These ranges summarized are due to how the organic silt is treated in the Settle3 models. Assuming the organic silt is displaced by the breakwater rock, the settlements may be much smaller and come only from the lower clay strata. Assuming the organic silt is not displaced by the breakwater. Regardless of how the organic silt is treated in Settle3, the organic silt settlements will happen during construction of the breakwater when rock is placed. Therefore, long-term post-construction settlements, assuming construction of the breakwater takes 24 months, have a much smaller range, and are estimated to range from 0.3 to 2.2 inches.

All settlements will be corrected by adding additional rock to the breakwater height during construction. To minimize anticipated repairs of the roadway due to settlement, it is recommended that the roadway be placed at least six months to 1 year after the rubble-mound breakwater is constructed, which is when consolidation settlements of the clay soils are estimated to be near complete. If the roadway is required to be constructed sooner, it will need to be designed with adequate reinforcement to withstand the estimated settlements and differential settlements of the breakwater.

9.2 Pile-Supported Platform

The second leg of the breakwater is a pile-supported platform structure with a precast concrete wave screen on the seaward side to protect the harbor from waves. The platform will be supported by bents of two plumb steel pipe piles with an intermediate battered steel pipe pile between each pile bent. The piles are proposed to be 36 inch diameter with 1 inch thick walls. All piles are required to be driven through the overburden soil, penetrated

into the underlying bedrock and rock socketed thereafter. A typical cross-section of pile-supported platform can be seen in Figure 9-3 below.

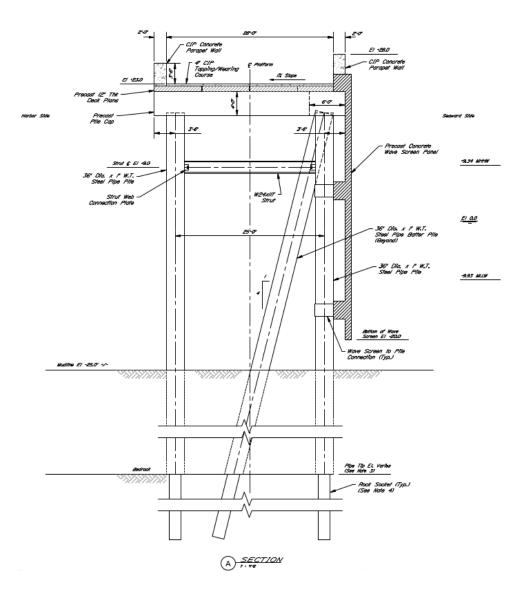


Figure 9-3. Typical Section of Pile-Supported Platform Breakwater

9.2.1 Axial Capacity of the Piles Supporting the Platform

The ultimate axial capacity of the piles that support the breakwater platform was evaluated based on the subsurface conditions encountered during the geotechnical investigations. The platform piles will be 36-inch diameter steel pipe piles with 1-inch wall thickness. All piles are required to be driven to and socketed into the underlying bedrock layer. Due to the soft overburden soils and very shallow bedrock elevations at the pile-supported platform, the axial capacity of the piles is derived from the drilled rocket sockets. The axial capacity analyses of the drilled rock sockets were performed using guidance from FHWA (2010). The analyses were based on the following assumptions:

- The steel pipe piles will be driven through the overburden soil, and to competent bedrock. •
- The skin friction contribution of the steel pipe piles in the overburden soil for the ultimate axial capacity • of the piles was conservatively ignored.
- The drilled rock sockets will have a diameter of 6 inches less the diameter of the steel pipe piles. The drilled • rock sockets for the pile-supported platform piles are proposed to be 30 inches.
- The compressive capacity for the foundation system was taken as the ultimate skin friction of the rock • socket. While a combination of both skin resistance and tip resistance would provide additional capacity, more settlement is required to mobilize tip resistance than side resistance. Therefore, tip resistance of the socket was conservatively ignored. A factor of safety (FS) of 2.5 was used for the determination of allowable axial compressive capacities of the rock sockets.
- The uplift loading capacity for the foundation systems was taken as the sum of the ultimate skin friction of the rock socket for each of the rock layers and the buoyant weight of the composite foundation system. A factor of safety (FS) of 3.0 was used for the determination of allowable axial tensile capacities of the rock sockets.

Due to minimal overburden soil encountered at pile locations (5 to 15 ft), the rock socket design must also be checked against the rock mass conical failure mode. For this evaluation, the uplift capacity of the rock socket is typically assumed to be equivalent to the effective weight of a cone-shaped failure mechanism, while the shear strength of the rock is ignored. If the weight of the rock within the inverted cone is greater than the design uplift load (FS = 1.0), the socket length is considered adequate.

The axial capacity evaluation is included in Appendix H. Table 9-4 provides the axial demand and capacity results for each of the pile types for the pile-supported platform. Table 9-4 also includes controlling unfactored working loads for each pile type.

Pile Type	Unfactored Working Loads (kips)	Minimum Socket Length for Uplift Loading (ft)	Minimum Socket Length for Compressive Loading (ft)	Minimum Socket Length for Conical Rock Mass Failure (ft)	Recommended Rock Socket Length (ft)
Seaside Plumb Pile	Compression = 479 Tension = 246	10	15	25	25
Seaside Battered Pile	Compression = 428 Tension = 276	11	14	25	25
Harbor Side Plumb Pile	Compression = 212 Tension = N/A	-	7	-	10 ¹
Notes:	1		1	1	

Table 9-4. Axial Pile/Socket Capacity Results and Recommended Socket Lo	engths
---	--------

1. The recommended socket length determined for the harbor side plumb piles was increased from 7' to 10'. The estimated 7' socket length determined from the axial capacity analysis assumes the rock socket is drilled in competent bedrock. The top 3' of the bedrock strata is highly weathered and was ignored in the analysis. Therefore, an additional 3' was added to the socket length.

9.2.2 Lateral Resistance of the Pile Supporting the Platform

The pile-supported platform portion of the breakwater will be subject to large wave pressures due to the tidal swing of the Johnson Bay. Therefore, the lateral resistance of the composite steel pipe pile-rock socket foundation system was evaluated. The lateral resistance of the piles will be used by project structural engineers to determine structural demands and movement of the platform under loading conditions. Analysis of the piles under lateral loading was performed using LPILE v2022 (Ensoft, 2022), where the lateral soil resistance of the piles was modeled using p-y springs. Pile group effects were included in LPILE based on the proposed pile spacing. The parameters used in the LPILE analyses can be seen in Table 9-5.

Stratum	Effective Unit Weight (pcf)	Soil Model	Effective Friction Angle, φ' (deg)	Coeff. of Subgrade Reaction, k (pci)	Undrained Shear Strength, S _u (psf)	Strain at 50% Stress, ε₅₀	Unconfined Compressive Strength, q _u (psf)
Organic Silt	31	Soft Clay (Matlock)	-	-	200	0.020	-
Clay and Silt	56	Soft Clay (Matlock)	-	-	800	0.010	-
Till	61	Sand (Reese)	37	125	-	-	-
Bedrock	96	Vuggy Limestone	-	-	-	-	4000

Table 9-5. LPILE Parameters for Pile-Supported Platform Lateral Resistance Analyses

The lateral resistance estimate was presented in the form of a "point of fixity depth", which establishes a theoretical moment-fixed point in the pile due to beam action. To provide the "point of fixity", the pile response was analyzed under specified lateral displacements ranging from 0.5 to 6 inches. Using the deflections and computed shear in LPILE at the pile head, the pile length to the point of fixity was estimated by analyzing the pile as a beam with a fixed head. The upper and lower bound point of fixity recommended for structural modeling of the pile-supported platform is 5 ft to 8 ft below the top of bedrock, respectively.

9.3 Floating Dock Guide Piles

A system of floating docks with guide piles will be located within the protected harbor for vessels to dock in Johnson Bay. Two sizes of guide piles are proposed for the project: 24 inch diameter steel pipe pile with ½ inch wall thickness for the guide piles along the breakwater, and 36 inch diameter steel pipe pile with 1 inch wall thickness for the guide piles within the harbor. Similar to the pile-supported platform, guide piles are required to be driven through the overburden soil and rock socketed into the underlying bedrock. Guide piles will support lateral loads from fishing vessels as they berth along the floating docks. Jacobs recommends that the response of the piles to lateral loading be evaluated using the computer program LPILE, Version 2022 (Ensoft, 2022). The recommended soil parameters and layering presented in Table 9-6 should be used in the lateral capacity analyses. The horizontal spacing between the piles is great enough that pile group effects do not need to be considered in the analyses. It is to note that these piles will have minimal axial loads, so the rock socket lengths should be determined by the LPILE analyses at the point in which lateral fixity is achieved.

Stratum	Effective Unit Weight (pcf)	Soil Model	Effective Friction Angle, φ' (deg)	Coeff. of Subgrade Reaction, k (pci)	Undrained Shear Strength, S _u (psf)	Strain at 50% Stress, ε ₅₀	Unconfined Compressive Strength, q _u (psf)
Organic Silt	31	Soft Clay (Matlock)	-	-	200	0.020	-
Clay and Silt	56	Soft Clay (Matlock)	-	-	800	0.010	-
Till	61	Sand (Reese)	37	90	-	-	-
Decomposed to Weathered Bedrock (0% RQD) ¹	76	Sand (Reese)	45	125	-	-	-
Bedrock	86	Vuggy Limestone	-	-	-	-	4000
Notes: 1. It is recommended that the top 3' of bedrock be modeled as decomposed to weathered bedrock.							

Table 9-6. Recommended Soil Layering and Parameters for Guide Pile LPILE Analyses

10. Construction Support Recommendations

10.1 Onshore Earthwork

10.1.1 Subgrade Preparation and Proof Rolling

The subgrade should be prepared by exposing the existing soils as designated by the civil cut and filling, and the pavement design. A visual inspection of subgrade should be conducted by a Geotechnical Engineer to verify bearing capacity and the need for removal of any deleterious materials, organic, or unsuitable soil materials encountered within subgrade. Exposed subgrade should be proof rolled before placement of the Granular Fill and crushed stone base material. Proof rolling should consist of compacting in-situ subgrade soil with minimum of 12 passes of a 10-ton smooth-drum vibratory roller, and successive passes should be overlapped minimum 20%. Any remaining backfilling should be conducted with Granular Fill material and compaction is required. The replaced soil material shall be compacted to a minimum 95% of maximum dry density as determined by ASTM D1557, and the in-place density should be verified for each lift placed. The moisture content of Granular Fill material should be within $\pm 2\%$ of optimum moisture content as provided by the Modified Proctor.

10.1.2 Granular Fill Material Installation

Granular Fill material for onshore earthwork should be a well graded, free draining material with no more than 15% fines (material passing No. 200 sieve). Maximum particle size should not exceed 3 inches. Granular Fill material should be installed by placing maximum 10-inch loose lifts then compacting with vibratory smooth drum roller or other suitable compaction equipment. Granular Fill material shall be compacted to minimum 95% of maximum dry density as determined by ASTM D1557, and in place density should be verified. The moisture content of the Granular Fill material should be within $\pm 2\%$ of optimum moisture content as provided by the Modified Proctor to assure successful compaction.

The natural soil may be allowed to be reused as Granular Fill if only the predominately granular soils are used (encountered cohesive soils should not be reused).

Suggested gradation of the Granular Fill material can be seen in Table 10-1.

Sieve Size	Percent Passing		
37.5 mm (1.5 inch)	100		
25 mm (1 inch)	100-90		
4.75 mm (No. 4)	65-30		
1.18 mm (No. 16)	40-20		
75 μm (No. 200)	15-0		

Table 10-1. Suggested Gradation of Granular Fill

10.1.3 Common Fill Material Installation

The use of Common Fill using excavated in-situ soil may be permitted where necessary, and should be used in nonstructural areas. However, organic and deleterious materials are not considered suitable materials and should not be used for backfilling. In addition, natural soils with excessive fines are also not recommended as Common Fill material. It is recommended that the Common Fill material be limited to 25% fines content. The maximum particle size should be limited to 6". The natural soil can be allowed to be reused as Common Fill if only the predominately granular soils are used (encountered cohesive soils should not be reused). The fill material should be installed in 10-inch loose lifts and compacted to minimum 90% of ASTM D1557 using appropriate compaction equipment. In-place density should be verified. The moisture content of Common Fill should be within $\pm 2\%$ of optimum moisture content as provided by the Modified Proctor.

10.1.4 Excavation

Typically excavated side slopes should not be steeper than 1.5H:1V to maintain stability. All excavation benching and sloping on-site shall follow OSHA guidelines and open excavation side slopes shall be based on soil types as described in the OSHA manual. Generally, the following side slopes in Table 10-2 are considered acceptable. However, excavation slopes should be adjusted based on encountered soil materials and depths of the excavations or cuts. Any open excavation shall be protected from water intrusion to minimize stability issues where necessary. Water may be directed away from excavation to minimize standing water in excavated areas.

OSHA Soil Type	Soil Description	Compressive Strength	Slope
Type A	Cohesive soils: clay, silty clay, sandy clay, clay loam and, in some cases, silty clay loam and sandy clay loam	1.5 tsf	3/4:1 (53 deg.)
Type B	Granular cohesionless soils: angular gravel (similar to crushed rock), silt, silt loam, sandy loam and, in some cases, silty clay loam and sandy clay loam.	0.5 to 1.5 tsf	1:1 (45 deg.)
Type C	Granular soils including gravel, sand, and loamy sand; or submerged soil or soil from which water is freely seeping; or submerged rock that is not stable,	< 0.5 tsf	1.5:1 (34 deg.)

Table 10-2. Suggested Excavation Side Slopes based on OSHA Requirements

10.1.5 Support of Excavation

Temporary support of excavation (SOE) systems may be necessary if there is limited amount space for open sloped excavation. SOE systems such as soldier pile and lagging, sheet piling, or trench boxes may be used to support the excavation sides. If water is encountered within the excavation, then the water should be removed immediately by pumping to maintain dry conditions to 2' below the bottom of the trench. SOE system shall be designed for the active earth pressure based on the subsurface soils expected, and a construction surcharge for the equipment proposed at top of SOE system. If the SOE system is braced or trench boxed, then the design shall consider "braced excavation" earth pressures. The SOE designer should verify with the general contractor their planned locations for soil stockpiles, equipment staging, and areas where piles may be stored on site. These conditions, as well as others, may dictate the construction surcharge design and minimum horizontal distance of construction activities from an open trench.

10.1.6 Dewatering

Where applicable, temporary dewatering may need to be maintained below the bottom of any excavation so that the bearing surface can be properly prepared. The contractor should be prepared to control groundwater levels in deep excavations and control runoff from precipitation by using a system of sump pits and pumps.

10.2 Rubble Mound Breakwater

10.2.1 Material Specification

The rubble mound breakwater is composed of three layers: an outer armor layer, an underlayer, and a core layer. Based on the proposed design criteria, armor stones of 1300-4200 lbs, underlayer stones of 130-660 lbs, and core stones of 10-200 lbs with standard gradation based on CIRIA 2007 guidelines are recommended for this project. These three layers were designed and sized by Jacobs' Coastal Engineers and are discussed in the following subsections. More details regarding the design of the three layers are discussed in the "Lubec Breakwater Preliminary Concept Design Study Report" (Jacobs 2023) and have been further optimized through physical model testing.

10.2.1.1 Rock Armor

The specified rock shall be subject to petrological testing and comply with several physical property criteria, the minimum values of which are tabulated in Table 10-3. The armor layer designed in this study is composed of standard graded 1,300-4,200 lbs rocks.

Description	Value	Source
Particle density (lb/ft ³)	The average saturated surface-dry density shall be greater than 167.3 lb/ft ³ with 90% of the stones having a density of at least 165.4 lb/ft ³	CIRIA/CUR, 2007
Water Absorption	The maximum water absorption shall not exceed 2%	<u>CIRIA/CUR, 2007</u>
Methylene Blue Absorption	0.7 (oz/100oz)	<u>CIRIA/CUR, 2007</u>
Block Integrity Drop Test	ld<3%	<u>CIRIA/CUR, 2007</u>
Shape Index (L/d>2.0)	<50%	<u>CIRIA/CUR, 2007</u>
Crush Resistance	The force required to produce 10% of fines shall not be less than 22,481 lbf	
Magnesium Sulphate Soundness	<8%	BS 812: Part 121
Los Angeles Abrasion	<35%	<u>ASTM C-131</u>
Point Load Index	>580 psi	<u>ISRM 1985</u>
Compressive Strength	>7,252 psi	ASTM D-7012

Table 10-3. Armor Rock Properties

10.2.1.2 Underlayer/Filter Rock and Core Material

Any filter or underlayer materials shall be subject to similar physical property restrictions as the primary armor layer as specified in Table 10-3. Being a filler, the core material would not require the same physical properties as the underlayer and armor; however, it shall still be subject to gradation restrictions. The underlayer rocks used in the current proposed design are standard graded 130 - 660 lbs rocks whereas the rocks used in the core are standard graded 10 - 200 lbs rocks.

10.3 Pile-Supported Platform

10.3.1 Pile Driving

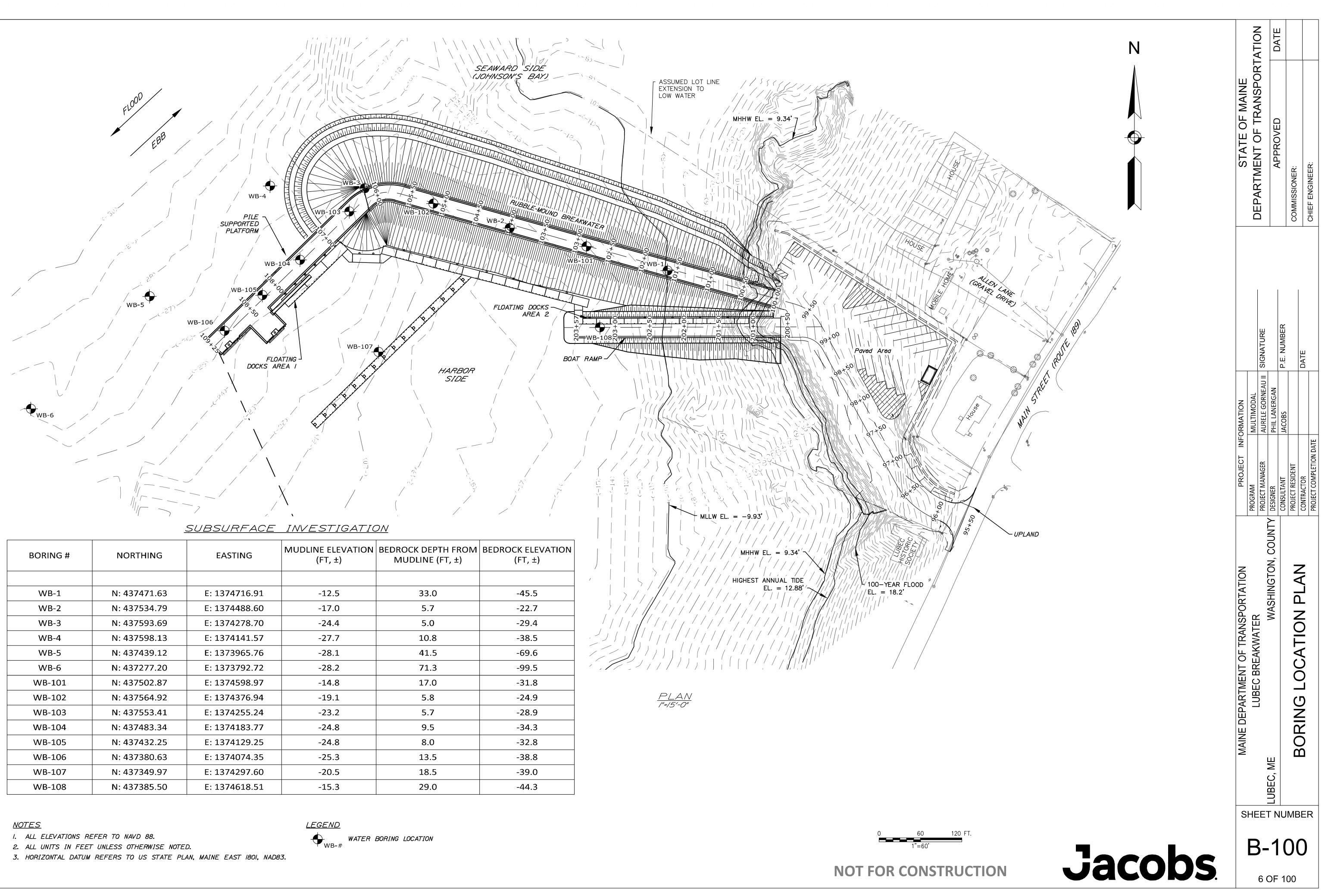
Piles should be installed using a driving system capable of driving each type of pile to the required penetration without overstressing or damaging the piles. Prior to the installation of piles, Jacobs recommends the Contractor perform and submit WEAP analyses for the proposed driving hammers to assess pile drivability. Soil parameters for the WEAP analyses should be derived based on information provided in the boring logs included in Appendix B. The proposed hammers should be capable of installing piles to the estimated pile tip elevations without overstressing the piles (i.e., stresses shall not exceed 90% of the yield strength during pile driving).

Steel pipe piles shall be advanced to the required depth through the overburden soil and seated adequately into the top of competent bedrock. Methods used shall permit the pipe pile to be embedded a minimum of 2 feet into impervious material or bedrock to create a tight seal before drilling the rock socket to the required depth into competent bedrock.

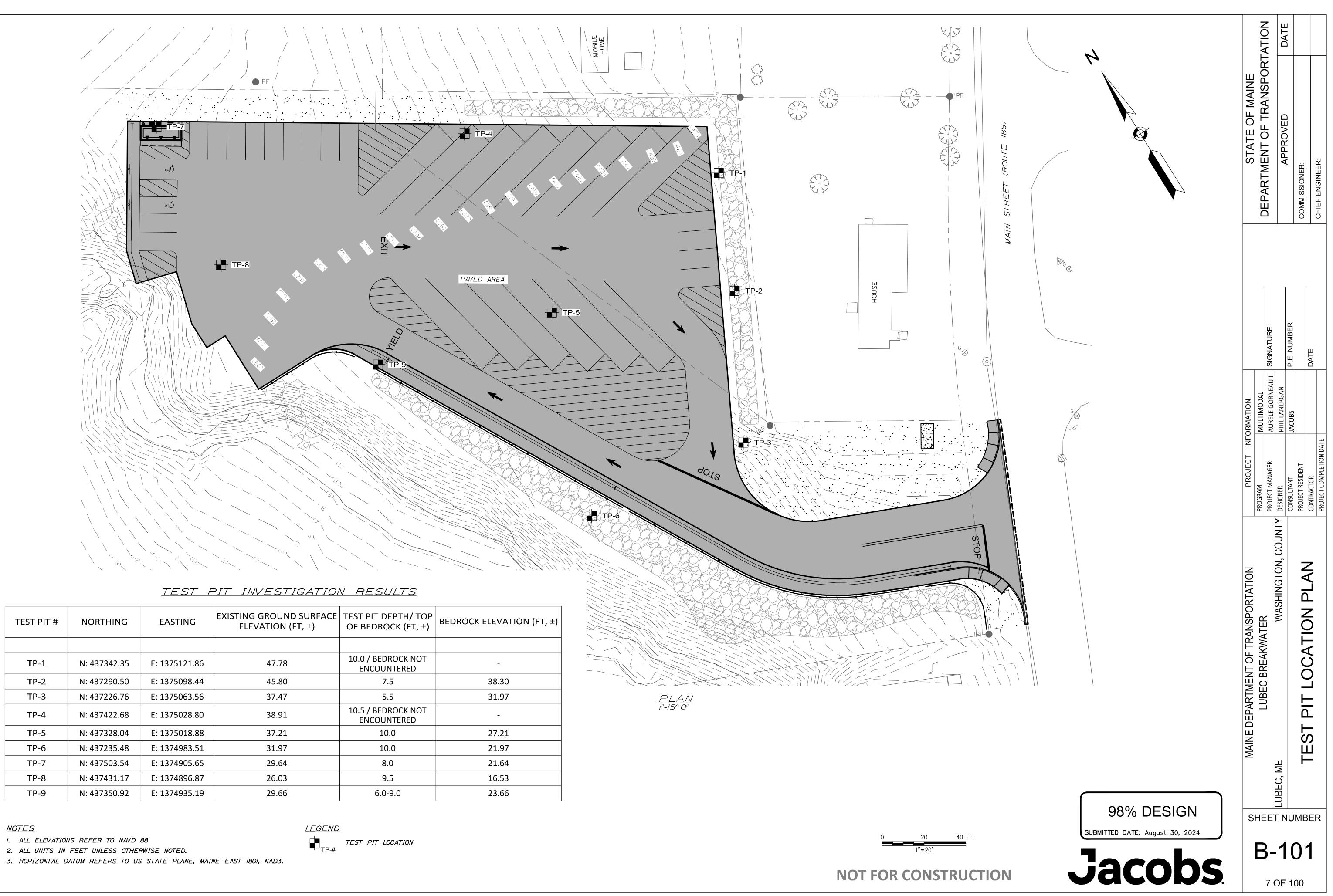
10.3.2 Rock Socket Construction

The rock socket shall be drilled or broken using rock augers, down the hole hammers, or rotary core drills to the depths necessary to provide the required depth of socket in competent rock as recommended in this Report and shown on the drawings. The depth of competent rock will be defined as rock with RQD of 50% or larger. The Contractor shall remove all rock fragments, soil or other foreign material to provide a clean bearing surface at the bottom. Top of competent rock shall be determined at each socket installation by a licensed Professional Engineer with sufficient geotechnical expertise.

Immediately prior to positioning the steel wide flange section and pouring concrete, rock socket side walls and bottom shall be thoroughly cleaned and inspected using a SID (Shaft Inspection Device). Side walls shall be roughened using a "back scratcher" roughing tool as deemed adequate by the resident engineer prior to final cleanout and inspection. Furthermore, it is required that the socket bottom be cleaned such that a minimum of 50% of the base of each socket will have less than 0.5 inches of sediment and the maximum depth of sediment or other debris at any place on the base of the socket does not exceed 1.5 inches.


Concrete shall be placed within 48 hours of completion of the socket excavation, within 8 hours of final inspection approval, and after the reinforcement has been installed in the pile. Concrete shall be placed through a tremie and placed continuously from the bottom to the required top elevation.

11. Limitations


This report has been prepared by Jacobs for the exclusive use and application to the design and construction of structures for the Lubec Breakwater Project, in the Town of Lubec, ME. The report presents subsurface geotechnical data from the field and laboratory explorations of materials at specific locations, times and depths indicated, using methods described in this report and its appendices. No other representation is made. This data does not reflect variations that may exist between explored locations or the changes in strata and engineering properties that may occur with time. Subsurface conditions that may be interpreted from this report may not be construed as a guarantee or warranty of any subsurface condition.

Appendix A. Boring Location Plan

NORTHING	EASTING	MUDLINE ELEVATION (FT, ±)	BEDROCK DEPTH F MUDLINE (FT, ±
N: 437471.63	E: 1374716.91	-12.5	33.0
N: 437534.79	E: 1374488.60	-17.0	5.7
N: 437593.69	E: 1374278.70	-24.4	5.0
N: 437598.13	E: 1374141.57	-27.7	10.8
N: 437439.12	E: 1373965.76	-28.1	41.5
N: 437277.20	E: 1373792.72	-28.2	71.3
N: 437502.87	E: 1374598.97	-14.8	17.0
N: 437564.92	E: 1374376.94	-19.1	5.8
N: 437553.41	E: 1374255.24	-23.2	5.7
N: 437483.34	E: 1374183.77	-24.8	9.5
N: 437432.25	E: 1374129.25	-24.8	8.0
N: 437380.63	E: 1374074.35	-25.3	13.5
N: 437349.97	E: 1374297.60	-20.5	18.5
N: 437385.50	E: 1374618.51	-15.3	29.0
	N: 437471.63 N: 437534.79 N: 437593.69 N: 437598.13 N: 437439.12 N: 437439.12 N: 437277.20 N: 437502.87 N: 437502.87 N: 437564.92 N: 437553.41 N: 437483.34 N: 437483.34 N: 437483.34 N: 437380.63 N: 437349.97	N: 437471.63E: 1374716.91N: 437534.79E: 1374488.60N: 437593.69E: 1374278.70N: 437598.13E: 1374141.57N: 437439.12E: 1373965.76N: 437277.20E: 1373792.72N: 437502.87E: 1374598.97N: 437564.92E: 1374255.24N: 437483.34E: 1374183.77N: 437432.25E: 1374074.35N: 437349.97E: 1374297.60	N: 437471.63E: 1374716.91-12.5N: 437534.79E: 1374488.60-17.0N: 437593.69E: 1374278.70-24.4N: 437598.13E: 1374141.57-27.7N: 437439.12E: 1373965.76-28.1N: 437277.20E: 1373792.72-28.2N: 437502.87E: 1374598.97-14.8N: 437564.92E: 1374255.24-23.2N: 437483.34E: 1374183.77-24.8N: 437483.34E: 1374129.25-24.8N: 437380.63E: 1374074.35-25.3N: 437349.97E: 1374297.60-20.5

TEST PIT #	NORTHING	EASTING	EXISTING GROUND SURFACE ELEVATION (FT, ±)	TEST PIT DEPTH/ TOP OF BEDROCK (FT, ±)	BEI
TP-1	N: 437342.35	E: 1375121.86	47.78	10.0 / BEDROCK NOT ENCOUNTERED	
TP-2	N: 437290.50	E: 1375098.44	45.80	7.5	
TP-3	N: 437226.76	E: 1375063.56	37.47	5.5	
TP-4	N: 437422.68	E: 1375028.80	38.91	10.5 / BEDROCK NOT ENCOUNTERED	
TP-5	N: 437328.04	E: 1375018.88	37.21	10.0	
TP-6	N: 437235.48	E: 1374983.51	31.97	10.0	
TP-7	N: 437503.54	E: 1374905.65	29.64	8.0	
TP-8	N: 437431.17	E: 1374896.87	26.03	9.5	
TP-9	N: 437350.92	E: 1374935.19	29.66	6.0-9.0	

Appendix B. Boring Logs

Suggested Methods of Test	
For	
Identification of Soils	
By	
Dr. D. M. Burmister	·
Descriptive Terms As Written on Log	Range of Proportions
_	50% or more
and (a.) some (s.) little (l.) trace (tr.)	35% to 50% 20% to 35% 10% to 20% 1% to 10%
	For Identification of Soils By Dr. D. M. Burmister Descriptive Terms As Written on Log - and (a.) some (s.) little (l.)

Coarse Grained Soils-Gradation of Components

Coarse to fine Coarse to medium Medium to fine Coarse Medium Fine	cf cm mf c m f	All sizes Less than 10% fine Less than 10% coarse Less than 10% medium & fine Less than 10% coarse & fine Less than 10% coarse & mediu
Component	Symbol	Sieve Range
Boulders		9" and larger
Cobbles		3" to 9"
Gravel Coarse Medium Fine	G	l" to 3" 3/8" to l" #10 to 3/8"
Sand Coarse Medium Fine	S	#10 to #30 #30 to #60 #60 to #200

Fine Grained Soils-Plasticity of Components

Component	Symbol	Overall Plasticity	Plasticity Index
SILT	ø	Non-Plastic	0
Clayeş SILT	СуЯ	Slight	1 to 5
SILT & CLAY	\$ & C	Low	5 to 10
CLAY & SILT	C&S	Medium	10 to 20
Silty Clay	SyC	High	20 to 40
CLAY	ē	Very High	over 40

ac a 2

	٦_	ank			ROJECT			Breakwa n Bay			BORING	V	VE	8-1	
	Ja	cok	JS	OV	WNER		ine D				NO.				
					B NUMBE		<u>×959</u>			1				1 OF 2	
		Don Melc			NTRACTC) <u>R</u> Nev)UNDWA		gland B		DRILLER DRILL RIG	Sam Cooley GefcoStratastar5		N	-12.5	
0.0	-	sh Boring w	-	1	DATE/T			DEPTH(SPT HAMMER	140 lb Auto	GRID	N	NAVD 43747	
40.3		Terminate		,							1	COORD	E	13747	
												DATE STA		7/14/2	
								~				DATE END)	7/17/2	23
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE		INTERVAL (ft)		PID (ppm)	LAYER NAME			OCK DESCRIPTION				NOT
	_	7 5 1/12"	6	S-1	0 - 2	24/4		НО 2	fine to coarse Sa Penetrometer (F	and, trace Shells, PP): 0.0 kg/cm2; T	ry dark gray, ORGA strong organics od orvane (TV): 0.0 k	or (OH); Po g/cm2	cket		1
-15	-	$3^{3}_{4^{6}}$	7	S-2	2 - 4	24/6			fine to coarse Sa PP: 0.0 kg/cm2;	and, trace fine sul TV: 0.0 kg/cm2	ry dark gray, CLAY pangular to subrou	nded Gravel	(CL)		
	-5	$\begin{bmatrix}3\\3\\-3\\-2\end{bmatrix}$	6	S-3	4 - 6	24/8			(CL); PP: 2.0 kg	/cm2; TV: 0.15 kg		ILT, trace fir	ie Sa	ind	
-20				U-1	6 - 8	24/24			U-1: Wet 5Y 4/1	dark gray, CLAY	AND SILT (CL)				
	_ 10	3 5 6 7	10	S-4	8 - 10	24/24			mm thick), horiz	ons of 5Y 4/1 dar	race fine Sand (fin k gray, 5Y 3/1 very ‹g/cm2; TV: 0.4 kg	dark gray, a		1	
-25	-	$\begin{bmatrix} 3 & 7 \\ 5 & 6 \\ & 7 \end{bmatrix}$	11	S-5	10 - 12	24/24		CL	lenses to 1 mm horizons of 5Y 4	thick), trace fine s	AND SILT, trace fin subangular to subro 3/1 very dark gray, /: 0.15 kg/cm2	ounded Grav	vel,	d	
20	-										rk gray, CLAY ANE ar to subrounded G				
-30		WOH WOH WOH 4	0	S-6	15 - 17	24/24		18.5	to 1 mm thick).	norizons of 5Y 4/1 n, bottom 9" exclu	ILT, trace fine San dark gray, 5Y 3/1 sively 5Y 3/1 very o	verv dark ar	av. a	nd	
-35	- 20 - -	15 11 13 13	24	S-7	20 - 22	24/11					4/1 dark gray, fine t EL, some fine to co		some	e	2
-40	- 25 -	10 18 34 45	52	S-8	25 - 27	24/3		TILL	S-8: Wet, very d subrounded GR.	ense, 7.5YR 4/1 d AVEL, some Silty	dark gray, fine to co Clay, some fine to	oarse suban coarse San	gular d (G	to C)	
	- 30 -	65 45 30 40	75	S-9	30 - 32	24/8					dark gray, fine to co Clay, some fine to				
-45								33							-
	_35	Page 1: 0-35 fee	t. Each su	ubsequent	page displays 4	40 feet.									
07/4	7/03 4000	Mator Column	Jonth	acurad at 1	8 1 foot: All c -	mple donth-	foot		NOTES						
		: Water Column Til at 18.50 ft; Cla													

		10-10		PF	ROJECT	Lu	ibec l	Brea	kwater			
	22	cok		LC	OCATION		hnso		у	BORING	WB-1	
	Ja	LUL	JJ.	0\	WNER		aine [NO.	SHEET 2 OF 2	
							2X959				SHEET 2 OF 2	1
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE		(ft)	PEN/REC (in)/(in)		LAYEF				NOTES
	_	54 100//5"	> 100	S-10	35 - 35.9	11/11		~	S-10: Wet, very dense, N3 dark gray AND SILT, little fine to coarse suban	gular to subrour	nded Gravel (SC,	3
	-							BR	completely weathered Shale) [QUOD		[את	
_	_											
	-40	100/4"	> 100	S-11	40 - 40.33	4/4		40.33		, highly weather	ed SHALE, greater 🕝	-
_	-								than half of the rock is decomposed of discernible rock fabric, fresh rock pre	or disintegrated sent at coresto	to a soil with nes [QUODDY	
	_								FORMATION] Bottom of Borehole at 40.33 feet.			
_	-											
_	-45											
-	_											
—-60 —	_											
L	- 50											
_												
	-											
_												
_	-55											
	-											
70												
_	-											
	-60											
_	_											
-75	-											
	_											
_	—65 _											
	_											
00	_											
-	- 70											
	-											
-		Page 1: 0-35 fee	L. Each su	bsequent	page displavs 40) feet.						
				,					NOTES			
3. Тор	of Weathe	ered Bedrock at 3	3.0 feet be	elow mudl	ine							

)					ROJECT DCATION		bec l				BORING	۱.	∧/¤	-2	
	ja	cob	2(WNER			<u>n Bay</u> DOT			NO.	V	VD)-Z	
							X959				NO.	SH	EET	1 OF 1	
NSPF	CTOR	Don Melch	ner		NTRACTO				Boring	DRILLER	Sam Cooley	ELEVATIO		-17	
		D OF DRILL						<u> </u>	U	DRILL RIG	GefcoStratastar5			NAVD	88
0.0		sh Boring w/			DATE/T				I(ft) REMARKS	SPT HAMMER	140 lb Auto	GRID	Ν	43753	
7.0		NX Rock Co	ore							•	•	COORD	Е	13744	
12.0	Wasl	n Boring - Op	oen Hol	e								DATE STA	٨T	7/17/2	
												DATE END)	7/17/2	23
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER		SOIL AND RO	CK DESCRIPTION				NOT
	-	WOR WOR WOR	0	S-1	0 - 2	24/20		R	S-1: Wet, very s (OH); Pocket Pe	oft, 5Y 3/1 very da enetrometer: 0.0 k	ark gray, ORGANI0 g/cm2; Torvane: 0.	C SILT, som 0 kg/cm2	e Sh	ells	
-20	-	WOR WOR 3	5	S-2	2 - 4	24/24		<u>2.33</u> ਹ	S-2A (Top 4"): V some Shells (O	Vet, very soft, 5Y H); PP: 0.0 kg/cm2	3/1 very dark gray, 2; TV: 0.0 kg/cm2	ORGANIC	SILT	, [+
	-	2 ₇	37	S-3	4 - 5.7	20/0		3.92	S-2B (Middle 18	") Wet CLAY AN	D SILT, trace fine	Sand (fine s	and		2
	-5	7 30 100/2"	_	3-3	4 - 5.7	20/9		≓ 5.7	lenses to 1 mm	thick), horizons of	5Y dark gray, 5Y 3 4.5 kg/cm2; TV: 0.	3/1 very darl		y,	
	_			C-1	7 - 8.7	20/20			subrounded GR	AVEL and SILTY	gray, fine to coars CLAY, little fine to oarse subangular t	coarse Sano	d (GC	>)	:
-25	-	RQD=0						~	GRAVEL, some	Silty Clay, some	fine to coarse Sand	l (GC)	Ju	/	
	-			C-2	8.7 - 12	40/40		BR			n dark gray, silt to slightly weathered,		to thi	nlv	
	-10								bedded, modera	tely to steeply dip	ping bedding, stee	ply dipping t	o	iiy	
	-	RQD=11									to 9 mm; very clos				
	-							12			lane separations v N]; Drilling Rate (r			: 	4
-30	_								C-2: 8.7-12.0 ft,	Siliceous SHALE,	N4 medium dark	gray, silt to f	ine	.	
00											trong, slightly weat			to	
	45								horizontal to ver	tical quartz veining	g to > 50 mm; extre	emely closel	y to		
	-15								closely spaced,	moderately to stee	eply dipping beddir rite, extremely to n	ng plane sep poderately fr	parati	ons red	
	-								QUODDY FOR	MATION]; Drilling	Rate (min/ft): 3/4"	- 8 - 8 - 7	uotui		
	-								Bottom of Boreh	ole at 12 feet.					
-35	-														
	-														
	-20														
	_														
40															
-40	-														
	-														
	-25														
	-														
	-														
-45	-														
	_														
	-30														
	50														
	-														
-50	-														
	-														
l	-35 l														
		Page 1: 0-35 feet	. Each su	bsequent	page displays 4	0 feet.									
1. All sa	mple dent	hs feet below mu	dline						NOTES						
	f Bedrock	at 5.7 feet below	mudline	ling plane	congrations										
Carr	ammed lik	ely due to high a	nule bedd	anu plane	separations										

ĵ					ROJECT		nson	reakwate Bay			BORING	1	٧B	-3	
	ja	cob)S		VNER		ne D				NO.	V		-0	
					B NUMBER		(9590					SH	EET	1 OF 1	
ISPE	ECTOR	Don Melch	er		NTRACTO			land Bo	ring	DRILLER	Sam Cooley	ELEVATIO	N	-24.4	
		D OF DRILL					TER	READI	NGS	DRILL RIG	GefcoStratastar5			NAVD	88
0.0		sh Boring w/			DATE/T			EPTH(ft		SPT HAMMER	140 lb Auto	GRID	Ν	43759	
5.0		NX Rock Co	ore							•		COORD	Е	13742	
0.0		Terminate	d									DATE STA	RT	7/14/2	23
												DATE END)	7/14/2	23
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	NAME		SOIL AND RC	CK DESCRIPTION				NC
25	_	WOR WOR WOR	0	S-1	0 - 2	24/10		8 (S-1: Wet, very s OH); Pocket Pe	oft, 5Y 3/1 very da enetrometer: 0.0 k	ark gray, ORGANIO g/cm2; Torvane: 0.	SILT, little 0 kg/cm2	Shel	ls	
	-	WOR	> 100	S-2	2 - 3	12/12	ŀ	2	S-2. Wet hard	2 5Y 4/1 dark gray	, CLAY AND SILT	some fine			-
	-	2 ⁶ 7	100	02	2 0	,			subangular to su	ubrounded Gravel	(CL)				
	_	100/0"							3.0-5.0 ft: Angul	ar fragments of gr	ay and red rock				
								5							
-30	5			C-1	5 - 7.9	35/31	Γ	(medium gray, fine				
	-	DOD: 40							noderately hard	n, strong, slightly water to vertical dua	eathered, massive rtz and calcite vein	, sleeply dip ing to 8 mm	ping	selv	
		RQD=40						r t	o moderately s	baced, steeply dip	ping bedding plane	separation	s with	่า	
	-	-		C-2	7.9 - 10	25/25					sely to moderately chy quartz and calc			to	
	L	RQD=64						1	ORMATION]; I	Drilling Rate (min/	t): 6.5 - 6.5 - 8.5	-			
	—10	RQD-04					Ļ	10 (C-2: 7.9-10.0 ft,	SANDSTONE, N	5 medium gray, fine	to medium	san	d, _	
-35	10								noderately narc	ntal to vertical qua	eathered, massive rtz and calcite vein	, steeply alp ina to 10 mr	oping m.		
	_								steeply dipping	contact with ARGI	LLITE at 9.6-10.0 f	t; closely to			
	_							!/!	noderately space	ced, steeply dippir	ig bedding plane se spaced, shallow di	eparations w	vith		
	-								atchy quartz ar	nd calcite [QUOD]	DY FORMATION];	Drilling Rate	with e		
	_							Ì	min/ft): 9 - 8.5	-],				
								1	Bottom of Boreh	ole at 10 feet.					
-40	10														
	_														
	-														
	-														
	-														
	-20														
-45	_														
	_														
	-														
	-														
	-25														
-50	L														
	<u> </u>														
	-														
	—30														
-55	_														
	_														
	L														
	-														
	-35	Page 1: 0-35 feet	Each su	bsequent	ı page displays 4	0 feet.		I							
07/1		-							NOTES						
	/23, 0620 r bit advar		epth meas	sured at 23	3.75 teet; All sa	mples depth	s teet b	elow mudli	ne.						
Rolle															
Rolle		at 5.0 ft below m	udline												

	-	-		PF	ROJECT			Break		
	12	cob		LC	DCATION			n Bay	BORING WB-4	
	Ja	LUL)5.	0	WNER	Ma	ine D	ООТ	NO	
		-		JC			X95 9		SHEET 1 OF 2	
ISP	ECTOR	Don Melch	er	CC	DNTRACTO	R Nev	v En	gland	Boring Contractors DRILLER Sam Cooley ELEVATION -27.7	
	METHO	D OF DRILL	ING		GRC	UNDWA	TEF	R RE	DINGS DRILL RIG GefcoStratastar5 DATUM NAVD	88
0.0	Wa	sh Boring w/	Casing		DATE/TI	ME	E	DEPT	H(ft) REMARKS SPT HAMMER 140 lb Auto GRID N 43759	8.1
3.5		NX Rock Co	ore						COORD E 13741	41
4.0		Terminate	d						DATE START 7/10/2	3
									DATE END 7/11/2	3
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME	SOIL AND ROCK DESCRIPTION	NC
		WOR	0	S-1	0 - 2	24/22			S-1: Wet, very soft, 5Y 3/1 very dark gray, ORGANIC SILT, some Shells	
	-	WOR						ъ	(OH); Pocket Penetrometer (PP): 1.5 kg/cm2; Torvane (TV): 0.0 kg/cm2	
	L	WOR WOR						2		1
-30										
	-									
	-5		0	S-2	5 - 7	24/24			S-2: Wet, very soft, 2.5Y 3/1 very dark gray, CLAY AND SILT, little	-
	_	WOR WOR	0	3-2	5-7	24/24			Shells (CL); PP: 4.75 kg/cm2; TV: 0.15 kg/cm2	
		WOR								
35				U-1	7 - 8	12/3		5	U-1: Wet, 2.5Y 3/1 very dark gray, CLAY AND SILT, little fine to coarse	
	-	1	13	S-3	8 - 10	24/24			rounded Shale Gravel (CL)	
	_	6_		00		27/27			S-3A (Top 21"): Wet, 2.5Y 3/1 very dark gray, CLAY AND SILT, trace fine rounded Gravel (CL); PP: > 4.5 kg/cm2; TV: 0.175 kg/cm2	
	-10	7						9.75	יווופ וטמומפט Glaver (CL), FF. 24.5 kg/clil2, 19. 0. 175 kg/clil2	-
		5	> 100	S-4	10 - 10.75	9/9		10.75	\sim S-3B (Bottom 3"): Wet, 10YR 4/1 dark gray, CLAY AND SILT, some fine /	
	-	100/3"							to coarse rounded Gravel, some fine to coarse Sand (CL)	
40	-								S-4: Wet, very dense, 10YR 4/1 very dark gray, fine to coarse rounded GRAVEL, some Clay and Silt, some fine to coarse Sand (GC)	
-40									10.75 - 13.5 ft: Angular fragments of gray rock [QUODDY FORMATION]	
				C 4	10 5 10 5	00/57				
	-			C-1	13.5 - 18.5	60/57			C-1: 13.5-18.25 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff, moderately hard, medium strong, slightly weathered, massive,	
	-15								moderately to steeply dipping calcite veining to 1 mm, irregular calcite	
	_								spherules to 5 mm; extremely closely to moderately spaced, moderately	
		RQD=78							to steeply dipping joints with patchy calcite to 0.15 mm and partial epidote coatings to 0.1 mm thick [QUODDY FORMATION]; Drilling Rate	
45									(min/ft): 11.5 - 5 - 5 - 3.75 - 6	
	-	_							18.25-18.5 ft, NO RECOVERY	
	-			C-2	18.5 - 23.5	60/60			C-2: 18.5-23.5 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff,	
	-20								moderately hard, medium strong, slightly weathered, massive, shallow to steeply dipping calcite veining to 7 mm, irregular calcite spherules to	
									6 mm; very closely to closely spaced, moderately to steeply dipping	
	_	RQD=43							joints with patchy calcite to 0.15 mm and partial epidote coatings to 0.1	
-50	-								mm thick [QUODDY FORMATION]; Drilling Rate (min/ft): 4.5 - 5 - 5 - 5 - 5	
-	-								v	
	L I	-		C-3	23.5 - 24.5	12/8			C-3: 23.5-24.15 ft, TUFF, N5 medium gray to 5B 7/1 light bluish gray,	
	0.5	- RQD=0			24.5 - 29.5				coarse tuff to lapilli tuff, very soft to moderately hard, extremely weak to	
	-25			0-4	27.0 - 20.0	50,55.5			medium strong, highly to slightly weathered, massive, moderately dipping calcite veining to 3 mm; extremely closely to closely spaced,	
	F								moderately to steeply dipping joints with patchy calcite to 0.1 mm	
-55	- I								[QUODDY FORMATION]; Drilling Rate (min/ft): 5	
-55	L I	RQD=56						BR	24.15-24.50 ft, NO RECOVERY	
									C-4: 24.5-29.1 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff, moderately hard, medium strong, slightly weathered, massive, steeply	
		_							dipping calcite veining to 1 mm, irregular calcite spherules to 5 mm; very	
	-30			C-5	29.5 - 33.5	48/48			closely to moderately spaced, moderately dipping joints with patchy	
	-								calcite to 2 mm and partial epidote coatings to 0.1 mm thick [QUODDY ORMATION]; Drilling Rate (min/ft): 4.5 - 4.5 - 4.5 - 5 - 6	
		RQD=60							29.1-29.5 ft, NO RECOVERY	
-60	F I								C-5: 29.5-33.5 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff,	
	⊢								moderately hard, medium strong, slightly weathered, massive, shallow	
	-			C-6	33.5 - 38.2	56/56			to steeply dipping calcite veining to 5 mm, irregular calcite spherules to 5 mm; very closely to closely spaced, moderately to steeply dipping	
	2								joints with patchy calcite to 0.1 mm [QUODDY FORMATION]; Drilling	
	<u> </u>								, , ,	

NO 1. 07/10/23, 1740: Water column depth 36.9 feet, High Tide; All sample depths feet below mudline 2. Piston sampler did not fire/engage; 12" penetrated; 3" recovered and placed in jar for characterization 3. Top of BEDROCK at 10.75 feet below mudline 4. Roller bit advancement 5. Core jammed at 24.5 ft 6. Bottom 4 inches recovered in C-6 core run

				PF	ROJECT		Lube	с В	real	water		
'	٦_	anh		LC	CATION		John	son	Ba	/	BORING	WB-4
	Jd	cob	15	O	WNER		Main				NO.	
					B NUMBEF	۲ I	E2X9	959	00			SHEET 2 OF 2
ELEV.	DEPTH	SAMPLE	N-	SAMPLE	DEPTH	PEN/R	EC P	ID	ER AE	SOIL AND ROCK	DESCRIPTION	NOTES
(ft)	(ft)	DATA	VALUE	NO.	INTERVAL (ft)	(in)/(ir	p) (ר	pm)	LAYER NAME			
					()					Rate (min/ft): 3 - 4.25 - 5.75 - 6		
	_	RQD=63								C-6: 33.5-38.2 ft, TUFF, N5 medium	gray, coarse tuf	f to lapilli tuff,
-65	-									moderately hard, medium strong, slig moderately dipping calcite veining to	6 mm irregular	calcite spherules to
-03	_									4 mm; very closely to moderately spa	aced, moderatel	y to steeply dipping
_				C-7	38.2 -	45/4	5			joints with patchy calcite to 0.1 mm [Rate (min/ft): 5 - 25 - 5.5 - 6 - 6/8"		/ATION]; Drilling
-					41.95					C-7: 38.2-41.95 ft. TUFF. N5 mediun	n gray, coarse tu	Iff to lapilli tuff,
- 1	-40	RQD=84								moderately hard, medium strong, slig	ghtly weathered,	massive,
	-									moderately dipping quartz veining to to 5 mm; very closely to moderately	15 mm, irregula spaced_steeply	r calcite spherules
-70	-	-		C-8	41.95 -	24/2				joints with calcite coatings to 3 mm t	hick [QUODDY	FORMATION];
-70	_			0-0	43.95	24/2	4			Drilling Rate (min/ft): 2.5 - 3.5 - 3.5 -		
_		RQD=92						4	13.95	C-8: 41.95-43.95 ft, TUFF, N5 mediu moderately hard, medium strong, slig	im gray, coarse ohtly weathered.	massive.
-										moderately to steeply dipping calcite	veining to 8 mm	n, steeply dippling
- 1	-45									quartz veining to 15 mm; closely to n joints with partial epidote coatings to	noderately space	ed, steeply dipping
\vdash	F									FORMATION]; Drilling Rate (min/ft):	2.5 - 2.5	
-75	┝									Bottom of Borehole at 43.95 feet.		
	F											
	L											
- 1	-50											
_	-											
	-											
	-											
	_											
-												
-	- 55											
_	-											
-85	-											
_	-											
	_											
_	-60											
-												
-	-											
	-											
_	-											
	-											
	-65											
\vdash												
95	F											
\vdash	╞											
	╞											
	-70											
	Ĺ											
	L											
-100	Γ											
-	F											
	┝											
	I	Page 1: 0-35 feet	Facher	Insequent	nade displays 4	n feet						
		. ago 1. 0-00 ieel	. Lauri St	Jooquent	rayo alapiayo 4	5 1001.				NOTES		

	1_				ROJECT		bec E	n Bay			BORING	۱۸/	B-5	
	Ja	cok)5		VNER		ine [NO.	~ ~ ~	D-0	
					B NUMBER		X959					SHEE	T 1 OF	3
SPF	CTOR	Don Melch	her		NTRACTO				Boring	DRILLER	Sam Cooley	ELEVATION	-28.0	19
		D OF DRILL						-		DRILL RIG	GefcoStratastar5		NAVI	
0		sh Boring w/			DATE/T				I(ft) REMARKS	SPT HAMMER	140 lb Auto		4374	
.0		NX Rock C							()	1		COORD E		
.0		Terminate	d									DATE STAR		
												DATE END	7/12/	/23
EV. t)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME		SOIL AND RC	OCK DESCRIPTION			NC
		WOR	0	S-1	0 - 2	24/15					olive gray, ORGAN			
ŀ	-	WOR WOR						т	Shells (OH); Po kg/cm2	ocket Penetromete	r (PP): 0.0 kg/cm2;	Torvane (TV)	: 0.0	
30	-	WOR	7	S-2	2 - 4	24/22		Ы	0	Wat 5V 2/2 dark	olive gray, ORGAN			
	_	43	1	3-2	2 - 4	24/22		3.25		P: 0.0 kg/cm2; TV:		NIC CLAT, SOII	le	
										•	•		[
Ī		lī ĭ		U-1	4 - 4.85	10/10				"): Wet, 10YR 5/2 ; TV: 0.75 kg/cm2	grayish brown, CL/	AY AND SILT	(CL); /	
ł	-5	8	25	S-3	5 - 7	24/24			U-1: Wet. 5Y 3/	2 dark olive drav.	CLAY AND SILT (C	CL); PP: > 4.5	/	
ł	-	9 16							kg/cm2; TV: 0.7	75 kg/cm2		-		
35	_	21	4-	<u> </u>		0.1/2.1				stiff, 10YR 5/2 gra : > 4.5 kg/cm2; TV	/ish brown, CLAY /	AND SILT, trac	e	
	_	3	17	S-4	7 - 9	24/24					LAY AND SILT, tr	ace fine Sand	(fine	
		, 10 13									; PP: > 4.5 kg/cm2			
ŀ	-	8	19	S-5	9 - 11	24/24					LT, trace fine Sand			
ŀ	—10	8									/1 dark gray, 5Y 3/		ay,	
	_	10								. ,	4.5 kg/cm2; TV: 0.	-		
10	_	5	19	S-6	11 - 13	24/24			S-6: Wet, very	stiff, CLAY AND S	LT, trace fine Sand dark gray, 5Y 3/1	d (fine sand ler	nses	
		10							7.5YR 5/2 brow	n (CL); PP: > 4.5 k	(g/cm2; TV: 0.75 kg	g/cm2	, anu	
ŀ	-	14	19	S-7	13 - 15	24/24				. ,	LT, trace fine Sand	-	nses	
ŀ	-	10							to 1 mm thick),	horizons of 5Y 4/1	dark gray, 5Y 3/1	very dark gray	, and	
ŀ	—15	[™] 10							7.5YR 5/2 Drow	'n (CL); PP: > 4.5 P	(g/cm2; TV: 0.30 kg	g/cm2		
	_													
15	_													
ľ	_	WOH	7	S-8	18 - 20	24/24					D SILT, horizons o			
ŀ	_	$\begin{vmatrix} 3\\ 4 \end{vmatrix}$								k gray, and 7.5YR	5/2 brown (CL); PF	>: > 4.5 kg/cm2	2; TV:	
	-20	∐ ['] 7							0.1 kg/cm2					
	_													
50	_													
	_							5						
ŀ	-	2	9	S-9	23 - 25	24/24					norizons of 5Y 4/1 of			
ł	-	4 5_							very dark gray,		wn (CL); PP: 4.5 k			
ŀ	-25	∐ ⁷ 7							kg/cm2					
	_													
55	_													
ł	-	WOH	5	S-10	28 - 30	24/24			S-10 Wet mer	lium stiff CLAY A	ND SILT, trace fine	Sand (fine sa	nd	
┝	-	2		- 10		, _ ,			lenses to 1 mm	thick), horizons of	5Y 4/1 dark gray,	5Y 3/1 very da	rk	
Ļ	-30	34							gray, and 7.5Y	R 5/2 brown (CL); I	PP: 4.5 kg/cm2; TV	/: 0.65 kg/cm2		
ļ	_													
50	_													
ŀ	_		5	C 11	33 - 35	24/24			C 11. Mat mar	lium coff CLAV A		Sand (fine an	nd	
ļ	_	WOH WOH	5	S-11	33 - 33	24/24					ND SILT, trace fine ⁻ 5Y 4/1 dark gray,			
	—35	5									PP: 3.5 kg/cm2; TV			
-		Page 1: 0-35 feel												

1. 07/11/23, 0925: Water column depth 30.1 feet; All sample depths feet below mudir 2. Insufficient volume for testing

	1-	cok		LC	ROJECT DCATION			n Bay		
	Ja	CUL	15	0\	WNER	Ma	ine D	ООТ	NO.	
				JO	B NUMBER		X959	_	SHEET 2 OF 3	
≣V. t)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME	SOIL AND ROCK DESCRIPTION	NOT
5	_	4								
	- - 40	2 ² 2 ₂ 3	4	S-12	38 - 40	24/24			S-12: Wet, medium soft, CLAY AND SILT, little fine Sand (fine sand lenses to 40 mm thick), horizons of 5Y 4/1 dark gray, 5Y 3/1 very dark gray, and 7.5YR 5/2 brown (CL); PP: 4.25 kg/cm2; TV: 0.25 kg/cm2	
70	_	_						41.5	41.5 - 43.0 ft: Angular fragments of gray rock; Glacial Till or Bedrock	3
	-	1 00/3"	>100	S-13	43 - 43.25	3/0			S-13: NO RECOVERY 43.25 - 45.0 ft: Angular fragments of gray rock [QUODDY FORMATION]	4
	—45 -			C-1	45 - 47	24/24			C-1: 45.0-47.0 ft, SHALE, N3 dark gray, clay to silt, laminated to very thinly bedded, steeply dippling to vertical bedding, extremely to	5
5	-	RQD=0 -		C-2	47 - 48	12/12			moderately fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 6.5 - 9.5	5
-	_	- RQD=0 RQD=23		C-3	48 - 49.85	22/22			C-2: 47.0-48.0 ft, SHALE, N3 dark gray, clay to silt, laminated to very thinly bedded, vertical bedding, extremely fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 7	5
-	— 50 -	- - RQD=0		C-4 C-5	49.85 - 50.85	12/12 12/12			C-3: 48.0-49.85 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, slightly weathered, very thinly bedded, steeply dipping bedding, moderately dipping quartz and calcite veining to 1 mm;	5
30	_	- RQD=0		C-6	50.85 - 51.85 51.85 - 54.85	36/36			extremely closely to closely spaced, steeply dipping bedding plane separations with patchy quartz and calcite, closely spaced, moderately dipping joints with patchy quartz and calcite [QUODDY FORMATION]; Drilling Rate (min/ft): 7 - 9/10"	5
-	- 55	RQD=0 -		C-7	54.85 -	24/24			C-4: 49.85-50.85 ft, SHALE, N3 dark gray, clay to silt, laminated, vertical bedding, extremely fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 10	5
85	_	_ RQD=67		C-8	56.85 56.85 -	24/24			C-5: 50.85-51.85 ft, SHALE, N3 dark gray, clay to silt, laminated, vertical bedding, extremely fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 8 C-6: 51.85-54.85 ft, SHALE, N3 dark gray, clay to silt, moderately hard,	5
	-	RQD=19		C-9	58.85 58.85 -	60/60		BR	medium strong, slightly weathered, very thinly bedded, steeply dipping bedding, moderately dipping healed fractures with quartz and calcite infilling to < 1 mm with bedding displacement to 2 mm; closely spaced,	
-	—60 -				63.85	00,00			steeply dipping bedding plane separations with patchy quartz and calcite, closely spaced, moderately dipping joints with patchy quartz and calcite, extremely fractured at 53.2-54.85 ft [QUODDY FORMATION];	
90	_	RQD=93							Drilling Rate (min/ft): 6 - 6 - 5.5 C-7: 54.85-56.85 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, slightly weathered, laminated to very thinly bedded, steeply dipping bedding, moderately dipping to vertical quartz veining to	
	- —65	-		C-10	63.85 - 68.4	60/55.5			30 mm, pyrite inclusions to 25 mm; closely to moderately spaced, steeply dipping bedding plane separations with patchy quartz [QUODDY FORMATION]: Drilling Rate (min/ft): 5.5 - 13	
95	_	RQD=67							C-8: 56.85-58.85 ft, SHALE, N3 dark gray, clay to silt, laminated to vey thinly bedded, steeply dipping to vertical bedding, extremely to moderately fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 7.25 - 12.5	
-	- 			C-11	68.85 - 70.85	24/24			C-9: 58.85-63.85 ft, SHALE, N3 dark gray, clay to silt, hard, strong, fresh, laminated to very thinly bedded, steeply dipping bedding, prominant quartz veining to > 50 mm throughout; extremely closely to	Ę
100	—70 -	RQD=19		C-12	70.85 - 72.85	24/24			moderately spaced, steeply dipping bedding plane separations with fresh surfaces [QUODDY FORMATION]; Drilling Rate (min/ft): 4.5 - 4.5 - 5.75 - 6.5 - 6.5 C-10: 63.85-68.4 ft, Siliceous SHALE, N3 dark gray, clay to silt, hard,	
	_	RQD=42		C-13		26/26			strong, fresh, laminated to very thinly bedded, steeply dipping bedding, moderately dipping to vertical quartz veining to > 50 mm; very closely to moderately spaced, moderately to steeply dipping bedding plane	
		RQD=88							separations with patchy quartz and calcite [QUODDY FORMATION];	

Top of bedrock likely at 41.5 feet below mudline; Roller bit advancement
 Roller bit advancement
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations

					ROJECT				water		
1					CATION					BORING	WB-5
-	ja	cok	26				hnsoi				VVD-5
		UVN	J.J.				aine E			NO.	SHEET 3 OF 3
			1 1		B NUMBER		2X959				SHEET 5 OF 5
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYEF	SOIL AND ROCK	DESCRIPTION	NOTES
_	-75							75⁄	Drilling Rate (min/ft): 6 - 6 - 5.5 - 6.5	- 6.5	
-	-								68.4-68.85 ft, NO RECOVERY C-11: 66.85-70.85 ft, SHALE, N3 dar	k gravi clavito si	ilt laminated to
—-105 	_								very thinly bedded, steeply dipping to moderately fractured [QUODDY FOF	vertical bedding	g, extremely to
									8 C-12: 70.85-72.85 ft, SHALE, N3 dar	k gray, clay to si	ilt, moderately hard,
_									medium strong, fresh, laminated to v to vertical bedding; extremely closely	ery thinly bedder to moderately s	d, steeply dipping paced, steeply
-	-								dipping to vertical bedding plane sep extremely to moderately fractured [Q	UODDY FORMA	ATION]; Drilling
110	_								Rate (min/ft): 8.25 - 8.5 C-13: 72.85-75.0 ft, SHALE, N3 dark	grav clay to silt	modoratoly bard
-	-								medium strong, fresh, laminated to v	ery thinly bedde	d, steeply dipping
<u> </u>	_								to vertical bedding, horizontal to shal closely spaced, steeply dipping bedd	low dipping quar ing plane separa	tz veining to 1 mm; ations with fresh
<u> </u>	-85								surfaces, closely spaced, moderately	dipping joints w	vith patchy guartz
L	_								and calcite [QUODDY FORMATION] Bottom of Borehole at 75 feet.	; Drilling Rate (n	nin/π): 9 - 9.5 - 2/2"
-115	_										
	_										
	-										
	-90										
	-										
-120	_										
	-										
-	-										
-	-95										
-	-										
-125	_										
<u> </u>	_										
_	_										
	-100										
	_										
	_										
	_										
	—105										
	_										
-135	-										
	-										
\vdash	-										
\vdash	—110										
\vdash	_										
	_										
-	_										
	_										
		Page 1: 0-35 feel	t Each cub	sequent	nage displaye 4) feet	1	I			
		- aye 1. 0-33 iee		Jacquent	paye uispiays 41				NOTES		

				LC	CATION		nson		ter		BORING	۱ ۱	ΝF	3-6	
	Ja	cob	JS	0	WNER		ne D				NO.				
						R E2)	(9590	00				SF	IEET	1 OF 4	ŧ
NSPI	ECTOR	Don Melch	er	CC	NTRACTO	R Nev	v Eng	gland B	oring	DRILLER	Sam Cooley	ELEVATIO	ON	-28.2	
1	METHC	D OF DRILL	ING		GRO	DUNDWA	TER	READ	INGS	DRILL RIG	GefcoStratastar5	DATUM		NAVE	88 (
0.0	Wa	ash Boring w/	Casing		DATE/T	IME	D	EPTH(t) REMARKS	SPT HAMMER	140 lb Auto	GRID	Ν	4372	77.2
3.0		NX Rock Co										COORD	E	1373	
05.0		Terminate	d				_					DATE ST/		7/12/	
								~				DATE ENI	D	7/13/	23
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME		SOIL AND RC	CK DESCRIPTION				NC
-30	_	WOR WOR WOR WOR	0	S-1	0 - 2	24/13		Н			olive gray, ORGAN /cm2; Torvane (TV				
-50	-	WOH WOH WOH	0	S-2	2 - 4	24/24		3.5		Wet, 5Y 3/2 dark 1.25 kg/cm2; TV:	olive gray, some S 0.05 kg/cm2	hells, ORG	ANIC	;	
	5	2		U-1	4 - 6	24/24			kg/cm2; TV: 0.1	5 kg/cm2	CLAY AND SILT (C	L); PP: 4.2	5		
-35		3 4	8	S-3	6 - 8	24/24			S-3: Wet, mediu		D SILT (CL) D SILT, horizons o 5/2 brown (CL); PF				
	_	4 7 3 6_	13	S-4	8 - 10	24/24			0.15 kg/cm2 S-4: Wet, stiff, 0 horizons of 5Y 4	CLAY AND SILT, I //1 dark gray, 5Y 3	ittle fine rounded G 3/1 very dark gray, a	iravel, little	Shell		
	- 10	7 8 4 4	6	S-5	10 - 12	24/24			S-5: Wet, mediu		': 0.20 kg/cm2 D SILT, horizons o 5/2 brown (CL); PF				
-40	-	4 2 5							0.20 kg/cm2			Ū			
	- 	1	5	S-6	15 - 17	24/24			S. 6: Wat madi	Im soft CLAX AN	D SILT, trace fine S	Sand (fina a	and		
-45 -	-		5	3-0	13 - 17	24/24			lenses to 1 mm	thick), horizons of	² 5Y 4/1 dark gray, PP: > 4.5 kg/cm2; ⊺	5Y 3/1 very	dark		
- - 50	- 20 -	WOH 3 4 6	7	S-7	20 - 22	24/24		ы			D SILT, horizons o 5/2 brown (CL); PF				
	25	WOH 3	8	S-8	25 - 27	24/24					norizons of 5Y 4/1 (wn (CL); PP: 4.5 k				
-55	-	5 6							kg/cm2						
- - -60	30 	WOH 3 5 5	8	S-9	30 - 32	24/24			mm thick), horiz	ons of 5Y 4/1 dar	race fine Sand (fine < gray, 5Y 3/1 very (g/cm2; TV: 0.30 kg	dark gray,		1	
•	-														
	L_35	Page 1: 0-35 feet	l . Each su	bsequent	 page displays 4	l 0 feet.									
		3: Water column de	onth 10 -	foot		donthe	heles		NOTES						

LOG OF TEST BORING Lubec Breakwater PROJECT Jacobs **WB-6** BORING LOCATION Johnson Bay OWNER Maine DOT NO. SHEET 2 OF 4 JOB NUMBER E2X95900 PID (ppm) (mqq) SAMPLE DATA ELEV. DEPTH N-VALUE SAMPLE DEPTH PEN/REC SOIL AND ROCK DESCRIPTION NOTES (ft) (ft) NO. INTERVAL (in)/(in) (ft) S-10 24/24 S-10: Wet, stiff, CLAY AND SILT, little fine Sand (fine sand lenses to 20 9 35 - 37 3 mm thick), horizons of 5Y 4/1 dark gray, 5Y 3/1 very dark gray, and 6 7.5YR 5/2 brown (CL); PP: > 4.5 kg/cm2; TV: 0.25 kg/cm2 -65 q 40 40.25 S-11A (Top 3"): Wet, 5Y 4/1 dark gray, CLAY AND SILT (CL) 2 35 S-11 40 - 42 24/10 S-11B (Bottom 7"): Wet, 5YR 5/1 gray, fine to coarse subangular to -70 19 rounded GRAVEL, some fine to coarse Sand, some Clay and Silt (GC) 45 48 S-12 45 - 47 24/6 S-12: Wet, dense, 5YR 5/1 gray, fine to coarse subangular to rounded GRAVEL, some fine to coarse Sand, little Silty Clay (GC) -75 50 55 S-13 50 - 52 24/6S-13: Wet, dense, 7.5YR 5/1 gray, fine to coarse subangular to rounded GRAVEL, some fine to coarse Sand, some Silty Clay (GC) -80 55 48 S-14 55 - 57 24/0 S-14: NO RECOVERY Ę -85 60 27 S-15 60 - 62 24/3 S-15: Wet, dense, 5YR 3/1 very dark gray, fine to coarse subangular to subrounded GRAVEL, some Silty Clay, some fine to coarse Sand (GC) -90 ĺ٨ 65 24/2.5 S-16: Wet, loose, 5YR 3/1 very dark gray, fine to coarse subangular 9 S-16 65 - 67 5 GRAVEL, some fine to coarse Sand, some Silty Clay (GC) -95 70 100/5" 100/5" S-17A (Top 3"): Wet, dense, 5YR 3/1 very dark gray, fine to coarse 3 S-17 70 - 70.4 5/5 subangular GRAVEL, some Silty Clay, some fine to coarse Sand (GC) 71.25 -100 S-17B (Bottom 3"): SHALE, N1 black, highly weathered, discernible rock fabric [QUODDY FORMATION] C-1: 73.0-74.25 ft, SHALE, N3 dark gray, clay to silt, extremely to 73 - 74.25 15/15 4 C-1 RQD=0 moderately fractured, steeply dipping to vertical bedding plane Page 1: 0-35 feet. Each subsequent page displays 40 feet. NOTES

2. Top of Glacial Till at 40.25 ft

3. Top of bedrock at 71.25 feet below mudline

Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations

		aah		LC		Jo	hnsoi	n Ba	BORING WB-6	
	Ja	LUL	15.	0\	WNER	M	aine [ЮТ	NO	
LEX: DBTA Number Personal program Expression EIX: DBTA Number Personal program Personal program Solutions (GUODDY FORMATION), Drilling Rate (min/fit): -105 C-3 76, 15. 42/42 Comparison of the status of the stat			SHEET 3 OF 4							
					INTERVAL		PID (ppm)	LAYER NAME	SOIL AND ROCK DESCRIPTION	ЮЛ
	-75	RQD=35		C-2		23/23			separations [QUODDY FORMATION]; Drilling Rate (min/ft): 5.5 - 4.5/9"	4
5	-	-		C-3	76.15 -	42/42			medium strong, slightly weathered, laminated to thinly bedded, steeply dipping to vertical bedding, steeply dipping epidote veining to 0.1 mm; very closely to closely spaced, steeply dipping to vertical bedding plane	4
	- 80	- -		C-4	79.65 - 84	52/52			(min/ft): 5/3" - 8 - 3/2" C-3: 76.15-79.65 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, slightly weathered, laminated to very thinly bedded, steeply dipping to vertical bedding, shallow to steeply dipping quartz and	4
0	-	RQD=58							closely to moderately spaced, steeply dipping to vertical bedding plane separations with patchy quartz, calcite, and epidote, very closely to closely spaced, moderately dipping joints with patchy quartz and calcite [QUODDY FORMATION]; Drilling Rate (min/ft): 3.5/8" - 5 - 6 - 5	
15	_	RQD=82		C-5	84 - 89	60/60			medium strong, fresh, laminated, moderately to steeply dipping bedding, steeply dipping quartz and calcite veining to 3 mm; extremely closely to moderately spaced, moderately to steeply dipping bedding plane separations with fresh surfaces [QUODDY FORMATION]; Drilling Rate	
	-	-		C-6	89 - 90 75	21/21		BR	C-5: 84.0-89.0 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, fresh, laminated, moderately dipping to vertical bedding, shallow to moderately dipping guartz and calcite veining to 1 mm;	
	90	RQD=29							plane separations with fresh surfaces [QUODDY FORMATION]; Drilling	
20	_			C-7		46/46			C-6: 89.0-90.75 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, fresh, laminated, steeply dipping to vertical bedding, steeply dipping quartz and calcite veining to 2 mm; extremely closely to	
	- - 	RQD=76 -		C-8	94 6 - 97 5	35/35			closely spaced, steeply dipping to vertical bedding plane separations with fresh surfaces, closely spaced, moderately dipping joints with patchy calcite [QUODDY FORMATION]; Drilling Rate (min/ft): 5.5 - 5/9"	
25	_	RQD=49			01.0	00,00			medium strong, slightly weathered, laminated, steeply dipping to vertical bedding, shallow dipping to vertical dipping quartz and calcite veining to 6 mm; extremely closely to widely spaced, steeply dipping to vertical	
	_	RQD=0		C-9	97.5 - 100	30/30			shallow to moderately dipping joints with iron oxide staining and patchy calcite [QUODDY FORMATION]; Drilling Rate (min/ft): 3/3" - 7 - 7 - 7 -	
2	-	- RQD=42		C-10	100 - 102	24/24			C-8: 94.6-97.5 ft, Siliceous SHALE, N3 dark gray, clay to fine sand, hard, strong, slightly weathered, laminated to very thinly bedded, steeply dipping to vertical bedding, horizontal to shallow dipping quartz, calcite, and prite vertical dipendent of the statement of the state	
U	_	- - RQD=42							mm; very closely to closely spaced, horizontal to shallow dripping joints with partial calcite coatings to 0.1 mm thick, closely spaced, steeply dipping to vertical bedding plane separations with patchy pyrite and	
35	-	RQD=71						105	C-9: 97.5-100.0 ft, SHALE, N3 black, clay to silt, laminated, extremely to moderately fractured, steeply dipping to vertical bedding plane separations with fresh surfaces [QUODDY FORMATION]; Drilling Rate	
	-								C-10: 100.0-102.0 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, fresh, laminated, vertical bedding, shallow dipping to vertical quartz and calcite veining to 1 mm; extremely closely to	
	-									
40	- -								C-11: 102.0-103.0 ft, SHALE, N3 dark gray, clay to silt, moderately hard, medium strong, slightly weathered, laminated to very thinly bedded, vertical bedding, shallow to moderately dipping quartz and calcite veining to 1 mm; extremely closely to closely spaced, vertical bedding	
	I L	Page 1: 0-35 feet	. Each su	Ibsequent	ı page displays 40) feet.	1			I
									NOTES	

Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations
 Core jammed likely due to high angle bedding plane separations

		_		PF	ROJECT	L	ubec E	Breal	water			
	20	cok		LC	CATION		ohnsoi		/	BORING	WB-6	
	Ja	LUL	13.		VNER		laine [NO.		
			1	JO	B NUMBEF		2X959				SHEET 4 OF 4	
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/RE (in)/(in)	C PID (ppm)	LAYEF	SOIL AND ROCK	DESCRIPTION	٦	NOTES
—	-115								plane separations with patchy calcite moderately dipping joints with patchy	e, very closely to	closely spaced,	
\vdash	-								FORMATION]; Drilling Rate (min/ft):	9	-	
-145	_								C-12: 103.0-105.0 ft, SHALE, N3 dai moderately hard, medium strong, sli	rk gray, clay to final to final to final to final to the second second second second second second second second	ine sand, laminated to verv	
-	_								thinly bedded, steeply dipping to ver	tical bedding, ste	eeply dipping guartz,	
-	_								calcite, and pyrite veining to 1 mm; c shallow to moderately dipping joints	with patchy calc	ite, vertical bedding	
- I	—120								plane separations with fresh surface	at 104.15 ft [QL	JODDY	
_	_								FORMATION]; Drilling Rate (min/ft): Bottom of Borehole at 105 feet.	8.25 - 8.25		
-150	_											
	_											
	_											
	- 125											
-155	_											
	_											
	-											
	-											
	-130											
	-											
-160	-											
-	_											
	_											
	—135											
	_											
-165	-											
-	_											
-	_											
-	-140											
-	_											
-170	_											
-	_											
\vdash	_											
⊢												
-	-											
-175	_											
-	_											
-	_											
_	—150											
L	- 130											
	-											
L I	_											
	_	Page 1: 0-35 feet	I t. Each su	Ibsequent	ı page displays 4	0 feet.						
									NOTES			

ĵ							ec Brea				BORING	۱۸/	P	101	
	ja	cok	2(CATION VNER		<u>nson Ba</u> ne DOT				NO.	V V	D-	101	
		UVN	J		VNER B NUMBEF		ne DOT (95900					SH	EET	1 OF 1	
NSP	CTOP	Don Melch	her		NTRACTO		v Englan	d Bori	ηα	DRILLER	Sam Cooley	ELEVATIO		-14.8	
						DUNDWA	<u> </u>		<u> </u>	DRILLER DRILL RIG	GefcoStratastar5			NAVD	
0.0		ish Boring w/			DATE/T			TH(ft)	REMARKS	SPT HAMMER	140 lb Auto	GRID	Ν	43750	
7.0		NX Rock Co			<i>D</i> , (1 L , 1							COORD	E	13745	
21.6		Terminate	d									DATE STA	RT	2/22/2	
												DATE END		2/22/2	24
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm) AMER NAMER			SOIL AND RO	OCK DESCRIPTION				NC
-15	_	WOR WOR WOR	0	S-1	0 - 2	24/15	н Ц	⊣_ Sł	nells (OH); Po	Wet, very soft, 5 cket Penetromete	/ 3/1 dark gray, OR r (PP): 0.0 kg/cm2;	GANIC SIL Torvane (T	T, so V): 0	те .0 _Г	
	_	1 WOR WOR	6	S-2	2 - 4	24/17	ರ 3.1	\s- s	LT (CL)	· ·	5Y 3/2 dark olive, g				
			9	S-3	4 - 6	24/7		to	coarse Sand V): 0.05 kg/cr	(CL); Pocket Pene n2	olive gray, CLAY A etrometer (PP): 4.5	kg/cm2; To	rvane	e	
-20	-	2 7 8 4 5 6	11	S-4	6 - 8	24/7		GI S- fin	RAVEL, some 3: Wet, loose	Clay and Silt, soi , 5Y 3/2 dark gray	dark gray, fine to co me fine to coarse S ish brown, fine to c bunded Gravel, son	and (GC) oarse SANE	D, sor	1	
	_	10 14 15 9	24	S-5	8 - 10	24/5	TIL	S-	4: Wet, stiff, 2		ish brown, SILT AN ed Gravel, little fine				
-25	— 10 - -	7 8 12 16 40	28	S-6	10 - 12	24/9		S- su cc S-	5: Wét, mediu bangular to s arse Sand (G 6: Wet, mediu	ubrounded GRAV C) um dense, 2.5Y 4/	2 dark grayish brov EL, some Silty Clay 2 dark grayish brov	/, some fine vn, fine to co	to barse		
	_	19	>100	S-7	14 - 14.5	6/3	14.5	cc	arse Sand (G	C)	EL, some Silty Clay ark grayish brown a				
-30	— 15 -	100/0"					비 지 17	\gr	ay, fine to coa le fine to coar	rse subangular to se Sand (GC)	subrounded GRA	/EL, little Sil			
	_	RQD=0		C-1	17 - 18.6	19/19		m	oderately hard	d, medium strong,	k gray, clay to very slightly weathered, lding, plane separa	laminated t	to ver atchv	у ′	
-35	- 20	RQD=29		C-2 C-3	18.6 - 20 20 - 21.6	17/17 19/19	BEDROCK	ca wi	lcite and pyrit	e; closely spaced ite and pyrite, ext	shallow to moderate remely to moderate Rate (min/ft): 4.5 -	tely dipping	joint	S	
	_	RQD=0					21.6	Č-	2: 18.6-20.0 f	t, SHALE, N3 darl d, medium strong,	slightly weathered, ding, steeply dippi	fine sand, laminated t	to ver	у e	-
	_							int se	illing to 1 mm paration with	; closely spaced, oxide staining, an	steeply dipping bed d patchy calcite; clo and pyrite, extremel	lding plane osely space	d		
-40	25							fra C-	ctured [QUO 3: 20.0-21.6 f	DDY FORMATION t, SHALE, N3 darl	ا]; Drilling Rate (mi gray, clay to very slightly weathered,	n/ft): 3/5" - 4 fine sand,	1	v	
	_							th m	nly bedded, s oderately dipp	teeply dipping beo bing joints with pat	Iding, very closely t chy calcite, very clo emely fractured [QL	to closely sp osely space	acec	I,	
	_							FC	DRMATION];	Drilling Rate (min/ nole at 21.6 feet.					
-45	— 30 -														
	_														
	_														
	-														
	—35														
		Page 1: 0-35 feet	t. Each su	bsequent p	bage displays 4	0 feet.		١	IOTES						
		lumn measured a				tor									
3. Top o	of bedrock	ents of gray weath at 17.0 ft below r	mudline.		ved in return wa	iter.									
		kely due to high a		lina.											

LOG OF TEST BORING Lubec Breakwater PROJECT Jacobs BORING WB-102 LOCATION Johnson Bay OWNER Maine DOT NO. SHEET 1 OF 1 JOB NUMBER E2X95900 INSPECTOR Don Melcher New England Boring Sam Cooley -19<u>.1</u> CONTRACTOR DRILLER **ELEVATION** METHOD OF DRILLING GROUNDWATER READINGS DRILL RIG GefcoStratastar5 DATUM **NAVD 88** 0.0 Wash Boring w/Casing DATE/TIME DEPTH(ft) REMARKS SPT HAMMER 140 lb Auto GRID Ν 437564.92 NX Rock Core 6.0 COORD Е 1374376.94 11.0 Terminated 2/22/24 DATE START 2/23/24 DATE END LAYER NAME SAMPLE DEPTH PEN/REC PID ELEV. DEPTH SAMPLE NOTES N-SOIL AND ROCK DESCRIPTION DATA VALUE NO. INTERVAL (in)/(in) (ppm) (ft) (ft) (ft) WOR 0 S-1 0 - 2 24/15 S-1: Wet, very soft, 5Y 3/1 dark gray, ORGANIC SILT, trace Shells 1 WOR -20 (OH); Pocket Penetrometer (PP): 1.0 kg/cm2; Torvane (TV): 0.05 WOR WOR OH/ML kg/cm2 S-2: Wet, very soft, 5Y 3/1 dark gray, CLAY AND SILT (ML); Pocket NOH 0 S-2 2 - 4 24/15 WOH Penetrometer (PP): 0.0 kg/cm2; Torvane (TV): 0.0 kg/cm2 WOH 4 WOH 2 U-1 4 - 5.1 13/0 U-1: No recovery. ರ 5.5 5 WOH/7" 100/3" 10/10 >100 5.1 - 5.91 S-3A (Top 5"): Wet, 5Y 3/1 dark gray, CLAY AND SILT (CL); Pocket S-3 -25 Penetrometer (PP): 4.5 kg/cm2; Torvane (TV): 0.3 kg/cm2 3 C-1 6 - 11 60/57.5 S-3B (Bottom 5"): Wet, 5Y 3/1 dark gray, fine to coarse subangular to 4 subrounded GRÁVEL, some Clay and Silt, little fine to coarse Sand BEDROCK (GC) 5.91-6.0 ft, gray SHALE [QUODDY FORMATION] RQD=72 C-1: 6-10.8 ft, SHALE, N5 medium gray, siliceous, silt to fine sand, moderately hard to hard, medium strong to strong, fresh, laminated to 10 thinly bedded, steeply dipping to vertical bedding, steeply dipping to 11 vertical quartz veining to 10 mm parallel to bedding; closely to -30 mederately spaced, steeply dipping bedding plane separations with patchy calcite, vertical bedding plane separation with patchy calcite at 10.2 ft, very closely to moderately spaced, shallow to moderately dipping joints with patchy calcite and partial calcite coating to 0.1 mm, extremely to moderately fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 3-3.5-3.5-3.5-5.5 15 Bottom of Borehole at 11 feet. -35 20 -40 25 -45 30 -50 35 Page 1: 0-35 feet. Each subsequent page displays 40 feet NOTES 1. 11' 10" water column measured at 15:20 on 02/22/2024. 2. Shelby Tube refusal at 5.1', Shelby Tube bent during advancement. 3. Angular fragments of gray bedrock observed in return water; top of bedrock at 5.8 ft below mudline 4. 10.8-11.0 ft: No recovery. Borehole total depth 11.0 ft.

	1_	aak			ROJECT		bec E	n Bay			BORING	WB-	103	ł
	Ja	cob	S		WNER		ine D				NO.		100	,
			ы				X959	-				SHEET	1 OF 2	2
ISPE	CTOR	Don Melch	er		ONTRACTO			gland Bo	orina	DRILLER	Sam Cooley	ELEVATION	-23.2	
		D OF DRILL				DUNDWA		-	-	DRILL RIG	GefcoStratastar5		NAVD	
).0		sh Boring w/			DATE/T				t) REMARKS	SPT HAMMER	140 lb Auto	GRID N	43755	
5.7		Rollerbit	e aonig		D/(IE/II						1101071010	COORD E	13742	
6.5		NX Rock Co	ore									DATE START	2/26/2	
7.0		Terminate	d									DATE END	2/26/2	
EV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	INTERVAL	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME		SOIL AND RO	CK DESCRIPTION		1	N
		WOR	0	S-1	(ft) 0 - 2	24/24			S-1: Wet, very s	oft, 5Y 3/1 dark g	ay, ORGANIC SIL	T, little Shells (0	DH);	+
	-	WOR WOR							Pocket Penetror	meter (PP): 0.5 kg	/cm2; Torvane (TV	'): 0.0 kg/cm2		
25		WOR	0	S-2	2 - 4	24/24		OH/ML	C 24 (Tap 20").	Wat EV 2/1 dark		AV little Shelle		
	_	WOR WOR	0	3-2	2 - 4	24/24		0	(CI -MI): Pocket	t Penetrometer (P	gray, SILT AND CI P): 1.5 kg/cm2; To	rvane (TV): 0 15	5	
		WOR						3.67	kg/cm2;		, .	. ,		_
		T ć		U-1	4 - 5.6	19/16.5		J \	S-2B (Bottom 4'	'): Wet, 5Y 3/1 da	k gray, CLAY AND	O SILT (CL)	/	
	-5							5.6	U-1: wet, 5Y 3/	Í dark gray, CLAY	AND SILT (CL)			
	- 1	100/1"	>100	S-4	5.6 - 5.7	1/1					olive gray, fine to	coarse angular	Γ	1
30	_			C-1	6.5 - 9.1	31/31		$ \rangle$	GRAVEL, some				/	
									5.7-6.5 ft: Weat	hered gray TUFF [QUODDY FORMA gray, coarse tuff to	(TION]	l to	
	-	RQD=40							moderately hard	l, medium strong	fresh, massive, sh	allow to vertical		
	-	-		C-2	9.1 - 13.2	49/49			quartz and calci	te veining to 7 mm	, very closely to cl	osely spaced,		
	-10			0-2	9.1 - 13.Z	43/43			shallow to steep	ly dipping joints w	ith partial calcite co	patings to 0.5 m	m	
	_								Drilling Rate (mi		tured [QUODDY F	ORMATION];		
35		RQD=67							C-2: 9.1-13.2 ft,	TUFF, N5 mediur	n gray, coarse tuff			
55	-								moderately hard	l, medium strong,	fresh, massive, sh	allow to steeply		
	-	-		~ ~	10.0 10.0	00/00			dipping quartz a	nd calcite veining	to 10 mm, very clo j joints with patchy	sely to moderat	ely	
	_			C-3	13.2 - 18.2	60/60			to moderately fra	actured [QUODD)	FORMATION]; Di	rilling Rate (min	/ft):	
	-15								2.5-3.5-3-3/13"	-	-		,	
	15								C-3: 13.2-18.2 ft	t, TUFF, N5 mediu	im gray, coarse tuf strong to strong, sl	ff to lapilli tuff, lightly weathered	4	
	-	RQD=100									g to vertical quartz			
40	-								to 30 mm, close	ly to widely space	d, moderately to st	eeply dipping jo	ints	
	-	_								ite, moderately fra Drilling Rate (min/t	ctured to sound [Q	QUODDY		
	_			C-4	18.2 - 23	58/56			C-4: 18.2-23.0 f	t, TUFF, N5 medi	im gray, coarse tuf	ff to lapilli tuff,		
									moderately hard	I, medium strong,	fresh, massive, sha	allow to vertical		
İ	-20							X			m, elongated calcit moderately space		ging	
	-	RQD=80						02			te coating to 0.2 n			
45	-							BEDROCK	moderately to sl	ightly fractured [Q	UODDY FORMAT		ite	
	_	L							(min/ft): 3-2.5-2.					
				C-5	23 - 28	60/57					im gray, coarse tuf			
	-										fresh, massive, sha , elongated calcite		mm	
	-25								in length, closely	y to moderately sp	aced, shallow to m	noderately dippir		
	-	RQD=89									m thick [QUODDY	FORMATION];		
50	_								Drinning Rate (MI	in/ft): 1.5-3-3-3-3				
				C-6	28 - 33	60/60					ım gray, coarse tuf			
	-										fresh, massive, sha			
ł	-30										 extremely closely joints with patchy 		elv	
	_	RQD=58							to moderately fra		FORMATION]; D			
55									2-2.5-2-3-3					
	-													
	-	-		C-7	33 - 37	48/48			C-7: 33.0-37 0 ft	t. TUFF. N5 medii	ım gray, coarse tuf	ff to lapilli tuff		
	-					, 10			moderately hard	l, medium strong,	fresh, massive, sh	allow to steeply		
	-35								dipping quartz a	nd calcite veining	to 10 mm, very clo	sely to moderat	ely	

Top of bedrock at 5.7 ft below mudline.
 Angular fragments of gray rock observed in return water during rollerbit advancement.
 22.8-23.0 ft: No recovery.
 Borehole terminated at 37.0 ft.

				PF	ROJECT				water			
1	٦_	aak			CATION		hnsor			BORING	WB-103	
	Ja	cok	JS	O	WNER		aine D		,	NO.		
			54	JO	B NUMBER		X959				SHEET 2 OF 2	
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE		PEN/REC (in)/(in)			SOIL AND ROCK	DESCRIPTION	N	OTES
_	_	RQD=82			(ft)				spaced, shallow to moderately dippin to 2 mm thick, extremely to moderate FORMATION]; Drilling Rate (min/ft): Bottom of Borehole at 37 feet.	ig joints with par ely fractured [QL	tial calcite coating	
-60	_							37	FORMATION]; Drilling Rate (min/ft): Bottom of Borehole at 37 feet.	2.5-2.5-2.5-2.5		
-	_										/	
-	_											
-	-40											
-	_											
-65	_											
-	-											
-	-											
-	-45											
-	_											
-70	_											
-	_											
-	_											
-	-50											
-	-											
-75	-											
-	_											
-	-											
-	55											
-	-											
-80	-											
-	-											
-	_											
-	-60											
-	-											
-85	-											
-	-											
-	_											
-	65											
	-											
	-											
	-											
	-											
	70											
	-											
-95	-											
	-											
	F											
		Page 1: 0-35 feet	. Each su	bsequent	page displays 40	0 feet.						
									NOTES			

	-				ROJECT			Break	Water				104	
	12	cob		LC	CATION			n Bay			BORING	WB-	104	
	Ja	LUL	JJ.		WNER		ine D				NO.	0		
				JO	B NUMBER		X959			1		SHEET	1 OF 2	
ISP	ECTOR	Don Melch	er	CC	NTRACTO	R Nev	<i>w</i> En	glanc	Boring	DRILLER	Sam Cooley	ELEVATION	-24.8	
	METHO	D OF DRILL	ING		GRC	UNDWA	ATEF	R RE/	DINGS	DRILL RIG	GefcoStratastar5	DATUM	NAVD	88
0.0	Wa	sh Boring w/	Casing		DATE/TI	ME	E	DEPT	H(ft) REMARKS	SPT HAMMER	140 lb Auto	GRID N	43748	3.3
9.5		NX Rock Co	ore									COORD E	13741	83.
9.5		Terminate	d									DATE START	3/4/24	
												DATE END	3/5/24	ł
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME		SOIL AND RC	CK DESCRIPTION			NO
-25	_	WOR WOR	0	S-1	0 - 2	24/19				soft, 2.5Y 3/1 dark enetrometer (PP):				
	-	WOR WOR WOR	0	S-2	2 - 4	24/19		R		: Wet, 2.5Y 3/1 dai			æt	
	_	WOR WOR WOR						3.79	_ S-2B (Bottom 5	PP): 1.25 kg/cm2; 5"): Wet, 2.5Y 3/1 c ttle fine to coarse r	lark gray, CLAYEY	SILT, little fine t		-
-30	-5	WOR WOR 2	2	S-3	4 - 6	24/14		Ч	S-3: Wet, 10YF	4/1 dark gray, CL rounded Gravel (C	AY AND SILT, son	ne fine to coarse	/	
	-	4 3 7	10	S-4	6 - 7.75	21/7		6 111 7.6		Wet, 10YR 4/1 dar ided GRAVEL, trac)	1 :
	_	7 100/3"							S-4B (Bottom 2 fabric discernib	e"): Wet, gley 5/1 g le	reenish gray, Weat	thered TUFF, roc	[.] к	-
-35		ſ		C-1	9.5 - 12.4	34/32		8/W 9.5		, TUFF, N6 mediur				
-55	_	RQD=0							at 11.8-11.9 ft,	d, medium strong, massive, shallow t ly closely to closely	o vertical quartz ar	nd calcite veining	to	
		-		C-2	12.4 - 14.5	26/26			partial calcite, e	extremely to moder	ately fractured [QL		viui	
	-	RQD=92							C-2: 12.4-14.5 gray, coarse tu	ft, TUFF, N4 mediu ff to lapilli tuff, mod	im dark gray and 5 erately hard, medi	um strong, slight	ly	
-40	—15 -			C-3	14.5 - 19.5	60/60			irregular quartz moderately spa	ssive, vertical quar and calcite spheru ced, steeply dippir QUODDY FORMA	lles to 5 mm, very ig joints with bande	closely to ed appearance	25	
	_	RQD=60							C-3: 14.5-19.5 gray, coarse tu	ft, TUFF, N4 mediu ff to lapilli tuff, mod	im dark gray and 5 erately hard, medi	G 6/1 greenish um strong, slight		
										ssive, steeply dippi				
	-	_								m, irregular calcite paced, moderately				
-45	-20			C-4	19.5 - 24.5	60/60				I calcite coatings to				
	_								fractured, extre	mely fractured at 1	8.8-19.5 ft with bar	nded appearance	e	
										RMATION]; Drilling				
		RQD=42								ft, TUFF, N4 mediu ff to lapilli tuff, mod			ak	
	F								to medium stro	ng, moderately to s	slightly weathered,	massive, steeply	/	
	-							8		cal quartz and calc				
-50	-25	-		C-5	24.5 - 27	30/30		BEDROCK) mm, extremely clo cal joints with patch				
-00		D05 -						8	mm thick, extre	mely to slightly fra	ctured with banded	lappearance		
	┌	RQD=0								RMATION]; Drilling				
	-	-		C-6	27 - 29.5	30/30				ft, TUFF, N4 mediu ff to lapilli tuff, soft			m	1
	- I					55,00			strong, modera	tely to slightly wear	thered, massive, m	oderately dipping	g to	
	L	RQD=20							vertical quartz a	and calcite veining	to 7 mm, irregular	calcite spherules		
		-		C-7	29.5 - 34.5	60/60				l dipping joint with /pulverized into pa				
-55	30 			0-7	29.0 - 04.0	00/00			closely to close calcite [QUOD]	ly spaced, steeply DY FORMATION];	dipping to vertical Drilling Rate (min/f	joints with patchy t): 2.5-3-2/6''	/	
	- I	D05								ft, TUFF, N4 mediu			~	
		RQD=73								ff to lapilli tuff, soft tely to slightly wea			m	
	ΓΙ									and calcite veining				
	F								spaced, steeply	/ dipping joints with	partial calcite coa	ting to 1 mm thic	∶k,	
	1			1	I				moderately to s	lightly fractured wi	th handed anneara			1

1.26'8" water column measured at 14:55 on 3/4/2024. 31' 11" 8" water column measured at 6:20 on 3/5/2024. 2.7.6-9.5 ft: Weathered Bedrock. 3. Top of bedrock at 9.5 ft below mudline. 4. Core jammed at 27 ft. 5. Borehole terminated at 39.5 ft.

						LC	CG	OF	TEST BORING	
				PF	ROJECT					
	a	cok	2(OCATION WNER		hnsor aine E			
	u		99.				X959		NO	
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE	DEPTH INTERVAL	PEN/REC (in)/(in)			SOIL AND ROCK DESCRIPTION	TES
	(r) -40 -45 -50 -55 -60 -65 -70	RQD=95	VALUE		34.5 - 39.5			39.5	FORMATION]; Drilling Rate (min/ft): 2/6"-2-2.5 C-7: 29.5-34.5 ft, TUFF, N4 medium dark gray and 5G 6/1 greenish gray, coarse tuff to lapilli tuff, soft to moderately hard, weak to medium strong, moderately to slightly weathered, massive, steeply dipping to vertical quartz and calcite veining to 40 mm, closely to moderately spaced, steeply dipping joints and disintegraded rock to 1 mm thick, moderately to slightly fractured with barded appearance [OLIODDY]	5
	F	Page 1: 0-35 feet	. Each su	ubsequent	page displays 4	0 feet.				
									NOTES	

ł

)			_		ROJECT		nson	reakwate			BORING	١A/	R_{-}	105
	ja	cob	2(WNER		ine D					V V	D-	105
		UVN			// NER B NUMBER		(9590				NO.	SH	IEFT	1 OF 2
200		Don Melch	or					aland Bori	na		Sam Cooley			-24.8
					NTRACTO				•	DRILLER DRILL RIG	GefcoStratastar5			-24.0 NAVD 8
.0		sh Boring w/			DATE/TI		_	EPTH(ft)		SPT HAMMER	140 lb Auto	GRID	N	437432
9		Rollerbit	e aonig		D/(TE/T							COORD	E	1374129
0.0		NX Rock Co	ore									DATE ST/		2/27/24
.0		Terminate	d									DATE ENI		2/27/24
EV. ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	INTERVAL	PEN/REC (in)/(in)	PID (ppm)	AYER		SOIL AND RO	CK DESCRIPTION	Diffe En		N
25	_	WOR WOR WOR	0	S-1	(ft) 0 - 2	24/14		S			gray, ORGANIC S 0.0 kg/cm2; Torvar			
	_	WOR WOR WOR	0	S-2	2 - 4	24/12		B S (0	-2: Wet, very s DH); Pocket Pe	oft, 2.5Y 4/1 dark netrometer (PP):	gray, ORGANIC S 0.0 kg/cm2; Torvar	ILT, trace S ne (TV): 0.0	Shells) kg/c	m2
30	- 5	WOR WOR WOH WOH	1	S-3	4 - 6	24/17					ay and 7.5YR 5/2 s to 2 mm thick) (0			D
50	_			U-1	6 - 7.6	19/18		러 P	enetrometer (P	P): >4.5 kg/cm2; dark gray, CLAY	Torvane (TV): 0.4 l	kg/cm2		
	-	100/3"	>100	S-4	7.6 - 7.85	3/3		א ∖su א	ubrounded GR/	ense, 5Y 4/1 dark AVEL, some Silty QUODDY FORM	gray, fine to coars Clay, some fine to ATION] (GC)	e subangul coarse Sar	ar to nd,	
5	— 10 - -			C-1	10 - 15	60/60	-	m ca	oderately hard alcite spherules	, medium strong, s to 5 mm; very clo	m dark gray, coars slightly weathered, osely to closely spa calcite, extremely to	massive, i aced, mode	rregul rately	lar
0	- - 15	RQD=72				/		m D	im, 13.9-15.0 fl rilling Rate (mi	recovered in C-2 n/ft): 2.5-2-2-2-2.5		Y FORMAT	'IÕN]	;
10	-	RQD=59		C-2	15 - 19.6	55/55		m di 10 jo	oderately hard pping quartz a 0 mm, very clos ints with patch	, medium strong, nd calcite veining sely to moderately	m dark gray, coars fresh, massive, sha to 4 mm, irregular y spaced, shallow t y to moderately fra t): 2-3.5-3-2-2/7"	allow to ste calcite sphe o steeply di	eply erules ipping	s to
15	—20 -	-		C-3	19.6 - 23	41/41		m Ve	oderately hard ertical quartz a	, medium strong, nd calcite veining	m dark gray, coars fresh, massive, mo to 15 mm, very clo	derately di sely to mod	pping lerate	to ely
	_	RQD=79 -		C-4	23 - 28	60/57		F C	oating to 1 mm ORMATION]; E -4: 23.0-28.0 ft oderately hard	, extremely to moo Drilling Rate (min/f , TUFF, N4 mediu , medium strong,	m dark gray, coars fresh, massive, sha	QUODDY se tuff to lap allow to mo	oilli tu derat	ff, ely
60	—25 - -	RQD=95						BEDRC m m	baced, shallow m thick, irregu	to steeply dipping lar calcite to sphe	to 10 mm, very clo joints with patchy rules to 5 mm, extr ORMATION]; Drilli	calcite coa emely to	ting to	o 1
55	- 30 -	RQD=88		C-5	28 - 33	60/60		m di 5 jo	oderately hard pping quartz a mm, very close ints with fresh	, medium strong, nd calcite veining ely to moderately	m dark gray, coars fresh, massive, mo to 6 mm, irregular spaced, shallow to calcite, extremely f]	derately to calcite sphe steeply dip	steep erules ping	ply
		-		C-6	33 - 38	60/60		m	oderately hard	, medium strong,	m dark gray, coars fresh, massive, pro ft and 37.25 ft; very	, ominant mo		
		Page 1: 0-35 feet												

2. Top of bedrock likely at 8.0 ft below mudine. 3. 7.9-10.0 ft: Angular fragments of gray TUFF [QUODDY FORMATION] 4. Core jammed at 23.0 ft.

						LC	C	OF	TEST BORING			
				PF	ROJECT				water			
_	3	cok	C	LC	CATION		nnsor		/	BORING	WB-105)
	Ju	LUN	JJ.		VNER		ine E			NO. –	SHEET 2 OF 2	
					B NUMBEF		X959				SHEET 2 OF 2	1
(ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYEF NAME	SOIL AND ROCK			NOTES
ELEV. (ft) 60 		RQD=93	N- VALUE	C-7	DEPTH INTERVAL (ft) 38 - 41	PEN/REC (in)/(in) 36/36	PID ((ppm))	Table 1 4 1	SOIL AND ROCK moderately spaced, shallow to moder partial calcite to 1 mm thick, extreme [QUODDY FORMATION]; Drilling Ra C-7: 38.0-41.0 ft, TUFF, N4 medium strong, free dipping quartz and calcite veining at 3 with patchy calcite at 40.8 ft, sound [6 Rate (min/ft): 2.5-2.5-2.5 Bottom of Borehole at 41 feet.	rately steeply dip ly to moderately f te (min/ft): 2-2.5-2 dark gray, coarse sh, massive, pron 37.9-38.45 ft; sha	ractured 2.5-2.5-2.5 tuff to lapilli tuff, ninant moderately llow dipping joint	6
	65 											
95 												
		Page 1: 0-35 feet	. Each su	Ibsequent	page displays 4	0 feet.						
									NOTES			
6. Bore	ehole termi	nated at 41.0 ft.										
0. 001		at 7 1.0 It.										

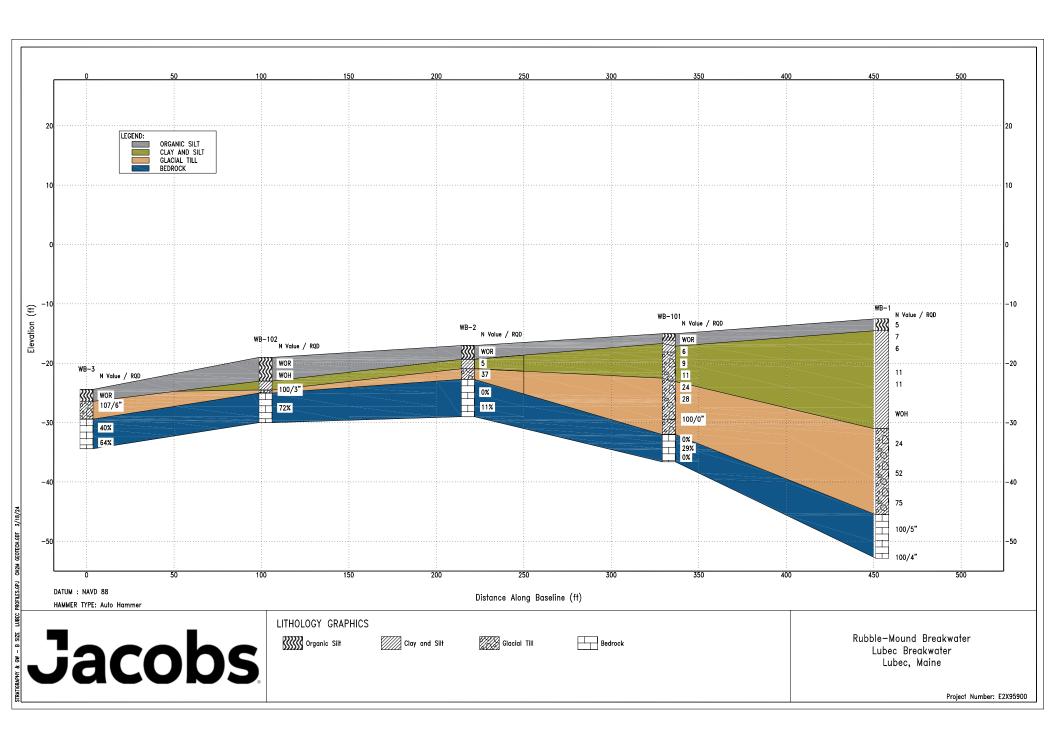
)					ROJECT			Break		BORING	WB-	106	
	ja	cob	2(VNER		nnsor iine D	n Bay			VVD-	100	
		UUN	J.J.							NO.	SHEET	1 OF 2	,
	-0700	Den Mal-			B NUMBER		X959	900 gland		Ca al su			
		Don Melch			NTRACTO			<u> </u>	0 2102210 11	m Cooley	ELEVATION	-25.3	
		D OF DRILL								efcoStratastar5		NAVD	
).0 4.0	vva	sh Boring w/ NX Rock Co			DATE/T	INE		DEPT	t) REMARKS SPT HAMMER 14	0 lb Auto	GRID N	43738	
4.0		Terminate									COORD E	13740	
1.0		Terminale	u								DATE START	2/27/2	
								~			DATE END	3/4/24	+
LEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYEF NAME	SOIL AND ROCK E	DESCRIPTION			NC
	_	WOR WOR WOR	0	S-1	0 - 2	24/24			S-1: Wet, very soft, 5Y 3/1 dark gray, rounded Gravel, trace Shells (OH); Po kg/cm2; Torvane (TV): 0.0 kg/cm2				
	_	WOR WOR WOR	0	S-2	2 - 4	24/14		Б	S-2: Wet, very soft, 5Y 3/1 dark gray, subangular to subrounded Gravel, trad	ORGANIC SIL	T, trace fine Pocket		
-30	_	WOR WOR		U-1	4 - 5.92	22/22			Penetrometer (PP): 0.0 kg/cm2; Torva U-1: Wet, 5Y 3/1 dark gray, ORGANIC	ane (TV): Ò.0 ḱg C SILT to CLAໂ	g/cm2	е	
00	—5 -							6	Shells, trace fine subrounded Gravel (
	-	8 8 12 14	20	S-3	6 - 8	24/24			S-3: Wet, very stiff, 5Y 3/1 dark gray, SILT, little fine sand (fine Sand lenses Penetrometer (PP): >4.5 kg/cm2; Torv	to 10 mm thic	k) (CL); Pocket	ND	
	-			U-2	8 - 10	24/24		ц	U-2: Wet, 5Y 4/1 dark gray, CLAY AN Gravel (CL)	. ,	-		
35	—10	6	21	S-4	10 - 12	24/15			S-4A (Top 5"): Wet, 5Y 3/1 dark gray, AND SILT, little fine Sand (fine Sand I				
	_	⁸ 13 24						12 13.5 14	Pocket Penetrometer (PP): >4.5 kg/cm S-4B (Bottom 10"): Wet, 5Y 3/1 dark g fine to coarse subangular to subround \(SC)	n2; Torvane (T gray, fine to coa ed Gravel, son	V): 0.1 kg/cm2 arse SAND, som ne Clay and Silt	e	-
40	- 	RQD=95		C-1	14 - 19	60/60		14	13.5-14.0 ft: Weathered gray TUFF [G C-1: 14.0-19.0 ft, TUFF, N5 medium g moderately hard to hard, strong, fresh dipping quartz and calcite veining to 5 13 mm; extremely closely to moderate patchy calcite and coating to 0.1 mm f fractured [QUODDY FORMATION]; D	ray, coarse tuf , massive, sha mm, irregular ly spaced, dip thick, extremely	f to lapilli tuff, llow to steeply calcite spherules bing joints with / to slightly		
45	- 20 - -	- RQD=85		C-2	19 - 24	60/60			C-2: 19.0-24.0 ft, TUFF, N5 medium g moderately hard to hard, strong, fresh dipping quartz and calcite veining to 1 to 10 mm; closely to moderately space joints with patchy calcite to partial calc moderately to slightly fractured [QUOI (min/ft): 3-3-3-2.5-2	, massive, sha 5 mm, irregula ed, shallow to s site coating to 2	llow to steeply r calcite spherule steeply dipping 2 mm thick,		
50	- 25 -	- RQD=83		C-3	24 - 29	60/60			C-3: 24.0-29.0 ft, TUFF, N5 medium g moderately hard, strong, fresh, massis quartz and calcite veining to 25 mm, ir mm; very closely to moderately space with partial calcite coatings to 1 mm th [QUODDY FORMATION]; Drilling Rate	ve, shallow to r regular calcite d, shallow to s nick, extremely	noderately dippir spherules to 10 teeply dipping joi to slightly fractur	nts	
55	- 30 - -	RQD=73		C-4	29 - 34	60/60		BEDROCK	C-4: 29.0-34.0 ft, TUFF, N5 medium g moderately hard, medium strong, sligh to steeply dipping quartz and calcite v spherules to 20 mm; extremely closely steeply dipping joints with partial calcit extremely to slightly fractured [QUODI (min/ft): 2-2.5-2.5-2.5	htly weathered, eining to 55 mr to moderately te coatings to 1	massive, shallov n, irregular calcit y spaced, shallow mm thick,	e / to	
60	35	-		C-5	34 - 39	60/60			C-5: 34.0-39.0 ft, TUFF, N5 medium g	ray, coarse tuf	f to lapilli tuff,		

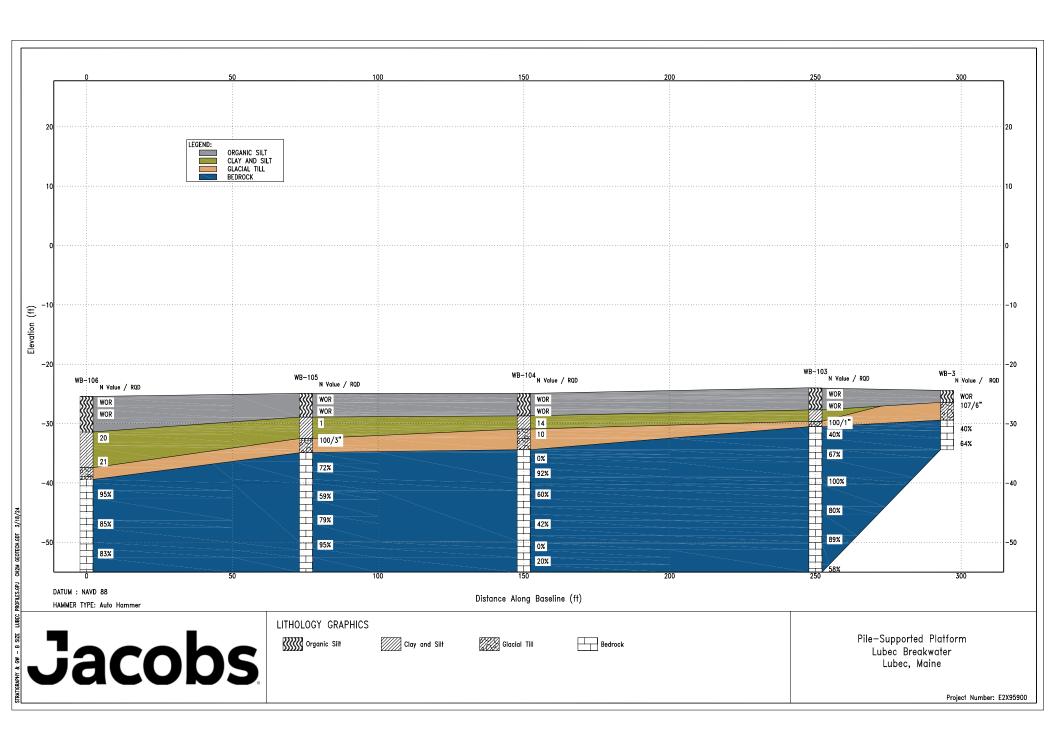
NOTES 1. 34° 2" water column measured at 13:20 on 02/27/2024. 2. 4" casing refusal at 13.5 ft. 3. Top bedrock likely at 13.5 ft below mudline, angular fragments of gray TUFF observed in return water advancing roller bit at 13.5-14.0 ft. 4. 38.9-39.0 ft recovered in C-5 core run.

						L	OG	OF	TEST BORING
)		.		PF	ROJECT				water BORING WB-106
	ja	cok	2(CATION VNER		ohnso aine l		
			9.				2X959		NO. SHEET 2 OF 2
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE	DEPTH INTERVAL	PEN/RE((in)/(in)			SOIL AND ROCK DESCRIPTION NOTES
	- - - - - - - - - - - 45 - - - - - - -	RQD=80 RQD=80		C-6	(ft) 39 - 44	60/60		44	moderately hard, medium strong, slightly weathered, massive, shallow to vertical quartz and calcite veining to 60 mm, irregular calcite spherules to 5 mm, subrounded 10 YR 5/4 moderate yellowish brown clasts (weathered spherules) to 15 mm; extremely closely to moderately spaced, shallow to steeply dipping joints with patchy calcite and iron oxide staining, extremely to slightly fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 3-2.5-3-3-2.5 C-6: 39.0-44.0 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff, moderately hard, medium strong, slightly weathered, massive, shallow to vertical quartz and calcite veining to 18 mm, irregular calcite spherules to 10 mm, subrounded 10 YR 5/4 moderate yellowish brown clasts (weathered spherules) to 10 mm; extremely closely to moderately spaced, shallow to steeply dipping joints with patchy calcite, extremely to slightly fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 2-2-2-2.5-2.5 Bottom of Borehole at 44 feet.
 80 	50 55 								
— -85 — — — —									
 95	65 70								
 	-								
- 100		Page 1: 0-35 feet	. Each su	ubsequent	page displays 4	0 feet.			
									NOTES
5. Bore	hole termi	nated at 44.0 ft.							

ļ	٦	I_	_		ROJECT				wate			BORING	\//R	-107	
	ja	cob	2(WNER		insoi ine E	n Bay	/			NO.		-107	
		UUN		-								NO.	SHEF	T 1 OF 2	
ופסו	ECTOR	Don Melch	or		B NUMBER		X959		d Bori	ng	DRILLER	Sam Cooley	ELEVATION	-20.5	
		D OF DRILL			NTRACTO			0		0	DRILLER DRILL RIG	GefcoStratastar5		NAVD 8	00
0.0		sh Boring w/			DATE/TI				H(ft)		SPT HAMMER	140 lb Auto	GRID N		
3.5	1	NX Rock Co	•		DATE/11				11(11)				COORD E		
1.0		Terminate											DATE START		
			-										DATE END	3/6/24	
EV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME			SOIL AND RO	CK DESCRIPTION	DATE END		N
	-	WOR WOR WOR WOR	0	S-1	0 - 2	24/20			(0			ay, ORGANIC SIL 0.75 kg/cm2; Torva			
	_	WOR WOR WOR WOR	0	S-2	2 - 4	24/19		P	(C kç	0H); Pocket Pe g/cm2	netrometer (PP):	ay, ORGANIC SIL 1.25 kg/cm2; Torva	ane (TV): 0.10		
25	—5 _	WOR WOR WOR WOR	0	S-3	4 - 6	24/19		6	fir kç	ne to coarse su g/cm2; Torvane	brounded Gravel e (TV): 0.025 kg/ci		etrometer (PP):	0.5	
	_	WOR WOR WOR WOR WOH	0	S-4 U-1	6 - 8 8 - 9.83	24/9 20/16		С	S P	ILT, trace fine enetrometer (P	Sand (fine Sand le P): >4.5 kg/cm2;	ay, and 7.5 YR 5/2 enses to 1 mm thic Torvane (TV): 0.4	k) (CL); Pocket kg/cm2		
30	- 10	5	9	0-1 S-5	8 - 9.83	20/16		10.5				AND SILT, trace (0	
	-	5 4 6	3	0-0	10 - 12	24/23			co S to	oarsè subangul -5B (Bottom 18	ar to subrounded "): Wet, 7.5YR 4/	Gravel (CL) 1 dark gray, fine to Y AND SILT, little	coarse subang	jular /	
35	- 15 -	54 6 7	10	S-6	14 - 16	24/18		⊢ 16	so			/1 dark gray, fine t subrounded Grav			
10	- 20 -	RQD=38		C-1	18.5 - 23.5	60/60			tu m ex W [C	ff, moderately oderately to sta stremely closel ith partial calcit	hard, weak to med eeply dipping qua y to closely space e coating to 2 mm MATION]; breaks	ark greenish gray, of dium strong, fresh, tz and calcite vein d, shallow to steep n, extremely to mo easily when handle	massive, ing to 10 mm; oly dipping joints derately fracture	s ed	
15	- 25 - -	- RQD=53		C-2	23.5 - 28.5	60/60			tu m ex W m	ff, moderately oderately dippi «tremely closel ith patchy calci oderately fract	hard, weak to mee ng to vertical qua y to moderately sp te to partial calcite	rk greenish gray, o dium strong, fresh, tz and calcite vein baced, shallow to s coating to 1 mm ORMATION]; brea -2-2-2	massive, ing to 10 mm; teeply dipping j thick, extremely	oints	
50	- 30 -	- RQD=68		C-3	28.5 - 33.5	60/60		CK	m st m ca fra	oderately hard eeply dipping o oderately space alcite to calcite	, weak to medium juartz and calcite ed, moderately to coatings to 3 mm DDY FORMATION	m gray, coarse tuf strong, fresh, mas veining to 25 mm; steeply dipping jo thick, extremely to]; breaks easily wh	extremely close ints with patchy moderately	ely to	
55	35	-		C-4	33.5 - 38.5	60/60		BEDROCK				m gray, coarse tuf strong, fresh, mas		þ	
		Page 1: 0-35 feet	Each auk	acquent	none displays 40	feet									

Shelby tube refusal at 9.7', bottom of Shelby tube damaged during penetration.
 Top of bedrock at 18.5 ft below mudline.


									TEST BORING	
)	٦.	aak		PF	ROJECT		bec E nnsor		water y BORING WB-107	
	Ja	cok)5	0	WNER		aine D		NO.	
					B NUMBER		X959		SHEET 2 OF 2	
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME	SOIL AND ROCK DESCRIPTION	DTES
	-	RQD=71							vertical quartz and calcite veining to 25 mm; extremely closely to moderately spaced, moderately to steeply dipping joints with patchy calcite, extremely to slightly fractured [QUODDY FORMATION]; breaks easily when handled, Drilling Rate (min/ft): 1.5-2-2-2-2	
— —-60 —	- 40 -	RQD=76		C-5	38.5 - 43.5	60/60			C-5: 38.5-43.5 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff, moderately hard, medium strong, fresh, massive, shallow to vertical quartz and calcite veining to 10 mm; very closely to moderately spaced, shallow to steeply dipping joints with patchy calcite to calcite coatings to 1 mm thick, extremely to moderately fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 2-2-2.5-2-2.5	
65 	- 45 -	- RQD=83		C-6	43.5 - 48.5	60/60			C-6: 43.5-48.5 ft, TUFF, N5 medium gray, coarse tuff to lapilli tuff, moderately hard, medium strong, fresh, massive, shallow to vertical quartz and calcite veining to 10 mm; extremely closely to moderately spaced, shallow to steeply dipping joints with patchy calcite to calcite coating to 1 mm, extremely to slightly fractured [QUODDY FORMATION]; Drilling Rate (min/ft): 2-2.5-2.5-3-2.5	4
 	- 50 -	L						<u>48.5</u>	Bottom of Borehole at 48.5 feet.	
 	- 55 									
— —-80 —	- 60 - -									
— —-85 —	- 65 - -									
— —-90 —	- 70 - -									
05	-									
—-95	ı l	Page 1: 0-35 feet	Facher	Ibsequent	nage displaye 4	0 feet	I		I	
4. Bore	Page 1: 0-35 feet. Each subsequent page displays 40 feet. NOTES 4. Borehole terminated at 48.5 ft.									


1							bec E	n Bay			BORING	W٨.	R_{-}	108	
	ja	cob)S		VNER		ine [NO.	• • •	D-	100	
			м		B NUMBER		X959					SH	IEET	1 OF 2	
ISPE	CTOR	Don Melch	ner		NTRACTO				Boring	DRILLER	Sam Cooley	ELEVATIO	DN	-15.3	
Ν	ИЕТНО	D OF DRILL	ING		GRC		ATE	R REA	DINGS	DRILL RIG	GefcoStratastar5			NAVD	88
.0	Wa	sh Boring w/	Casing		DATE/TI	ME		DEPTI	H(ft) REMARKS	SPT HAMMER	140 lb Auto	GRID	Ν	43738	
9.0		NX Rock Co	ore									COORD	Е	13746	i18.
.5		Terminate	d									DATE ST/	ART	3/5/24	ł
												DATE ENI	D	3/5/24	ł
EV. t)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME		SOIL AND R	OCK DESCRIPTION				NC
	_	WOR WOR WOR WOR	0	S-1	0 - 2	24/8					gray, ORGANIC SIL kg/cm2; Torvane (T			νH);	
	_	WOR WOR WOR WOR WOR	0	S-2	2 - 4	24/12		HO 4			gray, ORGANIC SIL : 1.0 kg/cm2; Torvai			m2	
20	- 5			U-1	4 - 6	24/24				/1 dark gray, CLA 12; Torvane (TV):	Y AND SILT (CL); P 0.4 kg/cm2	ocket Pene	etrom	eter	
	-	23 35	6	S-3	6 - 8	24/24			CLAY AND SIL	T, trace fine to co	ark gray and 7.5YR arse subangular to ometer (PP): >4.5 kg	subrounded	l Gra	vel,	
25	-			U-2	8 - 10	24/24			(TV): 0.4 kg/cm						
.0	— 10 - -	¹ 3 4 ₅	7	S-4	10 - 12	24/24			AND SILT, trac	e fine Sand (fine	ark gray and 7.5YR Sand lenses to 1 mr kg/cm2, Torvane (T	n thick) (CL	_);	,	
0	- 15 -	WOH 3 3 3	6	S-5	14 - 16	24/24		СГ	CLAY, trace fin	e Sand (fine Sand	ark gray and 7.5YR I lenses to 10 mm tl , Torvane (TV): 0.35	nick) (CL); I			
35	- - 20	WOH 2 3 4	5	S-6	19 - 21	24/24			CLAY, some fir	ne Sand (fine San avel (CL); Pocket	ark gray and 7.5YR d lenses to 10 mm t Penetrometer (PP):	hick), trace	fine	(
0	- 25 	64 8 11	12	S-7	24 - 26	24/19		25 11 27	CLAY, little fine Penetrometer (S-7B (Bottom 8 subrounded GF	e Sand (fine Sand PP): >4.5 kg/cm2 3"): Wet, 5Y 4/1 da RAVEL, some Silty	c gray and 7.5YR 5/ lenses to 10 mm th , Torvane (TV): 0.15 ark gray, fine to coar / Clay, little fine to c	ick), (CL); F kg/cm2 rse subang oarse Sanc	Pocke ular to	, /	-
15	- 30 - -	RQD=32 - RQD=42		C-1 C-2	29 - 31.9 31.9 - 34.5	34/34 31/31		8 BEDROCK	C-1: 29.0-31.9 f moderately han dipping quartz a spaced, shallow mm thick, extre Drilling Rate (m C-2: 31.9-34.5 f moderately han	ft, TUFF, N4 med d, medium strong and calcite veining w to steeply dippin mely to moderate nin/ft): 3-3-3/10" ft, TUFF, N4 med d, medium strong	QUODDY FORMAT um dark gray, fine t fresh, massive, sh to 1 mm; very clos g joints with partial ly fractured [QUOD um dark gray, fine t fresh, massive, sh to 5 mm; very clos	uff to coars allow to mo ely to close calcite coat DY FORMA uff to coars allow to mo	derat ly ing to TION e tuff derat	ely 0 1 J]; ely	
50	-35) fe st					-	-		Γ	
		Page 1: 0-35 feet	. Each su	psequent	page displays 40	J teet.			NOTES						

		100-000 100-000		PI	ROJECT				water		
`]a	cok	C	LC	OCATION		Johnson Bay BORING Maine DOT NO.				WB-108
		LUN	JJ.	0	WNER DB NUMBER					NO.	SHEET 2 OF 2
	DEDTU		N				X959				
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	Sample No.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	(ppm)	LAYE	SOIL AND ROCK	DESCRIPTION	NOTES
					(ii)				spaced, shallow to steeply dipping jo	ints with partial	calcite coating to 1
	-								spaced, shallow to steeply dipping jo mm thick, extremely to moderately fr Drilling Rate (min/ft): 3-3-2/7" Bottom of Borehole at 34.5 feet.	actured [QUODI	DY FORMATION];
_	-								Bottom of Borehole at 34.5 feet.		
	-										
-	-										
	-40										
-	_										
-	_										
-	_										
-	_										
-60	-45										
_											
_	_										
_											
	_										
-65											
	50										
	-										
	-										
	-										
-70											
	_										
-	-										
	-										
-	_										
-75	-60										
-	_										
-	_										
-	_										
-											
	-65										
_	03										
L I											
L	_										
L	-										
	_										
00	70										
	-										
	-										
	L-										
	_										
-90	I	Page 1: 0-35 feel	t. Each su	bsequent	page displays 40	feet.	1				I
									NOTES		

Appendix C. Subsurface Profiles

Appendix D. Haley & Aldrich Geotechnical Design Memorandum

Jacobs

HALEY & ALDRICH, INC. 75 Washington Avenue Suite 1A Portland, ME 04101 207.482.4600

.......

MEMORANDUM

25 November 2020 File No. 133699-002

	TE OF MA
Town of Lubec	N'S MAYNE A
Carol Dennison, Chair, Town of Lubec Board of Selectmen	S WAYNE A. S ★ CHADBOURNE ★ S
Down to Earth Professional Land Services, Inc.	= P No. 10620 5=
Oscar Emerson, P.E., PLS, LSE, CPESC	CENSED GU
Haley & Aldrich, Inc.	ONALEN
Justin DuBois, P.E.; Bryan C. Steinert, P.E.; Wayne A. Chadb	ourne, P.E.
Planning-Level Geotechnical Design Memorandum	
Proposed Breakwater - Safe Harbor Project Lubec, Maine	
	Carol Dennison, Chair, Town of Lubec Board of Selectmen Down to Earth Professional Land Services, Inc. Oscar Emerson, P.E., PLS, LSE, CPESC Haley & Aldrich, Inc. Justin DuBois, P.E.; Bryan C. Steinert, P.E.; Wayne A. Chadb Planning-Level Geotechnical Design Memorandum Proposed Breakwater - Safe Harbor Project

Haley & Aldrich, Inc. (Haley & Aldrich) is pleased to submit this planning-level geotechnical design memorandum, which presents the results of an initial subsurface investigation program and initial discussion regarding the overall technical feasibility of the project as it is currently envisioned. This work was undertaken at your request in accordance with our proposal dated 28 July 2020, which was authorized by you on 12 August 2020.

Horizontal Coordinate System and Elevation Datum

Elevations referenced herein and shown on the attached figures are in feet and reference the North American Vertical Datum of 1988 (NAVD 88). Tidal datum for the site relates to NAVD 88 (in feet) as follows:

El. 0 (MLLW) = El. -9.93 El. 0 (MLW) = El. -9.49 El. 0 (MHW) = El. 8.86 El. 0 (MHHW) = El. 9.34

Please note that this tidal information is not specific to this site and is taken from National Oceanic Atmospheric Administration (NOAA) tidal station No. 8410140 located at Passamaquoddy Bay, Eastport, Maine, approximately 2.5 miles north of the site. This is the NOAA tidal station closest to the site.

Project Background

Based on our discussions with you and our review of the concept plan prepared by Down to Earth Professional Land Services, Inc., dated 1 March 2019 (revised on 27 March 2019), it is our understanding that the Town of Lubec (Town) is evaluating the overall feasibility of constructing an approximate 24-ft wide, 1,300-ft long breakwater structure (top at El. 25) that extends into Johnson Cove from an area behind the Lubec Historical Society building on Main Street (see Figure 1, Project Locus).

The breakwater structure is proposed to consist of a combination of a rockfill embankment and cellular cofferdam structure. The project will also include installation of a new mooring field, boat launch and floating docks that will provide a sheltered area that can be used by mariners to launch, recover and moor vessels during times of inclement weather. A conceptual plan showing existing site conditions and the proposed breakwater is shown on the attached Figure 2, Site and Subsurface Exploration Location Plan. Select digital photographs of the site, taken by Haley & Aldrich during the planning-level geotechnical investigation, are provided in Appendix A.

As shown on Figure 2, the existing mudline elevation withing the project limits varies from approximately El. 5 near the existing shoreline to approximately El. -28 near the end of the cellular cofferdam portion of the breakwater. Based on the existing bathymetric data, we anticipate that approximately 50 to 55 ft (approximate) of fill will be required to construct the rockfill embankment and cellular cofferdam portions of the proposed breakwater (proposed top of breakwater at El. 25).

Haley & Aldrich Scope of Work

Haley & Aldrich is under contract with the Town to provide planning-level geotechnical consulting services specific to the subject project. Specific work scope items that have been completed in preparation of this memorandum are as follows:

- Developed, planned, coordinated and executed a planning-level geotechnical field investigation program, consisting of "pile probes," to obtain planning-level subsurface information along the proposed breakwater alignment.
- Develop initial opinions on the overall technical feasibility of constructing the breakwater and potential premium cost items based on the subsurface conditions encountered in the "pile probes".
- Prepare and submit this memorandum and prepare for and participate in one conference call with the Town to present and discuss the findings and opinions summarized herein.

Regional Surficial and Bedrock Geology

Surficial geologic units mapped at and in the vicinity of the project site are terminal moraine deposits, which consist of ice contact stratified sand, gravel and cobbles, and/or glacial till deposits, which consist of an unstratified, unsorted mixture of clay, silt, sand, gravel, cobbles and boulders. Glacial marine

deposits consisting of clay, silt and sand are also mapped regionally along the flanks of the terminal moraine deposits and in low lying areas.

According to Maine Geological Survey's Eastport Quadrangle Map (1975), bedrock mapped at the site consists of igneous rocks composed of diabase and gabbro, which intruded rocks of the Quoddy Formation as a result of marine volcanism in Silurian and early Devonian time. The Quoddy Formation consists of siliceous shale, argillite and a few volcanic tuff beds. An inferred fault is mapped along the center of Lubec Neck trending northeast-southwest. The Quoddy Formation is mapped adjacent to the fault, extending to the southeast. Intrusive igneous rocks are also mapped adjacent to the contact, extending to the northwest and includes the area in which the proposed breakwater is being planned.

Planning-level Geotechnical Field Investigation and Subsurface Conditions

PLANNING-LEVEL GEOTECHNICAL FIELD INVESTIGATION

A planning-level geotechnical field investigation consisting of 22 "pile probes", designated HA20-P1 through HA20-P22, was completed under the direction of a Haley & Aldrich geotechnical engineer on 28 and 29 September 2020.

The "pile probe" locations were determined in the field by Haley & Aldrich using global positioning system (GPS) survey equipment. Mudline elevations at "pile probe" locations were estimated by interpolating between bathymetric data shown on Figure 2. The mudline elevations were also estimated by Haley & Aldrich during the field investigation by subtracting manual depth soundings (using a weighted tape) from the tide elevation at the time an individual "pile probe" was completed. The plan locations of and approximate mudline elevations at each "pile probe" are summarized in Table I and are shown graphically on Figure 2.

The "pile probes" were completed by Prock Marine Company, Inc. (Prock) of Rockland, Maine using a Link-Belt LS-518 crawler crane and an H&M Model 3208T vibratory hammer (vibratory hammer) placed on an approximate 50 ft by 120 ft spud barge. An approximate 55-ft long HP12x53 steel H-pile was used at each probe location (see attached Photograph Nos. 5 and 6).

The "pile probes" were advanced using the vibratory hammer to depths ranging from approximately 1 to 30 ft below mudline (BGS) and were terminated in apparent "dense/hard" soil (HA20-P1 through HA20-P4) or on an apparent refusal surface (HA20-P5 through HA20-P22) that was judged by Haley & Aldrich to be the probable top of bedrock surface. The presence and thickness of "loose/soft" and "dense/hard" soils and apparent refusal surfaces were judged by Haley & Aldrich based on visual observation of the "pile probe" advancement and, at some "pile probe" locations, measurement of penetration rates. Actual soil types, consistency and soil unit thicknesses will vary from those reported herein and shown on the Tables and Figure 2.

Please note that no sampling or in-situ testing was completed during the program. Representative soil samples were collected from material that adhered to the "pile probe" at some locations and were

preserved in sealed plastic bags. The samples are currently being stored at the Haley & Aldrich laboratory facility in Portland, Maine.

SUBSURFACE CONDITIONS

Based on the pile probe results, we anticipate that the subsurface conditions encountered at the site consist of "soft/loose" marine deposit soils overlying "dense/hard" marine deposit soils or firm glacial till and bedrock. A summary of the anticipated soil units and approximate thicknesses encountered at each "pile probe" location is provided on Table II and are shown graphically on Figure 2. A generalized description of soil conditions encountered during the planning-level geotechnical field investigation is provided below.

- "Soft/loose" marine deposits were encountered at many "pile probe" locations and ranged in thickness from approximately 1 to 12 ft. Based on our visual observation of soil present at mudline during low tide, this material generally consisted of well graded SAND with variable amounts of silt and gravel.
- "Dense/hard" marine deposit or glacial till soil was encountered at each "pile probe" location except HA20-P15 and ranged in thickness from approximately 2 to 24 ft. The full thickness of the stratum was not determined at "pile probe" locations HA20-P1 through HA20-P4 because the pile probe was not long enough to reach "refusal" surface. Based on our visual observation of soil that adhered to the "pile probe", this material generally consisted of CLAY (CL) with variable amounts of sand and gravel.
- Apparent refusal surfaces, that were judged by Haley & Aldrich to be the probable top of bedrock surface were encountered at each "pile probe" location except HA20-P1 through HA20-P4. Where encountered, the apparent top of bedrock surface was present at depths ranging from approximately 1 to 33 ft BGS (El. -18 to El. -40).

Please note that the terms "loose/soft" and "hard/dense" used herein and on the attachments are intended to be relative terms and do not in any way describe or represent that actual consistency of the soils present at the site. Split-spoon sampling and in-situ and laboratory testing will be needed to determine the actual physical and strength properties of the soil materials present at the site. Images of the "typical" soil type that adhered to the "pile probes" are shown in Photograph Nos. 7 and 8 in Appendix A.

Impacts of Subsurface Conditions on Proposed Development

Based on the observations made during the planning-level geotechnical field investigation and our current understanding of the project, we offer the following general geotechnical "observations" regarding construction of the proposed improvements for the subject project:

• A one horizontal to one vertical (1H:1V) slope is currently shown on the south side of the rockfill embankment portion of the breakwater structure. It is our opinion that constructing a steep slope in a marine environment could be difficult and may require, at a minimum, methodical and careful placement of very large, angular rock. We suggest that consideration be given to

flattening the inclination of the proposed slope to 1.5H:1V (maximum) or flatter. Similarly, consideration should be given to steepening the slope on the north side of the breakwater from the 2H:1V shown in Figure 2 to 1.5H:1V (maximum).

- Because of the limited thickness of "soft/loose" soil and the apparent consistency of the underlying "hard/dense" soil encountered during the planning-level geotechnical field investigation, it is our opinion that the potential for and premium costs associated with mitigating settlement and global stability issues caused by construction of the rockfill breakwater is <u>relatively low</u>.
- The pile probing program completed for this initial, planning-level evaluation is not sufficient to develop final geotechnical design requirements for the breakwater and associated structures. A design-level field investigation consisting of geotechnical test borings, in-situ testing (i.e., at a minimum SPT N-values and vane shear testing) and laboratory testing will be required.
- It is possible that the results of technical evaluations completed using subsurface information collected from the design-level field investigation may show that post-construction magnitudes of settlement and/or global stability factors of safety are unacceptable. If that is the case, implementation of special measures would be required to mitigate any global embankment stability and/or settlement issues. These special measures could include but may not be limited to the following: 1.) lengthening the cellular cofferdam portion of the proposed breakwater closer to the shoreline to limit the height of the rockfill portion of the breakwater, 2.) constructing the rockfill embankment portion of the breakwater using staged construction to allow settlement to occur and the underlying in-situ soils to gain strength prior to completing embankment construction, or 3.) installing ground improvement elements (i.e., rigid inclusions) through the compressible and low strength soils [if present], which would allow the load (weight) of the embankment to be transferred to a suitable bearing stratum (soil or bedrock).

Recommendations for Future Work

Based on the information summarized herein and our understanding of the project, it is our opinion that additional work will be required to determine design and construction requirements for the proposed breakwater. Additional work items that should be considered include but are not limited to the following:

- Development and execution of a design-level subsurface investigation program (test borings) that includes soil and rock sampling. It is our opinion that this investigation is needed to characterize the subsurface conditions present within and adjacent to the proposed breakwater, which along with the results of a laboratory testing program (see next bullet) will serve as the basis of technical evaluations needed to determine foundation support and geotechnical recommendations for the project.
- Development and execution of a laboratory testing program on soil and rock samples collected during the design phase subsurface exploration program (see previous bullet). Determination of engineering properties (e.g., strength, compressibility) are critical input parameters to the technical evaluations needed to determine foundation support and geotechnical recommendations for the project.

Completion of technical evaluations, specifically settlement and global stability evaluations, to
determine the anticipated magnitudes of post-construction settlement and global stability
factors of safety related to the rockfill portions of the breakwater. Foundation and geostructural analyses will also be needed to determine the design requirements for the pier and
cellular cofferdam portion of the breakwater.

Limitations of Recommendations

This memorandum is prepared for the exclusive use of the Town of Lubec relative to the Safe Harbor project in Lubec, Maine. There are no intended beneficiaries other than the Town of Lubec. Haley & Aldrich shall owe no duty whatsoever to any other person or entity on account of the Agreement or the memorandum. Use of this memorandum by any person or entity other than the Town of Lubec for any purpose whatsoever is expressly forbidden unless such other person or entity obtains written authorization from The Town of Lubec and from Haley & Aldrich. Use of this memorandum by such other person or entity without the written authorization the Town of Lubec and Haley & Aldrich shall be at such other person's or entities sole risk, and shall be without legal exposure or liability to Haley & Aldrich.

Use of this memorandum by any person or entity, including by the Town of Lubec, for a purpose other than the Safe Harbor project in Lubec, Maine is expressly prohibited unless such person or entity obtains written authorization from Haley & Aldrich indicating that the memorandum is adequate for such other use. Use of this memorandum by any other person or entity for such other purpose without written authorization by Haley & Aldrich shall be at such person's or entities sole risk and shall be without legal exposure or liability to Haley & Aldrich.

The information provided herein is based, in part, upon the data obtained from the referenced "pile probes". The nature and extent of variations between "pile probes" may not become evident until additional subsurface explorations are completed or until construction. If variations then appear, it may be necessary to reevaluate the opinions provided in this memorandum.

Closure

We greatly appreciate the opportunity to provide planning-level geotechnical engineering consulting services on this project and trust this meets your present needs. Please do not hesitate to contact us if you require additional information or have questions regarding any of the information presented herein.

Attachments: Table I – Subsurface Exploration Location Data Table II – Subsurface Exploration Subsurface Data Figure 1 – Project Locus (1 page) Figure 2 – Site and Subsurface Exploration Location Plan (1 page) Appendix A – Site Photographs (5 pages)

\\haleyaldrich.com\share\CF\Projects\133699\002\deliverables\2020-1125-HAI-Lubec Safe Harbor Planning Memo-final.docx

TABLE I

Subsurface Exploration Location Data Proposed Safe Harbor Project Lubec, Maine

Haley & Aldrich, Inc. File No.: 133699-002

	Approximate Mu	dline Elevation	Horizontal Co	Horizontal Coordinates ² (ft)		
Probe No. ¹	Bathymetry ^{3,5}	Manual ^{4,5}	Northing (Y)	Easting (X)		
HA20-P1	-27.0	-29.6	437,262.59	1,373,785.22		
HA20-P2	-28.0	-30.7	437,332.98	1,373,858.58		
HA20-P3	-27.5	-31.3	437,394.51	1,373,925.19		
HA20-P4	-27.5	-28.8	437,467.97	1,374,005.16		
HA20-P5	-27.0	-28.6	437,543.10	1,374,086.53		
HA20-P6	-26.0	-27.6	437,614.98	1,374,176.00		
HA20-P7	-22.0	-20.9	437,587.77	1,374,296.23		
HA20-P8	-19.0	-20.2	437,561.28	1,374,389.41		
HA20-P9	-17.5	-16.6	437,534.73	1,374,481.71		
HA20-P10	-15.5	-15.4	437,505.80	1,374,591.65		
HA20-P11	-12.0	-14.1	437,477.85	1,374,687.75		
HA20-P12	-27.5	-28.9	437,490.91	1,374,030.91		
HA20-P13	-27.0	-28.9	437,517.24	1,374,058.85		
HA20-P14	-30.0	-30.0	437,656.51	1,374,023.67		
HA20-P15	-19.0	-19.5	437,703.83	1,374,281.49		
HA20-P16	-25.0	-23.6	437,542.04	1,374,222.22		
HA20-P17	-11.5	-14.0	437,601.94	1,374,611.45		
HA20-P18	-17.0	-16.7	437,437.77	1,374,577.86		
HA20-P19	-14.0	-14.7	437,490.32	1,374,640.52		
HA20-P20	-5.0	-5.9	437,542.95	1,374,779.26		
HA20-P21	-7.0	-9.0	437,462.01	1,374,754.31		
HA20-P22	-7.5	-10.9	437,383.51	1,374,739.63		

Notes:

¹ Probe locations are shown on Figure 2, Site and Subsurface Exploration Location Plan.

² Horizontal coordinates of probes were determined by Haley & Aldrich, Inc. using GPS survey equipment, are measured in feet and reference U.S. Ste Plane 1983, Maine East 1801, NAD83 coordinate system.

³ Mudline elevations at probe locations were estimated by Haley & Aldrich, Inc. by interpolating between bathymetric contours shown on Figure 2 and were rounded up to the nearest 0.5 ft.

⁴ Mudline elevations at probe locations were calculated by Haley & Aldrich, Inc. by subtracting manual depth soundings using a weighted tape from the tide elevation at the time the probe was completed.

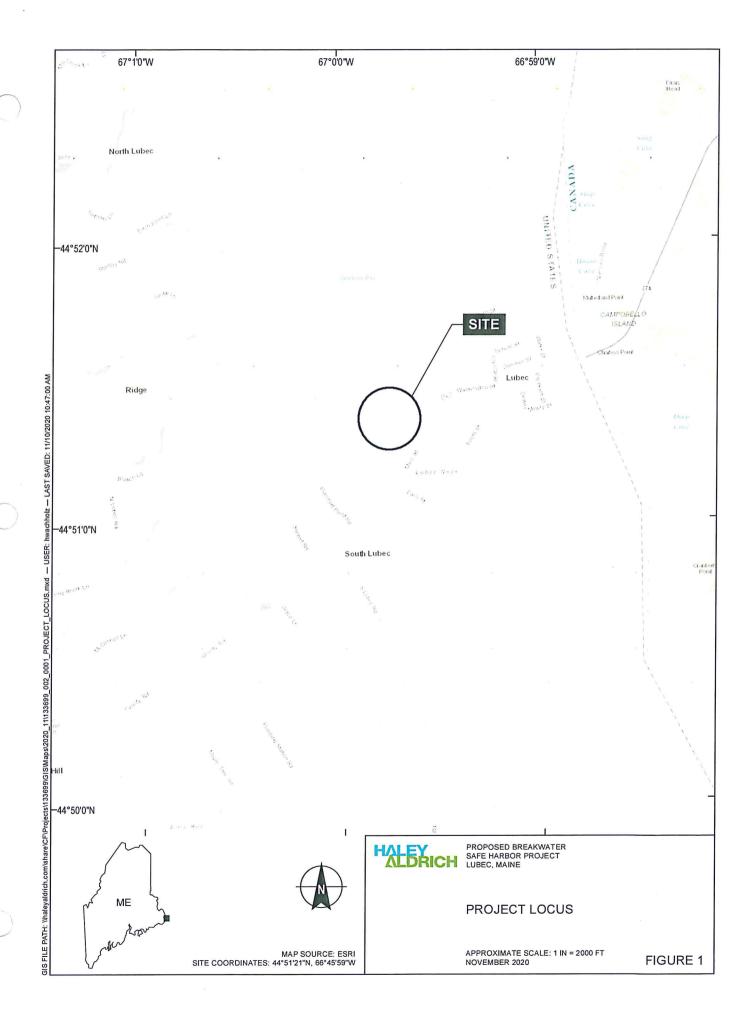
⁵ Elevations reference the North American Vertical Datum of 1988 (NAVD 88).

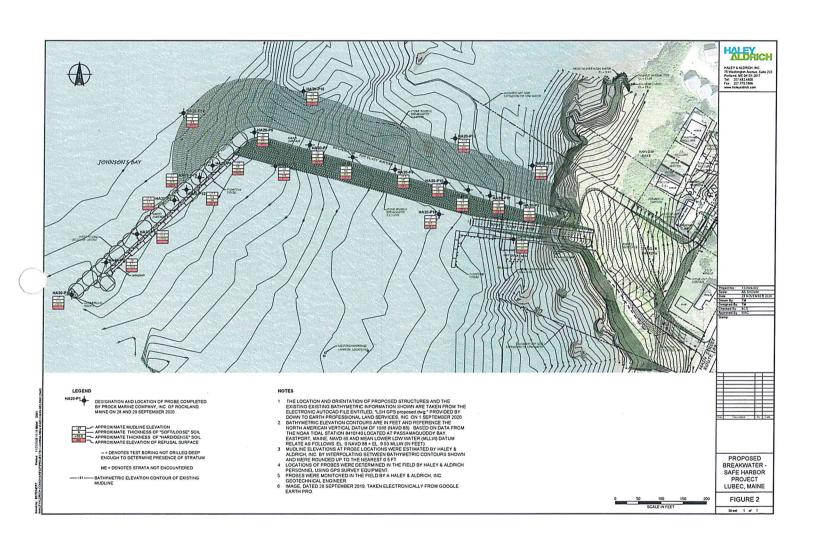
	Individual	Date
Prepared By:	JAD	9/29/2020
Checked By:	BCS	9/29/2020
Reviewed By:	WAC	11/23/2020

Haley Aldrich, Inc.

TABLE II Subsurface Exploration Subsurface Data Proposed Safe Harbor Project Lubec, Maine

Haley & Aldrich, Inc. File No.: 133699-002


	Probe	Approximate	Approx	kimate Strata Thickness	^{4,5} (ft)	Approximate Elevation of Refusal	Approximate	• · · · · · · · · · · · · · · · · · · ·	
No.1		Mudline - Elevation ^{2,3}	"Soft/Loose" Soil	"Hard/Dense" Soil	Total		Probe Depth Below Mudline ⁷	Comments	
	HA20-P1	-27.0	11.6	>21.0	>32.6	-	32.6	Very hard driving, penetration rate of approx. 1 ft per minute.	
	HA20-P2	-28.0	8.7	>18.0	>26.7	-	26.7	Very hard driving, penetration rate of approx. 1 ft per minute.	
	HA20-P3	-27.5	10.9	>15.0	>25.9	-	25.9	Very hard driving, penetration rate of approx. 1 ft per minute.	
	HA20-P4	-27.5	8.3	>16.0	>24.3		24.3	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P5	-27.0	NE	11.2	12.8	-39.8	12.8	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P6	-26.0	NE	7.7	9.3	-35.3	9.3	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P7	-22.0	NE	9.2	8.1	-30.1	8.1	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P8	-19.0	NE	5.2	6.4	-25.4	6.4	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick, measurement	
	HA20-P9	-17.5	NE	2.5	1.6	-19.1	1.6	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P10	-15.5	NE	2.9	2.8	-18.3	2.8	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement	
	HA20-P11	-12.0	NE	20.5	22.6	-34.6	22.6	Probe pile was placed with vibratory hammer on prior to taking a "soft/Loose" soil thick. measurement. Last 4 ft of pen. was harde	
	HA20-P12	-27.5	6.4	24.0	31.8	-59.3	31.8	Hard driving, soil sample collected from pile tip	
	HA20-P13	-27.0	7.5	12.5	21.9	-48.9	21.9		
	HA20-P14	-30.0	8.0	9.5	17.5	-47.5	17.5	Difficult extraction	
	HA20-P15	-19.0	1.1	0.0	1.6	-20.6	1.6		
}	HA20-P16	-25.0	6.0	1.5	6.1	-31.1	6.1		
	HA20-P17	-11.5	4.0	4.5	11.0	-22.5	11.0		
	HA20-P18	-17.0	6.0	6.5	12.2	-29.2	12.2		
	HA20-P19	-14.0	3.7	11.0	15.4	-29.4	15.4	Soil sample collected from pile tip.	
	HA20-P20	-5.0	0.5	11.5	12.9	-17.9	12.9	Difficult extraction	
	HA20-P21	-7.0	1.5	13.6	17.0	-24.0	17.0	Difficult extraction	
	HA20-P22	-7.5	1.5	10.0	14.9	-22.4	14.9	Difficult extraction, no soil on pile tip	


Notes: ¹ Probe locations are shown on Figure 2, Site and Subsurface Exploration Location Plan. ² Mudline elevations are probe locations were estimated by Haley & Aldrich, Inc. by Interpolating between bathymetric contours shown on Figure 2 and were rounded up to the nearest 0.5 ft. ³ Extension are measured in feet and reference the North American Vertical Datum of 1988 (NAVD 88). ⁴ Estimated by Haley & Aldrich, Inc. by observing "Pile probe" behavior during advancement. Actual material types, consistency and thicknesses will vary from those shown. ⁵ "NE" indicates stratum not encountered; "--" indicates probe not advanced deep enough to determine presence or thickness of stratum. ⁶ Determined by subtracting the refusal surface depth from the tide elevation at the time the probe was completed. ⁷ Determined by subtracting the "Approximate Elevation of Refusal Surface" from the "Approximate Elevation" where refusal surfaces were encountered. Where refusal surfaces were not encountered, determined by subtracting the levation at the time the probe was completed.

		Individual	Date
Г	Prepared By:	JAD	9/29/2020
Г	Checked By:	BCS	9/29/2020
	Reviewed By:	WAC	11/23/2020

Haley Aldrich, Inc. \Valeyaldrich.com\share\CF\Projects\133699\002\deliverables\2020-0928-HAI-Lubec Safe Harbor Summary Tables-d1.xls

11/25/2020

. . .

.

APPENDIX A

.

•

.

Site Photographs

Photo 1: View of Johnson Bay looking southwest.

Photo 2: View of Johnson Bay looking west.

Photo 3: View of Johnson Bay looking northwest.

Photo 4: View of shoreline from Johnson Bay looking east.

PROPOSED BREAKWATER - SAFE HARBOR PROJECT LUBEC, MAINE File No. 0133699-002 Date Photographs Taken: 28 and 29 September 2020

Photo 5: Link-Belt LS-518 crawler crane used to advance HP12x53 steel H-pile probe.

Photo 6: H&M Model 3208T vibratory hammer used to advance HP12x53 steel H-pile probe.

PROPOSED BREAKWATER - SAFE HARBOR PROJECT LUBEC, MAINE File No. 0133699-002 Date Photographs Taken: 28 and 29 September 2020

Photo 7: Soil adhered to HP12x53 steel H-pile probe.

PROPOSED BREAKWATER - SAFE HARBOR PROJECT LUBEC, MAINE File No. 0133699-002 Date Photographs Taken: 28 and 29 September 2020

()

Photo 8: Soil adhered to HP12x53 steel H-pile probe.

_	0	
Town of Lubec	Contractor Name	

Contract

Document Type

Department

State of Maine Department of Administrative and Financial Services

Advantage CT or RQS Number

2019080600000000424

Internal Department Contract Number

Contract Amount

Short Description of Goods or Services

Contract End Date

12/31/20

8/20/2019

Contract Start Date

13A-Department of Marine Resources

Marine Resource Services


\$30,000.00

Approval Date Time

8/12/19 2:26 PM

This contract has been approved by the Division of Purchases, Chair of the State Procurement Review Committee and encumbered by the Office of the State Controller.

 \bigcirc

Haley & Aldrich, Inc. 75 Washington Avenue Suite 1A Portland, ME 04101 207.482.4600

28 July 2020 File No. 133699-001

Town of Lubec 40 School Street Lubec, Maine 04652

Attention: Carol Dennison

Subject: Proposal for Planning-Level Geotechnical Engineering Services Proposed Breakwater – Safe Harbor Project Main Street, Lubec, Maine

Dear Carol:

In accordance with your request, Haley & Aldrich, Inc. (Haley & Aldrich) is pleased to submit this proposal to the Town of Lubec (Town) to provide planning-level geotechnical engineering services, including a field investigation, for the proposed Safe Harbor project. We appreciate the opportunity to submit this proposal and support the Town in evaluating the overall technical feasibility of the subject project.

Project Background

Based on our discussions with you and our review of the concept plan prepared by Down to Earth Professional Land Services, Inc., dated 1 March 2019 (revised on 27 March 2019), it is our understanding that the Town is evaluating the overall feasibility of constructing an approximate 24-ft wide, 1,300-ft long breakwater structure (top at El. 25; NAVD 88 vertical datum) that consists of a combination of a "rockfill" embankment and a cellular cofferdam structure. Floating dock structures are also being planned, which would be accessed from the cellular cofferdam portion of the breakwater. A conceptual plan showing the proposed breakwater is shown on the attached Figure 1.

As discussed with you, the critical subsurface soil unit that could impact the overall feasibility and cost to construct the breakwater, as currently envisioned, will be near-surface, harbor bottom deposits and low strength, compressible marine claysoils. As presented below, we are proposing to advance a series of "pile probes" along the proposed breakwater alignment to help identify the presence of these soils and the depth to "firm" material (e.g., glacial till soils or bedrock). Please note that we would typically drill conventional test borings that would allow us to physically collect, identify/classify, and evaluate soil and rock samples. However, due to the limited funds available at this time, we are proposing to advance "pile probes" that will allow us, from a high level, to determine the presence of and depth to "soft" or "firm" soils. Conventional test boring explorations including soil and rock sampling and laboratory testing will ultimately be needed to develop geotechnical design and foundation support

Town of Lubec 28 July 2020 Page 2

recommendations for the breakwater. This work could be done during the preliminary or final design phases of the project, or earlier if additional funds become available.

It is our understanding that this work is being completed so that the Town can confirm that the project is technical feasible from a geotechnical and constructability perspective. It is also our understanding that the Town plans to deliver the project under a design-build contract. Based on our discussions with you, you have confirmed that Haley & Aldrich will not be precluded from participating on a design-build team once an RFQ/RFP is issued.

Proposed Scope of Work

We propose the following work scope items:

- Develop a geotechnical field investigation program (program) to obtain planning-level subsurface information along the proposed breakwater alignment that will be used to help determine the presence of and thickness of "soft" soils/depth to top of "firm" soils/rock. This information will allow us to initially assess the overall technical feasibility of constructing the breakwater as currently envisioned. As currently envisioned, the program will consist of performing approximately eleven "pile probes" spaced at approximate 100-ft intervals along the proposed breakwater alignment. Approximate proposed "pile probe" locations are shown on the attached Figure 1.
- 2. Arrange to have the "pile probes" completed by a marine contractor. As discussed with you, we currently plan to use Prock Marine Company, Inc. (Prock) of Rockland, Maine to complete the "pile probes". Prock is planning to mobilize a 48 ft x 120 ft x 10 ft spud barge to the site. The barge has a draft of approximately 2 ft, and has two, 80 to 85-ft long spuds. The barge will be equipped with a 100-ton capacity crane and a 1700 H+M vibratory hammer that will be used to advance an HP12x53 steel H-pile (i.e., "pile probe").
- 3. Coordinate with Prock and the Town prior to starting the work, as needed, to efficiently mobilize to the site to conduct the field investigation work.
- 4. Determine coordinate locations for the "pile probes" using the AutoCAD file provided by you and upload the location data into our handheld GPS survey equipment. These coordinates will be used to navigate the barge to the proposed "pile probe" boring locations. We plan on locating the "pile probes" "real-time" using our GPS survey equipment. This will be done during mobilization/moving the barge to each "pile probe" location. Mudline elevations at "pile probe" locations will be estimated using bathymetry data provided by you as shown on Figure 1.
- 5. Coordinate and obtain DigSafe utility clearances and prepare and enforce a project-specific health and safety plan for conducting the field work. Conduct an internal kickoff meeting prior to the start of the field investigation.
- 6. Provide technical monitoring of the "pile probes" so that depths, locations and other observations can be made and recorded. For budgeting purposes and based on our discussion with Prock, we have included an allowance of two, 8-hour days (time on site) to complete as many "pile probes" as possible. Please note that this duration does not include allowances for weather related delays (i.e., weather days [days when it is not safe for the crew to be on the barge and drill] and lay days [days when it is not safe to have the barge on the water at all; barge moved to land and secured]). We will notify the Town immediately if this situation arises.
- 7. Conduct daily health and safety tailgate check in meetings at the site each morning during the execution of the work. Communicate with the Town, as needed, during the conduct of our field investigation.

Town of Lubec 28 July 2020 Page 3

- 8. Prepare a brief geotechnical memorandum summarizing the results of the field investigation and our initial opinion on the overall technical feasibility of constructing the breakwater as currently envisioned. We will provide a high-level discussion on geotechnical potential premium costs associated with construction of the proposed breakwater. The memorandum will include a table and an exploration location plan that summarizes the conditions encountered in the "pile probes".
- 9. Prepare for and participate in one conference call with the Town to present and discuss our findings and opinions. For budgeting purposes, we have assumed that the conference call will be approximately 1-hour long.

Work Scope Assumptions/Exclusions

- "Pile probes" will be conducted during normal work hours (likely 0700 to 1700). Daily hours worked on-site will not exceed 8 hours. If the exploration work requires more than 8 hours per day or if night or weekend work is required, we will notify the Town immediately.
- A contingency to cover the costs for weather or lay days has not been included in this proposal. If needed, we will notify the Town to address the potential additional costs in a separate contract amendment.
- The scope of work does not include obtaining permits for completing the over-water work in the harbor.
- The scope of work does not include coordination with the local harbor master and the Coast Guard. Based on discussions with you, we understand that the Town will coordinate with the necessary stakeholders, including the harbor master and Coast Guard.
- We have assumed that no underground utilities are located within the limits of the submerged land. We request that the Town confirm this in an email prior to the start of the field program.
- An assessment of oil or hazardous materials at the site, the characterization of excavated soil or groundwater which will be generated as a result of the planned construction activity for the purpose of assessing possible requirements for management of contaminated media, or assessment of the impact that contamination or pollutants could have on the proposed construction are not included in our scope of work.

Requested Information

We request that the following items be provided to us:

- Permission to enter the property to access and conduct the field explorations.
- Confirmation that underground utilities are not present at the proposed "pile probe" locations. We have not included private utility locating or vac excavation costs in our budget.
- Electronic (AutoCAD) files showing existing site features, proposed marina structures, topography and bathymetry. We have assumed that the file has been set up in a real coordinate system (e.g., Maine State Plane). We did not include budget to "fix" the site plan in real coordinate space using our survey equipment as this would require us to make an additional site visit prior to the start of the field investigation.

Staffing, Anticipated Fees and Anticipated Schedule

We anticipate that Bryan C. Steinert, P.E. will serve as the Project Manager and Wayne A. Chadbourne, P.E. will serve as the Officer-in-Charge of the project.

Town of Lubec 28 July 2020 Page 4

For your present budget purposes, we estimate the total cost of the geotechnical work scope outlined herein to be \$37,500, which includes allowances of \$1,000 and \$23,500 for direct and subcontractor expenses, respectively.

The services outlined herein will be provided in accordance with the attached "Standard Terms and Conditions, 2013" which is integral to this proposal. We reserve the right to negotiate adjustments to the fee amount should the assumptions, information, schedule or authorized scope change from those noted herein.

We are prepared to begin the work scope outlined herein upon receipt of a fully executed version of the proposal. Based on our discussions with Prock, it is likely that this work will occur in mid to late August. We will inform you of the actual schedule in the upcoming weeks.

Closure

This proposal is valid for a period of 30 days from the date of this letter. If acceptance and authorization to proceed are not received within that period, we reserve the right to renegotiate the estimated costs, schedule for completion, personnel commitments and scope of work. If the above arrangements are satisfactory to you, please indicate your acceptance by signing and returning one copy of this proposal along with the attachments. When accepted by you, this proposal together with the attached terms and conditions document will constitute our Agreement.

If you have any comments or questions about the scope, schedule or budget for the engineering services outlined herein, please do not hesitate to contact us.

Sincerely yours, HALEY & ALDRICH, INC.

Bryan C. Steinert, P.E. Project Manager

Wayne A. Chadbourne, P.E. Principal Consultant

This proposal and the attached "Standard Terms and Conditions, 2013" document, are understood and accepted:

TOWN OF LUBEC.

By (authorized signature) Bv (print or type name) Title Date

Attachments: Figure 1 – Proposed Probe Location Plan (1 page) Standard Terms and Conditions, 2013 (4 pages)

\\haleyaldrich.com\share\CF\Projects\133699\001\2020-0728-HAI-Lubec Preliminary GT Proposal-f1.docx

- INTRODUCTION. These Standard Terms and Conditions, together with the accompanying proposal and any attachments thereto ("Proposal"), constitute the Agreement between Haley & Aldrich, Inc., including its affiliates and subsidiaries ("Haley & Aldrich"), and the entity or person to whom the proposal is addressed ("Client") for the project at the project site ("Site") as may be referenced in the Proposal.
- 2. <u>PERFORMANCE OF SERVICES</u>. Client agrees that Haley & Aldrich has been engaged to provide professional services only, and that Haley & Aldrich does not owe a fiduciary responsibility to Client. Haley & Aldrich's services will be performed in accordance with generally accepted practices of engineers and/or scientists providing similar services at the same time, in the same locale, and under like circumstances ("Standard of Care"). No other warranty, expressed or implied, is included or intended by this Agreement.
- 3. <u>CLIENT RESPONSIBILITIES</u>. Except as otherwise agreed, Client will secure the approvals, Site access, permits, licenses and consents necessary for performance of Haley & Aldrich's services under this Agreement. Client shall provide Haley & Aldrich with a plan delineating the boundaries of the Site and all documents, reports, surveys, plans, drawings, information concerning known or suspected Site conditions, above and below ground, information related to hazardous materials or other environmental or geotechnical conditions at the Site, utility information and other information that is reasonably foreseeable to be pertinent to Haley & Aldrich's services under this Agreement. If Client is not the owner of the Site, Client will make all reasonable attempts to obtain these same documents and provide them to Haley & Aldrich. Unless otherwise agreed to in writing by Haley & Aldrich, Haley & Aldrich shall be entitled to rely on documents and information Client provides.
- 4. <u>PAYMENT</u>. Invoices will generally be submitted monthly. Payment will be due within thirty (30) days of invoice date. Interest will be added to accounts in arrears at the rate of one and one-half (1.5) percent per month on the outstanding balance. In the event Haley & Aldrich must engage counsel to enforce overdue payments, Client will reimburse Haley & Aldrich for all reasonable attorney's fees and court costs.
- 5. <u>INSURANCE</u>. Haley & Aldrich will maintain: workers' compensation insurance as required under the laws of the state in which the services will be performed; commercial general liability insurance with a combined single limit of \$1,000,000 per occurrence and \$2,000,000 in the aggregate for bodily injury, including death and property damage; automobile liability insurance with a combined single limit of \$1,000,000 per occurrence; professional liability insurance in the amount of \$1,000,000 per claim and in the aggregate; and contractor's pollution liability insurance in the amount of \$1,000,000 per occurrence and in the aggregate. Haley & Aldrich will furnish Client with a certificate of insurance evidencing the coverages listed above.
- 6. <u>OWNERSHIP OF DOCUMENTS AND PROCESSES</u>. All documents and all processes created, prepared, or furnished under this Agreement by Haley & Aldrich are its instruments of service and all ownership and copyright rights of the same shall remain with Haley & Aldrich. Client may make and retain copies of Haley & Aldrich's instruments of service, opinions, or reports or otherwise related documents ("Instruments of Services") for the project at the Site. Any reuse or modification of Haley & Aldrich's Instruments of Services without written verification or adaption by Haley & Aldrich for the specific purpose intended shall be at Client's and/or any third party's sole risk and without liability or legal exposure to Haley & Aldrich. Client shall indemnify, defend, and hold harmless Haley & Aldrich from all claims, damages, losses, and expenses, including attorney's fees, arising out of or resulting therefrom. Client agrees that any such verification or adaptation of Haley & Aldrich's documents and processes shall entitle Haley & Aldrich to all just and proper compensation.
- 7. <u>SUSPENSION OF WORK AND TERMINATION</u>. Client may, at any time, suspend further work by Haley & Aldrich or terminate this Agreement. Suspension or termination shall be by written notice effective three (3) business days after receipt by Haley & Aldrich. Client agrees to compensate Haley & Aldrich for all services performed and commitments made prior to the effective date of the suspension or termination, together with reimbursable expenses including those of subcontractors, subconsultants, and vendors. Client acknowledges that its failure to pay all invoices on time and in full may result in a suspension of services. In the event of a suspension of services due to Client's failure to pay all invoices on time and in full, Haley & Aldrich shall have no liability to Client for delay or damage to Client or others because of such suspension of services.
- 8. <u>FORCE MAJEURE</u>. Except for Client's obligation to pay for services rendered, no liability will attach to either party from delay in performance or nonperformance caused by circumstances or events beyond the reasonable control of the party affected, including, but not limited to, acts of God, fire, flood, unanticipated Site or subsurface conditions, explosion, war, terrorism, request or intervention of a governmental authority (foreign or domestic), court order (whether at law or in equity), labor relations, accidents, delays or inability to obtain materials, equipment, fuel or transportation.

- 9. <u>SUBSURFACE RISKS</u>. Client recognizes that inherent risks occur in the exploration and evaluation of subsurface conditions. Even a comprehensive sampling and testing program, implemented with appropriate equipment and personnel under the direction of a professional performing in accordance with the Standard of Care, may fail to detect certain underlying conditions. Conditions that Haley & Aldrich may infer to exist between sampling points may differ significantly from those that actually exist. Client also recognizes that due to natural occurrences or direct or indirect human intervention at or near the Site, actual conditions may change with passage of time.
- 10. <u>DISCLOSURE OF HAZARDS (RIGHT-TO-KNOW)</u>. Haley & Aldrich will take reasonable precautions for the health and safety of Haley & Aldrich's employees while at the Site. Client will obtain from Site owner, and others as applicable, and furnish to Haley & Aldrich, prior to Haley & Aldrich beginning services under this Agreement, all available information concerning Site conditions, including, but not limited to: subsurface conditions, oil, hazardous material, toxic mold and biological conditions, radioactive or asbestos material in, on or near the Site. If such a material or condition is discovered that had not been disclosed to Haley & Aldrich, then, upon notification, Client and Haley & Aldrich shall seek an equitable adjustment to be made to this Agreement. In addition, Client agrees to assume all liability and shall indemnify, defend and hold Haley & Aldrich harmless from any claims, losses, liabilities or damages arising out of personal injury or death resulting from such hazardous material or condition.
- 11. <u>PUBLIC RESPONSIBILITY</u>. Client acknowledges that Client or the Site owner, as the case may be, is now and shall remain in control of the Site for all purposes at all times. Client agrees to notify each federal, state, county, and local public agency, as they each may require, of the existence of any condition at the Site that may present a potential danger to public health, safety, or the environment and as required by applicable statutes and/or regulations and as required by applicable statutes and/or regulations.

Notwithstanding the provisions of the foregoing, Haley & Aldrich will comply with subpoenas; judicial orders or government directives; federal, state, county, and local laws, regulations, and ordinances; and codes regarding the reporting to the appropriate public agencies of findings with respect to potential dangers to public health, safety, or the environment. Haley & Aldrich shall have no liability to Client or to any other person or entity for reports or disclosures made in accordance with such requirements.

- 12. <u>SAMPLES</u>. Samples of soil, rock, water, waste, or other materials collected from the Site may be disposed of sixty (60) days from sampling date unless Client advises otherwise in writing or unless applicable law requires their retention. Haley & Aldrich will dispose of such samples with a qualified waste disposal contractor. Client shall pay all costs associated with the storage, transport, and disposal of samples, and agrees to indemnify, defend and hold Haley & Aldrich harmless for any liability arising therefrom. If samples must be stored by Haley & Aldrich for longer than sixty (60) days from sampling date, Client shall pay all costs associated with the additional storage time. Client recognizes and agrees that Haley & Aldrich is a bailee and assumes neither title to said waste or samples nor any responsibility as generator of said waste or samples.
- 13. <u>CONFIDENTIALITY</u>. Haley & Aldrich will hold confidential all business and technical information obtained or generated in performing of services under this Agreement. Haley & Aldrich will not disclose such information without Client's consent except to the extent required for: (1) performance of services under this Agreement; (2) compliance with professional standards of conduct for preservation of the public safety, health, and welfare; (3) compliance with any court order, statute, law, or governmental directive; and/or (4) protection of Haley & Aldrich against claims or liabilities arising from the performance of services under this Agreement. Haley & Aldrich's obligations hereunder shall not apply to information in the public domain or lawfully obtained on a non-confidential basis from others.
- 14. <u>HAZARDOUS MATERIALS</u>. Before any hazardous or contaminated materials are removed from the Site, Client shall sign manifests naming Client as the Generator of the waste (or, if Client is not the Generator, Client will arrange for the Generator to sign the manifest). Client shall select the treatment or disposal facility to which any waste is taken. Haley & Aldrich shall not be the Generator, Owner, Arranger, Operator, nor will it possess, take title to, or assume any legal liability for any hazardous or contaminated materials at or removed from the Site. Haley & Aldrich shall not have responsibility for or control of the Site or of operations or activities at the Site other than its own. Haley & Aldrich shall not undertake, arrange for or control the handling, treatment, storage, disposal, removal, shipment, transportation or disposal of any hazardous or contaminated materials at or removed from the Site, other than laboratory samples it collects or tests (which shall be returned to Client for disposal). Client agrees to defend, indemnify and hold harmless Haley & Aldrich for any costs or liability incurred by Haley & Aldrich in defense of or in payment for any legal actions in which it is alleged that Haley & Aldrich is the Owner, Operator, Generator, Arranger, Treater, Storer or Disposer of hazardous waste. Capitalized terms used herein shall have the meanings assigned to them in RCRA and CERCLA.

- 15. <u>SERVICES DURING CONSTRUCTION</u>. Haley & Aldrich shall not, during construction Site visits, shop drawing review, or as a result of observations of construction work, supervise, direct, or have control over any contractors' means, methods, work sequences or procedures of construction selected by contractors. Haley & Aldrich shall not be liable for any of contractors' work, safety precautions or programs incident to contractors' work. Haley & Aldrich shall not have any liability whatsoever for any failure of contractors to comply with any laws, rules, regulations, ordinances, codes or orders. Haley & Aldrich neither guarantees nor warrants the performance of any contractors' work, and does not assume responsibility for any contractors' failure to furnish any labor, materials, equipment or related work in accordance with any agreement or contract documents.
- 16. <u>RELIANCE</u>. Haley & Aldrich's Instruments of Services, which when rendered pursuant to this Agreement, are prepared solely for Client and made available to Client only for the purpose set forth in the Proposal. Client acknowledges and agrees that the unauthorized use of, or reliance upon, Haley & Aldrich's Instruments of Services by any other party, or for any other project or purpose, shall be at Client's sole risk and without any liability to Haley & Aldrich, except and unless the Client obtains the prior written authorization of Haley & Aldrich. Client agrees to indemnify, defend, and hold Haley & Aldrich harmless to the fullest extent permitted by law for any claims, losses, or damages allegedly suffered by third parties due to the unauthorized reliance on any of Haley & Aldrich's Instruments of Services provided hereunder.
- 17. THIRD-PARTY RELIANCE. Environmental site assessment ("ESA") reports prepared by Haley & Aldrich are for the sole and exclusive use of its Client. Any third-party and each of their respective successors and assigns ("Relying Parties") may not rely on Haley & Aldrich's ESAs without the prior written authorization of Haley & Aldrich in the form outlined below. Haley & Aldrich may authorize third-party reliance by providing reliance letters to third party(ies) only with regard to ESA reports prepared for its Client, provided the Relying Party(ies) agree: (1) to use the ESA report only for the purpose of assessing the potential or existing environmental contamination liabilities associated with real property; (2) to be bound by the terms and conditions and limitations contained herein and in the ESA report; (3) to accept the form and substance of Haley & Aldrich's reliance letter; and (4) to deliver to Haley & Aldrich a signed copy of a reliance letter by an authorized representative of the Relying Party, within 30 days after said reliance letter is provided to the Relying Party, signifying the Relying Parties' acceptance of these terms and conditions. Upon Haley & Aldrich's receipt of the signed reliance letter by the Relying Party(ies), the Relying Party(ies) will be authorized to rely on Haley & Aldrich's ESA for the limited purpose of identifying potential or existing environmental contamination liabilities associated with real property. Notwithstanding anything contained herein, Haley & Aldrich shall not be liable for any claim or damage arising from environmental contamination liabilities that occurred on the subject property after the effective date of the ESA. Likewise, Haley & Aldrich shall not be liable for any existing or future property owner's failure to satisfy any continuing obligation for CERCLA liability protection or under the Federal Environmental Protection Agency's All Appropriate Inquiries rule.
- 18. WAIVER OF CONSEQUENTIAL DAMAGES. Neither party, nor their parent, affiliated or subsidiary companies, nor the officers, directors, agents, employees, or contractors of any of the foregoing, shall be liable to the other in any action or claim for incidental, indirect, special, collateral, punitive, exemplary or consequential damages, including, but not limited to financial loss, loss of profits, loss of revenue, delay, disruption, loss of anticipated profits or revenue, loss of use of any structure, system or equipment, or non-operation or increased cost of operation arising out of or related to the services, whether the action in which recovery of damages is sought is based upon contract, tort (including, to the greatest extent permitted by law, the sole, concurrent or other negligence, whether active or passive, and strict liability of any protected individual or entity), statute or otherwise.
- 19. <u>HAZARDOUS SUBSTANCE CLAIMS</u>. By authorizing Haley & Aldrich to proceed with the services, Client confirms that Haley & Aldrich has not created nor contributed to the presence of any hazardous substances or conditions at or near the Site. Client recognizes that there is an inherent risk in drilling borings, pushing or driving probes, excavating trenches, or implementing other methods of exploration or remediation at or near a site contaminated by hazardous materials. Further, Client recognizes that these are inherent risks even through the exercise of the Standard of Care. Client accepts this risk and agrees to indemnify and hold Haley & Aldrich, and each of Haley & Aldrich's subcontractors, consultants, officers, directors, and employees harmless against any and all claims for damages, costs, or expenses direct or consequential, in connection with a release of hazardous substances, except to the extent that such claims, damages, or losses are adjudicated to have resulted from Haley & Aldrich's gross negligence or willful misconduct in the performance of the services.
- 20. <u>DIFFERING SITE CONDITIONS</u>. If, during the course of performance of this Agreement, conditions or circumstances are discovered, which were not contemplated or anticipated by Haley & Aldrich, or otherwise provided to Haley & Aldrich by the Client, at the commencement of this Agreement or which differ materially from those indicated in Haley & Aldrich's Proposal, Haley & Aldrich may notify Client in writing of the newly discovered conditions or circumstances, and Client and Haley & Aldrich shall renegotiate, in good faith, the scope of work and terms and conditions of this Agreement. If amended terms and conditions cannot be agreed upon within thirty (30) days after notice, Haley & Aldrich may terminate this Agreement.

- 21. <u>ADDITIONAL SERVICES</u>. Haley & Aldrich's compensation hereunder shall be subject to adjustment to recognize any increase in costs due to additional services requested or authorized by Client. Such additional services shall include, but not be limited to, additions in the manner or method of Haley & Aldrich's performance of Services or due to changes in schedule or circumstances not solely caused by or under the control of Haley & Aldrich. These additional services shall be verified in writing by the parties and performed on the basis of mutually agreed rates, or other such basis agreed to by the parties.
- 22. <u>LIMITATION OF REMEDIES</u>. To the fullest extent permitted by law, the total aggregate liability of Haley & Aldrich, its officers, directors, and employees to Client, and anyone claiming by, through, or under Client, including all authorized Relying Parties, as applicable, for any and all injuries, claims, losses, expenses, or damages whatsoever arising out of or in any way related to Haley & Aldrich's services, from any cause or causes whatsoever, including, but not limited to, negligence, errors, omissions, strict liability or contract, shall be limited to an aggregate amount of \$50,000 or Haley & Aldrich's fee, whichever is greater.

If Client prefers not to limit Haley & Aldrich's liability to this sum, Haley & Aldrich may increase this limitation upon Client's written request. If Haley & Aldrich approves the request, Haley & Aldrich will agree to increase the limitation to \$100,000, provided that Client agrees to pay \$2,500 for this change. The additional fee is for the additional risk assumed by Haley & Aldrich and is not a charge for additional liability insurance.

- 23. <u>DISPUTE RESOLUTION</u>. If a dispute arises out of or relates to this Agreement or the breach thereof, the parties will attempt in good faith to resolve the dispute through negotiation. Except for payment matters, if a dispute is not resolved by these negotiations, the matter will be submitted to non-binding mediation with a mutually agreed upon mediator. The parties agree that they will participate in the mediation in good faith and that they will share equally in its costs. Except for payment matters or to preserve mechanics' lien rights, neither party will commence a civil action until after the completion of an initial mediation session.
- 24. <u>LEGAL ACTION</u>. All legal actions by either party against the other for any cause or causes, including, but not limited to, breach of this Agreement, negligence, misrepresentations, breach of warranty or failure to perform in accordance with the Standard of Care, however denominated, shall be barred two (2) years from the day after completion of Haley & Aldrich's Services. Client agrees to compensate Haley & Aldrich for services performed in response to any legal action, subpoena, or court order arising out of or related to Haley & Aldrich's services under this Agreement at Haley & Aldrich's Standard Fee Schedule then in effect.
- 25. <u>PRECEDENCE</u>. These Terms and Conditions shall take precedence over any inconsistent or contradictory provisions contained in any proposal, contract, purchase order, requisition, notice to proceed, or like document.
- 26. <u>HEADINGS</u>. The headings used in these terms and conditions are inserted for the convenience of the parties and shall not define, limit or describe the scope or the intent of the provisions set forth herein.
- 27. <u>SEVERABILITY</u>. If any of these Terms and Conditions are finally determined to be invalid or unenforceable in whole or part, the remaining provisions shall remain in full force and effect, and be binding upon the parties. The parties agree to reform these Terms and Conditions to replace any such invalid or unenforceable provision with a valid and enforceable provision that comes as close as possible to the intention of the stricken provision.
- 28. <u>SURVIVAL</u>. All Terms and Conditions contained herein shall survive the completion of Haley & Aldrich's services on this project or the termination of services for any cause.
- 29. <u>GOVERNING LAW AND JURISDICTION</u>. This Agreement shall be solely governed, and construed and enforced in accordance with the laws of the Commonwealth of Massachusetts, without regard to its conflict of laws rules. Client agrees to submit and consent to the jurisdiction of the courts present in Massachusetts in any action brought to enforce (or otherwise arising from or relating to) this Agreement.

END OF TERMS AND CONDITIONS

Appendix E. Laboratory Test Results

Lubec Breakwater - Laboratory Test Results

Table E.1 - Soil Index Test Data

						Atterberg Limit	ts	Part	icle Size Distrib	ution
Borehole No.	Sample No.	Sample Depth	USCS	Water Content	LL	PL	PI	Gravel	Sand	Fines
		ft		%	%	%	%	%	%	%
WB-1	U-1	6 - 8	CL	24.8	32	20	12	-	-	-
	S-6	15 - 17	CL	21.6	27	17	10	-	-	-
	S-10	35 - 35.9	SC	11.5	-	-	-	10.1	49	40.9
WB-4	S-2	5 - 7	CL	25.6	29	19	10	-	-	-
	S-2	2 - 4	CL	24.6	37	22	15	-	-	-
	S-4	7 - 9	CL	26.3	34	14	20	-	-	-
WB-5	S-8	18 - 20	CL	27.2	36	17	19	-	-	-
	S-10	28 - 30	CL	27.9	30	12	18	-	-	-
	S-12	38 - 40	CL	28.3	32	14	18	-	-	-
	U-1	4 - 6	CL	27.1	32	20	12	-	-	-
	S-6	15 - 17	CL	31.1	34	15	19	-	-	-
WB-6	S-7	20 - 22	CL	26.4	30	14	16	-	-	-
WD-0	S-10	35 - 37	CL	24.4	28	10	18	-	-	-
	S-12	45 - 47	GC	8	-	-	-	54.3	31.1	13.6
	S-13	50 - 52	GC	7.3	-	-	-	53.8	24.5	21.7
	S-2A	2 - 4	CL	29.8	29	16	13	-	-	-
WB-101	S-3	4 - 6	SC	10.7	-	-	-	32.7	37	30.3
	S-4	6 - 8	CL-ML	21.4	19	13	6	-	-	-
WD 102	S-1	0 - 2	ОН	37.7	-	-	-	-	-	-
WB-102	S-2	2 - 4	ML	40.3	38	26	12	-	-	-
WB-103	S-2A	2 - 4	CL-ML	22.8	27	21	6	-	-	-
WD-105	U-1	4 - 6	CL	22.2	27	17	10	-	-	-
WB-104	S-2	2 - 4	ОН	31.7	-	-	-	-	-	-
WD-104	S-3	4 - 6	CL-ML	13.7	14	10	4	-	-	-
WB-105	S-3	4 - 6	CL	25.8	28	18	10	-	-	-
WD-105	U-1	6 - 7.6	CL	23.4	30	19	11	-	-	-
	U-1	6 - 8	CL	15.3	36	16	20	-	-	-
WB-106	U-2	8 - 10	CL	20.8	27	17	10	-	-	-
	S-4B	10 - 12	SC	7.1	-	-	-	31.7	40.8	27.5
	S-4	6 - 8	CL	29.7	34	19	15	-	-	-
WB-107	U-1	8 - 10	CL	22.7	25	14	11	-	-	-
	S-6	14 - 16	SC	9.1	-	-	-	22.8	43.5	33.7
	U-1	4 - 6	CL	24.6	30	17	13	-	-	-
WB-108	U-2	8 - 10	CL	27.9	36	16	20	-	-	-
	S-5	14 - 16	CL	23.1	42	17	25	-	-	-

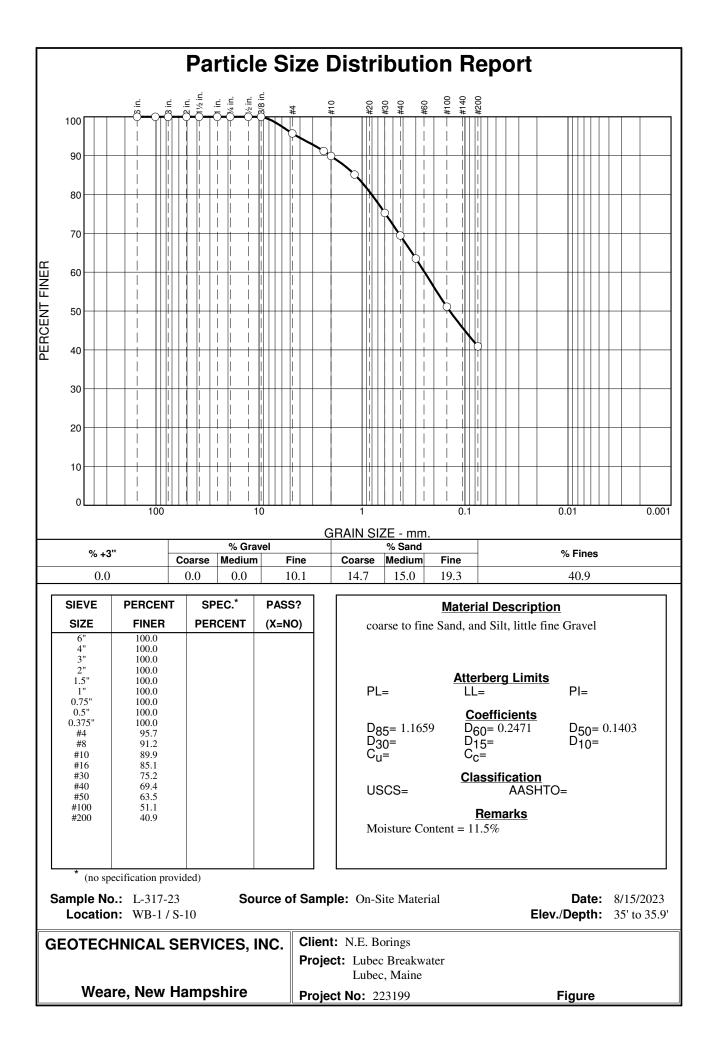
Boring ID	Sample ID	Depth	Description	Moisture Content,%
WB-1/U-1	L- 314-23	6-8'	Moist, dark gray clay	24.8
Wb-6/U-1	L- 332-23	4-6'	Moist, dark grayish brown clay	27.1

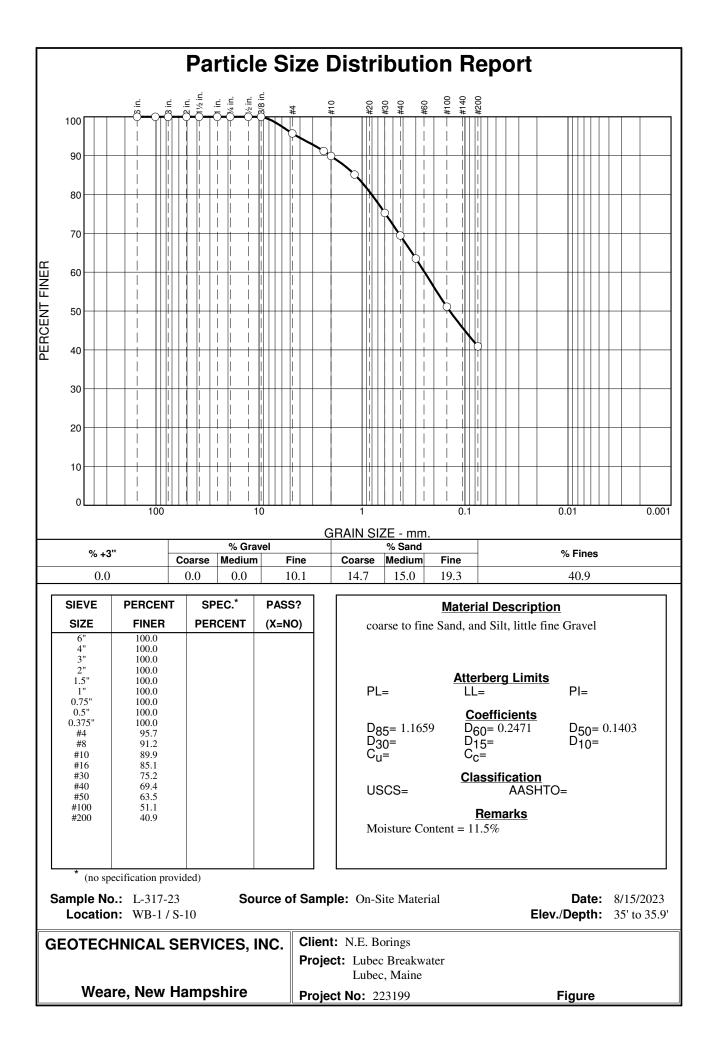
Notes: Temperature of Drying : 110° Celsius

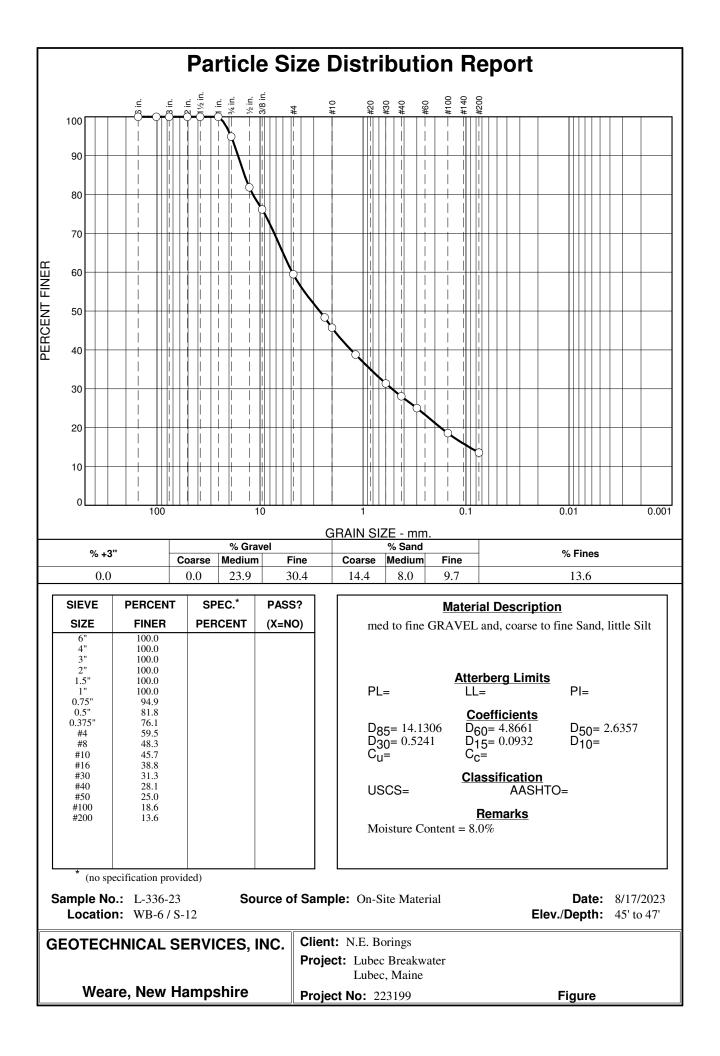
Client:	Jacobs Engineering Grou	р			
Project:	Lubec Breakwater				
Location:				Project No:	GTX-318760
Boring ID:		Sample Type:		Tested By:	ckg
Sample ID	:	Test Date:	03/18/24	Checked By:	ank
Depth :		Test Id:	761922		

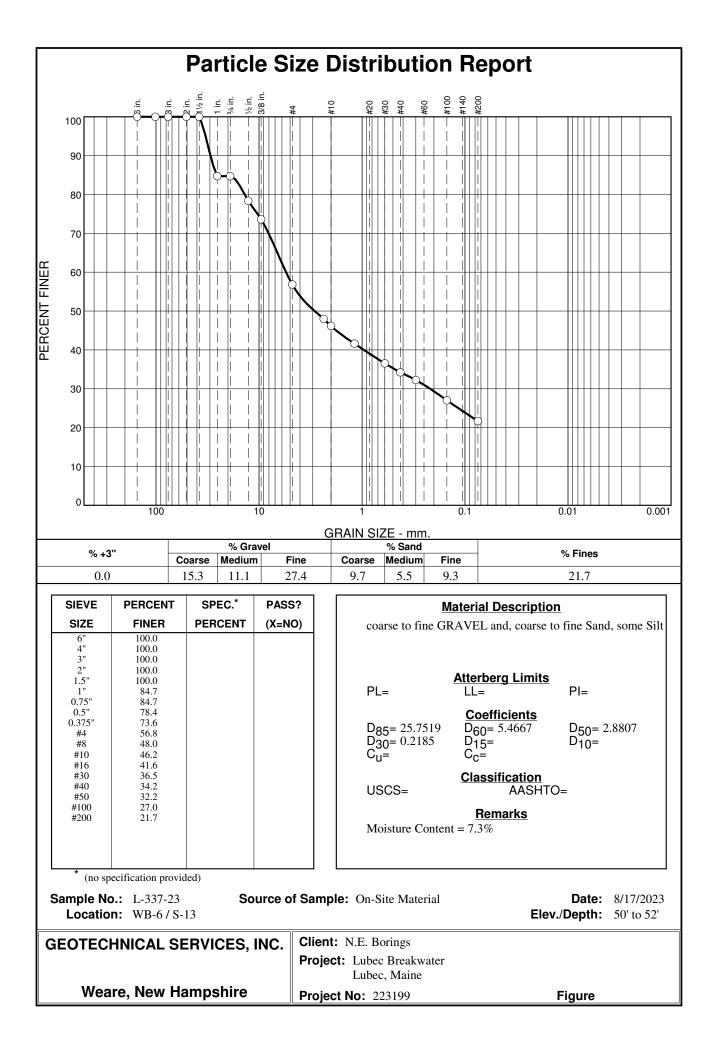
Boring ID	Sample ID	Depth	Description	Moisture Content,%
WB-101	S- 2A	2-4	Moist, brown clay	29.8
WB-101	S- 3	4-6	Moist, light brownish gray silty sand with gravel	10.7
WB-101	S- 4	6-8	Moist, gray silty clay	21.4
WB-102	S- 1	0-2	Moist, very dark grayish brown silt with sand	37.7
WB-102	S- 2	2-4	Moist, gray silt	40.3
WB-103	S- 2A	2-4	Moist, grayish brown silty clay	22.8
WB-103	U- 1	4-6	Moist, gray clay	22.2
WB-104	S- 2	2-4	Moist, dark gray silty sand with gravel	31.7
WB-104	S- 3	4-6	Moist, brown silty clay with gravel	13.7

Client:	Jacobs Engineering Grou	р			
Project:	Lubec Breakwater				
Location:				Project No:	GTX-318760
Boring ID:		Sample Type:		Tested By:	ckg
Sample ID	:	Test Date:	03/18/24	Checked By:	ank
Depth :		Test Id:	761930		

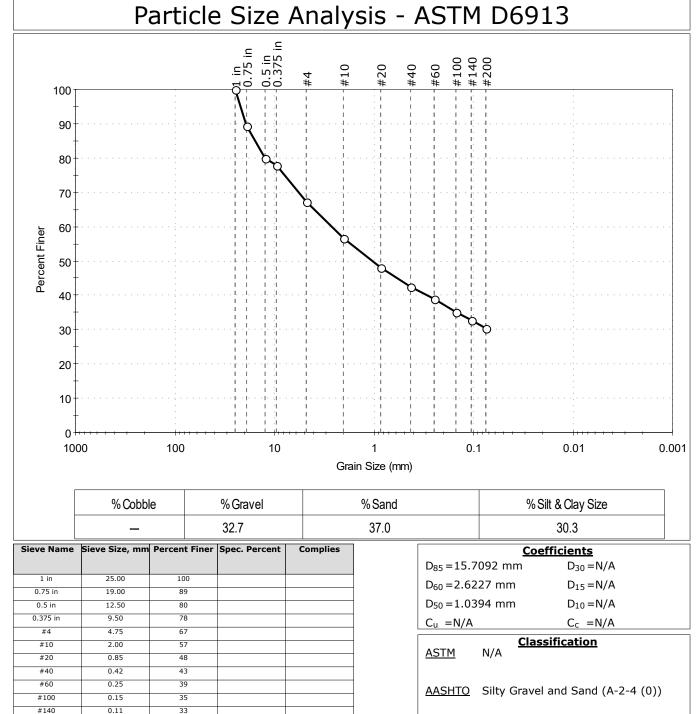

Boring ID	Sample ID	Depth	Description	Moisture Content,%
WB-105	S- 3	4-6	Moist, brown clay	25.8
WB-105	U- 1	6-7.6	Moist, gray clay	23.4
WB-106	U- 1	6-8	Moist, gray clay with gravel	15.3
WB-106	U- 2	8-10	Moist, gray clay with sand	20.8
WB-106	S- 4B	10-12	Moist, dark gray silty sand with gravel	7.1
WB-107	S- 4	6-8	Moist, grayish brown clay	29.7
WB-107	U- 1	8-10	Moist, gray clay	22.7
WB-107	S- 6	14-16	Moist, gray silty sand with gravel	9.1



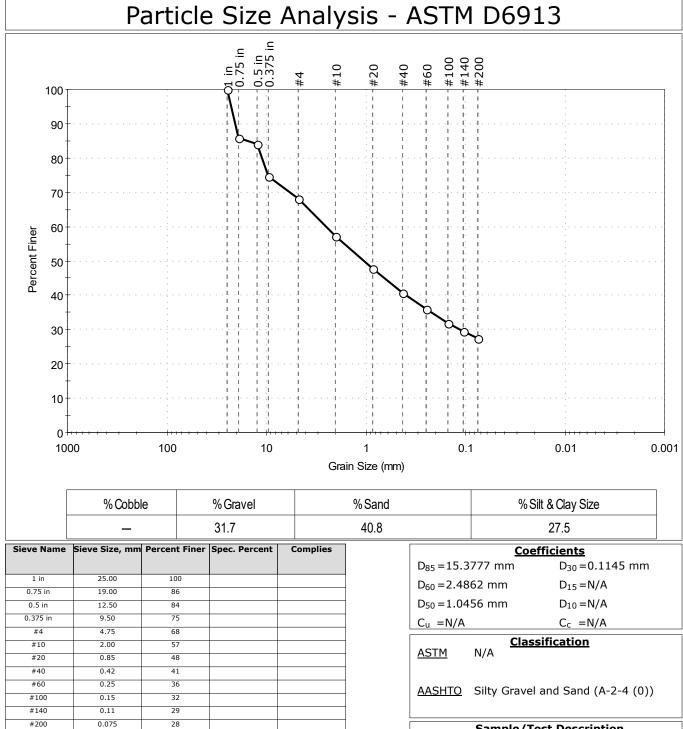

Client:	Jacobs Engineering Grou	р			
Project:	Lubec Breakwater				
Location:				Project No:	GTX-318760
Boring ID:		Sample Type:		Tested By:	ckg
Sample ID	:	Test Date:	03/26/24	Checked By:	ank
Depth :		Test Id:	761933		


Boring ID	Sample ID	Depth	Description	Moisture Content,%
WB-108	U- 2	8-10	Moist, gray clay	24.6
WB-108	S- 5	14-16	Moist, brown clay	27.9
WB-108	U- 1	4-6	Moist, gray clay	23.1

Notes: Temperature of Drying : 110° Celsius

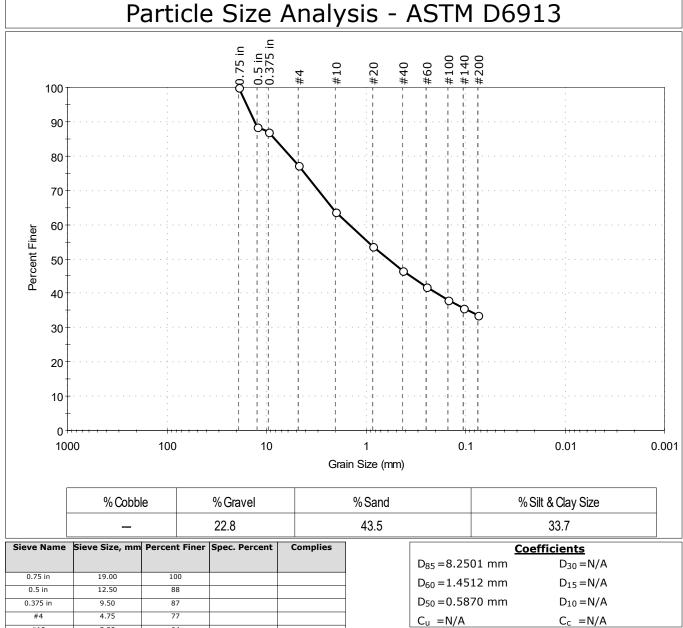


Client:	Jacobs Eng	gineering Group)					
Project:	Lubec Breakwater							
Location:					Project No:	GTX-318760		
Boring ID:	WB-101		Sample Type:	Unspecifie	dTested By:	ckg		
Sample ID:	: S-3		Test Date:	03/15/24	Checked By:	ank		
Depth :	4-6		Test Id:	761934				
Test Comm	ent:							
Visual Description:		Moist, light brownish gray silty sand with gravel						
Sample Comment:								


0.075

30

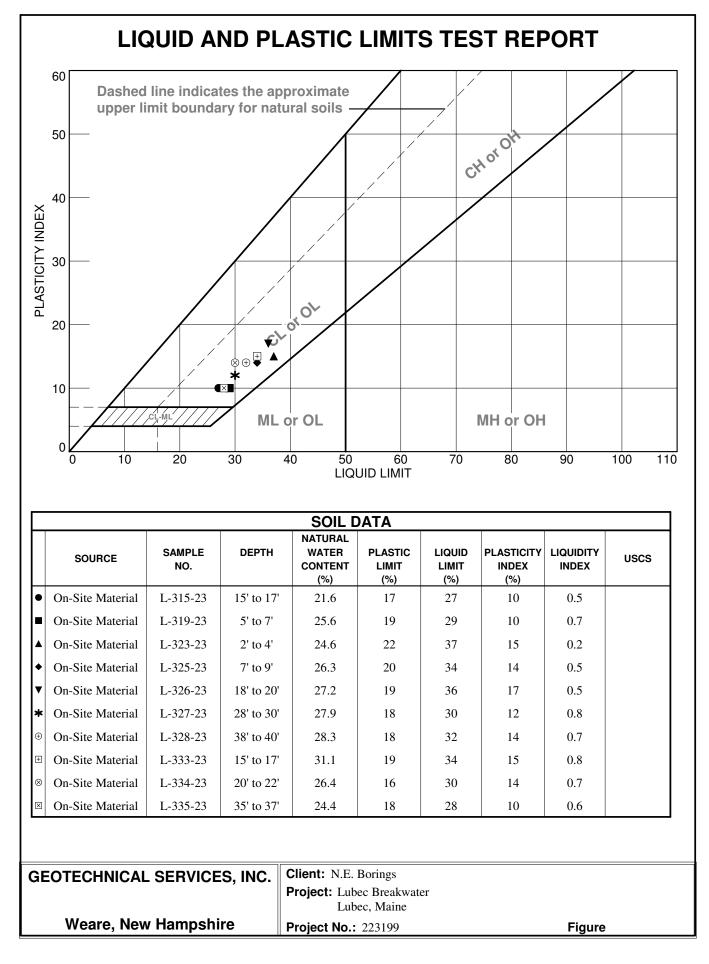
#200



Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-106		Sample Type:	Unspecifie	dTested By:	ckg
Sample ID	: S-4B		Test Date:	03/15/24	Checked By:	ank
Depth :	10-12		Test Id:	761935		
Test Comm	ent:					
Visual Desc	cription:	Moist, dark gr	ay silty sand w	ith gravel		
Sample Co	mment:					

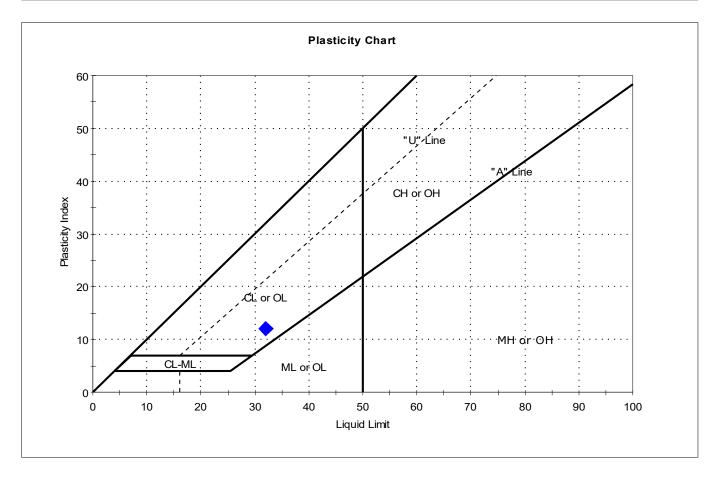
م ام اللي	C := c	Amplum			CO12	
	minent:					
Sample Co	mmont	,	. 5			
Visual Desc	cription:	Moist, gray si	Ity sand with g	avel		
Test Comm	ent:					
Depth :	14-16		Test Id:	761936		
Sample ID:	: S-6		Test Date:	03/15/24	Checked By:	ank
Boring ID:	WB-107		Sample Type:	Unspecifie	dTested By:	ckg
Location:					Project No:	GTX-318760
Project:	Lubec Bre	akwater				
Client:	Jacobs En	gineering Grou	р			

0.375 in	9.50	87	
#4	4.75	77	
#10	2.00	64	
#20	0.85	54	
#40	0.42	47	
#60	0.25	42	
#100	0.15	38	
#140	0.11	36	
#200	0.075	34	


<u>AASHTO</u>	Silty Gravel and Sand (A-2-4 (0))
Sand/Gra	Sample/Test Description vel Particle Shape : ANGULAR

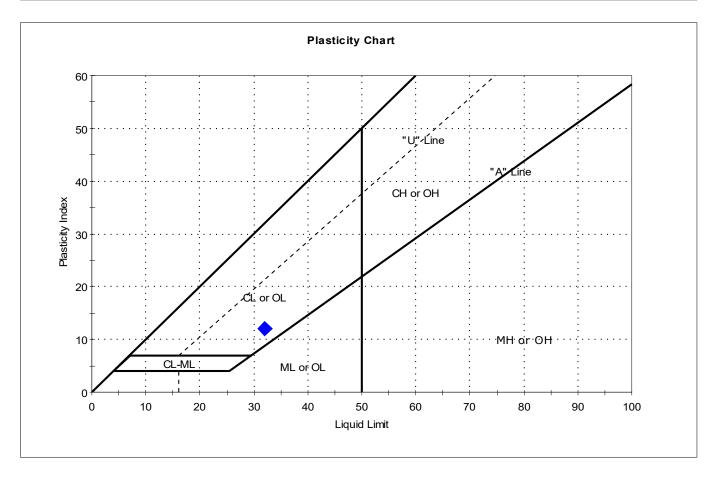
Classification

Sand/Gravel Hardness : HARD


N/A

<u>ASTM</u>

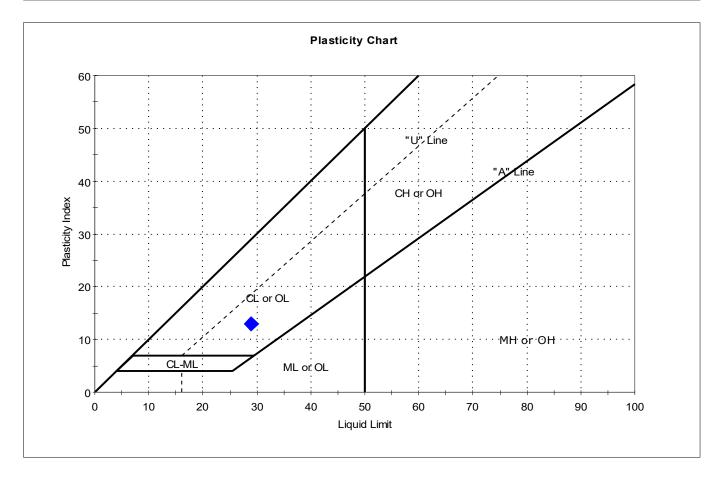
ſ	Client:	Geotechnic	al Services Inc				
	Project:	Lubec Brea	akwater				
	Location:	Lubec, ME				Project No:	GTX-317770
/ [Boring ID:	WB-1/U-1		Sample Type:	tube	Tested By:	cam
	Sample ID:	L-314-23		Test Date:	09/19/23	Checked By:	ank
	Depth :	6-8'		Test Id:	732220		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, dark gra	ay clay			
	Sample Cor	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	L-314-23	WB-1/U-1	6-8'	25	32	20	12	0.4	

Sample Prepared using the WET method

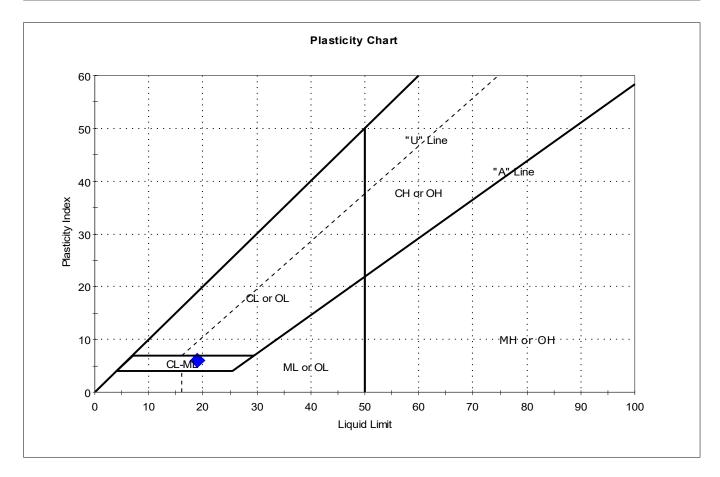
ſ	Client:	Geotechnic	al Services Inc				
	Project:	Lubec Brea	ikwater				
	Location:	Lubec, ME				Project No:	GTX-317770
	Boring ID:	Wb-6/U-1		Sample Type:	tube	Tested By:	cam
	Sample ID:	L-332-23		Test Date:	09/19/23	Checked By:	ank
	Depth :	4-6'		Test Id:	732221		
	Test Comm	ent:					
	Visual Description: Moist, dark grayish brown clay						
	Sample Cor	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	L-332-23	Wb-6/U-1	4-6'	27	32	20	12	0.6	

Sample Prepared using the WET method

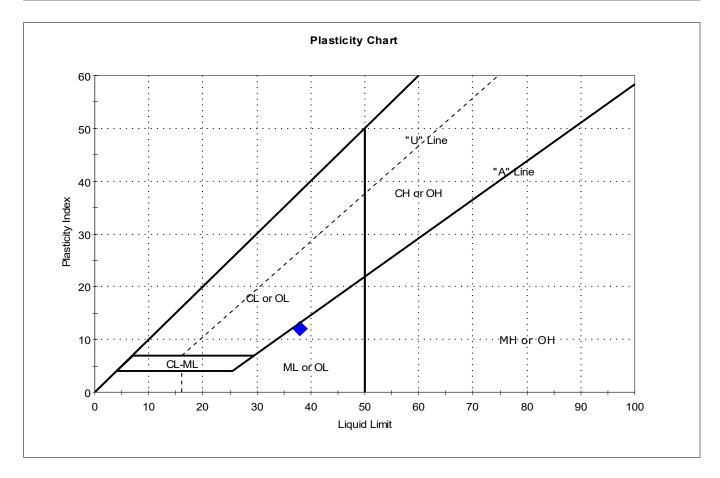
Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-101		Sample Type:	Unspecified	dTested By:	ckg
Sample ID:	S-2A		Test Date:	03/22/24	Checked By:	ank
Depth :	2-4		Test Id:	761937		
Test Comm	ent:					
Visual Desc	ription:	Moist, brown o	clay			
Sample Cor	nment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-2A	WB-101	2-4	30	29	16	13	1.1	

Sample Prepared using the WET method

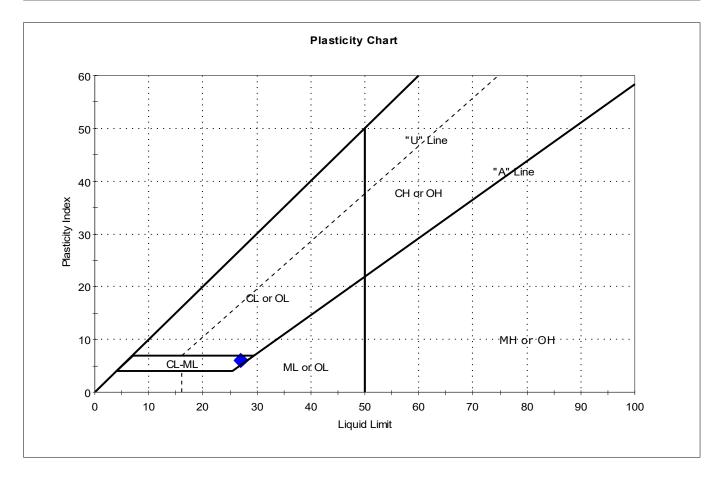
	Client:	Jacobs Eng	ineering Group)				
	Project:	Lubec Brea	akwater					
	Location:					Project No:	GTX-318	8760
·	Boring ID:	WB-101		Sample Type:	Unspecifie	dTested By:	ckg	
	Sample ID:	S-4		Test Date:	03/27/24	Checked By:	ank	
	Depth :	6-8		Test Id:	761938			
	Test Comm	ent:						
	Visual Desc	ription:	Moist, gray sil	ty clay				
	Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	WB-101	6-8	21	19	13	6	1.4	

Sample Prepared using the WET method

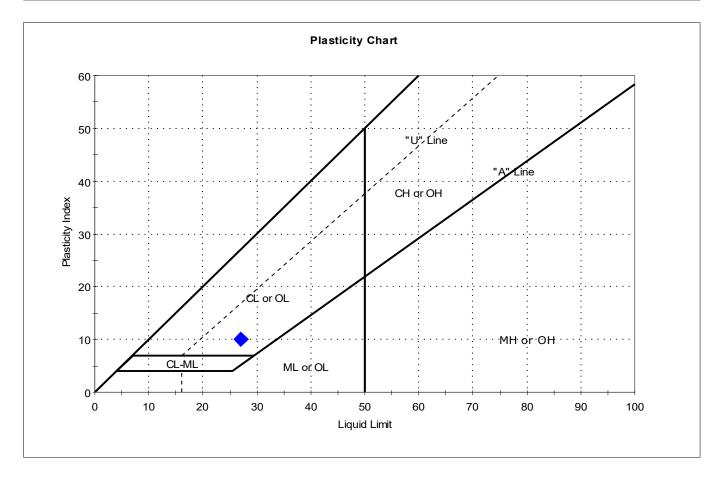
Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-102		Sample Type:	Unspecifie	dTested By:	ckg
Sample ID:	S-2		Test Date:	03/27/24	Checked By:	ank
Depth :	2-4		Test Id:	761939		
Test Comm	ent:					
Visual Desc	ription:	Moist, gray sil	t			
Sample Cor	mment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-2	WB-102	2-4	40	38	26	12	1.2	

Sample Prepared using the WET method

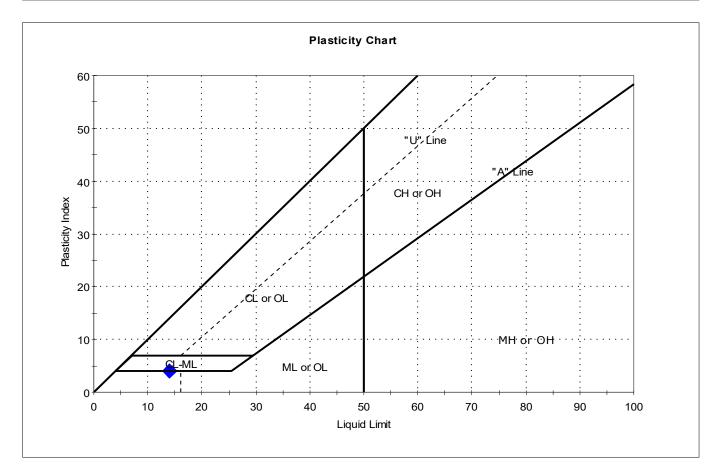
Client:	Jacobs Eng	gineering Group	2			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-103		Sample Type:	Unspecified	dTested By:	ckg
Sample ID:	S-2A		Test Date:	03/27/24	Checked By:	ank
Depth :	2-4		Test Id:	761940		
Test Comm	ent:					
Visual Desc	ription:	Moist, grayish	brown silty cla	у		
Sample Cor	nment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-2A	WB-103	2-4	23	27	21	6	0.3	

Sample Prepared using the WET method

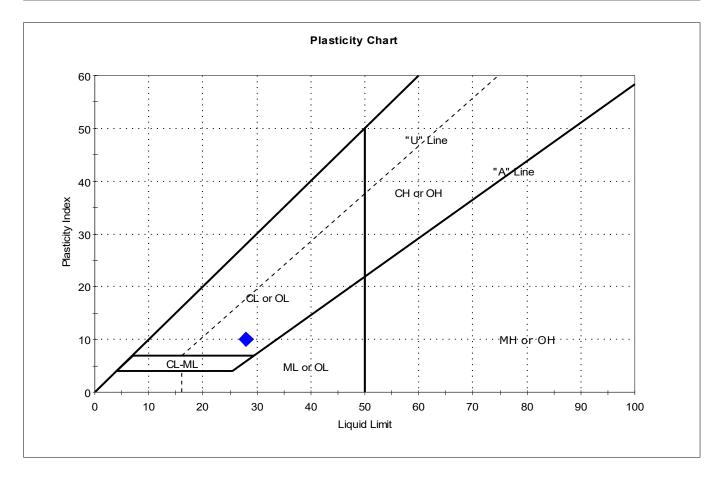
Client:	Jacobs Eng	gineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-31876	0
Boring ID:	WB-103		Sample Type:	Unspecifie	dTested By:	ckg	
Sample ID:	U-1		Test Date:	03/26/24	Checked By:	ank	
Depth :	4-6		Test Id:	761941			
Test Comme	ent:						
Visual Desc	ription:	Moist, gray cla	ау				
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-1	WB-103	4-6	22	27	17	10	0.5	

Sample Prepared using the WET method

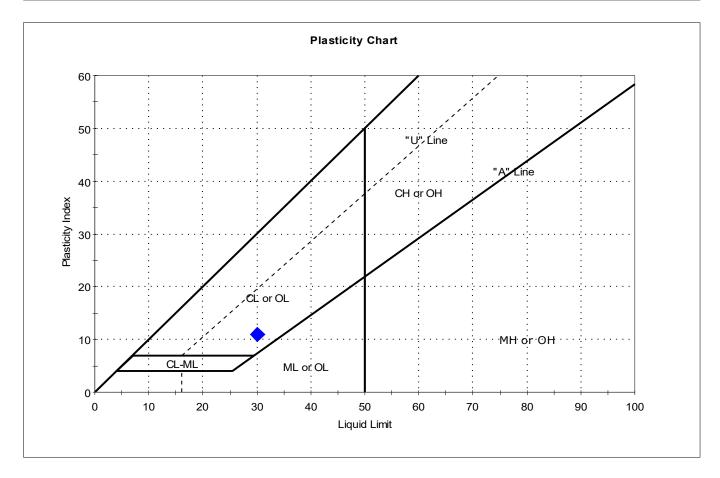
Client:	Jacobs Eng	gineering Group	D				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-318760	
Boring ID:	WB-104		Sample Type:	Unspecified	dTested By:	ckg	
Sample ID:	S-3		Test Date:	03/27/24	Checked By:	ank	
Depth :	4-6		Test Id:	761942			
Test Comm	ent:						
Visual Desc	ription:	Moist, brown	silty clay with g	ravel			
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3	WB-104	4-6	14	14	10	4	0.9	

Sample Prepared using the WET method

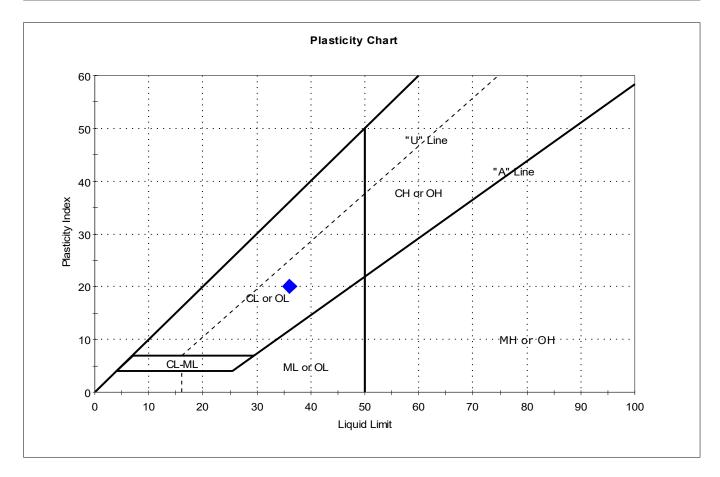
Client:	Jacobs Eng	gineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-3187	760
Boring ID:	WB-105		Sample Type:	Unspecified	dTested By:	ckg	
Sample ID:	S-3		Test Date:	03/20/24	Checked By:	ank	
Depth :	4-6		Test Id:	761943			
Test Comm	ent:						
Visual Desc	ription:	Moist, brown o	clay				
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3	WB-105	4-6	26	28	18	10	0.8	

Sample Prepared using the WET method

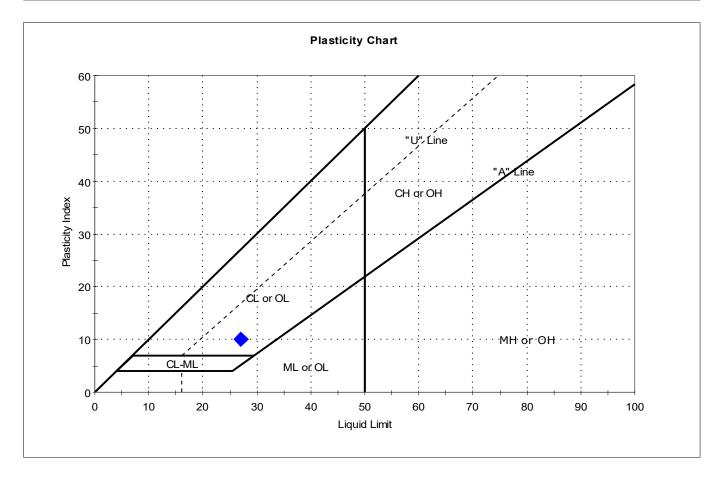
Client:	Jacobs Eng	ineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-3187	60
Boring ID:	WB-105		Sample Type:	Unspecified	Tested By:	ckg	
Sample ID:	U-1		Test Date:	03/25/24	Checked By:	ank	
Depth :	6-7.6		Test Id:	761944			
Test Comm	ent:						
Visual Desc	ription:	Moist, gray cla	у				
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-1	WB-105	6-7.6	23	30	19	11	0.4	

Sample Prepared using the WET method

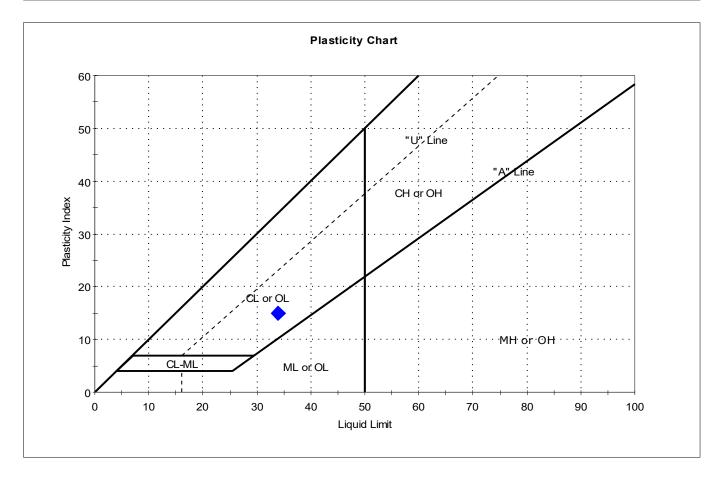
Client:	Jacobs Eng	gineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-318760)
Boring ID:	WB-106		Sample Type:	Unspecifie	dTested By:	ckg	
Sample ID:	U-1		Test Date:	03/27/24	Checked By:	ank	
Depth :	6-8		Test Id:	761945			
Test Comm	ent:						
Visual Desc	ription:	Moist, gray cla	ay with gravel				
Sample Co	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-1	WB-106	6-8	15	36	16	20	0	

Sample Prepared using the WET method

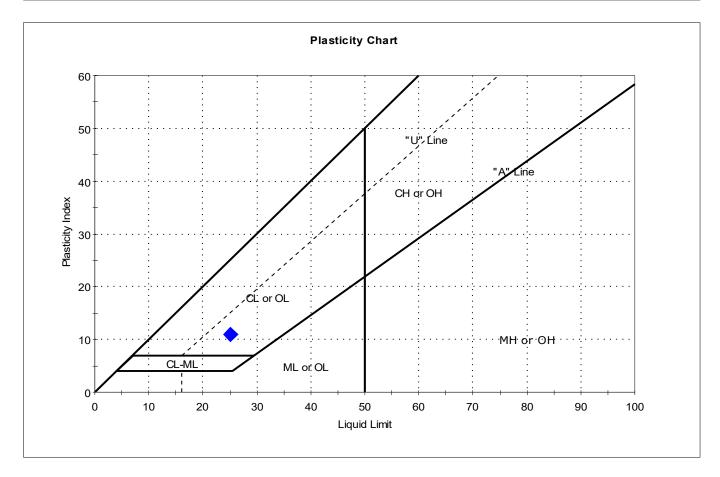
Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-31876
Boring ID:	WB-106		Sample Type:	Unspecifie	dTested By:	ckg
Sample ID:	U-2		Test Date:	03/25/24	Checked By:	ank
Depth :	8-10		Test Id:	761946		
Test Comm	ent:					
Visual Desc	ription:	Moist, gray cla	ay with sand			
Sample Cor	nment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-2	WB-106	8-10	21	27	17	10	0.4	

Sample Prepared using the WET method

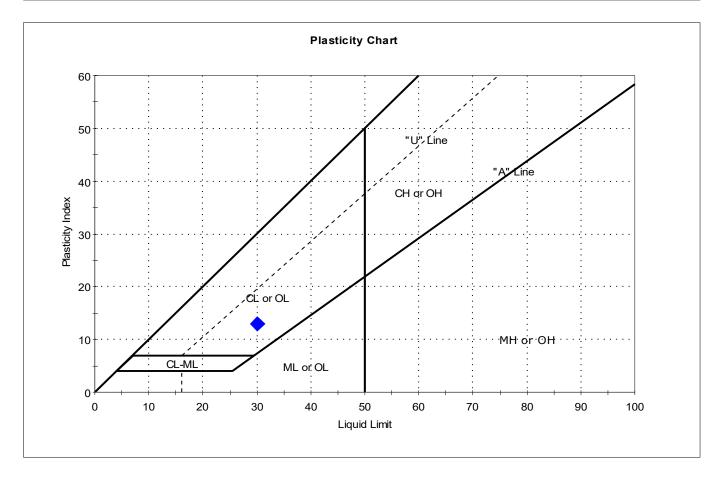
Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-107		Sample Type:	Unspecified	dTested By:	ckg
Sample ID:	S-4		Test Date:	03/20/24	Checked By:	ank
Depth :	6-8		Test Id:	761947		
Test Comm	ent:					
Visual Desc	ription:	Moist, grayish	brown clay			
Sample Co	nment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	WB-107	6-8	30	34	19	15	0.7	

Sample Prepared using the WET method

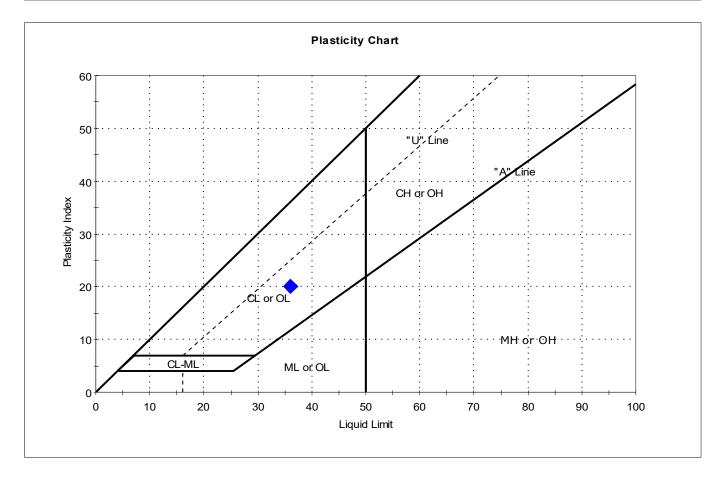
Client:	Jacobs Eng	gineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-3187	760
Boring ID:	WB-107		Sample Type:	Unspecified	dTested By:	ckg	
Sample ID:	U-1		Test Date:	03/27/24	Checked By:	ank	
Depth :	8-10		Test Id:	761948			
Test Comm	ent:						
Visual Desc	ription:	Moist, gray cla	у				
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-1	WB-107	8-10	23	25	14	11	0.8	

Sample Prepared using the WET method

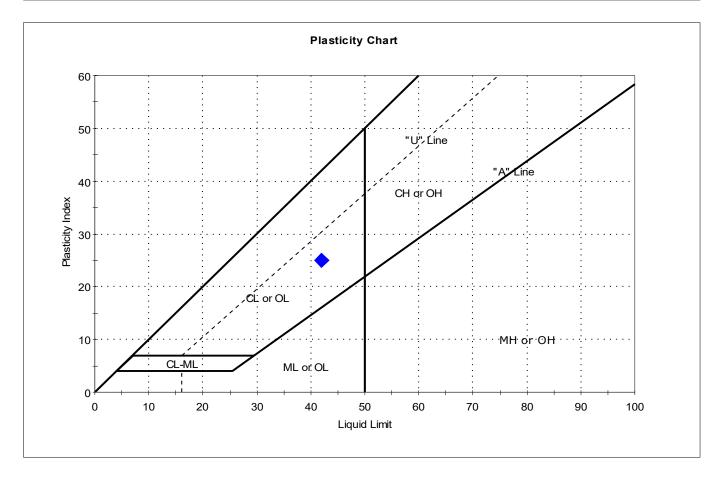
Client:	Jacobs Eng	gineering Group)				
Project:	Lubec Brea	akwater					
Location:					Project No:	GTX-31876	50
Boring ID:	WB-108		Sample Type:	Unspecified	dTested By:	ckg	
Sample ID:	U-1		Test Date:	03/26/24	Checked By:	ank	
Depth :	4-6		Test Id:	761949			
Test Comm	ent:						
Visual Desc	ription:	Moist, gray cla	ау				
Sample Cor	nment:						



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-1	WB-108	4-6	23	30	17	13	0.5	

Sample Prepared using the WET method

Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-108		Sample Type:	Unspecifie	dTested By:	ckg
Sample ID:	U-2		Test Date:	03/26/24	Checked By:	ank
Depth :	8-10		Test Id:	761950		
Test Comm	ent:					
Visual Desc	ription:	Moist, gray cla	ау			
Sample Co	nment:					



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U-2	WB-108	8-10	25	36	16	20	0.4	

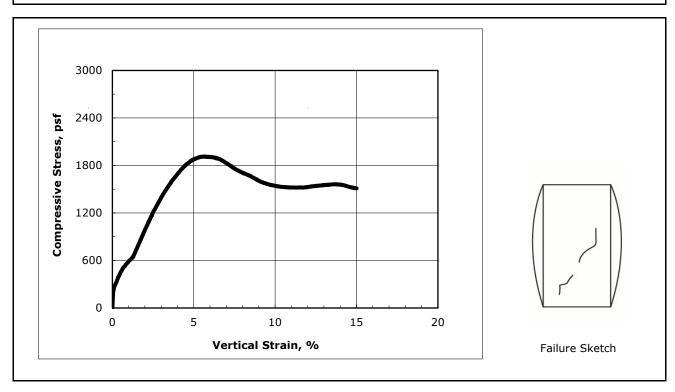
Sample Prepared using the WET method

Client:	Jacobs Eng	gineering Group)			
Project:	Lubec Brea	akwater				
Location:					Project No:	GTX-318760
Boring ID:	WB-108		Sample Type:	Unspecified	dTested By:	ckg
Sample ID:	: S-5		Test Date:	03/20/24	Checked By:	ank
Depth :	14-16		Test Id:	761951		
Test Comm	ent:					
Visual Desc	cription:	Moist, brown o	clay			
Sample Co	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-5	WB-108	14-16	28	42	17	25	0.4	

Sample Prepared using the WET method

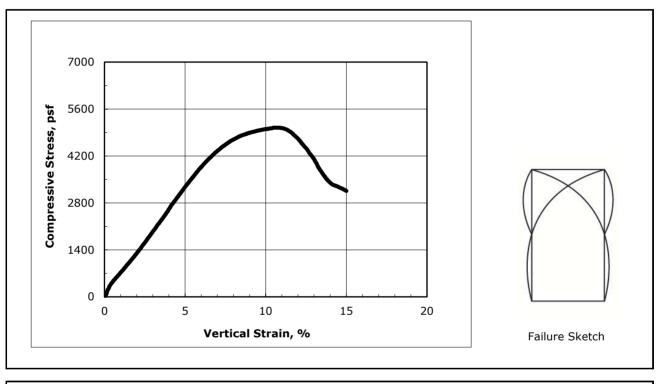
Lubec Breakwater - Laboratory Test Results


Table E.2 - Undisturbed Sample Strength Testing Data

		Approximate		Unconfined Com	UU Trixial Test		
Borehole No.	Sample No.	Sample Depth	USCS	Effective Overburden Stress	Compressive Strength, q _u	Shear Strength	Undrained Shear Strength, S _u
_		ft		psf	psf	psf	psf
WB-1	U-1	6 - 8	CL	327	1913	957	-
WB-6	U-1	4 - 6	CL	225	-	-	329.0
WB-103	U-1	4 - 6	CL	240	1625	813	-
WB-105	U-1	6 - 7.6	CL	352	-	-	1267.5
WR 106	U-1	4 - 6	CL	240	5045	2523	-
WB-106	U-2	8 - 10	CL	464	-	-	1886.4
WB-107	U-1	8 - 10	CL	464	-	-	501.0
WB-108	U-2	8 - 10	CL	464	-	-	1132.8

С	lient:	Geotechnical Services Inc.
P	roject Name:	Lubec Breakwater
P	roject Location:	Lubec, ME
G	TX #:	317770
Т	est Date:	09/15/23
Т	ested By:	jab/sjt
С	hecked By:	anm
В	oring ID:	WB-1/U-1
S	ample ID:	L-314-23
D	epth, ft:	6-8
V	isual Description:	Moist, dark gray clay
Т	est No.:	UC-1

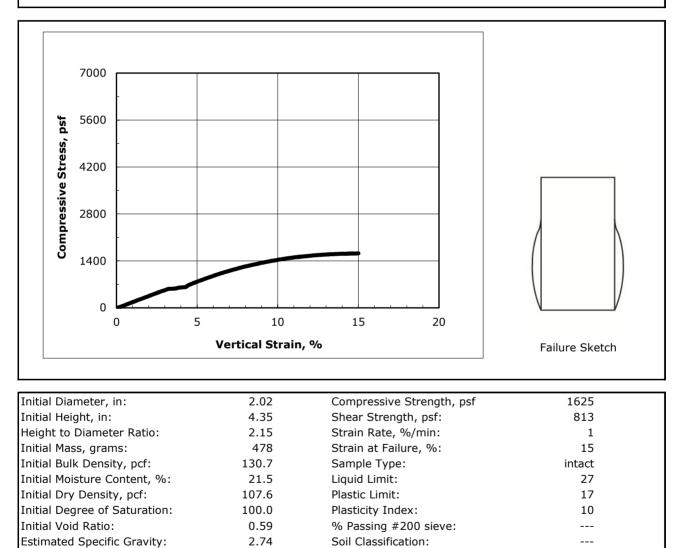
Unconfined Compressive Strength by ASTM D2166


Initial Diameter, in:	2.03	Compressive Strength, psf	1913
Initial Height, in:	4.70	Shear Strength, psf:	957
Height to Diameter Ratio:	2.32	Strain Rate, %/min:	1
Initial Mass, grams:	498	Strain at Failure, %:	5.7
Initial Bulk Density, pcf:	124.8	Sample Type:	intact
Initial Moisture Content, %:	24.8	Liquid Limit:	32
Initial Dry Density, pcf:	100.0	Plastic Limit:	20
Initial Degree of Saturation:	97.7	Plasticity Index:	12
Initial Void Ratio:	0.68	% Passing #200 sieve:	
Estimated Specific Gravity:	2.7	Soil Classification:	
		Group Symbol:	

Notes:	Moisture content obtained before shear from sample trimmings
	Moisture Content determined by ASTM D2216
	Atterberg Limits determined by ASTM D4318
	Extruded from tube, cut, trimmed and placed into apparatus at the as-received density and moisture
	content.
	"" indicates testing required to determine these values was not requested

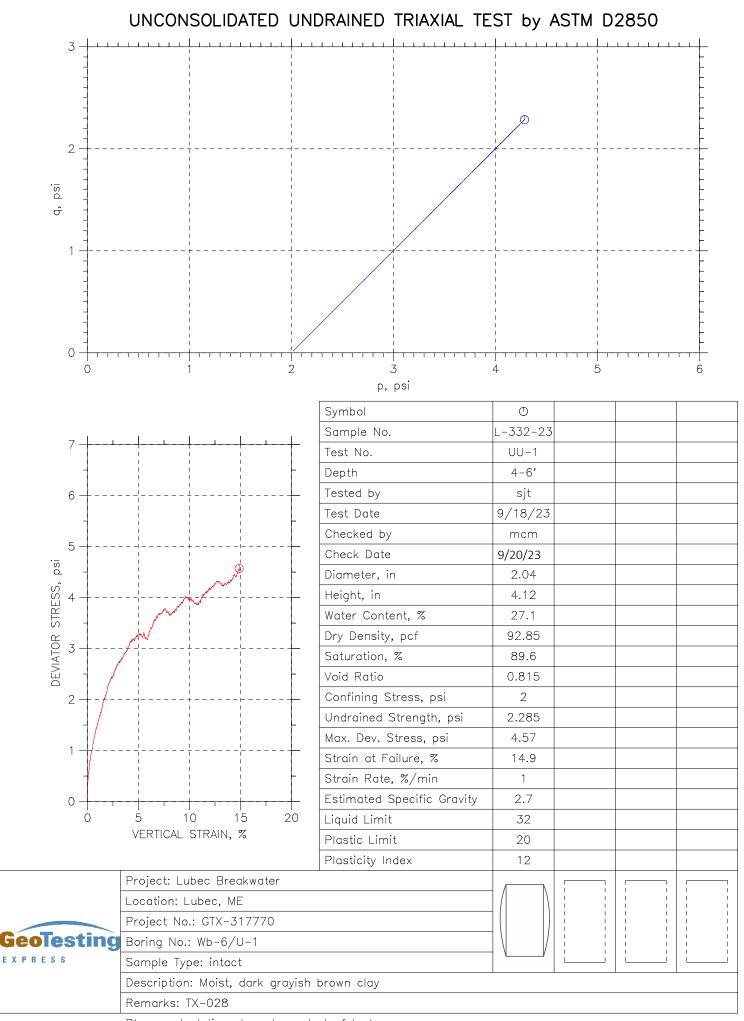
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	03/26/24
Tested By:	sjt
Checked By:	anm
Boring ID:	WB-106
Sample ID:	U-1
Depth, ft:	6-8
Visual Description:	Moist, gray clay with gravel
Test No.:	UC-1

Unconfined Compressive Strength by ASTM D2166

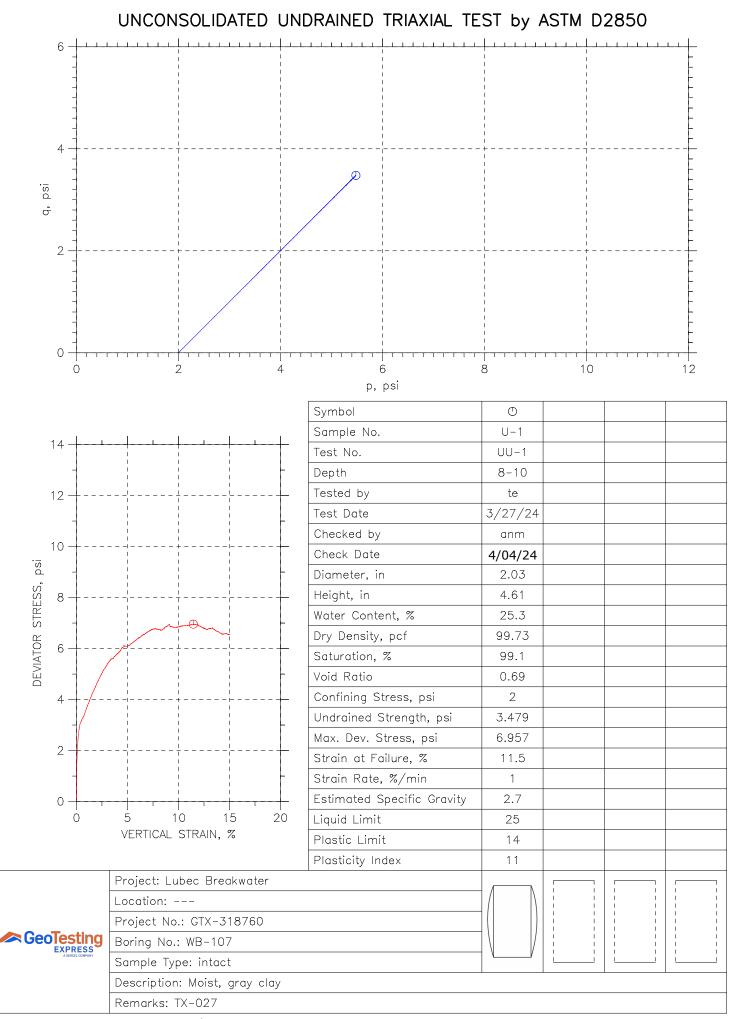

Initial Diameter, in:	2.03	Compressive Strength, psf	5045
Initial Height, in:	4.50	Shear Strength, psf:	2523
Height to Diameter Ratio:	2.22	Strain Rate, %/min:	1
Initial Mass, grams:	528	Strain at Failure, %:	10.5
Initial Bulk Density, pcf:	138.1	Sample Type:	intact
Initial Moisture Content, %:	15.7	Liquid Limit:	36
Initial Dry Density, pcf:	119.4	Plastic Limit:	16
Initial Degree of Saturation:	99.5	Plasticity Index:	20
Initial Void Ratio:	0.43	% Passing #200 sieve:	
Estimated Specific Gravity:	2.74	Soil Classification:	
		Group Symbol:	

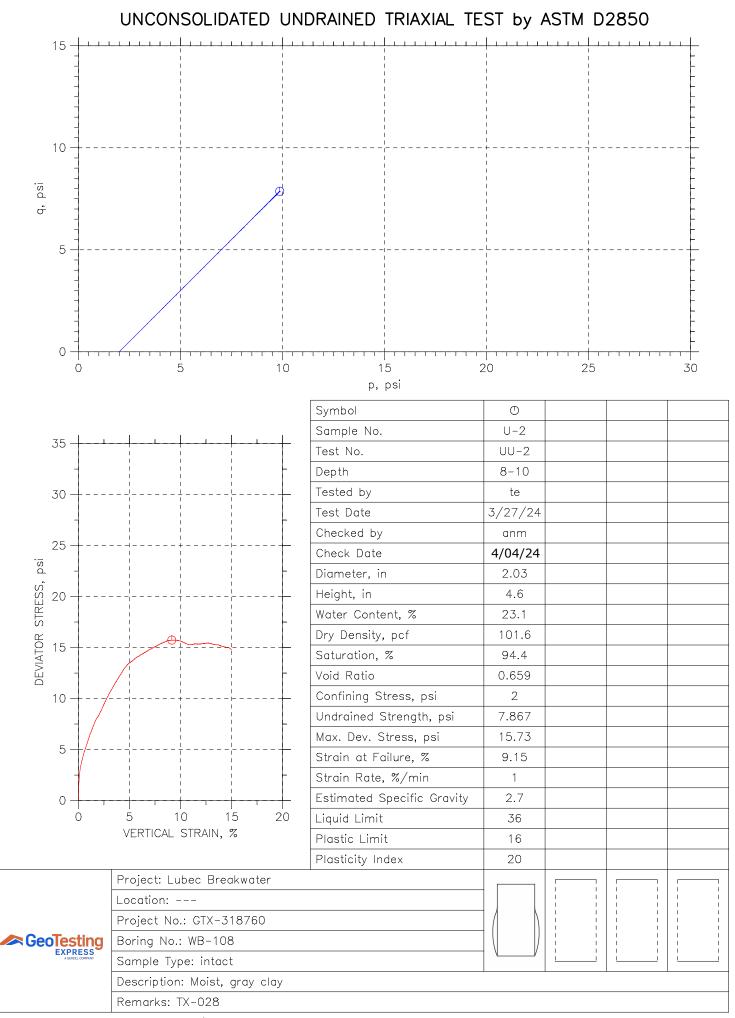
Notes: Moisture content obtained before shear from sample trimmings Moisture Content determined by ASTM D2216 Atterberg Limits determined by ASTM D4318 Extruded from tube, cut, trimmed and placed into apparatus at the as-received density and moisture content. "---" indicates testing required to determine these values was not requested

Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	03/26/24
Tested By:	sjt
Checked By:	anm
Boring ID:	WB-103
Sample ID:	U-1
Depth, ft:	4-6
Visual Description:	Moist, gray clay
Test No.:	UC-2

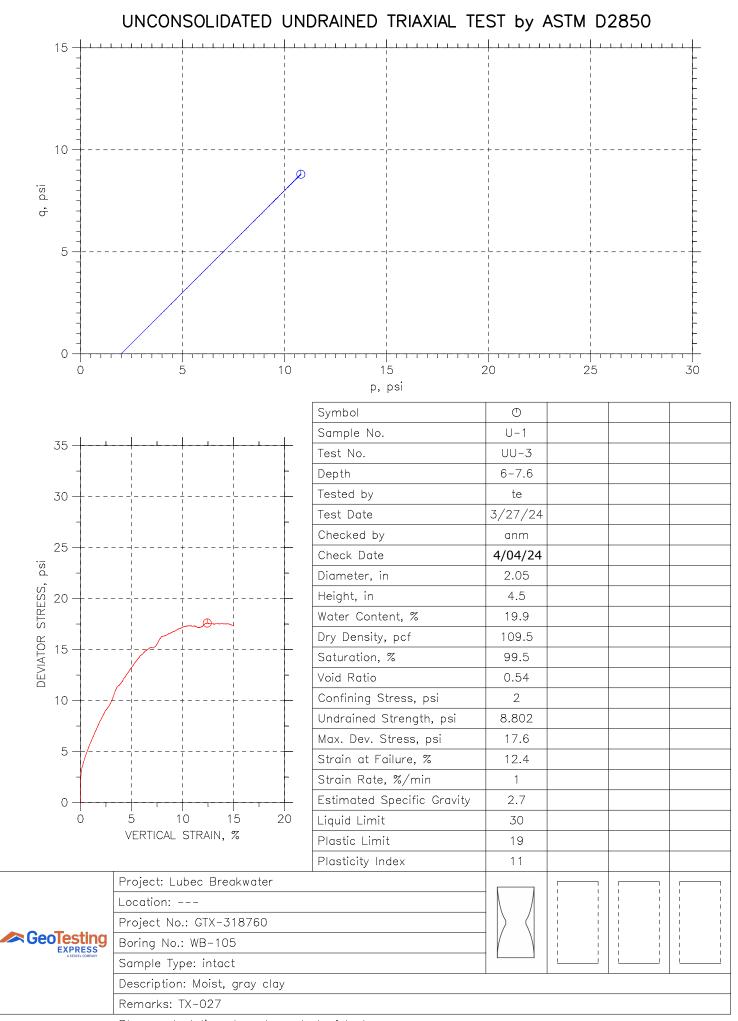

Unconfined Compressive Strength by ASTM D2166

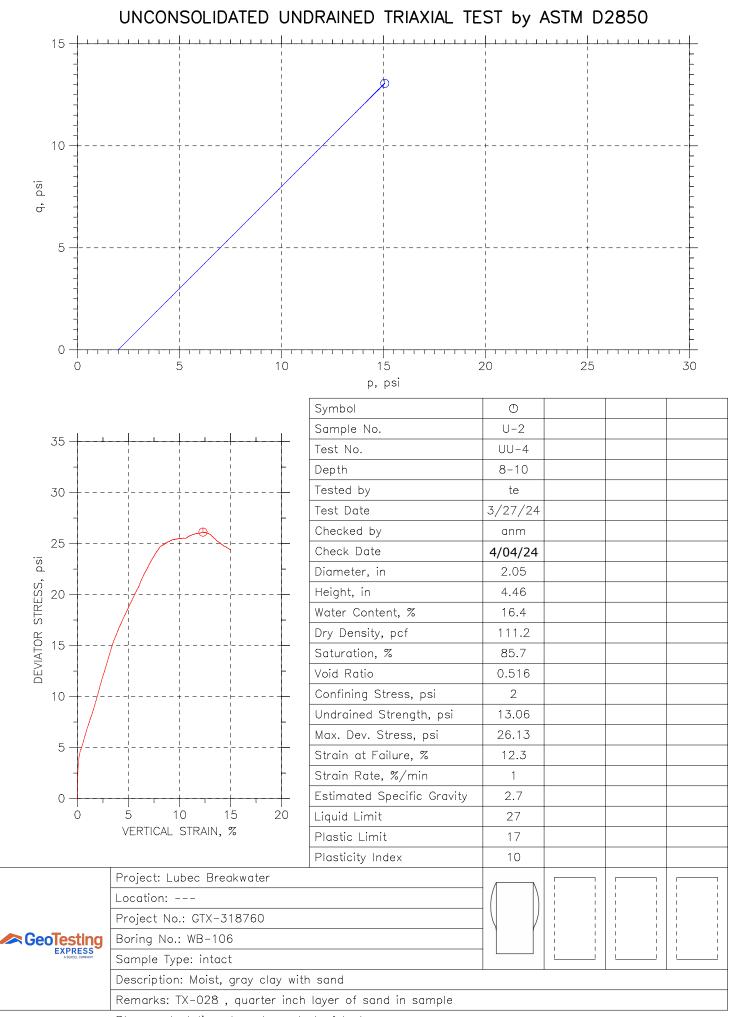
Notes: Moisture content obtained before shear from sample trimmings Moisture Content determined by ASTM D2216 Atterberg Limits determined by ASTM D4318 Extruded from tube, cut, trimmed and placed into apparatus at the as-received density and moisture content. "---" indicates testing required to determine these values was not requested


Group Symbol:



Wed, 20-SEP-2023 15:22:23


Phase calculations based on start of test.


Phase calculations based on start of test.

Phase calculations based on start of test.

Phase calculations based on start of test.

Phase calculations based on start of test.

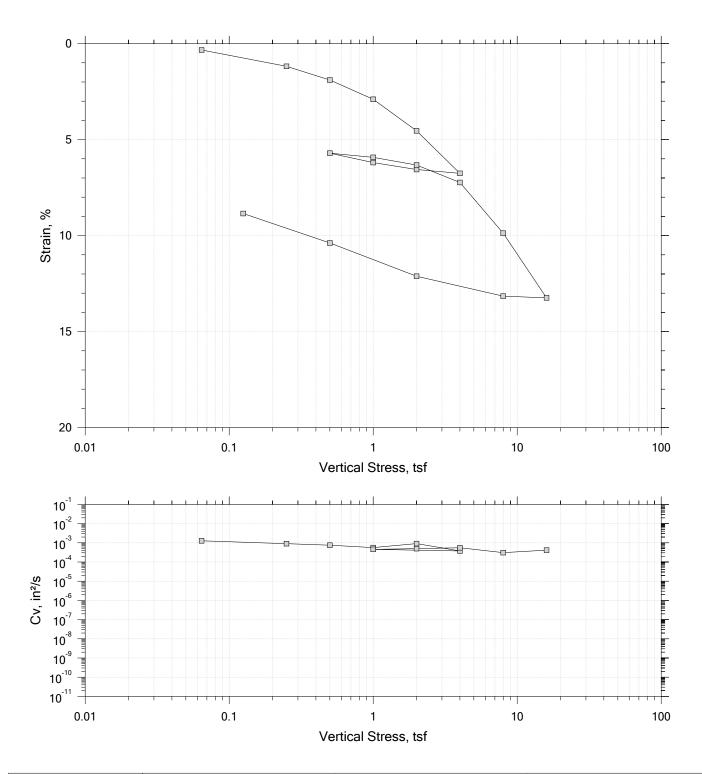
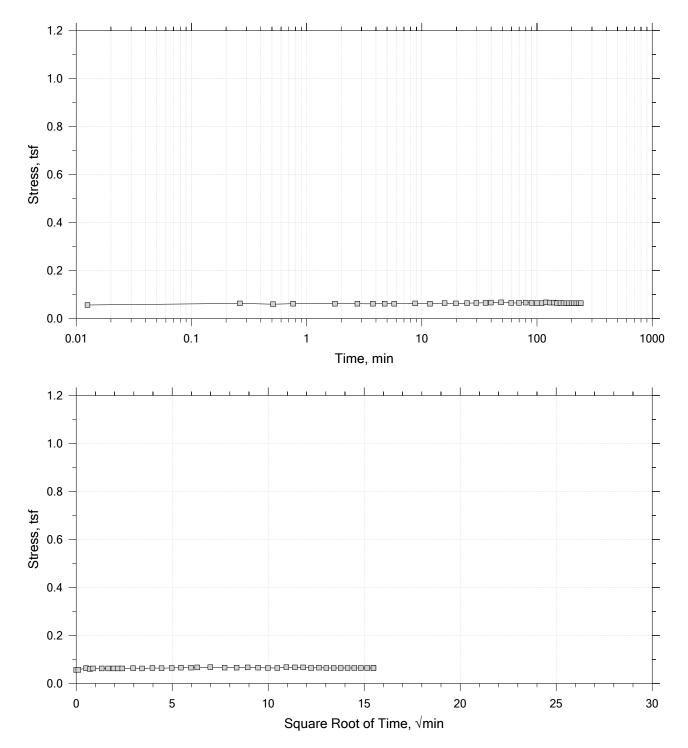

Lubec Breakwater - Laboratory Test Results

Table E.3 - Undisturbed Sample Consolidation Test Data

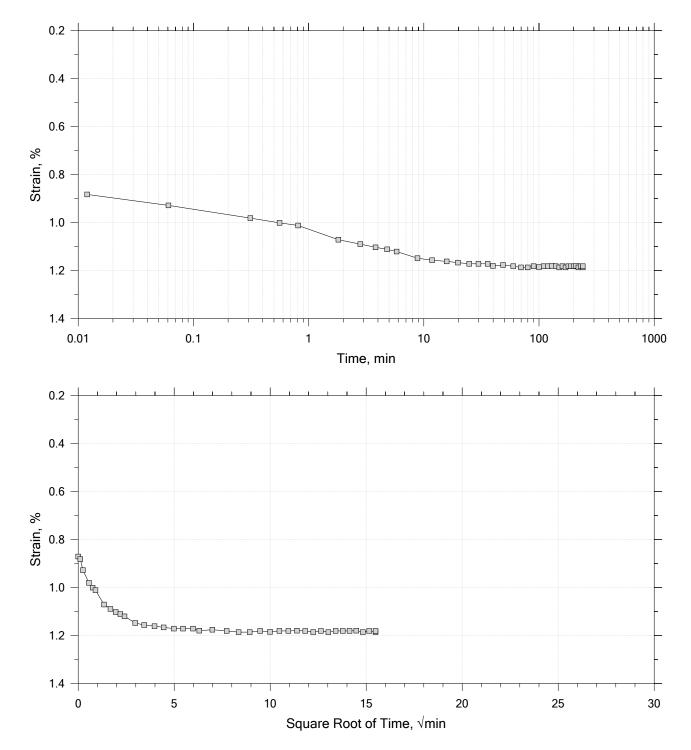
				Approximate Effective		Atterbe	rg Limits				Estimated		Coefficier	nt of Consol	idation, c _v , a	at various sti	ress levels
Borehole No.	Sample No.	Sample Depth	USCS	Overburden Stress	Water Content	LL	PL	Ratio, e _o	n Index, C _c	n Index, C _r	Preconsolidation Pressure, p'c	OCR	138 psf	500 psf		2000 psf	4000 psf
-	-	ft	-	psf	%	%	%	-	-	-	psf	-		-	in²/s		
WB-1	U-1	6 - 8	CL	327	24.8	32	20	0.7	0.179	0.047	2000	6.12	1.27E-03	9.01E-04	7.46E-04	5.63E-04	9.06E-04
WB-6	U-1	4 - 6	CL	225	27.1	32	20	0.76	0.153	0.033	-	-	2.08E-05	7.61E-05	5.89E-05	8.82E-05	1.16E-04
WB-106	U-2	8 - 10	CL	464	20.8	27	17	0.52	0.076	0.020	2000	4.31	4.84E-05	1.33E-04	1.96E-04	3.05E-04	3.05E-04
WB-108	U-1	4 - 6	CL	240	24.6	30	17	0.64	0.113	0.020	2500	10.42	6.41E-04	4.77E-04	7.05E-04	5.38E-04	3.62E-04
WB-108	U-2	8 - 10	CL	464	27.9	36	16	0.67	0.103	0.023	2200	4.74	6.76E-05	1.47E-04	2.93E-04	1.86E-04	3.02E-04

One-Dimensional Consolidation by ASTM D2435 - Method B


Summary Report

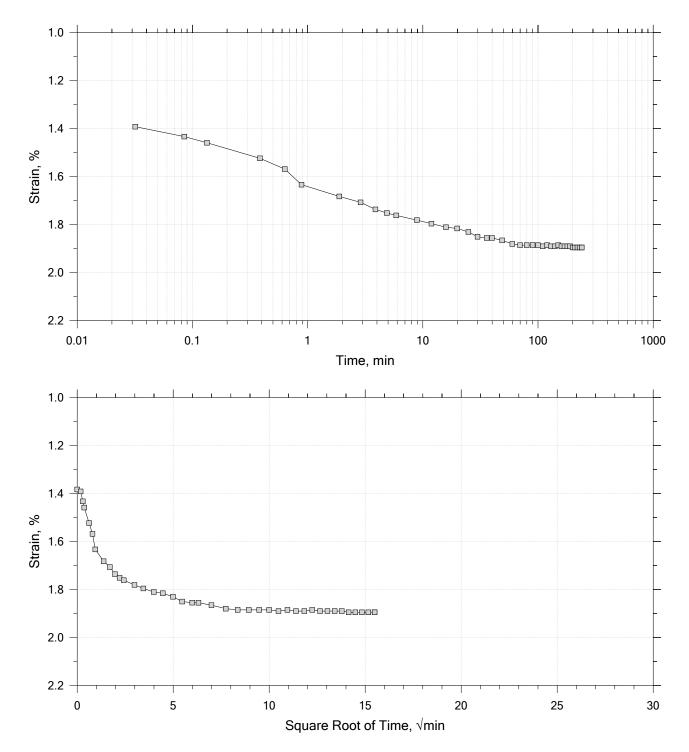
	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770				
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm				
GeoTesting	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'				
Geolesting EXPRESS	Test No.: IP-1	Sample Type: Intact	Elevation:				
EAFNE33	Description: Moist, dark gray clay						
	Remarks: TX-011, Swell Pressure = 0.0643 tsf						
	Displacement at End of Increment						

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 1 of 18 Constant Volume Step Stress: 0.0643 tsf

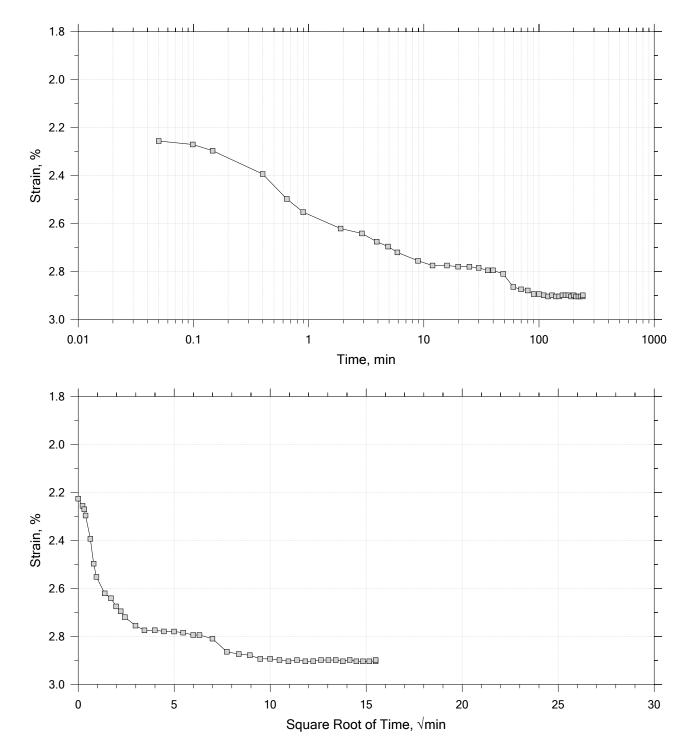
	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770				
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm				
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'				
	Test No.: IP-1	Sample Type: Intact	Elevation:				
EAFNE33	Description: Moist, dark gray clay						
	Remarks: TX-011, Swell Pressure = 0.0643 tsf						

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 2 of 18 Constant Load Step Stress: 0.25 tsf

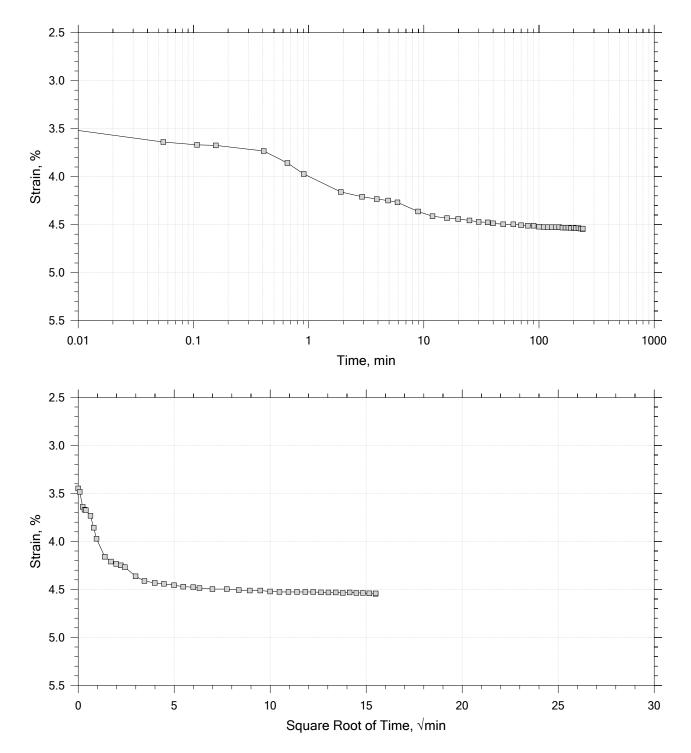
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

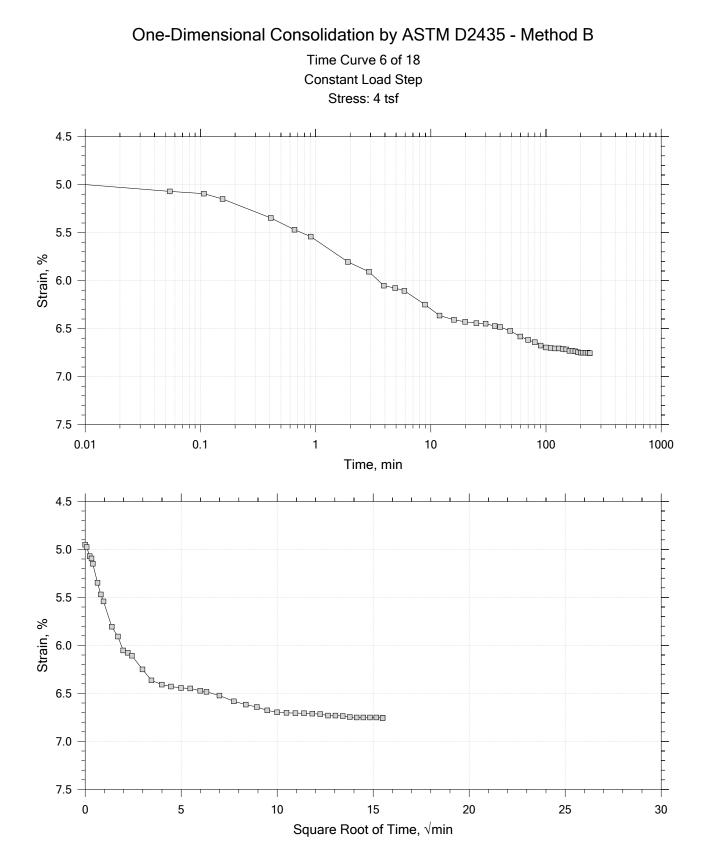
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 3 of 18 Constant Load Step Stress: 0.5 tsf

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

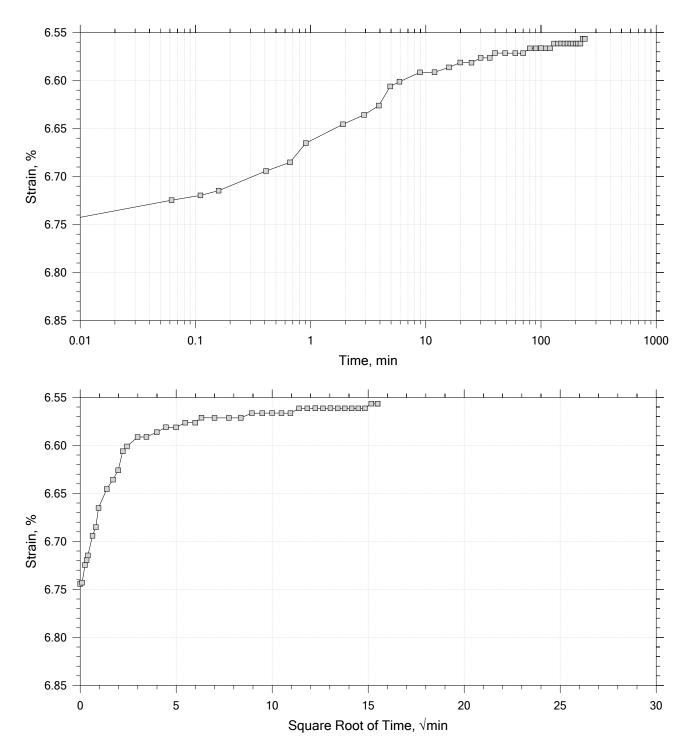
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 4 of 18 Constant Load Step Stress: 1 tsf


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

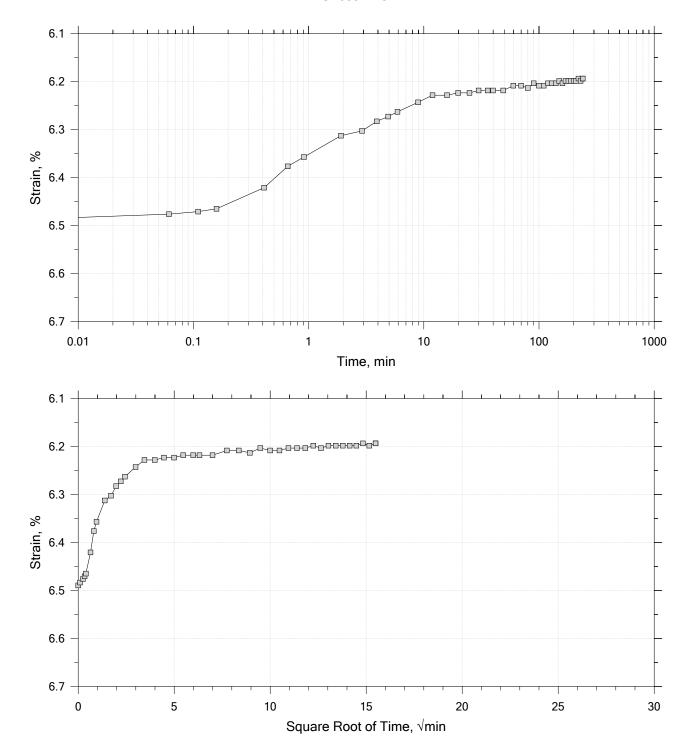
One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 5 of 18 Constant Load Step Stress: 2 tsf


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

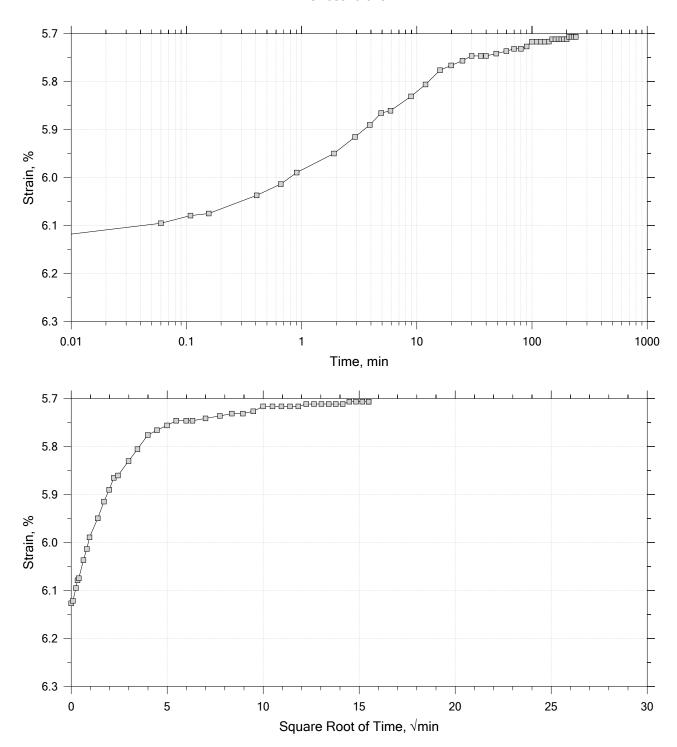
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

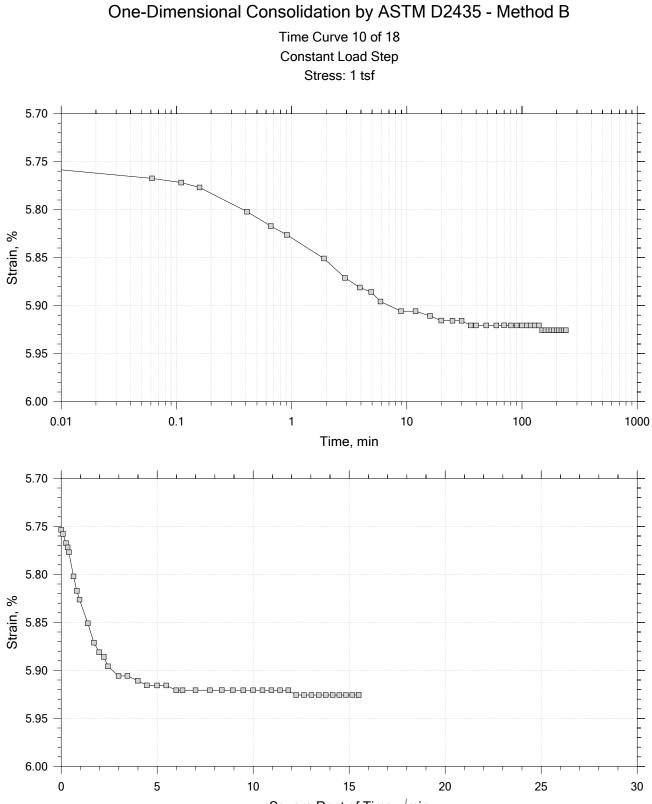
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 7 of 18 Constant Load Step Stress: 2 tsf

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 8 of 18 Constant Load Step Stress: 1 tsf

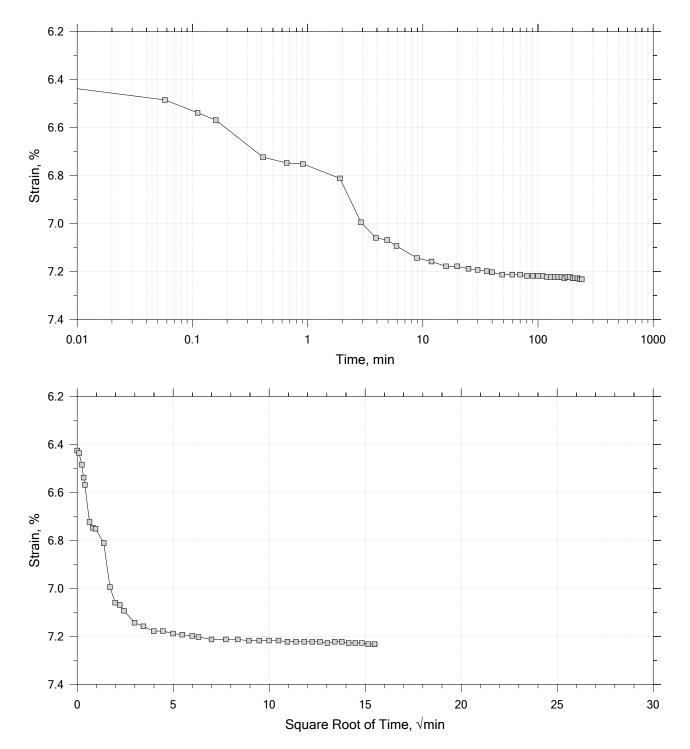

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

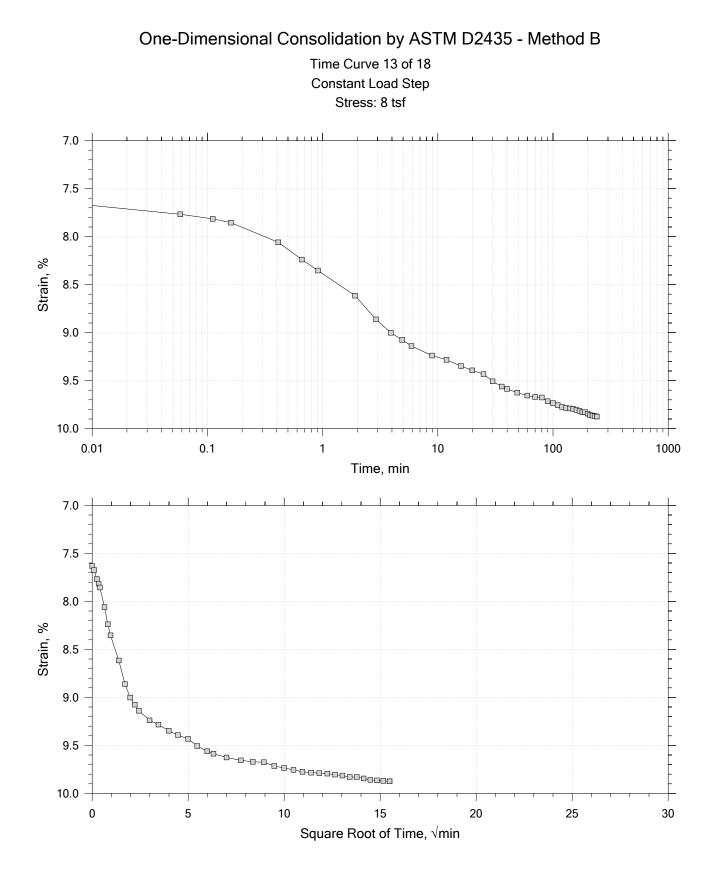
Time Curve 9 of 18 Constant Load Step Stress: 0.5 tsf

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

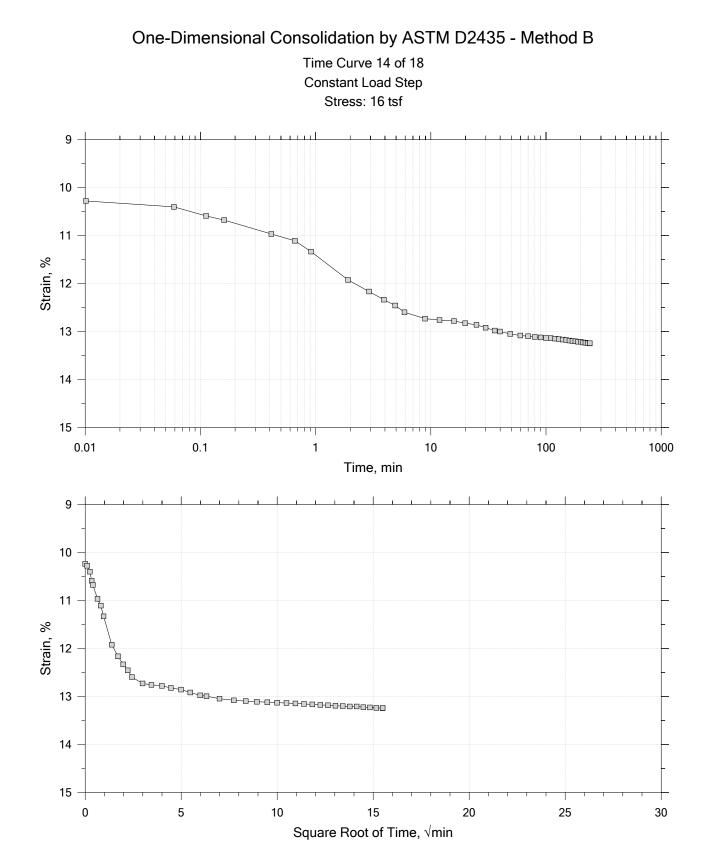
Square Root of Time, √min

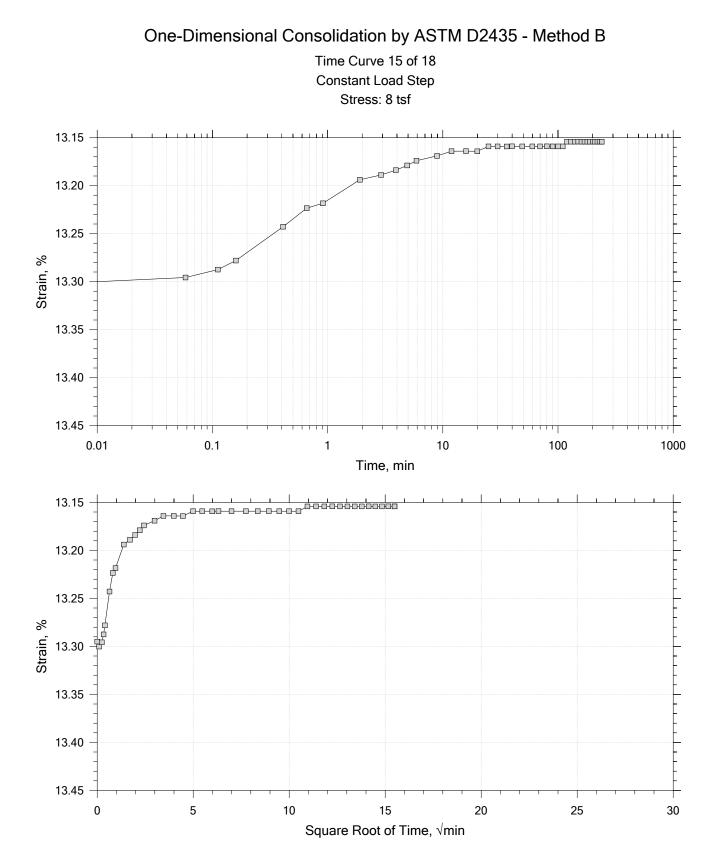

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 11 of 18 Constant Load Step Stress: 2 tsf 5.9 6.0 6.1 Strain, % ₇₉ 6.3 -0 6.4 6.5 0.1 0.01 10 100 1000 1 Time, min 5.9 6.0 6.1 Strain, % 8.9 6.3 , G-0-0-0-0-0-0-0-0-0-0-0-0-0-0-80000000000000000000000 ------6.4 6.5 0 5 10 15 20 25 30

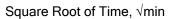

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 12 of 18 Constant Load Step Stress: 4 tsf


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

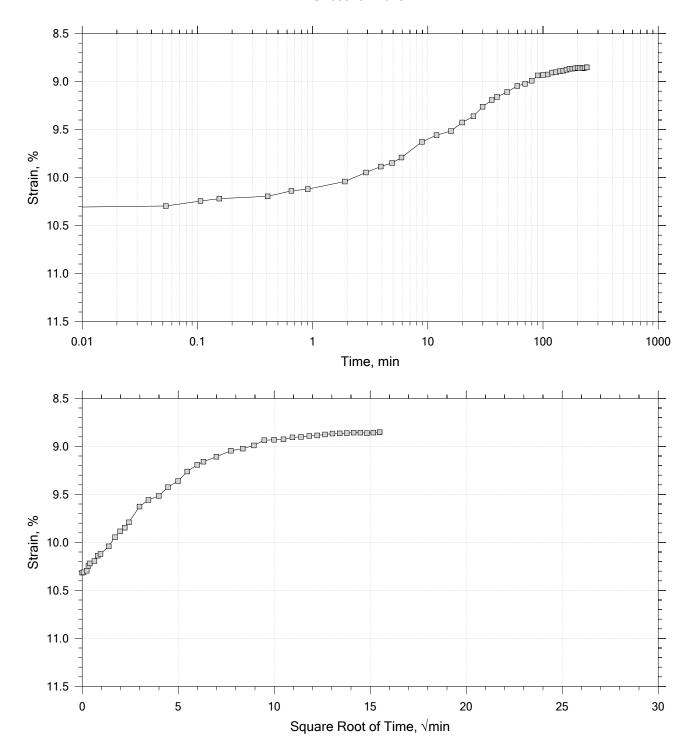
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		



GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 16 of 18 Constant Load Step Stress: 2 tsf 12.0 12.2 12.4 Strain, % 12.6 12.8 13.0 13.2 0.1 0.01 1 10 100 1000 Time, min 12.0 12.2 ŗ þ 12.4 Strain, % 12.6 12.8 13.0 13.2 0 5 10 15 20 25 30


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 17 of 18 Constant Load Step Stress: 0.5 tsf 10.0 10.5 11.0 E C л Strain, % 11.5 12.0 12.5 13.0 0.1 0.01 1 10 100 1000 Time, min 10.0 10.5 11.0 Strain, % 11.5 12.0 12.5 13.0 0 5 10 15 20 25 30

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'
	Test No.: IP-1	Sample Type: Intact	Elevation:
	Description: Moist, dark gray clay		
	Remarks: TX-011, Swell Pressure = 0.0643 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

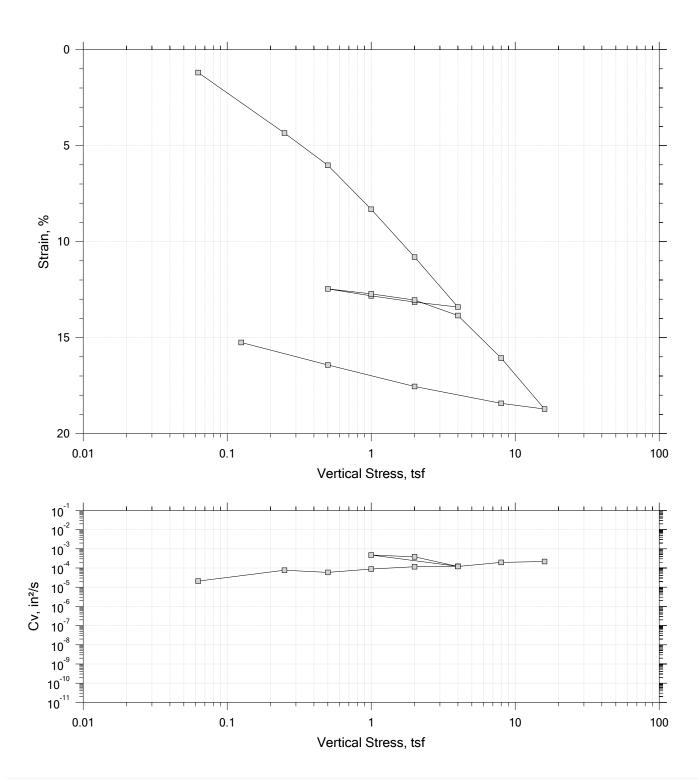
Time Curve 18 of 18 Constant Load Step Stress: 0.125 tsf

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770	
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm	
Testing	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'	
GeoTesting EXPRESS	Test No.: IP-1	Sample Type: Intact	Elevation:	
	Description: Moist, dark gray clay			
	Remarks: TX-011, Swell Pressure = 0.0643 tsf			

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.74	Liquid Limit: 32
Initial Height: 1.00 in	Initial Void Ratio: 0.705	Plastic Limit: 20
Final Height: 0.91 in	Final Void Ratio: 0.554	Plasticity Index: 12

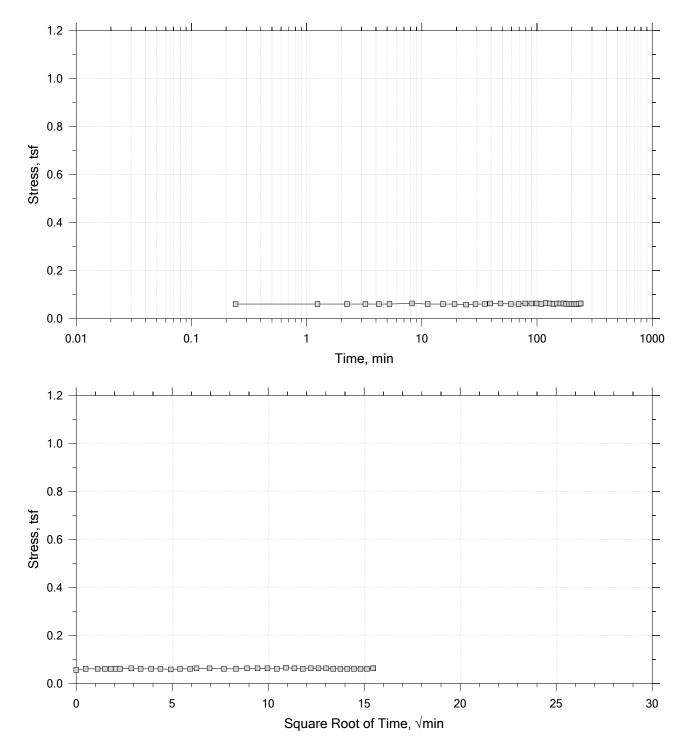
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	D2982	RING		E7133
Mass Container, gm	8.53	109.93	109.93	8.42
Mass Container + Wet Soil, gm	151.01	269.14	265.16	76.55
Mass Container + Dry Soil, gm	122.71	239.03	239.03	65.08
Mass Dry Soil, gm	114.18	129.1	129.1	56.66
Water Content, %	24.79	23.33	20.24	20.24
Void Ratio		0.70	0.55	
Degree of Saturation, %		90.56	100.00	
Dry Unit Weight, pcf		100.19	109.92	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'		
GeoTesting EXPRESS	Test No.: IP-1	Sample Type: Intact	Elevation:		
	Description: Moist, dark gray clay				
	Remarks: TX-011, Swell Pressure = 0.0643 tsf				

Square Root of Time Coefficients

1 2 3 4 5 6 7 8	0.0643 0.250 0.500 1.00 2.00 4.00	0.003318 0.01182 0.01895 0.02898 0.04542 0.06756	0.699 0.685 0.672 0.655	0.332 1.18 1.90	2.763 3.860	1.27e-03 9.01e-04	5.16e-02 4.58e-02	1.23e-0 7.73e-0
3 4 5 6 7	0.500 1.00 2.00 4.00	0.01895 0.02898 0.04542	0.672 0.655		3.860	9.01e-04	4.58e-02	7 730-0
4 5 6 7	1.00 2.00 4.00	0.02898 0.04542	0.655	1.90				7.750-0
5 6 7	2.00 4.00	0.04542			4.594	7.46e-04	2.86e-02	3.99e-
6 7	4.00		0.007	2.90	5.979	5.63e-04	2.01e-02	2.12e-
7		0.06756	0.627	4.54	3.616	9.06e-04	1.64e-02	2.79e-
	2.00	0.00750	0.590	6.76	8.396	3.75e-04	1.11e-02	7.77e-
8		0.06556	0.593	6.56	5.940	5.18e-04	9.98e-04	9.69e-
	1.00	0.06194	0.599	6.19	6.004	5.16e-04	3.63e-03	3.51e-
9	0.500	0.05707	0.607	5.71	9.086	3.44e-04	9.74e-03	6.27e
10	1.00	0.05926	0.604	5.93	6.893	4.55e-04	4.38e-03	3.73e-
11	2.00	0.06323	0.597	6.32	6.302	4.94e-04	3.98e-03	3.68e
12	4.00	0.07232	0.581	7.23	5.561	5.52e-04	4.55e-03	4.70e
13	8.00	0.09874	0.536	9.87	9.660	3.06e-04	6.60e-03	3.78e
14	16.0	0.1324	0.479	13.2	6.722	4.11e-04	4.21e-03	3.24e
15	8.00	0.1315	0.480	13.2	3.995	6.66e-04	1.08e-04	1.35e
16	2.00	0.1211	0.498	12.1	5.739	4.70e-04	1.73e-03	1.53e
17	0.500	0.1038	0.528	10.4	13.830	2.01e-04	1.16e-02	4.35e
18	0.125	0.08851	0.554	8.85	38.387	7.52e-05	4.08e-02	5.75e


	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: WB-1/U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-314-23	Test Date: 09/15/23	Depth: 6-8'		
GeoTesting EXPRESS	Test No.: IP-1	Sample Type: Intact	Elevation:		
	Description: Moist, dark gray clay				
	Remarks: TX-011, Swell Pressure = 0.0643 tsf				
	Displacement at End of Increment				

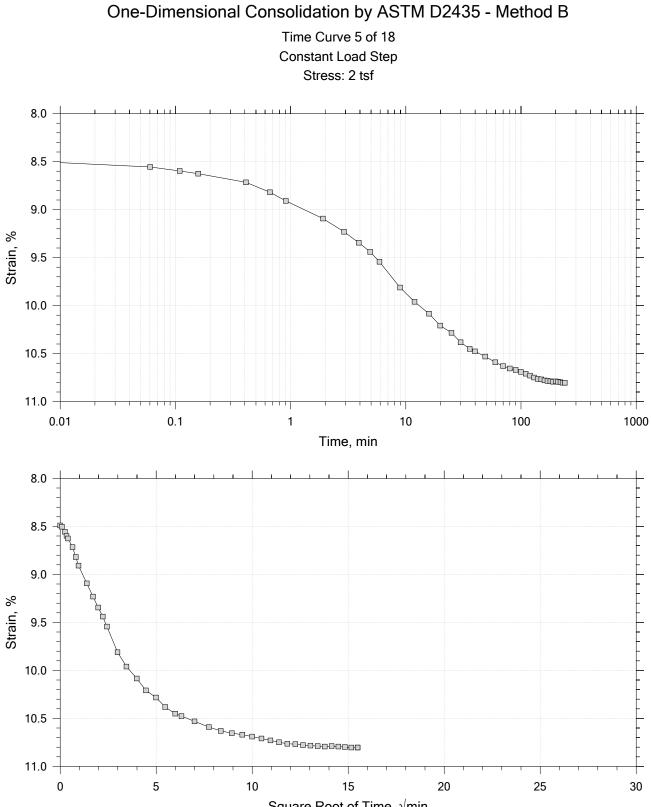
Summary Report

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				
	Displacement at End of Increment				

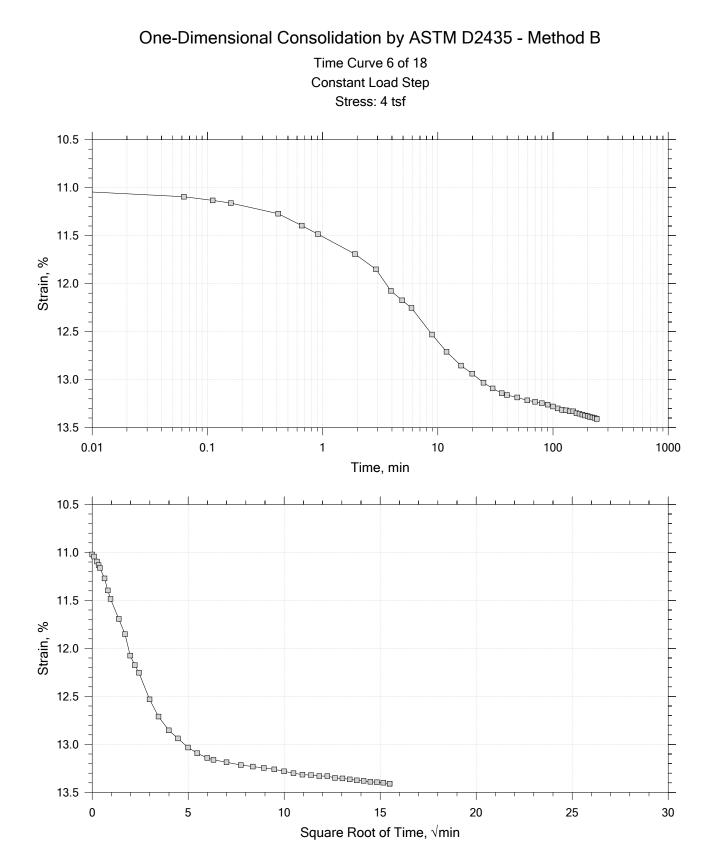
Time Curve 1 of 18 Constant Volume Step Stress: 0.0629 tsf

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 2 of 18 Constant Load Step Stress: 0.25 tsf n. ₽₽ Þ Strain, % 0.1 0.01 Time, min Concerned and the second Strain, % Square Root of Time, \sqrt{min}


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770	
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm	
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'	
	Test No.: IP-2	Sample Type: Intact	Elevation:	
	Description: Moist, dark grayish brown clay			
	Remarks: TX-012, Swell Pressure = 0.0629	tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 3 of 18 Constant Load Step Stress: 0.5 tsf 4.0 4.5 5.0 Strain, % 5.5 6.0 6.5 7.0 0.1 0.01 10 100 1000 1 Time, min 4.0 4.5 5.0 Strain, % ^{2.2} П T. °-----6.0 6.5 7.0 0 5 10 15 20 25 30 Square Root of Time, \sqrt{min}


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770	
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm	
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'	
	Test No.: IP-2	Sample Type: Intact	Elevation:	
	Description: Moist, dark grayish brown clay			
	Remarks: TX-012, Swell Pressure = 0.0629 tsf			

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 4 of 18 Constant Load Step Stress: 1 tsf 6.0 6.5 7.0 Strain, % 7.5 É. 8.0 8.5 9.0 0.1 0.01 10 100 1000 1 Time, min 6.0 6.5 7.0 Strain, % ^{2.2} • 8.0 8.5 9.0 0 5 10 15 20 25 30 Square Root of Time, \sqrt{min}

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770	
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm	
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'	
	Test No.: IP-2	Sample Type: Intact	Elevation:	
	Description: Moist, dark grayish brown clay			
	Remarks: TX-012, Swell Pressure = 0.0629 tsf			

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770	
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm	
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'	
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:	
	Description: Moist, dark grayish brown clay			
	Remarks: TX-012, Swell Pressure = 0.0629 tsf			

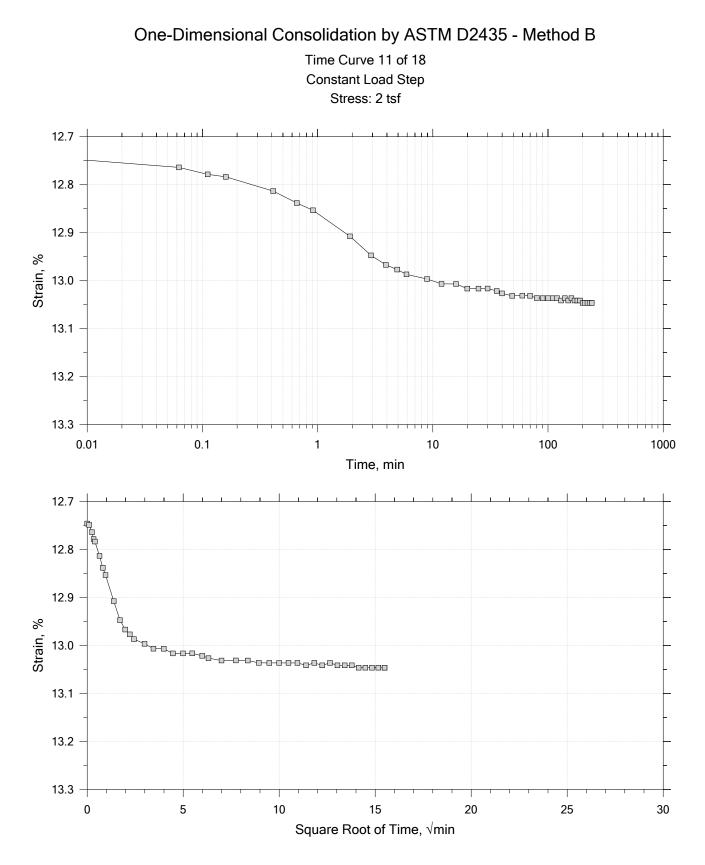
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 7 of 18 Constant Load Step Stress: 2 tsf 13.15 łm л'n 13.20 13.25 Strain, % 13.30 13.35 13.40 13.45 0.1 0.01 10 100 1000 1 Time, min 13.15 13.20 Ľ 13.25 Strain, % 13.30 13.35 13.40 13.45 0 5 10 15 20 25 30

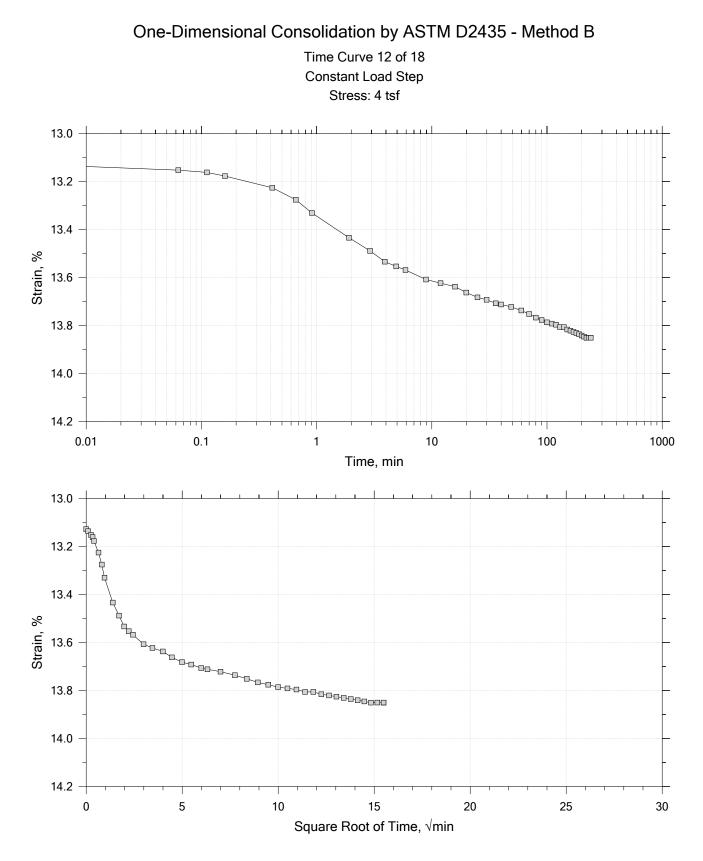
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 8 of 18 Constant Load Step Stress: 1 tsf 12.8 12.9 Л л 13.0 Strain, % 13.1 13.2 13.3 13.4 0.1 0.01 1 10 100 1000 Time, min 12.8 12.9 13.0 Strain, % 13.1 Ъ þ 13.2 13.3 13.4 0 5 10 15 20 25 30

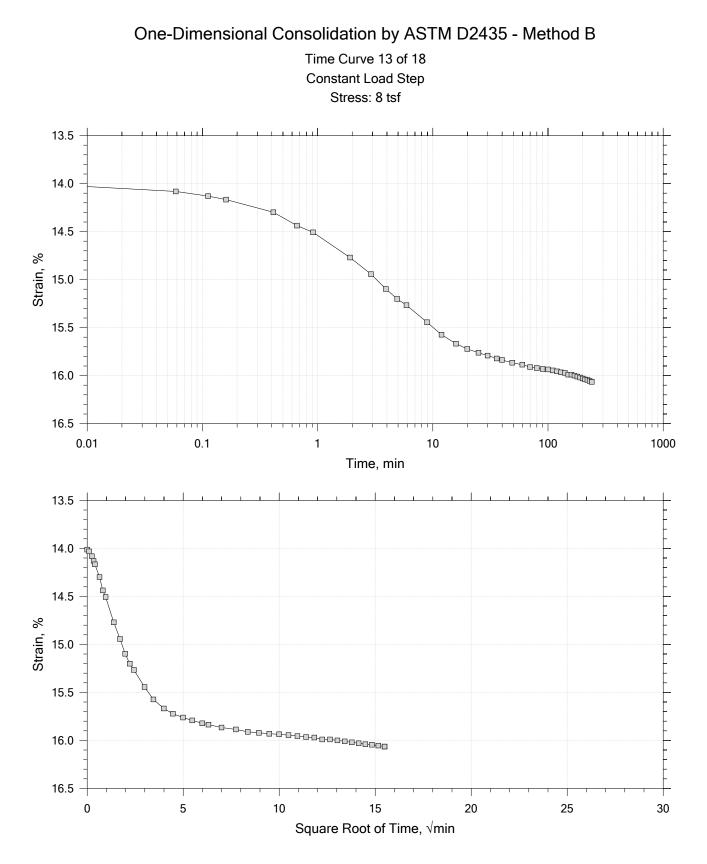
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

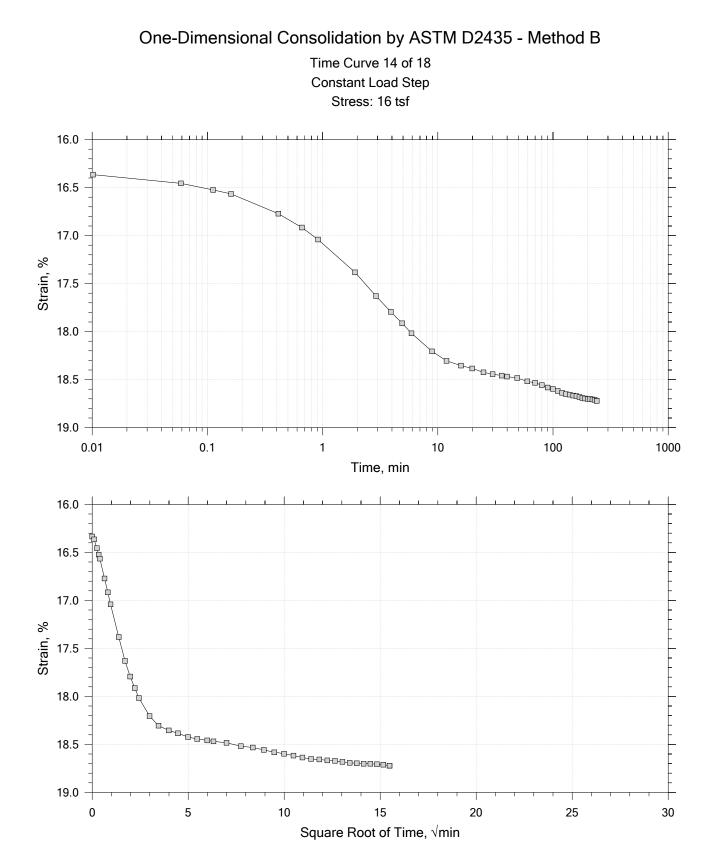

(В Time Curve 9 of 18 Constant Load Step Stress: 0.5 tsf 12.4 ىمىمىمىمىمەرمەممەرمەرمەرمەرمەرمەرمەرمەرمەر مەرمەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر م 12.5 12.6 Strain, % 12.7 12.8 12.9 13.0 0.1 100 0.01 1 10 1000 Time, min 12.4 _____ 12.5 m 12.6 Strain, % 15'1 ۴ ب ł¢ 12.8 12.9 13.0 0 5 10 15 20 25 30

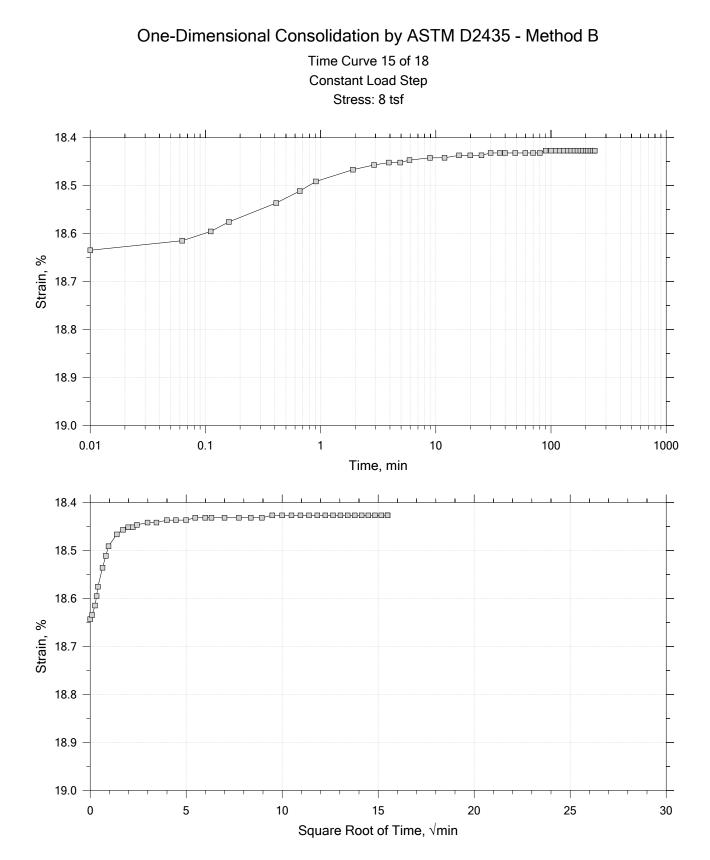
One-Dimensional Consolidation	n by ASTM D2435 - Me	thod F


GeoTesting	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
EXPRESS	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 10 of 18 Constant Load Step Stress: 1 tsf 12.45 12.50 12.55 Strain, % 12.60 12.65 ÷ 12.70 12.75 0.1 0.01 10 100 1000 1 Time, min 12.45 12.50 12.55 Strain, % 12.60 12.65 12.70 -----a 12.75 0 5 10 15 20 25 30

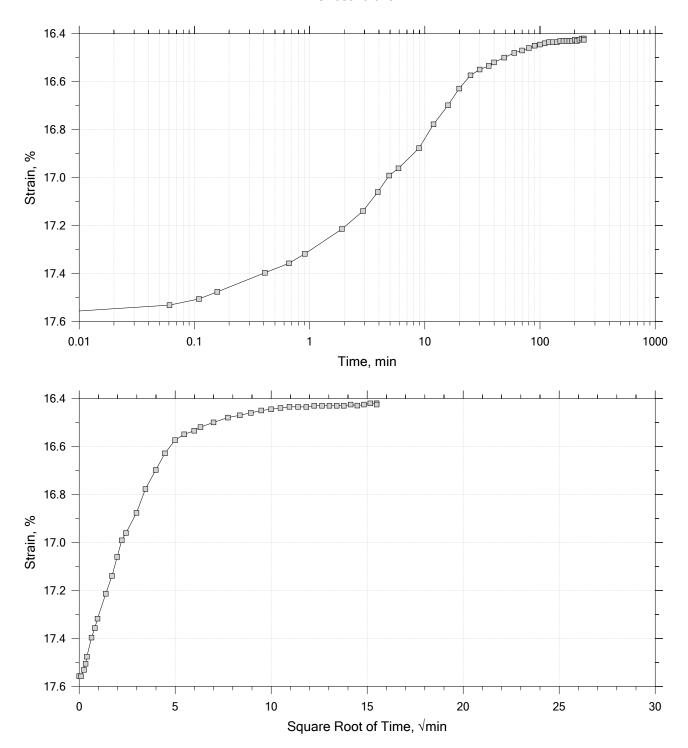

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		


	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
Testing	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

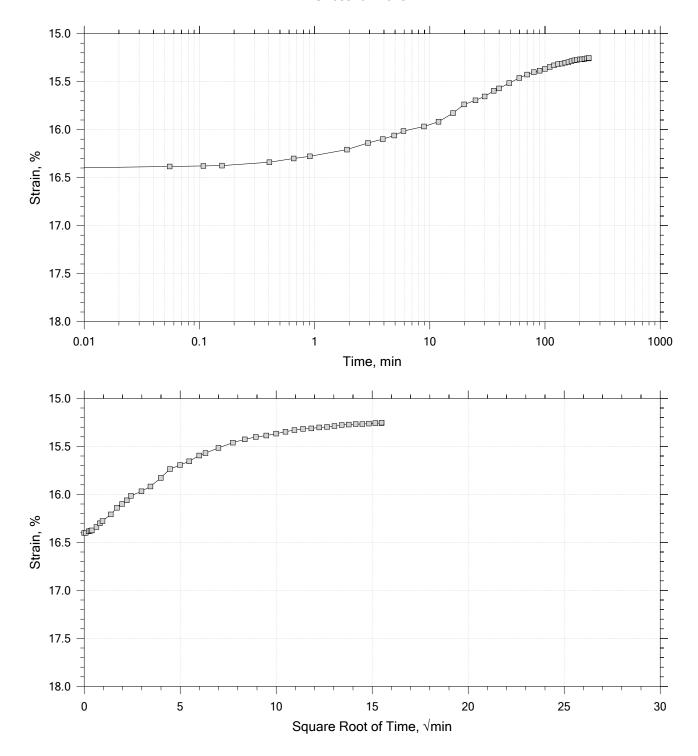
GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		


GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629	tsf	

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 16 of 18 Constant Load Step Stress: 2 tsf 17.4 17.6 17.8 Strain, % 18.0 18.2 18.4 18.6 0.1 0.01 1 10 100 1000 Time, min 17.4 _____ 17.6 Þ 17.8 Strain, % 18.0 18.2 18.4 18.6 0 5 10 15 20 25 30

GeoTesting EXPRESS	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'
	Test No.: IP-2	Sample Type: Intact	Elevation:
	Description: Moist, dark grayish brown clay		
	Remarks: TX-012, Swell Pressure = 0.0629 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 17 of 18 Constant Load Step Stress: 0.5 tsf

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				

One-Dimensional Consolidation by ASTM D2435 - Method B

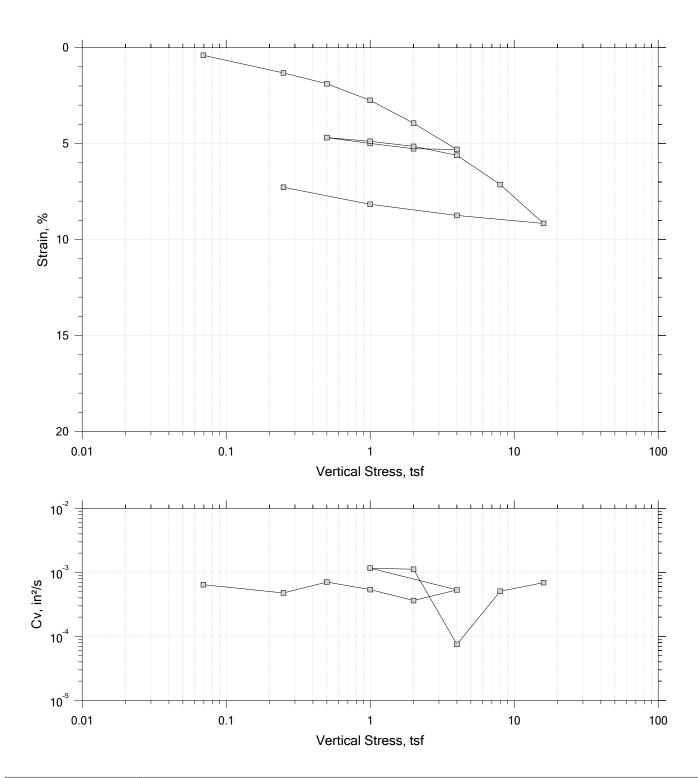
Time Curve 18 of 18 Constant Load Step Stress: 0.125 tsf

	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.74	Liquid Limit: 32
Initial Height: 1.00 in	Initial Void Ratio: 0.758	Plastic Limit: 20
Final Height: 0.85 in	Final Void Ratio: 0.49	Plasticity Index: 12

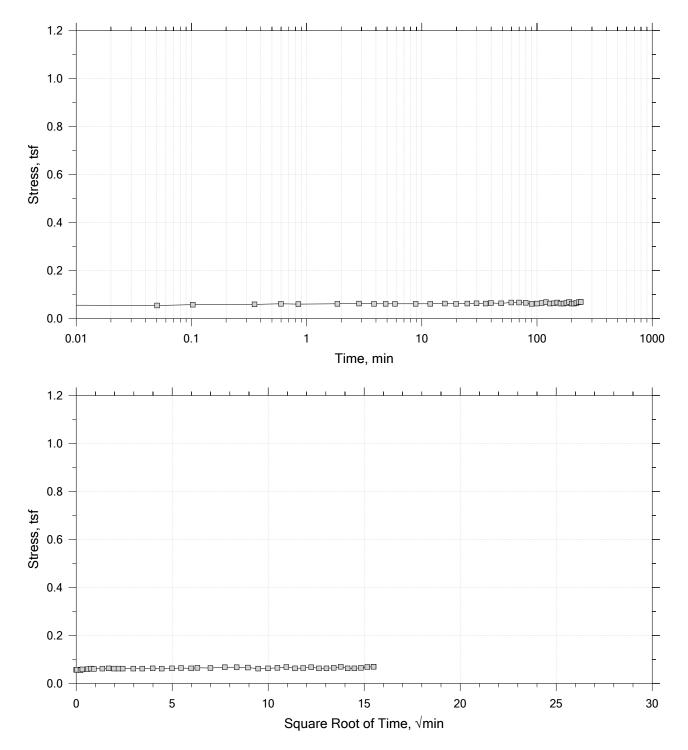
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E3616	RING		E6553
Mass Container, gm	8.53	109.73	109.73	7.94
Mass Container + Wet Soil, gm	223.49	267.92	257.49	65.2
Mass Container + Dry Soil, gm	177.83	235.07	235.07	56.51
Mass Dry Soil, gm	169.3	125.34	125.34	48.57
Water Content, %	26.97	26.21	17.89	17.89
Void Ratio		0.76	0.49	
Degree of Saturation, %		94.70	100.00	
Dry Unit Weight, pcf		97.271	114.78	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				

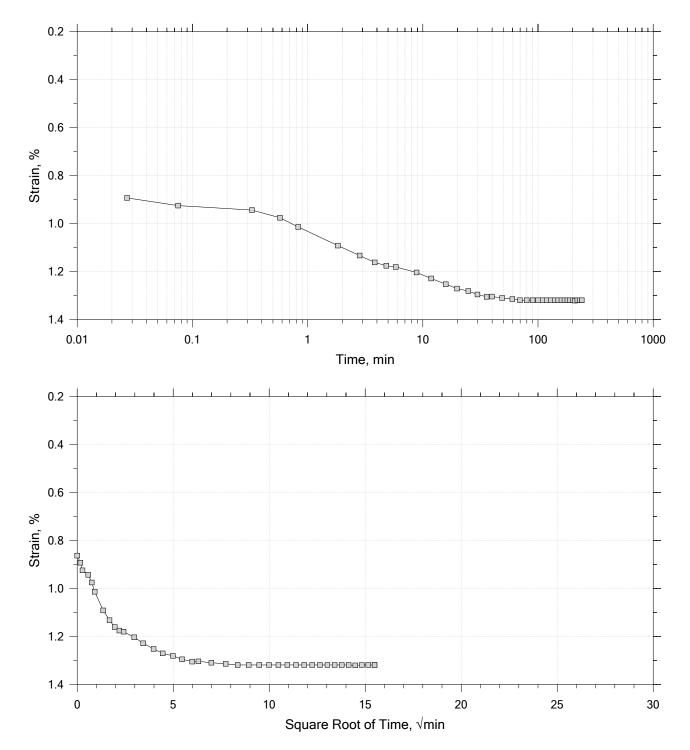
Square Root of Time Coefficients

Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k ft/day
1	0.0629	0.01194	0.737	1.19	168.081	2.08e-05	1.90e-01	7.39e-05
2	0.250	0.04343	0.682	4.34	43.890	7.61e-05	1.68e-01	2.40e-04
3	0.500	0.06025	0.652	6.02	53.917	5.89e-05	6.73e-02	7.42e-05
4	1.00	0.08317	0.612	8.32	34.511	8.82e-05	4.58e-02	7.57e-05
5	2.00	0.1080	0.568	10.8	24.825	1.16e-04	2.49e-02	5.42e-05
6	4.00	0.1341	0.523	13.4	22.302	1.22e-04	1.30e-02	2.99e-05
7	2.00	0.1315	0.527	13.2	5.027	5.29e-04	1.29e-03	1.28e-05
8	1.00	0.1282	0.533	12.8	8.060	3.32e-04	3.27e-03	2.03e-05
9	0.500	0.1246	0.539	12.5	19.775	1.36e-04	7.25e-03	1.85e-05
10	1.00	0.1272	0.535	12.7	5.708	4.73e-04	5.17e-03	4.58e-05
11	2.00	0.1305	0.529	13.0	7.038	3.81e-04	3.27e-03	2.34e-05
12	4.00	0.1385	0.515	13.9	22.098	1.20e-04	4.02e-03	9.02e-06
13	8.00	0.1606	0.476	16.1	13.055	1.96e-04	5.53e-03	2.03e-05
14	16.0	0.1872	0.429	18.7	11.076	2.18e-04	3.32e-03	1.35e-05
15	8.00	0.1843	0.434	18.4	2.942	7.96e-04	3.68e-04	5.49e-06
16	2.00	0.1755	0.450	17.5	8.311	2.86e-04	1.47e-03	7.85e-06
17	0.500	0.1643	0.470	16.4	15.165	1.61e-04	7.48e-03	2.25e-05
18	0.125	0.1525	0.490	15.3	47.174	5.31e-05	3.13e-02	3.11e-05


	Project: Lubec Breakwater	Location: Lubec, ME	Project No.: GTX-317770		
	Boring No.: Wb-6/ U-1	Tested By: sjt/ jlw	Checked By: mcm		
	Sample No.: L-332-23	Test Date: 9/15/23	Depth: 4-6'		
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: Intact	Elevation:		
	Description: Moist, dark grayish brown clay				
	Remarks: TX-012, Swell Pressure = 0.0629 tsf				
	Displacement at End of Increment				

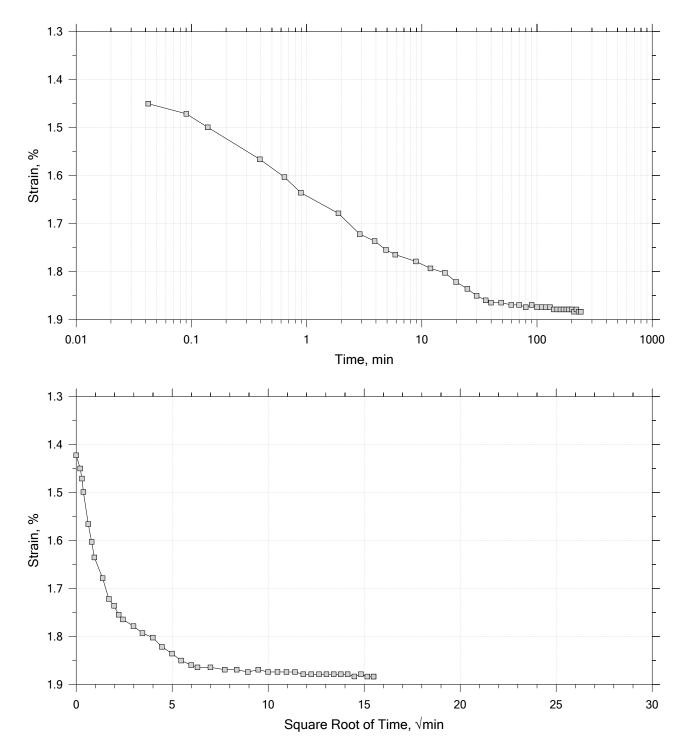
Summary Report

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
ABITEL COMMIT	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		
	Displacement at End of Increment		


Time Curve 1 of 17 Constant Volume Step Stress: 0.0694 tsf

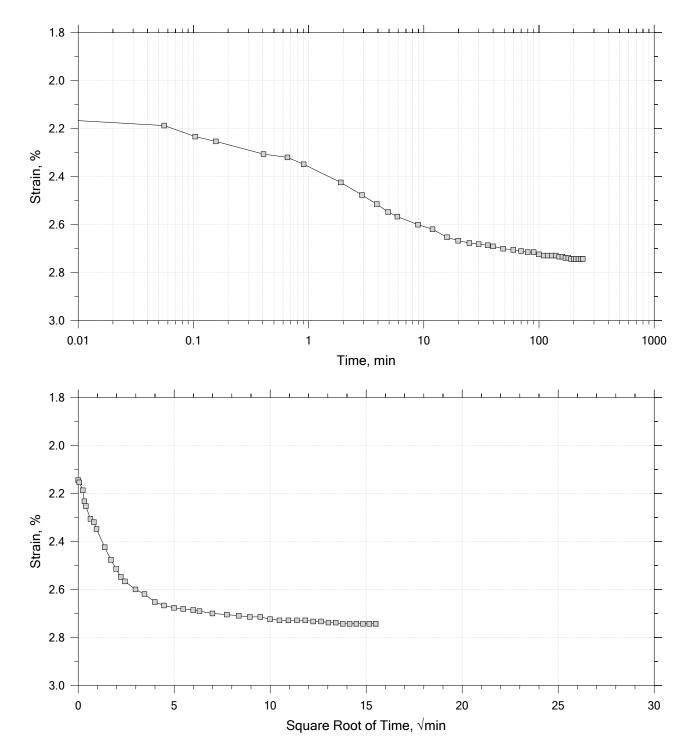
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

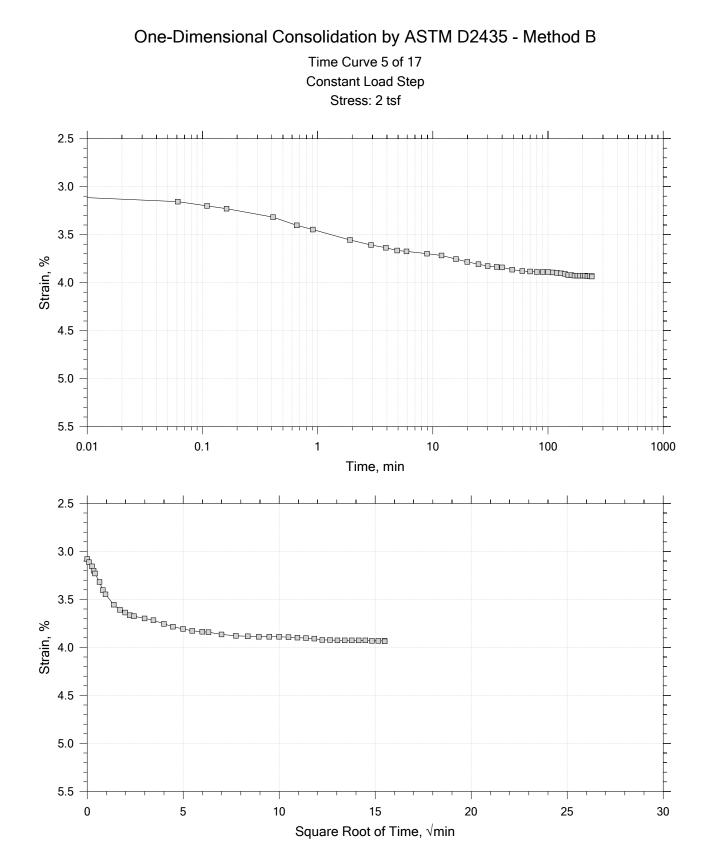
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 2 of 17 Constant Load Step Stress: 0.25 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

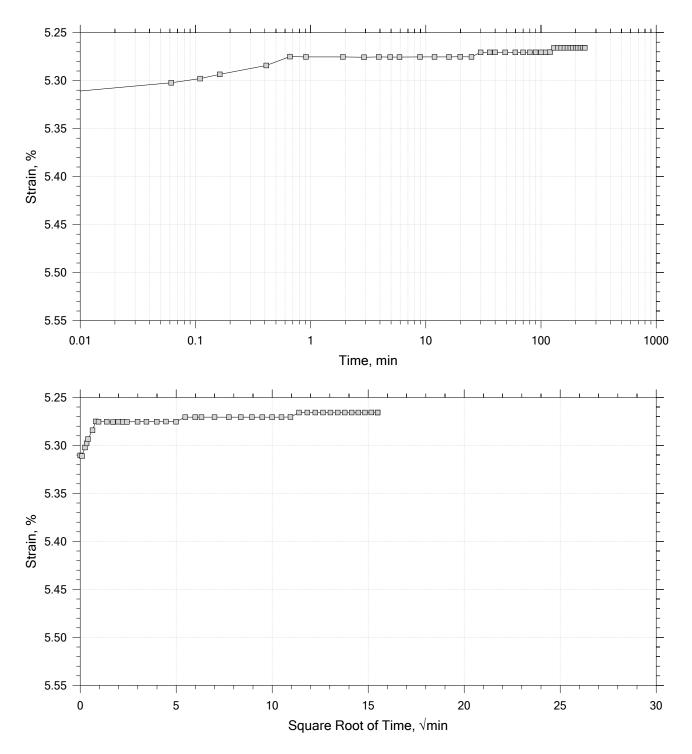

Time Curve 3 of 17 Constant Load Step Stress: 0.5 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

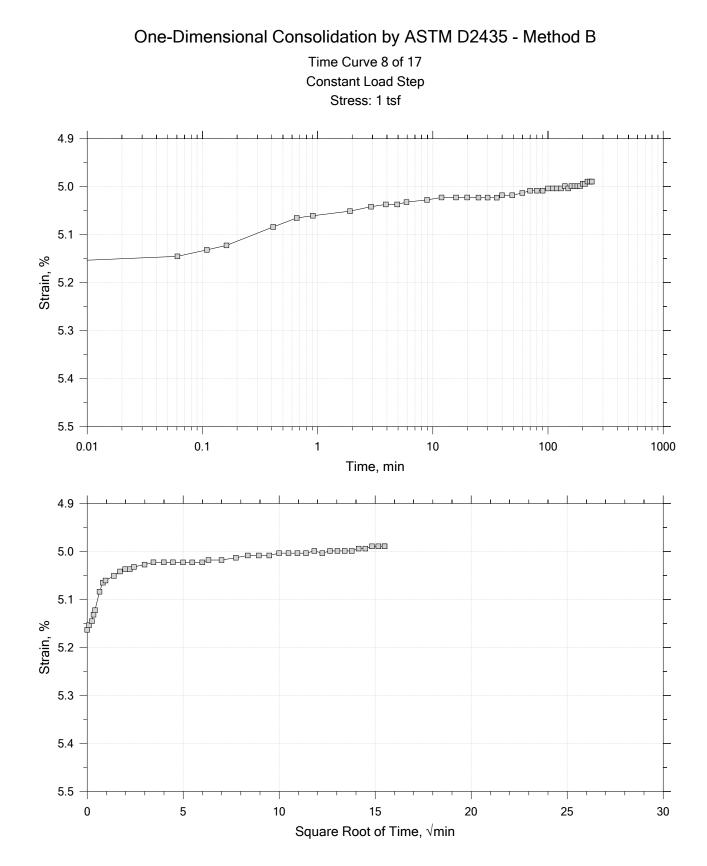
One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 4 of 17 Constant Load Step Stress: 1 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 6 of 17 Constant Load Step Stress: 4 tsf 3.5 4.0 4.5 Strain, % π 5.0 5.5 6.0 6.5 0.1 0.01 10 100 1000 1 Time, min 3.5 4.0 4.5 Strain, % 0^{.5} 5.5 6.0 6.5 0 5 10 15 20 25 30

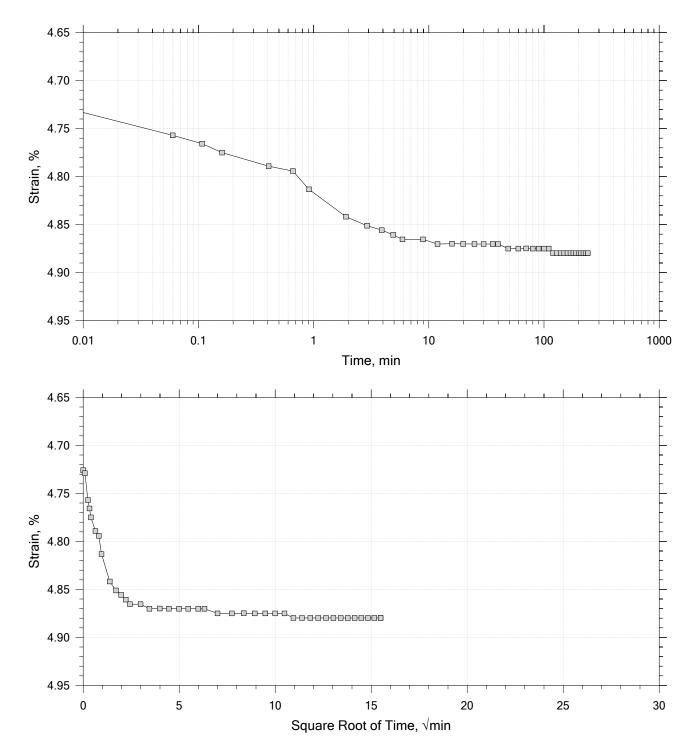

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 7 of 17 Constant Load Step Stress: 2 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

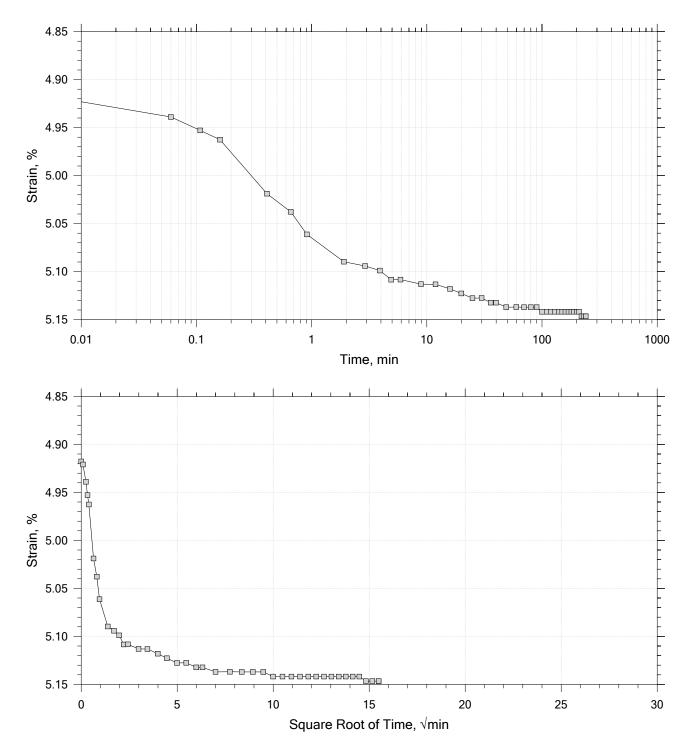
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		


One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 9 of 17 Constant Load Step Stress: 0.5 tsf 4.6 _____ 4.7 -0 -0-0-0 T 4.8 Strain, % 4.9 5.0 5.1 5.2 0.1 0.01 10 100 1000 1 Time, min 4.6 4.7 4.8 þ Strain, % þ þ 4.9 5.0 5.1 5.2 0 5 10 15 20 25 30

Square Root of Time, √min

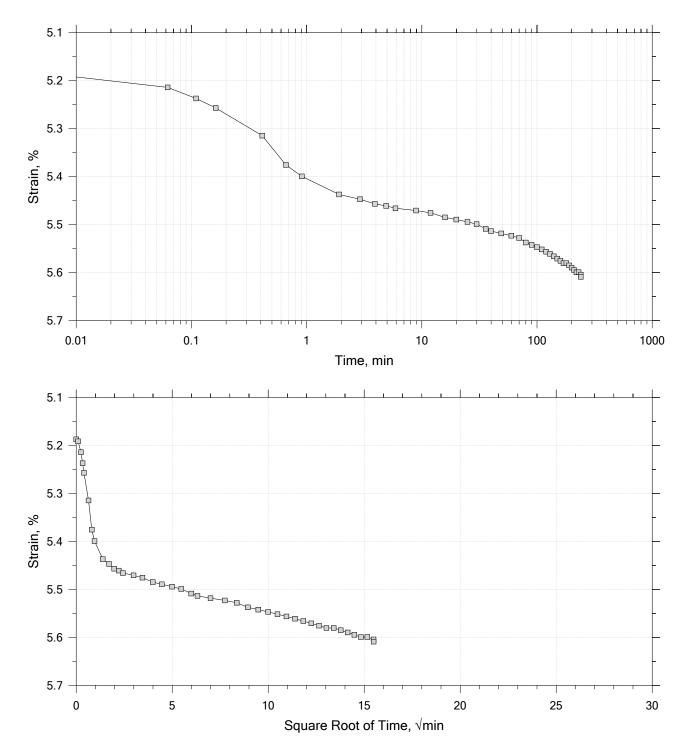
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

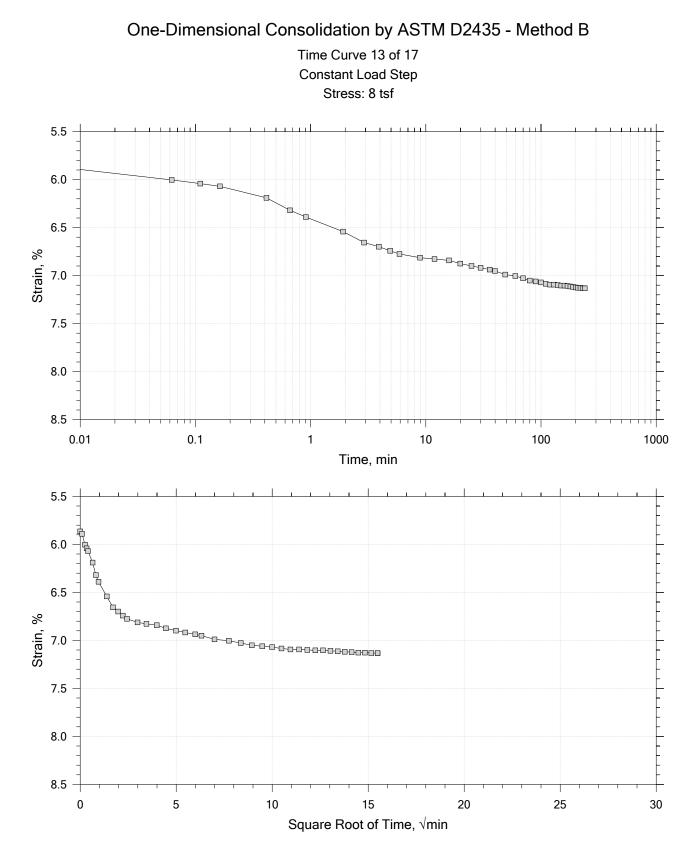
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 10 of 17 Constant Load Step Stress: 1 tsf

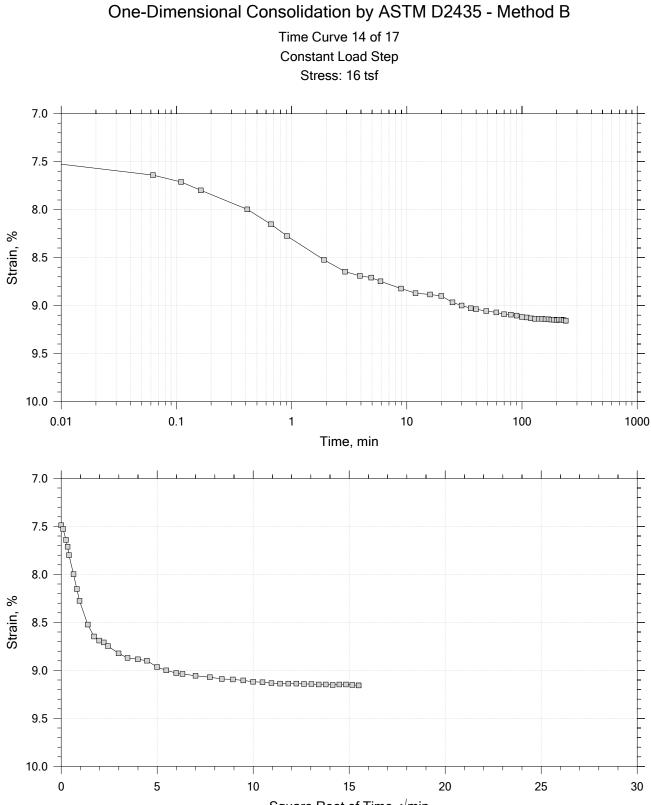
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 11 of 17 Constant Load Step Stress: 2 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6
	Test No.: IP-3R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-018, Swell Pressure = 0.0694 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 12 of 17 Constant Load Step Stress: 4 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
ABENCEL COMPARY	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

Square Root of Time, √min

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	:: IP-3R Sample Type: intact Elevation:			
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

Time Curve 15 of 17 Constant Load Step Stress: 4 tsf 8.7 _____ -----лн 8.8 8.9 Strain, % 9.0 9.1 9.2 9.3 0.1 0.01 10 100 1000 1 Time, min 8.7 ______ -0-0-0-0-0-0-0-0-0-0000000 8.8 8.9 Strain, % 9.0 9.1

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
A SERCEL COMPANY	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

15

Square Root of Time, \sqrt{min}

20

25

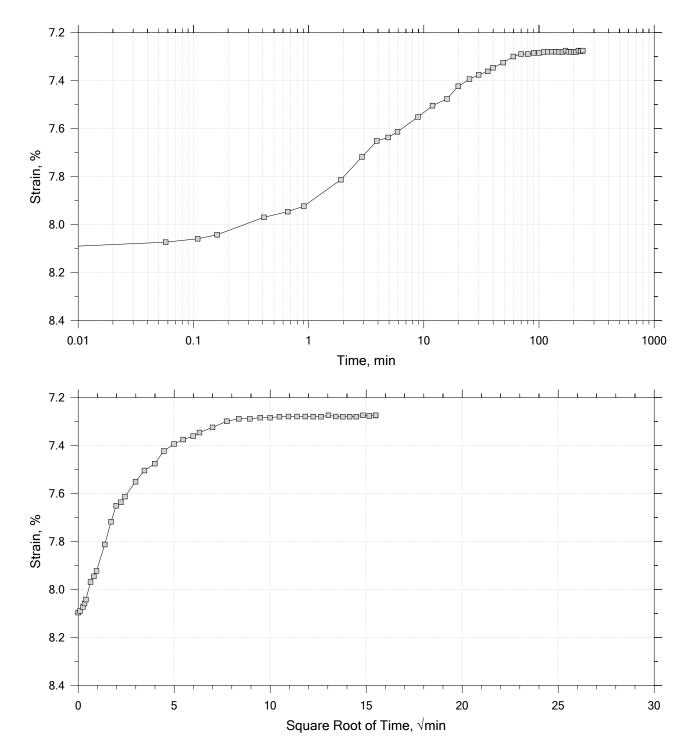
9.2

9.3

0

5

10


30

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 16 of 17 Constant Load Step Stress: 1 tsf 8.0 8.2 , o O 8.4 Strain, % 8.6 8.8 9.0 9.2 0.1 0.01 1 10 100 1000 Time, min 8.0 8.2 8.4 Strain, % 9.8 ¢ цр Ц 8.8 9.0 9.2 0 5 10 15 20 25 30

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

One-Dimensional Consolidation by ASTM D2435 - Method B

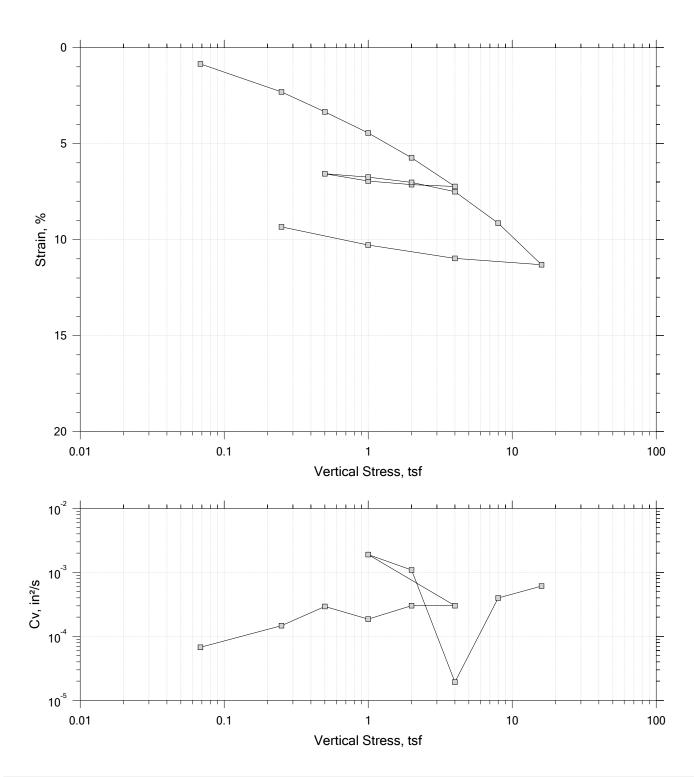
Time Curve 17 of 17 Constant Load Step Stress: 0.25 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact Elevation:			
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.74	Liquid Limit: 30
Initial Height: 1.00 in	Initial Void Ratio: 0.638	Plastic Limit: 17
Final Height: 0.93 in	Final Void Ratio: 0.523	Plasticity Index: 13

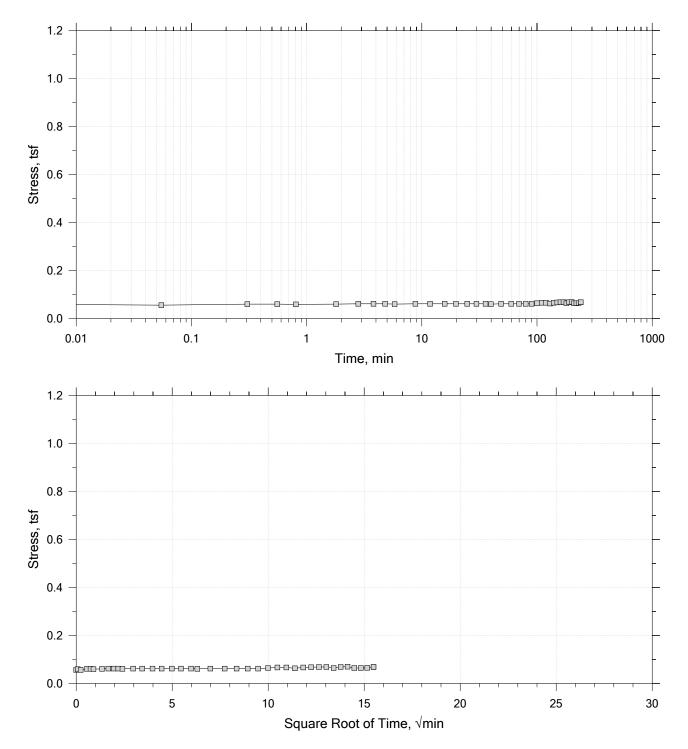
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E3372	RING		E9426
Mass Container, gm	8.92	108.81	108.81	8.38
Mass Container + Wet Soil, gm	194.42	274.36	269	168.71
Mass Container + Dry Soil, gm	159.85	243.31	243.31	143
Mass Dry Soil, gm	150.93	134.5	134.5	134.62
Water Content, %	22.90	23.08	19.10	19.10
Void Ratio		0.64	0.52	
Degree of Saturation, %		99.14	100.00	
Dry Unit Weight, pcf		104.39	112.24	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				

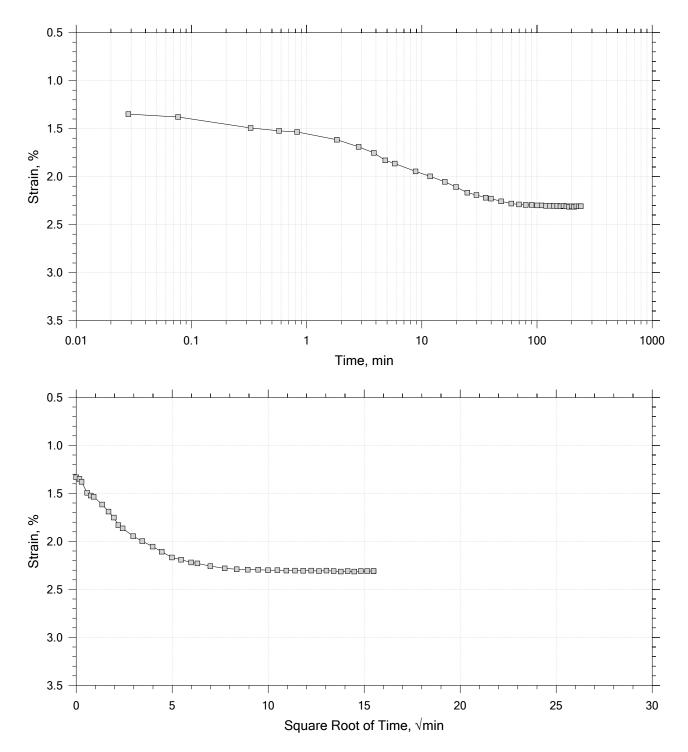
Square Root of Time Coefficients

Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k ft/day
1	0.0694	0.003967	0.631	0.397	5.491	6.41e-04	5.72e-02	6.86e-0
2	0.250	0.01319	0.616	1.32	7.282	4.77e-04	5.11e-02	4.56e-0
3	0.500	0.01884	0.607	1.88	4.850	7.05e-04	2.26e-02	2.98e-
4	1.00	0.02743	0.593	2.74	6.267	5.38e-04	1.72e-02	1.73e-
5	2.00	0.03937	0.573	3.94	9.110	3.62e-04	1.19e-02	8.10e-
6	4.00	0.05304	0.551	5.30	6.038	5.32e-04	6.84e-03	6.82e-
7	2.00	0.05266	0.551	5.27	0.652	4.86e-03	1.90e-04	1.73e-
8	1.00	0.04989	0.556	4.99	3.910	8.13e-04	2.76e-03	4.21e-
9	0.500	0.04686	0.561	4.69	3.902	8.20e-04	6.06e-03	9.31e-
10	1.00	0.04880	0.558	4.88	2.752	1.16e-03	3.87e-03	8.44e-
11	2.00	0.05147	0.553	5.15	2.850	1.12e-03	2.67e-03	5.59e-
12	4.00	0.05609	0.546	5.61	42.217	7.49e-05	2.31e-03	3.24e-
13	8.00	0.07132	0.521	7.13	6.113	5.07e-04	3.81e-03	3.61e
14	16.0	0.09157	0.488	9.16	4.313	6.91e-04	2.53e-03	3.28e-
15	4.00	0.08740	0.494	8.74	2.180	1.34e-03	3.47e-04	8.74e
16	1.00	0.08163	0.504	8.16	5.375	5.51e-04	1.92e-03	1.98e
17	0.250	0.07275	0.518	7.27	11.606	2.59e-04	1.18e-02	5.75e
18	0.000	0.06650	0.529	6.65	56.281	5.43e-05	2.50e-02	2.54e


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760		
	Boring No.: WB-108	Tested By: sjt	Checked By: anm		
	Sample No.: U-1	Test Date: 03/21/24	Depth: 4-6		
	Test No.: IP-3R	Sample Type: intact	Elevation:		
	Description: Moist, gray clay				
	Remarks: TX-018, Swell Pressure = 0.0694 tsf				
	Displacement at End of Increment				

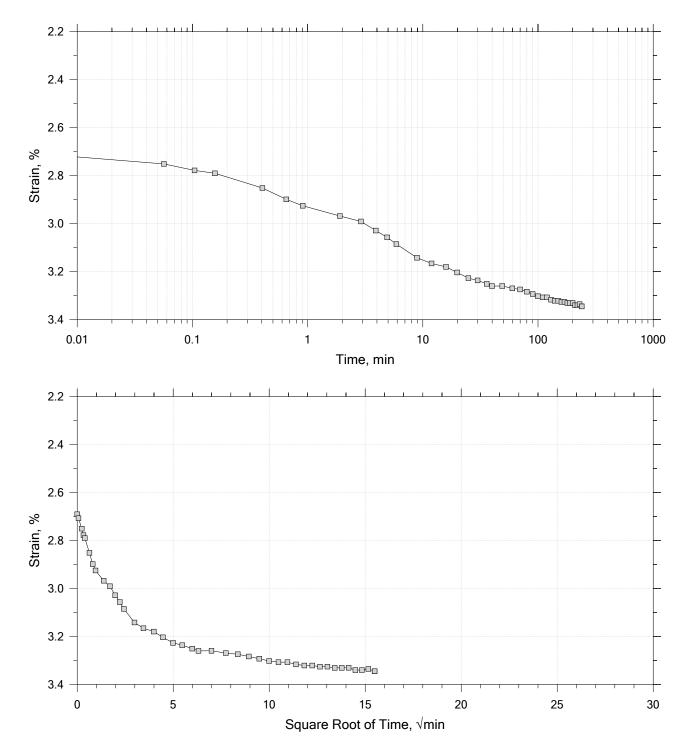
Summary Report

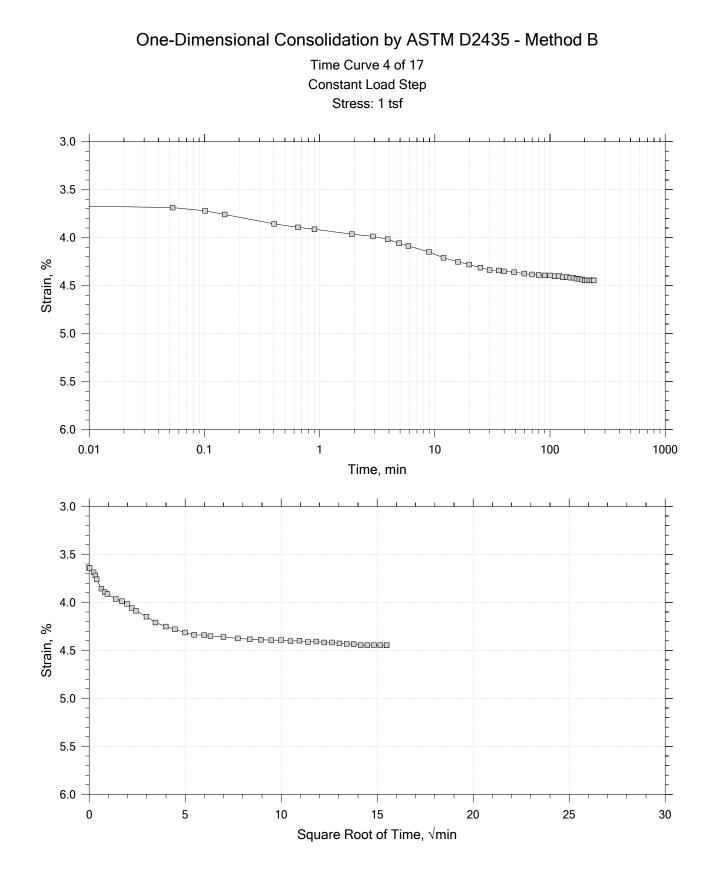
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
Adencel company	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		
	Displacement at End of Increment		


Time Curve 1 of 17 Constant Volume Step Stress: 0.0684 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

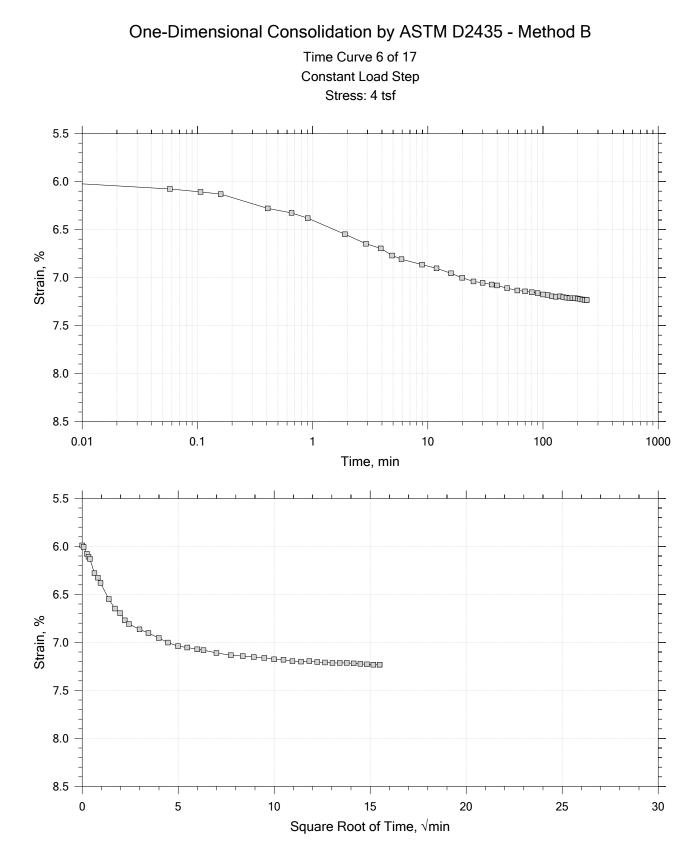
One-Dimensional Consolidation by ASTM D2435 - Method B

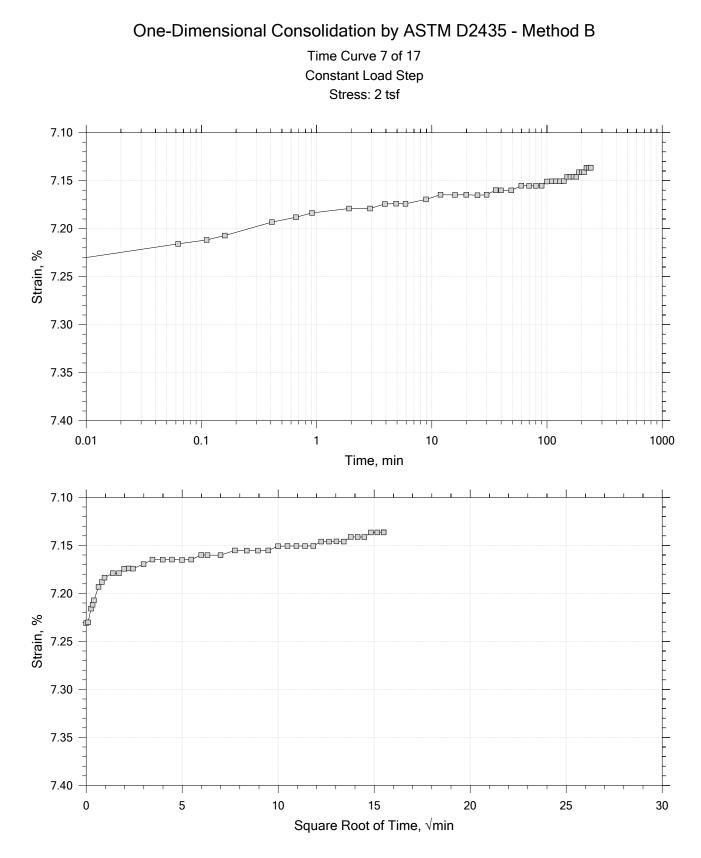

Time Curve 2 of 17 Constant Load Step Stress: 0.25 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

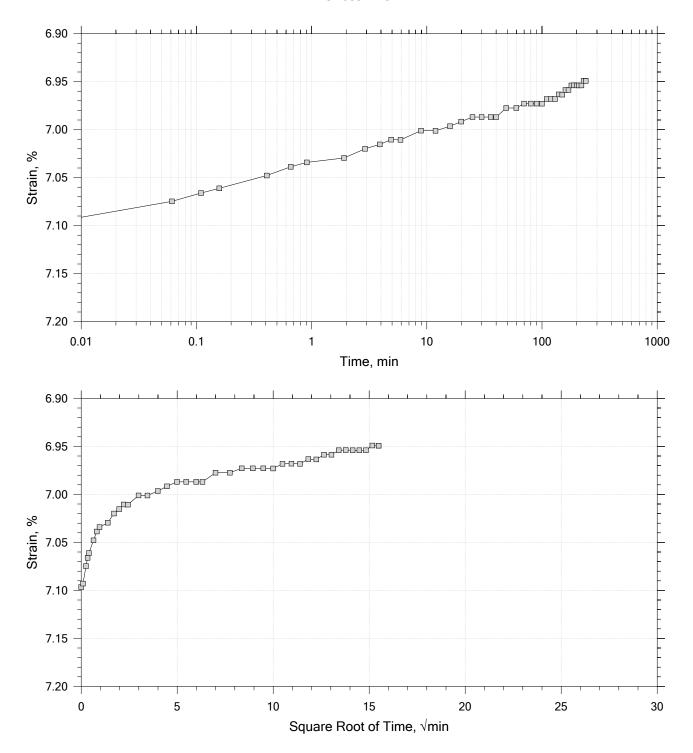
Time Curve 3 of 17 Constant Load Step Stress: 0.5 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

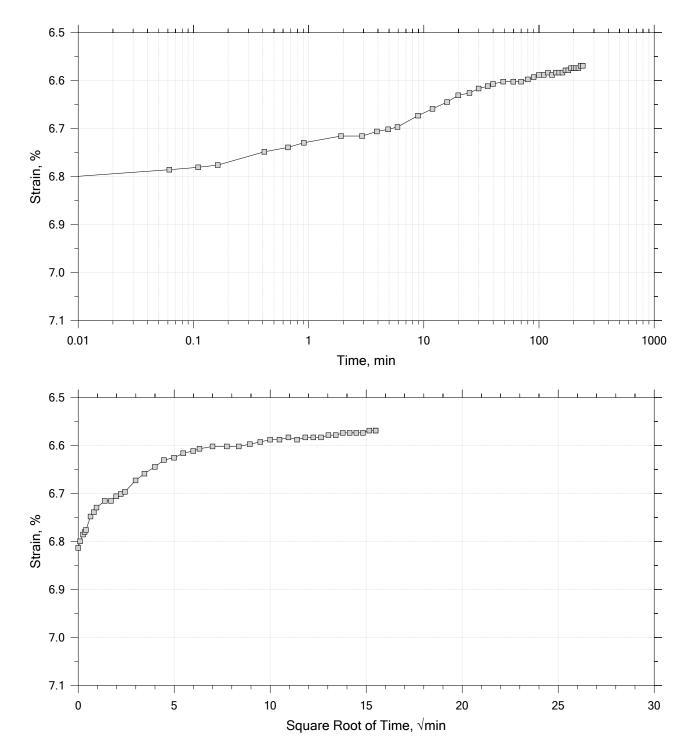
One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 5 of 17 Constant Load Step Stress: 2 tsf 4.0 4.5 5.0 Strain, % T_D 5.5 6.0 6.5 7.0 0.1 0.01 10 100 1000 1 Time, min 4.0 4.5 5.0 Strain, % ^{2'5} Ъъ_ъ π -**D**-6.0 6.5 7.0 0 5 10 15 20 25 30

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

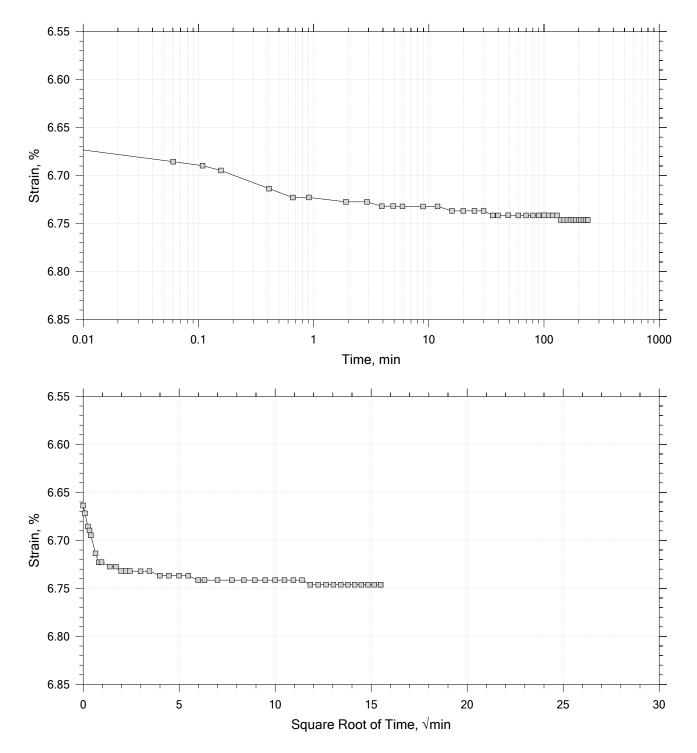
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 8 of 17 Constant Load Step Stress: 1 tsf

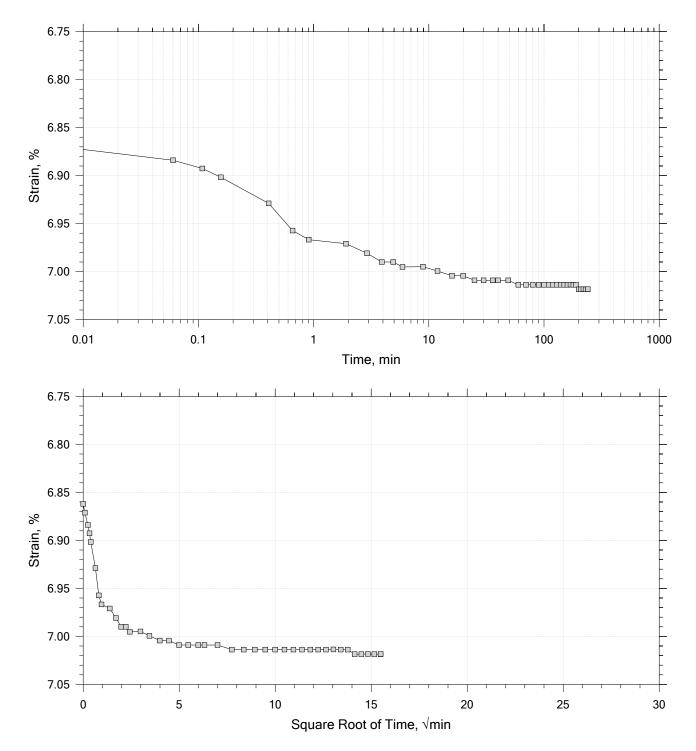
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 9 of 17 Constant Load Step Stress: 0.5 tsf

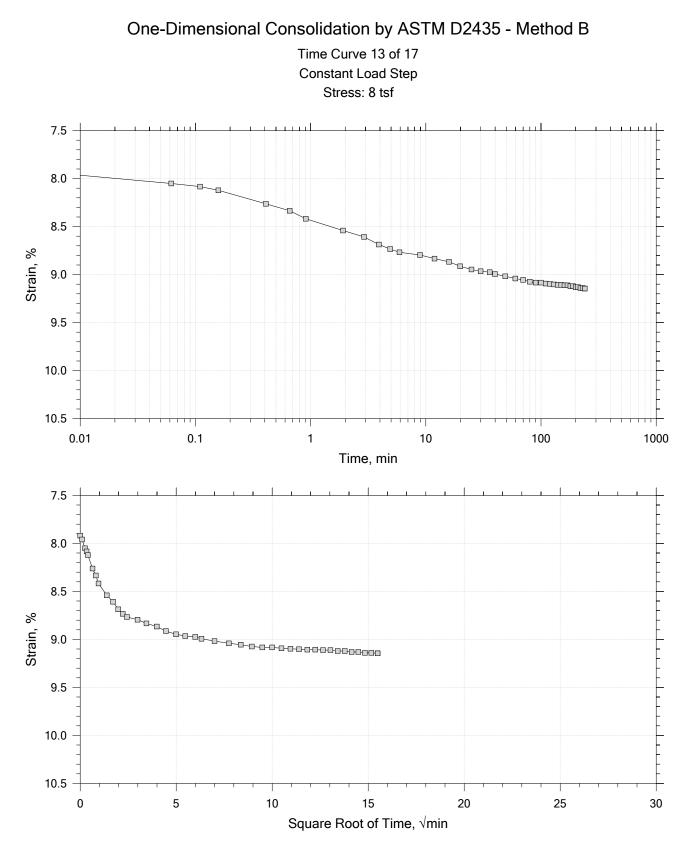
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 10 of 17 Constant Load Step Stress: 1 tsf

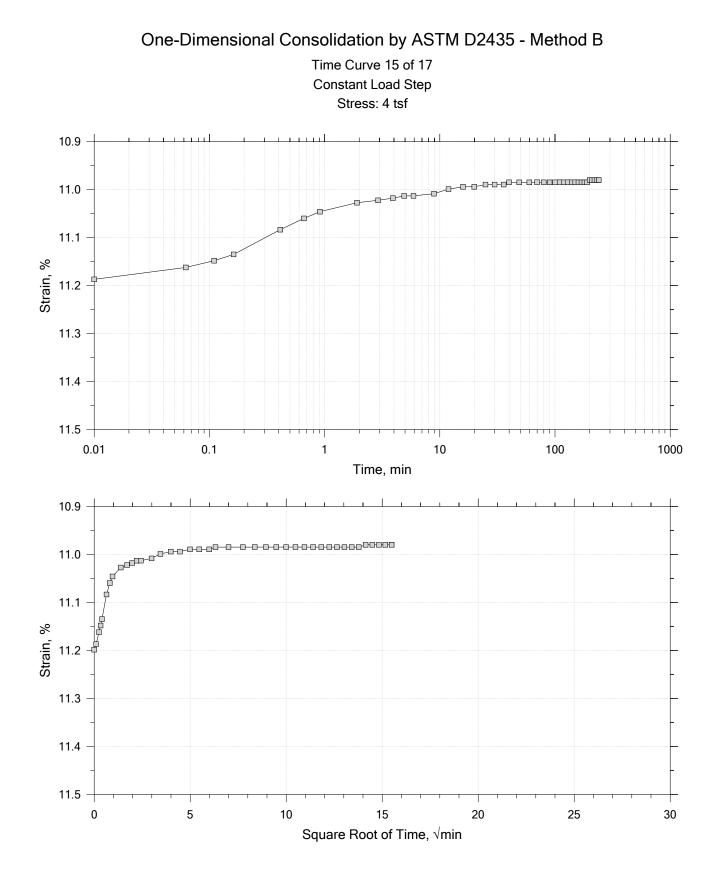
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

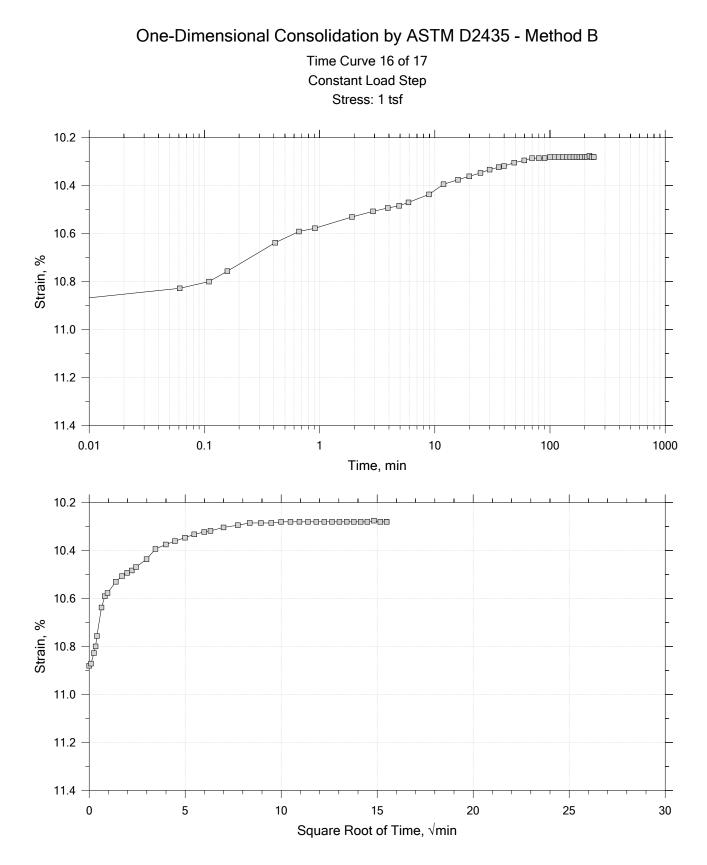
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 11 of 17 Constant Load Step Stress: 2 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

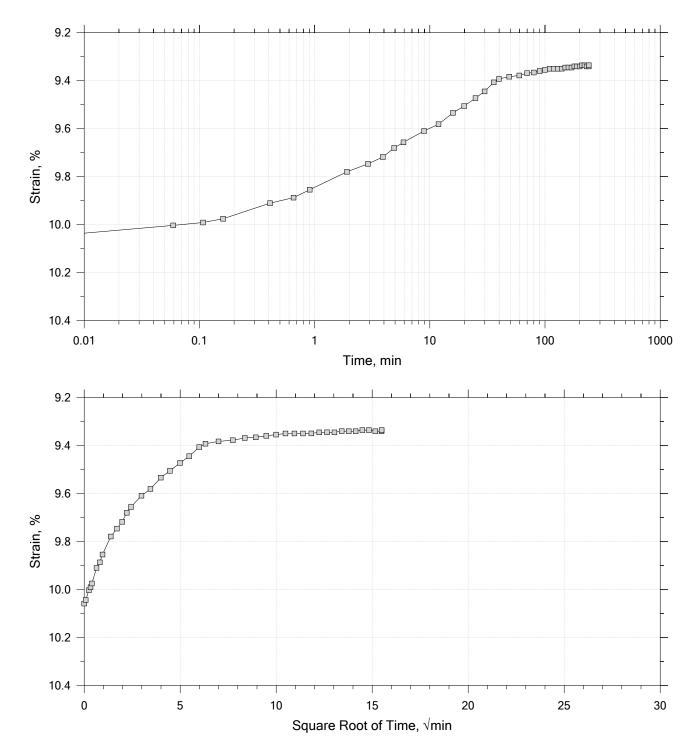
One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 12 of 17 Constant Load Step Stress: 4 tsf 7.0 7.1 7.2 Strain, % 7.3 La cala a **m**--0 7.4 7.5 7.6 0.1 0.01 10 100 1000 1 Time, min 7.0 7.1 7.2 Strain, % ²² ₽ Tody Ballona 7.4 ° P P Q 7.5 7.6 0 5 10 15 20 25 30


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 14 of 17 Constant Load Step Stress: 16 tsf 9.0 9.5 10.0 Strain, % 10.5 m ₽-₽-₽ Ľ. 11.0 11.5 12.0 0.1 0.01 10 100 1000 1 Time, min 9.0 9.5 10.0 Strain, % 10.5 ūα, 11.0 11.5 12.0 0 5 10 15 20 25 30

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-108	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-2R	Sample Type: intact	Elevation:
	Description: Moist, gray clay		
	Remarks: TX-017, Swell Pressure = 0.0684 tsf		

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-108	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-2R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay			
	Remarks: TX-017, Swell Pressure = 0.0684 tsf			

One-Dimensional Consolidation by ASTM D2435 - Method B

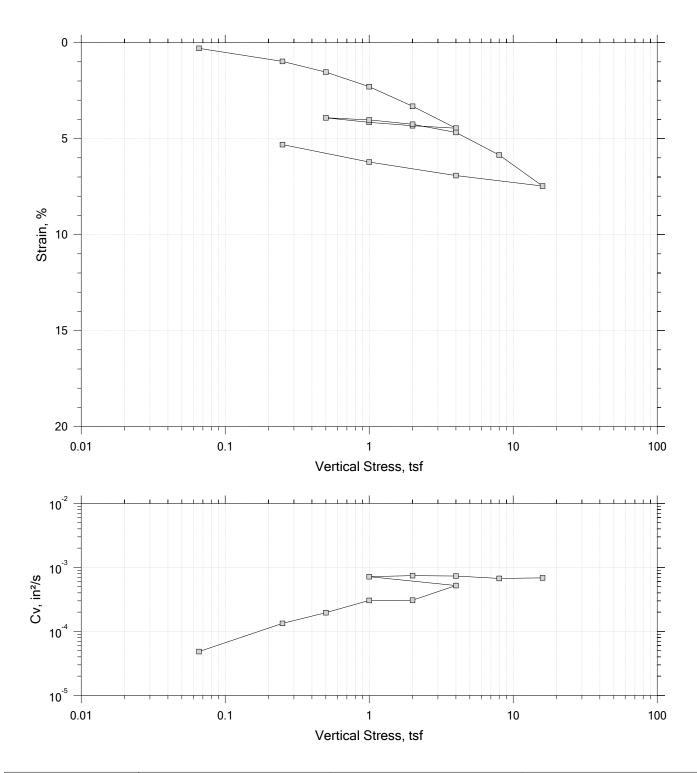
Time Curve 17 of 17 Constant Load Step Stress: 0.25 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-108	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-2R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay			
	Remarks: TX-017, Swell Pressure = 0.0684 tsf			

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.74	Liquid Limit: 36
Initial Height: 1.00 in	Initial Void Ratio: 0.665	Plastic Limit: 16
Final Height: 0.90 in	Final Void Ratio: 0.499	Plasticity Index: 20

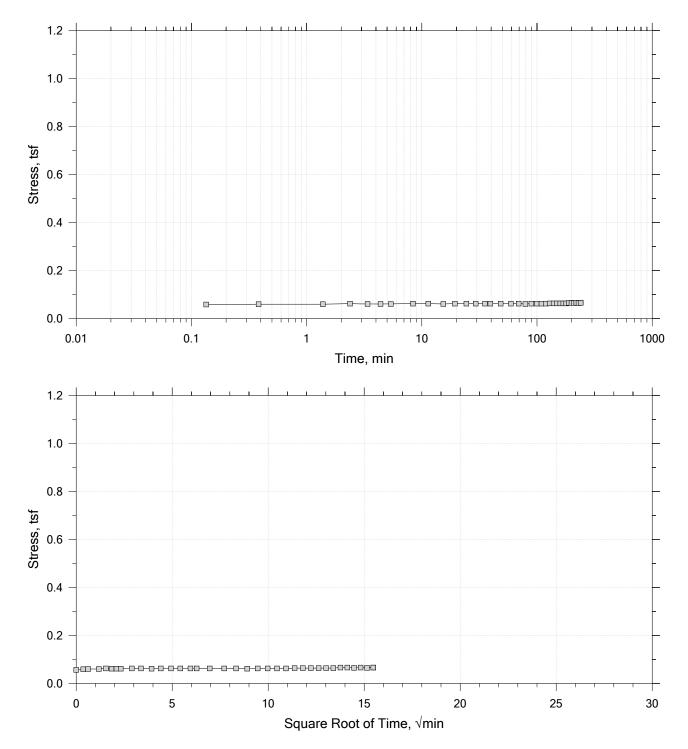
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E9246	RING		E8594
Mass Container, gm	8.59	111.34	111.34	8.42
Mass Container + Wet Soil, gm	191.98	275.28	268	166.27
Mass Container + Dry Soil, gm	157.57	243.91	243.91	142
Mass Dry Soil, gm	148.98	132.57	132.57	133.58
Water Content, %	23.10	23.66	18.17	18.17
Void Ratio		0.67	0.50	
Degree of Saturation, %		97.62	100.00	
Dry Unit Weight, pcf		102.89	114.32	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-108	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-2R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay			
	Remarks: TX-017, Swell Pressure = 0.0684 tsf			

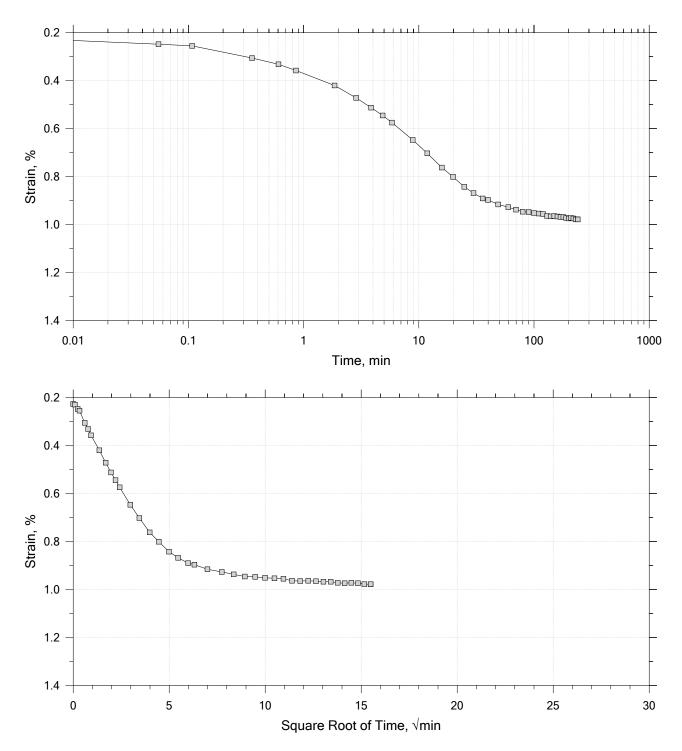
Square Root of Time Coefficients

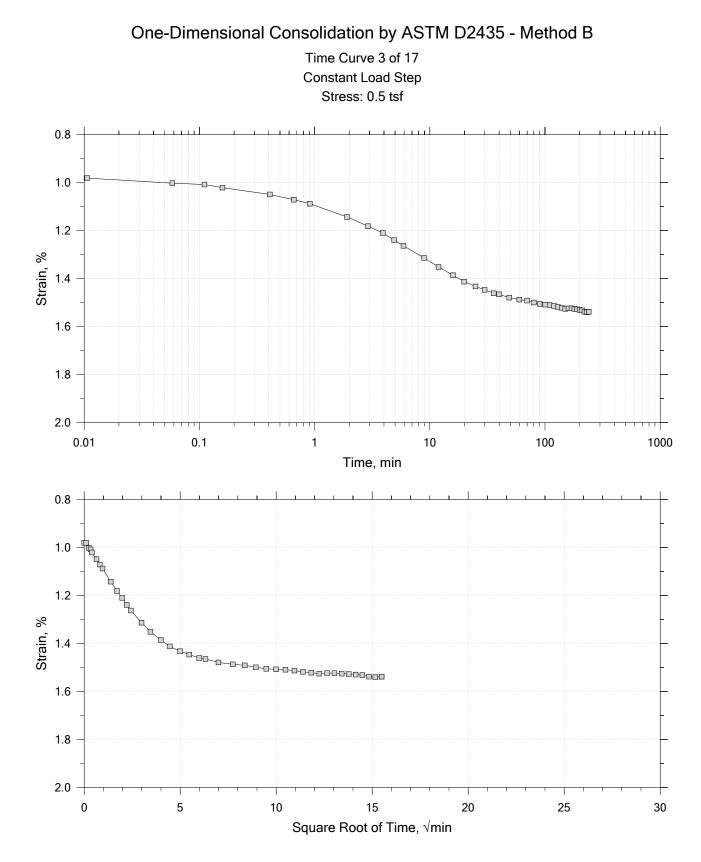
Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k ft/day
1	0.0684	0.008502	0.651	0.850	51.846	6.76e-05	1.24e-01	1.57e-0
2	0.250	0.02309	0.627	2.31	23.313	1.47e-04	8.03e-02	2.21e-0
3	0.500	0.03345	0.609	3.35	11.381	2.93e-04	4.14e-02	2.28e-0
4	1.00	0.04446	0.591	4.45	17.547	1.86e-04	2.20e-02	7.67e-0
5	2.00	0.05736	0.570	5.74	10.531	3.02e-04	1.29e-02	7.30e-
6	4.00	0.07233	0.545	7.23	10.233	3.02e-04	7.49e-03	4.23e-
7	2.00	0.07137	0.546	7.14	183.653	1.66e-05	4.82e-04	1.49e-
8	1.00	0.06949	0.549	6.95	24.912	1.23e-04	1.87e-03	4.30e-
9	0.500	0.06569	0.556	6.57	22.542	1.36e-04	7.60e-03	1.94e-
10	1.00	0.06746	0.553	6.75	1.620	1.90e-03	3.54e-03	1.26e-
11	2.00	0.07018	0.548	7.02	2.815	1.09e-03	2.72e-03	5.55e-
12	4.00	0.07502	0.540	7.50	157.265	1.93e-05	2.42e-03	8.76e-
13	8.00	0.09145	0.513	9.14	7.464	3.98e-04	4.11e-03	3.06e-
14	16.0	0.1131	0.477	11.3	4.664	6.10e-04	2.71e-03	3.09e-
15	4.00	0.1098	0.482	11.0	2.725	1.02e-03	2.74e-04	5.26e-
16	1.00	0.1028	0.494	10.3	14.508	1.95e-04	2.33e-03	8.49e-
17	0.250	0.09336	0.510	9.34	14.459	1.99e-04	1.26e-02	4.69e-
18	0.000	0.08432	0.525	8.43	58.880	4.98e-05	3.62e-02	3.37e


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-108	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-2R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay			
	Remarks: TX-017, Swell Pressure = 0.0684 tsf			
	Displacement at End of Increment			

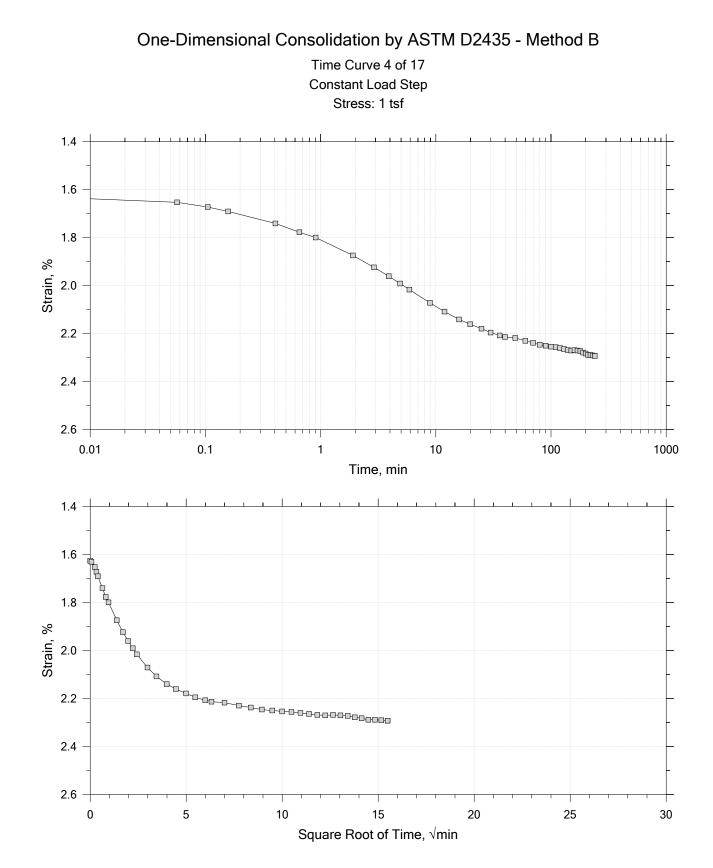
Summary Report

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-106	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-1R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay with sand			
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf			
	Displacement at End of Increment			

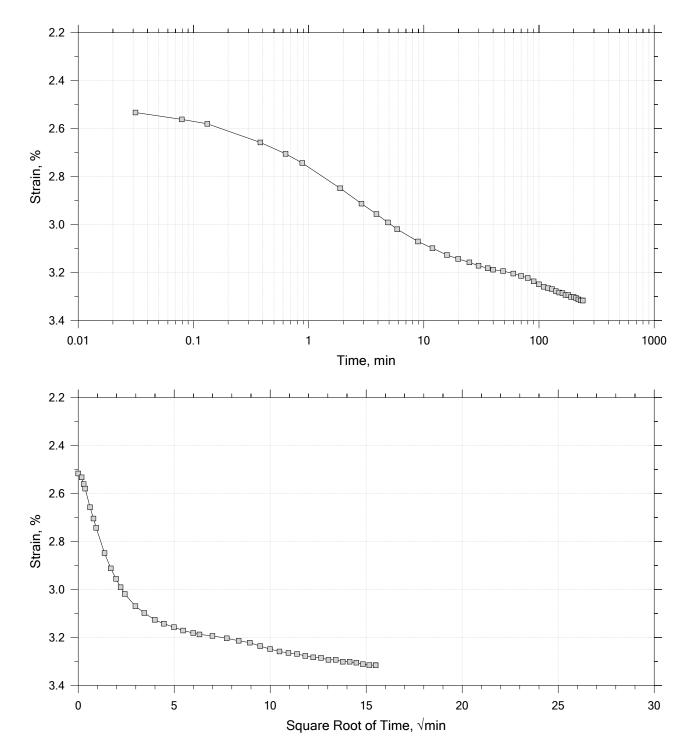

Time Curve 1 of 17 Constant Volume Step Stress: 0.0658 tsf

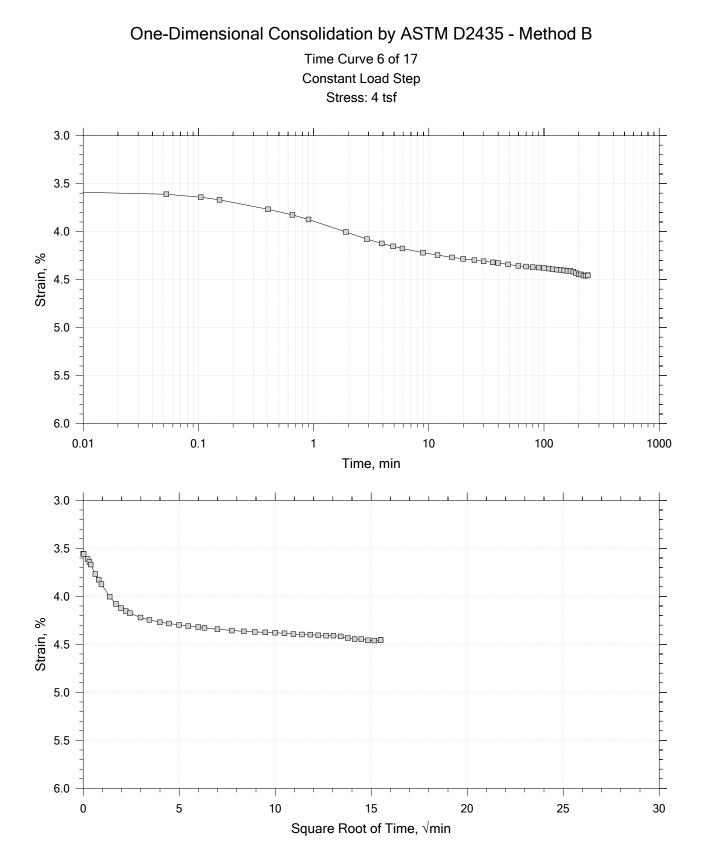

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-106	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-1R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay with sand			
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf			

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 2 of 17 Constant Load Step Stress: 0.25 tsf

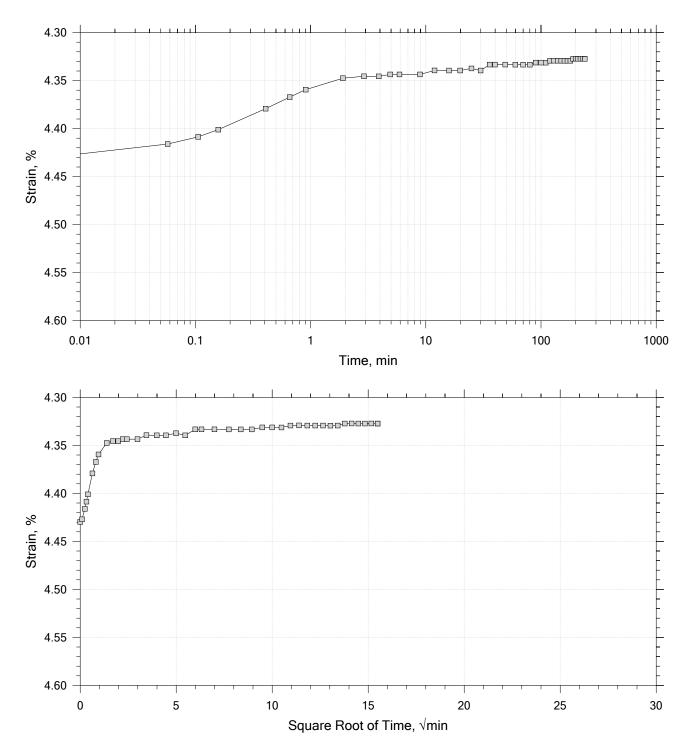
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-106	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-1R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay with sand			
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf			


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760	
	Boring No.: WB-106	Tested By: sjt	Checked By: anm	
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10	
	Test No.: IP-1R	Sample Type: intact	Elevation:	
	Description: Moist, gray clay with sand			
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf			


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

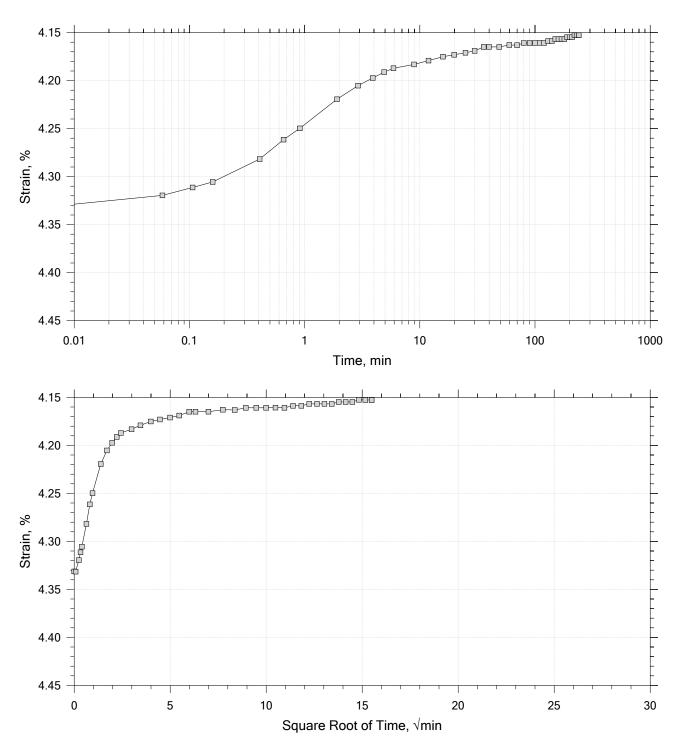
One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 5 of 17 Constant Load Step Stress: 2 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

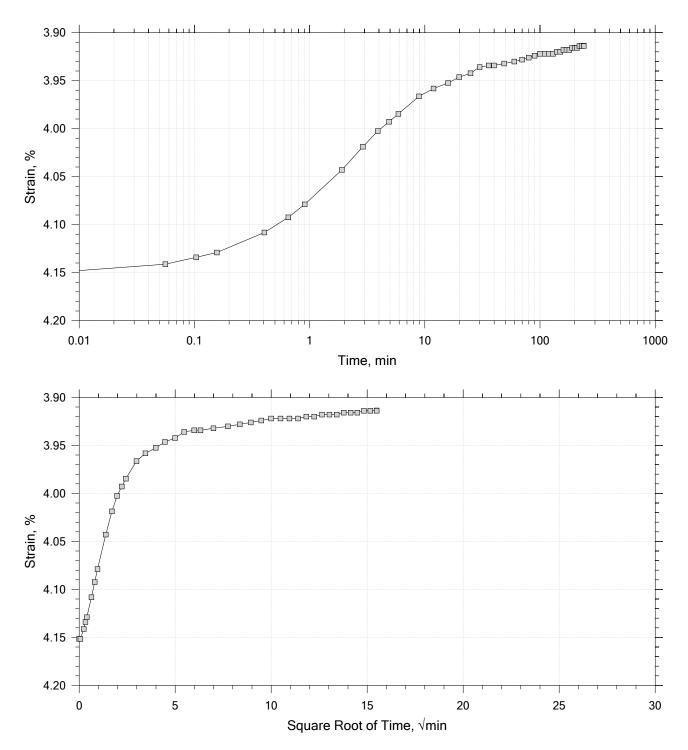
	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

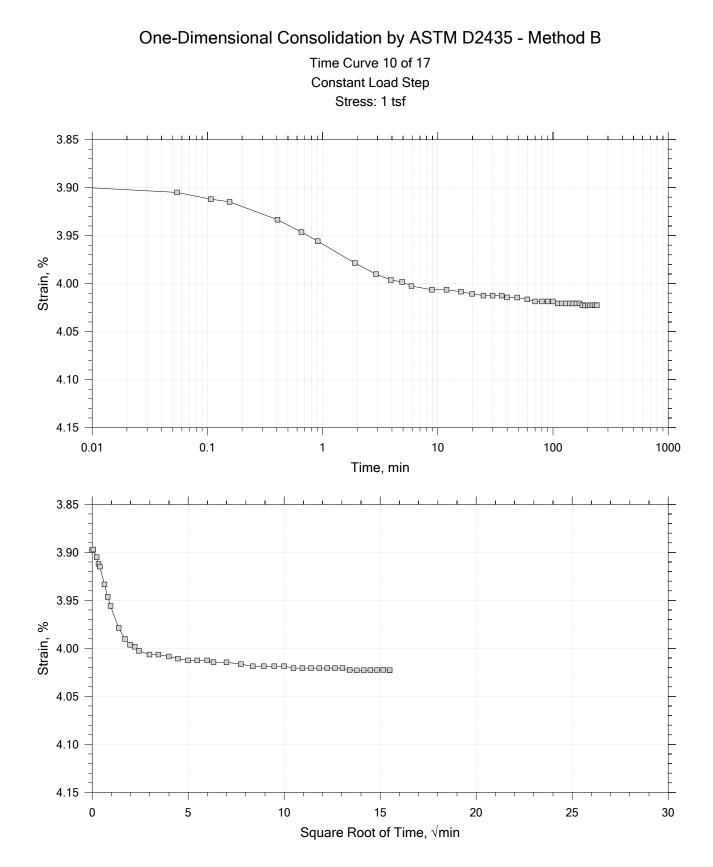
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 7 of 17 Constant Load Step Stress: 2 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

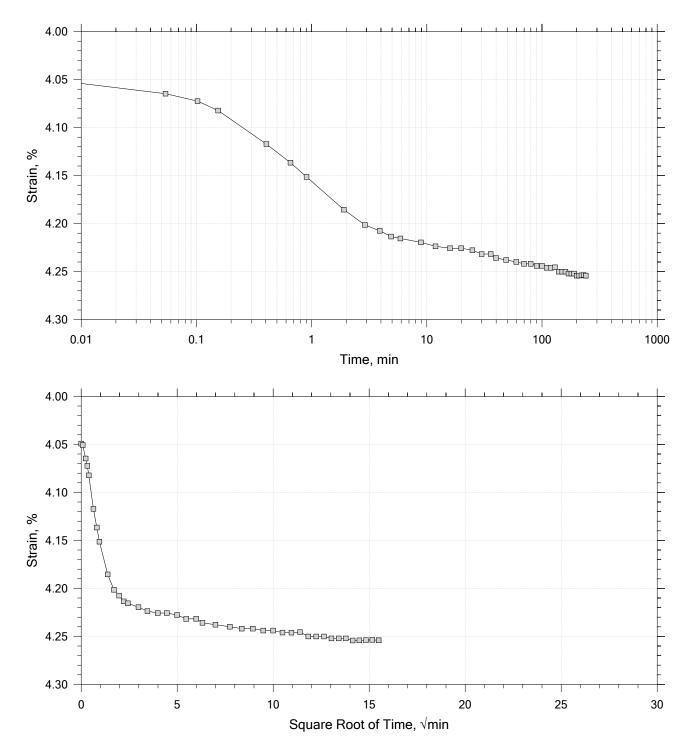
One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 8 of 17 Constant Load Step Stress: 1 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

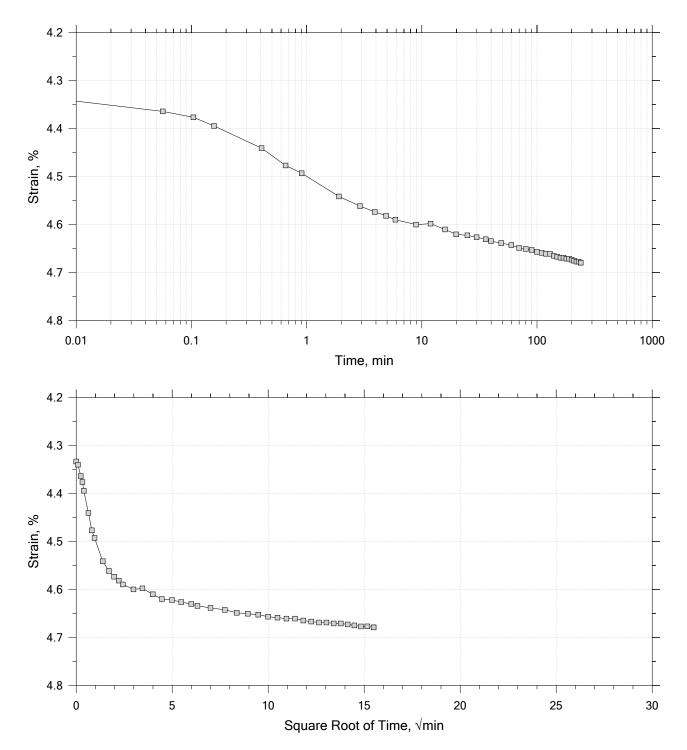
One-Dimensional Consolidation by ASTM D2435 - Method B

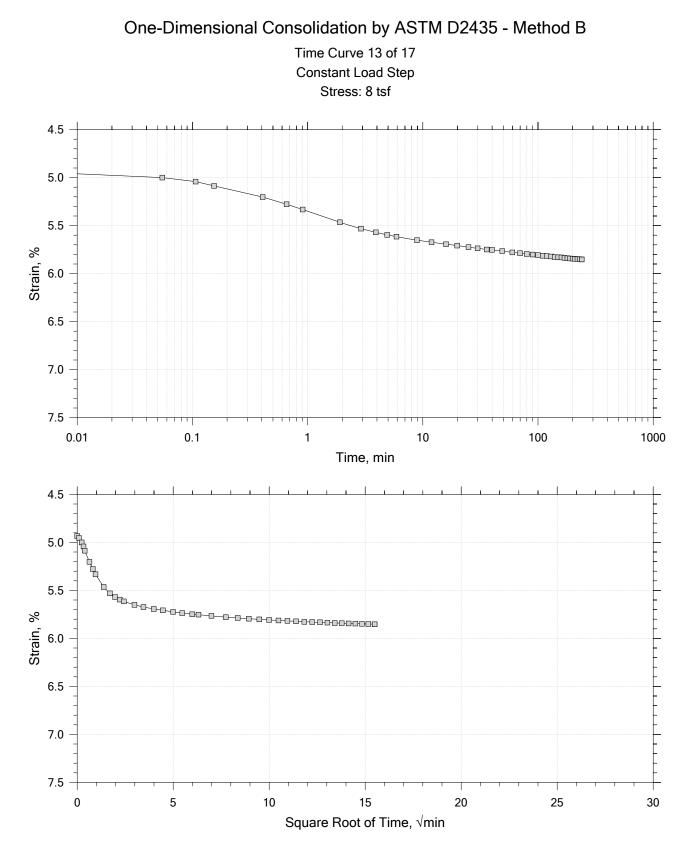
Time Curve 9 of 17 Constant Load Step Stress: 0.5 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B


Time Curve 11 of 17 Constant Load Step Stress: 2 tsf


	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 12 of 17 Constant Load Step Stress: 4 tsf

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

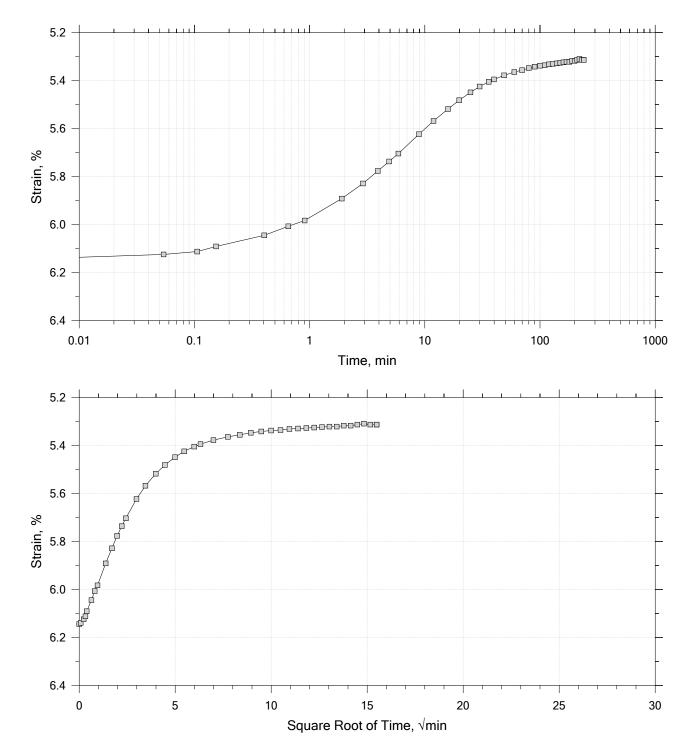
One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 14 of 17 Constant Load Step Stress: 16 tsf 5.5 6.0 6.5 Strain, % 7.0 ₽ °-0-0----7.5 8.0 8.5 0.1 0.01 10 100 1000 1 Time, min 5.5 6.0 6.5 Strain, % 0.2 7.5 8.0 8.5 0 5 10 15 20 25 30

Square Root of Time, \sqrt{min}

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 15 of 17 Constant Load Step Stress: 4 tsf 6.9 7.0 7.1 Strain, % 7.2 7.3 7.4 7.5 0.1 0.01 1 10 100 1000 Time, min 6.9 ______ F 7.0 Ć 7.1 Strain, % 7.2 7.3 7.4 7.5 0 5 10 15 20 25 30 Square Root of Time, \sqrt{min}

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		


One-Dimensional Consolidation by ASTM D2435 - Method B Time Curve 16 of 17 Constant Load Step Stress: 1 tsf 6.2 _____ л m 6.4 6.6 Strain, % 6.8 7.0 7.2 7.4 0.1 0.01 10 100 1000 1 Time, min 6.2 ـــــ ۵-۵۵-۵-۵-۵-۵-۵-۵-۵-۵-۵-----f 6.4 þ 6.6 ļ Strain, % °9 Į 7.0 7.2 7.4 0 5 10 15 20 25 30

Square Root of Time, \sqrt{min}

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760
	Boring No.: WB-106	Tested By: sjt	Checked By: anm
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10
	Test No.: IP-1R	Sample Type: intact	Elevation:
	Description: Moist, gray clay with sand		
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf		

One-Dimensional Consolidation by ASTM D2435 - Method B

Time Curve 17 of 17 Constant Load Step Stress: 0.25 tsf

Project: Lubec Breakwater	Location:	Project No.: GTX-318760			
Boring No.: WB-106	Tested By: sjt	Checked By: anm			
Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10			
Test No.: IP-1R	Sample Type: intact	Elevation:			
Description: Moist, gray clay with sand					
Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf					

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.73	Liquid Limit: 27
Initial Height: 1.00 in	Initial Void Ratio: 0.517	Plastic Limit: 17
Final Height: 0.96 in	Final Void Ratio: 0.456	Plasticity Index: 10

	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E6989	RING		E9675
Mass Container, gm	8.56	109.02	109.02	8.28
Mass Container + Wet Soil, gm	358.19	280.58	278	174.84
Mass Container + Dry Soil, gm	307.81	253.81	253.81	151
Mass Dry Soil, gm	299.25	144.79	144.79	142.72
Water Content, %	16.84	18.49	16.70	16.70
Void Ratio		0.52	0.46	
Degree of Saturation, %		97.67	100.00	
Dry Unit Weight, pcf		112.37	117.05	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

Project: Lubec Breakwater	Location:	Project No.: GTX-318760			
Boring No.: WB-106	Tested By: sjt	Checked By: anm			
Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10			
Test No.: IP-1R	Sample Type: intact	Elevation:			
Description: Moist, gray clay with sand					
Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf					

Square Root of Time Coefficients

Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k ft/day
1	0.0658	0.002988	0.512	0.299	72.768	4.84e-05	4.54e-02	4.12e-0
2	0.250	0.009784	0.502	0.978	26.184	1.33e-04	3.69e-02	9.20e-0
3	0.500	0.01538	0.493	1.54	17.575	1.96e-04	2.24e-02	8.22e-0
4	1.00	0.02293	0.482	2.29	11.160	3.05e-04	1.51e-02	8.61e-0
5	2.00	0.03316	0.466	3.32	10.880	3.07e-04	1.02e-02	5.88e-0
6	4.00	0.04456	0.449	4.46	6.275	5.20e-04	5.70e-03	5.55e-0
7	2.00	0.04327	0.451	4.33	2.793	1.16e-03	6.45e-04	1.40e-0
8	1.00	0.04153	0.454	4.15	4.716	6.87e-04	1.75e-03	2.25e-0
9	0.500	0.03914	0.457	3.91	8.387	3.88e-04	4.78e-03	3.47e-0
10	1.00	0.04023	0.456	4.02	4.546	7.17e-04	2.18e-03	2.92e-0
11	2.00	0.04254	0.452	4.25	4.371	7.43e-04	2.31e-03	3.22e-0
12	4.00	0.04679	0.446	4.68	4.400	7.33e-04	2.13e-03	2.92e-0
13	8.00	0.05852	0.428	5.85	4.726	6.71e-04	2.93e-03	3.69e-0
14	16.0	0.07471	0.403	7.47	4.485	6.86e-04	2.02e-03	2.60e-0
15	4.00	0.06923	0.412	6.92	3.071	9.91e-04	4.56e-04	8.47e-0
16	1.00	0.06222	0.422	6.22	6.810	4.53e-04	2.34e-03	1.98e-0
17	0.250	0.05314	0.436	5.31	19.091	1.64e-04	1.21e-02	3.73e-
18	0.000	0.04514	0.448	4.51	46.571	6.86e-05	3.20e-02	4.11e-

	Project: Lubec Breakwater	Location:	Project No.: GTX-318760			
	Boring No.: WB-106	Tested By: sjt	Checked By: anm			
	Sample No.: U-2	Test Date: 03/28/24	Depth: 8-10			
	Test No.: IP-1R	Sample Type: intact	Elevation:			
	Description: Moist, gray clay with sand					
	Remarks: System LTIII-G, Swell Pressure = 0.0658 tsf					
	Displacement at End of Increment					

🚄 Geotechnical Engineering 🪄 Environmental Studies 🦼 Materials Testing 🚄 Construction Monitoring 🚄

PROJECT:	Lubec Breakwater	SAMPLED BY:	NE Borings	DATE SAMPLED:	7/10-12/2023
PROJECT NO.:	223199	TESTED BY:	C.Burbank	DATE TESTED:	9/6/2023
LOCATION:	Lubec, ME	PLOTTED BY:	A.Osborne	DATE PLOTTED:	9/7/2023

				(m)		A UN) pe	þ	\$	sil
GSI Sample	Boring	Sample	Depth(#1)	Diametertin	Arealina	Langth Cut (in)	Length Cappe	LD Ratio	Total Load	Stength (PSI)
L-318-23	WB-3	C-1	5-7.9	2.0	3.142	3.94	4.133	2.067	13,880	4,418
L-320-23	WB-4	C-1	13.5-18.5	2.0	3.142	3.94	4.015	2.008	47,690	15,181
L-321-23	WB-4	C-2	18.5-23.5	2.0	3.142	3.94	4.173	2.087	49,870	15,875
L-322-23	WB-4	C-4	24.5-29.5	2.0	3.142	3.94	4.094	2.047	30,780	9,798
L-329-23	WB-5	C-7	54.85-56.85	2.0	3.142	3.94	4.074	2.037	28,410	9,043
L-330-23	WB-5	C-9	58.85-63.85	2.0	3.142	3.94	4.251	2.126	16,890	5,376
L-331-23	WB-5	C-10	63.85-68.4	2.0	3.142	3.94	4.251	2.126	17,280	5,501
L-338-23	WB-6	C-3	76.15-79.65	2.0	3.142	2.75	2.795	1.398	2,600	828
L-339-23	WB-6	C-4	79.65-84	2.0	3.142	3.94	4.035	2.018	16,560	5,271
L-340-23	WB-6	C-5	84-89	2.0	3.142	3.94	4.144	2.072	4,040	1,286

Notes:

GSI sample numbers L-338-23 and L-340-23 exibited distinct fracture lines in the core specimens. Tested compressive strength results may not accurately reflect actual.

Lubec Breakwater - Laboratory Test Results

Boring ID	Sample ID	Depth	Classification	Recovery	RQD	UCS	E
-	-	ft	-	%	%	psi	psi
WB-103	C-2	11.14-11.51	TUFF	100	67	8693	-
WB-103	C-4	18.61-18.98	TUFF	97	80	8192	-
WB-104	C-3	15.26-15.64	TUFF	100	60	4813	9090000
WB-104	C-7	29.62-30.00	TUFF	100	73	5247	6070000
WB-105	C-3	19.63-20.00	TUFF	100	59	6545	1420000
WB-105	C-4	23.06-23.42	TUFF	100	79	22085	8320000
WB-106	C-2	19.34-19.72	TUFF	100	85	19633	7300000
WB-106	C-4	31.33-31.82	TUFF	100	73	5296	1150000
WB-107	C-3	29.71-30.05	TUFF	100	68	3818	_

Table E.4 - Rock Core Unconfined Compression Test Data

Client:	Jacobs Engineering Grou	р			
Project:	Lubec Breakwater				
Location:				Project No:	GTX-318760
Boring ID:		Sample Type:		Tested By:	te
Sample ID	:	Test Date:	03/29/24	Checked By:	smd
Depth :		Test Id:	761991		

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

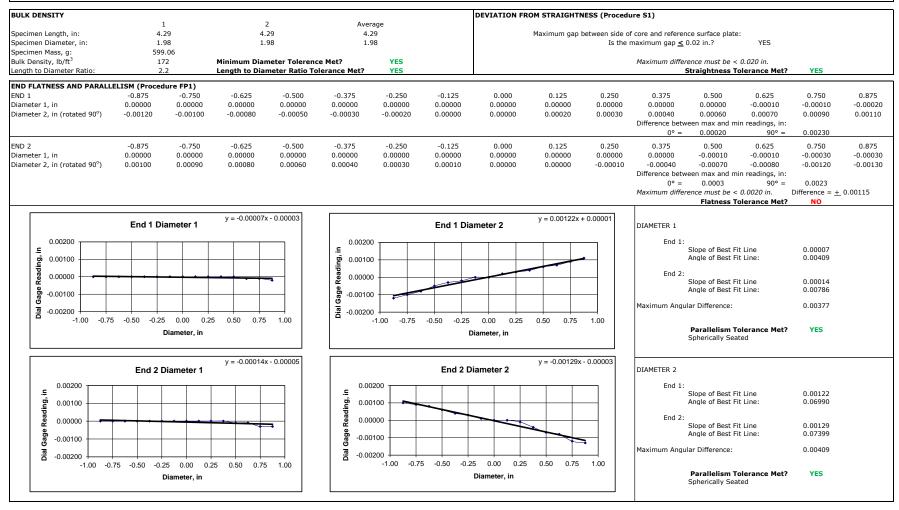
Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
WB-103	C-2	11.14-11.51 ft	172	8693	1	No	1,*
WB-103	C-4	18.61-18.98 ft	175	8192	3	No	1,*
WB-107	C-3	29.71-30.05 ft	179	3818	3	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

1: Best effort end preparation. See Tolerance report for details.

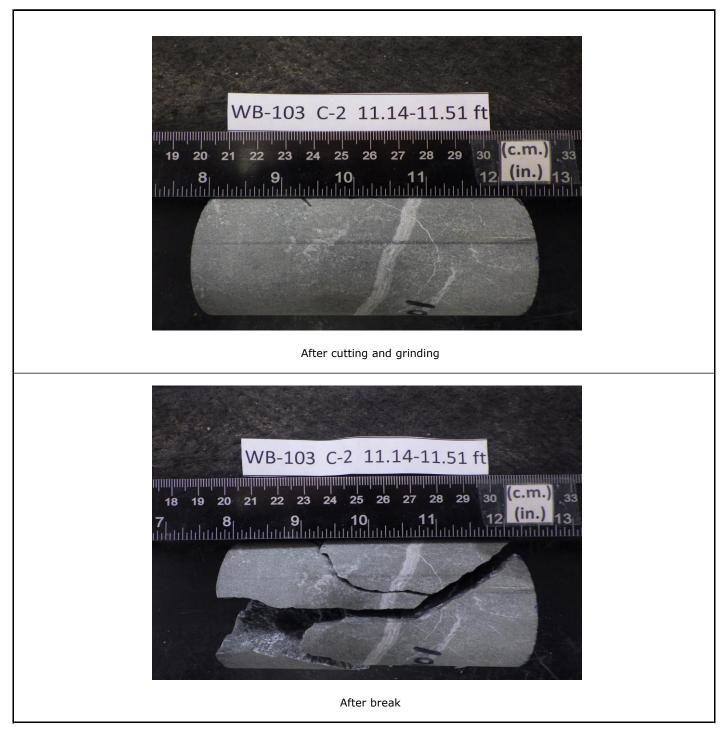

- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Jacobs Engineering Group	Test Date:	3/29/2024
Lubec Breakwater	Tested By:	rik
	Checked By:	smd
318760		
WB-103		
C-2		
11.14-11.51		
See photographs		
	Lubec Breakwater 	Lubec Breakwater Tested By: Checked By: 318760 WB-103 C-2 11.14-11.51

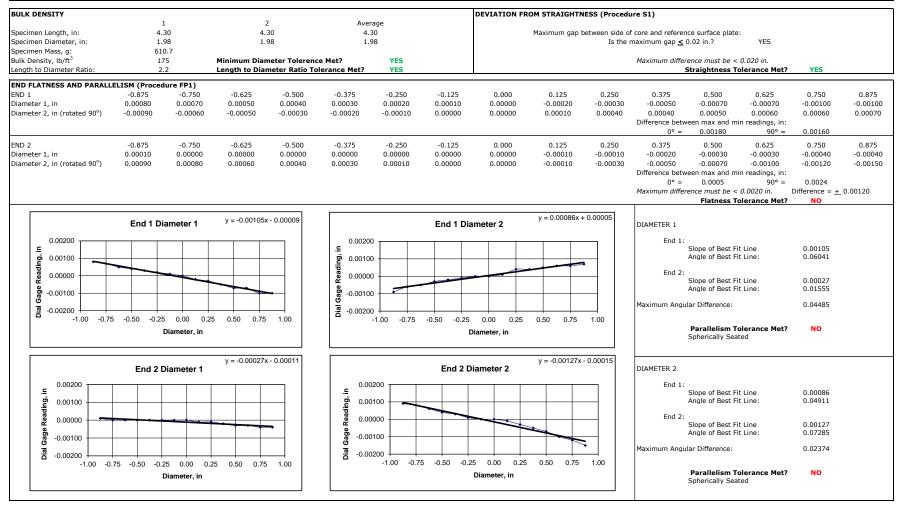
UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

um (in.) Diameter (in.) 1.980 1.980	Slope 0.00010 0.00116	Angle° 0.006 0.067	Perpendicularity Tolerance Met? YES YES	Maximum angle of departure must be ≤ 0.25° Perpendicularity Tolerance Met? YES
				Perpendicularity Tolerance Met? YES
1.980	0.00116	0.067	YES	Perpendicularity Tolerance Met? YES
1.980	0.00015	0.009	YES	
1,980	0.00116	0.067	YES	
	1.980 1.980			


Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-103	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	11.14-11.51	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
	End Flatness Tolerance Met? YES					


Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	3/29/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-103
Sample ID:	C-2
Depth, ft:	11.14-11.51

Jacobs Engineering Group	Test Date:	3/29/2024
Lubec Breakwater	Tested By:	rik
	Checked By:	smd
318760		
WB-103		
C-4		
18.61-18.98		
See photographs		
	Lubec Breakwater 	Lubec Breakwater Tested By: Checked By: 318760 WB-103 C-4 18.61-18.98

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00180	1.980	0.00091	0.052	YES	
Diameter 2, in (rotated 90°)	0.00160	1.980	0.00081	0.046	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00050	1.980	0.00025	0.014	YES	
Diameter 2, in (rotated 90°)	0.00240	1.980	0.00121	0.069	YES	

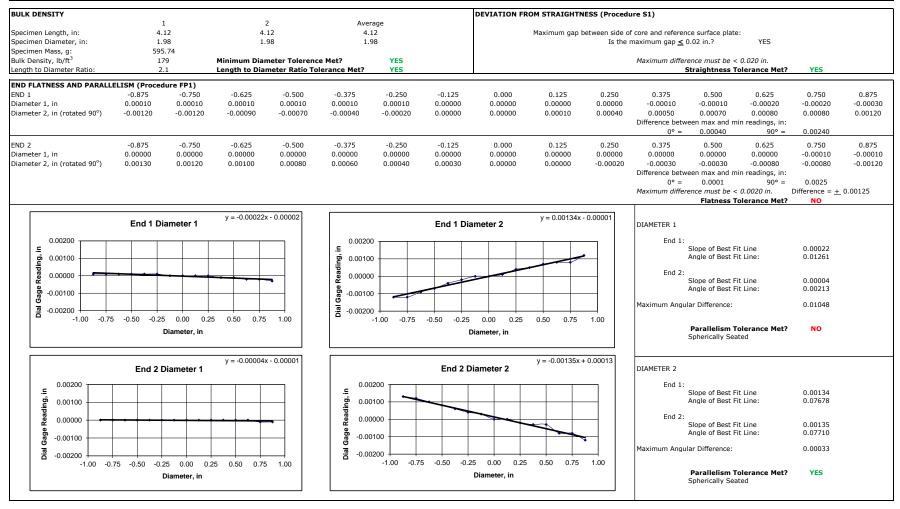
Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-103	Reliable dial gauge measurements could not be
Sample ID:	C-4	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	18.61-18.98	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
	End Flatness Tolerance Met? YES					

Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	3/29/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-103
Sample ID:	C-4
Depth, ft:	18.61-18.98

After cutting and grinding

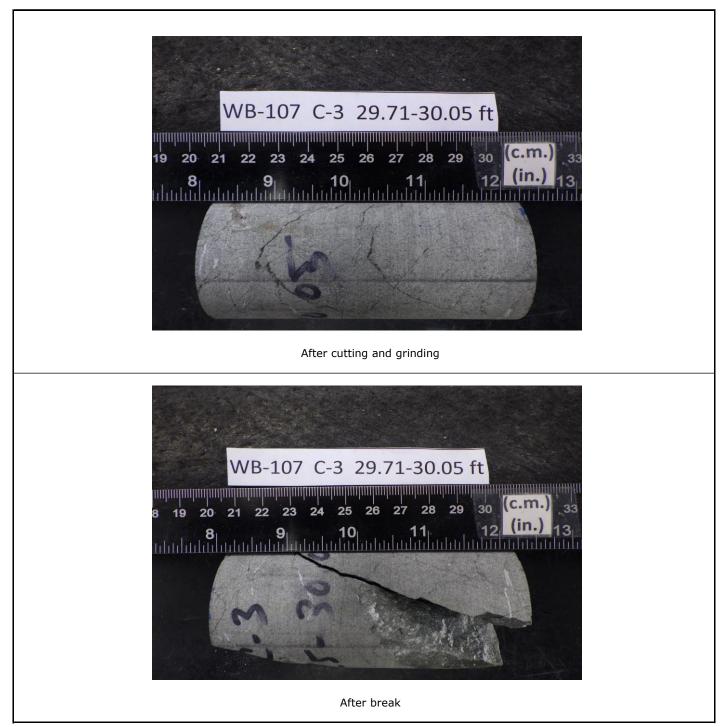


After break

Jacobs Engineering Group	Test Date:	3/29/2024
Lubec Breakwater	Tested By:	rik
	Checked By:	smd
318760		
WB-107		
C-3		
29.71-30.05		
See photographs		
	Lubec Breakwater 318760 WB-107 C-3 29.71-30.05	Lubec Breakwater Tested By: Checked By: 318760 WB-107 C-3 29.71-30.05

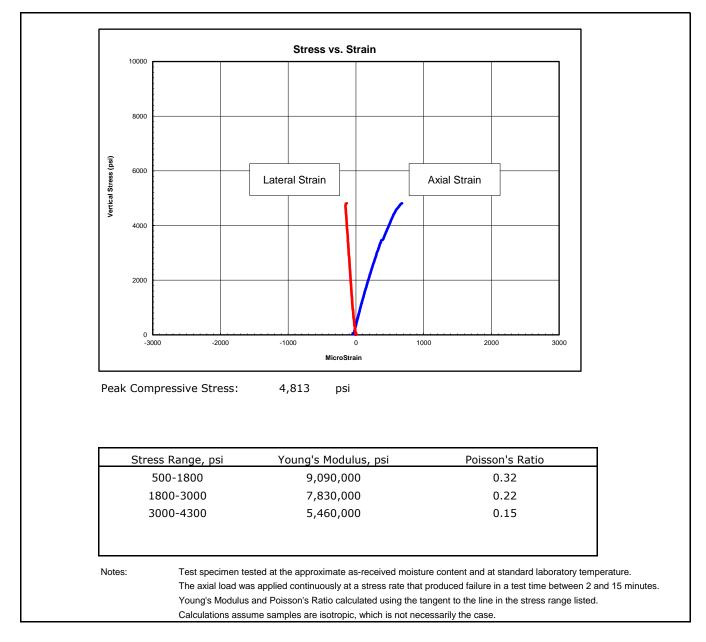
UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedur	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00040	1.980	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00240	1.980	0.00121	0.069	YES	Perpendicularity Tolerance Met? YES	
END 2							
Diameter 1, in	0.00010	1.980	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00250	1.980	0.00126	0.072	YES		

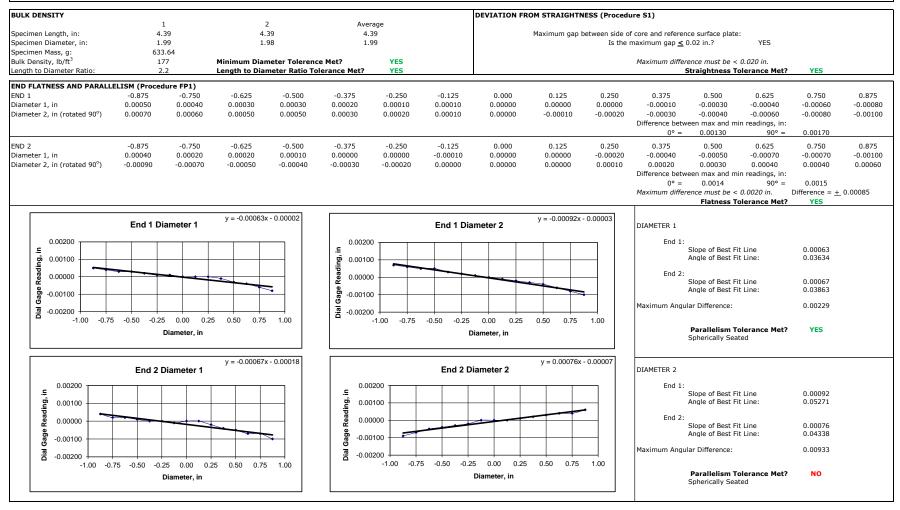

Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-107	Reliable dial gauge measurements could not be
Sample ID:	C-3	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	29.71-30.05	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					



Client:	Jacobs Engineering Group	
Project Name:	Lubec Breakwater	
Project Location:		
GTX #:	318760	
Test Date:	3/29/2024	
Tested By:	gp	
Checked By:	smd	
Boring ID:	WB-107	
Sample ID:	C-3	
Depth, ft:	29.71-30.05	



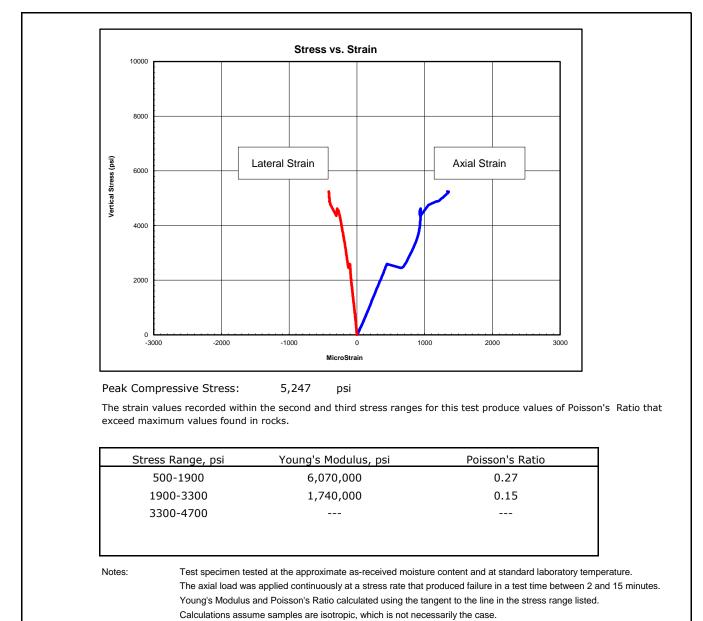
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-104
Sample ID:	C-3
Depth, ft:	15.26-15.64
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure Best Effort end preparation performed

Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-104		
Sample ID:	C-3		
Depth (ft):	15.26-15.64		
Visual Description:	See photographs		

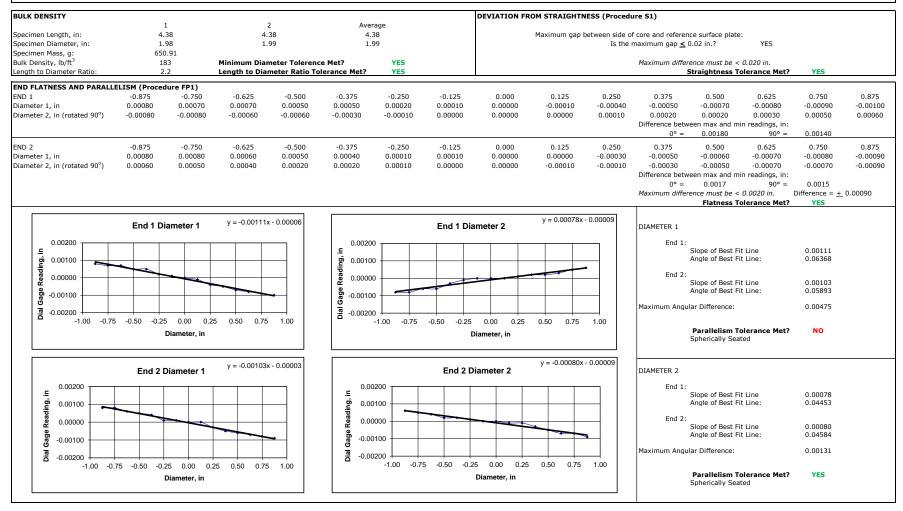
PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)					
Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
0.00130	1.985	0.00065	0.038	YES	
0.00170	1.985	0.00086	0.049	YES	Perpendicularity Tolerance Met? YES
0.00140	1.985	0.00071	0.040	YES	
0.00150	1.985	0.00076	0.043	YES	
	Difference, Maximum and Minimum (in.) 0.00130 0.00170 0.00140	Difference, Maximum and Minimum (in.) Diameter (in.) 0.00130 1.985 0.00170 1.985 0.00140 1.985	Difference, Maximum and Minimum (in.) Diameter (in.) Slope 0.00130 1.985 0.00065 0.00170 1.985 0.00086 	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle ^o 0.00130 1.985 0.00055 0.038 0.00170 1.985 0.00086 0.049 0.00140 1.985 0.00071 0.040	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle° Perpendicularity Tolerance Met? 0.00130 1.985 0.00065 0.038 YES 0.00170 1.985 0.00086 0.049 YES 0.00140 1.985 0.00071 0.040 YES

Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:		Reliable dial gauge measurements could not be
Sample ID:	L-3	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):		straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Toler	ance Met?	YES


Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-104
Sample ID:	C-3
Depth, ft:	15.26-15.64

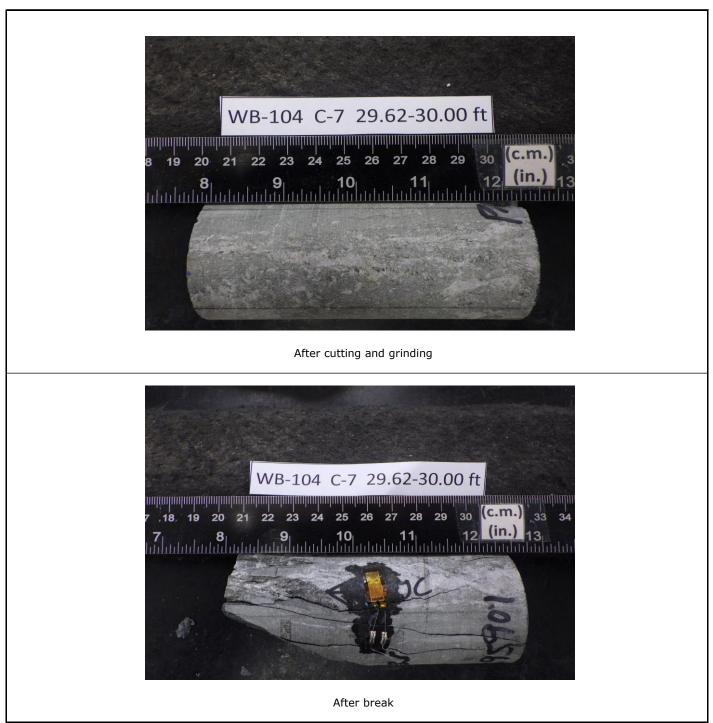
After break



Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-104
Sample ID:	C-7
Depth, ft:	29.62-30.00
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure Best Effort end preparation performed

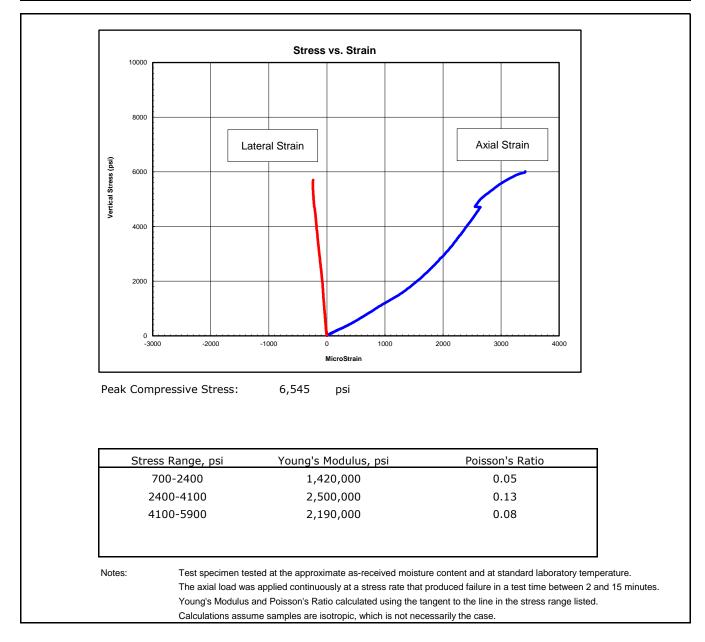
Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-104		
Sample ID:	C-7		
Depth (ft):	29.62-30.00		
Visual Description:	See photographs		

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00180	1.985	0.00091	0.052	YES	
Diameter 2, in (rotated 90°)	0.00140	1.985	0.00071	0.040	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00170	1.985	0.00086	0.049	YES	
Diameter 2, in (rotated 90°)	0.00150	1.985	0.00076	0.043	YES	

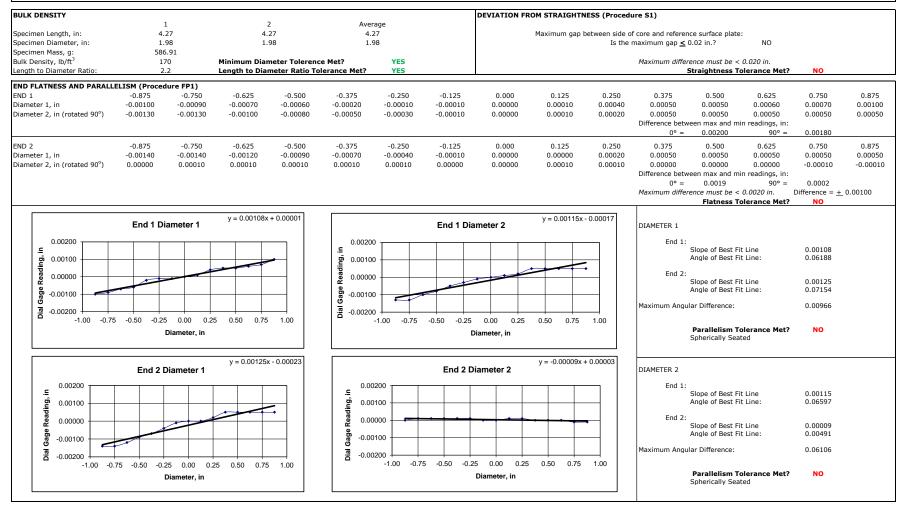


Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-104	Reliable dial gauge measurements could not be
Sample ID:	C-7	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	29.62-30.00	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
End Flatness Tolerance Met? YES				



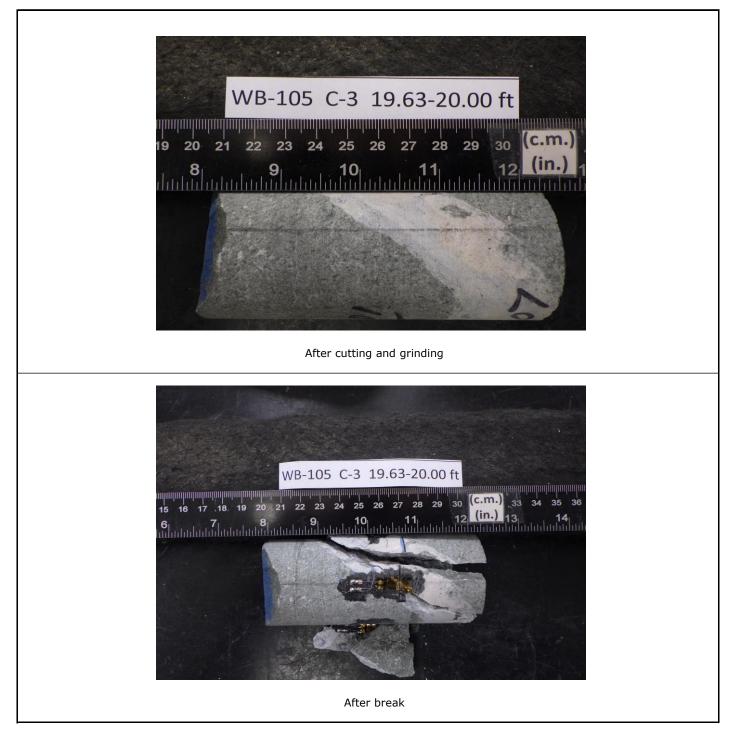
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-104
Sample ID:	C-7
Depth, ft:	29.62-30.00



Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-105
Sample ID:	C-3
Depth, ft:	19.63-20.00
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure
	Best Effort end preparation performed

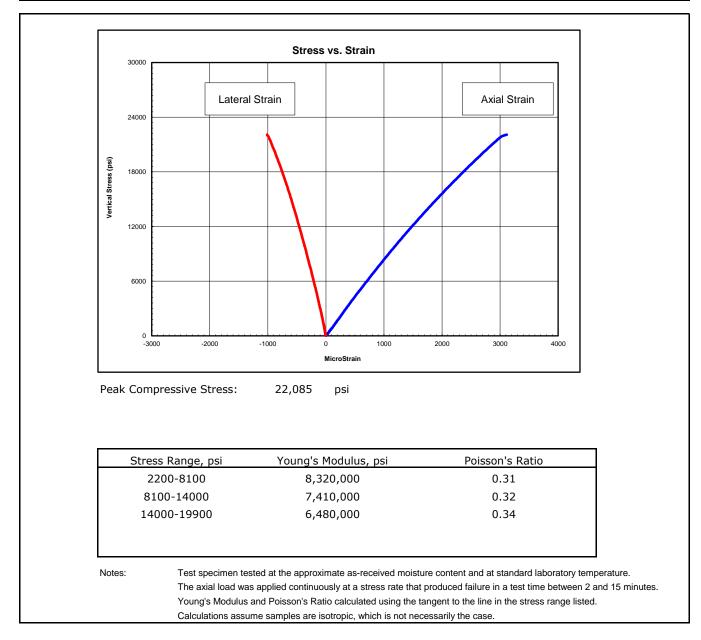
Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-105		
Sample ID:	C-3		
Depth (ft):	19.63-20.00		
Visual Description:	See photographs		

ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00200	1.980	0.00101	0.058	YES	
Diameter 2, in (rotated 90°)	0.00180	1.980	0.00091	0.052	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00190	1.980	0.00096	0.055	YES	
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES	

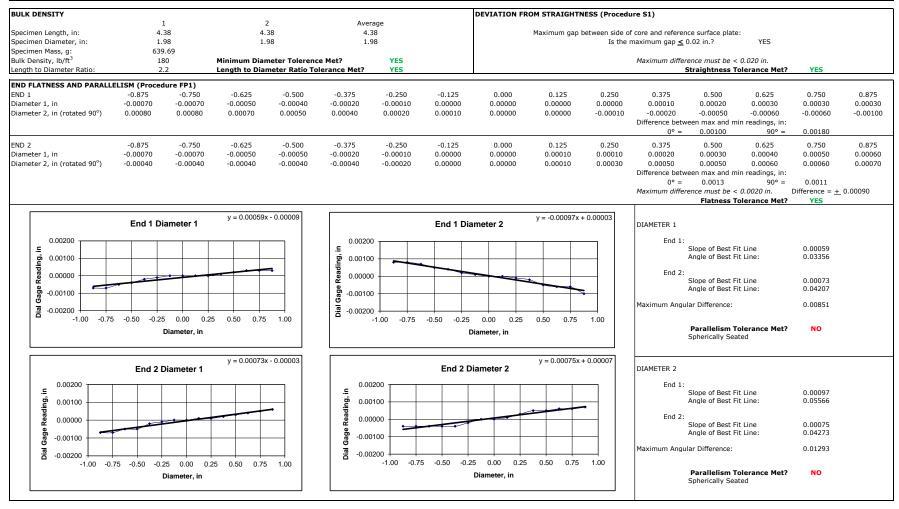


Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-105	Reliable dial gauge measurements could not be
Sample ID:	C-3	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	19.63-20.00	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
End Flatness Tolerance Met? YES			



Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-105
Sample ID:	C-3
Depth, ft:	19.63-20.00



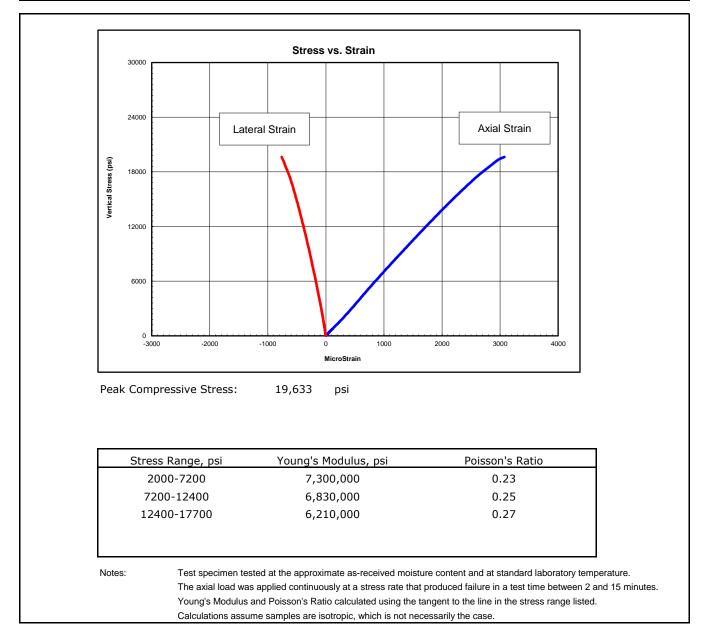
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-105
Sample ID:	C-4
Depth, ft:	23.06-23.42
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure
	Best Effort end preparation performed

Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-105		
Sample ID:	C-4		
Depth (ft):	23.06-23.42		
Visual Description:	See photographs		

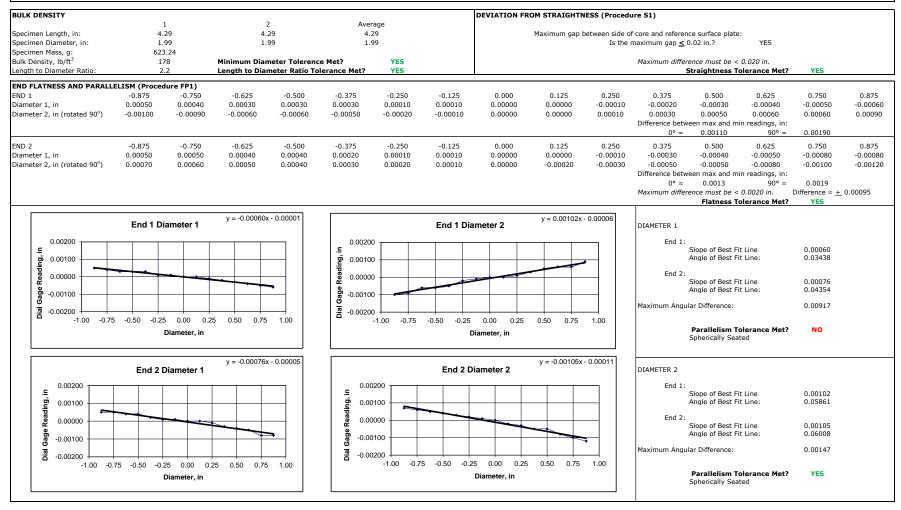
PERPENDICULARITY (Procedu	ure P1) (Calculated from End Flatness	and Parallelism me	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00100	1.980	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00180	1.980	0.00091	0.052	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00130	1.980	0.00066	0.038	YES	
Diameter 2, in (rotated 90°)	0.00110	1.980	0.00056	0.032	YES	

Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-105	Reliable dial gauge measurements could not be
Sample ID:	C-4	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	23.06-23.42	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
End Flatness Tolerance Met? YES			



Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-105
Sample ID:	C-4
Depth, ft:	23.06-23.42



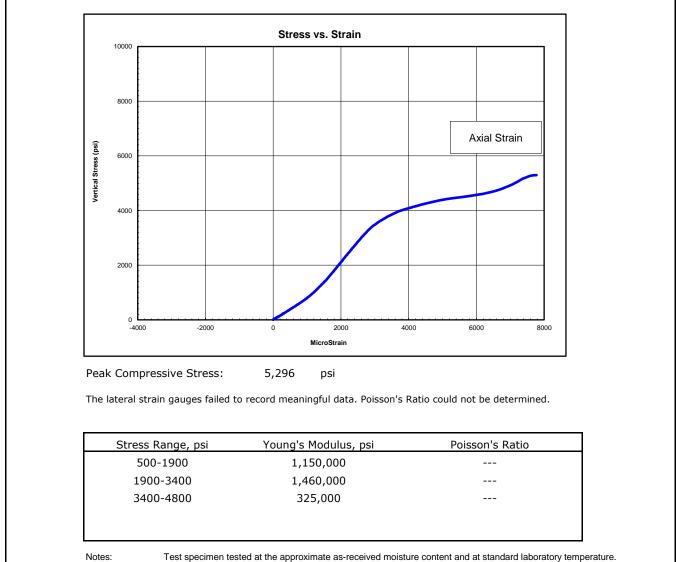
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-106
Sample ID:	C-2
Depth, ft:	19.34-19.72
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure
	Best Effort end preparation performed

Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-106		
Sample ID:	C-2		
Depth (ft):	19.34-19.72		
Visual Description:	See photographs		

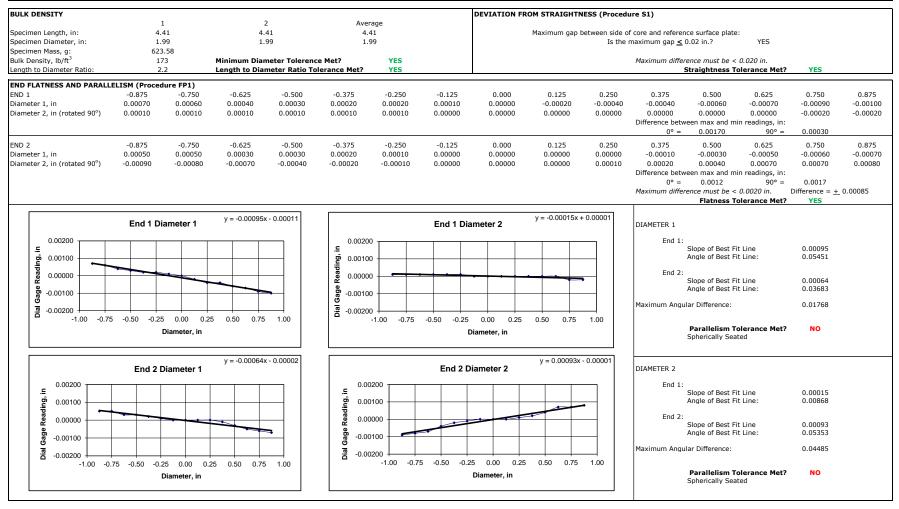
ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
0.00110	1.990	0.00055	0.032	YES		
0.00190	1.990	0.00095	0.055	YES	Perpendicularity Tolerance Met? YES	
0.00130	1.990	0.00065	0.037	YES		
0.00190	1.990	0.00095	0.055	YES		
	Difference, Maximum and Minimum (in.) 0.00110 0.00190 0.00130	Difference, Maximum and Minimum (in.) Diameter (in.) 0.00110 1.990 0.00190 1.990 0.00130 1.990	Difference, Maximum and Minimum (in.) Diameter (in.) Slope 0.00110 1.990 0.00055 0.00190 1.990 0.00095 0.00130 1.990 0.00065	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle ^a 0.00110 1.990 0.00055 0.032 0.00190 1.990 0.00095 0.055 0.00130 1.990 0.00065 0.037	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle° Perpendicularity Tolerance Met? 0.00110 1.990 0.00055 0.032 YES 0.00190 1.990 0.00095 0.055 YES 0.00130 1.990 0.00065 0.037 YES	

Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-106	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	19.34-19.72	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					



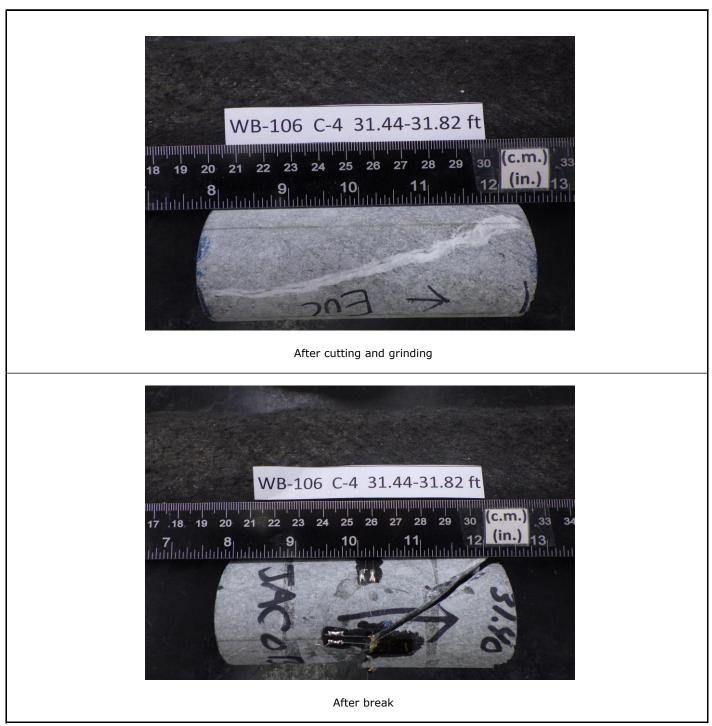
Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-106
Sample ID:	C-2
Depth, ft:	19.34-19.72


Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	te
Checked By:	jsc
Boring ID:	WB-106
Sample ID:	C-4
Depth, ft:	31.44-31.82
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure
	Best Effort end preparation performed

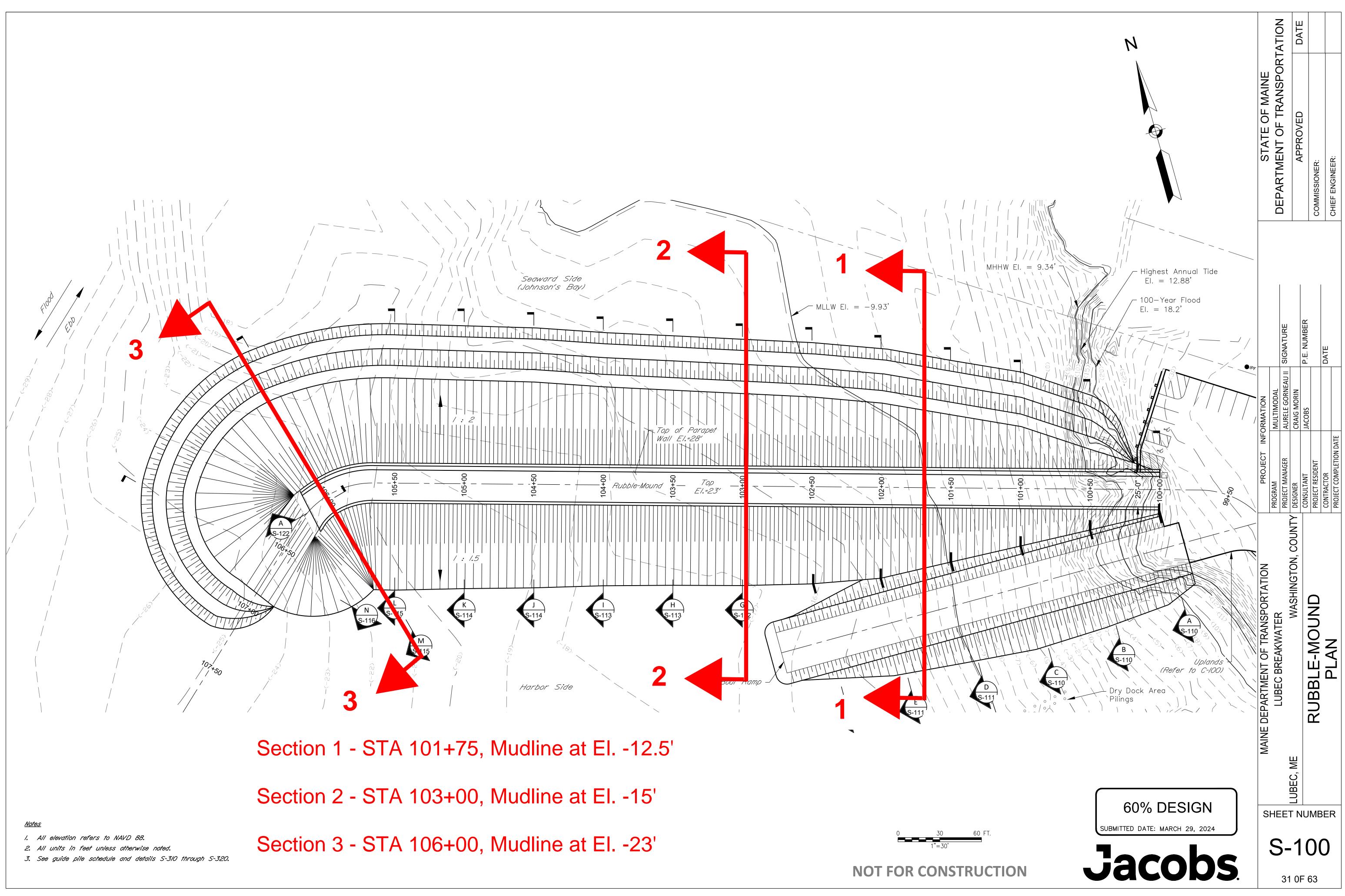
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed. Calculations assume samples are isotropic, which is not necessarily the case.

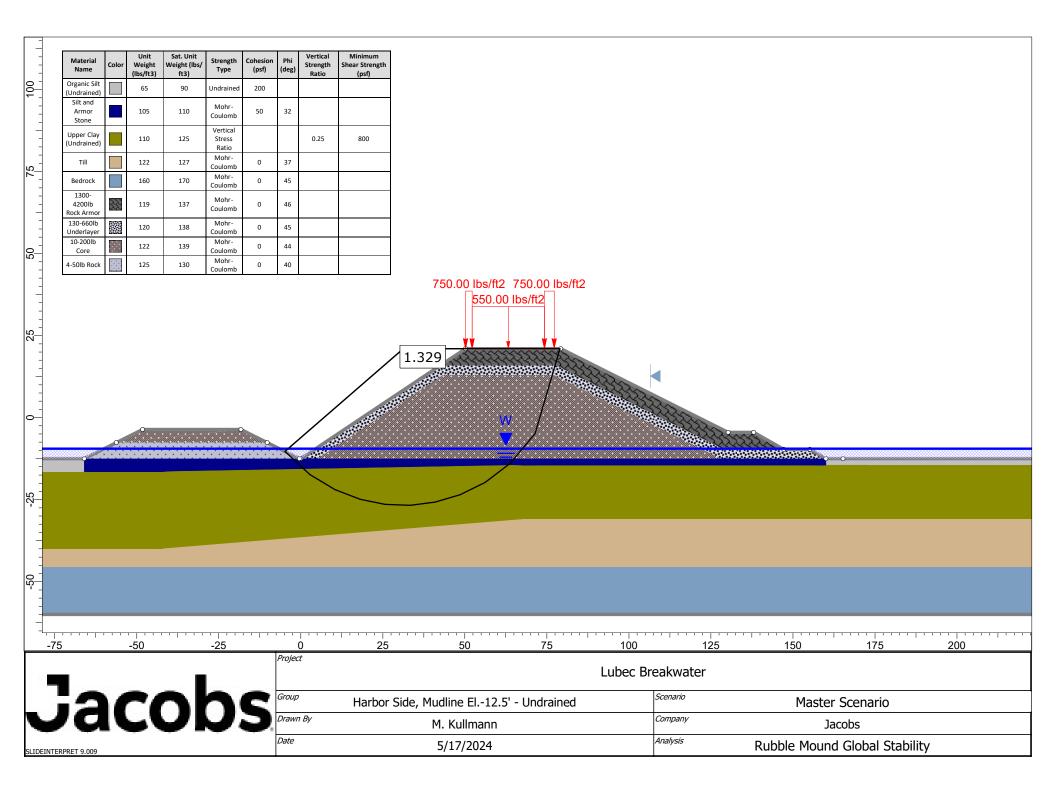
Client:	Jacobs Engineering Group	Test Date:	3/29/2024
Project Name:	Lubec Breakwater	Tested By:	rik
Project Location:		Checked By:	smd
GTX #:	318760		
Boring ID:	WB-106		
Sample ID:	C-4		
Depth (ft):	31.44-31.82		
Visual Description:	See photographs		

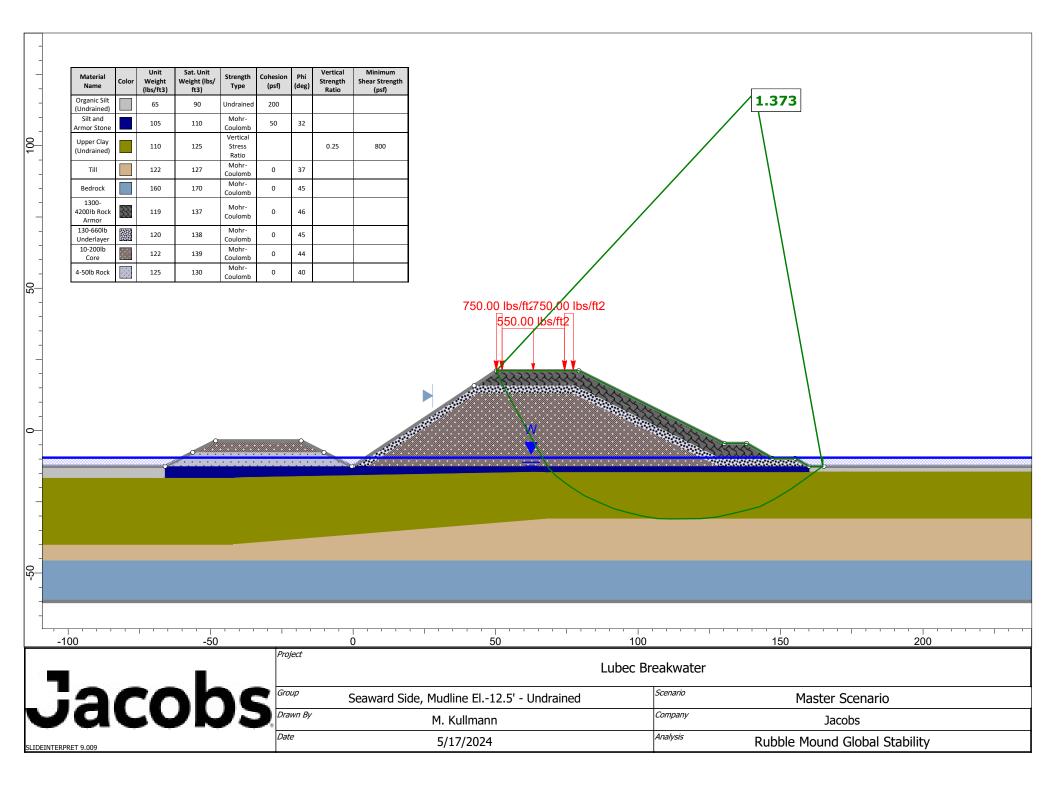
PERPENDICULARITY (Procedu	Ire P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00170	1.990	0.00085	0.049	YES	
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00120	1.990	0.00060	0.035	YES	
Diameter 2, in (rotated 90°)	0.00170	1.990	0.00085	0.049	YES	
1						

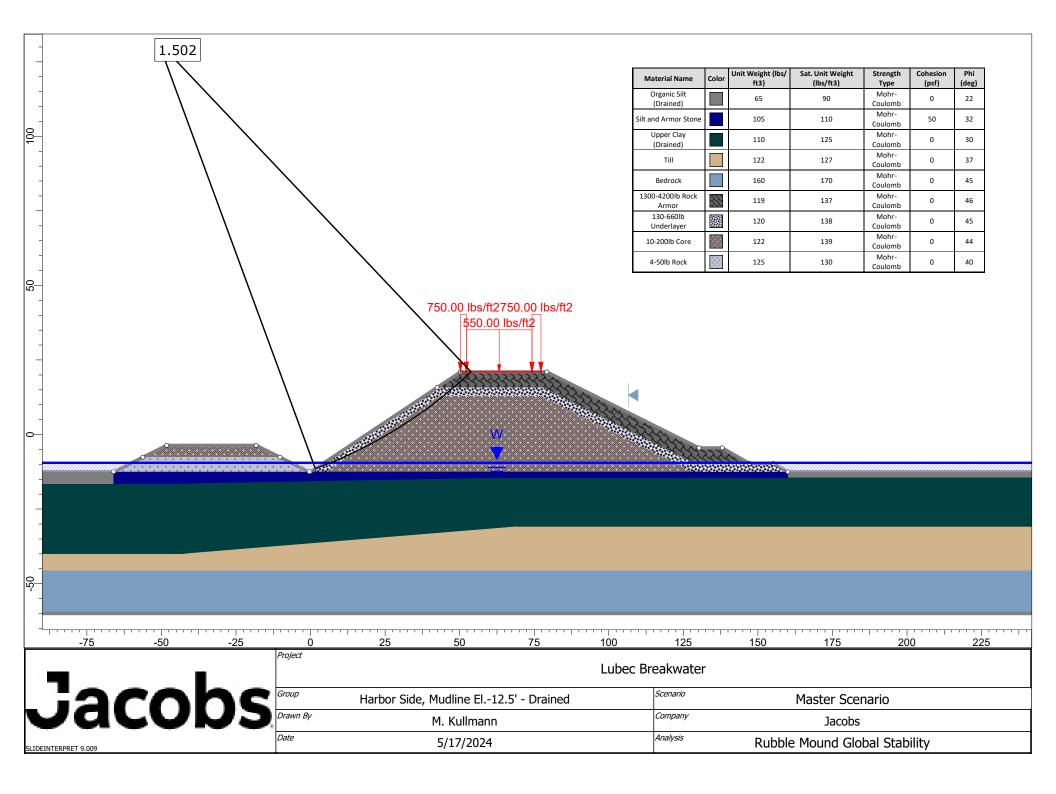


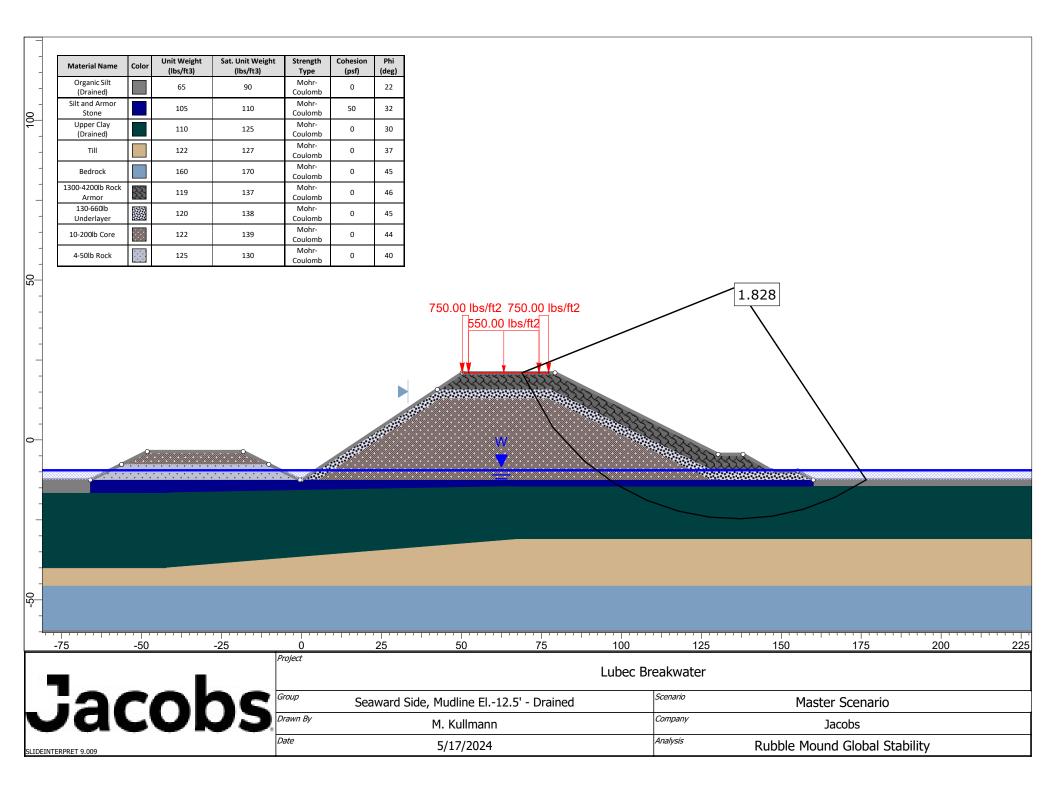
Client:	Jacobs Engineering Group	Test Date: 3/29/2024
Project Name:	Lubec Breakwater	Tested By: rik
Project Location:		Checked By: smd
GTX #:	318760	
Boring ID:	WB-106	Reliable dial gauge measurements could not be
Sample ID:	C-4	performed on this rock type. Tolerance measurements were performed using a machinist
Depth (ft):	31.44-31.82	straightedge and feeler gauges to ASTM
Visual Description:	See photographs	specifications.

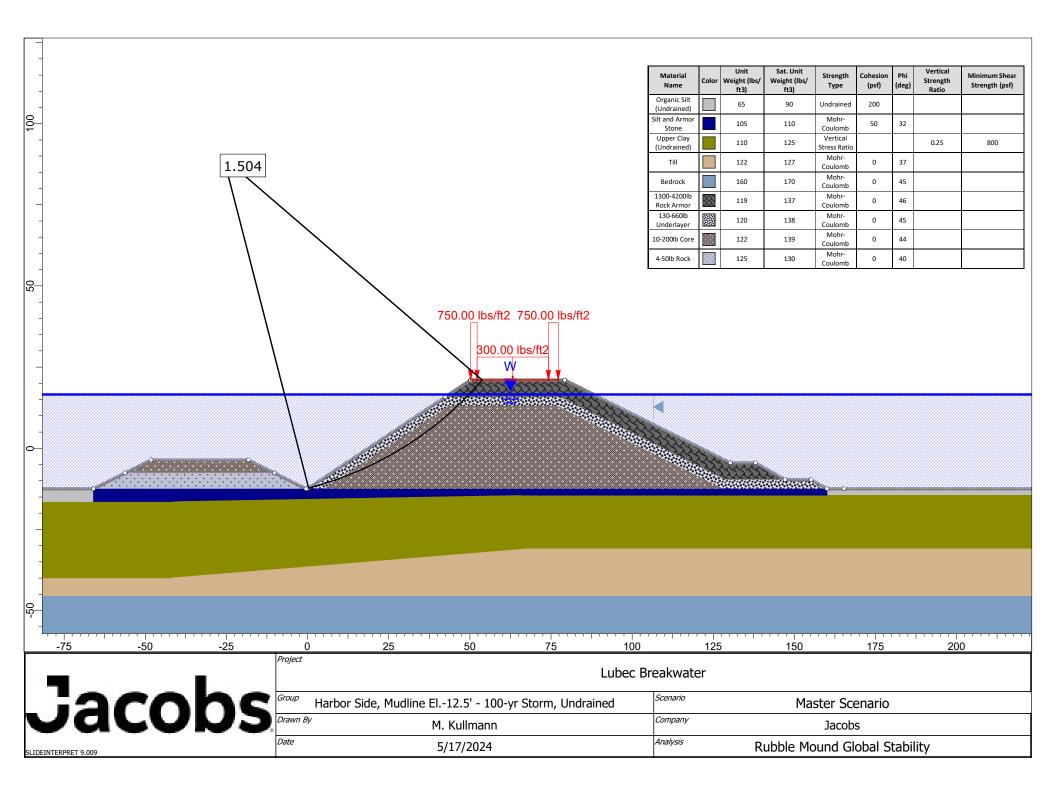

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					

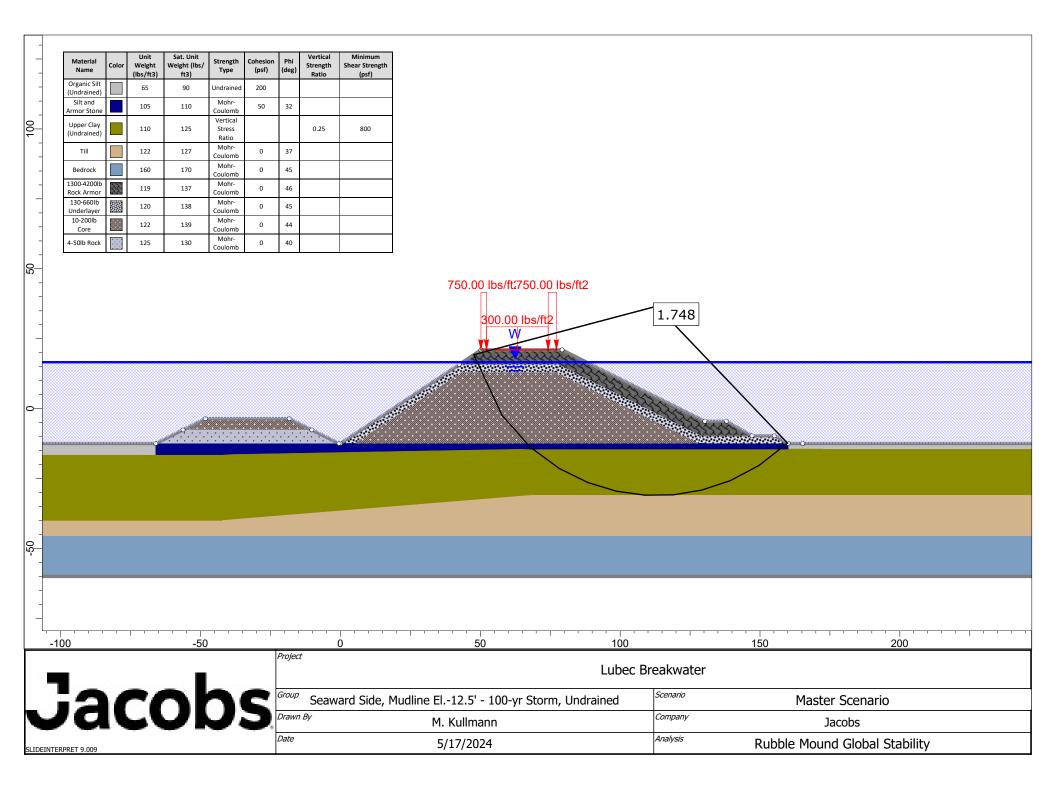


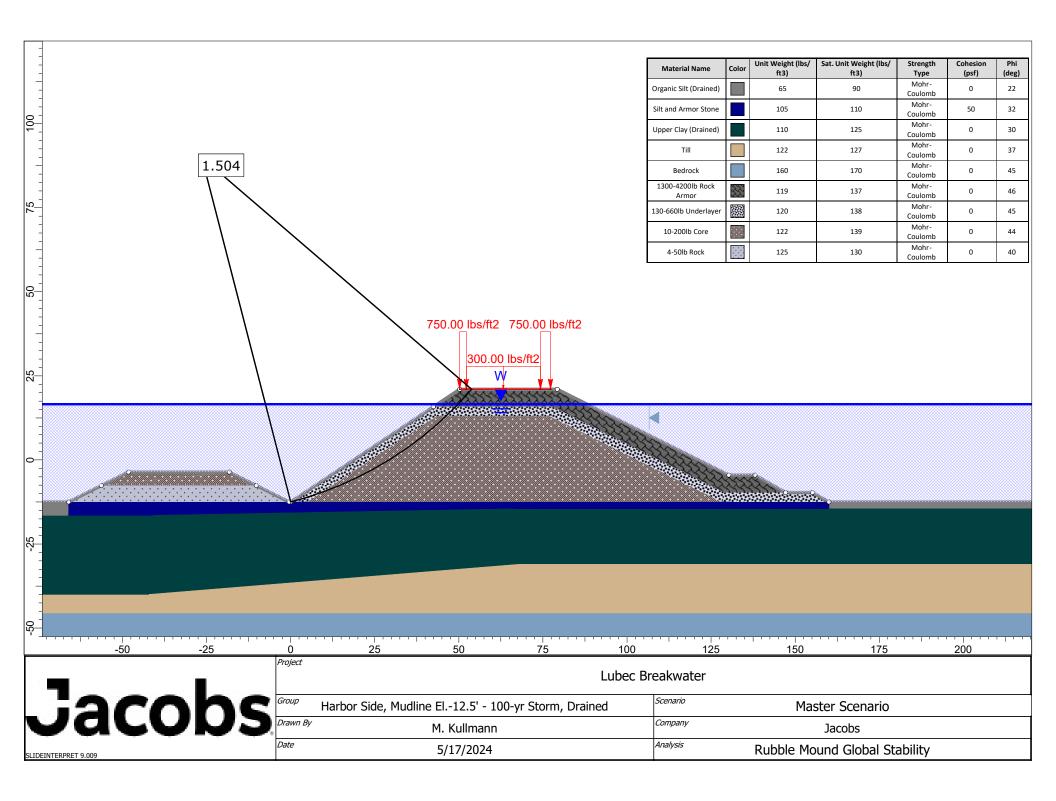

Client:	Jacobs Engineering Group
Project Name:	Lubec Breakwater
Project Location:	
GTX #:	318760
Test Date:	4/2/2024
Tested By:	gp
Checked By:	smd
Boring ID:	WB-106
Sample ID:	C-4
Depth, ft:	31.44-31.82

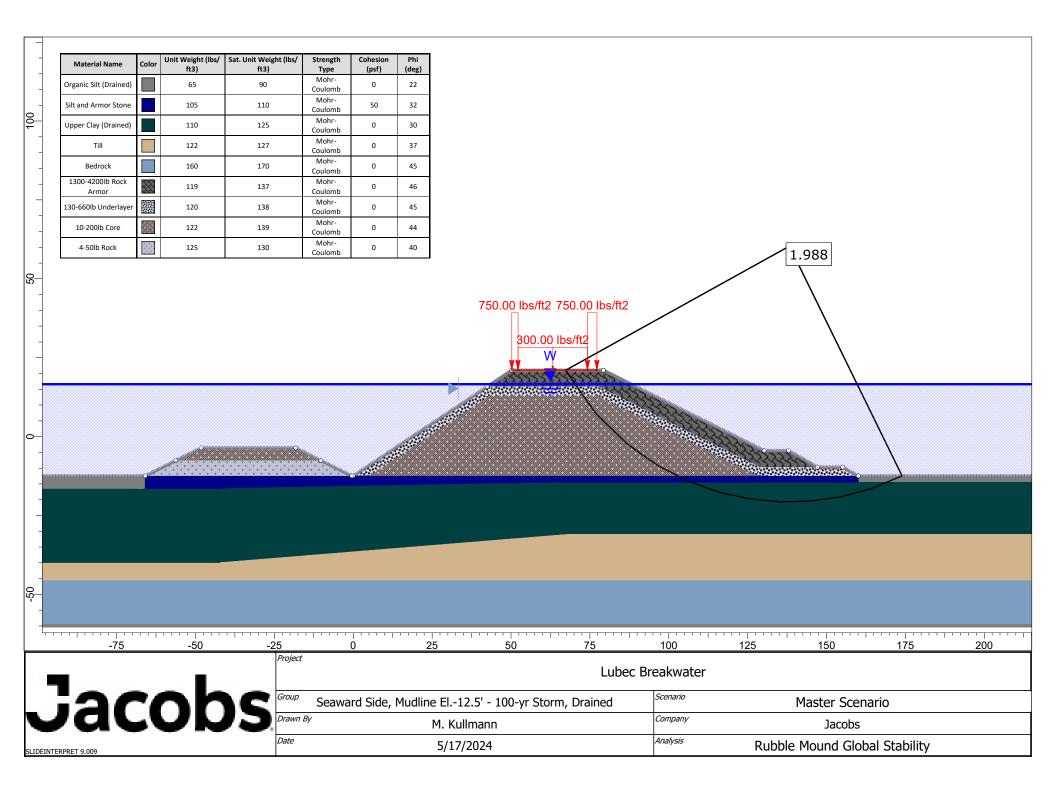


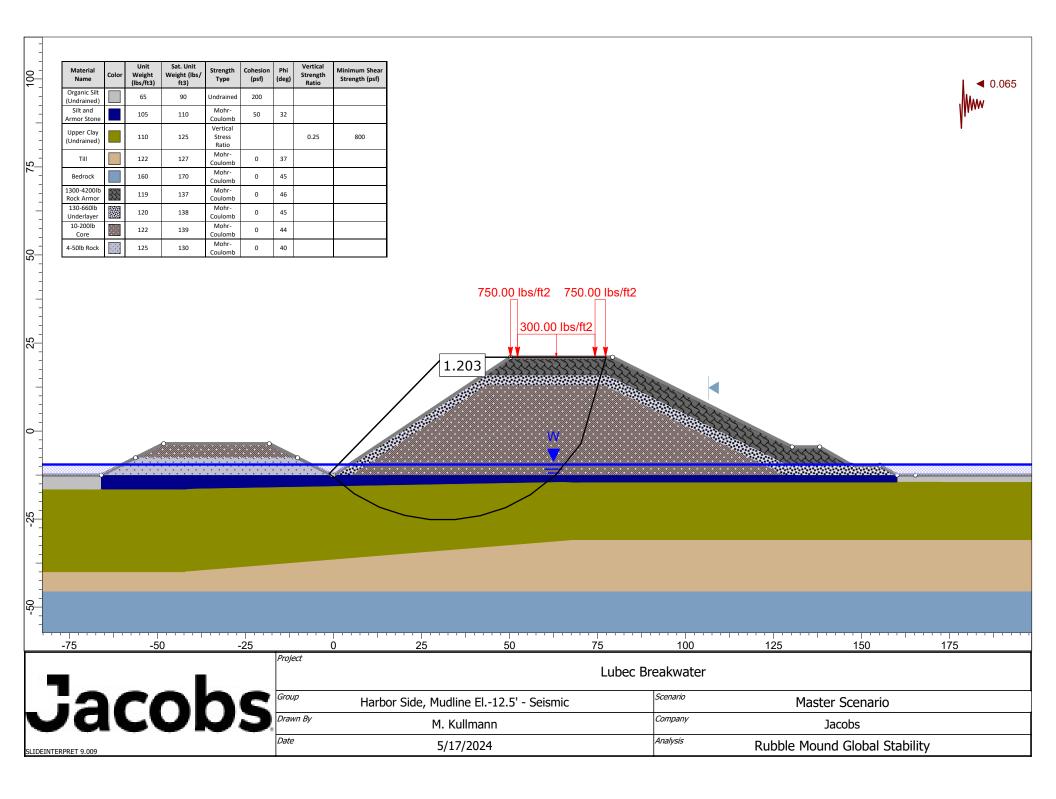

Appendix F. Rubble-Mound Breakwater Slope Stability

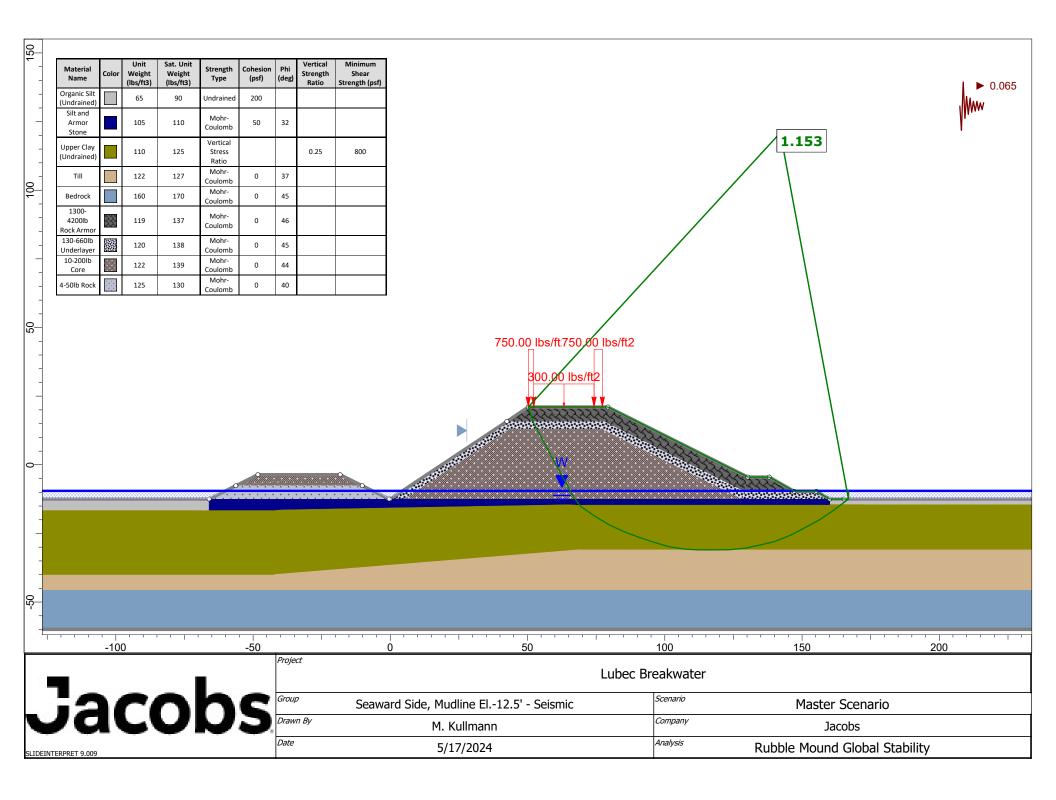


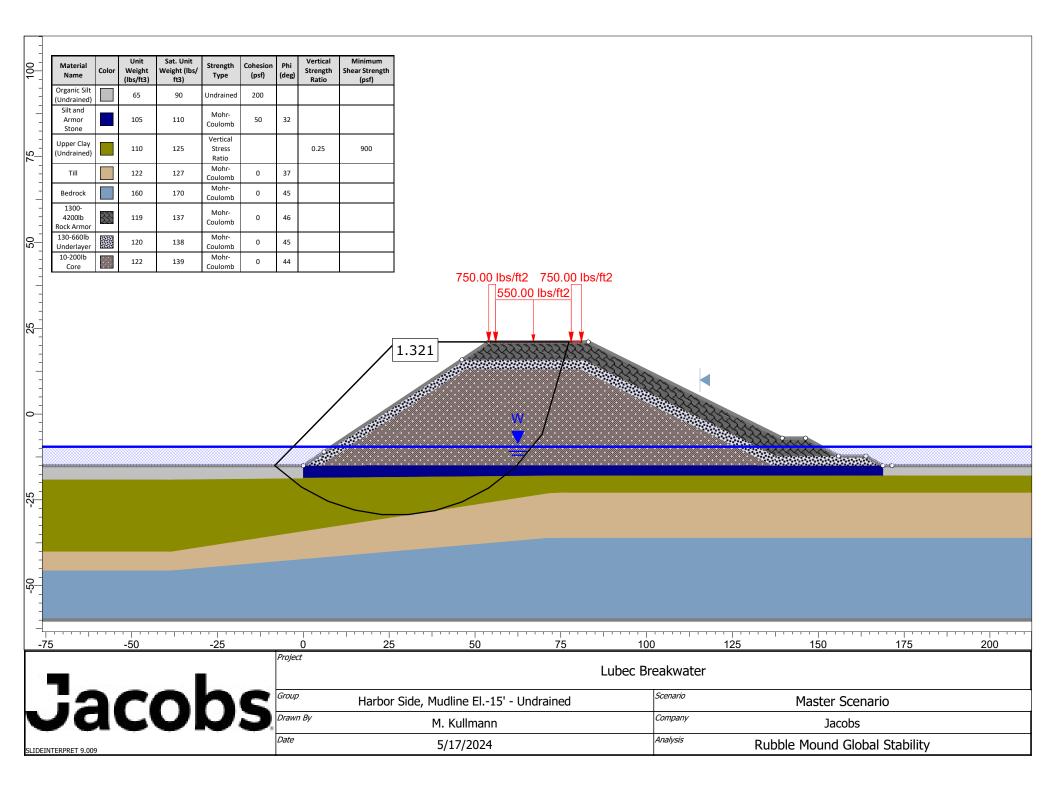


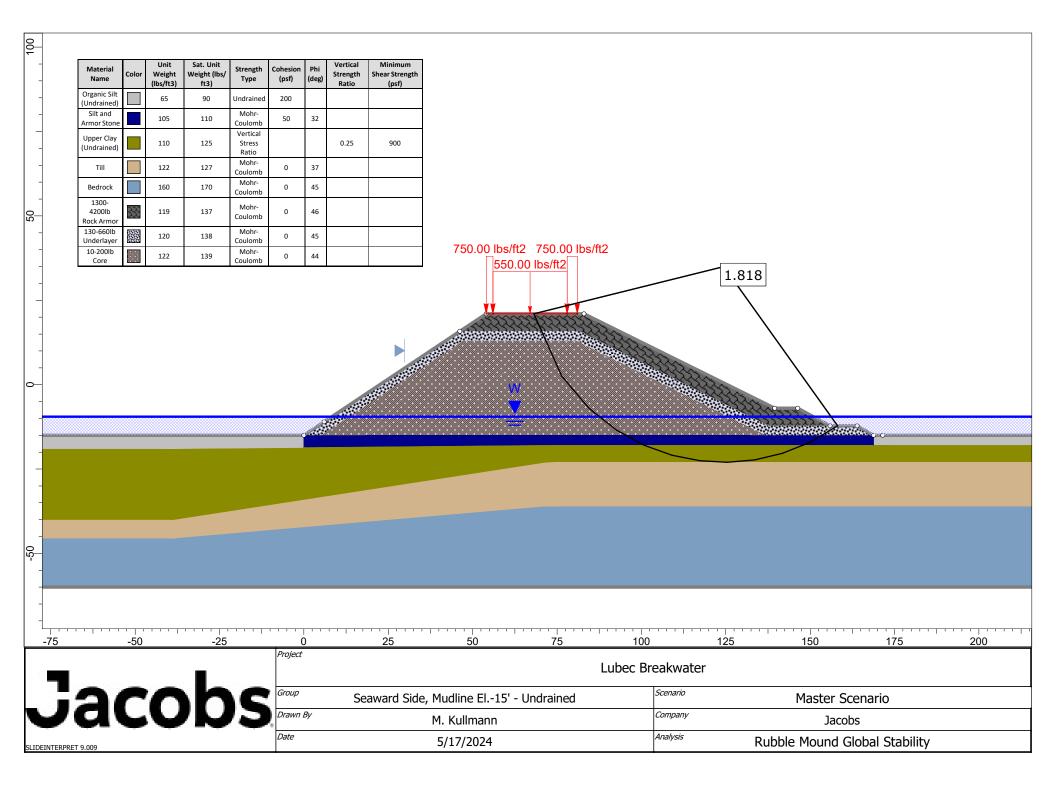


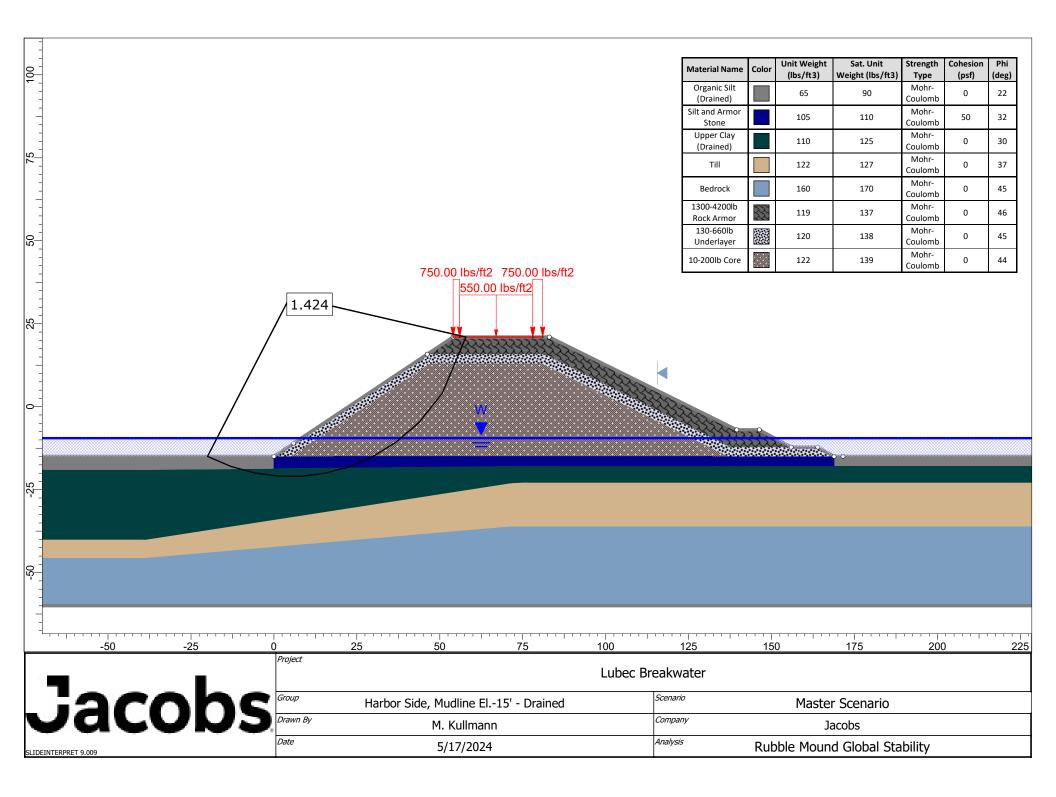


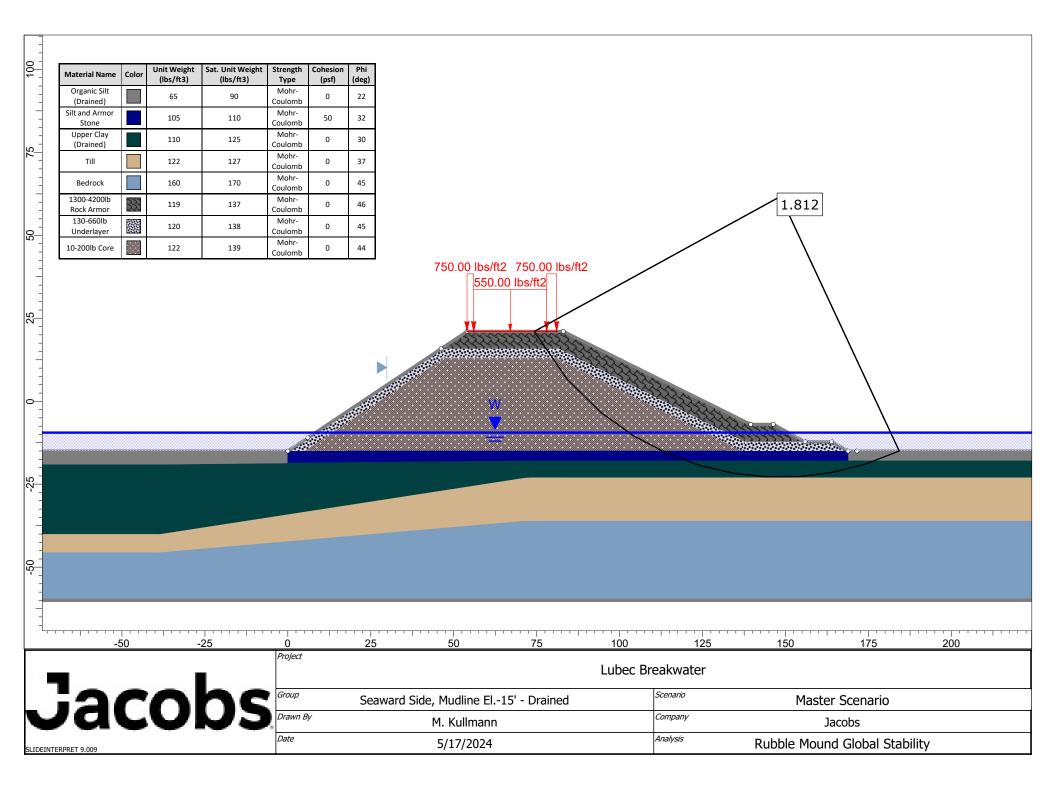


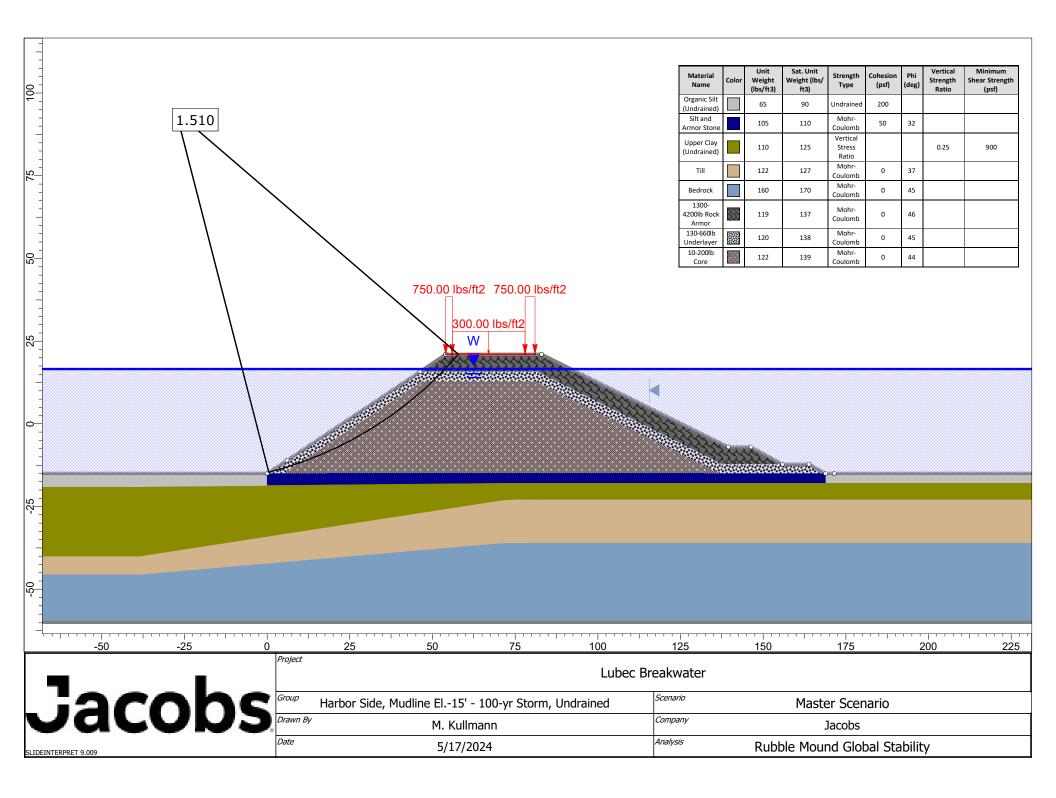


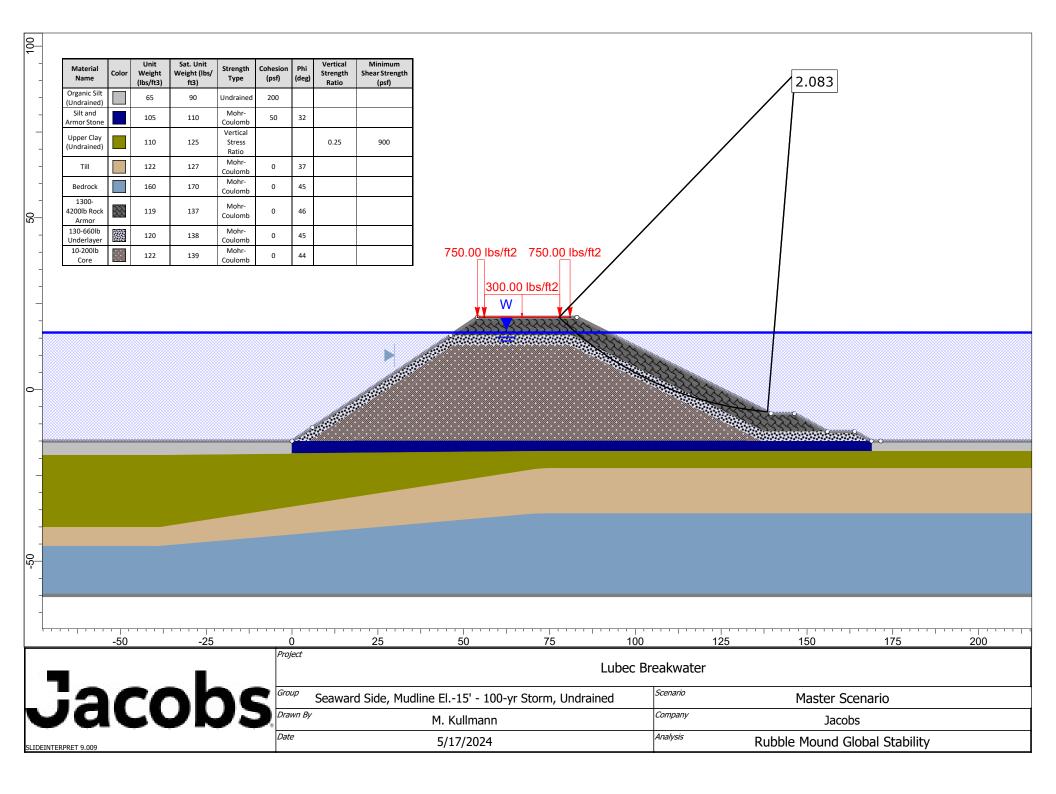


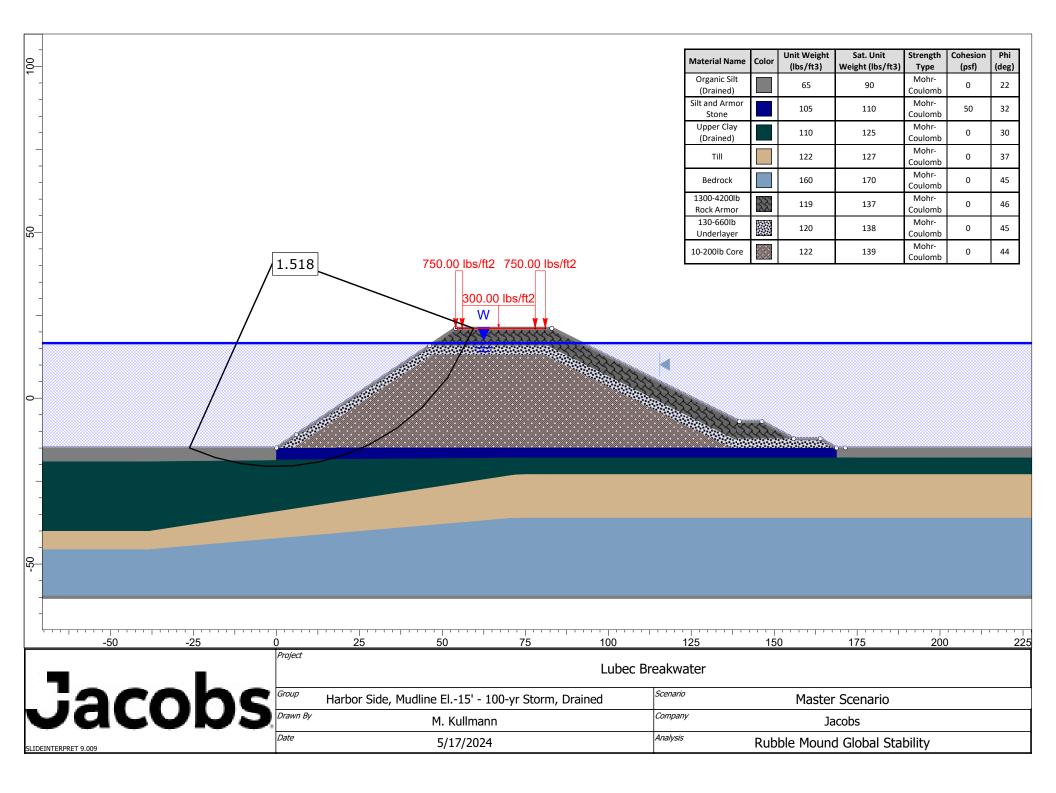


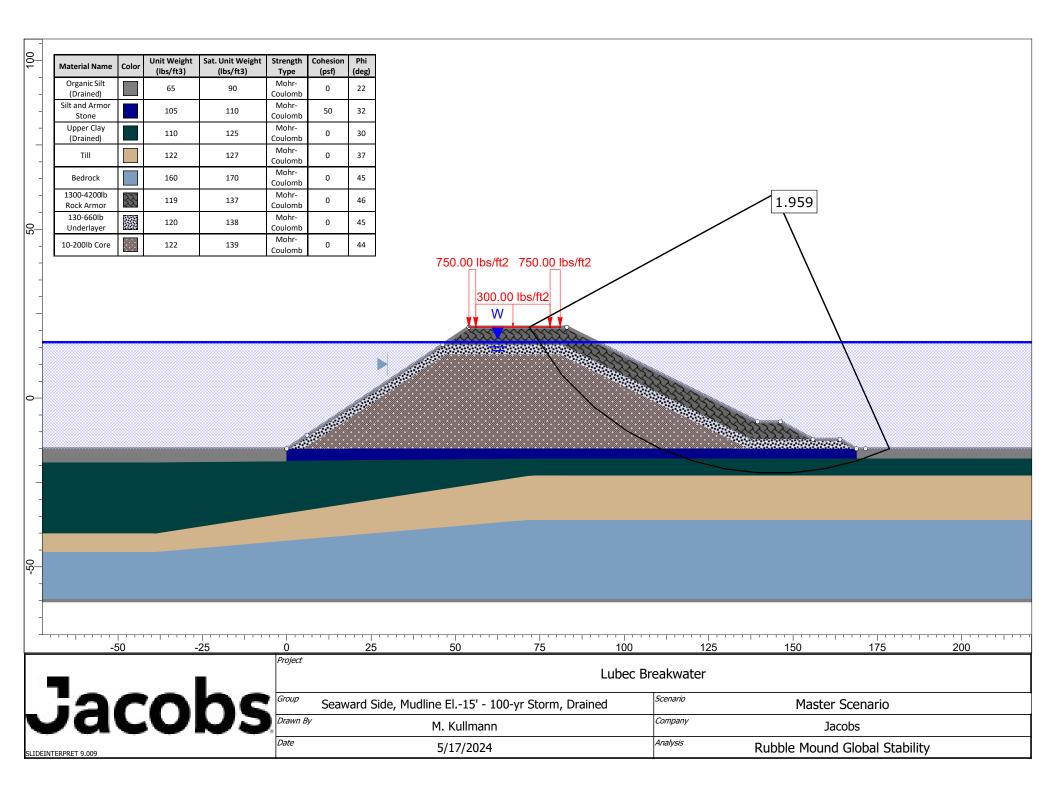


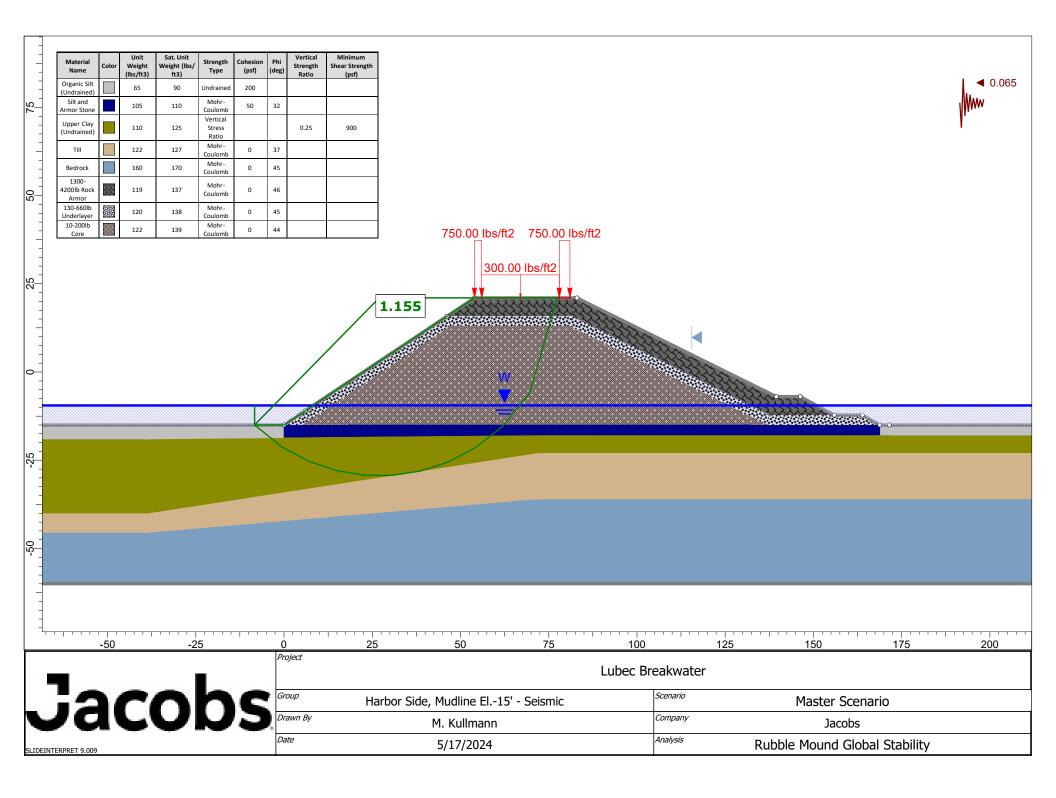


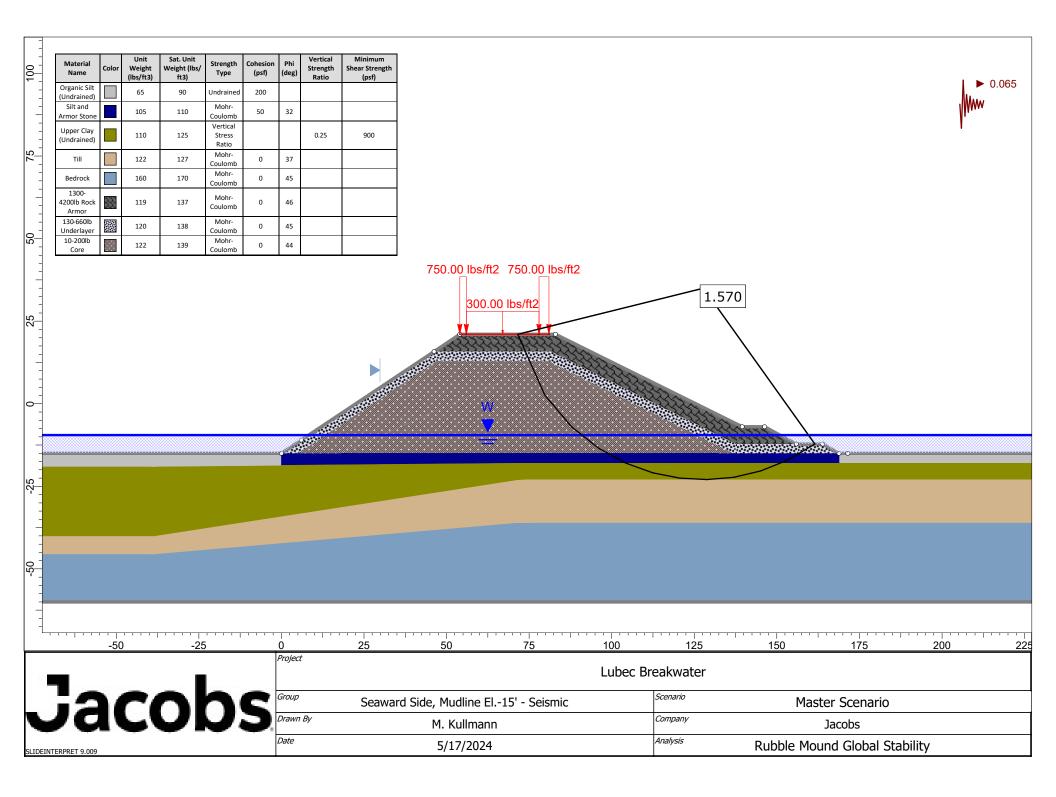


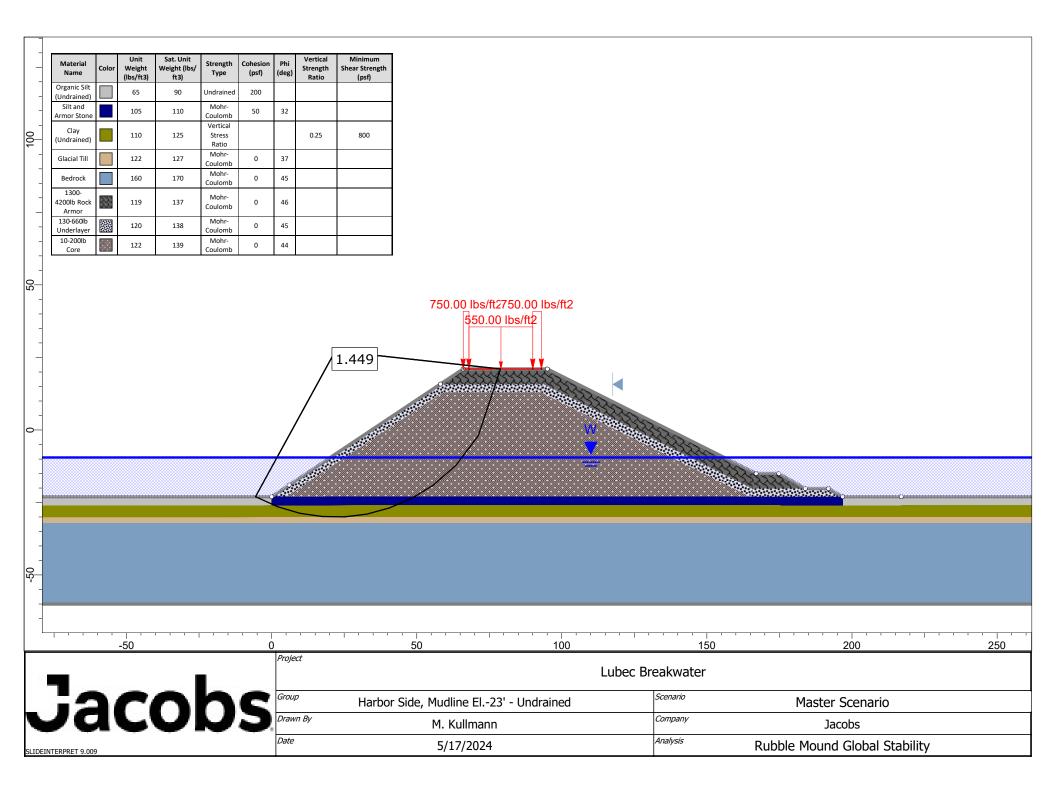


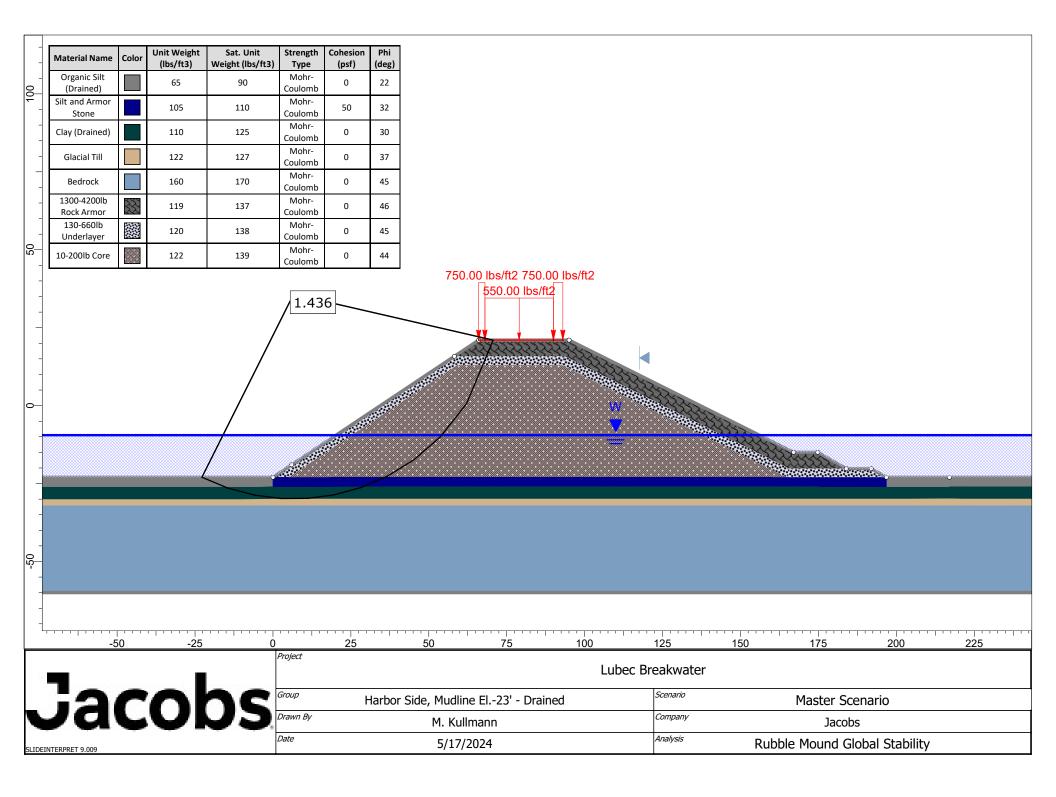


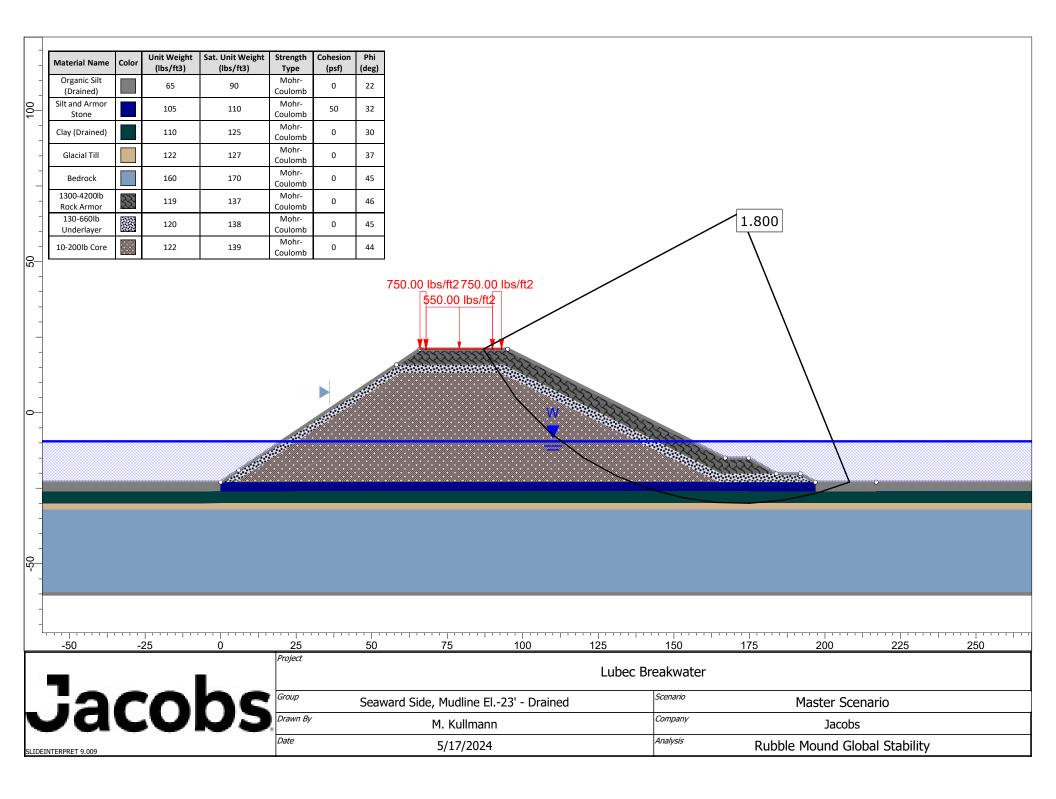


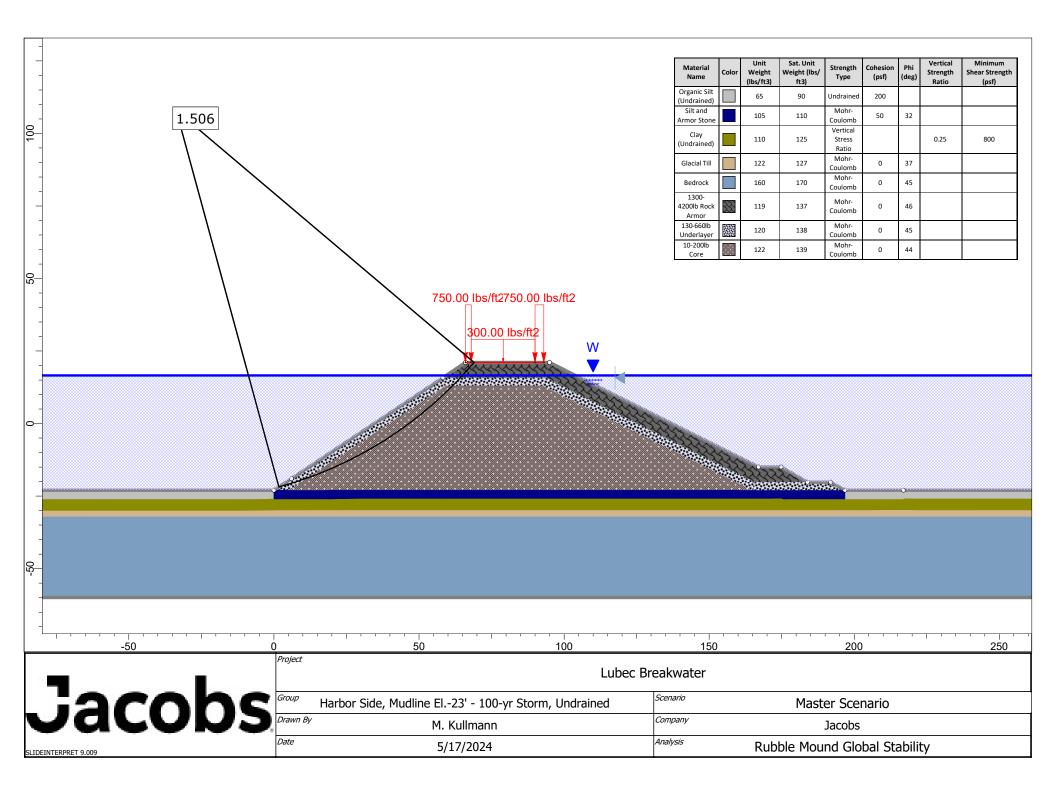


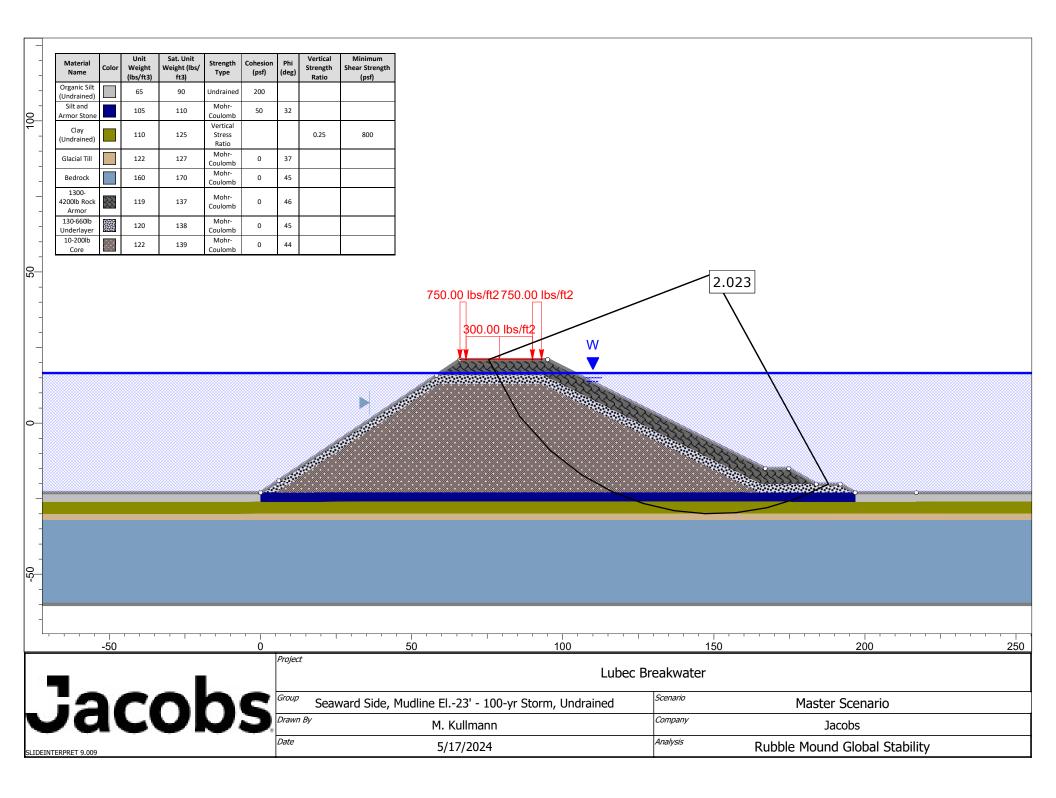




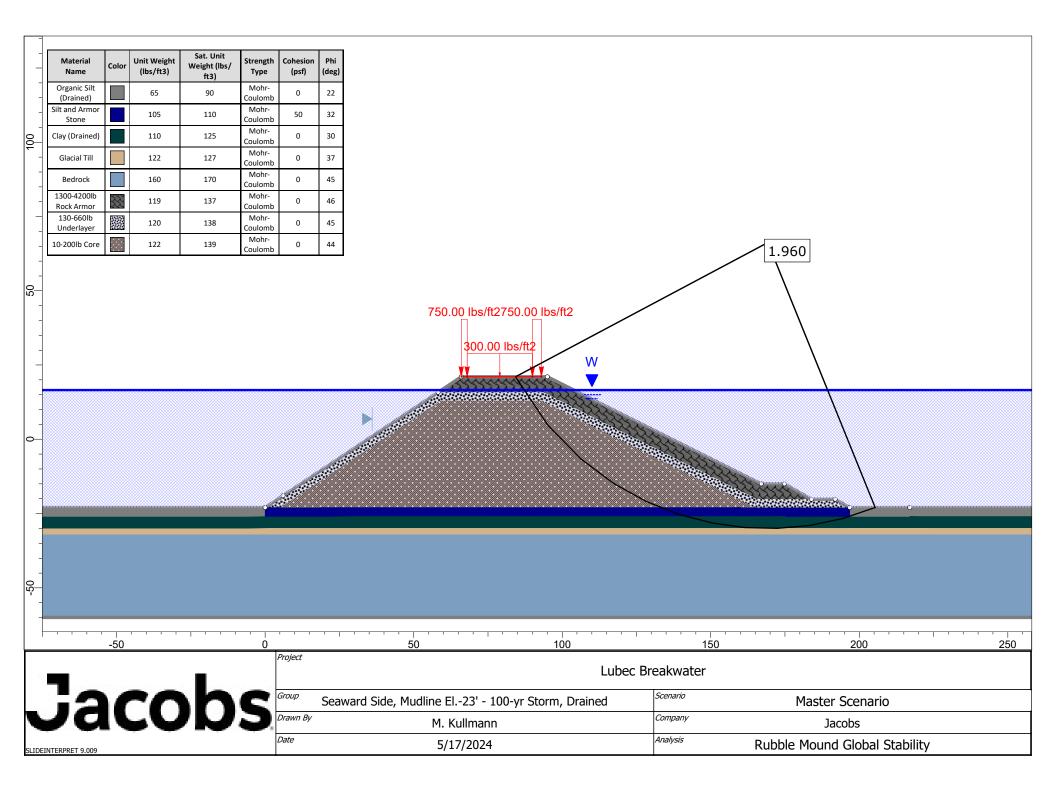


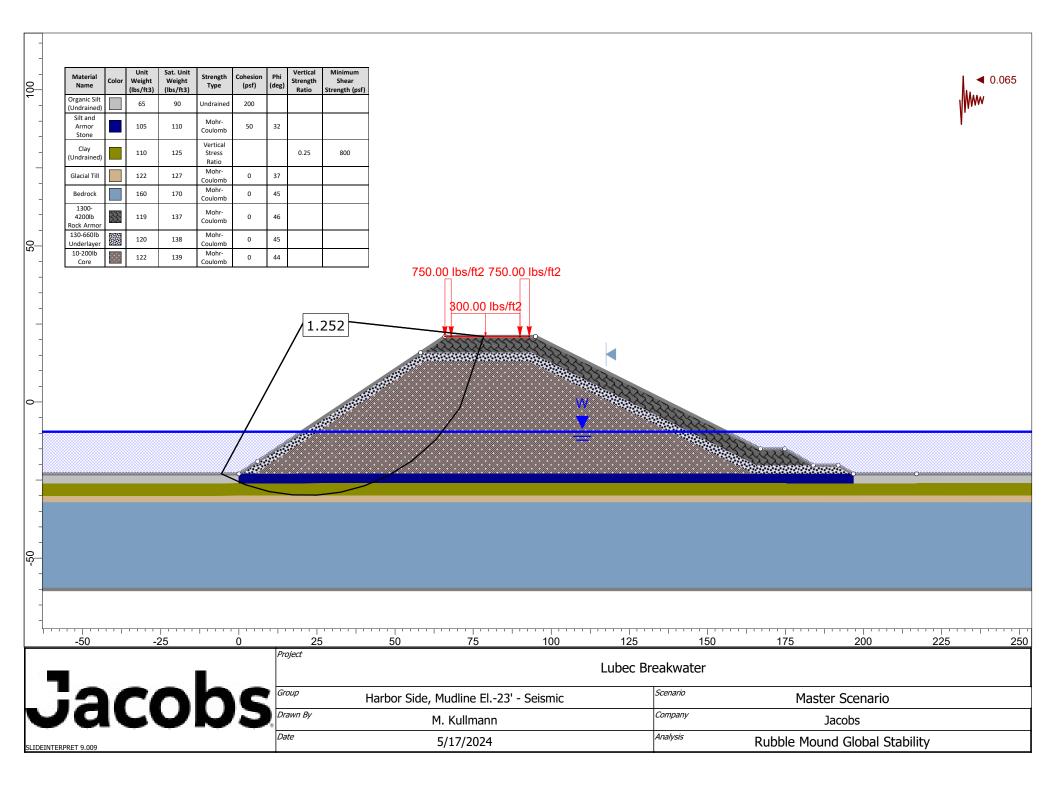


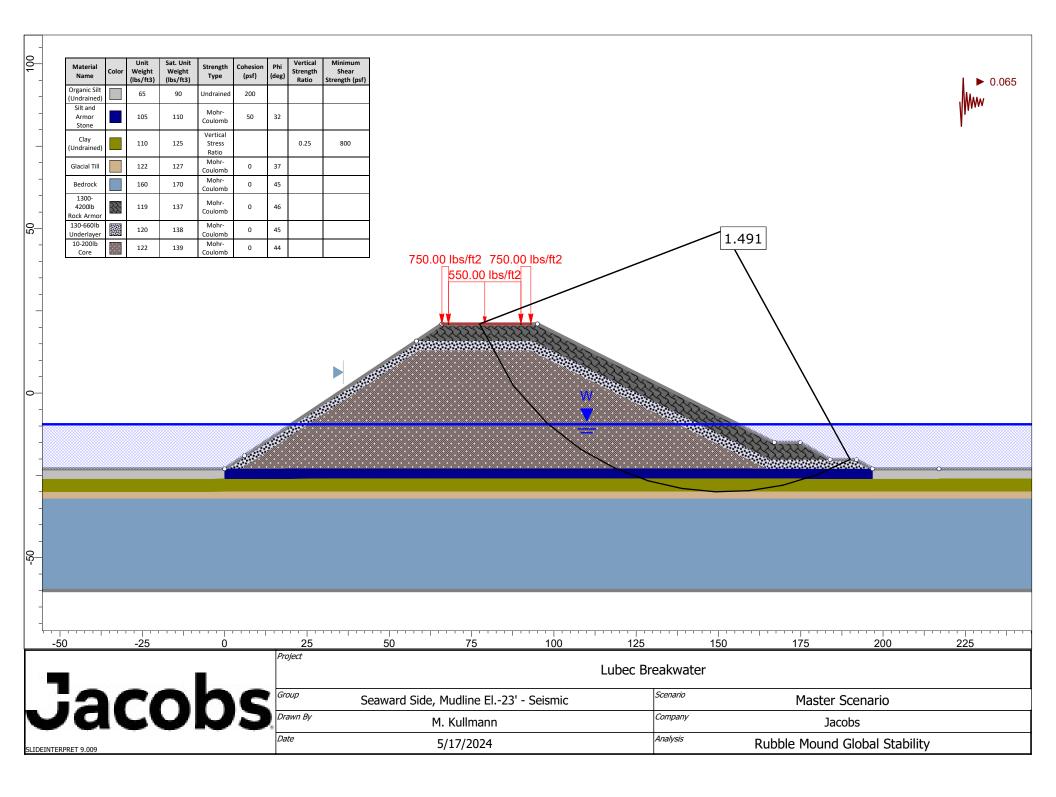


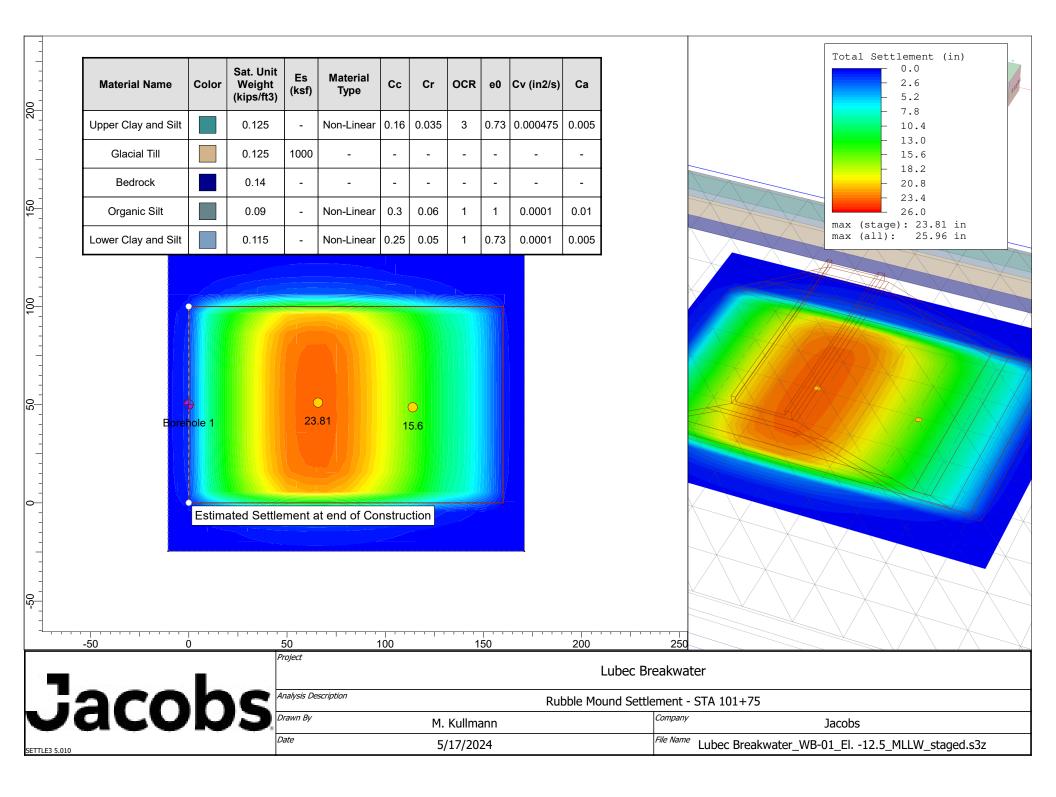


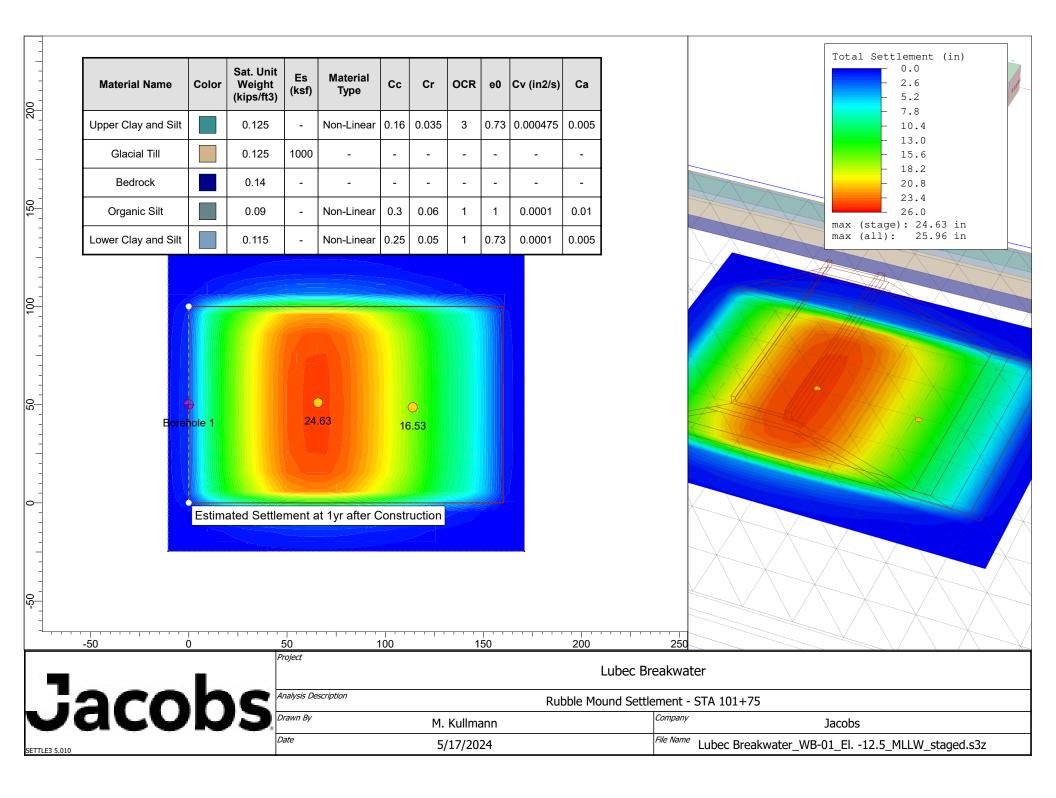


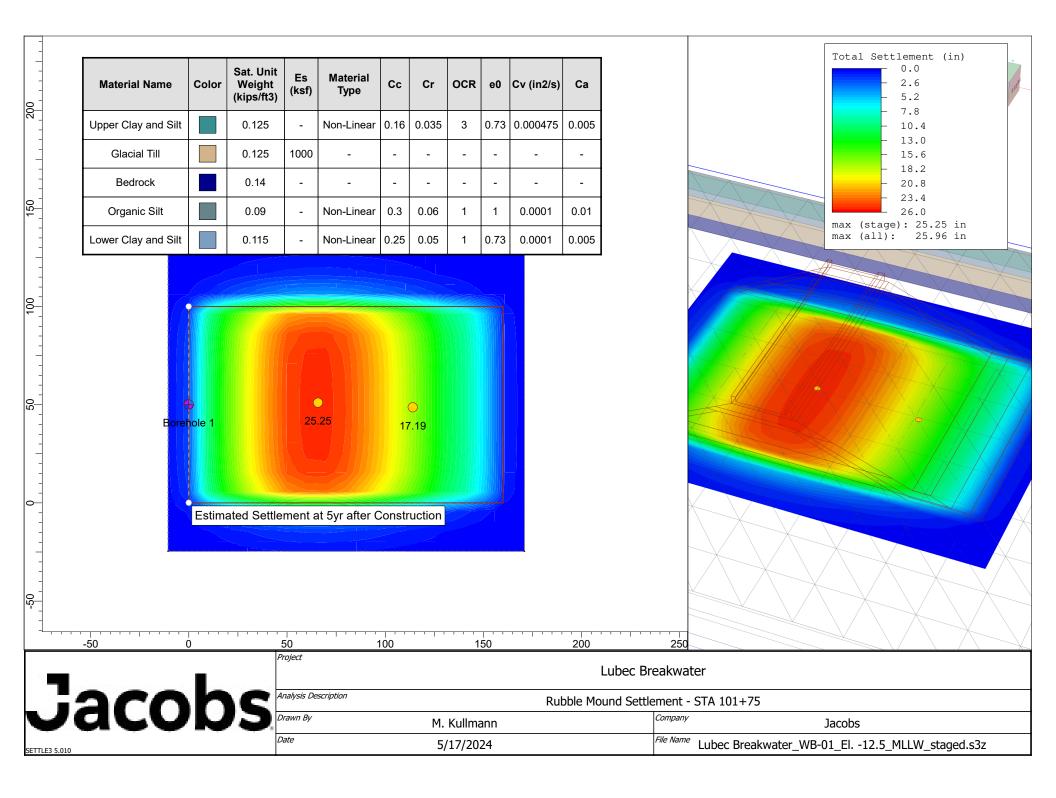


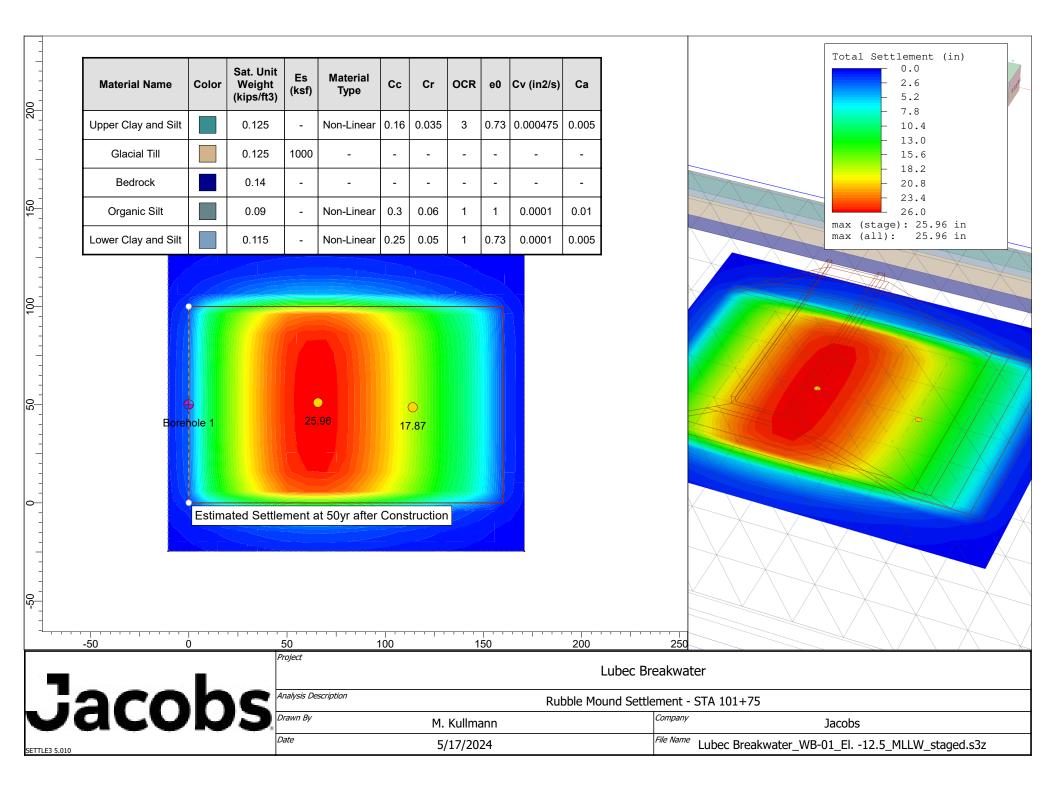


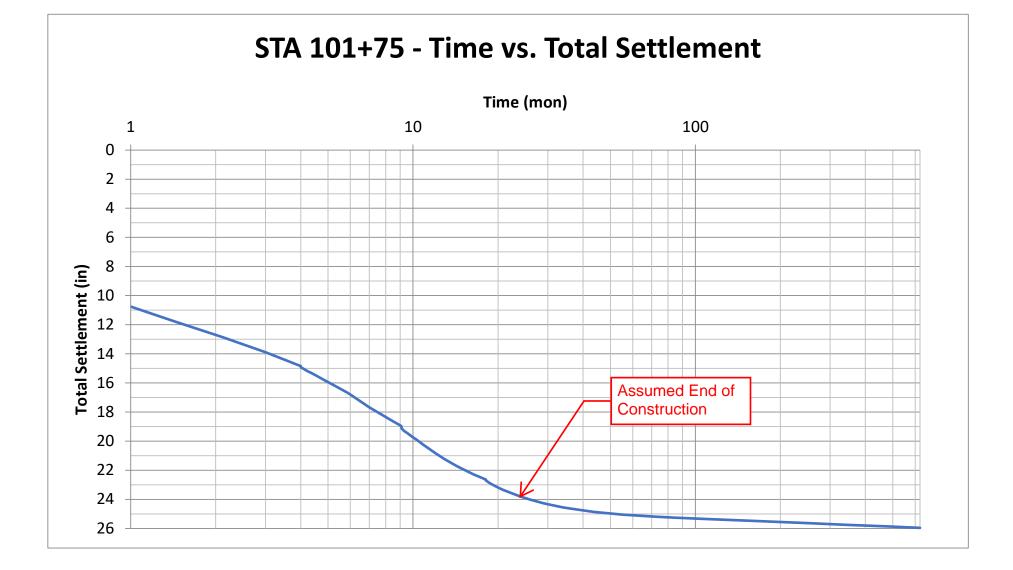


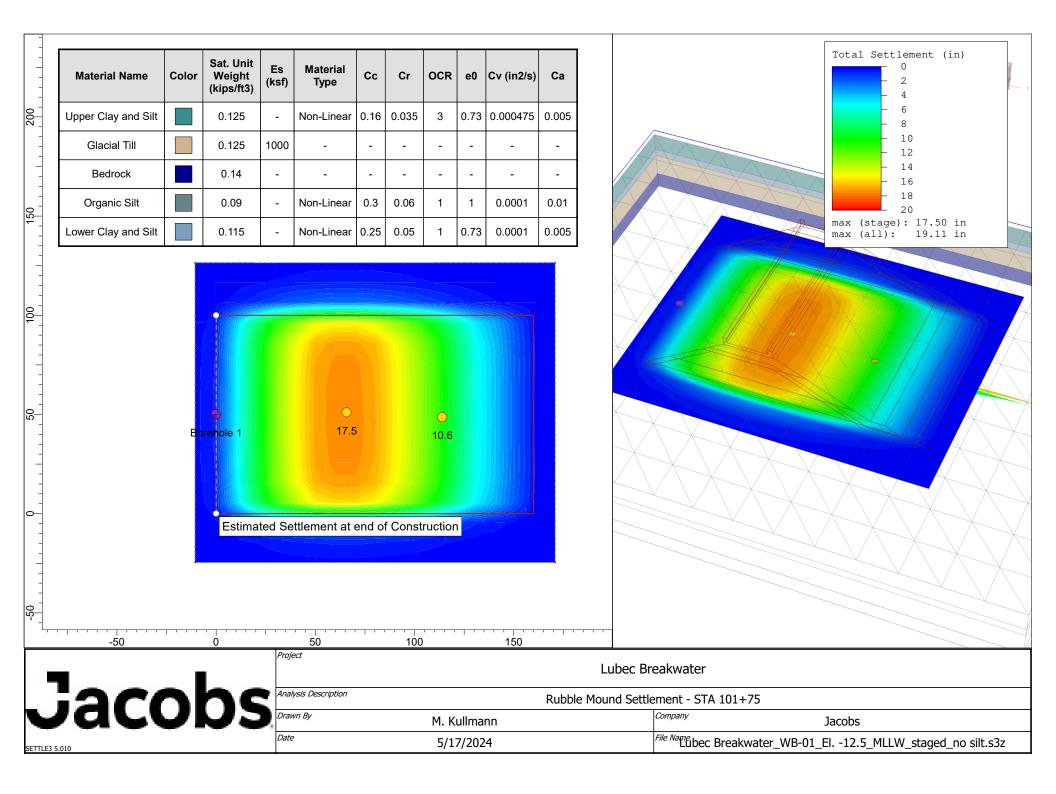


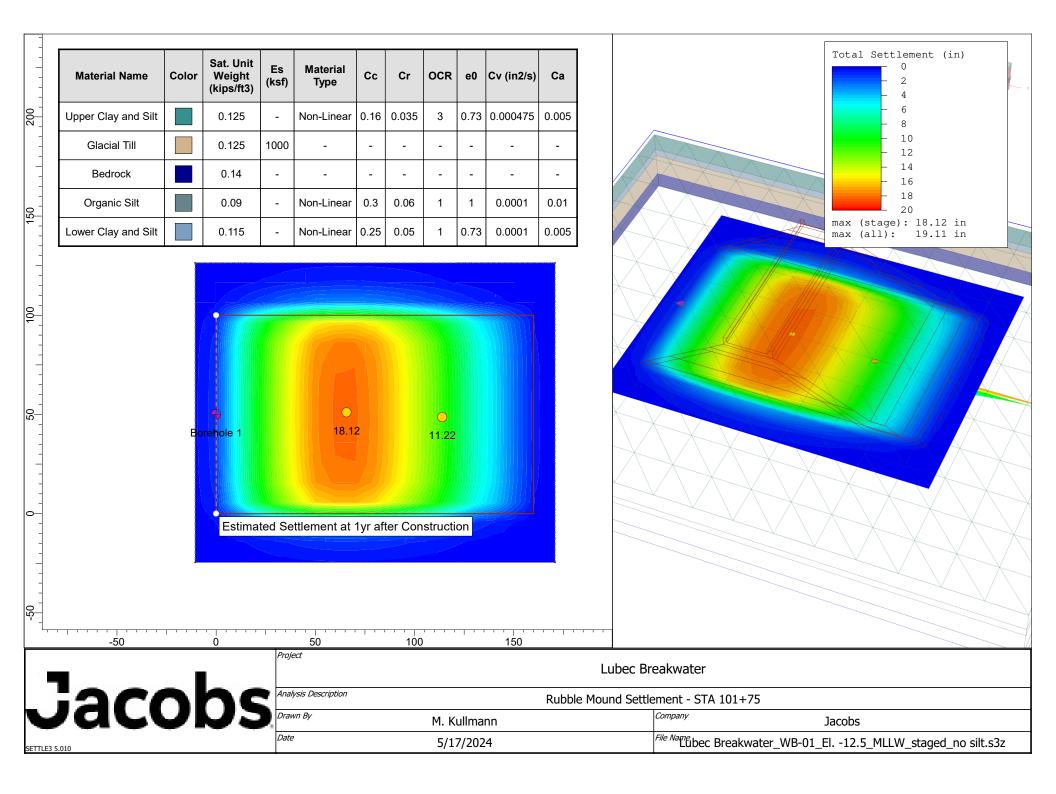


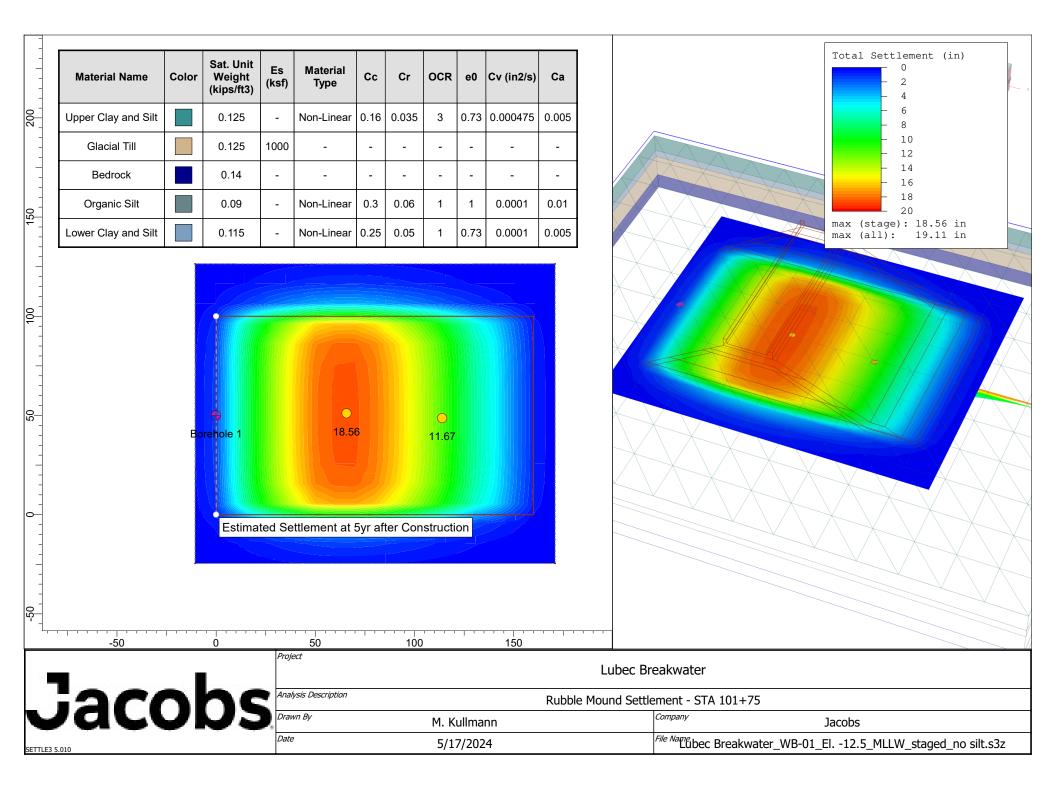


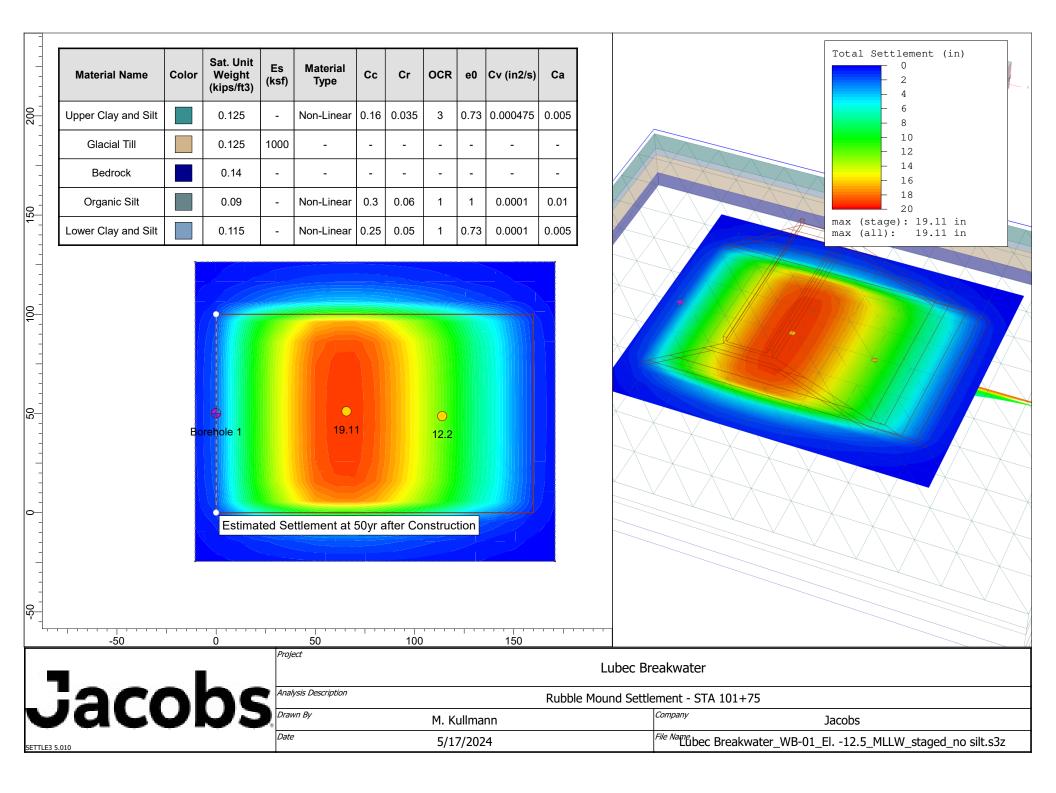


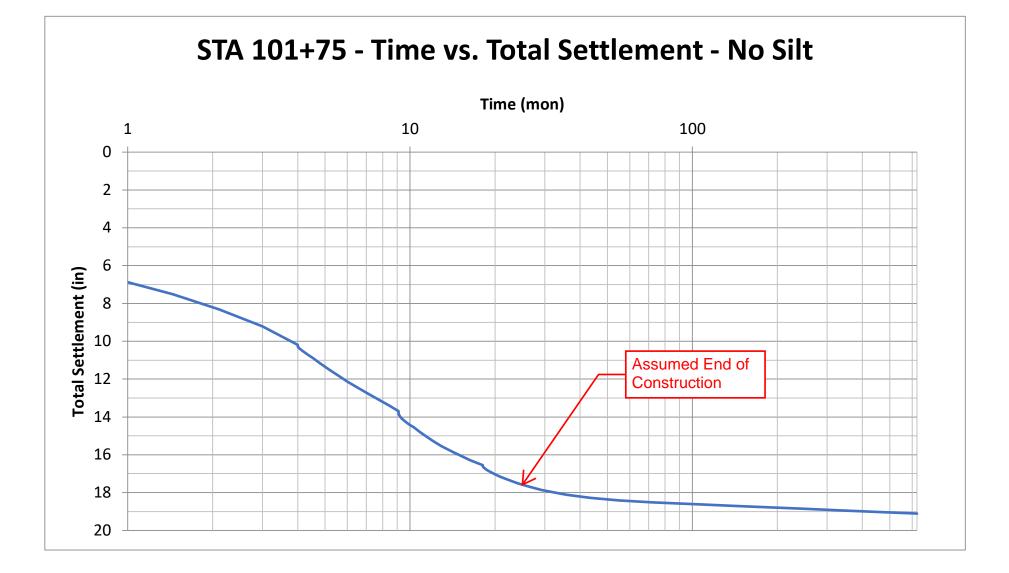

Appendix G. Rubble-Mound Breakwater Settlement

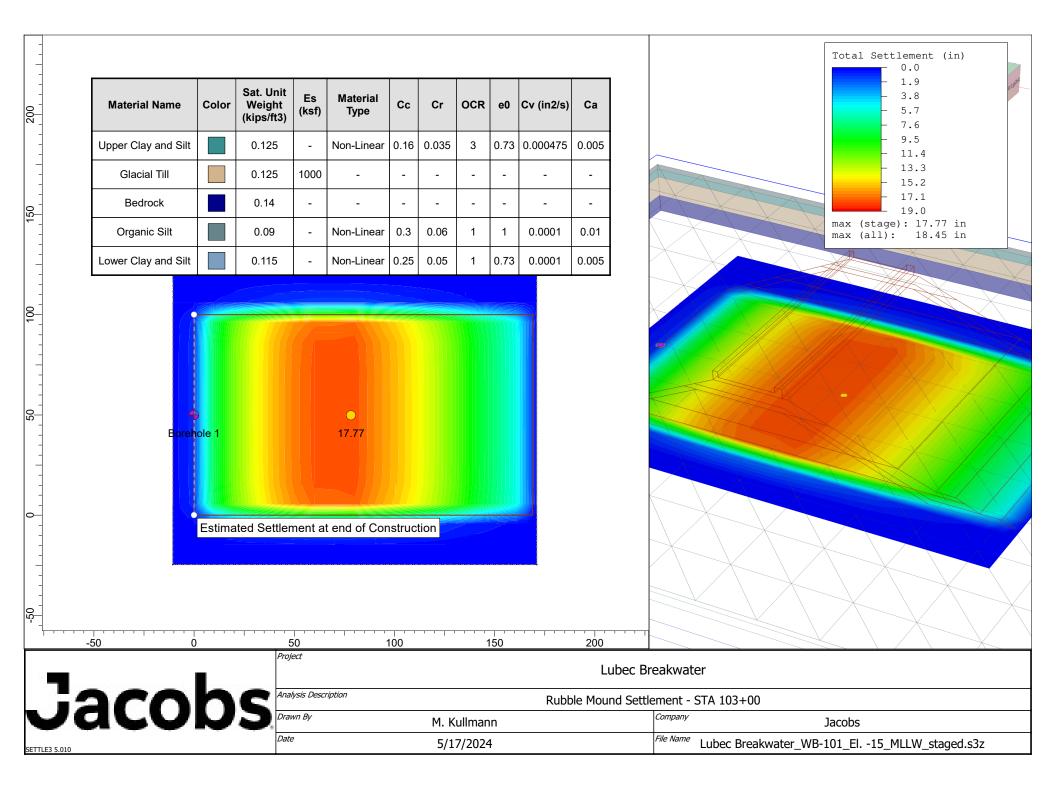


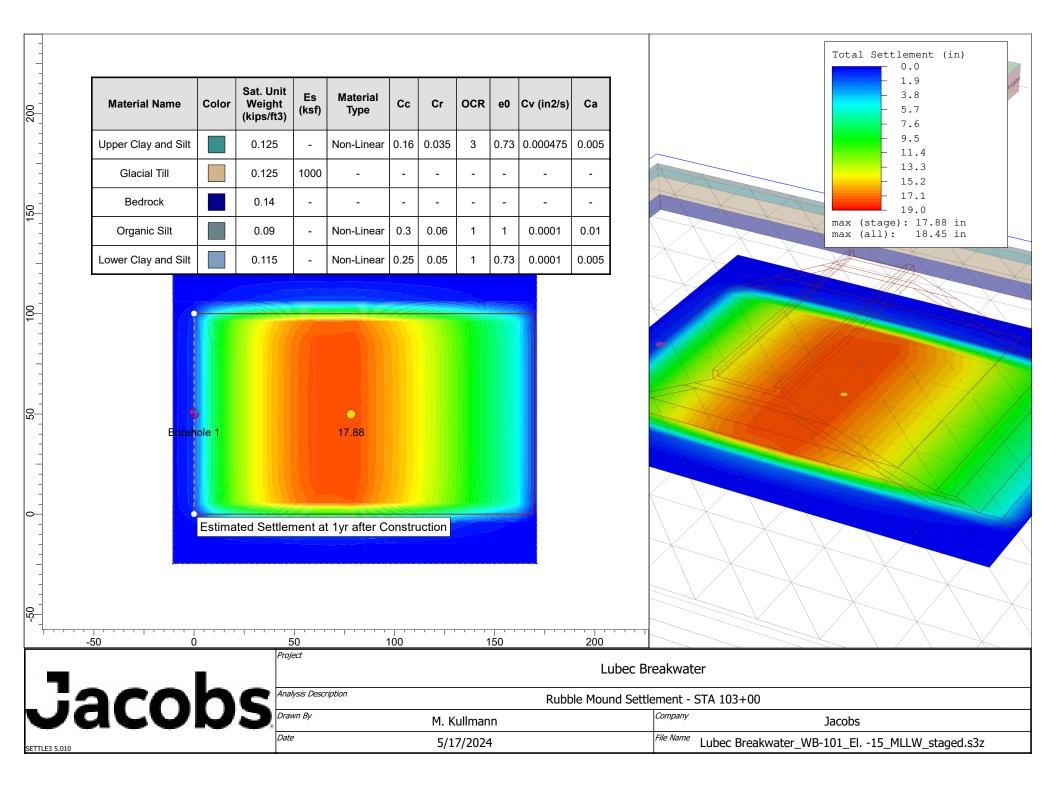


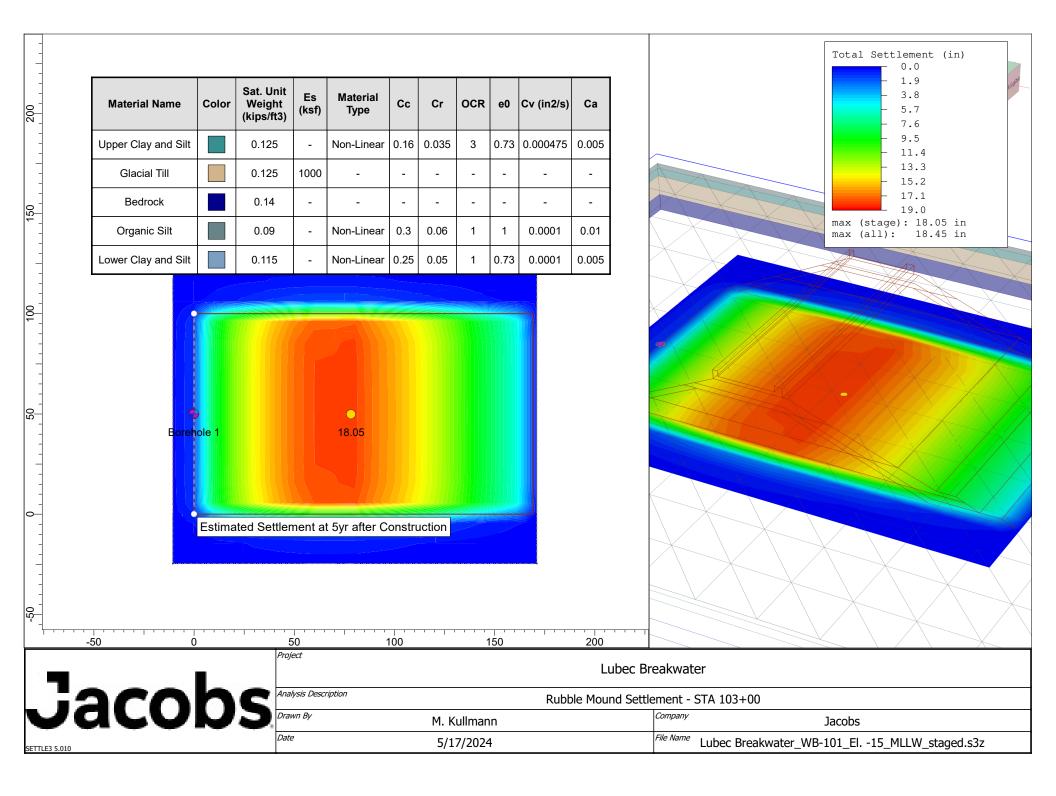


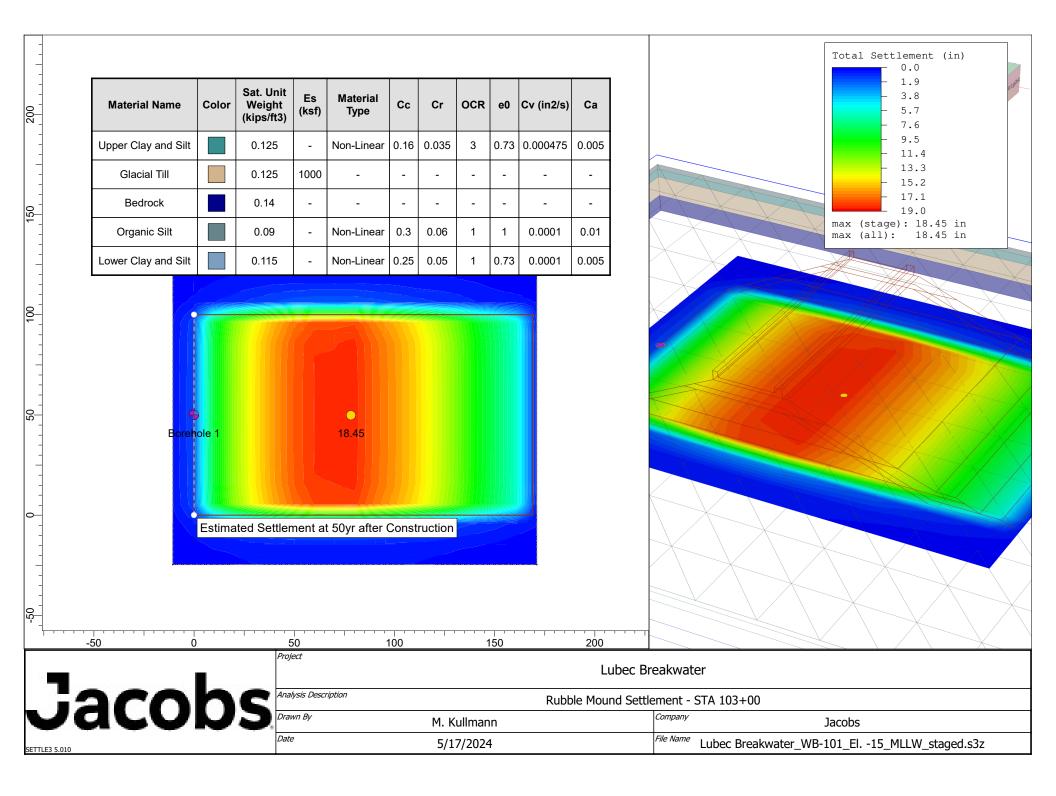


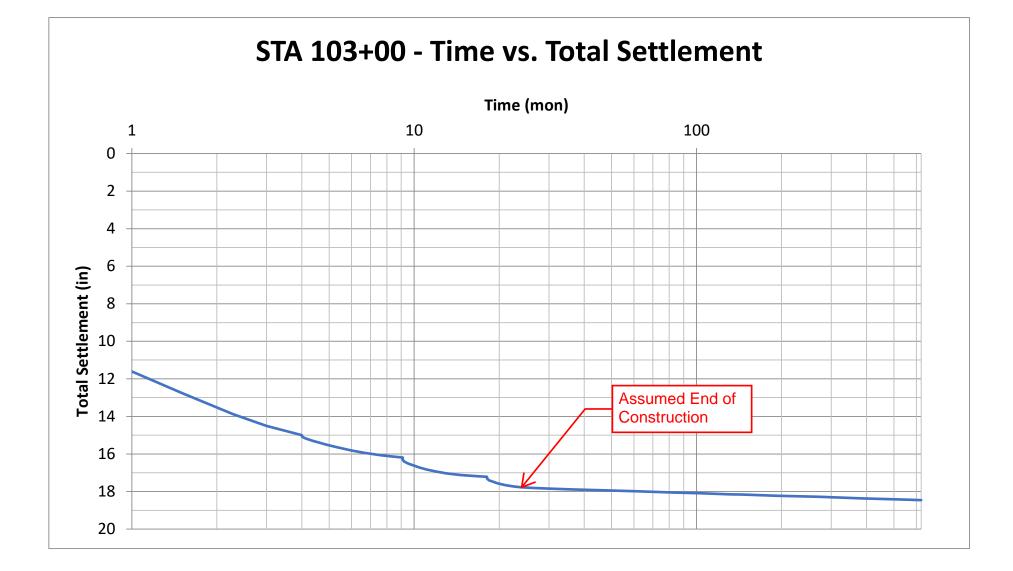


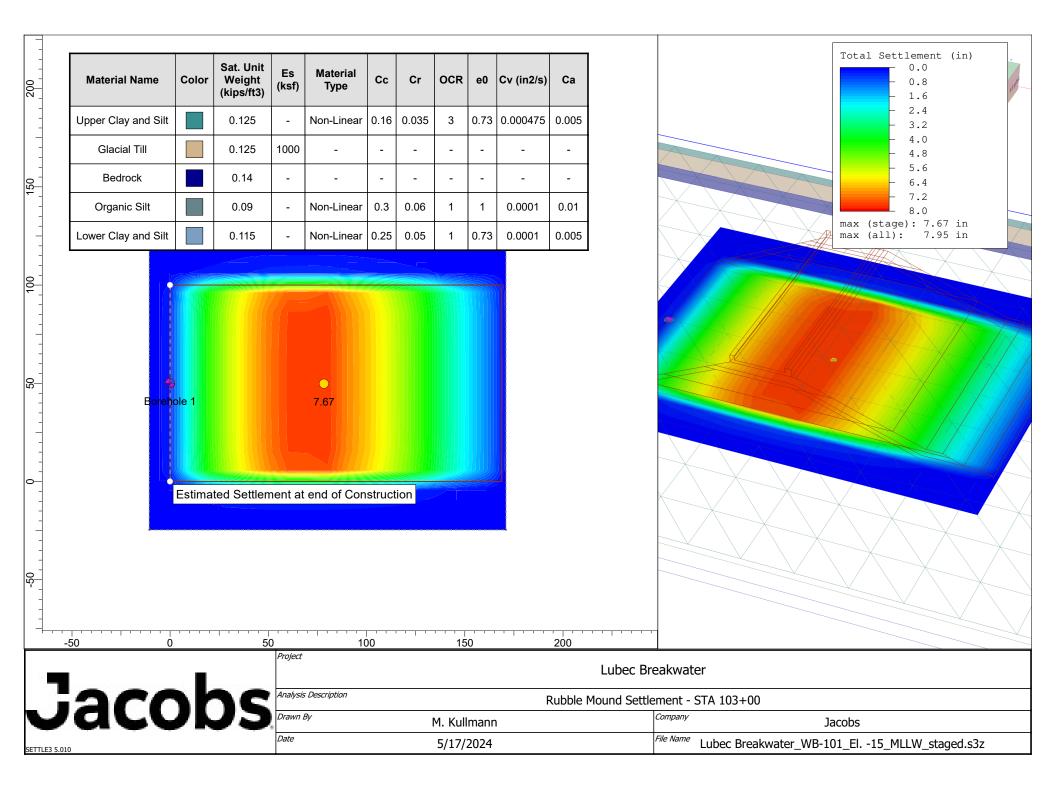


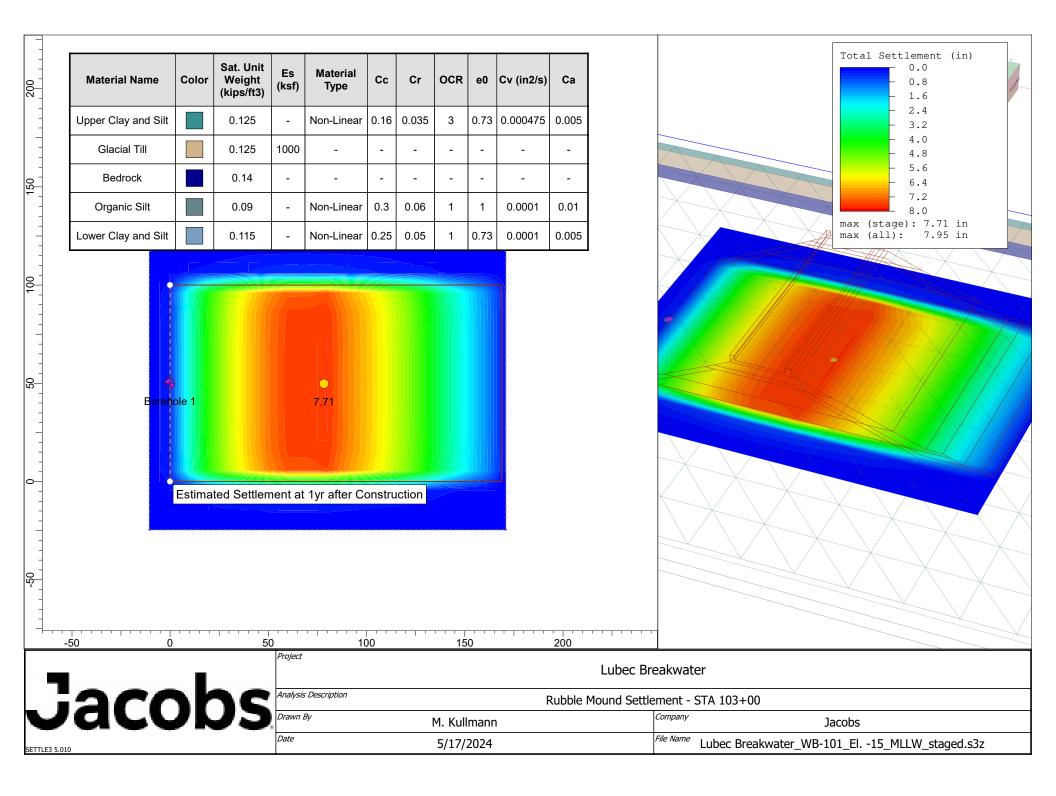


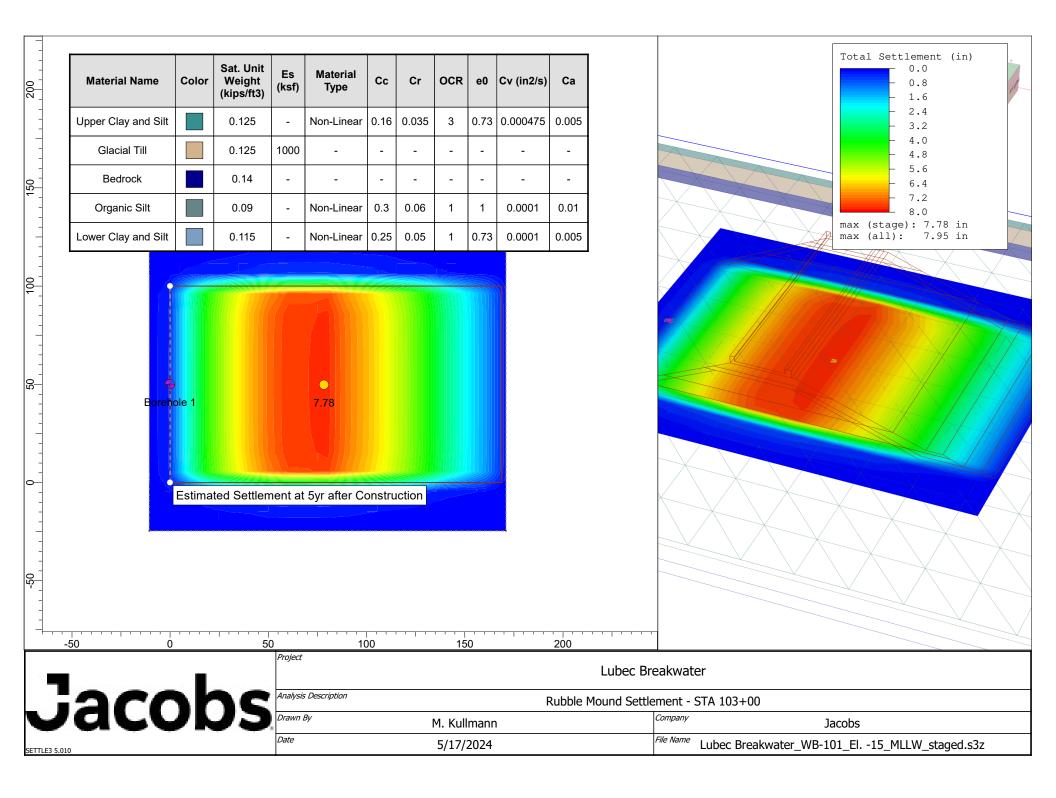


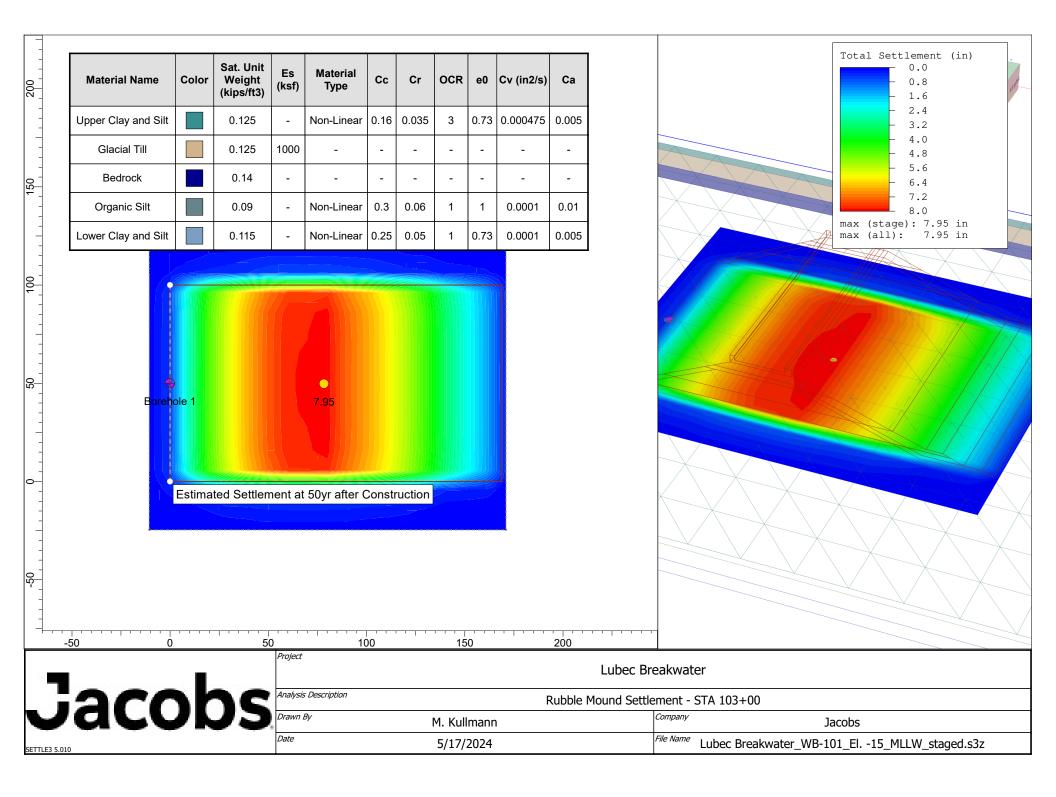


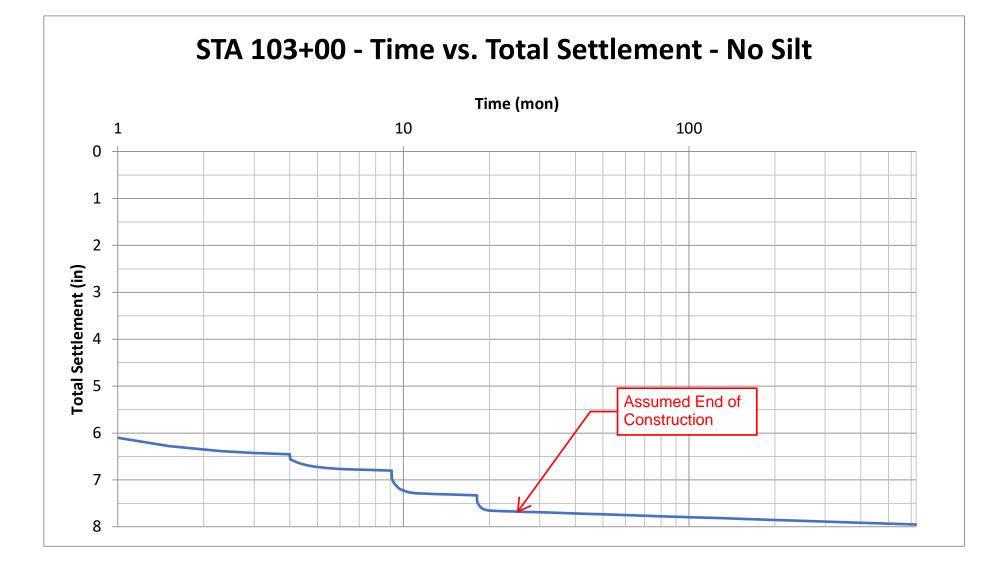


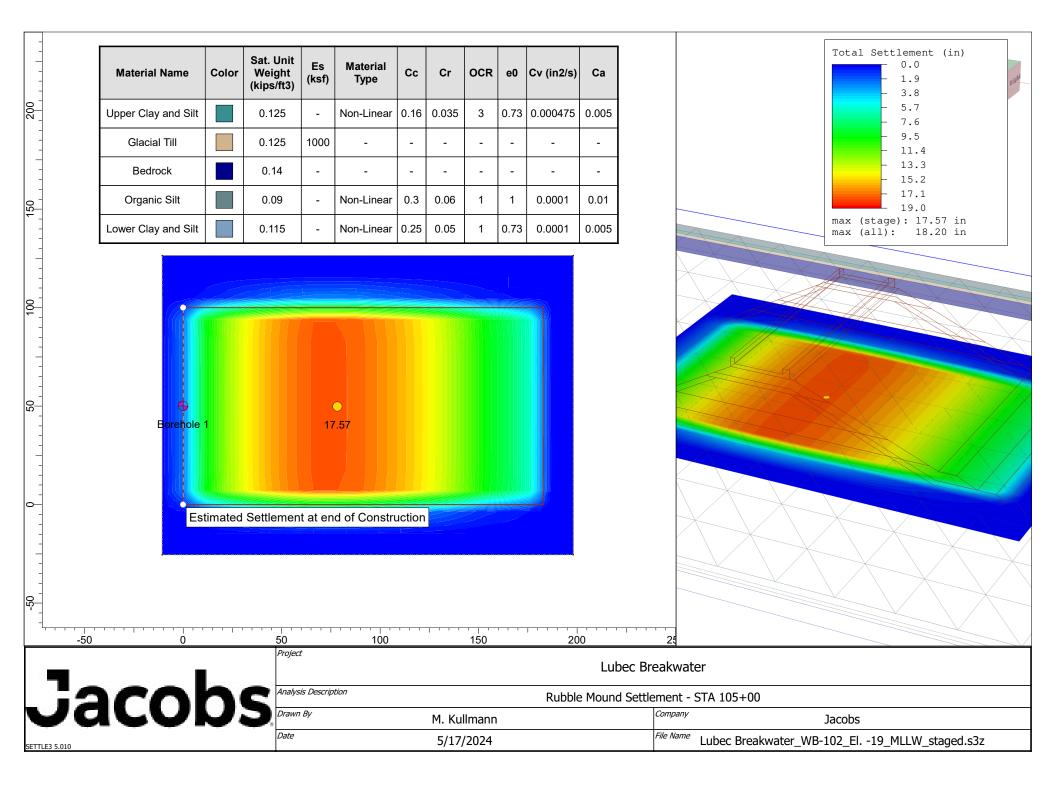


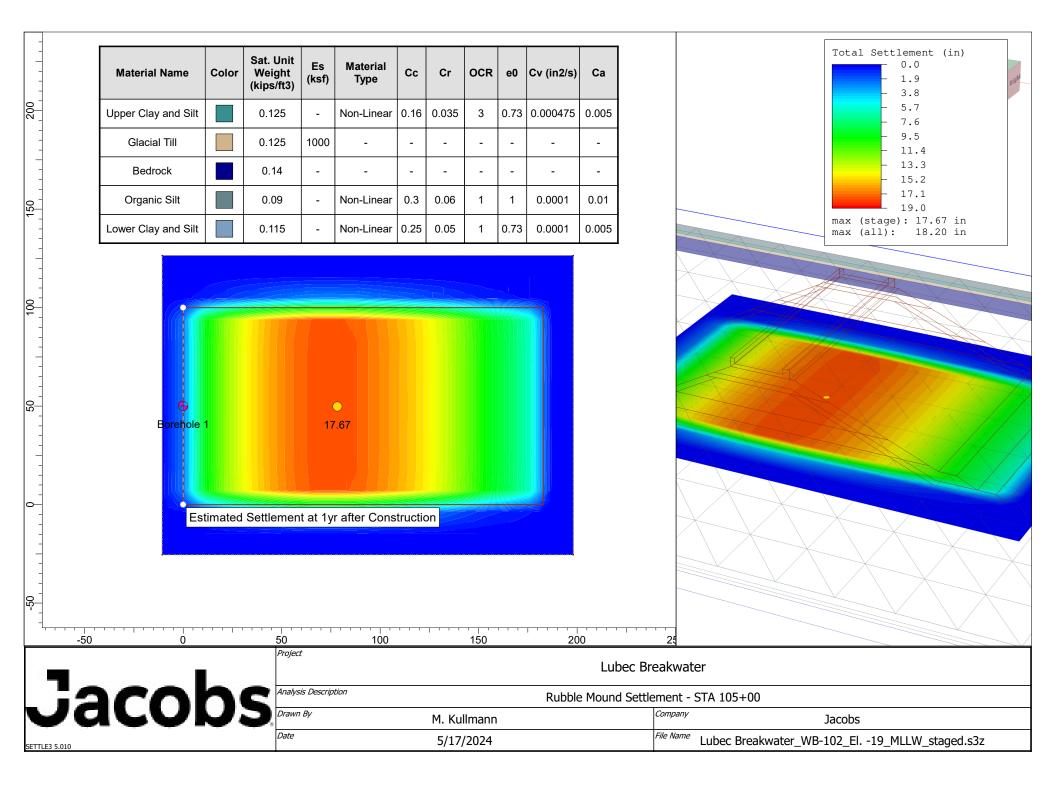


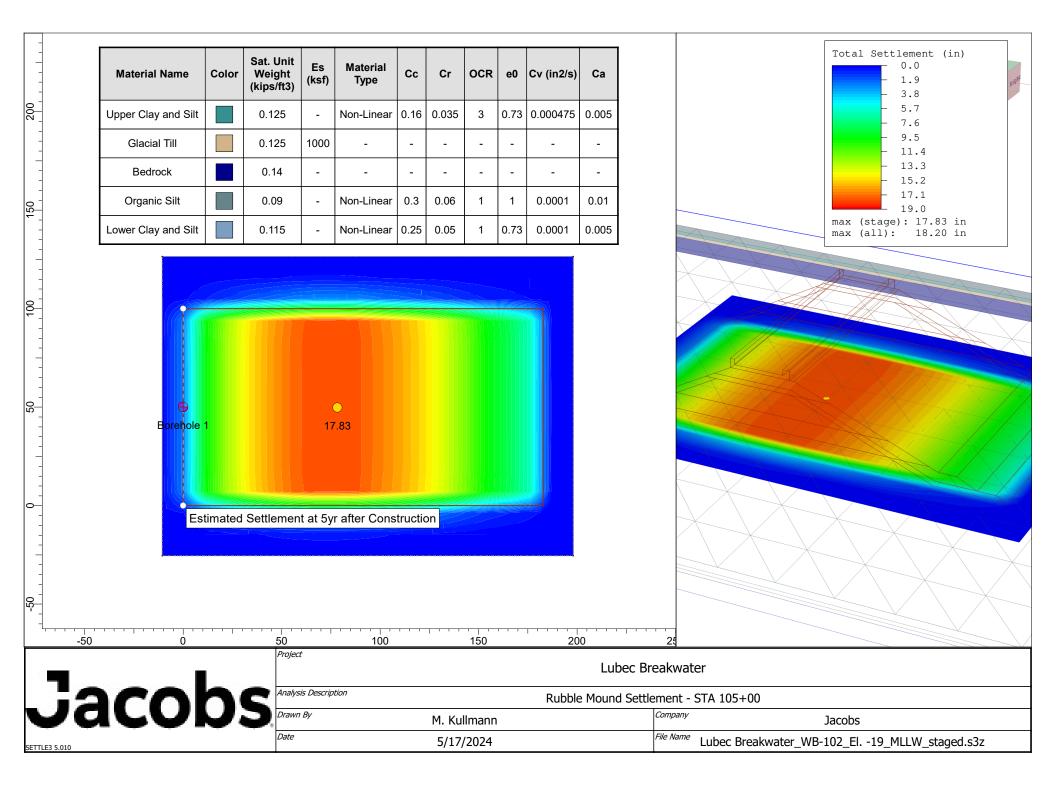


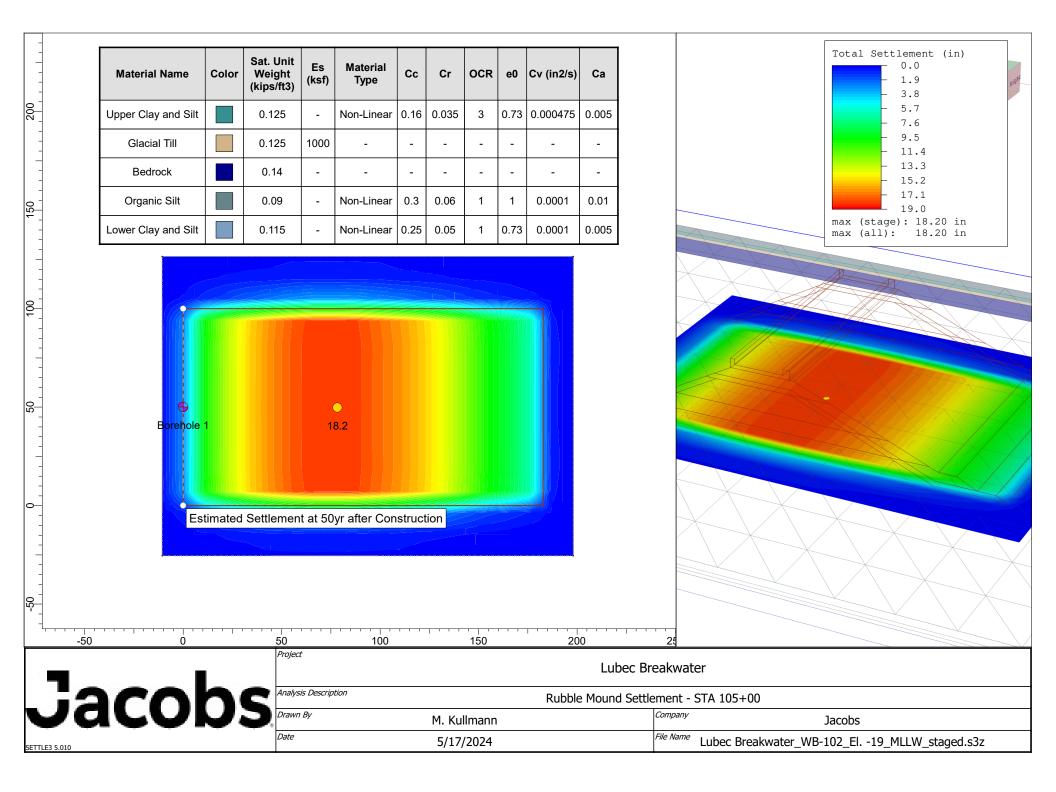


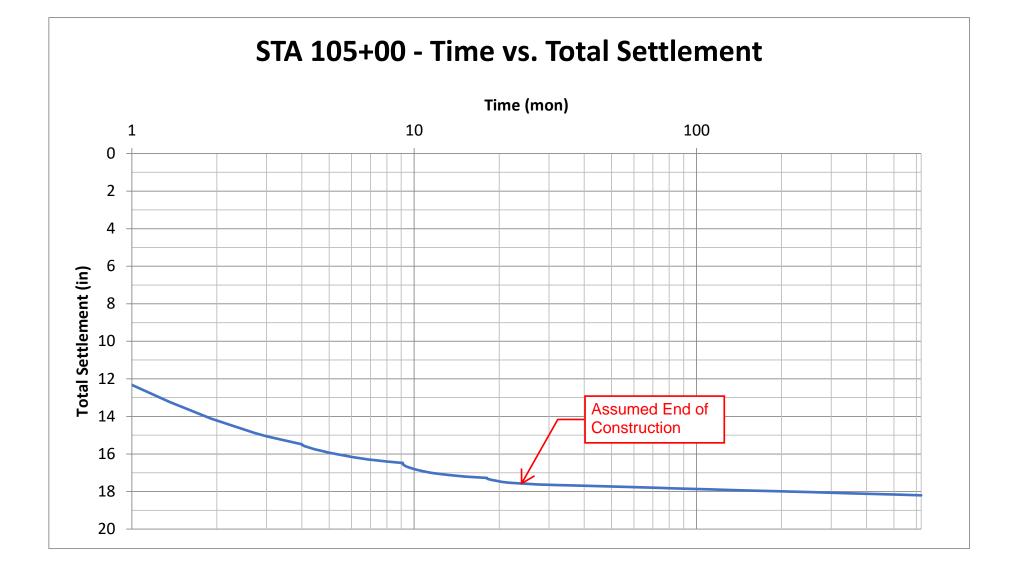


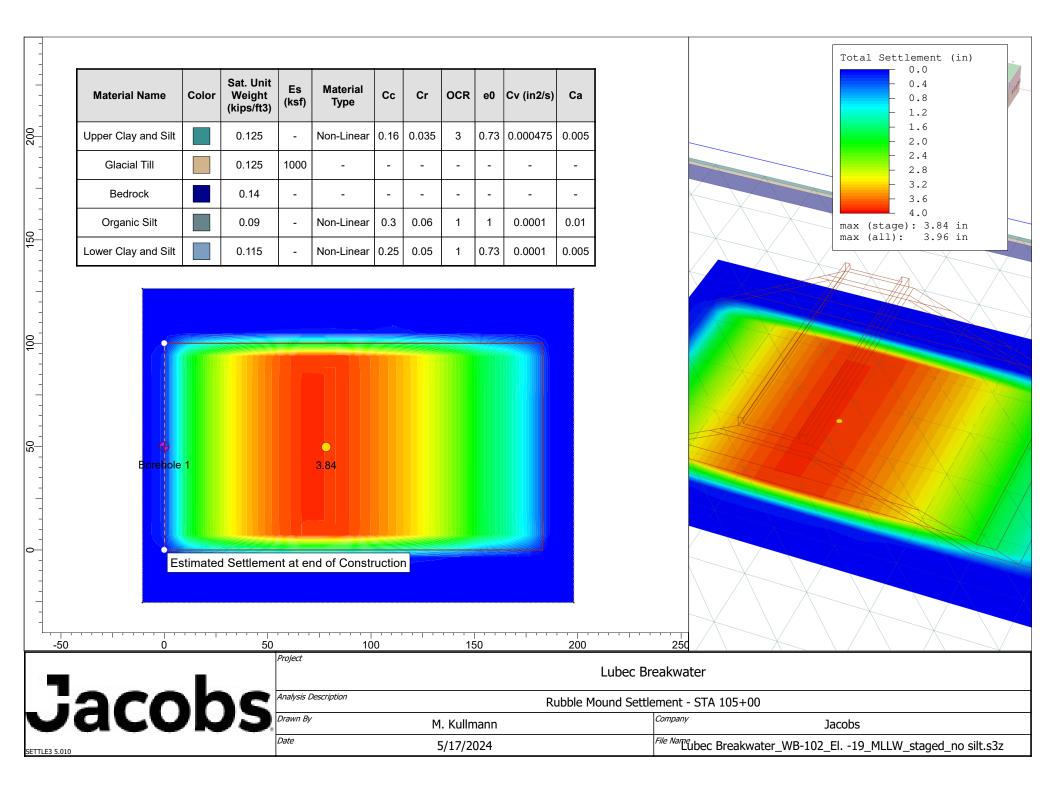


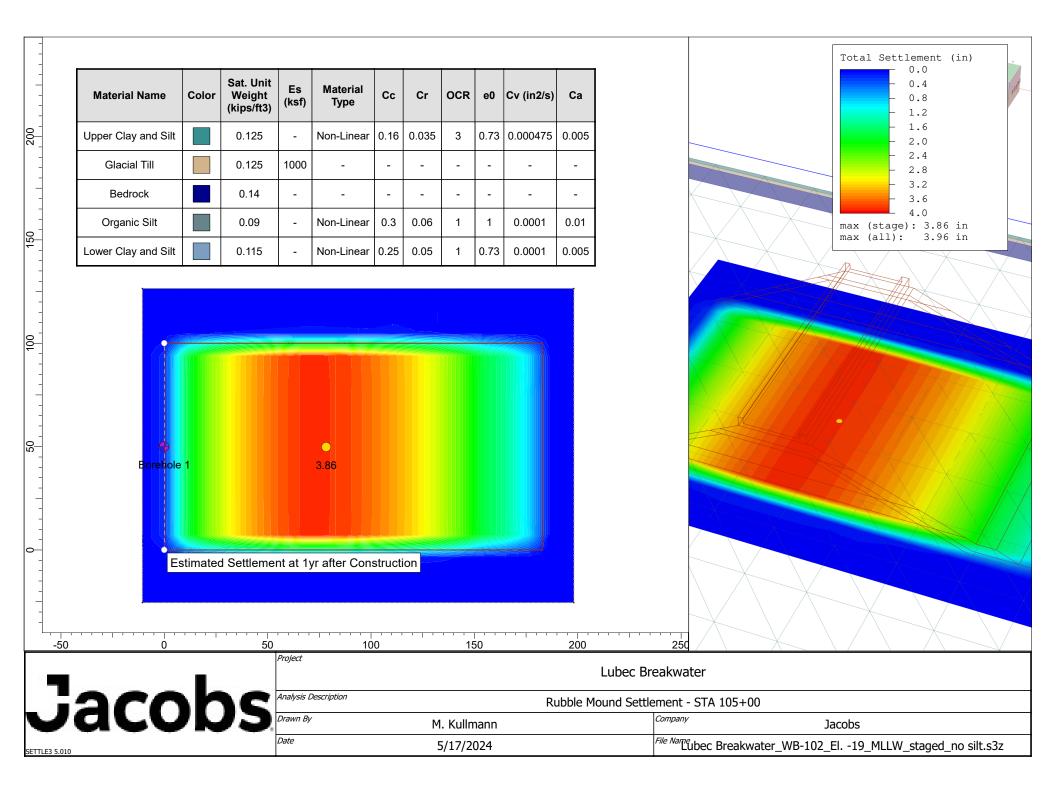


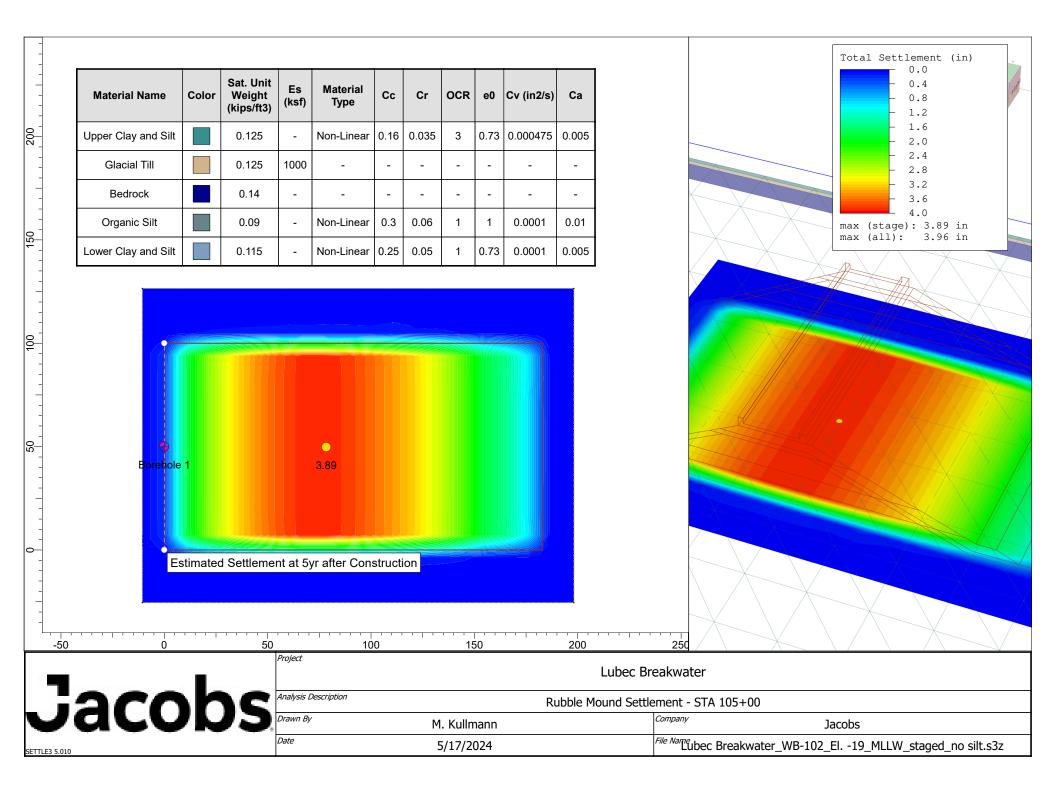


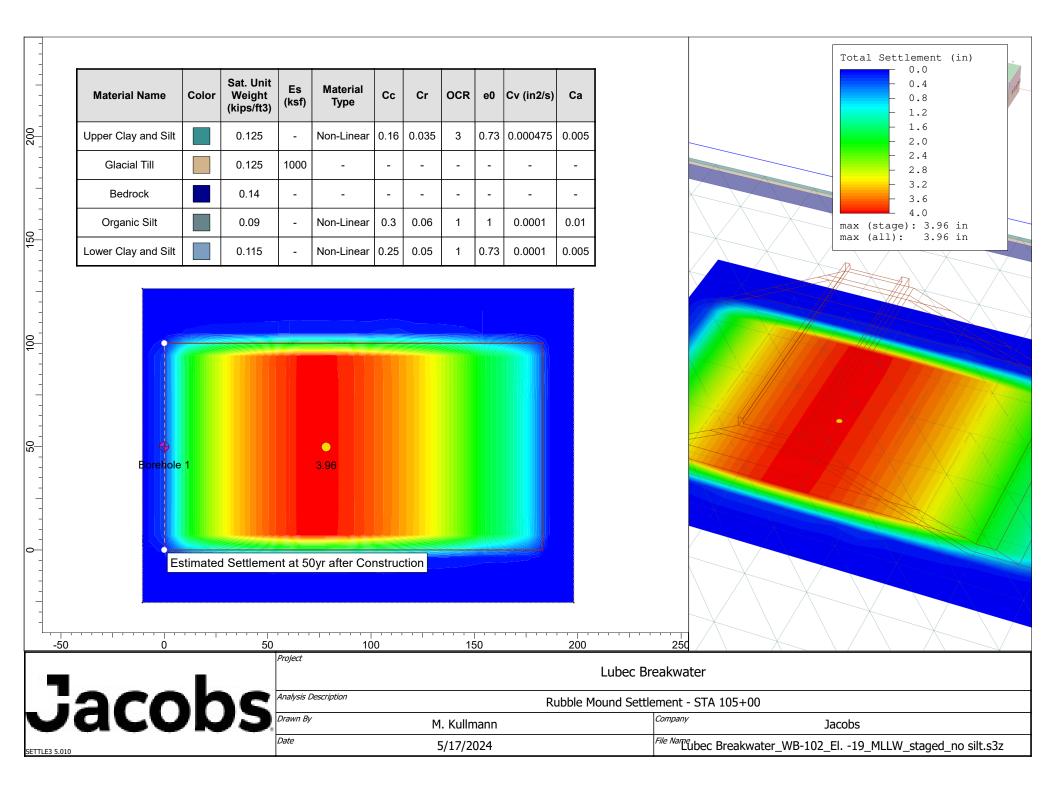


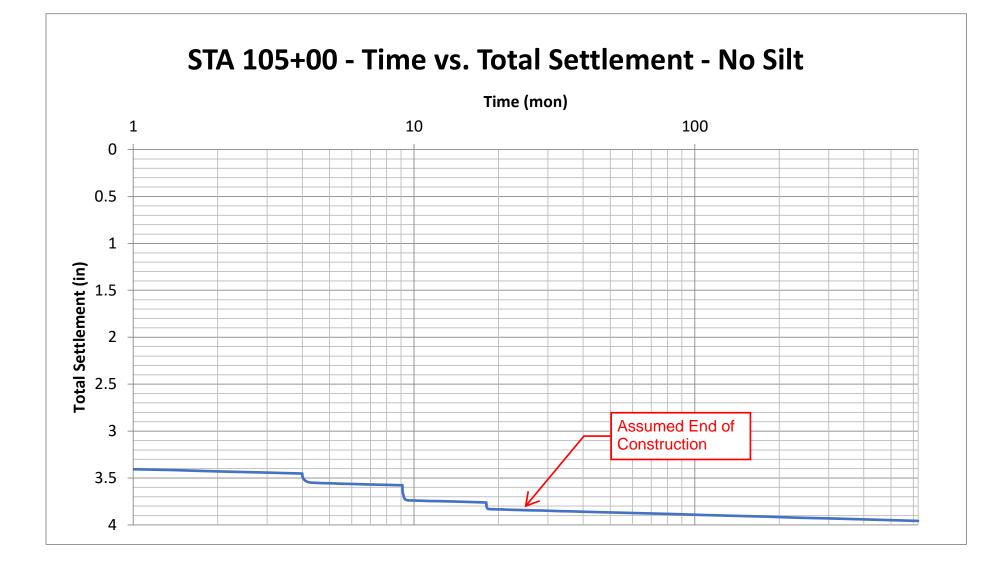










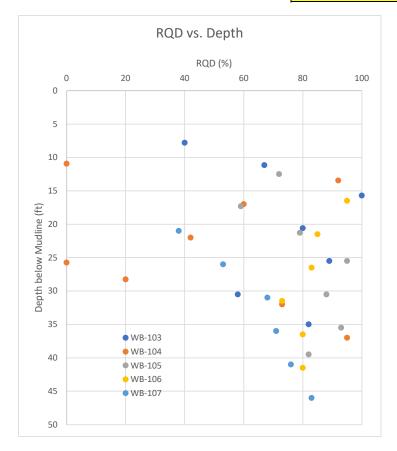


Appendix H. Rock Socket Axial Capacity Evaluation

LUBEC BREAKWATER - ROCK SOCKET DESIGN

By: M. Kullmann Chkd: S. Yang

Purpose


The purpose of this calculation is to estimate rock socket ultimate skin friction capacity for the Lubec Breakwater

Rock Core Data

Table 1. Unconfined Corr	pressive Strengt	h Test Results	s of Rock Cores

Boring ID	Sample ID	Depth	Classification	Recovery	RQD	q u	E
-	-	ft	-	%	%	psi	psi
WB-103	C-2	11.14-11.51	TUFF	100	67	8693	-
WB-103	C-4	18.61-18.98	TUFF	97	80	8192	-
WB-104	C-3	15.26-15.64	TUFF	100	60	4813	9090000
WB-104	C-7	29.62-30.00	TUFF	100	73	5247	6070000
WB-105	C-3	19.63-20.00	TUFF	100	59	6545	1420000
WB-105	C-4	23.06-23.42	TUFF	100	79	22085	8320000
WB-106	C-2	19.34-19.72	TUFF	100	85	19633	7300000
WB-106	C-4	31.33-31.82	TUFF	100	73	5296	1150000
WB-107	C-3	29.71-30.05	TUFF	100	68	3818	-

Average Bedrock Unconfined Compression, q_u Standard Devation of UCS Data Design Bedrock Unconfined Compression, q_u 6086.2857 psi 1804.3808 psi 4281.905 psi *Excluding WB-105 C-4 and WB-106 C-2

Rock Socket Design Assumptions

- 1.) The steel pipe piles will be driven through the overburden soil and extend into competent bedrock.
- 2.) The skin friction contribution of the steel pipe piles in the overburden soil above bedrock is conservatively ignored.
- 3.) It is assumed that the rock is not subject to rapid deterioration due to construction.

4.) Per AASHTO 10.8.3.5.4a, the resistance of rock sockets can be comprised of side resistance (skin friction), tip resistance (end bearing), or a combination of both. Although a combination of both would provide additional capacity, more settlement is required to mobilize tip resistance than side resistance. Therefore, the socket capacity will be based on skin friction only.

Ultimate Skin Friction Calculation

The design of the rock socket unit skin friction is based on AASHTO 10.8.3.5.4b for fractured rock (Reese 1999)

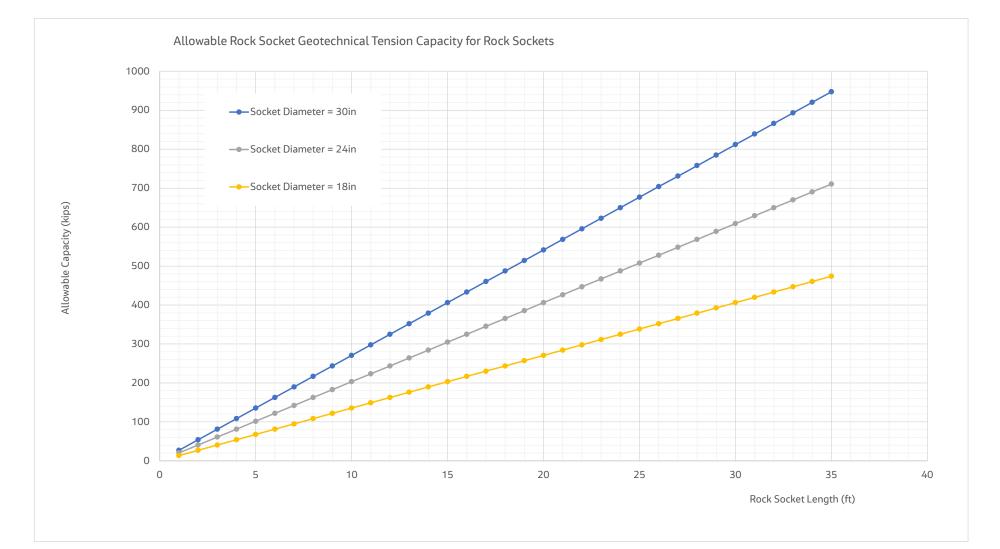
$\frac{ds}{da_a} = 0.65\alpha_E$	$\sqrt{\frac{q_u}{p_a}}$	(10.8.3.5.4b-	2)	
The joint modification factor, α_E is given able 10.8.3.5.4b-1 based on RQD and visual inspection f joint surfaces. able 10.8.3.5.4b-1—Estimation of α_E (O'Neill and Reese ,				
	4b-1—Estimation	of <i>a_E</i> (O'Neill and Reese	,	
able 10.8.3.5. 999)		of a_E (O'Neill and Reese fication Factor, a_E	,	
			,	
		fication Factor, α_E	,	
999)	Joint Modi	fication Factor, a _E Open or	,	
999) RDQ (%)	Joint Modit Closed Joints	fication Factor, α _ε Open or Gouge-Filled Joints	,	
8999) RDQ (%) 100	Joint Modit Closed Joints 1.00	fication Factor, α _ε Open or Gouge-Filled Joints 0.85	,	
8999) RDQ (%) 100 70	Joint Modi Closed Joints 1.00 0.85	fication Factor, α _E Open or Gouge-Filled Joints 0.85 0.55	,	

p _a	2.12	ksf
$p_a \ \alpha_E$	0.55	
q _u	616.6	ksf
qs	12.9	ksf

Notes:

Atmospheric Pressure Joint Modification Factor assuming open joints (AASHTO Table 10.8.3.5.4b-1) Design Unconfined Compressive Strength of Bedrock, q_u (ksf) Ultimate Unit Skin Friction (ksf); AASHTO eq. 10.8.3.5.4b-2

Required Rock Socket Length for Socket - Tension Capacity


By: M. Kullmann Chkd: S. Yang

Ultimate Unit Skin Friction of Tuff Rock

12.9 ksf

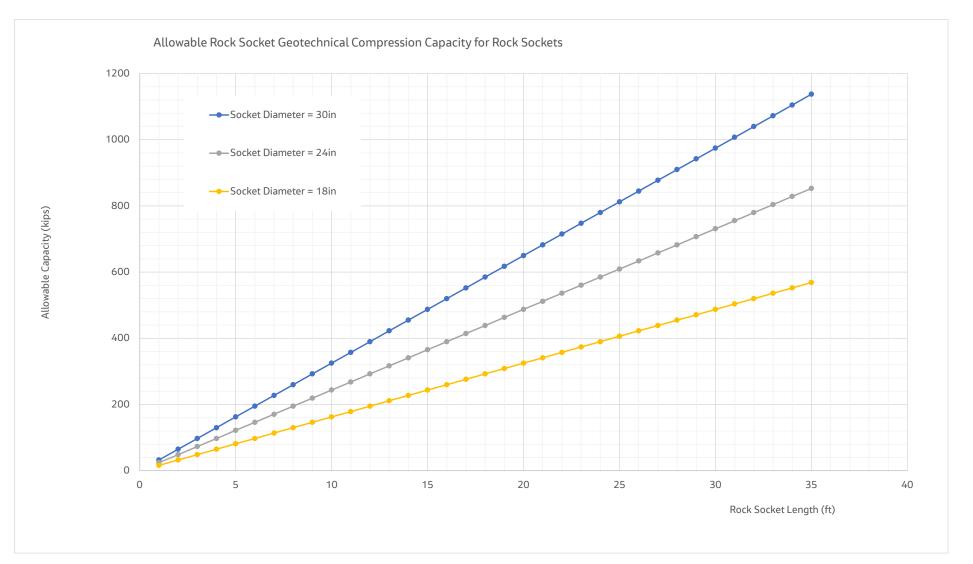
Pipe Pile Diameter (in)	Rock Socket Diameter (in)
36	30
30	24
24	18

	Rock Socket Allowable Tension Capacity (kip) with FOS =3.0			
	Rock Socket Diameter (in)			
Rock Socket Length (ft)	30	24	18	
1	27	20	14	
2	54	41	27	
3	81	61	41	
4	108	81	54	
5	135	102	68	
6	162	122	81	
7	189	142	95	
8	217	162	108	
9	244	183	122	
10	271	203	135	
11	298	223	149	
12	325	244	162	
13	352	264	176	
14	379	284	189	
15	406	305	203	
16	433	325	217	
17	460	345	230	
18	487	365	244	
19	514	386	257	
20	541	406	271	
21	568	426	284	
22	596	447	298	
23	623	467	311	
24	650	487	325	
25	677	508	338	
26	704	528	352	
27	731	548	365	
28	758	568	379	
29	785	589	393	
30	812	609	406	
31	839	629	420	
32	866	650	433	
33	893	670	447	
34	920	690	460	
35	947	711	474	

Notes:

(1) Factor of Safety of 3.0 included to determine allowable tension capacity of rock sockets
 (2) Capacities assume rock sockets are drilled in competent bedrock below upper 5' of weathered bedrock

Required Rock Socket Length for Socket - Compression Capacity


By: M. Kullmann Chkd: S. Yang

Ultimate Unit Skin Friction of Tuff Rock

12.9 ksf

Pipe Pile Diameter (in)	Rock Socket Diameter (in)
36	30
30	24
24	18

	Rock Socket Allowable Compression Capacity (kip) with FOS =2.5 Rock Socket Diameter (in)			
Rock Socket				
Length (ft)	30	24	18	
1	32	24	16	
2	65	49	32	
3	97	73	49	
4	130	97	65	
5	162	122	81	
6	195	146	97	
7	227	171	114	
8	260	195	130	
9	292	219	146	
10	325	244	162	
11	357	268	179	
12	390	292	195	
13	422	317	211	
14	455	341	227	
15	487	365	244	
16	520	390	260	
17	552	414	276	
18	585	439	292	
19	617	463	309	
20	650	487	325	
21	682	512	341	
22	715	536	357	
23	747	560	374	
24	780	585	390	
25	812	609	406	
26	845	633	422	
27	877	658	439	
28	910	682	455	
29	942	707	471	
30	975	731	487	
31	1007	755	504	
32	1040	780	520	
33	1072	804	536	
34	1104	828	552	
35	1137	853	568	

Notes:

(1) Factor of Safety of 2.5 included to determine allowable compression capacity of rock sockets
(2) Capacities assume rock sockets are drilled in competent bedrock below upper 5' of weathered bedrock

Rock Socket Cone Failure Check - Bedrock at El. -30'

By: M. Kullmann Chkd: S. Yang

<u>Purpose</u>

Since minimal overburden soil was encountered at the pile-supported platform for the Lubec Breakwater, the rock sockets must be checked against rock mass cone failure

Reference: Geotechnical Engineering Circular No. 4 - Ground Anchors and Anchored Systems, Pub. No. FHWA-IF-99-015 (FHWA 1999)

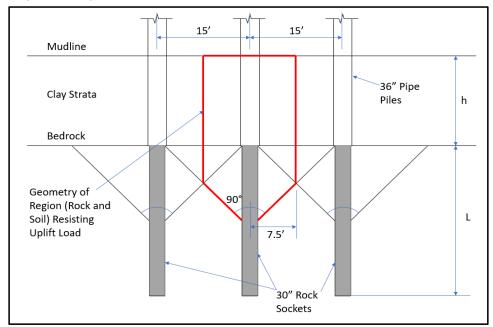


Figure 1. Geometry of Cone Failure Mechanism

Assumptions

- 1) Rock is mass is moderately hard, with high RQD. Cone angle assumed to be 90 deg.
- 2) Cone assmed to start at the 2/3*length of socket
- 3) Calculation based on WB-3

Height of Clay Strata, h	0	ft
Length of Rock Socket, L	25	ft
Height of Rock Cone, 2/3*L	16.667	ft
Unit Weight of Rock	172	pcf
Unit Weight of Clay	100	pcf
Radius of Resisting Cone	7.5	ft
Volume of Soil Overburden	0	ft3
Volume of Rock Cone	441.79	ft3
Volume of Rock above Cone Intersection	1619.9	ft3
Weight of Soil Overburden	0	kip
Weight of Rock Cone	222.66	kip
Total Effective Weight	222.66	kip
Max Tension Load on Socket from		
Structural Engineer for Bedrock at El. -30'	222	kips
Factor of Safety	1.003	<u>OK</u>

Rock Socket Cone Failure Check - Bedrock at El. -35'

By: M. Kullmann Chkd: S. Yang

<u>Purpose</u>

Since minimal overburden soil was encountered at the pile-supported platform for the Lubec Breakwater, the rock sockets must be checked against rock mass cone failure

Reference: Geotechnical Engineering Circular No. 4 - Ground Anchors and Anchored Systems, Pub. No. FHWA-IF-99-015 (FHWA 1999)

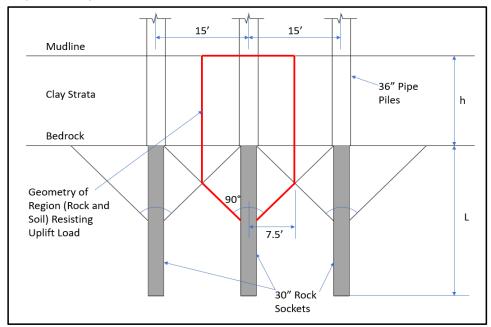


Figure 1. Geometry of Cone Failure Mechanism

Assumptions

- 1) Rock is mass is moderately hard, with high RQD. Cone angle assumed to be 90 deg.
- 2) Cone assmed to start at the 2/3*length of socket
- 3) Calculation based on WB-105

Factor of Safety	1.141	<u>OK</u>
Max Tension Load on Socket from Structural Engineer for Bedrock at El 35'	251	kips
Weight of Soil Overburden Weight of Rock Cone Total Effective Weight	63.617 222.66 286.28	kip
Radius of Resisting Cone Volume of Soil Overburden Volume of Rock Cone Volume of Rock above Cone Intersection	7.5 1767.1 441.79 1619.9	ft3 ft3
Unit Weight of Rock Unit Weight of Clay	172 100	· .
Height of Clay Strata, h Length of Rock Socket, L Height of Rock Cone, 2/3*L	10 25 16.667	ft

Rock Socket Cone Failure Check - Bedrock at El. -40'

By: M. Kullmann Chkd: S. Yang

<u>Purpose</u>

Since minimal overburden soil was encountered at the pile-supported platform for the Lubec Breakwater, the rock sockets must be checked against rock mass cone failure

Reference: Geotechnical Engineering Circular No. 4 - Ground Anchors and Anchored Systems, Pub. No. FHWA-IF-99-015 (FHWA 1999)

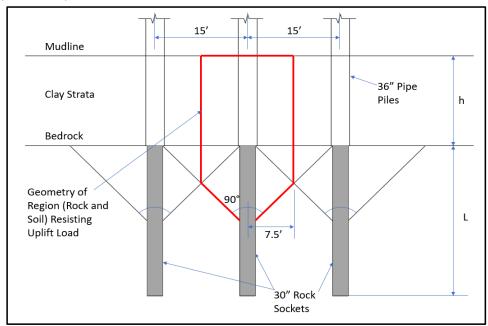


Figure 1. Geometry of Cone Failure Mechanism

Assumptions

- 1) Rock is mass is moderately hard, with high RQD. Cone angle assumed to be 90 deg.
- 2) Cone assmed to start at the 2/3*length of socket
- 3) Calculation based on WB-106

Factor of Safety	1.152	<u>OK</u>
Max Tension Load on Socket from Structural Engineer for Bedrock at El 40'	276	kips
Weight of Soil Overburden Weight of Rock Cone Total Effective Weight	95.426 222.66 318.09	kip
Radius of Resisting Cone Volume of Soil Overburden Volume of Rock Cone Volume of Rock above Cone Intersection	7.5 2650.7 441.79 1619.9	ft3 ft3
Unit Weight of Rock Unit Weight of Clay	172 100	· .
Height of Clay Strata, h Length of Rock Socket, L Height of Rock Cone, 2/3*L	15 25 16.667	ft