

Replacement of Tuttle Road over I-295, RTE US 1 & MCRR – Cumberland, Maine

WIN 025161.00

Submitted to:

Maine Department of Transportation

Submitted by:

Hardesty & Hanover, LLC

TABLE OF CONTENTS

TABLE OF CONTENTS	1
LIST OF APPENDICES	2
LIST OF FIGURES	2
LIST OF TABLES	2
1.0 Introduction	3
1.1 Project Understanding	3
1.2 Purpose and Scope	4
2.0 Subsurface Conditions	5
2.1 Geology	5
2.2 Subsurface Exploration Program	
2.2.1 Subsurface Exploration Program	
2.2.2 Historic Subsurface Exploration Program	
2.2.3 Lab Testing	
2.4 Stratigraphy	
2.5 Geotechnical Engineering Parameters	
2.6 Groundwater	
2.7 Corrosion Potential and Rates	12
2.8 Frost Consideration	12
3.0 Seismic Design Considerations	14
4.0 Bridge Foundations	15
4.1 Selection of Foundation Type	15
4.2 Design Procedures and Assumptions	
4.3 Foundation Design and Recommendations	
4.3.1 Axial Pile Resistance	
4.3.1.1 Axial Compression Pile Resistance	16
4.3.1.2 Axial Uplift Pile Resistance	
4.3.2 Pile Group Evaluation	17
4.3.3 Downdrag Loading	18
4.3.4 Pile Design Summary	19
4.3.5 Pile Driveability	19
5.0 Roadway Approach Embankment	21
5.1 Embankment Design Parameters	22
5.1.1 Recommended Construction Fill Material Parameters	
5.1.2 Recommended Consolidation Parameters	
5.2 Embankment Performance Criteria	
5.3 Settlement Analysis	
5.4 Global Stability Analysis	27
5.5 Lateral Squeeze Potential	
6.0 Construction Considerations	29

6.1 General Earthwork	29
6.2 Protection of Utilities	29
6.3 Construction Monitoring	29
6.4 Pile Quality Control	29
6.5 Determination of Pile Bearing Resistance	30
6.6 Excavation Stability and Support	30
7.0 Geotechnical Report Limitations	32
8.0 References	34
LIST OF APPENDICES	
Appendix A: Boring Location Plan and Subsurface Interpretive Profiles	
Appendix B: Boring Logs and MaineDOT Key to Soil and Rock Descriptions and Terms	
Appendix C: Rock Core Photographs	
Appendix D: Laboratory Testing Results	
Appendix E: Cone Penetration Test Report	
Appendix F: Historic Boring Information	
Appendix G: Seismic Site Class and Coefficients	
Appendix H: Foundation Evaluation	
Appendix H-1: Uplift Pile Resistance	
Appendix H-2: FBMP Group Analyses	
Appendix H-3: Downdrag Load Calculation	
Appendix H-4: Pile Driveability Analysis	
Appendix I: Global Stability Analysis	
Appendix J: FOSSA Settlement Analysis	
LIST OF FIGURES	
Figure 1: Project Location	3
LIST OF TABLES	
Table 1: Test Boring Summary	
Table 2: Soil Parameters	
Table 3: Frost Penetration Depths	
Table 4: Seismic Design Parameters	
Table 5: Axial Compression Pile Resistance	
Table 7: Pile Group Evaluation Results	
Table 8: Pile Design Summary	
Table 9: Wave Equation Analysis Results	
Table 10: Recommended Fill Material Design Parameters	
Table 11: Recommended Consolidation Parameters	
Table 12: Embankment Sections	
Table 13: FOSSA Summary of Settlement Results Post-Construction	26
Table 14: Minimum Factors of Safety	28

1.0 Introduction

The following presents the geotechnical design report for the replacement of the proposed Tuttle Road Bridge over I-295 (Bridge #5801), Rt US1, and MCRR in Cumberland, Maine. This report has been prepared by H&H, LLC based on current AASHTO LRFD and Maine Department of Transportation (MaineDOT) guidelines. The results of the subsurface exploration conducted in 2022 and 2024 are the basis of our foundation design and recommendations.

1.1 Project Understanding

The existing bridge was originally constructed in 1958 and was rehabilitated in 1990. The general bridge location is shown in Figure 1. This existing bridge is nine-spans comprised of rolled steel beams with a composite concrete decking. The deck is currently in fair condition and the superstructure and substructure are in poor condition. The superstructure has damage from a vehicle impact and the substructure shows signs of advanced deterioration. Stub abutments as well as concrete pier columns are founded on CIP concrete piles. Stub abutments/backwalls have staining, large cracking and deterioration to breast wall areas. Concrete pier columns and pier caps exhibit moderate to heavy staining/cracking/delamination and isolated spalling areas adjacent to bearing areas.

Figure 1: Project Location Source: Google Earth

Replacement of Tuttle Road Bridge Final Geotechnical Design Report

The existing bridge will be replaced to eliminate the structural and operational deficiencies of the bridge while providing a safe, low maintenance, cost-effective, two-way crossing for current and projected traffic.

The replacement bridge will consist of 4-span 550-ft long structure extending from approximately Sta. 15+23.75 to Sta. 20+46.50 as shown on Sheets 13 and 14 in Appendix A, Boring Location Plan and Interpretive Subsurface Profiles.

1.2 Purpose and Scope

This report presents an assessment of the geotechnical site conditions and evaluations based on both the initial and final geotechnical subsurface investigations, as well as the associated geotechnical design, analysis, and recommendations. H&H completed the following scope of work for this report:

- Provided a general description of the project and the geotechnical site exploration programs conducted
- Reviewed the available existing subsurface data
- Provided an overview of the regional geologic and seismic context
- Assigned laboratory testing to assess the engineering and index properties of site soils
- Performed geotechnical engineering analyses, including assessment of soil and bedrock properties, proposed embankment stability and settlement, frost susceptibility, AASHTO LRFD load and resistance factors for geotechnical design elements, pile foundation nominal resistance, downdrag effects, pile drivability, and seismic design considerations
- Developed geotechnical engineering recommendations, including foundation design for driven piles, seismic design parameters, embankment settlement mitigation, and geotechnical construction considerations
- Compiled this report to present a summary of the findings and geotechnical engineering recommendations

2.0 Subsurface Conditions

2.1 Geology

The Tuttle Road Bridge is located in southern-central Maine within the Seaboard Lowland Section of the New England Physiographic Province. Regional surficial geologic mapping indicates the surficial soils consist of Holocene (Recent) wetland/saltwater marsh deposits overlying Pleistocene Presumpscot Formation fine grained sediments, which overlie Pleistocene glacial till deposits. The wetland/saltwater marsh deposits consist of peat, clay, silt, and sand deposited in low-lying areas adjacent to tidal inlets, tidal channels, and tidal flats. The Presumpscot Formation consists of fine-grained marine deposits such as silt, clay, sand, and minor amounts of gravel; layer commonly considered a clayey silt. The till was directly deposited by glacial ice and consists of a light to dark gray, heterogeneous poorly sorted mixture of gravel, sand, silt and clay, rarely stratified. The till consists of two varieties: a basal (or lodgment) till, fine grained and very dense; and an overlying ablation (or melt-out) till, coarser grained, stony, and relatively loose. Regional mapping indicates the overburden thickness ranges between 5 feet and 200 feet below ground surface in the Cumberland area.

Regional bedrock geologic mapping indicates the bedrock beneath the site consists of the late Silurian- early Ordovician Vassalboro Group. The lithology consists of medium gray, fine- to medium-grained, quartz-plagioclase-biotite-hornblende gneiss, interlayered with subordinate amounts of calc-silicate gneiss. Layer thickness ranges from 1 to 4 inches, and pegmatite lenses, boudins and sills are common. This formation is interpreted to have been initially deposited as sediments in a marine basin, which subsequently underwent diagenesis to form sedimentary rocks. This formation was then metamorphosed by heat and pressure under miles of younger rocks, forming a layered foliation, and then underwent ductile deformation by several tectonic events dating back to at least Devonian time starting with the Acadian orogeny. This compressional stress created additional foliation textures, and at least three-fold sets. This in turn was followed by post-metamorphic brittle deformation forming numerous northeast trending thrust faults and joints, with the emplacement of non-metamorphosed discordant pegmatite dikes and layer diabase dikes during the Mesozoic Era.

2.2 Subsurface Exploration Program

Subsurface information from the original construction of the Tuttle Road Bridge was made available by the MaineDOT. However, since the original subsurface exploration program only provided subsurface information along the original alignment and used non-standard practices to obtain the subsurface information, a preliminary and final subsurface exploration programs were conducted to better understand the subsurface conditions along the proposed alignment conforming to current standard practices.

The preliminary subsurface exploration program, conducted in 2022, was designed to obtain general subsurface design parameters for engineering analyses of the new bridge foundations and embankments. The final exploration program, carried out in 2024, supplemented the preliminary findings, providing a more detailed assessment of subsurface conditions, particularly in the areas of the proposed embankments.

A summary of both subsurface exploration programs for the Tuttle Road Bridge project is provided below.

2.2.1 Subsurface Exploration Program

This section presents a generalized description of the subsurface investigations performed with test borings for the proposed replacement of the Tuttle Road Bridge. New England Boring Contractors (NEBC) were retained by Hardesty and Hanover, LLC (H&H) to perform the 100-series field subsurface exploration that was completed in October of 2022 while Seaboard Drilling, LLC was subcontracted by H&H to perform the 200-series subsurface exploration program that was completed in April of 2024. The subsurface exploration programs included Standard Penetration Test (SPT), Cone Penetration Tests (CPTs), Field Vane Shear Tests (FVT), soil sampling, rock coring, observation wells installation and geotechnical lab testing. Borings were located and drilled upon MaineDOT's approval.

The locations of the borings are shown on the Boring Location Plan provided in Appendix A. The top of boring elevations was provided from the survey performed by MaineDOT personnel. Refer to Table 1 below for the test boring summary.

Table 1: Test Boring Summary

Test Boring	Ground Surface Elevation (ft)	Boring/CPT Termination Depth (ft)	Depth to Bedrock (ft)	Date Drilled
BB-C295-101	86.47	46.5	36.5	10/18/2022
BB-C295-102	88.59	41.5	31.1	10/13/2022 10/17/2022
BB-C295-103	89.43	58.0	49.0	10/12/2022 10/13/2022
BB-C295-104	90.68	37.5	27.5	10/11/2022
BB-C295-201 (OW)	89.68	28.8	28.8	4/3/2024
BB-C295-202	81.20	39.0	29.0	4/17/2024
BB-C295-203	108.63	66.8	56.8	4/2/2024

BB-C295-204	90.56	57.5	47.5	4/14/2024
BB-C295-205	106.20	52.5	43.5	4/1/2024
BB-C295-206 (OW)	92.08	26.83	26.83	4/14/2024
BB-C295-207	92.45	23.5	23.5	4/18/2024
CPT-C294-201	89.68	28.5	-	4/3/2024
CPT-C294-202	81.13	15.2	-	4/17/2024
CPT-C294-203	89.93	26.3	-	4/14/2024

Standard Penetration Test (SPT): NEBC performed all the 100-series SPT borings which comprised of four (4) land borings. The drilling contractor utilized a track-mounted drilling rig as appropriate to access various locations. All borings were advanced with drilling techniques using a combination of casing and water to maintain an open borehole. The NEBC drill rig was equipped with an automatic hammer for driving the split spoon. The hammer was calibrated per ASTM D4633 in April, 2023. The N-values provided in this report are corrected values, computed by applying an average energy transfer of 0.742 to the raw N-values. This hammer efficiency factor (0.742), along with both the raw field N-values and corrected N-values (N60) are shown on the boring logs. The sampling procedure, referred to as the Standard Penetration Test (SPT) sampling, was carried out using the techniques and equipment specified in ASTM Standard D1586. SPT samples were collected continuously until a depth of 12 feet, and every 5 feet thereafter. The maximum depth of the 100-series subsurface exploration was 58 ft. Rock Cores were taken at all boring locations where bedrock was encountered. Rock coring was performed with an NX core barrel and diamond bit in 5 -foot core lengths. All 100-series borings obtained 9 to 10-foot of rock core.

In April 2024, a comprehensive subsurface exploration program was carried out following the selection of the new bridge alternative during the final design phase of the project. Seaboard Drilling, LLC performed seven (7) borings as part of the 200-series SPT borings. These borings were located to gather geotechnical data at the proposed approaches, abutments, and pier location. The borings were advanced using a DIEDRICH D-50 ATM drill rig with an automatic hammer, which was calibrated in November 2023 in accordance with ASTM D4633, the Standard Test Method for Energy Measurements for Dynamic Penetrometers. The N-values presented in this report are corrected values, calculated by applying an average energy transfer of 1.07 to the raw N-values. Initially, solid stem auger (SSA) drilling methods were employed in the upper 5 to 10 ft of each borehole. Afterward, Seaboard Drilling, LLC utilized cased wash boring techniques, driving 4-inch inside diameter casing in 5-ft increments using an automatic safety hammer, and washing out the soil inside the casing with a roller bit and water to the depth

where samples were collected or where field vane shear tests (FVT) were performed. Rock coring was conducted with an NQ core barrel and diamond bit, producing 5 -foot core lengths. 200-series borings obtained 9 to 10-foot of rock core.

All split spoon samples from the 100-series and 200-series borings were classified in the field by a qualified inspector according to the Modified Burmister Classification System per the MaineDOT Key to Soil and Rock Descriptions and Terms that can be found in Appendix B. The boring logs, which detail the subsurface soil and rock stratigraphy encountered, along with sample numbers, types, recovery lengths, raw field and corrected N-values, and rock-quality designations (RQD) are included in Appendix B. An Interpretive Subsurface Profile can be found in Appendix A.

CONE PENETRATION TEST (CPT): Seaboard Drilling, LLC performed three (3) cone penetration tests, CPT-C295-201 through CPT-C295-203. The CPT explorations were advanced adjacent to previously drilled test boring locations as shown on the Boring Location Plan in Appendix A. The CPTs were advanced using a Diedrich D-50 track mounted drill rig utilizing Vertek piezocone equipment. The CPT explorations were performed in accordance with ASTM D5778. Pre-augering was required through fill materials to a depth of 10.0' before advancement of CPT-201. The CPT exploration program included the following:

- Three CPT explorations advanced to depths ranging from 15.2 to 28.5 feet below the existing ground surface. The parameters obtained in all CPT soundings included cone tip resistance, sleeve friction, and pore pressure measurements for material characterization.
- Porewater dissipation tests were performed in CPT-202 and CPT-203 at depths selected by the inspector to identify the hydrostatic groundwater level at the time of CPT testing

FIELD VANE SHEAR TESTS (FVT): Seaboard Drilling, LLC conducted in situ field vane shear tests (FVT), in general accordance with the MaineDOT testing procedure, utilizing a Geonor vane set. Tests were performed within the fine-grained layers. Based on the soil conditions, field vane shear tests were conducted with Geonor 25.4x50.8mm, 55x110 mm or 65x130 mm rectangular vanes with all procedures and rods conforming to MaineDOT guidelines. Vane types used for each test are documented on the boring logs. Both peak and remolded torque values were measured and converted to undrained shear strength values using the MaineDOT correlation charts and equations. For detailed results from the in-situ field vane shear tests refer to Appendix B.

SHELBY TUBE SAMPLING: Seaboard Drilling, LLC collected nine (9) undisturbed Shelby tube samples to further characterize the compressible clay and silt strata for stability and settlement analysis. Shelby tube sampling, as described in ASTM D1587/D1587M-15,

involves using thin-walled steel tubes, also known as Shelby tubes, to obtain relatively undisturbed soil samples for geotechnical testing and analysis. This method is particularly effective for sampling cohesive soils, which retain their structure when extracted. A piston sampler was used to minimize soil disturbance during sampling. The piston inside the tube reduces soil entry until the tube reaches the desired depth. Afterward, the tubes were carefully withdrawn, capped, and sealed to preserve the sample's in-situ moisture content and structure.

More details of the sampling methods used, field data obtained, and soil, bedrock and groundwater conditions encountered are presented on the boring logs included in Appendix B and cone penetration testing report is included in Appendix E.

2.2.2 Historic Subsurface Exploration Program

The original construction of the Tuttle Road Bridge included 14 borings. The historic boring logs and boring plan were obtained from available plans and are attached in Appendix A. The historic boring logs depict the general stratigraphy and rock profile of the subsurface. However, the sampling procedure does not conform to current ASTM standards, and the soil descriptions do not conform to any recognized classification standard, such as Unified Soil Classification System (USCS).

2.2.3 Lab Testing

A laboratory testing program on select soil and rock samples was developed to characterize the subsurface properties across the project site. Laboratory testing was performed in accordance with applicable AASHTO and American Society for Testing Materials (ASTM) testing procedures by GeoTesting Express (GTX) of Acton, Massachusetts. The list of combined testing completed on select soil and rock samples from the preliminary and final investigations is provided below.

The laboratory-testing program included:

- Moisture Content (ASTM D2216)
- Grain Size Analysis (ASTM D422)
- Grain Size Analysis with Hydrometer (ASTM D7928)
- Atterberg Limits (ASTM D4318)
- Corrosion Potential (pH) (ASTM G51)
- Sulfate (ASTM D516)
- Chloride (ASTM D512B)
- Soil Resistivity Laboratory Soil Box (ASTM G57)
- Specific Gravity (ASTM D854)

Replacement of Tuttle Road Bridge Final Geotechnical Design Report

- Uniaxial Compressive Strength of Rock (ASTM D7012C)
- Incremental Consolidation (ASTM 2435)
- UU Triaxial (ASTM D2850)

All complete geotechnical laboratory test results can be found in Appendix D.

2.4 Stratigraphy

This section summarizes the general subsurface conditions within the project limits. The subsurface stratigraphy determined from the borings along the project alignment is consistent with the regional geology. The general strata descriptions are summarized in the order they were encountered.

For engineering purposes, the subsurface stratigraphy has been generalized and divided into three (3) distinct soil strata overlying bedrock based on soil classification, index properties and engineering design properties.

<u>FILL:</u> At the ground surface, or immediately underlying the road surface, a heterogenous layer of man-made fill was encountered. According to the Modified Burmister Soil Classification System, the fill stratum comprised of fine to coarse SAND with "trace" gravel fractions and silt fractions ranging from "some" to "trace". The relative density varies from very loose to medium dense per corrected SPT data. The thickness of the fill layer ranged from 1.5 feet and 19.5 feet thick with the top 0.5 to 2 feet being topsoil or 6 inches of pavement at BB-C295-203, and -205.

<u>PRESUMPSCOT FORMATION:</u> The Presumpscot Formation underlies the Fill stratum and is comprised of Clayey SILT and Silty Clays with sand lenses and varying amounts of gravel ranging from "some" to "trace". The layer was observed to be between 4.0 feet and 25.0 feet thick. SPT corrected values ranged from 0 to 52 indicating a consistency of very soft to hard.

<u>GLACIAL TILL:</u> The Glacial Till stratum underlies the Presumpscot Formation and was encountered throughout the project limits with an observed thickness ranging between 2.5 feet and 39.5 feet. The stratum consists of fine to coarse sand with "some" to "trace" gravel fractions and silt fractions ranging from "some" to "trace". The relative density varies from medium dense to very dense per corrected SPT data. At a few locations, an interbedded very stiff Silty Clay and Sandy SILT layer was encountered between 25 feet to 35 feet bgs.

<u>BEDROCK:</u> Bedrock was encountered in all borings that were performed in October of 2022, April of 2024, and in the 11 historic borings. Top of the bedrock was encountered between 25 feet bgs to 56.8 feet bgs at elevations ranging from EL.40.43 to EL.65.25. Rock core intervals of 10 feet were collected in borings where the substructures are proposed in up to 5-foot runs. The predominant bedrock lithology encountered was gray, coarse-grained, fresh to moderately weathered gneiss, interpreted to be part of the Vassalboro Formation with medium to coarse quartz inclusions observed in a few retrieved rock cores. A slightly weathered Quartzite layer was encountered on top of gneiss in borings BB- C295-104, and -202. The RQD (rock quality designation) ranged from

very poor (7%) to excellent (97.5%). The Recovery ranged between 63% and 100%. The eight unconfined compressive strength tests conducted on rock core samples yielded unconfined compression strength (UCS) values ranging from 839 ksf to 2523 ksf. Results of the Rock Core testing can be found in the Appendix D.

2.5 Geotechnical Engineering Parameters

The geotechnical engineering parameters required for the design and analyses have been developed based on the corrected SPT (N₆₀) and/or laboratory testing results applicable to the entire project site, along with our professional engineering judgement. These parameters are presented in Table 1 below:

Total Unconfined **Shear Strength Stratum** Unit Compressive **Undrained** Friction Weight Strength Shear Angle (deg) Strength (psf) (pcf) (ksf) Fill 112-115 29-30 Very Soft to Soft 90-95 Presumpscot 250-375 Cohesive Medium Stiff to Hard Formation 115-130 1000-3500 Cohesive Cohesionless 125-130 30-38 _ Glacial Till 115-135 Cohesive 3000-4000 160 40 **Bedrock** 360

Table 2: Soil Parameters

2.6 Groundwater

Two observation wells were installed in the boreholes BB-C295-201, and -206 to monitor groundwater levels at the site. The wells were positioned to capture water level variations across the area, one on the west side and the other on the east side. Upon completion of the installation, water level readings were taken on a weekly basis for the first month, providing data to monitor initial trends. After this initial monitoring period, the frequency of readings was adjusted to a bi-weekly schedule for the subsequent month to maintain ongoing observation while accommodating any potential changes in the water levels over time. Groundwater level measurement in boring BB-C295-101 was measured upon completion of the boreholes and prior to removal of the casing. Groundwater level measurements in borings BB-C295-102, and -103 were measured the next day before drilling continued. Groundwater level measurement in boring BB-C295-104 did not take place. Groundwater elevations measured in the 100-series borings were between elevations 83.73 feet and 84.87 feet. Throughout the monitoring period, the water levels were observed to fluctuate within a specific range, with measurements indicating that the water level on the west side was

consistently around EL. +81.3, while on the east side, the water level was noted to be higher, approximately at EL. +89.0. Groundwater levels shown on the Interpretive Subsurface Profile (Appendix A) were interpreted based on these water level meter measurements. These observations represent groundwater conditions at two exploration locations and may not be indicative at other locations. Groundwater levels are expected to fluctuate due to seasonal changes, precipitation, and ongoing construction activity in the area. As a result, water levels during and after construction may differ from those recorded in the borings at the time of the initial observations.

2.7 Corrosion Potential and Rates

A soil corrosivity suite of collected soil samples from the 100-series and 200-series borings were performed to classify the corrosive nature of the in-situ soils. Laboratory test results from the 100-series borings indicated an average pH value of 6.88, resistivity value of 2,686 ohm-cm, sulfate concentration of 10 ppm and chloride content of 22 ppm. Similarly, lab test results from the 200-series subsurface exploration indicated a soil pH of 7.7 in distilled water and 6.4 in calcium chloride, a resistivity value of 1176 ohm-cm, a sulfate concentration of 10 ppm, and a chloride concentration of 131 ppm. As per AASHTO section 10.7.5 laboratory corrosivity results do not indicate a potential corrosive environment. In any case, the design section considered 1/16-inch sacrificial thickness.

2.8 Frost Consideration

Based on the site location and soil conditions observed from the subsurface exploration program, frost penetration depths of 4 to 6.5 ft can be expected below the ground surface. It is recommended that the bottom of the proposed footings to be placed below the frost line at minimum to prevent any frost heave. The depth of frost penetration is derived based on Table 5-1 which has been developed by utilizing Modified Berggren Equation and Figure 5-1 Maine Design Freezing Index Map per Section 5.2.1 of Maine Bridge Design Guide manual. Please refer to Table below for the anticipated depth of frost penetration.

Table 3: Frost Penetration Depths

Location	Soil Type	Water Content	Design Freezing Index	Frost Penetration (interpolated)
West Abutment Footing	Coarse Grained	12.3%	1300 (Cumberland)	73.2 in., use 6.5 ft
East Abutment footing (1)	Coarse Grained	12.3%	1300 (Cumberland)	73.2 in., use 6.5 ft
Pier-1 Footing (2)	Fine Grained	25.4%	1300 (Cumberland)	44.2 in., use 4 ft
Pier-2 Footing (2)	Fine Grained	20.0%	1300 (Cumberland)	46.6 in., use 4 ft
Pier-3 Footing (2)	Fine Grained	25.8%	1300 (Cumberland)	44 in., use 4 ft

Notes:

⁽¹⁾ East and West Abutments – Frost penetration depth below the proposed finished rip-rap grade.

⁽²⁾ Pier 1,2, and 3 – Frost penetration depth below the existing thin layer of surficial fill/topsoil.

3.0 Seismic Design Considerations

The project site classification has been determined by following the procedure outlined in AASHTO Table C3.10.3.1-1 and utilizing Method B to analyze the recorded average SPT N-values from the geotechnical subsurface investigation program. The majority of the 100-series borings conducted classified the project location as Site Class D. However, softer/looser soils were observed in boring BB-104 suggesting Site Class E conditions. A subsequent investigation, involving 200-series borings, indicated that three (3) of the borings confirmed the project location as Site Class D, while four (4) of the borings identified conditions consistent with Site Class E.

Site seismicity was analyzed utilizing procedures outlined in AASHTO 3.10.3.2 referencing USGS map data presented in the same section. The site class adjusted spectral horizontal acceleration coefficients are 0.27 for 0.2 seconds (S_{DS}) and 0.1056 for 1 second (S_{D1}) for Site Class D, and 0.425 for 0.2 seconds (S_{DS}) and 0.154 for 1 second (S_{D1}) for Site Class E. Per FHWA-NHI-11-032 Table 8-2, one second period horizontal coefficients S_{D1} , for site class D and E identifies the project location as Seismic Zone 1. In accordance with AASHTO 10.5.4.2 liquefaction assessment is required only for Seismic Zones 3 and 4, and for loose to very loose saturated sands in Seismic Zone 2. Additionally, the available subsurface data indicates that the soil encountered below the groundwater table exhibits non-liquefiable characteristics in accordance with AASHTO LRFD guidelines since the soils are sufficiently cohesive or dense.

The site class analysis for each boring location, along with the evaluation of each seismic design parameter, is provided in Appendix F.

Table 4: Seismic Design Parameters

	PGA	As	Sds	Sd1	Seismic Zone
Site Class D	0.088	0.14	0.27g	0.11g	1
Site Class E	0.088	0.22	0.43g	0.15g	1

4.0 Bridge Foundations

This section summarizes the geotechnical analyses and provides foundation recommendations for the proposed Tuttle Road Bridge over I-295 and Rt US 1, based on the available subsurface information from the two subsurface exploration programs performed in 2022 and 2024. The design philosophy follows the current AASHTO LRFD Bridge Design Specifications and MaineDOT guidelines.

4.1 Selection of Foundation Type

Based on the findings from the subsurface exploration programs, our subsequent engineering evaluation, the structural bridge loads, and our experience, we recommend that all new substructures be supported by deep foundations comprised of H-piles driven to bedrock. The selection of driven H-piles is due to several advantages, including high load carrying capacities when driven to competent bedrock, ability to drive through difficult subsurface conditions, ability to potentially displace obstructions that may be encountered during installation, no need for a specialty contractor, cost and time efficiency compared to drilled piles, and smaller displacement volume to help minimize the disturbance of the soil when driving adjacent to existing structures.

4.2 Design Procedures and Assumptions

The design of the driven pile foundations is based on the following procedures and assumptions:

- H-piles will be driven to refusal on or near competent bedrock; therefore, foundation settlement is not a concern, and the axial compressive capacity will be governed by structural limit state as per AASHTO article 10.7.3.2.3.
- H-pile design considers resistance factor of 0.5 for axial structural resistance in compression (severe driving conditions).
- H-piles designed considering resistance factor of 0.5 for uplift resistance of single piles.
- H-piles designed considering the nominal axial resistance calculated by dividing the maximum factored axial load by a geotechnical resistance factor of 0.65.
- No reduction for group interaction in axial compression was considered since the piles
 will gain support largely in end bearing and the pile cap will be in firm contact with the
 ground.
- Piles are spaced at least three diameter-widths apart, center-to-center and corresponding P-multipliers for evaluation of lateral capacity of pile groups was considered.
- If required, use battered piles not exceeding 1 (horizontal) to 6 (vertical) to resist horizontal force.
- Number of piles at each substructure unit was estimated using FB-MultiPier.
- Minimum tip elevations were established through FB-MultiPier analyses and with consideration to the requirements of AASHTO 10.7.6.

- Nominal uplift capacity was estimated by utilizing the Nordlund/Thurman method to compute pile resistance for cohesionless soils and α-method for pile resistance in cohesive soils.
- Pile drivability analyses performed utilizing GRLWEAP considering locally available hammer systems.
- At least two (2) piles per substructure unit, but no less than 2%, of the production piles, and 5% when there are more than 20 piles, will undergo dynamic testing with signal matching for end of driving (EOD) and beginning of restrike (BOR) occurring a minimum 24 hours after initial driving to confirm pile capacities and develop pile driving criteria.
- The pile installation criteria for the production piles shall be established considering the results from the dynamic testing with signal matching.

4.3 Foundation Design and Recommendations

Based on the subsurface conditions, structural bridge loads, our experience and preferred HP pile sections as listed in Table 5-7 of the MaineDOT Bridge Design Guide, HP 14x89 steel sections, conforming to ASTM A572, Grade 50 standards, are recommended for this project.

4.3.1 Axial Pile Resistance

4.3.1.1 Axial Compression Pile Resistance

As determined in section 4.1 all new proposed pier and abutment foundations are to be supported by driven H-piles bearing directly on competent bedrock, hence, the axial compressive capacity will be governed by its' structural limit state as per AASHTO article 10.7.3.2.3. The structural resistance factor for the axial capacity of piles in compression, particularly when exposed to potential damage from severe driving conditions (such as bearing on "hard" rock), is 0.5, as specified in AASHTO Section 6.5.4.2. Additionally, the resistance factors for Service and Extreme Limit State loads are set at 1.0. Even though lab results did not indicate a corrosion potential, the structural nominal resistance was conservatively calculated considering a potential section loss of 1/16" due to corrosion. Consequently, the nominal and factored structural resistances of HP14x89 steel H-pile under the Service, Strength, and Extreme Event Limit States are outlined in the following table:

Table 5: Axial Compression Pile Resistance

	Steel H-pile	Nominal Structural Resistance	Factored Compression Resistance		
	Section	(kips)	(kips)		
			SER	STR	EXT
Ī	HP14x89	1025	1025	512.5	1025

4.3.1.2 Axial Uplift Pile Resistance

Axial uplift pile resistance will primarily derive its capacity by friction along the embedded length of the pile. For this project, the nominal uplift resistance of the piles was assessed utilizing DrivenPiles software using the applicable resistance factors for the Service, Strength, and Extreme Event limit states listed in AASHTO Article 10.5.5. The resistance factor of single piles for Strength Limit State is set to 0.5 according to AASHTO Table 10.5.5.2.3-1. Additionally, the resistance factors for Service and Extreme Limit State loads are set at 1.0 and 0.8, respectively. The factored uplift resistances of an HP 14x89 steel H-pile at each substructure location are summarized below:

Table 6: Axial Uplift Pile Resistance

Substructure	Factored Uplift Resistance (kips)					
Location	SER	STR	EXT			
West Abutment	230	115	184			
Pier 1	164	82	131			
Pier 2	276	138	221			
Pier 3	278	139	222			
East Abutment	142	71	114			

^{*}Values assume piles are driven to top of estimated top of rock based on the adjacent borings.

Considering this, the factored uplift resistances all exceed the anticipated max factored pile uplift demand for each respective limit state at each substructure location. Please refer to Table 7 for the max factored pile uplift loads and Appendix H-1 for the pile uplift resistance analyses.

4.3.2 Pile Group Evaluation

H&H conducted pile group evaluations for each proposed bridge substructure considering bridge structural loads and subsurface conditions. Pile group analyses were carried out using FB MultiPier (FBMP), a nonlinear finite-element analysis program that simulates soil-structure interactions. This program combines nonlinear structural finite-element analysis with static soil models to assess axial, lateral, and torsional soil behavior, providing a comprehensive analysis of the bridge pier structures and foundation systems. H&H developed the FBMP models, incorporating substructure loading data and pile group geometry, such as pile cap dimensions and pile layout. These models also accounted for subsurface soil, rock, and groundwater conditions based on findings from both the Preliminary Phase and Phase II subsurface investigation, as well as the static axial compressive pile resistances presented in this report. Multiple iterations were performed at each substructure location to determine the most efficient pile type and size needed to resist the applied loads and moments. The program's outputs were reviewed and summarized, with the pile group evaluation results provided below. Refer to Appendix H-2 for the FBMP analyses.

Table 7: Pile Group Evaluation Results

Substructure	Max. Factored Pile Compressive Load			Factore plift Lo	-	Max. Lateral Displace	ement	
Location	(kips)		(kips)		(inche	s) ⁽¹⁾		
	SER	STR	EXT	SER	STR	EXT	Longitudinal	Transverse
West Abutment	193	277	262	0	4	53	0.14	0.11
Pier 1	258	295	237	0	12	0	0.04	0.19
Pier 2	262	306	241	0	3	0	0.05	0.19
Pier 3	262	311	298	21	0	74	0.05	0.23
East Abutment	188	263	242	0	3	47	0.11	0.09

Notes:

4.3.3 Downdrag Loading

According to AASHTO LRFD, Article 3.11.8, downdrag can fully develop along the length of a pile when settlement reaches 0.4 inches or more. Settlement analyses at Abutments 1 and 2 indicate that the piles will be subjected to downdrag forces due to surrounding soil settlement. H&H calculated the maximum downdrag loads at the cross-sections nearest to the abutments, where the embankment settlement is most prominent and conservatively assumed that downdrag extended to the bottom of each respective clay layer.

The shaft resistance contributing to downdrag loads was calculated using the DrivenPiles software, which incorporates the FHWA method for modeling unit load transfer and axial pile capacity. For cohesionless soils, the Nordlund method was applied to estimate unit shaft resistance, while in cohesive soils, the alpha method was used to assess the unit shaft resistance.

H&H calculated downdrag loads in accordance with AASHTO LRFD Article 10.7.3.7. For Abutment 1 (West), the factored downdrag loads were 111 kips under Strength I loading and 79 kips under Service I loading. For Abutment 2 (East), the factored downdrag loads were 63 kips under Strength I loading and 45 kips under Service I loading.

The following downdrag load factors were applied based on soil type and according to AASHTO Tables 3.4.1-1 and 3.4.1-2:

• Cohesionless soils: 1.05 (Strength I) and 1.00 (Service I)

• **Cohesive soils**: 1.40 (Strength I) and 1.00 (Service I)

For detailed calculations refer to Appendix G-1.

⁽¹⁾ Values shown are from the service limit state.

4.3.4 Pile Design Summary

The recommendations for the pile foundation design considered several factors discussed in detail in the preceding sections which included the structural bridge loads, axial piles resistances, pile group evaluations, downdrag forces due to settlement at the abutments, and the listed design procedures and assumptions. Please refer to Table 9 below for the Pile Design Summary.

Table 8: Pile Design Summary

Substructure Unit	Pile	Minimum	Minimum	Minimum	Estimated			
	Type	Factored	Required	Pile Tip	Pile Tip			
		Individual Pile	Nominal Axial	Elevation	Elevation ⁽³⁾			
		Load (kips) ⁽¹⁾	Driving	(ft)	(ft)			
			Resistance					
			(kips) ⁽²⁾					
	Abutments							
Abutment 1 (West)	HP14x89	388	597	73	47			
Abutment 2 (East)	HP14x89	326	502	74	58			
	Piers							
Pier 1	HP14x89	295	454	56	45			
Pier 2	HP14x89	306	471	64	38			
Pier 3	HP14x89	311	479	58	35.5			

Notes:

4.3.5 Pile Driveability

H&H conducted driveability analyses utilizing GRLWEAP for the steel HP14x89 at each proposed foundation location. The objective of the analyses was to evaluate the range of rated energy necessary to install the piles to a nominal resistance without exceeding the allowable driving stress.

The driveability analyses considered the following:

- A limiting allowable pile stress of 45 ksi, which is 90% of the 50 ksi pile steel yield stress
- GRLWEAP's recommended quake and damping input values for impact driven piles
- Resistance distribution of 10% shaft resistance and 90% toe resistance at end of driving
- Hammer blows between 3 to 15 blows per inch in accordance with MaineDOT Standard Spec. Section 501.042 to achieve the minimum required nominal axial driving resistance
- Locally available hammer systems

⁽¹⁾ Values for the abutments include the respective factored downdrag loads.

⁽²⁾ Values determined by dividing the Minimum Factored Individual Pile Load by a geotechnical resistance factor of 0.65.

⁽³⁾ Estimated Pile Tip Elevation includes an additional 5 ft to account for variations in bedrock depth.

Results from the driveability analyses indicated satisfactory driveability using a Delmag D30 with a ram weight of 6600 kips and a rated energy of 59.73 (kip-ft) operating at a fuel setting 3 (80%). The results are summarized below:

Table 9: Wave Equation Analysis Results

Pile Location and Type	Embedded Pile Length	Driving System Rated Energy (kip-ft)	Minimum Required Nominal Axial Driving Resistance (kips)	Max Driving Stress (ksi)	Final Penetration Resistance (blows per inch)
West Abutment HP 14X89	48	59.73	597	37	8.7
East Abutment HP 14X89	35	59.73	502	34	5.8
PIER 1 HP 14X89	37	59.73	454	33	4.5
PIER 2 HP 14X89	47	59.73	471	33	5.1
PIER 3 HP 14X89	49	59.73	479	33	5.6

Please note that the final driveability analyses shall be conducted by the awarded contractor considering their selected hammer system. Please refer to Appendix G-4 for detailed GRLWEAP analysis results.

5.0 Roadway Approach Embankment

The proposed off-line alignment for the west and east approach roadways require embankment widening from the existing alignment to support the new roadways. The embankment will be constructed using engineered fill materials to achieve the required raised grade. The fill height of the new embankment will vary but it is at the highest by the new abutments and taper as it extends away, ensuring a gradual transition to the existing ground surface. The design approach requires embankment side slopes to be constructed at a 2H:1V ratio to provide stability and maintain slope integrity. Provided that the existing Tuttle Road Bridge is planned to be in service during construction of the proposed embankment expansion, conventional soil surcharge method and consolidating the in-situ subgrade soils below the proposed approach embankments will introduce differential settlement posing potential risks to the existing adjacent structure and its approach embankments. Settlement mitigation alternatives otherwise known as ground modification was considered to mitigate potential risks and beneficial to the project schedule in lieu of traditional preloading.

Therefore, we recommend Ultra-light Foamed Glass Aggregate (ULFGA), an engineered fill material made from 100% recycled glass as select fill, in composite with common borrow fill to construct the proposed embankments. Its lightweight nature, durability, and environmental benefits make it an ideal material for use in complex construction conditions, such as when active traffic must remain in service during construction. Primary advantage of the ULFGA is having low unit weight which minimizes the stress placed on the underlying compressible soils, and generating less vertical stress that settlement due to soil consolidation is considerably reduced. Ultra-lightweight foamed glass aggregate is commonly used in applications such as lightweight fill for road embankments, retaining wall backfill, and various ground improvement projects.

There are specific stations within the project limit requiring implementation of ULFGA with borrow fill, per our design approach and drawings. These profiles from the drawing have ULFGA to be partially or fully installed above the existing ground surface and along the slope of existing embankments, depending on the condition of underlying compressible layers. When ULFGA is partially placed, borrow fill is placed above and for the remaining section of the proposed embankments. When installing the ULFGA, it must be fully encapsulated with a non-woven separation geotextile, in accordance with MaineDOT Standard Specification 722.04. The installation of ULFGA should follow the guidelines outlined in Special Provision Section 203, Excavation and Embankment (Ultra-Lightweight Foamed Glass Aggregate).

5.1 Embankment Design Parameters

H&H developed design parameters for the proposed widened embankments at West and East approaches. The recommended geotechnical design parameters of the in-situ soils can be found in section 2.5, as these parameters are based on the subsurface data and laboratory and in-situ testing and are incorporated into both settlement and global stability analysis. This section describes engineering parameters required for the construction of the embankment and embankment performance analysis.

5.1.1 Recommended Construction Fill Material Parameters

For our embankment design, we have established the geotechnical design parameters for construction fill material that served as a basis for our embankment performance analysis. The selected fill consists of well-graded granular borrow material, ULFGA, aggregate subbase material, pavement, and riprap. These parameters are designed to ensure the long-term performance and stability of the embankment under varying load conditions. Table 5-1 provides a summary of design parameters.

Table 10: Recommended Fill Material Design Parameters

Type of Fill	Total Unit Weight	Friction Angle	Ka
	(pcf)		
Borrow Fill	120	32	0.47
ULFGA	20	40	0.36
Aggregate Subbase	135	36	0.41
Asphalt	140	40	0.36
Riprap	140	40	0.36

5.1.2 Recommended Consolidation Parameters

As mentioned in Section 2.4, the Presumpscot Formation which is comprised of compressible material was encountered throughout the project limits underlying the fill stratum. Consolidation tests were performed on the in-situ undisturbed samples of the Presumpscot clays taken during the subsurface exploration program. A total of 5 one-dimensional consolidation test (ASTM D2435 – method B) was performed by the laboratory.

The OCR was calculated by dividing the pre-consolidation pressure by the current vertical effective stress from the consolidation curve. The compression index (C_c) and recompression index (C_R) values were calculated from the consolidation curve by assessing the change in void ratio relative to the logarithm of the effective stress increase. The secondary compression coefficient ($C\alpha$) was derived from the consolidation data and considering the typical values for

normally consolidated and over consolidated clays per NAVFAC DM 7.01 and FHWA-GEC-No.5. Also, a range of coefficient of consolidation values (C_{ν}), were obtained from the consolidation test results.

Based on the laboratory and in-situ testing results H&H interpreted the index and compressibility properties as follows:

Table 11: Recommended Consolidation Parameters

Location		C_c	C_R	C_{v} (ft ² /day)	C _a /C _c	Estimated OCR
est	Uppe Stratu	0.087	0.01	0.26	0.021 – 0.032	3.5
West Approach	Lowe Stratu	0.131 – 0.369	0.015 – 0.011	17.28 – 25.92	0.035 – 0.050	1-3.5
East	Uppe Stratu	0.087- 0.369	0.010- 0.011	0.26	0.035	3
Ež Appr	Lowe Stratu	0.154 – 0.369	0.009 – 0.011	0.06 – 0.25	0.050	1.1

5.2 Embankment Performance Criteria

This section outlines the required criteria for the settlement and slope stability for the embankment constructions, in accordance with AASHTO LRFD guidelines and MaineDOT specifications

Settlement Requirements

- Settlement magnitude less than 2 inches at pavement level within 100 feet of the abutment in the first 5 years post-construction.
- Settlement magnitude of 2 inches at pavement level within 100 feet of the abutment in the following 5 years. (10 years post-construction)
- Additional settlement magnitude of 2 inches at pavement level within 100 feet of the abutment over the remaining service life of 75 years after the first 10 years.

Global Stability Requirements

- Minimum safety factor of 1.3 for embankment under Service I Load Combination.
- Minimum safety factor of 1.5 where slope supports or contains a structural element under Service I Load Combination.

- Minimum safety factor of 1.1 for embankment/bridge abutments under Extreme Limit State.

5.3 Settlement Analysis

H&H has assessed the total estimated settlement caused by the proposed widening of the existing embankment for the off-line project alignment. The analysis was performed at various stations along the proposed west and east approaches to provide a general estimate of the settlement magnitudes throughout the project site. We utilized ADAMA Engineering Inc's software Foundation Stress and Settlement Analysis (FOSSA) to generate 2D soil and embankment models for the settlement evaluation. Multiple FOSSA models were created at different Stations based on the height of the proposed embankment, composition of fill material, and corresponding nearest completed borings.

Based on the details provided in the drawings, the proposed embankment widening has 2H:1V side slopes with various fill heights consisting of common borrow fill and ultra-lightweight foamed glass aggregate (ULFGA), with 20 inches of crushed gravel subbase and 4 inches of pavement cover at top. Table-12 below shows the stations along the proposed approaches where change in composition of fill and soil strata occurs at the cross sections provided in the drawing, starting from the project limit STA 11+00 and ending at STA 26+00. Our FOSSA models reflect each cross sections from below Table 12 to closely evaluate anticipated settlement and accommodate the changing conditions.

Table 12: Embankment Sections

West Approach				
STATION	Type of Fill	Approximate Maximum Height of Fill	Referenced Borings	
STA 13+75	Borrow	22 ft	BB-C295-201	
STA 14+50	14+50 Borrow + ULFGA		BB-C295-201	
STA 15+00	Borrow + ULFGA	29 ft	BB-C295-202 BB-C295-203	
East Approach				

STATION	Type of Fill	Approximate Maximum Height of Fill	Referenced Borings
STA 20+75	Borrow + ULFGA	18 ft	BB-C295-206 BB-C295-205
STA 21+50	ULFGA	16 ft	BB-C295-206 BB-C295-205
STA 22+25	ULFGA	14 ft	BB-C295-207

Embankments from stations 11+00 to 13+75 and 22+25 to 26+00 were not analyzed due to the tapering height of the fill along these stations. It is assumed that total settlement within these ranges will be less than the anticipated total settlement estimated at the specified sections in Table 13 of this section. Furthermore, our approach does not consider the elastic settlement within the coarse grained in-situ materials near the existing ground surface as this will occur during the construction period and is expected to be negligible.

For our FOSSA analyses, embankments were modeled in accordance with the detailed dimensions provided in the drawings with a portion of the borrow fill replaced with approximately 50 to 100 percent of ULFGA in the bottom layer of proposed embankment fill depending on the stations. We assumed a typical embankment borrow fill unit weight of 120 pounds per cubic foot (pcf), ULFGA unit weight of 20 pcf, and crushed stone subbase with pavement combined unit weight of 135 pcf. Subsurface conditions in each model considered nearest completed borings within the proximity of these stations. Where necessary, the subsurface conditions were interpolated or extrapolated between or beyond the test borings. In a unique instance, test borings BB-C295-206 and BB-C295-207 exhibited considerable differences in their consolidation parameters within the Presumpscot Formation making interpolating between the two borings challenging especially when considering the distance between them. To address the uncertainty of the consolidation parameters between the two mentioned borings, the ULFGA was conservatively proposed to gradually taper up from the east abutment to full height at approximately STA 21+50.

Considering the subsurface conditions, the Presumpscot formation was identified as the compressible layer subject to consolidation. Both primary consolidation and secondary compression of the Presumpscot Formation were evaluated considering the proposed raised embankments. Provided that the stratum was generally sandwiched between cohesionless strata,

drainage at the top and bottom of the Presumpscot formation was considered and the groundwater table modeled considered the measurements from the observation wells.

Based on the recommended settlement criteria, our analyses evaluated settlement within 100-ft of the abutment 5 years post-construction, then 5 to 10 years, then 10 to 75 years. Based on the results, total settlement is estimated to be approximately between 1 to 2 inches over the first 5 years, 0 to 0.5 inches over the following 5 years (10 years post construction), and up to 1 inch during the remaining service life span of the bridge. This satisfies the MaineDOT settlement criteria within 100 feet of the abutments. The estimated settlement due to the proposed raised embankment at each respective station is summarized in Table 13 below. Please see Appendix I for detailed FOSSA models and analysis results.

Table 13: FOSSA Summary of Settlement Results Post-Construction

STATION	Primary Consolidation (in.)		Secondary Compression (Creep) (in.)		Total Settlement (in.)	
	0 to 5 years	5 to 10 years	0 to 5 years	5 to 10 years	0 to 5 years	5 to 10 years
STA 13+75*	1.79	-	0.24	0.13	2.03	0.13
STA 14+50	1.77	-	0.19	0.12	1.96	0.12
STA 15+00	0.57	-	0.41	0.12	0.98	0.12
STA 20+75	0.99	-	0.96	0.24	1.96	0.24
STA 21+50*	0.48	-	1.16	0.29	1.64	0.29
STA 22+25*	1.52	0.35	-	0.01	1.52	0.36

Settlement over 75-year Service Life after 10-year post construction				
	Primary Consolidation (in)	Secondary Compression (Creep) (in)	Total Settlement (in)	

STA 13+75*	-	0.41	0.41
STA 14+50	-	0.34	0.34
STA 15+00	-	0.37	0.37
STA 20+75	-	0.70	0.70
STA 21+50*	-	0.85	0.85
STA 22+25*	0.18	0.73	0.91

^{*}These Stations are beyond 100 ft from the abutments.

It's important to note, estimated settlements summarized above assume the pavement and traffic will immediately be placed on the raised embankments as soon as they are constructed when based on the anticipated construction schedule, the raised embankments could be in place for up to 12 months prior to installation of the subgrade and pavement. Therefore, the values summarized in Table 13 are likely conservative.

5.4 Global Stability Analysis

H&H evaluated the global stability of the proposed abutments and embankments, using the industry standard software Slide 2 by Rocscience. Analyses were performed in the transverse and longitudinal sections of embankments and abutments.

We created six embankment models at different stations specified in Table 5-2 and the details of the cross sections were from the provided drawings. Two additional models were created for each west and east abutment. Same subsurface stratigraphy that was created for settlement analysis was implemented into our Slide models. A typical traffic surcharge load of 250 psf was applied as distributed load at top of the embankments and abutments. The models were analyzed using the Spencer and Bishop simplified limit equilibrium methods with an auto refine search for circular failure planes, sliding block failure, and the lowest factor of safety was selected from the software searched results.

A pseudostatic analysis was conducted to evaluate the embankment slope stability under seismic loading conditions. The analysis incorporated earthquake loading by applying a horizontal seismic coefficient (k_h) based on half of the maximum peak ground acceleration (PGA), determined to be 0.105g. This resulted in a k_h value of 0.044 (0.0525g), accounting for horizontal seismic forces acting on the slope, in accordance with the pseudostatic approach outlined in the AASHTO LRFD section 11.6.5.2.2. guidelines.

Table 14 below shows the result of factor of safety of proposed embankments and abutments at specified stations. Please see Appendix H for detailed SLIDE models and analysis results.

Table 14: Minimum Factors of Safety

Roadway Embankments (Transverse)					
Station	FS: Static	FS: Seismic			
STA 13+75	1.36	1.22			
STA 14+50	1.38	1.24			
STA 15+00	1.36	1.22			
STA 20+75	1.83	1.65			
STA 21+50	2.54	2.29			
STA 22+25	1.92	1.64			
Abutments (Longitudinal)					
Location	FS: Static	FS: Seismic			
West Abutment	5.230	4.377			
East Abutment	3.993	3.302			

5.5 Lateral Squeeze Potential

Potential for lateral squeeze was evaluated in accordance with FHWA NHI-16-009. Lateral squeeze due to unbalanced fill load above compressible cohesive soil could occur causing bridge abutments supported on driven piles to tilt. As per section 7.3.8 Eq 7-74, the rule of thumb for determining whether tilting will occur is if the surcharge pressure due to the raised embankment exceeds 3 times the undrained shear strength of the compressible cohesive soil.

$$\gamma_f H_f > 3s_u$$
 (FHWA-NHI-16-009 equation 7-74)

Where:

- γ_f = unit weight of fill (pcf).
- h_f = height of fill (feet).
- s_u = undrained sear strength of soft cohesive soil (psf).

Considering the recommended rule of thumb above, potential for lateral squeeze at both proposed abutments is not a concern.

6.0 Construction Considerations

6.1 General Earthwork

Prior to fill placement clearing the area of topsoil, soft or very loose soils, debris, frozen soil, or any other deleterious materials shall be performed. Areas to be filled should be proof rolled, undercuts due to soft soils during embankment widening may be necessary along the alignment. All fill to be used within the project limits should be free of debris and organics and consist of approved material according to Section 203.02 of MaineDOT Standard Specifications.

6.2 Protection of Utilities

Underground utilities require protection during demolition of the existing bridge and the construction of the new bridge. Utilities should be protected or relocated during excavation. Overhead wires and their supporting poles may be in conflict with the proposed work and should be protected or relocated during construction. All underground utilities, if identified, should be relocated outside of the zone of influence of the footings.

6.3 Construction Monitoring

During construction of the proposed bridge structure, the existing bridge, as well as any adjacent structure(s) and utility(s) need to be protected from damage during planned construction work specifically from installation of the new pile foundations and bridge demolition. The contractor shall exercise caution while selecting the means and methods of construction and retain the services of an experienced vibration specialist who can install, operate, read, and interpret vibration and displacement monitors. Additionally, a pre-construction and post-construction survey are recommended of all structures and properties within 100 feet of planned construction activity.

6.4 Pile Quality Control

The contractor is responsible for the means and methods chosen for the installation of pile foundations and is required to submit a wave equation analysis for each pile-hammer combination demonstrating that the chosen system is capable of achieving the required pile nominal resistance within the driving criteria in Section 501 of the Standard Specifications without overstressing and/or damaging the pile. In addition, all test piles shall be driven and dynamically tested with signal matching to monitor driving stresses and pile integrity, as well as to assist in the verification of pile capacity.

Moreover, since piles with be driven to achieve nearing at the top of bedrock, all piles should be fitted with standard prefabricated driving shoes meeting MaineDOT Standard Specification 501.048 to reduce potential for damaging the piles during driving. We also recommend that MaineDOT's typical refusal criteria of 10 blows per 0.5 inches be implemented to reduce structural damage to the piles

6.5 Determination of Pile Bearing Resistance

As mentioned in section 4.2 of the report, at least two (2) piles per substructure unit, but no less than 2%, of the production piles, and 5% when there are more than 20 piles, will undergo dynamic testing with signal matching for end of driving (EOD) and beginning of restrike (BOR) occurring a minimum 24 hours after initial driving. Test piles will be designated on the plans at each substructure unit. They shall be driven with the same type of equipment that is proposed for the corresponding production piles at the same footing location. Test piles shall be driven at the locations designated on the plans to both the minimum tip elevation and the required nominal driving resistance that is shown on the plans or as directed by the engineer. The engineer shall be the sole judge in determining the driving resistance and the length of the pile to be driven and will provide production-pile order lengths and driving criteria for each substructure unit location after receiving all test-pile driving logs, PDA and CAPWAP data for the respective location.

6.6 Excavation Stability and Support

Excavation stability is the responsibility of the Contractor and should be in accordance with all OSHA regulations. Excavation must be shored and appropriately laid back in accordance with OSHA Regulations 29 CRF Part 1926, latest edition. Any sloping of the sides of the excavations shall maintain adequate cover for the existing utilities in accordance with the requirements of the respective utility owner. In general, temporary soil slopes of 1V:1.5H (Soil Profile Type C), or flatter, appear appropriate but should be confirmed during construction based on conditions at the time of excavation.

Any required excavation support should be designed by a professional engineer licensed in the state of Maine engaged by the contractor.

6.7 Reuse of On-site Materials

If the contractor intends to reuse excavated material as embankment fill or in other areas, we recommend that the material be stockpiled and tested for grain size distribution. Stockpiled materials that meet the appropriate MaineDOT specifications may be reused on the project.

6.7 Ultra-Light Weight Fill Placement

ULFGA material can generally be handled and placed similarly to granular borrow. However, a key consideration during construction is the need for controlled compaction to prevent particle breakage. This requires the use of vibratory plate compactors to place and compact the material in lifts, while avoiding the use of heavy construction equipment directly on the surface.

We recommend using a nonwoven geotextile fabric as a separator between ULFGA and any surrounding materials. This will involve placing the geotextile along prepared subgrade surfaces, wrapping it around the edges of the ULFGA, and accommodating any irregularities caused by features like underdrain piping, catch basins, and guardrails.

To prevent damage, equipment traffic on the exposed ULFGA surface should be strictly prohibited. Construction equipment, other than that used for ULFGA placement and compaction, should not be allowed on the material until at least a 12-inch layer of granular cover is in place. The cover material should be applied and compacted within 48 hours after the final lift of ULFGA is compacted in an area. Until then, only light-duty equipment with rubber tires should be permitted on the surface. The contractor should be required to submit a detailed plan for protecting exposed ULFGA and for their method of placing the ULFGA fill.

Lastly, to promote maximizing estimated settlement prior to asphalt placement, it is recommended to place asphalt shortly before traffic is moved to the new approaches. In doing so, the contractor shall survey the top of the embankment prior to placing the asphalt and adjust the subbase as necessary.

7.0 Geotechnical Report Limitations

This report has been prepared on behalf of and for the exclusive use of the client for specific application to the named project as described herein. If this report is provided to prospective contractors, the client should make it clear that the information is provided for factual data only and not as a warranty of subsurface conditions included in this report.

Hardesty & Hanover, LLC has attempted to conduct the services reported herein in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. The recommendations and conclusions contained in this report are professional opinions. No other representation, expressed or implied, is included or intended in this document.

The conclusions and recommendations given in this report are based on interpretation of subsurface exploration data and Hardesty & Hanover's experience. The client must recognize that variations may occur from conditions observed in the borings, particularly within existing fills or previously developed areas. Design recommendations are based on data from borings, sampling, and related procedures. Actual subsurface conditions may vary from those encountered in the borings. Therefore, design recommendations are subject to adjustment in the field, based on subsurface conditions encountered during construction. Hardesty & Hanover, LLC is not responsible for the conclusions, opinions or recommendations made by others based on these data.

The analyses, conclusions, and recommendations contained in this report are based on the data obtained from the subsurface exploration. The field exploration methods used indicate subsurface conditions only at specific locations where samples were obtained, only at the time they were obtained, and only to the depths penetrated. Discrete sampling cannot be relied on to accurately reflect natural variations in stratigraphy that may exist between sample locations. The recommendations included in this report have been based in part on assumptions about natural variations in site stratigraphy that may only be completely evaluated during earthwork and foundation construction. Unanticipated soil or rock conditions may require that additional expense be incurred to attain a properly constructed project.

The conclusions or recommendations in this report should not be used if the nature, design or location of the facilities is changed or if there is a substantial lapse in time between the submittal of this report and the start of work at the site. If changes are contemplated, or significant time lapse occurs, Hardesty & Hanover, LLC must review them to assess their impact on this report's findings, conclusions, and/or design recommendations. Hardesty & Hanover, LLC will not be responsible for any claims, damages, or liability associated with any other party's interpretations of this report's subsurface data or reuse of this report's subsurface data or engineering analyses.

Replacement of Tuttle Road Bridge Final Geotechnical Design Report

The geotechnical assessment, discussion, and recommendations contained herein do not include any environmental assessment or investigation for the presence or absence of wetlands or hazardous or toxic material in the soil, surface water, groundwater or air, on or below or around this site. Any statements in this report or on the boring logs regarding odors noted or unusual or suspicious items or conditions observed are strictly for the information of our client.

8.0 References

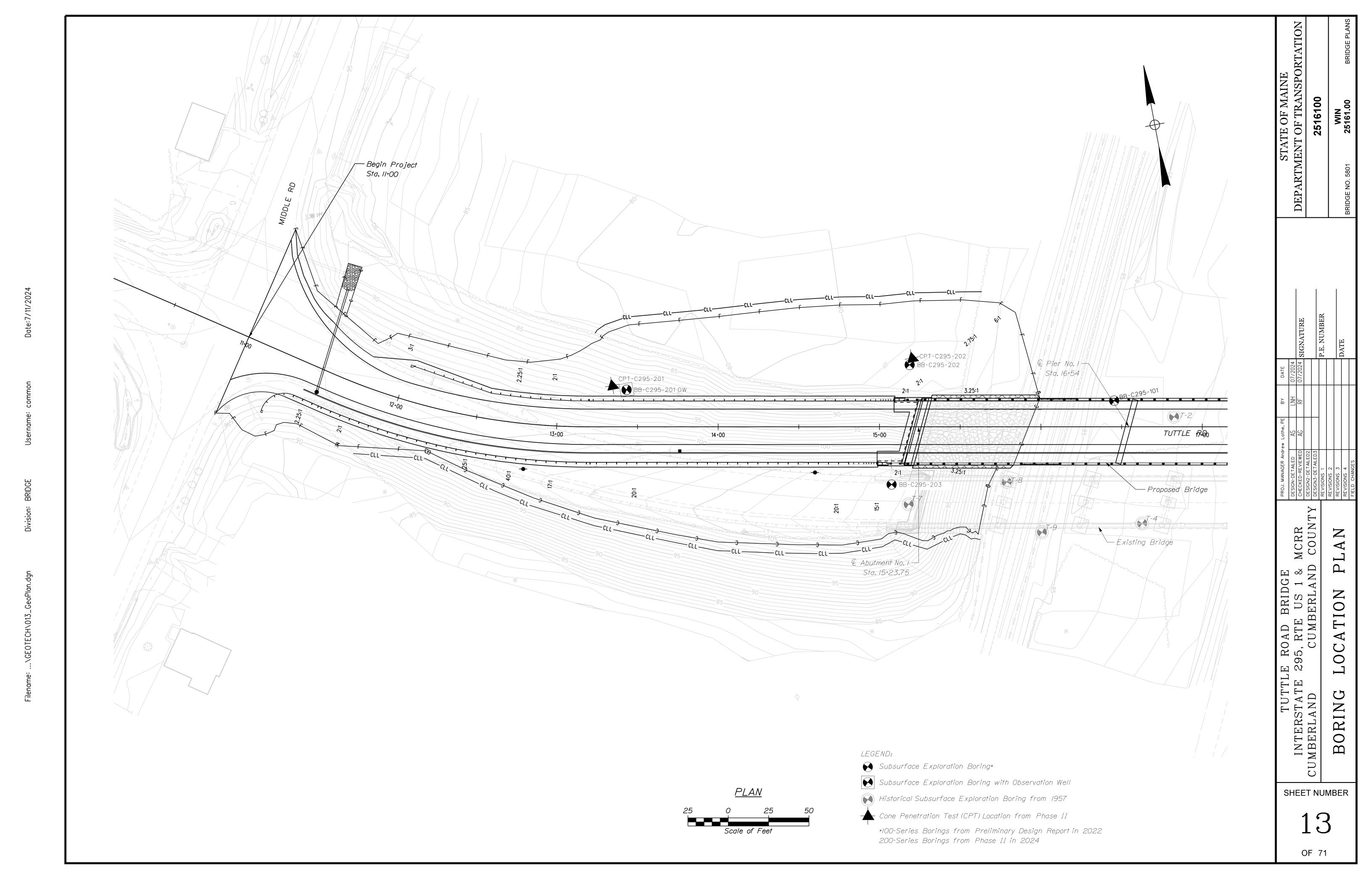
- 1. Retelle, M.J., 1999. Surficial Geology of the Yarmouth Quadrangle, Maine. Maine Geological Survey, Open-File No. 99-105, 1 sheet, scale 1:24,000.
- 2. Retelle, M.J., 1999. Surficial Geology of the Yarmouth 7.5-minute Quadrangle, Cumberland County, Maine. Maine Geological Survey Open-File 99-136, 8 p.
- 3. Prescott, G.C., Jr., 1977. Ground-Water Favorability and Surficial Geology of the Windham-Freeport Area, Maine. U.S. Geological Survey, Hydrologic Investigations Atlas HA-564, 1 sheet, scale 1:62,500.
- 4. Tolman, S.S., 2010. Overburden Thickness in the Portland 30x60-minute Quadrangle, Maine. Maine Geological Survey, Open-File No. 10-65, 1 sheet, scale 1:125,000.
- 5. Berry, Henry N., IV, and Hussey, Arthur M., II, 1998, Bedrock geology of the Portland 1:100,000 quadrangle, Maine and New Hampshire: Maine Geological Survey, Open-File Map 98-1, 1 plate, color map, scale 1:100,000. Maine Geological Survey Maps. 228. http://digitalmaine.com/mgs_maps/228
- 6. Hussey, Arthur M., II, 1985, The bedrock geology of the Bath and Portland 2 degree map sheets, Maine: Maine Geological Survey, Open-File Report 85-87, 82 p. report, 3 figs., 2 tables, 2 plates, maps, cross section, scale 1:250,000. Maine Geological Survey Maps. 325. http://digitalmaine.com/mgs_maps/325
- 7. West, David P., Jr., and Hussey, Arthur M., II, 2017, Bedrock geology of the Yarmouth quadrangle, Maine: Maine Geological Survey, Open-File Map 17-11 (Superseded by West and Hussey, 2018, Maine Geological Survey Open-File 18-10), scale 1:24,000. Maine Geological Survey Maps. 2056. https://digitalmaine.com/mgs_maps/2056
- 8. AASHTO LRFD Bridge Design Specifications, 9^{th} Edition, 2020
- 9. Burmister, D.M. (1958), "Suggested Methods of Test for Identification of Soils", Procedures for Testing Soils, American Society for Testing and Materials, Philadelphia, Pennsylvania.
- FHWA LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations Reference Manual, FHWA-NHI-11-032, Geotechnical Circular No. 3 – 2011

Replacement of Tuttle Road Bridge Final Geotechnical Design Report

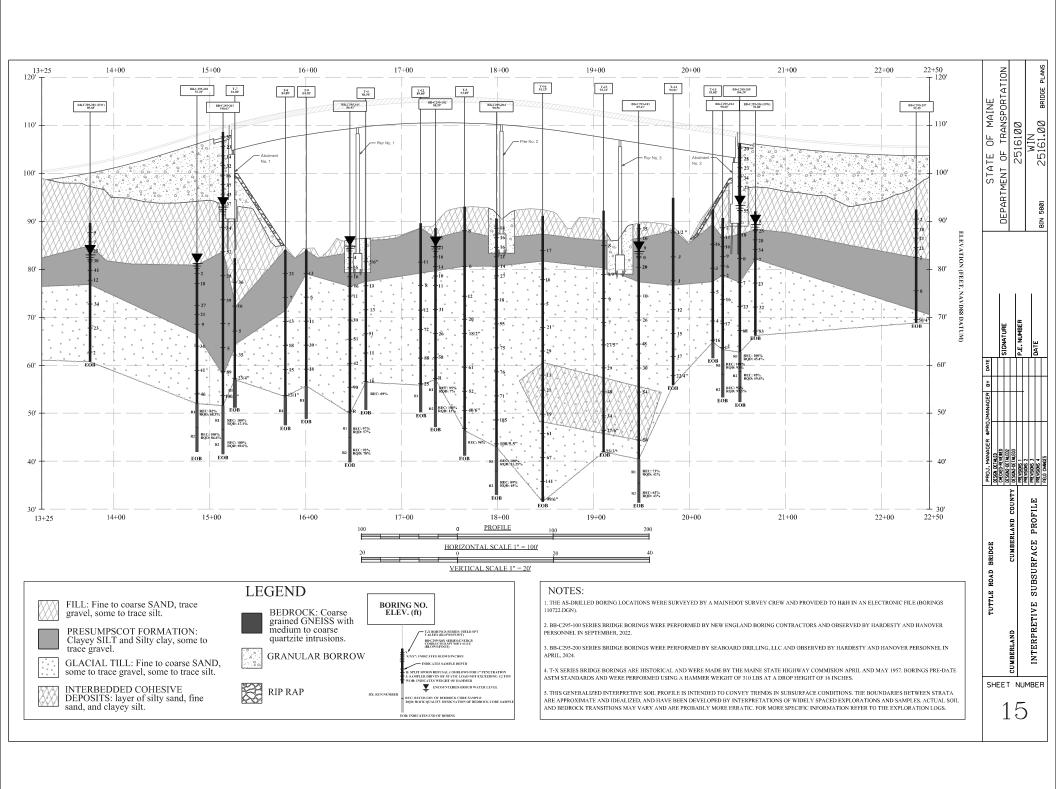
- 11. FHWA Geotechnical Site Characterization, FHWA-NHI-16-072, Geotechnical Engineering Circular No. 5
- 12. FHWA Volume I & II Design and Construction of Driven Pile Foundations, FHWA-NHI-16-009, Geotechnical Engineering Circular No. 12
- 13. NAVFAC, DM-7.1 & DM-7.2, "Foundations and Earth Structures," Design Manual, Department of the Navy Facilities Engineering Command, Alexandria, 1982.
- 14. Maine Department of Transportation, Bridge Design Guide, (August 2003).
- 15. Preliminary Geotechnical Design Report, (March 2023).

Prepared by:

Hardesty & Hanover, LLP


Arsanious Guirguis, P.E. Principal Geotechnical Engineer


ME License No. PE17251



Appendix A

Boring Location Plan and Subsurface Interpretive Profile

Appendix B

Boring Logs and MaineDOT Key To Soil and Rock Descriptions

	UNIFIE	D SOIL C	LASSIFIC	ATION SYSTEM		MODIFIED E	BURMISTER S	YSTEM
MA	JOR DIVISION	ONS	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravelsand mixtures, little or no fines.	tra lit so	tive Term ace ttle ome	<u>Port</u>	ion of Total (%) 0 - 10 11 - 20 21 - 35
	f of coars than No. ze)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines.	adjective (e.g.	Sandy, Clayey) TERM	S DESCRIBIN	36 - 50 G
	in halt larger eve si					DENSIT	Y/CONSISTEN	ICY
ıterial is sve size)	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable amount of fines)	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	sieve): Includes (1) Clayey or Gravelly penetration resistan) clean gravels; (2) Si sands. Density is ra	of material is larger the ilty or Clayey gravels; ted according to stand	and (3) Silty,
of ma 00 sie					Cohesion	nless Soils		e (blows per foot) 0 - 4
(more than half of material is larger than No. 200 sieve size)	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Lo Mediun	loose ose n Dense ense		5 - 10 11 - 30 31 - 50
(more larger th	coarse ian No. 4	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very I	Dense	naterial is smaller than	> 50
	e than half of coarse h is smaller than No. 4 sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1)) inorganic and organ (3) Clayey silts. Cons	ic silts and clays; (2)	
	(more the fraction is	FINES (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value (blows per foot)	Approximate Undrained Shear Strength (psf)	<u>Field</u> Guidelines
			ML	Inorganic silts and very fine	Very Soft	WOH, WOR, WOP, <2	0 - 250	Fist easily penetrates
	SILTS AN	ID CLAYS		sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.	Soft Medium Stiff	2 - 4 5 - 8	250 - 500 500 - 1000	Thumb easily penetrates Thumb penetrates with moderate effort
FINE- GRAINED SOILS			CL	Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnail Indented by thumbnail
00120	(liquid limit	less than 50)	OL	Organic silts and organic Silty	Rock Quality Desi			with difficulty
l is size)			OL.	clays of low plasticity.		sum of the lengths	of intact pieces of length of core a um NQ rock core (dvance
than half of material is than No. 200 sieve size)	SILTS AN	ID CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts.		Rock Quality Ba Rock Quality Very Poor	·	,
re than h			СН	Inorganic clays of high plasticity, fat clays.		Poor Fair Good	26 - 50 51 - 75 76 - 90	
(more i	(liquid limit gr	reater than 50)	ОН	Organic clays of medium to high plasticity, organic silts.	Desired Rock O		91 - 100 iis order, if applic	able):
		ORGANIC DILS	Pt	Peat and other highly organic soils.	Rock Type (gran Hardness (very h	tic, fine-grained, et nite, schist, sandsto hard, hard, mod. ha sh, very slight, sligh	one, etc.) ard, etc.)	severe, severe, etc.)
Color (Muns Moisture (di Density/Cor Texture (fin Name (San Gradation (sell color charry, damp, masistency (free, medium, do Silty Sance), silty Sance), silty Sance, sayering, fracell, moderation (weak, morigin (till, ma	art) oist, wet) om above rig coarse, etc., d, Clay, etc., poorly-grad lightly plasti tures, crack ely, loosely, oderate, or s	ght hand si including pled, uniforn c, moderat s, etc.) etc.,) trong)	oortions - trace, little, etc.) n, etc.) ely plastic, highly plastic)	Formation (Wate RQD and correlaref: ASTM D60 Site Character Recovery (inch/in	tinuities/jointing: -dip (horiz - 0-5 de; 35-55 deg., sterspacing (very clos- close - 1-3 feet, -tightness (tight, op- infilling (grain size- erville, Ellsworth, Cation to rock quality	g., low angle - 5-35 ep - 55-85 deg., ve e - <2 inch, close - wide - 3-10 feet, v ben, or healed) , color, etc.) cape Elizabeth, etc. / (very poor, poor, dl-16-072 GEC 5 - 12 ee)	ideg., mod. dipping - rtical - 85-90 deg.) 2-12 inch, mod. ery wide >10 feet)
Key	y to Soil a	Geotechi	nical Sed Descrip	tions and Terms	Sample Conta WIN Bridge Name / Boring Numbe Sample Numb Sample Depth	r er	Requirements: Blow Counts Sample Recove Date Personnel Initia	

		Maine De	partment of	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-:	101
			oil/Rock Explor				Locat	ion:		perland, Maine	WIN:	25161.0	0
Drille	r:		New Englan	d Boring Contrac	tors	Eleva	tion:			86.42'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		T. Shaffer			Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	d by:		J. Slattery			Rig T	ype:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
Date	Start/	Finish:	10/18/2022			Drilli	ng me	thod:		Rotary Wash	Core Barrel:	NX	
Borin	g Loca	tion: 102	9517.3229E,	341242.9480N		Casin	g ID/0	DD:		3.5/4.0 inches	Water Level*:	1.6' bgs	
		ficiency Fac	ctor:	0.742**			mer Ty	/pe:	☑ Au	utomatic	☐ Rope & Cathea		
Definition D = Split	ons: Spoon Sa	ample			Core Sa lid Stem					S _u = Peak/Remolded Field Vane Undrained S S _{u(lab)} = Lab Vane Undrained Shear Strength	0 11 /	Tv = Pocket Torvane Shear Stree WC = Water Content, percent	ngth (psf)
		ul Split Spoon S oe Sample	Sample Attempt	HAS = H RC = Rol		em Auger				q _p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value		LL = Liquid Limit PL = Plastic Limit	
MU = Ui	nsuccessf	ul Thin Wall Tu	ibe Sample Attem	pt WOH = 1	Weight o	f 140lb. H				Hammer Efficiency Factor = Rig Specific Ann	ual Calibration Value	PI = Plasticity Index	
			ocket Penetromet hear Test Attemp		_	of Rods of One Pe		3		N ₆₀ = SPT N-uncorrected Corrected for Ham N ₆₀ = (Hammer Efficiency Factor/60%)*N-Un		G = Grain Size Analysis C = Consolidation Test	
			•	Sample Informa						(Hammer Emelency Factory 65/5) 11 5.			Laboratory
				_						1			Testing
	Ι.	(in.)	pth	Blows (/6in.) Shear Strength (psf) or RQD (%)			٧s		50	Visual	Description and Remarks		Results/
Depth (ft.)	Sample No.	en./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Streng (psf) or RQD (%)	a		Casing Blows	E	Graphic Log	1.544.	z eser ipererr ana memarks		AASHTO
pth	nple	./R	nple (ws ear (f) RQD	N- value		ing	Elevation	iphi				and Unified Class.
	Sar	Per	Sam (ft.)	Blow Shea (psf) or RC	ź	N60	Cas	Ele	Gra				Offified Class.
0	1D	24/14	0-2	WOR-3-3-4	6	7	SSA			Brown Gray, moist, loose, fine to c	oarse SAND, little silty clay,	(tree roots present).	
								84.97		:		1.5 —	
	2D	24/12	2-4	1-2-1-2	3	4		1		Gray, moist, soft, Clayey SILT, little	sand, trace gravel, (Presum	oscot Formation) (PP=0.5	A-7-6 (11), ML WC=32.3%
		2-7/12		1212	ب ا	╁		+		tsf).			LL=42 PI=13
								4			1001		
5	3D	24/18	4-6	3-5-8-9	13	16				Gray, moist, very stiff, Clayey SILT,	little sand, (Presumpscot Fo	rmation) (PP=1.0 tst).	
	4D	24/17	6-8	3-5-8-6	13	16				Gray, moist, very stiff, CLAY, trace	sand, trace gravel, (Presump	scot Formation).	A-6 (12), CL WC=25.4%
		<u> </u>						1					LL=34 PI=13
		21/22	0.40	20540		1.0	\vdash	78.47	100000	Gray, moist, medium dense, fine to	coarse SAND little clavey s	ilt trace gravel	Δ-2-4 (0)
	5D	24/20	8-10	3-8-5-10	13	16	+	4			o course salve, little clayey s	iit, trace gravei.	A-2-4 (0) WC=15.0%
-10-							22						
1	6D	24/16	10-12	4-4-5-8	9	11	7			Gray, moist, medium dense, fine to	coarse SAND, some silt, so	me gravel.	
							11						
							18						
							26	1					
							1	-		:			
-15-							70	-			CAND		
	7D	24/18	15-17	10-12-12-10	24	30	22			Gray, moist, medium dense, fine to	Coarse SAND, Some Siit, Soi	ne gravei.	
							40						
							62	1					
							150	1					
							40	1					
-20-	8D	24/12	20-22	8-21-20-9	41	51	42	1		: Gray, moist, very dense, fine to coa	arse SAND. little gravel. little	silt.	
	80	24/12	20-22	0-21-20-3	41	31		-			, ,		
							23	4					
							24	1		:			
							50						
							24						
Rem	arks:									•			
-											l		
Stratif	cation	lines repres	ent approxima	ate boudaries bet	ween so	oil type	s; trans	sítions i	nay be	gradual	Page 1 of 2		
		-						Groun	dwater	fluctuations may occur due to	1		
				the time measure	ments	were m	iade.				.	DD 000= 11	24
**Cali	bration	from 4/202	:3								Boring No. :	BB-C295-10)I
											1		

			-	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-:	101
		3	Soil/Rock Explora US CUSTOMAR				Locat	ion:	Cumb	perland, Maine	WIN:	25161.0	0
Drille	r:		New England	d Boring Contrac	tors	Eleva	tion:			86.42'	Auger ID/OD:	2.5 inches SSA	
Opera	ator:		T. Shaffer			Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge	d by:		J. Slattery			Rig T	ype:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
Date	Start/	Finish:	10/18/2022			Drilli	ng met	thod:		Rotary Wash	Core Barrel:	NX	
Borin	g Loca	tion: 102	29517.3229E,	341242.9480N		Casin	g ID/C	D:		3.5/4.0 inches	Water Level*:	1.6' bgs	
Hamr	ner Ef	ficiency Fa	ctor:	0.742**		Hamı	mer Ty	pe:	☑ Au	utomatic 🗆 Hydraulic	☐ Rope & Cathea	d	
U = Thin MU = Ur V = Field	Spoon Sa successf Wall Tub successf Vane Sh	ful Split Spoon be Sample ful Thin Wall Ti lear PP = Po	Sample Attempt ube Sample Attem ocket Penetromet Shear Test Attempt	SSA = Sc HAS = H RC = Ro ppt WOH = er WOR/C	ller Core Weight o = Weight		or Casing	:		$S_{\rm u}$ = Peak/Remolded Field Vane Undrained S $S_{\rm u(ab)}$ = Lab Vane Undrained Shear Strength ($q_{\rm p}$ = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann $N_{\rm 80}$ = SPT N-uncorrected Corrected for Hami $N_{\rm 80}$ = (Hammer Efficiency Factor/60%) *N-Un	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
				Sample Informa	tion					1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual I	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	9D	24/24	25-27	15-21-13-40	34	42	15		::::::	Gray, moist, dense, fine to coarse	SAND, little clayey silt, little	gravel.	
		,					13 30 40 22	-					
-30 -	10D	24/24	30-32	9-18-55-72	73	90	12 18 55 121			Gray, moist, very dense, fine to coa	arse SAND, some clayey silt,	trace gravel.	A-4 (0) WC=20.8%
— 35 —	11D	15/4	35-36.25	35-70-95/3	REF	REF		49.97		Gray, moist, very dense, fine to coarcck fragments).	arse GRAVEL, some sand (de	composed/weathered	q _u =5824 psi
-40-	R1	60/58	36.5-41.5	RQD=57%				-		R1: Gray, fine to coarse grained, m weathered. 97% Recovery	oderately fractured, GNEISS		q _u =3024 рзі
	R2	60/55	41.5-46.5	RQD=78%				-		R2: Gray, fine to coarse grained, sli weathered. 92% Recovery	ghtly fractured, GNEISS, har	d rock, fresh - non	
4 5													
								39.97		Bottom of Explorat	ion at 46.5 feet below grou	46.5 nd surface.	
Rem	arke	I.	I	I		<u> </u>			1	1			
- ACIII	<u> </u>												
		Da.		Andrew Color		- 11 -					Dago 2 of 2		
* Wate	er level	readings h	ave been made	ate boudaries bet e at times and und the time measure	ler con	ditions	stated.			gradual fluctuations may occur due to	Page 2 of 2		
**Calil	oration	from 4/202	23								Boring No. :	BB-C295-10	01

Driller				Transportation			Proje			Road Bridge/I295 #5801 over I-Rte US1 & MCRR	Boring No. :	BB-C295-	102
			oil/Rock Explora				Locati	ion:	•	erland, Maine	WIN:	25161.0	00
	r:		New England	d Boring Contrac	tors	Eleva	tion:			88.59'	Auger ID/OD:	2.5 inches SSA	
Opera	ator:		T. Shaffer			Datur	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge			J. Slattery			Rig Ty	/pe:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
	Start/F			- 10/17/2022			ng met	hod:		Rotary Wash	Core Barrel:	NX	
				, 341230.0768N			g ID/O			3.5/4.0 inches	Water Level*:	4.0' bgs	
		ficiency Fac		0.742**			ner Ty		Σ Δυ	tomatic Hydraulic	☐ Rope & Cathea	_	
Definition D = Split S MD = Uns U = Thin S MU = Uns V = Field	ns: Spoon Sa successfu Wall Tub successfu Vane She	ample ful Split Spoon S pe Sample ful Thin Wall Tul ear PP = Po	ample Attempt be Sample Attem cket Penetrometr near Test Attempt	R = Rock SSA = So HAS = Ho RC = Rol pt	Weight of = Weight	nple Auger	ammer or Casing			Su = Peak/Remolded Field Vane Undrained S $Q_{U(ab)}$ = Lab Vane Undrained S hear Strength Q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Un	ihear Strength (psf) (psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
				Sample Informat	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/8	0-2	4-6-6-8	12	15	SSA			Brown, moist, medium dense, fine	to medium SAND, trace gra	vel, trace silt, (topsoil,	
								1		roots, FILL). Top 6": Similar to above.			
-	20	24/46	2-4	4-8-9-11	47	24		1		Bottom 10": Gray, moist, very stiff,	Sandy SILT little gravel (roo	nts FILL)	
	2D	24/16	2-4	4-0-9-11	17	21	\vdash				oundy oilly made graver (roc		
								85.29				3.3 —	1
_ 5 _	3D	24/24	4-6	3-6-7-8	13	16				Gray Brown, moist, very stiff, CLAY	, trace sand, (Presumpscot F	Formation) (PP=3 tsf).	A-6 (12), CL WC=24.6% LL=33 PI=12
	4D	24/24	6-8	4-5-6-8	11	14				Gray Brown, moist, stiff, CLAY, trac (PP=3 tsf).	e sand, (Presumpscot Form	ation) (trace organics)	A-4 (0) WC=25.0%
-								1					
	5D	24/24	8-10	2-3-5-5	8	10		79.59	2000	Top 12" (Jar A): Similar to above.	aco fino to coarco SAND, co	9.0	
								1		Bottom 12" (Jar B): Gray, moist, loo	ose, line to coarse sand, so	me siit, trace gravei.	
-10 -	6D	24/22	10-12	4-4-5-8	9	11	34	1		Gray Brown, moist, medium dense	, fine to coarse SAND, some	silt, little gravel.	
-	OD	24/22	10 12	7730		11		1					
							38						
							28						
							24						
ŀ							26	1					
-15-				-			20	-		Gray, moist, dense, fine to coarse S	CAND come silt little gravel		
	7D	24/15	15-17	12-15-10-7	25	31	58			dray, moist, defise, fille to coarse s	SAND, Some Siit, little graver	•	
							54						
-				 			73	1					
				 			-	1					
				 			145	1					
-20-							109	1				46	
	8D	24/16	20-22	15-12-9-13	21	26	15			Gray, moist, medium dense, fine to	coarse SAND, some clayey	siit, some gravel.	
[19						
							52	1					
				 			34	1					
				 			-	1	::::::				
							41		[:::::::				
Rema	<u>arks:</u>												
Stratific	cation l	lines represe	ent approxima	ate boudaries bety	ween so	oil types	s; trans	itions n	nay be i	gradual	Page 1 of 2		
										-			
		_		the times and und				Jiouil	awater	fluctuations may occur due to			
		from 4/202	·	2 222.0		,					Boring No. :	BB-C295-1	02

			epartment of	Transportation			Proje	ct:		Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-:	102
			US CUSTOMAR\				Locati	ion:	Cumb	erland, Maine	WIN:	25161.0	10
Drille	r:		New England	d Boring Contrac	tors	Eleva		-	-	88.59'	Auger ID/OD:	2.5 inches SSA	-
Opera			T. Shaffer	a borning continue	1013	Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge			J. Slattery			Rig Ty				Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
	Start/F	inich:		- 10/17/2022		_	ng met	hod:			Core Barrel:	NX	
										Rotary Wash			
				341230.0768N			g ID/O			3.5/4.0 inches	Water Level*:	4.0' bgs	
Definitio D = Split MD = Un U = Thin MU = Ur V = Field	ns: Spoon Sa successfu Wall Tub successfu Vane She	ul Split Spoon : ee Sample ul Thin Wall Tu ear PP = Po	Sample Attempt ube Sample Attem ocket Penetromete shear Test Attempt	SSA = Sc HAS = H RC = Rol opt WOH = V er WOR/C t WO1P =	Weight of = Weight : Weight o	mple Auger m Auger f 140lb. H	or Casing		☑ Au	tomatic \square Hydraulic S_u = Peak/Remolded Field Vane Undrained S S_{ulab}) = Lab Vane Undrained S S_{ulab} = Lab Vane Undrained S S_{ulab} = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Un	psf) ual Calibration Value mer Efficiency	d Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
				Sample Informa	tion					ļ			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	9D	24/18	25-27	20-23-24-50	47	58	24		::::::	Gray, moist, very dense, fine to coa	rse SAND, some siit, sonie g	ravel.	A-2-4 (0) WC=16.1%
							30	1					MC=10.140
				 	\vdash		39	1					
			-	 	-			-					
					↓		37	1					
30													
-30-	10D	24/13	30-31.1	8-21-50/1	REF	REF				Gray, moist, hard, Clayey SILT, trace	e gravel	31.1	
	R1	60/57	31.5-36.5	RQD=7%	 			57.49		R1: Gray, fine to coarse grained, int	_		
	11.1	00/37	31.3 30.3	1100-770				1		rock, fresh - slightly weathered. 95% Recovery			
								1		,			
				 	\vdash			1					
-35-					₩			-					
	R2	60/57	36.5-41.5	RQD=13%						R2: Gray, fine to coarse grained, int	ensely - moderately fracture	ed, GNEISS, hard rock,	
								1		fresh - slightly weathered. 100% Recovery			
					-					100% Recovery			
			<u> </u>	 	├─			1					
-40 													
40													
				-	 			47.09				41.5	
					├			.,				41.0	
					<u> </u>]		Bottom of Explorat	ion at 41.5 feet below grou	nd surface.	
								1					
-45 -								1					
			 	 	\vdash			1					
					₩			1					
					<u> </u>								
								1					
Dom	arks:			<u> </u>				l	l				
		/42/22 @	2 6 6	ela accordando d	Cl-++-			00	10/15	/22			
	(1) 10,	/13/22 @ .	3pm C. Scarat	file completed, J	. Slatte	ry star	tea @	9D on	10/15/	22			
											l		
Stratifi	cation l	lines repres	ent approxima	ate boudaries bet	ween so	oil types	s; trans	itions n	nay be	gradual	Page 2 of 2		
		_						Ground	dwater	fluctuations may occur due to			
conditi	ions oth	ner than the	ose present at	the time measure	ments	were m	ade.						
**Calib	oration	from 4/202	23								Boring No.:	BB-C295-10	02

		Maine De	partment of	f Transportation			Proje	ct:		Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-	103
			oil/Rock Explor US CUSTOMAR				Locat	ion:	,	perland, Maine	WIN:	25161.0	00
Drille	r:		New Englan	d Boring Contrac	tors	Eleva	tion:			89.43'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		T. Shaffer			Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	ed by:		A. Iqbal			Rig T				Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
				- 10/13/2022		-	ng me			Rotary Wash	Core Barrel:	NX	
				341188.9326N		_	g ID/C			3.5/4.0 inches	Water Level*:	5.7' bgs	
Hamr Definition		ficiency Fac	ctor:	0.742**	Core Sa		mer Ty	pe:	 Aι	Itomatic Hydraulic Su = Peak/Remolded Field Vane Undrained S	☐ Rope & Cathea		
D = Split MD = Ur U = Thin MU = Ur V = Field	Spoon Sansuccessf Wall Tub Insuccessf Vane Sh	ful Split Spoon S be Sample ful Thin Wall Tu near PP = Po	Sample Attempt be Sample Attem cket Penetromet near Test Attemp	SSA = Sc HAS = H RC = Rol npt WOH = 1 ter WOR/C	olid Stem ollow Ste Ier Core Weight o = Weight		lammer or Casing	:		S_{u} = Yeak/Nethologouth felto Value of Formathed Squab) = Lab Vane Undrained Shear Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N ₈₀ = SPT N-uncorrected Corrected for Hamn N ₈₀ = (Hammer Efficiency Factor/60%)*N-Un	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igen (por)
				Sample Informa	tion					1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual I	Description and Remarks		Testing Results/ AASHTO and Unified Class.
0							SSA						
	1D	24/4	1-3	18-18-10-10	28	35				Brown, moist, dense, fine to coarse	e SAND, trace gravel (topsoil	material).	
	2D	24/24	3-5	2-4-4-5	8	10		86.43	1	Gray, moist, stiff, Sandy Clayey SILT	, (Presumpscot Formation).	3.0	
_ 5 _	3D	24/24	5-7	4-4-3-4	7	9				Gray, moist, stiff, Clayey SILT, trace	sand, (Presumpscot Forma	tion) (PP=1.5 tsf).	WC=25.8% LL=33 PL=19 PI=14 SG=2.80
	4D	24/24	7-9	WOR-WOR-WHO-1	0	0				Gray, moist, very soft, Silty CLAY, tr	ace sand, (Presumpscot For	mation) (PP=1.5 tsf).	WC=36.3%
	5D	24/2	9-11	4-8-8-6	16	20	15 3			Gray, moist, very siff, Silty CLAY, tra	ace sand, (Presumpscot Forr	nation) (PP=1.5 tsf).	LE=39 PL=18 PI=21 SG=2.69
-10-		·					4						
							11	77.43				12.0	
							15 4						
-15-	6D	24/16	15-17	3-4-4-5	8	10	5			Gray, moist, loose, fine to coarse S.	AND, some silt, trace gravel		
							6 7						
							15	1					
							13	1					
-20-	7.0	24/45	20.22	5-11-10-10	-	30		┨		Gray, moist, medium dense, fine to	coarse SAND some silt litt	le gravel.	A-2-4 (0) WC=9.8%
	7D	24/16	20-22	2-11-10-10	21	26	11	4				- 0: = : = ::	110-0.070
							7	4					
							5	1		:			
							15]					
							10]					
Rem	arks:			•		-		•	**	,			
		-											
Stratifi	cation	lines repres	ent approxim	ate boudaries bety	ween so	oil type	s; trans	itions r	nay be	gradual	Page 1 of 3		
		-						Groun	dwater	fluctuations may occur due to			
		her than tho from 4/202	•	the time measure	ments	were m	nade.				Boring No. :	BB-C295-10	03
1													

			epartment of Soil/Rock Explora	f Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-1	103
			US CUSTOMARY				Locat	ion:	Cumt	perland, Maine	WIN:	25161.0	0
Drille	r:		New England	d Boring Contrac	tors	Eleva	tion:			89.43'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		T. Shaffer			Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	ed by:		A. Iqbal			Rig T	уре:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	Finish:	10/12/2022	- 10/13/2022		Drilli	ng met	thod:		Rotary Wash	Core Barrel:	NX	
Borin	g Loca	tion: 102	9813.5111E,	, 341188.9326N		Casin	ng ID/C	D:		3.5/4.0 inches	Water Level*:	5.7' bgs	
Hami	mer Eff	ficiency Fac	ctor:	0.742**		Hami	mer Ty	/pe:	☑ Au	utomatic 🔲 Hydraulic	☐ Rope & Cathea	ıd	
MD = Ur U = Thin MU = Ur V = Field	Spoon Sansuccessfo Wall Tub Insuccessfo Vane Sho	ful Split Spoon S be Sample ful Thin Wall Tu near PP = Po	Sample Attempt ube Sample Attem ocket Penetromete Shear Test Attempt	SSA = So HAS = Ho RC = Roll npt WOH = N ter WOR/C =	k Core San olid Stem A follow Ster Iller Core Weight of = Weight of Weight o	Auger em Auger of 140lb. H	Hammer or Casing	Ţ		$\begin{split} S_u &= \text{Peak/Remolded Field Vane Undrained S} \\ S_{u(\text{lab})} &= \text{Lab Vane Undrained Shear Strength} \left(q_p = \text{Unconfined Compressive Strength} \left(k_3 \right) \\ N-\text{uncorrected} &= \text{Raw Field SPT N-value} \\ \text{Hammer Efficiency Factor} &= \text{Rig Specific Ann N}_{60} = \text{SPT N-uncorrected Corrected for Hamin N}_{60} &= \text{(Hammer Efficiency Factor/60%)*N-Undrained N}_{60} \\ \end{split}$	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strer WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igth (psf)
				Sample Informat	tion]			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual I	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	8D	24/16	25-27	12-22-17-17	39	48	15			Gray, moist, dense, fine to coarse S	AND, some gravel, trace silt	i.	
200							6 7 8 9	-				30.0	
-30-	9D	24/20	30-32	6-14-10-10	24	30	11 10 10	59.43		Gray, moist, very stiff, Sandy Silty C	LAY, trace gravel (Presumps	scot Formation).	A-4 (0), CL-ML WC=16.3% LL=17 PL=13 PI=4
- 35-	10D	24/22	35.5-37.5	14-19-25-33	44	54	7 8 10 7	56.43		Gray, moist, very dense, fine to coa	urse SAND, some gravel, trad	33.0 —	
							8 10 15]		Hitting hard material @ 37.7 feet Cored from 38 to 38.5 - retrieved so Extracted material: Gray, moist, fin	·	vel and 3" cobble.	
-40-							10 11 12 18			Drilled to 45 feet.			
	\vdash	 	 	+	 	\vdash	8	1		:			
—45 <i>—</i>	11D	24/24	45-47	11-19-24-45	44	54	39			Gray Brown, moist, very dense, fine Hitting Rock at 49 ft. E.O.D. 10/12/		el, trace silt.	
							T]					
	R1	60/46	49-52.8	RQD=42%				40.43	ļ	See next page		49.0 —	
Rem	arks:	l '	.5 52.6	1.00 1270		<u> </u>				1			
Stratif	ication	lines repres	sent approxima	ate boudaries bety	ween so	oil type	s; trans	itions n	nay be	gradual	Page 2 of 3		
condit	ions oth	her than tho	ose present at	e at times and und the time measure				Ground	dwater	fluctuations may occur due to	Burton No.	DD 6205 44	22
**Calil	oration	1 from 4/202	:3								Boring No. :	BB-C295-10	13

		Maine De	partment of	Transportation			Proje	ct:		Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-:	103
			oil/Rock Explora US CUSTOMAR				Locati	ion:		perland, Maine	WIN:	25161.0	0
Drillo	<u></u>		Now Englan	d Baring Contrac	torc	Lelevis	tion:		Cumic	•	Auger ID/OD:		
Drille			ū	d Boring Contrac	tors					89.43'	_	2.5 inches SSA	
Opera			T. Shaffer			Datu				NAVD 88	Sampler:	Standard Split Spoon	
	d by:		A. Iqbal			Rig T				Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
	Start/F			- 10/13/2022			ng met			Rotary Wash	Core Barrel:	NX	
	_			341188.9326N		Casin	ng ID/O	D:		3.5/4.0 inches	Water Level*:	5.7' bgs	
		ficiency Fac	tor:	0.742**			mer Ty	pe:	☑ Au	tomatic	☐ Rope & Cathea		
U = Thin MU = Ur V = Field	Spoon Sa successfi Wall Tub successfi Vane Sho	ul Split Spoon S be Sample ful Thin Wall Tu ear PP = Po	iample Attempt be Sample Attem icket Penetromet near Test Attemp	SSA = Sc HAS = H RC = Rol pt WOH = \(\) er WOR/C	c Core Sar olid Stem a ollow Ste ller Core Weight of Weight c	Auger m Auger f 140lb. H of Rods	Hammer or Casing			S_u = Peak/Remolded Field Vane Undrained S $_{\text{O(Ba)}}$ = Lab Vane Undrained Shear Strength (q_p = Unconfined Compressive Strength (ks) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Un	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	gth (psf)
				Sample Informa	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value		Casing Blows	Elevation	Graphic Log	Visual I	Description and Remarks		Testing Results/ AASHTO and
,dəc	amı	en.,	Sam (ft.)	slow shea psf)	- N	09N	asir	leva	irap				Unified Class.
50					Z	Z		<u> </u>	9	R1: Gray/Green, fine to coarse grai fractured soft rock, highly weather (Medium to coarse Quartz inclusion 73% Recovery	ed. ns)		
— 55 —	R2	60/38	54-58	RQD=43%				-31.43		fractured hard to very hard rock, m (Medium to coarse Quartz inclusion 63% Recovery	noderately weathered.	58.0 —	
_60 _								-					
65								-					
 70								-					
				I									
Rem Stratifi			ent approxima	ate boudaries betv	ween sc	oil type	s; trans	itions n	nay be :	gradual	Page 3 of 3		
* Wate	er level	readings ha	ve been made		ler cond	ditions	stated.			fluctuations may occur due to			
**Calil	oration	from 4/202	3								Boring No. :	BB-C295-10	03

			-	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-	104
			oil/Rock Explora US CUSTOMAR				Locat	ion:		perland, Maine	WIN:	25161.0	0
Drille	r:		New England	d Boring Contrac	tors	Eleva	tion:			90.68'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		T. Shaffer			Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	d by:		A. Iqbal			Rig T	уре:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
Date	Start/	Finish:	10/11/2022			Drilli	ng me	thod:		Rotary Wash	Core Barrel:	NX	
Borin	g Loca	tion: 102	29901.6709E	, 341172.6709N		Casin	ng ID/C	DD:		3.5/4.0 inches	Water Level*:	See notes	
Hami	ner Ef	ficiency Fac	ctor:	0.742**		Ham	mer Ty	/pe:	☑ Au	utomatic 🗆 Hydraulic	☐ Rope & Cathea	nd	
U = Thin MU = Ur V = Field	Spoon Sa successf Wall Tub successf Vane Sh	ful Split Spoon S be Sample ful Thin Wall Tu lear PP = Po	Sample Attempt the Sample Attem tocket Penetromet thear Test Attemp	SSA = Sc HAS = H RC = Rol apt WOH = ' WOR/C	c Core Sai olid Stem ollow Ste ller Core Weight o = Weight Weight o	Auger em Auger of 140lb. H	Hammer or Casing	3		$S_{\rm u}$ = Peak/Remolded Field Vane Undrained S $_{\rm U(ab)}$ = Lab Vane Undrained Shear Strength ($q_{\rm p}$ = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann $N_{\rm so}$ = SPT N-uncorrected Corrected for Ham $N_{\rm so}$ = (Hammer Efficiency Factor/60%)*N-Un	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
			:	Sample Informa	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual l	Description and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/20	0-2	1-1-1-4	2	2	SSA		::::::	Black, moist, very loose, fine to coa	arse SAND, trace silt (rooots	, topsoil material, FILL).	
							ff	1					
	2D	24/24	2-4	3-4-5-7	9	11		88.68		Gray, moist, stiff, CLAY, trace sand	(Presumpscot Formation) (F	PP=2.0 tsf). 2.0 —	A-7-6 (21), CL WC=29.4% LL=44 PL=24 PI=20
_ 5 _	3D	24/28	4-6	5-6-7-10	13	16				Gray, moist, very stiff, CLAY, trace s	sand (Presumpscot Formatio	on) (PP=3.0 tsf).	
	4D	24/24	6-8	5-4-3-7	7	9				Gray, moist, stiff, CLAY, trace sand	(Presumpscot Formation) (F	PP=3.0 tsf).	WC=24.0% LL=34 PL=20 PI=14 SG=2.79
	5D	24/24	8-10	1-2-3-2	5	6				Gray, moist, medium stiff, CLAY, tra	ace sand, (Presumpscot Forr	mation) (PP=0.5 tsf).	WC=28.7% LL=30 pL=18 PI=12 SG=2.67
-10-	6D	24/24	10-12	1-1-1-2	2	2				Gray, moist, soft, Clayey SILT, trace	sand, (Presumpscot Forma	tion).	SG=2.67
							₩OF	76.68				44.0	
1,-							34	70.00				14.0	
-15-	7D	24/8	15-17	6-6-7-9	13	16	37 42			Brown, moist, medium dense, fine	to coarse SAND, some grave	el, trace silt.	
							42	1					
							1	-					
							42						
20							48						
	8D	24/14	20-22	5-7-7-10	14	17	32 45	1		Brown, moist, medium dense, find	to coarse SAND, trace grave	el.	
							63						
							1	1		:			
						<u> </u>	65	4		:			
							70		::::::				
Rem	arks:												
<u> </u>											I		
Stratifi	cation	lines repres	ent approxima	ate boudaries bet	ween so	oil type	s; trans	sitions i	may be	gradual	Page 1 of 2		
* Wate	er level	readings ha	ve been made	e at times and und	ler con	ditions	stated.	Groun	dwater	fluctuations may occur due to			
condit	ions ot	her than tho	se present at	the time measure	ements	were n	nade.						
**Calil	oration	from 4/202	3								Boring No. :	BB-C295-1	04

			epartment of Soil/Rock Explora	f Transportation	I		Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-1	104
		_	US CUSTOMARY				Locat	ion:	Cumb	perland, Maine	WIN:	25161.0	0
Drille	r:		New England	d Boring Contrac	ctors	Eleva	ation:			90.68'	Auger ID/OD:	2.5 inches SSA	
Opera	ator:		T. Shaffer			Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	d by:		A. Iqbal			Rig T	уре:			Mobile B-53 Track Rig	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	Finish:	10/11/2022			Drilli	ng met	thod:		Rotary Wash	Core Barrel:	NX	
Borin	g Locat	tion: 107	29901.6709E,	, 341172.6709N		Casir	ng ID/C	D:		3.5/4.0 inches	Water Level*:	See notes	
Hamr	ner Eff	ficiency Fac	ctor:	0.742**		Ham	mer Ty	/pe:	☑ Au	utomatic 🗆 Hydraulic	☐ Rope & Cathea	d	
MD = Un U = Thin MU = Un V = Field	Spoon Sa successfu Wall Tub ssuccessfu Vane She	ful Split Spoon S be Sample ful Thin Wall Tu lear PP = Po	Sample Attempt ube Sample Attempocket Penetromete Shear Test Attempt	SSA = So HAS = Hi RC = Rol npt WOH = V ter WOR/C	ck Core Sai dolid Stem Hollow Ste bller Core Weight o = Weight = Weight o	Auger em Auger of 140lb. H t of Rods	Hammer or Casing	ţ		S_u = Peak/Remolded Field Vane Undrained S $_{\rm Olibal}$ = Lab Vane Undrained Shear Strength (q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{80} = SPT N-uncorrected Corrected for Hamn N_{80} = (Hammer Efficiency Factor/60%)*N-Un	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strer WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	gth (psf)
	<u> </u>			Sample Information	tion]			Laboratory
Depth (ft.)	Sample No.			Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	: Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	9D	24/10	25-27	7-6-6-10	12	15	62			Brown/Gray, moist, stiff, Clayey SIL	T, some sand, trace gravei.		A-4 (0) WC=17.5%
							60]					
						\top	70	63.18		:		27.5	
	R1	60/60	28.2-32.5	RQD=93%	+-	+-	+-	†		R1: (28.2' - 30.7'): Gray, fine to coa	rse grained, slightly to very s		q _u =16297 psi
		80/00	20.2 32.3	1100-3370	┼	┼	┼	-		QUARTZITE, hard rock, slightly wea	thered.		
30	igwdown	<u> </u>	<u> </u>	<u> </u>	↓	<u> </u>	<u> </u>			(30.7' - 32.5'): Gray, fine to coarse	grained, slightly to very sligh	tly fractured, GNEISS,	
		l'		l		l	l			very hard rock, slightly weathered.			
								1		100% Recovery			
	R2	60/58	32.5-37.5	RQD=97.5%	+-	+-	+	1		R2: Gray, fine to coarse grained, sli	ghtly to very slightly fracture	ed, GNEISS, very hard	
	KZ	00/36	32.3-37.3	KQD-37.370	—	+-	┼	-		rock, slightly weathered.	B , , , , , , , , , , , ,	12, 2	
	ш	<u> </u>	<u> </u>			<u> </u>	<u> </u>			93% Recovery			
35		1											
_33 _								1					
					\vdash	1	1	1					
			 	 	┼	+-	┼	-					
		<u> </u>		<u> </u>	—		 	53.18		(5.1.		37.5	
		<u> </u>								Bottom of Explorat	ion at 37.5 feet below grou	nd surface	
								1					
-40-						†	1	1					
		 	 		┼	+	┿	4					
		 '			<u> </u>	<u> </u>	<u> </u>						
]					
						1		1					
-45 -					\vdash	+	1	1					
		 	<u> </u>	 	+-	+-	╁──	4					
		 	 		₩	₩		4					
		'			$oxed{oxed}$			_					
	. !	1 '											
						1	1	1					
Rem	arks:				—					<u> </u>			
			ın to 12! Dri	ller did not have	s anu cl	a albu +ı	uboc						
	(2) Du	ıring first ro	-	tempt refusal en				t. Rock	coring	started at 28 ft.			
Stratifi	cation l	lines repres	sent approxima	ate boudaries bety	ween s	oil type	s: trans	sitions r	nav be	gradual	Page 2 of 2		
		_		the time measure				Ground	awater	fluctuations may occur due to			
		from 4/202									Boring No. :	BB-C295-10)4

			-	Transportation			Projec	et:		Road Bridge/I295 #5801 over I-Rte US1 & MCRR	Boring No. :	BB-C295-203	L (OW)
			Soil/Rock Explora US CUSTOMARY	_			Locati	ion:		perland, Maine	WIN:	25161.0	0
Drille	r:		SEABOARD D	ORILLING		Eleva	tion:			89.68'	Auger ID/OD:	2.5 inches SSA	
Opera	itor:		Kevin Hansc	omb		Datur	n:			NAVD 88	Sampler:	Standard Split Spoon	
Logge			A. Sajewska			Rig Ty				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
	Start/F	inish:	4/3/2024				ig met	hod:		Cased Wash Boring	Core Barrel:	NQ	
	g Locat			E, 341809.52N		_	g ID/O			3.5/4.0 inches	Water Level*:	See Remarks	
		iciency Fa		1.07			ner Typ		□ Au	tomatic	☐ Rope & Cathea		
Definitio		iciency i a			Core Sai		пст тур		E A	Su = Peak/Remolded Field Vane Undrained St		Tv = Pocket Torvane Shear Stren	gth (psf)
	Spoon Sa	imple		SSA = So	olid Stem	Auger				$S_{u(lab)}$ = Lab Vane Undrained Shear Strength (μ		WC = Water Content, percent	,
			Sample Attempt		ollow Ste	m Auger				$q_{\rm p}$ = Unconfined Compressive Strength (ksf)		LL = Liquid Limit	
	Wall Tube		oe Sample Attempt	RC = Rol		140lb. Ha	mmer			N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Annu	ual Calibration Value	PL = Plastic Limit PI = Plasticity Index	
			ket Penetrometer			of Rods or				N ₆₀ = SPT N-uncorrected Corrected for Hamn		G = Grain Size Analysis	
MV = Un:	successfu	ıl Field Vane Sh	near Test Attempt	WO1P=	Weight of	f One Pers	on			N ₆₀ = (Hammer Efficiency Factor/60%)*N-Uno	corrected	C = Consolidation Test	
			9	Sample Informa	tion								Laboratory
										1			Testing
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Results/ AASHTO and Unified Class.
0	ဟ 1D	24/8	0-2	1-1-2-2	3	5	SSA	Ш		Dark brown, moist, medium stiff, Sa	andy SILT. (roots, topsoil, FILL).	
	10	24/8	0-2	1-1-2-2	3	5	33A			, , , , , , , , , , , , , , , , , , , ,	,, (,,	,	
	2D	24/20	2-4	2-2-2-3	4	7				Dark brown, moist, loose, fine to me	edium Silty SAND, (FILL).		
		0.440	4.0	4005	 			85.68		Brown, moist, medium dense, fine t	o coarsa SAND little silt trac	4.0 —	
– 5 –	3D	24/6	4-6	1-6-8-5	14	25	4			brown, moist, mediam dense, mie t	o course salve, title sitt, trac	e gravet.	
	40	24/12	6-8	1-4-13-19	17	20				Dark brown, moist, medium dense,	fine to coarse Gravely SAND.	trace silt.	A-1-b (0) WC=7.7%
	4D	24/12	0-0	1-4-13-19	1/	30	18			Dank Brown, moist, medium dense,	me to course oravely orang,	trace sitt.	WC=7.7%
							18						
	5D	24/4	8-10	24-17-6-7	23	41	20			4 pieces of rock.			
							24						
-10 -	6D	24/5	10-12	7-6-1-1	7	12	40			Dark brown, wet, medium dense, fir	ne to coarse Sandy GRAVEL, t	race silt.	
	-05	2-70		, , , , ,	Ľ								
							27	77.68	:::::::			12.0 -	
							43						
							100						
							81						
-15 -							01			Dark gray, hard, CLAY, (Presumpsco	-+ Formation) (DD-2 OF ++f)		A-7-6 (26), CL
	7D	24/18	15-17	9-9-10-14	19	34	70			Dark gray, nard, CLAT, (Fresumpset	ot Formation) (FF-3.25 tSi).		WC=28%
							64						PE=21 PI=24
							113						SG=2.72
					_	_							
						<u> </u>	121	l					
_ ₂₀ _							119						
	8D	24/2	20-22	8-7-6-6	13	23	100			Piece of rock in the spoon, Dark gray	y CLAY in the spoon's bit.		
							112			(1) See remarks			
							89	1					
							70						
							42						
Rem	arks:												
l													
l													
	_				_				_				
Stratifi	cation l	ines repres	ent approxima	te boudaries bet	ween so	oil types	; trans	itions n	nay be	gradual	Page 1 of 2		
* Wate	er level	readings ha	ive been made	at times and und	ler cond	ditions	tated.	Ground	dwater	fluctuations may occur due to			
		_		the time measure						.,			
I											Boring No.:	BB-C295-201	(OW)
											1		` '

			•	Transportation	1		Projec	ct:		Road Bridge/I295 #5801 over I-Rte US1 & MCRR	Boring No. :	BB-C295-20	1 (OW)
			Soil/Rock Explora US CUSTOMARY				Locati	ion:		erland, Maine	WIN:	25161.0	10
Drille			SEABOARD [DILLING.		Eleva			Ourne	89.68'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hanso			Datur				NAVD 88	Sampler:	Standard Split Spoon	
Logge				UIIID		Rig Ty				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
		iniohi	A. Sajewska				_	had.			Core Barrel:	NQ	
_	Start/F		4/3/2024	E, 341809.52N		-	ng met			Cased Wash Boring	Water Level*:		
	g Locat			-			g ID/O		п.	3.5/4.0 inches		See Remarks	
Hamn Definition		iciency Fa	ctor:	1.07	Core Sa		ner Typ	oe:	Ľ Au	tomatic	Rope & Cathea		oth (nof)
D = Split MD = Un: U = Thin' MU = Un: V = Field	Spoon Sa successfu Wall Tube successfu Vane She	ul Split Spoon S e Sample ul Thin Wall Tul ear PP = Poo	Sample Attempt be Sample Attempt cket Penetrometer near Test Attempt	SSA = Sc HAS = H RC = Rol t WOH = V WOR/C	olid Stem ollow Ste ller Core Veight of = Weight	Auger	r Casing			S_{u} = Feak-Neimbour rietu valle Unitralied Spear Strength (q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Hamm N_{60} = (Hammer Efficiency Factor/60%)*N-Unitralies of the SPT N-uncorrected Corrected for Hamm N_{60} = (Hammer Efficiency Factor/60%)*N-Unitralies of the SPT N-Unitralies of the SPT N-Unitral	psf) ual Calibration Value ner Efficiency	Tv = Pocket Torvane Shear Stren WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	gui (þsi)
				Sample Informa	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	9D	24/24	25-27	WHO-WOR-1-1	1	2				Dark gray, soft CLAY, trace sand, (P	resumpscot Formation) (PP =	= 0.0 tsf).	A-6 (16), CL WC=36% LL=35
								İ					LL=35 PL=19 DI-16
	411	40/44	27.20	DUCH				1		Dark gray, CLAY, (Presumpscot For	mation)		SG=2.73 WC=34%
	1U	16/14	27-29	PUSH						(2) See remarks	mation).		LL=37 PL=24
								60.00		(3) See remarks		28.8 _	PI=13 SG=2.76
								60.88		Top of	f Bedrock at Elev. 60.88 ft.		
_30—										Bottom of Explorat	tion at 28.8 feet below grour	d surface.	
								İ					
								ł					
25													
-35—													
								İ					
-40-													
								-					
					 	 		1					
								-					
-45—								1					
]					
								1					
					-	-		1					
								1					
Rem	arks:												
	Water 6.7' bg (1) Blo (2) Dri	Readings: gs - April 16 ow count m ller was ab	ay be affected le to push the	d by the rock in t	he spo	on.				gs - May 16, 2024 shelby tube.			
Stratifi										· · · · · · · · · · · · · · · · · · ·	Page 2 of 2		
* Wate	er level	readings ha	ive been made	ete boudaries between times and und the times and und the time measure	ler con	ditions	stated.			gradual fluctuations may occur due to	rage 2 UI 2		
											Boring No. :	BB-C295-201	(OW)

		Maine De	epartment of	Transportation	1		Projec	ct:		Road Bridge/I295 #5801 over	- E	Boring No. :	BB-C295-	202
			Soil/Rock Explora US CUSTOMAR)				Locati	ion;		Rte US1 & MCRR Perland, Maine	Į,	WIN:	25161.0	n
Drille	٠.		SEABOARD [DDILLING	-	Eleva			Ou	81.20'	_	Auger ID/OD:	2.5 inches SSA	0
Opera			Kevin Hanso			Datu				NAVD 88	_	Sampler:	Standard Split Spoon	
Logge			A. Sajewska	Jillo		Rig Ty				DIEDRICH D-50 SN:367	_	Hammer Wt./Fall:	140lbs/30in	
	Start/Fi	inish:	4/17/2024			<u> </u>	ng met	hod:		Cased Wash Boring	_	Core Barrel:	NQ	
	g Locat			E, 341289.02N		_	ng ID/O			3.5/4.0 inches	_	Water Level*:	0' bgs after boring co	mpleted
		iciency Fa	ctor:	1.07			mer Typ		☑ Au	tomatic	ılic	☐ Rope & Cathea		•
Definitio					Core Sar olid Stem					S_u = Peak/Remolded Field Vane Undraine $S_{u(lab)}$ = Lab Vane Undrained Shear Streng		• " '	Tv = Pocket Torvane Shear Stren WC = Water Content, percent	gth (psf)
U = Thin MU = Un	Wall Tube successfu	e Sample ul Thin Wall Tu	Sample Attempt	RC = Rol WOH = V	Weight of	140lb. Ha				q_p = Unconfined Compressive Strength (I N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific	Annual		LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index	
			cket Penetrometer hear Test Attempt		= Weight of Weight of					N_{60} = SPT N-uncorrected Corrected for H- N_{60} = (Hammer Efficiency Factor/60%)*N			G = Grain Size Analysis C = Consolidation Test	
			,	Sample Informat	tion									Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Vist	ual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/16	0-2	WOR-WOR-1-2	1	2	SSA			Dark gray, wet, soft, Clayey SILT,	, little :	sand, (Presumpscot Forma	ation).	
	2D	24/24	2-4	3-4-6-6	10	18				Dark gray, wet, very stiff, Clayey	SILT, ((Presumpscot Formation) (PP = 2.5 tsf).	WC=24%
	MV		4.33-4.5	No Rotation						Failed 25.4 x 50.8mm vane atten	mpt (4	5 ft-lbs - no rotation).		PL=21 Pl=24 SG=2.75
_ 5 _	1U	24/24	4.5-6.5	PUSH						Dark gray, wet, Clayey SILT, (Pre	esumps	scot Formation).		WC=28% LL=44
							11							PL=22 Pl=22 SG=2.79
	3D	24/24	6.5-8.5	4-7-8-9	15	27	26			Dark gray, wet, very stiff, Clayey	SILT, ((Presumpscot Formation) (PP = 3.5tsf).	WC=35% LL=41 PL=18
	MV		8.83-9.0	No Rotation			43			Failed 25.4 x 50.8 mm vane atter	mpt (3	35 ft-lbs - no rotation).		PI=23 SG=2.74
	4D	24/24	8.5-10.5	8-6-6-4	12	21	43			Dark gray, wet, very stiff, CLAY, t	trace s	sand, (Presumpscot Forma	tion)(PP = 1.0 tsf).	A-6 (14), CL WC=29% LL=34
_10 _							42							PL=20 Pl=14 SG=2.85
	5D	24/24	10.5-12.5	3-3-2-4	5	9	18			Dark gray, wet, stiff, Silty CLAY, s Failed 55 x 110 mm vane attemp			rmation)(PP = 0.75 tsf).	A-4 (0) WC=26.9%
	MV		12.83-13.19	No Rotation			22			(1) See remarks	•	ŕ		
							24							
					<u> </u>		31	-						
_15 _					<u> </u>		32	66.20		(2) See remarks Dark gray, wet, dense, fine to me	odium	SAND little silt trace grav	15.0 —	
	6D	24/10	15-17	10-9-10-15	19	34	37			Dark gray, wet, dense, fine to me	culum	onivo, tittle sitt, trace grav	ct.	
							43							
					<u> </u>		71							
							82							
20		0.110	00.00	10 10 11 10			77			Dark gray, wet, dense, fine to coa	area S	AND some silt trace grave	al	Δ-2-4 (0)
	7D	24/6	20-22	10-12-11-10	23	41	56	-		Dark gray, wet, delise, lille to coo	iai se si	AND, some sitt, trace grave	zt.	A-2-4 (0) WC=9%
							74							
							96							
							124							
							160							
Rem	arks:					•		•	•••••					
Stratifi	cation l	ines repres	sent approxima	nte boudaries betw	ween sc	oil type	s; transi	itions n	nay be į	gradual		Page 1 of 2		
		-						Ground	dwater	fluctuations may occur due to				
condit	ons oth	ner than th	ose present at	the time measure	ments	were m	nade.				,	Paring No :	BB C30E 303	
1											٦١	Boring No. :	BB-C295-202	

		Maine Do	enartment o	f Transportation			Projec	~+·	Tuttle	e Road Bridge/I295 #5801 over I-	Boring No. :	BB-C295-:	202
		<u>s</u>	Soil/Rock Explora US CUSTOMAR	ration Log			110,0		295, F	Rte US1 & MCRR			102
							Locati	ion:	Cumb	perland, Maine	WIN:	25161.0)0
Drille			SEABOARD I				ation:			81.20'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hansc			Datu				NAVD 88 DIEDRICH D-50 SN:367	Sampler: Hammer Wt./Fall:	Standard Split Spoon 140lbs/30in	
Logge Date	ea by: Start/F	Finish:	A. Sajewska 4/17/2024			Rig T Drilli	ype: ng met	hod:		Cased Wash Boring	Core Barrel:	NQ	
	g Loca			7E, 341289.02N		-	ng ID/O			3.5/4.0 inches	Water Level*:	0' bgs after boring co	mpleted
		ficiency Fac		1.07			mer Ty		☑ Aι	itomatic	☐ Rope & Cathea		mp.ecc.
Definitio D = Split MD = Un U = Thin MU = Un V = Field	ons: : Spoon Sansuccessfi : Wall Tub Insuccessfi ! Vane She	iample ful Split Spoon S be Sample ful Thin Wall Tu near PP = Po	Sample Attempt ube Sample Attem ocket Penetromet Shear Test Attemp	SSA = So HAS = Ho RC = Roll mpt WOH = V tter WOR/C : pt WO1P =	Weight of = Weight = Weight o	mple Auger em Auger of 140lb. H	- Hammer or Casing			$\begin{split} &S_u = \text{Peak/Remolded Field Vane } Undrained S_{u(lab)} = \text{Lab Vane } Undrained Shear Strength} \\ &q_p = \text{Unconfined Compressive Strength } (ksf) \\ &N\text{-uncorrected} = \text{Raw Field SPT N-value} \\ &\text{Hammer Efficiency Factor} = \text{Rig Specific Ann} \\ &N_{80} = \text{SPT N-uncorrected Corrected for Ham} \\ &N_{80} = \text{(Hammer Efficiency Factor)} \text{(Follow)} \text{(N-Urolabel)} \end{split}$	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
25	8D	24/6	25-27	12-12-14-17	26	46	OPEN HOLE		Ŭ	Dark gray, wet, dense, fine to coars	se SAND, some silt, trace gra		
-30	R1	60/49	29-34	RQD = 68.3%			NQ	52.2		Top of Bedrock at Elev. 52.2 ft. R1: Gray, fine to coarse grained, sli moderately weathered. Rock Quality = Fair R1: Core Times (min:sec) 29.0-30.0 ft (2:12) 30.0-31.0 ft (1:45)	ghtly fractured, GNEISS, har	29.0 —	R1: qu= 14887psi
– 35 –	R2	60/60	34-39	RQD = 84.6%				42.2		31.0-32.0 ft (2:07) 32.0-33.0 ft (2:54) 33.0-34.0 ft (4:56) 82% Recovery R2: (34-35'): Gray, fine to coarse graine fresh, non-weathered. (35-39'): Gray, fine to coarse graine weathered.			
-40— -45—										Rock Quality = Good R2: Core Times (min:sec) 34.0-35.0 ft (4:09) 35.0-36.0 ft (2:23) 36.0-37.0 ft (2:35) 37.0-38.0 ft (2:56) 38.0-39.0 ft (2:37) 100% Recovery		39.0 _	
										Bottom of Explora	tion at 39.0 feet below grou	ind surface.	
	(1) Aft	ter retrievir	_	n the hole, the cla bservation during			tached	to the	vane t	olades			
* Wate	er level	I readings ha	ave been made	nate boudaries betw le at times and und t the time measure	der cond	ditions	stated.			gradual fluctuations may occur due to	Page 2 of 2		
											Boring No. :	BB-C295-202	

		Maine De		Tuenenentetien			D:	-	Tuttle	e Road Bridge/I295 #5801 over I-	Boring No. :	DD C205 (202
		<u>s</u>	oil/Rock Explor				Proje	ct:		Rte US1 & MCRR	Bornig No	BB-C295-2	203
			US CUSTOMAR	<u>Y UNITS</u>			Locati	ion:	Cumb	perland, Maine	WIN:	25161.0	0
Drille			SEABOARD [DRILLING		Eleva				108.63'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hansc	omb		Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge	_		A. Sajewska			Rig Ty				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
	Start/F		4/2/2024				ng met			Cased Wash Boring	Core Barrel:	NQ	
	g Loca			E, 341218.23N			g ID/O			3.5/4.0 inches	Water Level*:	15.65' bgs after boring of	completed
Hamn Definitio		iciency Fac	ctor:	1.07	Core Sai		ner Ty	pe:	∠ Au	stomatic Hydraulic Su = Peak/Remolded Field Vane Undrained S	Rope & Cathea	Tv = Pocket Torvane Shear Stren	agth (ncf)
D = Split MD = Un U = Thin MU = Un V = Field	Spoon Sa successfi Wall Tub successfi Vane Sho	ul Split Spoon S e Sample ul Thin Wall Tu ear PP = Po	Sample Attempt be Sample Attem cket Penetromet near Test Attempt	SSA = Sc HAS = H RC = Rol pt WOH = \text{ WOR/C}	olid Stem ollow Ste Ier Core Weight o Weight		or Casing			S_{u} = Yeak/Nethologout Helv Value Orindanied Shear Strength (q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Ur	psf) ual Calibration Value mer Efficiency	WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igui (psi)
			;	Sample Informa	tion					1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
0							SSA	108.13		6" PAVEMENT		0.5	
	1D	24/12	1-3	12-12-9-7	21	37		100.13		Brown, moist, medium dense, fine	to coarse SAND, trace silt, t		
	2D	24/14	13	23				Dark brown, moist, medium dense	fine to coarse SAND, little s	silt, trace gravel, (brick,			
- 5 —			_					FILL). Dark brown, wet, Clayey SAND, litt	lo cilt (EUI)				
	3D	24/18	8	14	30			Bark brown, wet, clayey SAND, litt	ic siic, (File).				
	4D	24/24	7-9	6-9-9-7	18	32	42			Brown, moist, medium dense, fine	to coarse SAND, trace grave	el, trace silt, (FILL).	
-10	5D	24/20	9-11	3-3-6-8	9	16	36			Brown, moist, medium dense, fine	to coarse SAND, little grave	l, trace silt, (FILL).	
_10		24/40	11-13	8-10-11-9	24	27	13			Dark gray, wet, dense, fine to medi	um SAND, some clavey silt	trace gravel (roots FILL)	A-2-4 (0)
	6D	24/18	11-13	8-10-11-9	21	37	30 41	95.63				13.0	WC=12:3%
	7D	24/18	13-15	13-12-12-12	24	43	62 43			Brown, wet, dense, fine to coarse S	SAND, little gravel, trace silt.		
-15 <i>-</i>	8D	24/10	15-17	6-7-14-18	21	37	32			Brown, wet, dense, fine to coarse S	SAND, some clayey silt, trace	e gravel.	A-2-4 (0) WC=13.6%
							88 111						
							103						
-20-							133						
-	9D	24/12	20-22	10-8-11-19	19	34	72			Brown, wet, dense, fine to coarse S	SAND, some silt.		
							115	1					
							122						
								-					
							150	-					
							133						
Rem	<u>arks:</u>												
Stratifi	cation l	ines repres	ent approxima	ate boudaries bet	ween so	oil types	s; trans	itions n	nay be	gradual	Page 1 of 3		
		_						Ground	lwater	fluctuations may occur due to			
conditi	ons oth	ier than tho	se present at	the time measure	ernents	were m	iade.				Boring No. :	BB-C295-203	

		Maine De	epartment of	Transportation			Projec	t:		Road Bridge/I295 #5801 over I-	Boring No. :	BB-C295-	203
			Ooil/Rock Explora				Locati	on:		Rte US1 & MCRR perland, Maine	 WIN:	25161.0	00
Drille	r·		SEABOARD [ORILLING		Eleva				108.63'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hanso			Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge			A. Sajewska	OIIID		Rig T				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
	Start/F	inish:	4/2/2024				ng met	hod:		Cased Wash Boring	Core Barrel:	NQ	
	g Locat			E, 341218.23N			g ID/O			3.5/4.0 inches	Water Level*:	15.65' bgs after boring	completed
		iciency Fa		1.07			ner Ty		∏ A⊔	tomatic Hydraulic	□ Rope & Cathea		completed
Definition D = Split MD = Ur U = Thin MU = Ur V = Field	ns: Spoon Sa Isuccessfu Wall Tub Isuccessfu Vane She	ample ul Split Spoon se Sample ul Thin Wall Tu ear PP = Po	Sample Attempt ube Sample Attem ocket Penetromete	R = Rock SSA = So HAS = Hi RC = Rol pt WOH = \ VOR/C = WOR/C = V	lid Stem ollow Ste ler Core Veight o Weight	mple Auger em Auger f 140lb. H	lammer or Casing			S_u = Peak/Remolded Field Vane Undrained S $_{u(lab)}$ = Lab Vane Undrained Shear Strength (q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT v-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Hami	Shear Strength (psf) (psf) ual Calibration Value	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis	ngth (psf)
MV = Ur	successfu	ul Field Vane S	Shear Test Attempt	Sample Informa		of One Pe	rson			N ₆₀ = (Hammer Efficiency Factor/60%)*N-Un	ncorrected	C = Consolidation Test	Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	10D	24/13	25-27	11-13-16-22	29	52	73	83.63	Ŭ	Brown, wet, hard, CLAY, some sand	d, (Presumpscot Formation).		
		24/13	23 21	11 13 10 22		32	95 118 100 81	90.00					
- 30	11D	24/24	30-32	4-5-6-6	11	20	70			Dark gray, very stiff, Clayey SILT, (P	resumpscot Formation) (PP	=2.5 tsf).	A-6 (7)
	110	24/24	30-32	4-3-0-0	11	20					, , , , ,	•	WC=23% LL=28
							106						PI=10 PI=12 SG=2.73
							112						30-2.73
							117						
-35-							136			Dark area band Silter SLAV (Danasara		-£)	
	12D	24/24	35-37	6-9-13-15	22	39	65			Dark gray, hard, Silty CLAY, (Presun 25.4 x 50.8 mm vane raw torque re		.51).	
	V1		37.33 - 37.49	Su=6129/1886psf			90			V1 = 13 / 4 ft-lbs			
							102						
	1U	8/8	37-39	PUSH			134			Dark gray, Silty CLAY, (Presumpsco	t Formation).		WC=25.6% Su=38.88 psi
		0,0	37 33	1 0311						(1) See remarks.			0u-00.00 p3i
– 40 –	13D	24/24	40-42	2-2-2-2	4	7	113 84			Dark gray, medium stiff, CLAY, trac	e sand, (Presumpscot Forma	ation) (PP=0.25 tsf).	A-6 (15), CL WC=28% LL=36
							70						LI=15
	2U	24/24	42-44	PUSH			81			Dark gray, CLAY, (Presumpscot For	mation).		WC=29.1%
		24/24								Failed 65 x 130 mm vane attempt (•		PL=31 PL=26 PI=5
	MV		45-45.43	No Rotation			86			Tailed 05 x 150 mm valle attempt (40 te 183 Tio Fotation).		Su=8.686 psi
45							82						
	14D	24/24	45-47	1-1-2-5	3	5	63			Dark gray, Sandy SILT, (Presumpsco	ot Formation).		
							88						
							108						
							161						
_			l				126/6"						
Rem	<u>arks:</u>												
Stratif	cation !	lings repres	ent annroving	ate houdaries het	veer	ail type	e tranc	tions ~	av ha	gradual	Page 2 of 3		
				ate boudaries bety						-	Fage 2 01 3		
		_						Ground	lwater	fluctuations may occur due to			
conuit	וטווא טנד	iei tiidii tN(ose present at	the time measure	ments	weien	iaue.				Boring No. :	BB-C295-203	

			epartment of	Transportation			Proje	ct:		Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-2	203
			US CUSTOMAR				Locat	ion:	Cumb	erland, Maine	WIN:	25161.0	0
Drille	r:		SEABOARD [ORILLING		Eleva	tion:			108.63'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		Kevin Hansc	omb		Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	ed by:		A. Sajewska			Rig T	ype:			DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	inish:	4/2/2024			Drilli	ng met	:hod:		Cased Wash Boring	Core Barrel:	NQ	
Borin	g Locat	tion:	1029372.22	E, 341218.23N		Casin	g ID/O	D:		3.5/4.0 inches	Water Level*:	15.65' bgs after boring	completed
Hami	ner Eff	iciency Fa	ctor:	1.07		Hami	mer Ty	pe:	☑ Au	tomatic 🗆 Hydraulic	☐ Rope & Cathe	ad	
MD = Ur U = Thin MU = Ur V = Field	Spoon Sansuccessfu Wall Tub Insuccessfu Vane She	ul Split Spoon e Sample ul Thin Wall Tu ear PP = Po	Sample Attempt libe Sample Attem ocket Penetromet hear Test Attempt	SSA = Sc HAS = H RC = Rol apt WOH = 1 wor/c	c Core Sar olid Stem ollow Ste ller Core Weight of Weight c	Auger m Auger f 140lb. H	lammer or Casing			S_u = Peak/Remolded Field Vane Undrained S $_{u[ib)}$ = Lab Vane Undrained Shear Strength (q_p = Unconfined Compressive Strength (ks) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{80} = SPT N-uncorrected Corrected for Hami N_{80} = (Hammer Efficiency Factor/60%)*N-Un	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
	L			Sample Informa	tion					[Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual I	Description and Remarks		Testing Results/ AASHTO and Unified Class.
50	15D	24/12	50-52	27-30-20-20	50	89	OPEN HOLE		::::::	Dark gray, very dense, fine to coars	se SAND, little silt, some gra	vel.	A-1-b (0) WC=8.9%
-55- -60-	16D R1 R2	5/5 60/60 60/60	55-57 56.8-61.8 61.8-66.8	100/5" RQD = 47.1% RQD = 69.6%			NQ NQ	- 51.83		Dark gray, wet, very dense, fine to fractured rock). Top of Bedrock at Elev. 51.83 ft. R1: Bedrock; Gray, fine to coarse grock, fresh to slightly weathered. Rock Quality = Poor R1: Core Times (min:sec) 56.8-57.8 ft (3:18) 57.8-58.8 ft (3:20) 58.8-59.8 ft (3:25) 59.8-60.8 ft (3:28) 100% Recovery R2: Bedrock; Gray, fine to coarse gto slightly weathered. Rock Quality = Fair R2: Core Times (min:sec) 61.8-62.8 ft (3:41) 62.8-63.8 ft (2:59)	rained, slightly to moderate	56.8 –	qu= 7202psi
								41.83		63.8-64.8 ft (3:16) 64.8-65.8 ft (2:58) 65.8-66.8 ft (4:06) 100% Recovery			
- 70 —								-		Bottom of Explorat	ion at 66.8 feet below grou	nd surface.	
Rem	arks: (1) Dri	ller was ab	ole to push sh	nelby tube only 8	.".								
* Wate	er level	readings ha	ive been made	ate boudaries between at times and und the time measure	ler cond	ditions	stated.			gradual fluctuations may occur due to	Page 3 of 3		
23	011		p. cociii di	e medsure		. 5. 6 11	-30.				Boring No. :	BB-C295-203	

											·		
			-	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-2	204
			oil/Rock Explora US CUSTOMAR				Locat	ion:	-	perland, Maine	WIN:	25161.0	0
Drille	r:		SEABOARD [ORILLING		Eleva	tion:			90.56'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hansc	omb		Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge			A. Sajewska			Rig T				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
	Start/F		4/14/2024			-	ng met			Cased Wash Boring	Core Barrel:	NQ	
_	g Locat			E, 341199.30N		_	g ID/C			3.5/4.0 inches	Water Level*:	See Remarks	
Hamr Definitio		iciency Fac	ctor:	1.07	Core Sai		mer Ty	pe:	. Aι	tomatic	Rope & Cathea	d Tv = Pocket Torvane Shear Strei	ogth (ncf)
D = Split MD = Un U = Thin MU = Un V = Field	Spoon Sa successfu Wall Tub successfu Vane She	ul Split Spoon S e Sample ul Thin Wall Tu ear PP = Po	Sample Attempt be Sample Attem cket Penetromete near Test Attempt	SSA = Sc HAS = H RC = Rol pt WOH = ' er WOR/C	olid Stem ollow Ste ller Core Weight o = Weight		lammer or Casing			S_{u} = Peak Nemional Teal Vane Undariand Shear Strength q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Ur	(psf) ual Calibration Value mer Efficiency	WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igui (par)
				Sample Informa	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/24	0-2	2-2-6-5	8	14	SSA		:::::::	Dark brown, medium dense, fine to	o medium SAND, little silt, (F	ILL).	
								1					
	2D	24/19	2-4	4-4-5-6	9	16		88.56	100000	Dark gray, very stiff, CLAY, little sar	nd, (Presumpscot Formation) (PP=2.75 tsf).	
	20	24/19	2 4	4430	9	10	\vdash	-				,	
							\vdash	1		Dark gray yory stiff CLAV little car	ad (Drosumnssat Formation	\ (DD=2.75 +cf\	
- 5 -	3D	24/24	4-6	3-4-5-6	9	16		_		Dark gray, very stiff, CLAY, little sar	iu, (Fresumpscot Formation)) (FF-2.75 (SI).	WC=20% LL=31 PI =17
													PĪ=14 SG=2.75
	4D	24/24	6-8	6-6-6-6	12	21				Dark gray, very stiff, Silty CLAY, littl	e sand, (Presumpscot Forma	ation) (PP=3.5 tsf).	
]					
	5D	24/24	8-10	2-4-4-9	8	14	\Box	82.56		Dark brown, wet, medium dense, f	ine to coarse SAND, little silt	trace gravel.	
		,			<u> </u>		32	1					
10		24/24	10.12	6076	45	27		1		Dark brown, wet, medium dense, f	ine to coarse SAND little silt	trace gravel	
	6D	24/24	10-12	6-8-7-6	15	27	59	1		Burk brown, wee, medium dense, i	me to course shirts, near sin	, trace graven	
							49						
							42						
							24						
							39						
-15—	7D	24/16	15-17	2-5-5-4	10	18	47			Dark gray, wet, medium dense, fin	e to coarse SAND, some clay	ey silt, little gravel.	A-2-4 (0) WC=9.5%
		, -						1					WC-9.5%
							37	-					
							45						
							63 OPEN						
-20-							HOLE				and the last		
	8D	24/8	20-22	45-18-13-8	31	55				Dark gray, wet, very dense, fine to	coarse SAND, little siit, little	gravei.	
Rem	arks:			ı			,		1	1			
1													
C+ra+if:	cation !	linos ropre	ont approvin-	sto boudarias k -t-	MOG 2 5	oil torn -	c. tras-	itions	2016	gradual	Page 1 of 3		
				ate boudaries bet						-	rage 1 UI 3		
		_		e at times and und the time measure				Ground	dwater	fluctuations may occur due to			
Conditi	J.13 ULI	.c. man tilu	oe present di	and time incasule		30 CT C 11	.auc.				Boring No. :	BB-C295-204	

		Maine De	epartment of	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I-	Boring No. :	BB-C295-2	204
		<u> </u>	oil/Rock Explora US CUSTOMAR				Locat	ion:		Rte US1 & MCRR perland, Maine	WIN:	25161.0	10
Drille	r:		SEABOARD I	DRILLING		Eleva	tion:			90.56'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		Kevin Hansc	omb		Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	ed by:		A. Sajewska	,		Rig T	уре:			DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/	Finish:	4/14/2024			Drilli	ng me	thod:		Cased Wash Boring	Core Barrel:	NQ	
Borin	g Loca	tion:	1029671.63	E, 341199.30N		Casin	g ID/C	DD:		3.5/4.0 inches	Water Level*:	See Remarks	
Hamı	mer Ef	ficiency Fa	ctor:	1.07		Hamı	mer Ty	/pe:	☑ Αι	itomatic 🗆 Hydraulic	☐ Rope & Cathea	d	
U = Thin MU = Ui V = Field	Spoon S nsuccessf Wall Tub nsuccessf I Vane Sh	ful Split Spoon be Sample ful Thin Wall Tu lear PP = Po	Sample Attempt ube Sample Attem ocket Penetromet chear Test Attemp	RC = Roll npt	lid Stem ollow Ste ler Core Veight of Weight		lammer or Casing	3		$\begin{split} &S_u = \text{Peak/Remolded Field Vane Undrained S} \\ &S_{ulba) = \text{Lab Vane Undrained Shear Strength} \\ &q_p = \text{Unconfined Compressive Strength (ksf)} \\ &N-\text{uncorrected} = \text{Raw Field SPT N-value} \\ &\text{Hammer Efficiency Factor} = \text{Rig Specific Ann} \\ &N_{60} = \text{SPT N-uncorrected Corrected for Ham} \\ &N_{60} = (Hammer Efficiency Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected $	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
			:	Sample Informat	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	9D	24/20	25-27	19-18-24-24	42	75				Dark gray, wet, very dense, fine to	coarse SAND, some silt, trac	e gravel.	
_30 _ _35_	10D	24/24	30-32	12-16-27-39	43	76				Dark gray, wet, very dense, fine to Dark gray, hard, Clayey SILT, some			A-4 (0) WC-16.6%
-40-	12D	24/24	40-42	47-52-52-72	104	185		-		Dark gray, moist, very dense, fine S	AND, little silt.		
- 45-	13D	11.5/11.5	45-47	72-100/5.5"						Dark gray, moist, very dense, fine t	o coarse SAND, little silt, son	-	
	R1	60/60	47.5-52.5	RQD = 31.25%			<u> </u>	43.06	1	Top of Bedrock at Elev. 43.06 ft.		47.5 _	
	KI	00/00	47.3-32.3	NQD = 31.23/0						R1: Gray, fine to coarse grained, in fresh to slightly weathered.	tensely to moderately fractu	ired, GNEISS, hard rock,	
<u> </u>	<u> </u>						<u> </u>			l			
Kem	arks:												
Stratif	ication	lings repres	ent annroving	ate houdaries bet	veer co	nil type:	c. trans	itions	may bo	gradual	Page 2 of 3		
* Wat	er level	readings ha	ave been made	ate boudaries betw e at times and und the time measure	er cond	ditions	stated.			fluctuations may occur due to	1 056 2 01 3		
		- /	,			- "-	-				Boring No. :	BB-C295-204	

			epartment of Soil/Rock Explora	Transportation	n		Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-:	204
			US CUSTOMARY				Locat	ion:	Cumb	perland, Maine	WIN:	25161.0	00
Drille	r:		SEABOARD D	ORILLING		Eleva	ition:			90.56'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hansco	omb		Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge	_		A. Sajewska			Rig T				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/I	Finish:	4/14/2024			Drilli	ng met	thod:		Cased Wash Boring	Core Barrel:	NQ	
Borin	g Loca	tion:	1029671.63	E, 341199.30N	1	Casir	ng ID/C	D:		3.5/4.0 inches	Water Level*:	See Remarks	
		ficiency Fa	ctor:	1.07			mer Ty	/pe:	 Aι	utomatic 🗆 Hydraulic	☐ Rope & Cathe		
U = Thin MU = Ur V = Field	Spoon Sa successf Wall Tub successf Vane Sh	ful Split Spoon! be Sample ful Thin Wall Tu near PP = Po	Sample Attempt ube Sample Attem ocket Penetromete shear Test Attempt	SSA = HAS : RC = ipt WOH er WOR	ock Core Sa Solid Sten Hollow St Roller Core I = Weight C = Weight P = Weight	n Auger tem Auger e of 140lb. H nt of Rods	Hammer or Casing	ī		$S_{\rm u}$ = Peak/Remolded Field Vane Undrained S $_{\rm ulab}$ = Lab Vane Undrained Shear Strength ($q_{\rm p}$ = Unconfined Compressive Strength (ks) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann $N_{\rm e0}$ = SPT N-uncorrected Corrected for Ham $N_{\rm e0}$ = (Hammer Efficiency Factor/60%)*N-Un	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
		_		Sample Inforn	nation								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or ROD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
50										R1: Core Times (min:sec)			qu=8830psi
					\top	\top		1		Rock Quality = Poor 47.5-48.5 ft (4:59)			
	R2	60/53.5	52.5-57.5	RQD = 45%	+	+		1		48.5-49.5 ft (4:02)			
	112	00/33.3	32.3 37.3	1100 - 4570	+	+-		1		49.5-50.5 ft (3:02)			
					_	┿		4		50.5-51.5 ft (2:41) 51.5-52.5 ft (3:07)			
_55 <u></u>								_		100% Recovery			
										R2: Gray, fine to coarse grained, in	tensely to moderately fract	ured, GNEISS, hard rock,	
					+	+-		1		fresh to slightly weathered.			
			 		$+\!-$	+-		+		Rock Quality = Poor R2: Core Times (min:sec)			
						┿		33.06		-52.5-53.5 ft (3:29)			
										53.5-54.5 ft (3:02)			
00										54.5-55.5 ft (3:25)			
_60					\top	\dagger		1		55.5-56.5 ft (2:36) 56.5-57.5 ft (3:15)			
					+	+-		1		89% Recovery			
					$+\!\!-$	┿		4				57.5	
										Bottom of Explorat	ion at 57.5 feet below grou	and surface	
					\top	\dagger		1					
– 65 –					+	+-	<u> </u>	1					
						<u> </u>		_					
						1		1					
					+	+		1					
					+	+		1					
- 70—			 		+-	+-		+					
					+	┿		4					
						↓		_					
					+	+-		1					
Rem	arks:			<u> </u>					1				
		•											
C+u-+:C	oot!	lines :	ant ancies	ata haudada 1	otus ::	ail to or	a. tr	itio	mau I-:	gradual	Dago 2 of 2		
				ate boudaries b							Page 3 of 3		
		-						Ground	dwater	fluctuations may occur due to			
condit	ions oth	ner than tho	ise present at	the time measu	irements	, were n	iade.				Boring No. :	BB-C295-204	
i .											I		

							1		T. sel.	. D d D::d //205 #5004 1	Ι .		
			-	Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-	205
			oil/Rock Explora				Locati	ion:	Cumb	perland, Maine	WIN:	25161.0	10
Drille	r:		SEABOARD D	RILLING		Eleva	tion:			106.20'	Auger ID/OD:	2.5 inches SSA	
Oper	ator:		Kevin Hansc	omb		Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	ed by:		A. Sajewska			Rig T	ype:			DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	Finish:	4/1/2024			Drilli	ng met	hod:		Cased Wash Boring	Core Barrel:	NQ	
Borin	g Loca	tion:	1029900.221	E, 341118.99N		Casin	g ID/O	D:		3.5/4.0 inches	Water Level*:	13' bgs after boring co	mpleted
		ficiency Fa	ctor:	1.07			mer Ty	pe:	☑ Au	itomatic 🔲 Hydraulic	☐ Rope & Cathea		
MD = Ur U = Thin MU = Ur V = Field	Spoon Sansuccessfi Wall Tub Insuccessfi I Vane Sho	ul Split Spoon be Sample ul Thin Wall Tu ear PP = Po	Sample Attempt libe Sample Attem locket Penetromete hear Test Attempt	SSA = So HAS = Ho RC = Rol pt WOH = V er WOR/C =	ller Core Weight o = Weight		or Casing			$S_{\rm u}$ = Peak/Remolded Field Vane Undrained S $_{\rm u(bb)}$ = Lab Vane Undrained Shear Strength $q_{\rm p}$ = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{60} = SPT N-uncorrected Corrected for Ham N_{60} = (Hammer Efficiency Factor/60%)*N-Ur	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
				Sample Informat	tion					1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
0							2	105 7		6" PAVEMENT		0.5	
	1D	24/14	1-3	7-4-7-7	11	20	2	105.7		Dark brown, moist, medium dense	fine to coarse SAND, trace	gravel, trace silt, (FILL).	
							10	•					
		24/42	2.5	F.C.0.0	1.	25		-		Dark brown, moist, medium dense	fine to coarse SAND trace	gravel trace silt (FILL)	
	2D	24/12	3-5	5-6-8-8	14	25	12			. Dark brown, moist, medium dense,	Time to course salve, trace	graver, trace siit, (r ill.).	
- 5 -							6						
	3D	24/20	5-7	4-5-8-9	13	23	6			Dark brown, moist, medium dense	fine to coarse SAND, trace	gravel, trace silt, (FILL).	
							4						
	4D	24/24	7-9	7-9-10-12	19	34	8	İ		Brown, moist, dense, fine to coarse	e SAND, trace silt, (FILL).		
							21	1					
		24/46	0.11	1666	42	24				Brown, moist, medium dense, fine	to coarse SAND trace grave	l trace silt (FILL)	
-10-	5D	24/16	9-11	4-6-6-6	12	21	35	-			to course sharp, trace grave	i, trace siit, (FILL).	
							38						
							54						
							60						
							60						
							23	İ		: Very top of the sample (1.5") Dark	gray CLAV		
-15-	CD	24/10	15-17	1-16-15-8	21			1		Brown, moist, very dense, fine to c		lt.	A-1-b (1) WC=12.3%
	6D	24/18	13-17	1-10-13-8	31	55	28				,		VVC=12.3%
							62						
							62]					
							72						
							69	86.2		<u>:</u>			
-20 <i>-</i>	7D	24/24	20-22	2-4-6-6	10	18	46	00.2		Dark gray, very stiff, CLAY, trace sil		(PP=4.5 tsf).	WC=28% LL=35
	V1		22.33-22.5	Su=2357/943psf			45	İ		25.4 x 50.8 mm vane raw torque re V1 = 60 / 24 in-lbs	adings:		PL=21 PI=14 SG=2.78
	1U	24/21	22.3-24.3	PUSH			47	İ		Dark gray, CLAY, trace silt.			WC=31.3% Su=6.559 psi
		- 1,					60	ł					- Su=6.559 μSi
		2.1/2.1	24 5 26 5		<u> </u>	-				Dark gray, wet, very soft CLAY, (Pre	scumpscot Formation) (PP-0	tcf)	
	8D	24/24	24.5-26.5	WOR-WOR-WOH-1	0	0	55			Dark gray, wet, very soft CLAT, (FIG	sumpscot i ormation) (FF-c	1317.	
Rem	<u>arks:</u>												
Stratifi	cation	lines repres	ent approxima	ate boudaries bety	ween so	oil type:	s; trans	itions r	nay be	gradual	Page 1 of 3		
										fluctuations may occur due to			
		_		the time measure				Jiouili	~ ** U L C I				
											Boring No. :	BB-C295-205	

			•	f Transportation			Projec	ct:		e Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-2	205
			Soil/Rock Explora US CUSTOMARY				Locati	ion:		perland, Maine	WIN:	25161.0)0
Drille	r:		SEABOARD D	DRILLING		Eleva	tion:			106.20'	Auger ID/OD:	2.5 inches SSA	
Opera	ator:		Kevin Hansco	omb		Datur	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge			A. Sajewska			Rig Ty	ype:			DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	Finish:	4/1/2024			Drilli	ng met	thod:		Cased Wash Boring	Core Barrel:	NQ	-
	g Locat			E, 341118.99N		-	ng ID/O			3.5/4.0 inches	Water Level*:	13' bgs after boring co	mpleted
		ficiency Fac		1.07		Hamı	mer Ty	pe:	☑ Au	utomatic Hydraulic	☐ Rope & Cathe		
MD = Un U = Thin MU = Un V = Field	Spoon Sansuccessfu Wall Tube Issuccessfu Vane She	ful Split Spoon S be Sample ful Thin Wall Tu near PP = Po	n Sample Attempt Fube Sample Attemp Pocket Penetromete Shear Test Attempt	SSA = So HAS = Ho RC = Roll npt WOH = V ter WOR/C =	Weight of = Weight	Auger	Hammer or Casing	;		$\begin{array}{l} S_u = Peak/Remolded Field Vane Undrained S \\ S_{u(lab)} = Lab Vane Undrained Shear Strength \\ q_p = Unconfined Compressive Strength (ksf) \\ N-uncorrected = Raw Field SPT N-value \\ Hammer Efficiency Factor = Rig Specific Ann \\ N_{80} = SPT N-uncorrected Corrected for Ham \\ N_{80} = (Hammer Efficiency Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Corrected Factor/60%)*N-Uncorrected Factor$	(psf) nual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igth (psf)
				Sample Informat	tion]		ļ	Laboratory
GD Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
25	للسا	<u> </u>			<u> </u>	<u> </u>	41]				I	1
	2U	24/19	26.5-28.5	PUSH		['	41			Dark gray, CLAY.		I	1
	-			<u> </u>			43	1				ļ	1
	MV		29.5-29.5	No Rotation		\vdash	51	1		Failed 55 x 110 mm vane attempt.		ļ	1
	_ ```			1101.000	\vdash	 		-					1
30	\longrightarrow	1		<u> </u>	Щ	<u> </u>	50]		9D (30-31.5'): Gray, wet, medium s	stiff. CLAY. little sand, trace s	silt. (Presumpscot	A-6 (11), CL
	9D/A	24/24	30-32	WOH-1-3-4	4	7	34	74.7		Formation).		315	LL=36 PL=24
	<u> </u>						33	1'		9D/A (31.5-32'): Dark Brown, fine t	to coarse SAND, some claye	y silt.	PĪ=12 SG=2.80
	$\overline{}$		+	+	 	 	36	†				I	1
	$\overline{}$		 		 	 		1				ļ	1
ļ		<u> </u>		<u> </u> '	<u> </u>	<u> </u>	52	_				ļ	1
_35		1'	l	·'	l	'	52					ļ	1
33	10D	24/24	35-37	5-5-8-5	13	23	56	1		Dark gray, wet, very stiff, Sandy SIL	T, trace gravel.	1	A-4 (0) WC=13%
	$\overline{}$		+	+			66	1		:		1	VVO-1070
	$\overline{}$		+	 	\vdash			1				ļ	1
	\longrightarrow	<u> </u>	 	 '	↓ —	<u> </u> '	95	4				ļ	1
		<u> </u>		<u> </u>		<u> </u>	139					ļ	1
,	_			[·			103					ļ	1
-40-	11D	24/18	40-42	13-18-20-15	38	68	89	1		Light brown, wet, very dense, fine	to medium SAND, trace silt.	ļ	1
	_ <u></u>		 		 	J-		4		:			1
		<u> </u>		<u> </u>	<u> </u>	<u> </u> '	101	_		:		ļ	1
	ıJ	l		l'		'	86	62.7	:::::::	<u> </u>		43.5 _	1
	R1	60/60	43.5-48.5	RQD = 45.4%				02		Top of Bedrock at Elev. 62.7 ft.			R1: qu=17524psi
ا ا	\Box			<u>'</u>				1		R1: Gray, fine to coarse grained, m	oderately fractured, GNEISS	s, hard rock, fresh to	1
- 45 -	\neg			† '				1		slightly weathered.		ļ	1
'	\longrightarrow		+	 	\vdash	 	 	-		Rock Quality = Poor		!	1
			+		├─	 	 	4				ļ	1
	R2	60/57	48.5-53.5	RQD = 59.6%	<u> </u>	<u> </u> '	<u> </u>	_				ļ	1
	ı _]	1'		·'	l	l _'	l'					ļ	1
				'				1				ļ	1
Rema	arks:						Ь—			•			
110	<u> </u>												
Ctratif	action	lines rapre	-ant approving	-to boudaries het	on c	-:! tune	-: trans	'+'one r	nay ba	امرياد	Page 2 of 3		
				ate boudaries betv							rage 2 UI 3		
		_						Ground	dwater	fluctuations may occur due to			
COHUILI	ONS Out	ier than unc	ose present at	the time measure	ments	were m	aue.				Daning No.	DD C20E 20E	
											Boring No. :	BB-C295-205	

		Maine D	epartment of	f Transportation			Proje	ct:		e Road Bridge/I295 #5801 over I	Boring No. :	BB-C295-2	205
		9	Soil/Rock Explor	ration Log					295, I	Rte US1 & MCRR			
			03 COSTOWAK	T ONITS			Locati	ion:	Cumb	perland, Maine	WIN:	25161.0	0
Drille	r:		SEABOARD I	DRILLING		Eleva				106.20'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hansc			Datu				NAVD 88	Sampler:	Standard Split Spoon	
Logge	_		A. Sajewska			Rig T				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
		Finish:	4/1/2024			+	ng met			Cased Wash Boring	Core Barrel:	NQ	
	g Loca			2E, 341118.99N			g ID/O			3.5/4.0 inches	Water Level*:	13' bgs after boring co	mpleted
		ficiency Fa	ctor:	1.07	k Core Sa		mer Ty	pe:	. ⊿ Au	stomatic	Rope & Cather		agth (ncf)
U = Thin MU = Un V = Field	Spoon Sa successfi Wall Tub successfi Vane Sho	ful Split Spoon be Sample ful Thin Wall Ti lear PP = P	Sample Attempt ube Sample Attem ocket Penetromet Shear Test Attemp	SSA = Sc HAS = H RC = Ro npt WOH = ter WOR/C	olid Stem Hollow Ste bller Core Weight o	Auger em Auger	lammer or Casing	;		$S_{\rm u}$ = Peak/Remolded Field Vane Undrained $S_{\rm u(ba)}$ = Lab Vane Undrained Shear Strength $q_{\rm p}$ = Unconfined Compressive Strength (ksf N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific An N_{60} = SPT N-uncorrected Corrected for Han N_{60} = (Hammer Efficiency Factor/60%)*N-U	(psf) nual Calibration Value nmer Efficiency	Tu = Pocket Torvane Shear Strer WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igth (pst)
				Sample Informa	tion				.]			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log		Description and Remarks		Testing Results/ AASHTO and Unified Class.
50										R1: Core Times (min:sec) 43.5-44.5 ft (3:53)			
					<u> </u>	\vdash		-		44.5-45.5 ft (3:06) 43.5-44.5 ft (3:53)			
				 	\vdash	+-		53.7		44.5-45.5 ft (3:06)			
					\vdash	┼		-		- 44.5-45.5 ft (3:06) 100% Recovery			
-55-					ـــــ			1		R2: Gray, fine to coarse grained, n	noderately fractured, GNEISS	, hard rock, fresh to	
								1		slightly weathered. Rock Quality = Fair			
										R2: Core Times (min:sec)			
								1		48.5-49.5 ft (5:23)			
				†	†	1		1		49.5-50.5 ft (4:50) 50.5-51.5 ft (6:09)			
		-		+	+	+		1		51.5-52.5 ft (5:13)			
-60-				+	+	+		4		95% Recovery			
					₩			4				52.5	
]		Bottom of Explora	tion at 52.5 feet below grou	nd surface.	
]					
								1					
-65-				+	 	+		1					
		ऻ	<u> </u>	 	₩	—	<u> </u>	1					
								1					
70								1					
-70-								1					
					 	1		1					
				+		†		1					
				+	+	+		1					
				+	\vdash	\vdash		4					
								<u> </u>		<u>l</u>			
Rema	<u>arks:</u>	•											
Stratifi	cation l	lines repres	sent approxim	ate boudaries bet	ween s	oil type	s; trans	itions n	nay be	gradual	Page 3 of 3		
		_						Ground	dwater	fluctuations may occur due to			
conditi	ons oth	ner than the	ose present at	the time measure	ments	were m	iade.				Boring No. :	BB-C295-205	

			epartment of	Transportation			Proje	ct:	Tuttle	Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-206	5 (OW)
			US CUSTOMAR				Locati	ion:	Cumb	perland, Maine	WIN:	25161.0	00
Drille	r:		SEABOARD I	ORILLING		Eleva	tion:			92.08'	Auger ID/OD:	2.5 inches SSA	
Opera	ator:		Kevin Hansc	omb		Datu	m:			NAVD 88	Sampler:	Standard Split Spoon	
Logge	d by:		A. Sajewska			Rig T	ype:			DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
Date	Start/F	Finish:	4/14/2024			Drilli	ng met	hod:		Cased Wash Boring	Core Barrel:	NQ	
Borin	g Loca	tion:	1029916.79	E, 341194.50N		Casin	g ID/O	D:		3.5/4.0 inches	Water Level*:	See Remarks	
		ficiency Fac	ctor:	1.07		•	mer Ty		☑ Au	tomatic	☐ Rope & Cathe	ad	
MD = Ur U = Thin MU = Ur V = Field	Spoon Sa successfi Wall Tub successfi Vane Sho	ul Split Spoon S se Sample ul Thin Wall Tu ear PP = Po	Sample Attempt libe Sample Attem ocket Penetromet hear Test Attemp	SSA = Sc HAS = H RC = Ro ppt WOH = er WOR/C	ller Core Weight o = Weight		or Casing			$\begin{split} &S_u = Peak/Remolded Field Vane Undrained S \\ &S_{u(tub)} = Lab Vane Undrained Shear Strength \\ &q_p = Unconfined Compressive Strength (ksf) \\ &N-uncorrected = Raw Field SPT N-value \\ &Hammer Efficiency Factor = Rig Specific Ann \\ &N_{60} = SPT N-uncorrected Corrected for Ham \\ &N_{60} = (Hammer Efficiency Factor/60%)*N-Un-Value (Hammer Efficiency Factor/60%)*$	(psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Stre WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	ngth (psf)
				Sample Informa	tion								Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual	Description and Remarks		Testing Results/ AASHTO and Unified Class.
0	1D	24/16	0-2	2-1-2-2	3	5	SSA			Brown, moist, loose, fine SAND, so	me silt.		
								90.8				2.0	
	2D	24/16	2-4	2-5-9-9	14	25		-		Dark gray, moist, very stiff, CLAY, to	race sand, (Presumpscot Fo	rmation) (PP=4.5 tsf).	
– 5 <i>–</i>	3D	24/24	4-6	4-6-10-10	16	28				Dark gray, moist, very stiff, CLAY, to	race sand, (Presumpscot Fo	rmation) (PP=4.5 tsf).	A-6 (15) CL WC=8% LL=33 PL=18 PI=15
	4D	24/24	6-8	6-10-9-10	19	34				Gray, moist, hard, CLAY, trace sand	l, (Presumpscot Formation)	(PP=2.5 tsf).	SG=2.83 A-6 (18), CL WC=22%
	MV		6.33-6.5	No Rotation				1		Failed 25.4 x 50.8 mm vane attemp	ot (40 in-lbs - no rotation).		PL=3/ PL=19 PI=18
		24/22						1		Gray, CLAY, (Presumpscot Formation	on)		WC=38%
	10	24/22	8-10	PUSH				1		Cray, GE 11) (1 resumpseed remain	,.		PL=22 PI=15 SG=2.76
-10-							+	_		5D (10-11.75'): Dark gray, medium	stiff, CLAY, little sand, (Pres	umpscot Formation)	SG=2.76 A-4 (0) WC=35.9%
	5D/A	24/24	10-12	1-1-3-3	4	7	5	80.33		(PP=0 tsf).		11.75	WC=35.9%
							12	00.33		5D/A (11.75-12'): Dark gray, wet, fi	ne to coarse SAND, little cla		
							35	1					
						<u> </u>		1					
							48						
4.5							30						
-15 -	6D	24/16	15-17	8-8-5-7	13	23	34	1		Dark gray, wet, medium dense, fine	e to coarse SAND, little silt,	trace gravel.	
		, -						1					
							39						
							50						
							36						
							33	1	::::::				
-20 <i>-</i>	7D	24/12	20-22	4-9-9-8	18	32	32	1	:::::	Dark gray, wet, dense, fine to coars	se SAND, little silt, trace gra	vel.	A-1-b (0) WC=8.9%
			,		+	+	44	1					0.5 /0
								1					
							64	1	:::::				
					L	L	71		:::::				
							56						
Rem	arks:		1	I		-			1				•
1	<u> </u>												
Stratifi	cation	lines repres	ent approxima	ate boudaries bet	ween so	oil type	s; trans	itions r	nay be	gradual	Page 1 of 2		
* Wate	er level	readings ha	ive been made	e at times and unr	der con	ditions	stated	Groun	dwater	fluctuations may occur due to			
		_		the time measure									
											Boring No. :	BB-C295-206	(OW)

			partment of	Transportation			Proje	ct:		Road Bridge/I295 #5801 over I- Rte US1 & MCRR	Boring No. :	BB-C295-200	5 (OW)		
<u>US CUSTOMARY UNITS</u>					Location: Cumbe				perland, Maine	WIN:	25161.00				
Drille	r:		SEABOARD I	DRILLING		Elevation:				92.08'	Auger ID/OD:	2.5 inches SSA			
Opera			Kevin Hansc			Datum:				NAVD 88	Sampler:	Standard Split Spoon			
Logge			A. Sajewska			-				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in			
	Start/F		4/14/2024			_	ng met	hod:		Cased Wash Boring	Core Barrel:	NQ			
	g Locat			E, 341194.50N		_	g ID/O			3.5/4.0 inches	Water Level*:	See Remarks			
									[] A.	· ·					
Hamn Definitio		ficiency Fac	tor:	1.07 R = Rock	Coro Co		ner Ty	pe:	Ľ Au	tomatic	Rope & Cathe	Tv = Pocket Torvane Shear Stre	ngth (ncf)		
D = Split MD = Un U = Thin MU = Un V = Field	Spoon Sa successfu Wall Tub ssuccessfu Vane She	ul Split Spoon S be Sample ful Thin Wall Tu ear PP = Po	Sample Attempt be Sample Attem ocket Penetromet hear Test Attemp	SSA = So HAS = Hi RC = Rol ipt WOH = V er WOR/C =	lid Stem ollow Ste er Core Veight o Weight		r Casing			S_{u} = Pear/Neimbour rietu Varie Ontainleus S _{Quibb}) = Lab Vane Undrained Shear Strength q_p = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann N_{80} = SPT N-uncorrected Corrected for Ham N_{80} = (Hammer Efficiency Factor/60%)*N-Ur	(psf) nual Calibration Value mer Efficiency	WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igui (psi)		
		1	:	Sample Informa	ion								Laboratory Testing		
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	N60	Casing Blows	Elevation	Graphic Log	Visual	Visual Description and Remarks				
25	8D	20/20	25-27	4-11-19-52/4"	30	53			::::::	Dark gray, wet, dense, fine SAND, s	some clayey silt.				
		,		+, .		+		1	::::::						
								65.25				26.83 _			
										•	Top of Bedrock at Elev. 65.25 ft.				
								1		Bottom of Exploration at 26.83' below g		a surtace.			
								1							
30								1							
								1							
								1							
								1							
								1							
_35—								1							
								1							
								1							
								-							
-40-															
70															
								1							
]							
-45-								1							
								1							
		<u> </u>		<u> </u>		L									
								1							
				l					l				<u> </u>		
	arks:														
		Readings:						_							
	2.8' bg	gs - April 16	5, 2024; 2'-9"	bgs - April 25, 2	024; 2	'-10" b	gs - Ma	ay 9, 20)24; 2'-	-11.5" bgs - May 16, 2024					
Stratifi	cation l	lines repres	ent approxima	ate boudaries bety	veen so	oil types	; trans	itions n	nay be	gradual	Page 2 of 2	<u> </u>			
										fluctuations may occur due to					
		_		the time measure				Jiouil	.vvut⊂l	mactadions may occur due to					
			,								Boring No. :	BB-C295-206	(OW)		
											Dorning No	DD (C233-200			

		Maine De	partment of	Transportation			Proje	ct:	Tuttle	e Road Bridge/I295 #5801 over I-	Boring No. :	BB-C295-:	207
Soil/Rock Exploration Log US CUSTOMARY UNITS			295, F			295, I	Rte US1 & MCRR						
							Locat	ion:	Cumb	perland, Maine	WIN:		
Drille			SEABOARD [Elevation:				92.45'	Auger ID/OD:	2.5 inches SSA	
Opera			Kevin Hanso	omb		Datum:				NAVD 88	Sampler:	Standard Split Spoon	
Logge	_		A. Sajewska			Rig Type:				DIEDRICH D-50 SN:367	Hammer Wt./Fall:	140lbs/30in	
	Start/F		4/18/2024			Drilling method: Casing ID/OD:				Cased Wash Boring	Core Barrel:	NQ	
	g Locat			E, 341153.30N						3.5/4.0 inches	Water Level*:	See Remarks	
		iciency Fa	ctor:	1.07	Coro		mer Ty	pe:	. Au	Itomatic	Rope & Cathea		oath (ncf)
MD = Ur U = Thin MU = Ur V = Field	Spoon Sa successfu Wall Tub successfu Vane She	ul Split Spoon e Sample ul Thin Wall Tu ear PP = Po	Sample Attempt ube Sample Attem ocket Penetromet hear Test Attempt	SSA = Sc HAS = H RC = Rol pt WOH = \ er WOR/C	Weight o	Auger m Auger f 140lb. H	Hammer or Casing			$S_{\rm u}$ = Peak/Remolded Field Vane Undrained S $S_{\rm u(ab)}$ = Lab Vane Undrained Shear Strength ($q_{\rm p}$ = Unconfined Compressive Strength (ksf) N-uncorrected = Raw Field SPT N-value Hammer Efficiency Factor = Rig Specific Ann $N_{\rm eo}$ = SPT N-uncorrected Corrected for Hamn $N_{\rm eo}$ = (Hammer Efficiency Factor/60%) *N-Un	psf) ual Calibration Value mer Efficiency	Tv = Pocket Torvane Shear Strei WC = Water Content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	igtri (psi)
				Sample Informa	tion					1			Laboratory
Depth (ft.)	Sample No.	Pen./Rec/ (in.)	Sample Depth (ft.)	Blows (/6in.) Shear Strength (psf) or RQD (%)	N- value	09N	Casing Blows	Elevation	Graphic Log	Visual I	Testing Results/ AASHTO and Unified Class.		
0	1D	24/6	0-2	WOR-WOR-1-2	1	2	SSA			6" Topsoil: Dark gray, moist, very s	oft, Clayey SILT, trace sand.		
	2D	24/16	2-4	2-4-6-5	10	18		1		Dark gray, wet, very stiff, Clayey SII	.T, (PP = 1.5 tsf).		
		2-1/10		1	10	10		1					
							-	-					
- 5 -	3D	24/0	4-6	4-6-6-6	12	21				No recovery.			
ľ													
	4D	24/6	6-8	5-6-6-5	12	21				Dark gray, wet, medium dense, fine	SAND, little clayey silt, trac	e gravel.	
		•						1					
							\vdash	84.45	:::::::	Dark gray, wet, very soft, CLAY, tra-	co cand (Brosumnscot Form	ation \ (BD = 0 tsf) 8.0	A-6 (20), CL
	5D	24/24	8-10	WOR-1-WOR-1	1	2		_		Dark gray, wet, very sort, CLAT, trai	te sand, (Fresumpscot Form	ation) (PP = 0 tsi).	WC=37% LL=37
-10-							↓						PL=1/ PI=20 SG=2.77
10	1U	24/20	10-12	PUSH			WOH			Dark gray, CLAY, (Presumpscot For		WC=30%	
	V1		13.0-13.43	Su = 384/74psf			5			5 x 130 mm vane raw torque readings:	ings:		LL=26 PL=16 PI=10
				<u> </u>			-			V1 = 14.0 / 2.7 ft - lbs V2 = 14.7 / 1.1 ft-lbs	SG=2.75		
	V2		14.0-14.43	Su = 404/30psf			5			,			
							6						
							4						
-15-	6D	24/24	15-17	WOR-WOR-	0	0	WOH			Dark gray, wet, very soft, CLAY, tra	ation) (PP = 0 tsf).	A-6 (12), CL	
		2-1/2-1		WOR-WOR	ļ -	Ļ		1				WC=35% LL=30	
							3				PL=16 Pl=14 SG=2.88		
	2U	24/0	17-19	PUSH			2			No recovery, (Clay on the sides of t		00 2.00	
							1						
	3U	24/6	19-21	PUSH			WOH			Shelby tube pushed from 19 - 21 ft	for 10 min to set.		
-20 -							16			(1) See remarks		21.0	
	7D	16/16	21-23	1-1-50/4"				71.45	::::::	Dark gray, wet, very dense, SAND,	ittle silty clay, some gravel, (
	70	10/10	21 25	1130/4				1			, ,, ,	, ,	
								_					
								68.95	::::::::::::::::::::::::::::::::::::::			23.5	
										Top of Bed Bottom of Explora	lrock at Elev. 68.95 ft. tion at 23.5 feet from belov	v surface.	
Rem	arks:			•						•			
		measurer	nent not take	en									
	(1) Bot	ttom of cla	y at 19.8' (dr	iller's observatio	n).								
L													
Stratifi	cation l	ines repres	ent approxima	ate boudaries bety	ween so	oil type	s; trans	itions n	nay be	gradual	Page 1 of 1		
										fluctuations may occur due to] -		
		_		the time measure				J. Ouril	u.Cl				
											Boring No. :	BB-C295-207	
												=======================================	

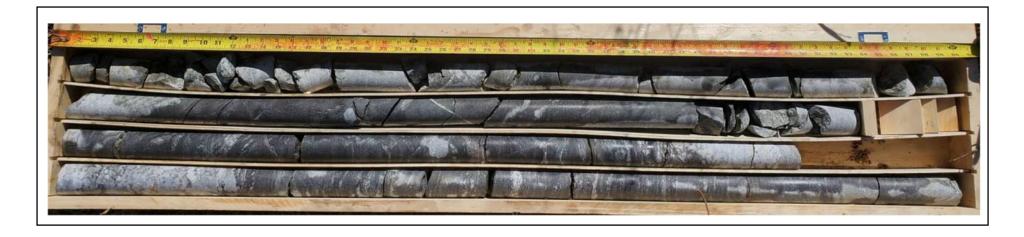
Appendix CRock Core Photographs

Boring No.	Run	Depth (ft)	Penetration (in)	Recovery (in)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-C295-102	R1	31.5 - 36.5	60	57	4	7	GNEISS	1
BB-C295-102	R2	36.5 - 41.5	60	60	8	13	GNEISS	2
BB-C295-101	R1	36.5 - 41.5	60	58	34.25	57	GNEISS	3
BB-C295-101	R2	41.5 - 46.5	60	55	47	78	GNEISS	4

Notes: 1. "Box row" indicates the section of the box where the core run is contained: 1 = top, 4 = bottom.

Boring No.	Run	Depth (ft)	Penetration (in)	Recovery (in)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-C295-104	R1	28.2 - 32.5	52.5	52.5	49	93	QUARTZITE	1
BB-C295-104	R2	32.5 - 37.5	60	58.5	58.5	98	GNEISS	2
BB-C295-103	R1	49.0 - 54.0	60	44	25	42	GNEISS	3
BB-C295-103	R2	54.0 - 59.0	60	38	26	43	GNEISS	4

Notes: 1. "Box row" indicates the section of the box where the core run is contained: 1 = top, 4 = bottom.


Boring No.	Run	Depth (ft)	Penetration (in)	Recovery (in)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-C295-205	R1	43.5-48.5	60	60	27.25	45.4	GNEISS	1
BB-C295-205	R2	48.5-53.5	60	57	35.75	59.6	GNEISS	2
BB-C295-203	R1	56.8-61.8	60	60	28.25	47.1	GNEISS	3
BB-C295-203	R2	61.8-66.8	60	60	41.75	69.6	GNEISS	4

Notes: 1. "Box row" indicates the section of the box where the core run is contained: 1 = top, 4 = bottom.

Boring No.	Run	Depth (ft)	Penetration (in)	Recovery (in)	RQD (in)	RQD (%)	Rock Type	Box Row
BB-C295-204	R1	47.5-52.5	60	60	18.75	31.25	GNEISS	1
BB-C295-204	R2	52.5-57.5	60	53.5	27	45	GNEISS	2
BB-C295-202	R1	29.0-34.0	60	49	41	68.3	GNEISS	3
BB-C295-202	R2	34.0-39.0	60	60	50.75	84.6	GNEISS	4

Notes: 1. "Box row" indicates the section of the box where the core run is contained: 1 = top, 4 = bottom.

Appendix D Laboratory Testing Results

Preliminary Subsurface Exploration Program Lab Test Results, 2022

Location: Cumberland, ME Project No: GTX-316280

Boring ID: --- Sample Type: --- Tested By: ckg
Sample ID: --- Test Date: 11/03/22 Checked By: ank

Depth: --- Test Id: 691797

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BB-C295-101	2D	2'-4'	Moist, very dark grayish brown silt with sand	32.3
BB-C295-101	4D	6'-8'	Moist, olive brown clay	25.4
BB-C295-101	5D	8'-10'	Moist, grayish brown silty sand with gravel	15.0
BB-C295-101	10D	30'-32'	Moist, dark gray clayey sand	20.8
BB-C295-102	3D	4'-6'	Moist, olive brown clay	24.6
BB-C295-102	4D	6'-8'	Moist, olive brown clay	25.0
BB-C295-102	9D	25'-27'	Moist, gray silty sand with gravel	16.1
BB-C295-103	3D	5'-7'	Moist, dark gray clay	25.8
BB-C295-103	4D	7'-9'	Moist, gray clay with sand	36.3
BB-C295-103	7D	20'-22'	Moist, gray silty sand and gravel	9.8

Notes: Temperature of Drying: 110° Celsius

Location: Cumberland, ME Project No: GTX-316280

Boring ID: --- Sample Type: --- Tested By: ckg
Sample ID: --- Test Date: 11/03/22 Checked By: ank

Depth: --- Test Id: 691802

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BB-C295-103	9D	30'-32'	Moist, gray sandy silty clay	16.3
BB-C295-104	2D	2'-4'	Moist, dark grayish brown clay	29.4
BB-C295-104	4D	6'-8'	Moist, dark gray clay	24.0
BB-C295-104	5D	8'-10'	Moist, gray clay	28.7
BB-C295-104	9D	25'-27'	Moist, light brownish gray silt with sand	17.5

Notes: Temperature of Drying: 110° Celsius

Location: Cumberland, ME Project No: GTX-316280

Boring ID: --- Sample Type: --- Tested By: ckg
Sample ID: --- Test Date: 11/07/22 Checked By: ank

Depth: --- Test Id: 691810

Specific Gravity of Soils by ASTM D854

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity	Comment
BB-C295-103	3D	5'-7'	Moist, dark gray clay	2.80	
BB-C295-103	4D	7'-9'	Moist, gray clay with sand	2.69	
BB-C295-104	4D	6'-8'	Moist, dark gray clay	2.79	
BB-C295-104	5D	8'-10'	Moist, gray clay	2.67	

Notes: Specific Gravity performed by using method B (oven dried specimens) of ASTM D854 Moisture Content determined by ASTM D2216.

Client: Hardesty & Hanover

Project Name: Tuttle Rd, Cumberland, ME

Project Location: Cumberland, ME

GTX #: 316280 Test Date: 10/31/22

Tested By: nlb Checked By: ank

Laboratory pH of Soil by ASTM G51

Boring ID	Sample ID	Depth, ft	Description	Soil Temperature, ° C	Average pH Reading
BB-C295-102	5D, 6D, 7D	8'-17'	Moist, gray silt with sand	20.8	6.88

Notes:

Client: Hardesty & Hanover
Project: Tuttle Rd, Cumberland, ME
Location: Cumberland, ME
GTX#: 316280
Test Date: 11/10/22
Tested By: nlb

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Checked By:

ank

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
BB-C295-102	5D, 6D, 7D	8'-17'	Moist, gray silt with sand	2,686	3.72E-04

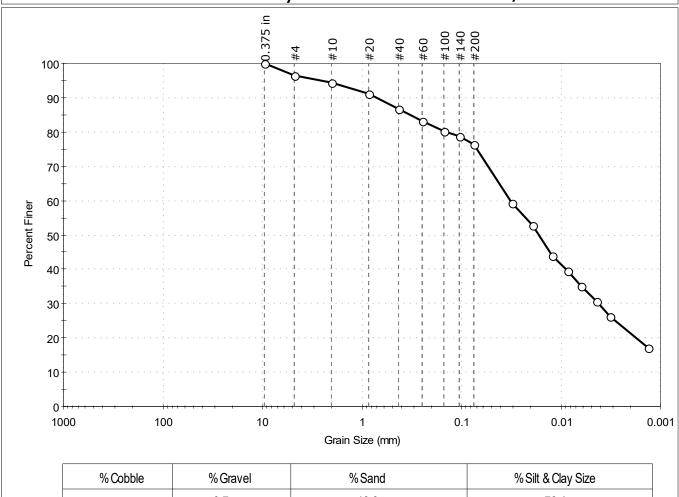
Notes: Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil Box

Water added to sample to create a thick slurry prior to testing (saturated condition). Electrical Conductivity is calculated as inverse of Electrical Resistivity (per ASTM G57)

Test conducted in standard laboratory atmosphere: 68-73 F

Location: Cumberland, ME GTX-316280 Project No: Boring ID: BB-C295-101 Sample Type: jar Tested By:

ckg Test Date: Sample ID: 2D 11/10/22 Checked By: ank


Depth: 2'-4' Test Id: 691777

Test Comment:

Visual Description: Moist, very dark grayish brown silt with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	3.7	19.9	76.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	96		
#10	2.00	94		
#20	0.85	91		
#40	0.42	87		
#60	0.25	83		
#100	0.15	80		
#140	0.11	79		
#200	0.075	76		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0308	59		
	0.0192	53		
	0.0121	44		
	0.0086	39		
	0.0063	35		
	0.0044	31		
	0.0032	26		
	0.0013	17		

<u>Coefficients</u>				
D ₈₅ = 0.3333 mm	$D_{30} = 0.0043 \text{ mm}$			
D ₆₀ = 0.0319 mm	$D_{15} = N/A$			
D ₅₀ = 0.0167 mm	$D_{10} = N/A$			
Cu =N/A	$C_{c} = N/A$			

<u>Classification</u> SILT with Sand (ML) <u>ASTM</u>

AASHTO Clayey Soils (A-7-6 (11))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

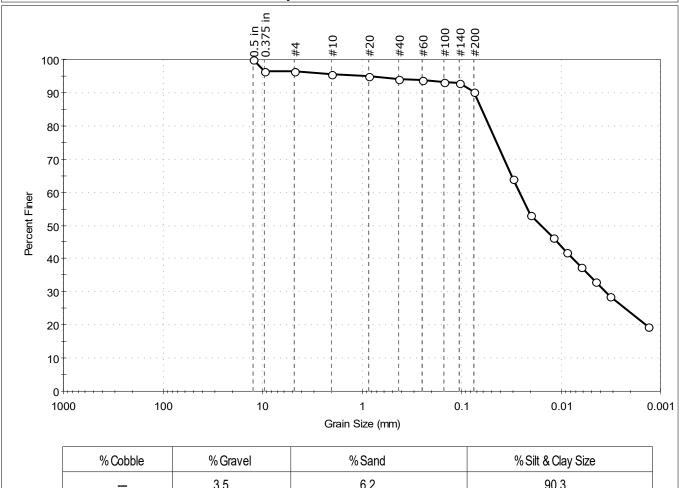
Sand/Gravel Hardness: HARD

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: GTX-316280 Boring ID: BB-C295-101 Sample Type: jar Tested By: ckg

Test Date: Sample ID: 4D 11/10/22 Checked By: ank


Depth: 6'-8' Test Id: 691778

Test Comment:

Visual Description: Moist, olive brown clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
_	3.5	6.2	90.3	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.50	100		
0.375 in	9.50	96		
#4	4.75	96		
#10	2.00	96		
#20	0.85	95		
#40	0.42	94		
#60	0.25	94		
#100	0.15	93		
#140	0.11	93		
#200	0.075	90		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0305	64		
	0.0201	53		
	0.0120	46		
	0.0087	42		
	0.0062	37		
	0.0045	33		
	0.0032	28		
	0.0013	20		

<u>Coefficients</u>				
D ₈₅ = 0.0626 mm	$D_{30} = 0.0036 \text{ mm}$			
D ₆₀ = 0.0261 mm	$D_{15} = N/A$			
D ₅₀ = 0.0160 mm	$D_{10} = N/A$			
Cu =N/A	$C_C = N/A$			

<u>Classification</u> Lean CLAY (CL) **ASTM**

AASHTO Clayey Soils (A-6 (12))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

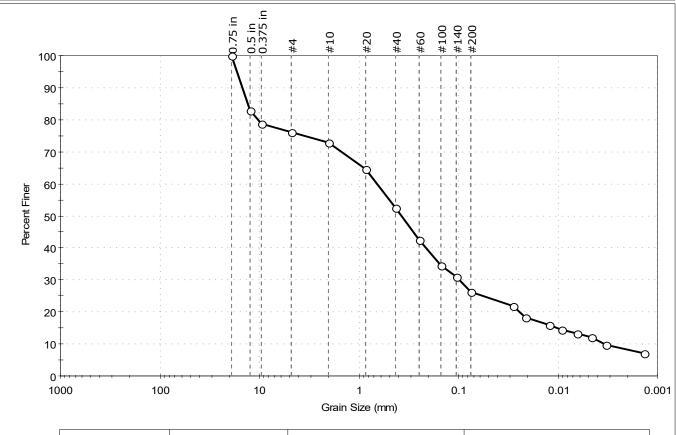
Sand/Gravel Hardness: ---

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-101Sample Type: jarTested By:ckg

Boring ID: BB-C295-101 Sample Type: jar Tested By: ckg Sample ID: 5D Test Date: 11/11/22 Checked By: ank


Depth: 8'-10' Test Id: 691779

Test Comment: ---

Visual Description: Moist, grayish brown silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	23.8	50.0	26.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	83		
0.375 in	9.50	79		
#4	4.75	76		
#10	2.00	73		
#20	0.85	65		
#40	0.42	53		
#60	0.25	42		
#100	0.15	35		
#140	0.11	31		
#200	0.075	26		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0281	22		
	0.0210	18		
	0.0124	16		
	0.0091	15		
	0.0065	13		
	0.0046	12		
	0.0033	10		
	0.0014	7		

	<u>Coefficients</u>				
D ₈₅ = 13.1903 mm		$D_{30} = 0.0991 \text{ mm}$			
	D ₆₀ = 0.6496 mm	$D_{15} = 0.0102 \text{ mm}$			
D ₅₀ = 0.3708 mm D ₁₀ = 0.003		$D_{10} = 0.0035 \text{ mm}$			
	C., =185 600	$C_{0} = 4.319$			

Classification
ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

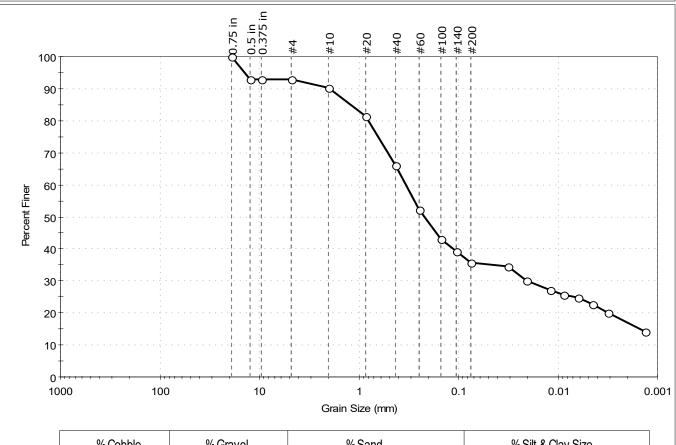
Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

5D

Client: Hardesty & Hanover
Project: Tuttle Rd, Cumberland, ME

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-101Sample Type: jarTested By:ckg


Boring ID: BB-C295-101 Sample Type: jar Tested By: ckg Sample ID: 10D Test Date: 11/10/22 Checked By: ank

Depth: 30'-32' Test Id: 691780

Test Comment: --Visual Description: Moist, dark gray clayey sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	7.2	57.0	35.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	93		
0.375 in	9.50	93		
#4	4.75	93		
#10	2.00	90		
#20	0.85	81		
#40	0.42	66		
#60	0.25	52		
#100	0.15	43		
#140	0.11	39		
#200	0.075	36		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0321	34		
	0.0206	30		
	0.0121	27		
	0.0087	26		
	0.0062	25		
	0.0045	23		
	0.0032	20		-
	0.0013	14		

<u>Coeffi</u>	<u>cients</u>
D ₈₅ = 1.2052 mm	$D_{30} = 0.0202 \text{ mm}$
D ₆₀ = 0.3373 mm	$D_{15} = 0.0015 \text{ mm}$
D ₅₀ = 0.2204 mm	$D_{10} = N/A$
$C_u = N/A$	$C_{c} = N/A$

ASTM N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

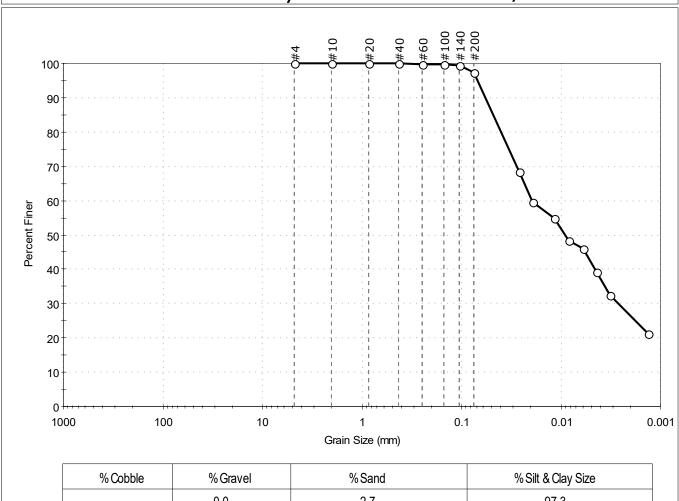
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME GTX-316280 Project No: Boring ID: BB-C295-102 Sample Type: jar Tested By: ckg

Sample ID: 3D Test Date: 11/10/22 Checked By: ank


Depth: 4'-6' Test Id: 691781

Test Comment:

Visual Description: Moist, olive brown clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	2.7	97.3

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	97		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0261	68		
	0.0193	59		
	0.0118	55		
	0.0084	48		
	0.0060	46		
	0.0044	39		
	0.0032	33		
	0.0013	21		

<u>Coefficients</u>		
D ₈₅ = 0.0478 mm	$D_{30} = 0.0026 \text{ mm}$	
D ₆₀ = 0.0196 mm	$D_{15} = N/A$	
D ₅₀ = 0.0092 mm	$D_{10} = N/A$	
$C_{u} = N/A$	$C_c = N/A$	

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u> AASHTO Clayey Soils (A-6 (12))

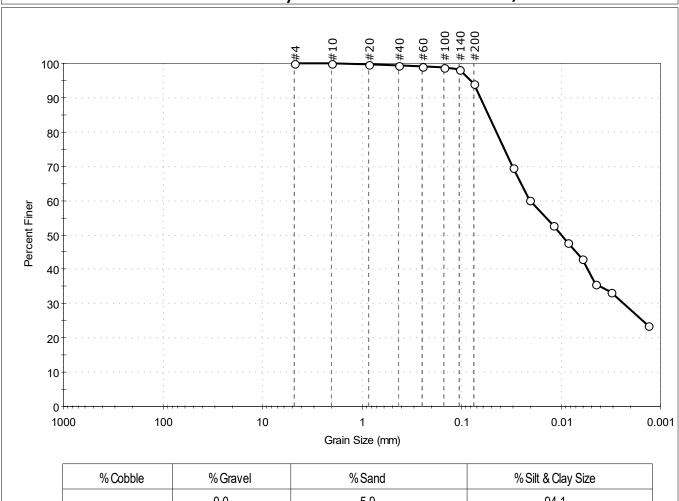
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME GTX-316280 Project No: ckg


Boring ID: BB-C295-102 Sample Type: jar Tested By: Sample ID: 4D Test Date: 11/10/22 Checked By: ank

Depth: 6'-8' Test Id: 691782

Test Comment: Visual Description: Moist, olive brown clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	5.9	94.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	99		
#100	0.15	99		
#140	0.11	98		
#200	0.075	94		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0306	70		
	0.0207	60		
	0.0120	53		
	0.0085	48		
	0.0062	43		
	0.0045	36		
	0.0032	33		
	0.0013	24		

<u>Coefficients</u>				
D ₈₅ = 0.0536 mm	$D_{30} = 0.0023 \text{ mm}$			
D ₆₀ = 0.0207 mm	$D_{15} = N/A$			
D ₅₀ = 0.0099 mm	$D_{10} = N/A$			
Cu =N/A	$C_c = N/A$			

Classification ASTM N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

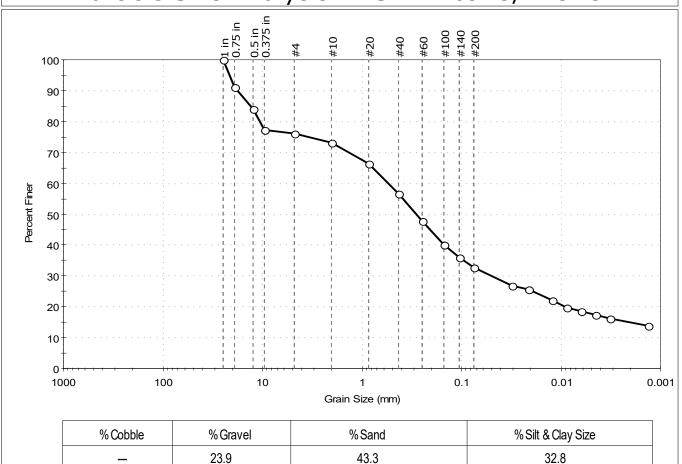
Sand/Gravel Hardness: ---

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65 Separation of Sample: #200 Sieve

Location: Cumberland, ME Project No: GTX-316280

Boring ID: BB-C295-102 Sample Type: jar Tested By: ckg Test Date: Sample ID: 9D 11/10/22 Checked By: ank


Depth: 25'-27' Test Id: 691783

Test Comment:

Moist, gray silty sand with gravel Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	23.9	43.3	32.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	91		
0.5 in	12.50	84		
0.375 in	9.50	77		
#4	4.75	76		
#10	2.00	73		
#20	0.85	66		
#40	0.42	57		
#60	0.25	48		
#100	0.15	40		
#140	0.11	36		
#200	0.075	33		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0311	27		
	0.0213	26		
	0.0122	22		
	0.0087	20		
	0.0063	19		
	0.0044	17		
	0.0032	16		
	0.0013	14		

<u>Coefficients</u>				
D ₈₅ = 13.1423 mm	$D_{30} = 0.0491 \text{ mm}$			
D ₆₀ = 0.5423 mm	$D_{15} = 0.0021 \text{ mm}$			
D ₅₀ = 0.2873 mm	$D_{10} = N/A$			
Cu =N/A	$C_c = N/A$			

Classification <u>ASTM</u> N/A

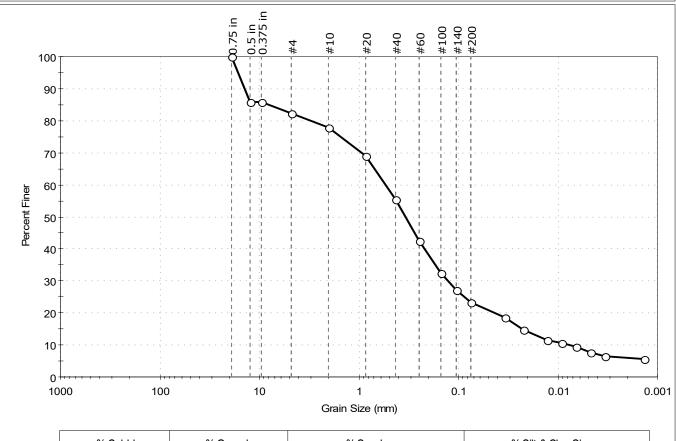
AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u>
Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: GTX-316280

Boring ID: BB-C295-103 Sample Type: jar Tested By: ckg
Sample ID: 7D Test Date: 11/10/22 Checked By: ank


Depth: 20'-22' Test Id: 691784

Test Comment: ---

Visual Description: Moist, gray silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	17.6	59.0	23.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	86		
0.375 in	9.50	86		
#4	4.75	82		
#10	2.00	78		
#20	0.85	69		
#40	0.42	56		
#60	0.25	43		
#100	0.15	32		
#140	0.11	27		
#200	0.075	23		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0342	19		
	0.0220	15		
	0.0127	12		
	0.0091	11		
	0.0066	10		
	0.0047	8		
	0.0033	7		
	0.0014	6		

<u>Coefficients</u>				
D ₈₅ = 7.9425 mm	$D_{30} = 0.1286 \text{ mm}$			
D ₆₀ = 0.5347 mm	$D_{15} = 0.0230 \text{ mm}$			
D ₅₀ = 0.3386 mm	$D_{10} = 0.0075 \text{ mm}$			
C _u =71.293	$C_c = 4.124$			

<u>Classification</u> ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness : HARD

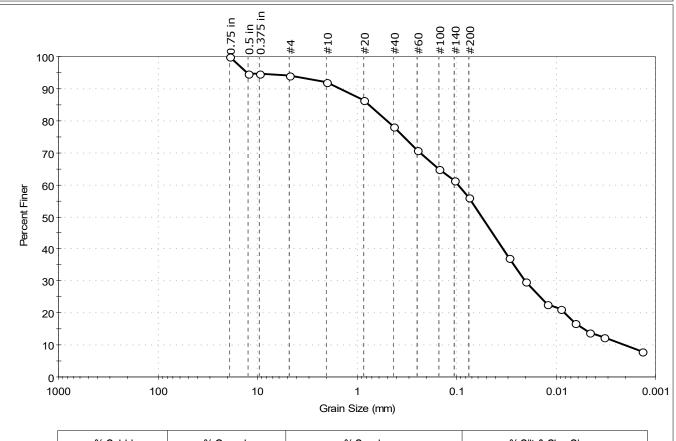
Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: GTX-316280

Roying ID: RR-C205-103 Sample Type: jar Tested By: ckg

Boring ID: BB-C295-103 Sample Type: jar Tested By: ckg Sample ID: 9D Test Date: 11/10/22 Checked By: ank


Depth: 30'-32' Test Id: 691785

Test Comment: ---

Visual Description: Moist, gray sandy silty clay

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
-	5.9	38.0	56.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	95		
0.375 in	9.50	95		
#4	4.75	94		
#10	2.00	92		
#20	0.85	86		
#40	0.42	78		
#60	0.25	71		
#100	0.15	65		
#140	0.11	61		
#200	0.075	56		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0296	37		
	0.0204	30		
	0.0122	23		
	0.0090	21		
	0.0064	17		
	0.0046	14		
	0.0033	12		
	0.0014	8		

	<u>Coefficients</u>				
	D ₈₅ = 0.7583 mm	$D_{30} = 0.0205 \text{ mm}$			
D ₆₀ = 0.0972 mm D ₁₅		$D_{15} = 0.0052 \text{ mm}$			
D ₅₀ = 0.0555 mm		$D_{10} = 0.0020 \text{ mm}$			
	C., =48 600	$C_c = 2.162$			

<u>Classification</u> <u>ASTM</u> Sandy Silty CLAY (CL-ML)

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

ballu/Graver Particle Shape . ANGULAR

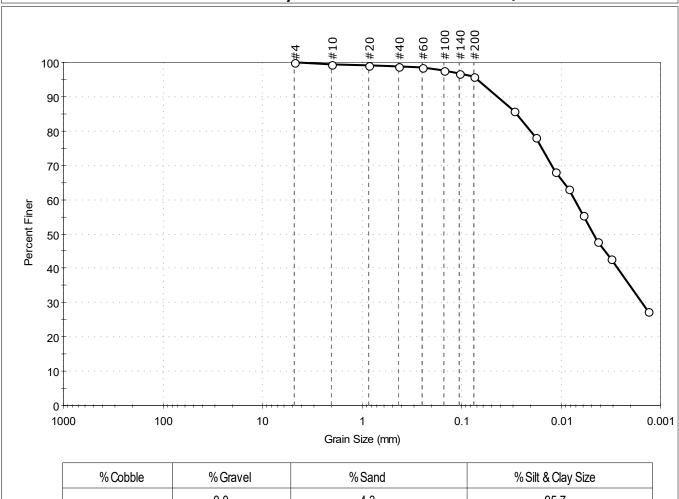
Sand/Gravel Hardness : HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME GTX-316280 Project No: Boring ID: BB-C295-104 Sample Type: jar Tested By: ckg

Sample ID: 2D Test Date: 11/10/22 Checked By: ank Test Id:


691786

Depth: 2'-4' Test Comment:

Moist, dark grayish brown clay Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	4.3	95.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	99		
#40	0.42	99		
#60	0.25	98		
#100	0.15	98		
#140	0.11	97		
#200	0.075	96		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0295	86		
	0.0178	78		
	0.0113	68		
	0.0083	63		
	0.0060	55		
	0.0043	48		
	0.0031	43		
	0.0013	27		

<u>cocincients</u>					
D ₈₅ = 0.0279 mm	$D_{30} = 0.0015 \text{ mm}$				
D ₆₀ = 0.0073 mm	$D_{15} = N/A$				
D ₅₀ = 0.0047 mm	$D_{10} = N/A$				
$C_u = N/A$	$C_c = N/A$				

Coefficients

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u>

AASHTO Clayey Soils (A-7-6 (21))

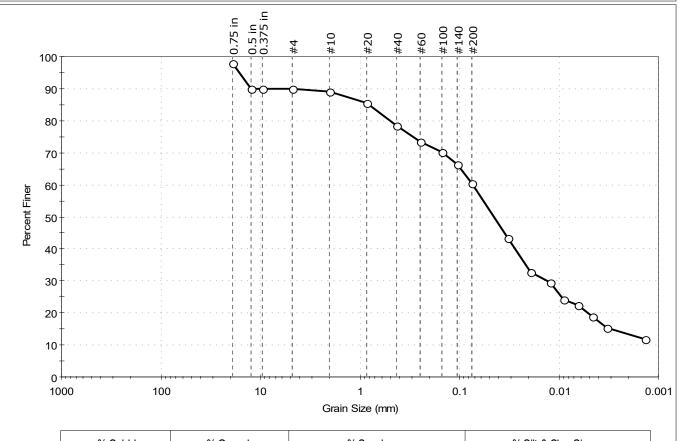
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-104Sample Type: jarTested By:ckg


Boring ID: BB-C295-104 Sample Type: jar Tested By: ckg Sample ID: 9D Test Date: 11/10/22 Checked By: ank

Depth: 25'-27' Test Id: 691787
Test Comment: ---

Visual Description: Moist, light brownish gray silt with sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble % Gravel		% Sand	% Silt & Clay Size
	9.9	29.7	60.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	98		
0.5 in	12.50	90		
0.375 in	9.50	90		
#4	4.75	90		
#10	2.00	89		
#20	0.85	86		
#40	0.42	79		
#60	0.25	73		
#100	0.15	70		
#140	0.11	67		
#200	0.075	60		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0324	43		
	0.0191	33		
	0.0121	29		
	0.0090	24		
	0.0064	22		
	0.0046	19		
	0.0033	15		
	0.0013	12		

Coe	<u>Coefficients</u>								
D ₈₅ = 0.8022 mm	$D_{30} = 0.0132 \text{ mm}$								
D ₆₀ = 0.0736 mm	$D_{15} = 0.0030 \text{ mm}$								
D ₅₀ = 0.0450 mm	$D_{10} = N/A$								
$C_u = N/A$	$C_c = N/A$								

ASTM N/A

AASHTO Silty Soils (A-4 (0))

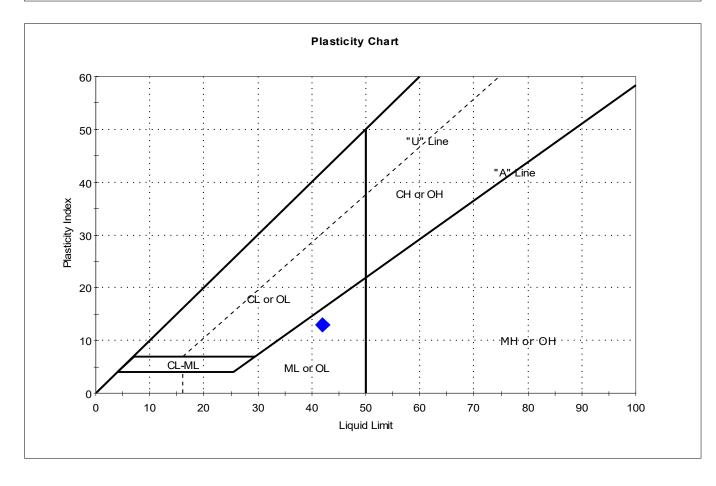
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

 ${\sf Sand/Gravel\ Hardness: HARD}$

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-101Sample Type:jarTested By:camSample ID:2DTest Date:11/10/22Checked By:ank


Depth: 2'-4' Test Id: 691768

Test Comment: ---

Visual Description: Moist, very dark grayish brown silt with sand

Sample Comment: ---

Atterberg Limits - ASTM D4318

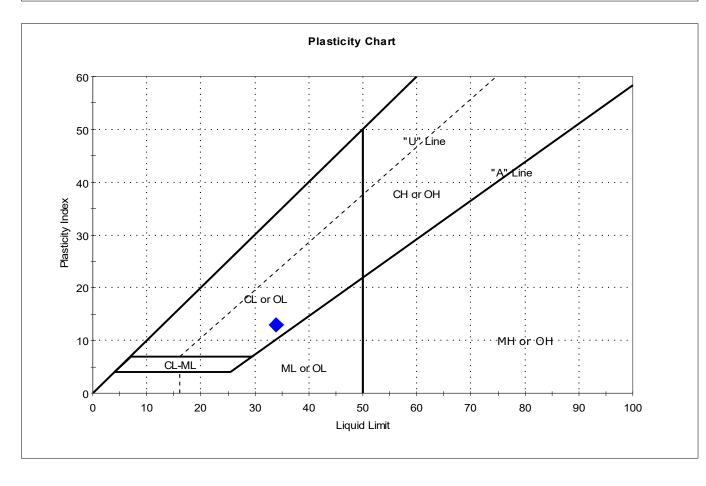
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-2	BB-101	2'-4'	32	42	29	13	0.3	SILT with Sand (ML)

Sample Prepared using the WET method

13% Retained on #40 Sieve

Dry Strength: HIGH Dilatancy: SLOW Toughness: LOW

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-101Sample Type:jarTested By:camSample ID:4DTest Date:11/10/22Checked By:ank


Depth: 6'-8' Test Id: 691769

Test Comment: ---

Visual Description: Moist, olive brown clay

Sample Comment: ---

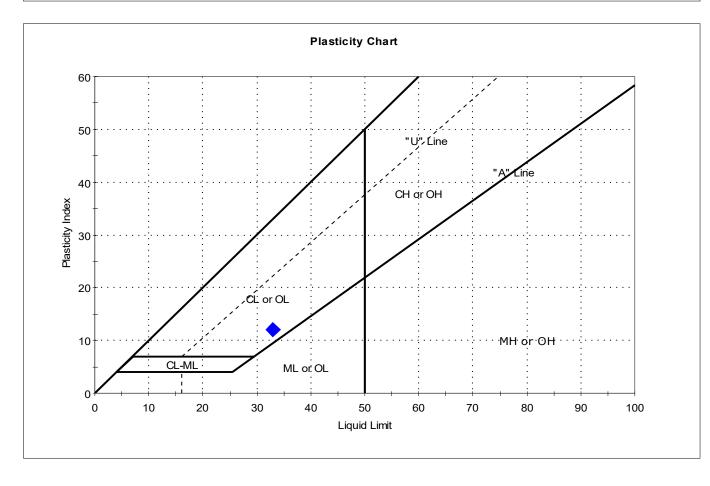
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	BB-101	6'-8'	25	34	21	13	0.3	Lean CLAY (CL)

Sample Prepared using the WET method

6% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-102Sample Type:jarTested By:camSample ID:3DTest Date:11/10/22Checked By:ank


Depth: 4'-6' Test Id: 691770

Test Comment: ---

Visual Description: Moist, olive brown clay

Sample Comment: ---

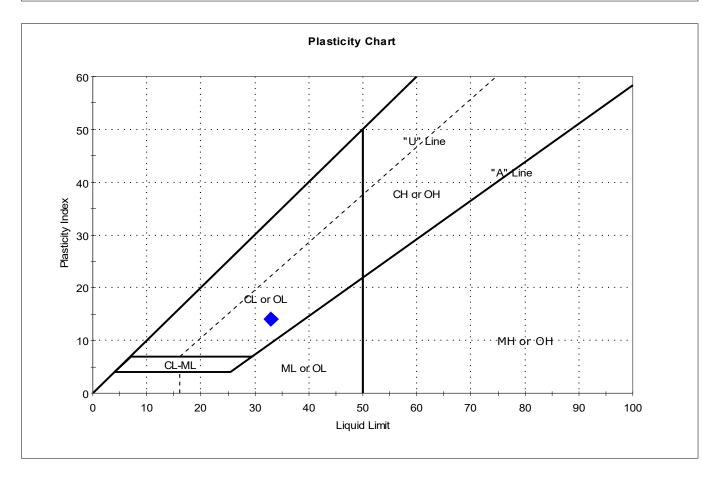
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3	BB-102	4'-6'	25	33	21	12	0.3	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-103Sample Type:jarTested By:camSample ID:3DTest Date:11/10/22Checked By:ank


Depth: 5'-7' Test Id: 691771

Test Comment: ---

Visual Description: Moist, dark gray clay

Sample Comment: ---

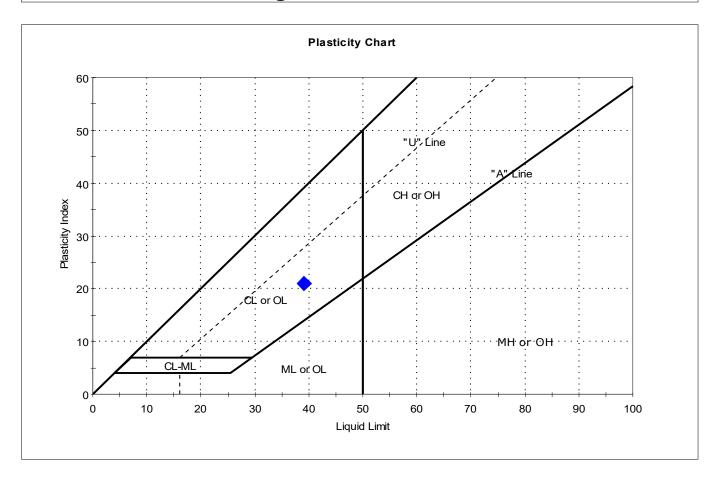
Atterberg Limits - ASTM D4318

Syn	nbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
	•	S-3	BB-103	5'-7'	26	33	19	14	0.5	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-103Sample Type:jarTested By:camSample ID:4DTest Date:11/10/22Checked By:ank


Depth: 7'-9' Test Id: 691772

Test Comment: ---

Visual Description: Moist, gray clay with sand

Sample Comment: ---

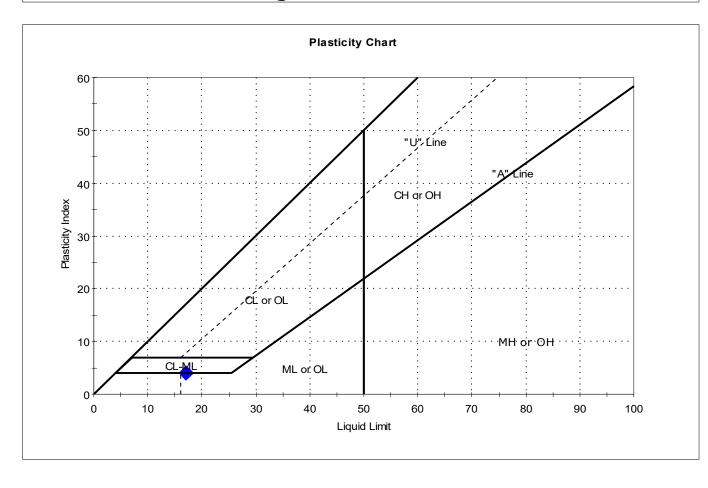
Atterberg Limits - ASTM D4318

Symb	ol Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	BB-103	7'-9'	36	39	18	21	0.9	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-103Sample Type:jarTested By:camSample ID:9DTest Date:11/10/22Checked By:ank


Depth: 30'-32' Test Id: 691773

Test Comment: ---

Visual Description: Moist, gray sandy silty clay

Sample Comment: ---

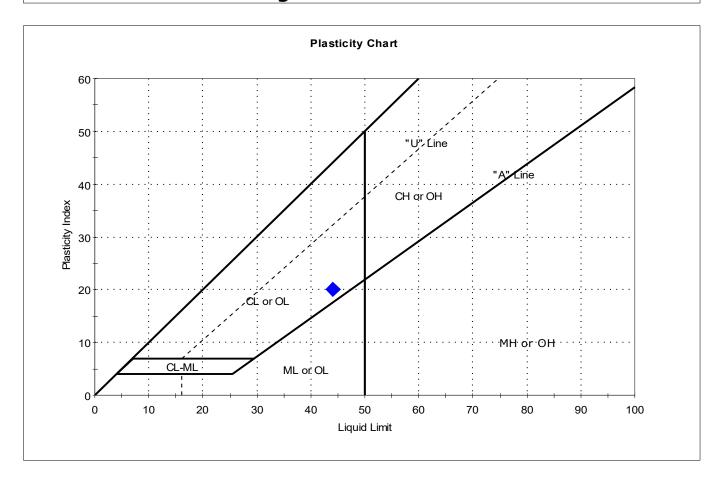
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-9	BB-103	30'-32'	16	17	13	4	0.8	Sandy Silty CLAY (CL-ML)

Sample Prepared using the WET method

22% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-104Sample Type:jarTested By:camSample ID:2DTest Date:11/10/22Checked By:ank


Depth: 2'-4' Test Id: 691774

Test Comment: ---

Visual Description: Moist, dark grayish brown clay

Sample Comment: ---

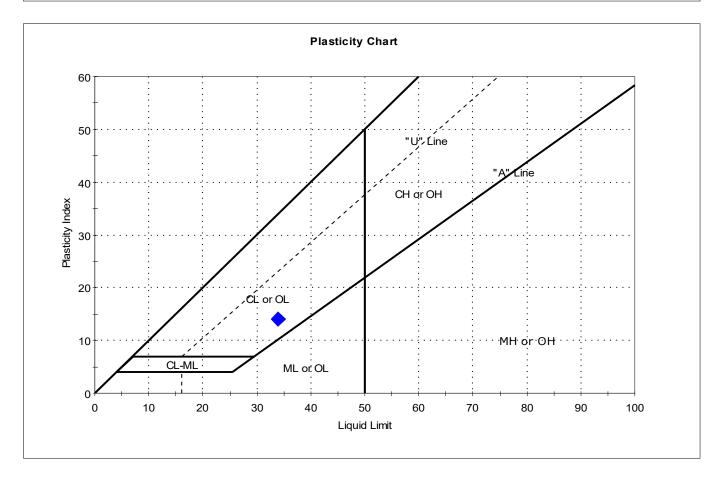
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-2	BB-104	2'-4'	29	44	24	20	0.3	Lean CLAY (CL)

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-104Sample Type:jarTested By:camSample ID:4DTest Date:11/10/22Checked By:ank


Depth: 6'-8' Test Id: 691775

Test Comment: ---

Visual Description: Moist, dark gray clay

Sample Comment: ---

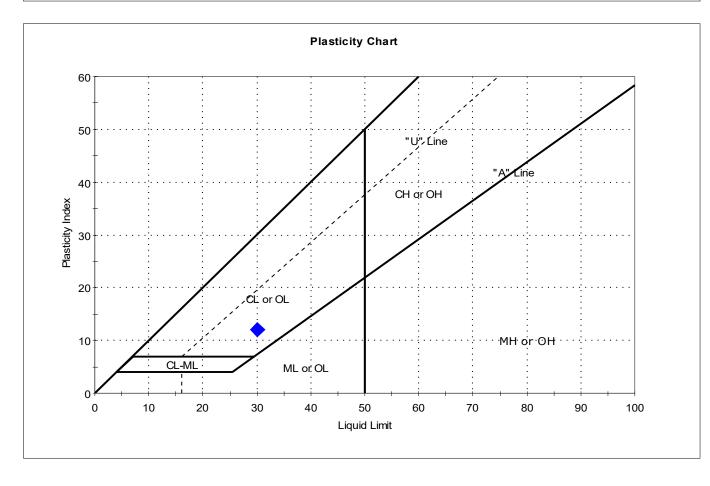
Atterberg Limits - ASTM D4318

Symbo	I Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	BB-104	6'-8'	24	34	20	14	0.3	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-316280Boring ID:BB-C295-104Sample Type:jarTested By:camSample ID:5DTest Date:11/10/22Checked By:ank


Depth: 8'-10' Test Id: 691776

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-5	BB-104	8'-10'	29	30	18	12	0.9	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No. TS-A2210666

Report Date 09 November 2022

Date Sampled 31 October 2022

Date Received 07 November 2022

Where Sampled Acton, MA USA

Sampled By Client

This is to attest that we have examined: Soil: Project: Tuttle Road Cumberland, ME; Site Location: - — -; Job Number: GTX-316280

When examined to the applicable requirements of:

ASTM D 512-12* "Standard Test Methods for Chloride Ion in Water" Method B

ASTM D 516-16 "Standard Test Method for Sulfate Ion in Water"

Results:

ASTM D 512 - Chloride Method B

Com	anla	Res	sults	Detection Limit		
Sam	ibie	ppm (mg/kg)	% ¹	Detection Limit		
BB-C29	95-102	22	0.0022	10		
5D, 6D, 7D	8 – 17'	22.	0.0022	10.		

NOTE: 1Percent by weight after drying and prepared as per the Standard. *Withdrawn 2021 without Replacement

ASTM D 516 – Sulfates (Soluble)

Com	anla	Res	Detection Limit	
Sam	ibie	ppm (mg/kg)	% ¹	Detection Limit
BB-C29	95-102	10	0.0010	10
5D, 6D, 7D	8 – 17'	10.	0.0010	10.

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. – Engineer in Charge

© 2022 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. Tei stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

Cumberland, ME

Location:

Boring ID: --- Sample Type: --- Tested By: tlm
Sample ID: --- Test Date: 11/18/22 Checked By: jsc

Project No:

GTX-316280

Depth: --- Test Id: 692490

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BB-C295-101	R1	39.18-39.56 ft	177	5824	3	Yes	
BB-C295-103	R1	49-54	157	6647	2	No	2,*
BB-C295-104	R1	28.24-28.62 ft	162	16297	1	No	2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

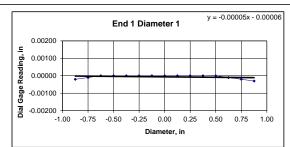
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

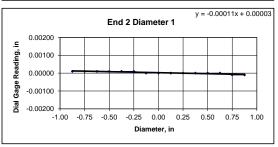
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

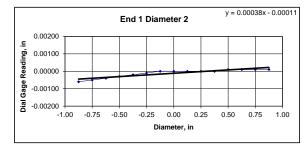
Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

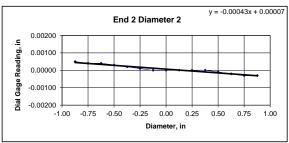
- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.




Client:	Hardesty & Hanover	Test Date: 11/17/2022
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: jab
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	316280	
Boring ID:	BB-C295-101	
Sample ID:	R1	
Depth:	39.18'-39.56'	
Visual Description:	See photographs	


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.59	4.59	4.59		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	660.54				
Bulk Density, lb/ft3	177	Minimum Diameter Tolerence Me	t?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio Toleran	ce Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030
Diameter 2, in (rotated 90°)	-0.00060	-0.00050	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00010
	Difference between max and min readings, in:														
											0° =	0.00030	90° =	0.00070	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010
Diameter 2, in (rotated 90°)	0.00050	0.00040	0.00040	0.00030	0.00020	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00030
											Difference between	een max and m	in readings, in:		
											0° =	0.0002	90° =	0.0008	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00040

riaximam ame	rence mast be < 0.0020 m.	Directice - 1 0.00040
	Flatness Tolerance Met?	YES
DIAMETER 1		
DIAMETER		
End 1:		
	Slope of Best Fit Line	0.00005
	Angle of Best Fit Line:	0.00295
End 2:		
	Slope of Best Fit Line	0.00011
	Angle of Best Fit Line:	0.00655
Maximum Angu	ılar Difference:	0.00360
_		
	Parallelism Tolerance Met?	VEC
	Spherically Seated	165
DIAMETER 2		
DIANETER 2		
End 1:		
	Slope of Best Fit Line Angle of Best Fit Line:	0.00038 0.02194
	Aligie of Best Fit Lille.	0.02194
End 2:		
	Slope of Best Fit Line	0.00043
1	Angle of Best Fit Line:	0.02488
Maximum Angu	ılar Difference:	0.00295
	Parallelism Tolerance Met?	YES
1	Spherically Seated	
1		

re P1) (Calculated from End Flatness	and Parallelism me	easurements al	oove)			
Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
0.00030	1.985	0.00015	0.009	YES		
0.00070	1.985	0.00035	0.020	YES	Perpendicularity Tolerance Met?	YES
0.00020	1.985	0.00010	0.006	YES		
0.00080	1.985	0.00040	0.023	YES		
	Difference, Maximum and Minimum (in.) 0.00030 0.00070	Difference, Maximum and Minimum (in.) Diameter (in.) 0.00030 1.985 0.00070 1.985	Difference, Maximum and Minimum (in.) Diameter (in.) Slope 0.00030 1.985 0.00015 0.00070 1.985 0.00035 0.00020 1.985 0.00010	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle® 0.00030 1.985 0.00015 0.009 0.00070 1.985 0.00035 0.020 0.00020 1.985 0.00010 0.006	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle® Perpendicularity Tolerance Met?	Difference, Maximum and Minimum (in.) Diameter (in.) Slope 0.0003 Angle 0.00015 Perpendicularity Tolerance Met? Maximum angle of departure must be ≤ 0.25° 0.00030 1.985 0.00015 0.009 YES Perpendicularity Tolerance Met? 0.00020 1.985 0.0001 0.006 YES

Client: Hardesty & Hanover Project Name: Tuttle Rd, Cumberland, ME Project Location: Cumberland, ME GTX #: 316280 Test Date: 11/18/2022 Tested By: bp Checked By: smd Boring ID: BB-C295-101 Sample ID: R1

BB-C295-101 R1 39.18'-39.56'

18 19 20 21 22 23 24 25 26 27 28 29 30 (c.m.)

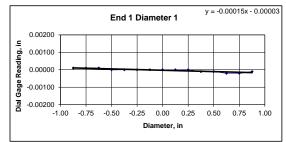
7 8 9 10 11 12 (in.)

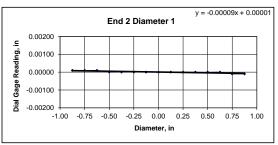
39.18'-39.56'

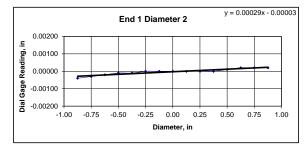
Depth, ft:

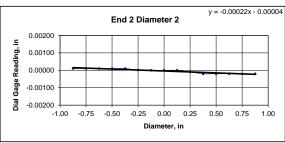
After cutting and grinding

After break




Client:	Hardesty & Hanover	Test Date:	11/17/2022
Project Name:	Tuttle Rd, Cumberland, ME	Tested By:	jab
Project Location:	Cumberland, ME	Checked By:	smd
GTX #:	316280		
Boring ID:	BB-C295-103		
Sample ID:	R1		
Depth:	49'-54'		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.47	4.47	4.47		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	574.32				
Bulk Density, lb/ft ³	157	Minimum Diameter Tolerence Met?		YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tolerance	Met?	YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020	-0.00020	-0.00010
Diameter 2, in (rotated 90°)	-0.00040	-0.00030	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00020	0.00020	0.00020
											Difference between	en max and mi	in readings, in:		
											0° =	0.00030	90° =	0.00060	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010
Diameter 2, in (rotated 90°)	0.00010	0.00010	0.00010	0.00010	0.00010	0.00001	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020
											Difference between	en max and mi	in readings, in:		
											0° =	0.0002	90° =	0.0003	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00030
												Flatness To	olerance Met?	YES	
1															

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00015 0.00884
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00009 0.00507
Maximum Angu	lar Difference:	0.00377
	Parallelism Tolerance Met? Spherically Seated	YES
DIAMETER 2		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00029 0.01686
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00022 0.01264
Maximum Angu	lar Difference:	0.00422
	Parallelism Tolerance Met? Spherically Seated	YES

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00060	1.990	0.00030	0.017	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES	
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES	

Client: Hardesty & Hanover
Project Name: Tuttle Rd, Cumberland, ME
Project Location: Cumberland, ME
GTX #: 316280

Test Date: 11/18/2022

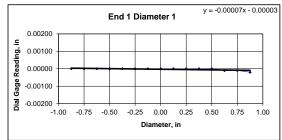
Tested By: bp
Checked By: smd

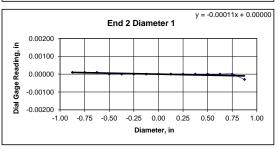
Boring ID: BB-C295-103

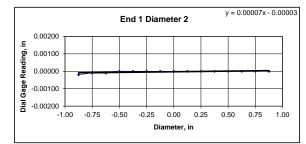
Sample ID: R1 Depth, ft: 49'-54'

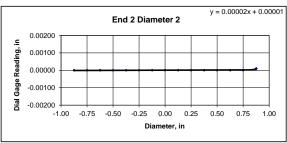
After cutting and grinding

After break




Client:	Hardesty & Hanover	Test Date: 11/17/2022	
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: jab	
Project Location:	Cumberland, ME	Checked By: smd	
GTX #:	316280		
Boring ID:	BB-C295-104		
Sample ID:	R1		
Depth:	28.24'-28.62'		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

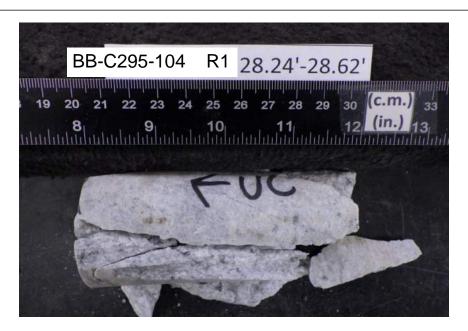

				DEVIATION FROM STRAIGHTNESS (Procedure S1)
1	2	Average		
4.37	4.37	4.37		Maximum gap between side of core and reference surface plate:
1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? NO
578.4				
162	Minimum Diameter Tolerence Met?		YES	Maximum difference must be < 0.020 in.
2.2	Length to Diameter Ratio Tolerance	Met?	YES	Straightness Tolerance Met? NO
	1.99 578.4	1.99 1.99 578.4 162 Minimum Diameter Tolerence Met?	4.37 4.37 4.37 1.99 1.99 1.99 578.4 162 Minimum Diameter Tolerence Met?	4.37 4.37 4.37 1.99 1.99 1.99 1.99 578.4 162 Minimum Diameter Tolerence Met? YES

END FLATNESS AND PARALL	ELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020
Diameter 2, in (rotated 90°)	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
											Difference between	een max and m	in readings, in:		
											0° =	0.00020	90° =	0.00020	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00030
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.0004	90° =	0.0001	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00020



riaximam amerence mas			
Flati	ness Tolerance Met?	YES	
DIAMETER 4			
DIAMETER 1			
End 1:			
	Best Fit Line	0.00007	
	Best Fit Line:	0.00409	
End 2:			
	Best Fit Line	0.00011	
Angle or	Best Fit Line:	0.00638	
Maximum Angular Differ	ence:	0.00229	
		YES	
	lism Tolerance Met?	TES	
	lly Seated	TES	
		123	
		TES	
		123	
Spherica		123	
Spherica DIAMETER 2 End 1:	lly Seated		
Spherica DIAMETER 2 End 1: Slope of	lly Seated Best Fit Line	0.00007	
Spherica DIAMETER 2 End 1: Slope of	lly Seated		
Spherica DIAMETER 2 End 1: Slope of Angle of End 2:	lly Seated Best Fit Line Best Fit Line:	0.00007 0.00409	
Spherica DIAMETER 2 End 1: Slope of Angle of End 2: Slope of	Best Fit Line Best Fit Line: Best Fit Line:	0.00007 0.00409 0.00002	
Spherica DIAMETER 2 End 1: Slope of Angle of End 2: Slope of	lly Seated Best Fit Line Best Fit Line:	0.00007 0.00409	
DIAMETER 2 End 1: Slope of Angle of End 2: Slope of Angle of Angle of	Best Fit Line Best Fit Line: Best Fit Line: Best Fit Line Best Fit Line:	0.00007 0.00409 0.00002 0.00115	
Spherica DIAMETER 2 End 1: Slope of Angle of End 2: Slope of	Best Fit Line Best Fit Line: Best Fit Line: Best Fit Line Best Fit Line:	0.00007 0.00409 0.00002	
DIAMETER 2 End 1: Slope of Angle of End 2: Slope of Angle of Angle of	Best Fit Line Best Fit Line: Best Fit Line: Best Fit Line Best Fit Line: ence:	0.00007 0.00409 0.00002 0.00115 0.00295	
Spherica DIAMETER 2 End 1: Slope of Angle of End 2: Slope of Angle of Angle of Maximum Angular Differ	Best Fit Line Best Fit Line: Best Fit Line: Best Fit Line Best Fit Line:	0.00007 0.00409 0.00002 0.00115 0.00295	

PERPENDICULARITY (Procedu	ire P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES	
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00040	1.990	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES	


Client: Hardesty & Hanover Project Name: Tuttle Rd, Cumberland, ME Project Location: Cumberland, ME GTX #: 316280 Test Date: 11/18/2022 Tested By: bp Checked By: smd Boring ID: BB-C295-104 Sample ID: R1

28.24'-28.62'

Depth, ft:

After cutting and grinding

After break

Final Subsurface Exploration Program Lab Test Results, 2024

Location: Cumberland, ME Project No: GTX-318928

Boring ID: --- Sample Type: --- Tested By: ckg
Sample ID: --- Test Date: 04/22/24 Checked By: ank

Depth: --- Test Id: 765698

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BB-C295-201	4D	6-8'	Moist, dark brown sand with silt and gravel	7.7
BB-C295-203	6D	11-13'	Moist, olive brown silty sand	12.3
BB-C295-203	8D	15-17'	Moist, olive brown silty sand	13.6
BB-C295-203	15D	50-52'	Moist, gray silty sand with gravel	8.9
BB-C295-203	U1	37-39'	Moist, dark olive gray clay	25.6
BB-C295-205	6D	15-17'	Moist, olive yellow sand with silt and gravel	12.3
BB-C295-205	9D	30-31.5'	Moist, grayish brown clay	38.4
BB-C295-205	10D	35-37'	Moist, olive gray sandy silt	13.0

Notes: Temperature of Drying: 110° Celsius

Location: Cumberland, ME Project No: GTX-318928

Boring ID: --- Sample Type: --- Tested By: ajl
Sample ID: --- Test Date: 05/06/24 Checked By: ank

Depth: --- Test Id: 768008

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BB-C295-202	5D	10.5-12.5' Moist, gray silty clay		26.9
BB-C295-202	7D	20-22'	20-22' Moist, gray silty sand	
BB-C295-204	7D	15-17'	Moist, grayish brown silty sand with gravel	9.5
BB-C295-204	11D	35-37'	Moist, olive gray silt with sand	16.6
BB-C295-206	5D	10-11.75'	Moist, grayish brown silt with sand	35.9
BB-C295-206	7D	20-22'	Moist, brownish gray silty sand with gravel	8.9

Notes: Temperature of Drying: 110° Celsius

Location: Cumberland, ME Project No: GTX-318928

Boring ID: --- Sample Type: --- Tested By: ckg
Sample ID: --- Test Date: 04/20/24 Checked By: ank

Depth: --- Test Id: 765703

Specific Gravity of Soils by ASTM D854

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity	Comment
BB-C295-201	7D	15-17'	Moist, light brownish gray clay	2.72	
BB-C295-201	9D	25-27'	Moist, gray clay	2.73	
BB-C295-203	11D	30-32'	Moist, gray clay with sand	2.73	
BB-C295-205	7D	20-22'	Moist, light gray clay	2.78	
BB-C295-205	9D	30-31.5'	Moist, grayish brown clay	2.80	

Notes: Specific Gravity performed by using method B (oven dried specimens) of ASTM D854 Moisture Content determined by ASTM D2216.

Location: Cumberland, ME Project No: GTX-318928

Boring ID: --- Sample Type: --- Tested By: ajl Sample ID: --- Test Date: 05/04/24 Checked By: ank

Depth: --- Test Id: 768011

Specific Gravity of Soils by ASTM D854

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity	Comment
BB-C295-202	2D	2-4'	Moist, grayish brown silt with clay	2.75	
BB-C295-202	3D	6.5-8.5'	Moist, light gray silty clay	2.74	
BB-C295-202	4D	8.5-10.5'	Moist, brownish gray clay	2.85	
BB-C295-204	3D	4-6'	Moist, dark yellowish brown clay	2.75	
BB-C295-206	3D	4-6'	Moist, olive gray clay	2.83	
BB-C295-207	5D	8-10'	Moist, gray clay	2.77	
BB-C295-207	6D	15-17'	Moist, gray clay	2.88	

Notes: Specific Gravity performed by using method B (oven dried specimens) of ASTM D854 Moisture Content determined by ASTM D2216.

Location: Cumberland, ME Project No: GTX-318928

Boring ID: BB-C295-204 Sample Type: Jar Tested By: ajl Sample ID: 4D, 5D, 6D Test Date: 05/03/24 Checked By: ank

Depth: 6-12' Test Id: 767986
Test Comment: ---

Visual Description: Moist, grayish brown clay

Sample Comment: ---

pH of Soil by ASTM D4972

Boring ID	Sample ID	Depth	Visual Description	pH of Soil in Distilled Water	pH of Soil in Calcium Chloride
BB-C295-204	4D, 5D, 6D	6-12'	Moist, grayish brown clay	7.7	6.4

Notes: Sample Preparation: screened through #10 sieve

Method A, pH meter used

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No. TS-A2411873

Report Date 08 May 2024

Date Sampled 02 May 2024

Date Received 06 May 2024

Where Sampled Acton, MA USA

Sampled By Client

This is to attest that we have examined: Soil: Project: Tuttle Road, Cumberland, ME; Site Location: Cumberland, ME; Job Number: GTX-318928

When examined to the applicable requirements of:

ASTM D 512-12*

"Standard Test Methods for Chloride Ion in Water" Method B

ASTM D 516-16

"Standard Test Method for Sulfate Ion in Water"

Results:

ASTM D 512 - Chloride Method B

Sample		Results		Minimum	
		ppm (mg/kg)	% ¹	Detection Limit	
BB-C295-204		121	0.0121	10	
4D, 5D, 6D	6 – 12'	131.	0.0131	10.	

NOTE: 1Percent by weight after drying and prepared as per the Standard. *Withdrawn 2021 without Replacement

ASTM D 516 – Sulfates (Soluble)

Sample		Results		Minimum
		ppm (mg/kg)	% ¹	Detection Limit
BB-C295-204		10	0.0010	10
4D, 5D, 6D	6 – 12'	10.	0.0010	10.

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. – Engineer in Charge

© 2024 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

Client: Hardesty & Hanover

Project: Tuttle Rd, Cumberland, ME

Location: Cumberland, ME

GTX#: 318928

Test Date: 05/07/24

Due Date: 05/15/24

Tested By: nmk

Checked By:

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

ank

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
BB-C295- 204	4D, 5D, 6D	6-12	Moist, grayish brown clay	1,176	8.50E-04

Notes: Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil Box

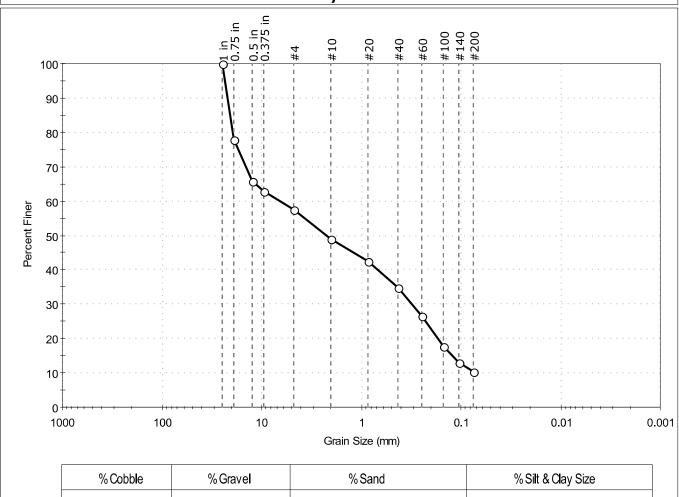
Water added to sample to create a thick slurry prior to testing (saturated condition).

Electrical Conductivity is calculated as inverse of Electrical Resistivity (per ASTM G57)

Test conducted in standard laboratory atmosphere: 68-73 F

Location: Cumberland, ME Project No: GTX-318928

Boring ID: BB-C295-201 Sample Type: Jar Tested By: ckg Test Date: Sample ID: 4D 04/27/24 Checked By: ank


Depth: Test Id: 765680

Test Comment:

Moist, dark brown sand with silt and gravel Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
_	42.5	47.3	10.2	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	78		
0.5 in	12.50	66		
0.375 in	9.50	63		
#4	4.75	57		
#10	2.00	49		
#20	0.85	42		
#40	0.42	35		
#60	0.25	26		
#100	0.15	18		
#140	0.11	13		
#200	0.075	10		

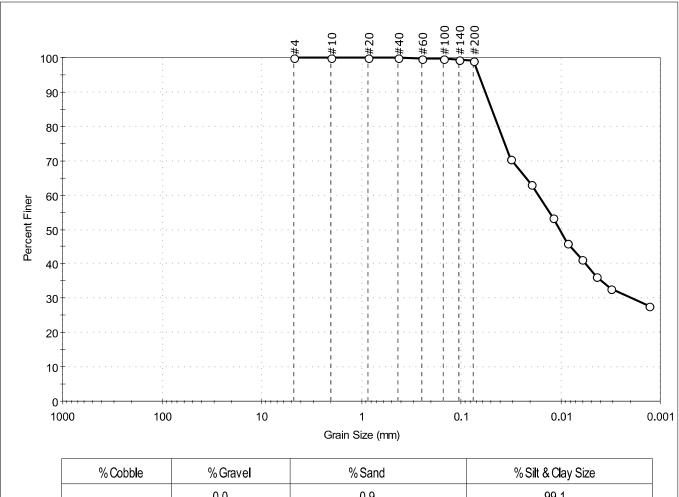
COCITIO	CICITES
D ₈₅ = 20.7458 mm	$D_{30} = 0.3133 \text{ mm}$
$D_{60} = 6.5657 \text{ mm}$	$D_{15} = 0.1222 \text{ mm}$
D ₅₀ = 2.2211 mm	$D_{10} = N/A$
$C_u = N/A$	$C_C = N/A$

Coefficients

Classification **ASTM** N/A <u>AASHTO</u> Stone Fragments, Gravel and Sand (A-1-b(0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR Sand/Gravel Hardness: HARD

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-201 Sample Type: Jar Tested By: ckg Sample ID: 7D Test Date: 04/27/24 Checked By: ank


Depth: 15-17' Test Id: 765686

Test Comment:

Visual Description: Moist, light brownish gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

ne	Sieve Size, mm Percen	t Finer Spec. Percent C	Complies	Coefficients	=
	_	0.0	0.9	99.1	
	% Cobble	% Gravel	%Sand	% Silt & Clay Size	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	99		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0319	70		
	0.0197	63		
	0.0119	53		
	0.0086	46		
	0.0061	41		
	0.0044	36		
	0.0031	33		
	0.0013	28		

COEII	<u>icients</u>
D ₈₅ = 0.0493 mm	$D_{30} = 0.0019 \text{ mm}$
D ₆₀ = 0.0168 mm	$D_{15} = N/A$
D ₅₀ = 0.0103 mm	$D_{10} = N/A$
C _u =N/A	$C_C = N/A$

Classification Lean CLAY (CL) **ASTM** AASHTO Clayey Soils (A-7-6 (26))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ---

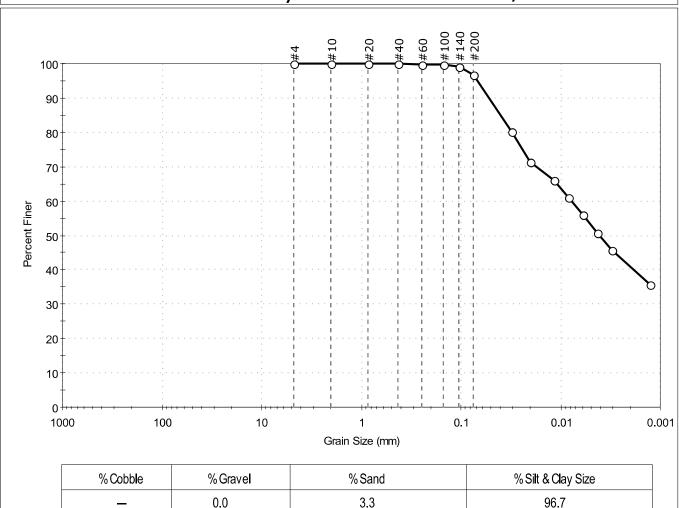
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No:

Boring ID: BB-C295-201 Sample Type: Jar Tested By: ckg Sample ID: 9D Test Date: 04/27/24 Checked By: ank Test Id:


765687

Depth: 25-27' Test Comment:

Visual Description: Moist, gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	97		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0309	80		
	0.0201	71		
	0.0117	66		
	0.0083	61		
	0.0060	56		
	0.0043	51		
	0.0031	46		
	0.0013	36		

<u>Coefficients</u>				
D ₈₅ = 0.0399 mm	$D_{30} = N/A$			
D ₆₀ = 0.0078 mm	$D_{15} = N/A$			
D ₅₀ = 0.0040 mm	$D_{10} = N/A$			
C _u =N/A	$C_C = N/A$			

GTX-318928

Classification Lean CLAY (CL) <u>ASTM</u>

AASHTO Clayey Soils (A-6 (16))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

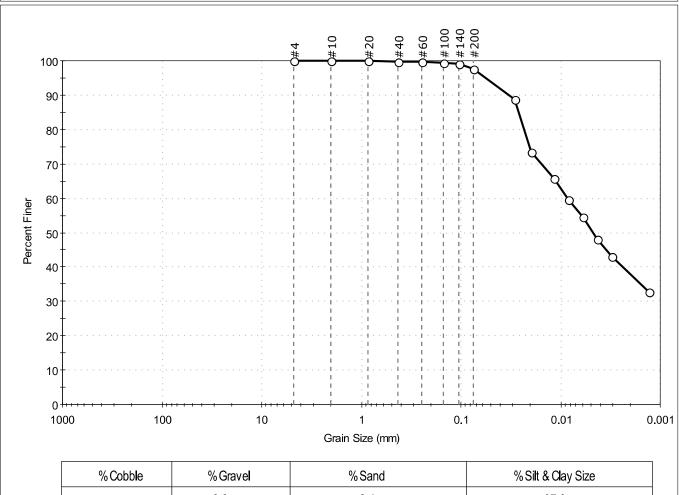
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-202 Sample Type: Jar Tested By: ajl

Sample ID: 4D Test Date: 05/07/24 Checked By: ank


767977

Depth: 8.5-10.5 Test Id: Test Comment:

Visual Description: Moist, brownish gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	%Silt & Clay Size
_	0.0	2.4	97.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	99		
#140	0.11	99		
#200	0.075	98		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0289	89		
	0.0199	74		
	0.0117	66		
	0.0084	60		
	0.0060	54		
	0.0043	48		
	0.0031	43		
	0.0013	33		

<u>Coefficients</u>				
$D_{85} = 0.0264 \text{ mm}$	$D_{30} = N/A$			
$D_{60} = 0.0086 \text{ mm}$	$D_{15} = N/A$			
$D_{50} = 0.0047 \text{ mm}$	$D_{10} = N/A$			
$C_{II} = N/A$	$C_c = N/A$			

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u>

AASHTO Clayey Soils (A-6 (14))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

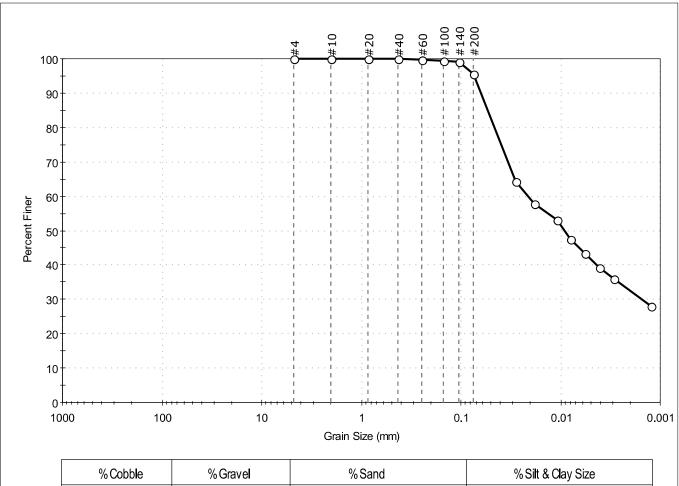
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME

Boring ID: BB-C295-202 Sample Type: Jar Tested By: ajl Sample ID: 5D Test Date: 05/07/24 Checked By: ank


Depth: Test Id: 10.5-12.5' 767978

Test Comment:

Visual Description: Moist, gray silty clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	%Sand	% Silt & Clay Size
_	0.0	4.4	95.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	96		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0285	64		
	0.0183	58		
	0.0110	53		
	0.0080	47		
	0.0057	43		
	0.0041	39		
	0.0029	36		
	0.0012	28		

COCITIC	aciics .
D ₈₅ = 0.0540 mm	$D_{30} = 0.0015 \text{ mm}$
$D_{60} = 0.0210 \text{ mm}$	$D_{15} = N/A$
$D_{50} = 0.0092 \text{ mm}$	$D_{10} = N/A$
$C_u = N/A$	$C_C = N/A$

Coefficients

GTX-318928

Project No:

Classification ASTM N/A AASHTO Silty Soils (A-4 (0))

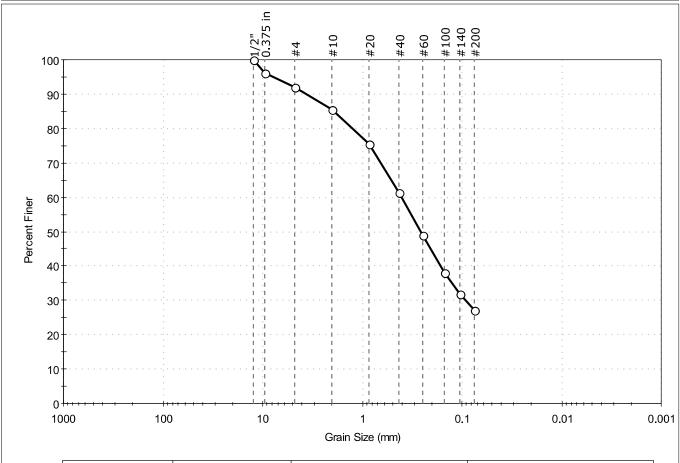
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-202Sample Type: JarTested By: ajl


Sample ID: 7D Test Date: 05/07/24 Checked By: ank Depth: 20-22' Test Id: 767981

Depth: 20-22'
Test Comment: ---

Visual Description: Moist, gray silty sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	8.0	64.9	27.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2"	12.50	100		
0.375 in	9.50	96		
#4	4.75	92		
#10	2.00	86		
#20	0.85	75		
#40	0.42	61		
#60	0.25	49		
#100	0.15	38		
#140	0.11	32		
#200	0.075	27		

<u>Coefficients</u>			
$D_{85} = 1.8896 \text{ mm}$	$D_{30} = 0.0928 \text{ mm}$		
$D_{60} = 0.4002 \text{ mm}$	$D_{15} = N/A$		
$D_{50} = 0.2600 \text{ mm}$	$D_{10} = N/A$		
$C_u = N/A$	$C_C = N/A$		

ASTM N/A Classification

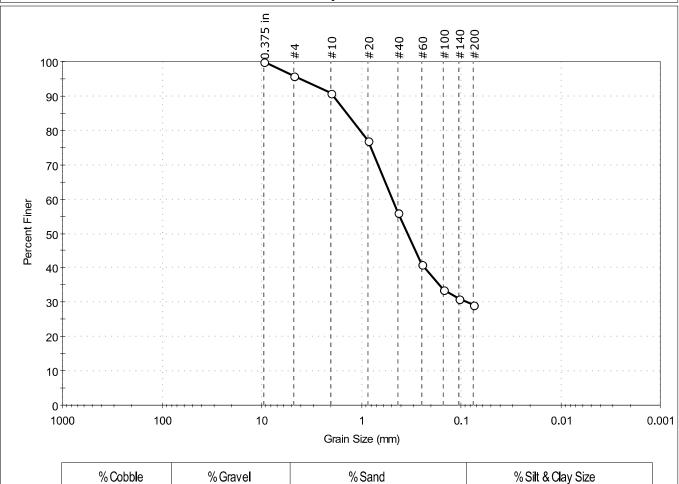
AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Location: Cumberland, ME Project No:

Boring ID: BB-C295-203 Sample Type: Jar Tested By: ckg
Sample ID: 6D Test Date: 04/27/24 Checked By: ank


Depth: 11-13' Test Id: 765681

Test Comment: ---

Visual Description: Moist, olive brown silty sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	4.0	66.8	29.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	96		
#10	2.00	91		
#20	0.85	77		
#40	0.42	56		
#60	0.25	41		
#100	0.15	34		
#140	0.11	31		
#200	0.075	29		

	<u>Coefficients</u>				
D ₈₅ = 1.3855 mm	$D_{30} = 0.0878 \text{ mm}$				
D ₆₀ = 0.4859 mm	$D_{15} = N/A$				
D ₅₀ = 0.3450 mm	$D_{10} = N/A$				
C _u =N/A	C _c =N/A				

GTX-318928

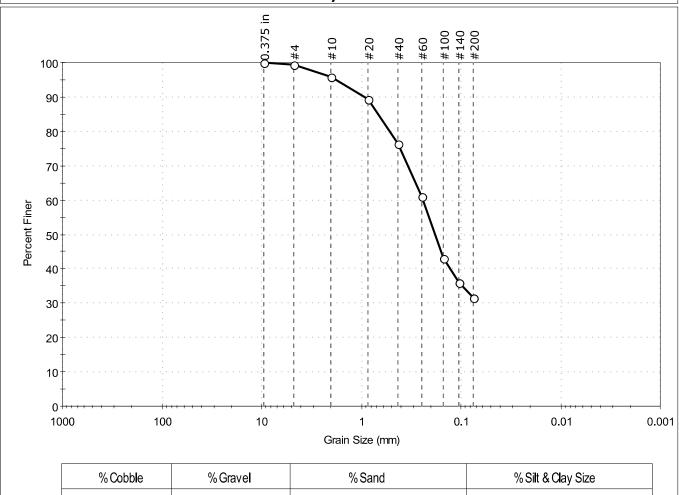
ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR
Sand/Gravel Hardness: HARD

Location: Cumberland, ME

Boring ID: BB-C295-203 Sample Type: Jar Tested By: ckg Sample ID: 8D Test Date: 04/27/24 Checked By: ank


Depth: 15-17' Test Id: 765682

Test Comment:

Visual Description: Moist, olive brown silty sand

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
_	0.7	67.7	31.6	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	99		
#10	2.00	96		
#20	0.85	89		
#40	0.42	77		
#60	0.25	61		
#100	0.15	43		
#140	0.11	36		
#200	0.075	32		

	<u>Coefficients</u>				
D ₈₅ =	=0.6715 mm	$D_{30} = N/A$			
D ₆₀ =	=0.2432 mm	$D_{15} = N/A$			
D ₅₀ =	=0.1833 mm	$D_{10} = N/A$			
C _u =	=N/A	$C_c = N/A$			

Project No:

GTX-318928

Classification **ASTM** N/A

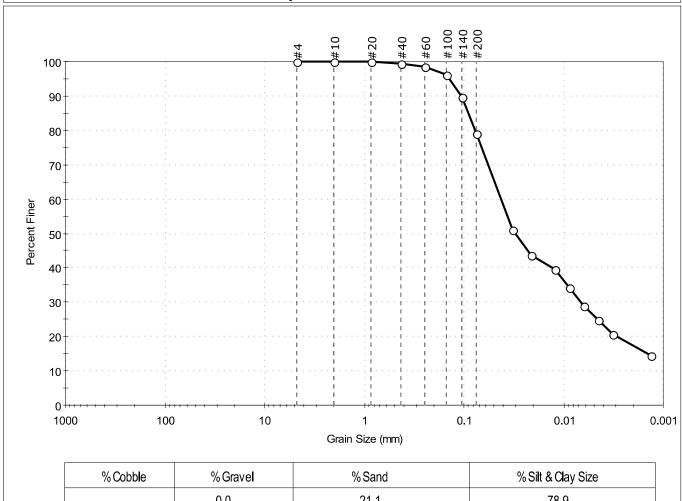
AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ---

Sand/Gravel Hardness: ---

Location: Cumberland, ME Project No: Boring ID: BB-C295-203 Sample Type: Jar Tested By:

ckg Sample ID: 11D Test Date: 04/26/24 Checked By: ank


765688

Depth: 30-32' Test Id: Test Comment:

Visual Description: Moist, gray clay with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
-	0.0	21.1	78.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	98		
#100	0.15	96		
#140	0.11	90		
#200	0.075	79		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0327	51		
	0.0211	44		
	0.0122	39		
	0.0087	34		
	0.0063	29		
	0.0045	25		
	0.0032	21		
	0.0013	14		

	<u>Coefficients</u>				
	D ₈₅ = 0.0914 mm	$D_{30} = 0.0067 \text{ mm}$			
D ₆₀ = 0.0428 mm		$D_{15} = 0.0014 \text{ mm}$			
	D ₅₀ = 0.0310 mm	$D_{10} = N/A$			
	C _{II} =N/A	$C_c = N/A$			

GTX-318928

<u>Classification</u> Lean CLAY with Sand (CL) **ASTM** AASHTO Clayey Soils (A-6 (7))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ---

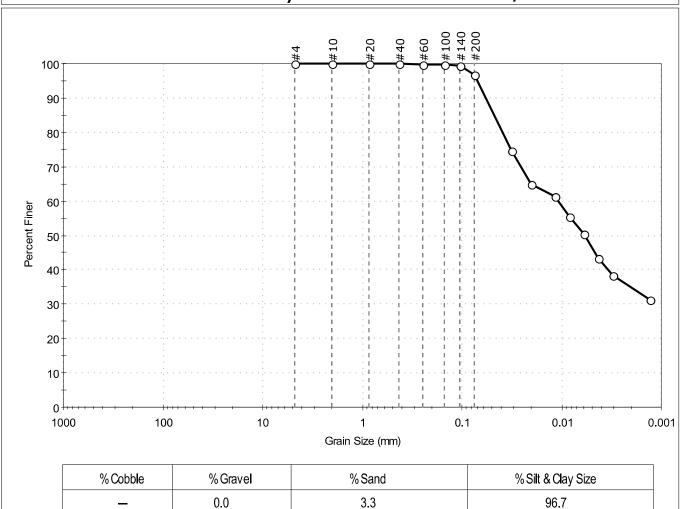
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME

Boring ID: BB-C295-203 Sample Type: Jar Tested By: ckg Sample ID: 13D Test Date: 04/27/24 Checked By: ank


Depth: 40-42' Test Id:

Test Comment:

Visual Description: Moist, gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	99		
#200	0.075	97		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0318	75		
	0.0202	65		
	0.0117	61		
	0.0084	55		
	0.0060	51		
	0.0043	43		
	0.0031	38		
	0.0013	31		

Coefficients				
D ₈₅ = 0.0476 mm	$D_{30} = N/A$			
D ₆₀ = 0.0108 mm	$D_{15} = N/A$			
D ₅₀ = 0.0059 mm	$D_{10} = N/A$			
C _u =N/A	$C_{c} = N/A$			

Project No:

765689

GTX-318928

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u>

AASHTO Clayey Soils (A-6 (15))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

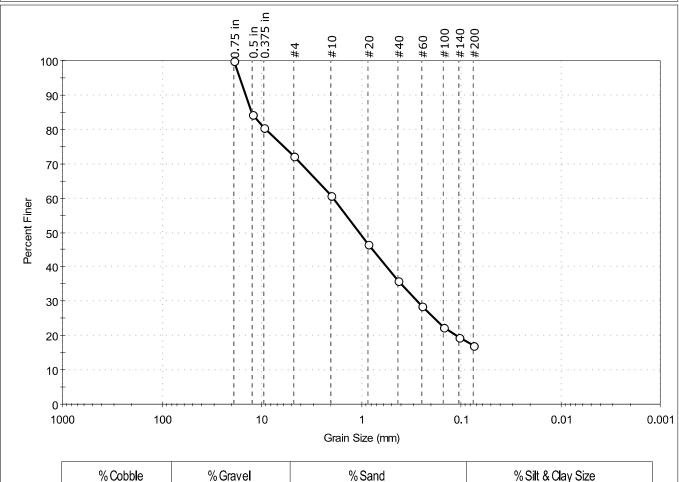
Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

printed 4/30/2024 10:54:48 AM

Location: Cumberland, ME

Boring ID: BB-C295-203 Sample Type: Jar Tested By: ckg
Sample ID: 15D Test Date: 04/27/24 Checked By: ank


Depth: 50-52' Test Id: 765683

Test Comment: ---

Visual Description: Moist, gray silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913

ne	Sieve Size, mm Percen	t Finer Spec. Percent C	Complies	Coefficients	=
	_	27.9	55.0	17.1	
	% Cobble	% Gravel	% Sand	% Silt & Clay Size	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	84		
0.375 in	9.50	81		
#4	4.75	72		
#10	2.00	61		
#20	0.85	46		
#40	0.42	36		
#60	0.25	29		
#100	0.15	22		
#140	0.11	19		
#200	0.075	17		

Coemi	<u>cients</u>
D ₈₅ =12.7122 mm	$D_{30} = 0.2743 \text{ mm}$
$D_{60} = 1.8961 \text{ mm}$	$D_{15} = N/A$
D ₅₀ = 1.0476 mm	$D_{10} = N/A$
$C_u = N/A$	$C_C = N/A$

Project No:

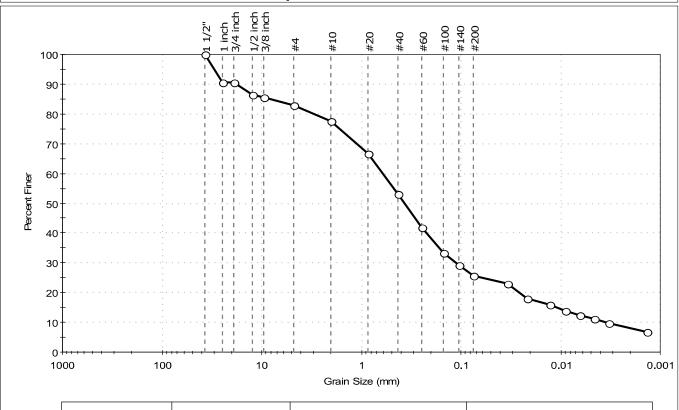
GTX-318928

<u>ASTM</u>	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness : HARD

Location: Cumberland, ME Project No: GTX-318928
Boring ID: BB-C295-204 Sample Type: Jar Tested By: ajl


Sample ID: 7D Test Date: 05/07/24 Depth: 15-17' Test Id: 767979

Test Comment: ---

Visual Description: Moist, grayish brown silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	17.3	57.2	25.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 1/2"	37.50	100		
1 inch	25.00	91		
3/4 inch	19.00	91		
1/2 inch	12.50	86		
3/8 inch	9.50	86		
#4	4.75	83		
#10	2.00	78		
#20	0.85	67		
#40	0.42	53		
#60	0.25	42		
#100	0.15	33		
#140	0.11	29		
#200	0.075	26		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0345	23		
	0.0215	18		
	0.0128	16		
	0.0091	14		
	0.0065	12		
	0.0046	11		
	0.0033	10		
	0.0014	7		

<u>Coefficients</u>				
$D_{85} = 8.3353 \text{ mm}$	$D_{30} = 0.1137 \text{ mm}$			
$D_{60} = 0.6058 \text{ mm}$	$D_{15} = 0.0109 \text{ mm}$			
$D_{50} = 0.3663 \text{ mm}$	$D_{10} = 0.0035 \text{ mm}$			
$C_u = 173.086$	$C_c = 6.097$			

Checked By: ank

ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness : HARD

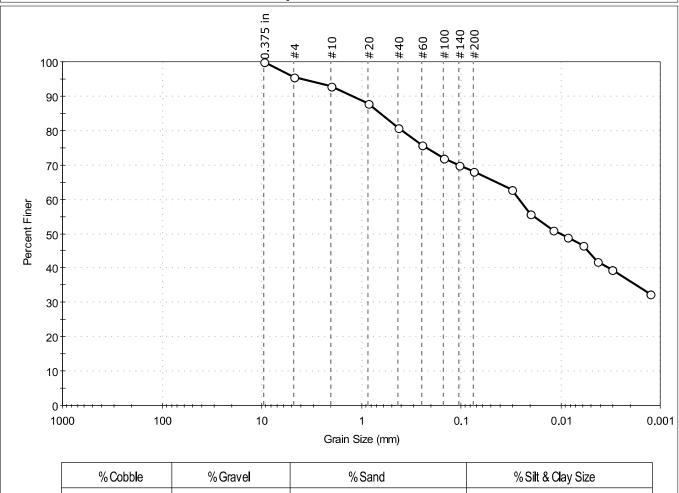
Sana, Graver Haraness 1 Th are

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period : 1 minute Est. Specific Gravity : 2.65

Location: Cumberland, ME GTX-318928 Project No: Boring ID: BB-C295-204 Sample Type: Jar Tested By: ajl

Sample ID: 11D Test Date: 05/07/24 Checked By: ank


Depth: 35-37' Test Id: 767980

Test Comment:

Visual Description: Moist, olive gray silt with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
I	4.6	27.3	68.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	95		
#10	2.00	93		
#20	0.85	88		
#40	0.42	81		
#60	0.25	76		
#100	0.15	72		
#140	0.11	70		
#200	0.075	68		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0308	63		
	0.0203	56		
	0.0119	51		
	0.0085	49		
	0.0061	47		
	0.0043	42		
	0.0031	40		
	0.0013	33		

<u>Coefficients</u>				
$D_{85} = 0.6388 \text{ mm}$	$D_{30} = N/A$			
$D_{60} = 0.0260 \text{ mm}$	$D_{15} = N/A$			
D ₅₀ =0.0100 mm	$D_{10} = N/A$			
$C_u = N/A$	$C_c = N/A$			

Classification ASTM N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

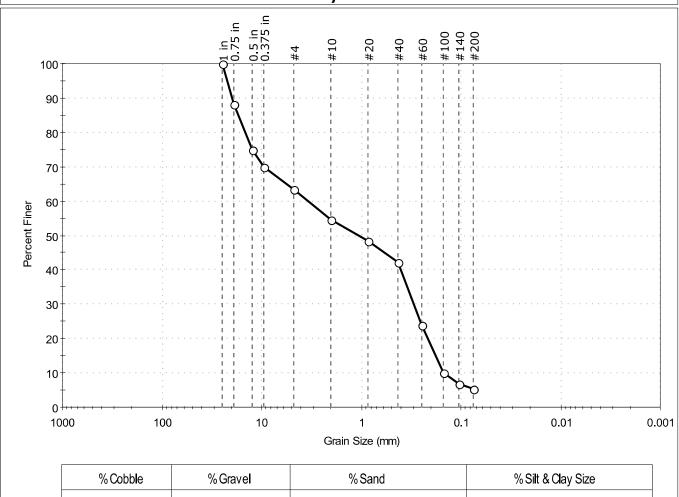
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65 Separation of Sample: #200 Sieve

Location: Cumberland, ME

Boring ID: BB-C295-205 Sample Type: Jar Tested By: ckg Sample ID: 6D Test Date: 04/27/24 Checked By: ank


Depth: 15-17' Test Id: 765684

Test Comment:

Moist, olive yellow sand with silt and gravel Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
_	36.5	58.1	5.4	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	88		
0.5 in	12.50	75		
0.375 in	9.50	70		
#4	4.75	63		
#10	2.00	55		
#20	0.85	48		
#40	0.42	42		
#60	0.25	24		
#100	0.15	10		
#140	0.11	7		
#200	0.075	5.4		

<u>Coefficients</u>				
$D_{85} = 17.1839 \text{ mm}$	$D_{30} = 0.2978 \text{ mm}$			
$D_{60} = 3.3949 \text{ mm}$	$D_{15} = 0.1793 \text{ mm}$			
$D_{50} = 1.0498 \text{ mm}$	$D_{10} = 0.1474 \text{ mm}$			
C., =23.032	$C_c = 0.177$			

Project No:

GTX-318928

Classification

<u>AASHTO</u> Stone Fragments, Gravel and Sand (A-1-b (1))

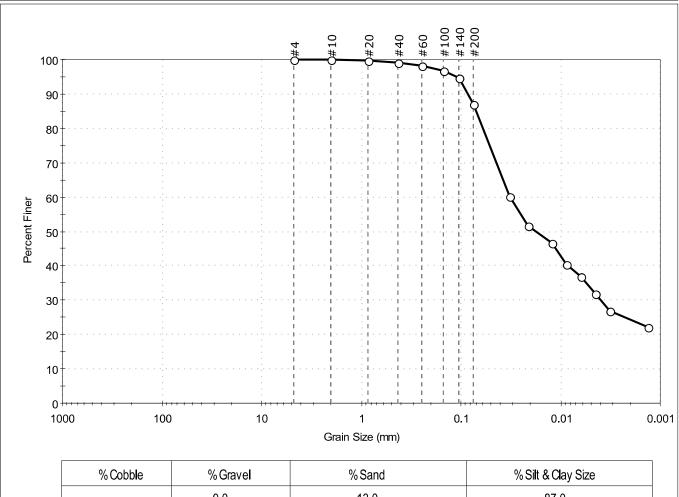
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

N/A

<u>ASTM</u>

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-205 Sample Type: Jar Tested By: ckg


Sample ID: 9D Test Date: 04/27/24 Checked By: ank Depth: 30-31.5' Test Id: 765690

Test Comment:

Visual Description: Moist, grayish brown clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	%Silt &ClaySize	
_	0.0	13.0	87.0	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	98		
#100	0.15	97		
#140	0.11	95		
#200	0.075	87		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0325	60		
	0.0211	52		
	0.0122	47		
	0.0088	41		
	0.0062	37		
	0.0045	32		
	0.0032	27		
	0.0013	22		

<u>Coefficients</u>				
D ₈₅ = 0.0704 mm	$D_{30} = 0.0039 \text{ mm}$			
D ₆₀ = 0.0320 mm	$D_{15} = N/A$			
D ₅₀ = 0.0175 mm	$D_{10} = N/A$			
C _u =N/A	$C_c = N/A$			

Classification Lean CLAY (CL) **ASTM** AASHTO Clayey Soils (A-6 (11))

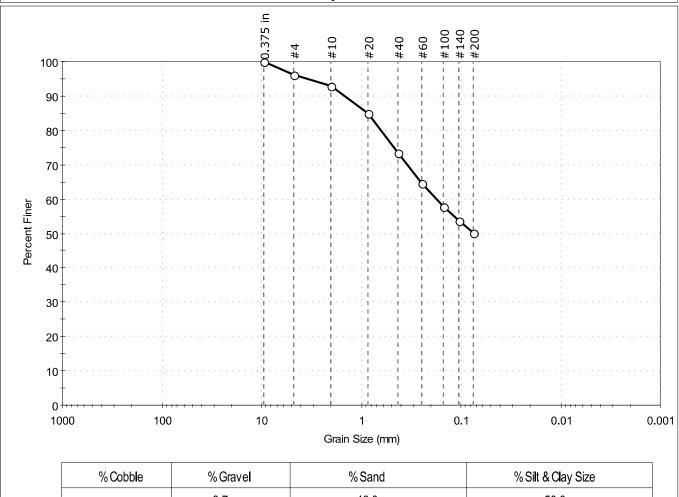
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-205 Sample Type: Jar Tested By: ckg


Sample ID: 10D Test Date: 04/27/24 Checked By: ank Depth: 35-37' Test Id: 765685

Test Comment:

Visual Description: Moist, olive gray sandy silt

Sample Comment:

Particle Size Analysis - ASTM D6913

ne	Sieve Size, mm Percen	t Finer Spec. Percent (Complies	Coefficients	=
	_	3.7	46.0	50.3	
	% Cobble	% Gravel	% Sand	% Silt & Clay Size	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	96		
#10	2.00	93		
#20	0.85	85		
#40	0.42	73		
#60	0.25	64		
#100	0.15	58		
#140	0.11	54		
#200	0.075	50		

	Coefficients	
D ₈₅ = 0.8661 mm	$D_{30} = N/A$	
$D_{60} = 0.1778 \text{ mm}$	$D_{15} = N/A$	
$D_{50} = N/A$	$D_{10} = N/A$	
$C_u = N/A$	$C_c = N/A$	

Classification **ASTM** N/A AASHTO Silty Soils (A-4 (0))

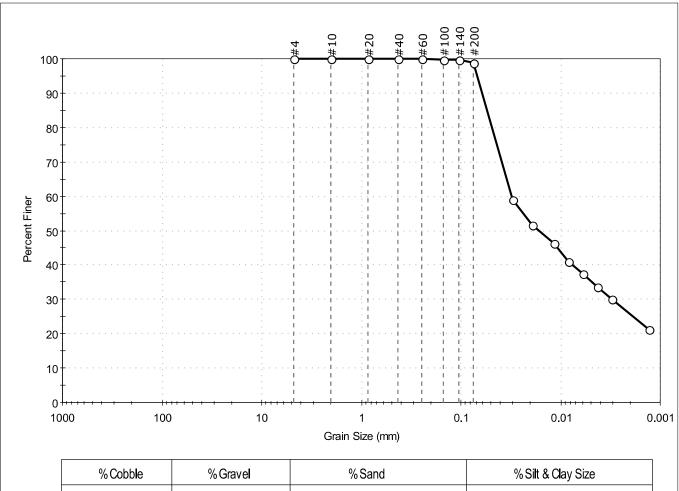
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR Sand/Gravel Hardness: HARD

Location: Cumberland, ME Project No:

Boring ID: BB-C295-206 Sample Type: Jar Tested By: a

Boring ID: BB-C295-206 Sample Type: Jar Tested By: ajl Sample ID: 3D Test Date: 05/07/24 Checked By: ank

GTX-318928


Depth: 4-6' Test Id: 768001

Test Comment: ---

Visual Description: Moist, olive gray clay

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

	% Cobb	le	% Gravel		% Sand		% Silt &	ι Clay Size	
	_		0.0		1.2		Ç	98.8	
Sieve Name	Sieve Size,	Percent F	iner Spec. Percent	Complies			<u>Coeffic</u>	<u>cients</u>	_
						$D_{85} = 0.05$	47 mm	$D_{30} = 0.0030 \text{ mm}$	
#4	4.75	100				$D_{60} = 0.0309 \text{ mm}$ $D_{15} = N/A$			
#10	2.00	100			l	200 0.03	05 111111	D ₁ 3 14/71	

 $D_{50} = 0.0164 \text{ mm}$ $D_{10} = N/A$ #20 0.85 100 #40 100 0.42 $C_c = N/A$ $C_u = N/A$ #60 0.25 100 <u>Classification</u> Lean CLAY (CL) #100 0.15 100 **ASTM** #140 100 0.11 #200 0.075 99

 Hydrometer
 Particle Size (mm)
 Percent Finer
 Spec. Percent
 Complies

 -- 0.0301
 59

 -- 0.0193
 52

 -- 0.0116
 46

Sample/Test Description
Sand/Gravel Particle Shape: ---

Sand/Gravel Hardness : ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute
Est. Specific Gravity: 2.65
Separation of Sample: #200 Sieve

printed 5/15/2024 9:19:36 AM

0.0083

0.0060

0.0042

0.0031

0.0013

41

37

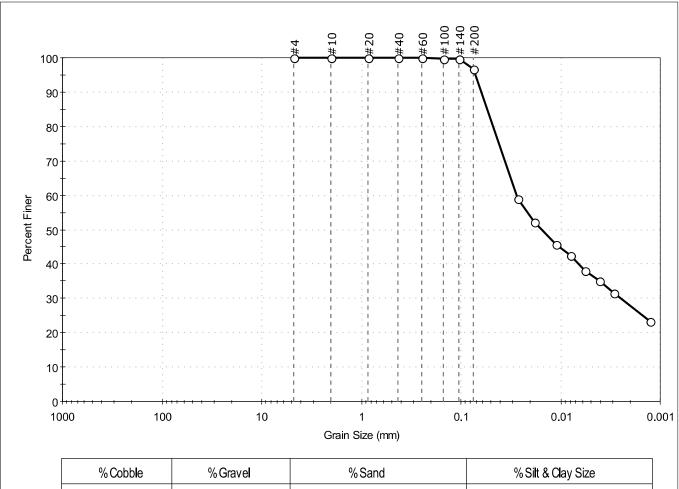
34

30

21

Location: Cumberland, ME

Boring ID: BB-C295-206 Sample Type: Jar Tested By: ajl Sample ID: 4D Test Date: 05/08/24 Checked By: ank


Depth: Test Id: 768002

Test Comment:

Visual Description: Moist, dark gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	%Silt & Clay Size
_	0.0	3.2	96.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#140	0.11	100		
#200	0.075	97		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0272	59		
	0.0184	52		
	0.0111	46		
	0.0080	43		
	0.0058	38		
	0.0041	35		
	0.0030	32		
	0.0013	23		

<u>Coefficients</u>				
$D_{85} = 0.0546 \text{ mm}$	$D_{30} = 0.0025 \text{ mm}$			
$D_{60} = 0.0279 \text{ mm}$	$D_{15} = N/A$			
D ₅₀ =0.0155 mm	$D_{10} = N/A$			
$C_u = N/A$	$C_c = N/A$			

Project No:

GTX-318928

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u> AASHTO Clayey Soils (A-6 (18))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

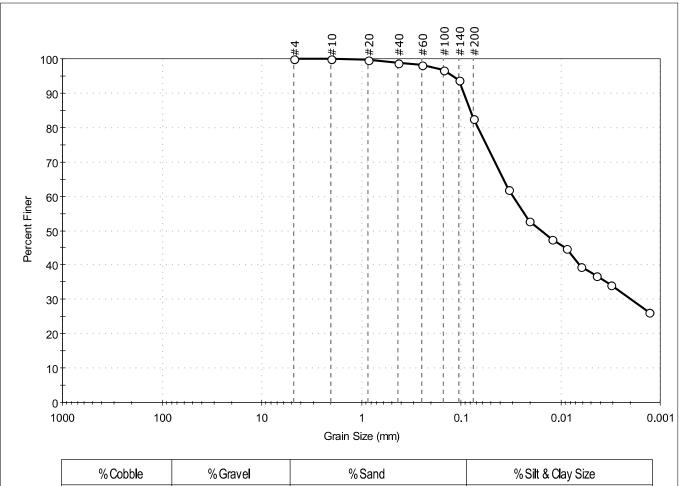
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No:

Boring ID: BB-C295-206 Sample Type: Jar Tested By: ajl Sample ID: 5D Test Date: 05/07/24 Checked By: ank Test Id:


768003

Depth: 10-11.75' Test Comment:

Visual Description: Moist, grayish brown silt with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	%Sand	% Silt & Clay Size
_	0.0	17.4	82.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	98		
#100	0.15	97		
#140	0.11	94		
#200	0.075	83		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0334	62		
	0.0209	53		
	0.0123	47		
	0.0087	45		
	0.0062	39		
	0.0044	37		
	0.0032	34		
	0.0013	26		

<u>Coefficients</u>						
D ₈₅ =0.0808 mm	$D_{30} = 0.0020 \text{ mm}$					
D ₆₀ = 0.0303 mm	$D_{15} = N/A$					
D ₅₀ =0.0160 mm	$D_{10} = N/A$					
$C_u = N/A$	$C_c = N/A$					

GTX-318928

Classification <u>ASTM</u> N/A AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

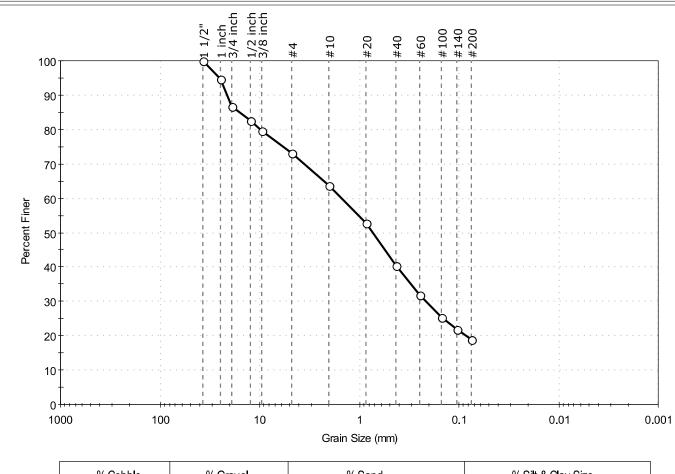
Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65 Separation of Sample: #200 Sieve

Location: Cumberland, ME

Boring ID: BB-C295-206 Sample Type: Jar Tested By: ajl Sample ID: 7D Test Date: 05/07/24 Checked By: ank


Depth: 20-22' Test Id: 768006

Test Comment: ---

Visual Description: Moist, brownish gray silty sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D6913

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	26.9	54.1	19.0

Sieve Name	Sieve Size, mm	Percent Finer Spec. Percer		Complies
1 1/2"	37.50	100		
1 inch	25.00	95		
3/4 inch	19.00	87		
1/2 inch	12.50	83		
3/8 inch	9.50	80		
#4	4.75	73		
#10	2.00	64		
#20	0.85	53		
#40	0.42	40		
#60	0.25	32		
#100	0.15	25		
#140	0.11	22		
#200	0.075	19		

<u>Coefficients</u>						
$D_{85} = 15.9337 \text{ mm}$	$D_{30} = 0.2183 \text{ mm}$					
$D_{60} = 1.5042 \text{ mm}$	$D_{15} = N/A$					
$D_{50} = 0.7248 \text{ mm}$	$D_{10} = N/A$					
Cu =N/A	$C_c = N/A$					

Project No:

GTX-318928

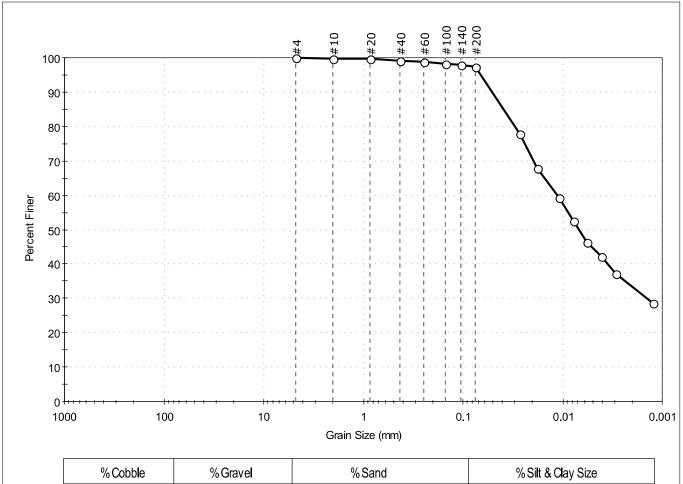
ASTM N/A Classification

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR Sand/Gravel Hardness: HARD

Location: Cumberland, ME

Boring ID: BB-C295-207 Sample Type: Jar Tested By: ajl Sample ID: 5D Test Date: 05/07/24 Checked By: ank


Depth: Test Id: 8-10' 768004

Test Comment:

Visual Description: Moist, gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size		
_	0.0	2.8	97.2		

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99		
#100	0.15	98		
#140	0.11	98		
#200	0.075	97		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0268	78		
	0.0178	68		
	0.0108	59		
	0.0079	52		
	0.0057	46		
	0.0041	42		
	0.0030	37		
	0.0012	29		

<u>Coefficients</u>						
$D_{85} = 0.0390 \text{ mm}$	$D_{30} = 0.0014 \text{ mm}$					
$D_{60} = 0.0113 \text{ mm}$	$D_{15} = N/A$					
$D_{50} = 0.0069 \text{ mm}$	$D_{10} = N/A$					
Cu =N/A	$C_C = N/A$					

GTX-318928

Project No:

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u> AASHTO Clayey Soils (A-6 (20))

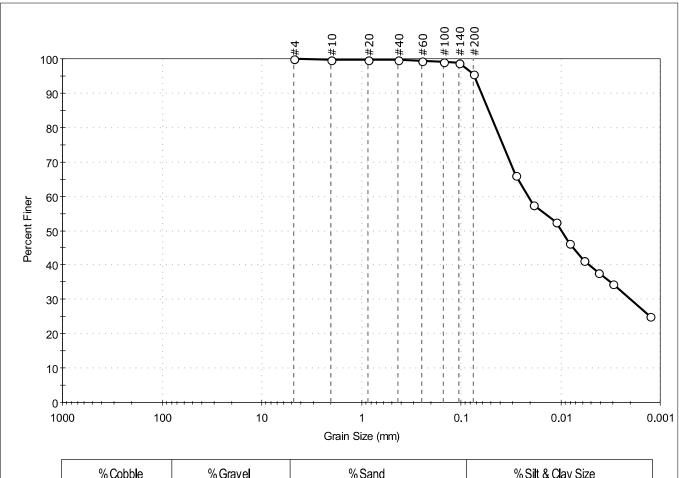
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location: Cumberland, ME Project No: Boring ID: BB-C295-207 Sample Type: Jar Tested By: ajl


Sample ID: 6D Test Date: 05/07/24 Checked By: ank Depth: 15-17' Test Id: 768005

Test Comment:

Visual Description: Moist, gray clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	4.5	95.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	99		
#100	0.15	99		
#140	0.11	99		
#200	200 0.075 96			
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0284	66		
	0.0188	57		
	0.0111	52		
	0.0081	46		
	0.0058	41		
	0.0041	38		
	0.0030	34		
	0.0013	25		

<u>coefficients</u>							
D ₈₅ = 0.0531 mm	$D_{30} = 0.0020 \text{ mm}$						
$D_{60} = 0.0212 \text{ mm}$	$D_{15} = N/A$						
D ₅₀ = 0.0098 mm	$D_{10} = N/A$						
$C_u = N/A$	$C_C = N/A$						

Coefficients

GTX-318928

<u>Classification</u> Lean CLAY (CL) <u>ASTM</u> AASHTO Clayey Soils (A-6 (12))

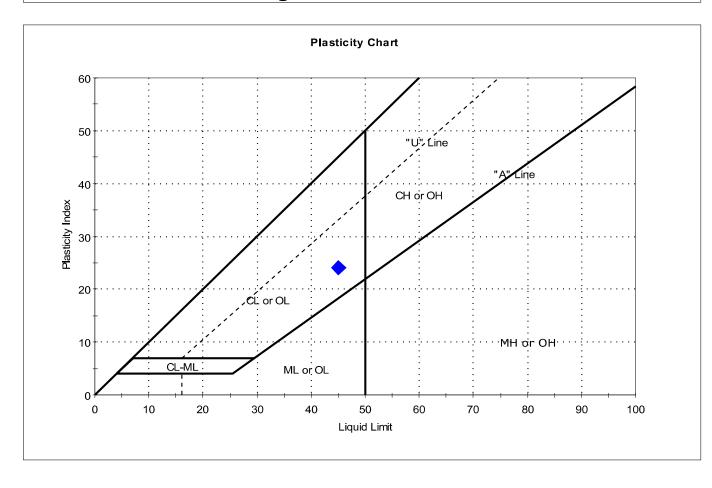
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-201Sample Type: JarTested By:camSample ID:7DTest Date:04/25/24Checked By:ank


Depth: 15-17' Test Id: 765672

Test Comment: ---

Visual Description: Moist, light brownish gray clay

Sample Comment: ---

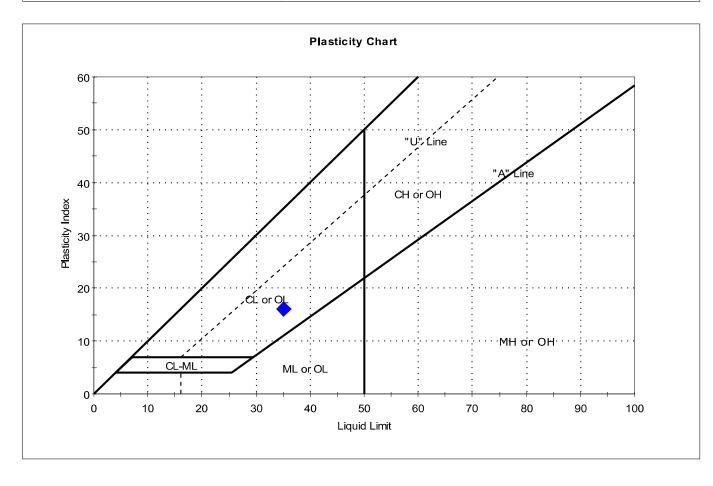
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	7D	3-C295-20	15-17'	28	45	21	24	0.3	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-201Sample Type:JarTested By:camSample ID:9DTest Date:04/24/24Checked By:ank


Depth: 25-27' Test Id: 765673

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

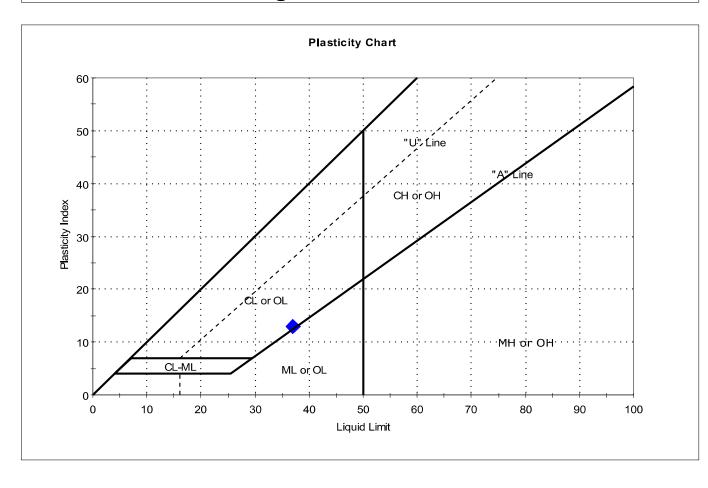
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	9D	3-C295-20	25-27'	36	35	19	16	1.1	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-201Sample Type: TubeTested By:camSample ID:U1Test Date:04/25/24Checked By:ank


Depth: 27-29' Test Id: 765674

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

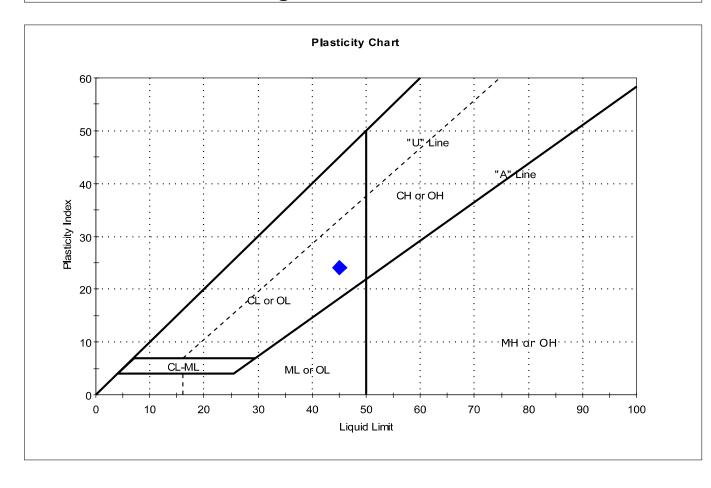
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U1	3-C295-20	27-29'	34	37	24	13	0.8	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location: Cumberland, ME Project No: GTX-318928
Boring ID: BB-C295-202 Sample Type: Jar Tested By: cam


Sample ID: 2D Test Date: 05/10/24 Checked By: ank Depth: 2-4' Test Id: 767972

Test Comment: ---

Visual Description: Moist, grayish brown clay

Sample Comment: ---

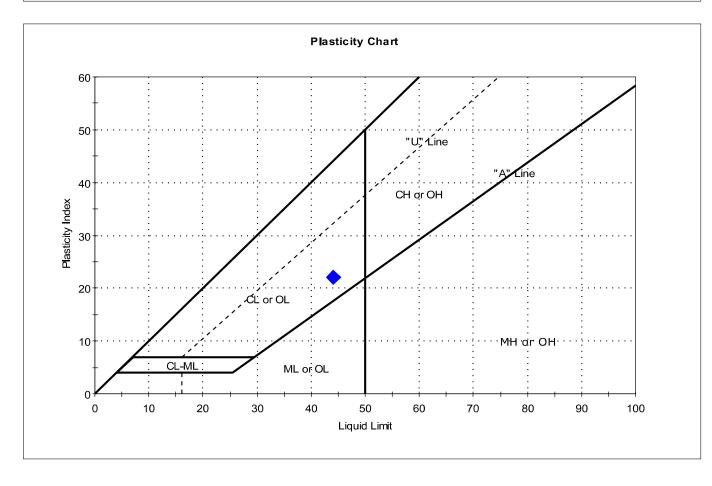
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	2D	3-C295-20	2-4'	24	45	21	24	0.1	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-202Sample Type: TubeTested By:camSample ID:U1Test Date:05/10/24Checked By:ank


Depth: 4.5-6.5' Test Id: 767973

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

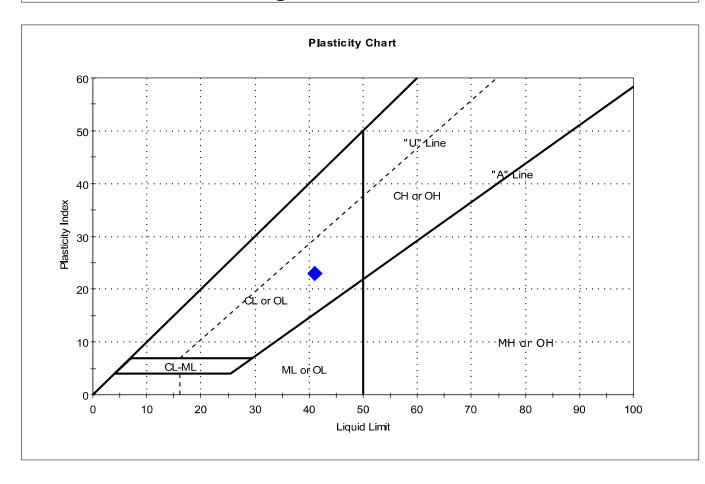
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U1	3-C295-20	4.5-6.5'	28	44	22	22	0.3	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-202 Sample Type: Jar Tested By: cam 05/10/24 Checked By: ank


Sample ID: 3D Test Date: Depth: Test Id: 6.5-8.5' 767974

Test Comment:

Visual Description: Moist, light gray clay

Sample Comment:

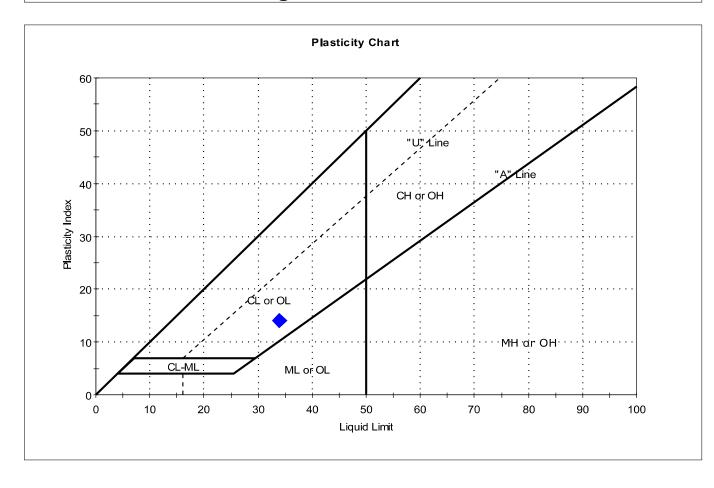
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	3D	3-C295-20	6.5-8.5'	35	41	18	23	n/a	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-202Sample Type:JarTested By:camSample ID:4DTest Date:05/10/24Checked By:ank


Depth: 8.5-10.5' Test Id: 767975

Test Comment: ---

Visual Description: Moist, brownish gray clay

Sample Comment: ---

Atterberg Limits - ASTM D4318

S	Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
	•	4D	3-C295-20	8.5-10.5'	29	34	20	14	0.6	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-203Sample Type: JarTested By:camSample ID:11DTest Date:04/25/24Checked By:ank

 Sample ID: 11D
 Test Date:
 04/25/24

 Depth:
 30-32'
 Test Id:
 765675

Test Comment: ---

Visual Description: Moist, gray clay with sand

Sample Comment: ---

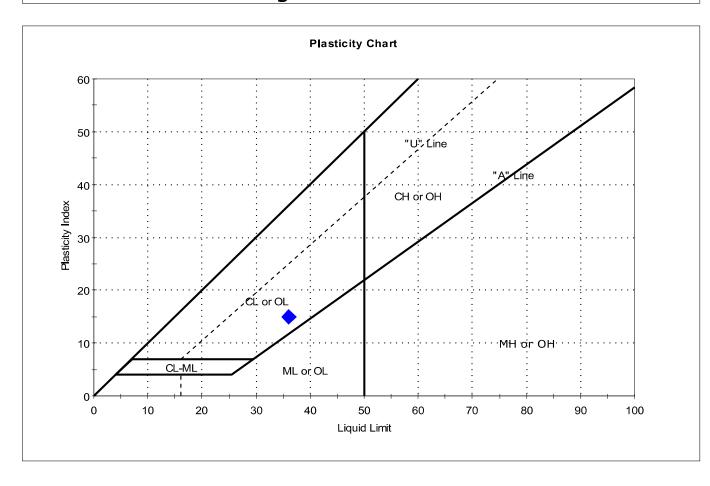
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	11D	3-C295-20	30-32'	23	28	16	12	0.6	Lean CLAY with Sand (CL)

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-203Sample Type:JarTested By:camSample ID:13DTest Date:04/24/24Checked By:ank


Depth: 40-42' Test Id: 765676

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

Atterberg Limits - ASTM D4318

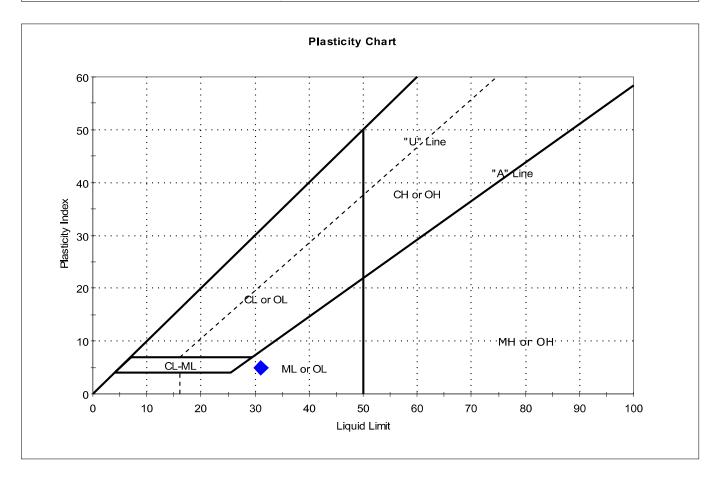
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	13D	3-C295-20	40-42'	28	36	21	15	0.4	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-203Sample Type: TubeTested By:cam

Checked By: ank


Sample ID: U2 Test Date: 04/25/24 Depth: 42-44' Test Id: 765677

Test Comment: ---

Visual Description: Moist, gray silt

Sample Comment: ---

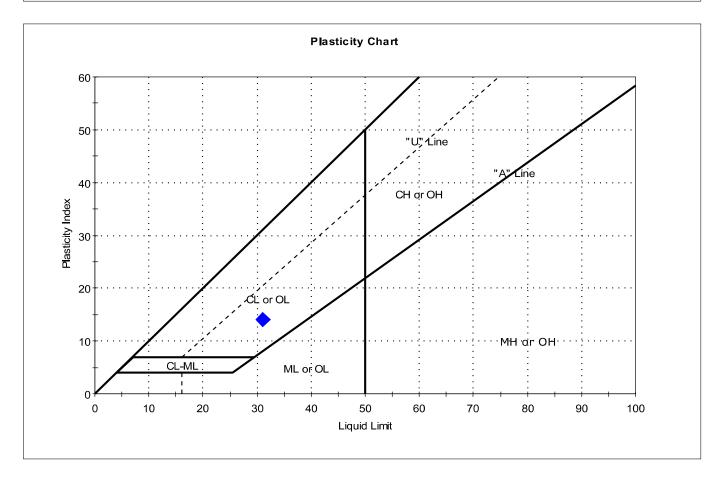
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U2	3-C295-20	42-44'	29	31	26	5	0.6	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-204Sample Type:JarTested By:camSample ID:3DTest Date:05/10/24Checked By:ank


Depth: 4-6' Test Id: 767976

Test Comment: ---

Visual Description: Moist, dark yellowish brown clay

Sample Comment: ---

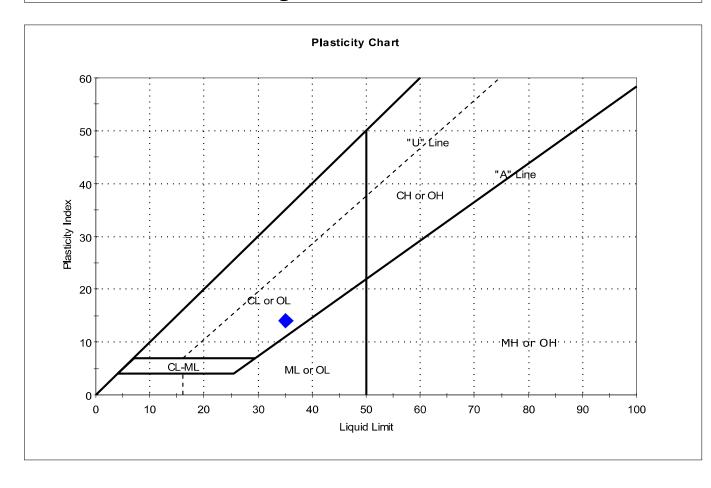
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	3D	3-C295-20	4-6'	20	31	17	14	0.2	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location: Cumberland, ME Project No: GTX-318928 Boring ID: BB-C295-205 Sample Type: Jar Tested By: cam Checked By: ank


Sample ID: 7D Test Date: 04/25/24 Depth: 20-22' Test Id: 765678

Test Comment:

Visual Description: Moist, light gray clay

Sample Comment:

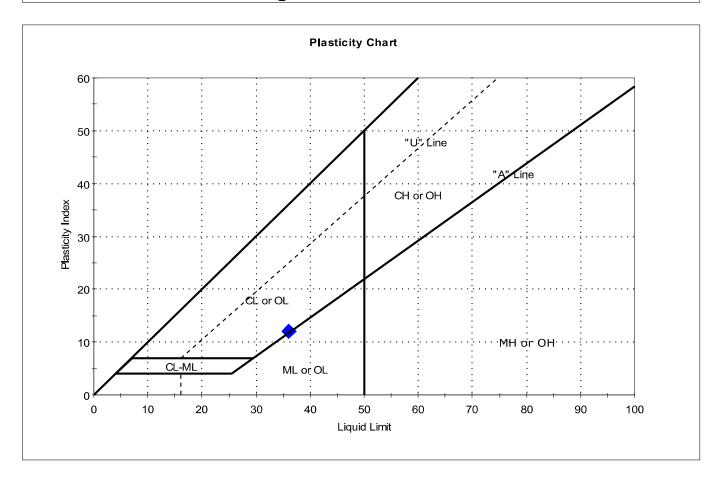
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	7D	3-C295-20	20-22'	28	35	21	14	0.5	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-205Sample Type: JarTested By:camSample ID:9DTest Date:04/24/24Checked By:ank


Depth: 30-31.5' Test Id: 765679

Test Comment: ---

Visual Description: Moist, grayish brown clay

Sample Comment: ---

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	9D	3-C295-20	30-31.5'	38	36	24	12	1.2	Lean CLAY (CL)

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-206Sample Type:JarTested By:camSample ID:3DTest Date:05/10/24Checked By:ank

Depth: 4-6' Test Id: 767995

Test Comment: ---

Visual Description: Moist, olive gray clay

Sample Comment: ---

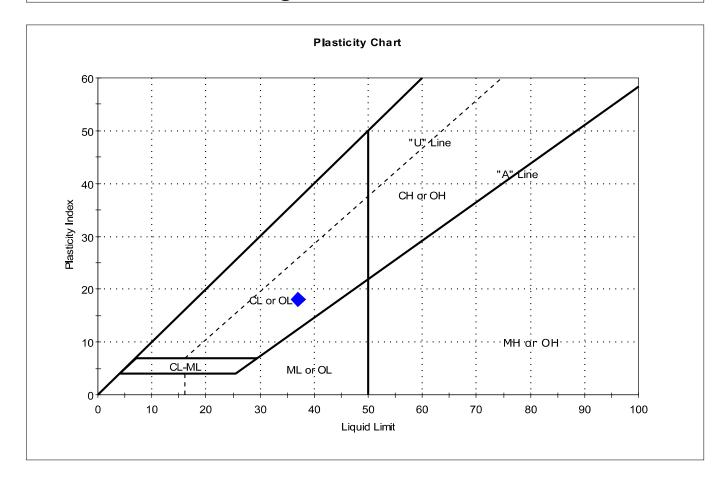
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	3D	3-C295-20	4-6'	8	33	18	15	-0.6	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-206Sample Type:JarTested By:camSample ID:4DTest Date:05/10/24Checked By:ank


Depth: 6-8' Test Id: 767996

Test Comment: ---

Visual Description: Moist, dark gray clay

Sample Comment: ---

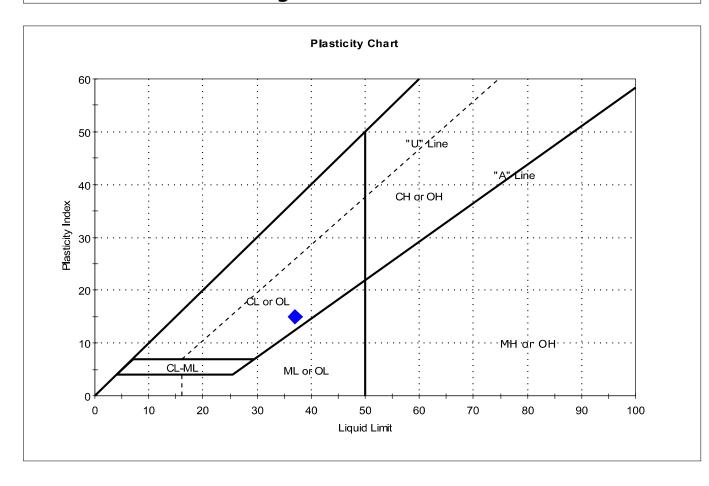
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	4D	3-C295-20	6-8'	22	37	19	18	0.2	Lean CLAY (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-206Sample Type: TubeTested By:camSample ID:U1Test Date:05/10/24Checked By:ank


Depth: 8-10' Test Id: 767997

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

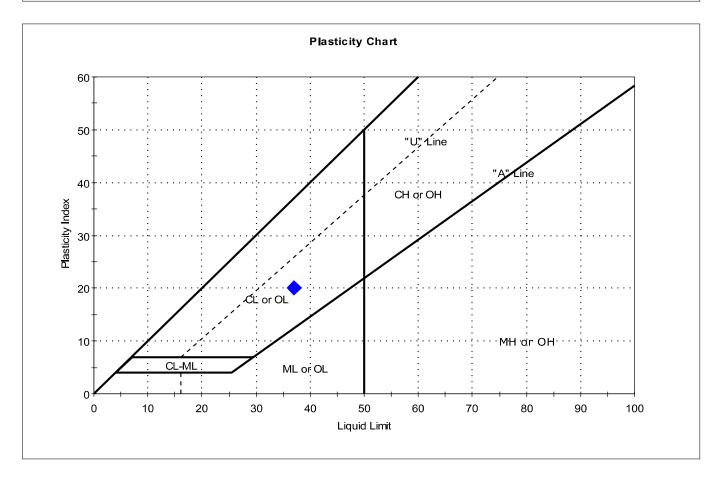
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U1	3-C295-2(8-10'	38	37	22	15	1.1	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-207Sample Type: JarTested By:camSample ID:5DTest Date:05/13/24Checked By:ank


Depth: 8-10' Test Id: 767998

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

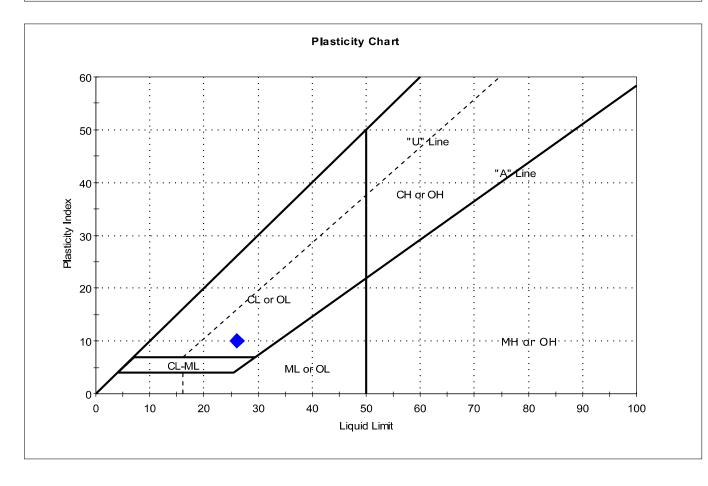
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	5D	3-C295-2(8-10'	37	37	17	20	1	Lean CLAY (CL)

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-207Sample Type: TubeTested By:camSample ID:U1Test Date:05/10/24Checked By:ank


Depth: 10-12' Test Id: 767999

Test Comment: ---

Visual Description: Moist, gray clay

Sample Comment: ---

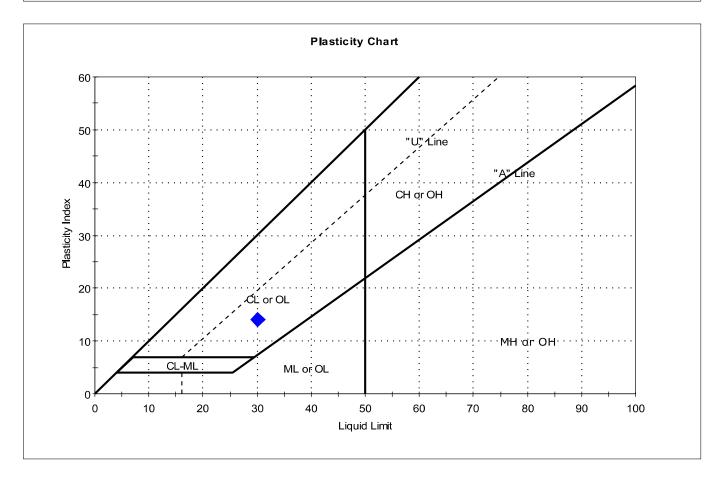
Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U1	3-C295-20	10-12'	30	26	16	10	1.4	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Location:Cumberland, MEProject No:GTX-318928Boring ID:BB-C295-207Sample Type: JarTested By:camSample ID:6DTest Date:05/10/24Checked By:ank

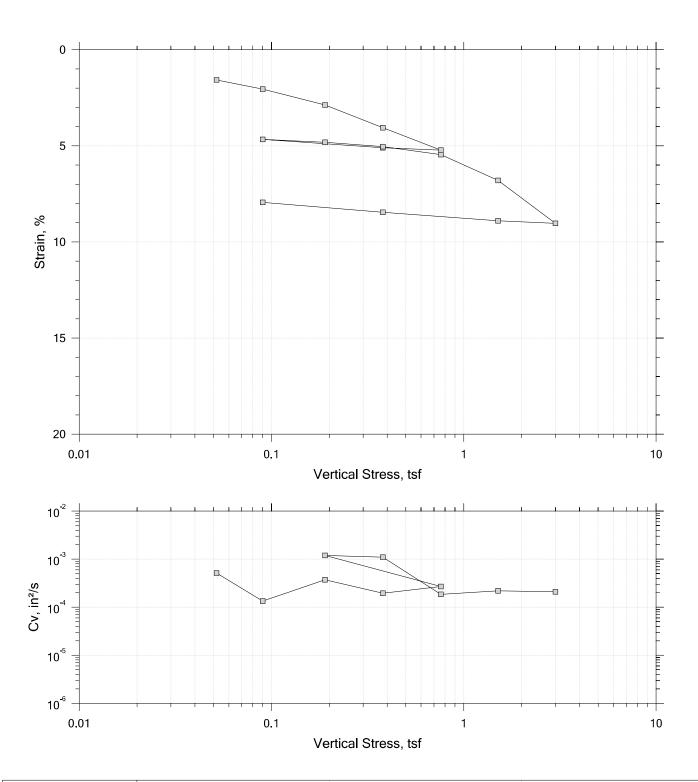

Depth: 15-17' Test Id: 768000

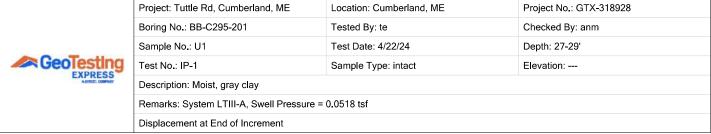
Test Comment: ---

Visual Description: Moist, gray clay

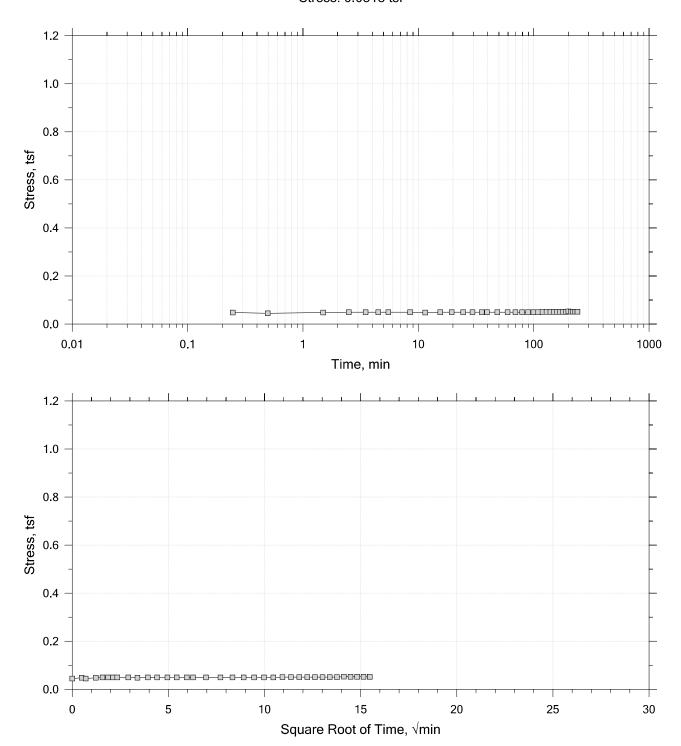
Sample Comment: ---

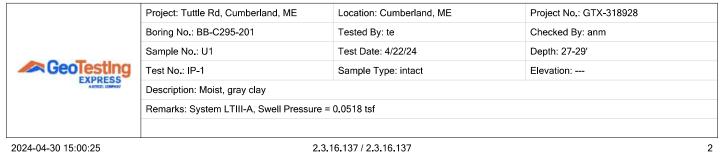
Atterberg Limits - ASTM D4318

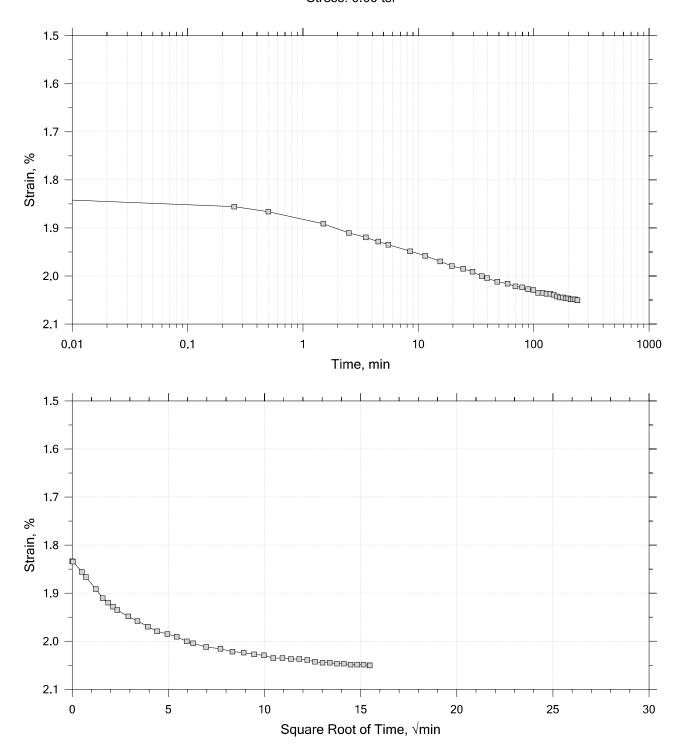



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	6D	3-C295-20	15-17'	35	30	16	14	1.4	Lean CLAY (CL)

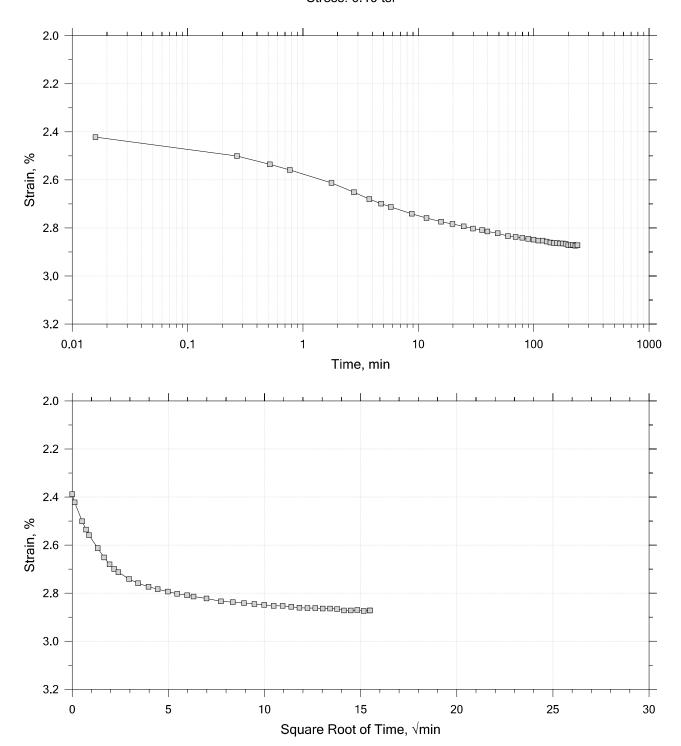
Sample Prepared using the WET method


0% Retained on #40 Sieve Dry Strength: VERY HIGH

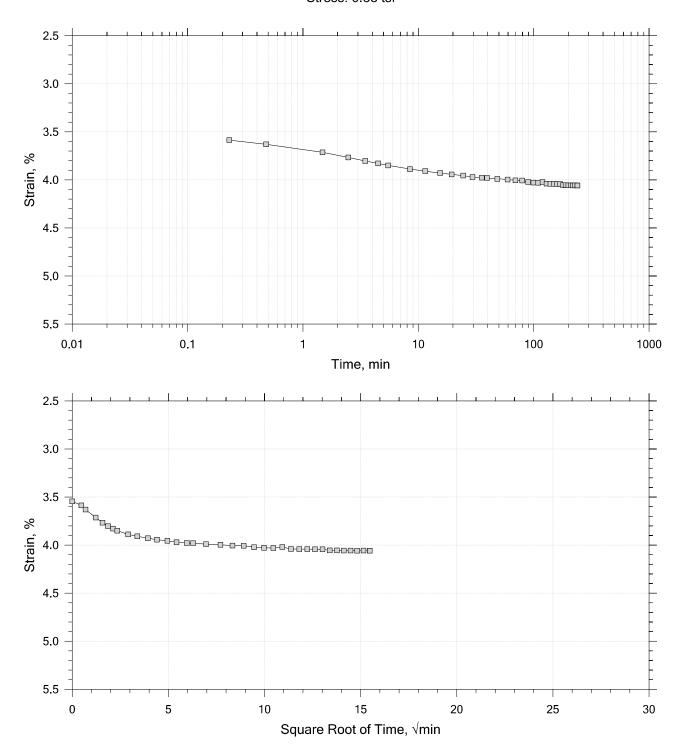

Summary Report



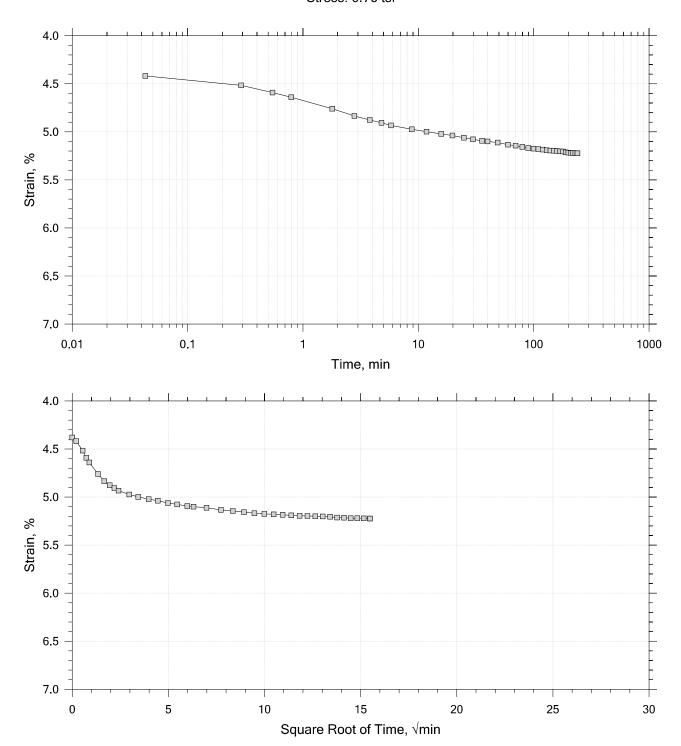
Time Curve 1 of 15 Constant Volume Step Stress: 0.0518 tsf


Time Curve 2 of 15 Constant Load Step Stress: 0.09 tsf

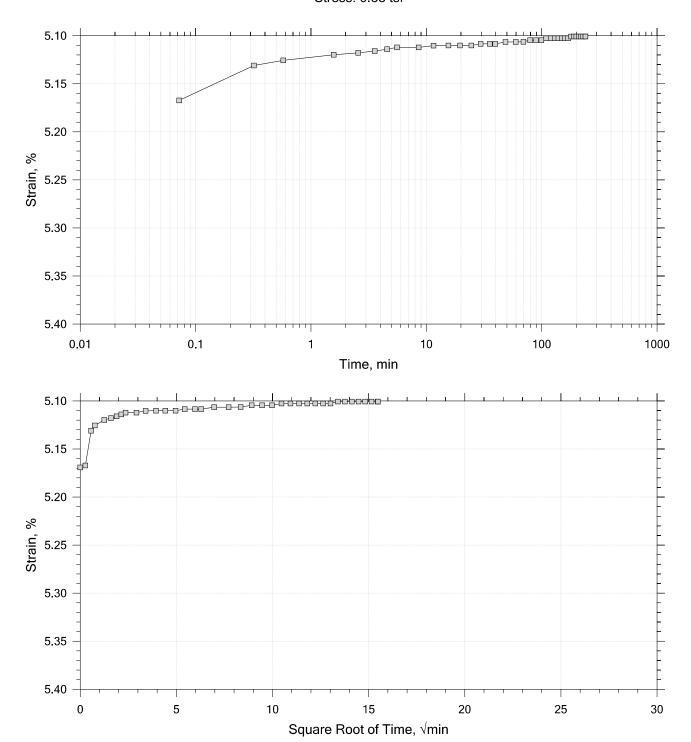
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 3 of 15 Constant Load Step Stress: 0.19 tsf

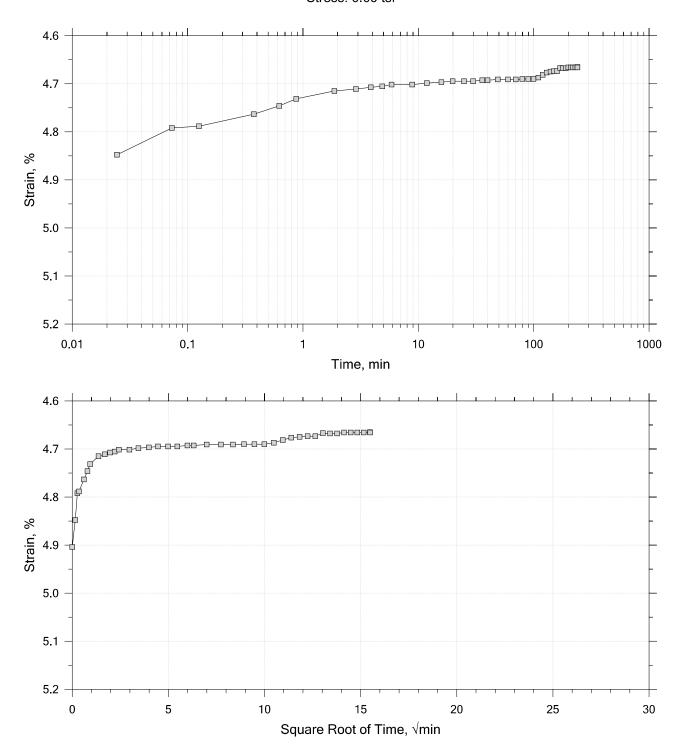
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-201	Tested By: te	Checked By: anm	
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'	
Test No.: IP-1	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf			


Time Curve 4 of 15 Constant Load Step Stress: 0.38 tsf

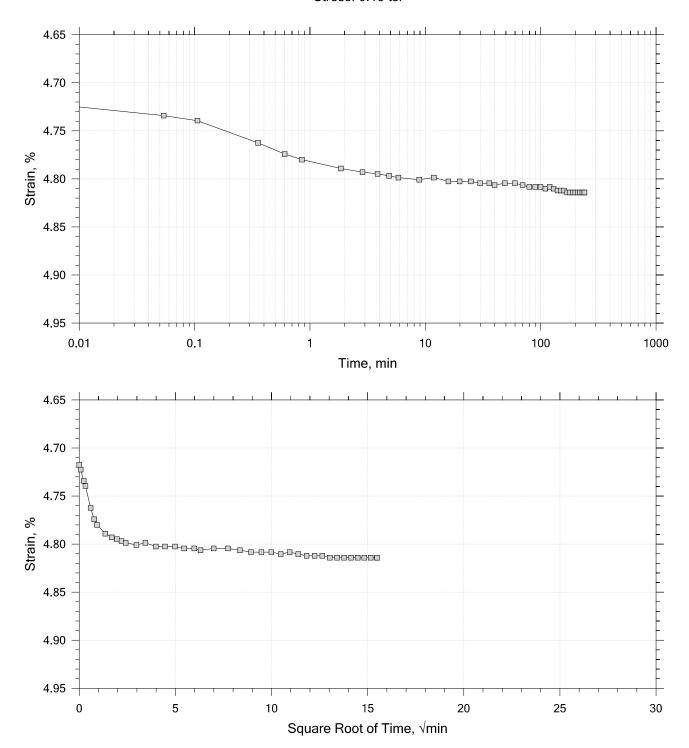
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 5 of 15 Constant Load Step Stress: 0.76 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		

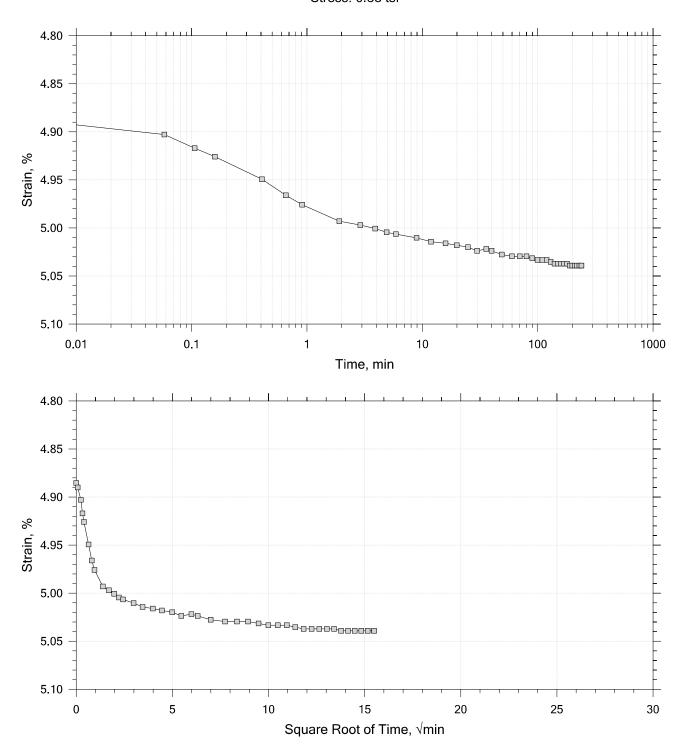

Time Curve 6 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 7 of 15 Constant Load Step Stress: 0.09 tsf

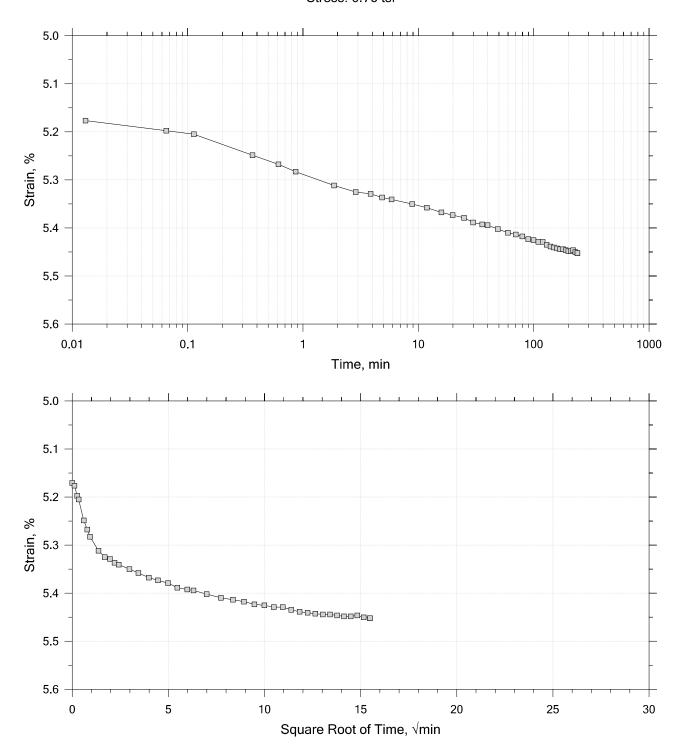
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		

Time Curve 8 of 15 Constant Load Step Stress: 0.19 tsf

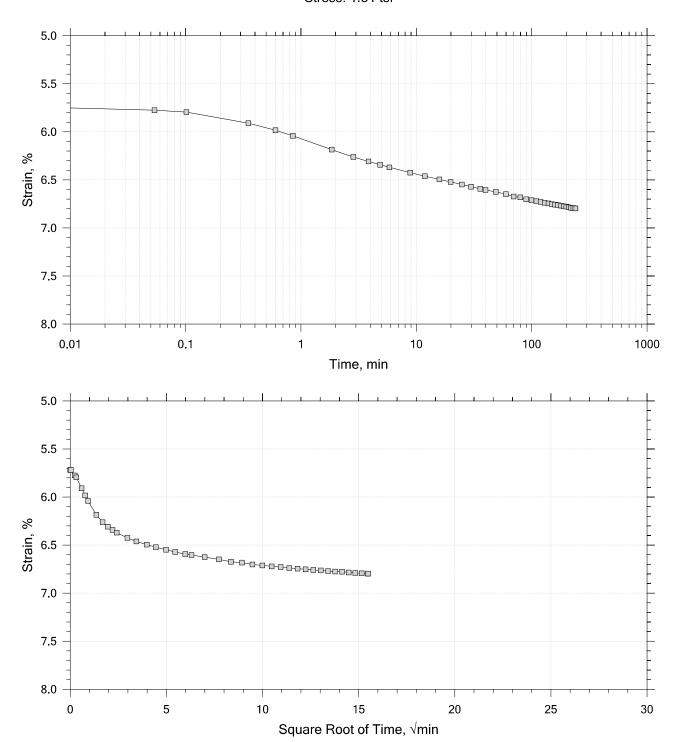


Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-201	Tested By: te	Checked By: anm	
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'	
Test No.: IP-1	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf			

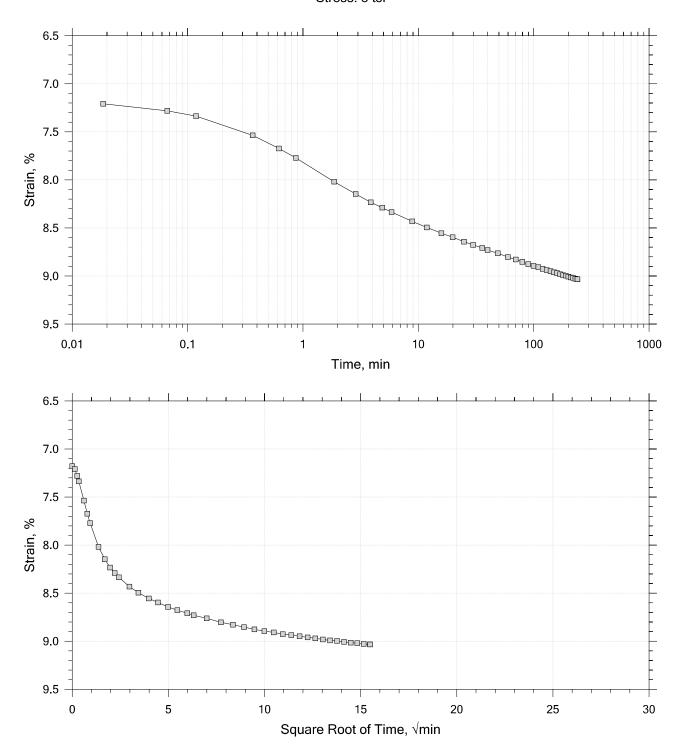
9


Time Curve 9 of 15 Constant Load Step Stress: 0.38 tsf

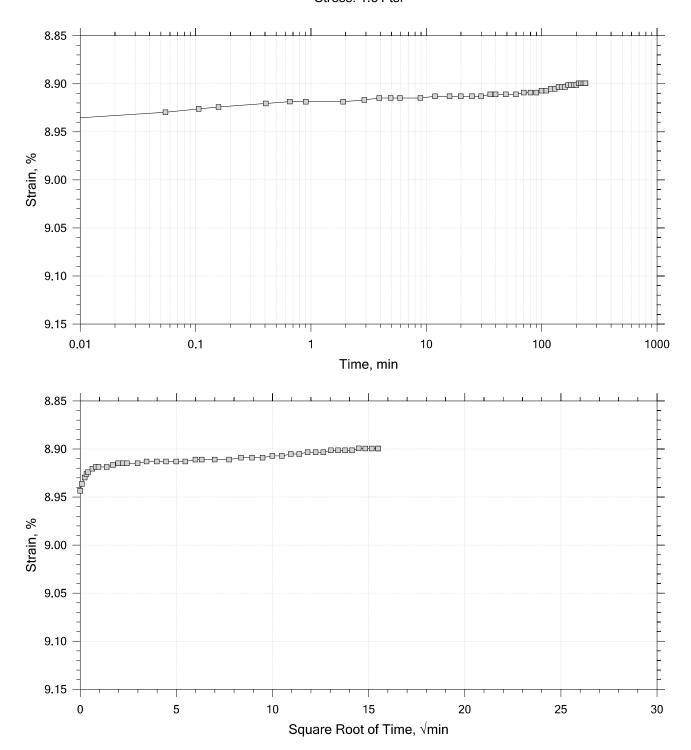
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 10 of 15 Constant Load Step Stress: 0.76 tsf

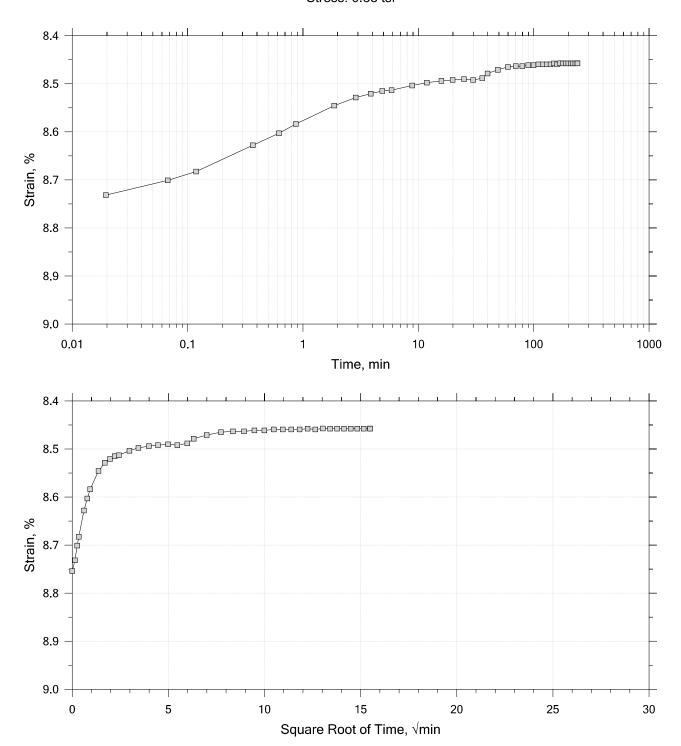
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 11 of 15 Constant Load Step Stress: 1.51 tsf

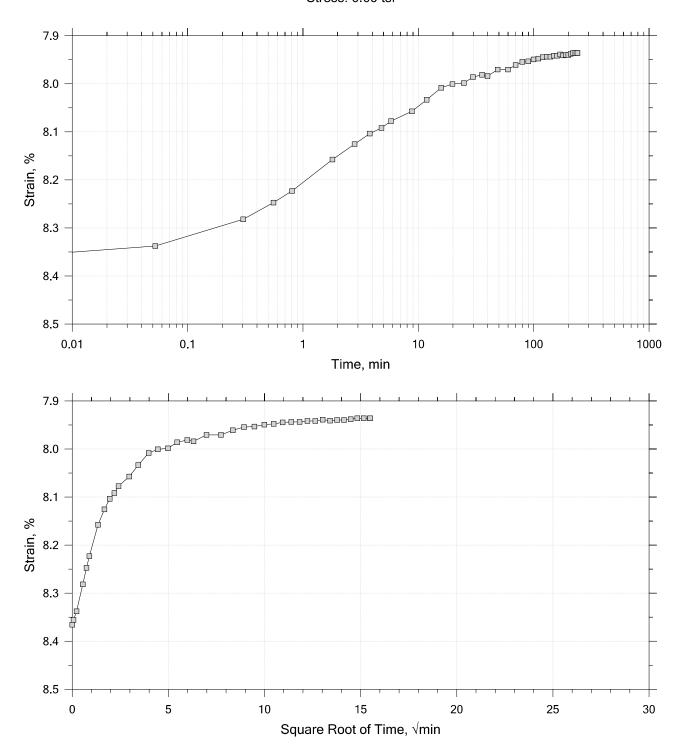
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 12 of 15 Constant Load Step Stress: 3 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-201	Tested By: te	Checked By: anm	
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'	
Test No.: IP-1	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf			


Time Curve 13 of 15 Constant Load Step Stress: 1.51 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-201	Tested By: te	Checked By: anm
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'
Test No.: IP-1	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf		


Time Curve 14 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-201	Tested By: te	Checked By: anm		
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'		
Test No.: IP-1	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf				

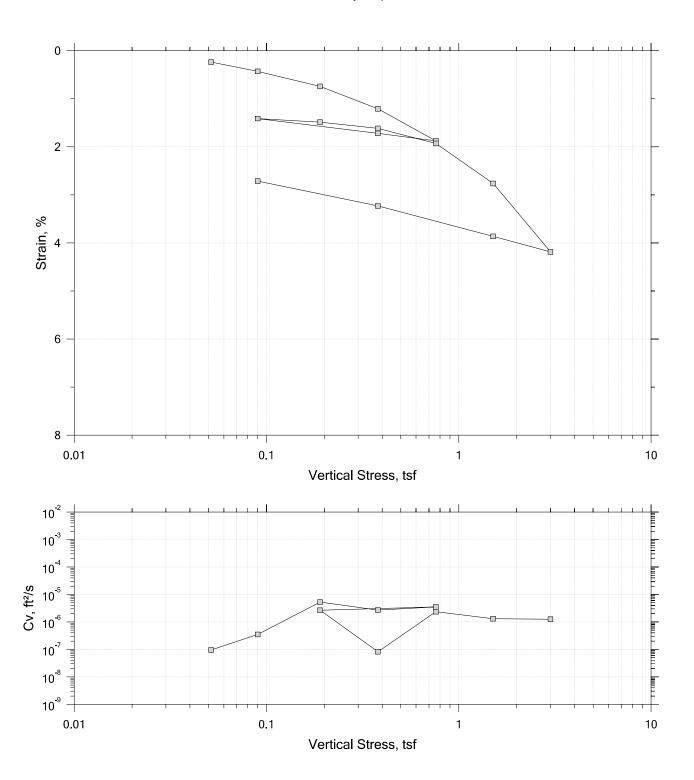
Time Curve 15 of 15 Constant Load Step Stress: 0.09 tsf

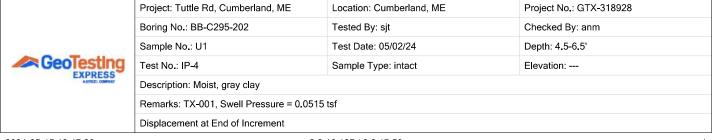
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-201	Tested By: te	Checked By: anm		
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'		
Test No.: IP-1	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf				

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.76	Liquid Limit: 37
Initial Height: 1.00 in	Initial Void Ratio: 0.756	Plastic Limit: 24
Final Height: 0,88 in	Final Void Ratio: 0.545	Plasticity Index: 13

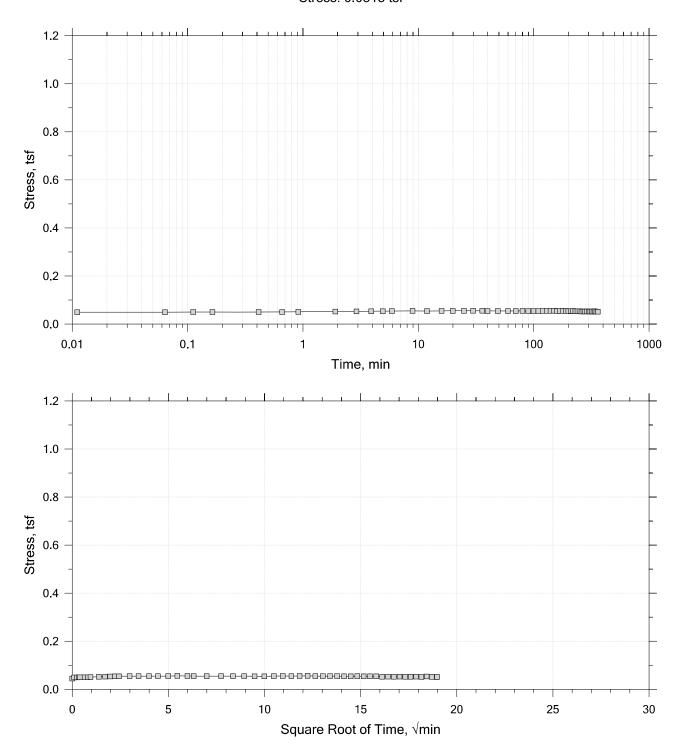
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E9867	RING		E9726
Mass Container, gm	8.32	108.52	108.52	8.29
Mass Container + Wet Soil, gm	181.35	268.35	260	163.39
Mass Container + Dry Soil, gm	147.18	235.02	235.02	137.81
Mass Dry Soil, gm	138.86	126.5	126.5	129.52
Water Content, %	24.61	26.35	19.75	19.75
Void Ratio		0.76	0.55	
Degree of Saturation, %		96.24	100.00	
Dry Unit Weight, pcf		98.172	111.56	

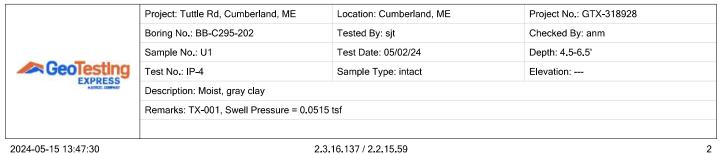
Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

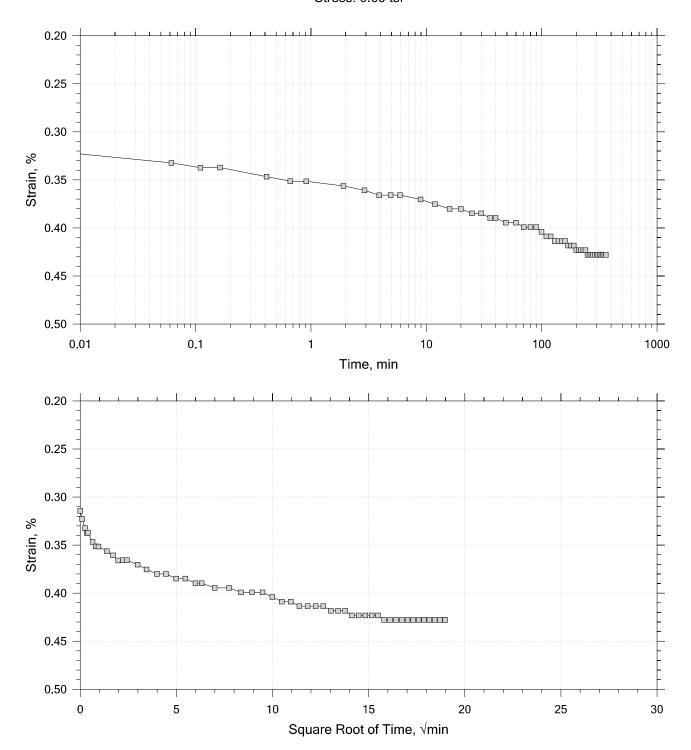

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-201	Tested By: te	Checked By: anm		
Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'		
Test No.: IP-1	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf				


Square Root of Time Coefficients

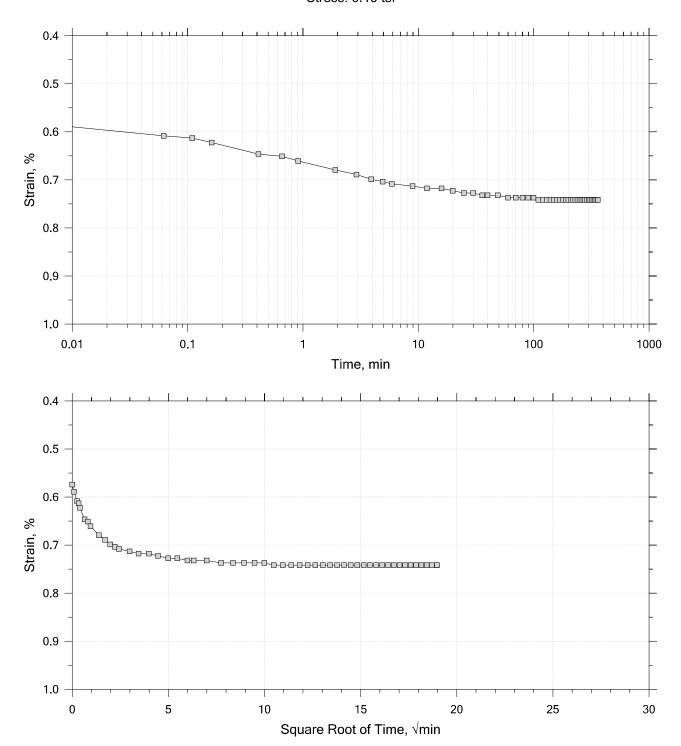
Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k in/s
1	0.0518	0.01569	0.729	1.57	6.787	5.12e-04	3.03e-01	4.04e-07
2	0.0900	0.02050	0.720	2.05	25.414	1.34e-04	1.26e-01	4.39e-08
3	0.190	0.02872	0.706	2.87	9.050	3.71e-04	8.21e-02	7.94e-08
4	0.380	0.04058	0.685	4.06	16.918	1.95e-04	6.24e-02	3.16e-08
5	0.760	0.05223	0.664	5.22	11.964	2.69e-04	3.07e-02	2.14e-08
6	0.380	0.05101	0.667	5.10	3.362	9.45e-04	3.22e-03	7.92e-09
7	0.0900	0.04666	0.674	4.67	2.673	1.20e-03	1.50e-02	4.67e-08
8	0.190	0.04814	0.672	4.81	2.689	1.19e-03	1.48e-02	4.60e-08
9	0.380	0.05039	0.668	5.04	2.898	1.10e-03	1.18e-02	3.39e-08
10	0.760	0.05452	0.660	5.45	17.163	1.85e-04	1.09e-02	5.23e-09
11	1.51	0.06796	0.637	6.80	14.163	2.20e-04	1.79e-02	1.02e-08
12	3.00	0.09034	0.598	9.03	14.340	2.09e-04	1.50e-02	8.16e-09
13	1.51	0.08899	0.600	8.90	202.966	1.44e-05	9 . 00e-04	3.38e-11
14	0.380	0.08457	0.608	8.46	3.056	9.64e-04	3.91e-03	9.81e-09
15	0.0900	0.07936	0.617	7.94	8.057	3.70e-04	1.80e-02	1.73e-08


		Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
	Boring No.: BB-C295-201	Tested By: te	Checked By: anm		
		Sample No.: U1	Test Date: 4/22/24	Depth: 27-29'	
	GeoTesting EXPRESS	Test No.: IP-1 Sample Type: intact		Elevation:	
EAPKESS APPEL COMMAY	Description: Moist, gray clay				
	Remarks: System LTIII-A, Swell Pressure = 0.0518 tsf				
		Displacement at End of Increment			

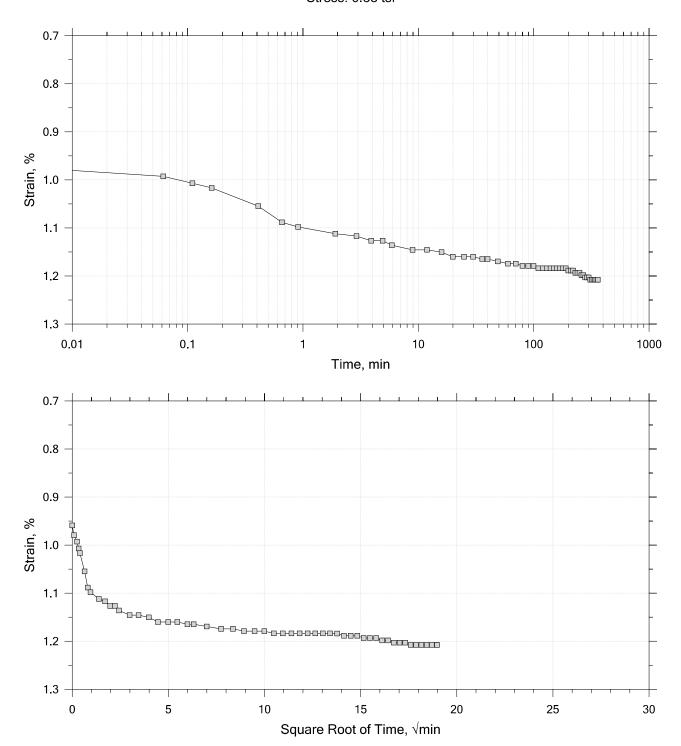

Summary Report



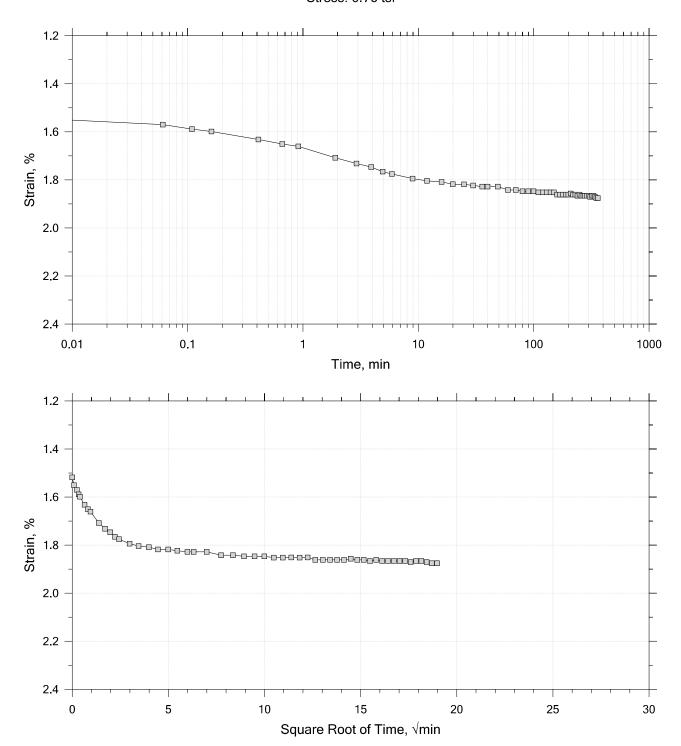
Time Curve 1 of 15 Constant Volume Step Stress: 0.0515 tsf


Time Curve 2 of 15 Constant Load Step Stress: 0.09 tsf

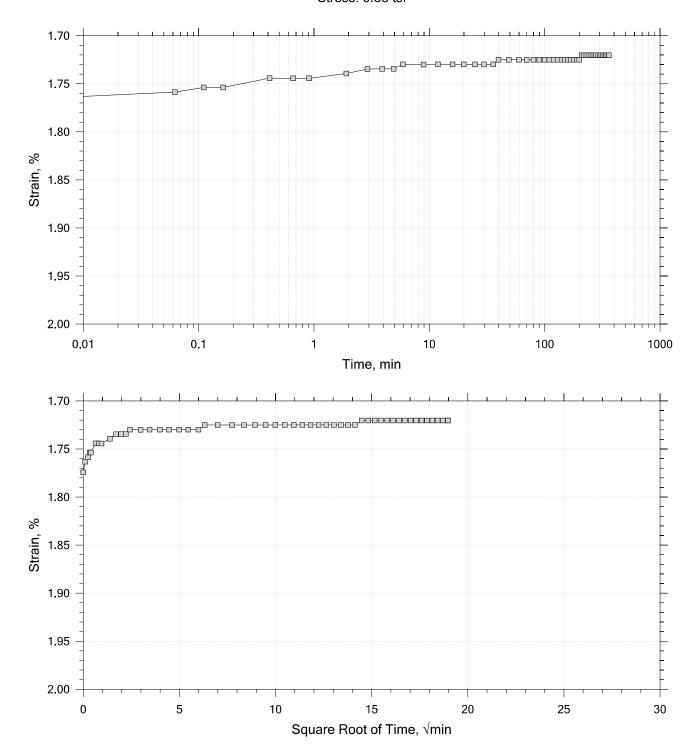
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'		
Test No.: IP-4	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: TX-001, Swell Pressure = 0.0515 tsf				


Time Curve 3 of 15 Constant Load Step Stress: 0.19 tsf

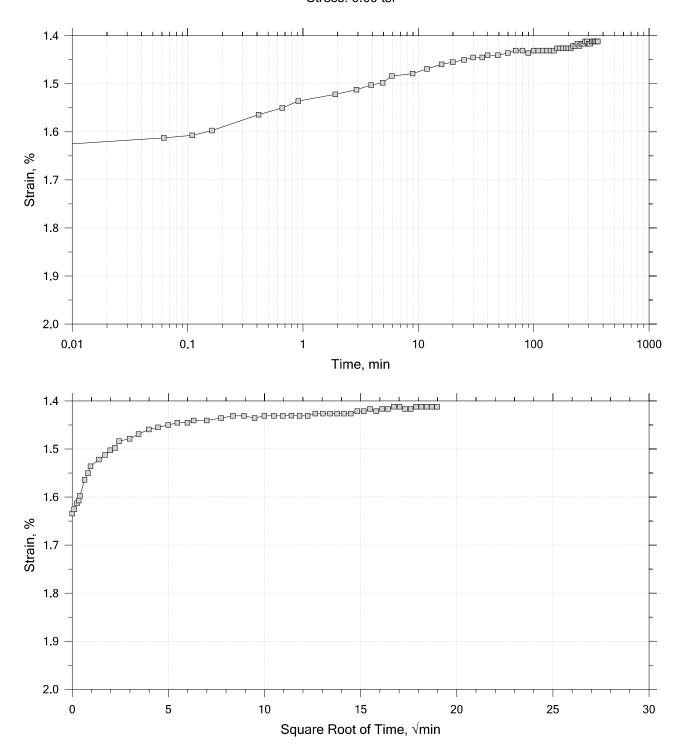
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'		
Test No.: IP-4	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: TX-001, Swell Pressure = 0.0515 tsf				


Time Curve 4 of 15 Constant Load Step Stress: 0.38 tsf

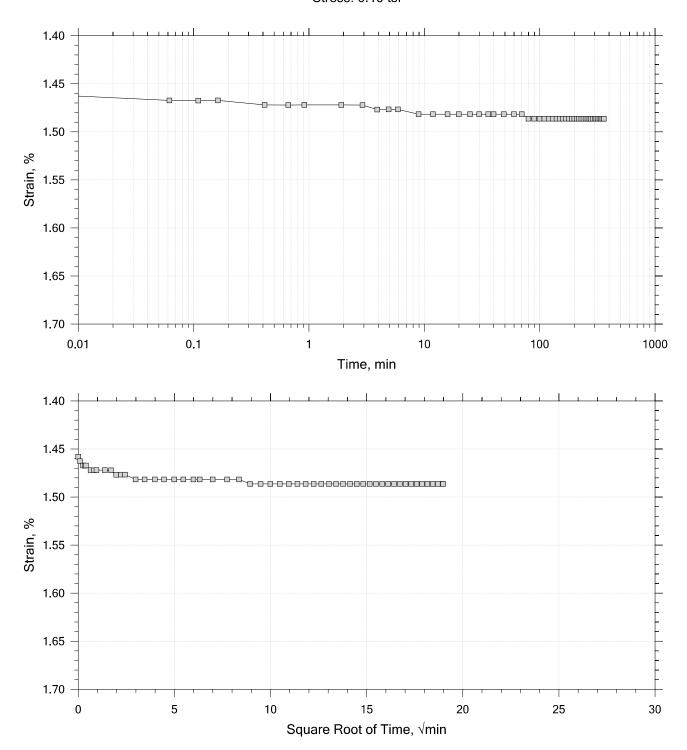
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'		
Test No.: IP-4	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: TX-001, Swell Pressure = 0.0515 tsf				


Time Curve 5 of 15 Constant Load Step Stress: 0.76 tsf

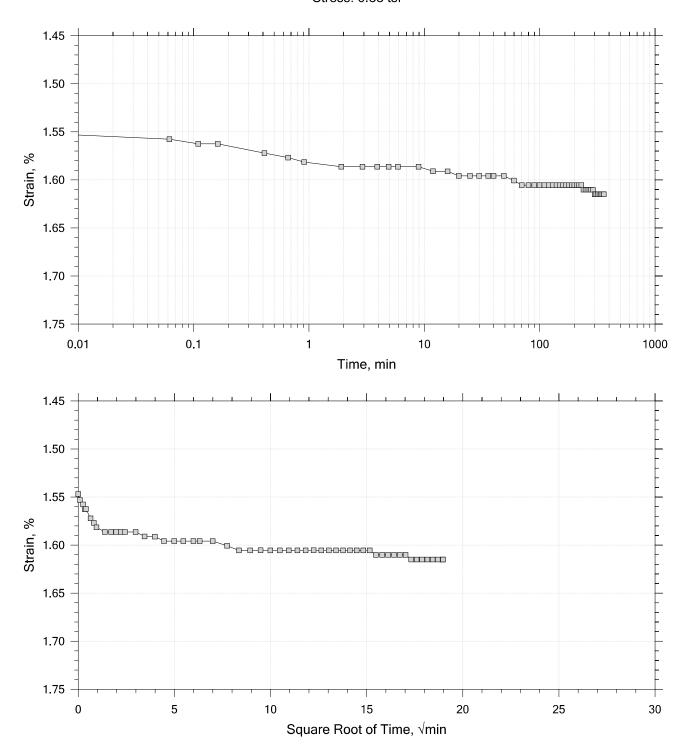
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928		
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'		
Test No.: IP-4	Sample Type: intact	Elevation:		
Description: Moist, gray clay				
Remarks: TX-001, Swell Pressure = 0.0515 tsf				


Time Curve 6 of 15 Constant Load Step Stress: 0.38 tsf

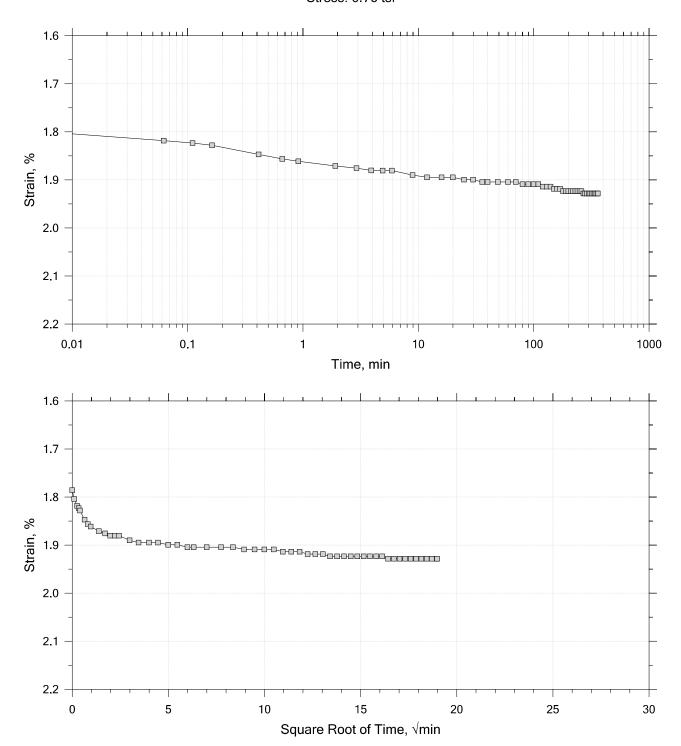
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 7 of 15 Constant Load Step Stress: 0.09 tsf

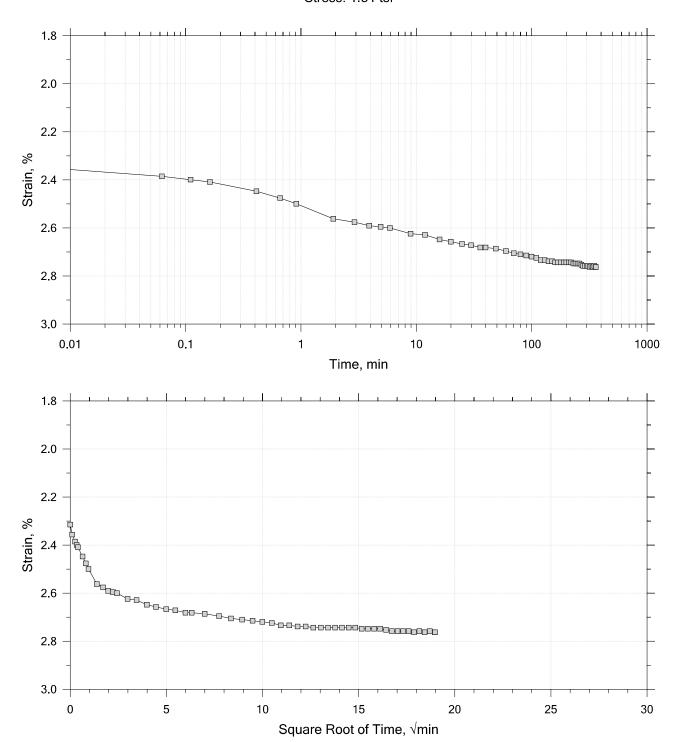
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24 Depth: 4.5-6.5'		
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 8 of 15 Constant Load Step Stress: 0.19 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 9 of 15 Constant Load Step Stress: 0.38 tsf

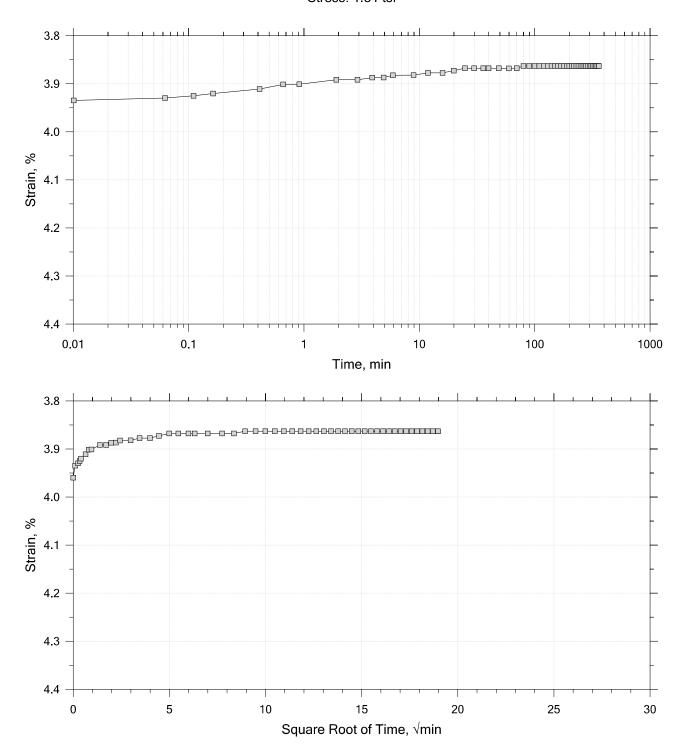
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 10 of 15 Constant Load Step Stress: 0.76 tsf

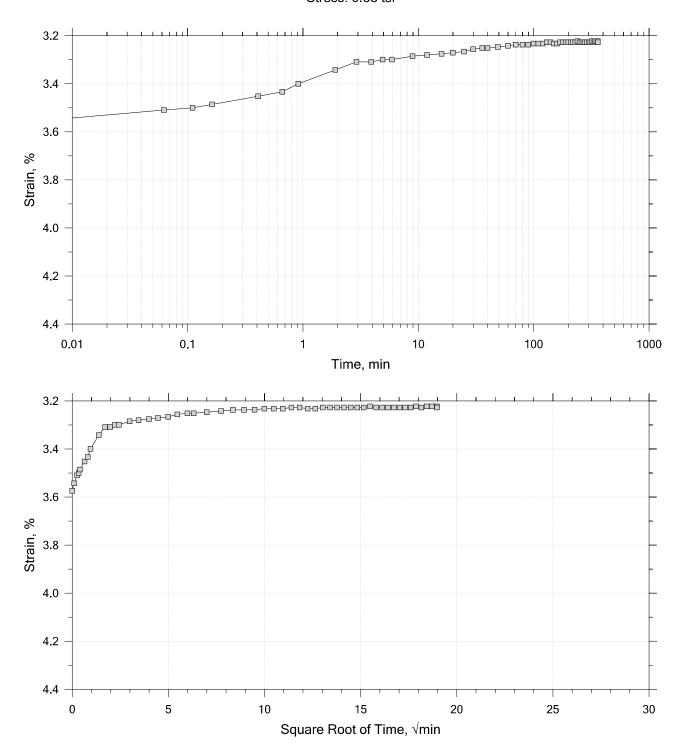
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			

Time Curve 11 of 15 Constant Load Step Stress: 1.51 tsf

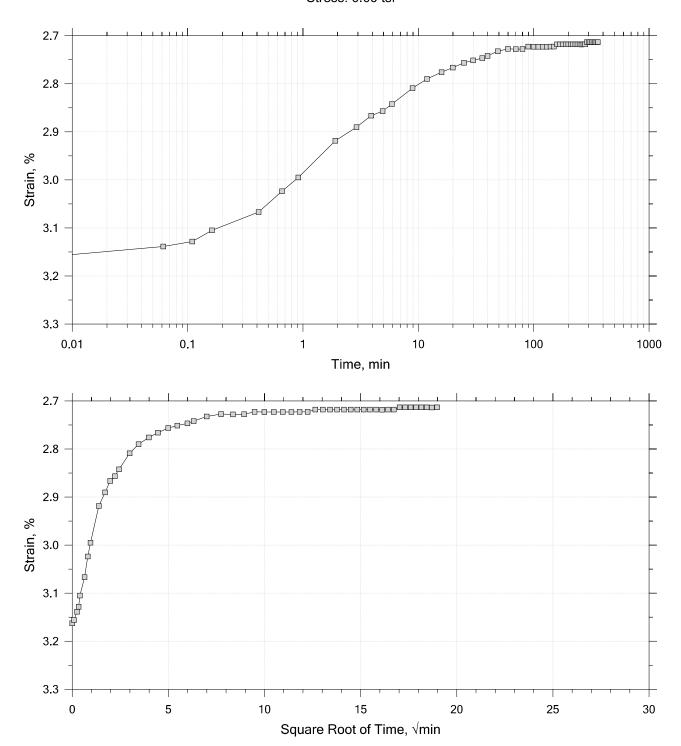
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 12 of 15 Constant Load Step Stress: 3 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	ing No.: BB-C295-202 Tested By: sjt		
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001_Swell Pressure = 0.0515 tsf			


Time Curve 13 of 15 Constant Load Step Stress: 1.51 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Time Curve 14 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			

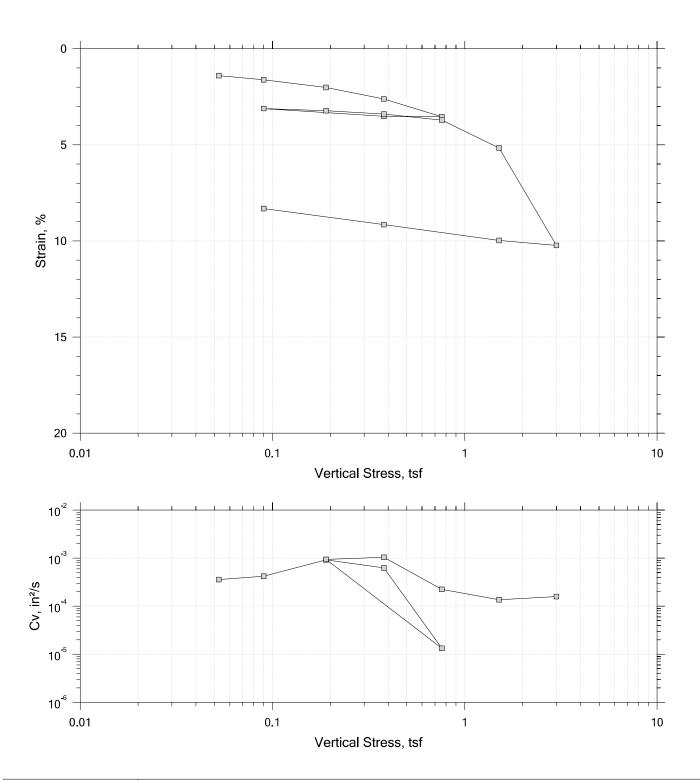
Time Curve 15 of 15 Constant Load Step Stress: 0.09 tsf

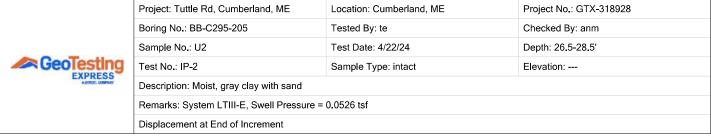
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			

Specimen Diameter: 2,50 in	Estimated Specific Gravity: 2,79	Liquid Limit: 44
Initial Height: 1.00 in	Initial Void Ratio: 0.838	Plastic Limit: 22
Final Height: 0.97 in	Final Void Ratio: 0,783	Plasticity Index: 22

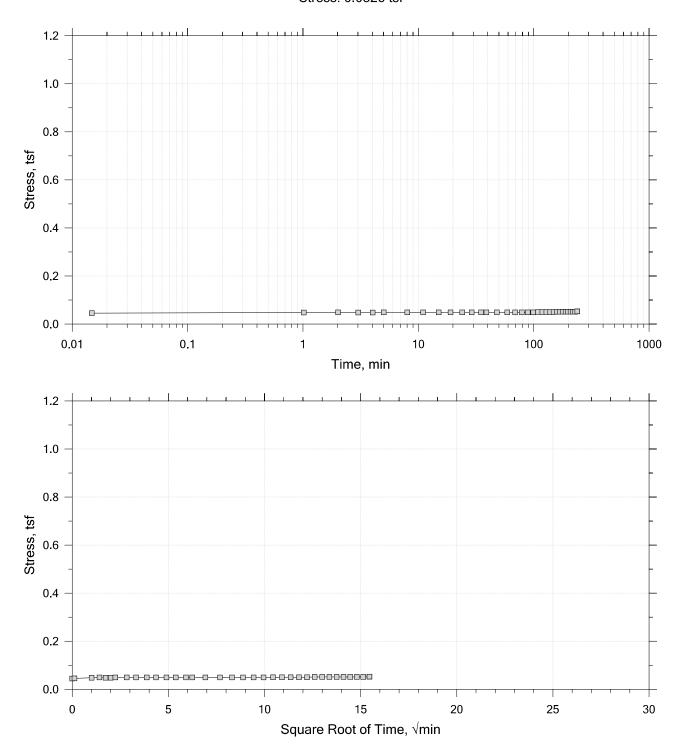
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E890	RING		E9486
Mass Container, gm	8.48	110.79	110.79	8.21
Mass Container + Wet Soil, gm	214.47	266.92	267	165.03
Mass Container + Dry Soil, gm	169.54	232.73	232.73	130.63
Mass Dry Soil, gm	161.06	121.94	121.94	122.42
Water Content, %	27.90	28.03	28.10	28.10
Void Ratio		0.84	0.78	
Degree of Saturation, %		93.20	100.00	
Dry Unit Weight, pcf		94.638	97.565	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

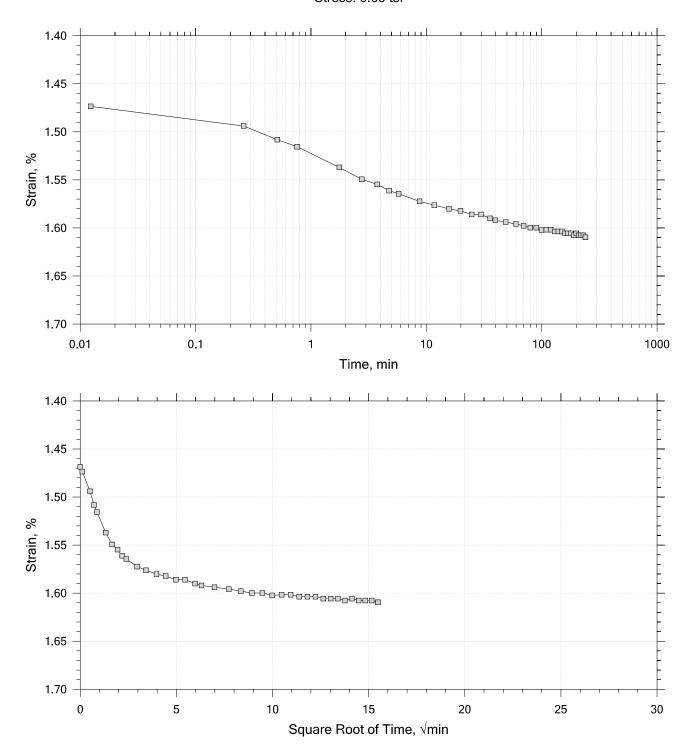

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
Test No.: IP-4	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-001, Swell Pressure = 0.0515 tsf			


Square Root of Time Coefficients

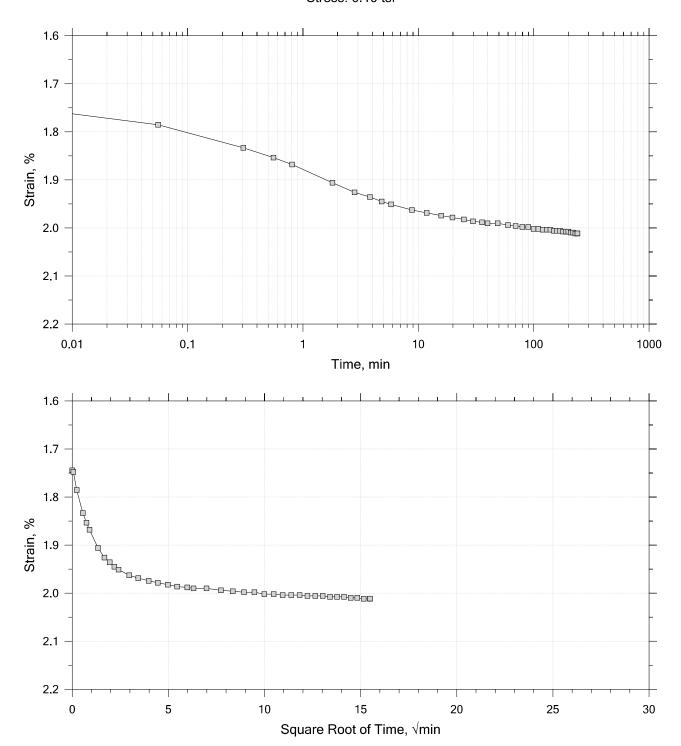
Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv ft²/s	Mv 1/tsf	k ft/day
1	0.0515	0.002356	0.834	0.236	258.408	9.47e-08	4.57e-02	1.17e-05
2	0.0900	0.004279	0.830	0.428	69.911	3.49e-07	5.00e-02	4.70e-05
3	0.190	0.007416	0.825	0.742	4.608	5.26e-06	3.14e-02	4.45e-04
4	0.380	0.01208	0.816	1.21	8.893	2.71e-06	2.45e-02	1.79e-04
5	0.760	0.01876	0.804	1.88	6.763	3.52e-06	1.76e-02	1.67e-04
6	0.380	0.01720	0.807	1.72	5.904	4.01e-06	4.09e-03	4.42e-05
7	0.0900	0.01412	0.812	1.41	9.607	2.47e-06	1.06e-02	7.10e-05
8	0.190	0.01486	0.811	1.49	8.912	2.67e-06	7.45e-03	5.38e-05
9	0.380	0.01615	0.808	1.61	291.434	8.16e-08	6.77e-03	1.49e-06
10	0.760	0.01928	0.803	1.93	10.103	2.34e-06	8.24e-03	5.21e-05
11	1.51	0.02762	0.787	2.76	18.001	1.30e-06	1.11e-02	3.90e-05
12	3.00	0.04184	0.761	4.18	18.209	1.26e-06	9 . 54e-03	3.23e-05
13	1.51	0.03863	0.767	3.86	6.002	3.77e-06	2.15e-03	2.19e-05
14	0.380	0.03227	0.779	3.23	4.269	5.35e-06	5.62e-03	8.11e-05
15	0.0900	0.02713	0.788	2.71	6.994	3.30e-06	1.77e-02	1.58e-04


	Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
	Boring No.: BB-C295-202	Tested By: sjt	Checked By: anm	
	Sample No.: U1	Test Date: 05/02/24	Depth: 4.5-6.5'	
GeoTesting EXPRESS	Test No.: IP-4	Sample Type: intact	Elevation:	
ASTRESS ASTRESS	Description: Moist, gray clay			
	Remarks: TX-001, Swell Pressure = 0.0515 tsf			
	Displacement at End of Increment			

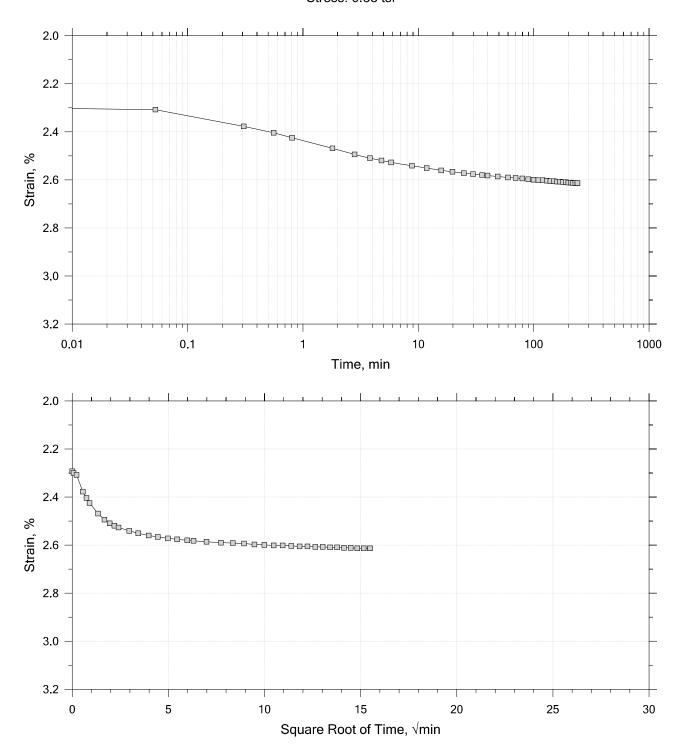
Summary Report



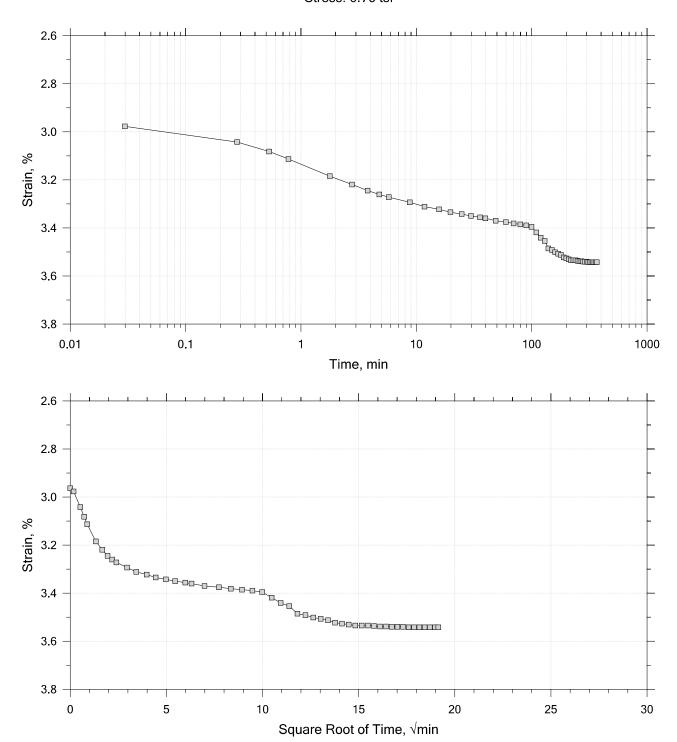
Time Curve 1 of 15 Constant Volume Step Stress: 0.0526 tsf


Time Curve 2 of 15 Constant Load Step Stress: 0.09 tsf

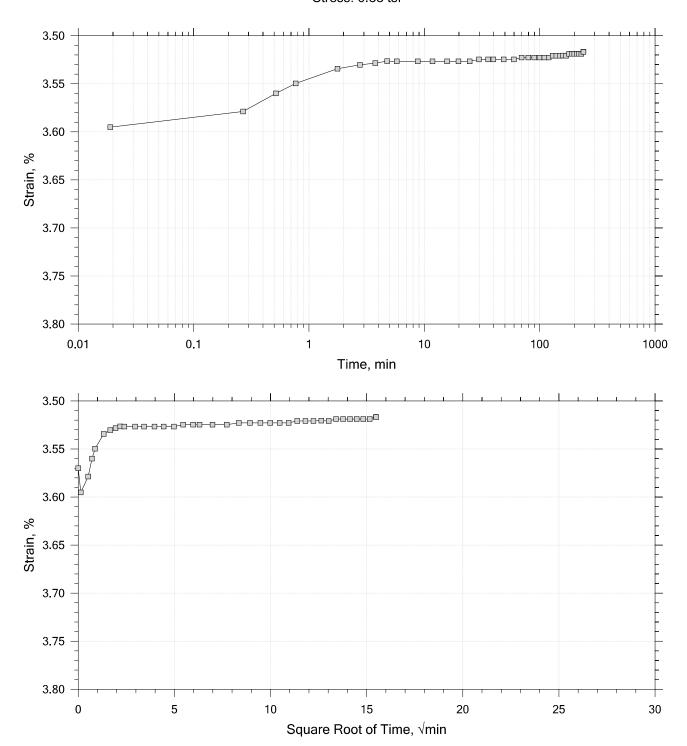
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 3 of 15 Constant Load Step Stress: 0.19 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-205	Tested By: te	Checked By: anm
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
Test No.: IP-2	Sample Type: intact	Elevation:
Description: Moist, gray clay with sand		
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		


Time Curve 4 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 5 of 15 Constant Load Step Stress: 0.76 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-205	Tested By: te	Checked By: anm
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
Test No.: IP-2	Sample Type: intact	Elevation:
Description: Moist, gray clay with sand		
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		

Time Curve 6 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-205	Tested By: te	Checked By: anm
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
Test No.: IP-2	Sample Type: intact	Elevation:
Description: Moist, gray clay with sand		
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		

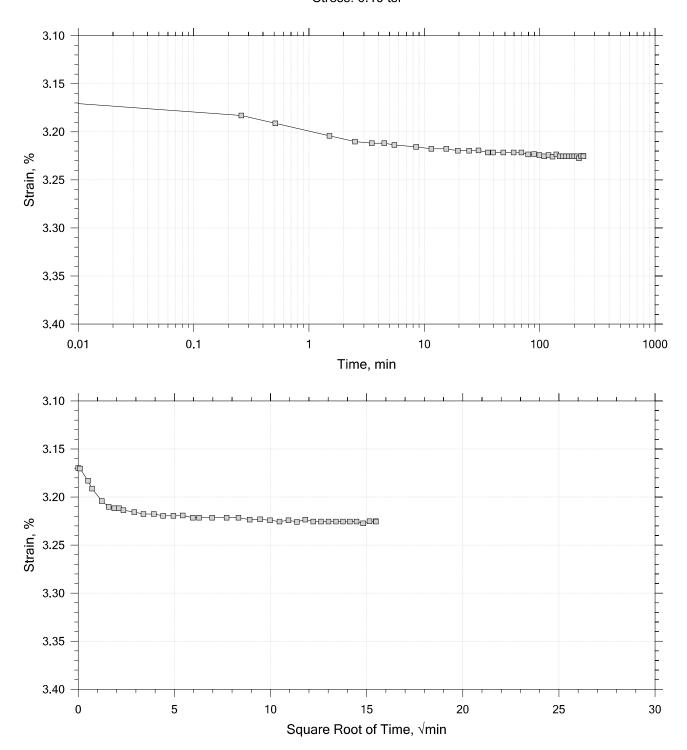
Time Curve 7 of 15 **Constant Load Step** Stress: 0.09 tsf

Project: Tuttle Rd, Cumberland, ME

Geolesting	Test No.: IP-2	Sample Type: intact	Elevation:	
AMINIZI COMPANY	Description: Moist, gray clay with sand			
	Remarks: System LTIII-E, Swell Pressure =	0.0526 tsf		

Test Date: 4/22/24

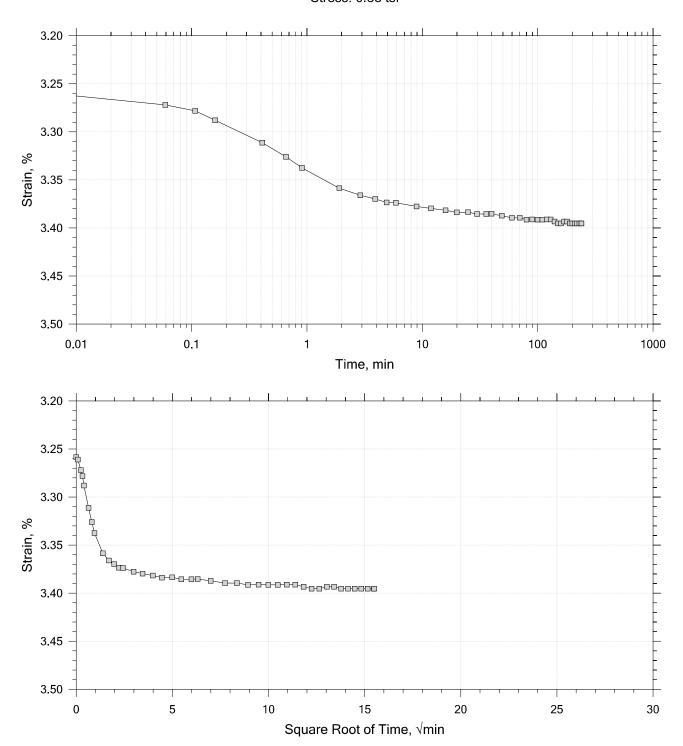
Tested By: te


Location: Cumberland, ME

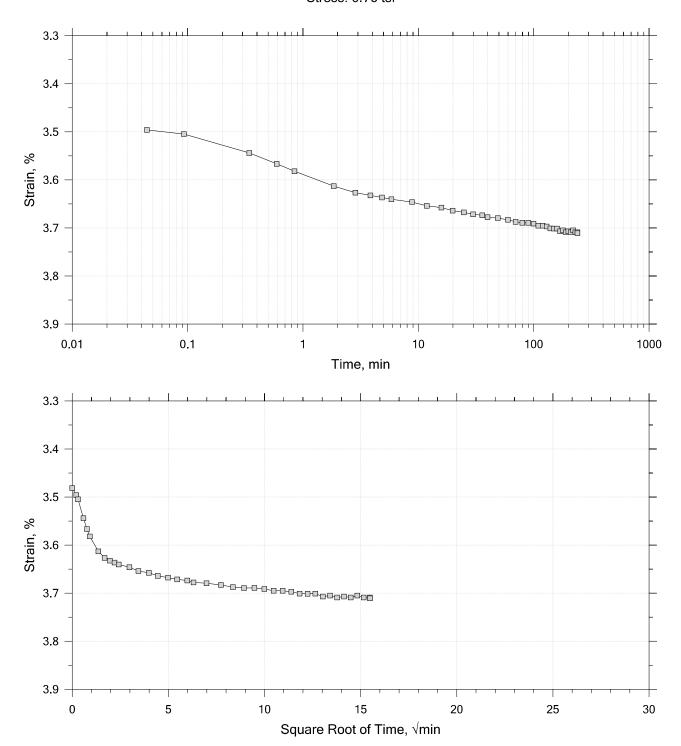
Project No.: GTX-318928

Checked By: anm

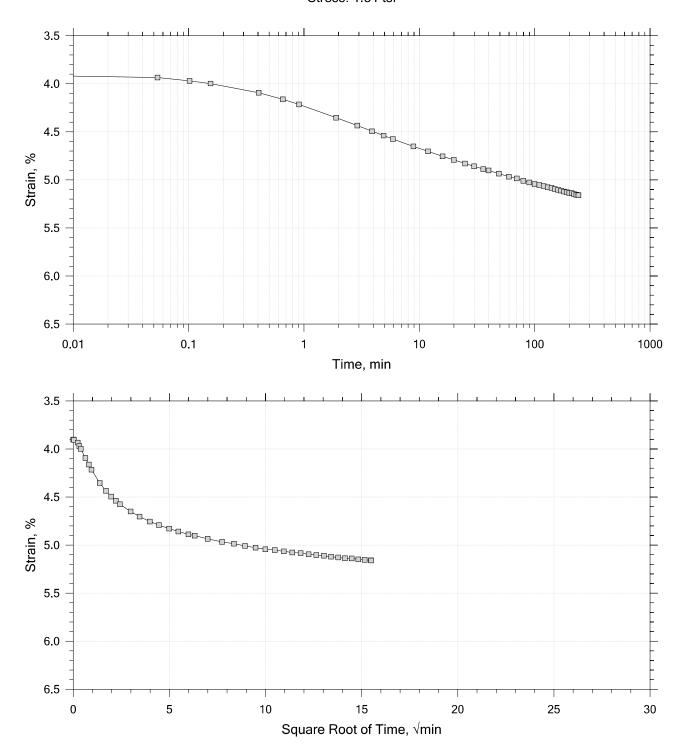
Depth: 26.5-28.5'


Time Curve 8 of 15 Constant Load Step Stress: 0.19 tsf

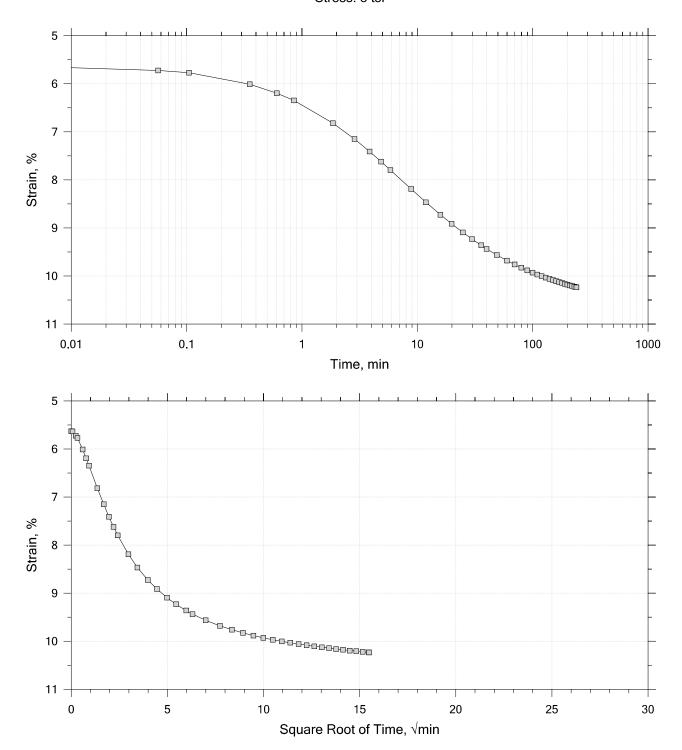
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-205	Tested By: te	Checked By: anm
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
Test No.: IP-2	Sample Type: intact	Elevation:
Description: Moist, gray clay with sand		
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		


Time Curve 9 of 15 Constant Load Step Stress: 0.38 tsf

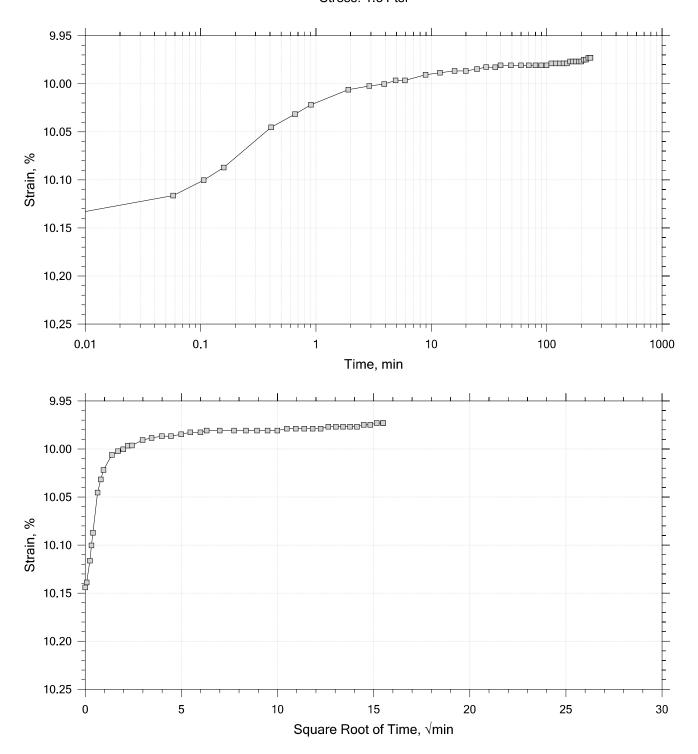
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 10 of 15 Constant Load Step Stress: 0.76 tsf

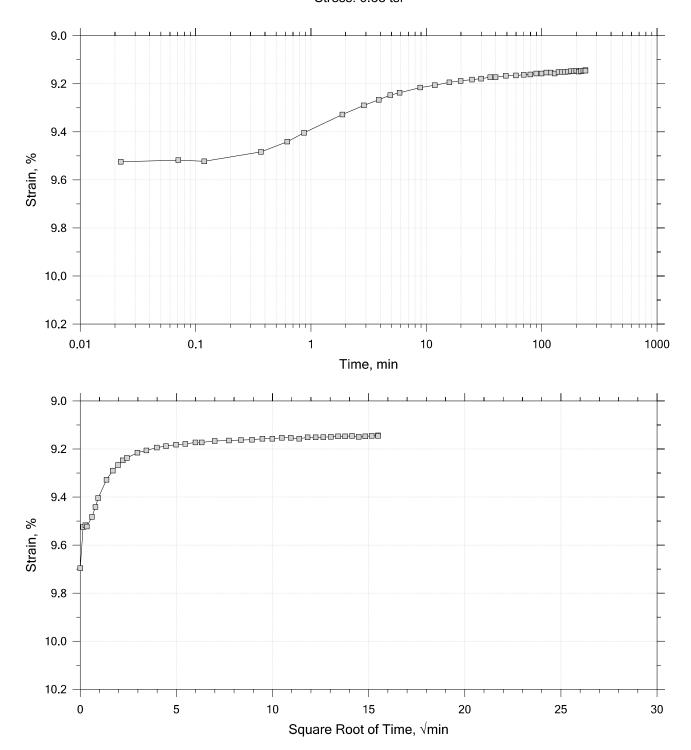
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-205	Tested By: te	Checked By: anm
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
Test No.: IP-2	Sample Type: intact	Elevation:
Description: Moist, gray clay with sand		
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		


Time Curve 11 of 15 Constant Load Step Stress: 1.51 tsf

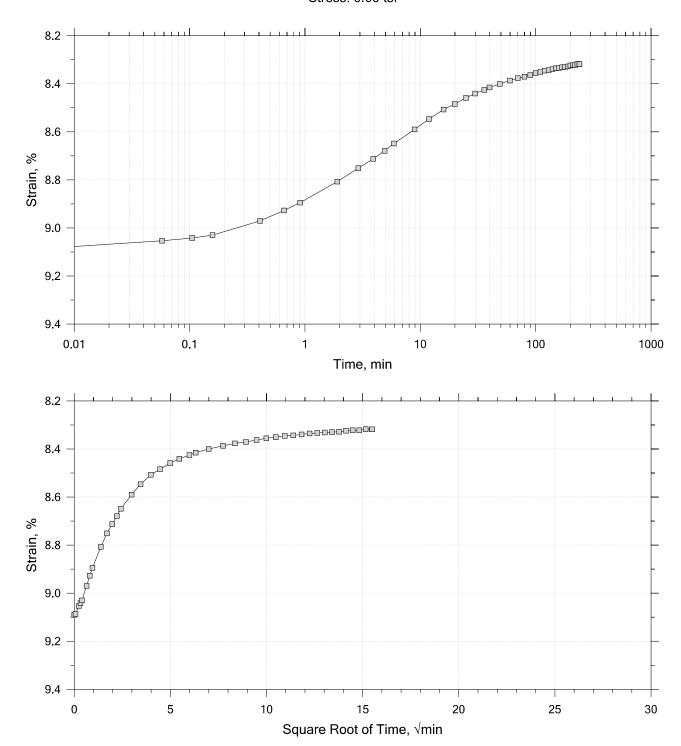
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 12 of 15 Constant Load Step Stress: 3 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 13 of 15 Constant Load Step Stress: 1.51 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Time Curve 14 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			

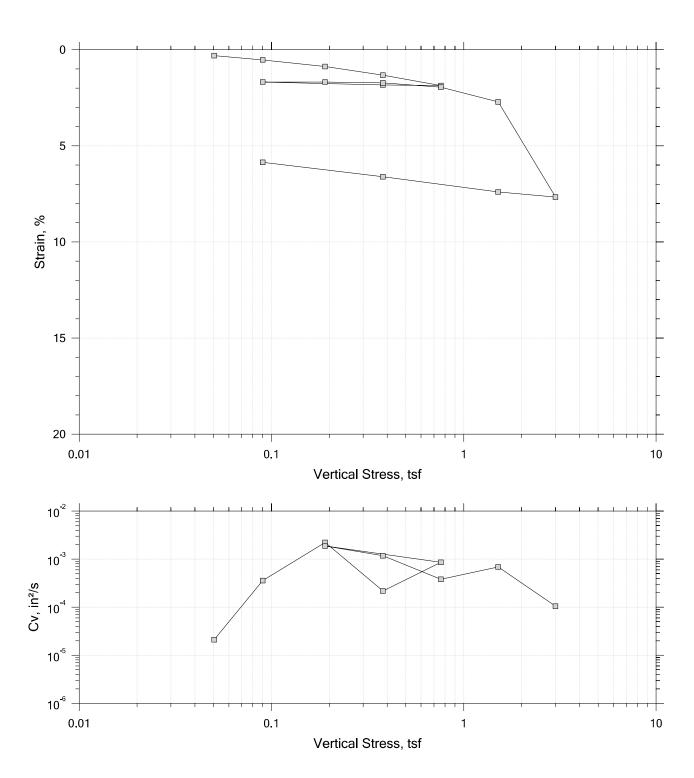
Time Curve 15 of 15 Constant Load Step Stress: 0.09 tsf

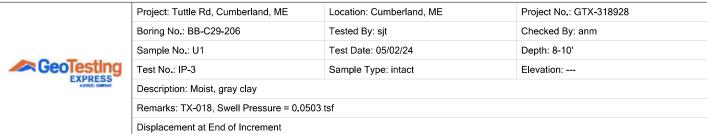
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.75	Liquid Limit:
Initial Height: 1.00 in	Initial Void Ratio: 0.948	Plastic Limit:
Final Height: 0,88 in	Final Void Ratio: 0.714	Plasticity Index:

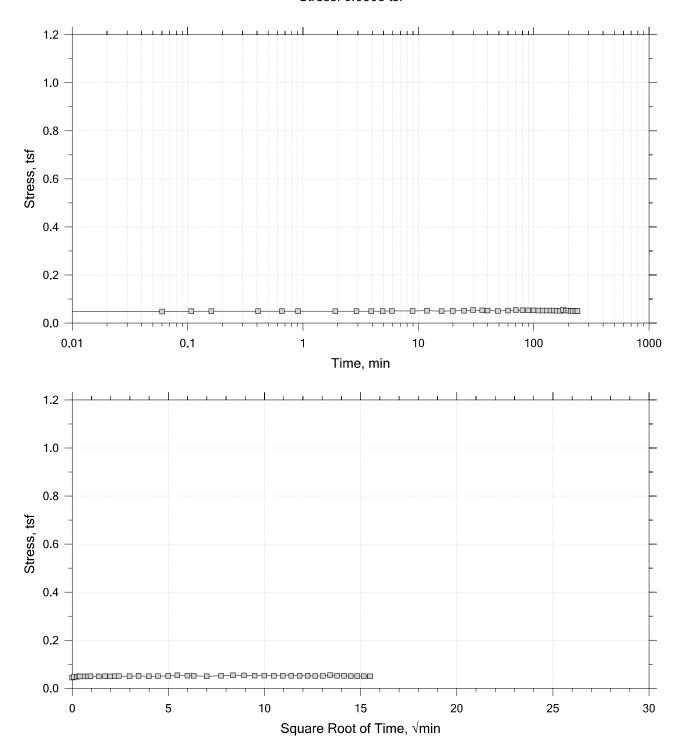
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E2680	RING		E3151
Mass Container, gm	8.35	110.03	110.03	8.29
Mass Container + Wet Soil, gm	207.16	262.54	253	155.63
Mass Container + Dry Soil, gm	158.16	223.5	223.5	125.23
Mass Dry Soil, gm	149.81	113.47	113.47	116.94
Water Content, %	32.71	34.40	26.00	26.00
Void Ratio		0.95	0.71	
Degree of Saturation, %		99.71	100.00	
Dry Unit Weight, pcf		88.063	100.07	

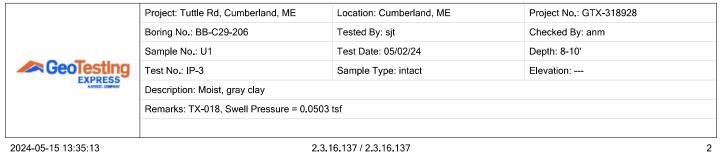
Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

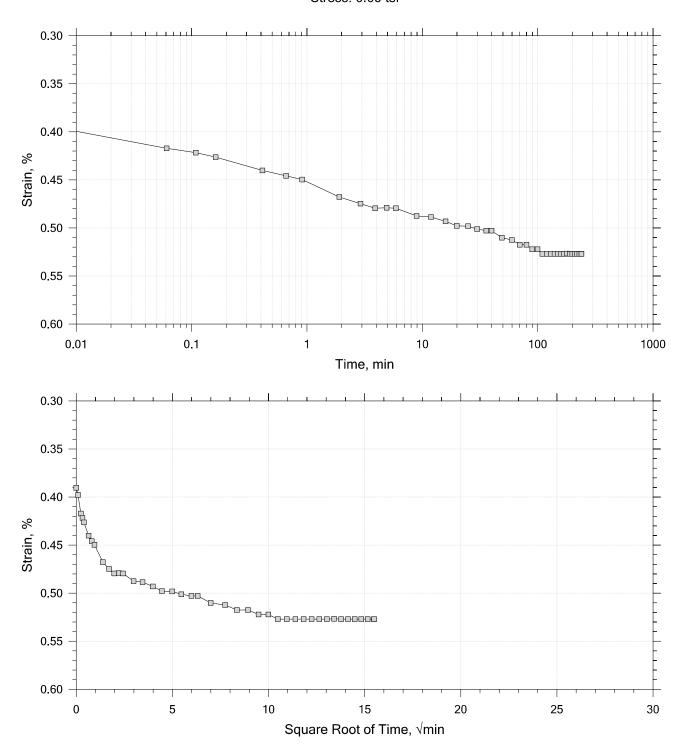

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-205	Tested By: te	Checked By: anm	
Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'	
Test No.: IP-2	Sample Type: intact	Elevation:	
Description: Moist, gray clay with sand			
Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf			


Square Root of Time Coefficients

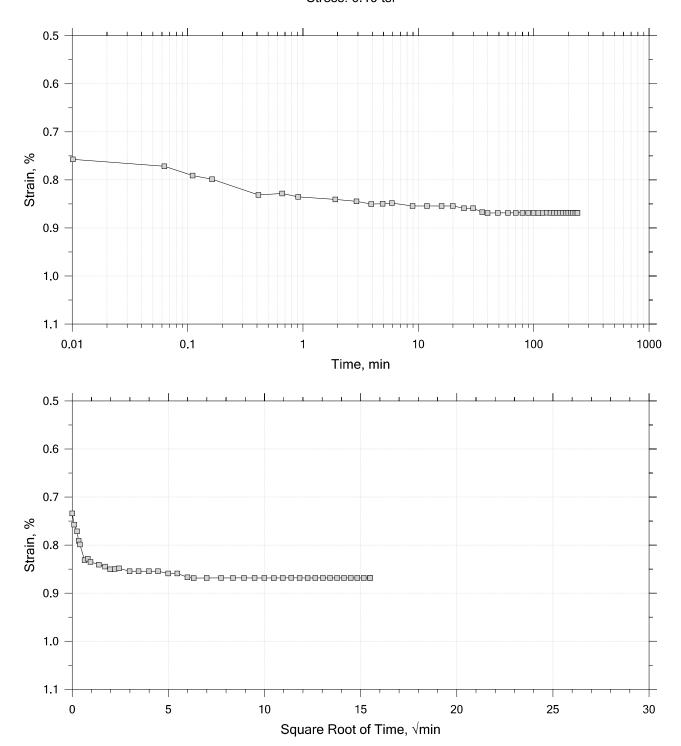
Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k in/s
1	0.0526	0.01400	0.921	1.40	9.724	3.58e-04	2.66e-01	2.48e-07
2	0.0900	0.01610	0.917	1.61	8.180	4.19e-04	5.61e-02	6.11e-08
3	0.190	0.02011	0.909	2.01	3.695	9.22e-04	4.02e-02	9.63e-08
4	0.380	0.02613	0.897	2.61	5.392	6.25e-04	3.17e-02	5.15e-08
5	0.760	0.03542	0.879	3.54	249.987	1.33e-05	2.44e-02	8.44e-10
6	0.380	0.03517	0.880	3.52	4.081	8.06e-04	6.67e-04	1.40e-09
7	0.0900	0.03112	0.888	3.11	5.692	5.80e-04	1.39e-02	2.11e-08
8	0.190	0.03225	0.885	3.23	3.508	9.44e-04	1.13e-02	2.78e-08
9	0.380	0.03395	0.882	3.40	3.176	1.04e-03	8.94e-03	2.42e-08
10	0.760	0.03711	0.876	3.71	14.656	2.24e-04	8.30e-03	4.84e-09
11	1.51	0.05160	0.848	5.16	23.639	1.37e-04	1.93e-02	6.86e-09
12	3.00	0.1023	0.749	10.2	18.948	1.59e-04	3.41e-02	1.41e-08
13	1.51	0.09973	0.754	9.97	1.800	1.59e-03	1.76e-03	7 . 25e-09
14	0.380	0.09145	0.770	9.15	9.347	3.09e-04	7.33e-03	5.89e-09
15	0.0900	0.08318	0.786	8.32	13.791	2.13e-04	2.85e-02	1.58e-08


	Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
	Boring No.: BB-C295-205	Tested By: te	Checked By: anm
	Sample No.: U2	Test Date: 4/22/24	Depth: 26.5-28.5'
GeoTesting EXPRESS	Test No.: IP-2	Sample Type: intact	Elevation:
ASTRESS ASTRESS COMPANY	Description: Moist, gray clay with sand		
	Remarks: System LTIII-E, Swell Pressure = 0.0526 tsf		
	Displacement at End of Increment		

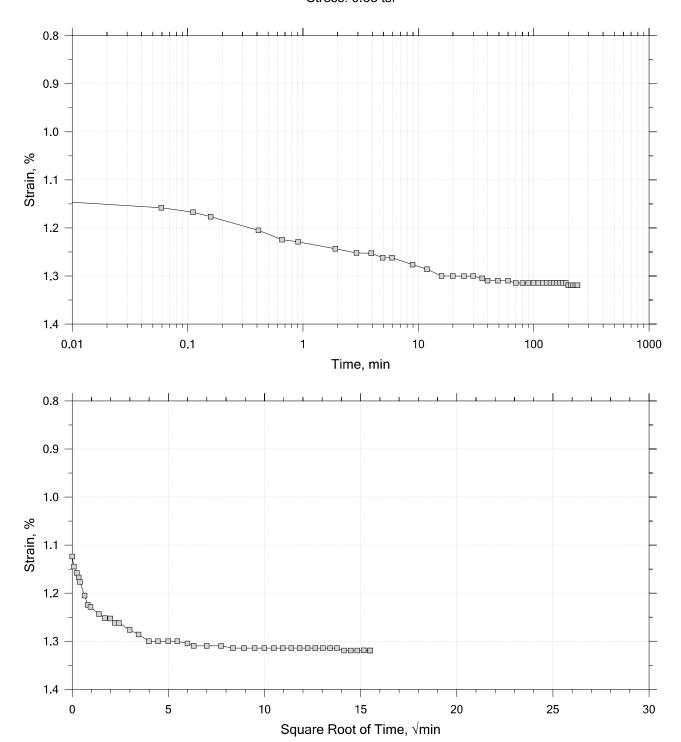

Summary Report



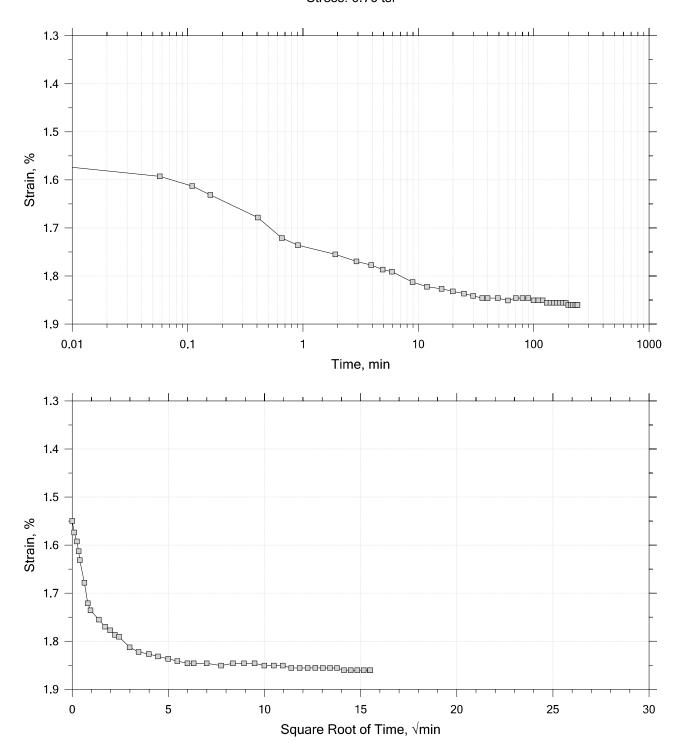
Time Curve 1 of 15 Constant Volume Step Stress: 0.0503 tsf


Time Curve 2 of 15 Constant Load Step Stress: 0.09 tsf

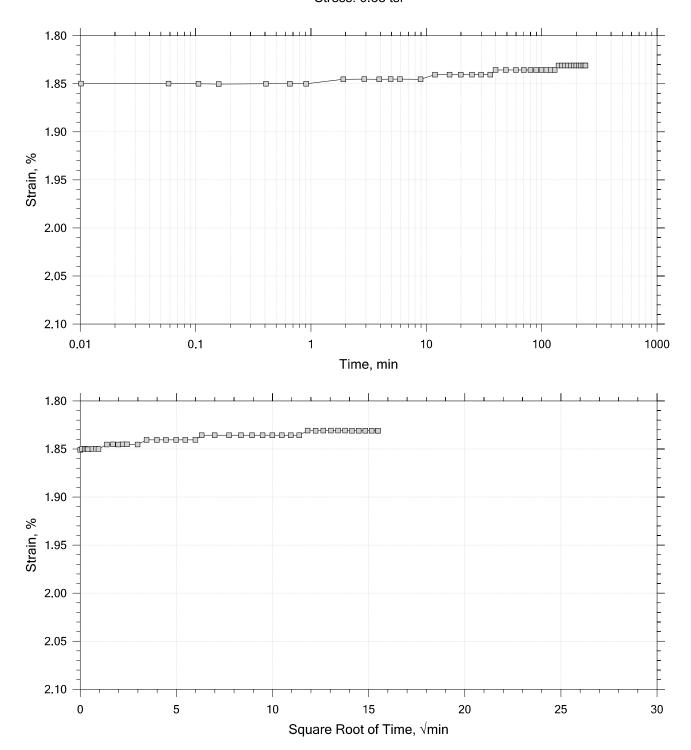
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 3 of 15 Constant Load Step Stress: 0.19 tsf

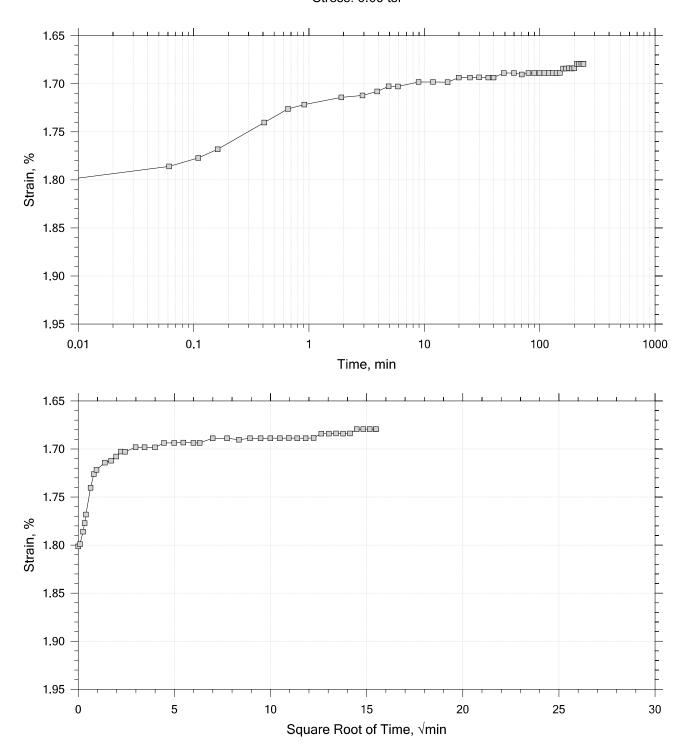
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 4 of 15 Constant Load Step Stress: 0.38 tsf

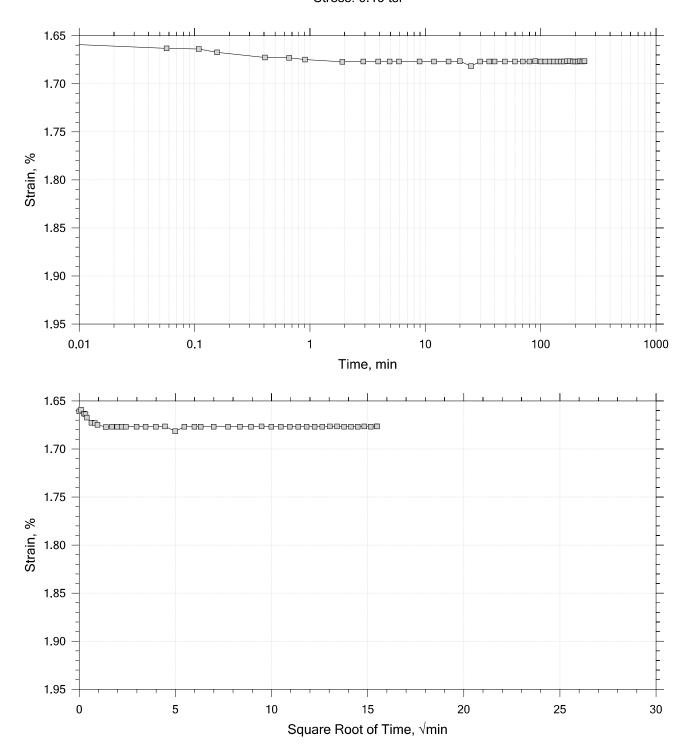
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 5 of 15 Constant Load Step Stress: 0.76 tsf

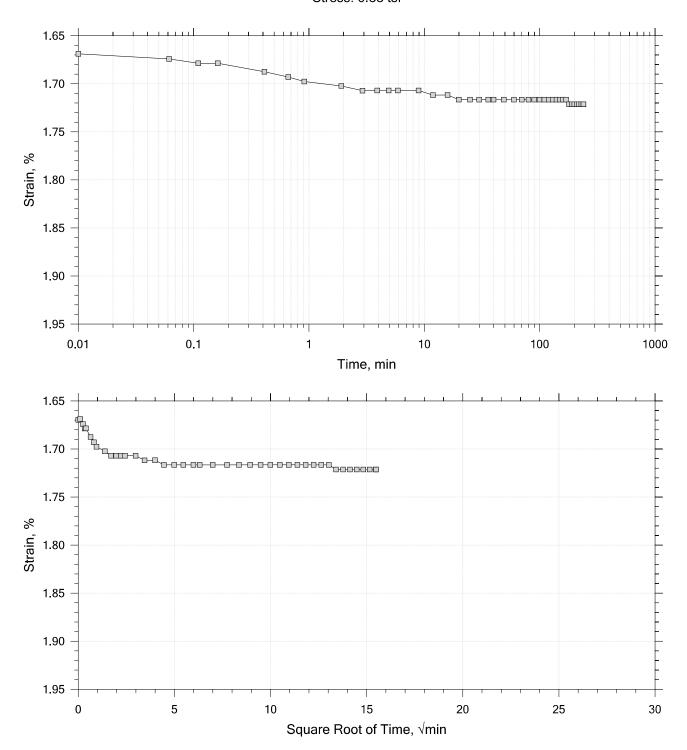
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 6 of 15 Constant Load Step Stress: 0.38 tsf

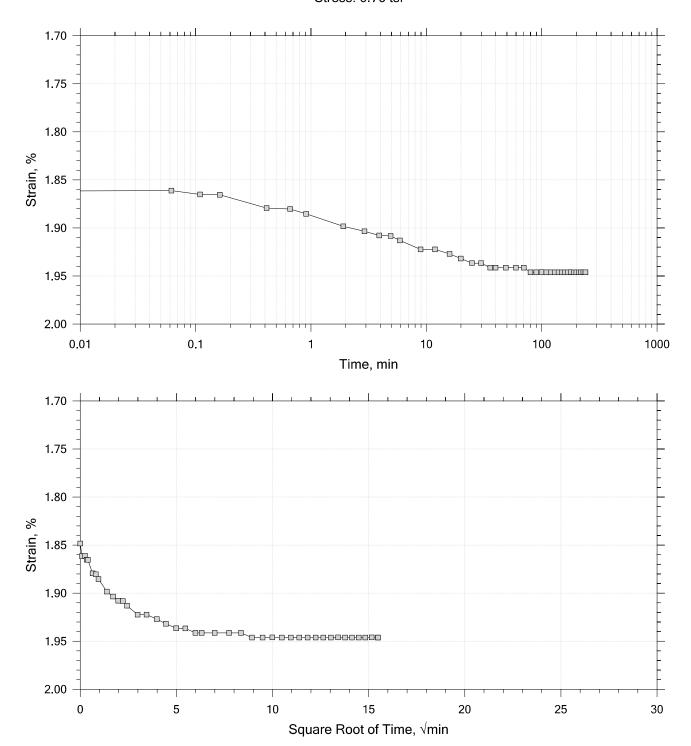
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt Checked By: anm		
ample No.: U1 Test Date: 05/02/24		Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 7 of 15 Constant Load Step Stress: 0.09 tsf

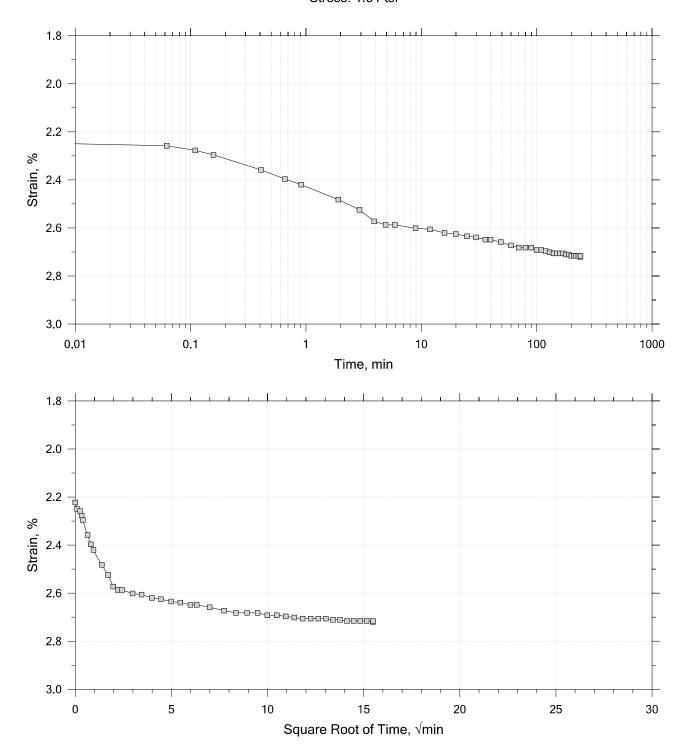
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24 Depth: 8-10'		
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 8 of 15 Constant Load Step Stress: 0.19 tsf

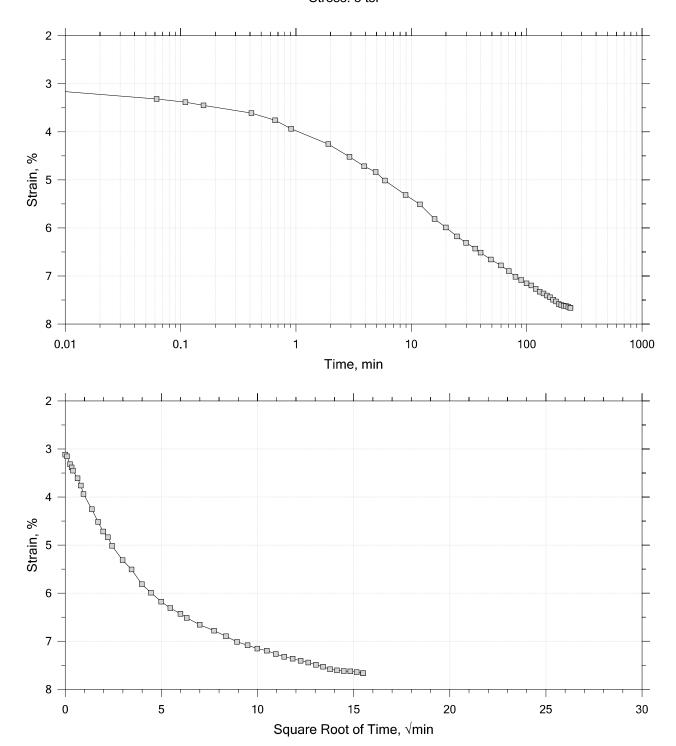
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 9 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 10 of 15 Constant Load Step Stress: 0.76 tsf

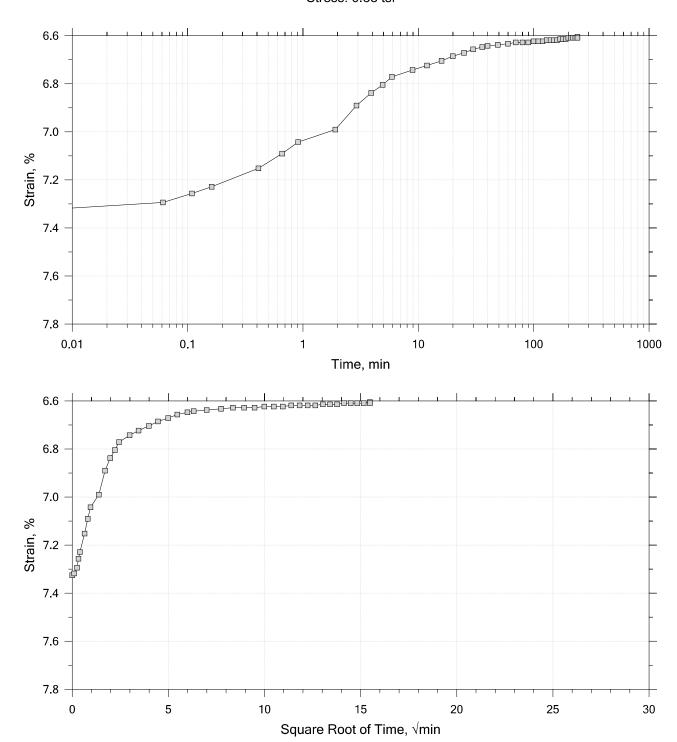
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 11 of 15 Constant Load Step Stress: 1.51 tsf

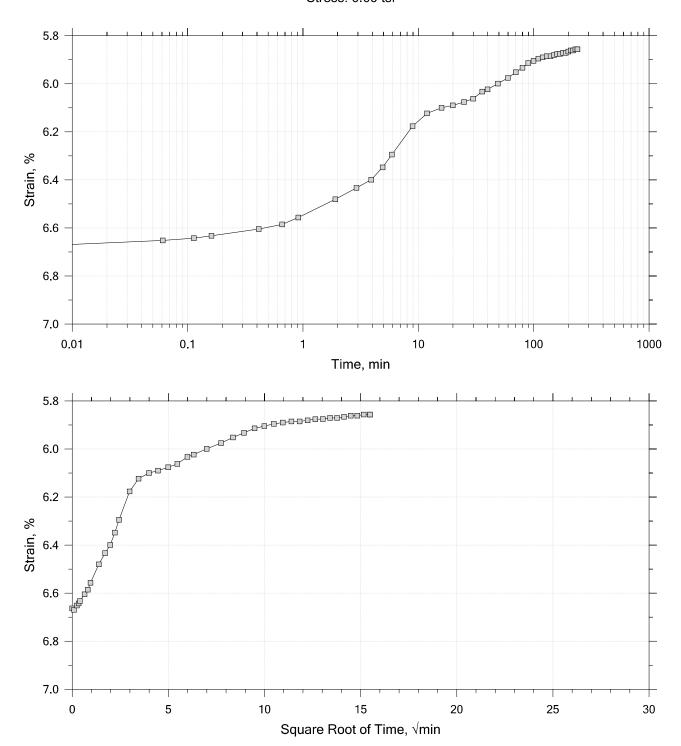
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 12 of 15 Constant Load Step Stress: 3 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 13 of 15 Constant Load Step Stress: 1.51 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			


Time Curve 14 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt Checked By: anm		
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			

Time Curve 15 of 15 Constant Load Step Stress: 0.09 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
Test No.: IP-3	Sample Type: intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-018, Swell Pressure = 0.0503 tsf			

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.76	Liquid Limit: 37
Initial Height: 1.00 in	Initial Void Ratio: 1.34	Plastic Limit: 22
Final Height: 0,95 in	Final Void Ratio: 1,22	Plasticity Index: 15

	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E8820	RING		E9465
Mass Container, gm	8.35	108.03	108.03	8.26
Mass Container + Wet Soil, gm	161.97	244.68	245	141.59
Mass Container + Dry Soil, gm	117.03	202.98	202.98	100.69
Mass Dry Soil, gm	108.68	94.953	94.953	92.43
Water Content, %	41.35	43.91	44.25	44.25
Void Ratio		1.34	1.22	
Degree of Saturation, %		90.57	100.00	
Dry Unit Weight, pcf		73.692	77.57	

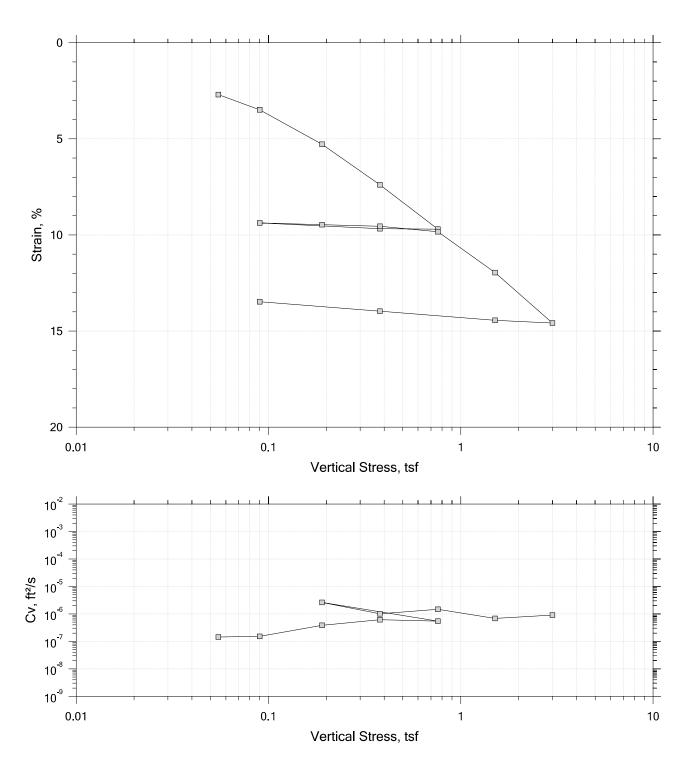
Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

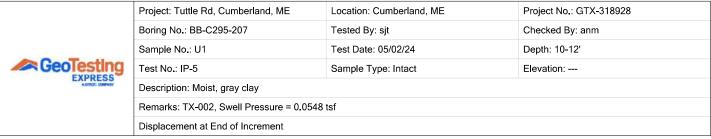
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'
Test No.: IP-3	Sample Type: intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-018, Swell Pressure = 0.0503 tsf		

Square Root of Time Coefficients

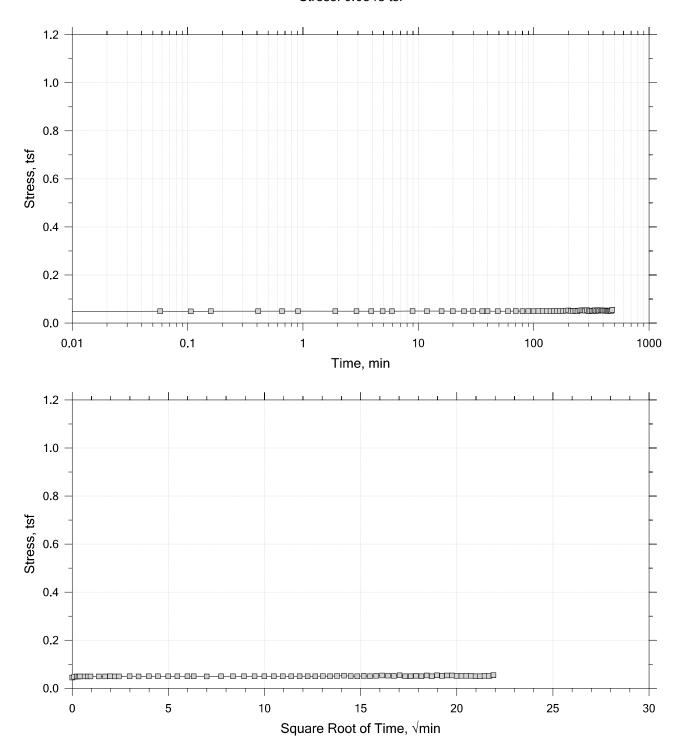
Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv in²/s	Mv 1/tsf	k ft/day
1	0.0503	0.003083	1.33	0.308	167.333	2.11e-05	6.13e-02	2.42e-05
2	0.0900	0.005269	1.33	0.527	9.814	3.57e-04	5.51e-02	3.68e-04
3	0.190	0.008684	1.32	0.868	1.568	2.22e-03	3.41e-02	1.42e-03
4	0.380	0.01319	1.31	1.32	15.908	2.17e-04	2.37e-02	9,65e-05
5	0.760	0.01860	1.29	1.86	3.996	8.56e-04	1.42e-02	2.28e-04
6	0.380	0.01831	1.30	1.83	139,821	2.43e-05	7.70e-04	3.51e-07
7	0.0900	0.01679	1.30	1.68	1.731	1.97e-03	5 . 23e-03	1.93e-04
8	0.190	0.01676	1.30	1.68	1.814			
9	0.380	0.01721	1.30	1.72	2.904	1.18e-03	2.36e-03	5.19e-05
10	0.760	0.01946	1.29	1.95	8.911	3.82e-04	5 . 92e-03	4.23e-05
11	1.51	0.02715	1.27	2.72	4.910	6.86e-04	1.03e-02	1.32e-04
12	3.00	0.07663	1.16	7.66	30.274	1.05e-04	3.32e-02	6.52e-05
13	1.51	0.07398	1.17	7.40	3.050	9.91e-04	1.78e-03	3.30e-05
14	0.380	0.06609	1.18	6.61	6.558	4.66e-04	6 . 98e-03	6.09e-05
15	0.0900	0.05856	1,20	5.86	22,260	1.40e-04	2.60e-02	6.78e-05

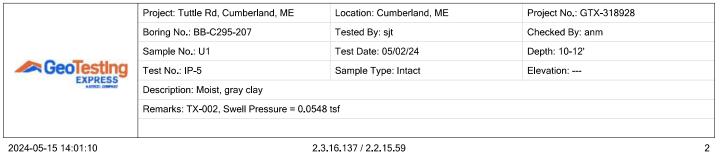
	GeoTesting EXPRESS AMOVEL SOMMANY	Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
		Boring No.: BB-C29-206	Tested By: sjt	Checked By: anm	
		Sample No.: U1	Test Date: 05/02/24	Depth: 8-10'	
		Test No.: IP-3	Sample Type: intact	Elevation:	
		Description: Moist, gray clay			
		Remarks: TX-018, Swell Pressure = 0.0503 tsf			
		Displacement at End of Increment			

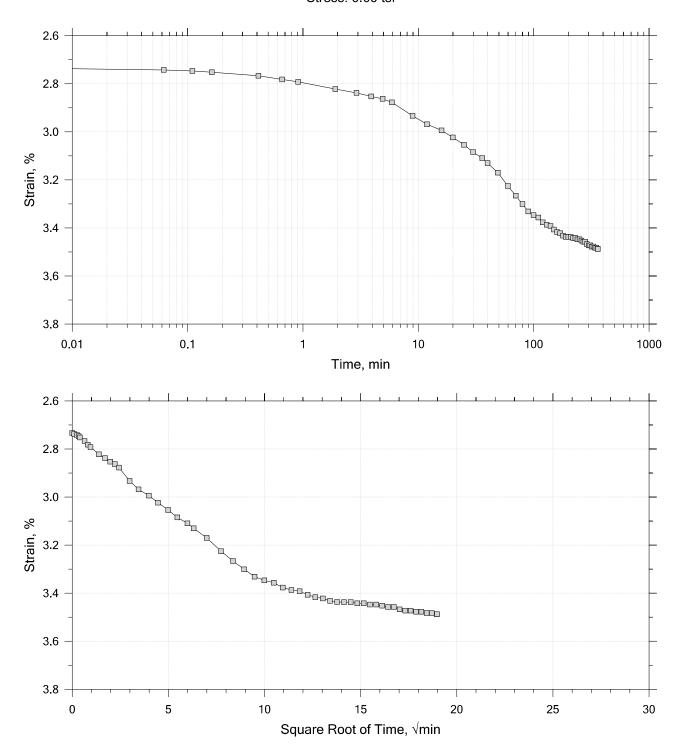

2024-05-15 13:35:23



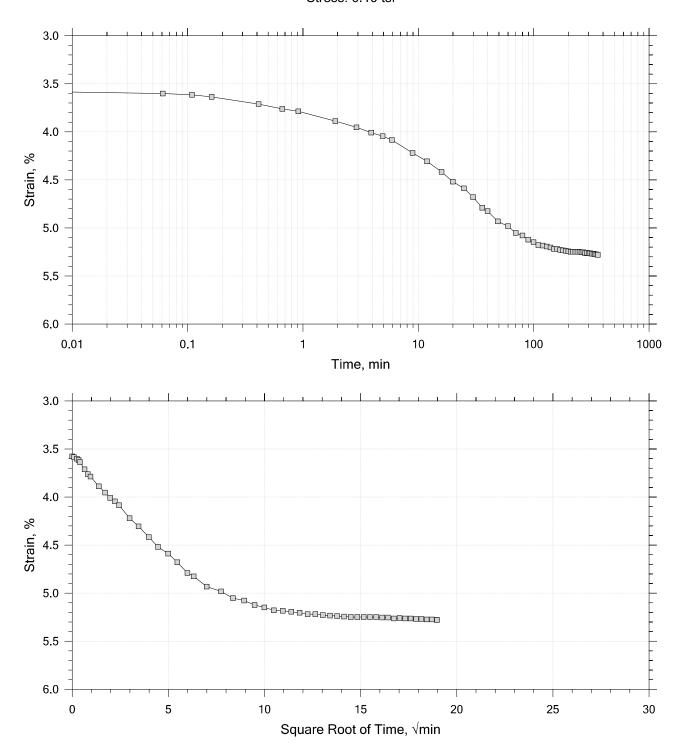
2.3.16.137 / 2.3.16.137


18

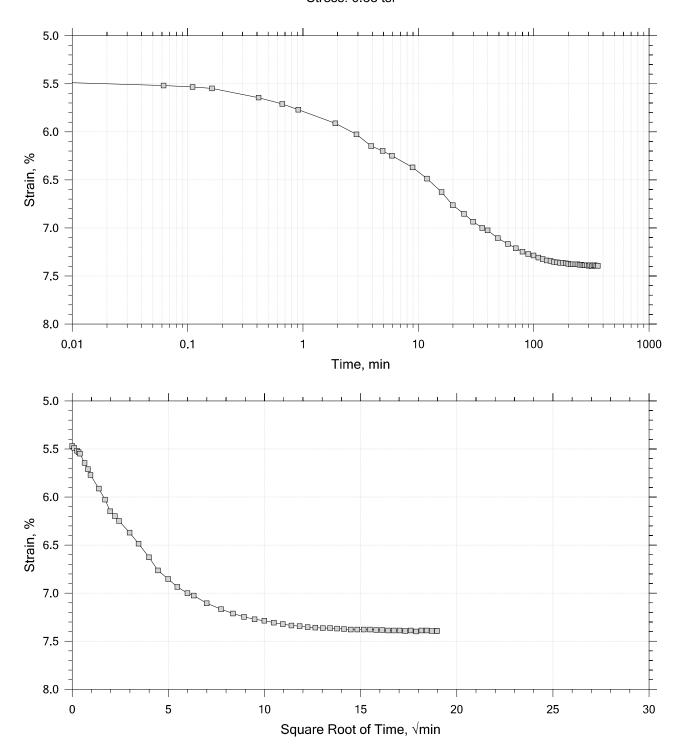

Summary Report



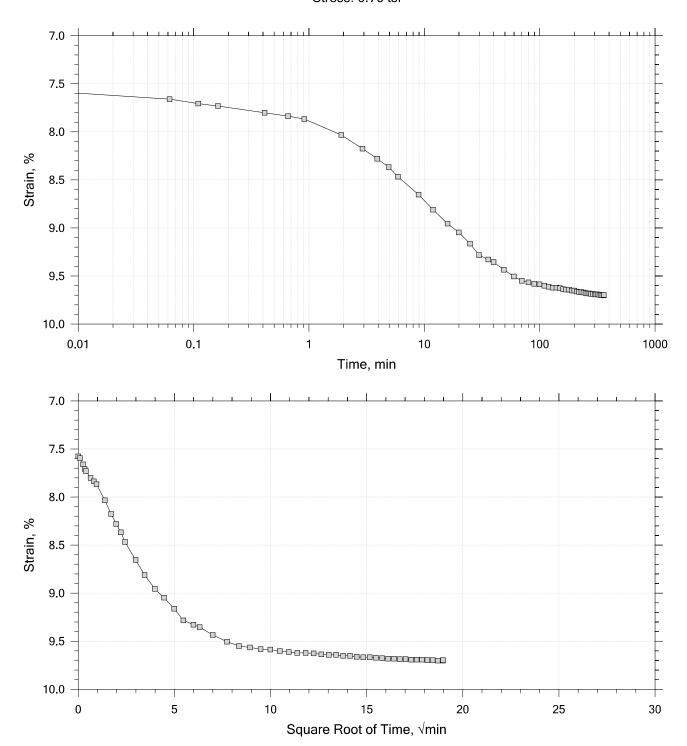
Time Curve 1 of 15 Constant Volume Step Stress: 0.0548 tsf


Time Curve 2 of 15 Constant Load Step Stress: 0.09 tsf

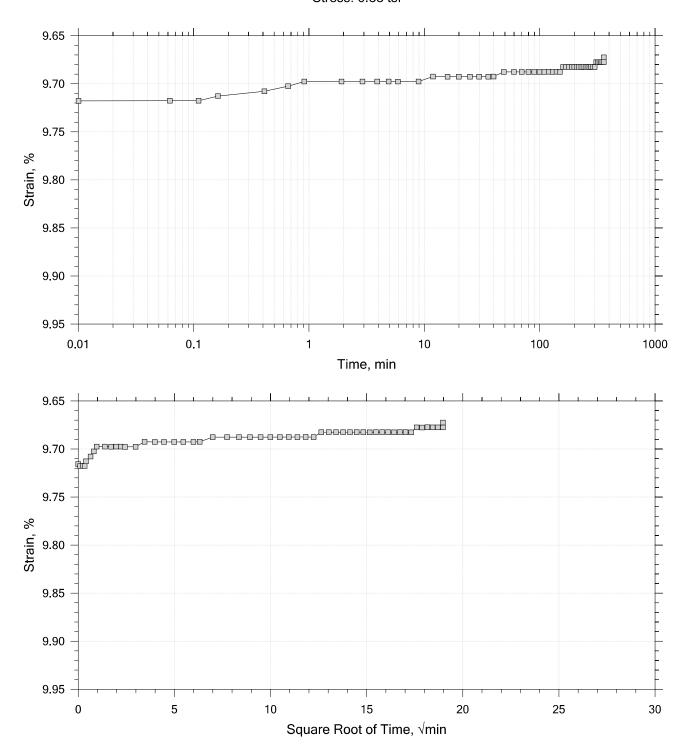
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 3 of 15 Constant Load Step Stress: 0.19 tsf

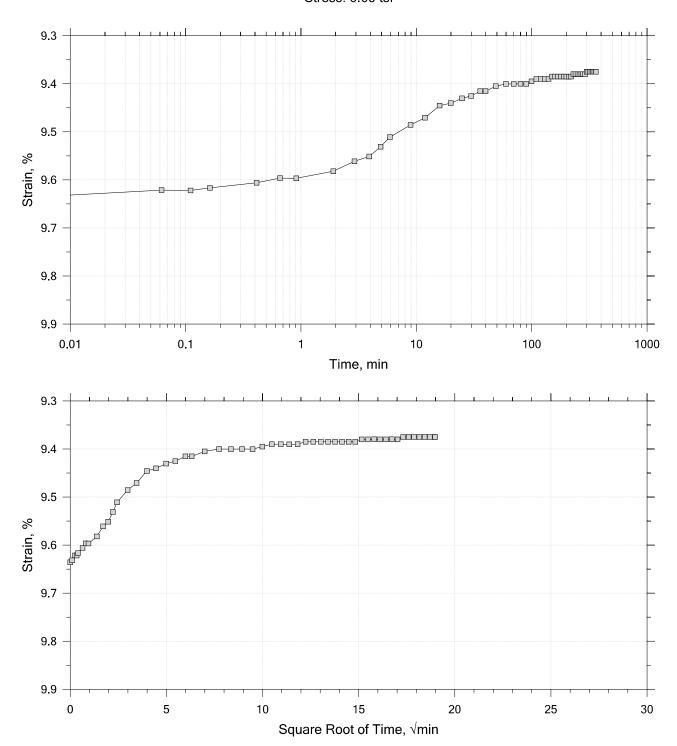
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 4 of 15 Constant Load Step Stress: 0.38 tsf

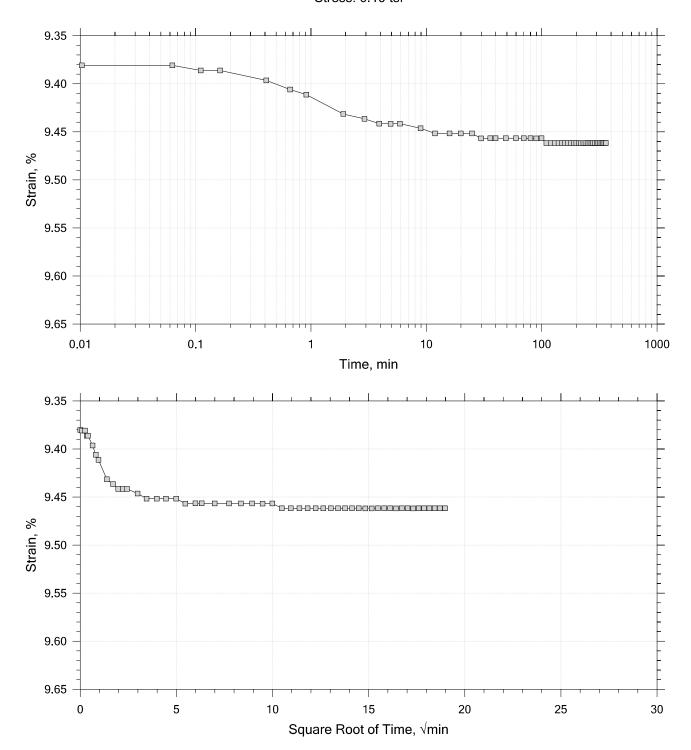
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 5 of 15 Constant Load Step Stress: 0.76 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928	
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm	
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'	
Test No.: IP-5	Sample Type: Intact	Elevation:	
Description: Moist, gray clay			
Remarks: TX-002, Swell Pressure = 0.0548 tsf			


Time Curve 6 of 15 Constant Load Step Stress: 0.38 tsf

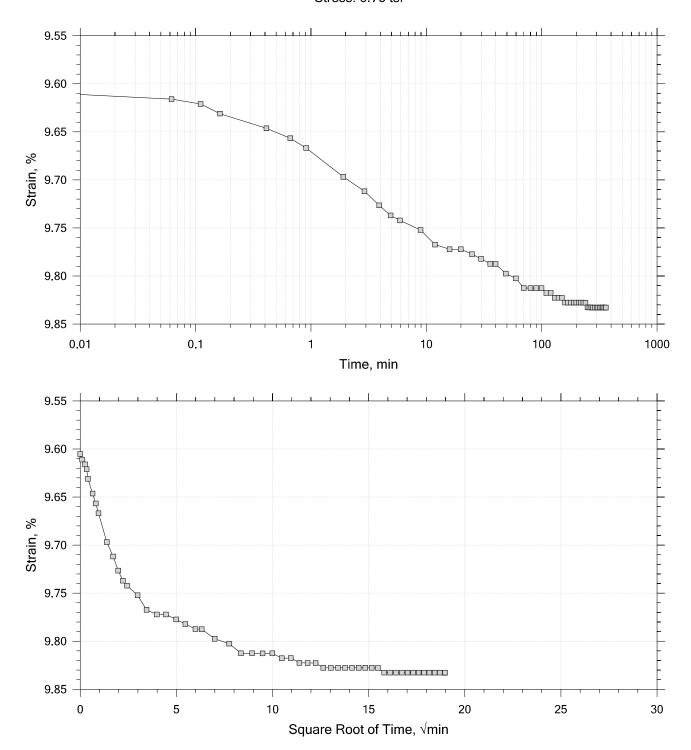
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 7 of 15 Constant Load Step Stress: 0.09 tsf

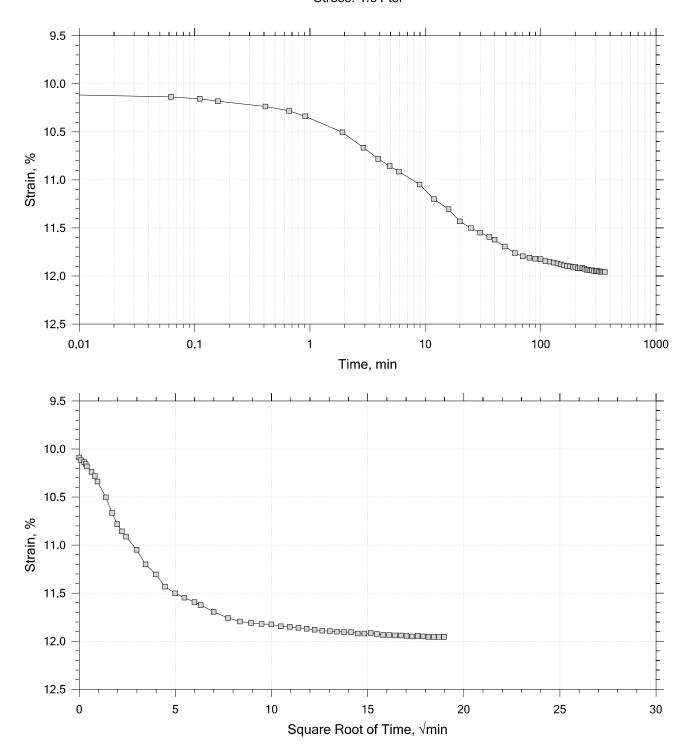
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 8 of 15 Constant Load Step Stress: 0.19 tsf

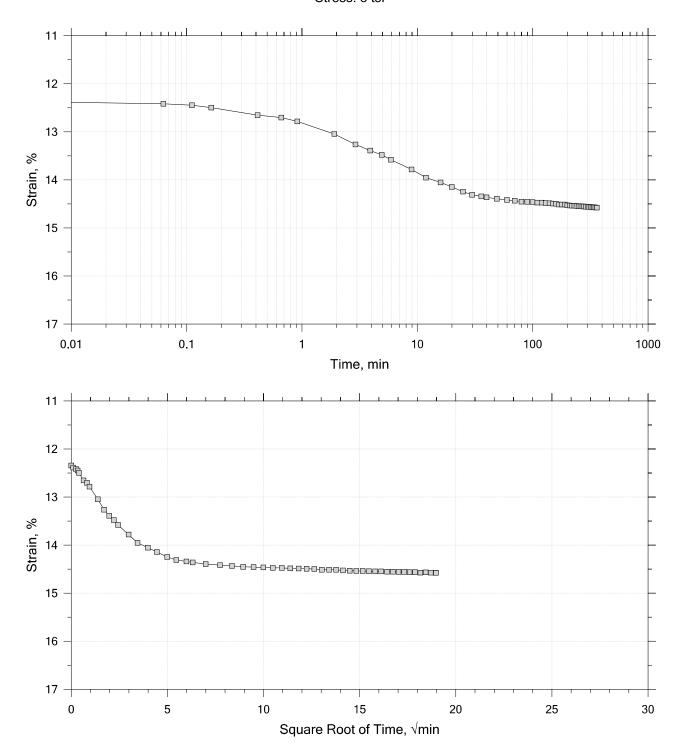
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-002, Swell Pressure = 0.0548 tsf		


Time Curve 9 of 15 Constant Load Step Stress: 0.38 tsf

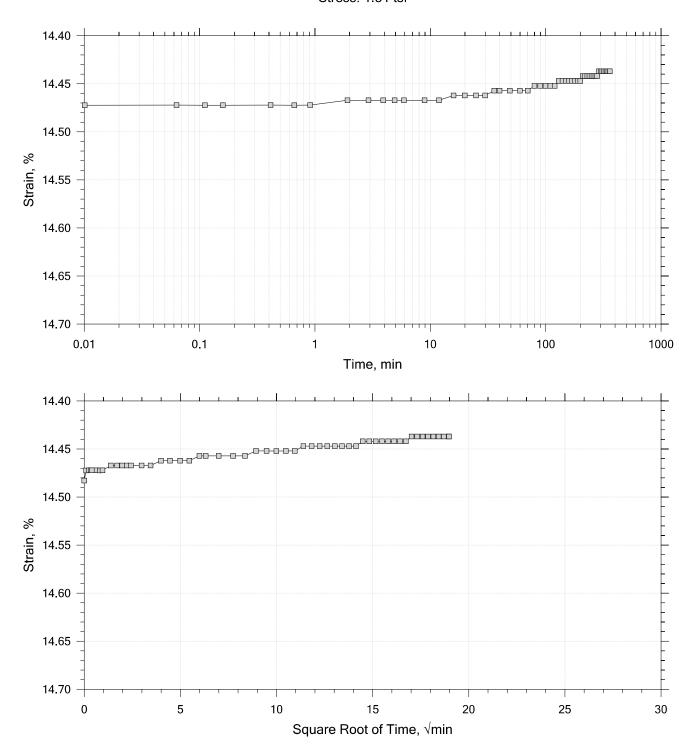
Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay Remarks: TX-002, Swell Pressure = 0.0548 tsf		

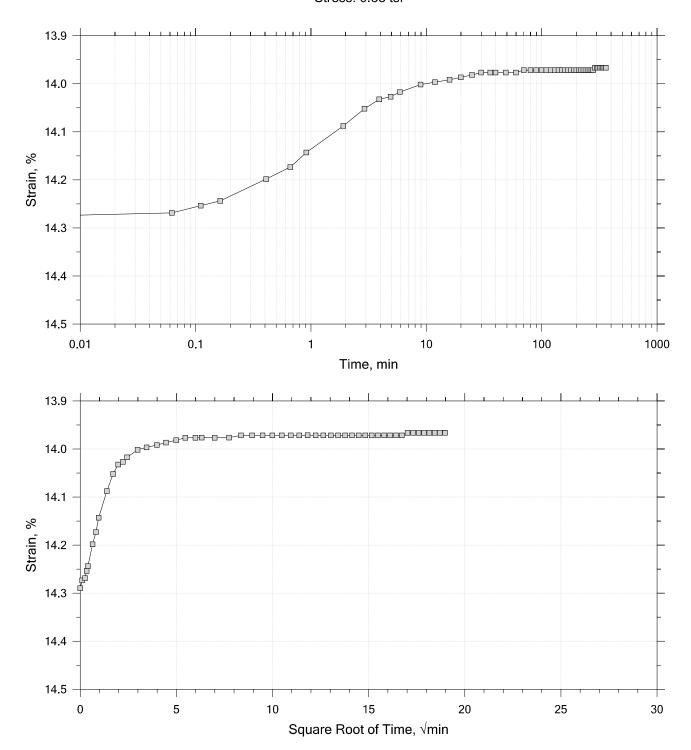

Time Curve 10 of 15 Constant Load Step Stress: 0.76 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'
Test No.: IP-5	Sample Type: Intact	Elevation:
Description: Moist, gray clay		
Remarks: TX-002, Swell Pressure = 0.0548 tsf		

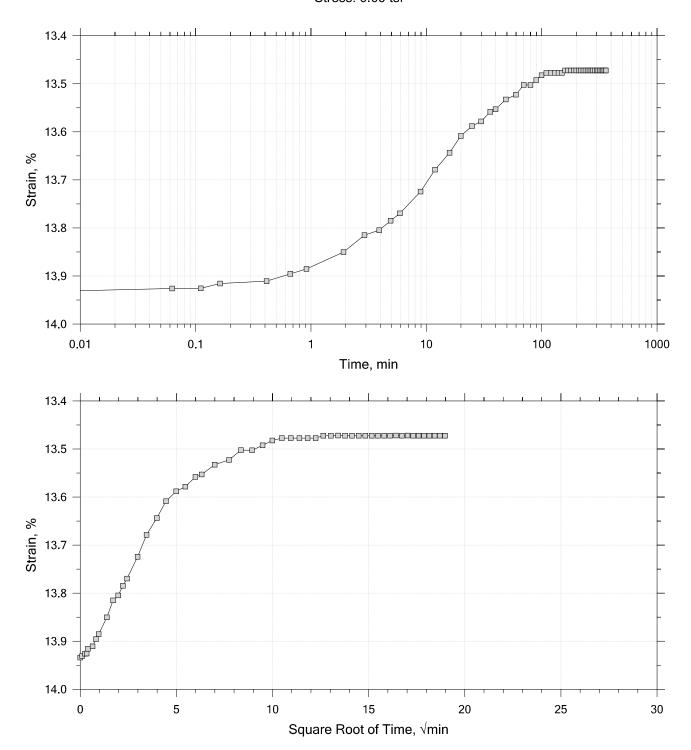

Time Curve 11 of 15 Constant Load Step Stress: 1.51 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928					
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm					
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'					
Test No.: IP-5	Sample Type: Intact	Elevation:					
Description: Moist, gray clay							
Remarks: TX-002, Swell Pressure = 0.0548 tsf							


Time Curve 12 of 15 Constant Load Step Stress: 3 tsf


Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928						
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm						
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'						
Test No.: IP-5	Sample Type: Intact	Elevation:						
Description: Moist, gray clay								
Remarks: TX-002, Swell Pressure = 0.0548 tsf								

Time Curve 13 of 15 Constant Load Step Stress: 1.51 tsf


Time Curve 14 of 15 Constant Load Step Stress: 0.38 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928						
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm						
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'						
Test No.: IP-5	Sample Type: Intact	Elevation:						
Description: Moist, gray clay								
Remarks: TX-002, Swell Pressure = 0.0548 tsf								

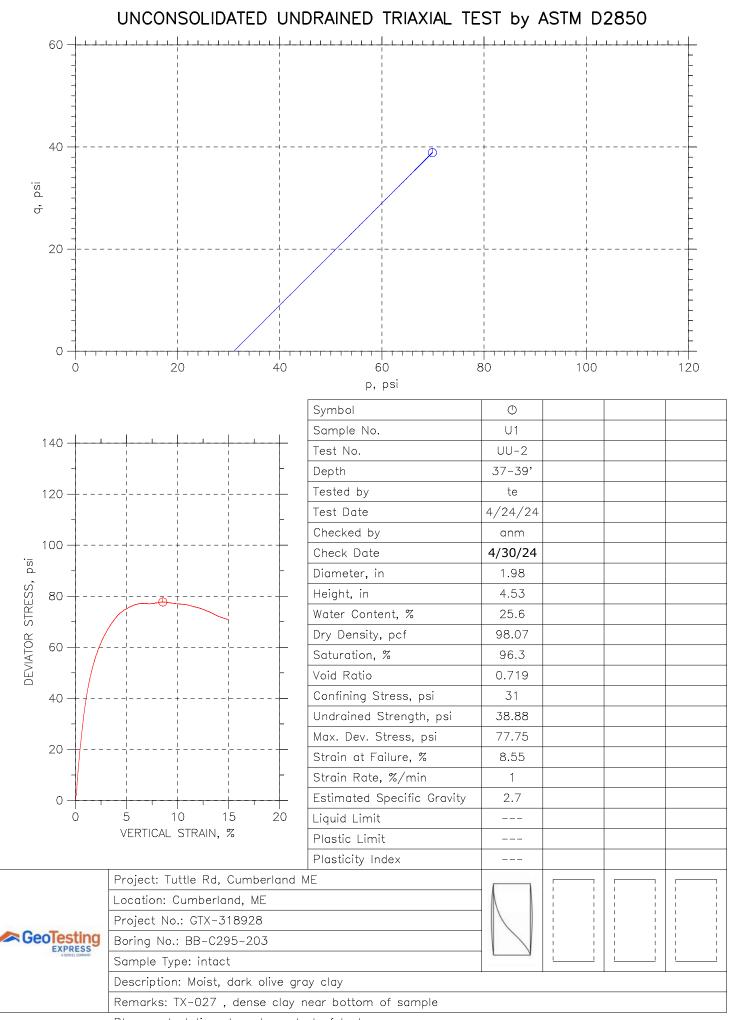
Time Curve 15 of 15 Constant Load Step Stress: 0.09 tsf

Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928						
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm						
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'						
Test No.: IP-5	Sample Type: Intact	Elevation:						
Description: Moist, gray clay								
Remarks: TX-002, Swell Pressure = 0.0548 tsf								

Specimen Diameter: 2.50 in	Estimated Specific Gravity: 2.75	Liquid Limit: 26		
Initial Height: 1.00 in	Initial Void Ratio: 0.776	Plastic Limit: 16		
Final Height: 0,85 in	Final Void Ratio: 0.509	Plasticity Index: 10		

	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	E9770	RING		E8576
Mass Container, gm	8.22	107.59	107.59	8.23
Mass Container + Wet Soil, gm	354.81	264.96	255.35	155.8
Mass Container + Dry Soil, gm	278.94	232.28	232.28	132.76
Mass Dry Soil, gm	270.72	124.69	124.69	124.53
Water Content, %	28.03	26.21	18.50	18.50
Void Ratio		0.78	0.51	
Degree of Saturation, %		93.01	100.00	
Dry Unit Weight, pcf		96.77	113.85	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.


Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928					
Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm					
Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'					
Test No.: IP-5	Sample Type: Intact	Elevation:					
Description: Moist, gray clay							
Remarks: TX-002, Swell Pressure = 0.0548 tsf							

Square Root of Time Coefficients

Step	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Sq.Rt. T90 min	Cv ft²/s	Mv 1/tsf	k ft/day
1	0.0548	0.02698	0.728	2.70	166.640	1.43e-07	4.92e-01	1.90e-04
2	0.0900	0.03487	0.714	3.49	152.025	1.52e-07	2.24e-01	9.17e-05
3	0.190	0.05279	0.682	5.28	58.126	3.86e-07	1.79e-01	1.86e-04
4	0.380	0.07393	0.644	7.39	34.996	6.15e-07	1.11e-01	1.85e-04
5	0.760	0.09697	0.603	9.70	37.395	5.49e-07	6.06e-02	8.97e-05
6	0.380	0.09672	0.604	9.67				
7	0.0900	0.09375	0.609	9.37	29.012	6.92e-07	1.03e-02	1.92e-05
8	0.190	0.09462	0.608	9.46	7.707	2.61e-06	8.68e-03	6.12e-05
9	0.380	0.09551	0.606	9.55	19.914	1.01e-06	4.72e-03	1.28e-05
10	0.760	0.09833	0.601	9.83	13.568	1.47e-06	7.40e-03	2.95e-05
11	1.51	0.1196	0.563	12.0	28.447	6.85e-07	2.83e-02	5.23e-05
12	3.00	0.1458	0.517	14.6	20.186	9.14e-07	1.76e-02	4.34e-05
13	1.51	0.1444	0.519	14.4	283.606	6.32e-08	9 . 45e-04	1.61e-07
14	0.380	0.1397	0.528	14.0	6.507	2.78e-06	4.16e-03	3.12e-05
15	0.0900	0.1347	0,536	13.5	46.080	3,96e-07	1,70e-02	1.82e-05

	Project: Tuttle Rd, Cumberland, ME	Location: Cumberland, ME	Project No.: GTX-318928				
	Boring No.: BB-C295-207	Tested By: sjt	Checked By: anm				
	Sample No.: U1	Test Date: 05/02/24	Depth: 10-12'				
GeoTesting EXPRESS	Test No.: IP-5	Sample Type: Intact	Elevation:				
ASSISTED OF THE PROPERTY	Description: Moist, gray clay						
	Remarks: TX-002, Swell Pressure = 0.0548 tsf						
	Displacement at End of Increment						

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 20 psi ó 10 20 30 40 50 10 60 p, psi Symbol (Sample No. U2 35 Test No. UU-1 Depth 42-44' Tested by te 30 Test Date 4/24/24 Checked by anm 25 4/30/24 Check Date psi 2.04 Diameter, in DEVIATOR STRESS, Height, in 4.61 20 Water Content, % 29.1 Dry Density, pcf 93.19 15 Saturation, % 97.2 Void Ratio 0.809 Confining Stress, psi 35 10 Undrained Strength, psi 8.686 Max. Dev. Stress, psi 17.37 5 Strain at Failure, % 11.4 Strain Rate, %/min 1 Estimated Specific Gravity 2.7 0 10 20 Liquid Limit 31 VERTICAL STRAIN, % Plastic Limit 26 5 Plasticity Index Project: Tuttle Rd, Cumberland ME Location: Cumberland, ME Project No.: GTX-318928 ■ GeoTesting Boring No.: BB-C295-203 Sample Type: intact Description: Moist, gray silt Remarks: TX-027

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 10 psi ó 10 15 20 25 30 p, psi Symbol (Sample No. U1 35 Test No. UU-3Depth 22.3-24.3 Tested by te 30 Test Date 4/24/24 Checked by anm 25 4/30/24 Check Date psi 2.03 Diameter, in DEVIATOR STRESS, Height, in 4.52 20 31.3 Water Content, % Dry Density, pcf 88.22 15 Saturation, % 92.7 Void Ratio 0.911 Confining Stress, psi 19 10 Undrained Strength, psi 6.559 Max. Dev. Stress, psi 13.12 5 Strain at Failure, % 3.38 Strain Rate, %/min 1 Estimated Specific Gravity 2.7 0 10 20 Liquid Limit ___ VERTICAL STRAIN, % Plastic Limit ____ Plasticity Index Project: Tuttle Rd, Cumberland ME Location: Cumberland, ME Project No.: GTX-318928 GeoTesting EXPRESS Boring No.: BB-C295-205 Sample Type: intact Description: Moist, dark gray clay Remarks: TX-027

Client: Hardesty & Hanover
Project: Tuttle Rd, Cumberland ME

Location: Cumberland, ME Project No:

Boring ID: --- Sample Type: --- Tested By: te
Sample ID: --- Test Date: 04/30/24 Checked By: smd

GTX-318928

Depth: --- Test Id: 765671

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type		
BB-C925-203	R1	57.67-57.98 ft	170	7202	1	No	1,*
BB-C925-205	R1	44.71-45.08 ft	179	17524	1	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

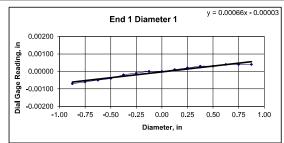
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

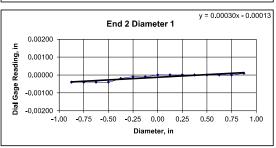
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

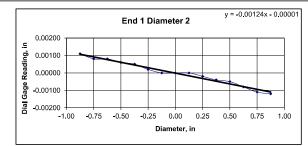
Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

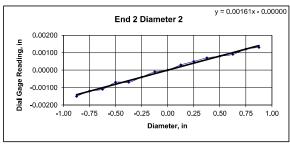
- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.




Client: Hardesty & Hanover Test Date: 4/29/2024 Project Name: Tuttle Rd, Cumberland, ME Tested By: Project Location: Cumberland, ME Checked By: smd 318928 GTX #: Boring ID: BB-C925-203 Sample ID: R1 Depth (ft): 57.67-57.98 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	3.93	3.93	3.93		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	546.54				
Bulk Density, lb/ft3	170	Minimum Diameter Tolerence Met?	•	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.0	Length to Diameter Ratio Tolerance	e Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	lure FP1)													
END 1	-0.875	- 0.750	- 0.625	-0.500	- 0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00060	-0.00050	-0.00040	-0.00020	-0.00010	0.00000	0.00000	0.00010	0.00020	0.00030	0.00030	0.00040	0.00040	0.00040
Diameter 2, in (rotated 90°)	0.00110	0.00080	0.00080	0.00060	0.00050	0.00020	0.00000	0.00000	0.00000	-0.00020	-0.00040	-0.00050	-0.00080	-0.00110	-0.00120
			Difference between max and min readings, in:												
											0° =	0.00110	90° =	0.00230	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00040	-0.00040	-0.00040	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010
Diameter 2, in (rotated 90°)	-0.00150	-0.00120	-0.00110	-0.00070	-0.00070	-0.00040	-0.00010	0.00000	0.00030	0.00050	0.00070	0.00080	0.00090	0.00120	0.00130
											Difference between max and min readings, in:				
											0° =	0.0005	90° =	0.0028	
Maximum difference must be < 0.0020 in. Difference $= + 0.00140$									0.00140						

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00066 0.03798	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00030 0.01703	
Maximum Angular Difference:		0.02095	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00124 0.07105	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.07105 0.00161	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)						
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Ang l e°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.990	0.00055	0.032	YES	
Diameter 2, in (rotated 90°)	0.00230	1.990	0.00116	0.066	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00050	1.990	0.00025	0.014	YES	
Diameter 2, in (rotated 90°)	0.00280	1.990	0.00141	0.081	YES	

Client:	Hardesty & Hanover	Test Date: 4/29/2024
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: rik
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	318928	
Boring ID:	BB-C925-203	Reliable dial gauge measurements could not be
Sample ID:	R1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	57.67-57.98	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
End Flatness Tolerance Met? YES				

Client: Hardesty & Hanover Project Name: Tuttle Rd, Cumberland ME Project Location: Cumberland, ME GTX #: 318928 Test Date: 4/30/2024 Tested By: gp Checked By: smd Boring ID: BB-C925-203 Sample ID: R1

BB-C925-203 R1 57.67-57.98 ft

21 22 23 24 25 26 27 28 29 30 (c.m.) 33 34

9 10 11 12 (in.) 13

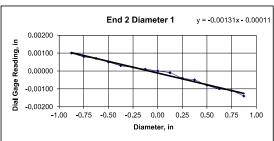
57.67-57.98

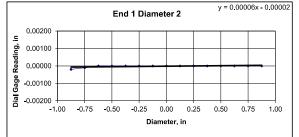
Depth, ft:

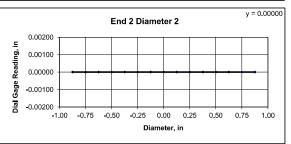
After cutting and grinding

After break




Client: Hardesty & Hanover Test Date: 4/29/2024 Project Name: Tuttle Rd, Cumberland, ME Tested By: Project Location: Cumberland, ME Checked By: smd 318928 GTX #: Boring ID: BB-C925-205 Sample ID: R1 Depth (ft): 44.71-45.08 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)	
	1	2	Average			
Specimen Length, in:	4.31	4.31	4.31		Maximum gap between side of core and reference surface plate:	
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES	
Specimen Mass, g:	631.07					
Bulk Density, lb/ft3	179	Minimum Diameter Tolerence Met?		YES	Maximum difference must be < 0.020 in.	
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tolerance N	Met?	YES	Straightness Tolerance Met? YES	

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	- 0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00120	0.00090	0.00070	0.00060	0.00040	0.00030	0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00060	-0.00060	-0.00090	-0.00090
Diameter 2, in (rotated 90°)	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Difference between max and min readings, in:														
											0° =	0.00210	90° =	0.00020	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00100	0.00080	0.00070	0.00050	0.00030	0.00020	0.00010	0.00000	-0.00010	-0.00040	-0.00050	-0.00080	-0.00100	-0.00110	-0.00140
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
											Difference between	en max and m	in readings, in:		
											0° =	0.0024	90° =	0	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00120

DIAMETER 1			
End 1:			
Elia 1.	Slope of Best Fit Line	0.00115	
	Angle of Best Fit Line:	0.06597	
End 2:			
	Slope of Best Fit Line	0.00131	
	Angle of Best Fit Line:	0.07481	
Maximum Angi	ılar Difference:	0.00884	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2			
DIAMETER 2 End 1:			
	Slope of Best Fit Line	0.00006	
		0.00006 0.00327	
	Slope of Best Fit Line Angle of Best Fit Line:	0.00327	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00327	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00327	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00327	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00327 0.00000 0.00000	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00327 0.00000 0.00000 0.00327	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: Jlar Difference:	0.00327 0.00000 0.00000 0.00327	

Flatness Tolerance Met?

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Ang l e°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00210	1.990	0.00106	0.060	YES	
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00240	1.990	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES	

Client:	Hardesty & Hanover	Test Date: 4/29/2024
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: rik
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	318928	
Boring ID:	BB-C925-205	Reliable dial gauge measurements could not be
Sample ID:	R1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	44.71-45.08	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tolei	ance Met?	YES

Client: Hardesty & Hanover Project Name: Tuttle, Rd, Cumberland ME Project Location: Cumberland, ME GTX #: 318928 Test Date: 4/30/2024 Tested By: gp Checked By: smd Boring ID: BB-C925-205

R1

44.71-45.08

Sample ID:

Depth, ft:

After cutting and grinding

After break

Client: Hardesty & Hanover
Project: Tuttle Rd, Cumberland ME

Location: Cumberland, ME Project No:

Boring ID: --- Sample Type: --- Tested By: te Sample ID: --- Test Date: 05/10/24 Checked By: smd

GTX-318928

Depth: --- Test Id: 768015

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BB-C295-202	R1	30.43-30.80 ft	171	14887	1	No	1,*
BB-C295-204	R1	47.5-52.5 ft	169	8830	1	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

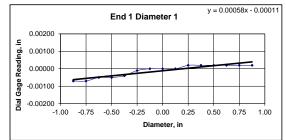
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

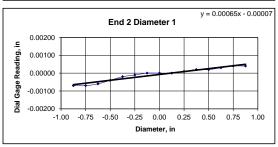
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

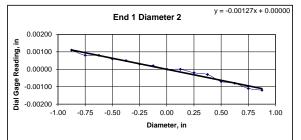
Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

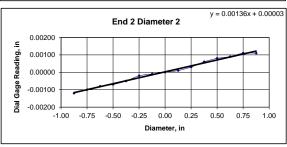
- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.




eu .		F	
Client:	Hardesty & Hanover	Test Date: 5/8/2024	
Project Name:	Tuttle Rd, Cumberland ME	Tested By: rik	
Project Location:	Cumberland, ME	Checked By: smd	
GTX #:	318928		
Boring ID:	BB-C295-202		
Sample ID:	R1		
Depth (ft):	30.43-30.80		
Visual Description:	See photographs		

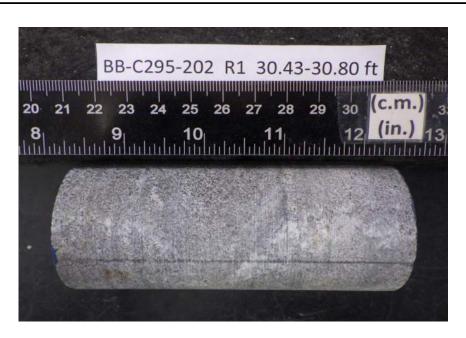

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.29	4.29	4.29		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	600.08				
Bulk Density, lb/ft3	171	Minimum Diameter Tolerence Met?		YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tolerance	Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00070	-0.00050	-0.00050	-0.00040	-0.00010	0.00000	0.00000	0.00000	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
Diameter 2, in (rotated 90°)	0.00110	0.00080	0.00080	0.00060	0.00050	0.00030	0.00020	0.00000	0.00000	-0.00020	-0.00030	-0.00070	-0.00080	-0.00110	-0.00120
	Difference between max and min readings, in:														
											0° =	0.00090	90° =	0.00230	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00070	-0.00060	-0.00040	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00020	0.00030	0.00040	0.00040
Diameter 2, in (rotated 90°)	-0.00120	-0.00100	-0.00080	-0.00070	-0.00050	-0.00020	-0.00010	0.00000	0.00010	0.00030	0.00060	0.00080	0.00090	0.00110	0.00110
											Difference between	en max and m	in readings, in:		
											0° =	0.0011	90° =	0.0023	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00115
												Flatness T	olerance Met?	NO	

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00058 0.03340	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00065 0.03732	
Maximum Angi	ular Difference:	0.00393	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1:	Spherically Seated	0.00127 0.07252	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00127	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00127 0.07252 0.00136	

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness	and Parallelism me	easurements a	oove)		
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00090	1.990	0.00045	0.026	YES	
Diameter 2, in (rotated 90°)	0.00230	1.990	0.00116	0.066	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00110	1.990	0.00055	0.032	YES	
Diameter 2, in (rotated 90°)	0.00230	1.990	0.00116	0.066	YES	


Client:	Hardesty & Hanover	Test Date: 5/8/2024
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: rik
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	318928	
Boring ID:	BB-C925-202	Reliable dial gauge measurements could not be
Sample ID:	R1	performed on this rock type. Tolerance
Depth (ft):	30.43-30.80	measurements were performed using a machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					

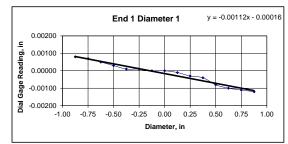
Client: Hardesty & Hanover Project Name: Tuttle Rd, Cumberland, ME Project Location: Cumberland, ME GTX #: 318928 Test Date: 5/10/2024 Tested By: gp Checked By: smd Boring ID: BB-C295-202 Sample ID: R-1

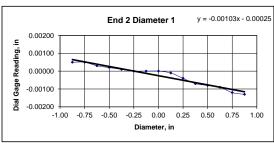
30.43-30.80

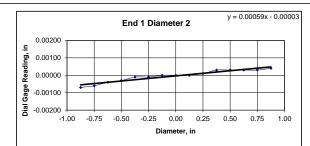
Depth, ft:

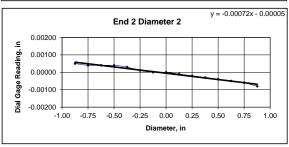
After cutting and grinding

After break




Client:	Hardesty & Hanover	Test Date: 5/8/2024
Project Name:	Tuttle Rd, Cumberland ME	Tested By: rik
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	318928	
Boring ID:	BB-C295-204	
Sample ID:	R1	
Depth (ft):	47.5-52.5	
Visual Description:	See photographs	


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2 A	verage	
Specimen Length, in:	4.05	4.05	4.05	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	554.37			
Bulk Density, lb/ft3	169	Minimum Diameter Tolerence Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.0	Length to Diameter Ratio Tolerance Met	? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00080	0.00070	0.00050	0.00030	0.00010	0.00010	0.00000	0.00000	-0.00010	-0.00030	-0.00040	-0.00080	-0.00100	-0.00110	-0.00120
Diameter 2, in (rotated 90°)	-0.00070	-0.00060	-0.00040	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00030	0.00030	0.00030	0.00030	0.00040
											Difference between	een max and m	in readings, in:		
											0° =	0.00200	90° =	0.00110	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00050	0.00050	0.00030	0.00020	0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00040	-0.00070	-0.00080	-0.00090	-0.00120	-0.00130
Diameter 2, in (rotated 90°)	0.00050	0.00040	0.00040	0.00040	0.00030	0.00010	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00040	-0.00050	-0.00060	-0.00080
											Difference between	een max and m	in readings, in:		
											0° =	0.0018	90° =	0.0013	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00100

DIAMETER 1			
End 1:	: Slope of Best Fit Line Angle of Best Fit Line:	0.00112 0.06401	
End 2:	: Slope of Best Fit Line Angle of Best Fit Line:	0.00103 0.05910	
Maximum Ang	ular Difference:	0.00491	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1:	Spherically Seated	0.00059 0.03372	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00372	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness	and Parallelism me	easurements al	oove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00200	1.980	0.00101	0.058	YES		
Diameter 2, in (rotated 90°)	0.00110	1.980	0.00056	0.032	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00180	1.980	0.00091	0.052	YES		
Diameter 2, in (rotated 90°)	0.00130	1.980	0.00066	0.038	YES		

Client:	Hardesty & Hanover	Test Date: 5/8/2024
Project Name:	Tuttle Rd, Cumberland, ME	Tested By: rik
Project Location:	Cumberland, ME	Checked By: smd
GTX #:	318928	
Boring ID:		Reliable dial gauge measurements could not be
Sample ID:	N1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	47.5-52.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Hardesty & Hanover Project Name: Tuttle Rd, Cumberland, ME Project Location: Cumberland, ME GTX #: 318928 Test Date: 5/10/2024 Tested By: gp Checked By: smd Boring ID: BB-C295-204 Sample ID: R-1

47.5-52.5

Depth, ft:

After cutting and grinding

After break

Appendix ECone Penetration Test Report

S-24-0014

April 20, 2024

Hardesty & Hannover Attention: Rebecca Frein 500 Route 1, Suite 105 Yarmouth, ME 04096

Subject: CPT Exploration Findings

Proposed Bridge Replacement

MaineDOT Bridge #5801

Tuttle Road

Cumberland, Maine

Dear Rebecca:

In accordance with our Proposal dated January 9, 2024, we completed test boring and piezocone penetration testing (CPT) explorations at MaineDOT Bridge #5801 in Cumberland. The test borings were observed and logged by Hardesty & Hannover personnel. This report summarizes and provides data relative to the CPT explorations.

CPT EXPLORATION PROGRAM

Three CPT explorations (CPT-201 through CPT-203) were advanced adjacent to previously drilled test boring locations on April 16 & 17, 2024. The exploration locations were selected at the site by H&H personnel. The CPTs were advanced using a Diedrich D-50 track mounted drill rig utilizing Vertek piezocone equipment. The CPT exploration program included the following:

- Three CPT explorations advanced to depths ranging from 15.2 to 28.5 feet below the existing ground surface.
- Porewater dissipation tests were performed in CPT-202 and CPT-203 at depths selected by H&H personnel.

The CPT explorations were performed in accordance with ASTM D5778. Pre-augering was required through fill materials to a depth of 10.0' before advancement of CPT-201.

SUBSURFACE CONDITIONS

The following is a summary of subsurface findings in each of the CPT explorations.

CPT-201					
Depth (feet)	Predominant Soil Type	Soil Description			
10-11	Types 8 & 9	Sand to silty sand			
11-12	Types 3 & 4	Clays			
12-23	Types 6 & 7	Layered sandy silt to clayey silt and silty			
		sand to sandy silt			
23-24		Probable silty clay			
24-25	Type 9	Sand			
25-27.7	Type 4	Silty clay to clay			
27.7-28.5*	Type 8	Sand to silty sand			

^{*}push refusal

	CPT-202				
Depth (feet)	Predominant Soil Type	Soil Description			
0-1	Type 1	Sensitive fine grained			
1-2.5	Types 5 & 6	Clayey silt to silty clay and sandy silt to			
		clayey silt			
2.5-6	Type 5	Clayey silt to silty clay			
6-12.5	Type 6	Sandy silt to clayey silt			
12.5-14.2	Types 5 & 6	Layered clayey silt to silty clay and sandy			
		silt to clayey silt			
14.2-15.2*	Types 8 & 10	Sand to silty sand and gravelly sand to			
		sand			

^{*}push refusal

CPT-203					
Depth (feet)	Predominant Soil Type	Soil Description			
0-9.6	Types 5 & 6	Layered silt to silty clay and sandy silt to clayey silt			
9.6-26.3*	Various	Frequent layering of sand, silt, and clay			

^{*}push refusal

Soil behavior type profiling is based on normalized cone penetration resistance, Robertson 1986. Detailed soil type behavior is presented on the attached logs.

DISSIPATION TESTING

Dissipation tests were performed in CPT-202 and CPT-203. Plots of the dissipation tests are attached. A summary of the results is presented below:

DISSIPATION TEST SUMMARY							
Location	Depth (ft)	U ₀ (psi)	U ₁₀₀ (psi)	U ₅₀ (psi)	T ₅₀ (sec)		
CPT-202	7.0	142.1	0.0	71.0	312.4		
CPT-203	9.4	1.1	61.4	31.2	918.4		

CLOSURE

It has been a pleasure to be of assistance to you on this project. Please let us know if you have any questions.

Sincerely,

Seaboard Drilling, LLC

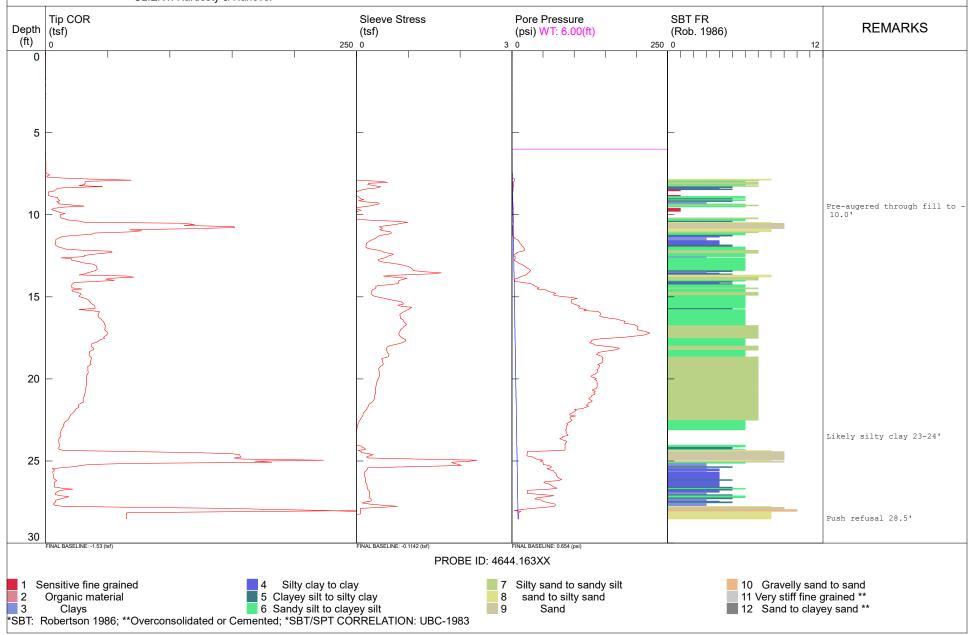
Kevin J. Hanscom

Driller

SEABOARD DRILLING

COMPANY: Seaboard Drilling, LLC PROJECT: MaineDOT Bridge #5801 Replacement

SITE: Tuttle Road


LOCATION: Cumberland, ME CLIENT: Hardesty & Hanover

CPT-201

OPERATOR: Kevin Hanscom

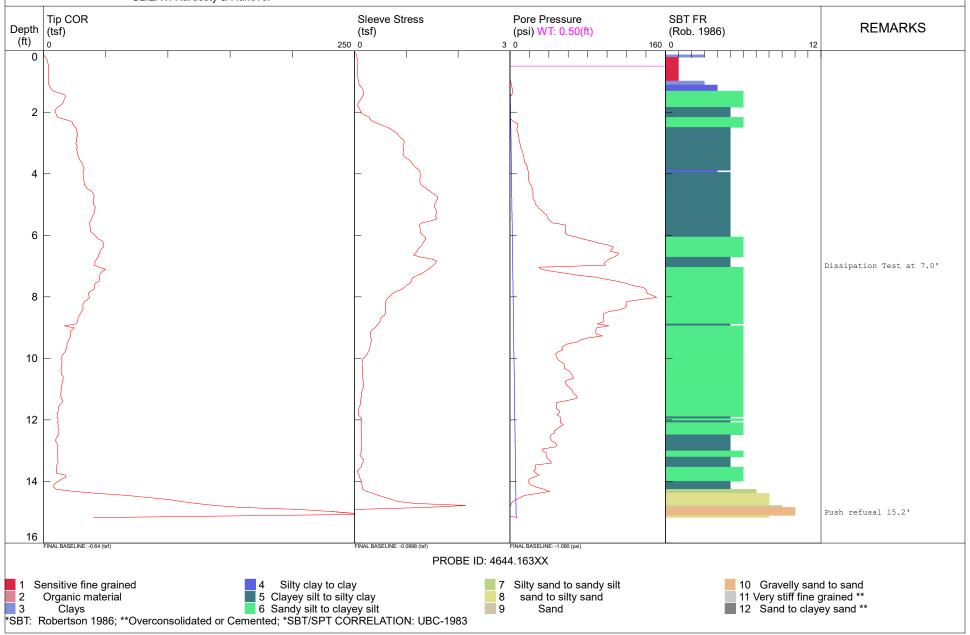
FILENAME: CPT-201.DAT

TEST ID: CPT-201 TEST DATE: Tue 16/Apr/2024 GROUND SURFACE ELEV.: 000 +/-TOTAL DEPTH: 28.543 ft

SEABOARD DRILLING

COMPANY: Seaboard Drilling, LLC PROJECT: MaineDOT Bridge #5801 Replacement

SITE: Tuttle Road


LOCATION: Cumberland, ME CLIENT: Hardesty & Hanover

CPT-202

OPERATOR: Kevin Hanscom

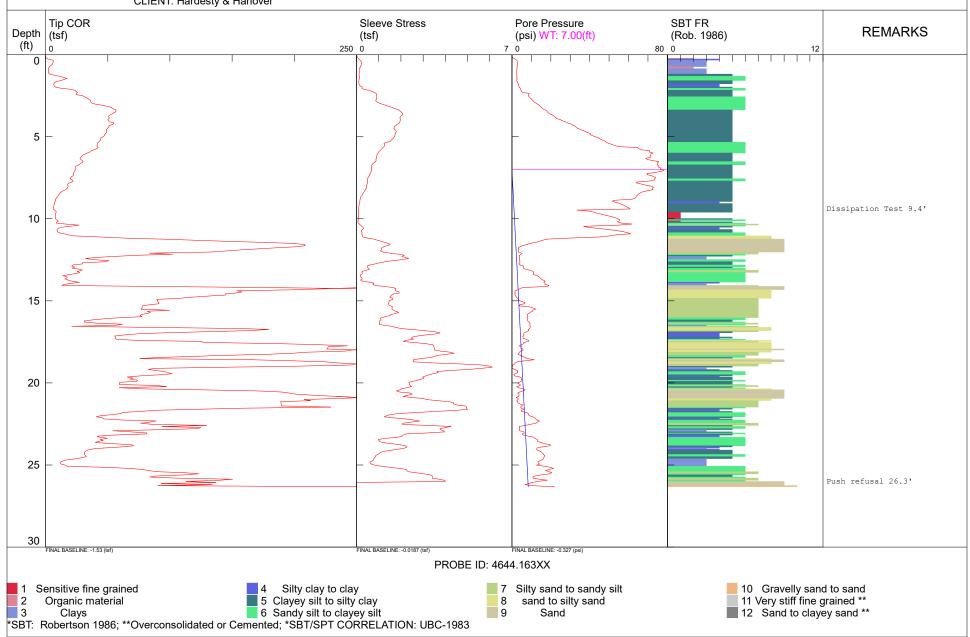
FILENAME: CPT-202.DAT

TEST ID: CPT-202 TEST DATE: Wed 17/Apr/2024 GROUND SURFACE ELEV.: 000 +/-TOTAL DEPTH: 15.174 ft

SEABOARD DRILLING

COMPANY: Seaboard Drilling, LLC PROJECT: MaineDOT Bridge #5801 Replacement

SITE: Tuttle Road


LOCATION: Cumberland, ME CLIENT: Hardesty & Hanover

CPT-203

OPERATOR: Kevin Hanscom

FILENAME: CPT-203.DAT

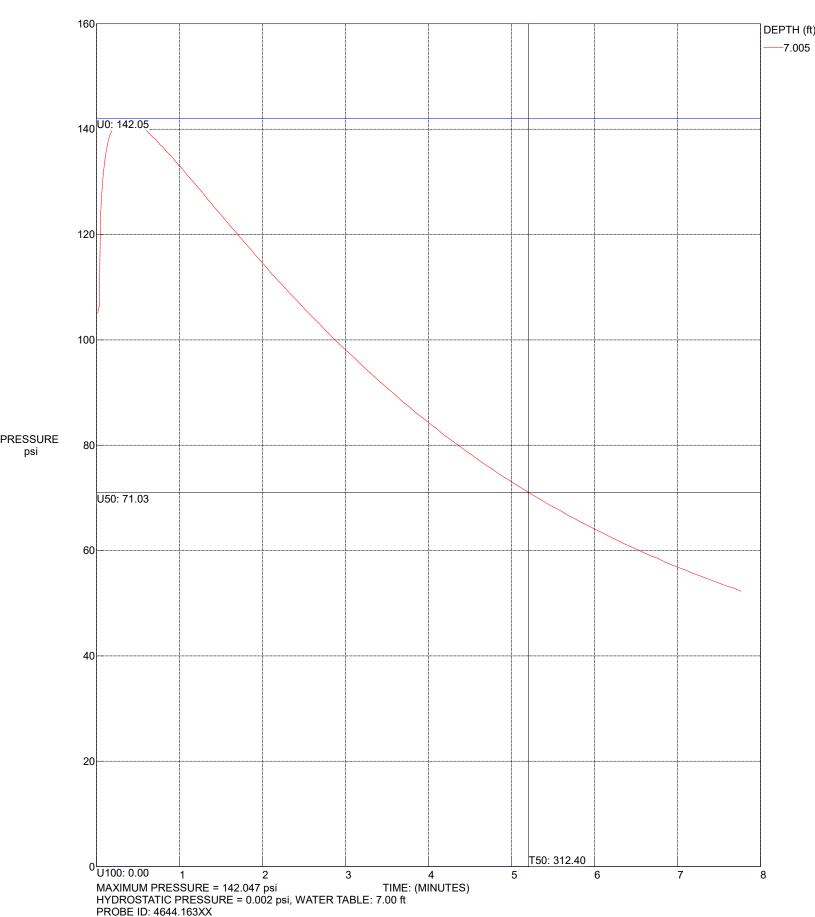
TEST ID: CPT-203 TEST DATE: Tue 16/Apr/2024 GROUND SURFACE ELEV.: 000 +/-TOTAL DEPTH: 26.329 ft

PORE PRESSURE DISSIPATION PLOTS

DISSIPATION

COMPANY: Seaboard Drilling LLC

PROJECT: MaineDOT Bridge #5801 Replacement


SITE: Tuttle Road

LOCATION: Cumberland, ME CLIENT: Hardesty & Hanover

OPERATOR: Kevin Hanscom

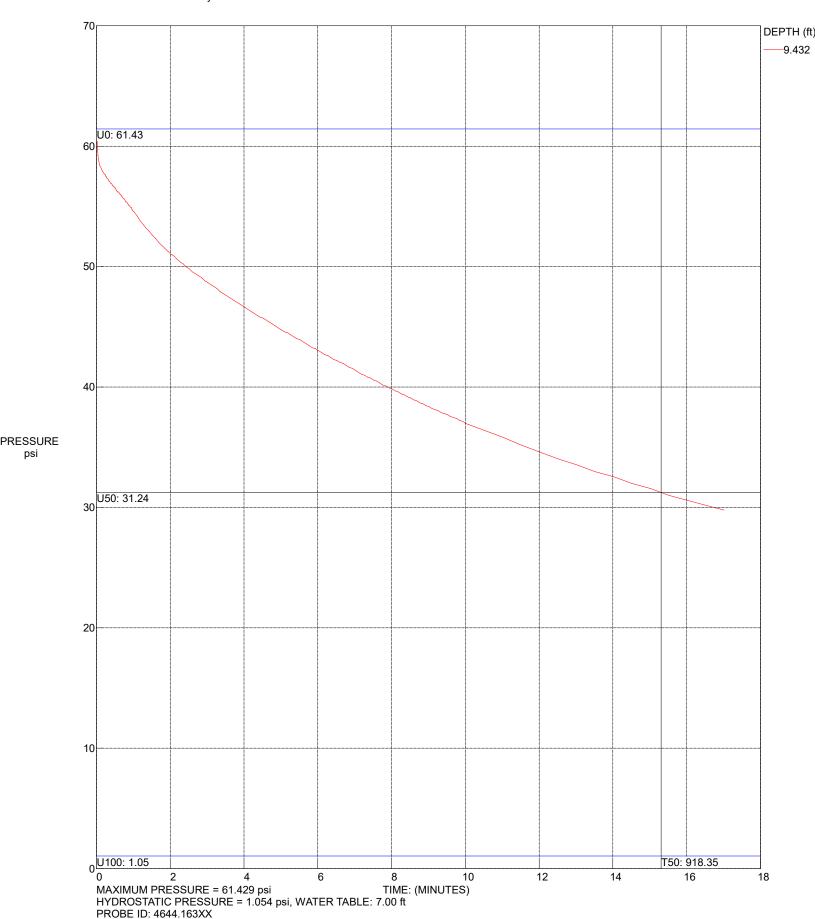
FILENAME: CPT-202.DIS

TEST ID: CPT-202 TEST DATE: Wed 17/Apr/2024

DISSIPATION

COMPANY: Seaboard Drilling LLC

PROJECT: MaineDOT Bridge #5801 Replacement


SITE: Tuttle Road

LOCATION: Cumberland, ME CLIENT: Hardesty & Hanover

OPERATOR: Kevin Hanscom

FILENAME: CPT-203.DIS

TEST ID: CPT-203 TEST DATE: Tue 16/Apr/2024

Appendix FHistoric Boring Information

CUMBERLAND

BORING LOCATIONS SHOWN THUS____ BORING NO! S T-1 & T-6 OMITTED
BORING LOCATION OFFSETS ARE TAKEN
FROM & INTERSTATE. BORING LOCATION PLAN BORING BORING T-16 GR. ELEV. 94.91 BR.ELEV. 93,05 GR. ELEV. 93.05 GR.ELEV. 92.7/ GR.ELEV. 92.24 GR.ELEK 91.13 GRELEV. 91.01 BROWN SAND MEDIUM TO COARSE SAND AND GRAVEL GR. ELEV 89.60 COARSE, BROWN
SAND & GRAVEL AND GRAYEL GR. ELEV. 89.49 BROWN SAND BROWN SILT + GRAVEL WITH A LITTLE BROWN SILT BROWN SILT WITH BROWN SILT WITH STREAKS OF GRAY GRAY SILT WITH GR. ELEV. 86.56 GR ELEV. 86.48 GRAY BROWN SILT BROWN SILT 25 WITH SOME COARSE 15 5 GRAY SAND CA LITTLE SANDY BROWN SILT GR. ELEV. 84.09 GR. ELEV. 84.18 ON TOP) SAND IN IT. BROWN SAND BROWN, SANDY SILT BROWN SILT WITH BROWN SILT OF GRAY SR. ELEV. 81.98 + GRAVEL GRAY SILT 25, 4 GRAY SILI,
24 6 BROWN SILTY
5AND & GRAVEL WITH STREAKS OF GRAY SILT, WITH STREAKS (SANDY ON TOP) STREAKS OF GRAY SILT BROWN SILT HARD BROWN SIL OF GRAY IN IT. BROWN SAND GRAY. GRAY SILT + GRAVEL BROWN SILT WITH STREAKS OF GRAY MEDIUM BROWN BROWN, SILTY SAND GRAY SILT WITH STREAKS OF BROWN. 26 8/6" BROWN SILTY BR 8/6" SAND & GRAVEL MEDIUM BROWN BROWN SILT WITH STREAKS OF GRAY BROWN SAND & GRAVEL GRAY SILTY SAND #GRAVEL GRAY, SILTY GRAY SILTY SAND AND GRAVEL GRAY SILT SAND AND 39, 96" GRAY SILTY 41 9/6" SAND + GRAVEL GRAY SILTY

SAND AND GRAVEL

SS 42 (SOME THIN LAYERS 141 25)

OF GRAY SILT

FINE GRAY

FINE GRAY

100

173 GRAVEL. GRAY SILTY. SANO AND GRAVEL 33 96" GRAY SILTY 93 9/6" SAND + GRAV 138 SAND + GRAVEL SAND AND GRAVEL AS 5/4 SILTY SAND & 113 7/4 GRAVEL WITH SOME THIN LAYERS OF FINE 243 GRAY SAND AND 226 18/2" OCCASIONAL THIN LAYERS OF GRAY SILT SAND + GRAVEL 30' + 33' 50 30/ ALTERNATE 48 DE AND GRAVEL GRAY SILTY SAND LAYERS OF SILT. FINE GRAY SAND TAN 406 CORE DRILLED 3'-6" 138 296 143 166" SAND AND 153 286" GRAVEL 90 LAYERS OF 148 1/6"
79 9/6 GRAY SILTY
AS SAND FINE GRAY 986
98 14/6" SAND, AND GRAY 986
98 19/1 12/1 GRAY, SILTY SAND + GRAVEL C : 4" (FOR FIRST 15") 2 60 115 92 176. 234 334 H +310 D:16 DS 19 (ON SPOON)
18 (ON TUBES) 25/4 GRAY SANDY SILT 106 15 8/6" SILTY SAND, FINE. 159 7/6" GRAY SAND, AND CORE DRILLED 6' CORE DRILLED 6' CORE DRILLED 6' 196 HARD GRAT ROTTEN BETWEEN CORE DRILLED L' CLAYEY SILT LEDGE 69% RECOVERY 39'+90') LEDGE 92% RECOVERY CORE URILLED T' 答 GREENISH GRAY 108 % FINE GRAY HARD GRAY SILT AND GRAY CORE DRILLED 6' 93% 00 74% do 312 90% GREENISH, GRAY
261 SILTY SAND
AND GRAVEL 159 17/6 SANO E GRAVEL C=2\$ H=310 SILTY SAND C = 4 (FOR FIRST 20), 2% SILTY SAND H. 310 D=16 C=25 D5 - 14 (ON SPOON) D.16 D=16 H-310 18 (ON TUBES) C= 4 (FOR FIRST 10'); 22 D3:14 (ON SPOON) C. 26 H.310 D5=14 (ON SPOON) 0.16 100 3% GRAY SILTY FINE BROWN SAND H= 310 18 (ON TUBE) H. 310 D5 - 14 (ON SPOON) LEDGE 18 (ON TUBE) 0 = 16 05 = 14 (ON SPOON) D:16 96% RECOVERY D-16 18(ON TUBE) 101 24 AR 24 104% do D5 = 14 (ON 5POON) D5= 14 (ON 5POON) 18 (ON TUBE) BROWN SAND. LEDGE FINE TO MEDIUM BROWN SAND 18(ON TUBE) 86 25% 10 (ON TUBE) GRAVEL, & ROCKS 98% RECOVERY (8-ROCK AT 49') 100% do C= 22 FINE TO MEDIUM H = 310 BROWN SAND 0 = 16 05 = 14 (ON SPOON) C- 2 * SOFT BLACK SANDY C= 22 H-310 SILT + ROOTS
D=16 + BROWN SAND AND GRAVEL
DS=14 (ON SPOON)
18(ON TUBES) 18 (ON TUBE) H= 910 19" ROCK CORE-DRILLED GENERAL NOTES 0-16 05 + 14 (ON SPOON) I. BORINGS WERE MADE BY THE MAINE STATE HIGHWAY COMMISSION APRIL AND MAY 1957. FINE TO MEDIUM 18 (ON TUBE) BROWN SAND STATE HIGHWAY COMMISSION 2. FIGURES IN COLUMN () = BLOWS PER FOOT ON CASING FIGURES IN COLUMN () = BLOWS PER FOOT ON SAMPLER ROD AUGUSTA, MAINE ALTERNATE LAYERS EXCEPT AS NOTED OF GRAY SILTY SAND GRAY SAND + GRAVEL PORTLAND-YARMOUTH INTERSTATE + SRAVEL AND BROWN 3. ELEVATIONS ARE REFERRED TO MEAN SEA LEVEL SCALE: VERT: 1"=5" FINE TO MEDIONI BRYWN SAND SANG + SRAVEL C = 4(FOR FIRST 10'), 2' TUTTLE ROAD OVER INTERSTATE H.310 H.310 LEGEND D+16 0-16 AS = CASING WAS DRIVEN AFTER SAMPLING. DS: 14 (ON SPOON)
18 (ON TUBE) DS-14 FON SPOON) C = DIAMETER OF CASING IN INCHES 18 (ON TUBE) H = WEIGHT OF HAMMER IN POUNDS BORING DATA D = DROP ON CASING IN INCHES DS = DROP ON SAMPLER ROD IN INCHES * WASHED FROM 59'2" TO 60'-10" REFUSAL ON AR = CASING WAS DRIVEN WASHING AHEAD OF CASING RODS LEDGE OR BOULDER J = SAMPLER DRIVEN BY STATIC LOAD NOT EXCEEDING \$TON SHEET NO. 30 OF 103 SCALE! AS NOTED FAY, SPOFFORD & THORNDIKE, INC. Qm-14 BOSTON, MASS. ENGINEERS Boston Blue Print-300-4-57 M-1084

Appendix G Seismic Site Class and Coefficients

Computations For Tuttle Bridge Road

Maine DOT

Seismic Site Class

No. 4462.07

H&H conducted an assessment of the seismic site class and seismic performance zone for all soil borings encountered at the proposed Tuttle Road Bridge replacement over I-295 (#5801), US Route 1, and the MCRR in Cumberland, Maine. The procedures outlined in AASHTO LRFD Articles 3.10.2 through 3.10.6 were followed to determine the seismic site class and performance zone.

Procedure:

- Classified the site using AASHTO Table C3.10.3.1-1.
- Determined the Site Class at each boring location using Method B (N-method).
- Identified the Acceleration Coefficients per AASHTO Article 3.10.2.1:
 - Peak Ground Acceleration Coefficient (PGA) based on Figure 3.10.2.1-1.
 - Short-period Spectral Acceleration Coefficient (S_s) based on Figure 3.10.2.1-2.
 - Long-period Spectral Acceleration Coefficient (S₁) based on Figure 3.10.2.1-3.
- Established Site Factors per Article 3.10.3.2:
 - F_{PGA} from Table 3.10.3.2-1.
 - F_a from Table 3.10.3.2-2.
 - F_v from Table 3.10.3.2-3.
- Developed the Design Response Spectrum per Article 3.10.4.1:
 - A_s from Equation 3.10.4.2-2.
 - S_{DS} from Equation 3.10.4.2-3.
 - S_{D1} from Equation 3.10.4.2-6.
- Determined the Seismic Performance Zones per Article 3.10.6.

This ensures compliance with AASHTO standards for seismic design.

Designed to Amaze, Engineered to Last°

Computations For Tuttle Bridge Road

Maine DOT

Seismic Site Class

Hammer Type Automatic

 Made By
 JS

 Checked By
 AS

 Back Checked By
 AG

11/3/2022 11/3/2022 11/7/2022 Job No. 4462.07

 Boring No.
 BB-C295-101

 Ground El:
 90.00
 (ft)

 Ground Water El:
 85.00
 (ft)

 Depth of Ground water
 5

 Unit Weight of Soil Below Ground Water Table:
 0.12
 ksf

OTHE VV	eignit of a	oli below	Ground Water Table:	0.12
I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
	0.00	90.0		
1D	2.00	88.0	Cohesive	6
2D	4.00	86.0	Cohesive	3
3D	6.00	84.0	Cohesive	13
4D	8.00	82.0	Cohesive	13
5D	10.00	80.0	Cohesionless	13
6D	15.50	74.5	Cohesionless	9
7D	20.00	70.0	Cohesionless	24
8D	25.00	65.0	Cohesionless	41
9D	30.00	60.0	Cohesionless	34
10D	35.00	55.0	Cohesionless	100
102	00.00	00.0	Concolonicos	100

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Cohesive	8.00	7	8.00	7	1.08
2	Silty Sand	24.00	27	24.00	27	0.89

Date

Date

Date

 $32.00 \sum d_i/N_i = 1.96$

ASHTO C3.10.3.1- Method B: N = 16 SITE CLASS D

Designed to Amaze, Engineered to Last[®]

4462.07

Computations For **Tuttle Bridge Road** Maine DOT Seismic Site Class

Hammer Type Automatic

Boring No.	BB-C295-102	
Ground El:	90.00	(ft)
Ground Water El:	85.00	(ft)
Depth of Ground water	5	
Unit Weight of Soil Below Ground Water Table:	0.12	ksf

I.D	Depth	Elev (ft)	Soil Tuno	SPT
ט.ו	(ft)	Elev (II)	Soil Type	(uncorrected)
	0.00	90.0		
1D	2.00	88.0	Fill	12
2D	4.00	86.0	Cohesive	17
3D	6.00	84.0	Cohesive	13
4D	8.00	82.0	Cohesive	11
5D	10.00	80.0	Cohesionless	8
6D	15.50	74.5	Cohesionless	9
7D	20.00	70.0	Cohesionless	25
8D	25.00	65.0	Cohesionless	21
9D	30.00	60.0	Cohesionless	47
10D	35.00	55.0	Cohesionless	100

Made By	JS	Date	11/3/2022	Job No.
Checked By	AS	Date	11/3/2022	
Back Checked By	AG	Date	11/7/2022	

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of *n* distinct layers down to the depth *r H* or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	α _i (π)	N _i (ΒΙ/π)	a _i /N _i
1	Fill	3.00	13	3.00	13	0.23
2	Cohesive	6.00	13	25.00	13	1.86
3	Cohesionless	26.00	24	26.00	24	1.10
	·					

 $\sum d_i / N_i = 3.19$ 54.00

ASHTO C3.10.3.1-SITE CLASS D Method B: N = 17

Computations For **Tuttle Bridge Road** Maine DOT Seismic Site Class

> BB-C295-103 90.00 (ft) 85.00 (ft)

Hammer Type Automatic

Boring No. Ground EI: Ground Water El: Depth of Ground water 5 0.12 Unit Weight of Soil Below Ground Water Table:

I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
	0.00	90.0		
1D	2.00	88.0	Fill	28
2D	4.00	86.0	Cohesive	8
3D	6.00	84.0	Cohesive	7
4D	8.00	82.0	Cohesive	0
5D	10.00	80.0	Cohesive	16
6D	15.50	74.5	Sand	8
7D	20.00	70.0	Sand	21
8D	25.00	65.0	Sand	39
9D	30.00	60.0	Silt	24
10D	35.00	55.0	Cohesionless	44
11D	45.00	45.0	Cohesionless	44

Made By	JS	Date	11/3/2022	Job No.	4462.07	
Checked By	AS	Date	11/3/2022		·	
Back Checked By	AG	Date	11/7/2022			

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of *n* distinct layers down to the depth *r H* or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	3.00	28	3.00	28	0.11
2	Cohesive	10.00	10	25.00	10	2.42
3	Sand	15.00	11	26.00	11	2.30
4	Silt & Clay	5	24	27.00	24	1.13
5	Cohesionless	12	44	28.00	44	0.64

 $\sum d_i / N_i = 6.59$ 109.00

ASHTO C3.10.3.1-Method B: N = 17 SITE CLASS D

Designed to Amaze, Engineered to Last°

Computations For Tuttle Bridge Road

Maine DOT

Seismic Site Class

Hammer Type Automatic

 Made By
 JS
 Date

 Checked By
 AS
 Date

 Back Checked By
 AG
 Date

11/3/2022 11/3/2022 11/7/2022 Job No. 4462.07

 Boring No.
 BB-C295-104

 Ground El:
 90.00
 (ft)

 Ground Water El:
 85.00
 (ft)

 Depth of Ground water
 5

 Unit Weight of Soil Below Ground Water Table:
 0.12
 ksf

Offic vve	0.12			
I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
	0.00	90.0		
1D	2.00	88.0	Fill	2
2D	4.00	86.0	Cohesive	9
3D	6.00	84.0	Cohesive	13
4D	8.00	82.0	Cohesive	7
5D	10.00	80.0	Cohesive	5
6D	15.50	74.5	Cohesive	2
7D	20.00	70.0	Sand	13
8D	25.00	65.0	Sand	14
9D	30.00	60.0	Sand	12

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	2.00	2	2.00	2	1.00
2	Cohesive	10.00	6	25.00	6	4.12
3	Sand	18.00	13	26.00	13	2.00

 $53.00 \sum d_i / N_i = 7.13$

ASHTO C3.10.3.1- Method B: \dot{N} = 7 SITE CLASS E

Note: shaded cells are data to be input (Expect Project Information)

Computations For	Tuttle Bridge Road Phase 2				
	Maine DOT				
Seismic Site Class					

Hammer Type Automatic

 Boring No.
 BB-C295-201 (OW)

 Ground El:
 89.68 (ft)

 Ground Water El:
 82.98 (ft)

 Depth of Ground water
 7

 Unit Weight of Soil Below Ground Water Table:
 varies ksf

I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
1D	0.00	89.7	Fill	3
2D	2.00	87.7	Fill	4
3D	4.00	85.7	Sand	14
4D	6.00	83.7	Sand	17
5D	8.00	81.7	Sand	23
6D	10.00	79.7	Sand	7
7D	15.00	74.7	Cohesive	19
8D	20.00	69.7	Cohesive	13
9D	27.00	62.7	Cohesive	1
	28.80	60.9	TOR	43
		I		

Made By	MK	Date	6/4/2024	Job No.	4462.07	
Checked By	AS	Date	6/10/2024			
Back Checked By	AG	Date	8/16/2024			

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Me	ethod B: Ń	
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	4.00	4	4.00	4	1.14
2	Sand	8.00	15	8.00	15	0.52
3	Cohesive	16.80	11	16.80	11	1.53

28.80 $\sum d_i/N_i = 3.19$

ASHTO C3.10.3.1 Method B: N = 9 SITE CLASS E

Designed to Amaze, Engineered to Last[®]

Computations For	Tuttle Bridge Road Phase 2
	Maine DOT
	Seismic Site Class

varies

 Boring No.
 BB-C295-202

 Ground El:
 81.20
 (ft)

 Ground Water El:
 81.20
 (ft)

 Depth of Ground water
 0

Unit Weight of Soil Below Ground Water Table:

	Depth			SPT
I.D	(ft)	Elev (ft)	Soil Type	(uncorrected)
1D	0.00	81.2	Cohesive	1
2D	2.00	79.2	Cohesive	10
3D	6.50	74.7	Cohesive	15
4D	8.50	72.7	Cohesive	12
5D	10.50	70.7	Cohesive	23
6D	15.00	66.2	Sand	19
7D	20.00	61.2	Sand	23
8D	25.00	56.2	Sand	26
9D	29.00	52.2	TOR	

		,,,,,,		ingineered to	Ld
MK	Date	6/4/2024	Job No.	4462.07	
AS	Date	8/13/2024	T .		

8/16/2024

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

Date

AG

Made By Checked By

Hammer Type Automatic

Back Checked By

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Me	ethod B: N	
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	12.50	12	12.50	12	1.02
2	Sand	16.50	23	16.50	23	0.73

29.00 $\sum d_i/N_i = 1.75$

VASHTO C3.10.3.1- Method B: N = 17 SITE CLASS D

Unit Weight of Soil Below Ground Water Table:

Designed to Amaze,

Computations For Tuttle Bridge Road Phase 2 Maine DOT Seismic Site Class

varies

ksf

Hammer Type Automatic

Boring No. BB-C295-203 Ground EI: 108.63 (ft) Ground Water El: 92.98 (ft) Depth of Ground water 16

I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
1D	1.00	107.6	Fill	21
2D	3.00	105.6	Fill	13
3D	5.00	103.6	Fill	8
4D	7.00	101.6	Fill	18
5D	9.00	99.6	Fill	9
6D	11.00	97.6	Fill	21
7D	13.00	95.6	Sand	24
8D	15.00	93.6	Sand	21
9D	20.00	88.6	Sand	19
10D	25.00	83.6	Cohesive	29
11D	30.00	78.6	Cohesive	11
12D	35.00	73.6	Cohesive	22
13D	40.00	68.6	Cohesive	4
14D	45.00	63.6	Cohesive	3
15D	50.00	58.6	Sand	50
16D	55.00	53.6	Sand	50
	56.80	51.8	TOR	

		1○□ Eng	ineered to Last°
Date	6/4/2024	Job No.	4462.07

Made By MK Checked By AS Date 8/13/2024 AG 8/16/2024 Date Back Checked By

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Me	ethod B: N	
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	13.00	15	13.00	15	0.87
2	Sand	9.00	21	9.00	21	0.42
3	Cohesive	25.00	14	25.00	14	1.81
4	Sand	9.80	50	9.80	50	0.20
	<u> </u>					

 $\sum d_i/N_i =$ 56.80 3.30

ASHTO C3.10.3.1-Method B: N = 17 SITE CLASS D

H&H Desig

Designed to Amaze, Engineered to Last*

4462.07

Computations For Tuttle Bridge Road Phase 2

Maine DOT

Seismic Site Class

BB-C295-204 90.56 (ft) 81.50 (ft)

varies

Hammer Type Automatic

Depth of Ground water
Unit Weight of Soil Below Ground Water Table:

Boring No.

Ground EI:

Ground Water El:

I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
1D	0.00	90.6	Fill	8
2D	2.00	88.6	Cohesive	9
3D	4.00	86.6	Cohesive	9
4D	6.00	84.6	Cohesive	12
5D	8.00	82.6	Sand	8
6D	10.00	80.6	Sand	15
7D	15.00	75.6	Sand	10
8D	20.00	70.6	Sand	31
9D	25.00	65.6	Sand	42
10D	30.00	60.6	Sand	43
11D	35.00	55.6	Cohesive	40
12D	40.00	50.6	Sand	50
13D	45.00	45.6	Sand	50
	47.50	43.1	TOR	

Made By	MK	Date	6/4/2024	Job No
Checked By	AS	Date	8/13/2024	
Back Checked By	AG	Date	8/16/2024	

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	2.00	8	2.00	8	0.25
2	Cohesive	6.00	10	6.00	10	0.60
3	Sand	24.00	25	24.00	25	0.97
4	Cohesive	5.00	40	5.00	40	0.13
5	Sand	10.00	50	10.00	50	0.20

 $47.00 \quad \sum d_i / N_i = 2.14$

ASHTO C3.10.3.1 Method B: N = 22 SITE CLASS D

Boring No.

Ground EI:

Ground Water El:

Depth of Ground water

Unit Weight of Soil Below Ground Water Table:

H&H

Designed to Amaze, Engineered to Last°

Computations For Tuttle Bridge Road Phase 2

Maine DOT

Seismic Site Class

BB-C295-205 106.20 (ft) 93.20 (ft)

varies

13

Hammer Type Automatic

I.D	Depth	Elev (ft)	Soil Type	SPT
	(ft)	` '	71	(uncorrected)
1D	1.00	105.2	Fill	11
2D	3.00	103.2	Fill	14
3D	5.00	101.2	Fill	13
4D	7.00	99.2	Fill	19
5D	9.00	97.2	Fill	12
6D	15.00	91.2	Fill	31
7D	20.00	86.2	Cohesive	10
8D	24.50	81.7	Cohesive	0
9D	30.00	76.2	Cohesive	4
10D	35.00	71.2	Sand	13
11D	40.00	66.2	Sand	38
	43.50	62.7	TOR	
		l		

Made By	MK	Date	6/4/2024	Job No.	4462.07
Checked By	AS	Date	8/13/2024		
Back Checked By	AG	Date	8/16/2024		

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	17.00	17	17.00	17	1.02
2	Cohesive	15.00	5	15.00	5	3.21
3	Sand	11.50	26	11.50	26	0.45

 $43.50 \quad \sum d_i / N_i = 4.69$

ASHTO C3.10.3.1 Method B: N = 9 SITE CLASS E

111H&H

Designed to Amaze, Engineered to Last°

Computations For Tuttle Bridge Road Phase 2

Maine DOT

Seismic Site Class

Back Checked By

Hammer Type Automatic

Made By

Checked By

MK Date
AS Date
AG Date

6/4/2024 8/13/2024 8/16/2024 4462.07

Job No.

 Boring No.
 BB-C295-206

 Ground El:
 92.08
 (ft)

 Ground Water El:
 89.28
 (ft)

 Depth of Ground water
 3
 Unit Weight of Soil Below Ground Water Table:
 varies
 ksf

Offic vv.	oignit of C	oli Delow	Glouliu water Table.	varies
I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
1D	0.00	92.1	Fill	3
2D	2.00	90.1	Cohesive	14
3D	4.00	88.1	Cohesive	16
4D	6.00	86.1	Cohesive	19
5D	10.00	82.1	Cohesive	4
6D	15.00	77.1	Sand	13
7D	20.00	72.1	Sand	18
8D	25.00	67.1	Sand	30
- 00	26.83	65.3	TOR	00
	20.03	05.5	TOR	

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N		
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i
1	Fill	2.00	3	2.00	3	0.67
2	Cohesive	10.00	13	10.00	13	0.75
3	Sand	14.83	20	14.83	20	0.73

26.83 $\sum d_i/N_i = 2.15$

ASHTO C3.10.3.1- Method B: N = 12 SITE CLASS E

H&H

Job No.

Designed to Amaze, Engineered to Last®

4462.07

Computations For Tuttle Bridge Road Phase 2

Maine DOT

Seismic Site Class

Hammer Type Automatic

 Boring No.
 BB-C295-207

 Ground El:
 92.45 (ft)

 Ground Water El:
 89.65 (ft)

 Depth of Ground water
 3

 Unit Weight of Soil Below Ground Water Table:
 varies
 ksf

I.D	Depth (ft)	Elev (ft)	Soil Type	SPT (uncorrected)
1D	0.00	92.5	Cohesive	1
2D	2.00	90.5	Cohesive	10
3D	4.00	88.5	Sand	12 12
4D	6.00	86.5	Sand	12
5D	8.00	84.5	Cohesive	1
6D	15.00	77.5	Cohesive	0
7D	21.00	71.5	Sand	50
	23.50	69.0	TOR	
	20.00	00.0	1010	

Made By	MK	Date	6/4/2024
Checked By	AS	Date	8/13/2024
Back Checked By	AG	Date	8/16/2024

A3.10.3.1 - For more highly fractured and weathered rock, the shear wave velocity shall be directly measured; otherwise, it shall be assumed that the rock surface has not yet been reached and the highly fractured and weathered rock shall be considered to be a soil layer above the rock surface.

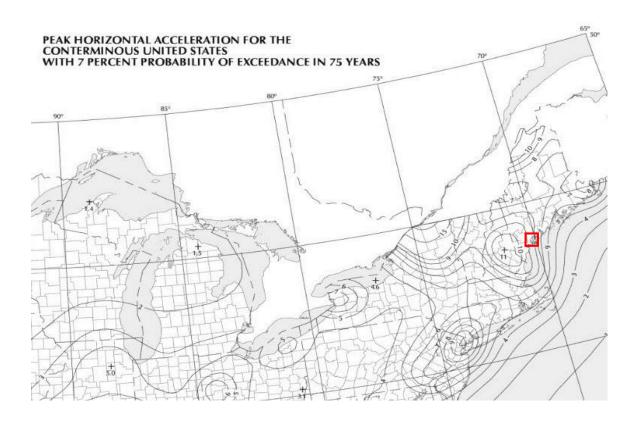
A3.10.3.3 - Profiles containing distinctly different soil layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom, where there are a total of n distinct layers down to the depth r H or down to a depth of 100 feet, depending on the case.

				Method B: N			
Layer #	Description	Thickness (ft)	Avg. N (bl/ft)	d _i (ft)	N _i (bl/ft)	d _i /N _i	
1	Cohesive	2.00	6	2.00	6	0.36	
2	Sand	10.00	12	10.00	12	0.83	
3	Cohesive	14.83	1	14.83	1	29.66	
4	Sand	15.83	50	15.83	50	0.32	
				·		·	

42.66 $\sum d_i/N_i = 31.17$

ASHTO C3.10.3.1 Method B: N = 1 SITE CLASS E

4462.07


 Location :
 Tuttle Road Bridge
 Checked By AS
 AS
 Date B/19/2024
 11/17/2022
 Job No.

 Calculations :
 Seismic Coefficient S_{DS}
 Back Checked By AG
 AG
 Date B/20/2024
 8/20/2024
 Sheet No.

Peak Ground Acceleration (1000 yr event) PGA

0.088

AASHTO Figure 3.10.2.1-1 (below)

$A_S = F_{pga} PGA$	(3.10.4.2-2)
---------------------	--------------

	Peak Ground Acceleration Coefficient (PGA)1								
Site Class	PGA < 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA > 0.50				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
C	1,2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	0.9				
F^2	*	*	*	*	*				

Notes:

Site Class D Site Class E

Acceleration Coefficient As 0.1408 0.22

AASHTO Table 3.10.3.2-1

 Location :
 Tuttle Road Bridge
 Checked By
 AS

 Calculations :
 Seismic Coefficient S_{DS}
 Back Checked By
 AG

Date 11/17/2022
Date 8/19/2024
Date 8/20/2024


Job No. 4462.07

Sec. No. Sheet No.

Horizontal specteral response for .2 sec period (1000 yr event) Ss

0.17

AASHTO Figure 3.10.2.1-2 (below)

Site Class E

0.425

Site Class D

0.272

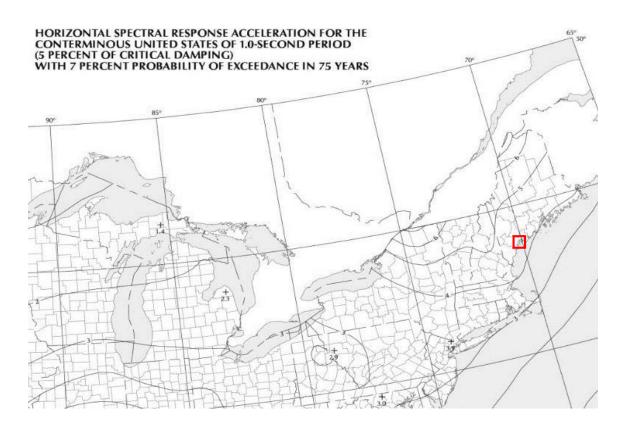
Acceleration Coefficient Sps

-3)
	-3

Table 3.10.3.2-2—Values of Site Factor, F_a , for Short-Period Range of Acceleration Spectrum

	Spectral Acceleration Coefficient at Period 0.2 sec (S _S) ¹								
Site Class	S _S < 0.25	$S_S = 0.50$	$S_S = 0.75$	$S_S = 1.00$	S _S > 1.25				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
C	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	0.9				
F^2	*			4					

AASHTO Table 3.10.3.2-2



4462.07 Made By _ Date 11/17/2022 Job No. Tuttle Road Bridge Location: Checked By AS Date 11/18/2022 Sec. No. Seismic Coefficient S_{D1} Calculations Back Checked By 11/21/2022 Sheet No. Date

Horizontal specteral response for 1 sec period (1000 yr event) $\mathbf{S}_{\mathbf{1}}$

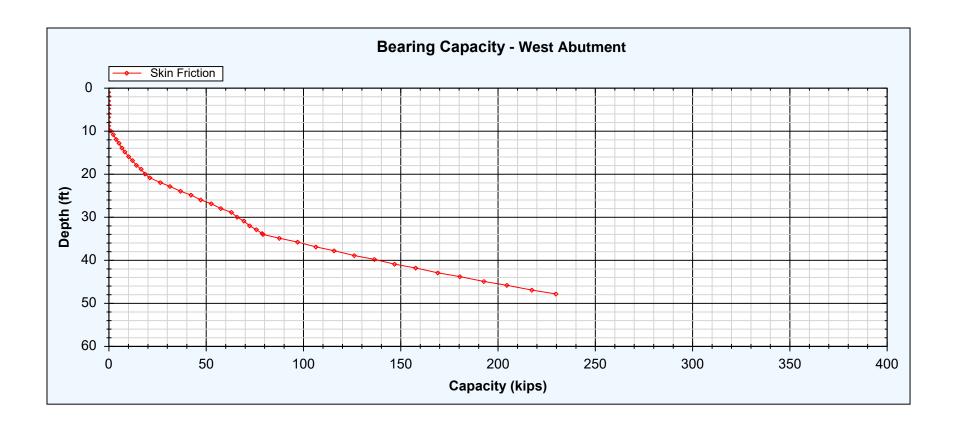
0.044

AASHTO Figure 3.10.2.1-3 (below)

	Site Class D	Site Class E
Acceleration Coefficient S _{D1}	0.1056	0.154

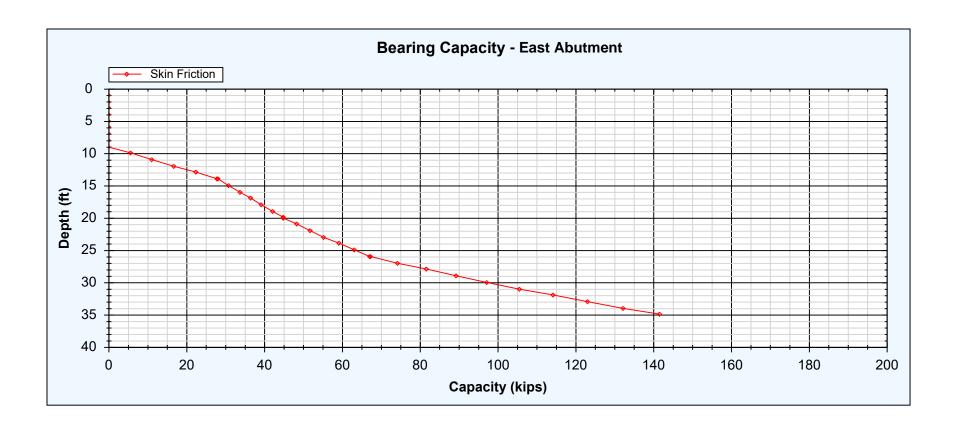
 $S_{D1} = F_{\nu} S_1 \tag{3.10.4.2-6}$

Table 3.10.3.2-3—Values of Site Factor, F_v , for Long-Period Range of Acceleration Spectrum


	Spectral Acceleration Coefficient at Period 1.0 sec $(S_1)^{\dagger}$								
Site Class A	S ₁ < 0.1	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	S ₁ > 0.5				
Α	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
C	1.7	1.6	1.5	1.4	1.3				
D	2.4	2.0	1.8	1.6	1.5				
E	3.5	3.2	2.8	2.4	2.4				
F^2	*	*	*	*	*				

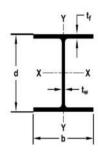

AASHTO Table 3.10.3.2-3

Appendix HFoundation Evaluation


Appendix H-1Uplift Pile Resistance

Appendix H-2 FBMP Group Analyses

Section Properties



Computations For	Tuttle Bridge Road Phase 2	Made By	AS	Date	9/9/2024	Job No.	4462.07
	Maine DOT	Checked By	MCK	Date	9/10/2024		
HP14x89 Section Pr	operties after Section Loss due to Corrosion	Back Checked By	AG	Date	9/13/2024		

W-Shape and/or HP Section Properties and Corrosion Loss

Note:

Calculations in this sheet are just for evaluating sections.

_											
Е	Pile	Corrosion Loss	b	d	tf	tw	Area	lx	Sx	ly	Sy
Г	Type	(in)	(in)	(in)	(in)	(in)	(in2)	(in4)	(in3)	(in4)	(in3)
	HP14X89	0	14.70	13.83	0.62	0.62	25.82	892.22	129.03	325.51	44.30
Г	HP14X89	0.0625	14.57	13.71	0.49	0.49	20.51	707.81	103.29	252.72	34.69

Subsurface Parameters

Substructure Location: Abutment 1 (West)
Borings Referred: BB-C295-202

		FB-	MultiPier General Soil Propertie	s for Dr	iven Piles¹			
Layer	Lateral	Axial		Torsional	Tip			
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Cohesionless Fill	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	29 112	Shear Modulus (ksi)	3.5	Total Unit Weight γ (pcf)	112		
			Poisson's Ratio	0.25	Shear Modulus (ksi)	3.5		
	(1 /		Nominal Unit Skin Friction (psf)	50	Torsional Shear Stress (psf)	50		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
Very Stiff Cohesive Soil	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)		Shear Modulus (ksi)	6.4	Total Unit Weight γ (pcf)	130		
	Major Principal Strain @ 50% 0.005		Poisson's Ratio Nominal Unit Skin Friction (psf)	0.5 1500	Shear Modulus (ksi) Torsional Shear Stress (psf)	6.4 1500		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic		N/A	
Medium Stiff	Total Unit Weight y (pcf) 120 Undrained Shear Strength (psf) 1250		Shear Modulus (ksi)	4	Total Unit Weight γ (pcf)	120		
Cohesive Soil	Major Principal Strain @ 50%	0.007	Poisson's Ratio	0.45	Shear Modulus (ksi) Torsional Shear Stress (psf)	4.0 625		
	Sand (Reese)		Nominal Unit Skin Friction (psf) 625 Driven Pile (McVay)		Hyperbolic 625			
Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	36 130	Shear Modulus (ksi)	15	Total Unit Weight γ (pcf)	130		
Cohesionless Soil	k above GWT (pci)	171	Poisson's Ratio	0.35	Shear Modulus (ksi)	15.0		
	k below GWT (pci)	100	Nominal Unit Skin Friction (psf)	900	Torsional Shear Stress (psf)	900		
	Limestone (McVay)		Driven Pile (McVay)		Hyperbolic		Driven Pile (M	/lcVay)
Rock	Unconfined Compressive Strength qu (psf)	360,000	Nominal Unit Skin Friction (psf)	30,000	Total Unit Weight γ (pcf) Shear Modulus (ksi) Torsional Shear Stress (psf)	160 400 30,000	Nominal Tip Resistance (kips)	150

¹ Parameters have been based on avaiable lab data and correlations to in-situ data.

Substructure Location: Abutment 2 (East)

Borings Referred: BB-C295-104,-206 (OW)

		FB-	MultiPier General Soil Propertie	s for Dr	iven Piles¹			
Layer	Lateral		Axial	Axial		Torsional		
	Sand (Reese)		Driven Pile (McVay)	Driven Pile (McVay)		Hyperbolic		
Cohesionless Fill	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	29 112	Shear Modulus (ksi)	3.5	Total Unit Weight γ (pcf)	112		
	k above GWT (pci)	38	Poisson's Ratio	0.25	Shear Modulus (ksi)	3.5	1	
	k below GWT (pci)	28	Nominal Unit Skin Friction (psf)	50	Torsional Shear Stress (psf)	50	1	
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
very Suii	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	130 3500	Shear Modulus (ksi)	3	Total Unit Weight γ (pcf)	130		
Cohesive Soil	Major Principal Strain @ 50%	0.005	Poisson's Ratio	0.45	Shear Modulus (ksi)	3.0	1	
	IMajor Frincipal Strain @ 50%	0.003	Nominal Unit Skin Friction (psf)	550	Torsional Shear Stress (psf)	550		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	115 1000	Shear Modulus (ksi)	3	Total Unit Weight γ (pcf)	115	N/A	
Coriesive Soil	Major Principal Strain @ 50%	0.005	Poisson's Ratio	0.45	Shear Modulus (ksi)	3.0	1	
	I Najor Principal Strain @ 50%	0.005	Nominal Unit Skin Friction (psf)	450	Torsional Shear Stress (psf)	450	1	
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Medium Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	31 125	Shear Modulus (ksi)	1.5	Total Unit Weight γ (pcf)	125]	
Cohesionless Soil	k above GWT (pci)	64	Poisson's Ratio	0.3	Shear Modulus (ksi)	1.5	1	
	k below GWT (pci)	44	Nominal Unit Skin Friction (psf)	250	Torsional Shear Stress (psf)	250		
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	36 130	Shear Modulus (ksi)	15	Total Unit Weight γ (pcf)	130		
Cohesionless Soil	k above GWT (pci)	171	Poisson's Ratio	0.35	Shear Modulus (ksi)	15.0	1	
	k below GWT (pci)	100	Nominal Unit Skin Friction (psf)	900	Torsional Shear Stress (psf)	900	1	
	Limestone (McVay)		Driven Pile (McVay)		Hyperbolic		Driven Pile (M	/lcVay)
Rock	Linear fined Community Character at Angle	200,000	Name in all limit Oldin Functions (mat)		Total Unit Weight γ (pcf) Shear Modulus (ksi)	160 400	Nominal Tip	450
	Unconfined Compressive Strength qu (psf)	360,000	Nominal Unit Skin Friction (psf)	30,000	Torsional Shear Stress (psf)	30,000	Resistance (kips)	150

¹ Parameters have been based on available lab data and correlations to in-situ data.

Substructure Location: Pier 1

Borings Referred: BB-C295-101

		FB-	MultiPier General Soil Propertie	s for Dr	iven Piles¹			
Layer	Lateral		Axial	Axial		Torsional		
	Clay (Soft; Matlock)		Driven Pile (McVay)		Hyperbolic	Hyperbolic		
Soft to Medium Stiff Cohesive Soil	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	110 400	Shear Modulus (ksi)	2	Total Unit Weight γ (pcf)	110		
-	Major Principal Strain @ 50%	0.02	Poisson's Ratio Nominal Unit Skin Friction (psf)	0.45 200	Shear Modulus (ksi) Torsional Shear Stress (psf)	2.0 200		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	125 1000	Shear Modulus (ksi)	4	Total Unit Weight γ (pcf)	125		
ŀ	Major Principal Strain @ 50% 0.005		Poisson's Ratio Nominal Unit Skin Friction (psf)	0.5 500	Shear Modulus (ksi) Torsional Shear Stress (psf)	4.0 500	N/A	
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Medium Dense Cohesionless Soil	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	32 120	Shear Modulus (ksi)	8.5	Total Unit Weight γ (pcf)	120		
	k above GWT (pci)	77	Poisson's Ratio	0.3	Shear Modulus (ksi)	8.5		
	k below GWT (pci)	52	Nominal Unit Skin Friction (psf)	250	Torsional Shear Stress (psf)	250	\neg	
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Dense Cohesionless Soil	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	36 130	Shear Modulus (ksi)	15	Total Unit Weight γ (pcf)	130		
Coriesioniess Soil	k above GWT (pci)	171	Poisson's Ratio	0.35	Shear Modulus (ksi)	15.0	1	
	k below GWT (pci)	100	Nominal Unit Skin Friction (psf)	900	Torsional Shear Stress (psf)	900		
	Limestone (McVay)		Driven Pile (McVay)		Hyperbolic		Driven Pile (N	/lcVay)
Rock	Llarge fine of Community Observable of Confe	202 202	Name and Heit Oldin Frietien (cost)	20.000	Total Unit Weight γ (pcf) Shear Modulus (ksi)	160 400	Nominal Tip 1-5	
	Unconfined Compressive Strength qu (psf)	360,000	Nominal Unit Skin Friction (psf)	30,000	Torsional Shear Stress (psf)	30,000	Resistance (kips)	150

Parameters have been based on avaialble lab data and correlations to in-situ data.

Substructure Location: Pier 2

Borings Referred: BB-C295-204

		FB-	MultiPier General Soil Propertie	s for Dr	iven Piles¹			
Layer	Lateral		Axial		Torsional		Tip	
	Sand (Reese)		Driven Pile (McVay)	Driven Pile (McVay)		Hyperbolic		
	Internal Friction Angle φ (deg) Total Unit Weight y (pcf)	29 112	Shear Modulus (ksi)	3.5	Total Unit Weight γ (pcf)	112		
	k above GWT (pci)	38	Poisson's Ratio	0.25	Shear Modulus (ksi)	3.5		
	k below GWT (pci)	28	Nominal Unit Skin Friction (psf)	50	Torsional Shear Stress (psf)	50		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	120 1200	Shear Modulus (ksi)	4	Total Unit Weight γ (pcf)	120		
	Major Principal Strain @ 50%	0.01	Poisson's Ratio	0.45	Shear Modulus (ksi)	4.0		
))		Nominal Unit Skin Friction (psf)	450	Torsional Shear Stress (psf)	450		
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Medium Dense Cohesionless Soil	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	32 120	Shear Modulus (ksi)	8.5	Total Unit Weight γ (pcf)	120		
Coriesioniess 30ii	k above GWT (pci)	77	Poisson's Ratio	0.3	Shear Modulus (ksi)	8.5		
	k below GWT (pci)	52	Nominal Unit Skin Friction (psf)	250	Torsional Shear Stress (psf)	250	N/A	
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	36 125	Shear Modulus (ksi)	15	Total Unit Weight γ (pcf)	125		
Cohesionless Soil	k above GWT (pci)	171	Poisson's Ratio	0.35	Shear Modulus (ksi)	15.0		
	k below GWT (pci)	100	Nominal Unit Skin Friction (psf)	900	Torsional Shear Stress (psf)	900	1	
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic	1		
	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	135 4000	Shear Modulus (ksi)	7.5	Total Unit Weight γ (pcf)	135		
	Major Principal Strain @ 50%	0.004	Poisson's Ratio	0.5	Shear Modulus (ksi)	7.5		
	, ,	0.004	Nominal Unit Skin Friction (psf)	1250	Torsional Shear Stress (psf)	1250		
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
very Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	38 130	Shear Modulus (ksi)	18.5	Total Unit Weight γ (pcf)	130		
Cohesionless Soil	k above GWT (pci)	225	Poisson's Ratio	0.35	Shear Modulus (ksi)	18.5		
	k below GWT (pci)	125	Nominal Unit Skin Friction (psf)	1500	Torsional Shear Stress (psf)	1500	1	
	Limestone (McVay)		Driven Pile (McVay)	•	Hyperbolic		Driven Pile (I	/lcVay)
Rock	Harris d'Orange de Company	200 000	Name in all Heit Older Federic (C	20.000	Total Unit Weight γ (pcf) Shear Modulus (ksi)	160 400	Nominal Tip	450
	Unconfined Compressive Strength qu (psf)	360,000	Nominal Unit Skin Friction (psf)	30,000	Torsional Shear Stress (psf)	30,000	Resistance (kips)	150

¹ Parameters have been based on available lab data and correlations to in-situ data.

 $^{^2}$ Torsional Shear Stress for cohensionless soils calculated as σ^\prime tan 14°

Substructure Location: Pier 3

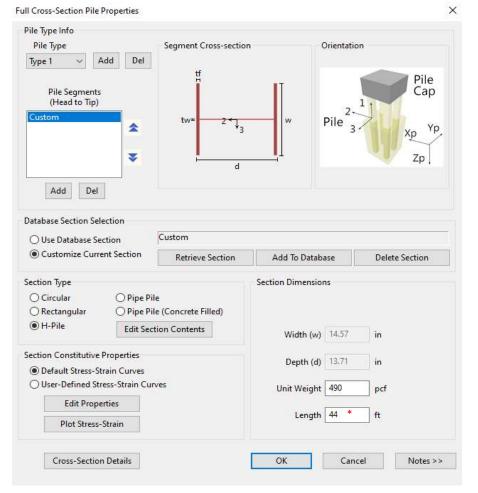
Borings Referred: BB-C295-103

		FB-	MultiPier General Soil Propertie	s for Dr	iven Piles¹			
Layer	Lateral		Axial		Torsional		Tip	
	Sand (Reese)		Driven Pile (McVay)	Driven Pile (McVay)		Hyperbolic		
Cohesionless Fill	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	30 115	Shear Modulus (ksi)	5	Total Unit Weight γ (pcf)	115		
	k above GWT (pci)	51	Poisson's Ratio	0.25	Shear Modulus (ksi)	5.0		
	k below GWT (pci)	36	Nominal Unit Skin Friction (psf)	75	Torsional Shear Stress (psf)	75		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
Stiff Cohesive Soil	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	120 1200	Shear Modulus (ksi)	4	Total Unit Weight γ (pcf)	120		
	Major Principal Strain @ 50%	0.01	Poisson's Ratio	0.45	Shear Modulus (ksi)	4.0		
	IMajor Frincipal Strain @ 50%	0.01	Nominal Unit Skin Friction (psf)	450	Torsional Shear Stress (psf)	450		
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Medium Dense Cohesionless Soil	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	30 115	Shear Modulus (ksi)	5	Total Unit Weight γ (pcf)	115	1	
Conesionless Soil	k above GWT (pci)	51	Poisson's Ratio	0.3	Shear Modulus (ksi)	5.0		
	k below GWT (pci)	36	Nominal Unit Skin Friction (psf)	300	Torsional Shear Stress (psf)	300	N/A	
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	34 125	Shear Modulus (ksi)	11.5	Total Unit Weight γ (pcf)	125		
Cohesionless Soil	k above GWT (pci)	117	oisson's Ratio 0.3 Shear Mo		Shear Modulus (ksi)	11.5		
	k below GWT (pci)	73	Nominal Unit Skin Friction (psf)	600	Torsional Shear Stress (psf)	600		
	Clay (Stiff with free water)		Driven Pile (McVay)		Hyperbolic			
Hard Cohesive Soil	Total Unit Weight γ (pcf) Undrained Shear Strength (psf)	130 3000	Shear Modulus (ksi)	6.4	Total Unit Weight γ (pcf)	130		
	Major Principal Strain @ 50%	0.005	Poisson's Ratio	0.5	Shear Modulus (ksi)	6.4		
	' '	0.000	Nominal Unit Skin Friction (psf)	1000	Torsional Shear Stress (psf)	1000		
	Sand (Reese)		Driven Pile (McVay)		Hyperbolic			
Very Dense	Internal Friction Angle φ (deg) Total Unit Weight γ (pcf)	36 130	Shear Modulus (ksi)	15	Total Unit Weight γ (pcf)	130		
Cohesionless Soil	k above GWT (pci)	171	Poisson's Ratio	0.35	Shear Modulus (ksi)	15.0		
	k below GWT (pci)	100	Nominal Unit Skin Friction (psf)	1250	Torsional Shear Stress (psf)	1250	†	
	Limestone (McVay)		Driven Pile (McVay)		Hyperbolic		Driven Pile (I	/lcVay)
Rock	Unconfined Compressive Strength qu (psf)	360,000	Nominal Unit Skin Friction (psf)	30.000	Total Unit Weight γ (pcf) Shear Modulus (ksi)	160 400	Nominal Tip	150
	on board on everille lab data and correlations	,	Transit Offic Order Frontier (por)	30,000	Torsional Shear Stress (psf)	30,000	Resistance (kips)	100

¹ Parameters have been based on avaiable lab data and correlations to in-situ data.

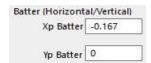
FB-MultiPier Input Overview

Designed to Amaze, Engineered to Last*

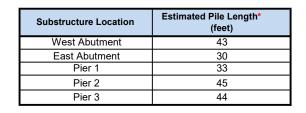

Made By Checked By MCK Back Checked By AG

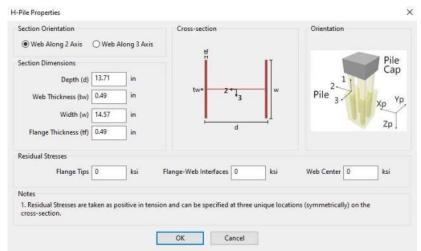
AS

Date Date Date


9/9/2024 9/10/2024 9/13/2024

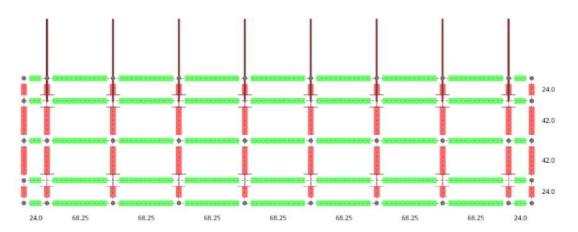
Job No. 4462.07



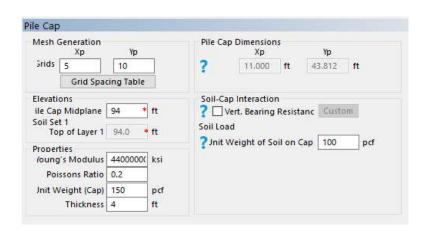

Pile Batter:

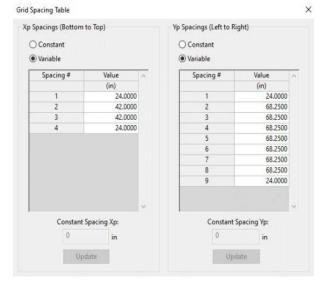
1/6=0.167

Note: Batter is negative (-) or positive (+) based on the orientation of specific pile. X axis is longitudinal direction. Pile batter direction is indicated on DWG Sheets 41 and 50.


Graphics For Tuttle Bridge Road Phase 2

Maine DOT


Typical Foundation Configuration - Abutments


Made By Checked By Back Checked By AS MCK AG Date
Date
Date

9/9/2024 9/10/2024 9/13/2024 Job No. 4462.07

Substructure Location	Midplane Elevation *1 (ft)	Ground Elevation *2 (ft)		
West Abutment	94	94		
East Abutment	92	92		

44.0

24.0

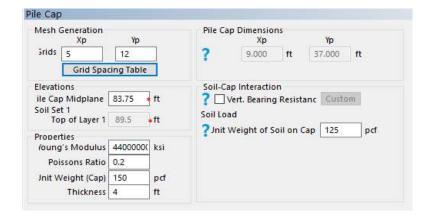
44.0

44.0

44.0

44.0

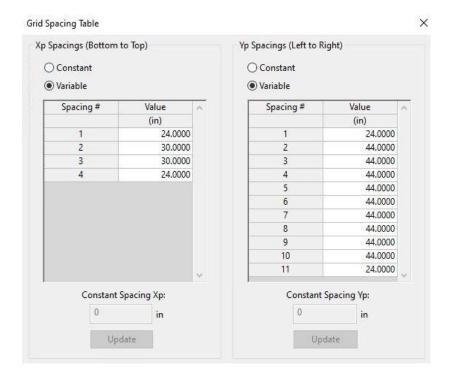
44.0


44.0

44.0

44.0

24.0



Made By Checked By Back Checked By AS MCK AG Date Date Date

9/9/2024 9/10/2024 9/13/2024 Job No. 4462.07

Midplane Ground Substructure Location Elevation *2 Elevation *1 (ft) (ft) Pier 1 82.25 86.5 Pier 2 87.25 90.5 Pier 3 83.75 89.75

Loading

 Computations For
 Tuttle Road
 Made By
 F. Fischer
 Date

 Checked By
 R. Frein
 Date

 Abutment Loads
 Back Checked By
 F. Fischer
 Date

 5/6/2024
 Job No.
 4462.07

 5/6/2024
 Client No.
 25161

 5/6/2024
 Sheet No.

<u>4462.07</u> <u>25161</u>

Abutment 1

Coordinates: z is the longitudinal axis/normal to face of substructure and x is the transverse axis/transverse to substructure

L = longitudinal

T= Transverse

V= Vertical

F = Force (kips)

M = Moment (k-ft)

	Р	H_z	H_x	M_x	M_z	*Reference from Mathcad
	F_V	F_L	F_T	M_L	M_T	
Str I Construction (min)	0	0	0	0	0	(not applicable)
Str I Construction (max)	0	0	0	0	0	(not applicable)
Str la & lb (min)	1869.3	619.2	40.5	5642.8	114.3	
Str Ia & Ib (max)	2452.6	619.2	97.3	5675.1	274.2	
Str III (min)	0	0	0	0	0	(not applicable)
Str III (max)	0	0	0	0	0	(flot applicable)
Str IV (min)	0	0	0	0	0	(not applicable)
Str IV (max)	0	0	0	0	0	(flot applicable)
Str V (min)	0	0	0	0	0	(not applicable)
Str V (max)	0	0	0	0	0	(flot applicable)
Ser I (min)	0	0	0	0	0	
Ser I (max)	1809	401.9	115.4	3588.5	434.5	
Ext I	1662.5	834.9	73.3	5810.9	1392.9	

Computations For	Tuttle Road	Made By F.	. Fischer	Date	5/6/2024	Job No.	4462.07
		Checked By R.	. Frein	Date	5/6/2024	Client No.	25161
Abutment Loads		Back Checked By	y F. Fischer	Date	5/6/2024	Sheet No.	

Abutment 2

Coordinates: z is the longitudinal axis/normal to face of substructure and x is the transverse axis/transverse to substructure

L = longitudinal

T= Transverse

V= Vertical

F = Force (kips)

M = Moment (k-ft)

						_
	Р	H_z	H_x	M_x	M_z	*Reference from Mathcad
	F_V	F_L	F_T	M_L	M_T	
Str I Construction (min)	0	0	0	0	0	(not applicable)
Str I Construction (max)	0	0	0	0	0	(not applicable)
Str la & lb (min)	1821.3	610.8	40.5	5507.9	112.3	
Str la & lb (max)	2386.5	610.8	97.3	5527	269.5	
Str III (min)	0	0	0	0	0	(not applicable)
Str III (max)	0	0	0	0	0	(not applicable)
Str IV (min)	0	0	0	0	0	(not applicable)
Str IV (max)	0	0	0	0	0	(not applicable)
Str V (min)	0	0	0	0	0	(not applicable)
Str V (max)	0	0	0	0	0	(not applicable)
Ser I (min)	0	0	0	0	0	
Ser I (max)	1759.8	396.3	115.4	3487.8	426.5	
Ext I	1615.8	808.2	72	5559.2	1356.1	Ī

Computations For	Tuttle Road	Made By F.	. Fischer	Date	5/6/2024	Job No.	4462.07
		Checked By R.	. Frein	Date	5/6/2024	Client No.	25161
Pier Loads		Back Checked By	y F. Fischer	Date	5/6/2024	Sheet No.	

Pier 1 (Applies to Pier 2 as well)

Coordinates: z is the longitudinal axis/normal to face of substructure and x is the transverse axis/transverse to substructure

L = longitudinal

T= Transverse

V= Vertical

F = Force (kips)

M = Moment (k-ft)

	Р	H_z	H_x	M_x	M_z
	F_V	F_L	F_T	M_L	M_T
Str I Construction (min)	1227.2	0	0	0	0
Str I Construction (max)	1227.2	0	0	0	0
Str Ia & Ib (min)	2930.8	26	97	2610	699.4
Str Ia & Ib (max)	3920.7	62.4	232.9	6264	1678.4
Str III (min)	2221.7	97.7	186.5	3422.8	3049.5
Str III (max)	3211.7	134.1	322.3	7076.8	4028.6
Str IV (min)	2221.7	26	97	2610	699.4
Str IV (max)	3211.7	62.4	232.9	6264	1678.4
Str V (min)	2768.7	57.8	114.4	3339.2	841.4
Str V (max)	3758.7	94.2	250.2	6993.2	1820.5
Ser I (min)	2932.3	77.3	210.9	5876.5	1532.7
Ser I (max)	2932.3	87.7	249.8	6919.6	1812.4
Ext I	2932.3	0	437	0	11755.1

*Reference from Mathcad

Computations For	Tuttle Road	Made By	F. Fischer		Date	5/6/2024	Job No.	4462.07
		Checked By	R. Frein		Date	5/6/2024	Client No.	25161
Pier Loads		Back Checke	d By	F. Fischer	Date	5/6/2024	Sheet No.	

Pier 3

Coordinates: z is the longitudinal axis/normal to face of substructure and x is the transverse axis/transverse to substructure

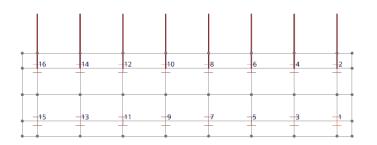
L = longitudinal

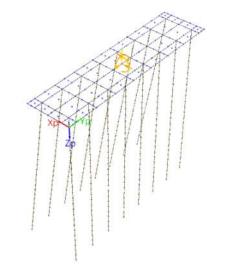
T= Transverse

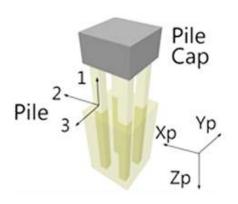
V= Vertical

F = Force (kips)

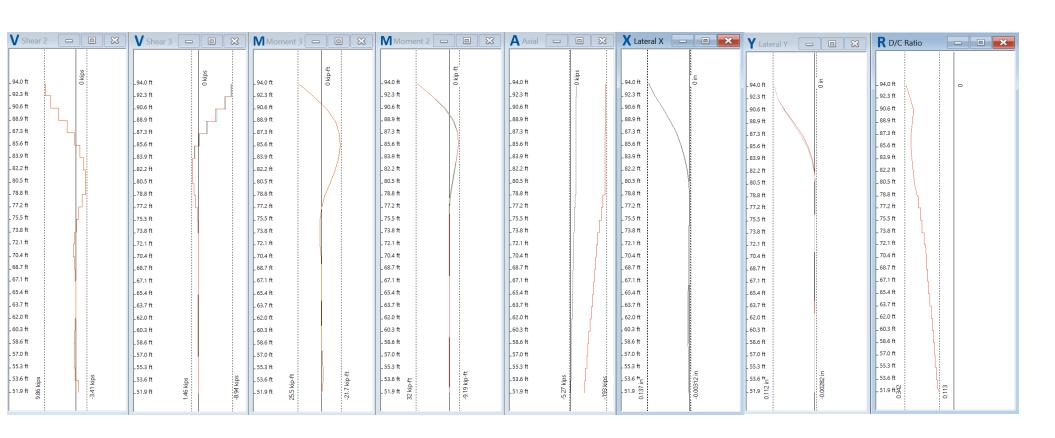
M = Moment (k-ft)

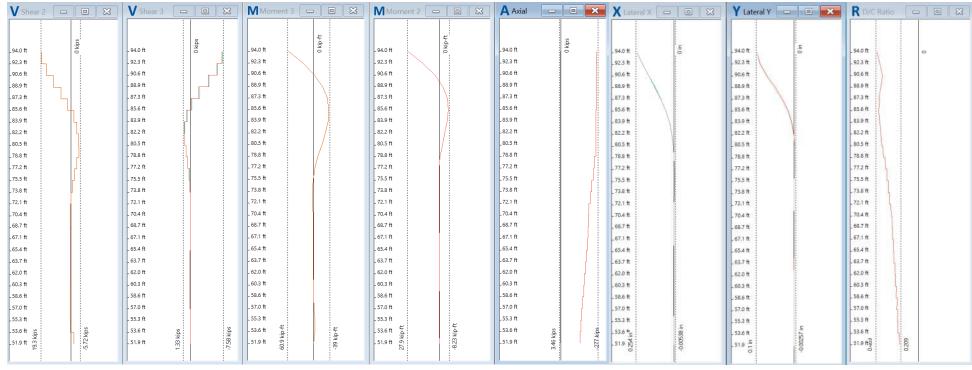

	Р	H_z	H_x	M_x	M_z
	F_V	F_L	F_T	M_L	M_T
Str I Construction (min)	1260.6	0	0	0	0
Str I Construction (max)	1260.6	0	0	0	0
Str Ia & Ib (min)	2681.9	46.4	173.1	4970.3	1331.8
Str Ia & Ib (max)	3569.6	82.8	308.9	8140.7	2181.3
Str III (min)	2014.8	88	193.9	2860.3	2828.3
Str III (max)	2902.5	124.4	329.8	6030.7	3677.8
Str IV (min)	2014.8	26	97	2264.6	606.8
Str IV (max)	2902.5	62.4	232.9	5435	1456.3
Str V (min)	2529.4	89.3	204.3	5006.3	2413.3
Str V (max)	3417.1	125.7	340.2	8176.6	3262.8
Ser I (min)	2668.3	105.6	279	6675.8	2711.3
Ser I (max)	2668.3	116	317.8	7581.7	2954.1
Ext I	2668.3	300	367.3	7002	8572.8


*Reference from Mathcad

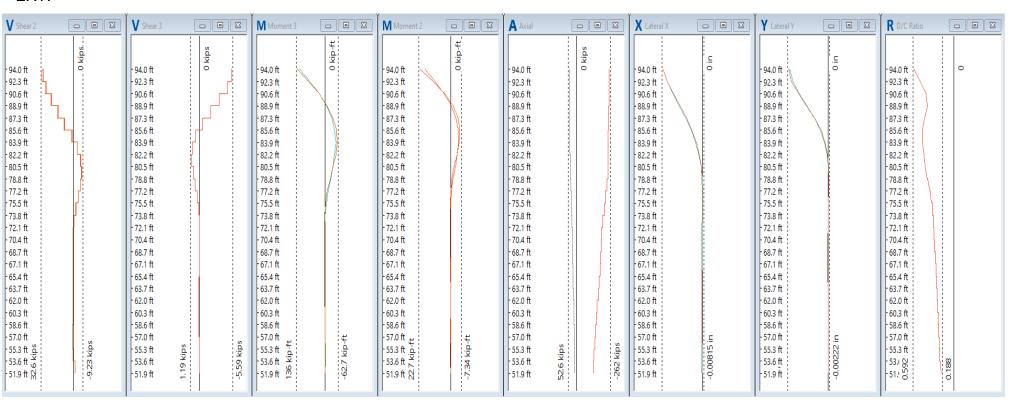

Results

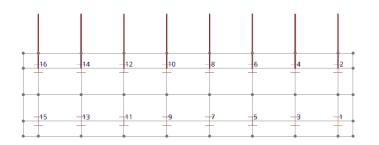
Abutment 1 (West)

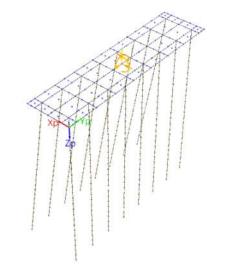


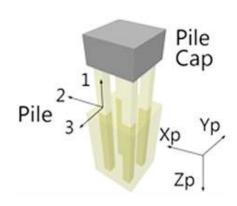


Ур

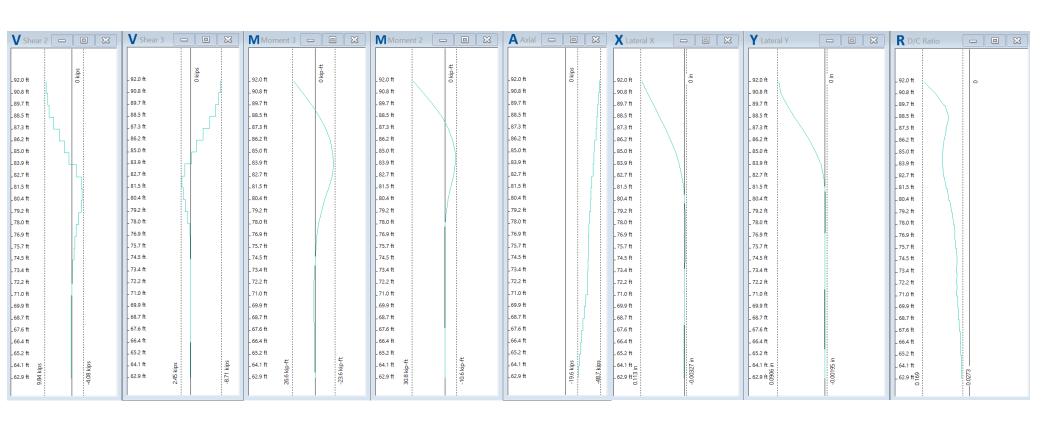

SER:

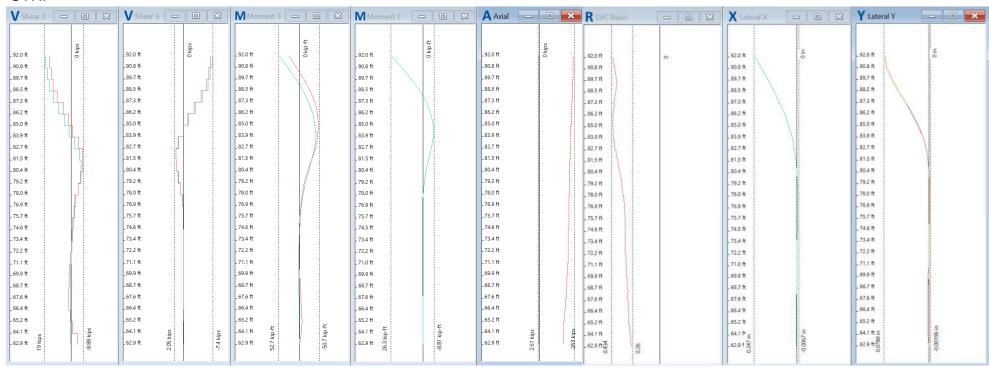

STR:



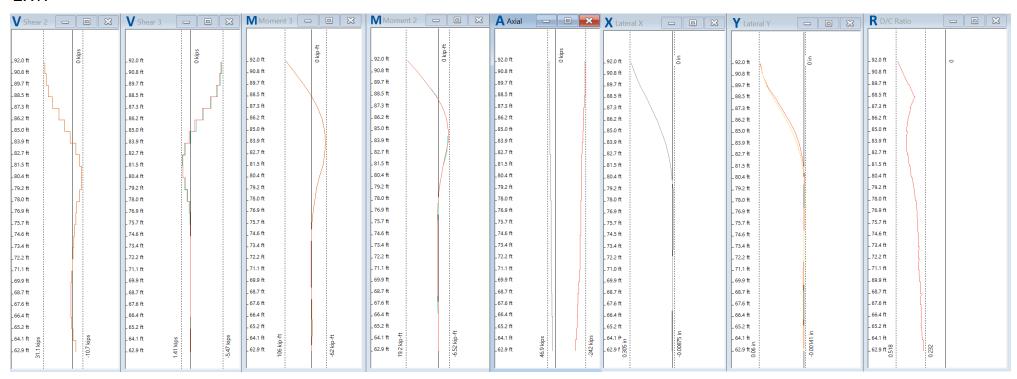

EXT:

Abutment 2 (East)

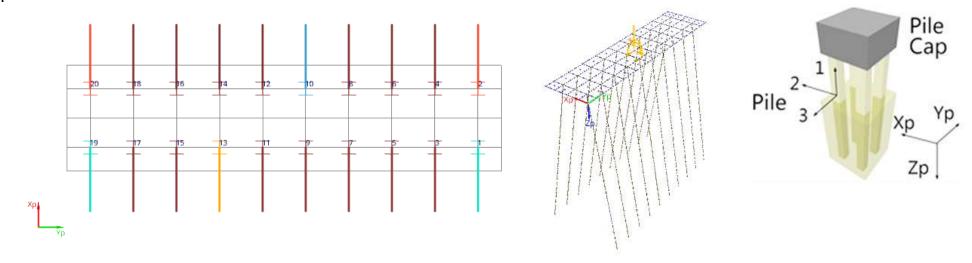


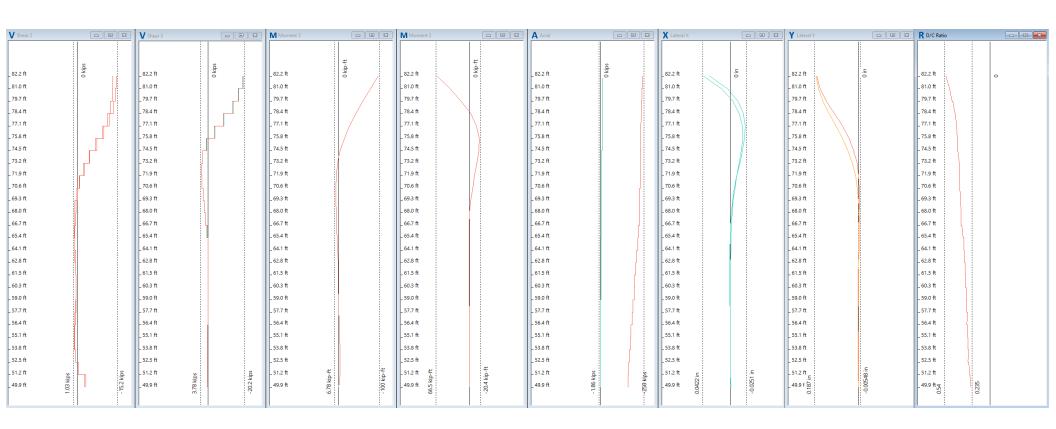


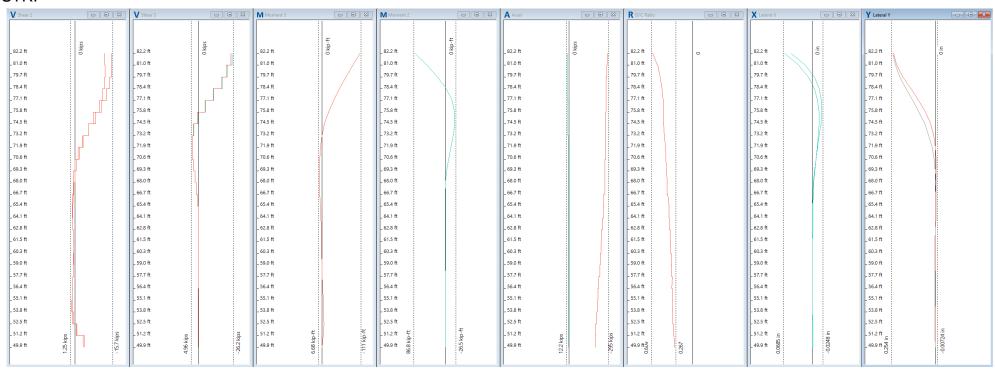
Yp


SER:

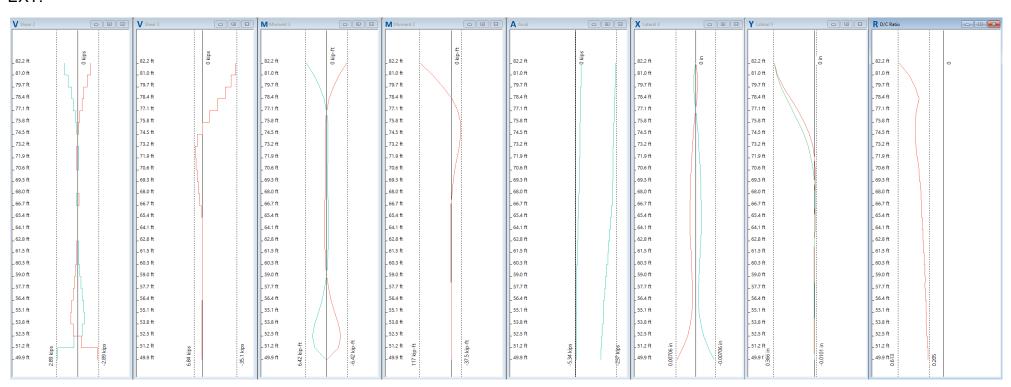
STR:

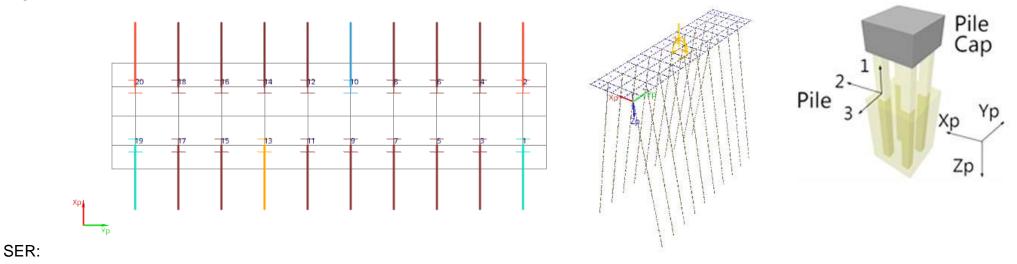


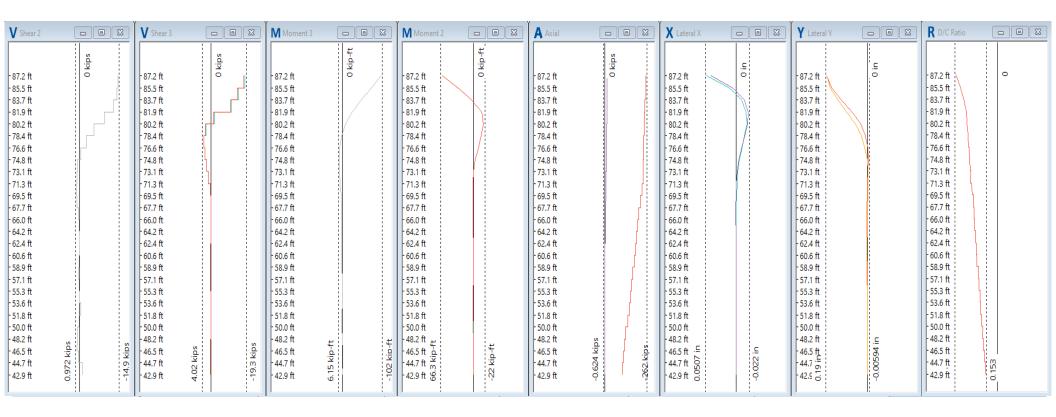

EXT:


Pier 1

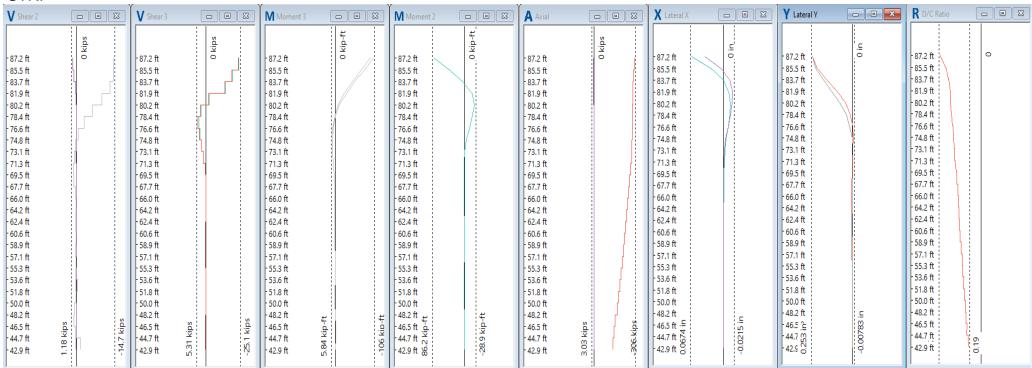
SER:



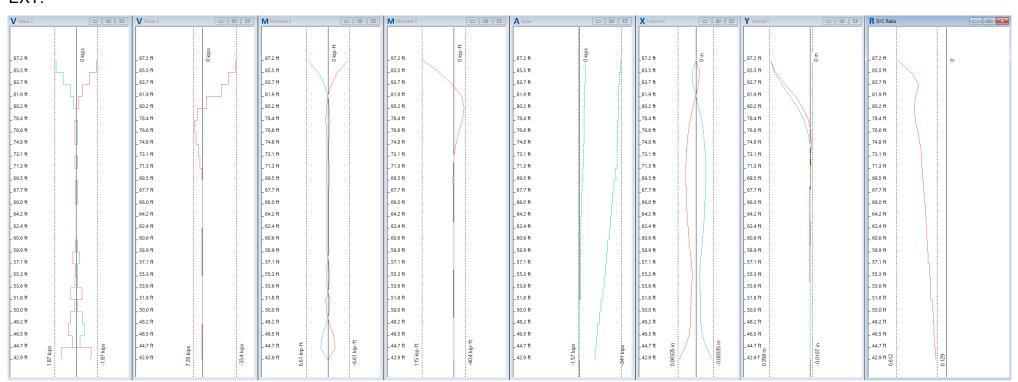

STR:



EXT:



Pier 2



STR:

EXT:

Pier 3

V Shear 2

83.8 ft

-82.0 ft

-80.3 ft

78.5 ft

76.8 ft

75.1 ft

73.3 ft

71.6 ft

69.9 ft

-68.1 ft

66.4 ft

64.7 ft

-62.9 ft

61.2 ft

59.4 ft

57.7 ft

-56.0 ft

54.2 ft

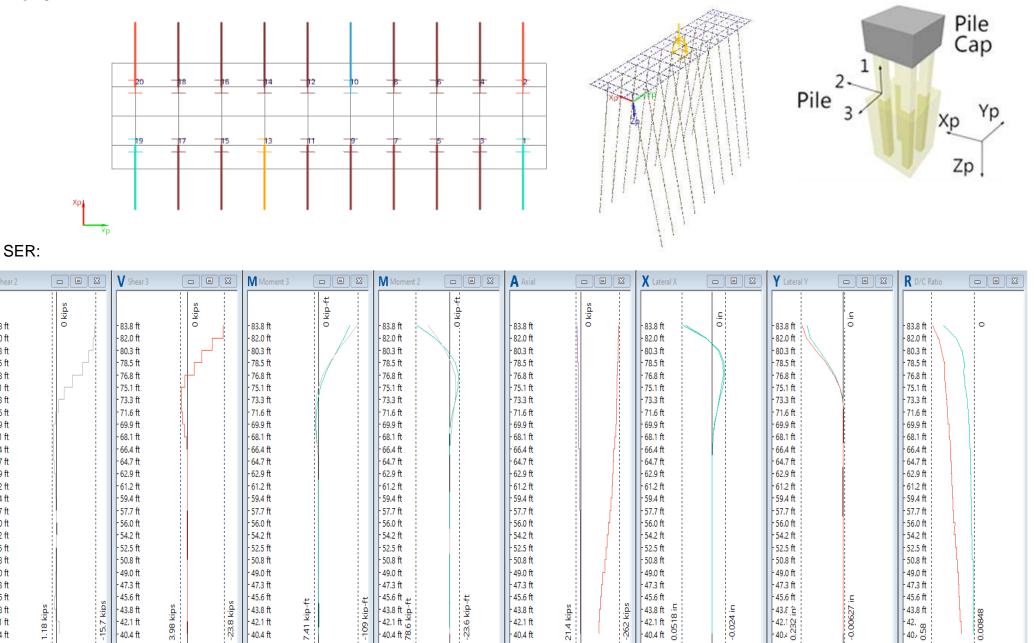
52.5 ft

50.8 ft

49.0 ft

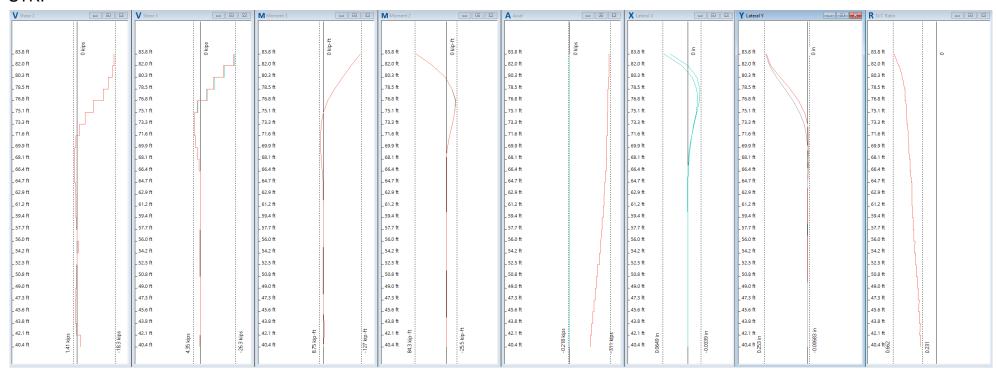
47.3 ft

45.6 ft

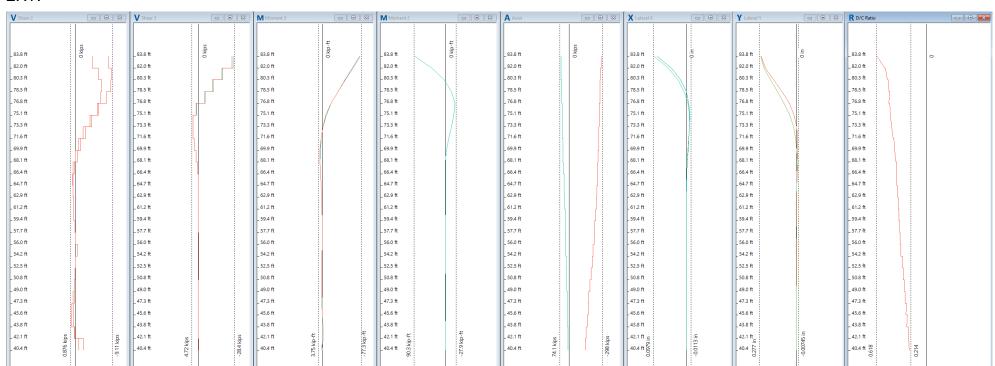

43.8 ft

42.1 ft

40.4 ft


40.4 ft

-40.4 ft



- 40.4 ft

STR:

EXT:

Appendix H-3 Downdrag Load Calculation

Designed to Amaze, Engineered to Last[®]

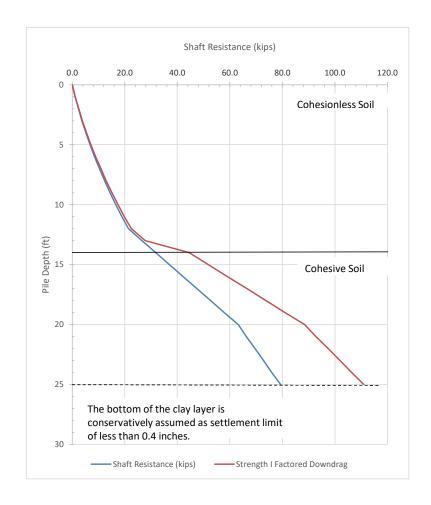
Computations For Tuttle Bridge Road Phase 2

Maine DOT

Downdrag Load Calculation - Abutment 1 (West)

AS
MCK
AG

Date Date Date 9/9/2024 9/13/2024 9/16/2024 Job No.


4462.07

Soil Type	Downdrag I	Load Fators
	SER	STR
Cohesionless Soil	1.00	1.05
Cohesive Soil	1.00	1.40

AASHTO AASHTO Table 3.4.1-1 Table 3.4.1-2

Pile Depth Below Bottom of the Abutment (ft)	Soil Type	Shaft Resistance from DrivenPiles* (kips)	Factored Downdrag Load (kips)
0	Cohesionless	0.0	0.0
1	Cohesionless	1.1	1.2
2	Cohesionless	2.4	2.5
3	Cohesionless	3.7	3.9
4	Cohesionless	5.2	5.5
5	Cohesionless	6.8	7.1
6	Cohesionless	8.5	8.9
7	Cohesionless	10.4	10.9
8	Cohesionless	12.3	12.9
9	Cohesionless	14.4	15.1
10	Cohesionless	16.6	17.4
11	Cohesionless	18.9	19.8
12	Cohesionless	21.4	22.5
13	Cohesionless	26.5	27.8
14	Cohesive	31.8	44.5
15	Cohesive	37.0	51.8
16	Cohesive	42.2	59.1
17	Cohesive	47.5	66.5
18	Cohesive	52.7	73.8
19	Cohesive	57.9	81.1
20	Cohesive	63.2	88.5
21	Cohesive	66.3	92.8
22	Cohesive	69.6	97.4
23	Cohesive	72.8	101.9
24	Cohesive	76.0	106.4
25	Cohesive	79.3	111.0

^{*} Shaft Resistance extracted from DrivenPiles Results used for Uplift Pile Capacity (Appendix G-2)

Results:

The calculated factored downdrag loads are 111 kips per pile for the Strength I limit state and 79 kips per pile for the Service I limit state.

Computations For Tuttle Bridge Road Phase 2

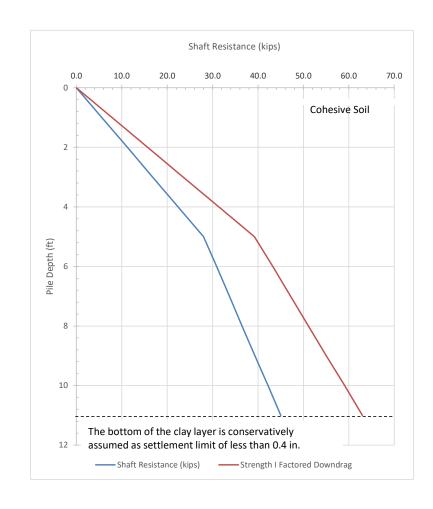
Maine DOT

Downdrag Load Calculation - Abutment 2 (East)

лade By	AS
Checked By	MC
Back Checked By	AC

Date Date Date 9/9/2024 9/13/2024 9/16/2024

Job No.

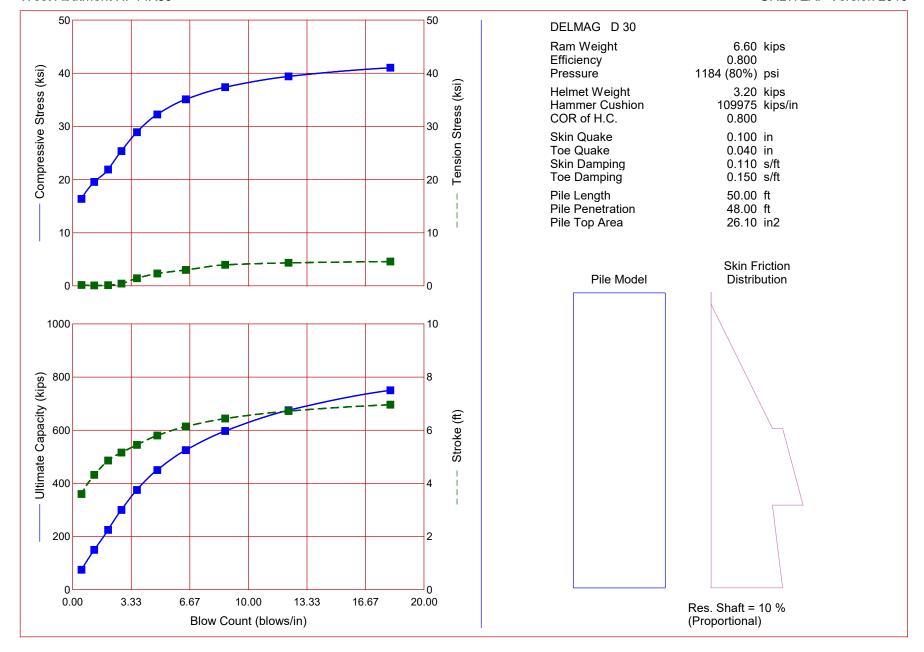

4462.07

Soil Type	Downdrag	Load Fators
	SER	STR
Cohesionless Soil	1.00	1.05
Cohesive Soil	1.00	1.40

AASHTO AASHTO Table 3.4.1-1 Table 3.4.1-2

Pile Depth Below Bottom of the Abutment (ft)	Soil Type	Shaft Resistance from DrivenPiles* (kips)	Factored Downdrag Load (kips)
0	Cohesive	0.0	0.0
1	Cohesive	5.6	7.8
2	Cohesive	11.2	15.7
3	Cohesive	16.8	23.5
4	Cohesive	22.4	31.4
5	Cohesive	28.0	39.2
6	Cohesive	30.9	43.3
7	Cohesive	33.7	47.2
8	Cohesive	36.5	51.1
9	Cohesive	39.3	55.0
10	Cohesive	42.2	59.1
11	Cohesive	45.0	63.0

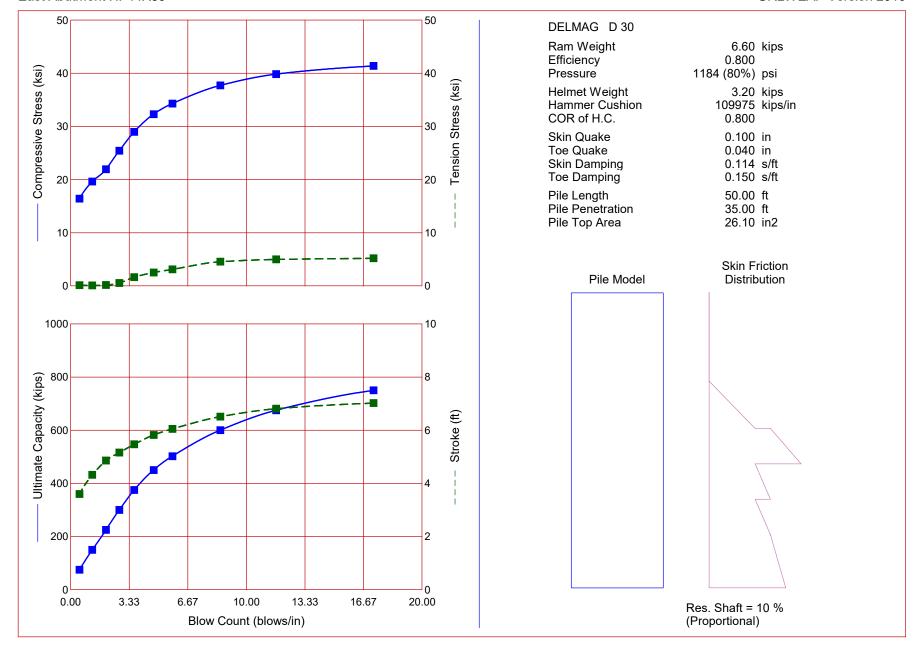
*Shaft Resistance extracted from DrivenPiles Results used for Uplift Pile Capacity (Appendix G-2)



Results:

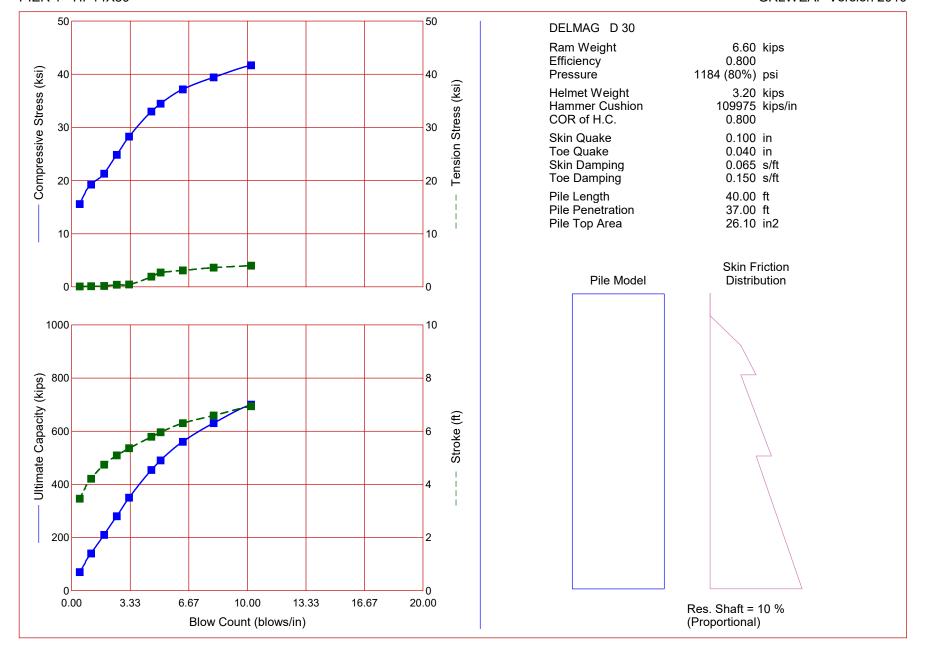
The calculated factored downdrag loads are 63 kips per pile for the Strength I limit state and 45 kips per pile for the Service I limit state.

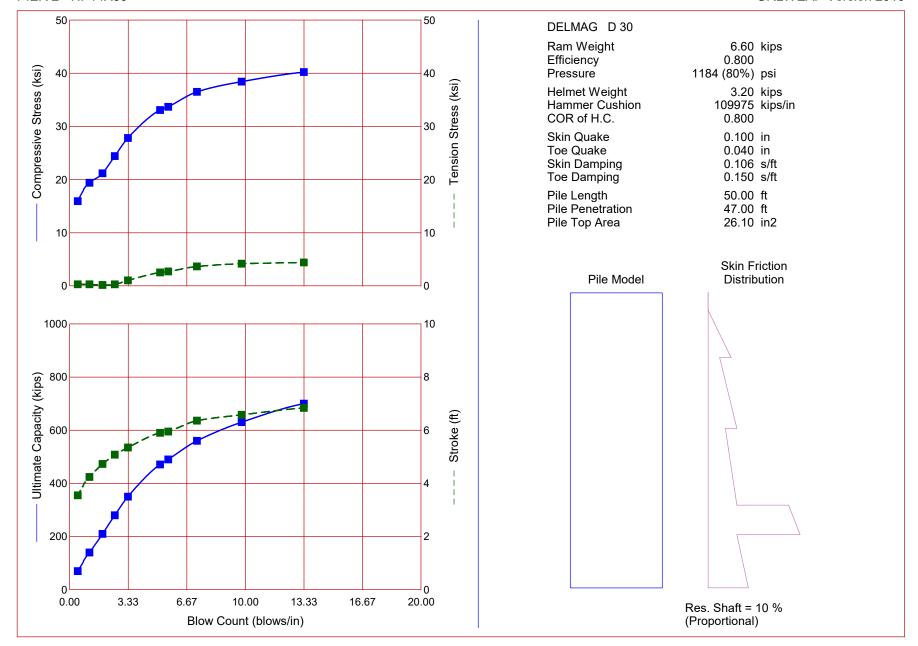
Appendix H-4Driveability Analyses



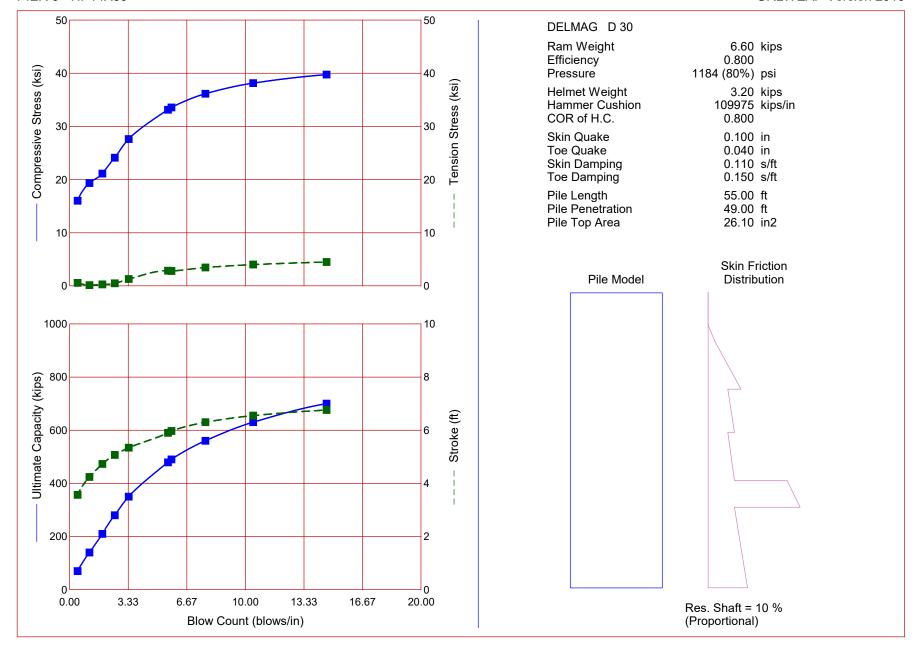
Hardesty & Hanover, LLP West Abutment HP14X89

19-Sep-2024 GRLWEAP Version 2010

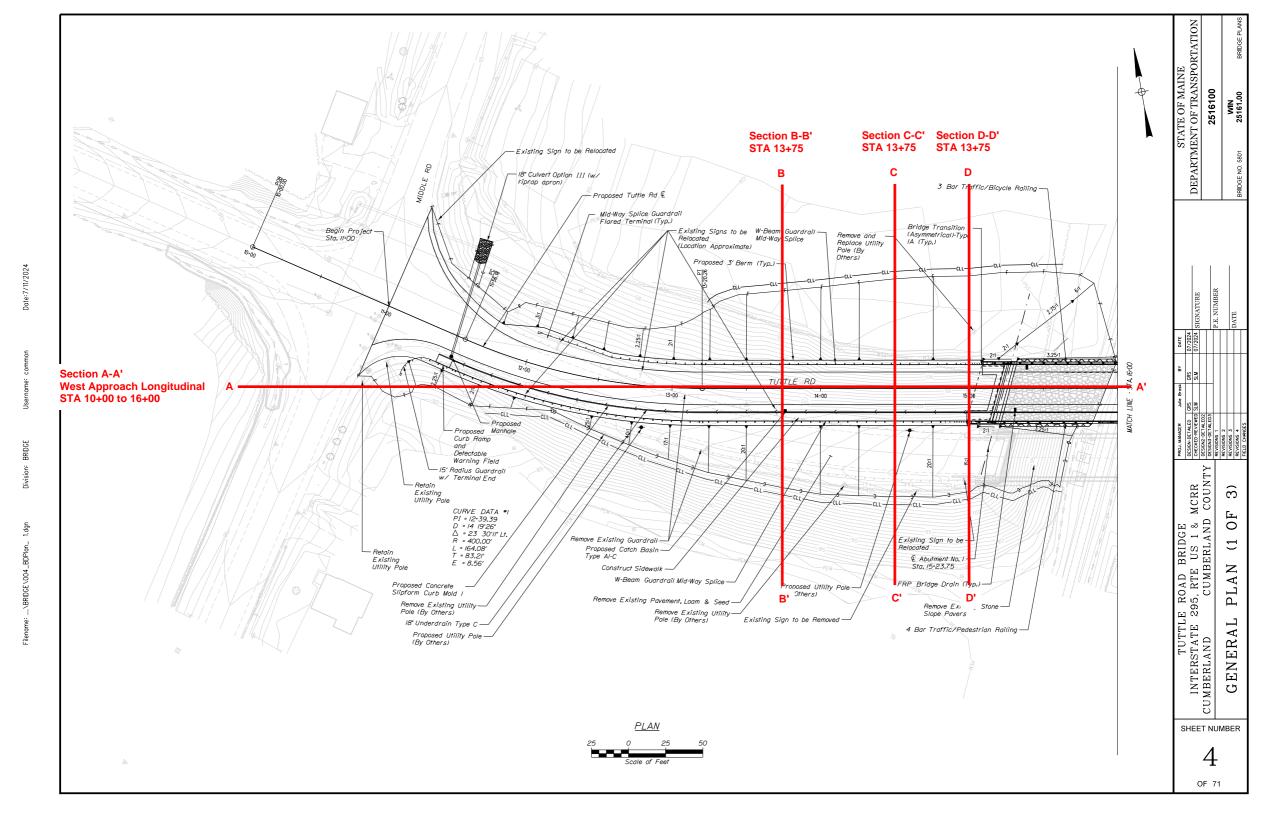

	Maximum	Maximum			
Ultimate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	blows/in	ft	kips-ft
75.0	16.36	0.17	0.5	3.60	22.32
150.0	19.55	0.09	1.2	4.32	19.43
225.0	21.88	0.14	2.0	4.86	19.00
300.0	25.34	0.44	2.8	5.16	19.14
375.0	28.90	1.43	3.7	5.45	19.84
450.0	32.24	2.34	4.8	5.80	20.82
525.0	35.08	3.01	6.4	6.14	21.98
597.0	37.37	3.98	8.7	6.44	23.24
675.0	39.40	4.34	12.3	6.72	24.41
750.0	41.02	4.59	18.1	6.96	25.48

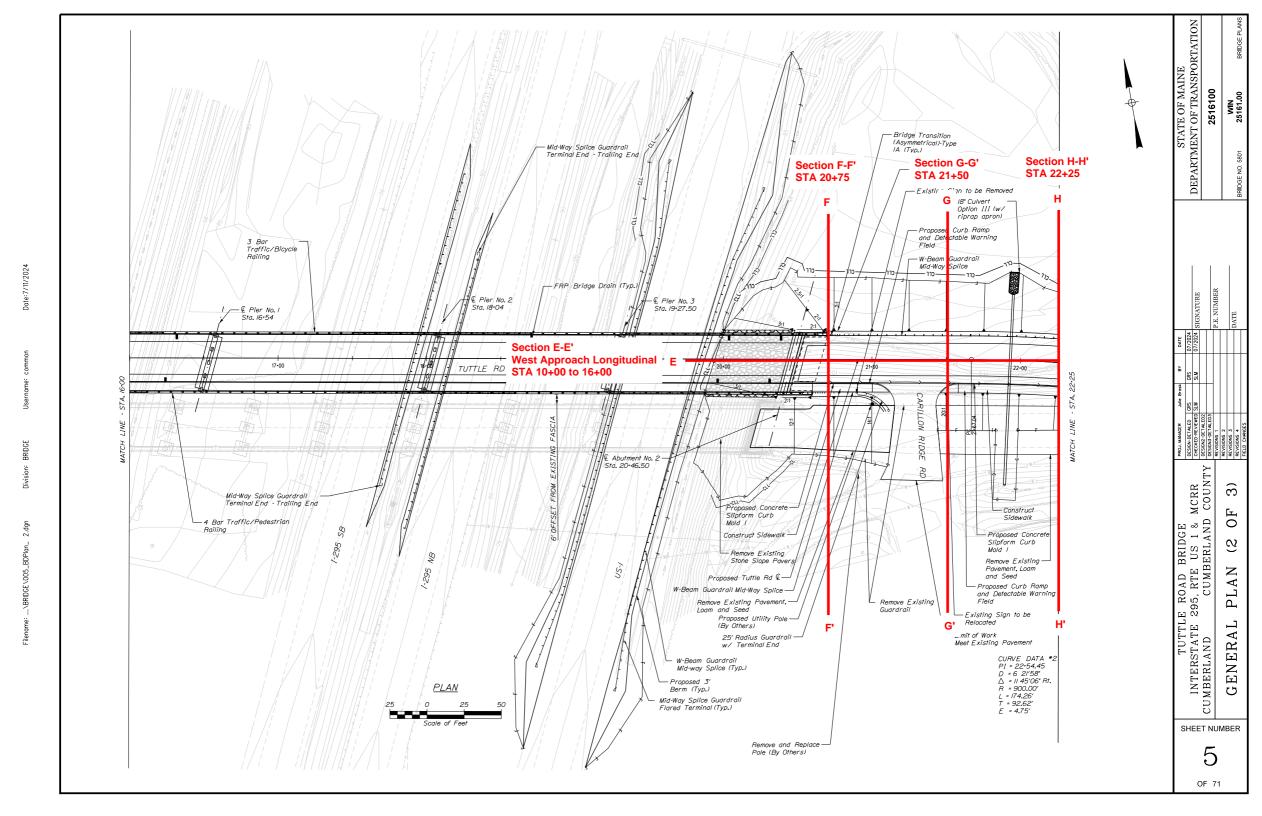

Hardesty & Hanover, LLP East Abutment HP14X89

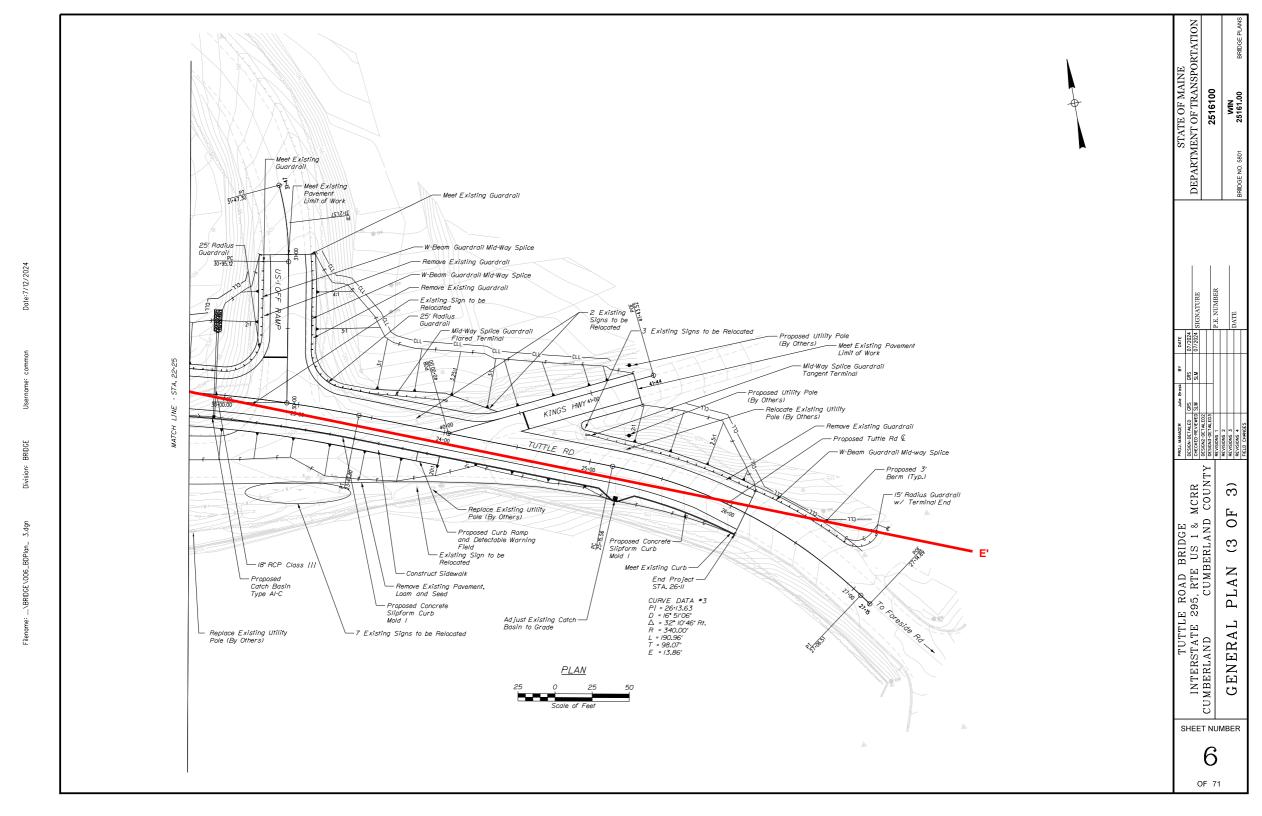
19-Sep-2024 GRLWEAP Version 2010


	Maximum	Maximum			
Ultimate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	blows/in	ft	kips-ft
75.0	16.40	0.14	0.5	3.60	22.32
150.0	19.63	0.09	1.2	4.32	19.42
225.0	21.94	0.17	2.0	4.86	19.00
300.0	25.42	0.55	2.8	5.16	19.17
375.0	28.96	1.65	3.6	5.47	19.95
450.0	32.28	2.53	4.7	5.82	21.01
502.0	34.28	3.11	5.8	6.05	21.64
600.0	37.70	4.56	8.5	6.51	23.52
675.0	39.83	4.99	11.7	6.81	24.82
750.0	41.37	5.20	17.2	7.02	25.77

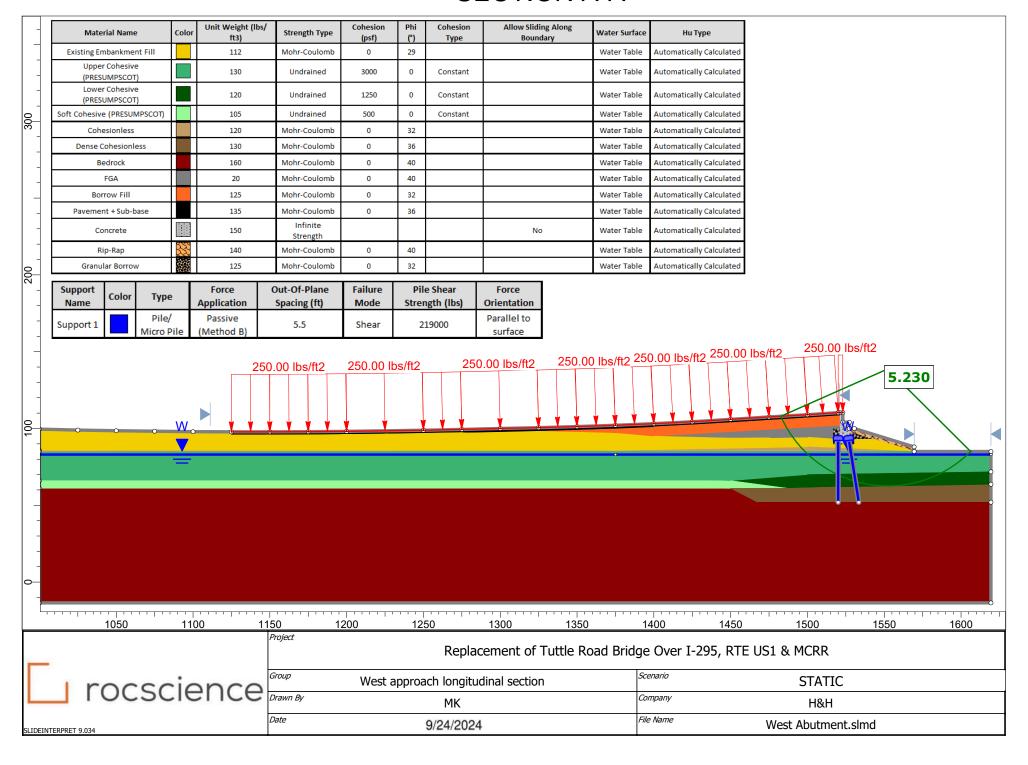
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke ft	Energy kips-ft
70.0	15.57	0.08	0.5	3.46	22.69
140.0	19.24	0.12	1.1	4.21	19.55
210.0	21.29	0.18	1.9	4.74	18.67
280.0	24.83	0.41	2.6	5.09	18.66
350.0	28.26	0.45	3.3	5.36	19.11
454.0	32.97	1.93	4.5	5.79	20.27
490.0	34.45	2.70	5.1	5.96	20.77
560.0	37.14	3.10	6.3	6.30	21.78
630.0	39.40	3.63	8.1	6.59	22.69
700.0	41.67	4.00	10.2	6.94	23.84

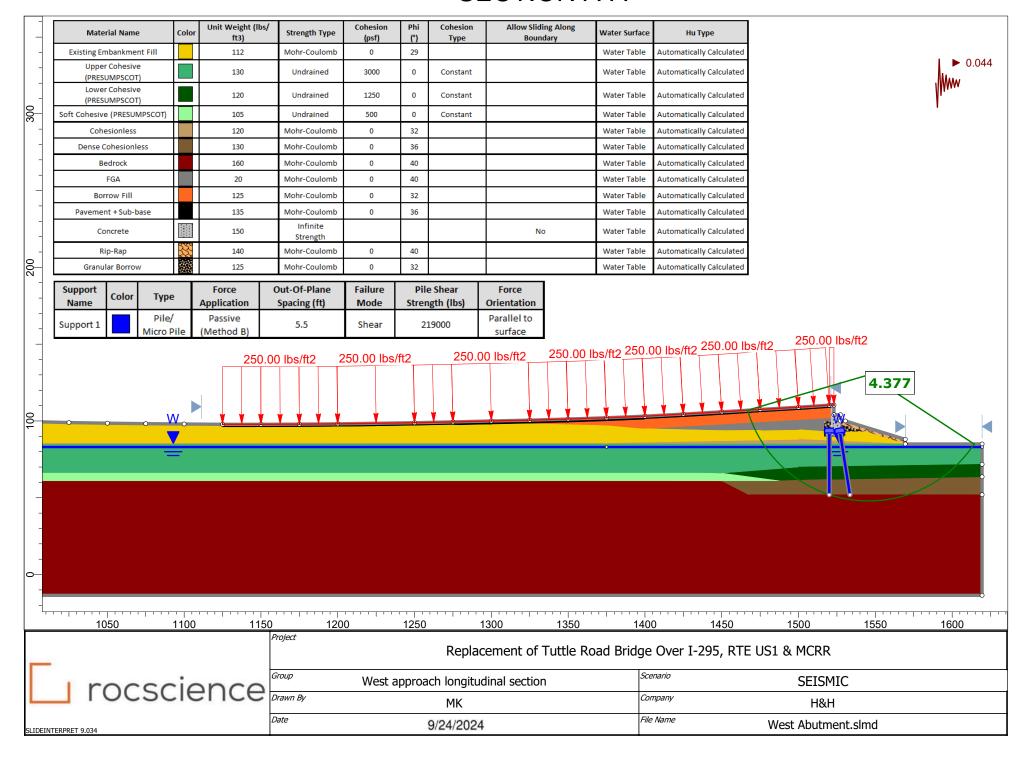


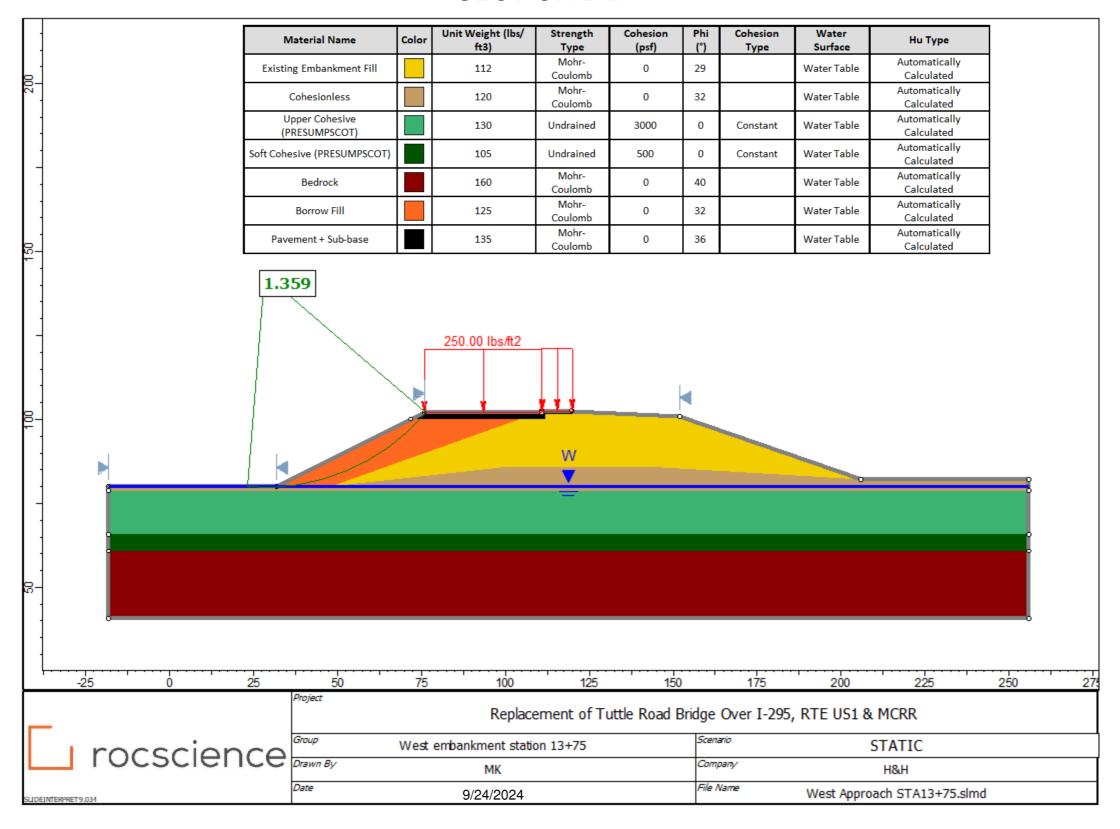

Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke ft	Energy kips-ft
70.0	15.93	0.30	0.5	3.55	22.73
140.0	19.40	0.31	1.1	4.24	19.64
210.0	21.18	0.18	1.9	4.73	18.80
280.0	24.41	0.29	2.6	5.08	19.01
350.0	27.81	1.04	3.3	5.35	19.61
471.0	33.07	2.54	5.1	5.90	21.24
490.0	33.68	2.71	5.6	5.95	21.29
560.0	36.49	3.66	7.3	6.36	22.79
630.0	38.41	4.18	9.8	6.58	23.77
700.0	40.21	4.41	13.3	6.84	24.88

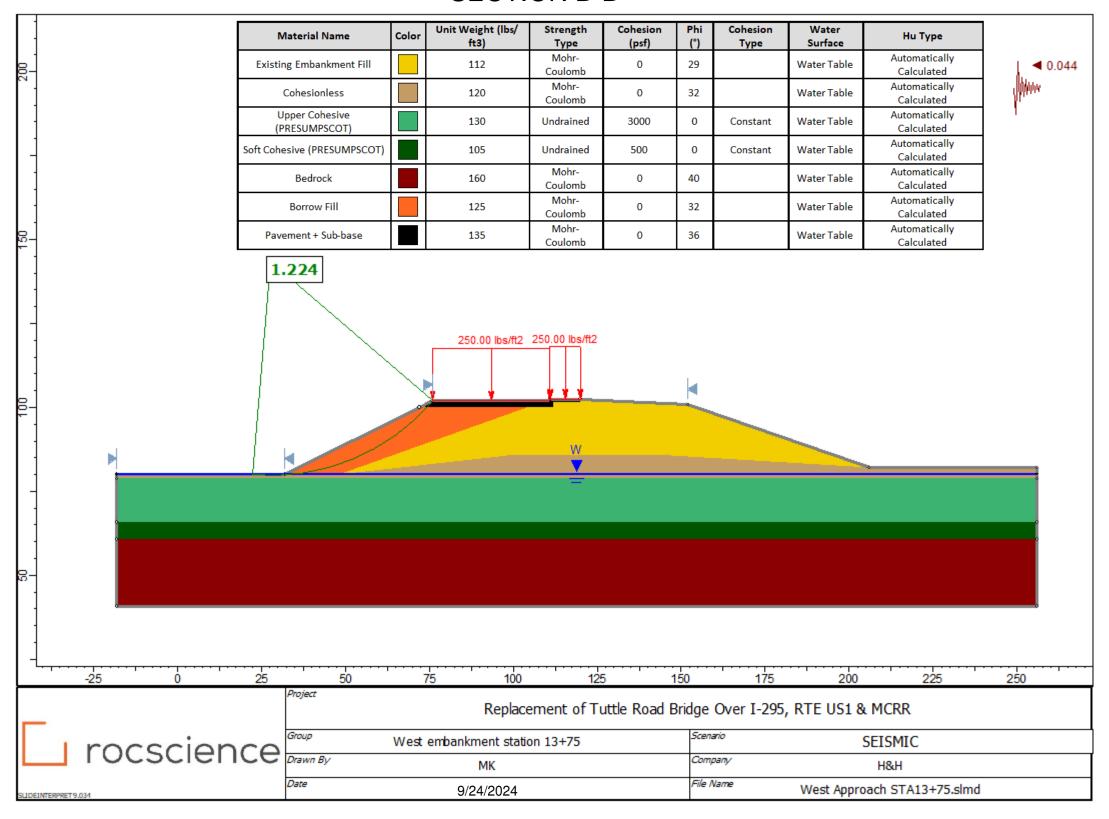


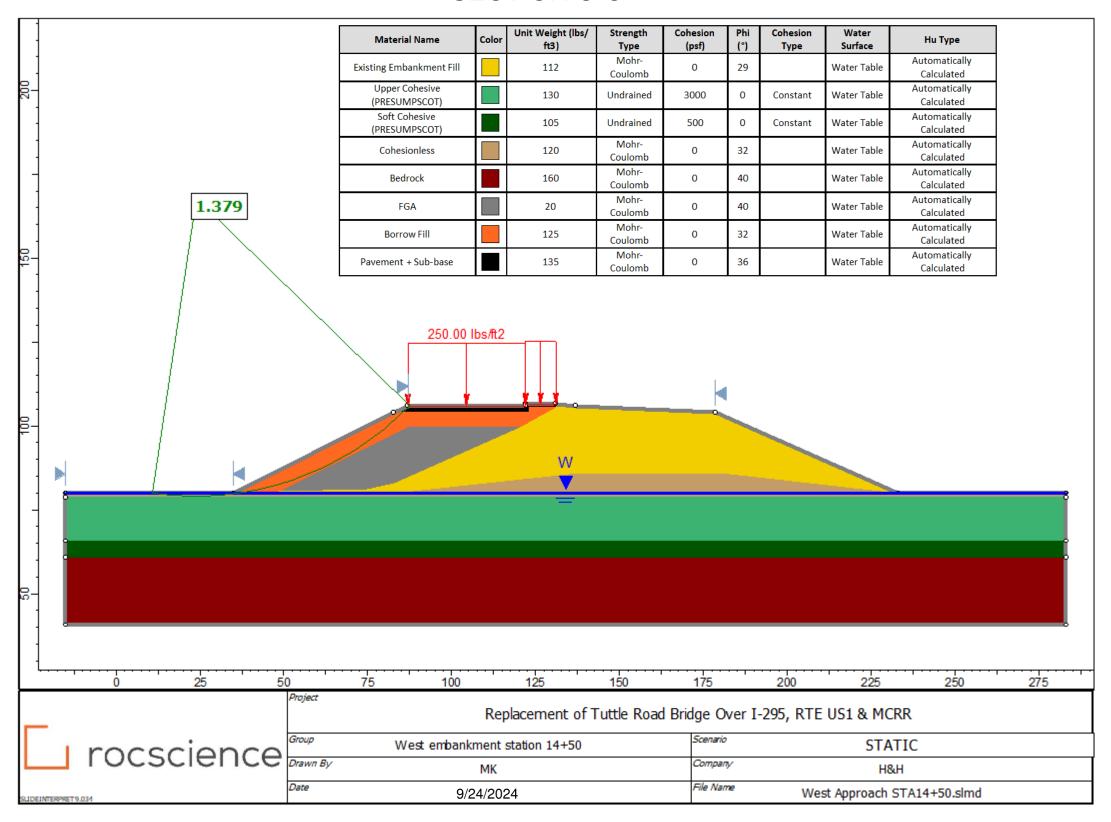
1.110	Maximum	Maximum	D.		
Ultimate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	blows/in	ft	kips-ft
70.0	16.01	0.56	0.5	3.57	22.66
140.0	19.35	0.15	1.1	4.24	19.66
210.0	21.12	0.29	1.9	4.73	18.91
280.0	24.11	0.49	2.6	5.07	19.15
350.0	27.61	1.30	3.4	5.34	19.81
479.0	33.12	2.86	5.6	5.90	21.51
490.0	33.56	2.81	5.8	5.97	21.87
560.0	36.13	3.46	7.7	6.30	23.28
630.0	38.13	4.02	10.4	6.55	24.35
700.0	39.74	4.50	14.6	6.76	25.31

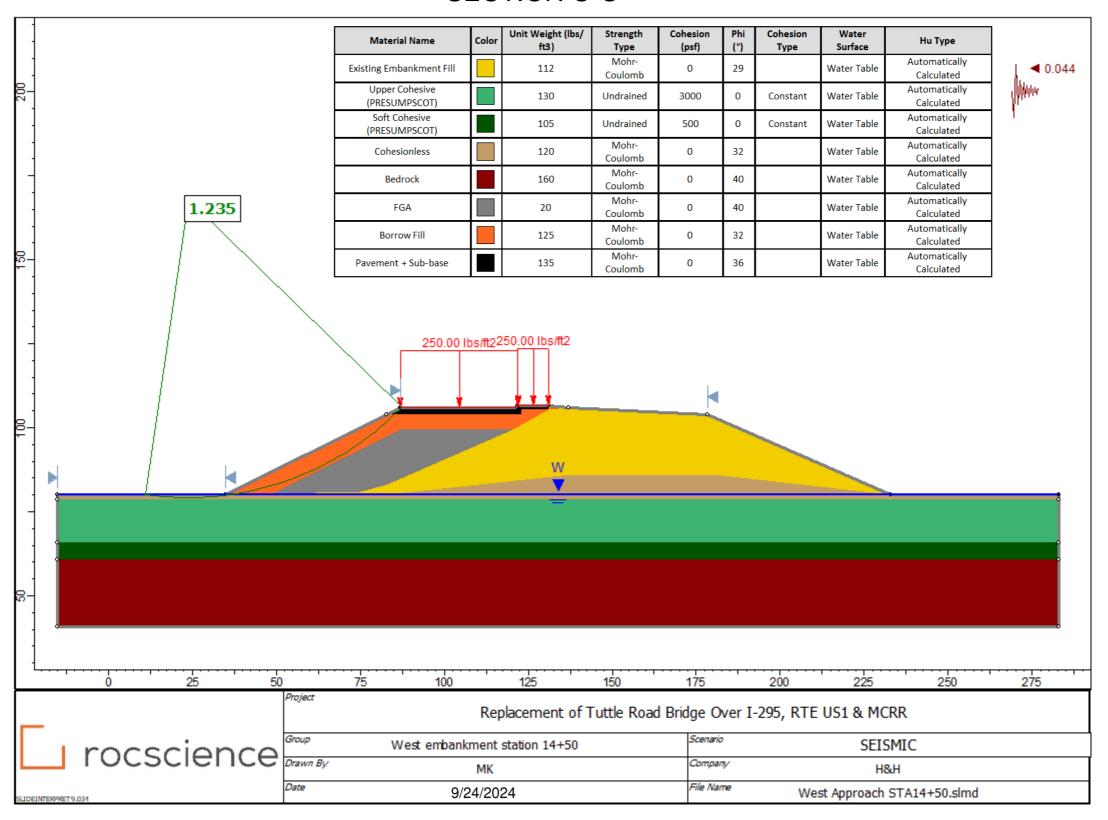

Appendix IGlobal Stability Analyses

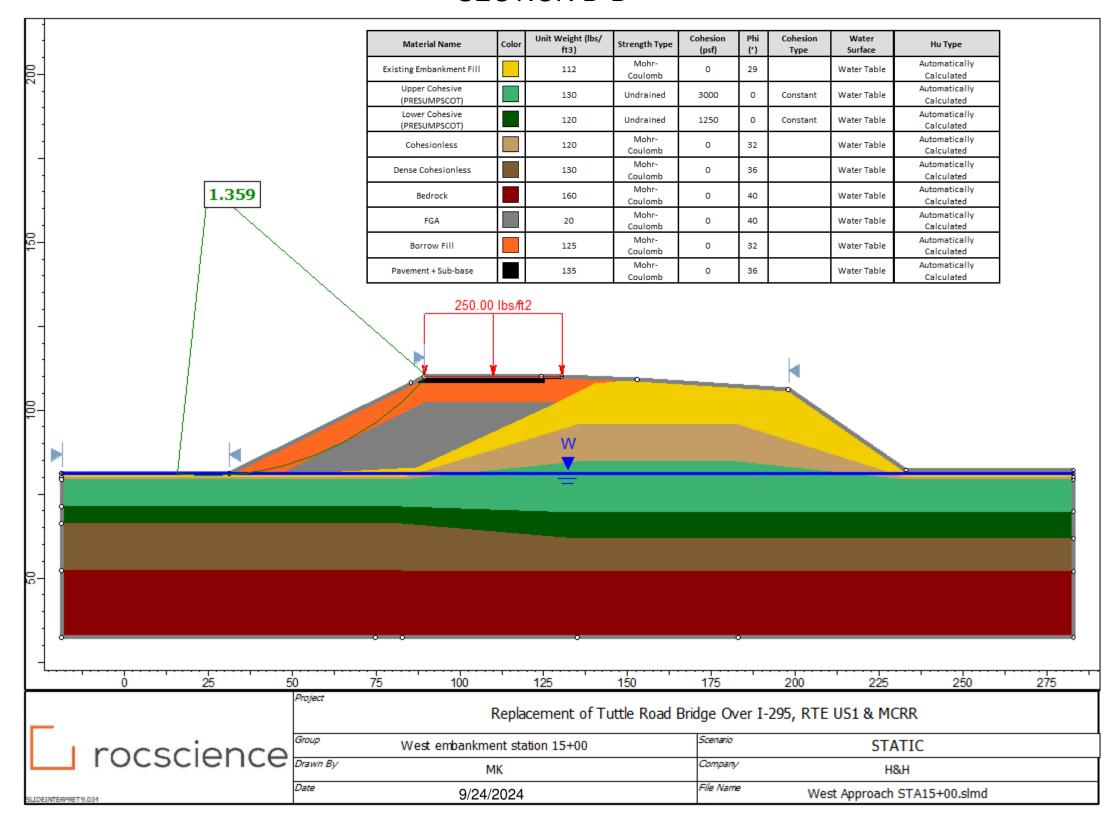


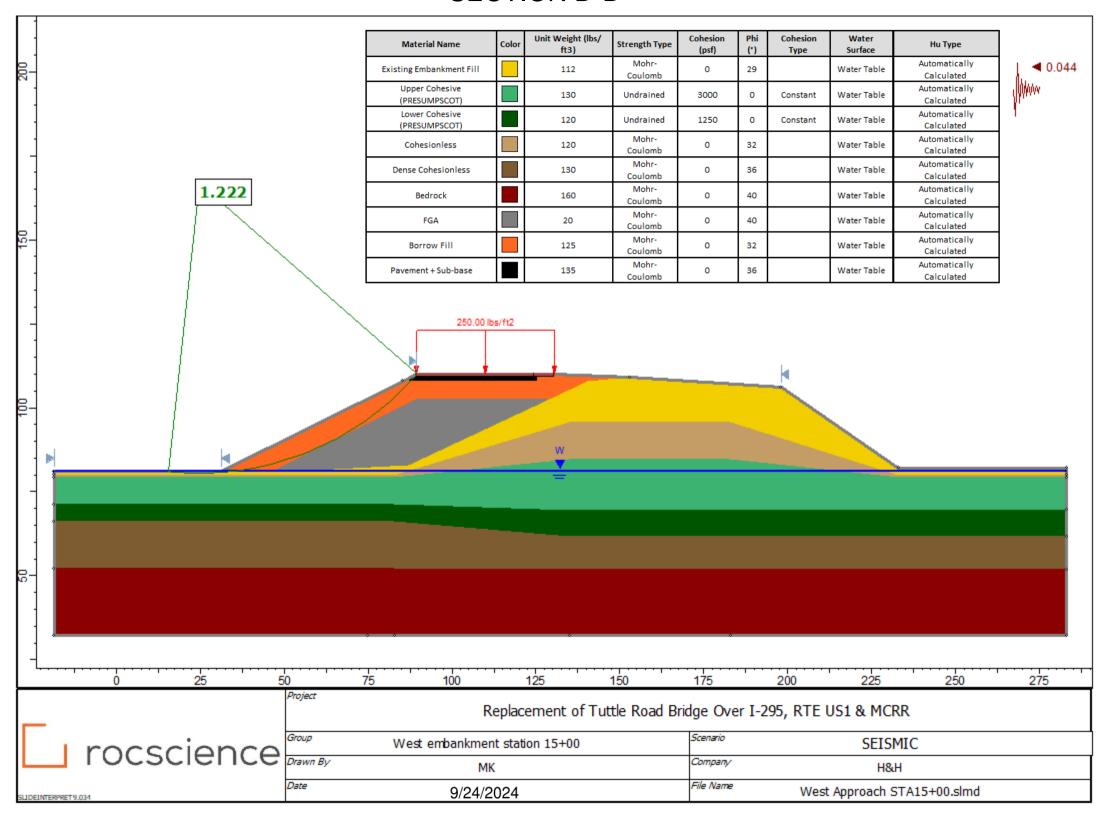

SECTION A-A'

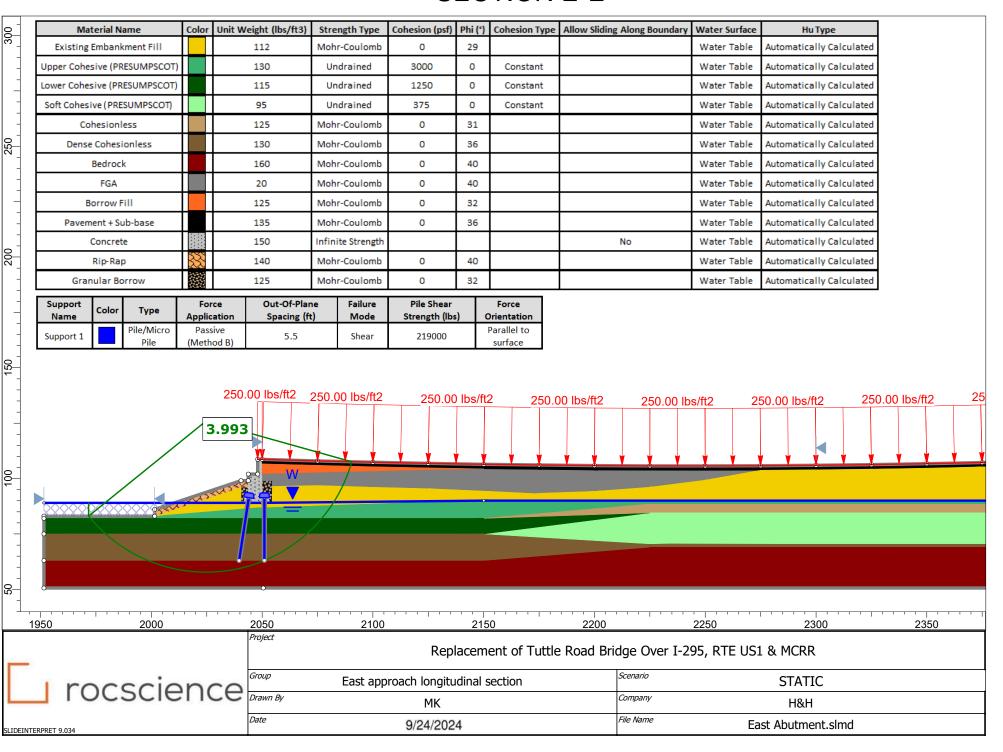

SECTION A-A'

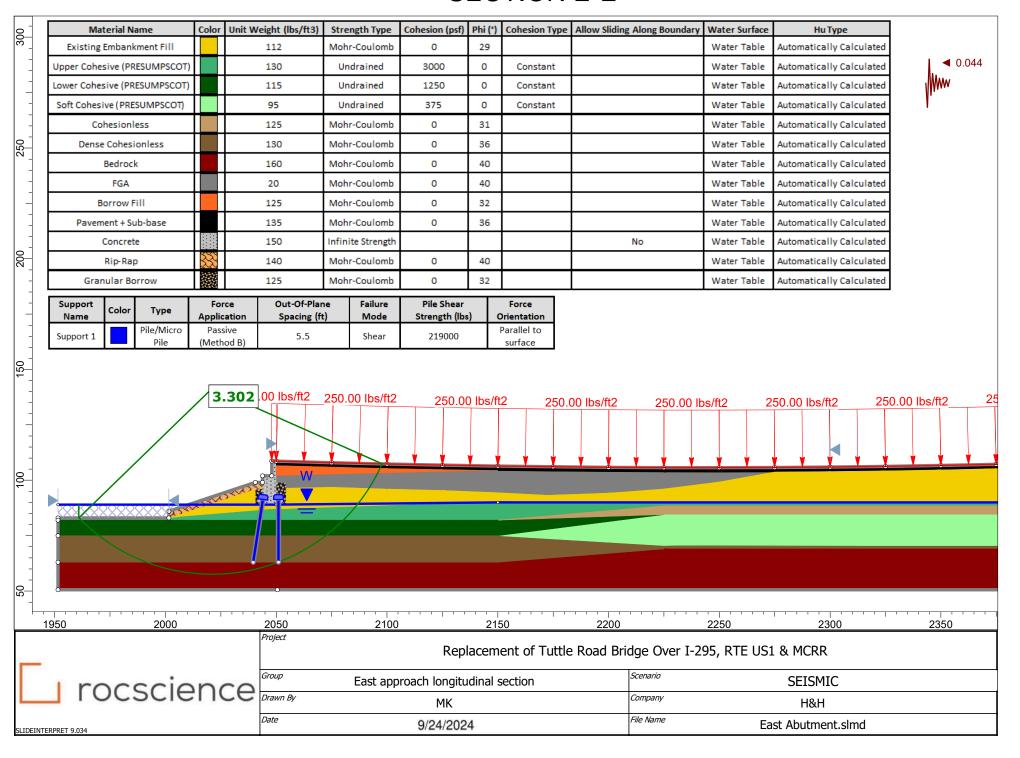

SECTION B-B'

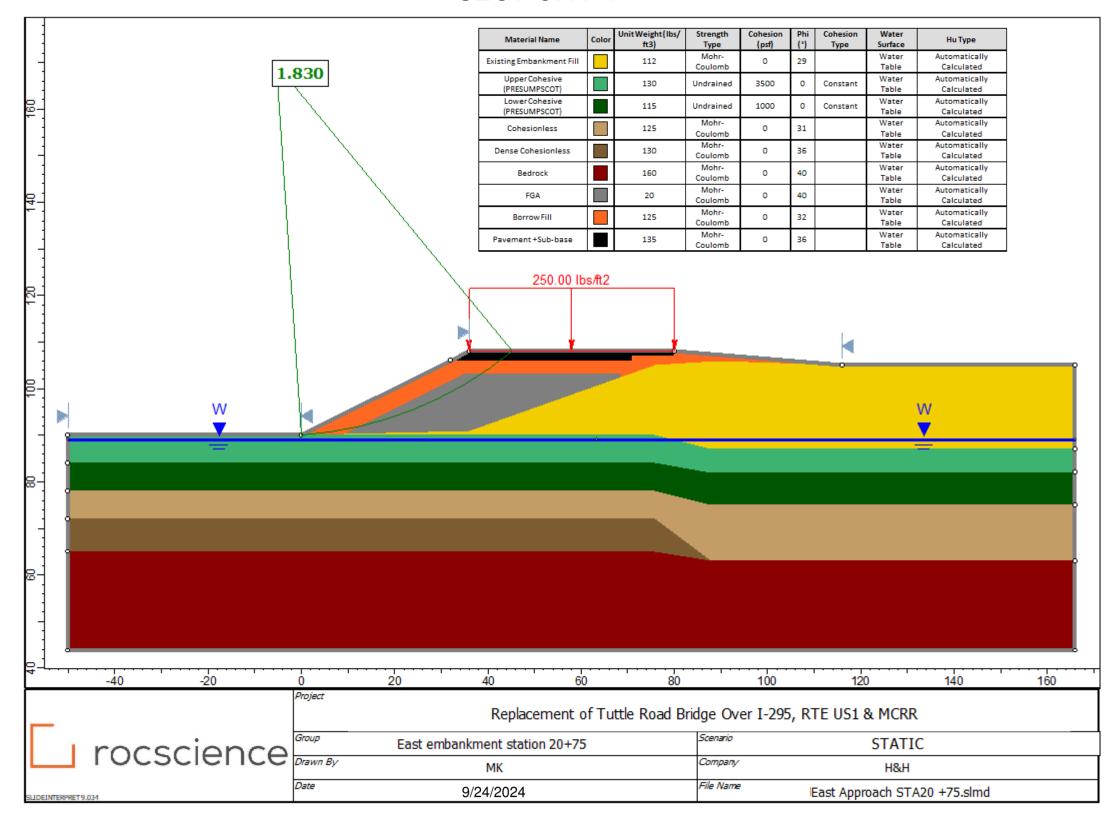

SECTION B-B'

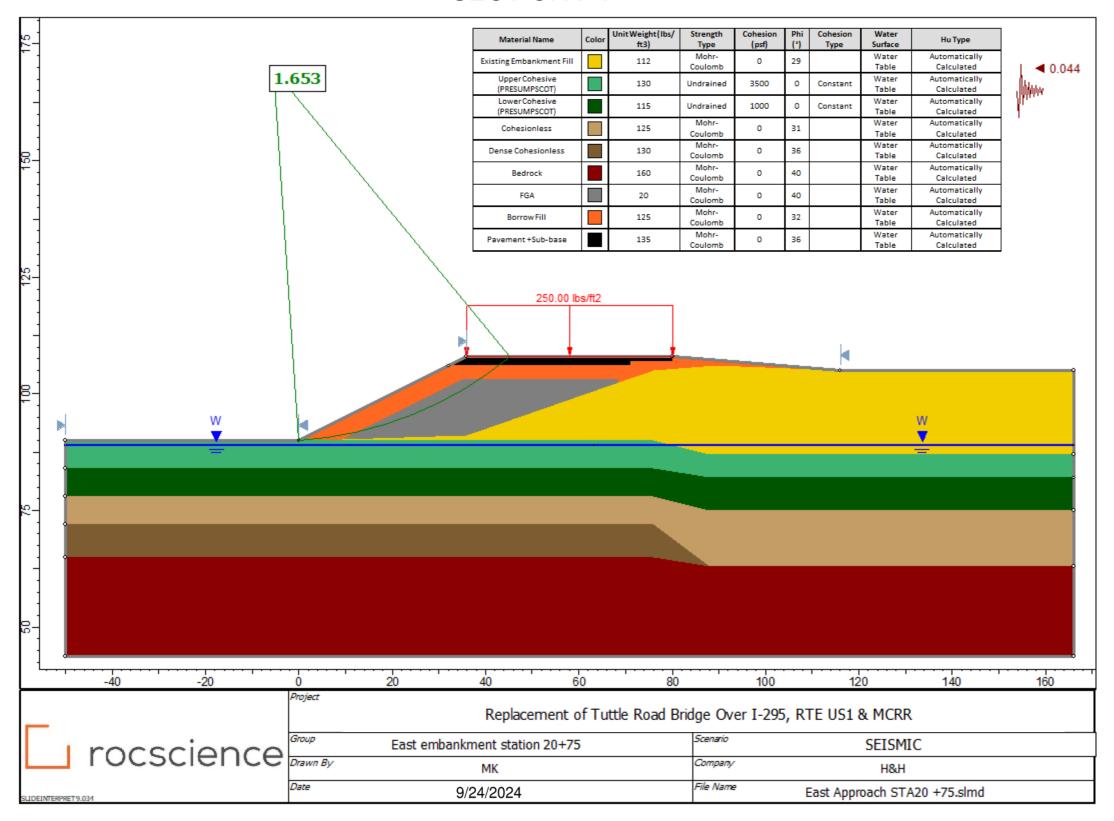

SECTION C-C'

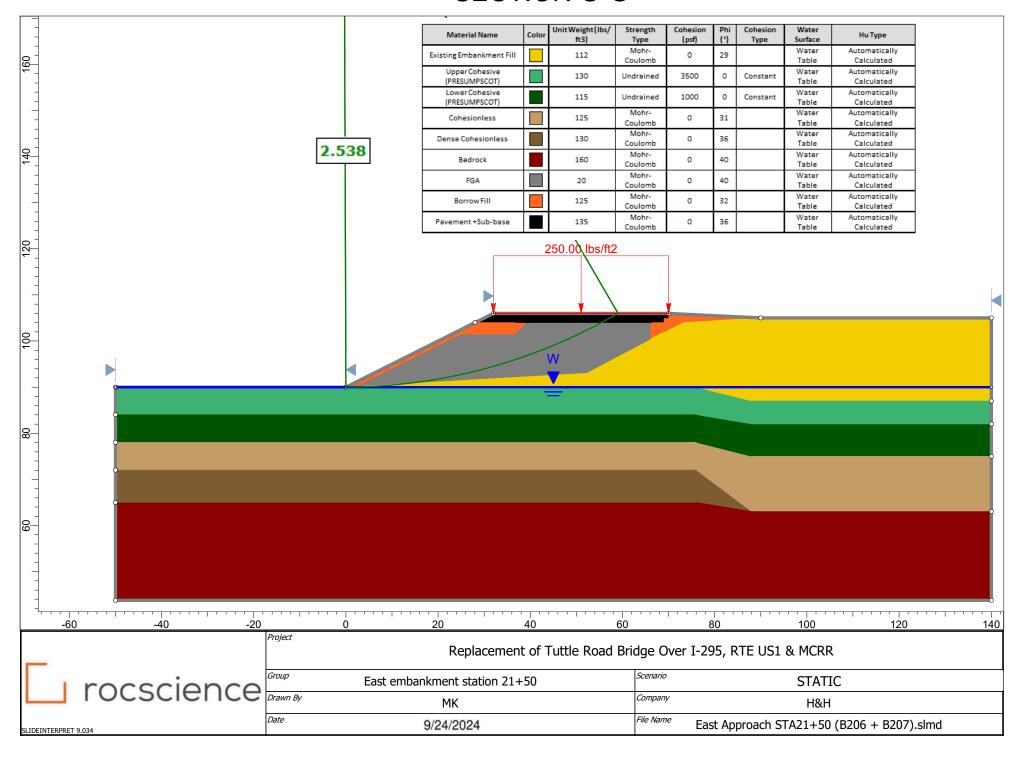

SECTION C-C'

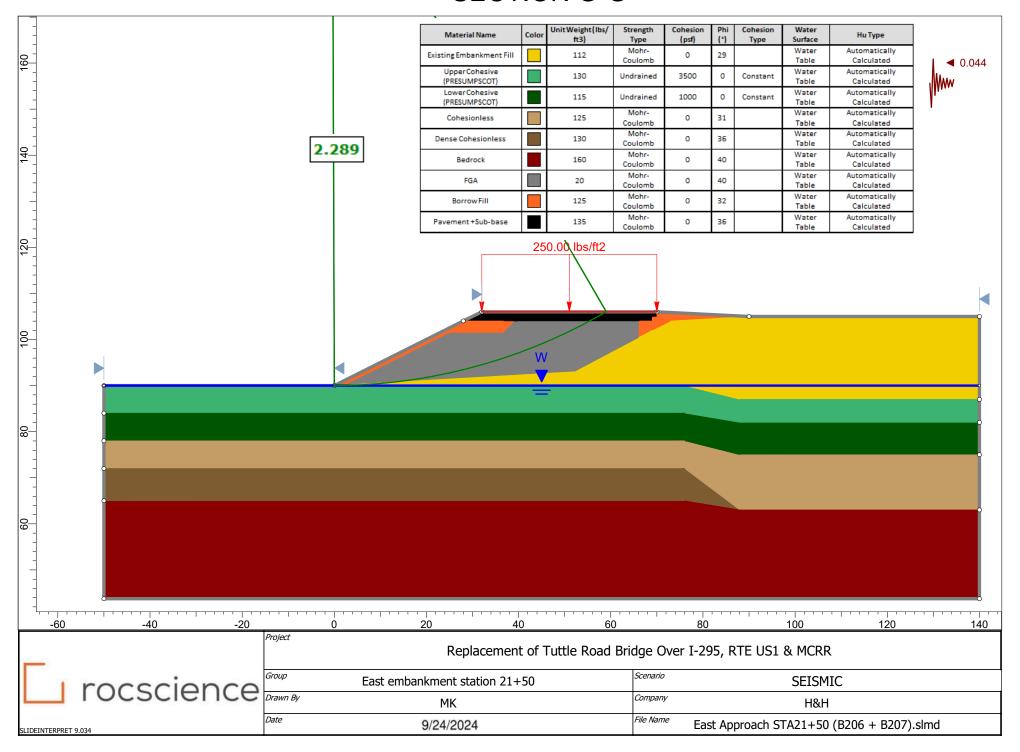

SECTION D-D'

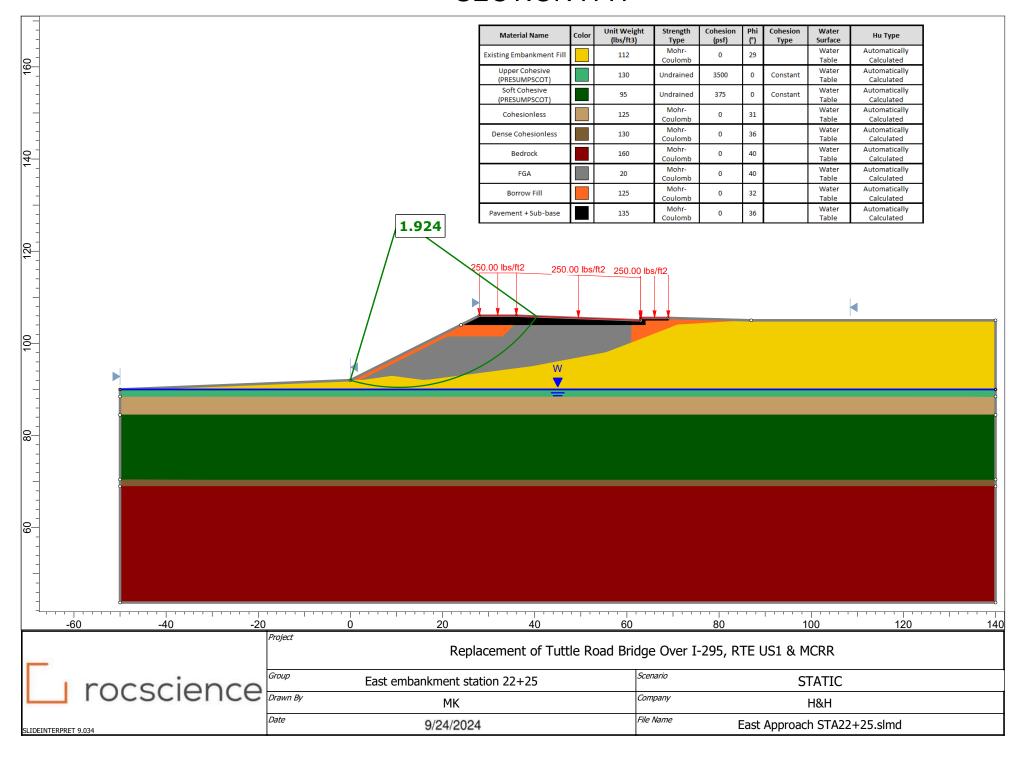

SECTION D-D'

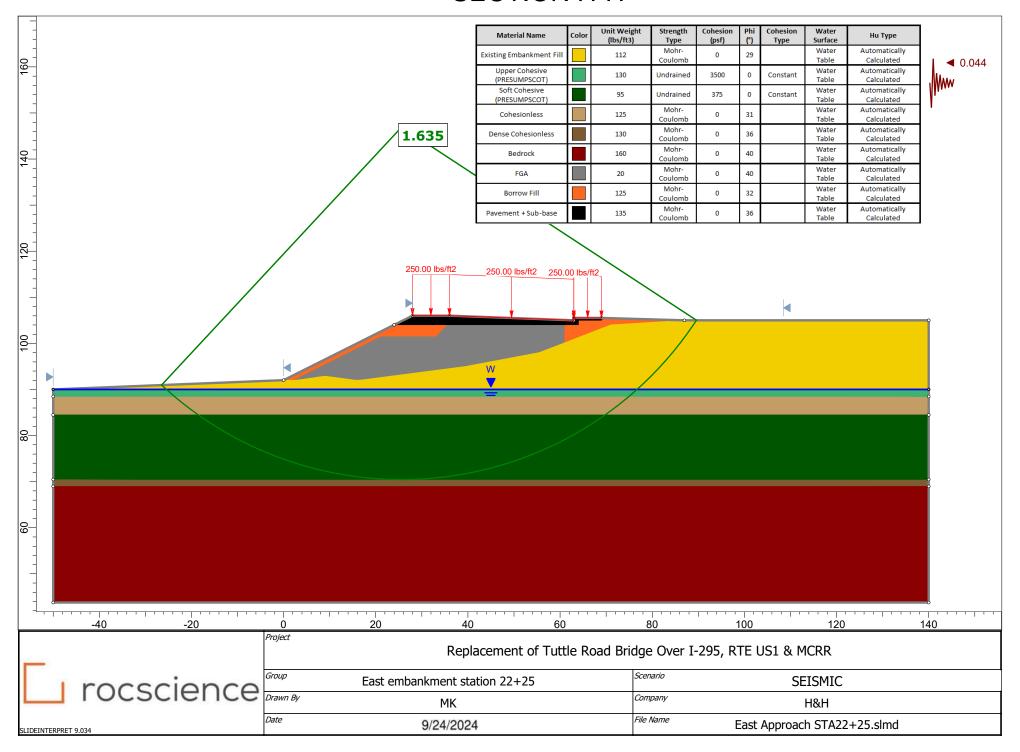

SECTION E-E'


SECTION E-E'


SECTION F-F'


SECTION F-F'


SECTION G-G'


SECTION G-G'

SECTION H-H'

SECTION H-H'

Appendix J FOSSA Settlement Analyses

Fersion 2.0 FoSSA Version 2.0

FoSSA -- Foundation Stress & Settlement Analysis

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Approach STA13+75.2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 - Client: Maine DOT

Designer: MK

Station Number: STA 13+75

Description:

Proposed Embankment

Company's information:

Name: H&H

Street:

Telephone #: Fax #: E-Mail:

Original file path and name: Y:\Shared\ ent\FOSSA\West Approach\West Approach STA13+75.2ST
Original date and time of creating this file: 9/19/2024

GEOMETRY: Analysis of a 2D geometry

no 2 D FieSSA Version 2 D FieSSA

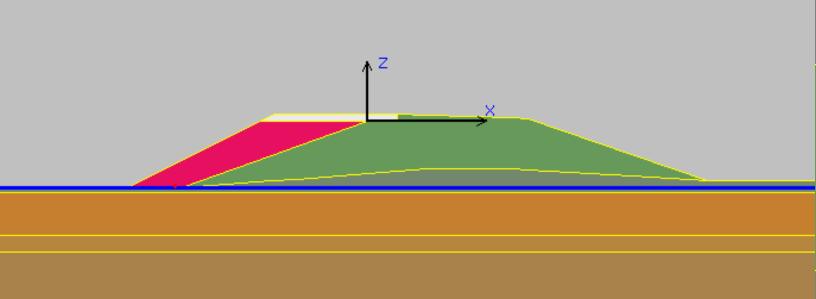
INPUT DATA - FOUNDATION LAYERS - 5 layers

Wet Unit Weight,		Poisson's Ratio μ	Description of Soil
1	112.00	0.25	Existing Embankment Fill
2	120.00	0.30	Cohesionless
3	130.00	0.50	Upper Cohesive (PRESUMSCOT)
4	105.00	0.40	Lower Cohesive (PRESUMSCOT)
5	160.00	0.40	Bedrock

INPUT DATA - EMBANKMENT LAYERS - 2 layers

	Wet Unit Weight, 7 [lb/ft³]	Description of Soil
1	125.00	Borrow Fill
2	135.00	Subbase + Pavement

INPUT DATA OF WATER


Coordinates (X, Z)				
(X)	(Z) [ft.]			
[]	[]			
0.00	80.00			
32.00	80.00			
75.00	80.00			
83.00	80.00			
135.00	80.00			
183.00	80.00			
233.00	80.00			
300.00	80.00			
	(X) [ft.] 0.00 32.00 75.00 83.00 135.00 183.00 233.00			

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Approach STA13+75.2ST

Sta Version 2 (16/655A Version 2 (16/65A Version

DRAWING OF SPECIFIED GEOMETRY

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design \& Analysis\Settlement\FOSSA\West Approach\West Approach STA13+75.2ST$

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/6$

Cons	r # erging solidation [Yes/No]	OCR = Pc / Po	Сс	Cr	e0	Cv [ft ²/day]	Drains at :	CREEP Ca/Cc
1	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	Yes	3.50	0.087	0.010	0.838	0.2592	Top	0.0320
4	Yes	1.00	0.131	0.015	0.756	17.2800	Bottom	0.0500
5	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Secondary Comprassion (Creep): Settlement is calculated at t2/t1 = 49.4

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design \& Analysis\Settlement\FOSSA\West Approach\West Approach STA13+75.2ST$

ULTIMATE SETTLEMENT, Sc

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.065 ft.

Layer #	Underging Consolidation		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
					[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	No	N/A	N/A	N/A	N/A	N/A	N/A	
3	Yes	0.0870	0.0028	0.8380	13.00	49.4	0.033	
4	Yes	0.1310	0.0066	0.7560	5.00	49.4	0.032	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinates (X) [ft.]	(X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6 7	32.00 48.00 104.00 112.90 113.00 152.00 206.00	80.00 80.00 100.00 100.00 102.00 100.75 82.00	Existing Embankment Fill
2	1 2 3 4 5	32.00 48.00 122.00 147.00 206.00	80.00 80.00 85.68 85.68 82.00	Cohesionless
3	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	78.68 78.68 78.68 78.68 78.68 78.68	Upper Cohesive (PRESUMSCOT)
4	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	65.68 65.68 65.68 65.68 65.68	Lower Cohesive (PRESUMSCOT)
5	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	60.68 60.68 60.68 60.68 60.68	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Em	ıbank.	Point	Coordinat	es (X, Z) :	
Soi	il	#	(X)	(Z)	DESCRIPTION
#			[ft.]	[ft.]	
1	X1 = 32.00 [ft]	1	72.00	100.00	Borrow Fill
	X2 = 104.00 [ft]	2	95.00	100.00	
2	X1 = 32.00 [ft]	1	76.00	102.00	Subbase + Pavement
	X2 = 113.00 [ft]	2	101.00	102.00	

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design \& Analysis\Settlement\FOSSA\West Approach\West Approach STA13+75.2ST$

HISTORY OF SETTLEMENT ANALYSES

History	Settlemer	nt Analysis					?	X
Case #	Location of	f 1D Section		Time	Rate Consolid	lation		
#	× [ft]	Y [ft]	Ultimate Settlement, Sc [ft]	After	Actual Settlement [ft]	U-ave. (min. for all consol. layers) [%]	REMARKS	
1	46.15	0.00	0.149	553.7	0.143	90.2	maximum settlement at X, 90% primary consolidation	
2	46.15	0.00	0.149	1773.7	0.149	99.9	maximum settlement at X, 99.9% primary consolidation	
3								
4								
5								
6								
7								
8								
9								_
10								_
11								
12								
13								
14								
15								¥

Crision 2 D FoSSA V Crisio

FoSSA -- Foundation Stress & Settlement Analysis

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Approach STA14+50.2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 - Client: Maine DOT

Designer: MK

Station Number: STA 14+50

Description:

Proposed Embankment

Company's information:

Name: H&H

Street:

Telephone #: Fax #: E-Mail:

Original file path and name: Y:\Shared\ ent\FOSSA\West Approach\West Approach STA14+50.2ST
Original date and time of creating this file: 9/19/2024

GEOMETRY: Analysis of a 2D geometry

ion D | FioSSA Version 2 | FioSS

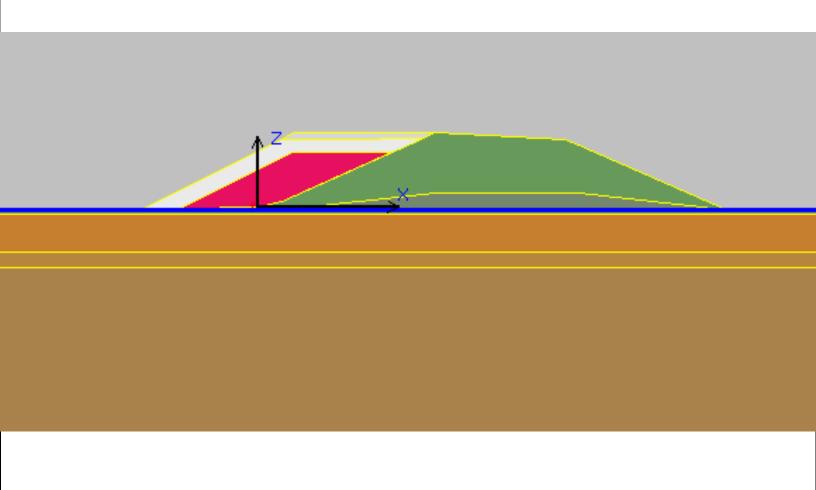
INPUT DATA - FOUNDATION LAYERS - 5 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	112.00	0.25	Existing Embankment Fill
2	120.00	0.30	Cohesionless
3	130.00	0.50	Upper Cohesive (PRESUMPSCOT)
4	105.00	0.40	Lower Cohesive (PRESUMPSCOT)
5	160.00	0.40	Bedrock

INPUT DATA - EMBANKMENT LAYERS - 3 layers

	Wet Unit Weight, 7 [lb/ft³]	Description of Soil
1	20.00	ULFGA
2	125.00	Borrow Fill
3	135.00	Subbase + Pavement

INPUT DATA OF WATER


Point	Coordinates (X, Z)				
#	(X)	(Z)			
	[ft.]	[ft.]			
1	0.00	80.00			
2	32.00	80.00			
3	75.00	80.00			
4	83.00	80.00			
5	135.00	80.00			
6	183.00	80.00			
7	233.00	80.00			
8	300.00	80.00			

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Approach STA14+50.2ST

Sta Version 2 (16/655A Version 2 (16/65A Version

DRAWING OF SPECIFIED GEOMETRY

 $\label{lem:Replacement} Replacement \ of \ Tuttle \ Road \ Bridge \ Y:\ HASE 2\ Geotech\ Design \& Analysis\ Settlement\ FOSSA\ West \ Approach\ West \ Approach\ STA14+50.2ST$

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/6$

	r # erging solidation [Yes/No]	OCR = Pc / Po	Сс	Cr	e0	Cv [ft ²/day]	Drains at :	CREEP Ca/Cc
1	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	Yes	3.50	0.087	0.010	0.838	0.2592	Top	0.0211
4	Yes	1.00	0.131	0.015	0.756	17.2800	Bottom	0.0500
5	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Secondary Comprassion (Creep): Settlement is calculated at t2/t1 = 49.7

ULTIMATE SETTLEMENT, Sc

Node #	X [ft.]	Y [ft.]	Original Z [ft.]	Settlem Sc [ft.]	ent Final Z* [ft.]
1	73.33	0.00	80.96	0.15	80.81

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.054 ft.

Layer #	Underging Consolidation		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
					[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	No	N/A	N/A	N/A	N/A	N/A	N/A	
3	Yes	0.0870	0.0018	0.8380	13.00	49.7	0.022	
4	Yes	0.1310	0.0066	0.7560	5.00	49.7	0.032	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinates (X) [ft.]	(X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6	32.00 75.00 83.00 135.00 178.58 233.00	80.00 81.00 83.00 106.00 104.00 80.00	Existing Embankment Fill
2	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	80.00 80.00 80.00 85.68 85.68 80.00	Cohesionless
3	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	78.68 78.68 78.68 78.68 78.68 78.68	Upper Cohesive (PRESUMPSCOT)
4	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	65.68 65.68 65.68 65.68 65.68	Lower Cohesive (PRESUMPSCOT)
5	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	60.68 60.68 60.68 60.68 60.68	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Eml	bank.	Point	Coordinat	es (X, Z) :	
Soil		#	(X)	(Z)	DESCRIPTION
#			[ft.]	[ft.]	
1	X1 = 48.78 [ft]	1	87.00	99.50	ULFGA
	X2 = 120.30 [ft]	2	95.00	99.50	
2	X1 = 35.00 [ft]	1	83.00	104.00	Borrow Fill
	X2 = 131.00 [ft]	2	101.00	104.00	
3	X1 = 35.00 [ft]	1	87.00	106.00	Subbase + Pavement
	X2 = 135.00 [ft]	2	101.00	106.00	

 $\label{lem:Replacement} Replacement \ of \ Tuttle \ Road \ Bridge \ Y:\ HASE 2\ Geotech\ Design \& Analysis\ Settlement\ FOSSA\ West \ Approach\ West \ Approach\ STA14+50.2ST$

HISTORY OF SETTLEMENT ANALYSES

Case #	Sec	ion of 1D tion :	Ultimate Settlement,	After	Actual Settlement,		USER'S DESCRIPTION
	(X)	(Y)	Sc			consol.layer	rs)
	[ft.]	[ft.]	[ft.]	[days]	[ft.]	[%]	
1	73.33	0.00	0.147	553.7	0.1	90.0	maximum settlement at X, 90% primary consolidation
2	73.33	0.00	0.147	1773.7	0.1	99.9	maximum settlement at X, 99.9% primary consolidation
3							1
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

 $\label{lem:Replacement} Replacement \ of \ Tuttle \ Road \ Bridge \ Y:\ HASE 2\ Geotech\ Design \& Analysis\ Settlement\ FOSSA\ West \ Approach\ West \ Approach\ STA14+50.2ST$

HISTORY OF STAGED CONSTRUCTION

History ·	Settlemen	nt Analysis					?	×
Case #	Location of	f 1D Section		Time	Rate Consolid	lation		
#	×	Y	Ultimate Settlement, Sc	After	Actual Settlement	U-ave. (min. for all consol. layers)	REMARKS	l
	[ft]	[ft]	[ft]	[days]	[ft]	[%]		
1	73.33	0.00	0.147	553.7	0.142	90.0	maximum settlement at X, 90% primary consolidation	A
2	73.33	0.00	0.147	1773.7	0.147	99.9	maximum settlement at X, 99.9% primary consolidation	
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								~

Fersion 2.0 FoSSA Version 2.0

FoSSA -- Foundation Stress & Settlement Analysis

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Abutment STA15+00.2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 - Client: Maine DOT

Client: Maine Designer: MK

Station Number: STA 15+00

Description:

Proposed Embankment

Company's information:

Name: H&H

Street:

Telephone #: Fax #: E-Mail:

Original file path and name: Y:\Shared\ ent\FOSSA\West Approach\West Abutment STA15+00.2ST
Original date and time of creating this file: 9/19/2024

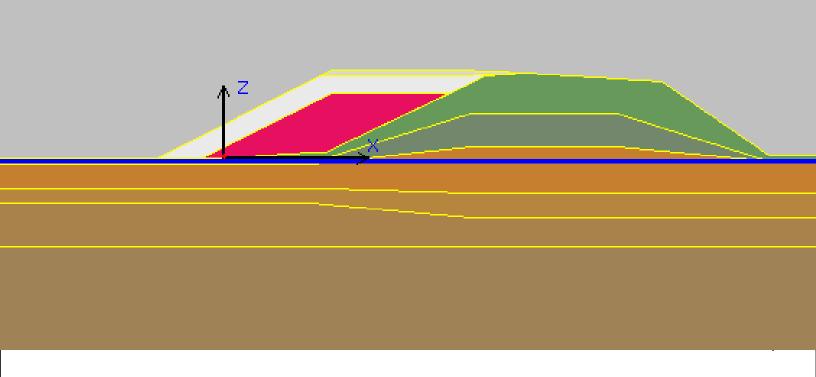
GEOMETRY: Analysis of a 2D geometry

ion 20 FoSSA Version 20

INPUT DATA - FOUNDATION LAYERS - 6 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	112.00	0.25	Existing Embankmen Fill
2	130.00	0.35	Cohesionless
3	130.00	0.50	Upper cohesive (PRESUMPSCOT)
4	115.00	0.45	Lower cohesive (PRESUMPSCOT)
5	130.00	0.35	Dense Cohesionless
6	160.00	0.40	Bedrock

INPUT DATA - EMBANKMENT LAYERS - 3 layers


	Wet Unit Weight, γ [lb/ft³]	Description of Soil
1	20.00	ULFGA
2	125.00	Borrow Fill
3	135.00	Subbase + Pavement

INPUT DATA OF WATER

Point	Coordin	ates (X, Z)
#	(X)	(Z)
	[ft.]	[ft.]
1	0.00	80.00
2	32.00	80.00
3	75.00	80.00
4	83.00	80.00
5	135.00	80.00
6	183.00	80.00
7	233.00	80.00
8	300.00	80.00

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Abutment STA15+00.2ST$

DRAWING OF SPECIFIED GEOMETRY

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design \& Analysis\Settlement\FOSSA\West Approach\West Abutment STA15+00.2ST$

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/2$

-	er#	OCR	Cc	Cr	e0	Cv	Drains at:
	lerging solidation [Yes/No]	= Pc / Po				[ft ²/day]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A
2	No	N/A	N/A	N/A	N/A	N/A	N/A
3	Yes	3.50	0.087	0.010	0.838	0.2592	Top
4	Yes	3.50	0.369	0.011	1.340	25.9200	Bottom
5	No	N/A	N/A	N/A	N/A	N/A	N/A
6	No	N/A	N/A	N/A	N/A	N/A	N/A

Replacement of Tuttle Road Bridge
Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\West Approach\West Abutment STA15+00.2ST
Six Venion 20 FiesSix V

ULTIMATE SETTLEMENT, Sc

Node #	X [ft.]	Y [ft.]	Original Z [ft.]	Settlem Sc [ft.]	ent Final Z* [ft.]
	53.95	0.00	81.00	0.05	80.9

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.075 ft.

Layer #	Underging Consolidation		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
"	Consondation				[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	No	N/A	N/A	N/A	N/A	N/A	N/A	
3	Yes	0.0870	0.0018	0.8380	8.00	134.8	0.017	
4	Yes	0.3690	0.0129	1.3400	5.00	134.8	0.059	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	
6	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinates (X) [ft.]	s (X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6 7	32.00 54.00 87.00 140.00 153.00 198.00 233.00	81.00 81.00 83.00 108.00 109.00 106.00 82.00	Existing Embankmen Fill
2	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	80.00 80.00 80.00 95.63 95.63 80.00	Cohesionless
3	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	79.20 79.20 79.20 84.63 84.63 80.00	Upper cohesive (PRESUMPSCOT)
4	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	71.20 71.20 71.20 69.63 69.63 69.63	Lower cohesive (PRESUMPSCOT)
5	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	66.20 66.20 66.20 61.63 61.63	Dense Cohesionless
6	1 2 3 4 5 6	32.00 75.00 83.00 135.00 183.00 233.00	52.20 52.20 52.20 51.83 51.83 51.83	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Embank.	Point	Coordinat	es (X, Z) :			
Soil	#	(X)	(Z)	DESCRIPTION		
#		[ft.]	[ft.]			
1 $X1 = 46.70$ [[ft] 1	89.50	102.40	ULFGA		
X2 = 128.00	[ft] 2	95.00	102.40			
2 X1 = 32.00 [[ft] 1	85.50	108.00	Borrow Fill		
X2 = 153.00	[ft] 2	130.00	108.00			
3 X1 = 32.00 [[ft] 1	89.40	110.00	Subbase + Pavement		
X2 = 153.00	[ft] 2	130.50	110.00			

 $\label{lem:Replacement} Replacement of Tuttle Road Bridge $$Y:\.....HASE 2\Geotech\Design \& Analysis\Settlement\FOSSA\West Approach\West Abutment STA15+00.2ST$

HISTORY OF SETTLEMENT ANALYSES

History	Settlemen	nt Analysis					?	×		
Case #					Rate Consolid	Rate Consolidation				
#	×	Y	Ultimate Settlement, Sc	After	Actual Settlement	U-ave. (min. for all consol. layers)	REMARKS			
	[ft]	[ft]	[ft]	[days]	[ft]	[%]		Ш		
1	53.95	0.00	0.048	202.7	0.044	90.1	maximum settlement at X, 90% primary consolidation	A		
2	53.95	0.00	0.048	649.3	0.048	99.9	maximum settlement at X, 99.9% consolidation			
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15								-		

FoSSA -- Foundation Stress & Settlement Analysis

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\East Approach\East Approach STA20+75.2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 -Client: Maine DOT

Designer: MK

Station Number: STA 20+75

Description:

Proposed Embankment

Company's information:

Name: Н&Н

Street:

Telephone #: Fax #: E-Mail:

Original file path and name: Y:\Shared\ ent\FOSSA\East Approach\East Approach STA20+75.2ST Original date and time of creating this file: 9/19/2024

GEOMETRY: Analysis of a 2D geometry

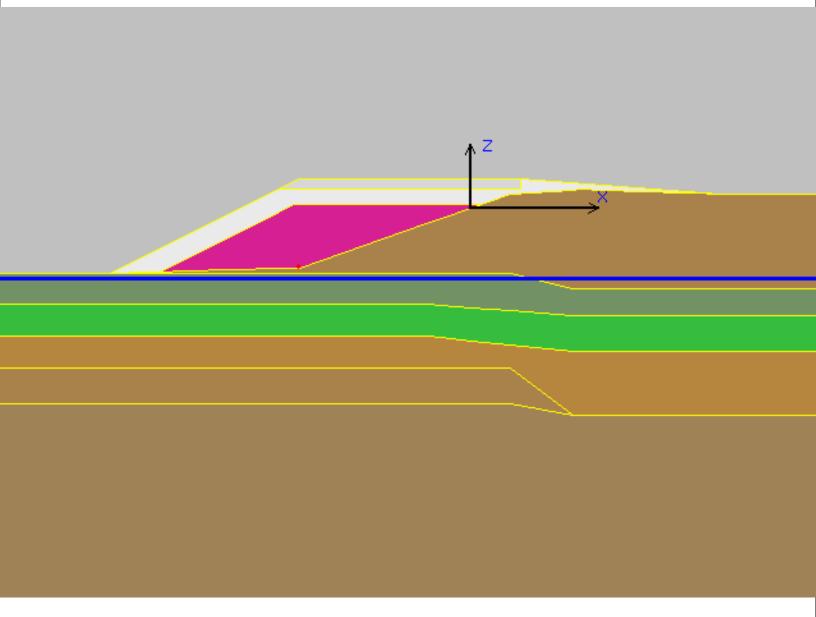
Replacement of Tuttle Road Bridge Copyright © 2003-2012 ADAMA Engineering, Inc.

Page 1 of 8 License number FoSSA-200429

www.GeoPrograms.com

INPUT DATA - FOUNDATION LAYERS - 6 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	112.00	0.25	Existing Embankment Fill
2	130.00	0.45	Upper Cohesive (PRESUMPSCOT)
3	115.00	0.45	Lower Cohesive (PRESUMPSCOT)
4	125.00	0.30	Cohesionless
5	130.00	0.35	Dense Cohesionless
6	160.00	0.40	Bedrock


INPUT DATA - EMBANKMENT LAYERS - 3 layers

	Wet Unit Weight, γ [lb/ft³]	Description of Soil
1	20.00	ULFGA
2	125.00	Borrow Fill
3	135.00	Subbase + Pavement

INPUT DATA OF WATER

Point	Coordinates (X, Z)						
#	(X) [ft.]	(Z) [ft.]					
1	0.00	89.00					
2	32.00	89.00					
3	63.00	89.00					
4	94.00	89.00					
5	126.00	89.00					

DRAWING OF SPECIFIED GEOMETRY

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\.....HASE\ 2\ Geotech\ Design\ \&\ Analysis\ Settlement\ FOSSA\ East\ Approach\ STA20+75.2ST$

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/2$

_	ver #	OCR	Сс	Cr	e0	Cv	Drains at:	CREEP
	derging nsolidation [Yes/No]	= Pc / Po				[ft ²/day]		Ca/Cc
1	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	Yes	3.00	0.369	0.011	1.340	0.2592	Тор	0.0350
3	Yes	3.00	0.369	0.011	1.340	25.9200	Bottom	0.0350
4	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Secondary Comprassion (Creep): Settlement is calculated at t2/t1 = 242.3

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\.....HASE\ 2\ Geotech\ Design\ \&\ Analysis\ Settlement\ FOSSA\ Last\ Approach\ STA20+75.2ST$

ULTIMATE SETTLEMENT, Sc

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.158 ft.

Layer #	Underging Consolidatio		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
					[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	Yes	0.3690	0.0129	1.3400	6.00	242.3	0.079	
3	Yes	0.3690	0.0129	1.3400	6.00	242.3	0.079	
4	No	N/A	N/A	N/A	N/A	N/A	N/A	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	
6	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinat (X) [ft.]	es (X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6	0.00 36.00 68.57 76.00 89.25 116.00	90.00 91.00 102.38 105.00 106.00 105.00	Existing Embankment Fill
2	1 2 3 4 5 6 7	0.00 14.00 33.00 76.00 88.00 109.00 111.00	90.00 90.00 90.00 90.00 87.00 87.00 87.00	Upper Cohesive (PRESUMPSCOT)
3	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 88.00 109.00 111.00	84.00 84.00 84.00 82.00 82.00 82.00	Lower Cohesive (PRESUMPSCOT)
4	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 88.00 109.00 111.00	78.00 78.00 78.00 78.00 75.00 75.00 75.00	Cohesionless
5	1 2 3 4 5	76.00 88.00 311.68 344.49 360.89	72.00 63.00 63.00 63.00 63.00	Dense Cohesionless
6	1 2 3 4 5	76.00 88.00 328.08 344.49 360.89	65.00 63.00 63.00 63.00 63.00	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Embank. Soil		oank.	Point	Coordinate	es (X, Z) :			
			#		(Z)	DESCRIPTION		
	#			[ft.]	[ft.]			
	1	X1 = 9.33 [ft]	1	35.00	103.10	ULFGA		
		X2 = 70.70 [ft]	2	68.57	103.10			
	2	X1 = 0.00 [ft]	1	32.00	106.00	Borrow Fill		
		X2 = 116.00 [ft]	2	78.00	106.00			
			3	78.10	107.90			
	3	X1 = 0.00 [ft]	1	36.00	108.00	Subbase + Pavement		
		X2 = 116.00 [ft]	2	78.00	108.00			

Replacement of Tuttle Road Bridge
Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\East Approach\East Approach STA20+75.2ST
\\text{Version 20 FieSSA Version 20 FieSS

History Settlement Analysis								\times
Case #	Location of	f 1D Section		Time Rate Consolidation				
#	×	Y	Ultimate Settlement, Sc	After	Actual Settlement	U-ave. (min. for all consol. layers)	REMARKS	
	[ft]	[ft]	[ft]	[days]	[ft]	[%]		Ш
1	35.77	0.00	0.083	112.7	0.076	90.1	maximum settlement at X, 90% primary consolidation	A
2	35.77	0.00	0.083	364.6	0.083	99.9	maximum settlement at X, 99.9% primary consolidation	
3								
4								1
5								
6								1
7								1
8								1
9								1
10								
11								
12								1
13								
14								1
15								-

Y:\....\Design & Analysis\Settlement\FOSSA\East Approach\East Approach STA21+50 (B205 + B206).2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 -Client: Maine DOT

Designer: MK

Station Number: STA 21+50

Description:

Proposed Embankment

Company's information:

Name: Н&Н

Street:

Telephone #: Fax #: E-Mail:

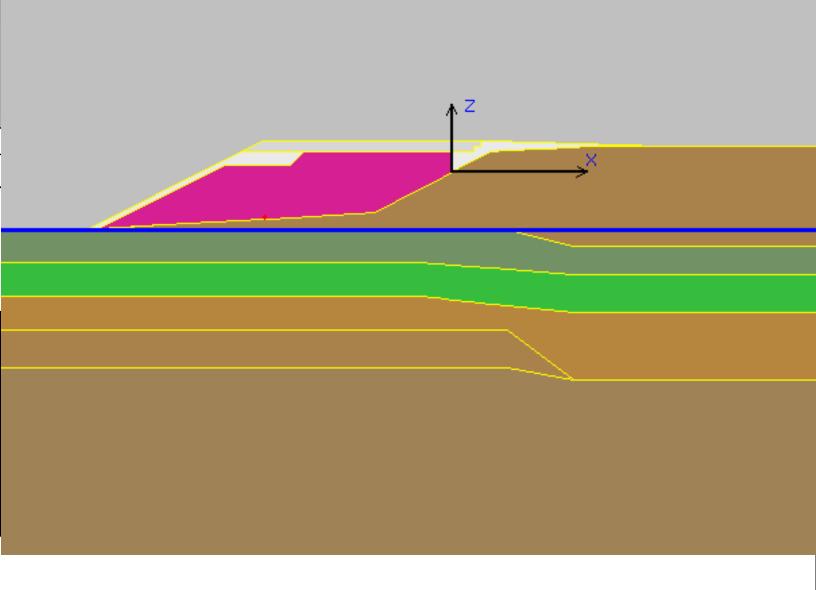
Original file path and name: Y:\Shared\ Approach\East Approach STA21+50 (B205 + B206).2ST Original date and time of creating this file: 9/19/2024

GEOMETRY: Analysis of a 2D geometry

Replacement of Tuttle Road Bridge Copyright © 2003-2012 ADAMA Engineering, Inc. www.GeoPrograms.com

INPUT DATA - FOUNDATION LAYERS - 6 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	112.00	0.30	Existing Embankment Fill
2	130.00	0.45	Upper Cohesive (PRESUMPSCOT)
3	115.00	0.45	Lower Cohesive (PRESUMPSCOT)
4	125.00	0.30	Cohesionless
5	130.00	0.35	Dense Cohesionless
6	160.00	0.40	Bedrock


INPUT DATA - EMBANKMENT LAYERS - 3 layers

	Wet Unit Weight, γ [lb/ft³]	Description of Soil		
1	20.00	ULFGA		
2	125.00	Borrow Fill		
3	135.00	Subbase + Pavement		

INPUT DATA OF WATER

Point	Coordinates (X, Z)					
#	(X) [ft.]	(Z) [ft.]				
1	0.00	90.00				
2	32.00	90.00				
3	63.00	90.00				
4	94.00	90.00				
5	126.00	90.00				

DRAWING OF SPECIFIED GEOMETRY

Replacement of Tuttle Road Bridge
Y:\.....\Design & Analysis\Settlement\FOSSA\East Approach\East Approach STA21+50 (B205 + B206).2ST
mine 20 FieSSA Venine 20 F

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/2$

	ver # derging	OCR =	Сс	Cr	e0	Cv	Drains at:	CREEP
	nsolidation [Yes/No]	Pc / Po				[ft ²/day]		Ca/Cc
1	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	Yes	3.00	0.369	0.011	1.340	0.2592	Top	0.0350
3	Yes	3.00	0.369	0.011	1.340	25.9200	Bottom	0.0500
4	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Secondary Comprassion (Creep): Settlement is calculated at t2/t1 = 242.3

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\|....|Design\ \&\ Analysis\ Settlement\ FOSSA\ East\ Approach\ STA21+50\ (B205+B206).2ST$

ULTIMATE SETTLEMENT, Sc

Node #	X	Y	Original Z	Settlem Sc	ent Final Z*
	[ft.]	[ft.]	[ft.]	[ft.]	[ft.]
1	32.24	0.00	91.86	0.04	91.82

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.192 ft.

Layer #	Underging Consolidation		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
					[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	Yes	0.3690	0.0129	1.3400	6.00	242.3	0.079	
3	Yes	0.3690	0.0185	1.3400	6.00	242.3	0.113	
4	No	N/A	N/A	N/A	N/A	N/A	N/A	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	
6	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinat (X) [ft.]	es (X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6	0.00 52.00 66.00 69.00 73.00 90.00	90.00 93.00 100.40 102.00 104.00 105.00	Existing Embankment Fill
2	1 2 3 4 5 6 7	0.00 14.00 33.00 76.00 88.00 109.00 111.00	90.00 90.00 90.00 90.00 87.00 87.00	Upper Cohesive (PRESUMPSCOT)
3	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 88.00 109.00 111.00	84.00 84.00 84.00 82.00 82.00 82.00	Lower Cohesive (PRESUMPSCOT)
4	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 88.00 109.00 111.00	78.00 78.00 78.00 78.00 75.00 75.00 75.00	Cohesionless
5	1 2 3 4 5	76.00 88.00 311.68 344.49 360.89	72.00 63.00 63.00 63.00 63.00	Dense Cohesionless
6	1 2 3 4 5	76.00 88.00 328.08 344.49 360.89	65.00 63.00 63.00 63.00 63.00	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Emb	oank.	Point	Coordinate	s(X, Z):	
Soil		#	(X)	(Z)	DESCRIPTION
#			[ft.]	[ft.]	
1	X1 = 2.21 [ft]	1	24.95	101.50	ULFGA
	X2 = 66.00 [ft]	2	36.75	101.50	
		3	39.25	104.00	
		4	65.99	104.00	
2	X1 = 0.00 [ft]	1	28.00	104.00	Borrow Fill
	X2 = 104.00 [ft]	2	70.00	104.00	
		3	70.01	105.00	
		4	71.00	105.00	
		5	71.01	106.00	
3	X1 = 0.00 [ft]	1	31.80	106.00	Subbase + Pavement
	X2 = 104.00 [ft]	2	73.00	106.00	

Replacement of Tuttle Road Bridge
Y:\.....\Design & Analysis\Settlement\FOSSA\East Approach\East Approach STA21+50 (B205 + B206),2ST

***rise 26 FieSSA Versin 26 FieSSA Versin 26 FieSSA Versin 26 FieSSA Versin 26 FieSSA Versin 27 FieSSA Versin

Hist	tory ·	Settlemer	nt Analysis					?	×	
	ase #	Location of	f 1D Section		Time	Rate Consolid	dation			
	#	X X	Y	Ultimate Settlement, Sc	After	Actual Settlement	U-ave. (min. for all consol. layers)	REMARKS		
L		[ft]	[ft]	[ft]	[days]	[ft]	[%]		<u></u>	I
	1	32.24	0.00	0.040	112.7	0.037	90.3	maximum settlement at X, 90% primary consolidation	_	1
	2	32.24	0.00	0.040	364.6	0.040	99.9	maximum settlement at X, 99.9% primary consolidation		ı
	3									ı
	4									I
	5									I
	6									I
	7									I
	8									ı
	9									ı
	10									
	11									
	12									I
	13									
	14									
	4 - 1								20000	41

Fersion 2.0 FoSSA Version 2.0

FoSSA -- Foundation Stress & Settlement Analysis

Replacement of Tuttle Road Bridge

Y:\.....HASE 2\Geotech\Design & Analysis\Settlement\FOSSA\East Approach\East Approach\STA22+25.2ST

Replacement of Tuttle Road Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Replacement of Tuttle Road Bridge

Project Number: WIN 025161.00 - Client: Maine DOT

Designer: MK

Station Number: STA 22+25

Description:

Proposed Embankment

Company's information:

Name: H&H

Street:

Telephone #: Fax #: E-Mail:

Original file path and name: Y:\Shared\..... ent\FOSSA\East Approach\East Approach STA22+25.2ST Original date and time of creating this file: 9/23/2024

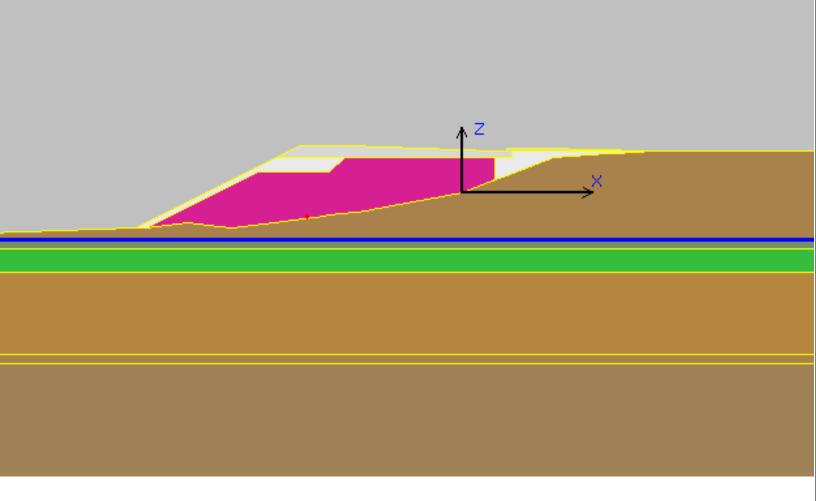
GEOMETRY: Analysis of a 2D geometry

Replacement of Tuttle Road Bridge Copyright © 2003-2012 ADAMA Engineering, Inc. Page 1 of 8 License number FoSSA-200429

INPUT DATA - FOUNDATION LAYERS - 6 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	112.00	0.30	Existing Embankment Fill
2	130.00	0.45	Upper Cohesive (PRESUMPSCOT)
3	125.00	0.30	Cohesionless
4	95.00	0.40	Lower Cohesive (PRESUMPSCOT)
5	130.00	0.35	Dense Cohesionless
6	160.00	0.40	Bedrock

INPUT DATA - EMBANKMENT LAYERS - 3 layers


	Wet Unit Weight, γ [lb/ft³]	Description of Soil
1	20.00	ULFGA
2	125.00	Borrow Fill
3	135.00	Subbase + Pavement

INPUT DATA OF WATER

Point	Coordinates (X, Z)					
#	(X) [ft.]	(Z) [ft.]				
1	0.00	90.00				
2	32.00	90.00				
3	63.00	90.00				
4	94.00	90.00				
5	126.00	90.00				

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\.....HASE\ 2\ Geotech\ Design\ \&\ Analysis\ Settlement\ FOSSA\ East\ Approach\ STA22+25.2ST$

DRAWING OF SPECIFIED GEOMETRY

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\.....HASE\ 2\ Geotech\ Design\ \&\ Analysis\ Settlement\ FOSSA\ Last\ Approach\ STA22+25.2ST$

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/2$

_	er # derging	OCR =	Cc	Cr	e0	Cv	Drains at:	CREEP
	nsolidation [Yes/No]	Pc / Po				[ft ²/day]		Ca/Cc
1	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	Yes	3.00	0.369	0.011	1.340	0.2592	Top & Bot.	0.0350
3	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	Yes	1.10	0.154	0.009	0.780	0.0474	Top	0.0500
5	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Secondary Comprassion (Creep): Settlement is calculated at t2/t1 = 7.8

 $Replacement\ of\ Tuttle\ Road\ Bridge\ Y:\\ \verb|\.....HASE\ 2\ Geotech\ Design\ \&\ Analysis\ Settlement\ FOSSA\ Last\ Approach\ STA22+25.2ST$

ULTIMATE SETTLEMENT, Sc

Node #	X [ft.]	Y [ft.]	Original Z [ft.]	Settlem Sc [ft.]	ent Final Z* [ft.]
	29.23	0.00	93.66	0.17	93.

^{*}Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

SECONDARY SETTLEMENT (Creep), Ss -- Total Secondary Compression (Creep) = 0.062 ft.

Layer #	Underging Consolidation		C-alpha	e-zero	Н	t1/t2	Settlement Ss	
,,	Comsoniumor	•			[ft.]		[ft.]	
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
2	Yes	0.3690	0.0129	1.3400	1.55	7.8	0.008	
3	No	N/A	N/A	N/A	N/A	N/A	N/A	
4	Yes	0.1540	0.0077	0.7800	14.00	7.8	0.054	
5	No	N/A	N/A	N/A	N/A	N/A	N/A	
6	No	N/A	N/A	N/A	N/A	N/A	N/A	

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found. Soil #	Point #	Coordinates (X) [ft.]	(X, Z): (Z) [ft.]	DESCRIPTION
1	1 2 3 4 5 6 7 8 9	-57.63 0.00 2.00 9.00 16.50 39.50 55.50 71.00 87.00	90.00 92.00 92.00 93.00 92.00 95.00 98.00 104.00 105.00	Existing Embankment Fill
2	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 86.00 109.00 111.00	90.00 90.00 90.00 90.00 90.00 90.00 90.00	Upper Cohesive (PRESUMPSCOT)
3	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 86.00 109.00 111.00	88.45 88.45 88.45 88.45 88.45 88.45 88.45	Cohesionless
4	1 2 3 4 5 6 7	0.00 14.00 33.00 60.00 86.00 109.00 111.00	84.45 84.45 84.45 84.45 84.45 84.45 84.45	Lower Cohesive (PRESUMPSCOT)
5	1 2 3 4 5	0.00 20.00 40.00 60.00 80.00	70.45 70.45 70.45 70.45 70.45	Dense Cohesionless
6	1 2 3 4 5	0.00 20.00 40.00 60.00 80.00	68.95 68.95 68.95 68.95 68.95	Bedrock

TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

Embank.	Point	Coordinate	es (X, Z) :	
Soil	#	(X)	(Z)	DESCRIPTION
#		[ft.]	[ft.]	
1 $X1 = 2.00$ [ft]	1	21.00	101.50	ULFGA
X2 = 61.00 [ft]	2	33.00	101.50	
	3	35.50	104.00	
	4	60.99	104.00	
2 $X1 = 0.00$ [ft]	1	24.00	104.00	Borrow Fill
X2 = 87.00 [ft]	2	64.00	104.00	
	3	64.01	105.00	
3 $X1 = 0.00$ [ft]	1	0.00	92.00	Subbase + Pavement
X2 = 87.00 [ft]	2	28.00	106.00	
	3	36.00	106.00	
	4	63.00	105.00	
	5	63.01	105.50	
	6	69.00	105.50	

History -- Settlement Analysis Location of 1D Section ---Time Rate Consolidation ----Case Х Υ Ultimate After... Actual U-ave. Settlement, Settlement (min. for # Sc REMARKS all consol. layers) [%] [ft] [ft] [ft] [ft] [days] 1 29.23 73.7 0.00 0.171 1825.0 0.127 maximum settlement at X, 5 years post construction 2 29.23 0.00 0.171 3484.6 0.154 90.1 maximum settlement at X, 90% primary consolidation 3 29.23 0.00 0.171 3650.0 0.156 91.0 maximum settlement at X, 10 years post construction 4 29.23 0.00 0.171 11348.3 0.171 99.9 maximum settlement at X, 99.9% primary consolidation 5 6 7 8 9 10 11 12 13

14 15