

GEOTECHNICAL DESIGN REPORT DAY'S MILL BRIDGE NO. 2221 MAINE DOT WIN 26226.00 KENNEBUNK-ARUNDEL, MAINE

October 2024 File No. 09.0026198.01

Built on trust.

Prepared for: HNTB Corporation South Portland, Maine

Prepared by: GZA GeoEnvironmental, Inc. 707 Sable Oaks Drive | Suite 150 | Portland, Maine 04106 207.879.9190

Offices Nationwide

Copyright 2024 GZA GeoEnvironmental, Inc.

VIA EMAIL

October 24, 2024 File No. 09.0026198.01

Ms. Ashley Stephens HNTB Corporation 82 Running Hill Road South Portland, ME 04106

Re: Geotechnical Design Report Replacement of Day's Mill Bridge No. 2221 MaineDOT WIN 26226.00 Kennebunk-Arundel, Maine

Dear Ashley:

We are pleased to provide this Final Geotechnical Design Report, which includes geotechnical design recommendations for the replacement of the Day's Mill Bridge No. 2221 in Kennebunk-Arundel, Maine. Our work was completed in accordance with GZA GeoEnvironmental, Inc.'s Project Contract for Task Order No. GZA622.01 which incorporates our March 11, 2024 proposal, HNTB File No. 67328-DS-622-001-E008, dated March 3, 2024, our Master/Task Order Agreement dated December 8, 2020, and the attached Limitations contained in **Appendix A** of this report. HNTB is serving as the bridge designer for MaineDOT.


It has been a pleasure serving HNTB/MaineDOT on this phase of the project, and we look forward to our continued work with you through project completion. If you have any questions regarding the report, or if we can provide further assistance, please do not hesitate to contact the undersigned.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Blaine M. Cardali, P.E. Senior Project Manager

Andrew R. Blaisdell, P.E. Consultant Reviewer

Christopher L. Snow, P.E. Principal

BMC/CLS/ARB:pca p:\09 jobs\0026100s\09.0026198.00 - medot - day's mill bridge, kennebunk\09.0026198.01 - hntb-medot - final design\report\final 26198.01 day's mill bridge no. 2221_10.24.24.docx

Attachment: Geotechnical Design Report

Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

707 Sable Oaks Drive Suite 150 South Portland, ME 04106 T: 207.879.9190 F: 207.536.1173 www.gza.com

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO. 2221

HNTB Corporation 09.0026198.01 Page i

TABLE OF CONTENTS

1.0	INTR	Pa ODUCTION	<u>age</u> 1
1.0	1.1	BACKGROUND	
	1.1	OBJECTIVES AND SCOPE OF SERVICES	
2.0		SURFACE EXPLORATIONS	
2.0			
	2.1	PRELIMINARY DESIGN BORINGS	
	2.2	FINAL DESIGN BORINGS	
3.0		DRATORY TESTING	_
4.0	SUBS	SURFACE CONDITIONS	
	4.1	SURFICIAL AND BEDROCK GEOLOGY	3
	4.2	SUBSURFACE PROFILE	3
		4.2.1 Bedrock	
		4.2.2 Groundwater	
5.0			
	5.1	GENERAL	
	5.2	PROPOSED CONSTRUCTION	
	5.3	APPROACH EMBANKMENTS	_
	5.4	FOUNDATION DESIGN CONSIDERATIONS	
		5.4.1 Abutment Foundations	
	5.5	SEISMIC DESIGN CONSIDERATIONS	
	5.6	LOAD AND RESISTANCE FACTORS	
	5.7	SPREAD FOOTING DESIGN CONSIDERATIONS	-
		5.7.1 Footing Bearing Resistance	
	5.8	ADDITIONAL FOUNDATION CONSIDERATIONS	
		5.8.1 Frost Penetration	
6.0	RECO	5.8.2 Lateral Earth Pressure OMMENDATIONS	
0.0	6.1	EMBANKMENT DESIGN CONSIDERATIONS	
	6.2	SEISMIC DESIGN	
	-	ABUTMENT AND WINGWALL DESIGN	
	6.3		
7.0		6.3.1 Spread Footing Design	
7.0	7.1	SUPPORT OF EXCAVATION AND DEWATERING	
	7.2	SUBGRADE PREPARATION	10

Page ii

TABLE OF CONTENTS (continued)

7.3	REUSE OF ON-SITE MATERIALS	1	1
-----	----------------------------	---	---

TABLES

- TABLE 1
 Summary of Subsurface Explorations
- TABLE 2Summary of Bedrock Data

FIGURES

FIGURE 1	Locus Plan
FIGURE 2	Boring Location Plan & Interpretive Subsurface Profile

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Test Boring Logs
APPENDIX C	Laboratory Test Results
APPENDIX D	Rock Core Photographs
APPENDIX E	Calculations

1.0 INTRODUCTION

This report presents the results of the final design geotechnical evaluation by GZA GeoEnvironmental, Inc. (GZA) for the replacement of Maine Department of Transportation (MaineDOT) Day's Mill Bridge No. 2221 in Kennebunk-Arundel, Maine. Our work was completed in accordance with GZA GeoEnvironmental, Inc.'s Project Contract for Task Order No. GZA622.01 which incorporates our March 11, 2024 proposal, HNTB File No. 67328-DS-622-001-E008, dated March 3, 2024, our Master/Task Order Agreement dated December 8, 2020, and the attached Limitations contained in **Appendix A** of this report.

1.1 <u>BACKGROUND</u>

The project includes replacement of the Day's Mill Bridge No. 2221 carrying State Route 35 over Kennebunk River from Kennebunk to Arundel, Maine. The project location is shown on **Figure 1**. The existing bridge is a single span bridge with a span length of approximately 26 feet. The bridge was rebuilt in 1932 and consists of a 25-foot wide, simple-span, concrete bridge deck supported by concrete T-Beams founded on concrete gravity abutments. The abutments are understood to have been cast against existing stacked stone foundations at both abutments and wingwalls. Existing foundations are believed to bear directly on bedrock.

The selected bridge alternative is a single span bridge with a span length of 58 feet and a width of approximately 32 feet. The proposed bridge centerline will be approximately 16 feet east (downstream) from the existing bridge. The new abutments are anticipated to be designed with semi-integral abutment substructures supported on spread footings bearing directly on bedrock. We understand that Route 35 will be closed to traffic and a detour will be required to maintain traffic during construction.

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to evaluate subsurface conditions and to provide geotechnical engineering recommendations for the proposed bridge in support of the final bridge design. To meet these objectives, GZA completed the following Scope of Services:

- Conducted a site visit to observe surficial and reviewed mapped surficial and bedrock geology of the site;
- Reviewed existing subsurface data and as-built plans;
- Coordinated and observed subsurface exploration programs for preliminary and final design to evaluate subsurface conditions and collect samples for laboratory testing;
- Requested and were provided with rock outcrop survey data for additional consideration of bedrock elevations for footing evaluations;
- Conducted laboratory testing programs to evaluate engineering and index properties of the site soils and bedrock;
- Conducted final design geotechnical engineering analyses to evaluate feasible foundation types; final design parameters; considerations for widened embankments; and seismic design parameters;
- Developed geotechnical construction considerations; and
- Prepared this geotechnical design report summarizing our findings and design recommendations.

2.0 SUBSURFACE EXPLORATIONS

GZA completed a preliminary design exploration program in 2023 consisting of two test borings designated as BB-KAKR-101 and -102, and a final design supplemental exploration program in 2024 consisting of three borings designated as BB-KAKR-201 through -203. GZA's representative also marked and gave designations for survey points designated as TR-1 through TR-15, on the bedrock outcrops along the riverbanks in the vicinity of the new abutments, to provide additional top of rock data points. The points were subsequently surveyed by MaineDOT and are summarized in **Table 1** and shown on **Figure 2**.

Borings were drilled using 4-inch casing, and drive- or spin-and-wash drilling techniques, as noted on the boring logs. Standard penetration testing (SPT) and split spoon sampling were performed continuously or at standard 5-foot intervals using a 24-inch-long, 1-3/8-inch inside diameter sampler. The borings were backfilled with ¾-inch crushed stone and/or soil cuttings and topped with asphalt cold patch. GZA personnel monitored the drilling work and prepared logs of each boring that are included in **Appendix B**. Additional details of each program are described below.

The as-drilled boring locations and elevations were surveyed by MaineDOT, provided to GZA and are shown on **Figure 2**. Elevations referenced in this report are in feet and refer to the National American Vertical Datum of 1988 (NAVD 88).

2.1 PRELIMINARY DESIGN BORINGS

Borings BB-KAKR-101 and BB-KAKR-102 were drilled between September 13, 2023 and September 14, 2023, by New England Boring Contractors of Hermon, Maine. The test borings were completed using a Mobile B-53 drill carried on a CME track-mounted rig. The borings were drilled to depths of 26.5 and 33.5 feet below ground surface (bgs). Ten feet of bedrock was cored in each boring. SPTs were conducted using automatic hammer NEBC No. D-20, which had a rated hammer energy transfer ratio of 0.742 at the time of drilling, except for the upper 18 feet of BB-KAKR-101, which were conducted with a 140 lb. safety hammer with a rope and cathead, which has an assumed energy transfer ratio of 0.6.

2.2 FINAL DESIGN BORINGS

Borings BB-KAKR-201 though BB-KAKR-203 were drilled between April 10, 2024 and April 11, 2024, by New England Boring Contractors of Hermon, Maine. The test borings were completed using a Mobile B-53 drill carried on a CME track-mounted rig. The borings were drilled to depths of 18.0 to 21.0 feet bgs. Ten feet of bedrock was cored from each boring location. SPTs were conducted using automatic hammer NEBC No. D-20, which had a rated hammer energy transfer ratio of 0.742 at the time of drilling.

3.0 LABORATORY TESTING

GZA retained Thielsch Engineering of Cranston, Rhode Island to complete laboratory testing programs to assess the gradation and index properties of the soil and the strength of the bedrock. The combined Preliminary and Final testing programs included:

- Twelve (12) gradation analysis / MaineDOT Frost Classification / AASHTO Soil Classifications;
- Twelve (12) moisture content tests;
- Five (5) unconfined compression tests on bedrock core samples; and
- Three (3) hydrometer tests.

Results of the testing are included in **Appendix C**.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

Based on available geologic mapping¹, the surficial units in the vicinity of the site consist of Presumpscot Formation marine silty clay; sand and gravel Marine Delta Deposits; and mixed silt, sand, gravel, cobble, and boulder Glacial Till; with bedrock exposures and anticipated shallow overburden depths.

Based on available bedrock geologic mapping², bedrock in the vicinity of the site consists of medium brownish-gray feldspathic quartz-biotite granofels, greenish calc-silicate granofels and subordinate quartz-biotite schist and is mapped as the Berwick Formation.

4.2 SUBSURFACE PROFILE

The existing bridge foundation appears to have been constructed directly on bedrock, with no record of marine silty clay shown on historic plans. Since the 1932 concrete appears to have been placed in front of pre-existing stone masonry abutments and based on our experience with similar structures, we anticipate that rock fill may be present behind the older stone masonry abutment above natural soils.

Two soil units were encountered above bedrock at the site: Fill and Glacial Outwash. The approximate thicknesses and generalized descriptions of the subsurface units are presented in the following table, in descending order from existing ground surface.

¹ Smith, Geoffrey W., 1999, Surficial geology of the Kennebunk 7.5-minute quadrangle, York County, Maine: Maine Geological Survey, Open-File Report 99-117, 9 p.. *Maine Geological Survey Publications*. 258. http://digitalmaine.com/mgs_publications/258

² Hussey, Arthur M., II, Bothner, Wallace A., and Thompson, Peter J., 2008, Bedrock geology of the Kittery 1:100,000 quadrangle, Maine and New Hampshire: Maine Geological Survey, Geologic Map 08-78 (Superseded by Hussey, Bothner, and Thompson, 2016, Maine Geological Survey Open-File 16-6), 1 plate, photographs, color map, cross section, scale 1:100,000. *Maine Geological Survey Maps*. 2043. http://digitalmaine.com/mgs_maps/2043

Soil Unit	Approximate Encountered Thickness (ft)	Generalized Description
Fill	2.6 to 16	Brown, loose to dense, fine to coarse SAND, trace to little silt, trace to some gravel, with occasional cobbles. (USCS: SM, SP-SM, SW-SM) Typical MaineDOT Frost Classification Range= 0 to II Encountered in all borings
Glacial Outwash	4.0 to 7.5	<u>Varying from:</u> Brown, loose to medium dense, GRAVEL, some fine to coarse sand, trace to little silt <u>to:</u> Grey, loose, Silty medium to fine SAND. (USCS: GM,SM, SP-SM, SW-SM). Probable cobbles and boulders throughout. Typical MaineDOT Frost Classification = II to IV <i>Encountered in borings BB-KAKR-102 and BB-KAKR-201 through BB-KAKR-203</i>
Estimated Top of Bedrock*		Abutment 1: El. 121.8 to 128.4 Abutment 2: El. 123.8 to 128.5

* Estimated top of rock considers boring data and survey data for points nearest to the project baseline. See Figure 2 for survey points included in the range in top of bedrock elevations.

Detailed descriptions of the materials encountered at specific locations are provided on the boring logs in **Appendix B**. An interpretive subsurface profile based on the test borings and top of rock survey results is presented as **Figure 2**. The approximate thickness and elevation of each stratum is summarized on the attached **Table 1**.

4.2.1 <u>Bedrock</u>

Bedrock cored in each test boring was generally identified as a Schist and was described as hard, fresh to slightly weathered, fine to medium grained, and grey. In boring BB-KAKR-101, a Granofels intrusion was also encountered within the Schist bedrock and was described as hard, fresh to slightly weathered, fine to coarse grained, and grey. The joints are very close to moderately spaced, low angle to high angle, stepped to planar, smooth to rough, fresh to decomposed, and tight to open. The Rock Quality Designation (RQD) in the bedrock ranged from 0 to 93 percent (weighted average of 58 percent), corresponding to a rock quality of very poor to good. Dry and wet photographs of the collected rock core are presented in **Appendix D**.

Unconfined compressive strength testing was conducted on three samples of fresh rock, the results of which are summarized in the following table.

		SUMN	ARY OF BEDRO	OCK STRENGTH T	EST RESULTS			
Boring	DepthDepthbelowbelowBoringExistingTop ofGroundRock(ft bgs)(ft bgs)		Elevation (ft NAVD 88)	Unconfined Compressive Strength (psi)	Secant Modulus @ 50% of Failure Stress (ksi)	Unit Weight (pcf)	Rock Type	
BB-KAKR-101	23.7	0.2	121.6	3,201	1,180	173.9	SCHIST	
BB-KAKR-101	25.8	2.3	119.5	5,138	1,490	165.9	GRANOFELS	
BB-KAKR-102	20.6	4.6 123.9		4,072	2,450	173.8	SCHIST	
BB-KAKR-201	13.3	2.8	142.0	4,766	3,090	163.6	SCHIST	
BB-KAKR-203	BB-KAKR-203 14.8 6.8 143.9		6,286	4,560	174.1	SCHIST		

4.2.2 <u>Groundwater</u>

Groundwater depths were measured in borings BB-KAKR-101 and -102 at depths between approximately 14.2 and 16 feet bgs, corresponding to approximately El. 129.3 to 130.3. Groundwater levels in the 100 series borings were measured immediately after removal of drill casing and may have been affected by drilling procedures, which included introduction of water for drilling purposes. Groundwater was not observed in borings BB-KAKR-201 through BB-KAKR-203.

The ground water observations were made at the varying times and under the conditions stated in the boring logs. Fluctuations in groundwater level occur due to variations in season, precipitation, stream levels and construction activities in the area. Consequently, water levels during construction are likely to vary from those encountered at the time the observations were made. Due to the shallow depth to bedrock, perched water conditions are anticipated to occur seasonally.

5.0 ENGINEERING EVALUATIONS

5.1 <u>GENERAL</u>

GZA conducted preliminary geotechnical engineering evaluations in accordance with 2020 AASHTO LRFD Bridge Design Specifications, 9th Edition (herein designated as AASHTO) and the MaineDOT Bridge Design Guide, 2003 Edition, with 2018 updates (MaineDOT BDG).

5.2 PROPOSED CONSTRUCTION

We understand that a full bridge replacement is planned for the project. The current alternative includes shifting the centerline of the bridge approximately 16 feet to the east and increasing the span length to 58 feet. The new abutments will be located approximately 16 feet behind the existing abutments, where the existing and new bridge foundation footprints are aligned.

5.3 <u>APPROACH EMBANKMENTS</u>

Typical grade raises of 1 foot or less are shown on the drawings at the approaches to the new bridge. Where embankment widening is proposed on the right side, proposed grade raises of 5 feet are typical, with a maximum fill height of about 11 feet behind the right wingwall at Abutment 2. The approach embankments are proposed with typical side slope angles of 2 horizontal to 1 vertical (2H:1V), or flatter, except for the ground surface in front of each abutment, which will slope down to the river level at an inclination of approximately 1.5H:1V and will be protected by riprap.

We anticipate that the proposed embankment fills will be constructed primarily over medium dense Glacial Outwash or bedrock. Due to the typical strength and low compressibility, embankment settlement and global stability are not considered to be concerns for the project.

5.4 FOUNDATION DESIGN CONSIDERATIONS

5.4.1 <u>Abutment Foundations</u>

Given the shallow depth and relative quality of the bedrock, it is our opinion that spread footings bearing on intact bedrock are the most appropriate foundation system for the abutments and wing walls. Recommendations for spread footing design are provided in **Section 6.4**.

5.5 SEISMIC DESIGN CONSIDERATIONS

Seismic site class was determined in general accordance with LRFD Table C3.10.3.1. Considering the bridge will be supported by spread footings bearing directly on bedrock, the bridge is assigned to Site Class B.

The available subsurface data indicate that the natural materials encountered above bedrock at the site are sufficiently cohesive or dense that the potential for liquefaction is low.

5.6 LOAD AND RESISTANCE FACTORS

AASHTO LRFD load factors should be applied to horizontal earth pressure (EH), vertical earth pressure (EV), earth surcharge (ES), and live load surcharge (LS) loads, using the load factors for permanent loads (γ_p) provided in LRFD Table 3.4.1-2 for strength limit state foundation design. Load factors are not provided for passive earth pressure because this is considered a resistance in AASHTO LRFD. A load factor of 1.5 may be applied to the passive soil reaction used to design the integral backwall (end diaphragm) to account for deformation of the backwall into the soil as a result of thermal expansion of the integral bridge deck, consistent with the load factor provided for active earth pressure in AASHTO Table 3.4.1-2.

The recommended LRFD resistance factors for strength limit state design of foundations were derived from LRFD Tables 10.5.5.2.2-1, 10.5.5.2.3-1, and 10.5.5.2.4-1 and are presented in the following table.

GEOTECHNICAL RESISTANCE FACTORS – STRENGTH LIMIT STATE												
Foundation Resistance Type	Method/Condition	Resistance Factor (φ)	AASHTO Reference									
Bearing	Footing on Rock	0.45	10.5.5.2.2-1									
Sliding	Footing on Rock, Cast-in-Place	0.8	10.5.5.2.2-1									

Resistance factors for service and extreme limit state design should be taken as 1.0.

5.7 SPREAD FOOTING DESIGN CONSIDERATIONS

5.7.1 Footing Bearing Resistance

Nominal and factored bearing resistances have been developed for the abutments using the Rock Mass Rating-(RMR-) based empirical correlation presented in "Foundations on Rock," by Duncan Wyllie. RMR was evaluated in accordance with Table 10.4.6.4-1 of the 2012 AASHTO LRFD Bridge Design Specifications, 6th Edition (AASHTO). The current version (9th Edition) of the AASHTO Design Specifications does not include the RMR formulation that is included in the 6th Edition version. However, Articles C10.4.6.4 and 10.6.2.6.2 of the 9th Edition refer to RMRbased design procedures for footings on rock, so the 6th Edition methodology was utilized here.

GZA used bedrock data obtained in test borings drilled at or near the proposed abutments to develop foundation design parameters at the abutment locations. The bedrock properties used in the bearing resistance evaluation are presented below:

	DESIGN BEDROC	K PROPERTIES FOR BEARING	RESISTANCE EVALUA	TION									
Rock Type	RQD (percent)	Unconfined Compressive Strength (ksi)	Rock Mass Rating (RMR)	m	S								
Schist 58 4.0 47 0.388 0.000145													

Based on these parameters, the calculated nominal bearing resistance is 47 kips per square foot (ksf), resulting in a factored bearing resistance of 21 ksf for the strength limit state. Supporting calculations are provided in **Appendix E**.

LRFD Article 10.6.2.4.4 indicates that footings bearing on rock with an RMR-based rock quality of Fair or better and designed using LRFD methods are anticipated to experience ½ inch or less of elastic settlement.

The resistance against sliding should be evaluated in accordance with AASHTO LRFD Article 10.6.3.4 using an interface friction angle (ϕ_f) of 35 degrees, representing mass concrete on clean sound rock. Nominal sliding resistance for footings is equal to the vertical force multiplied by the concrete placement type factor (1.0 for cast-in-place concrete), and the sliding resistance coefficient (tan ϕ_f), which is equal to 0.7.

5.8 ADDITIONAL FOUNDATION CONSIDERATIONS

5.8.1 Frost Penetration

Fill soils are anticipated to be present at the abutments and embankments, either as existing fill or imported backfill. Based on the MaineDOT BDG, Section 5.2.1, the Freezing Index for the site is 1,250, and with low-moisture content (<10 percent) soils, the estimated depth of frost penetration is approximately 6.2 feet. However, where abutment foundations bear directly on sound rock, there is no minimum requirement for footing embedment.

5.8.2 Lateral Earth Pressure

The material properties will be controlled by the backfill material, which is proposed to consist of BDG Type 4 soil. In accordance with the requirements of the BDG Section 5.4.3, the semi-integral abutments and wingwalls will be free to rotate and therefore should be designed for active earth pressure.

Thermal expansion of the bridge will cause the superstructure backwall (end diaphragm) to move toward the backfill, which will result in earth pressures ranging from at-rest to passive earth pressure. Therefore, the superstructure backwall should be designed for full passive pressure. HNTB provided a maximum expansion deflection of 0.38 inches for use in end diaphragm design. The end diaphragm height is approximately 4 feet resulting in a calculated abutment rotation of 0.0079 feet/foot. It is GZA's understanding that recent practice is to utilize The *Massachusetts Department of Transportation LRFD Bridge Design Manual* methodology, which provides an empirical equation, to calculate lateral earth pressure coefficient (K) based on the ratio of deflection (δt) and wall height (H).

Design lateral earth pressure recommendations are provided in **Section 6.3** of this report and calculations are presented in **Appendix E**.

6.0 **RECOMMENDATIONS**

6.1 <u>EMBANKMENT DESIGN CONSIDERATIONS</u>

Embankment side slopes that are not riprap-covered should be designed with MaineDOT-typical slope angles of 2H:1V or flatter. Soil slopes should be provided with loam and seed for permanent erosion protection. Steeper slopes should be covered with riprap. Riprap should also be provided where the embankment side slopes will be near or below typical water levels, to protect from scour.

The riprap detail in front of the abutments shows a standard keyway detail. Bedrock is likely to be present at or near ground surface, which will make creation of the keyway impractical.

6.2 <u>SEISMIC DESIGN</u>

The peak ground acceleration coefficient, short- and long-period spectral acceleration coefficients were interpolated from the AASHTO design guide maps (3.10.2.1-1 through -21 as appropriate). Based on the site coordinates, the recommended AASHTO Response Spectra (Site Class B) for a 7 percent probability of exceedance in 75 years are summarized for the site are as follows:

SITE CLASS B SEISMIC DESIGN PARAMETERS											
Parameter	Design Value										
Fpga	1.0										
Fa	1.0										
Fv	1.0										
As (Period = 0.0 sec)	0.10 g										
SDs (Period = 0.2 sec)	0.18 g										
SD1 (Period = 1.0 sec)	0.05 g										

Per AASHTO Article 4.7.4.2, single span bridges need not be analyzed for seismic loads, but the minimum requirements for superstructure connections and support lengths as specified in AASHTO Articles 4.7.4.4 and 3.10.9 apply.

6.3 ABUTMENT AND WINGWALL DESIGN

- Abutment backfill should consist of MaineDOT 703.19 Granular Borrow for Underwater Backfill, MaineDOT BDG Type 4 soil. Recommended soil properties for Type 4 soils are as follows:
 - Internal Friction Angle of Soil = 32°
 - Soil Total Unit Weight = 125 pcf
 - Coefficient of Passive Earth Pressure, K_p (use for design of end diaphragms), K_p= 4.86;
 - Coefficient of Active Earth Pressure, K_a=0.28 (use for design of abutments and wingwalls):
- Live load surcharge should be applied as a uniform lateral surcharge pressure using the equivalent fill height (H_{eq}) values developed in accordance with LRFD Section 3.11.6.4, based on the abutment/wingwall height and distance from the wall backface to the edge of traffic. A minimum H_{eq} of 2 feet is recommended.

• Foundation drainage should be provided in accordance with Section 5.4.1.9 of the MaineDOT BDG. We recommend the use of French drains on the uphill side of abutments and wing walls to prevent buildup of differential hydrostatic pressure. The drains should be sloped to drain by gravity and should outlet through a series of 4-inch-diameter weep holes, spaced approximately 10 feet center-to-center.

6.3.1 Spread Footing Design

- The proposed abutments should be supported on spread footing foundations bearing on sound, intact bedrock. Footings designed to bear on intact bedrock should be designed using a nominal bearing resistance, q_n, of 47 ksf. At the strength limit state, footings should be designed for a maximum factored bearing resistance of 21 ksf. A bearing resistance of 21 ksf should also be used for service limit state design.
- Spread footings founded on bedrock should be checked for eccentricity with AASHTO Article 10.6.3.3. Eccentricity of the footing reaction at the strength limit state should be limited such that the resultant reaction on the base of the footing is no further than 0.45 B from the centerline of the footing, where B is the footing width perpendicular to the axis of rotation.
- The base resistance against sliding may be based on NAVFAC DM7.02-63, Table 1, which indicates the nominal sliding resistance coefficient (tan δ) is equal to 0.7 for cast-in-place concrete on sound rock. The factored sliding resistance coefficient is 0.56 for Strength Limit State.
- Existing substructures should be completely removed prior to new foundation construction where they interfere with new foundations.
- The bedrock surface should be cleaned of loose soil or rock prior to concrete placement for subfooting concrete or the footing. Bearing surface preparation should be in accordance with **Section 7.2**.
- The following table summarizes the top of bedrock elevations encountered in the borings and survey points located within or adjacent to foundation locations. These data, combined with the interpreted subsurface profile shown in **Figure 2**, are provided to assist the designer in developing bottom-of-footing elevations for the abutments.

ESTIMATED BEDROCK LEVELS FOR FOOTING DESIGN										
Foundation Element	Estimated Range in Bedrock Elevation (feet, NAVD 88)									
Abutment 1	EI. 121.8 to 128.4									
Abutment 2	El. 123.8 to 128.5									

It is important to note that the top of intact rock cannot be known for the entire foundation area prior to construction. We expect that intact rock may be encountered above and/or below the anticipated levels. Some construction-phase engineering should be anticipated to address the potential variability of the encountered conditions.

- If the bedrock level extends above the design bottom of footing elevation, the footing may be raised and vertical reinforcement shortened in the wall, subject to review and approval of the Designer to limit the volume of bedrock excavation.
- If the exposed bedrock surface after cleaning is below the design footing bearing level, fill concrete may be placed up to the bottom of footing level with a minimum thickness of 6 inches.
- Concrete used for fill concrete beneath footings and for footings should consist of Class A Concrete in accordance with MaineDOT Standard Specification Section 502.05.

- Anchoring, doweling, benching or other means of improving sliding resistance is recommended at locations where the prepared bedrock surface is steeper than 4H:1V in any direction. However, it is GZA's understanding that the abutment and footing designer requires the threshold to be 12H:1V.
- Rock dowels may be used to supplement the sliding resistance for the footing. If used, the dowels should be grouted a minimum of 2 feet into intact bedrock and embedded at least 2 feet into concrete. The unconfined compressive strength of the bedrock should be assumed to be 4.0 ksi for design of rock dowels.
- Dowels should be grouted with a cementitious grout on the MaineDOT Qualified Products List of Grout Materials for Keyways and Anchoring (pre-qualified for anchoring). Epoxy grout should not be used.
- Since the footings will be founded on bedrock, there is no minimum embedment required for frost protection per BDG Article 5.2.1.

7.0 CONSTRUCTION CONSIDERATIONS

This section describes geotechnical-related issues that have the potential to impact design and cost considerations for bridge construction.

7.1 SUPPORT OF EXCAVATION AND DEWATERING

Excavations for abutment foundations will extend approximately 0 to 23.5 feet below existing grade to expose bedrock. The anticipated bedrock surface elevation ranges from approximately El. 121.8 to 128.4 at Abutment 1 and El. 123.8 to 128.5 at Abutment 2, corresponding to depths of approximately 2 feet below to 4 feet above the Q1.1 water level (El. 124.1) at Abutment 1, and at or 4 feet above the Q1.1 water level at Abutment 2. A water diversion system, such as sandbags with a membrane may be used as a flow diversion system at this site if the water depths allow this approach.

Sloped open cut excavation techniques are considered feasible between the abutments and the approach fills.

The contractor should be responsible for design of all temporary support of excavation. In all cases, temporary excavations should comply with Occupational Safety and Health Administration excavation safety requirements.

We anticipate that the inflow of groundwater or surface water to excavations can be handled by open pumping from sumps installed at the bottoms of excavations. The contractor should be responsible for controlling groundwater, surface runoff, stream inflow, infiltration and water from all other sources to permit foundation construction in-the-dry. Discharge of pumped groundwater and river water should comply with all local, State, and federal regulations.

7.2 SUBGRADE PREPARATION

We anticipate it will be feasible to complete final bedrock subgrade preparation in-the-dry. The bedrock surface is known to be variable in terms of elevation, slope and localized weathering. Conventional excavation equipment such as hydraulic excavators and hydraulic rock breakers are anticipated to be sufficient to complete excavations. All soil and loose, decomposed, highly weathered and fractured bedrock should be removed from the footing bearing surface prior to placement of subfootings or footings. We anticipate that high-pressure air and or water will be used to clean the prepared bedrock surface.

The prepared bearing surfaces should be observed by the geotechnical engineer prior to placing concrete. The Geotechnical Engineer and Designer should also be provided cross-sections or contour plans showing the prepared rock surface geometry prior to placement of concrete to evaluate whether benching, doweling, or subfooting concrete fill are needed for that foundation location. If the exposed bedrock surface is steeper than 4H:1V, then anchoring, doweling, benching or other means should be designed by HNTB and/or GZA based on the exposed inclinations to provide sufficient sliding resistance for the design loads.

7.3 REUSE OF ON-SITE MATERIALS

Soil samples recovered from the existing approach fills typically had approximately 10 percent passing the No. 200 sieve, indicating the fill may meet MaineDOT specifications for Granular Borrow. Soil samples recovered from areas outside of the existing approach fills typically had 20 to 40 percent passing the No. 200 sieve, indicating that it will not meet MaineDOT specifications for Granular Borrow, but that it may be considered suitable for use as Common Borrow.

If the contractor wishes to reuse excavated material as embankment fill or in other areas, we recommend that the proposed material be stockpiled and tested for grain size distribution. Stockpiled materials meeting the appropriate MaineDOT specifications may be reused on the project.

P:\09 Jobs\0026100s\09.0026198.00 - MEDOT - Day's Mill Bridge, Kennebunk\09.0026198.01 - HNTB-MEDOT - Final Design\Report\FINAL 26198.01 Day's Mill Bridge No. 2221_10.24.24.docx

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

TABLES

TABLE 1 Summary of Subsurface Explorations and Bedrock Survey Data Day's Mill Bridge Replacement Kennebunk-Arundel, Maine GZA job#: 09.0026198.01

						1	Top of Stra	tum Elevatio	on	Strat	tum Thickne	ss (ft)				Grou	Indwater
Exploration/Survey Point ID	Northing	Easting	Station	Offset	Ground Surface El. (ft)	Asphalt	Fill	Glacial Outwash	Bedrock	Asphalt	Fill	Glacial Outwash	Depth to Bedrock (ft)	Bottom of Boring Depth (ft)	Bottom of Boring El. (ft)	El. (ft)	Depth (ft)
	TEST BORINGS													·			
BB-KAKR-101	227572.8	923039.6	549+82.1	6.8' L	145.3	145.3	144.3	129.3	121.8	1.0	15.0	7.5	23.5	33.5	111.8	129.3	16.0
BB-KAKR-102	227633.3	923019.5	550+50.3	6.9' L	144.5	144.5	143.5	NE	128.5	1.0	15.0	NE	16.0	26.5	118.0	130.3	14.2
BB-KAKR-201	227565.6	923088.3	549+65.6	36.2' R	142.0	NE	142.0	139.4	132.2	NE	2.6	7.2	9.8	20.5	121.5	NE	NE
BB-KAKR-202	227550.4	923021.3	549+68.0	32.6' L	144.5	NE	144.5	NE	133.7	NE	10.8	NE	10.8	21.0	123.5	NE	NE
BB-KAKR-203	227702.7	923026.1	551+10.3	24.6' R	143.9	NE	143.9	139.9	135.9	NE	4.0	4.0	8.0	18.0	125.9	NE	NE
						BED	ROCK SUP	RVEY POINTS									
TR-1	227586.1	923059.1	549+90.3	18.9' R					128.4								
TR-2	227591.8	923068.9	549+92.8	29.9' R					126.6								
TR-3	227595.3	923093.3	549+89.2	54.2' R					132.7								
TR-4	227594.2	923062.5	549+96.9	24.6' R					121.2								
TR-5	227591.3	923056.6	549+96.0	18.0' R					122.2								
TR-6	227597.5	923081.1	549+94.6	43.3' R					123.7								
TR-7	227652.9	923070.0	550+47.0	51.3' R					119.3								
TR-8	227649.2	923066.9	550+44.9	47.1' R					120.6								
TR-9	227650.8	923063.5	550+47.5	44.5' R					121.8								
TR-10	227644.3	923058.3	550+43.6	37.3' R					125.7								
TR-11	227644.3	923054.9	550+44.7	34.1' R					122.6								
TR-12	227642.2	923050.4	550+44.4	29.2' R					123.4								
TR-13	227637.3	923046.8	550+41.3	24.0' R					124.4								
TR-14	227633.9	923046.2	550+38.5	22.3' R					123.8								
TR-15	227629.8	923039.3	550+37.0	14.4' R					128.3								

El. = Elevation, NE = Not Encountered, NM = Not Measured, NP = Not Penetrated, > = Boring Terminated in Stratum

Notes:

1. Refer to the boring logs in Appendix B for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. As-drilled boring locations and elevations were surveyed by MaineDOT and provided to GZA.

4. Stratum depths, thickness and elevations are rounded to the nearest 0.1 foot as interpreted on the boring logs, but this does not represent the precision of the data.

5. The bedrock survey point locations and elevations were surveyed by MaineDOT and provided to GZA.

TABLE 2

Summary of Bedrock Data

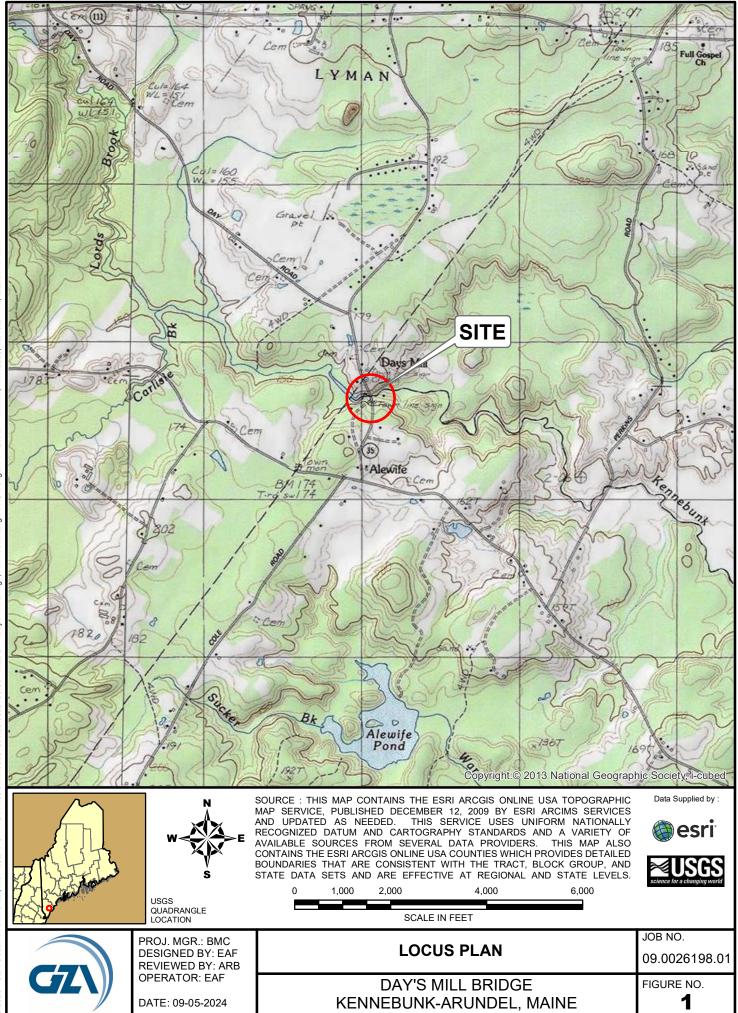
Day's Mill Bridge No. 2221 over Kennebunk River

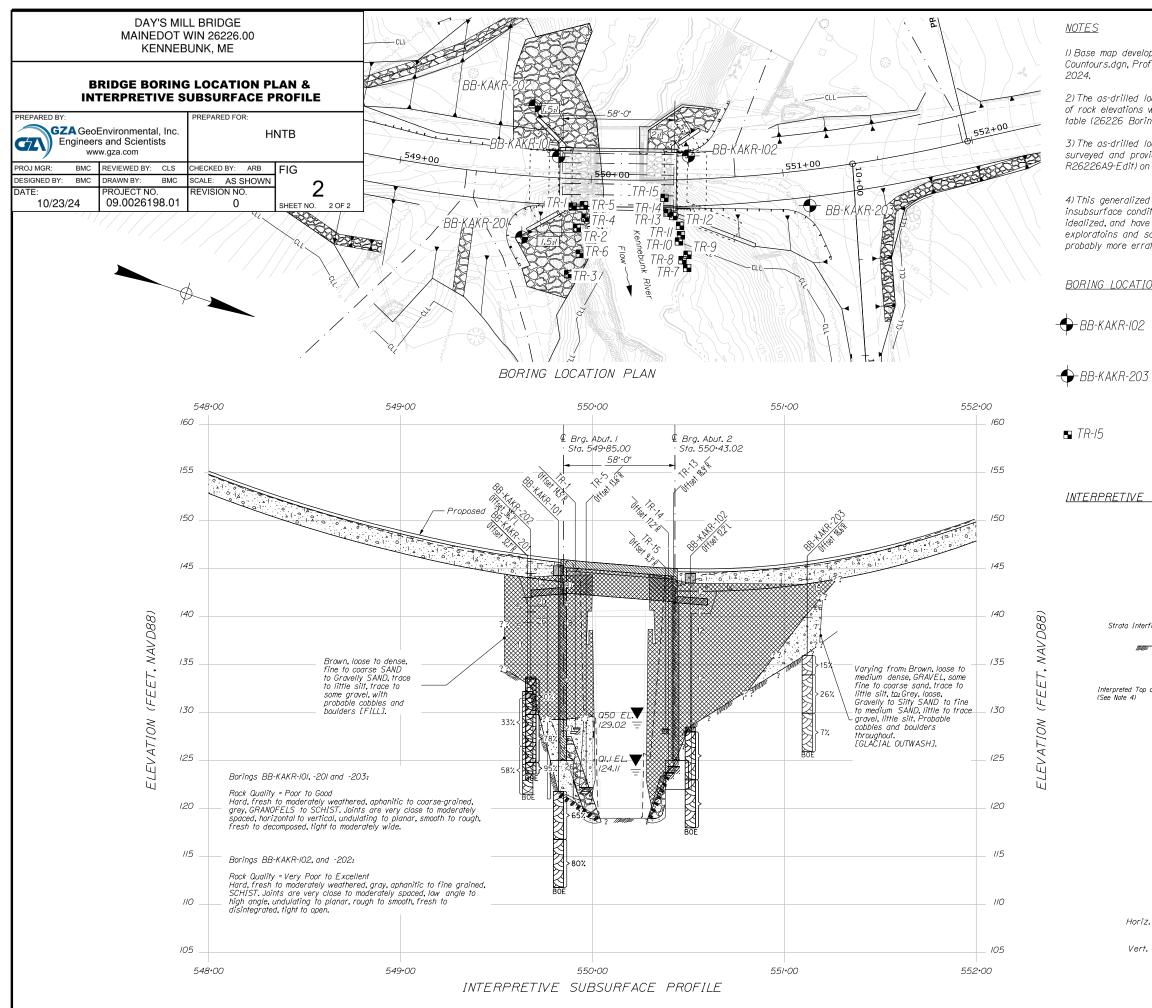
Kennebunk-Arundel, Maine

MaineDOT WIN 26226.00

		Ground	below	Core Run Ground Ice (ft)) Below Top Rock	Length							Elevation (ft)		LABORATORY TESTING						
Boring ID	Core Run	Surface Elevation (ft)	Тор	Bottom	Depth to Rock (ft)	Тор	Bottom	of Core		Rec (%)	RQD (in)	RQD %	Joint Spacing (in)	Joint Aperture (in)	Тор	Bottom	Depth of Sample (ft)	Depth of Sample into Rock (ft)	Elev Top of Sample (ft)	UCS (psi)	Modulus (ksi)	Unit Wt (pcf)	Rock Type
BB-KAKR-101	R1	145.3	23.5	- 28.5	23.5	0.0	- 5.0	5.0	60	100%	39	65%	0.75-24	0.004-0.4	121.8	116.8	23.7	0.2	121.6	3,201	1,180	173.9	Schist/Granofels
BB-KAKR-101	R2	145.3	28.5	- 33.5	23.5	5.0	- 10.0	5.0	60	100%	48	80%	2.5-24	0.004-0.1	116.8	111.8	25.8	2.3	119.5	5,138	1,490	165.9	Schist/Granofels
BB-KAKR-102	R1	144.5	16.5	- 21.5	14.5	2.0	- 7.0	5.0	58	96%	37	64%	0.75-8	0.004-0.1	128.0	123.0							Schist
BB-KAKR-102	R2	144.5	21.5	- 26.5	14.5	7.0	- 12.0	5.0	60	100%	49	81%	0.75-24	0.004-0.1	123.0	118.0	16.8	2.3	127.7	4,070	2,450	173.8	Schist
BB-KAKR-201	R1	142.0	10.5	- 15.5	10.5	0.0	- 5.0	5.0	57	95%	20	33%	0.75-8	0.004-0.1	131.5	126.5	13.3	2.8	128.7	4,766	3,090	163.6	Schist/Granofels
BB-KAKR-201	R2	142.0	15.5	- 20.5	10.5	5.0	- 10.0	5.0	59	98%	35	58%	0.75-8	0.004-0.1	126.5	121.5							Schist/Granofels
BB-KAKR-202	R1	144.5	11.0	- 14.7	11.0	0.0	- 3.7	3.7	42	93%	0	0%	0.75-8	0.004-0.1	133.5	129.8							Schist
BB-KAKR-202	R2	144.5	14.7	- 19.7	11.0	3.7	- 8.7	5.0	58	96%	47	78%	0.75-24	0.004-0.1	129.8	124.8							Schist
BB-KAKR-202	R3	144.5	19.7	- 21.0	11.0	8.7	- 10.0	1.3	14	99%	13	93%	8	0.004-0.01	124.8	123.5							Schist
BB-KAKR-203	R1	143.9	8.0	- 10.0	8.0	0.0	- 2.0	2.0	20	83%	0	0%	8	0.004-0.1	135.9	133.9							Schist
BB-KAKR-203	R2	143.9	10.0	- 14.0	8.0	2.0	- 6.0	4.0	48	100%	14	29%	0.75-8	0.004-0.1	133.9	129.9							Schist
BB-KAKR-203	R3	143.9	14.0	- 18.0	8.0	6.0	- 10.0	4.0	48	100%	43	89%	8	0.004-0.1	129.9	125.9	14.8	6.8	129.1	6,286	4,560	174.1	Shist/Granofels

Notes: 1. Refer to the boring logs in Appendix B for additional information.


2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.


3. As-drilled locations were surveyed by MaineDOT and provided to GZA.

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

FIGURES

LATE OF MAINE NT OF TRANSPORTATION 7 I) Base map developed from electronic files (Alignments.dgn, Bridge.dgn, Countours.dgn, Profile.dgn, and Topo.dgn) provided by HNTB on September 17, 2) The as-drilled locations of the BB-KAKR-IOO series test borings, and the top 2622600 of rock elevations were surveyed and provided by MaineDOT in an electronic WIN 26226.00 table (26226 Boring Date II-2-23) on November 2, 2023. 3) The as-drilled locations of the BB-KAKR-200 series test borings were surveyed and provided by MaineDOT in an electronic table (Boring Loc DEPARTMENT R26226A9-Edit) on May 7, 2024. 4) This generalized interpretive soil and rock profile is intended to convey trends insubsurface conditions. The bounaries between strata are approximate and idealized, and have been developed by interpretations of widely space exploratoins and samples. Actual soil and rock transitions may vary and are probably more erratic. For more specific information refer to the exploration logs. BORING LOCATION PLAN LEGEND Location and designation of BB-KAKR-IOO series borings performed by New England Boring Contractors of Hermon, Maine between September 13 and September 14, 2023 Location and designation of BB-KAKR-200 series borings P.E. NUMBER RE performed by New England Boring Contractors of Hermon, Maine between April IO and April II, 2024 24 Location and designation of exposed rock outcrop survey point collected by MaineDOT between September 13 and September 14, 2023. B.CARDALI A. BLAISDEI INTERPRETIVE SUBSURFACE PROFILE LEGEND NAVAR 10.10 빙물물 BOILESSE ုစ်ို Pavement Thickness if Applicable ц DESI CHEC DESI REVI REVI Energy-Corrected SPT N60 Value (blows/foot) PROFILE YORK Strata Interface -WOH Weight of Hammer Split Spoon Refusal(>50 blows for I" penetration) Advancement of roller bit through bedrock Z 'LA] CE G E R Interpreted Top of Bedrock -Rock Quality Designation ROD = , A , P for Rock Core Sample ΩÞ LOCATION I E SUBSURFA BRI RI BOE Bottom of Exploration DAY'S MILL I KENNEBUNK ARUNDE 되 BORING INTERPRETIVE KENNEBUNK-🖄 Surveyed Top of Bedrock <u>SCALE</u> 25 50 Horiz. SHEET NUMBER Vert. 0 Scale of Feet 0 GZ OF 51

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

APPENDIX A - LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

P:\09 Jobs\0026100s\09.0026198.00 - MEDOT - Day's Mill Bridge, Kennebunk\09.0026198.01 - HNTB-MEDOT - Final Design\Report\FINAL 26198.01 Day's Mill Bridge No. 2221_10.24.24.docx

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

APPENDIX B - TEST BORING LOGS

N	Aaine	-		of Transport	tatio	n	Project:	Day's Mill	Bridge No. 2221	Boring No.:	BB-KA	KR-101
		-	Soil/Rock Expl JS CUSTOM	v			Locatio	n: Kennebur	k / Arundel, Maine	WIN:	2622	26.00
Drille	r:		New England	Boring Contractors	EI	evation	(ft.)	145.3		Auger ID/OD:	4.25" OD SSA	
Oper	ator:		Tom Schaefer		Da	atum:		NAVD 88		Sampler:	Standard Splits	poon
Logg	ed By:		S. Doyle - GZ.	A	_	ig Type		ATV B-53		Hammer Wt./Fall:	140#/30	
Date	Start/Fi	nish:	09-13-23/9-13	-23	_	-		Drive & Was	h	Core Barrel:	NX	
Boriı	ng Loca	tion:	Sta. 549+82.1,	, 6.8'L	_	asing II		4"/4.5"		Water Level*:	16.0'	
Ham Definit		ciency F	actor: 0.742/0	0.6 R = Rock		ammer	Туре:	Automatic Su = Peak	Hydraulic □ Remolded Field Vane Undrained Sh	Rope & Cathead	= Pocket Torvane She	ar Strength (psf)
D = Sp MD = 1 U = Th MU = 1 V = Fie	lit Spoon S Jnsuccess in Wall Tu Jnsuccess Id Vane S	sful Split Spo be Sample sful Thin Wa hear Test,	oon Sample Atten II Tube Sample A PP = Pocket Pei ne Shear Test Att	ssa = Sol npt HSA = Ho RC = Rolle ttempt WOH = W netrometer WOR/C =	lid Stem Ilow Ste er Cone eight of Weight	Auger m Auger 140lb. Ha of Rods o	r Casing	S _{u(lab)} = L q _p = Uncor N-uncorrec Hammer E N ₆₀ = SPT	ab Vane Undrained Shear Strength fined Compressive Strength (ksf) ted = Raw Field SPT N-value ficiency Factor = Rig Specific Annua N-uncorrected Corrected for Hamm <u>mmer Efficiency Factor/60%)*N-uncc</u>	(psf) WC LL = PL al Calibration Value PI = er Efficiency G =	= Water Content, per = Liquid Limit = Plastic Limit = Plasticity Index Grain Size Analysis Consolidation Test	
				Sample Information	77							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0							SSA		0'-1.0': Asphalt.			
	1D	24/11	1.0 - 3.0	37-20-18-13	38	38		144.3	Brown, dense, fine to coars	se SAND, some gravel, l	ittle silt, (Fill).	23-S-4024 A-1-b, SP-SM WC=5.0%
	2D	24/6	3.0 - 5.0	3-2-2-4	4	4			Brown, moist, loose, fine to (Fill).	o medium SAND, little g	ravel, trace silt,	
- 5 -	3D	24/13	5.0 - 7.0	2-2-10-13	12	12			Top 6": Brown, moist, fine (Fill).	to medium SAND, little	silt, trace gravel,	
							11		Bottom 7": Brown to light SAND, little silt, little Gra		ne to medium	
							78		×			
							83		Intermittent increased rolle	r hit resistance encounter	red from 9.0-11.0'	
- 10 -							47		probable cobbles.		cu nom 7.0 11.0,	
	4D	24/7	11.0 - 13.0	3-1-1-2	2	2	53		Brown, wet, very loose, fin	e to coarse SAND, some	gravel, little silt,	23-S-4025
	Ъ	24/7	11.0 - 15.0	5-1-1-2	2	2	13		(Fill).			A-1-b, SM WC=13.6%
							21		8			
15							23		×			
- 15 -							21	129.3	Increased roller bit resistan cobbles or boulders.	ce from approximately 1	5.0-16.0', probable — — — — 16.0 ⁻	
	5D	24/0	16.0 - 18.0	19-7-15-18	22	22	21		No Recovery. Rock in splitspoon tip; use	d 3" diameter spoon to ge		
							83 86		5D: Brown, wet, medium d Sand, trace Silt (Glacial Ou		ne to medium	
							207			-		
- 20 -	6D	24/6	20.0 - 22.0	26-10-11-7	21	26	139		Brown, wet, medium dense coarse sand, little silt, (Gla	cial Outwash).		23-S-4026 A-1-b, GW-
							R/C		Casing met refusal at 20.5', 23.5', probable top of rock		bit advanced to	GM WC=6.0%
	R1	60/60	23.5 - 28.5	RQD = 65%			NX	121.8	R1: 23.5-25.5': Hard, fresh			
25 Bom	arko								25.5-28.5', Hard, fresh to sl	iigntly weathered, fine to	coarse grained,	
 Due Aut Due Due Wat As-e 	omatic han to automa omatic han to automa er level rea brilled bori	tic hammer nmer fixed a tic hammer ading was ta ing locations	malfunction used and used to drive of malfunction used sken immediately s were surveyed b	ergy transfer ratio = 0.742. 300 lbs. hammer to drive of asing from 15 feet bgs. 140 lbs safety hammer wit after drilling, after casing y y MaineDOT in the field (2 Indaries between soil types es and under conditions st	h rope a vas remo 227572.8	nd cathea oved. 8N, 92303	d to drive s 39.6E).	plitspoon from (to 18 ft bgs. Automatic hammer fix	ed and used to drive splitspoo	on 20.0'-22.0' bgs.	

than those present at the time measurements were made.

I

Boring No.: BB-KAKR-101

I	Maine	e Depa	artment	of Transport	ation	Project	: Day's	Mill Bı	idge No. 2221	Boring No.:	BB-KA	KR-101
			Soil/Rock Exp US CUSTOM			Locatio	n: Ken	nebunk	/ Arundel, Maine	WIN:	2622	26.00
Drill	er.		New England	Boring Contractors	Elevatio	l	145.	3		Auger ID/OD:	4.25" OD SSA	
	rator:		Tom Schaefer	5	Datum:			/D 88		Sampler:	Standard Splits	poon
· ·	ged By:		S. Doyle - GZ		Rig Type	e:		/ B-53		Hammer Wt./Fall:	140#/30	[
	Start/Fi	nish:	09-13-23/9-13		Drilling			e & W	ash	Core Barrel:	NX	
	ng Loca		Sta. 549+82.1		Casing I		4"/4			Water Level*:	16.0'	
Ham	mer Effi	ciencv F	actor: 0.742	•	Hammer	· Type:	Autom	atic 🖂	Hydraulic 🗆	Rope & Cathead 🗆		
Defini D = S MD = U = T MU = V = Fi	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = Solic mpt HSA = Holl RC = Roller Attempt WOH = We tempt WO1P = W	I Stem Auger I Stem Auger Stem Auger Cone ight of 140 lb. H Veight of Rods eight of One Pe	Hammer or Casing	S _u = S _{u(la} qp = N-ur Ham N ₆₀	Peak/Re ab) = Lat Unconfii correcte mer Effic = SPT N	emolded Field Vane Undrained Sh vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamm her Efficiency Factor/60%)*N-unco	ear Strength (psf) Tv = (psf) WC LL = PL ell Calibration Value PI = er Efficiency G =	Pocket Torvane She = Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
				Sample Information	σ							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		escription and Remarks		Testing Results/ AASHTO and Unified Class.
25						NX	-		GRANOFELS. Joints are very close to mod dipping, planer to undulati tight to moderately wide. Recovery = 100% Rock Quality = Fair Core times (min:sec): 23.5-	ng, rough to smooth, fres -24.5' (2:09), 24.5-25.5' (1	h to discolored,	
- 30 -	R2	60/60	28.5 - 33.5	RQD = 80%			-		(2:09), 26.5-27.5' (1:39), 2 R2: 28.5'-28.9': Hard, fresh grained, GRANOFELS. 28.9'-33.5': Hard, fresh, fin- Joints are very close to mod	to slightly weathered, fir e to medium grained, SCI derately spaced, moderate	HIST. ly dipping to high	
							-		angle, stepped to undulating tight to open. Recovery = 100% Rock Quality = Good Core times (min:sec): 28.5-			
						¥		915	(1:48), 31.5-32.5' (1:44), 3		,, 50.5-51.5	
									Bottom of Exploration	n at 33.5 feet below grou	nd surface.	
- 35 -												
						_						
- 40 -												
40												
							1					
- 45 -							-					
							1					
							-					
50 Rem	arks:		1				1	I	<u> </u>			
1. A 2. D 3. A 4. D 5. W 6. A	utomatic ha ue to auton utomatic ha ue to auton later level 1 s-drilled bo	natic hamme ammer fixee natic hamme reading was oring locatio	er malfunction use and used to driver er malfunction use taken immediatel ns were surveyed	energy transfer ratio = 0.742. ed 300 lbs. hammer to drived e casing from 15 feet bgs. ed 140 lbs safety hammer wi ly after drilling, after casing 's by MaineDOT in the field (ndaries between soil types;	casing to 15 fee th rope and catl was removed. 227572.8N, 92	nead to drive 3039.6E).			to 18 ft bgs. Automatic hammer fi	ixed and used to drive splitspo	oon 20.0'-22.0' bgs.	
* Wate	er level rea	dings have	been made at tim	nes and under conditions sta	ted. Groundwa	iter fluctuatio	ons may c	ccur due	e to conditions other	Boring No	.: BB-KAKI	R-101

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-KAKR-101
than those present at the time measurements were made.	

I	Aaino			of Transport	atio	n	Project	: Day's Mill Bri	dge No. 2221	Boring No.:	BB-KA	KR-102
			Soil/Rock Expl US CUSTOMA	-			Locatio	n: Kennebunk	/ Arundel, Maine	WIN:	2622	26.00
Drille			5	Boring Contractors	_	evatior	n (ft.)	144.5		Auger ID/OD:	4.25" OD SSA	
Oper			Tom Schaefer			tum:		NAVD 88		Sampler:	Standard Splits	poon
Logg	ed By:		S. Doyle - GZ	A	Rig	д Туре	:	ATV B-53		Hammer Wt./Fall:	140#/30	
Date	Start/Fi	inish:	09-14-23/9-14	-23	Dri	illing N	lethod:	Drive & Wash		Core Barrel:	NX	
Boriı	ng Loca	tion:	Sta. 550+50.3,	, 6.9'L	Ca	sing II	D/OD:	4"/4.5"		Water Level*:	14.2'	
Ham	mer Effi	iciency F	actor: 0.742		Ha	mmer	Туре:	Automatic 🖂	Hydraulic 🗆	Rope & Cathead 🗆		
MD = 1 U = Th MU = 1 V = Fie	olit Spoon S Jnsuccess in Wall Tu Jnsuccess old Vane S	sful Split Sp ibe Sample sful Thin Wa Shear Test,	all Tube Sample At PP = Pocket Per ane Shear Test Atte	RC = Rolle ttempt WOH = W WOR/C = WOR/C =	id Stem / llow Stem er Cone eight of 1 Weight of Veight of	Auger n Auger 140lb. Ha of Rods o	r Casing	$S_u(lab) = Lab$ $q_p = Unconfine N-uncorrected Hammer Effici N60 = SPT N-$	molded Field Vane Undrained She Vane Undrained Shear Strength (je ed Compressive Strength (ksf) = Raw Field SPT N-value ency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	osf) WC = LL = L PL = I Calibration Value PI = P or Efficiency G = G	Pocket Torvane Shea Water Content, pero iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	
			1 1	Sample Information		1						Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.) Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class.
0							SSA		0'-1.0': Asphalt.			
	1D	24/12	1.0 - 3.0	19-24-20-23	44	54		143.5	Brown, dense, fine to coarse	e SAND, some fine gravel	, trace silt, (Fill).	23-S-4027 A-1-b, SP-SM WC=3.9%
	2D	24/15	3.0 - 5.0	11-13-9-7	22	27			Brown, medium dense, fine (Fill).	to coarse SAND, little gra	avel, little silt,	
- 5 -	3D	24/12	5.0 - 7.0	3-3-2-3	5	6			Brown, loose, fine to coarse	SAND, little gravel, trace	e silt, (Fill).	23-S-4028 A-1-b, SW-SM WC=5.1%
							20					
							21	1 📖				
			+					- 888				
				ſ			17					
							17	1 🗱				
- 10 -	4D	10/12	10.0 - 10.8	3-3-3-4	6	7	17		Brown, loose, fine to coarse	e SAND, little gravel, trace	e silt, (Fill).	23-S-4029 A-1-b, SW-SM
							7	1 🗱				WC=11.7%
			++					- 888				
				ſ			18					
							38	1 📖				
							56/6"		Casing met refusal at 14.5'.	Roller bit advancement fr	om 14.5 to 16.0'	
- 15 -							Spin	128.5	indicate probable cobbles as 16.0', probable top of rock. \core.			
	R1	60/58	16.5 - 21.5	RQD=64%			NX		R1: Hard, slightly weathere close to close, moderately d			
									to discolored, tight to partia Recovery = 96%		to shiothi, nesh	
			+ +				+		Rock Quality = Fair Core Times (min:sec): 16.5		:14), 18.5-19.5'	
- 20 -			+				+		(1:07), 19.5-20.5' (1:15), 20			
			<u> </u>									
	R2	60/60	21.5 - 26.5	RQD=81%					R2: Hard, fresh, gray, fine g moderately spaced, modera discolored, tight to partially	tely dipping, undulating, f		
			++				+		Recovery = 100%	open.		
									Rock Quality: Good Core Times (min:sec): 21.5	22 51 (1.22) 22 5 22 51 (1	.16) 22 5 24 51	
25									(1:16), 24.5-25.5' (1:17), 2:		.+0), 23.3-24.3	
2. Wat 3 As-d Stratifi	omatic han er level re rilled borin	ading was ta ng locations s represent	aken immediately a s were surveyed by approximate bour	ergy transfer ratio = 0.742. after removal of casing. y MaineDOT in the field (2 ndaries between soil types; es and under conditions st	27633.31	ns may t	be gradual.		to conditions other	Page 1 of 2		
		-	ime measurement		ateu. Gfi	ounuwat	er nucluatio	ma may occur que		Boring No.	BB-KAKI	R-102

Ι	Main			of Transport	tation	Project	: Day's	Mill B	ridge No. 2221	Boring No.:	BB-KA	KR-102
			Soil/Rock Exp US CUSTOM			Locatio	n: Ken	nebunk	c / Arundel, Maine	WIN:	2622	26.00
Drille	ər.		New England	Boring Contractors	Elevatio	l	144.	5		Auger ID/OD:	4.25" OD SSA	
	ator:		Tom Schaefe		Datum:			/D 88		Sampler:	Standard Splits	noon
	jed By:		S. Doyle - GZ		Rig Typ	<u>.</u>		/ B-53		Hammer Wt./Fall:	140#/30	poon
	Start/Fi	inish [.]	09-14-23/9-1		Drilling			e & W	ash	Core Barrel:	NX	
	ng Loca		Sta. 550+50.3		Casing		4"/4		4511	Water Level*:	14.2'	
			Factor: 0.742		Hamme				Hydraulic 🗆	Rope & Cathead	14.2	
Definit D = Sp MD = U = Th MU = V = Fie	ions: blit Spoon Unsuccess hin Wall Tu Unsuccess eld Vane S	Sample sful Split S ibe Sample sful Thin W Shear Test,	ooon Sample Atte	R = Rock SSA = So mpt HSA = Ho RC = Roll Attempt WOR = W enetrometer WOR/C =	Core Sample lid Stem Auger llow Stem Auger er Cone /eight of 140 lb. I Weight of Rods <u>Neight of One P</u>	lammer or Casing	S _{u(la} q _p = N-un Ham N ₆₀ :	Peak/R b) = Lal Unconfi correcte mer Effi = SPT N	emolded Field Vane Undrained Sho b Vane Undrained Shear Strength (ned Compressive Strength (ksf) id = Raw Field SPT N-value ciency Factor = Rig Specific Annua I-uncorrected Corrected for Hammo mer Efficiency Factor/60%)*N-unco	ear Strength (psf) T _V (psf) W PL I Calibration Value PI er Efficiency G	= Pocket Torvane She C = Water Content, pero = Liquid Limit = Plastic Limit = Plasticity Index = Grain Size Analysis = Consolidation Test	cent
52 Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Remark	S	Laboratory Testing Results/ AASHTO and Unified Class.
							1	ANG .				
						⊻]		SC III	Pottom of Fundament's	n at 26.5 feet below gro	aund surface	
- 30 -							-			9		
- 40 -							-					
- 45 -							-					
<u>50</u>	arks:		1					I	I			
1. Au 2. W 3 As Stratifi * Wate	utomatic h ater level i -drilled bo	reading wa ring locati s represen idings have	s taken immediate ons were surveyed t approximate bot	energy transfer ratio = 0.74 ly after removal of casing. I by MaineDOT in the field undaries between soil types nes and under conditions st s were made	(227633.3N, 92	be gradual.	ons may o	ccur du	e to conditions other	Page 2 of 2 Boring N	0.: BB-KAK	8-102

	A de la construcción de	i ago i oi i	
	Nater level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Devise a N	• DD V
that	an those present at the time measurements were made.	Borina N	0.: BB-K/

Ι	Maine	e Depa	artment	of Transport	ation	1	Project:	Day's M	Aill Br	idge No. 2221	Boring No.:	BB-KA	KR-201
		_	Soil/Rock Exp				Locatio	n: Kenn	ebunk	/ Arundel, Maine			
		Ī	JS CUSTOM	<u>ARY UNITS</u>							WIN:	2622	26.00
Drille	er:		New England	Boring Contractors	Elev	vation	(ft.)	142.0			Auger ID/OD:	4.25" OD SSA	
Ope	rator:		T. Schaefer	0	Dati		. ,	NAVD8	8		Sampler:	Standard Split	spoon
	ged By:		J. Cozens		Ria	Туре		ATV CN	ИЕ-53		Hammer Wt./Fall:	140#/30"	1
	Start/Fi	nish:	4/11/24 - 4/11	/24			lethod:	Drive &	Wash		Core Barrel:	NX	
Bori	ng Loca	tion:	Sta. 549+65.6	. 36.2'R	_	ing ID		4.0/4.5"			Water Level*:	Not Encounter	ed
			actor: 0.742	,			Type:	Automa	tic 🖂	Hydraulic 🗆	Rope & Cathead 🗆		
Definit	tions:			R = Rock (S _u = F	Peak/Re	molded Field Vane Undrained She	ar Strength (psf) T _v = F	Pocket Torvane She	
MD =		sful Split Spo	oon Sample Atten		ow Stem			qp`= L	Jnconfin	Vane Undrained Shear Strength (p ed Compressive Strength (ksf)	LL = L	Water Content, per iquid Limit	cent
		ibe Sample sful Thin Wa	II Tube Sample A	ttempt RC = Rolle		0lb. Ha	mmer			I = Raw Field SPT N-value iency Factor = Rig Specific Annual		Plastic Limit lasticity Index	
			PP = Pocket Pe ne Shear Test At					$N_{60} =$	SPT N-	uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	r Efficiency G = G	rain Size Analysis onsolidation Test	
				Sample Information									1 - 6
		(in.)	oth	(ed				_				Laboratory Testing
ť.)	No.	i) j	Dep	6 in (%)	rect			۲	Loc	Visual De	scription and Remarks		Results/
Depth (ft.)	ble	Pen./Rec.	ble	ar (/ QD	202		us s	atio	ohic		•		AASHTO and
Dep	Sample No.	Pen	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log				Unified Class.
0	1D	2/6	0.0 - 0.2	1-1-3-3	4	5	SSA		****	Brown, moist, loose, fine to	coarse SAND, trace silt, t	race gravel, with	
		2/0	0.0 - 0.2	1-1-5-5	4	5	- SSA		****	grass and rootlets, (Fill).			
	2D	24/12	2.0 - 4.0	2-2-2-5	4	5		139.4	****	2D (Top 7"): Brown, moist, trace gravel, with grass and		D, trace silt,	#24-S-1352
						-		139.4				2.6	A-4(0), SM MC=21.6%
										2D (Bottom 5"): Gray, loos with rootlets, (Glacial Outw		ID, little gravel,	
	3D	24/8	4.0 - 6.0	4-4-5-7	9	11				Brown, moist, loose, SAND		Glacial	#24-S-1353 A-1-b, SM
- 5 -									è.	Outwash).			MC=8.8%
							$\downarrow \lor$						
							3						
							5						
							7						
							15/8"			Casing refusal at 9.8'. Rolle	r coned to 10.5', and set up		
- 10 -		<i>co.</i> / 57	10.5.15.5	D.0.D. 0.00/				132.2	010			9.8	
	R1	60/57	10.5 - 15.5	RQD = 33%			NX		MD	R1 (10.5'-13.5'): Hard, sligh fine grained, gray, SCHIST			
									1991	moderately dipping to vertic			
									96	tight to open, with silt and s R1 (13.5'-15.5'): Very hard,		pered medium	
									SU	grained, GRANOFELS. Joi			
									NU	horizontal to low angle, plat decomposed, tight to open,			$q_p = 677 \text{ ksf}$
									912)	Rock Quality = Poor	with site and suite mining		
- 15 -	D 2	(0)55	15.5 20.5	DOD 599/					1999))	Recovry = 95% Rock Core Times (min:sec)	· 10 5-11 5' (2 09) 11 5-1	2 5' (1.50) 12 5-	
	R2	60/55	15.5 - 20.5	RQD = 58%					90	13.5' (1:54), 13.5-14.5' (2:12	2), 14.5-15.5' (2:32)		
									H.H.	R2: Very hard, fresh, fine to / GRANOFELS. Joints are			
									UMU.	angle, planar, smooth to ro	ugh, fresh to discolored, t	ight to open. One	
									M	high angle to vertical joint i open.	s undulating, rough, disco	nored, tight to	
									(M) ()	Rock Quality = Fair			
					Γ		$ \rangle /$			Recovery = 93% Rock Core Times (min:sec)	: 15.5-16.5' (1:59), 16.5-1	7.5' (1:50), 17.5-	
- 20 -							$+ \forall -$	101.5	H D	18.5' (1:43), 18.5-19.5' (1:2			
								121.5		Bottom of Exploration	at 20.5 feet below grour	20.5 d surface.	
25 Rem	arks:	l											
		nmer NEBC	# D-230 with an	energy transfer ratio $= 0.74$	2.								
				by MaineDOT in the field (2		1, 92308	8.3E).						
Stratif	ication line	s represent	approximate bou	ndaries between soil types;	transition	s mav h	e gradual				Page 1 of 1		
* Wate	er level rea	dings have	been made at tim me measuremen	es and under conditions sta	ted. Grou	undwate	er fluctuatio	ns may oc	cur due	to conditions other	Boring No.	BB-KAK	R-201

I	Aaino			of Transports	atio	n	Project	: Day's	Mill Br	idge No. 2221	Boring No.:	BB-KA	KR-202
			Soil/Rock Exp JS CUSTOM				Locatio	n: Ken	nebunk	/ Arundel, Maine	WIN:	2622	26.00
Drille	er:		New England	Boring Contractors	Ele	vation	(ft.)	144.5			Auger ID/OD:	4.25"	
Oper	ator:		T. Schaefer		Dat	tum:	. ,	NAVD	88		Sampler:	Standard Splits	poon
Logo	jed By:		J. Cozens		Rig	ј Туре		ATV C	ME-53		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	4/10/24 - 4/11	/24	Dri	lling N	lethod:	SSA ar	d Drive	e & Wash	Core Barrel:	NX	
Bori	ng Loca	tion:	Sta. 549+68.0	, 32.6'L		sing ID		4"/4.5"			Water Level*:	Not Encounter	ed
Ham Definit		iciency F	actor: 0.742	R = Rock C		mmer	Туре:	Autom		Hydraulic molded Field Vane Undrained She	Rope & Cathead ar Strength (psf)	Pocket Torvane Shea	ar Strength (nsf)
D = Sp MD = U = Th MU = V = Fie	olit Spoon S Unsuccess in Wall Tu Unsuccess old Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atter II Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = Solic mpt HSA = Holl RC = Roller Attempt WOH = We enetrometer WOR/C = V	d Stem A ow Stem Cone ight of 14 Veight of	Auger Auger 40lb. Ha f Rods o	r Casing	S _{u(la} q _p = N-ur Ham N ₆₀	ab) = Lab Unconfin corrected mer Effic = SPT N	Vane Undrained Shear Strength (ed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	wc LL = PL = Calibration Value PI = er Efficiency G =	e Water Content, pero Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis <u>Consolidation Test</u>	
		<u> </u>	1		g								Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Results/ AASHTO and Unified Class.
0	1D	24/14	0.0 - 2.0	WOH-WOH-10-10	10	12	SSA			1D (Top 6"): Black, loose, t rootlets, petroleum odor, (F 1D (Bottom 8"): Brown, mo	ill).		
	2D	24/18	2.0 - 4.0	8-8-8-9	16	20		-		little gravel, petroleum odor Light brown, moist, mediur trace gravel, (Fill).	r, (Fill).		#24-S-1354 A-1-b, SW-SM MC=8.6%
- 5 -	3D	24/4	4.0 - 6.0	5-11-10-7	21	26				Light brown, moist, mediur trace gravel, gravel blocked		AND, little silt,	#24-S-1355 A-2-4(0), SM
5													MC=8.2%
							R/C	-					
								-					
- 10 -										Intermittent resistance from Increased roller bit resistance			
	R1	45/42	11.0 - 14.8	ROD = 0%				133.7		Advanced roller bit from 10			
	KI		11.0 - 14.0	NQD - 070						R1: Hard, fresh to moderate grey, SCHIST. Joints are ve dipping, planar, smooth, fre and silt infilling.	ery close to close, low any	gle to moderately	
										Rock Quality = Very Poor Recovery = 93%	11.0.10.01/1.200.10.0	12 01 (1 10) 12 0	
- 15 -	R2	60/58	14.7 - 19.7	RQD = 78%				-		Rock Core Times (min:sec) 14.0' (1:23), 14.0-14.7' (1:4 R2: Hard, fresh, aphanitic to joints are very close to mod angle, planar, smooth to rou	2) o fine grained, grey, SCH lerately spaced, moderate	IIST. Primary ly dipping to high	
								-		silt infilling. One low angle tight. Rock Quality = Good			
	D 2	15/14	10.7.01.0	DOD 05%				-		Recovery = 96% Rock Core Times (min:sec) 17.7' (1:14), 17.7-18.7' (1:2	: 14.7-15.7' (1:00), 15.7- 6), 18.7-19.7' (1:39)	16.7' (1:05), 16.7-	
- 20 -	R3	15/14	19.7 - 21.0	RQD = 95%				123.5		R3: Hard, fresh, aphanitic to close, moderately dipping, Rock Quality = Excellent Recovery = 99%			
										Rock Core Times (min:sec)	: 19.7-20.7' (2:05), 20.7-2		
								_		Bottom of Exploration	n at 21.0 feet below grou	21.0- Ind surface.	
25 R om	arks:												
1. Aut 2. 300	omatic han -lb hamme	r used to dri	ve casing.	a energy transfer ratio = 0.74.		N, 92302	1.3E).						
Stratifi	cation line	s represent	approximate bou	ndaries between soil types; res and under conditions sta	transition	ns may b	e gradual.				Page 1 of 1		

than those present at the time measurements were made.
--

Boring No.: BB-KAKR-202

I	Main	e Dep	artment	of Transport	ation	Proje	ct: Day's	Mill B	ridge No. 2221	Boring No.:	BB-KA	KR-203
			Soil/Rock Expl			Locat	ion: Kei	nnebunl	k / Arundel, Maine		2(2)	26.00
			US CUSTOM	ARY UNITS						WIN:	262.	26.00
Drill	er:		New England	Boring Contractors	Elevati	on (ft.)	143.9			Auger ID/OD:	4.25"	
Ope	rator:		T. Schaefer		Datum:		NAVI	88		Sampler:	Standard Split	spoon
Log	ged By:		J. Cozens		Rig Typ	be:	ATV (CME-53	3	Hammer Wt./Fall:	140#/30"	
Date	e Start/Fi	inish:	4/10/24 - 4/10	/24	Drilling	Method	: SSA a	nd Driv	re & Wash	Core Barrel:	NX	
Bori	ng Loca	tion:	Sta. 551+10.3	, 24.6'R	Casing	ID/OD:	4"/4.5			Water Level*:	Not Encounter	red
		iciency F	actor: 0.742		Hamme	er Type:	Auton			Rope & Cathead 🗆		
Defini D = S	itions: plit Spoon	Sample			Core Sample id Stem Auger		Sull	ab) = Lai	temolded Field Vane Undrained She b Vane Undrained Shear Strength (psf) WC =	ocket Torvane She Water Content, per	
		sful Split Sp ube Sample	oon Sample Atten	npt HSA = Hol RC = Rolle	low Stem Auge er Cone	er			ined Compressive Strength (ksf) ed = Raw Field SPT N-value		iquid Limit Plastic Limit	
			all Tube Sample A PP = Pocket Pe		eight of 140lb. Weight of Rods				ciency Factor = Rig Specific Annual N-uncorrected Corrected for Hamme		lasticity Index rain Size Analysis	
			ane Shear Test Att	empt WO1P = V	leight of One F				mer Efficiency Factor/60%)*N-unco		onsolidation Test	<u> </u>
			1	Sample Information	7			-				Laboratory
	<u> </u>	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected			B				Testing Results/
Depth (ft.)	Sample No.	Sec		Blows (/6 in.) Shear Strength (psf) or RQD (%)	orre	<u>م</u>	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		AASHTO
epth	amp	en./F	amp (;	ows hear frenç sf) . RQ	Neo Neo	Casing	eva (raph				and Unified Class.
	ů v	ď	ů E	ଅନ୍ଦ୍ର ଅ	ż ż	Ű a	5 II E			11 6 4 4		
Ŭ	1D	24/13	0.0 - 2.0	2-6-6-5	12 1:	5 SSA			Brown, moist, medium den (Fill).	se, graveny fine to coarse a	SAND, trace sin,	,
			20.40	< 11 10 7			-		2D (Top 6"): Brown, moist	, medium dense, gravelly f	ine to coarse	#24-S-1356
	2D	24/12	2.0 - 4.0	6-11-10-7	21 20)	_		SAND, trace silt, (Fill). 2D (Bottom 6"): Light brow	vn moist medium dense f	ine to coarse	A-2-4(0), SM MC=8.2%
									SAND, little silt, (Fill).	vii, moist, mearann achse, i	life to coarse	IVIC-0.270
	3D	24/17	4.0 - 6.0	3-3-3-3	6 7	,	139.9		Brown, moist, loose, fine to	medium SAND, little silt,	trace gravel,	#24-S-1357
- 5 -	515	24/17	4.0 - 0.0	5-5-5-5	, , , , , , , , , , , , , , , , , , ,			Rilli	with rootlets, (Glacial Outv		6	A-4(0), SM MC=21.1%
							/					
						R/C			Intermittent resistance from			
							_		Increased roller bit resistant core at 8.0'.	ce at 8.0°, probable top of r	ock. Set up to	
							135.9		1			-
	R1	24/20	8.0 - 10.0	RQD = 0%		NX			R1: Hard, moderately weath SCHIST. Joints are close, n			
								(US)	discolored, tight to open, w		sinootii, nesii te	,
- 10 -							_	<u>M</u>	Rock Quality = Very Poor Recovery = 85%			
	R2	48/48	10.0 - 14.0	RQD = 29%			_		Rock Core Times (min:sec)			
									R2: Hard, moderately weat joings are very close to close	se, moderately dipping, pla	nar, smooth,	7
								912	fresh to discolored, tight to are close, low angle, planar	open, with silt infilling. Se	condary joints	
							_		joint is planar, smooth, disc		One vertical	
								age -	Rock Quality = Poor Recovery = 100%			
	R3	48/48	14.0 - 18.0	RQD = 89%					Rock Core Times (min:sec)		2.0' (1:29), 12.0-	
- 15 -							-		13.0' (1:56), 13.0-14.0' (1:4 R3: Hard, fresh to slightly		grained, grev,	$q_p = 893 \text{ ksf}$
							_	912	SCHIST /GRANOFELS. Jo	oints are close, low angle to	moderately	
							/	(US)	dipping, planar, smooth to r Rock Quality = Good	rough, fresh to discolored,	light to open.	
							, 	<u>M</u>	Recovery = 100% Rock Core Times (min:sec)	(2.04) 14 0 15 0' (2.04) 15 0 16	(2·05) 16 0	
						V	125.9	, CAUM	17.0' (3:16), 17.0-18.0' (1:4			
							_		Bottom of Exploration	n at 18.0 feet below groun	d surface. 18.0	
20												
- 20 -												
							-					
							_					
							-					
_ 25												
	<u>arks:</u>											
		mmer NEBO er used to dr		energy transfer ratio = 0.74	-2.							
				y MaineDOT in the field (2	27702.8N, 923	026.1E).						
	-											
Stratif * Wat	fication line er level rea	es represent adings have	approximate bour been made at tim	ndaries between soil types; es and under conditions sta	transitions ma ated. Groundw	y be gradua ater fluctua	al. itions may	occur du	e to conditions other	Page 1 of 1		D A (1)
			ime measurement							Boring No.:	BB-KAK	R-203

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

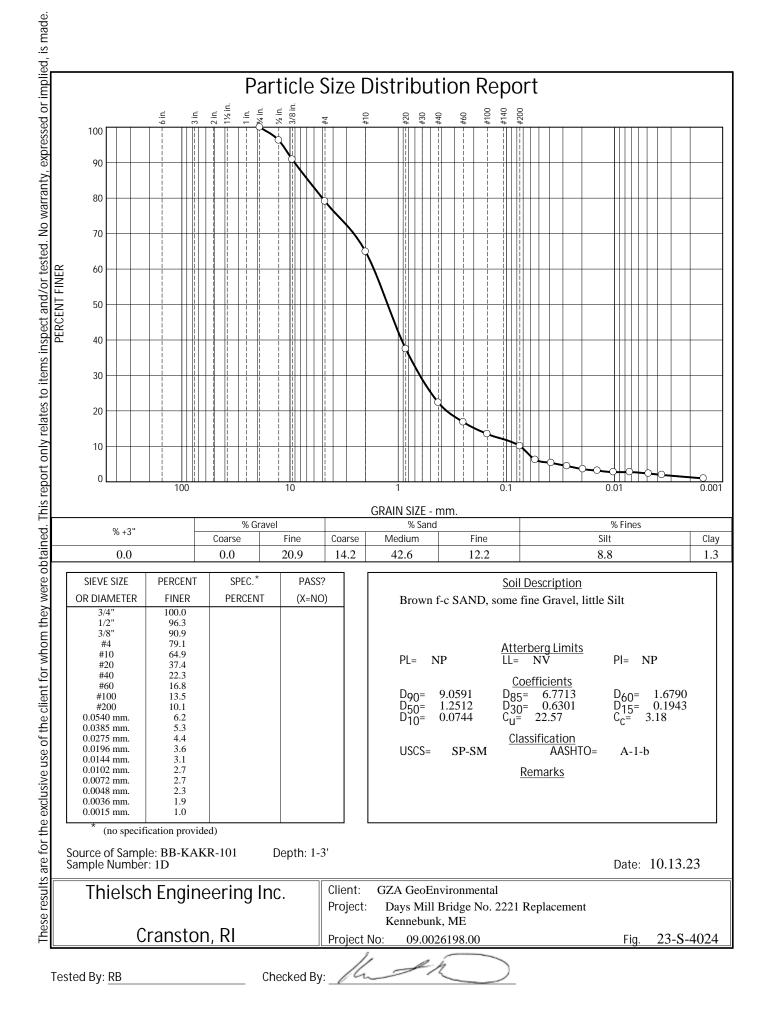
APPENDIX C – LABORATORY TEST RESULTS

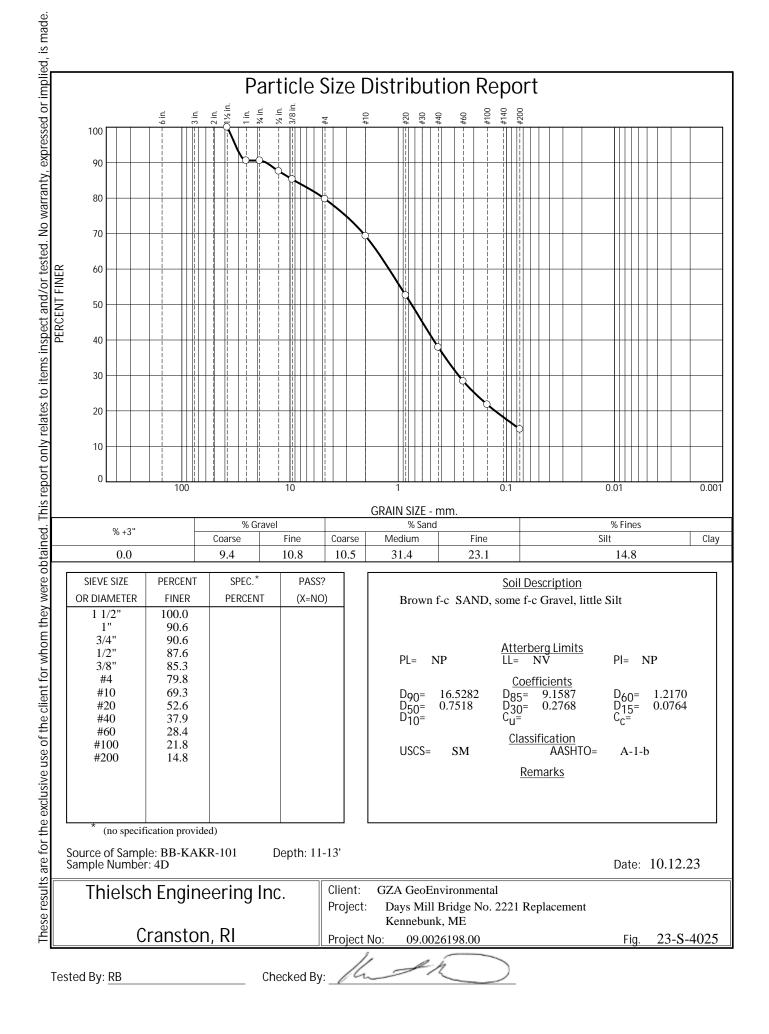
	195 Frances Avenue	Client In	formation:	Project	Information:			
	Cranston RI, 02910	GZA GeoEr	vironmental	Days Mill Bridge No. 2221 Re	placement, MEDOT WIN 26226.00			
Thielsch 迷	Phone: (401)-467-6454	South Po	rtland, ME	Kennebunk, ME				
	Fax: (401)-467-2398	Project Manager:	Blaine Cardali	Project Number:	09.0026198.00			
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Blaine Cardali	Summary Page:	1 of 1			
	Let's Build a Solid Foundation	Collected By:	B. Cardali	Report Date:	10.17.23			

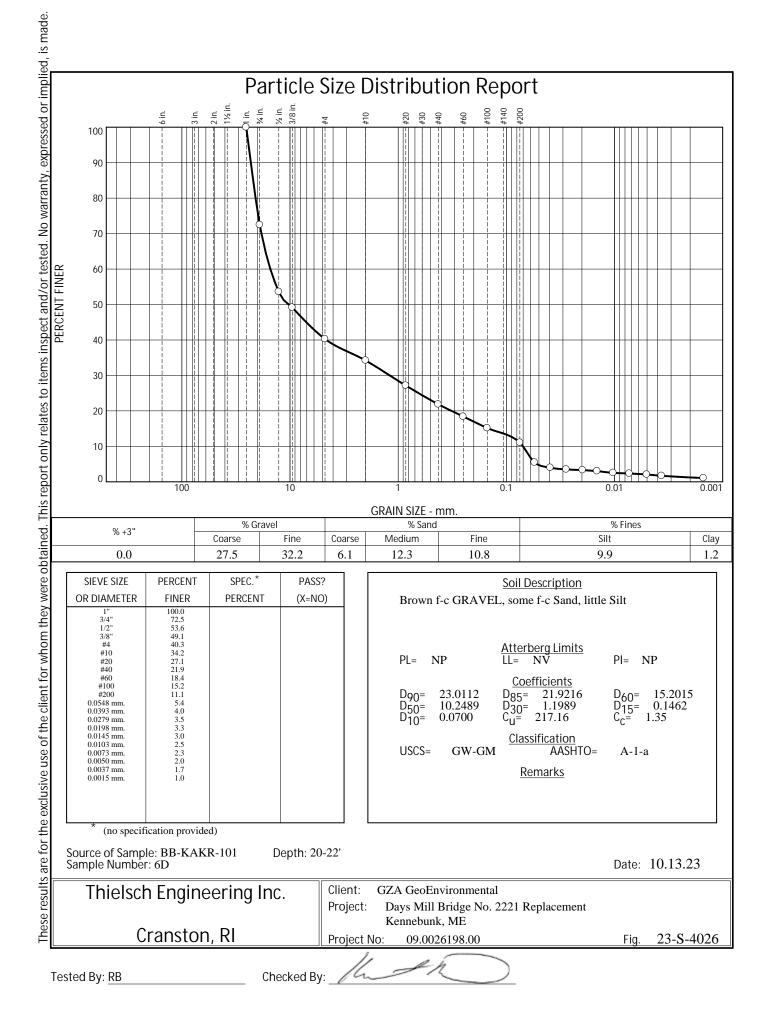
LABORATORY TESTING DATA SHEET, Report No.: 7423-K-117

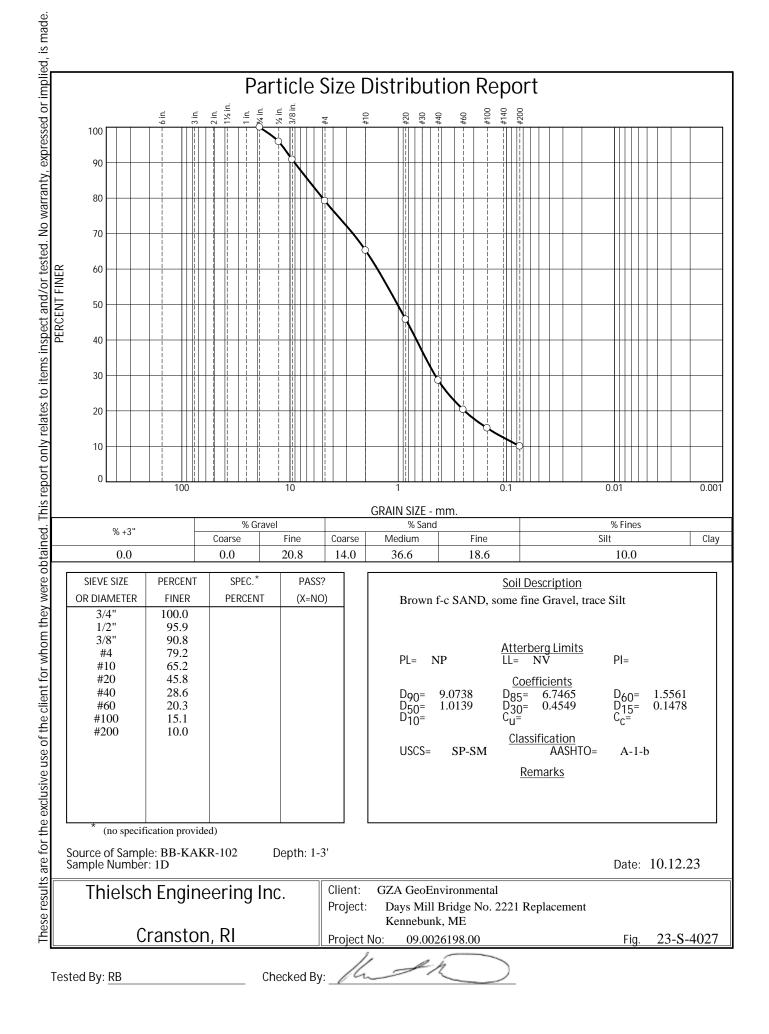
							Identifica	ition Tes	sts			Proctor / CBR / Permeability Tests								
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	Gravel %	%	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	318		D6913		D2974	D4792	D1	557		-					
BB-KAKR-101	1D	1-3	23-S-4024	5.0			20.9	69.0	10.1											Brown f-c SAND, some fine Gravel, little Silt
BB-KAKR-101	4D	11-13	23-S-4025	13.6			20.2	65.0	14.8											Brown f-c SAND, some f-c Gravel, little Silt
BB-KAKR-101	6D	20-22	23-S-4026	6.0			59.7	29.2	11.1											Brown f-c GRAVEL, some f-c Sand, little Silt
BB-KAKR-102	1D	1-3	23-S-4027	3.9			20.8	69.2	10.0											Brown f-c SAND, some fine Gravel, trace Silt
BB-KAKR-102	3D	5-7	23-S-4028	5.1			13.9	79.3	6.8											Brown f-c SAND, little fine Gravel, trace Silt
BB-KAKR-102	4D	10-12	23-S-4029	11.7			13.4	76.9	9.7											Brown f-c SAND, little fine Gravel, trace Silt

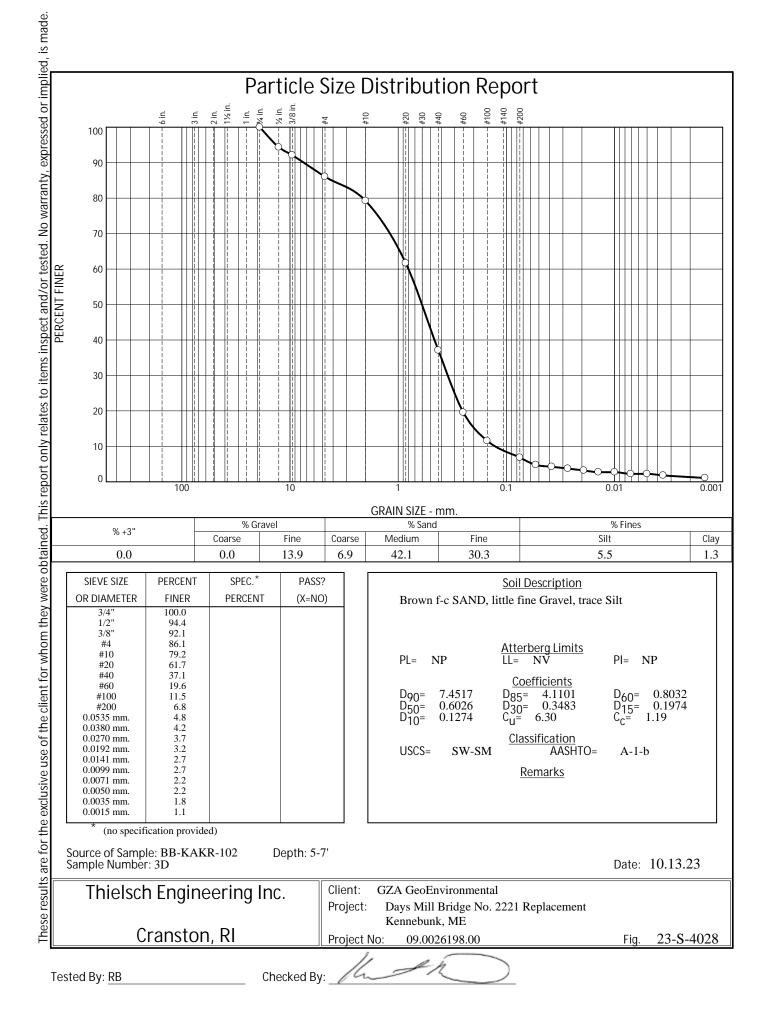
Date Received:

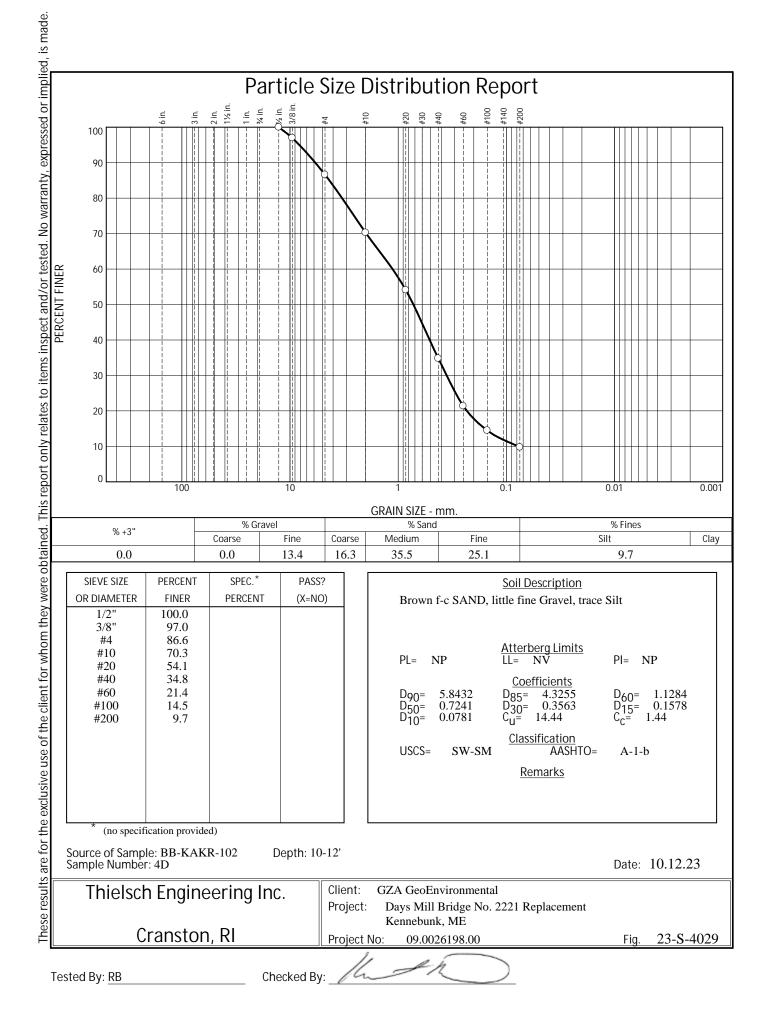

10.06.23


Reviewed By:

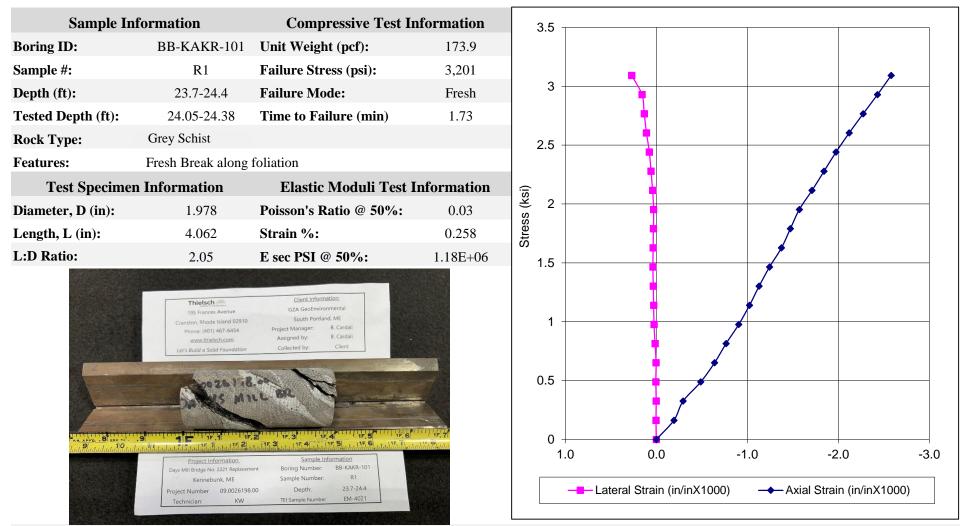

Date Reviewed: 10.17.23


This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.


This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

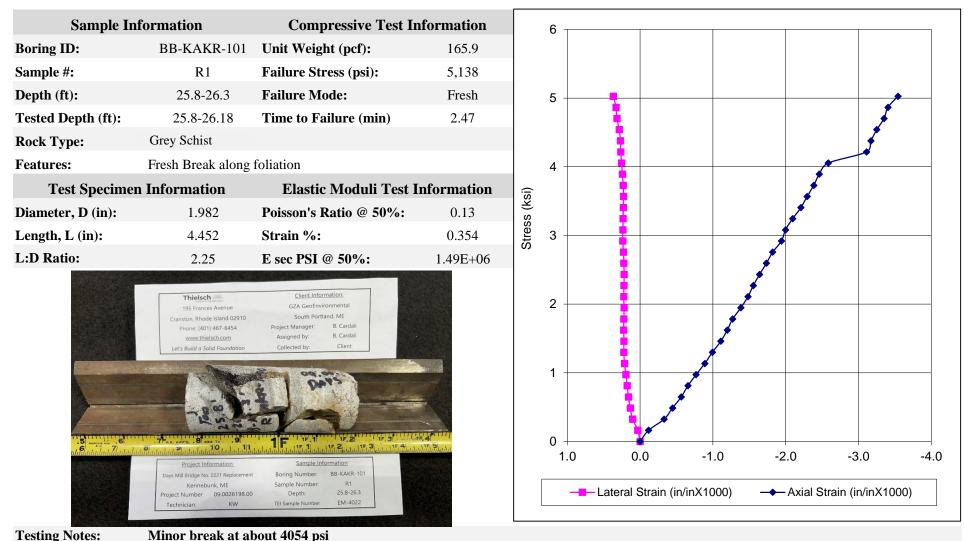


	195 Frances Avenue	Client In	formation:	Project Information:			
	Cranston RI, 02910 Phone: (401)-467-6454		ivironmental rtland, ME	Days Mill Bridge No. 2221 Replacement Kennebunk, ME			
Thielsch	Fax: (401)-467-2398 thielsch.com Let's Build a Solid Foundation	Project Manager: Assigned By: Collected By:	B. Cardali B. Cardali B. Cardali B. Cardali	Project Number: Summary Page: Report Date:	09.0026198.00 1 of 1 10.17.23		

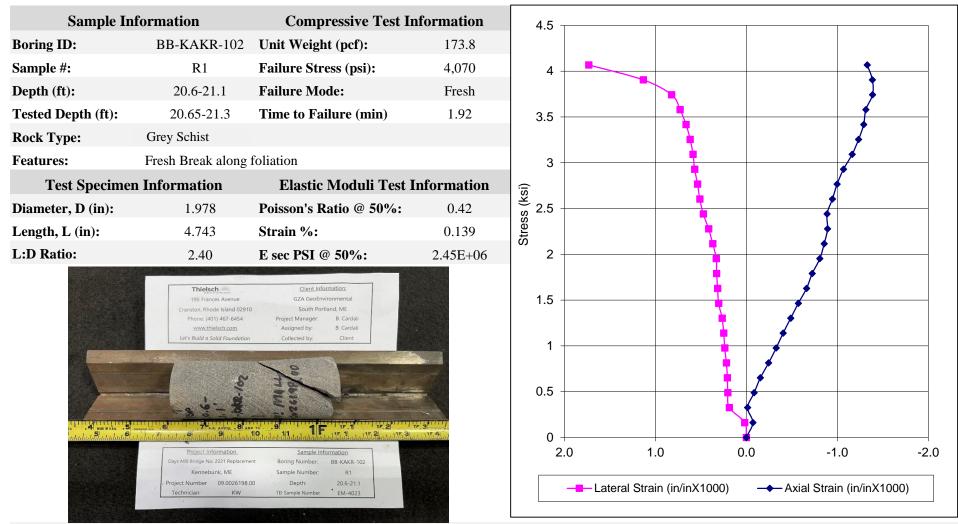

LABORATORY TESTING DATA SHEET, Report No.: 7423-K-116

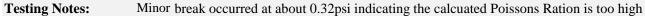
						Specime	en Data		1			Con	npressive S	Strength To	ests			
Boring No.	Sample No.	Depth (ft/in)	Laboratory No.	Mohs Hard- ness	Diameter (in)	Length (in)	(1) Unit Weight (PCF)	(2) Wet Density (PCF)	Bulk G₅	(3) Other Tests	(4) Strength PSI	(5) Strain %	(6) E sec PSI EE+06	(7) Poisson's Ratio	st PSI	Is ₅₀ PSI	(8) s _c PSI	Rock Formation or Description or Remarks
BB-KAKR- 101	R1	23.7- 24.4	23-S-4021		1.978	4.062	173.9				3201	0.258	1.18	0.03				Grey Schist
								Fres	sh Breal	k along t	foliation							
BB-KAKR- 101	R1	25.8- 26.3	23-S-4022		1.982	4.452	165.9				5138	0.354	1.49	0.13				Grey Schist
				-				Fres	h Breal	k along t	foliation				-			
BB-KAKR- 102	R1	20.6- 21.1	23-S-4023		1.978	4.743	173.8				4070	0.139	2.45	0.42				Grey Schist
		_		F	resh Break	along fo	liation, m	inor break	at 0.32	psi indic	ates the ca	lculation c	of Poisson'	s Ratio is h	nigh	_		
(1) Volume	Determined	By Meas	suring Dimens	ions		(3) PLD=	Point Loa	ad (diametr	ical),				(5) Strain	at Peak De	eviator Str	ess		
(2) Determir	ned by Meas	suring Di	imensions and		Notes	PLA= Pc	oint Load	(Axial) ST=	Splitti	ng Tensi	le	Notes	(6) Repre	sents Seca	nt Modulı	us at 50% (of Total I	Failure Stress
Weight of S	aturated Sar	mple			ž	U= Unconfined Compressive Streng				gth		Ż	(7) Repre	sents Seca	nt Poissor	n's Ratio at	: 50% of	Total Failure Stress
						(4) Take	n at Peak	Deviator S	tress				(8) Estima	ited UCS fr	om Table	1 of ASTN	/I D5731	for NX cores (Is x 24)
Date Re	eceived:		10.06.23		-		Rev	viewed E	By:	1	lifet					Date R	eview	10.17.23

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.


This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	rmation:	Project In	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Days Mill Bridge No	o. 2221 Replacement	
Thielsch 🌉	Phone: (401) 467-6454	South Portla	and, ME	Kennebunk, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026198.00	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	KW	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	10.17.23	




Testing Notes:

	195 Frances Avenue	Client Info	rmation:	Project Inf	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Days Mill Bridge No	o. 2221 Replacement	
Thielsch 🌉	Phone: (401) 467-6454	South Portla	and, ME	Kennebunk, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026198.00	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	KW	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	10.17.23	

	195 Frances Avenue	Client Info	rmation:	Project Inf	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	ironmental	Days Mill Bridge No	o. 2221 Replacement	
Thielsch 🌉	Phone: (401) 467-6454	South Portla	and, ME	Kennebunk, ME		
	Fax: (401) 467-2398	Project Manager:	B. Cardali	Project Number:	09.0026198.00	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	B. Cardali	Technician:	KW	
	Let's Build a Solid Foundation	Collected by:	B. Cardali	Report Date:	10.17.23	

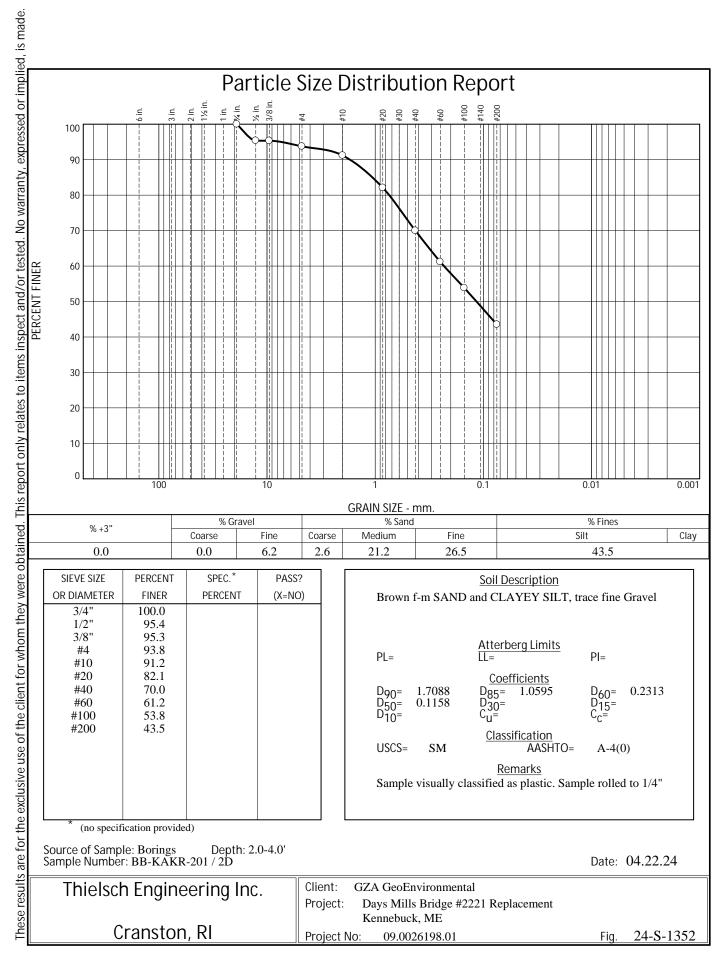
	195 Frances Avenue	Client Inf	ormation:	Project	Information:		
	Cranston RI, 02910	GZA GeoEn	vironmental	Days Mills Bridge	e #2221 Replacement		
Thielsch 🌉	Phone: (401)-467-6454	South Po	rtland, ME	Bridge #2221 over Kennebuck River			
	Fax: (401)-467-2398	Project Manager:	John Cozens	Project Number:	09.0026198.01		
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	John Cozens	Summary Page:	1 of 1		
	Let's Build a Solid Foundation	Collected By:	Client	Report Date:	04.23.24		

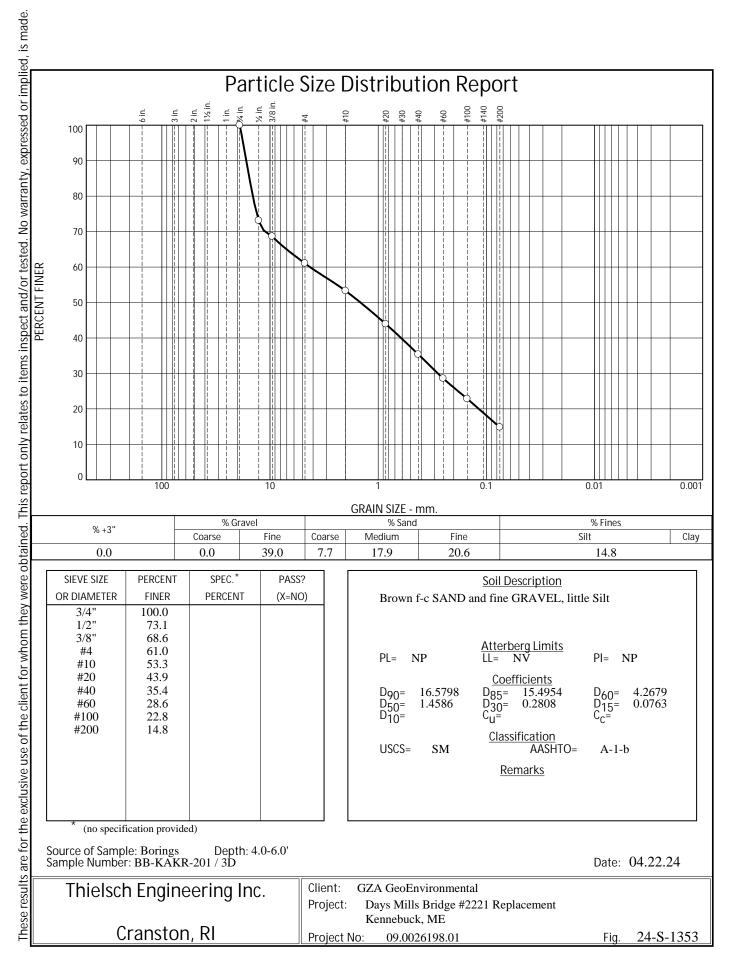
LABORATORY TESTING DATA SHEET, Report No.: 7424-D-180

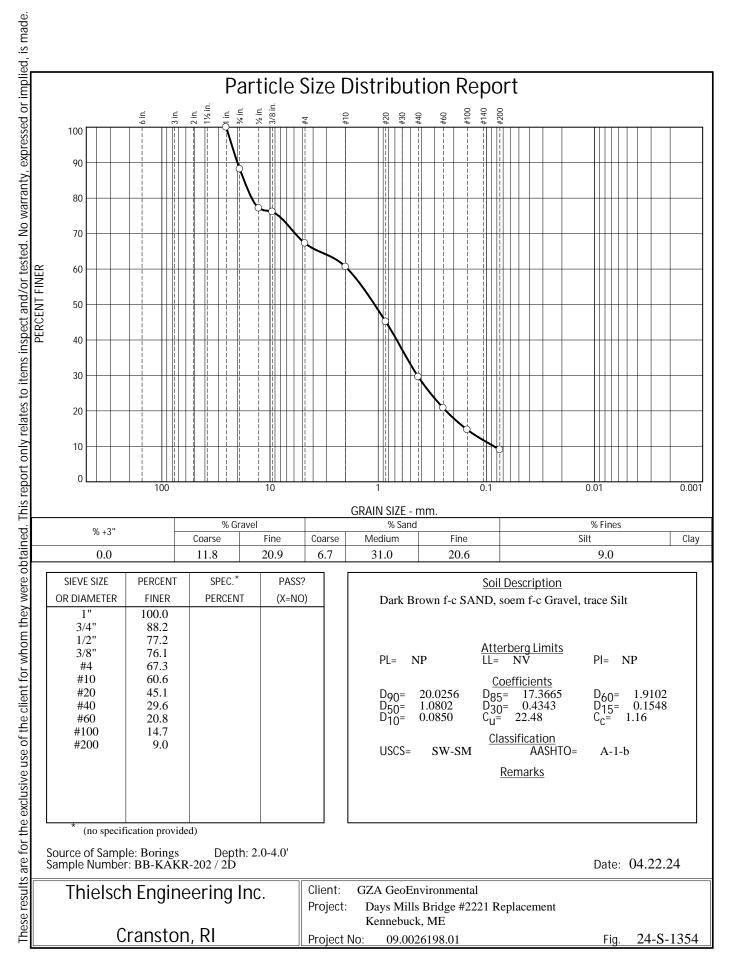
							Identifica	tion Test	5					Pro	ctor / CBR /	Permeabilit	y Tests			
Material Source	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	%	%	DD Grav LL %	el Sanc %	%	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D43	818		D6913		D2974	D4792	D1	557		1	1	1	1	1	
BB-KAKR-201	2D	2.0-4.0	24-S-1352	21.6			6.2	50.3	43.5											Brown f-m SAND and CLAYEY
							-							-						SILT, trace fine Gravel Brown f-c SAND and fine
BB-KAKR-201	3D	4.0-6.0	24-S-1353	8.8			39.	46.2	14.8											GRAVEL, little Silt
																				Dark Brown f-c SAND, soem f-c
BB-KAKR-202	2D	2.0-4.0	24-S-1354	8.6			32.	58.3	9.0											Gravel, trace Silt
BB-KAKR-202	3D	4.0-6.0	24-S-1355	8.2			32.	39.9	27.3											Brown f-c SAND, some f-c
DD RARR 202	30	4.0 0.0	24 3 1333	0.2			52.	, 55.5	21.5											Gravel, some Silt
BB-KAKR-203	2D	2.0-4.0	24-S-1356	12.6			9.2	58.3	32.5											Brown f-m SAND, some Silt,
																				trace f-c Gravel Brown f-m SAND and SILT.
BB-KAKR-203	3D	4.0-6.0	24-S-1357	21.1			4.9	51.6	43.5											trace fine Gravel
											1				1					

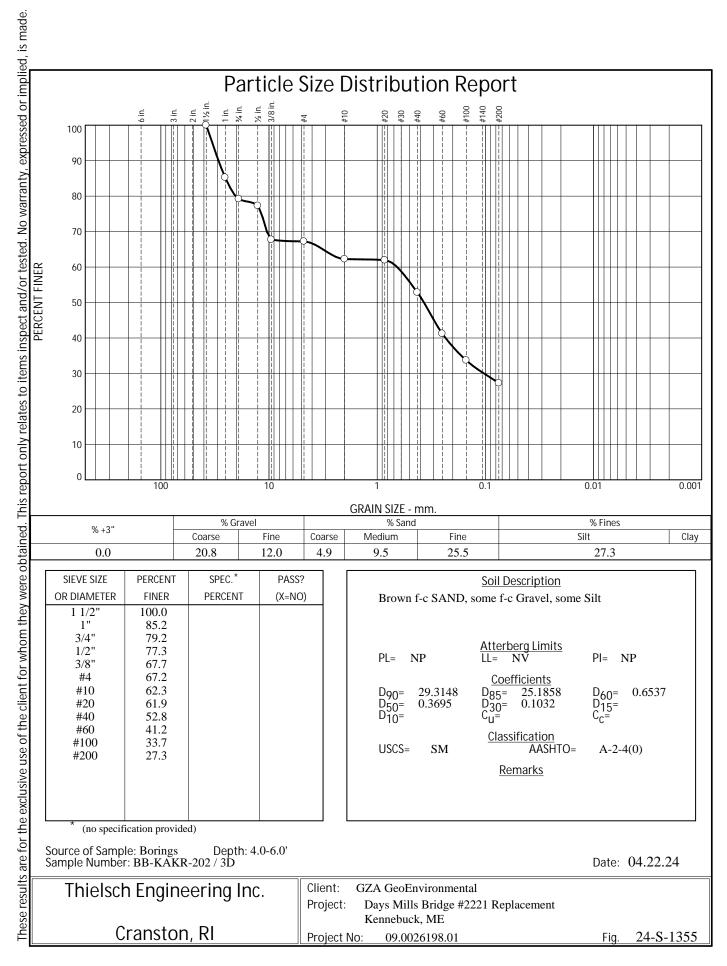
Date Received:

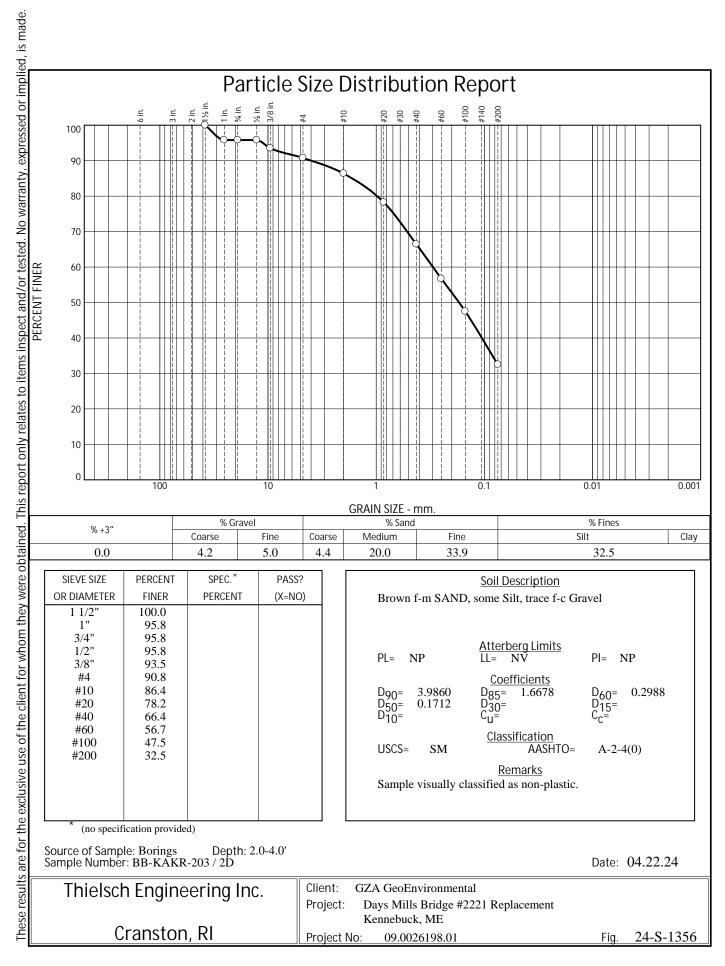
04.17.24

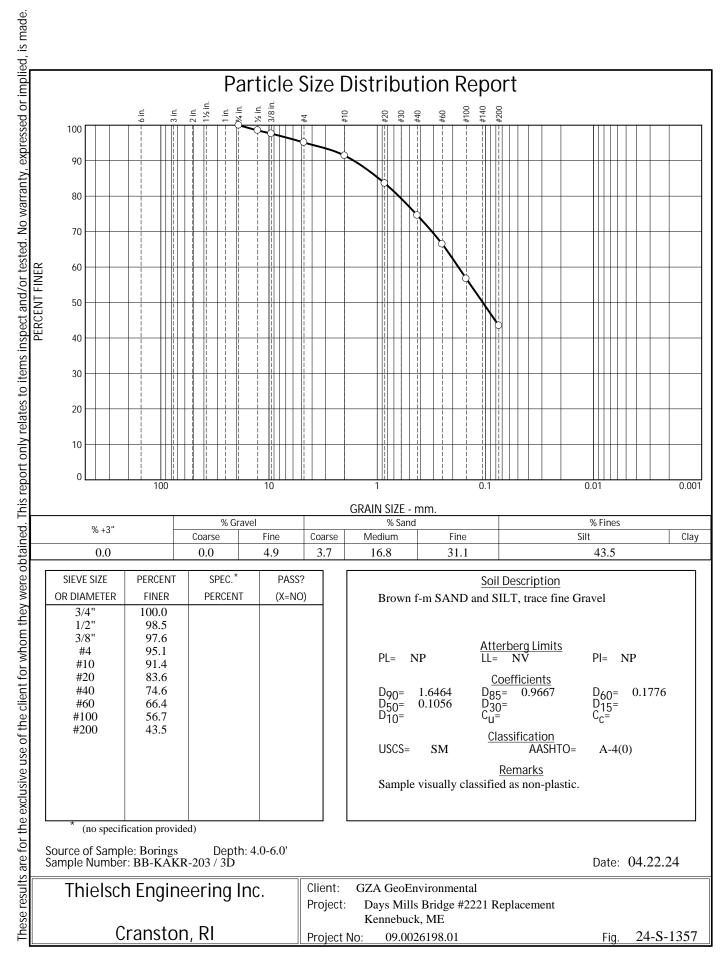

Reviewed By:


flifet

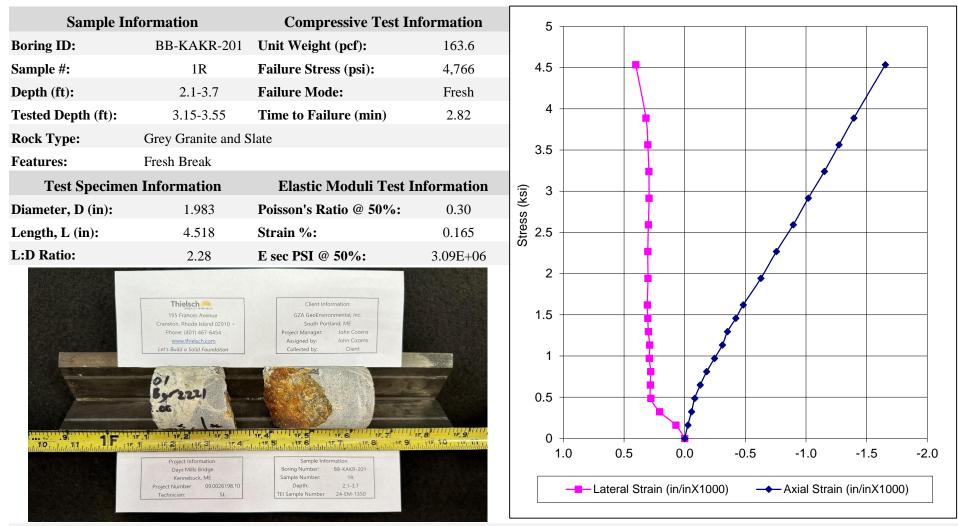

Date Reviewed: 04.23.24


This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.


This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

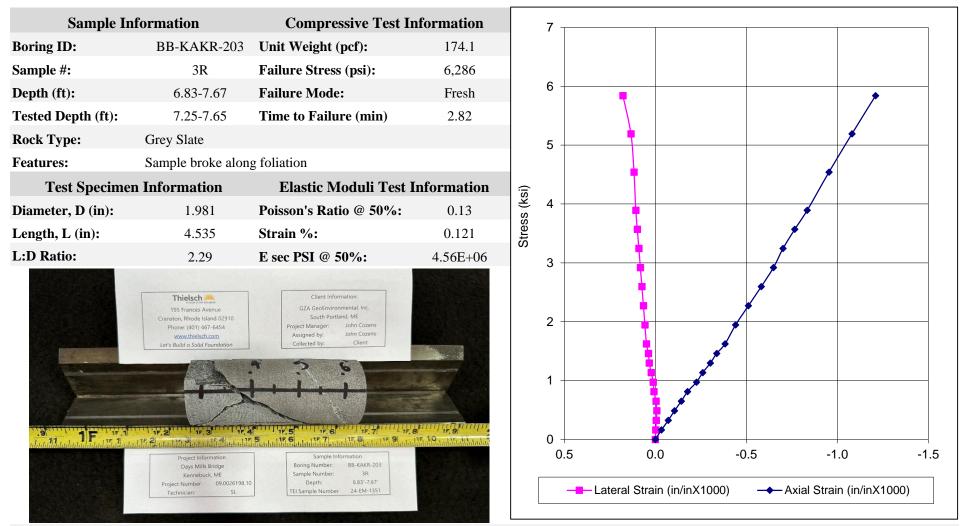


	195 Frances Avenue	Client In	formation:	Project I	nformation:
	Cranston RI, 02910 Phone: (401)-467-6454		nvironmental ortland, ME	, ,	#2221 Replacement er Kennebuck River
Thielsch 🌉	Fax: (401)-467-2398	Project Manager:	John Cozens	Project Number:	09.0026198.01
DIVISION OF THE RISE GROUP	<u>thielsch.com</u>	Assigned By:	John Cozens	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By:	Client	Report Date:	04.24.24


LABORATORY TESTING DATA SHEET, Report No.: 7424-D-179

						Specime	en Data					Cor	npressive :	Strength T	ests			
Boring No.	Sample No.	Depth (ft)	Laboratory No.	Mohs Hard- ness	Diameter (in)	Length (in)	(1) Unit Weight (PCF)	(2) Wet Density (PCF)	Bulk G _s	(3) Other Tests	(4) Strength PSI	(5) Strain %	(6) E sec PSI EE+06	(7) Poisson's Ratio	st PSI	Is ₅₀ PSI	(8) s _c PSI	Rock Formation or Description or Remarks
BB-KAKR-201	1R	2'10"- 3'7"	24-S-1350		1.983	4.518	163.6				4766	0.165	3.09	0.30				Grey Granite and Slate
									Fresh	n Break								
BB-KAKR-203	2R	2'7"- 3'2"																
								Sa	mple b	roke in	transit							
BB-KAKR-203	6'10"-																	
								Samp	ole brok	ke along	foliation							
(1) Volume Det	termined	By Meas	uring Dimensi	ons		(3) PLD=	Point Loa	ad (diametr	rical),				(5) Strain	at Peak De	eviator Str	ess		
(2) Determined	l by Meas	uring Dii	mensions and		Notes	PLA= Po	int Load	(Axial) ST=	Splitti	ng Tensi	le	Notes	(6) Repre	sents Seca	nt Modulu	ıs at 50% o	of Total I	Failure Stress
Weight of Satu	irated Sar	nple			N	U= Unconfined Compressive Strength						ž	(7) Repre	sents Seca	nt Poissor	ı's Ratio at	: 50% of	Total Failure Stress
<u> </u>						(4) Takeı	n at Peak	Deviator S	tress				(8) Estima	ted UCS fr	rom Table	1 of ASTN	1 D5731	for NX cores (Is x 24)
Date Rece	eived:		04.17.24				Rev	viewed E	By:	1	lifet					Date R	eview	04.24.24

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.


This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	ormation:	Project In	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	vironmental	Days Mills Bridge	#2221 Replacement	
Thielsch 🌉	Phone: (401) 467-6454	South Port	land, ME	Kennebuck,ME		
	Fax: (401) 467-2398	Project Manager:	John Cozens	Project Number:	09.0026198.10	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	John Cozens	Technician:	SL	
	Let's Build a Solid Foundation	Collected by:	Client	Report Date:	04.24.24	

Testing Notes:

	195 Frances Avenue	Client Info	rmation:	Project In	formation:	
	Cranston, Rhode Island 02910	GZA GeoEnv	vironmental	Days Mills Bridge	#2221 Replacement	
Thielsch 🌉	Phone: (401) 467-6454	South Portl	land, ME	Kennebuck,ME		
	Fax: (401) 467-2398	Project Manager:	John Cozens	Project Number:	09.0026198.10	
DIVISION OF THE RISE GROUP	www.thielsch.com	Assigned by:	John Cozens	Technician:	SL	
	Let's Build a Solid Foundation	Collected by:	Client	Report Date:	04.24.24	

Testing Notes:

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

APPENDIX D – ROCK CORE PHOTOGRAPHS

MaineDOT Day's Mill Bridge No. 2221 Route 35 over Kennebunk River Kennebunk-Arundel, ME WIN 26226.00 Rock Core Photographs

Boring No.	Run	De	epth (i	ft)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
BB- KAKR -101	R1	23.5	-	28.5	60	100	39	65	SCHIST/GRANOFELS	1
BB- KAKR -101	R2	28.5	-	33.5	60	100	48	80	SCHIST/GRANOFELS	2
BB- KAKR -102	R1	16.5	-	21.5	58	96	37	64	SCHIST	3
BB- KAKR -102	R2	21.5	-	26.5	60	100	49	81	SCHIST	4

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.



MaineDOT Day's Mill Bridge No. 2221 Route 35 over Kennebunk River Kennebunk-Arundel, ME WIN 26226.00 Rock Core Photographs

Boring No.	Run	De	epth (ft	t)	Recovery (in)	Recovery (%)	RQD (in)	RQD (%)	Rock Type	Box Row
BB- KAKR -201	R1	10.5	-	15.5	57	95	20	33	SCHIST/GRANOFELS	1
BB- KAKR -201	R2	15.5	-	20.5	59	98	35	58	SCHIST/GRANOFELS	2

<u>Notes:</u> 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 4=Bottom. 2. Top photo is dry, bottom photo is wet.

Page 3 of 3

10/24/2024 GEOTECHNICAL DESIGN REPORT REPLACEMENT OF DAY'S MILL BRIDGE NO.2221 HNTB Corporation 09.0026198.01

APPENDIX E - CALCULATIONS

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 http://www.gza.com

Objective

Assess the nominal and factored bearing resistance of a foundation on rock based on support in SCHIST/GRANOFELS from borings BB-KAKR-101, 102, 201 through 203.

Methodology

Use data from test borings and evaluate the nominal bearing resistance as follows:

- 1. Bedrock Properties From Test Borings
- 2. Calculation Of Rock Mass Rating
- 3. Determine Rock Property Constants s and m
- 4. Calculate Nominal Bearing Resistance of Bedrock q_{n}

References

1. American Association of State Highway and Trans portation Officials, AASHTO LRFD Bridge Design Specifications: Customary U.S. Units, 6th edition, 2012. (AASHTO LRFD).

Note: AASHTO 9th Edition is now in effect, but the coefficients used in the bedrock bearing evaluations are understood to be correlated relative to the older Hoek and Brown 1988 methodology. Therefore, RMR is used for the evaluation per LRFD 6th Edition rather than GSI per LRFD 9th Edition.

2. Wyllie, Duncan C, "Foundations on Rock", Second edition, 1992.

1. Rock Properties

Bedrock properties were obtained from rock core specimens and logs completed for the Day's Mill Bridge Replacement Project in Kennebunk-Arundel, ME. This calculation is based on the data from borings BB-KAKR-101/BB-KAKR-102 and BB-KAKR-201, BB-KAKR-202 and BB-KAKR-203.

Bedrock Strength

						LAE	3			
Boring	GS Elevation	RQD %	Depth of Sample (ft)	Depth of Sample Into Rock (ft)	ElevTop of Sample (ft)	UCS (psi)	UCS (ksi)	UCS (ksf)	Modulus (ksi)	Unit Wt (pcf)
BB-KAKR-101	145	65	23.5	0.2	121.3	3201	3.201	461	1180	173.9
BB-KAKR-101	145	65	23.5	2.3	119.2	5138	5.138	740	1490	165.9
BB-KAKR-102	144	64	16.5	4.1	123.4	4070	4.07	586	2450	173.8
BB-KAKR-201	142	95	13.3	2.8	132.2	4766	4.766	686	3090	163.6
BB-KAKR-203	144	75	14.8	6.8	135.9	6286	6.286	905	4560	174.1

Use a strength is 4 ksi for design

GZA GeoEnvironmental, Inc

707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 http://www.gza.com Day's Mill Bridge, Kennebunk, ME JOB: <u>09.0026198.01</u> SUBJECT: <u>Bearing Resistance on Bedrock</u> SHEET: <u>2 OF 7</u> CALCULATED BY: <u>J.Cozens 8.1.2024</u> REVIEWED BY: <u>C.Snow/B.Cardali 9.3.2024</u>

Boring ID	Core Run	Rec (%)	RQD %	Joint Spacing Desc.	Joint Spacing (in)	Aperture Desc.	Joint Aperture (in)	Joint Weathering
BB-KAKR-101	R1	100%	65%	Very Close to Close	0.75-8	Tigh to Moderately Wide	0.004-0.4	Fresh
BB-KAKR-101	R2	100%	80%	Close to Moderate	2.5-24	Tight	0.004-0.01	Fresh
BB-KAKR-102	R1	96%	64%	Very Close to Close	0.75-8	Tight to Partially Open	0.004-0.1	Fresh to Discolored
BB-KAKR-102	R2	100%	81%	ery Close to Moderate	0.75-24	Tight to Partially Open	0.004-0.1	Fresh to Discolored
BB-KAKR-201	R1	95%	33%	Very Close to Close	0.75-8	Tight to Partially Open	0.004-0.1	Fresh to Decomposed
BB-KAKR-201	R2	98%	58%	Very Close to Close	0.75-8	Tight to Partially Open	0.004-0.1	Discolored
BB-KAKR-202	R1	93%	0%	Very Close to Close	0.75-8	Tight to Partially Open	0.004-0.1	Fresh to Disintegrated
BB-KAKR-202	R2	96%	78%	Close to Moderate	2.5-24	Tight to Partially Open	0.004-0.1	Fresh to Discolored
BB-KAKR-202	R3	99%	93%	ery Close to Moderate	0.75-24	Tight to Partially Open	0.004-0.1	Fresh
BB-KAKR-203	R1	83%	0%	Close	8	Tight to Partially Open	0.004-0.1	Fresh to Discolored
BB-KAKR-203	R2	100%	29%	Very Close to Close	0.75-8	Tight to Partially Open	0.004-0.1	Discolored
BB-KAKR-203	R3	100%	89%	Close	8	Tight to Partially Open	0.004-0.1	Fresh to Discolored

Bedrock Quality

Average RQD of 58% representative of rock encountered in the borings.

2. Calculation of Rock Mass Rating (RMR)

From AASHTO LRFD 6th Ed. Table 10.4.6.4-1, determine the RMR.

Parameter 1 - Uniaxial Compressive Strength

 $\sigma_{\text{u.r}} := 4\text{ksi} = 576 \cdot \text{ksf}$

Use assumed unconfined compressive strength of 4 ksi

From AASHTO LRFD Table 10.4.6.4-1

Relative Rating $RR_1 := 4$ for $\sigma_{u,r} = 520 - 1080$ ksf

Parameter 2 - Drill Core Quality

Representative RQD from table above: approximately 58%, use a range of 50 to 75% for design.

From AASHTO LRFD Table 10.4.6.4-1

Relative Rating $RR_2 := 13$

Parameter 3 - Spacing of Joints

From Boring Logs generally very close to moderately spaced, generally between 2-12 inches.

From AASHTO LRFD Table 10.4.6.4-1

Relative Rating

 $RR_3 := 10$

Parameter 4 - Condition of Joints

From boring logs, generally hard joint walls and rough to smooth surface, with joint separation less than 0.05 in., and described generally as fresh.

From AASHTO LRFD Table 10.4.6.4-1

Relative Rating $RR_4 := 20$

Parameter 5 - Ground Water Conditions

Hydrostatic Conditions-Interstitial water

From AASHTO LRFD Table 10.4.6.4-1

Relative Rating $RR_5 := 7$

Parameter 6 - Adjustment for joint orientation

The joint sets are generally moderately dipping, and generally rough and tight. Therefore, the joint orientation is considered fair.

From AASHTO LRFD Table 10.4.6.4-2

Relative Rating $RR_6 := -7$

Total RMR Rating

 $RMR \coloneqq RR_1 + RR_2 + RR_3 + RR_4 + RR_5 + RR_6$

RMR = 47

From AASHTO LRFD Table 10.4.6.4-3 RMR= 47 to 60 is indicative of Fair to Good Rock Quality

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 http://www.gza.com Engineers and Scientists

3. Determine Rock Property Constants s and m

Use AASHTO LRFD 6th Ed. Table 10.4.6.4-4 to develop empirical rock property constants

SCHIST is categorized as rock type D, fine-grained polyminerallic igneous & metamorphic crystalline rocks, RMR=47, using s and m values interpolated from the logarithmic trend of plotted values from AASHTO Table 10.4.6.4-4 (plots on sheet 7).

m∷= .388

s:= .000145

4. Calculate Nominal and Factored Bearing Resistance of Bedrock q_n and q_R

From Wyllie "Foundations on Rock"

Eq. 5.4 Pg.138

$$\mathbf{q}_{\mathbf{n}} \coloneqq \mathbf{C}_{\mathbf{f}\mathbf{l}} \cdot \sqrt{\mathbf{s}} \cdot \boldsymbol{\sigma}_{\mathbf{u},\mathbf{r}} \cdot \left[1 + \sqrt{\mathbf{m}} \cdot \left(\frac{-1}{2} \right) + 1 \right]$$

Where

 $\begin{array}{lll} C_{f1} \coloneqq 1.0 & \mbox{From Wyllie Table 5.4 Pg. 138 Correction factor for foundation shape for rectangular foundation:} \\ s = 0.000145 & \mbox{For L/B>6, use factor C_{fl}=1.0,} \\ m = 0.388 & \mbox{For L/B=1, use factor C_{fl}=1.12, therefore,} \\ \sigma & = 4 \cdot ksi & \mbox{For conservatism, as sume long strip, lowest C_{fl.}} \end{array}$

Nominal Bearing Resistance

$$q_{n} := C_{f1} \cdot \sqrt{s} \cdot \sigma_{u,r} \cdot \left[1 + \sqrt{m \cdot \left(s^{-\frac{1}{2}}\right) + 1}\right]$$

 $q_n = 46.9 \cdot \text{ksf}$ Say 47 ksf

Factored Bearing Resistance for Strength Condition

Bearing Resistance Factor is specified in Table 10.5.5.2.2-1

$$\phi_{b} := 0.45$$

$$q_{R} := \phi_{b} \cdot q_{n}$$

$$q_{R} = 21.1 \cdot \text{ksf}$$
Say 21.ksf

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106 207-879-9190

Fax 207-879-0099 http://www.gza.com

Reference:I:\Mathcad\units.xmcd

10-22

AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

Table 10.4.6.4-1 Geomechanics Classification of Rock Masses.

	Paramet	er					Ranges	of Va	alues			
		Point load strength index	>175 ksf		175 sf	45–85 ksf	20- ks		For this low range, uniax compressive test is prefe			
1	material	Uniaxial compressive strength	>4320 ksf		50– 0 ksf	1080– 2160 ksf	520 1080		215–52 ksf	0	70–215 ksf	20–70 ksf
ĺ	Relative Rating		15	1	2	7	4		2		1	0
2	Drill core quality RQD		90% to 100% 7		75%	6 to 90%	50% to 75%		%	25% to 50%		<25%
-	Relative Rating		20			17		13			8	3
3	Spacing of joints		>10 ft.		3	-10 ft.	1-3 ft.			2 in1 ft.		<2 in.
1	Relative Rating		30			25	20			10		5
4	Condition of joints		 Very rou, surfaces Not continuou No separation Hard join wall rock 	ıs n t	 Slightly rough surfaces Separation <0.05 in. Hard joint wall rock 		 Slightly rough surfaces Separation <0.05 in. Soft joint wall rock 		•	 Slicken-sided surfaces or Gouge <0.2 in. thick or Joints open 0.05–0.2 in. Continuous joints 		 Soft gouge >0.2 in. thick or Joints open >0.2 in. Continuous joints
	Relative Rating		25									0
5	Ground water conditions (use one of the three evaluation criteria as appropriate to the method of		None	•		<400 gal./	hr.	400)—2000 g	al./hr.	>2	2000 gal./hr.
	exploration)	Pration) Ratio = joint 0 water pressure/ major principal stress			0.0–0.2	0.3		0.2–0.5		>0.5		
		General Conditions	Complete	ly Dry	(Moist on interstitial w					evere water problems	
	Relative Rating		10			7		4			0	

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106 207-879-9190

Fax 207-879-0099 http://www.gza.com

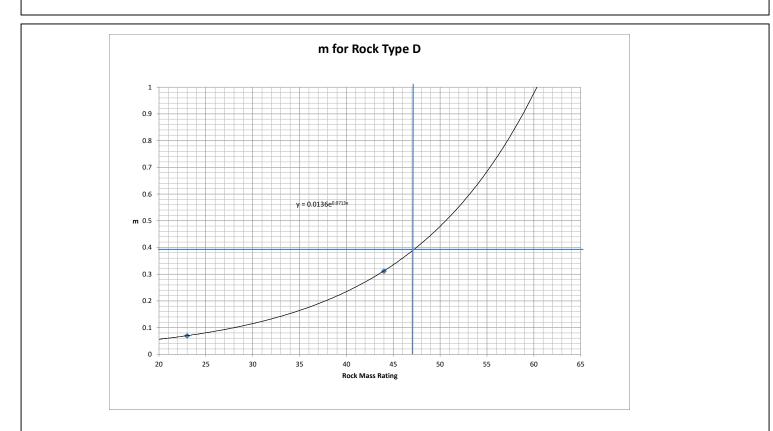
Strike a	and Dip Orientations of Joints	Very Favorable	Favorable	Fair	Unfavorable	Very Unfav	vorable
	Tunnels	0	-2	-5	-10	-12	
Ratings	Foundations	0	-2	-7	-15	-25	
	Slopes	0	-5	-25	-50	-60	
able 10.4. RMR Rat	6.4-3 Geomechanics	s Rock Mass Cla 100–81	sses Determine		fotal Ratings.	40-21	<20
	ting					40–21 IV	

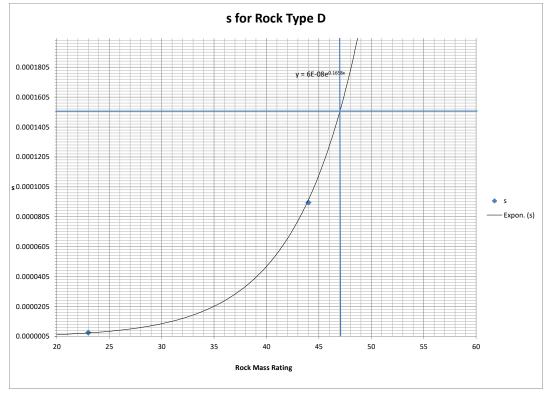
10-24

AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

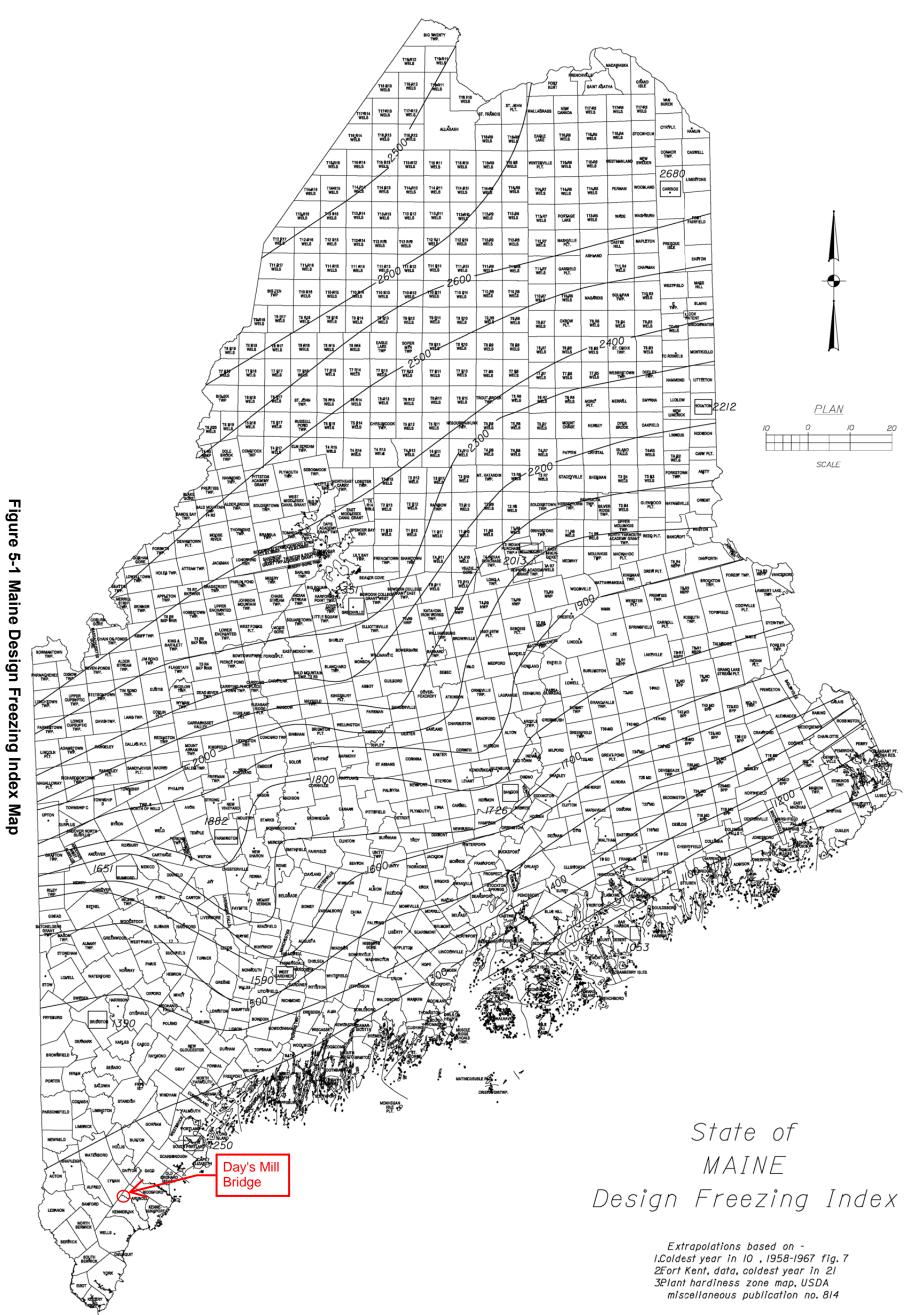
Table 10.4.6.4-4 Approximate relationship between rock-mass quality and material constants used in defining nonlinear strength (*Hoek and Brown, 1988*)

				Rock Typ	e	
Rock Quality		$\begin{array}{l} dolom\\ B= & Lithif\\ and s,\\ C= & Arena\\ crysta\\ D= & Fine \\ andes\\ E= & Coars\\ crysta\end{array}$	nite, limeston ied argrillace late (normal aceous rocks al cleavage— grained polyn ite, dolerite, ae grained pol	e and marble cous rocks—n to cleavage) with strong c sandstone an ninerallic ign diabase and lyminerallic i -amphibolite,	nudstone, silts rystals and poo d quartzite eous crystallin	tone, shale orly developed ae rocks— amorphic
INTACT ROCK SAMPLES	-	A	В	C	D	E
Laboratory size specimens free from discontinuities CSIR rating: <i>RMR</i> = 100	m S	7.00 1.00	10.00 1.00	15.00 1.00	17.00 1.00	25.00 1.00
VERY GOOD QUALITY ROCK MASS Tightly interlocking undisturbed rock with unweathered joints at 3–10 ft. CSIR rating: <i>RMR</i> = 85	m s	2.40 0.082	3.43 0.082	5.14 0.082	5.82 0.082	8.567 0.082
GOOD QUALITY ROCK MASS Fresh to slightly weathered rock, slightly disturbed with joints at 3–10 ft. CSIR rating: <i>RMR</i> = 65	m s	0.575 0.00293	0.821 0.00293	1.231 0.00293	1.395 0.00293	2.052 0.00293
FAIR QUALITY ROCK MASS Several sets of moderately weathered joints spaced at 1–3 ft. CSIR rating: <i>RMR</i> = 44	m s	0.128 0.00009	0.183 0.00009	0.275 0.00009	0.311 0.00009	0.458 0.00009
POOR QUALITY ROCK MASS Numerous weathered joints at 2 to 12 in.; some gouge. Clean compacted waste rock. CSIR rating: <i>RMR</i> = 23	m s	0.029 3 × 10 ⁻⁶	0.041 3 × 10 ⁻⁶	0.061 3 × 10 ⁻⁶	$0.069 \\ 3 \times 10^{-6}$	$0.102 \\ 3 \times 10^{-6}$
VERY POOR QUALITY ROCK MASS Numerous heavily weathered joints spaced <2 in. with gouge. Waste rock with fines. CSIR rating: <i>RMR</i> = 3	m s	0.007 1 × 10 ⁻⁷	$0.010 \\ 1 \times 10^{-7}$	$0.015 \\ 1 \times 10^{-7}$	0.017 1 × 10 ⁻⁷	0.025 1 × 10 ⁻⁷


GZA GeoEnvironmental, Inc 707 Sable Oaks Drive - Suite 150 South Portland, Maine 04106


207-879-9190

Fax 207-879-0099


http://www.gza.com

Engineers and Scientists Day's Mill Bridge, Kennebunk, ME JOB: <u>09.0026198.01</u> SUBJECT: <u>Bearing Resistance on Bedrock</u> SHEET: <u>7 OF 7</u> CALCULATED BY: <u>J.Cozens 8.1.2024</u> REVIEWED BY: <u>C.Snow/B.Cardali 9.3.2024</u>

Frost Penetration Calculation Day's Mill Bridge Replacement GZA File No. 09.0026198.01 Page 1 of 2

Frost Penetration Calculation Day's Mill Bridge Replacement GZA File No. 09.0026198.01 Page 2 of 2

	Design			Frost Pene	tration (in)		
	Freezing	Co	arse Grain	ned	Fine Grained			
	Index	w=10%	w=20%	w=30%	w=10%	w=20%	w=30%	
	1000	66.3	55.0	47.5	47.1	40.7	36.9	
	1100	69.8	57.8	49.8	49.6	42.7	38.7	
1250	1200	73.1	60.4	52.0	51.9	44.7	40.5	
1250	1300	76.3	63.0	54.3	54.2	46.6	42.2	
	1400	79.2	65.5	74.7" = 6.2'	56.3	48.5	43.9	
	1500	82.1	67.9	58.4	58.3	50.2	45.4	
	1600	84.8	70.2	60.3	60.2	51.9	46.9	
	1700	87.5	72.4	62.2	62.2	53.5	48.4	
	1800	90.1	74.5	64.0	64.0	55.1	49.8	
	1900	92.6	76.6	65.7	65.8	56.7	51.1	
	2000	95.1	78.7	67.5	67.6	58.2	52.5	
	2100	97.6	80.7	69.2	69.3	59.7	53.8	
	2200	100.0	82.6	70.8	71.0	61.1	55.1	
	2300	102.3	84.5	72.4	72.7	62.5	56.4	
	2400	104.6	86.4	74.0	74.3	63.9	57.6	
	2500	106.9	88.2	75.6	75.9	65.2	58.8	
	2600	109.1	89.9	77.1	77.5	66.5	60.0	

Table 5-1 Depth of Frost Penetration

Notes: 1. w = water content

2. Where the Freezing Index and/or water content is between the presented values, linear interpretation may be used to determine the frost penetration.

The Freezing Index for the site is 1,250, and with low-moisture content (<10 percent) soils, the estimated depth of frost penetration is approximately 6.2 feet. Where abutment foundations bear directly on sound rock, there is no minimum requirement for footing embedment.

Granular fill soils encountered near the surface at the abutments typically were classified as AASHTO A 1 b, A-4 and A-2-4(0) with MaineDOT Frost Classification from I to III, indicating they are considered to exhibit low to moderate frost susceptibility. Since there was no evidence of significant pavement distress or heave, these materials are judged to be suitable for continued use beneath the approach roadway after reconstruction. In accordance with MaineDOT Standards, new backfill placed behind abutments will consist of non frost susceptible materials.

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 Engineers and Scientists JOB:09.0026198.01Day's Mill BridgeSUBJECT:Lateral Earth PressuresSHEET:1 OF 1CALCULATED BYB. Cardali 9/5/24CHECKED BYC.Snow 9/5/24

Subject:	Eval uate lateral earth pressure coefficients for proposed cast-in-place abutment wi semi-integral backwall			
References:	1. 2.	MaineDOT Bridge Design Guide, Chapter 3 and 5 (BDG) AASHTO LRFD Bridge Design Specifications, 9th Edition (2020)		
Input Parameters:				
$\phi := 32 \text{deg}$		Effective angle of internal friction (<i>Granular borrow, Soil Type 4, BDG</i> Table 3-3)		
$\delta_{f} := 19.5 \text{deg}$		Average value, precast concrete against clean s and/silty sand-gravel mixture (AASHTO LRFD Table 3.11.5.3-1)		
$\beta := 0 \deg$		Angle of backfill to the horizontal		
$\theta := 90 \cdot \deg$		Angle of back face of wall to the horizontal		

Earth Pressure Coefficients:

Thermal expansion of the bridge will cause the superstructure backwall (end diaphragm) to move towards the backfill, which will result in earth pressures ranging from at-rest to passive earth pressure. Therefore, the end diaphragms should be designed for passive earth pressure. The semi-integral abutments and wingwalls will be free to rotate and therefore should be designed for active earth pressure.

Passive Earth Pressure (End Diaphragms)

Per BDG Section 5.4.2.11, developing full passive pressure requires that ratio of lateral abutment movement (y) to abutment height (Hb) exceeds 0.005. If the calculated rotation is significantly less, Rankine earth pressure may be considered. However, we understand that recent practice by MaineDOT is to utilize methodology consistent with MassDOT Section 3.10.8.

$$\chi := 0.38$$
 in Maximum deflection from thermal expansion provided by structural engineer.

 $H_{\mathbf{k}} := 4 ft$

End Diaphragm Height

$$\frac{y}{H_b} = 0.0079$$

Ratio of lateral movement to abutment height

MassDOT Section 3.10.8 presents the plot and calculation shown below for a gravel borrow material.

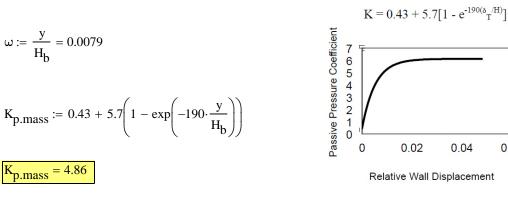


Figure 3.10.8-1: Plot of Passive Pressure Coefficient, K, vs. Relative Wall Displacement, δ_T/H.

0.06

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099

Active Earth Press ure (Abutments and Wingwalls)

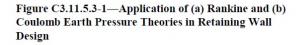
Article 3.6.4 of the BDG states that abutments with a height of 5 feet or more should be assumed to experience sufficient horizontal movement of the top of the wall to develop active conditions due to structural deformation of the stem and rotation of the foundation.

Engineers and

Scientists

$$\alpha := \frac{(90 \cdot \deg + \beta - \phi)}{2} = 29 \cdot \deg$$

heel := 5ft


Intersection_{height} := $tan(90deg - \alpha) \cdot heel = 9 \cdot ft$

The abutment height is 17.5 feet. Based on Figure C3.11.5.3-1 of LRFD, the abutment is considered to be a short-heeled wall. Therefore, Coulomb theory should be used to calculate active earth pressures.

Coloumb Active Earth Pressure Coefficient (Short-Heeled Wall)

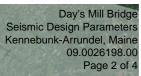
$$\prod_{f} := \left[1 + \sqrt{\left[\frac{\sin(\phi + \delta_{f}) \cdot (\sin(\phi - \beta))}{\sin(\theta - \delta_{f}) \cdot \sin(\theta + \beta)}\right]}\right]^{2} = 2.77$$

$$\mathbf{K}_{ac} \coloneqq \frac{\left(\sin(\theta + \phi)\right)^2}{\Gamma \cdot \left[\left(\sin(\theta)\right)^2 \cdot \sin\left(\theta - \delta_{f}\right)\right]} \qquad \qquad \mathbf{K}_{ac} = 0.28$$

JOB:09.0026198.01Day's Mill BridgeSUBJECT:Lateral Earth PressuresSHEET:2 OF 2`CALCULATED BYB. Cardali 9/5/24CHECKED BYC.Snow 9/5/24

Horizontal Peak Ground Acceleration Coefficient (PGA) Day's Mill Bridge Seismic Design Parameters Kennebunk-Arrundel, Maine 09.0026198.00 Page 1 of 4

Day's Mill Bridge


9.5

Google Earth

Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image U.S. Geological Survey

100 mi

Horizontal Response Spectral Acceleration Coefficient for period of 0.2 s (Ss)

Day's Mill Bridge

Google Earth

Image Landsat/Copernicus Data SIO; NOAA; U.S. Navy, NGA, GEBCO Image U.S. Geological Survey A N

Seismic Design Parameters Kennebunk-Arrundel, Maine 09.0026198.00 Page 3 of 4

Horizontal Response Spectral Acceleration Coefficient for period of 1.0 s (S1)

GZN

Day's Mill Bridge

4.5

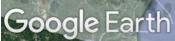


Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image U.S. Geological Survey

Day's Mill Bridge Seismic Interpolation for Coefficients							
Seismic Parameter	Interpolated Value from Maps ¹	Design Parameter					
Horizontal Peak ground Acceleration Coefficient	9.5	PGA = .095					
Horizontal Response Spectral Acceleration Coefficient for Period of 0.2s	18	$S_{s} = 0.180$					
Horizontal Response Spectral Acceleration Coefficient for Period of 1.0s	4.5	$S_1 = .045$					

Notes: 1. AASHTO Figures 3.10.2.1-1,-2, and -3 were overlaid within the Google Earth software. Coefficients were interpolated between lines on these figures as presented in pages 1 through 3 of this calculation.

For Class B, values of F_{PGA} and F_{a} = 1.0, and F_{v} = 1.0

Therefore:

$$A_{s} = F_{PGA} \times PGA = 1.0 \times 0.095 = 0.095 g$$
$$S_{DS} = F_{a} \times S_{s} = 1.0 \times 0.180 = 0.180 g$$
$$S_{D1} = F_{v} \times S_{1} = 1.0 \times 0.045 = 0.045 g$$

Summary:

SITE CLASS B SEISMIC DESIGN PARAMETERS						
Parameter	Design Value					
Fpga	1.0					
Fa	1.0					
Fv	1.0					
As (Period = 0.0 sec)	0.10 g					
SDs (Period = 0.2 sec)	0.18 g					
SD1 (Period = 1.0 sec)	0.05 g					