

Submitted to TY LIN International 12 Northbrook Dr., Ste 101 Falmouth, ME 04105 Submitted by AECOM 250 Apollo Drive Chelmsford, MA 01824

Final Geotechnical Design Report

Tannery Brook Bridge (#3610) Replacement Norway, Maine MaineDOT WIN 23116.00

Prepared for: TY LIN International

September 2023

TABLE OF CONTENTS

Page

1.0	INTF		1
	1.1	Purpose of Report	1
	1.2	Site Description	
	1.3	Proposed Construction	
	1.4	Geotechnical Scope	
	1.5	Limitations	
2.0	SUB	SURFACE CONDITIONS	4
	2.1	Local Geologic Setting	4
		2.1.1 Surficial Geology	
		2.1.2 Bedrock Geology	
	2.2	Subsurface Exploration Program	
		2.2.1 Vacuum Excavation	
		2.2.2 Non-Sampling Probes	
		2.2.3 Test Borings	
		2.2.4 Laboratory Testing	6
	2.3	Supplemental Subsurface Exploration Program	6
		2.3.1 Test Borings	6
		2.3.2 Supplemental Laboratory Testing	7
		2.3.3 Geophysical Testing	7
	2.4	Subsurface Conditions	
		2.4.1 Stratification	
		2.4.2 Groundwater	8
3.0	GEC	TECHNICAL RECOMMENDATIONS	
	3.1	Foundation Recommendations	
		3.1.1 Abutment Geometry & Current Condition	
		3.1.2 Foundation Alternatives	
		3.1.3 Drilled Spun Pipe Piles 1	
		3.1.4 Drilled Micropiles 1	
	3.2	Lateral Earth Pressures1	
	3.3	Seismic Design Criteria 1	
	3.4	Seismic Pressure1	
4.0		STRUCTION CONSIDERATIONS 1	
	4.1	Foundation Installation	
	4.2	Utility Replacement	
	4.3	Subgrade Preparation1	
	4.4	Subgrade Protection	
	4.5	Water Control	
	4.6	Soil Excavations	
	4.7	Temporary Earth Support	
	4.8	Protection of Existing Utilities	
F •	4.9	Construction Monitoring1	
5.0	KEF	ERENCES 1	8

TABLES

Table 1: Estimated Spun Pipe Pile Axial Resistance – Jointed Rock	10
Table 2: 9.625-inch Spun Pipe Pile Lateral Response	11
Table 3: Retaining Wall Design Parameters	13

FIGURES

Figure 1. Project Locus Map	1
Figure 2. Surficial Geology Near Tannery Brook	4
Figure 3. Bedrock Geology Near Tannery Brook	5

APPENDICES

- Appendix A Boring Locations Plan, Generalized Subsurface Profile, Test Boring Logs and Probe Logs
- Appendix B Rock Core Photographs
- Appendix C Geotechnical Laboratory Testing Results
- Appendix D Exploration Photographs
- Appendix E Calculations
- Appendix F Geophysical Test Results

1.0 INTRODUCTION

A multi-phase subsurface exploration program was conducted to evaluate the subsurface conditions at the two-span bridge that crosses the Tannery (Bird) Brook in Norway, Maine. The subsurface information collected was used to evaluate the existing bridge's substructure for possible reuse and to provide recommendations for the design and construction of the bridge substructure replacement.

1.1 Purpose of Report

This geotechnical report will serve to support the design and construction of the proposed bridge rehabilitation work. Data collected during the explorations and laboratory testing programs are provided in this document and were used in conjunction with available published subsurface information and historic site data to develop the geotechnical design recommendations and construction considerations presented herein.

1.2 Site Description

The existing bridge, identified as Bridge No. 3610, carries Main Street over the Tannery (Bird) Brook. The location of the site is presented below in Figure 1 Project Locus Map. The existing bridge was constructed in 1929 and consists of masonry abutments and a concrete center pier supporting a reinforced concrete deck. The bridge is approximately 61 feet wide, 22 feet long, and has a clear span of about 9 feet from the abutment to the center pier. According to an inspection report dated July 25, 2019, the existing bridge carries a daily average traffic of about 11,655 cars and is experiencing advanced deterioration of its deck and superstructure, while the substructure is deemed to be in fair condition with only minor section loss.

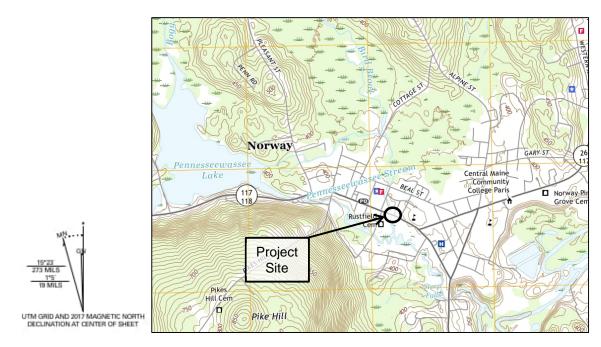


Figure 1. Project Locus Map

1.3 Proposed Construction

Given the deterioration of the existing bridge deck, as noted on the July 2019 inspection report, Maine DOT is evaluating a full replacement of the existing bridge. The proposed replacement bridge will be a single-span structural slab supported by deep foundations installed through the existing stacked granite abutments. The existing center pier will be removed, and the existing stacked granite abutment faces will be stabilized with a reinforced concrete facing. The proposed foundation support for the new bridge is drilled in micropiles or spun pipe piles socketed in bedrock. The new foundation elements are expected to carry primarily axial compression loads since the anticipated lateral loads are minimal.

1.4 Geotechnical Scope

A multi-phase study was conducted at the existing Tannery Brook Bridge. The first study was executed between April 2021 and January 2022. The purpose of this study was to perform probes at the existing Tannery Brook Bridge abutments and to collect data for analysis and reuse determination. AECOM performed the following tasks:

- Reviewed available surficial and regional geology information.
- Marked the boring and probe locations in the field.
- Engaged a drilling subcontractor, New England Boring Contractors of Derry, New Hampshire, to advance the boring and probes at the site.
- Provided a field representative to observe the explorations, collect soil samples, describe the soil samples, and prepare field logs.
- Selected soil samples for geotechnical laboratory testing to determine their classifications and engineering design properties.
- Performed engineering analyses and developed the geotechnical design recommendations; and
- Prepared this Geotechnical Design Report which provides and summarizes the data collected, presents the results of the foundation analyses, and provides the geotechnical recommendations and construction considerations. The Geotechnical Design Report was submitted in January 2022.

Upon review of the initial data collected, a supplemental study was authorized by MaineDOT to collect supplemental soil and rock samples for foundation evaluation. AECOM performed the following tasks from May 2022 to August 2022 as part of the supplemental study:

- Marked the boring and probe locations in the field.
- Engaged a drilling subcontractor, New England Boring Contractors of Derry, New Hampshire, to advance the supplemental borings at the site.
- Provided a field representative to observe the explorations, collect soil and rock samples, describe the soil and rock samples, and prepare field logs.
- Engaged a geophysics subconsultant, NDT Corporation of Sterling, Massachusetts, to perform a geophysical survey at the site.
- Revised the engineering analyses and modified the geotechnical design recommendations, as necessary; and
- Updated the Geotechnical Design Report with revised foundation analyses, recommendations, and construction considerations based on the data collected during the supplemental exploration. The Geotechnical Design Report, Revision 1 was submitted in August 2022.

In September 2022, Phase II of the proposed Tannery Brook Bridge replacement design was initiated, which included evaluation of alternative foundation types and the preparation of this Final Geotechnical Design Report that presents the results of the foundation analyses and provides the geotechnical recommendations and construction considerations for the foundation alternatives.

1.5 Limitations

The data presented herein represent the conditions encountered at the specific locations and at the specific times at which our explorations took place. It should be noted that, given that the subsurface exploration program comprised of relatively small diameter, widely spaced borings and probes, variations in soil and rock stratigraphy and characteristics, and groundwater conditions could appear evident at a later date. If that is the case, it may be necessary to reevaluate the recommendations of this report.

Background information and other data have been furnished to AECOM by third parties, which AECOM has used in preparing this report. AECOM has relied on this information as furnished and is neither responsible for nor has confirmed the accuracy of this information. The geotechnical information presented in this report is based on available information from previous investigations, and the data collected for this project. The geotechnical information presented in this report should not be used for other projects or purposes. Conclusions made from these data by others are their responsibility.

This geotechnical design report has been prepared for specific application to the proposed subject project as presented herein in accordance with generally accepted geotechnical engineering practices. The interpretations and evaluations presented in this report are based in part on information on the proposed work made available prior to submission of the final design documents.

In the event that any changes in the nature, elevations, design, or locations of the proposed structure are made during final design or during construction, the conclusions and recommendations presented herein will no longer be applicable unless the changes are reviewed, and our conclusions and recommendations are modified in writing.

2.0 SUBSURFACE CONDITIONS

2.1 Local Geologic Setting

Generalized descriptions of the surficial and bedrock geology that underlie the site area are provided below.

2.1.1 Surficial Geology

According to the Surficial Geology Map of the Norway Quadrangle (2008), glaciomarine deposits (Pmdo) form the banks of the Tannery Brook in the bridge area (see Figure 2). The glaciomarine deposits are mostly sand and gravel outwash underlain by glaciomarine clay and/or silt.

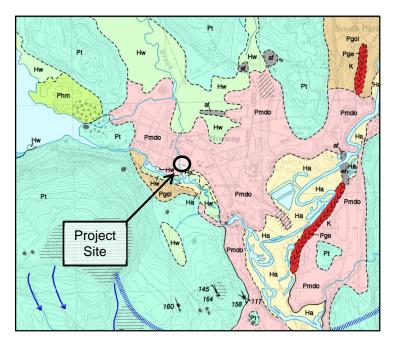


Figure 2. Surficial Geology Near Tannery Brook

The above map also indicates the area to be near stream alluvium deposits (Ha) which consist of sand, gravel, silt, and organic sediment which was deposited on flood plains of modern streams.

2.1.2 Bedrock Geology

According to the Bedrock Geologic Map of Maine (1985), the overburden in the Tannery Brook Bridge area is underlain by carboniferous muscovite-biotite granite. The bedrock geology in the Tannery Brook Bridge vicinity is illustrated in Figure 3.

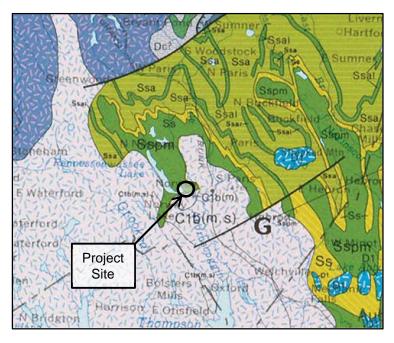


Figure 3. Bedrock Geology Near Tannery Brook

2.2 Subsurface Exploration Program

An exploration program was conducted from April 12 to 14, 2021 at the Tannery Brook Bridge to collect geotechnical data at the bridge. The program included six (6) non-sampling probes and two (2) test borings. The probes (BP-NTB-101 through BP-NTB-106) and test borings (BB-NTB-101 and BB-NTB-102) were drilled above or immediately adjacent to the bridge abutments. The locations of the probes and test borings are shown on the Boring Locations Plan in Appendix A.

The exploration drilling was performed by New England Boring Contractors of Derry, NH. A track-mounted Mobile B-53 drill rig equipped with an automatic hammer (ETR=86%) was used to perform the explorations. Drive and wash techniques were used to advance the borings. The collected soil samples were logged and preserved by an AECOM field representative. The test boring logs from the exploration program are provided in Appendix A and photographs of the boring locations are provided in Appendix D.

2.2.1 Vacuum Excavation

The non-coring probes and test boring locations were vacuum excavated to a depth between 4 and 5 feet below the existing ground surface in order to clear any near surface underground utilities prior to probing or drilling.

2.2.2 Non-Sampling Probes

The non-sampling probe locations are shown on the Boring Locations Plan in Appendix A and in photographs in Appendix D. The first probe of the eastern and western probe lines was located 3 feet away from the joint observed in the pavement, with each subsequent probe located 3 feet further away from the bridge.

Three (3) non-sampling probes (BP-NTB-101, BP-NTB-102, and BP-NTB-103) were performed on the eastern side of the bridge to determine the widths and inclination angles of the abutment batter walls. The eastern non-sampling probes were advanced by continuously driving hollow stem augers and were

terminated after the surface of the posterior abutment wall was encountered. The non-sampling probe holes were backfilled with soil cuttings and the road surface was restored with asphalt cold patch.

Three (3) non-sampling probes (BP-NTB-104, BP-NTB-105, and BP-NTB-106) planned on the western side of the bridge each encountered vacuum excavation refusal at a depth of approximately 4 feet. The vacuum refusal occurred on large boulders.

2.2.3 Test Borings

A test boring was drilled on each side of the bridge. BB-NTB-101 was advanced in the northeast quadrant of the bridge and BB-NTB-102 was advanced in the northwest quadrant of the bridge. The test borings were sampled at 5-foot intervals using standard split-spoon samplers. Soil samples were described by the AECOM field representative using the procedures outlined in the Unified Soil Classification System and ASTM D2488 - *Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).* Representative soils from each collected split spoon sampler were stored in labelled glass jars.

Rock cores, sampled using an NX core barrel, were collected from both borings. Within BB-NTB-101 a total of 9.7 feet of rock was cored and within BB-NTB-102 a total of 10.0 feet of rock was cored. The total depths of borings at BB-NTB-101 and BB-NTB-102 were 26.7 and 24.0 feet, respectively. The test boring holes were backfilled using soil cuttings and the road surface was restored with asphalt cold patch. A photograph of the rock cores is presented in Appendix B.

2.2.4 Laboratory Testing

AECOM selected and submitted soil samples from the subsurface exploration for geotechnical laboratory testing. The soil samples submitted were tested for gradation analyses (ASTM D6913) and for organic content (ASTM D2974) where evidence of organics was observed. The laboratory testing was performed by GeoTesting Express of Acton, MA. The laboratory testing results are presented on the test data sheets in Appendix C.

2.3 Supplemental Subsurface Exploration Program

A supplemental exploration program was conducted on May 18 and 19, 2022 at the Tannery Brook Bridge to collect additional geotechnical data at the bridge abutments. The supplemental program included four (4) test borings (BB-NTB-103, BB-NTB-104, BB-NTB-105, and BB-NTB-106). The test borings were drilled through the existing bridge abutments and terminated within bedrock. The locations of the supplemental test borings are shown on the Boring Locations Plan in Appendix A.

The exploration drilling was performed by New England Boring Contractors of Derry, NH. A track-mounted Acker Soil Scout drill rig equipped with a manual drop hammer was used to perform the explorations. Drive and wash techniques were used to advance the borings. The collected soil samples were logged and preserved by an AECOM field representative. The test boring logs from the supplemental exploration program are provided in Appendix A and photographs of the boring locations are provided in Appendix D.

2.3.1 Test Borings

Four (4) test borings were drilled through the existing abutments, two on each side of the bridge. BB-NTB-104 and BB-NTB-106 were drilled on the west side of the bridge, while BB-NTB-103 and BB-NTB-105 were drilled on the east side of the bridge. Core drilling techniques were used through the concrete footings and stacked stone/boulder abutments. Abutment core samples were collected at each boring. The total depths of borings BB-NTB-103, BB-NTB-104, BB-NTB-105, and BB-NTB-106 were 17.0, 15.2, 19.5, and 17.1 feet, respectively. The test boring holes were backfilled using soil cuttings and the road surface was restored with asphalt cold patch. A photograph of the abutment core samples is presented in Appendix B.

Soil samples were described by the AECOM field representative using the procedures outlined in the Unified Soil Classification System and ASTM D2488 - *Standard Practice for Description and Identification*

of Soils (Visual-Manual Procedure). Representative soils from each collected split spoon sampler were stored in labelled glass jars.

2.3.2 Supplemental Laboratory Testing

AECOM selected and submitted rock samples from the supplemental subsurface exploration for uniaxial compressive strength testing with moduli, in accordance with ASTM D7012D. The laboratory testing was performed by GeoTesting Express of Acton, MA. The laboratory testing results are presented in Appendix C.

2.3.3 Geophysical Testing

Geophysical tests were performed by our geophysical subconsultant, NDT Corporation (NDT) of Sterling, Massachusetts. The services performed onsite included ground penetrating radar, seismic refraction, and sonic/ultrasonic reflection measurements at the bridge. The geophysical testing was performed on May 25, 2022. The results of the geophysical testing are described in NDT's report dated June 10, 2022, which is appended to this report.

2.4 Subsurface Conditions

2.4.1 Stratification

The surface and subsurface materials encountered during the subsurface exploration program are described in the following subsections and are shown on the Generalized Subsurface Profile in Appendix A.

Surficial Materials

Between 4 and 8 inches of asphalt were encountered at the ground surface at each of the boring locations. At probe locations, asphalt was observed to range between 8 and 12 inches in thickness.

Existing Fill

The asphalt pavements encountered at the ground surface at borings BB-NTB-101 and BB-NTB-102 were underlain by existing fill soils mainly comprised of silty sand or coarse sand, and poorly graded gravel. The sand in the samples was observed to be fine to coarse grained while the silt was noted as nonplastic. The gravel sample was observed to be fine to coarse grained with few fine to coarse grained sand. Traces of bricks, roots, and cobbles were noted. The existing fill was observed to extend between 4 and 9 feet below the existing ground surface. The only SPT N-Value for the fill was recorded as 73 blows per foot (bpf) within the poorly graded gravel.

Note that boring BB-NTB-102 encountered a 6-inch concrete slab within the existing fill at a depth of 1 foot from the existing ground surface.

Peat

A 5-foot-thick deposit of dark brown peat was encountered beneath the existing fill within boring BB-NTB-101. The peat extended to a depth of 9 feet. The SPT N-Value for the peat was recorded as 2 bpf, indicating a very soft deposit. Peat was not encountered in boring BB-NTB-102.

Glacial Till

A deposit consisting of light grey to grey sand, silt, and gravel, interpreted as glacial till, was encountered beneath the peat in boring BB-NTB-101 and the existing fill in boring BB-NTB-102. The surface of the glacial till was encountered at a depth of 9 feet in both borings. The glacial till samples were classified as silty sand or well-graded sand with silt and gravel. The sand in these samples was observed to be fine to coarse grained. The silt was nonplastic and the gravel, where present, was described as fine grained. The glacial till extended to depths between 14 and 16 feet below the ground surface (bgs).

The SPT N-Values for the glacial till varied between 22 and 135, indicating a medium dense to very dense deposit.

Bedrock

Bedrock was encountered in borings BB-NTB-101 and BB-NTB-102 at depths of 16 and 14 feet bgs, respectively. Two 5-foot rock cores were able to be retrieved from each of the borings. The rock was described as light grey to white, very hard, fresh Granite. The Rock Quality Designation (RQD) values were recorded as 37% and 91% for the cores from boring BB-NTB-101, and as 97% and 67% for the cores from boring BB-NTB-102. Borings BB-NTB-101 and BB-NTB-102 were terminated within the bedrock at depths of 26.7 and 24 feet, respectively.

Abutment Borings

At the abutment borings, BB-NTB-103 to BB-NTB-106, the asphalt pavements encountered at the ground surface were underlain by concrete from the stub abutment footings. The concrete generally extended to a depth ranging from about 4.9 to 5.3 feet bgs. The footings were resting on cobbles and boulders that appeared to extend to bedrock. These borings were advanced through the cobbles and boulders using core drilling techniques. Because the boulders and cobbles were not grouted, core recoveries were erratic and generally low. Due to the shifting of the cobbles and boulders during drilling, a roller bit was used to advance the boring in lieu of coring.

Each boring was advanced into bedrock with the roller bit. The depth to bedrock ranged from approximately 14.6 feet to 18 feet bgs and was inferred based on the rate of advancement of the roller bit and drill cuttings. The depth to bedrock in the abutment borings is consistent with the bedrock depths in borings BB-NTB-101 and BB-NTB-102.

2.4.2 Groundwater

Groundwater was encountered in boring BB-NTB-101 and was recorded at a depth of approximately 8.5 feet bgs at the time of drilling.

It should be noted that groundwater will fluctuate with precipitation, season, the water levels in Tannery Brook, construction activities, run-off controls, and other factors. As a result, water levels during construction may vary from those observed during the subsurface investigation.

3.0 GEOTECHNICAL RECOMMENDATIONS

Geotechnical engineering evaluations have been made on various aspects related to the substructure foundation options for the proposed replacement bridge. In general, these recommendations have been based on the results of subsurface investigations, laboratory testing results, and engineering evaluations in accordance with the requirements of the AASHTO LRFD Bridge Design Manual, 9th Edition (AASHTO-9) and the Maine DOT Bridge Design Manual (2003) with updates through 2018.

3.1 Foundation Recommendations

3.1.1 Abutment Geometry & Current Condition

Based on the probing findings, the existing abutments built in 1929 consist of mortared small granite blocks at the face of the abutments, with large boulder and cobble backfill behind them. The supplemental borings through the abutments substantiates the initial assessment that the abutments are constructed of stub footing supported on large boulders and cobbles extending to bedrock.

Based on the pictures included in the inspection report from July 2019 and observations made in the field, the existing abutments seem to be deteriorating as there is evidence of mortar loss and missing blocks from the face of the abutments. The original abutments have been in place for over 90 years.

3.1.2 Foundation Alternatives

Several foundation systems were evaluated as possible options for support of the new substructures, including precast box culverts with wingwalls, rock-socketed H-Piles, driven H-Piles, drilled micropiles, drilled spun pipe piles, and reuse of the existing shallow foundations. The site conditions, construction schedule, and proposed new bridge type limits the number of feasible foundations in consideration to support the replacement bridge.

As noted above, the condition of the existing abutments is poor and major repairs are necessary to meet current bridge design standards and extend the service life of the existing structure. Increased loads due to the elimination of the central pier may exceed the geotechnical capacity of the existing foundations. Therefore, we do not recommend supporting the new structure directly on the existing abutments.

A bridge type alternative consisting of precast concrete culvert with wingwalls is feasible, however, the installation would require large areas to be excavated, groundwater control, and the use of a temporary earth support system, making this foundation type inefficient in schedule and cost.

Driven H-piles are not recommended primarily for constructability concerns. First, the vibrations induced by the driving process might disturb the nearby structures and utilities. Second, overhead utilities will make installation of H-piles problematic. If H-piles are installed in a rock-socket, while feasible, it would be less cost-effective than drilled micropiles and will have low overhead clearance limitations during construction.

Two (2) drilled foundation alternatives were considered to support the new abutments; drilled micropiles and drilled spun pipe piles. Drilled micropiles socketed into bedrock can achieve the required axial and lateral geotechnical resistance to meet the anticipated load demand and can be drilled in place with relatively small equipment. Use of this foundation type would minimize impacts to adjacent utilities and structures while having minimal disruption to traffic.

Spun pipe piles are small diameter, tip bearing foundation elements consisting of a permanent casing bearing within bedrock and backfilled with grout. Spun pipe piles are designed to carry primarily axial compression loads and therefore do not include any central reinforcement. These piles are designed to provide tip resistance within bedrock and side resistance along the permanent casing is neglected. The permanent casing is usually socketed into intact bedrock. Spun pipe piles are typically installed in less time than traditional micropiles because a second drilling sequence is unnecessary due to the elimination of the internal bar. Spun pipe piles require less material while achieving the required geotechnical resistances.

As such, we recommend a new structure span over the existing bridge and be supported on drilled spun pipe piles. To maintain the stability of the abutments, we recommend the granite block and mortar abutment faces are reinforced with a new concrete fascia that are bolted to the existing granite abutment faces. The sections below provide recommendations for the preferred foundation option.

3.1.3 Drilled Spun Pipe Piles

Drilled spun pipe pile foundations may be installed through the existing stacked granite abutments and support the bridge foundation loads by means of end bearing in rock. The spun pipe pile geotechnical resistance may be computed using AASHTO-9 LRFD design guidance for drilled shaft end bearing resistance in jointed rock. The factored static geotechnical axial compression resistance should be computed using a resistance factor, φ_{stat} of 0.5, corresponding to micropile tip resistance on rock with no load test, from AASHTO-9 Table 10.5.5.2.5-1.

The factored geotechnical axial compressive resistance of spun pipe piles, R_R, may be calculated from the following formula from Article 10.8.3.5 of AASHTO-9, modified to neglect side resistance:

$$R_R = \varphi R_n = \varphi_{qp} R_p = \varphi_{qp} q_p A_p$$

where :

 $\begin{array}{l} {\sf R}_{\sf p} = {\sf nominal \ pile \ tip \ resistance \ (kips)} \\ {\sf q}_{\sf p} = {\sf unit \ tip \ resistance \ of \ pile \ (ksf)} \\ {\sf \phi}_{\sf qp} = {\sf resistance \ factor} \\ {\sf A}_{\sf p} = {\sf area \ of \ pile \ tip \ (ft^2)} \end{array}$

The nominal tip resistance was estimated using procedures presented in Article 10.8.3.5.4c of AASHTO-9 for jointed rock. The drilled shaft tip resistance on rock is governed by the frequency and condition of joints in the bedrock. When the rock is jointed the tip resistance is computed using the geological strength index (GSI) and Hoek-Brown failure criterion. Based on the condition of the rock cores collected at the Tannery Brook Bridge, the rock is considered jointed and the GSI was determined by an AECOM Geologist. The estimated GSI ranged from 30 to 82, so an average value of 50 was used in the rock strength evaluation.

The rock mass strength was estimated using the GSI in combination with the rock type (granite) and the uniaxial compressive strength determined from laboratory testing. The laboratory uniaxial compressive strength ranged from 14,719 psi to 19,098 psi. The lower uniaxial compressive strength value was used in the static axial compression analysis.

The factored tip resistance on jointed rock was computed for a range of spun pipe pile sizes. The side resistance of the spun pipe pile is neglected in the axial resistance because the socket installation utilizes a ring bit that is larger than the outside diameter of the casing and no grout is placed between the casing and wall of the socket. The tip resistance was computed for the shortest spun pipe pile anticipated at the site, which corresponds to the west abutment. Table 1 presents the estimated spun pipe pile axial compression resistance in jointed rock for various pile sizes.

Tip Diameter (inch)	GSI	Hoek Brown Parameter, m _i	Estimated UCS, Intact Rock (psi)	Nominal Tip Resistance (kips)	Factored Tip Resistance (kips)
8.625	50	30	14,719	643	321
9.625	50	30	14,719	801	400
10.75	50	30	14,719	1000	500

Table 1: Estimated Spun Pipe Pile Axial Resistance – Jointed Rock

Lateral foundation analyses were completed using the LPILE software by Ensoft, Inc., in conjunction with factored single pile axial compression load of 230 kips, provided by the Project Structural Engineer, and subsurface information obtained from the borings. The anticipated lateral loads on the proposed spun pipe

piles are minimal, so the lateral response evaluation was executed to verify that the pile stress stays within the elastic range under conventional lateral loads. The spun pipe pile was modeled as a grout-filled steel casing socketed 5 feet into rock and subjected to 0.5-inch pile top displacement and 230 kips factored axial load. The diameter of the pile was 9.625-inch with a wall thickness of 0.545-inch. Table 2 provides the lateral response of 9.625-inch spun pipe piles subject to the above-mentioned loads.

Pile Type	Pile-Head Deflection (in)	Depth to Bedrock (ft)	Max. Shear Force (kips)	Max. Moment (in-kips)	Total Stress in Pile (ksi)
9.625" x 0.545" wall	0.5	14.0	22.7	642.8	38.7
9.625" x 0.545" wall	1.0	14.0	53.2	1182.4	57.1

Table 2: 9.625-inch Spun Pipe Pile Lateral Response

The casing was assumed to be N80 grade with a yield strength of 80 ksi. The grout was assumed to have a yield strength of 4 ksi. The lateral response analysis demonstrates that the stress in the spun pipe pile casing will be less than 90% of the casing yield strength. Fixity in the piles occurs approximately 2 feet below the bedrock interface.

The bending moment capacity at the threaded casing joint was evaluated based on guidance provided in the Federal Highway Administration reference manual *NHI-05-039 Micropile Design and Construction*, dated December 2005. The maximum bending moment capacity at a joint location was computed and compared to the estimated maximum bending moment at the approximate depth of threaded joint developed in the lateral response analysis. For threaded joint located at 10 feet (typical) below the top of pile the joint bending moment capacity is exceeded when the pile head deflection is greater than 0.5-inch. If higher bending resistance is required, a larger casing section may be specified, or a smaller pipe may be placed inside the casing and extended below the location of the moment at the joint.

3.1.4 Drilled Micropiles

A micropile is a steel casing advanced into bedrock, then cleaned out, and a secondary drilling process takes place to install an internal bar into bedrock in a smaller diameter hole. The micropile transfers axial load through the casing plunge length to the grout-to-ground or grout-to-bedrock bond resistance.

Micropiles are a viable alternative to spun pipe piles at the Tannery Brook Bridge. Micropiles would derive their resistance from side friction in the bedrock, as the tip resistance is typically ignored due to the micropile's small diameter. A minimum rock socket length of 7 feet below the casing is recommended, which would result in pile tips approximately 20 to 25 feet bgs.

The micropile factored axial resistance is governed by either the pile structural resistance or the geotechnical resistance of the soil and bedrock supporting the pile.

The factored geotechnical axial compressive resistance of embedded micropiles, R_R, may be calculated from the following formula from Article 10.9.3.5 of AASHTO-9:

$$R_R = \varphi R_n = \varphi_{qp} R_p + \varphi_{qs} R_s = \varphi_{qs} q_s A_s + \varphi_{qp} q_p A_p$$

where:

$$\begin{split} R_p &= \text{nominal pile tip resistance (kips)} \\ R_s &= \text{nominal grout-to-ground/rock bond resistance (kips)} \\ q_s &= \text{unit grout-to-ground/rock bond resistance (ksf)} \\ q_p &= \text{unit tip resistance of pile (ksf)} \\ \phi &= \text{resistance factor} \\ A_p &= \text{area of micropile tip (ft}^2) \\ A_s &= \text{area of the grout-to-ground bond surface (ft}^2) \end{split}$$

Micropiles are frequently designed utilizing either side resistance or end bearing. In our experience, mobilizing side resistance requires axial deformations on the order of 0.25 inches or less to mobilize full side resistance. Design using side resistance also provides more flexibility in the field as rock sockets are easily lengthened if additional resistance is required. End bearing resistance requires greater deformations to mobilize resistance, often on the order of an inch of movement or more. End bearing micropiles also require careful construction to properly clean the micropile socket of soil, enabling good contact between the cement grout and the bedrock surface. Due to the differences in strain compatibility, we do not recommend combining side resistance and end bearing resistance in drilled micropiles.

According to AASHTO Table 10.5.5.2.5-1, the factor for side resistance in rock is 0.55, the factor for uplift resistance is 0.55, and the factor for axial end bearing resistance is 0.5. Each load factor may be increased to 0.7 if a verification load test is performed. An axial analysis was performed based on the information from the borings.

Our analyses of micropiles designed for side resistance uses a grout to ground bond resistance value of 200 psi within the rock socket. The factored single pile axial compression load is 230 kips. Assuming an approximate 8.5-inch diameter rock socket, 7 feet long, results in an axial factored compressive resistance of approximately 247 kips, and a factored uplift resistance of 247 kips. We recommend a verification test is performed to confirm the design capacity of the micropile. Using the increased resistance factor of 0.7 for load testing, the compression resistance is approximately 269 kips and the required socket length is 6 feet. Additional load test considerations are provided in Section 4 of this report. Rock socketed micropiles should incorporate a minimum plunge length of two feet into rock. Side resistance within the plunge length is neglected.

Our analyses of micropiles designed for end bearing assumes the bearing value is limited due to the strength of the cement grout, typically 5,000 psi, due to the quality of the bedrock encountered at the site. Assuming an approximate 8.5-inch diameter bearing surface results in an axial factored compressive resistance of approximately 355 kips. With an increased resistance factor of 0.7 for load testing, the compression resistance increases to 497 kips.

Piles supporting the bridge substructures will be required to support lateral loads and overturning moments resulting from design loads. Preliminary lateral foundation analyses were completed for a 9.625-inch diameter micropile using the LPILE software by Ensoft, Inc., in conjunction with preliminary axial compression loads and subsurface information obtained from the borings. The lateral response analysis indicates that micropiles can achieve a lateral load resistance of 9.0 and 15.5 kips, corresponding to displacement values of 0.5 inches and 1 inch at the pile head.

The bending moment capacity at the threaded casing joint was evaluated based on guidance provided in the Federal Highway Administration reference manual *NHI-05-039 Micropile Design and Construction*, dated December 2005. The maximum bending moment capacity at a joint location was computed and compared to the estimated maximum bending moment at the approximate depth of threaded joint developed in the lateral response analysis. For threaded joint located at 10 feet (typical) below the top of pile the joint bending moment capacity is exceeded when the pile head deflection is greater than 0.5-inch.

If higher bending resistance is required, a larger casing section may be specified, or a smaller pipe may be placed inside the casing and extended below the location of the moment at the joint.

Note that the cast-in-place wall positioned in front of the existing abutments is also proposed along with the micropile option. The CIP wall would reduce the lateral load demand on the proposed micropiles.

3.2 Lateral Earth Pressures

Abutments will be subject to soil lateral pressures from earth, line loads, traffic loads, seismic loads and other loads, and hydrostatic pressures. The design lateral pressures should be calculated by adding earth and water pressures, and surcharge pressures from structures near the proposed wall. Walls braced at the top such that lateral deflections are not permitted or restricted, should be designed for an at-rest earth pressure. Free standing walls not braced at the top may be designed for an active earth pressure, provided lateral movements at the top of the wall are acceptable throughout the life of each wall.

Lateral earth pressure design parameters presented in the following table assume horizontal grades in front of and behind the walls:

Material	Total Unit Weight (pcf)	Friction Angle (degrees)	K₀, At-Rest Earth Pressure Coefficient	Ka, Active Earth Pressure Coefficient	K _p , Passive Earth Pressure Coefficient
Granular Borrow or Granular Underwater Backfill	125	32	0.47	0.31	3.25

Table 3: Retaining Wall Design Parameters

3.3 Seismic Design Criteria

In accordance with AASHTO-9, Section 3.10, the seismic criteria are as follows:

•	Site Class:	D
٠	Peak Ground Acceleration (PGA):	0.09 g
•	Spectral Response Acceleration at short period (Ss):	0.19 g
•	Spectral Response Acceleration at 1 sec. (S1):	0.048 g
•	Site Coefficient Fpga (Table 3.10.3.2-1):	1.6
٠	Site Coefficient Fa (Table 3.10.3.2-2):	1.6
٠	Site Coefficient Fv (Table 3.10.3.2-3):	2.4
٠	Adjusted PGA, As	0.144
٠	Adjusted Spectral Response SDS:	0.304 g
•	Adjusted Spectral Response SD1:	0.115 g

Based on the boring information, the site soils are not susceptible to liquefaction. The site classifies as Seismic Zone 1 with an $S_{D1} \leq 0.15g$.

3.4 Seismic Pressure

In accordance with AASHTO LRFD Bridge Design Manual, Table 3.10.6-1, bridges located in areas where the horizontal acceleration coefficient is less than or equal to 0.15 will be assigned to Seismic Zone 1. According to Section 3.10.9.1, a seismic analysis is not required for single-span bridges and bridge located in Seismic Zone 1.

4.0 CONSTRUCTION CONSIDERATIONS

The purpose of this section is to discuss geotechnical related construction issues for the planned bridge replacement.

4.1 Foundation Installation

The spun pipe piles may be installed using similar equipment and procedures as those used for micropile construction. The Contractor may be required to use a drilling technique that can penetrate obstructions. Based on the results of the geotechnical exploration, the granular deposits encountered on site will become unstable in unsupported drill holes. Therefore, the use of steel casings during drilling to control ground losses will be required.

The Contractor should submit their proposed installation procedures, including construction procedures and sequencing, material specifications, equipment specifications, quality control documentation method and criteria, and safety monitoring procedures, for approval by the Geotechnical Engineer of record a minimum of 10 business days prior to the start of construction. The rock bearing surface should be verified by an experienced geologist prior to grouting and the entirety of the pile installation should be inspected by a qualified geotechnical engineer or geologist.

The grout level should be maintained at the top of the element and monitored to ensure that the grout flow is unobstructed and completely fills the drill hole. Piles should be grouted as soon as possible and on the same day after drilling is completed. Subsequent piles should not be drilled near elements that have been grouted until the grout has had sufficient time to harden.

At a minimum, the following information should be recorded during installation:

- Measurements of pile lengths (including top and tip elevations of constructed piles), casing lengths, and diameters.
- Measurement of grout volumes.
- Depth of bearing layer surface, and embedment into the bearing layer.

During pile construction, all pile installation records should be provided to the Geotechnical Engineer of record on a daily basis.

If micropiles are selected and installed as the preferred foundation type, center bar reinforcing steel should be inserted in the open drill hole prior to grouting. If the micropile holes are over drilled, the annulus between the design pile diameter and the drill hole diameter must be filled with grout placed during the installation of the micropile, in order to ensure that full contact is established between the grout and surrounding ground.

Should the final design utilize micropiles deriving capacity through side resistance, an uplift load could be performed. This method is advantageous as the pile test load is developed by jacking the pile against the ground.

4.2 Utility Replacement

We understand that Norway Water is considering replacement of the existing 10-inch diameter, cast iron water line that is buried beneath Tannery Brook with a larger 12-inch diameter water line. In our opinion, this water line could be replaced safely and with less disruption to the bridge and roadway if pipe bursting is used. This method opens the existing pipe and forces it outward using a bursting tool, which is pulled through the existing pipe while pulling the replacement pipe behind it. This method can pull in a variety of replacement pipe types including ductile iron pipe, concrete pipe, and HDPE pipe. Ideally, the water line would be replaced prior to installation of the foundations. If the replacement pipe is installed after foundation

installations are completed, we recommend that a clear space of at least 18 inches be maintained between the foundations and the water line.

The existing gravity sewer may also be replaced by Norway Wastewater. The existing 14-inch diameter asbestos sewer is concrete encased and passes through the stream channel. Due to the proximity of the sewer to the center line of the road and the relatively shallow depth of the sewer, an open cut would be required to replace the existing pipe. An open cut may require the partial removal of the existing granite block abutment, the diversion of Tannery Brook to allow construction in the dry, and installation of shoring along the roadway and possibly at the abutment to limit the excavation size and impact on adjacent utilities and structures. Due to the vibration associated with any shoring installation and partial removal of the abutment walls there is risk that the mortar between blocks left in place could crack and de-bond from the blocks, leaving the walls in a weakened state.

If the sewer is replaced in an open cut, we recommend the following:

- Pre-construction and post-construction survey of each bridge abutment and all structures within 250 feet of construction.
- Vibration monitoring during construction using seismographs.
- Installation of deformation monitoring points on the existing abutments and the adjacent structures.

One alternative for the replacement sewer could be to install the replacement sewer in an open cut at the downstream end of the bridge. This will reduce the disruption to the roadway and eliminate the need to demolish the existing abutment walls in the vicinity of the existing sewer main. To avoid issues with fish passage, an inverted siphon design would be required to allow passage of the sewer below Tannery Brook. We recommend this alternative be considered along with other site constraints to determine feasibility.

4.3 Subgrade Preparation

Loose or soft soils identified during the compaction of the subgrade should be excavated to a suitable bearing stratum as determined by the field representative of AECOM. Grades should be restored by backfilling with Granular Borrow, Gravel Borrow, or crushed stone.

To reduce the potential of increasing lateral pressures on either existing abutment walls to remain in place or new abutment walls, fill placed within 3 feet of walls should be compacted using a small plate compactor imparting a maximum dynamic effort of 4 kips. The fill within 3 feet of the abutment wall should be placed in maximum 8-inch loose lifts.

When crushed stone is required in the drawings or it is used for the convenience of the contractor, it should be wrapped in a geotextile fabric for separation except where introduction of the geotextile promotes sliding.

4.4 Subgrade Protection

The onsite soils are anticipated to be frost susceptible. If construction takes place during freezing weather, special measures such as heat blankets or other measures should be taken to prevent the subgrade from freezing. Excavations should be backfilled as soon as possible after construction. Soil used as backfill should be free of frozen material, as should be the ground on which it is placed. Fill placement should be halted during freezing weather.

4.5 Water Control

Temporary excavations that extend below EI. 367.5 will require dewatering so that the work is conducted in the dry. It is expected that dewatering may be accomplished by well points or with local filtered sump pumps installed in low points of the excavation. Groundwater levels should be maintained at a minimum of 2 feet below the bottom of excavations during construction. To reduce the potential for sinkholes developing over sump pump pits after the sump pumps are removed, the crushed stone placed in the sump pump pits should be wrapped in a geotextile fabric. Alternatively, the crushed stone should be entirely removed after the sump pump is no longer in use and the sump pump pit should be restored with suitable backfill.

Dewatering systems for bridge construction should be designed by the Contractor's professional engineer registered in the State of Maine and submitted to the geotechnical engineer of record for review at least two weeks prior to the start of construction. Discharge water must be managed in accordance with local, state, and federal government requirements.

4.6 Soil Excavations

The Contractor will be responsible for the excavation in accordance with the applicable federal and state laws and regulations, including OSHA.

The site soils should generally be considered Type "C" in accordance with OSHA and should have a maximum allowable slope of 1.5 horizontal:1 vertical for excavations less than 20 feet deep. In areas where the horizontal distance between the edge of any excavation and the bottom of existing structures is less than twice the vertical distance between the bottom of the excavation and the bottom of the existing structure, excavation support systems will be required to prevent the undermining of existing structures. Major utilities may also be protected with temporary sheeting as determined by the contractor on a case-by-case basis. Any excavation support system, if required, should be designed by the Contractor's professional engineer registered in the State of Maine.

4.7 Temporary Earth Support

Construction of a new bridge may require a temporary earth support system. The contractor should select the excavation support type to fit the construction sequence, including the support of any utilities crossing the bridge. The temporary earth support system should be designed by a professional engineer registered in the state of Maine and engaged by the Contractor. The design should be submitted to the Geotechnical Engineer of record for review at least two weeks prior to the start of construction.

4.8 **Protection of Existing Utilities**

Existing utilities may be encountered in the vicinity of the work. There are two existing utilities, a gravity sewer and a waterline, that must remain in place in their current locations at the bottom of Tannery Brook. Proper planning and protection measures should be implemented to protect the existing utilities and minimize impacts accordingly.

4.9 Construction Monitoring

It is recommended that AECOM be retained to provide geotechnical engineering observation and consultation services during construction to observe compliance with design and construction recommendations and specifications. The field representative would undertake the following responsibilities:

- Verify foundation installation procedures.
- Observe and document foundation installation.
- Monitor all excavation activities.
- Monitor all SOE operations, if required.
- Monitor all dewatering operations, if any.
- Provide recommendations regarding re-use of on-site soils.
- Observe and document the placement and compaction of fill materials.

Additionally, the field representative would be present to verify and provide timely responses to the project team in the event that the actual conditions encountered differ from those described herein.

5.0 REFERENCES

American Association of State Highway and Transportation Officials (AASHTO), "LRFD Bridge Design Specifications, Ninth Edition", AASHTO, Washington, DC, 2020.

ASTM D2488-17e1, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)." ASTM International, West Conshohocken, PA, 2017, <u>www.astm.org</u>.

ASTM D422-63, "Standard Test Method for Particle-Size Analysis of Soils." ASTM International, West Conshohocken, PA, 2007, <u>www.astm.org</u>.

ASTM D2974-20e1, Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils, ASTM International, West Conshohocken, PA, 2020, <u>www.astm.org</u>.

Cardali et al. 2018, "Innovative Socketed Pile for Accelerated Bridge Construction in Naples, Maine", prepared for the 69th Highway Geology Symposium, September 2018.

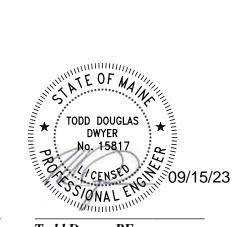
Department of Transportation, State of Maine, "Bridge Design Guide", 2003, Amended 2018.

Department of Transportation, State of Maine, "Standard Specifications", 2020.

Federal Highway Administration, "Publication No. FHWA NHI-05-039 Micropile Design and Construction", December 2005.

Jamie Hannum, "Highway Bridge Inspection Report, BR# 3610, Tannery Brook, Main St (Rtes 117 over Tannery (Bird) Brook, Town: Norway", July 25, 2019.

Massachusetts Department of Transportation, Highway Division, Bridge Section (2013) "LRFD Bridge Manual" 2013 Edition, January 2020 Revision.


Occupational Safety & Health Administration (OSHA). Electronic Code of Federal Regulations "Standards 29 CFR 1926 Subpart P", 2018.

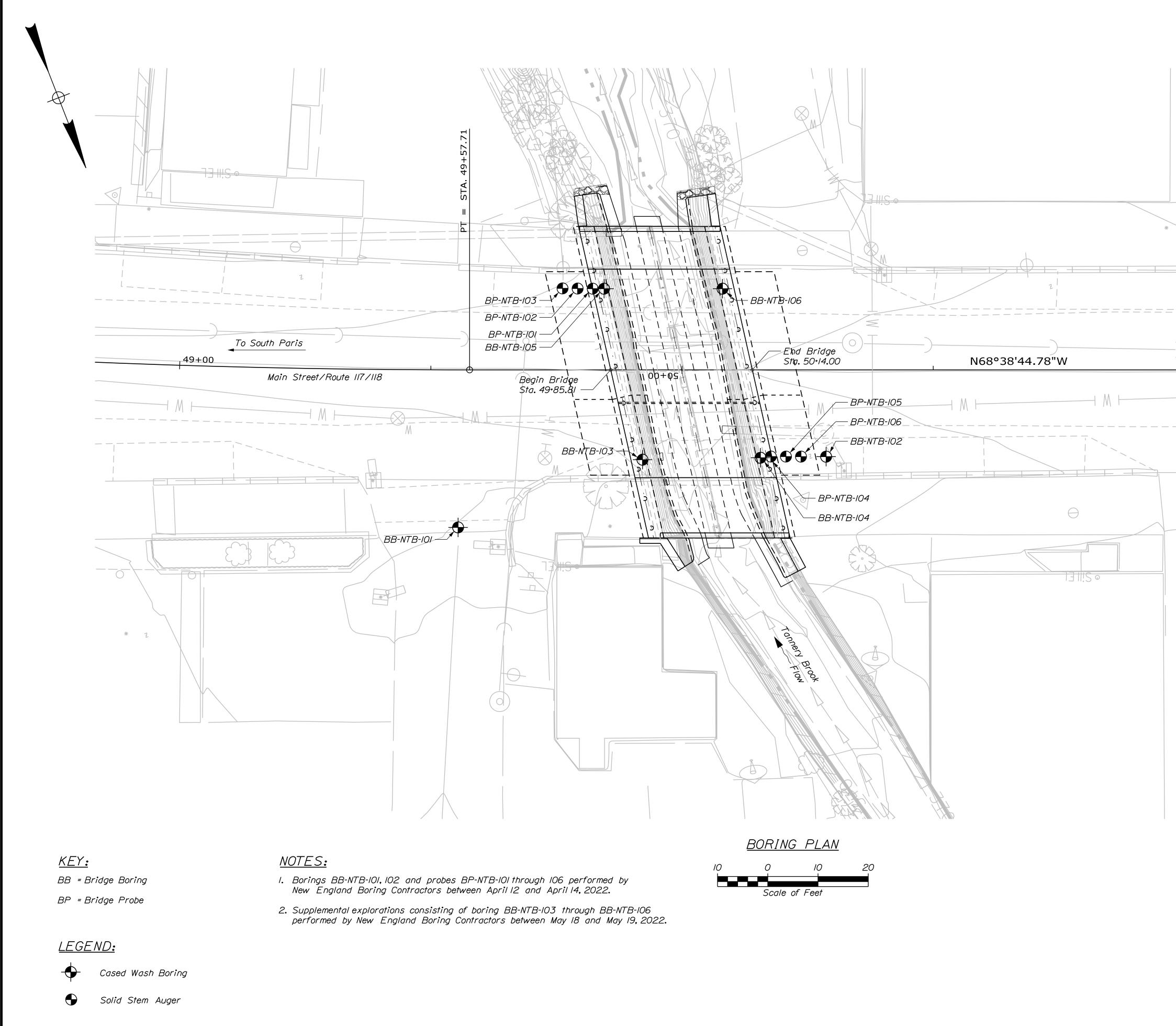
Osberg, Hussey II, and Boone, "Bedrock Geologic Map of Maine", USGS, 1985.

Thompson and Marvinney, "Surficial Geology Map of the Norway Quadrangle, Maine", USGS, 2008.

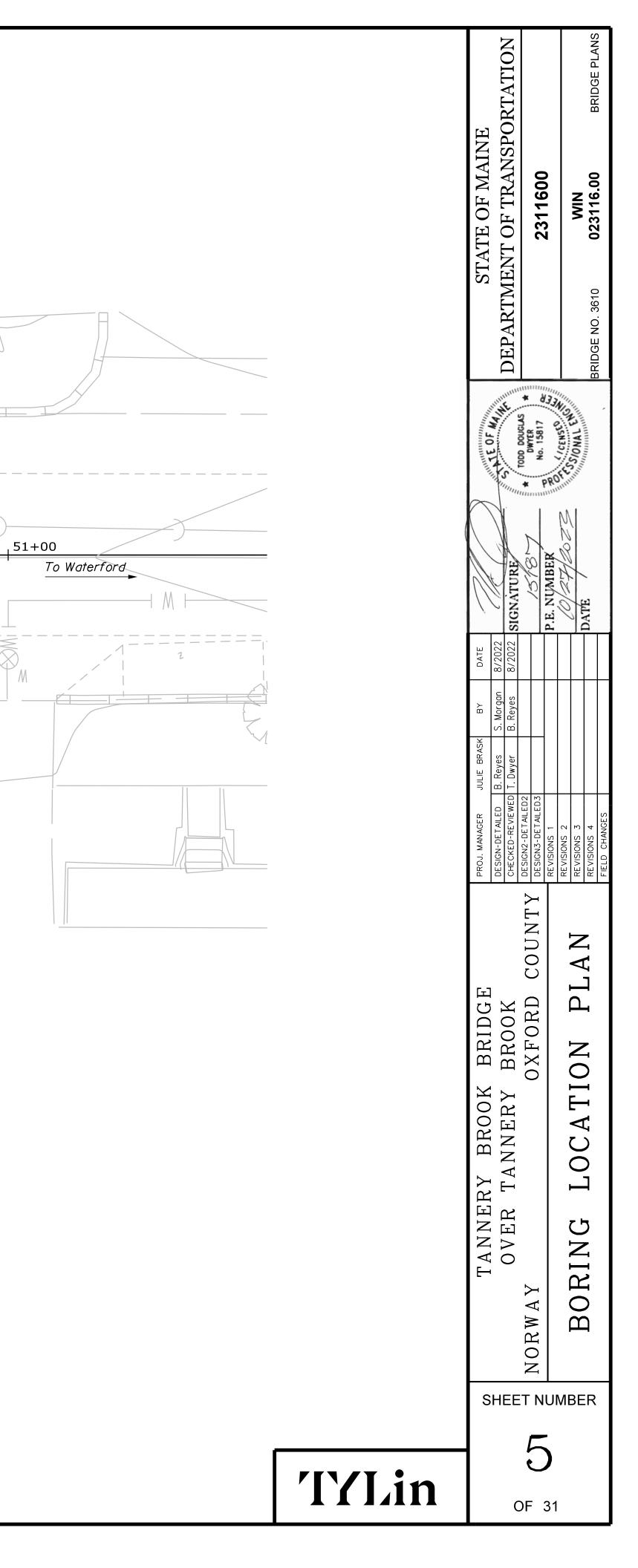
Prepared by:

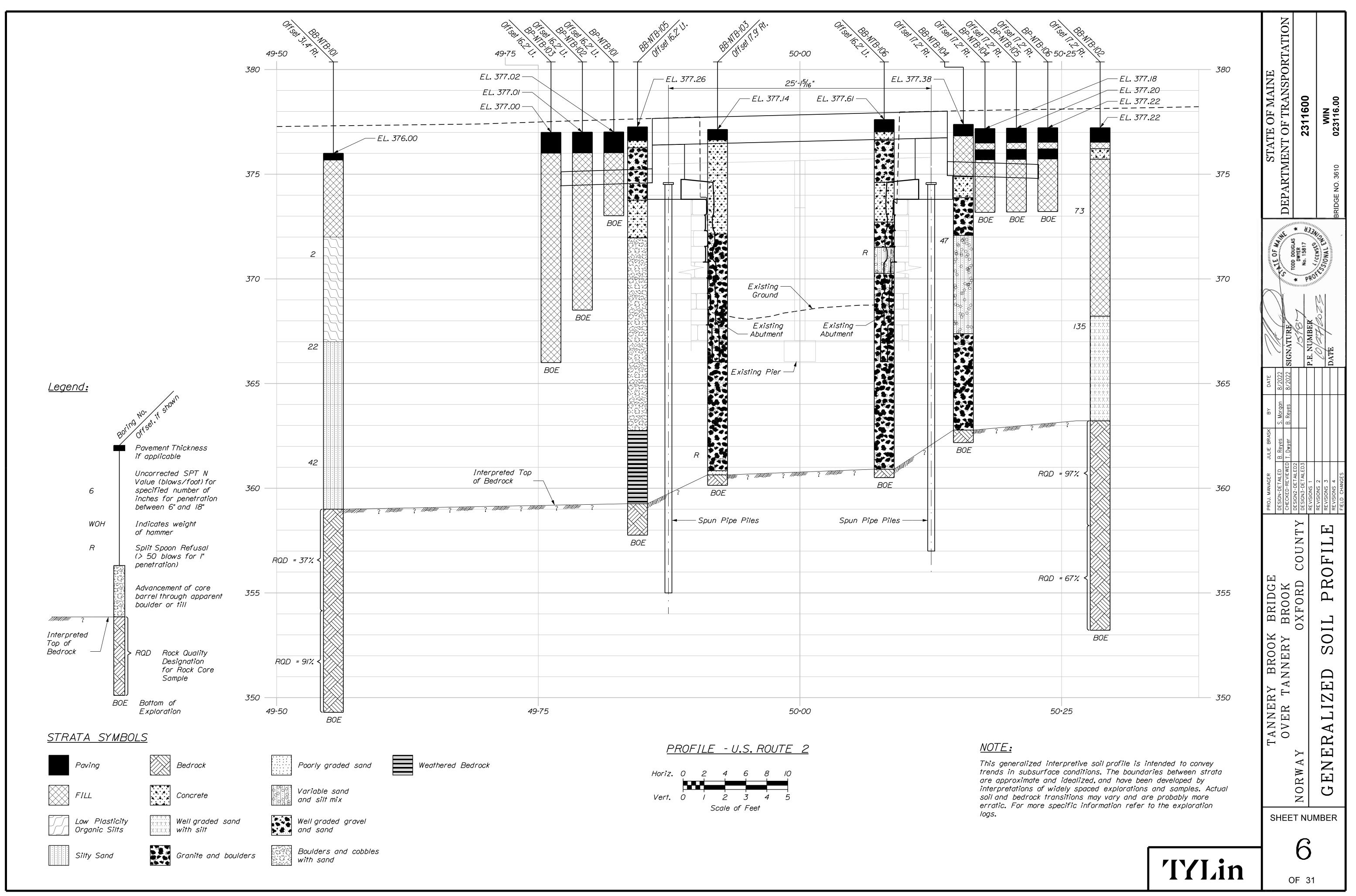
Bivian Reyes, PE Maine License No.: PE16787 Geotechnical Engineer AECOM

Todd Dwyer, PE Maine License No.: PE15817 Geotechnical Department Manager AECOM


Kate Scancarello

Katie Scancarello, PE Massachusetts License No.: 51814 Senior Geotechnical Engineer AECOM


Appendix A


Boring Locations Plan, Generalized Subsurface Profile,

Test Boring Logs and Probe Logs

Div

	and boring Depths	
Probe / Boring No.	Distance from Bridge (ft)	Probe / Boring Depth (ft)
BB-NTB-101	45	26.7
BP-NTB-101	3	4
BP-NTB-102	6	8.5
BP-NTB-103	9	11
BB-NTB-102	12	24
BP-NTB-104	3	4
BP-NTB-105	6	4
BP-NTB-106	9	4
BB-NTB-103	On Bridge Footing	17
BB-NTB-104	On Bridge Footing	15.2
BB-NTB-105	On Bridge Footing	19.5
BB-NTB-106	On Bridge Footing	17.1

 Table 2: Probe and Boring Depths and Locations

	UNIFIE	ED SOIL C	LASSIFIC	ATION SYSTEM	MODIFIED BURMISTER SYSTEM				
МА	JOR DIVISI		GROUP SYMBOLS	TYPICAL NAMES					
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS (little or no	GW	Well-graded gravels, gravel- sand mixtures, little or no fines.	Descriptive TermPortion of Total (%)trace0 - 10little11 - 20some21 - 35adjective (e.g. Sandy, Clayey)36 - 50				
	alf of coar er than N size)	fines)	<u> </u>	sand mixtures, little or no fines.	TERMS DESCRIBING				
(more than half of material is larger than No. 200 sieve size)	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES (Appreciable amount of fines)	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	DENSITY/CONSISTENCY Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value). Density of Standard Penetration Resistance Cohesionless Soils N-Value (blows per foot)				
han half of an No. 200	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Very loose 0 - 4 Loose 5 - 10 Medium Dense 11 - 30				
(more the larger the	f coarse nan No. 4	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Dense 31 - 50 Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200				
	(more than half of coarse fraction is smaller than No. 4 sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated.				
	(more fraction	FINES (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Approximate Undrained Consistency of SPT N-Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines				
			ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with elight pleoticity	Very Soft WOH, WOR, WOP, <2 0 - 250 Fist easily penetrates Soft 2 - 4 250 - 500 Thumb easily penetrates Medium Stiff 5 - 8 500 - 1000 Thumb penetrates with moderate effort				
FINE- GRAINED SOILS	SILTS AND CLAYS (liquid limit less than 50)		CL	slight plasticity. Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Stiff 9 - 15 1000 - 2000 Indented by thumb with great effort Very Stiff 16 - 30 2000 - 4000 Indented by thumbnail Hard >30 over 4000 Indented by thumbnail with difficulty				
l is size)			OL	Organic silts and organic Silty clays of low plasticity.	Rock Quality Designation (RQD): RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance *Minimum NQ rock core (1.88 in. OD of core)				
than half of material is than No. 200 sieve size)	SILTS AND CLAYS		мн Сн	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts. Inorganic clays of high plasticity, fat clays.	Rock Quality Based on RQD <u>Rock Quality</u> <u>RQD (%)</u> Very Poor ≤25 Poor 26 - 50 Fair 51 - 75				
(more t smaller ti	(liquid limit gr	reater than 50)	ОН	Organic clays of medium to high plasticity, organic silts.	Good 76 - 90 Excellent 91 - 100 Desired Rock Observations (in this order, if applicable): Color (Munsell color chart)				
		ORGANIC	Pt	Peat and other highly organic soils.	Texture (aphanitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.) Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.)				
			s order, if	applicable):	Geologic discontinuities/jointing:				
Gradation (Plasticity (n Structure (la Bonding (w Cementatio	ry, damp, m nsistency (fr e, medium, d, Silty Sand well-graded, on-plastic, s ayering, frac ell, moderatu n (weak, mo rigin (till, ma	oist, wet) om above rid coarse, etc.) d, Clay, etc., poorly-grad lightly plasti tures, crack ely, loosely, oderate, or s) including p led, uniforn c, moderati s, etc.) etc.,) trong)	portions - trace, little, etc.) n, etc.) ely plastic, highly plastic)	 -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - 22 inch, close - 2-12 inch, mod. close - 1-3 feet, wide -3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))) 				
Ke	y to Soil a	Geotechi	<i>nical</i> Sec Descrip	tions and Terms					

Maine Department of Transportation Soil/Rock Exploration Log					n	Project		ery Bro l) Brook		<u>NTB-101</u>	
			Soil/Rock Expl	-		Location: Norway, ME WIN: 2311					
Drille	er:		New England	Boring Contractors	Ele	evation	n (ft.)	37	5.00	Auger ID/OD: N/A	
Ope	rator:		Brad / Garret		Da	atum:		NA	VD88	Sampler: 2" SPT	
Log	ged By:		J. Loomis	-	Ri	g Type	:	Mo	bile Dri	11 B-53 Hammer Wt./Fall: 140 lbs./	30 in.
Date	Start/Fi	inish:	04/13/21		Dr	illing N	lethod:	Wa	sh and	Drive Core Barrel: 2.15" (N	X)
	ng Loca		N 502678.357	73 E 941696.8687		asing IC		ну	V 4" ID	4.5" OD Water Level*: 8.5 feet	
	-		Factor: 0.86	271107010007		ammer			natic 🖂	Hydraulic Rope & Cathead	
Definit D = Sp MD = U = Th MU = V = Fie	tions: plit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S	Sample sful Split Sp ube Sample ssful Thin Wa Shear Test,	poon Sample Atten e /all Tube Sample A , PP = Pocket Per /ane Shear Test Att	RC = Rolle Attempt WOH = Wo wonetrometer WOR/C = WO WO1P = W	Core San Jid Stem / Dilow Sten er Cone /eight of 1 Weight of	mple Auger m Auger 140lb. Ha of Rods o	immer r Casing	S _u S _{u(} qp N-u Hai N ₆ (= Peak/R lab) = La = Unconf ncorrecte nmer Effi) = SPT N	$\label{eq:constraint} \begin{tabular}{ c c c c c c c } \hline T_V = Torvane Shear Strength (psf) \\ \hline Vane Undrained Shear Strength (psf) \\ o Vane Undrained Shear Strength (psf) \\ d = Raw Field SPT N-value \\ leincy Factor = Rig Specific Annual Calibration Value \\ l-uncorrected Corrected for Hammer Efficiency \\ \hline M \\ \hline \end{tabular}$	nt, percent ĸ alysis
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Class
0	0)		0.5	800000				ше 375.		\sim 4 inches of Asphalt.	
							WD			0. Brown, dry, fine to coarse Silty SAND, some non-plastic fines, some cobbles (FILL).	
								372.	לללי	4. Dark grey to brown, moist, Organic SILT, non-plastic.	7
- 5 -	1D	24/16	5.00 - 7.00	1/1/1/1	2	3				Dark brown, moist, soft PEAT.	Organic Content = 95%. Gravel- 15.4%, Sand 83.2%, Fines 1.4%
• 10 -	2D	24/10	9.00 - 11.00	11/9/13/30	22	32		367.		9. Light grey, wet, dense, fine to coarse Silty SAND, some non- plastic fines.	}
- 15 -	3D	24/13	14.00 - 16.00	11/ 18/ 24/ 30	42	60				Similar to 2D, except very dense.	
- 20 -	R1	60/50	17.00 - 22.00	RQD = 37%			NX	359.0		17. Top of BEDROCK at El. 359.0. Light grey to white GRANITE, very hard fresh, (Islesboro Formation). Rock Quality= Poor. Rock Core Rate (min/ft): 2, 2, 1.75, 1.75, 1.75.	,
	R2	60/51	22.00 - 27.00	RQD = 91%						Light grey to white GRANITE, very hard, fresh(Islesboro Formation) Rock Quality= Excellent Rock Core Rate (min/ft): 1.75, 1.75, 1.75, 1.75, 1.25	
WD NX: Mol Stratifi	= Core B bile Drill fication line er level rea	I B-53 SN: es represent adings have	: D-23. ht approximate bour e been made at tim	ndaries between soil types; les and under conditions sta				ns may	occur du	Page 1 of 2	
than	those pre-	sent at the	time measurement	is were made.						Boring No.: BB-N	ГВ-101

Maine Department of Transportation Soil/Rock Exploration Log US CUSTOMARY UNITS					-		Brook		Boring No.: WIN:		<u>NTB-101</u> 116.00	
												110.00
Drille	er:		New England	Boring Contractors	Elevatio	n (ft.)	376	.00		Auger ID/OD:	N/A	
per	ator:		Brad / Garret		Datum:		NA	VD88		Sampler:	2" SPT	
.ogg	ed By:		J. Loomis		Rig Typ	e:	Mot	oile Dri	11 B-53	Hammer Wt./Fall:	140 lbs./ 3	0 in.
Date	Start/Fi	inish:	04/13/21		Drilling	Method:	Was	sh and I	Drive	Core Barrel:	2.15" (NX)
Borir	ng Loca	tion:	N 502678.35	73 E 941696.8687	Casing	D/OD:	HW	4" ID -	4.5" OD	Water Level*:	8.5 feet	
		iciency	Factor: 0.86		Hamme	r Type:	Autom		Hydraulic 🗆	Rope & Cathead □		
D = l = Th U = l = Fie	lit Spoon Jnsuccess in Wall Tu Jnsuccess eld Vane S	sful Split S	all Tube Sample A PP = Pocket Pe ane Shear Test A	mpt HSA = Hollor RC = Roller RC = Roller Attempt WOH = Wei enetrometer WOR/C = W ttempt WO1P = Wei	Stem Auger	Hammer or Casing	S _{u(la} q _p = N-un Ham N ₆₀	ab) = Lat Unconfi correcte mer Effic = SPT N	emolded Field Vane Undrained She b Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual -uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	psf) WC LL PL I Calibration Value PI = er Efficiency G =	 Pocket Tolvane Water Content Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te 	rsis
ы Ueptn (п.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	cription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
5							349.3		Bottom of Exploration a	at 26.7 fast below group		
							-					
-							-					
							-					
5 -							_					
WD: NX= Mob	= Core B bile Drill	B-53 SN	: D-23.		1	ho cro 1			1	Pogo 2 of 2		
tratific	cation line	s represer	n approximate bou	undaries between soil types; t	ansitions may	be gradual	ι.			Page 2 of 2		
			e been made at tin time measuremer	nes and under conditions stat nts were made.	ed. Groundwa	ter fluctuat	ions may c	occur du	e to conditions other	Boring No).: BB-N7	B-101

1	Main	e Dep	artment	of Transport	atior	n	Project	: Tann	ery Bro	ok Bridge #3610 over Tannery	Boring No.:	BB-N	NTB-102
		-	Soil/Rock Exp	loration Log			Locatio) Brook rway M				
			US CUSTOM	ARY UNITS			Localio		1 way, 14		WIN:	23	116.00
Drill			Now England	Paring Contractors	Ele	vatior	. /#+)	277	1.22		Auger ID/OD:	N/A	
<u> </u>	rator:		Brad / Garret	Boring Contractors	_	tum:	i (ii.)		.22 VD88				
⊢			J. Loomis						bile Dri	11 D 52	Sampler: 2" SPT B-53 Hammer Wt./Fall: 140 lbs / 30		
	ged By: Start/F	iniah.	04/14/21		_	Type			sh and I		Hammer Wt./Fall: Core Barrel:	2.15" (NX)	
	ng Loca	-	N 502691.922	.6 E 941623.5105	_	sing I	Aethod:			4.5" OD	Water Level*:	Not Encou	
	-			.0 E 941025.5105	_	-	Type:				Rope & Cathead	NOT EIICOU	mered
Defini		ICIEIICY I	actor: 0.86	R = Rock (Type.		natic ⊠ = Peak/Re	Hydraulic emolded Field Vane Undrained She	1	Torvane Shear	Strength (psf)
D = S MD = U = T MU = V = F	plit Spoon Unsucces hin Wall Tu Unsucces eld Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test At	SSA = Sol npt HSA = Hol RC = Rolle ttempt WOH = W Netrometer WOR/C =	id Stem A llow Stem er Cone eight of 14 Weight of	Auger Auger 40lb. Ha Rods o	r Casing	S _{u(l} q _p = N-u Han N ₆₀	lab) = Lab = Unconfii ncorrecte nmer Effic) = SPT N	vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual -uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor	osf) WC = LL = PL = Calibration Value PI = F r Efficiency G = C	Water Content Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te	, percent rsis ist
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) . Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desc	ription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class
0							WD	276 4		8 inches of ASPHALT.			
								3/0.4		∖Grey, dry, coarse SAND, po	orly-graded (FILL).		
								375.7	′ 🔆	6-inch CONCRETE SLAB.			
										Grey, dry, coarse SAND, po	orly-graded (FILL)		
- 5 -	1D	16/4	4.75 - 6.08	1/ 45/ 28/ 5	73	105				Grey, dry, very dense, fine f Sand, poorly-graded.	o coarse GRAVEL, few f	ine to coarse	
- 10 -	2D	24/11	9.00 - 11.00	32/ 23/ 112/ 50	135	194		368.2	2 Crey, dry, very dense, fine to coarse SAND, some fine Grave non-plastic fines, well- graded.			———9.0- e Gravel, few	
		60/60	14.00 - 19.00	RQD = 97%				363.2		Top of BEDROCK at El. 36	3.2.		
- 15 -										Light grey to white GRANI Formation). Rock Quality= Excellent. Rock Core Rate (min/ft): 3.	TE, very hard fresh, (Isles	boro	
- 20 -	R2	60/55	19.00 - 24.00	RQD = 67%						Light grey to white GRANI Formation). Rock Quality= Fair. Rock Core Rate (min/ft): 2.		sboro	
25 Rem	arks:							353.2		Bottom of Exploration a	t 24.0 feet below ground	24.0- surface.	
NX Mo	= Core B bile Drill	B-53 SN:	D-23.										
Strati	ication line	es represent	t approximate bou	ndaries between soil types;	transition	ns may b	pe gradual.				Page 1 of 1		
		-	been made at tim time measuremen	es and under conditions sta ts were made.	ated. Gro	oundwat	er fluctuatic	ons may	occur due	e to conditions other	Boring No.	: BB-NT	Ъ-102

Solutions Click interd Definit: New England Boding Connections Elevation (http://www.pluk) With:	1	Maine Department of Transportation							Project: Tannery Brook Bridge #3610 over Tannery Boring No.:					
USE CONTRACT/LINES WIN: C23116.00 Design: Now Explain Blong Control on Barry Design: Des								Locatio						
Operation: Sam Operati				US CUSTOM	ARY UNITS							WIN:	23	116.00
Operation: Sam Operati	Duill			New Frederic	Denine Contractor			(64.)	277	. 1.4		A	NT/A	
Logged by: It. Number: Program Adva 50 Stort Hammer WU-Fail 110 Ib./50 in. Bacing Location: N 100 /1170 Exating Monda Core Start/Finish 10 Ib./50 in. Bacing Location: N 100 /1170 Exating Monda Prove Core Barretic 1.10 Ib./50 in. Bacing Location: N 100 /1170 Exating Monda Prove Internet WI-Fail Water Low 7: Unable to reasons Bacing Location: Internet WI-Fail Internet WI-Fail Start Start Start Start Provide Water Low 7: Unable to reasons Bacing Location: Internet WI-Fail Internet WI-Fail Start Start Start Provide Water Start Start Provide Water Start Start Unable to reasons Internet WI-Fail Internet WI-Fail Provide Water Start Start Provide Water Start Start Provide Water Start Start Unable to reasons Internet WI-Fail Internet WI-Fail Provide Water Start Start Provide Water Start Start Provide Water Start Start Unable to reasons Internet WI-Fail Internet WI-Fail Provide Water Start Start Provide Water Start Start Provide Water Start Start Start Provet Water Start Start		-			Bornig Contractors	_		(n.)						
Date Study Trinity: 31322-30/022 Defining Meetind: Waih and Davis Care Barret: 2.12* (NX) Hammer Tiple: Association (Control (Contro) (Control (Control (Control (Contro) (Control (Cont	<u> </u>					-					C+			
Boring Location: N 8000 1123: B 41487 724 Casing DOD HW + (D 42:00 Water Low?: Unable to measure Hammer Efficiency Result: 0. Hammer Efficiency Result: The field from Resu			nich											
Nummer Efficiency Factor: 0.5 Hammer Type: Averance (::::::::::::::::::::::::::::::::::::	<u> </u>					_								
Definitions Defin		-			C9 E 941037.7734	_							Unable to	measure
De De theorem for the normality of the strength of the normality of the strength o			ciency r	-actor: 0.6	R = Rock C			Type.			2	1	Torvane Shear	Strength (psf)
Wr - Uncenter of large were the state of the large were descendent of the large state	MD = U = T MU =	Unsuccess hin Wall Tu Unsuccess	sful Split Sp be Sample sful Thin W	all Tube Sample A	npt HSA = Holl RC = Rolle Attempt WOH = We	low Sterr r Cone eight of 1	40lb. Ha		S _{u(l} q _p = N-u Han	ab) = Lat Unconfi ncorrecte nmer Effi	 Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual 	psf) WC = LL = PL = Calibration Value PI =	= Water Content Liquid Limit Plastic Limit Plasticity Index	, percent
under the subscription and Remarks Usual Description and Remarks Description and Remarks 0	MV =	Unsuccess	ful Field Va			eight of	One Per	son	N ₆₀	= (Hamr	ner Efficiency Factor/60%)*N-uncor	rected C = C	Consolidation Te	st
a a b			<u> </u>			σ				-				
A second se		Sample No.	Pen./Rec. (in	Sample Depti (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrecte	N ₆₀	Casing Blows	Elevation (ft.)	ohic		ription and Remarks		Results/ AASHTO and
1 - 1 -1 -1 -1 -1	0							WD	376.6		6 inches of Asphalt.		0.5-	
R1 5.00 - 7.30 N N Image: A construction of the second state s											Concrete and Boulders.			
R1 5.00 - 7.30 N N Image: A construction of the second state s														
R1 5.00 - 7.30 N N Image: A construction of the second state s														
R1 5.00 - 7.30 N N Image: A construction of the second state s									1					
R1 5.00 - 7.30 N N Image: A construction of the second state s														
R1 5.00 - 7.30 N N Image: A construction of the second state s	5								2721			5 (
Advanced from 7.3' to 1.3' with roller bit. Roller bit through through material from 7.3' to 9'. High drill chatter due to boulders and cobles. Boulders Cong time / ft (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 3/3 16.30 - 16.55 50/3' - 1 10 4/3 (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 3/3 16.30 - 16.55 50/3' - 1 10 4/3 (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 3/3 16.30 - 16.55 50/3' - 1 10 4/3 (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 3/3 16.30 - 16.55 50/3' - 1 10 4/3 (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 3/3 16.30 - 16.55 50/3' - 1 10 4/3 (min): 2.25, 2.5, 3, 2, 2.5, (1) 10 10 10 10 10 10 10 10 10 10 10 10 10	5	R1		5.00 - 7.30				NX	572.1				5.0	
strong material from 7.3 to 9. High drill chatter due to boulders and cobiles. Provide the strong material from 7.3 to 9. High drill chatter due to boulders and cobiles. Boulders: Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. 10 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 10 10 33 16.30 10 10 10 10 10 10 10											Coring time / ft (min): 2, 2.			
strong material from 7.3 to 9. High drill chatter due to boulders and cobiles. Provide the strong material from 7.3 to 9. High drill chatter due to boulders and cobiles. Boulders: Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. 10 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 33 16.30 10 10 10 10 33 16.30 10 10 10 10 10 10 10														
and cobbles. and cobbles. and cobbles. and cobbles. Boulders Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. 10 10 10 10 10 10 10 10 10								WD						
10 Image: Construction of the measure of the measure disc water was introduced at the time of drilling and it did not stabilize at the end of drilling. Boulders: 10 Image: Construction interspressed sports and Diverse intersection intersect										0000		9'. High drill chatter due	to boulders	
Image: spectral conditions and procession of the constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral										Bees a	and coopies.			
Image: spectral conditions and procession of the constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral constraint line. Image: spectral														
Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained subangular gravel (possible diff) wash). Differ indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action at 17.0 feet below ground surface. Page 1 of 1 ************************************	- 10 -									COD COD				
Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Coring time / ft (min): 2.25, 2.5, 3, 2, 2.5. Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained subangular gravel (possible diff) wash). Differ indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action indicated very dense material. Rate of drill 2'/ min. Top of BEDROCK at EL 300.6 ft. Roller bit action at 17.0 feet below ground surface. Page 1 of 1 ************************************														
15 10 3/3 16.30 - 16.55 50/3"		R2	60/28	11.30 - 16.30				NX		886		25.2.2.25		
1D 3/3 16.30 - 16.55 50/3" - WD 360.8 Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained sand, some fine t									1		Coring time / ft (min): 2.25,	2.5, 3, 2, 2.5.		
1D 3/3 16.30 - 16.55 50/3" - WD 360.8 Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained sand, some fine t										882				
1D 3/3 16.30 - 16.55 50/3" - WD 360.8 Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained sand, some fine t														
1D 3/3 16.30 - 16.55 50/3" - WD 360.8 Light brown to grey, very dense Poorly-graded SAND with Gravel, fine to coarse grained sand, some fine t									1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
1D 3/3 10.00 * 10.00 3/0.03	- 15 -													
1D 3/3 10.00 * 10.00 3/0.03														
a a a a a a a a a a b		1D	3/3	16.30 - 16.55	50/3"			WD			,,			
20														
20											subangular gravel (possible	-		
20	1									1	· · ·			
20	1								1	1			of drill 2"/	
Image: Constraint of the second se	20 -									1		, active material. Nate (
25 Image: Construction of the state o											Bottom of Exploration a	t 17.0 feet below ground		
Remarks: Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other											-	U		
Remarks: Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other														
Remarks: Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other														
Remarks: Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other									1					
Remarks: Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	1									1				
Water level unable to be measured since water was introduced at the time of drilling and it did not stabilize at the end of drilling. WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other														
WD= Wash and Drive. NX= Core Barrel. Acker Soil Scout SN: 0907. Stratification lines represent approximate boundaries between soil types; transitions may be gradual. * Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Rem	arks:												
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	WI NX	D= Wash a = Core B	and Drive arrel.		ice water was introduced	d at the	time of	drilling a	nd it di	d not sta	abilize at the end of drilling.			
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other	Strati	ication line	s represent	t approximate bou	ndaries between soil types:	transitio	ns may b	e gradual.				Page 1 of 1		
than those present at the time measurements were made.							-	-	ins may	occur du	e to conditions other			
			-				_ un ru wall			u		Boring No.	: BB-NT	Ъ-103

]	Maine Department of Transportation							ect:	Tanı	nery Bro	ok Bridge #3610 over Tannery	Boring No.:	Boring No.: BB-N	
		-	Soil/Rock Exp	loration Log			Loca	atio		d) Brook orway, N				
			US CUSTOM	ARY UNITS						, way, 1		WIN:	231	116.00
Drill	la		New England	Poring Contractors	Flow		(44)		27	7 20			NI/A	
	-			Boring Contractors	Datu		n (ft.)			7.38 AVD88		Auger ID/OD:	N/A 2" SPT	
<u> </u>	erator:		Sam Cooley R. Munschaue		Rig					ker Soil	C	Sampler: Hammer Wt./Fall:	2 SP1 140 lbs./30	
<u> </u>	ged By: e Start/F	inich	5/18/22	:1		••		du		ash and		Core Barrel:	2.15" (NX)	
	ing Loca	-		51 E 941635.7583	_	-	Metho D/OD:				4.5" OD	Water Level*:	Unable to 1	
	-		actor: 0.6	JI E 941035.7505	_	-	Type			natic 🗆		Rope & Cathead ⊠		licasure
Defin	itions:		actor: 0.0	R = Rock C	ore Sampl	e	турс	•	S	= Peak/R	emolded Field Vane Undrained She	ear Strength (psf) T _v =	Torvane Shear S	
MD = U = T MU =	hin Wall Tu Unsucces	sful Split Sp ube Sample sful Thin Wa	all Tube Sample A	RC = Roller WOH = We	ow Stem A r Cone ight of 140	luger Ib. Ha			Ν-ι Ha	uncorrecte mmer Effi	o Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual	PL = Calibration Value PI =	= Water Content, Liquid Limit Plastic Limit Plasticity Index	
V = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of Rods of MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One Pe											I-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor		Grain Size Analy Consolidation Te	
		1		Sample Information			-							Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation	Graphic Log	Visual Desc	ription and Remarks		Testing Results/ AASHTO and Unified Class.
0							w		376.		7 inches of Asphalt.		0.6	
								_	570.		Sand Sub-base.		0.6-	
	R1	34/34	2.50 - 5.33				N	x	374. 373.		Concrete. Coring time/ft (min): 2, 2, 2		2.5-	
											Granite and Gabbro Boulde	rs. No mortar observed.	3.5-	
- 5 -	1D	24/0	5.30 - 7.30	10/29/18/12	47	47	W		372.	1				
		2.00		10, 27, 10, 12		.,				000000	Very dense, Glacial Outwas SPT sampler seized up. Dri tip.		gular gravel at	
- 10 -									367.	4	Boulders.			
											Increased bit chatter indicat	ing harder material.		
											12.5 - 13 - No resistance on	tri-cone roller bit.		
							+	7	362.		14-14.6 - No resistance on t	ri-cone roller bit.		
- 15 -							╎		362.		Top of BEDROCK at El. 36 Rate of drill 1"/3 min.	52.8 ft.		
											Bottom of Exploration a	at 15.2 feet below ground		
								_						
- 20 -														
								_						
25	Ļ													
Wa WI NX	D= Wash K= Core B	and Drive		ace water was introduced	at the tir	ne of	f drillin	ng ai	nd it d	id not st	abilize at the end of drilling.			
Strati	fication line	es represent	t approximate bou	ndaries between soil types;	transitions	may b	be grad	lual.				Page 1 of 1		
		-	been made at tim time measuremen	tes and under conditions states were made.	ted. Grour	ndwat	er fluct	uatio	ns may	occur du	e to conditions other	Boring No.	: BB-NT	B-104

]	Maine Department of Transportation								Tanne	ery Bro	ok Bridge #3610 over Tannery	Boring No.:	Boring No.: BB-NT	
		-	Soil/Rock Exp	loration Log			(Bird) Brook Location: Norway, ME							
			US CUSTOM	ARY UNITS			2000			uy, 10		WIN:	231	16.00
Dril	lor:		New England	Boring Contractors		vation	(#4 \		377	26		Auger ID/OD:	N/A	
	-			Boring Contractors	_	tum:	(π.)			.20 VD88		Sampler:	2" SPT	
<u> </u>	erator:		Sam Cooley R. Munschaue							ker Soil	C+	Hammer Wt./Fall:	2 SP1 140 lbs./30	•
<u> </u>	ged By: e Start/F	inich	5/19/22 to 5/2		_	g Type Iling N		d.		sh and I		Core Barrel:	2.15" (NX)	
	ing Loca	-		32 E 941652.5041	_	sing IC		_			4.5" OD	Water Level*:	Unable to r	
	-		Factor: 0.6	12 12 941052.5041	-	mmer			Autom		Hydraulic 🗆	Rope & Cathead ⊠		licusure
Defin	itions:		actor: 0.0	R = Rock C	Core Sarr	nple	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		S., =	= Peak/R	emolded Field Vane Undrained Sh	ear Strength (psf) $T_{y} =$	Torvane Shear S	
MD = U = T MU = V = F	Thin Wall Tu Unsucces Field Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Pe ane Shear Test At	RC = Rolle wittempt WOH = We work work = WOR/C = W	low Stem er Cone eight of 1 Weight of	40lb. Ha f Rods o	r Casin	g	N-ur Ham N ₆₀	ncorrecte nmer Effi = SPT N	 vane Undrained Shear Strength (hed Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua -uncorrected Corrected for Hamminer Efficiency Factor/60%)*N-unco 	I Calibration Value PI = er Efficiency G = 0	= Water Content, Liquid Limit Plastic Limit Plasticity Index Grain Size Analy: Consolidation Te	sis
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N-uncorrected N60		Blows	Elevation (ft.)	Graphic Log	Visual Desc	cription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0							W	D			8 inches of Asphalt.		0.7	
I								_	376.6 376.3		∖Concrete.			
											Sand & Grave Sub-base.			
I										24				
I	R1	36/28	3.50 - 6.50				NZ	7	373.8	<u> 1997</u>			3.5-	
- 5 -											Concrete. Coring time/ft (min): 2, 2, 1			
5							W	6	372.0	19995	Boulders and Cobbles with	Sand		
										2000 2000 2000 2000 2000 2000 2000 200	Doulders and Coopies with	Suid		
										2000				
								_		2000				
										2000 0.000 0.000				
	R2		9.70 - 10.70				N	\langle		1000				
- 10 -								_		10.000	Decomposed wood encount Coring time/ft (min): 4.	tered.		
										2000		25 2 5 1 5 1		
	R3	60/12	11.00 - 16.00							2000 2000 2000	Coring time/ft (min):1.75, 2 11-11.5 - No resistance on t			
										0.28 0.28 0.28	Boulders. 11.5-13.5 - Increase in tri-c	one roller bitresistance.		
								_		8000 0.000				
								_	362.8	0.200 2000 2000 2000 2000 2000	13.5-14.5 - No resistance of	n tri-cone roller bit.		
- 15 -								/	502.0		Weathered Bedrock.		14.5	
I							w	\neg						
								_						
							$\left \right $	_	359.3		Top of BEDROCK at El. 3:	59.3 ft.		
							$\left \right\rangle$	/	357.8		Drill rate 3min/1".			
- 20 -								-			Bottom of Exploration a	at 19.5 feet below ground		
I								_						
										1				
										1				
I										1				
								-		1				
25										1				
Wa WI NX	D= Wash K= Core B	and Drive		ace water was introduced	d at the	time of	drillir	ng ai	nd it die	d not sta	bilize at the end of drilling.			
Strati	fication line	s represent	t approximate bou	ndaries between soil types;	transitior	ns may b	e grad	ual.		_		Page 1 of 1		
		-	been made at tim time measuremen	tes and under conditions states were made.	ated. Gro	oundwate	er flucti	uatio	ns may (occur du	e to conditions other	Boring No.	: BB-NT	B-105

1	Maine Department of Transportation						Project	t: Tann	ery Bro	ok Bridge #3610 over Tannery	Boring No.:	ring No.: BB-NTB-1	
			Soil/Rock Exp				Locatio		l) Brook rway, M				
			US CUSTOM	<u>ARY UNITS</u>							WIN:	23	116.00
Drill	or.		New England	Boring Contractors	Fie	vatior) (ft)	37	7.61		Auger ID/OD:	N/A	
<u> </u>	rator:		Sam Cooley	Doning Conductors	_	tum:	. ()		VD88		Sampler:	2" SPT	
<u> </u>	ged By:		R. Munschaue	er	-	g Type	:		ker Soil	Scout	Hammer Wt./Fall:	140 lbs./30) in.
<u> </u>	e Start/F		5/19/22		_		lethod:	Wa	ish & Di	ive	Core Barrel:	2.15" (NX)	
Bori	ing Loca	ation:	N 502653.272	22 E 941630.5488	Ca	sing II	D/OD:	HV	V 4" ID -	4.5" OD	measure		
Harr	nmer Eff	iciency F	actor: 0.6		Ha	mmer	Type:	Auton	natic 🗆	Hydraulic 🗆	Rope & Cathead ⊠		
Definitions: R = Rock Core Sample D = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample Attempt WOR/C = Weight of 140b. Ha V = Field Vane Shear Test, PP = Pocket Penetrometer WOR/C = Weight of 0 ne Pe MV = Unsuccessful Field Vane Shear Test Attempt Sample Information							or Casing	S _{u(} q _p : N-u Har N ₆₍	lab) = Lat = Unconfi ncorrecte nmer Effic) = SPT N	emolded Field Vane Undrained Sh o Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua I-uncorrected Corrected for Hammer mer Efficiency Factor/60%)*N-unco	psf) WC LL = PL = I Calibration Value PI = er Efficiency G =	= Torvane Shear 3 = Water Content = Liquid Limit = Plastic Limit = Plasticity Index Grain Size Analy Consolidation Te	, percent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		cription and Remarks		Testing Results/ AASHTO and Unified Class.
0							WD	377.0	0	7 inches of Asphalt.			
							376			Concrete.			
								-		Sand & Grave Sub-base.			
								374.0	6				
	R1	37/34	3.00 - 6.08				NX			Concrete. Coring time/ft (min): 2.5, 2	25 2 5		
										Coring time, it (iiiii): 2.3, 2	.23, 2.3.		
- 5 -								- 372.'		Boulders.			
							++	371.	5 (1991) 1997)	No mortar observed.		— — — 6.1-	
	1D	15/2	6.10 - 7.35	17/ 5/ 50/3"	R		WD			Dark brown, very dense Sil coarse grained gravel, little			
								370.3		<u> </u>	- <u> </u>	— — — 7.4-	
	R2	54/19	8.00 - 12.50				NX			Boulders. Roller bit down to 16.7'. Inc	creased drill chatter.		
								-		Boulder.			
- 10 -								_					
							WD						
			+					-	2000				
1.7													
- 15 -									2000 2000 2000				
							$ \vee$	360.9 360.3	3	Top of BEDROCK at El. 360.9 ft. Drill rate 2"/min.			
										Bottom of Exploration :	at 17.1 feet below groun	17.1-	
										L. L	0		
- 20 -													
			+										
25													
	harks:	1	<u> </u>				1	-		I			1
WI NX	D= Wash K= Core B	and Drive		ice water was introduced	d at the	time of	drilling :	and it di	id not sta	abilize at the end of drilling.			
Strati	fication line	es represent	approximate bou	undaries between soil types;	transitior	ns may l	pe gradual				Page 1 of 1		
		-	been made at tim time measuremen	nes and under conditions stants were made.	ated. Gro	oundwat	er fluctuati	ons may	occur du	e to conditions other	Boring No	.: BB-NT	B-106
											-		

	Maine Department of Transportation							: Tanr	ery Br	ook Bridge #3610 over Tannery	Boring No.:	BP-N	NTB-101
		-	Soil/Rock Exp				Locatio		l) Broo rway,]				
			US CUSTON	IARY UNITS						-	WIN:	23	116.00
Drill	lor:		New England	1 Boring Contractors	Eleva	tion	(f+)	37	7.02		Auger ID/OD:	N/A	
	erator:		Brad / Garret	-	Datur		(i)		VD88		Sampler:	N/A	
⊢÷-	ged By:		J. Loomis		Rig T			N/.			Hammer Wt./Fall:	N/A	
	e Start/F		04/13/21				Iethod:		cuum		Core Barrel:	N/A	
L	ing Loca		N 502643.86	33 E 941654.6142	Casin	-		N/.			Water Level*:	Not Encou	ntered
	-		Factor: N/A	55 E 711051.0142	-	-	Туре:		natic 🗆	Hydraulic 🗆	Rope & Cathead	THE ENCOU	intered
Defin	itions:				Core Sample	9	. , po.	Su	= Peak/	Remolded Field Vane Undrained She	ear Strength (psf) T _v =	Torvane Shear	
D = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140lb. Ha V = Field Vane Shear Test, PP = Pocket Penetrometer WOYP = Weight of Rods o MV = Unsuccessful Field Vane Shear Test Attempt WO1P = Weight of One Per							r Casing	q _р N-ц На N ₆	= Uncon Incorrec mmer Ef	b Vane Undrained Shear Strength (lined Compressive Strength (ksf) ed = Raw Field SPT N-value liciency Factor = Rig Specific Annua N-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	LL = PL = I Calibration Value PI = er Efficiency G =	= Water Content Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te	rsis
Oepth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	Graphic Log		cription and Remarks		Testing Results/ AASHTO and Unified Class.
0							v			12 inches of ASPHALT.			
								376.		Grey, dry, coarse SAND, tr	ace cobbles, poorly-grade	1.0- d (FILL).	
								-		Grey, dry, fine Silty SAND (FILL).	, little non plastic fines, ti	ace roots	
								373.	₀	Bottom of Exploration	at 4.0 feet below ground	4.0-	
- 5 -													
								-					
- 10 -								-					
- 15 -													
								-					
								-					
- 20 ·								1					
]					
25													
Toj V=	= Vacuun	1.	ountered at 4 fee										
				undaries between soil types; mes and under conditions sta		-	-		occur d	ue to conditions other	Page 1 of 1		
		-	time measureme		Groun	au		 111ay	scour u		Boring No	: BP-NT	B-101

]	Maine Department of Transportation						Proje				ok Bridge #3610 over Tannery	Boring No.:	BP-N	NTB-102
		-	Soil/Rock Exp	-			Locat			Brook way, M				
			US CUSTOM	IARY UNITS								WIN:	231	116.00
Drill	ler:		New England	1 Boring Contractors	Elev	atior	ו ר (ft.)		377.	.01		Auger ID/OD:	N/A	
L	erator:		Brad / Garret	-	Datu		. (,			VD88		Sampler:	N/A	
Log	ged By:		J. Loomis		Rig	Туре	:		N/A			Hammer Wt./Fall:	N/A	
Date	e Start/F	inish:	04/13/21		Drill	ing N	lethod	1:	Holl	low Ste	m Auger	Core Barrel:	N/A	
Bor	ing Loca	ation:	N 502642.74	45 E 941657.3977	Casi	ing II	D/OD:		N/A			Water Level*:	Not Encou	ntered
Han	nmer Eff	iciency	Factor: N/A		Ham	mer	Type:	А	utom	atic 🗆	Hydraulic 🗆	Rope & Cathead □		
Definitions: R = Rock Core Sample D = Split Spoon Sample SSA = Solid Stem Auger MD = Unsuccessful Split Spoon Sample HSA = Hollow Stem Auger U = Thin Wall Tube Sample RC = Roller Cone MU = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140lb. Hi V = Field Vane Shear Test, PP = Pocket Penetrometer WOH? C = Weight of Rods of WOH? MV = Unsuccessful Field Vane Shear Test Attempt WOH? C = Weight of One Pe							or Casing	· 	S _{u(la} q _p = N-un Ham N ₆₀	ab) = Lab Unconfin correcte mer Effic = SPT N	emolded Field Vane Undrained She Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual I-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncon	wc LL = PL = Calibration Value PI = r Efficiency G =	Torvane Shear S = Water Content, Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te	sis st Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows		Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class.
0							v				12 inches of ASPHALT.			
									376.0		Grey, dry, coarse SAND, tra Grey, dry, fine Silty SAND trace cobbles (FILL).			
- 5 -									368.5					
- 10 -									508.5		Bottom of Exploration	at 8.5 feet below ground		
- 15 -														
- 20 -														
25 Ren	narks:													
Re			oulder at 8.5 fee	ж.										
Strati	ification line	es represer	t approximate bou	undaries between soil types;	transitions	may l	be gradu	al.				Page 1 of 1		
		-	e been made at tir time measuremer	mes and under conditions sta nts were made.	ited. Grou	ndwat	er fluctua	ations	may c	occur due	e to conditions other	Boring No	.: BP-NT	B-102

]	Maine Department of Transportation						Project: Tannery Brook Bridge #3610 over Tann					k Bridge #3610 over Tannery	Boring No.:	BP-N	NTB-103
		-	Soil/Rock Exp	oloration Log			Loc	atio	(Bira n: No	l) Broo		7			
			US CUSTON	IARY UNITS								-	WIN:	23	116.00
Drill	or.		New England	Boring Contractors	Elevat	tion	(f+)	<u> </u>	27'	7.00			Auger ID/OD:	N/A	
L	rator:		Brad / Garret	5	Datum		(n.)	<u> </u>		VD88	2		Sampler:	N/A N/A	
⊢÷-	ged By:		J. Loomis	·	Rig Ty				N/		5		Hammer Wt./Fall:	N/A N/A	
<u> </u>	e Start/Fi		04/13/21		Drillin	-		od.			Sten	n Auger	Core Barrel:	N/A N/A	
L	ing Loca			57 E 941660.1813	Casin	-			N/.		Jien	il Auger	Water Level*:	Not Encou	ntered
	_		Factor: N/A	57 E 941000.1815	Hamm	-				natic [-	Hydraulic 🗆	Rope & Cathead	Not Elicou	Intered
Defin	itions:				ore Sample				S.,	= Peak	/Rer	molded Field Vane Undrained She	ar Strength (psf) T _v =	Torvane Shear	
	plit Spoon Unsuccess		poon Sample Atte		d Stem Auge ow Stem Aug				S _u (lab) = l = Unco	Lab ' nfine	Vane Undrained Shear Strength (p ed Compressive Strength (ksf)	osf) WC =	 Water Content Liquid Limit 	, percent
U = T	hin Wall Tu	ube Sample		RC = Rolle	r Cone ight of 140lb	- Ha	mme	r	N-u	incorre	cted	= Raw Field SPT N-value ency Factor = Rig Specific Annual		Plastic Limit Plasticity Index	
V = F	ield Vane S	Shear Test	, PP = Pocket P ane Shear Test A	enetrometer WOR/C = V	Veight of Ro eight of One	ds o	r Casi		N ₆ () = SP1	T N-ı	uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncorr	r Efficiency G =	Grain Size Analy Consolidation Te	
101 0 =		Siul Field V		Sample Information	eight of Offe	rei	5011		116) = (na				Jonsondation Te	
		(in.)			pe										Laboratory Testing
G	No.		Depth	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected				~	Log	20	Visual Desc	ription and Remarks		Results/
h (f	ple 1	Rec	ple [s (/6 DD	corr		p p	S	atior	, pic		visual Desc			AASHTO and
Depth (ft.)	Sample No.	Pen./Rec.	Sample (ft.)	blow shea strer strer r R(un -	N60	asi	Blows	Elevation (ft.)	Graphic I	25				Unified Class.
	05	<u> </u>	0.5	山のの (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 4	2	-0	ш	ШЭ		,	12 inches of ASPHALT.			
								Y	376.	0				1.0	
									570.	" 🗱	×	Grey, dry, coarse SAND, tra	ce cobbles, poorly-grade		
											×				
											\bigotimes				
											×				
											8	Grey, dry, fine Silty SAND,	little non- plastic fines, t	race roots,	
- 5 -											×	trace cobbles (FILL).			
											×				
											8				
											\bigotimes				
											8				
											×				
											×				
10							$ \rangle$	/			8				
							$ \rangle$	\mathbb{V}			×				
								¥	366.	0	Υ	Bottom of Exploration a	t 11.0 feet below ground	11.0- 1 surface.	
												-	U		
- 15 -															
- 20 -															
20															
25															
Ren	harks:														
V=	Vacuum.														
Ctrot	fication lin-	e represe	t approvimate k	undaries botwoon call time	transitiona	1917 -	0 0**	dual					Page 1 of 1		
				undaries between soil types;								4	Fayeron		
			e been made at tir time measureme	mes and under conditions sta nts were made.	tea. Ground	wate	er fluc	πuatio	ns may	occur	due	to conditions other	Boring No	: BP-NT	B-103
1															

]	Maine Department of Transportation					n	Project: Tannery Brook Bridge #3610 over Tanne					Boring No.:	BP-N	NTB-104
		-	Soil/Rock Ex				Lo	catio) Brook rway, N				
			US CUSTON	<u>IARY UNITS</u>						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		WIN:	23	116.00
Dril	ler:		New England	d Boring Contractors	Ele	evatior	n (ft.)	377	.18		Auger ID/OD:		
<u> </u>	erator:		Brad / Garret	<u> </u>		tum:	. (/		VD88		Sampler:	N/A	
<u> </u>	ged By:		J. Loomis		Rig	g Type	:		N/A	4		Hammer Wt./Fall:		
Date	e Start/F	inish:	04/12/21		Dr	illing N	Neth	nod:	Vac	cuum		Core Barrel:	N/A	
Bor	ing Loca	ation:	N 502687.36	561 E 941635.583	Ca	sing II	D/OI	D:	N/A	A		Water Level*:	Not Encou	ntered
Han	nmer Eff	ficiency	Factor: N/A		Ha	mmer	Тур	e:	Auton			Rope & Cathead □		
D = S MD = U = T MU = V = F	hin Wall T Unsucces	ssful Split S ube Sampl ssful Thin V Shear Test	poon Sample Atte e /all Tube Sample , PP = Pocket P / <u>ane Shear Test A</u>	Attempt WOH = W Penetrometer WOR/C =	id Stem / llow Sten er Cone eight of 1 Weight o	Auger n Auger 140lb. Ha of Rods o	or Cas		S _u (I q _p = N-u Han N ₆₀	ab) = Lal Unconfi ncorrecte nmer Effi = SPT N	emolded Field Vane Undrained She Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual l-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor	WC LL = PL = PL = Calibration Value PI = or Efficiency G =	Torvane Shear = Water Content Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te	t, percent vsis est
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Caeipo C	Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class
0								v	376.5		8 inches of ASPHALT.			-
									376.2 375.7		Grey, dry, coarse SAND, tra	ace cobbles,trace bricks, j	boorly-graded.	
									0,011		6 inches of CONCRETE.			
											Grey, dry, coarse SAND, tra	ace cobbles, trace brick, p		
									272.0				10	
									373.2		Bottom of Exploration	at 4.0 feet below ground	surface.	
- 5 -														
10														
- 10 -														
- 15 -														
- 20 ·														
25	L_													
Toj V=	Vacuum	1.	ent encountered	at 4 feet. uundaries between soil types;	transitio	ins may b	bear	adual				Page 1 of 1		
		-				-	-					Fage 1011		
		-	e been made at til time measureme	mes and under conditions sta ents were made.	ated. Gr	oundwat	er flu	ctuatio	ns may	occur du	e to conditions other	Boring No	: BP-NT	Ъ-104

]	Maine Department of Transportation			1	Project: Tannery Brook Bridge #3610 over Tanner				k Bridge #3610 over Tannery	Boring No.:	BP-N	NTB-105		
		-	Soil/Rock Ex	-			Locatio		d) Bi		E			
			US CUSTON	IARY UNITS						.,		WIN:	23	116.00
Dril	ler:		New England	1 Boring Contractors	Flev	vatior) (ft)	37	77.20)		Auger ID/OD:	N/A	
	erator:		Brad / Garret	5	Dat		. ()		AVD			Sampler:	N/A	
<u> </u>	ged By:		J. Loomis	-		Туре	:	N/				Hammer Wt./Fall:	N/A	
	e Start/F		04/12/21				lethod:		acuu	m		Core Barrel:	N/A	
	ing Loc		N 502688.99	18 E 941630.9543	_		D/OD:	N	/A			Water Level*:	Not Encou	ntered
Han	nmer Ef	ficiency	Factor: N/A		Han	nmer	Type:	Auto	matio	c□	Hydraulic 🗆	Rope & Cathead □		
D = S MD = U = T MU = V = F	Thin Wall T Unsucces Field Vane	ssful Split S Tube Sampl ssful Thin V Shear Test	poon Sample Atte e /all Tube Sample , PP = Pocket P /ane Shear Test A	empt HSA = Ho RC = Rolle Attempt WOH = W enetrometer WOR/C =	lid Stem An Ilow Stem er Cone feight of 14 Weight of	uger Auger Юlb. Ha Rods o	r Casing	S _L 9p N- Ha Ne	u(lab) = Un uncor amme 50 = S	= Lab aconfir rrected or Effic SPT N	molded Field Vane Undrained She Vane Undrained Shear Strength (ted Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual -uncorrected Corrected for Hamme ter Efficiency Factor/60%)*N-uncor	calibration Value PI = r Efficiency G =	Torvane Shear : = Water Content = Liquid Limit = Plastic Limit Plasticity Index Grain Size Analy Consolidation Te } } }	, percent rsis ist
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(IT.)	Graphic Log		ription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class
0							v	376	.5 🗙	XXX	8 inches of ASPHALT.			
								376 375	.2	~~~~	Grey, dry, coarse SAND, tra	ace cobbles,trace bricks,	poorly-graded.	
								-	Ř	***	6 inches of CONCRETE.			1
									Ŕ	***	Grey, dry, coarse SAND, tra	ace cobbles, trace brick,	poorly-graded.	
								272		***				
								- 373	.2		Bottom of Exploration a	at 4.0 feet below ground		
- 5 -														
								-						
								-						
- 10 -														
10														
								-						
- 15 -								-						
								-						
			_											
20														
- 20 ·														
								-						
			_					-						
25 Ren	narks:													l
Toj V=	p of rubb Vacuum	1.	nt encountered											
		-		undaries between soil types			-					Page 1 of 1		
		-	e been made at tii time measureme	mes and under conditions st nts were made.	ated. Grou	undwat	er fluctuati	ons ma	у оссі	ur due	to conditions other	Boring No	.: BP-NT	B-105

]	Maine Department of Transportation					n	Project			ook Bridge #3610 over Tannery	Boring No.:	BP-N	NTB-106
		-	Soil/Rock Exp				Locatio		l) Broo rway.				
			US CUSTON	<u>IARY UNITS</u>							WIN:	23	116.00
Dril	er:		New England	d Boring Contractors	Ele	vatior	1 (ft.)	37	7.22		Auger ID/OD:	N/A	
	rator:		Brad / Garret	0	_	tum:	. ()		VD88		Sampler:	N/A	
Log	ged By:		J. Loomis		Rig	ј Туре	:	N/.			Hammer Wt./Fall:	N/A	
_	e Start/F		04/12/21				lethod:	Va	cuum		Core Barrel:	N/A	
Bor	ing Loca	ation:	N 502690.09	08 E 941628.1629	Cas	sing II	D/OD:	N/.	A		Water Level*:	Not Encou	ntered
Han	nmer Eff	iciency	Factor: N/A		Hai	mmer	Type:	Autor	natic [Hydraulic 🗆	Rope & Cathead □		
D = S MD = U = T MU = V = F	hin Wall T Unsucces	sful Split S ube Sampl sful Thin V Shear Test	poon Sample Atte e /all Tube Sample , PP = Pocket P / <u>ane Shear Test A</u>	Attempt WOH = W work work = WOR/C = W	id Stem A low Stem er Cone eight of 1- Weight of	Auger Auger 40lb. Ha f Rods o	r Casing	S _{u(} qp N-u Hai N ₆ (lab) = l = Unco Incorree mmer E) = SP1	Remolded Field Vane Undrained Sh ab Vane Undrained Shear Strength (fined Compressive Strength (ksf) ed = Raw Field SPT N-value liciency Factor = Rig Specific Annua N-uncorrected Corrected for Hamme mer Efficiency Factor/60%)*N-unco	psf) WC LL = PL = I Calibration Value PI = er Efficiency G =	Torvane Shear 3 = Water Content Liquid Limit Plastic Limit Plasticity Index Grain Size Analy Consolidation Te	, percent
 Depth (ft.) 	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		ription and Remarks		Testing Results/ AASHTO and Unified Class
0							v	376.	5	8 inches of ASPHALT.			
								376. 375.	$\frac{5}{2}$	Grey, dry, coarse SAND, tr	ace cobbles,trace bricks,	boorly-graded.	
										6 inches of CONCRETE.			
								4		Grey, dry, coarse SAND, tr	ace cobbles, trace brick, p		
									. 🕅	8			
								373.		Bottom of Exploration	at 4.0 feet below ground	surface.	
- 5 -								1					
								4					
								1					
					-								
- 10 -								1					
								-					
								1					
								-					
- 15 -													
15													
								1					
								4					
								1					
								1					
- 20 -								4					
]					
								1					
								4					
								1					
25 Ren	harks:	1						1	_	1			
	p of rubbl Vacuum		ent encountered	at 4 feet.									
Strati	fication line	es represer	nt approximate bo	undaries between soil types;	transitior	ns may l	be gradual.				Page 1 of 1		
* Wat	ter level rea	adings hav	e been made at tir	mes and under conditions sta	ated. Gro	oundwat	er fluctuati	ons may	occur	ue to conditions other			
		-	time measureme					,			Boring No	: BP-NT	B-106

Appendix B

Rock Core Photograph

Photograph of Rock Cores from Borings BB-NTB-101 and BB-NTB-102

Notes: 1) The top of the core run is located on the Right side of the core box.

Photograph of Rock Cores from Borings BB-NTB-103 through BB-NTB-106

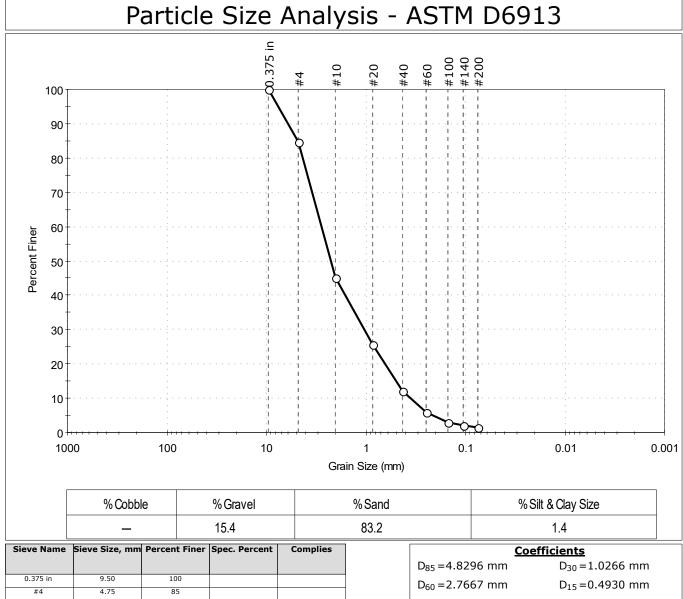
Notes: 1) The top of the core runs are located on the Left side of the core box.

Appendix C

Laboratory Testing Results

Client:	AECOM					
Project:	Tannery B	rook Bridge				
Location:	Norway, M	1E			Project No:	GTX-313512
Boring ID:	B-1		Sample Type	: jar	Tested By:	cam
Sample ID:	S-1		Test Date:	04/22/21	Checked By:	bfs
Depth :	5-7		Test Id:	616182		
Test Comm	ent:					
Visual Desc	cription:	Moist, very o	lark brown peat	t		

Sample Comment: ---

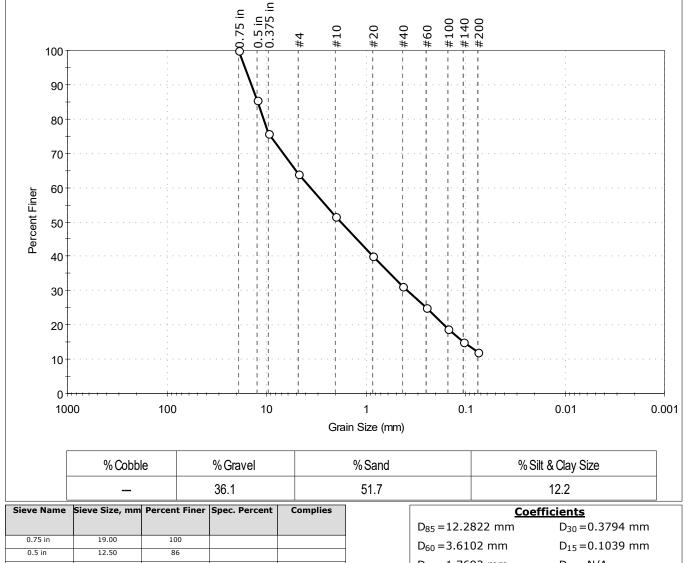

Moisture, Ash, and Organic Matter - ASTM D2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
B-1	S-1	5-7	Moist, very dark brown peat	237	5.4	94.6

Notes: Moisture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 105° C Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

	Client:	AECOM						
	Project:	Tannery	Brook Bridge					
	Location:	Norway,	ME			Project No:	GTX-313512	
	Boring ID:	B-1		Sample Type:	jar	Tested By:	ckg	
	Sample ID:	S-1		Test Date:	04/22/21	Checked By:	bfs	
	Depth :	5-7		Test Id:	616179			
	Test Comm	ent:						
	Visual Desc	ription:	Moist, very da	ark brown peat				
	Sample Cor	mment:						
<u> </u>		<u>C:</u>	A			CO12		
'a	rticle	SIZE	e Analys	SIS - AS		6913		

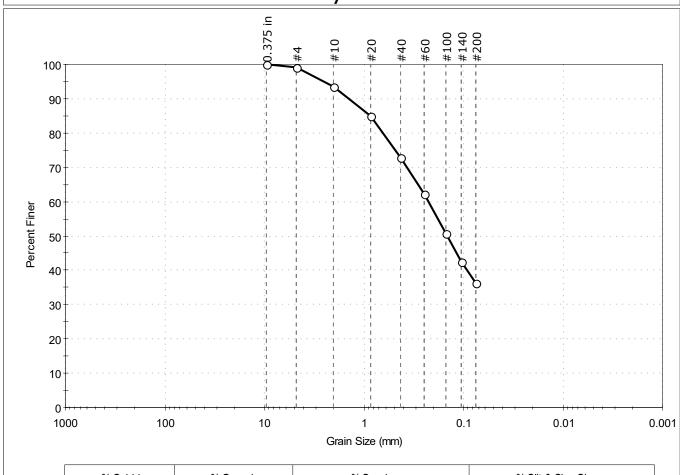
#4	4.75	85	
#10	2.00	45	
#20	0.85	26	
#40	0.42	12	
#60	0.25	6	
#100	0.15	3	
#140	0.11	2	
#200	0.075	1.4	


	Coe	efficients
$D_{85} = 4.8$	296 mm	D ₃₀ =1.0266 mm
$D_{60} = 2.7$	'667 mm	D ₁₅ =0.4930 mm
D ₅₀ = 2.2	216 mm	D ₁₀ =0.3547 mm
C _u =7.8	00	C _c =1.074
<u>ASTM</u>		sification d SAND with Gravel (SW)

AASHTO Stone Fragments, Gravel and Sand (A-1-a (1))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD

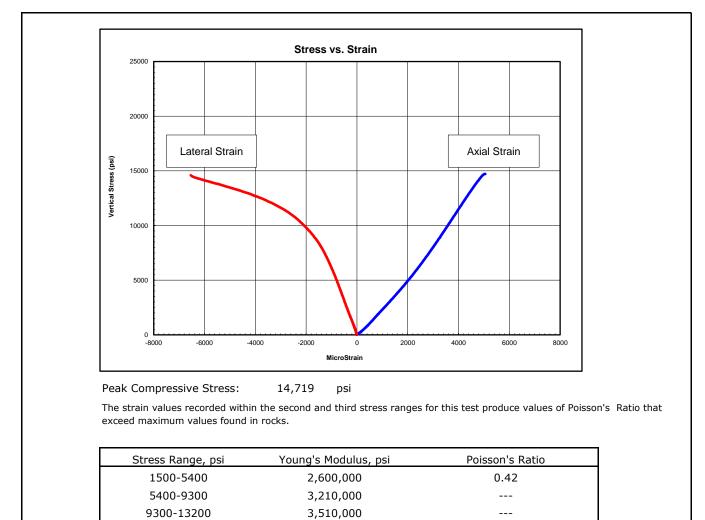
[Client:	AECOM								
	Project:	Tannery B	rook Bridge							
g	Location:	Norway, M	1E			Project No:	GTX-313512			
9	Boring ID:	B-2		Sample Type:	jar	Tested By:	ckg			
	Sample ID:	S-2		Test Date:	04/22/21	Checked By:	bfs			
	Depth :	9-11		Test Id:	616181					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, yellowis	sh brown silty s	and with gr	avel				
	Sample Cor	nment:								
Particle Size Analysis - ASTM D6913										
		c								



0.5 in	12.50	86	
0.375 in	9.50	76	
#4	4.75	64	
#10	2.00	52	
#20	0.85	40	
#40	0.42	31	
#60	0.25	25	
#100	0.15	19	
#140	0.11	15	
#200	0.075	12	

nd		% Silt 8	Clay Size	
7		1	2.2	
		Coeffic	<u>cients</u>	
	D ₈₅ =12.2	822 mm	D ₃₀ =0.3794 mm	
	$D_{60} = 3.61$	02 mm	D ₁₅ =0.1039 mm	
	D ₅₀ = 1.76	92 mm	$D_{10} = N/A$	
	$C_u = N/A$		C _c =N/A	
	<u>ASTM</u>	N/A Classifi	<u>cation</u>	
	<u>AASHTO</u>	Stone Fragmer (A-1-b (0))	nts, Gravel and Sand	d
	Sand/Grav	Sample/Test /el Particle Sha		
	Sand/Grav	vel Hardness : I	HARD	

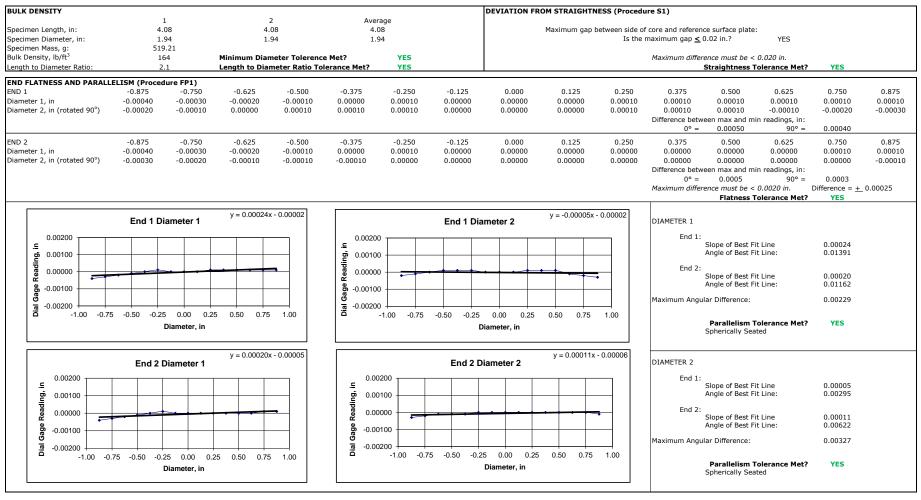
[Client:	AECOM								
	Project:	Tannery B	rook Bridge							
Iġ	Location:	Norway, M	E			Project No:	GTX-313512			
9	Boring ID:	B-1		Sample Type:	jar	Tested By:	ckg			
	Sample ID:	S-3		Test Date:	04/22/21	Checked By:	bfs			
	Depth :	14-16		Test Id:	616180					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, light br	ownish gray sil	ty sand					
	Sample Cor	nment:								
_										
Ра	rticle	Size	Analys	is - AS	IMD	6913				


		% Cobb	le		% Gravel		% Sand		C	% Silt & Clay Size	
					1.0		62.6			36.4	
	Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	Complies		D ₈₅ = 0.86		D ₃₀ =N/A	
	0.375 in #4	9.50	10				_	$D_{60} = 0.22$			
	#10	2.00	9	3			_	D ₅₀ = 0.14	56 mm	D ₁₀ = N/A	
	#20 #40	0.85	8	-			-	$C_u = N/A$		C _c =N/A	
	#60 #100	0.25	6				-	<u>ASTM</u>	N/A <u>CI</u>	assification	
	#140 #200	0.11	4				-		C'IL C II		
							-	AASHTO	Silty Soil	s (A-4 (0))	
I			1		1			Sand/Gra	Sample vel Particl	/Test Description e Shape : ANGULAR	

Sand/Gravel Hardness : HARD

Client:	AECOM
Project Name:	Tannery Brook Bridge
Project Location:	Norway, ME
GTX #:	317606
Test Date:	8/23/2023
Tested By:	te
Checked By:	jsc
Boring ID:	B-1
Sample ID:	C1
Depth, ft:	21.1-22.1
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D


Notes:

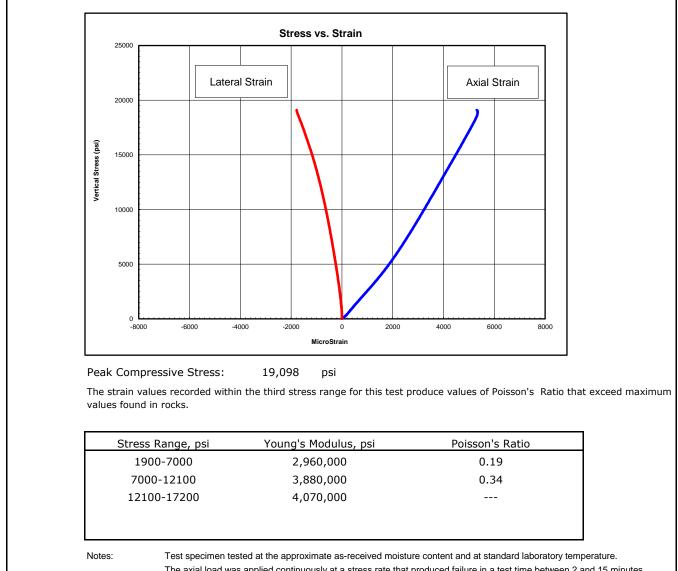
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed. Calculations assume samples are isotropic, which is not necessarily the case.

AECOM	Test Date:	8/21/2023
Tannery Brook Bridge	Tested By:	te
Norway, ME	Checked By:	smd
317606		
B-1		
C1		
21.1-22.1 ft		
See photographs		
	Tannery Brook Bridge Norway, ME 317606 B-1 C1 21.1-22.1 ft	Tannery Brook Bridge Tested By: Norway, ME Checked By: 317606 B-1 C1 21.1-22.1 ft

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00050	1.940	0.00026	0.015	YES			
Diameter 2, in (rotated 90°)	0.00040	1.940	0.00021	0.012	YES	Perpendicularity Tolerance Met? YES		
END 2								
Diameter 1, in	0.00050	1.940	0.00026	0.015	YES			
Diameter 2, in (rotated 90°)	0.00030	1.940	0.00015	0.009	YES			

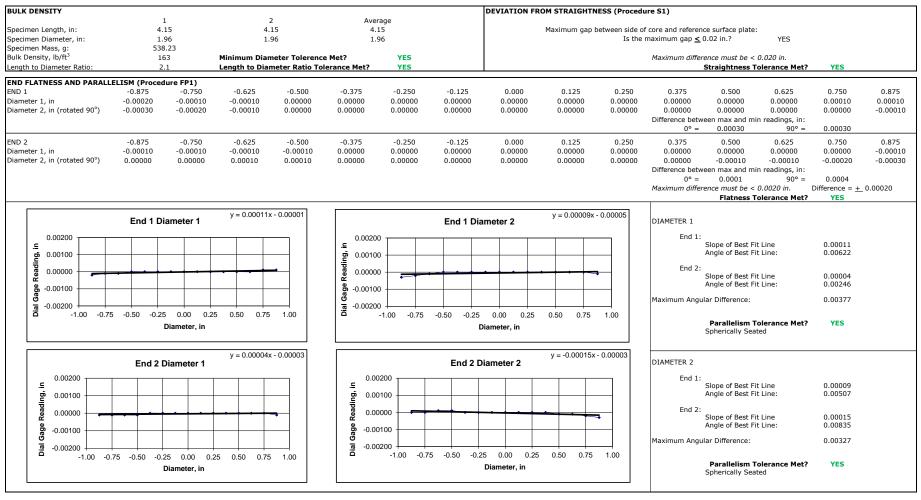
Client:	AECOM
Project Name:	Tannery Brook Bridge
Project Location:	Norway, ME
GTX #:	317606
Test Date:	8/23/2023
Tested By:	te
Checked By:	smd
Boring ID:	B-1
Sample ID:	C1
Depth, ft:	21.1-22.1



After break

Client:	AECOM
Project Name:	Tannery Brook Bridge
Project Location:	Norway, ME
GTX #:	317606
Test Date:	8/23/2023
Tested By:	te
Checked By:	jsc
Boring ID:	B-2
Sample ID:	C1
Depth, ft:	18-19
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D



The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed. Calculations assume samples are isotropic, which is not necessarily the case.

	Client:	AECOM	Test Date:	8/21/2023
	Project Name:	Tannery Brook Bridge	Tested By:	te
	Project Location:	Norway, ME	Checked By:	smd
9	GTX #:	317606		
	Boring ID:	B-2		
	Sample ID:	C1		
	Depth:	18-19 ft		
	Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedu	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$			
Diameter 1, in	0.00030	1.960	0.00015	0.009	YES				
Diameter 2, in (rotated 90°)	0.00030	1.960	0.00015	0.009	YES	Perpendicularity Tolerance Met? YES			
END 2									
Diameter 1, in	0.00010	1.960	0.00005	0.003	YES				
Diameter 2, in (rotated 90°)	0.00040	1.960	0.00020	0.012	YES				

Client:	AECOM
Project Name:	Tannery Brook Bridge
Project Location:	Norway, ME
GTX #:	317606
Test Date:	8/23/2023
Tested By:	te
Checked By:	smd
Boring ID:	B-2
Sample ID:	C1
Depth, ft:	18-19

After cutting and grinding

After break

Appendix D

Exploration Photographs

Photograph of non-sampling probes P2A (BP-NTB-104), P2B (BP-NTB-105), P2C (BP-NTB-106), and boring BB-NTB-102

Photograph of non-sampling probes P1A-ALT (BP-NTB-101), P1B-ALT (BP-NTB-102), and P1C-ALT (BP-NTB-103)

Photograph of boring BB-NTB-101

Photograph of boring BB-NTB-101

Photograph of boring BB-NTB-103

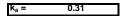
Photograph of boring BB-NTB-104

Photograph of boring BB-NTB-105

Photograph of boring BB-NTB-106

Appendix E

Calculations


AECOM

Lateral Earth Pressure Coefficients

Surcharge	<u>Soil Prop.</u>	Bearing Soil Properties			
Φ' =	32 degs	Φ' =	32.0 degs		
	125 pcf		125 pcf		
c _u =	0 psf	c _u =	0 psf		

Active Earth Pressure Coefficient

 $k_a = tan^2 (45 - \phi/2)$

Passive Earth Pressure Coefficient

 $k_p = 1 / k_a$

κ_p = 3.25

At-Rest Earth Pressure Coefficient

 $k_o = 1$ -sin ϕ

к_о = 0.47

Seismic Site Classification Reference: AASHTO LRFD Bridge Design Specifications 9th Edition, Section 3.10

Data from Boring No. BB-NTB-101

	Depth Rar	nge				
Layer No.	Start (ft)	End (ft)	Thickness, d _i (ft)	N _i (blows/ft)	di/Ni	Stratum
1	0	4	4	5	0.80	Fill
2	4	9	5	2	2.50	Organics
3	9	16	7	32	0.22	Silty Sand
4	16	100	84	50	1.68	Rock
Σ =			100		5.20	

Г N bar= 19.24 Site Class: D

Data from Boring No. BB-NTB-102

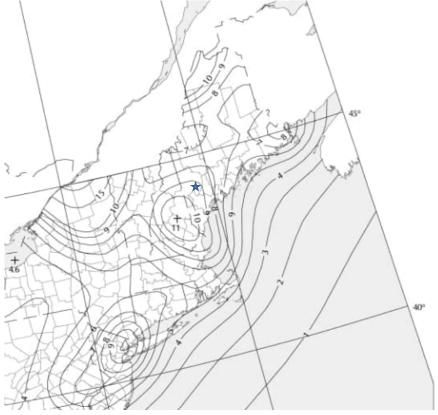
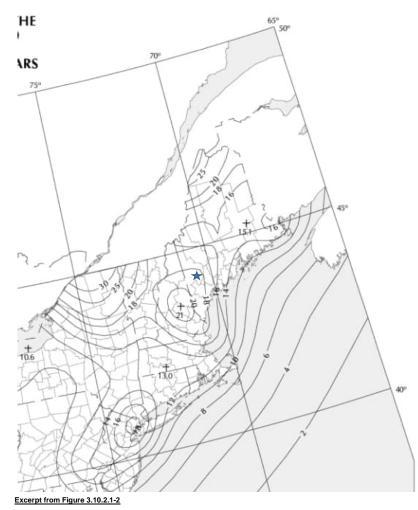

	Depth Range					
Layer No.	Start (ft)	End (ft)	Thickness, d _i (ft)	N _i (blows/ft)	di/Ni	Stratum
1	0	9	9	73	0.12	Fill
2	9	14	5	135	0.04	Sand
3	14	100	86	50	1.72	Rock
Σ =			100		1.88	
N bar=	53.18		Site Class:	С		

Table 3.10.3.1-1—Site Class Definitions

Site Class	Soil Type and Profile				
A	Hard rock with measured shear wave velocity, $\overline{v}_s > 5,000$ ft/s				
В	Rock with 2,500 ft/sec $< \overline{v}_s < 5,000$ ft/s				
С	Very dense soil and soil rock with 1,200 ft/sec $< \overline{v}_s < 2,500$ ft/s, or with either $\overline{N} > 50$ blows/ft, or $\overline{s}_u > 2.0$ ksf				
D	Stiff soil with 600 ft/s < \overline{v}_s < 1,200 ft/s, or with either 15 < \overline{N} < 50 blows/ft, or 1.0 < \overline{s}_u < 2.0 ksf				
Е	Soil profile with $\bar{v}_s < 600$ ft/s or with either $\bar{N} < 15$ blows/ft or $\bar{s}_u < 1.0$ ksf, or any profile with more than 10.0 ft of soft clay defined as soil with $PI > 20$, $w > 40$ percent and $\bar{s}_u < 0.5$ ksf				
F	 Soils requiring site-specific evaluations, such as: Peats or highly organic clays (H > 10.0 ft of peat or highly organic clay where H = thickness of soil) Very high plasticity clays (H > 25.0 ft with PI > 75) Very thick soft/medium stiff clays (H > 120 ft) 				


AECOM

Peak Ground Acceleration, PGA, determined from Figure 3.10.2.1-1 for 7% Exceedance in 75 Years

Excerpt from Figure 3.10.2.1-1

Spectral Response Acceleration at short period, Ss, determined from Figure 3.10.2.1-2 for 7% Exceedance in 75 Years

AECOM

Spectral Response Acceleration at 1 second, S1, determined from Figure 3.10.2.1-3 for 7% Exceedance in 75 Years

Excerpt from Figure 3.10.2.1-3

Site modification coefficients are selected based on PGA and Site Class D

Table 3.10.3.2-1—Values of Site Factor, F_{pga} , at Zero-Period on Acceleration Spectrum

	Peak Ground Acceleration Coefficient (PGA) ¹				
Site Class	<i>PGA</i> < 0.10	<i>PGA</i> = 0.20	PGA = 0.30	PGA = 0.40	<i>PGA</i> > 0.50
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F ²	*	*	*	*	*

Notes:

¹Use straight-line interpolation for intermediate values of PGA.

 $^2 \rm Site-specific geotechnical investigation and dynamic site response analysis should be performed for all sites in Site Class F.$

Table 3.10.3.2-3—Values of Site Factor, F_v , for Long-Period Range of Acceleration Spectrum

	Spectral Acceleration Coefficient at Period 1.0 sec $(S_1)^1$				
Site Class	$S_1 < 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$S_1 > 0.5$
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
Е	3.5	3.2	2.8	2.4	2.4
F ²	*	*	*	*	*

Notes:

¹Use straight-line interpolation for intermediate values of S₁.

²Site-specific geotechnical investigation and dynamic site response analysis should be performed for all sites in Site Class F.

	Spectral Acceleration Coefficient at Period 0.2 sec (Ss) ¹				
Site Class	<i>Ss</i> < 0.25	$S_S = 0.50$	$S_S = 0.75$	$S_S = 1.00$	$S_S > 1.25$
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F ²	*	*	*	*	*

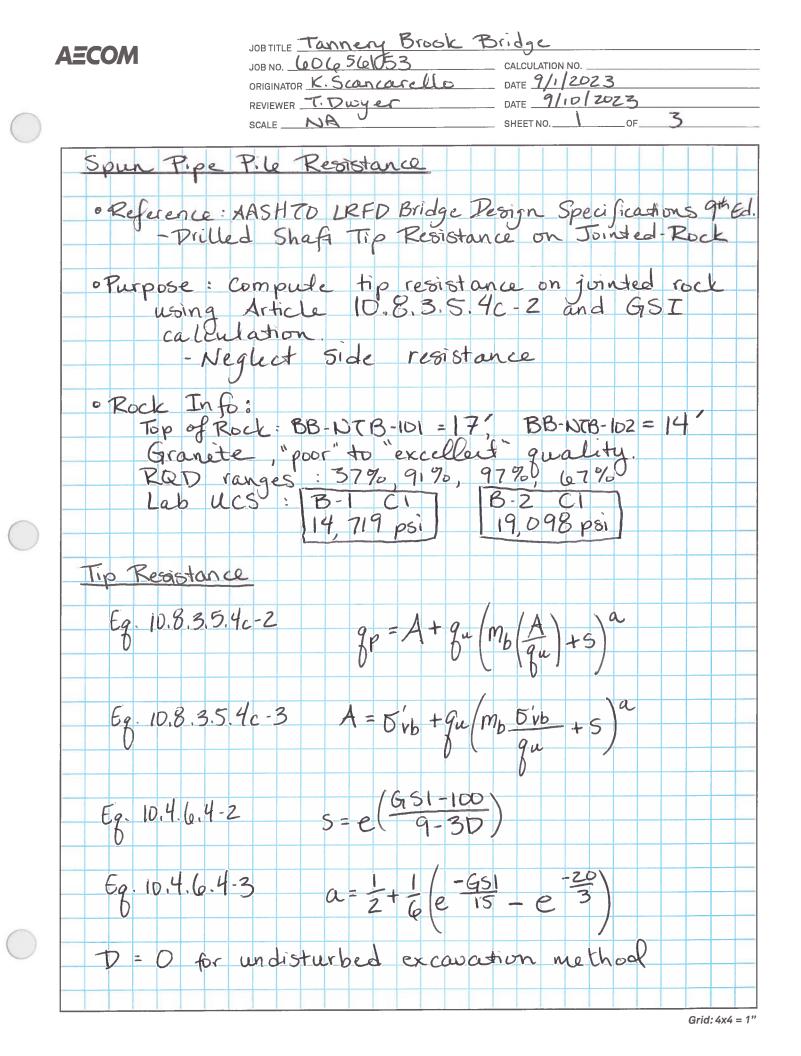
Table 3.10.3.2-2—Values of Site Factor, F_a , for Short-Period Range of Acceleration Spectrum

Notes:

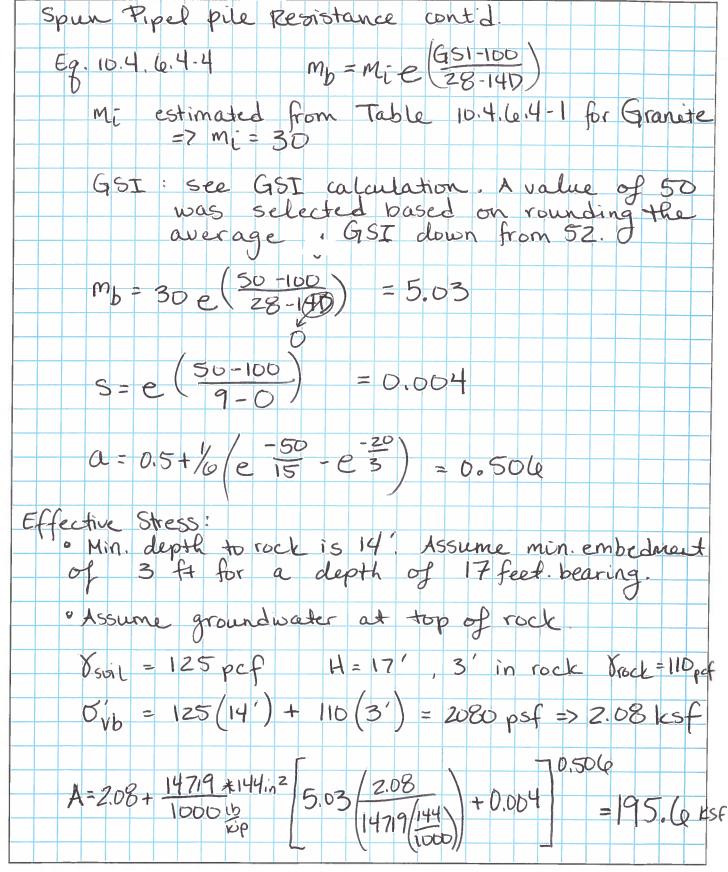
4

¹Use straight-line interpolation for intermediate values of S_s .

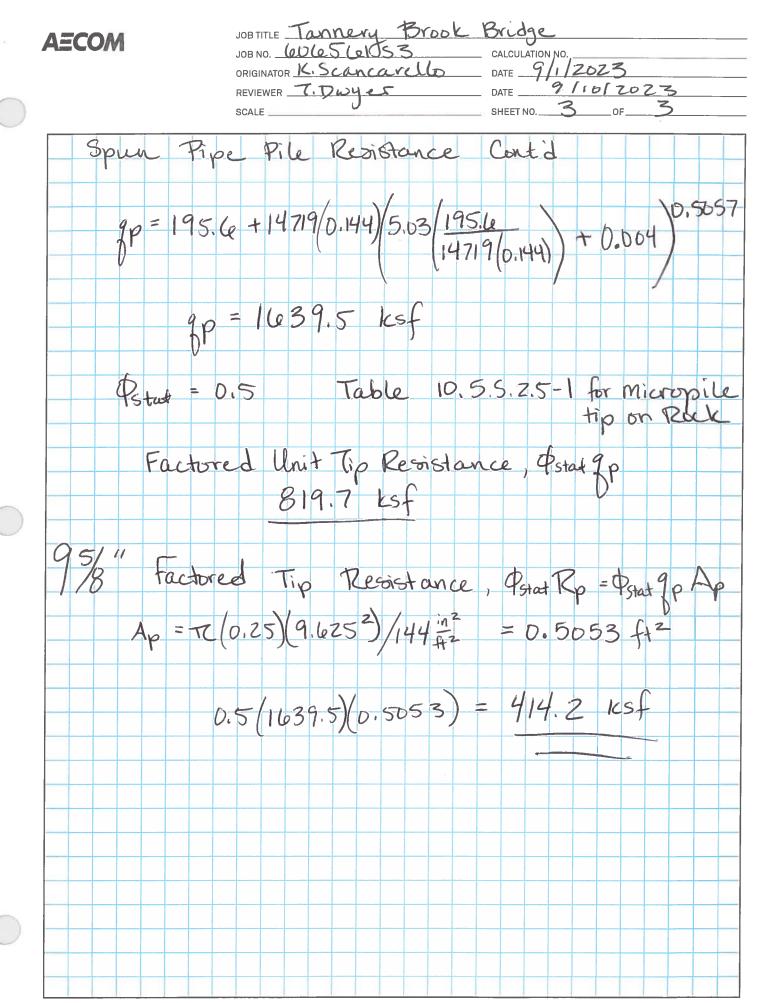
²Site-specific geotechnical investigation and dynamic site response analysis should be performed for all sites in Site Class F.


$$A_S = F_{pga} PGA$$
 (3.10.4.2-2)

$$S_{DS} = F_a S_S \tag{3.10.4.2-3}$$


$$S_{D1} = F_{\nu} S_1 \tag{3.10.4.2-6}$$

_			
	PGA (g)	Ss (g)	S ₁ (g)
	0.09	0.19	0.048
	As (g)	S _{DS} (g)	S _{D1} (g)
	0.144	0.304	0.115


Spun Pipe Pile Calculations

JOBTITLE Tannery Brook Bridge JOBNO. 60656103 CALCULATION JOB NO. <u>60656153</u> ORIGINATOR <u>K. Scancarllo</u> REVIEWER <u>T. Dwyer</u> DATE <u>9/1/2023</u> DATE <u>9/10/2023</u> SHEET NO. 2 OF 3 SCALE

Grid: 4x4 = 1"

The value of the constant m_i should be estimated from Table 10.4.6.4-1, based on lithology. Relationships between GSI and the parameters m_b , s, and a, according to Hoek et al. (2002) are as follows:

$$m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$$

(10.4.6.4-4)

Table 10.4.6.4-1-Values of the Constant m; by	Rock Group (after Marinos and Hoek 2000; with updated values from
Rocscience, Inc., 2007)	

Rock	Class	Group		Text	ure	
type			Coarse	Medium	Fine	Very fine
			Conglomerate	Sandstone	Siltstone	Claystone
			(21 ± 3)	17 <u>+</u> 4	7 <u>+</u> 2	4 <u>+</u> 2
	Clastic		Breccia		Greywacke	Shale
~			(19 ± 5)		(18 <u>+</u> 3)	(6 <u>+</u> 2)
SEDIMENTARY						Marl
TN						(7 ± 2)
ME			Crystalline	Sparitic	Micritic	Dolomite
IQ		Carbonates	Limestone	Limestone	Limestone	(9±3)
SE			(12 ± 3)	<u>(10 ± 5)</u>	(8 ± 3)	
	Non-Clastic	Evaporites		Gypsum	Anhydrite	
				10 ± 2	12 <u>+</u> 2	
		Organic	1			Chalk
						7 <u>+</u> 2
			Marble	Hornfels	Quartzite	
HC	Non I	Foliated	9 <u>+</u> 3	(19±4))	20 <u>+</u> 3	
RPF				Metasandstone		
METAMORPHIC				(19 <u>+</u> 3)		
IA	Slightly	y foliated	Migmatite	Amphibolite	Gneiss	
ME.			(29 <u>+</u> 3)	26 <u>+</u> 6	28 <u>+</u> 5	
H	Foli	Foliated*		Schist	Phyllite	Slate
				(10 ± 3)	(7±3)	7±4
			Granite	Diorite		
		Light	32 + 3	25 <u>+</u> 5		
				diorite		
	Plutonic		(29			
			Gabbro	Dolerite		
		Dark	27 <u>+</u> 3	(16±5)		
SUC			No			
IGNEOUS			20			
IGI	Нура	byssal	Porph		Diabase	Peridotite
			(20		(15 <u>+</u> 5)	(25 <u>+</u> 5)
				Rhyolite	Dacite	
		Lava		(25 ± 5)	(25 <u>+</u> 3))	
	Volcanic			Andesite	Basalt	
			Agglomerate	25 ± 5 Volcanic breccia	(25 <u>+</u> 5) Tuff	
		Pyroclastic	(19 ± 3)	(19 ± 5)	(13 ± 5)	
			<u>(17 ± 3)</u>		(1) (1)	

* These values are for intact rock specimens tested normal to bedding or foliation. The value of m_i will be significantly different if failure occurs along a weakness plane.

Disturbance to the foundation excavation caused by the rock removal methodology should be considered through the disturbance factor, D, in Eqs. 10.4.6.4-2 through 10.4.6.4-4. The disturbance factor, D, ranges from 0.0 (undisturbed) to 1.0 (highly disturbed), and is an adjustment for the rock mass disturbance induced by the excavation method. Suggested values for various tunnel and slope excavations can be found in Hoek et al. (2002).

Computation of Geologic Strength Index, GSI

Reference:

Hoek, E., Carter, T.G., and Diederichs, M.S., 2013, "Quantification of the Geological Strength Index Chart", 47th US Rock Mechanics / Geomechanics Symposium, ARMA Paper 13-672, 9pp.

AASHTO LRFD Bridge Design Specifications 9th Edition, Section 10.4.6.4

Project:	Tannery Brook Bridge
Date:	9/5/2023

Summary of Intact Bedrock Data from Borings				
Boring ID	Core Run ID	Run Depth	Rock Description	Rock Quality
		(ft bgs)		Designation,
				RQD
BB-NTB-101	R1	17-22	GRANITE: Very Hard, Fresh, Poor	37
BB-NTB-101	R2	22-26.7	GRANITE: Very Hard, Fresh, Excellent	91
BB-NTB-102	R1	14-19	GRANITE: Very Hard, Fresh, Excellent	97
BB-NTB-102	R2	19-24	GRANITE: Very Hard, Fresh, Fair	67

GSI is based on the JCond89 rating for joint condition ratings and RQD. From Hoek, et al. 2013:

$$GSI = 1.5 JCond_{89} + RQD/2$$
(1)

Definition of JCond89 from Bieniawski, Z.T. 1989. "Engineering rock mass classification." New York, Wiley Interscience

Table 1: Definition of JCond₈₉, after Bieniawski (1989) [5].

Condition of discontinuities	Very rough surfaces Not continuous No separation Unweathered wall rock	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1 – 5 mm Continuous	Soft gouge > 5 mm thick or Separation > 5 mm Continuous
Rating	30	25	20	10	0

Guidelines for classification of discontinuity conditions

Discontinuity length (persistence)	< 1 m	1 to 3 m	3 to10 m	10 to 20 m	More than 20 m
Rating	6	4	2	1	0
Separation (aperture)	None	< 0.1 mm	0.1 – 1.0 mm	1 – 5 mm	More than 5 mm
Rating	6	5	4	1	0
Roughness	Very rough	Rough	Slightly rough	Smooth	Slickensided
Rating	6	5	3	1	0
Infilling (gouge)	None	Hard infilling < 5 mm	Hard filling > 5 mm	Soft infilling < 5 mm	Soft infilling > 5 mm
Rating	6	4	2	2	0
Weathering	Unweathered	Slightly weathered	Moderate weathering	Highly weathered	Decomposed
Rating	6	5	3	1	0

Typical Description of Granite from Logs: White GRANITE, very hard, medium to coarse grained, slightly foliated, slightly weathered, occasionally pegmatit

	JCond89 Gran	ite
Condition	Rating	JCond89
Discontinuity Length, Persistence	4	
Separation, Aperture	4	
Roughness	5	22
Infilling, Gouge	4	
Weathering Rating	5	

Boring ID	Core Run ID	Run Depth (ft bgs)	Rock Quality Designation, RQD (%)	1.5*JCond89	RQD/2 (%)	GSI
BB-NTB-101	R1	17-22	37	33	18.5	51.5
BB-NTB-101	R2	22-26.7	91	33	45.5	78.5
BB-NTB-102	R1	14-19	97	33	48.5	81.5
BB-NTB-102	R2	19-24	67	33	33.5	66.5

Sample GSI Calc: GSI = 1.5*22+37/2 = 51.5

Required Shaft Diameter and Embedment on Rock Reference: AASHTO LRFD Bridge Design Specifications 9th Edition, Section 10

Project:	Tannery Brook B	ridge
Date:	9/1/2023	
Structure:	Spun Pipe Pile or	n Rock
Boring	BB-NTB-102	
El. Bottom of Pile Cap	374	
(ft NAVD88)	574	
Min. El. of Sound	363.2	
Rock (ft NAVD88)	303.2	
Min. Depth of Sound	10.8	
Rock (ft bgs)	10.8	
Socket Length (ft)	3	
Tip Bearing Depth	13.8	
(ft bgs)	15.6	
Groundwater Depth	Not Encountered	assume at top of rock
(ft bgs)	not Encountered	, assume at top of rock

TIP RESISTANCE

Jointed Rock Based on Drilled Shaft Tip Resistance: Article 10.8.3.5.4c

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$
(10.8.3.5.4c-2)
$$A = \sigma'_{vb} + q_u \left[m_b \frac{(\sigma'_{v,b})}{q_u} + s \right]^a$$
(10.8.3.5.4c-3)

Hoek-Brown Parameters: Article 10.4.6.4-4

$$s = e^{\left(\frac{GSI-100}{9-3D}\right)}$$
(10.4.6.4-2)
$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}}\right)$$
(10.4.6.4-3)

where:

е	=	2.718 (natural or Naperian log base)			
D	=				
σ'_1 and σ'_3	=	principal effective stresses (ksf)			
q_u	=	average unconfined compressive			
		strength of rock core (ksf)			
m_b , s, and a	=	empirically determined parameters			

See Table 10.4.6.4-1 for values for Constant m_i for Granite

 $m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$

See separate calculation for computing GSI.

See hand calculation for sample computation of all parameters.

(10.4.6.4-4)

INPUTS						
Laboratory UCS, q _u (psi)	Tip Diameter, B (in)	GSI	Υ _{soil} (pcf)	Υ' _{rock} (pcf)	Disturbance Factor, D	Resistance Factor, Tip φ _{stat}
14719	8.625	50	125	110	0	0.5

 $\varphi_{stat} q_p (ksf)$

793.0

 $\phi_{stat} \ q_p \ A_p$

(ksf)

321.7

Н	OEK-BROWN PA	RAMETERS	
mi	<i>m</i> _b	S	а
30	5.03	0.0039	0.5057
	TIP RESISTA	ANCE	
q _p (ksf)	Nominal Tip Resistance	Factored Unit Resistance,	Factored Tip Resistance, ϕ_{stat} q _p A _p

q_p A_p (ksf)

643.5

1586.0

σ _{vb} (ksf)	A (ksf)	Tip Area, A _p (in ²)
1.68	184.4	58.43

Required Shaft Diameter and Embedment on Rock Reference: AASHTO LRFD Bridge Design Specifications 9th Edition, Section 10

Project:	Tannery Brook B	ridge
Date:	9/1/2023	
Structure:	Spun Pipe Pile or	n Rock
Boring	BB-NTB-102	
El. Bottom of Pile Cap	374	
(ft NAVD88)	574	
Min. El. of Sound	363.2	
Rock (ft NAVD88)	505.2	
Min. Depth of Sound	10.8	
Rock (ft bgs)	10.8	
Socket Length (ft)	3	
Tip Bearing Depth	13.8	
(ft bgs)	13.8	
Groundwater Depth	Not Encountered	, assume at top of rock
(ft bgs)	Not Encountered	, assume at top of fock

TIP RESISTANCE

Jointed Rock Based on Drilled Shaft Tip Resistance: Article 10.8.3.5.4c

$$q_{p} = A + q_{u} \left[m_{b} \left(\frac{A}{q_{u}} \right) + s \right]^{a}$$
(10.8.3.5.4c-2)
$$A = \sigma_{vb}' + q_{u} \left[m_{b} \frac{(\sigma_{v,b}')}{q_{u}} + s \right]^{a}$$
(10.8.3.5.4c-3)

Hoek-Brown Parameters: Article 10.4.6.4-4

$$s = e^{\left(\frac{GSI-100}{9-3D}\right)}$$
(10.4.6.4-2)
$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}}\right)$$
(10.4.6.4-3)

where:

1586.0

е	=	2.718 (natural or Naperian log base)			
D	=	disturbance factor (dim)			
σ'_1 and σ'_3	=	principal effective stresses (ksf)			
q_u	=	average unconfined compressive			
		strength of rock core (ksf)			
m_b , s, and a	=	empirically determined parameters			

See Table 10.4.6.4-1 for values for Constant m_i for Granite

 $m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$

See separate calculation for computing GSI.

See hand calculation for sample computation of all parameters.

(10.4.6.4-4)

INPUTS							
Laboratory UCS, q _u (psi)	Tip Diameter, B (in)	GSI	Υ _{soil} (pcf)	Υ' _{rock} (pcf)	Disturbance Factor, D	Resistance Factor, Tip φ _{stat}	
14719	9.625	50	125	110	0	0.5	

793.0

400.7

HOEK-BROWN PARAMETERS								
mi	m _b	S	а					
30	5.03	0.0039	0.5057					
	TIP RESISTANCE							
q _p (ksf)	Nominal Tip Resistance q _p A _p (ksf)	Factored Unit Resistance, φ _{stat} q _p (ksf)	Factored Tip Resistance, ϕ_{stat} q _p A _p (ksf)					

801.4

σ _{vb} (ksf)	A (ksf)	Tip Area, A _p (in ²)
1.68	184.4	72.76

Required Shaft Diameter and Embedment on Rock Reference: AASHTO LRFD Bridge Design Specifications 9th Edition, Section 10

Project:	Tannery Brook B	ridge
Date:	9/1/2023	
Structure:	Spun Pipe Pile or	n Rock
Boring	BB-NTB-102	
El. Bottom of Pile Cap	374	
(ft NAVD88)	574	
Min. El. of Sound	363.2	
Rock (ft NAVD88)	505.2	
Min. Depth of Sound	10.8	
Rock (ft bgs)	10.8	
Socket Length (ft)	3	
Tip Bearing Depth	13.8	
(ft bgs)	13.8	
Groundwater Depth	Not Encountered	, assume at top of rock
(ft bgs)	Not Encountered	, assume at top of fock

TIP RESISTANCE Jointed Rock

Based on Drilled Shaft Tip Resistance: Article 10.8.3.5.4c

$$q_{p} = A + q_{u} \left[m_{b} \left(\frac{A}{q_{u}} \right) + s \right]^{a}$$
(10.8.3.5.4c-2)
$$A = \sigma'_{vb} + q_{u} \left[m_{b} \frac{(\sigma'_{v,b})}{q_{u}} + s \right]^{a}$$
(10.8.3.5.4c-3)

Hoek-Brown Parameters: Article 10.4.6.4-4

$$s = e^{\left(\frac{GSI-100}{9-3D}\right)}$$
(10.4.6.4-2)
$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}}\right)$$
(10.4.6.4-3)

where:

1586.0

е	=	2.718 (natural or Naperian log base)			
D	=	disturbance factor (dim)			
σ'_1 and σ'_3	=	principal effective stresses (ksf)			
q_u	=	average unconfined compressive			
		strength of rock core (ksf)			
m_b , s, and a	=	empirically determined parameters			

See Table 10.4.6.4-1 for values for Constant m_i for Granite

 $m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$

See separate calculation for computing GSI.

See hand calculation for sample computation of all parameters.

(10.4.6.4-4)

INPUTS						
Laboratory UCS, q _u (psi)	Tip Diameter, B (in)	GSI	Y _{soil} (pcf)	Υ' _{rock} (pcf)	Disturbance Factor, D	Resistance Factor, Tip φ _{stat}
14719	10.75	50	125	110	0	0.5

793.0

(ksf)

499.8

НО	EK-BROWN PA	RAMETERS	•
mi	m _b	S	а
30	5.03	0.0039	0.5057
	TIP RESISTA	ANCE	
q _p (ksf)	Nominal Tip Resistance q _p A _p (ksf)	Factored Unit Resistance, φ _{stat} q _p (ksf)	Factored Tip Resistance, φ_{stat} q _p A _p

999.6

σ _{vb} (ksf)	A (ksf)	Tip Area, A _p (in ²)
1.68	184.4	90.76

Tannery Brook Bridge Spun Pipe Pile

Lateral Pile Analysis

Tannery Brook Bridge Lateral Pile Analysis

Top of Pile EL/Bot. of Cap (ft NAVD88)	374
Min. EL of Sound Rock (ft NAVD88)	360
Pile Tip EL (ft NAVD88)	355
Total Pile Length (ft)	19.0

9.625" Spun Pipe Pile bearing in Rock

Section	OD Casing No Reduction (in)	OD Reduced due to Couplings or Corrosion (in)	ID casing (in)	Length of Section (ft)	Casing Wall Thickness (in)	Yield Strength of Casing (ksi)	Elastic Modulus of Casing (psi)
Steel Casing - Corrosion	9.625	9.500	8.535	19.0	0.4825	80	2.90E+07

ection 1, Top	~	[0.00 - 19.00] ft	Number of De	efined Section	is = 1 Total Len	igth = 19.00 ft
Section Type Shaft Dim	nensions Co	ncrete Rebars S	teel Properties			
Elevation Dimensio	ons		Cased Drilled Shaft Section Dimensions:		ShowSection	○ Profile
Length of Section (ft)	19		Casing Outside Diam. (in)	9.5	1	
Elastic Section Prope	erties:		Casing Wall Thickness (in)	0.4825	i 🥖	
Structural Shape	Select Shape	• ~	Section Width (in)	0		
	At Top	At Bottom		•		
Elastic Sect. Width (in)	0	0	Section Depth (in)	0		
No data required (in)	0	0	Corner Chamfer (in)	0		
Area (in^2)	0	0	Core Void Diameter (in)	0		
Alea (iii 2)	U	0	Core Wall Thickness (in)	0		
Mom. of Inertia (in^4)	0	0	Flange Thickness (in)	0		
Plas. Mom. Cap. (in-lbs)	0	0	Web Thickness (in)	0		
Shear Capacity (lbs)	0	0	Elastic Mod. (Ibs/in^2)	0		

Section Type Shaft Dimensions Concrete Rebars Steel Properties

Steel Section, Casing, and Core/Insert Material Properties:

Yield Stress of Casing (lbs/in^2)	80000
Elastic Modulus of Casing (lbs/in^2)	2900000
Yield Stress of Core (lbs/in^2)	36000
Elastic Modulus of Core (lbs/in^2)	29000000

Bridge No.	nery Brook			
Substructure	n Pipe Pile			
Available Borings	BB	-NTB-101		
Substructure Stationing		NA		
Bottom of Pile Cap El (ft NAVD88)	374.00			
Top of Pile Cap El (ft NAVD88)	375.70			
Soil Profile Boring		BB-NTB-101		
Ground Surface EL a Boring (ft NAVD88)	at	376.0		
GW EL (ft NAVD88)	376.0			
Min. EL of Sound Ro NAVD88)	360.0			
Pile Tip Bearing EL (NAVD88)	(ft	355.00		

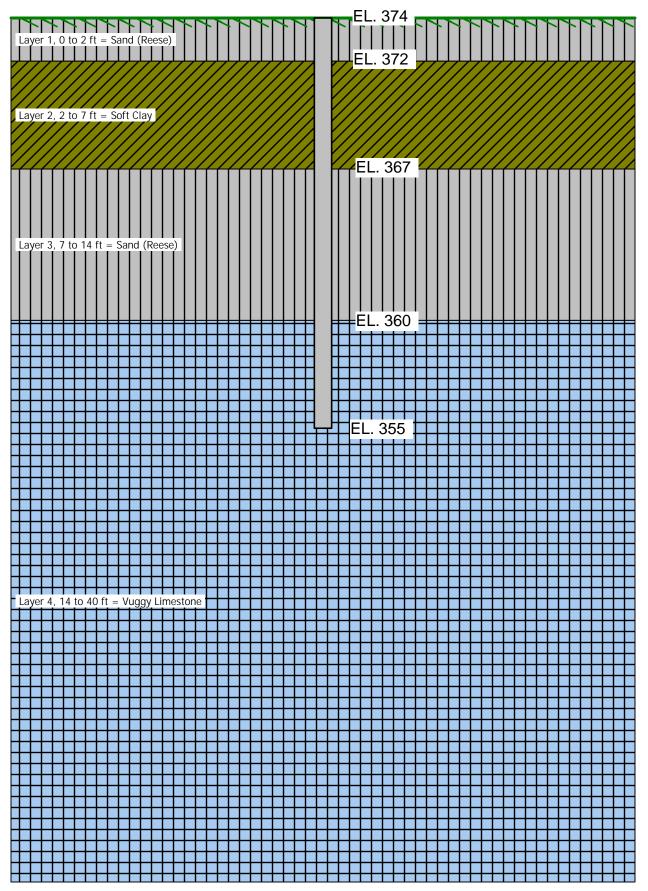
Pile Top El (ft NAVD88)

Total Pile Length (ft)

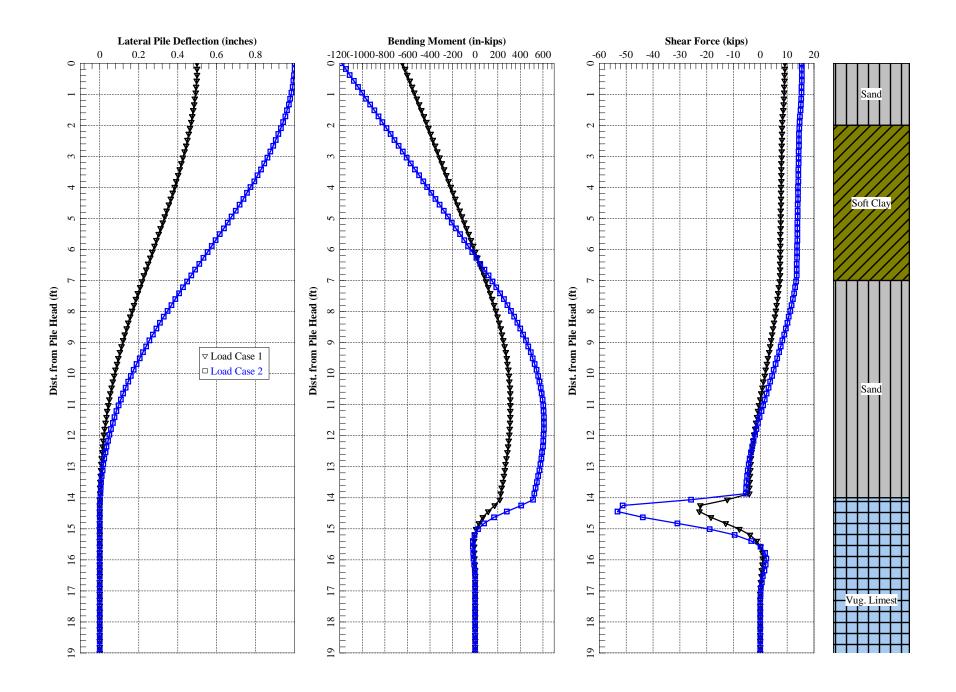
	SUBSURFACE PROFILE FOR PILE LATERAL ANALYSES													
Soil Properties	Layer No.	*Depth to Top of Layer (ft bgs)	EL at Top of Layer (ft NAVD88)	Depth to Bottom of Layer (ft bgs)	EL at Bottom of Layer (ft NAVD88)	Layer Thickness (ft)	GROUP soil Layer	Total Unit Weight, γ (pcf)	Effective Unit Weight, γ' (pcf)	Friction Angle (deg)	Soil Modulus Param. k (pci)	Cohesion Top/Bot, c (psf)	£50	Rock Qu (psi)
FILL - Silty SAND	1	0	374.0	2.0	372.0	2.0	Sand (Reese)	120	57.6	32	27			
Organic SILT/PEAT	2	2.0	372.0	7.0	367.0	5.0	Soft Clay	110	47.6		-	50	0.02	
Silty SAND	3	7.0	367.0	14.0	360.0	7.0	Sand (Reese)	125	62.6	34	60	1	-	
GRANITE	4	14.0	360.0	34.0	340.0	20.0	Vuggy Limestone	155	92.6	40				14719
	GW EL 376.0 GW Depth -2.0													

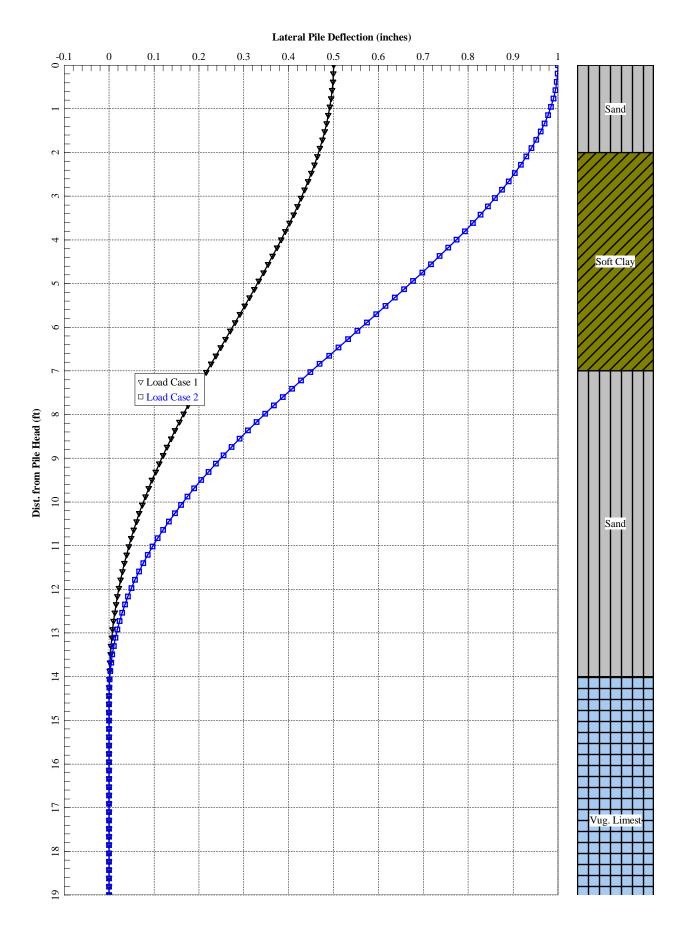
*layer depths are computed in relation to the bottom of pile cap

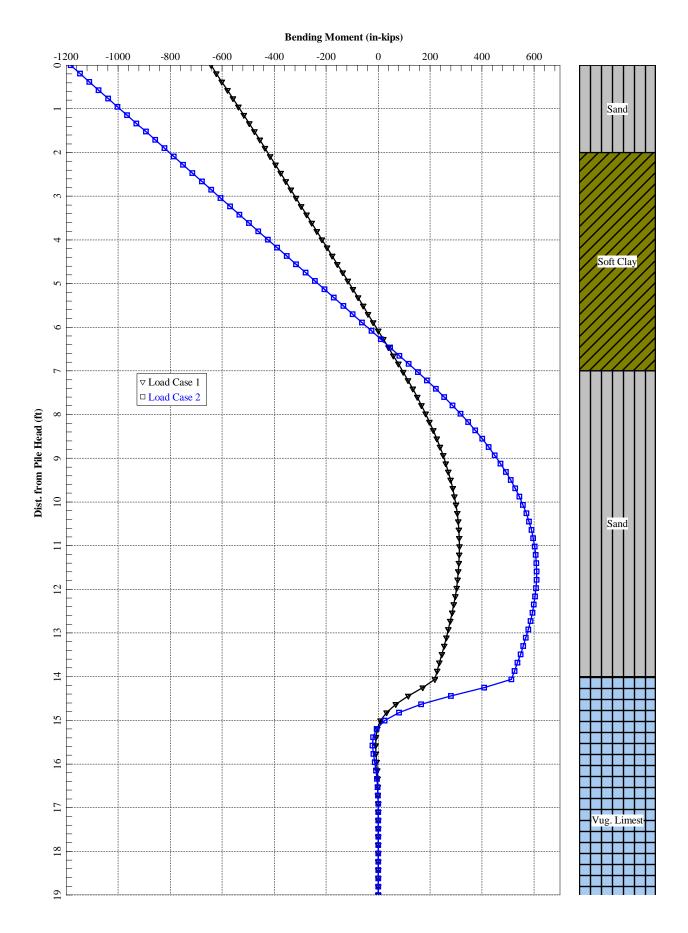
374.00

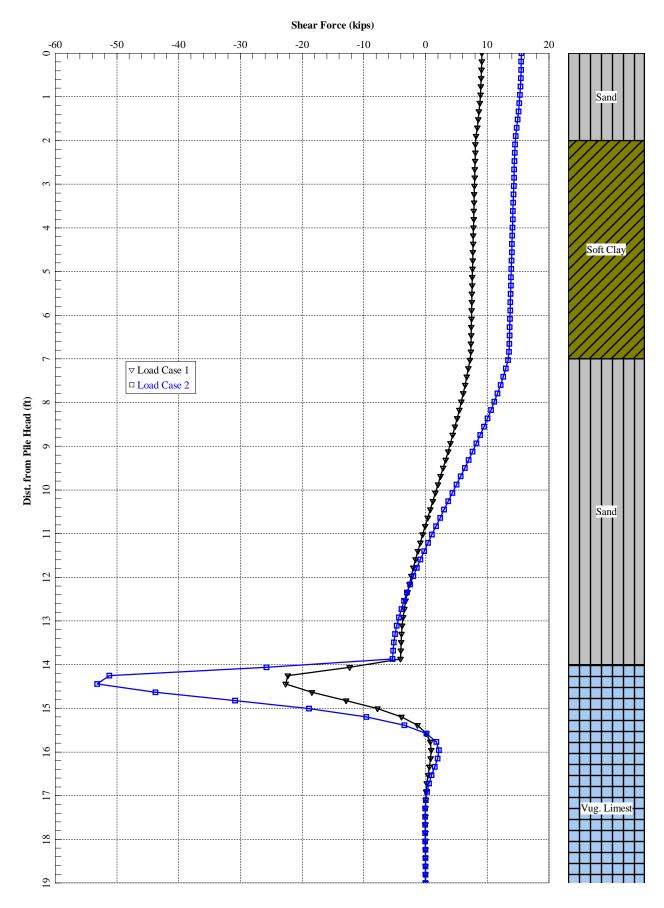

19.00

Notes:


1. Assume piles are socketed within rock.


LPILE Model Results


Model	Load Case	Axial Compression (kip)	Axial Tension (kip)	Max Moment (in- kips)	Section Modulus, S (in^3)	Bending Stress at Max Moment (ksi)	Axial Stress at Pile Head (ksi)	Total Stress (ksi)	Depth of Fixity, below Pile Top (ft)
Spun Pipe Pile with	0.5-inch	230	0	-642.8	29.3	21.9	16.8	38.7	16.0
Corrosion Loss	1.0-inch	230	0	-1182.4	29.3	40.3	16.8	57.1	16.0



LPile 2022.12.02, © 2022 by Ensoft, Inc.

LPile for Windows, Version 2022-12.002
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
Katie AECOM
Serial Number of Security Device: 235486653
This copy of LPile is licensed for exclusive use by:
AECOM, LPILE Global, Global License
Use of this software by employees of AECOM other than those of the office site in LPILE Global, Global License is a violation of the software license agreement.
Files Used for Analysis
Path to file locations: \Chelmsford-USCHL1\Secure_DCS\Resources\Legacy\Private\AE_Depts\Geot\PROJECT FILES (GEOTECH)\Tannery Brook Bridge Norway ME - 60656153\Calculations\Spun Pipe Pile\LPILE\
Name of input data file: Tannery Brook Spun Pipe Pile_R1 Corrosion.lp12d
Name of output report file: Tannery Brook Spun Pipe Pile_R1 Corrosion.lp12o
Name of plot output file: Tannery Brook Spun Pipe Pile_R1 Corrosion.lp12p
Name of runtime message file: Tannery Brook Spun Pipe Pile_R1 Corrosion.lp12r
Date and Time of Analysis
Date: September 15, 2023 Time: 13:22:04
Problem Title
Project Name: Tannery Brook Bridge Replacement
Job Number: 60656153
Client: TY Linn
Engineer: B Reyes

Description: Lateral Analysis of Micropiles

	Pr	rogram Options and			
- Conve Engi neer	ional Options: ntional Analysis ing Units Used for I stomary System Units				
- Maxim - Defle - Maxim	Control Options: um number of iterati ction tolerance for um allowable deflect r of pile increments	convergence ti on	= = =		500 2000E-05 in 100.0000 in 100
	Type and Number of (c loading specified	Cycles of Loading:			
 Anal y No di Loadi Input Input Compu Push- BuckI Output 0 Output 0 	t files use decimal	prrection (Method of bads are entered movements acting or e at the pile tip foundation stiffne e not selected points to denote of	of Georgiadi n pile not s not selected not selecte ess matrix n decimal symb	s) elec ⁺ d ot se ols.	ted el ected
soil - Print - No p-	s of pile-head defle reaction are printed ing Increment (nodal y curves to be compu using wide report 1	d for full length o spacing of output uted and reported 1	of pile. t points) =	1	
	Pile St	tructural Propertie	es and Geome	try	
Total le	f pile sections defi ngth of pile ground surface belo		= = =		1 19.000 ft 0.0000 ft
Pile dia	meters used for p-y	curve computations	s are define	d usi	ing 2 points.
p-y curv the leng	es are computed usin th of the pile. A su	ng pile diameter va ummary of values of	alues interp f pile diame	olate ter v	ed with depth over vs. depth follows.
Point	Depth Below Pile Head	Pile Diameter			

No.	File Head feet	Diameter inches	
1	0.000	9.5000	
2	19.000	9.5000	

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a drilled shaft with permanent casing		
Length of section	=	19.000000 ft
Casing outside diameter	=	9.500000 in

_____ Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	0.0000 ft
Distance from top of pile to bottom of layer	=	2.000000 ft
Effective unit weight at top of layer	=	57.60000 pcf
Effective unit weight at bottom of layer	=	
Friction angle at top of layer		32.000000 deg.
Friction angle at bottom of layer	=	32.000000 deg.
Subgrade k at top of layer		27.00000 pci
Subgrade k at bottom of layer	=	27.000000 pci

Layer 2 is soft clay, p-y criteria by Matlock, 1970

=	2.000000 ft 7.000000 ft
=	47.600000 pcf
=	47.600000 pcf
=	50.000000 psf
=	50.000000 psf
=	0.020000
=	0. 020000
	= = = =

Layer 3 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	7.000000 ft
Distance from top of pile to bottom of layer	=	14.000000 ft
Effective unit weight at top of layer	=	62.600000 pcf
Effective unit weight at bottom of layer	=	62.600000 pcf
Friction angle at top of layer	=	34.000000 deg.
Friction angle at bottom of layer	=	34.000000 deg.
Subgrade k at top of layer	=	60.000000 pci
Subgrade k at bottom of layer	=	60.000000 pci

Layer 4 is strong rock (vuggy limestone)

Distance from top of pile to top of layer	=	14.000000 ft
Distance from top of pile to bottom of layer	=	40.000000 ft
Effective unit weight at top of layer	=	92.600000 pcf
Effective unit weight at bottom of layer	=	92.600000 pcf
Uniaxial compressive strength at top of layer	=	14719. psi
Uniaxial compressive strength at bottom of layer	=	14719. psi

(Depth of the lowest soil layer extends 21.000 ft below the pile tip)

Summary of Input Soil Properties								
Layer	Soil Type	Layer	Effective	Cohesi on	Angle of	Uni axi al	E50	
Num.	Name	Depth	Unit Wt.		Friction	qu	or	kpy

	(p-y Curve Type)	ft	pcf	psf	deg.	psi	krm	рс
 1 27.0000	Sand	0. 00	57. 6000		32.0000			
	(Reese, et al.)	2.0000	57.6000		32.0000			
27.0000 2	Soft	2.0000	47.6000	50.0000			0.02000	
	CI ay	7.0000	47.6000	50.0000			0.02000	
3	Sand	7.0000	62.6000		34.0000			
50.0000	(Reese, et al.)	14.0000	62.6000		34.0000			
60. 0000 4	Strong Rock	14.0000	92.6000			14719.		
	(Vuggy Limestone)	40.0000	92.6000			14719.		
	oading criteria were Pile-head Loa	ding and Pile-	head Fixity C	conditions				
	of loads specified = 2							
No.	Load Conditio Type 1	n	Condi ti on 2		Axial Thrust Force, Ibs	Compute To vs. Pile Le	ngth	Anal ysi s
1 2	5 y = 0.5000 5 y = 1.0000		0.0000 i 0.0000 i		230000. 230000.	N. A. N. A.		Yes Yes
M = bend y = late S = pile R = rota Values o specifie	ar force applied norma ling moment applied to eral deflection normal e slope relative to or ational stiffness appl of top y vs. pile leng ed shear loading (Load Force is assumed to be	pile head to pile axis iginal pile ba ied to pile he ths can be com Types 1, 2, a	tter angle ad puted only fo nd 3).					
	nputations of Nominal							
Axial th	nrust force values wer	e determined f	rom pile-head	l loading co	ondi ti ons			
Number o	of Pile Sections Analy	zed = 1						
	tion No. 1:							
	ons and Properties of			with Permar	nent Casing:			
Length o Outer Di	of Section ameter of Casing Wall Thickness		= = =	9. 5000	000 in			

Moment of Inertia Yield Stress of C Elastic Modulus of Number of Reinfor Area of Single Re Offset of Center Yield Stress of R Modulus of Elasti Gross Area of Pil Area of Concrete Cross-sectional A Area of All Steel Area Ratio of All	casing of Casing rcing Bars of Rebar Cag Reinforcing Ba of Rebar Cag Reinforcing B city of Rein e area of Steel (Casing and Steel to Gr Capacities:	r e from Center ars forcing Bars	of Pile = = =	80000. 29000000. 0.0000 0.0000 0.0000 0.0000 70.882184	psi psi bars sq. in. in psi psi sg. in.		
Nom. Axial Struct Tensile Load for Nominal Axial Ter	cural Capacit Cracking of sile Capacit	y = 0.85 Fc A Concrete y	c + Fy As = = =	1288.037 -69.528 -1093.511	ki ps ki ps ki ps		
Concrete Properti							
Compressive Strer Modulus of Elasti Modulus of Ruptur Compression Strai Tensile Strain at Maximum Coarse Ag	city of Conc e of Concret n at Peak St Fracture of	rete e ress Concrete	=	4000. 3604997. -474. 34165 0. 001886 -0. 0001154 0. 500000	psi		
Number of Axial T	hrust Force	Values Determ	ined from Pile	-head Loadings	5 = 1		
Number Axi	kips						
1	230.000						
Definitions of Ru	0						
	reinforcing s teria for te ent exceeds 0 pre than 0.00 ensile zone i	teel has reac nsion-control .005 while si 3. See ACL 31	hed yield stre led section me multaneously c 8-14, Section	t, tensile str ompressive str 21.2.3.	ain in		
Bending Stiffness Position of neutr Compressive stres Tensile stresses	al axis is m ses and stra	easured from ins are posit	edge of compre ive in sign.		pile.		
Axial Thrust Forc	ce = 230.0	00 kips					
Bending Max Casing Run	Bendi ng	Bendi ng	Depth to	Max Comp	Max Tens	Max Conc	Max Steel
Curvature Stress Msg	Moment	Stiffness	N Axis	Strai n	Strai n	Stress	Stress
rad/i n. ksi	in-kip	·		in/in	in/in	ksi	ksi
0. 00000125 11. 0161168	6. 1583956	4926716.	303. 9403763	0. 0003799	0. 0003681	1. 4488544	0. 00000

0. 00000250 11. 1866498	12. 3167877	4926715.	154.3461175	0.0003859	0.0003621	1. 4687330	0.00000
0. 00000375	18. 4751731	4926713.	104. 4817775	0.0003918	0. 0003562	1. 4885390	0.00000
0.00000500	24.6335483	4926710.	79.5499174	0.0003977	0.0003502	1. 5082725	0.00000
11.5278505 0.00000625	30. 7919098	4926706.	64.5910491	0.0004037	0.0003443	1. 5279332	0.00000
11.6985183 0.00000750	36. 9502544	4926701.	54.6186767	0.0004096	0.0003384	1. 5475213	0.00000
11. 8692310 0. 00000875	43. 1085785	4926695.	47.4957307	0.0004156	0.0003325	1.5670365	0.00000
12. 0399886 0. 00001000	49. 2668788	4926688.	42.1536760	0.0004215	0.0003265	1. 5864789	0.00000
12. 2107911 0. 00001125	55. 4251519	4926680.	37.9988823	0.0004275	0.0003206	1.6058484	0.00000
12. 3816385 0. 00001250	61. 5833943	4926672.	34.6751712	0.0004334	0.0003147	1. 6251449	0.00000
12. 5525308 0. 00001375	67.7416028	4926662.	31.9558839	0.0004394	0. 0003088	1. 6443684	0.00000
12. 7234681 0. 00001500	73. 8997738	4926652.	29. 6899144	0.0004453	0. 0003028	1. 6635187	0.00000
12. 8944503 0. 00001625	80. 0579040	4926640.	27.7726509	0.0004513	0. 0002969	1. 6825959	0.00000
13.0654774 0.00001750	86. 2159899	4926628.	26. 1293707	0.0004573	0.0002910	1. 7015999	0.00000
13. 2365494 0. 00001875	92.3740282	4926615.	24.7052771	0.0004632	0. 0002851	1. 7205306	0.00000
13. 4076664 0. 00002000	98.5320155	4926601.	23. 4592727	0.0004692	0.0002792	1. 7393880	0.00000
13. 5788282 0. 00002125	104. 6899483	4926586.	22.3599300	0.0004751	0.0002733	1. 7581719	0.00000
13. 7500350 0. 00002250	110. 8478233	4926570.	21.3828053	0.0004811	0. 0002674	1. 7768824	0.00000
13. 9212868 0. 00002375	117. 0056371	4926553.	20. 5086010	0.0004871	0. 0002615	1. 7955194	0.00000
14.0925834 0.00002500	123. 1633864	4926535.	19. 7218792	0.0004930	0.0002555	1.8140827	0.00000
14. 2639244 0. 00002625	129. 3210675	4926517.	19.0101422	0.0004990	0. 0002496	1.8325724	0.00000
14. 4353109 0. 00002750	135. 4786771	4926497.	18. 3631650	0.0005050	0. 0002437	1.8509884	0.00000
14. 6067423 0. 00002875	141. 6362118	4926477.	17.7725005	0.0005110	0.0002378	1.8693306	0.00000
14. 7782187 0. 00003000	147. 7936682	4926456.	17.2311097	0.0005169	0. 0002319	1. 8875990	0.00000
14. 9497400 0. 00003125	153. 9510430	4926433.	16. 7330797	0.0005229	0. 0002260	1. 9057935	0. 00000
15. 1213062 0. 00003250	160. 1083327	4926410.	16. 2734074	0.0005289	0. 0002200	1. 9239140	0. 00000
15. 2929174 0. 00003375	166. 2655339	4926386.	15. 8478309	0.0005349	0. 0002201	1. 9419605	0. 00000
15. 4645735 0. 00003500	172. 4226433	4926361.	15. 4526969	0.0005408	0. 0002142	1. 9599329	0.00000
15. 6362745 0. 00003625	172. 4220433	4926335.	15. 0848563	0.0005468	0. 0002005	1. 9778312	0.00000
15. 8080204 0. 00003750	184. 7365727	4926333.	14. 7415797	0.0005528	0. 0002023	1. 9956552	0.00000
15.9798113							
0.00003875 16.1516472	190. 8933860	4926281.	14. 4204899	0.0005588	0.0001907	2.0134050	0.00000
0.00004000 16.3235279	197.0500937	4926252.	14. 1195071	0.0005648	0.0001848	2. 0310805	0.00000
0.00004125 16.4954536	203. 2066926	4926223.	13.8368031	0.0005708	0.0001789	2.0486815	0.00000
0.00004250 16.6674243	209. 3631791	4926192.	13.5707653	0.0005768	0.0001730	2.0662081	0.00000
0.00004375 16.8394399	215. 5195499	4926161.	13. 3199651	0.0005827	0.0001671	2.0836602	0.00000
0. 00004500 17. 0115004	221.6758016	4926129.	13.0831327	0.0005887	0.0001612	2. 1010377	0.00000
0.00004625	227.8319308	4926096.	12.8591355	0.0005947	0. 0001554	2. 1183406	0.00000

17.1836059							
0.00004750 17.3557563	233. 9879340	4926062.	12.6469603	0.0006007	0. 0001495	2.1355688	0.00000
0. 00004875 0. 5279517	240. 1438079	4926027.	12.4456976	0.0006067	0.0001436	2. 1527222	0.00000
0.00005125	252. 4551540	4925954.	12.0727161	0.0006187	0.0001319	2. 1868044	0.00000
17.8724773 0.00005375 18.2171827	264.7659419	4925878.	11.7345459	0.0006307	0.0001201	2. 2205869	0.00000
0. 00005625 18. 5620680	277.0761443	4925798.	11. 4265456	0.0006427	0.0001084	2.2540690	0.00000
0.00005875	289. 3857338	4925715.	11.1448636	0.0006548	0.00009664	2.2872504	0.00000
0. 00006125	301. 6946834	4925627.	10. 8862773	0.0006668	0.00008491	2.3201305	0.00000
0. 00006375	314.0029656	4925537.	10. 6480696	0.0006788	0.00007319	2.3527088	0.00000
0.00006625	326. 3105532	4925442.	10. 4279335	0.0006909	0.00006148	2.3849848	0.00000
0. 00006875	338. 6174190	4925344.	10. 2238975	0.0007029	0.00004977	2. 4169580	0.00000
0. 00007125	350. 9235356	4925243.	10.0342669	0.0007149	0.00003807	2.4486279	0.00000
0.00007375	363.2288757	4925137.	9.8575768	0.0007270	0.00002637	2. 4799941	0.00000
0. 00007625	375. 5334121	4925028.	9.6925543	0.0007391	0.00001468	2.5110560	0.00000
0. 00007875	387.8371175	4924916.	9.5380882	0.0007511	0.0000300	2. 5418131	0.00000
0. 00008125	400. 1399645	4924800.	9.3932042	0.0007632	-0.0000868	2.5722650	0.00000
0. 00008375	412. 4419258	4924680.	9.2570440	0.0007753	-0.00002035	2. 6024111	0.00000
0.00008625	424.7429741	4924556.	9. 1288493	0.0007874	-0.00003201	2.6322509	0.00000
0. 00008875	437.0430822	4924429.	9.0079467	0.0007995	-0.00004367	2.6617839	0.00000
0. 00009125 23. 4093542	449. 3421679	4924298.	8.8937367	0.0008116	-0.00005532	2.6910097	0.00000
0. 00009375 23. 7569345	461.6399152	4924159.	8.7856827	0.0008237	-0.00006697	2.7199273	0.00000
0. 00009625	473. 9358351	4924009.	8.6833030	0.0008358	-0.00007861	2.7485359	0.00000
0. 00009875	486. 2293906	4923842.	8.5861642	0.0008479	-0.00009024	2.7768344	0.00000
0. 0001013 24. 8006718	498.5200385	4923655.	8.4938760	0.0008600	-0. 000102	2.8048219	0.00000
0. 0001038 25. 1488941	510. 8072470	4923443.	8.4060854	0.0008721	-0. 000113	2.8324973	0.00000
0. 0001063 25. 4835607 C	522.0125155	4913059.	8.3180268	0.0008838	-0. 000126	2.8587899	0.00000
0. 0001088 25. 8273231 C	533. 9328542	4909727.	8.2369011	0.0008958	-0. 000137	2.8854853	0.00000
0. 0001113 26. 1705385 C	545.8023770	4906089.	8. 1592515	0.0009077	-0. 000149	2. 9118231	0.00000
0. 0001138 26. 5132420 C	557. 6246887	4902195.	8.0848601	0.0009197	-0. 000161	2.9378073	0.00000
0. 0001163 26. 8554828 C	569. 4038094	4898097.	8.0135311	0.0009316	-0. 000173	2.9634431	0.00000
0. 0001188 27. 1971456 C	581. 1331869	4893753.	7.9450376	0.0009435	-0. 000185	2.9887233	0.00000
0. 0001213 27. 5382053 C	592. 8127082	4889177.	7.8791971	0.0009554	-0.000197	3. 0136475	0.00000
0. 0001238 27. 8789135 C	604. 4587991	4884516.	7.8159189	0.0009672	-0.000208	3. 0382356	0.00000
0. 0001263 28. 2191508 C	616.0645926	4879720.	7.7550181	0.0009791	-0.000220	3.0624800	0.00000
0. 0001288 28. 5587835 C	627. 6234427	4874745.	7.6963204	0.0009909	-0.000232	3. 0863726	0.00000
0. 0001313 28. 8982243 C	639. 1598981	4869790.	7.6398084	0.0010027	-0.000244	3. 1099436	0.00000

0.0001338	650. 6465231	4864647.	7.5852332	0.0010145	-0.000256	3. 1331601	0.00000
29.2369830 C 0.0001363	662. 1098156	4859522.	7.5326029	0.0010263	-0.000268	3. 1560545	0.00000
29.5755133 C 0.0001388	673. 5373153	4854323.	7.4817558	0.0010381	-0.000280	3. 1786122	0.00000
29.9135873 C 0.0001413	684. 9356124	4849102.	7.4326224	0.0010499	-0.000292	3. 2008413	0.00000
30. 2513080 C 0. 0001438	696. 3056033	4843865.	7.3851170	0.0010616	-0.000304	3. 2227436	0.00000
30. 5886914 C 0. 0001463	707.6472264	4838614.	7.3391518	0.0010734	-0.000316	3. 2443191	0.00000
30. 9257186 C 0. 0001488	718.9614865	4833355.	7.2946534	0.0010851	-0.000328	3. 2655697	0.00000
31.2624085 C 0.0001588	763.9769940	4812454.	7.1300355	0.0011319	-0.000376	3. 3473674	0.00000
32.6062232 C 0.0001688	808. 6628649	4792076.	6.9841498	0.0011786	-0.000425	3. 4241259	0.00000
33.9462305 C 0.0001788	853.0300574	4772196.	6.8538190	0.0012251	-0.000473	3. 4958771	0.00000
35.2822564 C 0.0001888	897. 1526355	4753127.	6.7368279	0.0012716	-0.000522	3. 5627317	0.00000
36.6157091 C 0.0001988	941.0540286	4734863.	6.6312228	0.0013180	-0.000570	3. 6247327	0.00000
37.9469329 C 0.0002088	984. 7552194	4717390.	6.5354230	0.0013643	-0.000619	3. 6819177	0.00000
39. 2762646 C 0. 0002188	1028.	4700692.	6. 4481424	0.0014105	-0.000668	3. 7343209	0.00000
40. 6040758 C 0. 0002288	1072.	4684750.	6.3683247	0.0014568	-0.000716	3. 7819724	0.00000
41.9307715 C 0.0002388	1115.	4669544.	6.2950953	0.0015030	-0.000765	3.8248974	0.00000
43.2567886 C 0.0002488	1158.	4655024.	6. 2276915	0.0015491	-0.000814	3.8631093	0.00000
44.5823575 C 0.0002588	1201.	4641057.	6. 1653561	0.0015953	-0.000863	3.8965985	0.00000
45.9068633 C 0.0002688	1244.	4627744.	6. 1077115	0.0016414	-0.000912	3. 9254055	0.00000
47.2317739 C 0.0002788	1286.	4614956.	6.0541774	0.0016876	-0. 000961	3. 9495161	0.00000
48.5564796 C 0.0002888	1329.	4602675.	6.0043618	0.0017338	-0.001009	3. 9689362	0.00000
49.8812725 C 0.0002988	1372.	4590881.	5.9579353	0.0017799	-0. 001058	3. 9836684	0.00000
51.2065349 C 0.0003088	1414.	4579516.	5. 9145451	0.0018261	-0.001107	3. 9937065	0.00000
52.5320562 C 0.0003188	1456.	4568554.	5.8739249	0.0018723	-0.001156	3. 9990481	0.00000
53.8580165 C 0.0003288	1498.	4558009.	5.8359019	0.0019186	-0.001205	3. 9997615	0.00000
55. 1851772 C 0. 0003388 56. 5119972 C	1541.	4547751.	5.8000890	0.0019648	-0.001253	3. 9999958	0.00000
0. 0003488 0. 8404468 C	1583.	4537869.	5. 7664911	0.0020111	-0.001302	3. 9993363	0.00000
0. 0003588 59. 1696305 C	1625.	4528286.	5.7348367	0.0020574	-0. 001351	3. 9996997	0.00000
0. 0003688 60. 4991732 C	1666.	4518945.	5. 7049328	0.0021037	-0.001399	3. 9998812	0.00000
0. 0003788 61. 8304755 C	1708.	4509881.	5. 6767682	0.0021501	-0.001448	3. 9999588	0.00000
0. 0003888 63. 1633737 C	1750.	4501063.	5.6501941	0.0021965	-0. 001497	3. 9999848	0.00000
0. 0003988 64. 4961538 C	1791.	4492406.	5.6249427	0.0022429	-0. 001545	3. 9999885	0.00000
0. 0004088 65. 8306443 C	1833.	4483984.	5.6010711	0.0022894	-0.001594	3.9999766	0.00000
0. 0004188 67. 1667851 C	1874.	4475788.	5.5784763	0.0023360	-0.001642	3.9999322	0.00000
0. 0004288 68. 5045099 C	1916.	4467810.	5.5570614	0.0023826	-0. 001691	3. 9998152	0.00000
0. 0004388	1957.	4459985.	5.5366001	0.0024292	-0.001739	3.9995599	0.00000

69.8419327 C							
0.0004488	1998.	4452373.	5.5171635	0.0024758	-0.001787	3.9990806	0.00000
71.1808306 C							
0.0004588	2039.	4444968.	5.4986794	0.0025225	-0.001836	3. 9986455	0.00000
72.5211261 C							
0.0004688	2080.	4437758.	5.4810869	0.0025693	-0.001884	3. 9999410	0.00000
73.8628205 C							
0.0004788	2121.	4430740.	5.4643251	0.0026160	-0.001932	3.9995199	0.00000
75.2058444 C							
0.0004888	2162.	4423877.	5.4482305	0.0026628	-0.001980	3.9985434	0.00000
76.5486037 C	2222	4417104	E 4000E11	0.000700/	0,000000	2 0000/01	0,00000
0.0004988	2203.	4417194.	5. 4328511	0.0027096	-0.002028	3. 9999621	0.00000
77.8923726 C 0.0005088	2244.	4410684.	5. 4181584	0.0027565	-0.002077	3. 9993572	0.00000
79.2373524 C	2244.	4410004.	3.4101304	0.0027505	-0.002077	3. 9993372	0.00000
0. 0005188	2284.	4403724.	5. 4043965	0.0028035	-0.002125	3. 9982578	0.00000
80. 0000000 CY	2204.	4403724.	5.4045705	0.0020033	-0.002125	J. 7702370	0.00000
0. 0005288	2324.	4395198.	5.3920607	0.0028511	-0.002172	3, 9997561	0.00000
80.0000000 CY	2021.	1070170.	0.0720007	0.0020011	0.002172	0. ////001	0.00000
0.0005388	2362.	4384456.	5.3814423	0.0028993	-0.002219	3.9985240	0.00000
80.000000 CY							
0.0005488	2399.	4371170.	5.3726906	0.0029483	-0.002265	3.9999496	0.00000
80.000000 CY							
0.0006088	2581.	4240033.	5.3581912	0.0032618	-0.002521	3.9980789	0.00000
80.000000 CY							
0.0006688	2725.	4074579.	5.3799585	0.0035978	-0.002755	3.9985806	0.00000
80.000000 CY							
0.0007288	2839.	3895040.	5.4127719	0.0039446	-0.002979	3.9968102	0.00000
80.000000 CY							

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain	Max. Tens. Strain
1	230.000	2428.784	0.00300000	-0.00230718

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Load No.	Resist. Factor	Nominal Ax. Thrust kips	Nominal Moment Cap in-kips	UIt. (Fac) Ax. Thrust kips	Ult. (Fac) Moment Cap in-kips	Bend. Stiff. at UIt Mom kip-in^2
1	0. 65	230.000000	2429.	149. 500000	1579.	4538780.
1	0. 75	230.000000	2429.	172. 500000	1822.	4486266.
1	0.90	230.000000	2429.	207.000000	2186.	4419999.

Level an Association Fundaminate Double of Coll A Double source

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	FO Integral for Layer Ibs	F1 Integral for Layer Ibs
1	0.00	0.00	N. A.	No	0.00	987.4977
2	2.0000	3.8933	No	No	987.4977	1781.
3	7.0000	3.3614	No	No	2769.	53164.
4	14.0000	14.0000	No	Yes	N. A.	N. A.

Notes: The FO integral of Layer n+1 equals the sum of the FO and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Displacement and Pile-he	ead Rotation	n (Loading Type 5)
Displacement of pile head	=	0.500000 inches
Rotation of pile head	=	0.000E+00 radi ans
Axial load on pile head	=	230000.0 lbs

Depth X feet	Deflect. y inches	Bending Moment in-lbs	Shear Force I bs	SI ope S radi ans	Total Stress psi *	Bendi ng Sti ffness I b-i n^2	р	Soil Spr. Es*H Ib/inch	Distrib. Lat. Load Ib/inch
0.00	0.5000	-642802.	9112.	0.00	0.00	4.87E+09	0.00	0.00	0.00
0. 1900	0. 4997	-621968.	9095.	-2.96E-04	0.00	4.87E+09	-6.717	30.6505	0.00
0.3800	0. 4986	-601017.	9071.	-5.82E-04	0.00	4.89E+09	-14.558	66.5640	0.00
0.5700	0. 4970	-579994.	9028.	-8.57E-04	0.00	4.89E+09	-23.037	105.6820	0.00
0.7600	0. 4947	-558949.	8966.	-0. 00112	0.00	4.90E+09	-31.745	146. 2961	0.00
0.9500	0. 4919	-537933.	8883.	-0. 00138	0.00	4.91E+09	-40.430	187.4009	0.00
1.1400	0.4885	-516996.	8782.	-0. 00162	0.00	4.92E+09	-48.652	227.0964	0.00
1.3300	0. 4845	-496187.	8662.	-0. 00186	0.00	4.92E+09	-56.854	267.5568	0.00
1. 5200	0.4800	-475552.	8523.	-0.00208	0.00	4.92E+09	-64.535	306.5480	0.00
1.7100	0.4750	-455137.	8368.	-0.00230	0.00	4.92E+09	-71.641	343.8808	0.00
1.9000	0.4695	-434984.	8198.	-0.00250	0.00	4.92E+09	-77.838	377.9871	0.00
2.0900	0.4636	-415131.	8092.	-0.00270	0.00	4.92E+09	-14.724	72. 4157	0.00
2.2800	0.4572	-395253.	8059.	-0.00289	0.00	4.92E+09	-14.656	73.0874	0.00
2.4700	0.4504	-375355.	8025.	-0.00307	0.00	4.93E+09	-14.583	73.8205	0.00
2.6600	0.4432	-355442.	7992.	-0.00324	0.00	4.93E+09	-14.505	74.6166	0.00
2.8500	0.4357	-335518.	7959.	-0.00340	0.00	4.93E+09	-14.422	75.4778	0.00
3.0400	0. 4277	-315588.	7926.	-0.00355	0.00	4.93E+09	-14.334	76.4065	0.00
3.2300	0. 4195	-295655.	7894.	-0.00369	0.00	4.93E+09	-14.241	77.4052	0.00
3. 4200	0. 4109	-275725.	7861.	-0.00382	0.00	4.93E+09	-14.144	78.4770	0.00
3.6100	0. 4021	-255801.	7829.	-0.00394	0.00	4.93E+09	-14.042	79.6250	0.00
3.8000	0. 3929	-235888.	7797.	-0.00406	0.00	4.93E+09	-13.934	80.8529	0.00
3.9900	0. 3836	-215991.	7766.	-0. 00416	0.00	4.93E+09	-13.823	82.1648	0.00
4. 1800	0.3740	-196113.	7734.	-0.00426	0.00	4.93E+09	-13.706	83.5652	0.00
4.3700	0. 3642	-176258.	7703.	-0.00434	0.00	4.93E+09	-13.586	85.0591	0.00
4.5600	0.3542	-156432.	7672.	-0.00442	0.00	4.93E+09	-13.460	86.6519	0.00
4.7500	0.3440	-136637.	7642.	-0.00449	0.00	4.93E+09	-13.330	88.3496	0.00
4.9400	0. 3337	-116879.	7612.	-0. 00455	0.00	4.93E+09	-13.196	90.1590	0.00
5. 1300	0. 3233	-97160.	7582.	-0.00460	0.00	4.93E+09	-13.057	92.0874	0.00
5.3200	0. 3127	-77486.	7552.	-0.00464	0.00	4.93E+09	-12.914	94.1429	0.00
5.5100	0. 3021	-57861.	7523.	-0. 00467	0.00	4.93E+09	-12.766	96.3345	0.00
5.7000	0. 2915	-38288.	7494.	-0.00469	0.00	4.93E+09	-12.614	98.6719	0.00
5.8900	0.2808	-18770.	7465.	-0.00470	0.00	4.93E+09	-12.457	101.1663	0.00
6.0800	0.2700	686.3319	7437.	-0.00471	0.00	4.93E+09	-12.297	103.8296	0.00
6. 2700	0. 2593	20079.	7409.	-0.00470	0.00	4.93E+09	-12.131	106.6751	0.00
6.4600	0. 2486	39404.	7382.	-0. 00469	0.00	4. 93E+09	-11.962	109. 7178	0.00

6.6500	0. 2379	58657.	7355.	-0.00467	0.00	4.93E+09	-11.788	112.9740	0.00
6.8400	0.2273	77834.	7328.	-0.00463	0.00	4.93E+09	-11.611	116.4618	0.00
7.0300	0.2168	96933.	7193.	-0.00459	0.00	4.93E+09	-106.406	1119.	0.00
7.2200	0. 2064	115454.	6943.	-0.00454	0.00	4.93E+09	-113. 122	1250.	0.00
7.4100	0. 1961	133360.	6678.	-0.00449	0.00	4.93E+09	-119. 439	1389.	0.00
7.6000	0. 1859	150612.	6399.	-0.00442	0.00	4.93E+09	-125.316	1537.	0.00
7.7900	0.1759	167176.	6105.	-0.00435	0.00	4.93E+09	-132.371	1716.	0.00
7.9800	0. 1661	183012.	5796.	-0.00427	0.00	4. 93E+09	-139.210	1911.	0.00
8. 1700	0. 1564	198080.	5471.	-0.00418	0.00	4.93E+09	-145.806	2125.	0.00
8.3600	0. 1470	212341.	5131.	-0.00408	0.00	4.93E+09	-152.047	2358.	0.00
8. 5500	0. 1378	225761.	4778.	-0. 00398	0.00	4.93E+09	-157.848	2611.	0.00
8.7400	0. 1289	238305.	4412.	-0.00387	0.00	4.93E+09	-163.160	2887.	0.00
8.9300	0.1201	249943.	4035.	-0.00376	0.00	4.93E+09	-167.937	3187.	0.00
9. 1200	0. 1117	260648.	3647.	-0.00364	0.00	4. 93E+09	-172.136	3514.	0.00
9.3100	0.1035	270394.	3250.	-0.00352	0.00	4.93E+09	-175.717	3870.	0.00
9.5000	0.09565	279161.	2846.	-0.00339	0.00	4.93E+09	-178.641	4258.	0.00
9.6900	0.08806	286932.	2436.	-0.00326	0.00	4.93E+09	-180.874	4683.	0.00
9.8800	0.08077	293693.	2022.	-0.00313	0.00	4.93E+09	-182.384	5148.	0.00
10.0700	0.07379	299435.	1606.	-0.00299	0.00	4.93E+09	-183.143	5658.	0.00
10. 2600	0.06713	304152.	1188.	-0. 00285	0.00	4. 93E+09	-183. 125	6219.	0.00
10. 4500	0.06079	307843.	771. 5045	-0.00271	0.00	4. 93E+09	-182.310	6837.	0.00
10. 6400	0.05478	310512.	357.6939	-0.00257	0.00	4.93E+09	-180.681	7520.	0.00
10. 8300	0.04909	312166.	-51.459	-0.00242	0.00	4.93E+09	-178. 225	8278.	0.00
11.0200	0.04373	312817.	-454.059	-0.00228	0.00	4.93E+09	-174.933	9120.	0.00
11.2100	0.03870	312484.	-848. 196	-0.00213	0.00	4.93E+09	-170.801	10061.	0.00
11. 4000	0.03401	311187.	-1232.	-0.00199	0.00	4. 93E+09	-165.829	11118.	0.00
11.5900	0.02964	308952.	-1603.	-0.00185	0.00	4.93E+09	-160.024	12311.	0.00
11. 7800	0.02559	305810.	-1961.	-0.00170	0.00	4.93E+09	-153.395	13665.	0.00
11. 9700	0.02187	301797.	-2302.	-0. 00156	0.00	4.93E+09	-145.959	15215.	0.00
12. 1600	0.01847	296951.	-2625.	-0.00142	0.00	4.93E+09	-137.737	17003.	0.00
12.3500	0.01538	291318.	-2929.	-0.00129	0.00	4.93E+09	-128.757	19086.	0.00
12.5400	0.01260	284944.	-3206.	-0.00115	0.00	4.93E+09	-113.759	20586.	0.00
12.7300	0.01012	277910.	-3441.	-0.00102	0.00	4. 93E+09	-92.745	20898.	0.00
12. 9200	0.00793	270327.	-3631.	-8.97E-04	0.00	4. 93E+09	-73.780	21209.	0.00
13.1100	0.00603	262294.	-3780.	-7.74E-04	0.00	4.93E+09	-56.910	21521.	0.00
13. 3000	0.00440	253902.	-3893.	-6.54E-04	0.00	4. 93E+09	-42.169	21833.	0.00
13. 4900	0.00305	245229.	-3975.	-5.39E-04	0.00	4.93E+09	-29.587	22145.	0.00
13.6800	0.00195	236342.	-4030.	-4.27E-04	0.00	4.93E+09	-19. 182	22457.	0.00
13.8700	0.00110	227299.	-4065.	-3.20E-04	0.00	4.93E+09	-10.967	22769.	0.00
14.0600	4.89E-04	218143.	-12279.	-2.17E-04	0.00	4.93E+09	-7195.	3.36E+07	0.00
14. 2500	1. 10E-04	171532.	-22321.	-1.27E-04	0.00	4. 93E+09	-1613.	3. 36E+07	0.00
14. 4400	-8.86E-05	116491.	-22674.	-6.00E-05	0.00	4. 93E+09	1304.	3. 36E+07	0.00
14.6300	-1.64E-04	68201.	-18438.	-1.72E-05	0.00	4.93E+09	2412.	3.36E+07	0.00
14.8200	-1.67E-04	32432.	-12883.	6.05E-06	0.00	4.93E+09	2461.	3.36E+07	0.00
15. 0100	-1.36E-04	9449.	-7791.	1.57E-05	0.00	4.93E+09	2006.	3.36E+07	0.00
15.2000	-9.54E-05	-3109.	-3903.	1.72E-05	0.00	4.93E+09	1405.	3.36E+07	0.00
15.3900	-5.78E-05	-8365.	-1331.	1.46E-05	0.00	4.93E+09	851.2279	3.36E+07	0.00
15.5800	-2.91E-05	-9194.	127.1691	1.05E-05	0.00	4.93E+09	427.8661	3.36E+07	0.00
15. 7700	-1.00E-05	-7796.	782.8446	6.56E-06	0.00	4. 93E+09	147. 2879		0.00
								3.36E+07	
15.9600	8.30E-07	-5631.	936.8295	3.45E-06	0.00	4.93E+09	-12.213	3.36E+07	0.00
16. 1500	5.72E-06	-3528.	826.8439	1.33E-06	0.00	4.93E+09	-84.265	3.36E+07	0.00
16.3400	6.90E-06	-1862.	615.0371	8.37E-08	0.00	4.93E+09	-101.530	3.36E+07	0.00
16. 5300	6. 11E-06	-723. 175	396.8286	-5.14E-07	0.00	4.93E+09	-89.881	3.36E+07	0.00
16.7200	4.55E-06	-51.667	217.9842	-6.94E-07	0.00	4.93E+09	-67.000	3.36E+07	0.00
16. 9100	2.94E-06	271.5599	92.2224	-6.43E-07	0.00	4. 93E+09	-43.317	3. 36E+07	0.00
17.1000	1.62E-06	369.5413	15.6501	-4.95E-07	0.00	4.93E+09	-23.852	3.36E+07	0.00
17.2900	6.88E-07	343.4431	-23.083	-3.30E-07	0.00	4.93E+09	-10.125	3.36E+07	0.00
17.4800	1.18E-07	264.6270	-36.601	-1.89E-07	0.00	4. 93E+09	-1.733	3.36E+07	0.00
17.6700	-1.73E-07	176. 7391	-35.670	-8.67E-08	0.00	4.93E+09	2.5499	3.36E+07	0.00
17.8600	-2.78E-07	102.0638	-28. 103	-2.22E-08	0.00	4.93E+09	4.0876	3.36E+07	0.00
18.0500	-2.74E-07	48.6127	-18.837	1.27E-08	0.00	4.93E+09	4.0402	3.36E+07	0.00
18.2400	-2.20E-07	16. 1527	-10.540	2.76E-08	0.00	4.93E+09	3. 2379	3.36E+07	0.00
18. 4300	-1. 48E-07	0. 5204	-4. 359	3.15E-08	0.00	4. 93E+09	2. 1846	3.36E+07	0.00
18. 6200		-3.755	-4. 339	3.08E-08	0.00	4.93L+09 4.93E+09	1. 1233	3. 36E+07 3. 36E+07	0.00
	-7.63E-08								
18.8100	-8.17E-09	-2.191	0.8303	2.94E-08	0.00	4.93E+09	0. 1203	3.36E+07	0.00
19.0000	5.77E-08	0.00	0.00	2.89E-08	0.00	4.93E+09	-0.849	1.68E+07	0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.50000000 inches
Computed slope at pile head	=	0.000000 radi ans
Maximum bending moment	=	-642802. inch-1bs
Maximum shear force	=	-22674. Ibs
Depth of maximum bending moment	=	0.000000 feet below pile head
Depth of maximum shear force	=	14.44000000 feet below pile head
Number of iterations	=	7
Number of zero deflection points	5 =	4

Bendi ng

-----Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Displacement and Pile-head Rotation (Loading Type 5) Displacement of pile head = 1.000000 inches Rotation of pile head Axial load on pile head

Shear

SI ope

Deflect.

Depth

=			radi ans
=	23000	0.00	Ibs
	Total Stress		endi ng ffness

Soil Res. Soil Spr. Distrib.

x	. У	Moment	Force	S	Stress	Stiffness	р	Es*H	Lat. Load
feet	i nches	in-Ibs	l bs		psi *	lb-in^2	l b/i nch	lb/inch	l b/i nch
0.00	1.0000	-1182394.	15523.	0.00	0.00	4.65E+09	0.00	0.00	0.00
0. 1900	0. 9993	-1146872.	15505.	-5.71E-04	0.00	4.65E+09	-6.717	15.3248	0.00
0.3800	0.9974	-1111090.	15481.	-0.00112	0.00	4.67E+09	-14.558	33.2788	0.00
0.5700	0.9942	-1075099.	15438.	-0. 00166	0.00	4.68E+09	-23.037	52.8299	0.00
0.7600	0. 9898	-1038953.	15376.	-0.00217	0.00	4.70E+09	-31.745	73.1215	0.00
0.9500	0.9843	-1002708.	15294.	-0. 00267	0.00	4.71E+09	-40.430	93.6483	0.00
1.1400	0.9777	-966419.	15192.	-0.00314	0.00	4.72E+09	-48.652	113. 4591	0.00
1.3300	0.9700	-930138.	15072.	-0.00360	0.00	4.74E+09	-56.854	133. 6381	0.00
1.5200	0.9613	-893917.	14933.	-0.00404	0.00	4.75E+09	-64.535	153.0676	0.00
1.7100	0. 9516	-857808.	14778.	-0.00446	0.00	4.77E+09	-71.641	171.6515	0.00
1.9000	0. 9410	-821856.	14608.	-0. 00486	0.00	4.79E+09	-77.838	188. 6061	0.00
2.0900	0. 9294	-786103.	14498.	-0.00524	0.00	4.80E+09	-18.566	45.5443	0.00
2.2800	0. 9171	-750251.	14456.	-0.00560	0.00	4.82E+09	-18.483	45.9529	0.00
2.4700	0. 9039	-714309.	14414.	-0. 00595	0.00	4.84E+09	-18.394	46.3985	0.00
2.6600	0.8899	-678285.	14372.	-0. 00628	0.00	4.85E+09	-18.299	46.8821	0.00
2.8500	0.8753	-642190.	14330.	-0.00659	0.00	4.87E+09	-18. 198	47.4046	0.00
3.0400	0.8599	-606032.	14289.	-0. 00688	0.00	4.88E+09	-18.091	47.9675	0.00
3.2300	0.8439	-569819.	14248.	-0. 00715	0.00	4.90E+09	-17.978	48.5721	0.00
3. 4200	0.8273	-533561.	14207.	-0.00741	0.00	4.91E+09	-17.859	49.2200	0.00
3.6100	0. 8101	-497266.	14166.	-0.00765	0.00	4. 92E+09	-17.735	49.9133	0.00
3.8000	0. 7924	-460942.	14126.	-0. 00787	0.00	4. 92E+09	-17.605	50.6538	0.00
3.9900	0.7742	-424598.	14086.	-0. 00807	0.00	4. 92E+09	-17.469	51.4439	0.00
4. 1800	0.7556	-388241.	14046.	-0.00826	0.00	4.92E+09	-17.328	52.2863	0.00
4.3700	0.7366	-351880.	14007.	-0.00843	0.00	4.93E+09	-17.181	53.1838	0.00
4.5600	0.7171	-315524.	13968.	-0.00859	0.00	4.93E+09	-17.029	54.1394	0.00
4.7500	0.6974	-279179.	13929.	-0.00873	0.00	4.93E+09	-16.871	55.1568	0.00
4.9400	0.6773	-242854.	13891.	-0.00885	0.00	4.93E+09	-16.708	56.2396	0.00
5.1300	0.6570	-206557.	13853.	-0.00895	0.00	4. 93E+09	-16.539	57.3921	0.00
5.3200	0.6365	-170295.	13816.	-0.00904	0.00	4.93E+09	-16.365	58.6189	0.00
5.5100	0. 6158	-134078.	13779.	-0.00911	0.00	4.93E+09	-16.186	59.9250	0.00
5.7000	0.5950	-97912.	13742.	-0.00916	0.00	4.93E+09	-16.001	61.3162	0.00
5.8900	0.5740	-61806.	13706.	-0.00920	0.00	4.93E+09	-15.811	62.7986	0.00
6.0800	0.5530	-25766.	13670.	-0.00922	0.00	4. 93E+09	-15.616	64.3789	0.00
6.2700	0.5320	10198.	13634.	-0.00922	0.00	4.93E+09	-15.415	66.0649	0.00
6.4600	0.5110	46080.	13599.	-0.00921	0.00	4.93E+09	-15.210	67.8648	0.00
6.6500	0.4900	81871.	13565.	-0.00918	0.00	4.93E+09	-14.998	69.7880	0.00
6.8400	0.4691	117565.	13531.	-0.00913	0.00	4.93E+09	-14.782	71.8446	0.00
7.0300	0.4484	153153.	13342.	-0.00907	0.00	4.93E+09	-150.671	766.2066	0.00
7.2200	0.4277	187921.	12981.	-0.00899	0.00	4.93E+09	-166.230	886.0430	0.00
7.4100	0.4073	221779.	12584.	-0.00890	0.00	4.93E+09	-182.486	1021.	0.00

7.6000	0. 3872	254635.	12148.	-0.00879	0.00	4.93E+09	-199.446	1175.	0.00
7.7900	0. 3673	286392.	11672.	-0.00866	0.00	4. 93E+09	-218.255	1355.	0.00
7.9800	0. 3477	316945.	11157.	-0. 00852	0.00	4. 93E+09	-233. 485	1531.	0.00
8.1700	0. 3284	346207.	10614.	-0.00837	0.00	4.93E+09	-242.797	1686.	0.00
8.3600	0. 3095	374123.	10051.	-0.00820	0.00	4. 93E+09	-251.393	1852.	0.00
8.5500	0. 2910	400641.	9469.	-0.00802	0.00	4.92E+09	-259. 236	2031.	0.00
8.7400	0. 2729	425715.	8869.	-0.00783	0.00	4.92E+09	-266. 298	2225.	0.00
8.9300	0. 2553	449301.	8255.	-0.00763	0.00	4.92E+09	-272.560	2434.	0.00
9.1200	0. 2381	471361.	7628.	-0.00742	0.00	4.92E+09	-278.011	2662.	0.00
9. 3100	0. 2215	491861.	6988.	-0.00719	0.00	4. 92E+09	-282.652	2910.	0.00
9.5000	0. 2053	510772.	6340.	-0.00696	0.00	4. 92E+09	-286.490	3181.	0.00
9.6900	0. 1897	528070.	5683.	-0.00672	0.00	4. 91E+09	-289.544	3480.	0.00
9.8800	0. 1747	543735.	5020.	-0. 00647	0.00	4.91E+09	-291.841	3809.	0.00
10. 0700	0. 1602	557749.	4353.	-0.00622	0.00	4.90E+09	-293. 418	4176.	0.00
10. 2600	0. 1463	570103.	3683.	-0.00595	0.00	4.90E+09	-294.101	4582.	0.00
10.4500	0. 1331	580788.	3013.	-0.00569	0.00	4.89E+09	-293.530	5029.	0.00
10. 6400	0. 1204	589806.	2346.	-0.00541	0.00	4.89E+09	-291.662	5523.	0.00
10.8300	0. 1084	597163.	1685.	-0.00514	0.00	4.89E+09	-288.467	6068.	0.00
11. 0200	0.09699	602875.	1032.	-0. 00486	0.00	4. 89E+09	-283. 918	6674.	0.00
11. 2100	0.08624	606963.	391.6746		0.00	4. 89E+09	-277.998	7349.	
				-0.00457					0.00
11.4000	0.07614	609457.	-233.836	-0.00429	0.00	4.88E+09	-270.695	8106.	0.00
11. 5900	0.06668	610395.	-841.112	-0.00400	0.00	4.88E+09	-262.003	8958.	0.00
11. 7800	0.05788	609822.	-1427.	-0.00372	0.00	4.88E+09	-251. 926	9924.	0.00
11. 9700	0.04972	607789.	-1988.	-0.00344	0.00	4.88E+09	-240.475	11027.	0.00
12. 1600	0.04221	604358.	-2522.	-0.00315	0.00	4.88E+09	-227.671	12296.	0.00
12.3500	0.03535	599595.	-3025.	-0.00287	0.00	4.89E+09	-213.542	13773.	0.00
12.5400	0.02912	593575.	-3494.	-0.00259	0.00	4.89E+09	-198.131	15512.	0.00
12. 7300	0.02352	586380.	-3927.	-0. 00232	0.00	4.89E+09	-181. 492	17590.	0.00
12. 9200	0.02352	578099.	-4321.		0.00	4.89E+09	-163.693	20118.	0.00
				-0.00205					
13.1100	0.01419	568825.	-4660.	-0.00178	0.00	4.90E+09	-133.960	21521.	0.00
13.3000	0.01044	558716.	-4927.	-0. 00152	0.00	4.90E+09	-99.936	21833.	0.00
13. 4900	0.00727	547951.	-5121.	-0.00126	0.00	4.91E+09	-70.639	22145.	0.00
13. 6800	0.00469	536686.	-5254.	-0. 00101	0.00	4.91E+09	-46.196	22457.	0.00
13.8700	0.00268	525050.	-5337.	-7.62E-04	0.00	4.91E+09	-26.722	22769.	0.00
14.0600	0.00122	513146.	-25791.	-5.21E-04	0.00	4.92E+09	-17915.	3.36E+07	0.00
14.2500	3.01E-04	407988.	-51257.	-3.08E-04	0.00	4.92E+09	-4424.	3.36E+07	0.00
14.4400	-1.85E-04	279736.	-53189.	-1.48E-04	0.00	4. 93E+09	2729.	3. 36E+07	0.00
14. 6300	-3. 76E-04	165601.	-43767.	-4.53E-05	0.00	4. 93E+09	5536.	3. 36E+07	0.00
14.8200	-3.92E-04	80207.	-30876.	1.15E-05	0.00	4.93E+09	5772.	3.36E+07	0.00
15.0100	-3.23E-04	24796.	-18868.	3.58E-05	0.00	4.93E+09	4761.	3.36E+07	0.00
15. 2000	-2.29E-04	-5870.	-9604.	4.02E-05	0.00	4. 93E+09	3366.	3.36E+07	0.00
15. 3900	-1.40E-04	-19040.	-3417.	3.45E-05	0.00	4.93E+09	2061.	3.36E+07	0.00
15. 5800	-7.15E-05	-21489.	132.6856	2.51E-05	0.00	4.93E+09	1053.	3.36E+07	0.00
15.7700	-2.57E-05	-18461.	1763.	1.58E-05	0.00	4.93E+09	377.6865	3.36E+07	0.00
15.9600	7.15E-07	-13465.	2182.	8.45E-06	0.00	4.93E+09	-10.530	3.36E+07	0.00
16. 1500	1.29E-05	-8521.	1954.	3.37E-06	0.00	4.93E+09	-189.626	3.36E+07	0.00
16.3400	1.61E-05	-4560.	1468.	3.38E-07	0.00	4.93E+09	-236. 388	3.36E+07	0.00
16.5300	1.44E-05	-1827.	956. 4125	-1.14E-06	0.00	4. 93E+09	-212. 329	3. 36E+07	0.00
		-197.681			0.00				0.00
16.7200	1.09E-05		532.0800	-1.61E-06		4.93E+09	-159.892	3.36E+07	
16.9100	7.09E-06	600.7370	230.8044	-1.52E-06	0.00	4.93E+09	-104.385	3.36E+07	0.00
17.1000	3.95E-06	856.3756	45.4495	-1.18E-06	0.00	4. 93E+09	-58.207	3.36E+07	0.00
17.2900	1.72E-06	809. 2218	-49. 783	-7.92E-07	0.00	4.93E+09	-25.330	3.36E+07	0.00
17.4800	3.41E-07	630. 1969	-84.382	-4.59E-07	0.00	4.93E+09	-5.020	3.36E+07	0.00
17.6700	-3.74E-07	424.9219	-83.833	-2.15E-07	0.00	4.93E+09	5.5020	3.36E+07	0.00
17.8600	-6.40E-07	248.1456	-66. 816	-5.95E-08	0.00	4.93E+09	9.4250	3.36E+07	0.00
18.0500	-6.45E-07	120. 3039	-45.248	2.58E-08	0.00	4.93E+09	9.4940	3.36E+07	0.00
18.2400	-5. 23E-07	41.7866	-25.653	6.33E-08	0.00	4.93E+09	7.6947	3.36E+07	0.00
18. 4300	-3.56E-07	3. 2593	-10.900	7.37E-08	0.00	4. 93E+09	5. 2464	3. 36E+07	0.00
18. 6200	-1.87E-07	-7.996	-1. 787	7.26E-08	0.00	4. 93E+09	2.7474	3. 36E+07	0.00
18.8200	-2.53E-08	-4.967	1.7695	6.96E-08	0.00	4. 93E+09 4. 93E+09	0. 3727	3. 36E+07 3. 36E+07	0.00
						4. 93E+09 4. 93E+09			
19.0000	1.31E-07	0.00	0.00	6.85E-08	0.00	4.73E+U9	-1. 925	1.68E+07	0.00

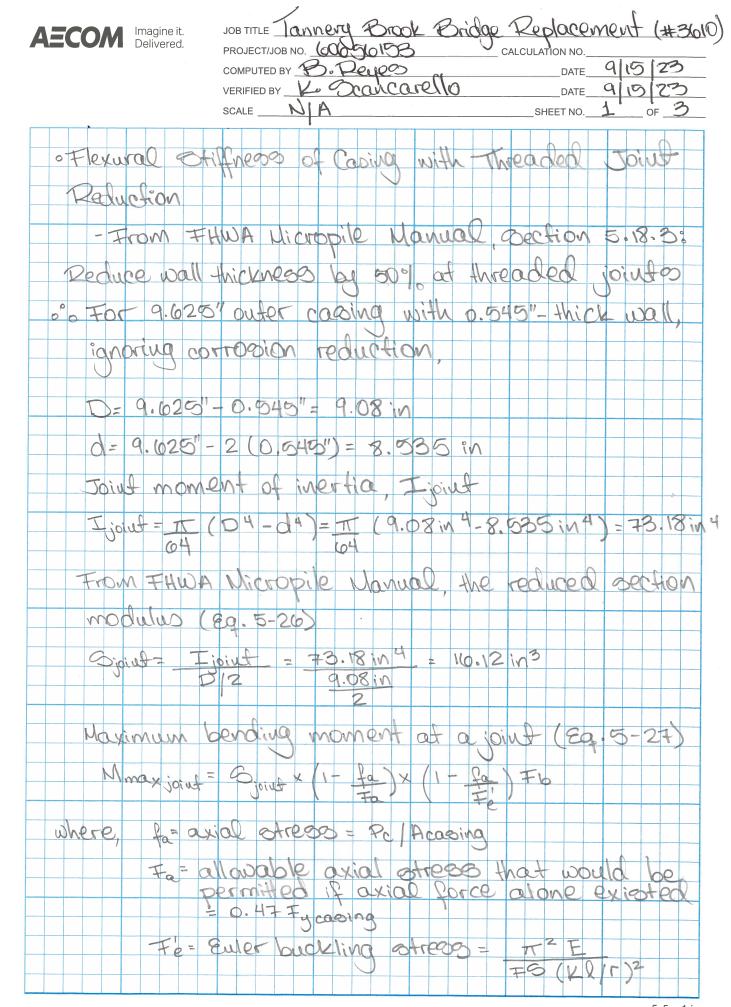
* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

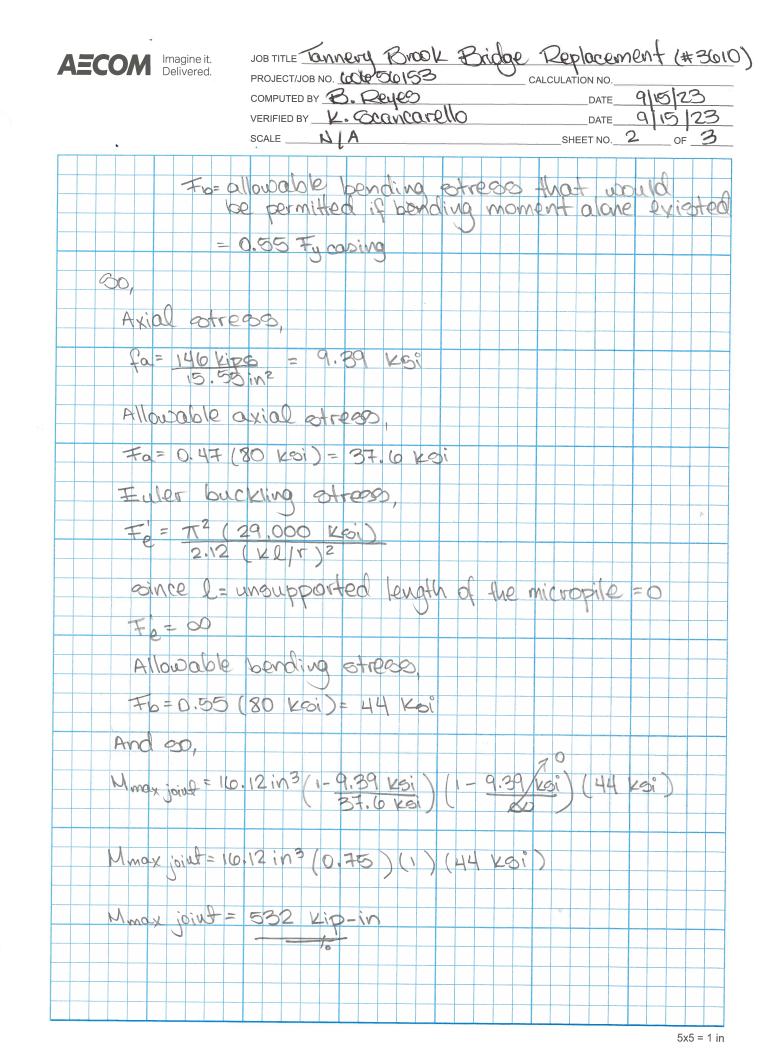
Output Summary for Load Case No. 2:

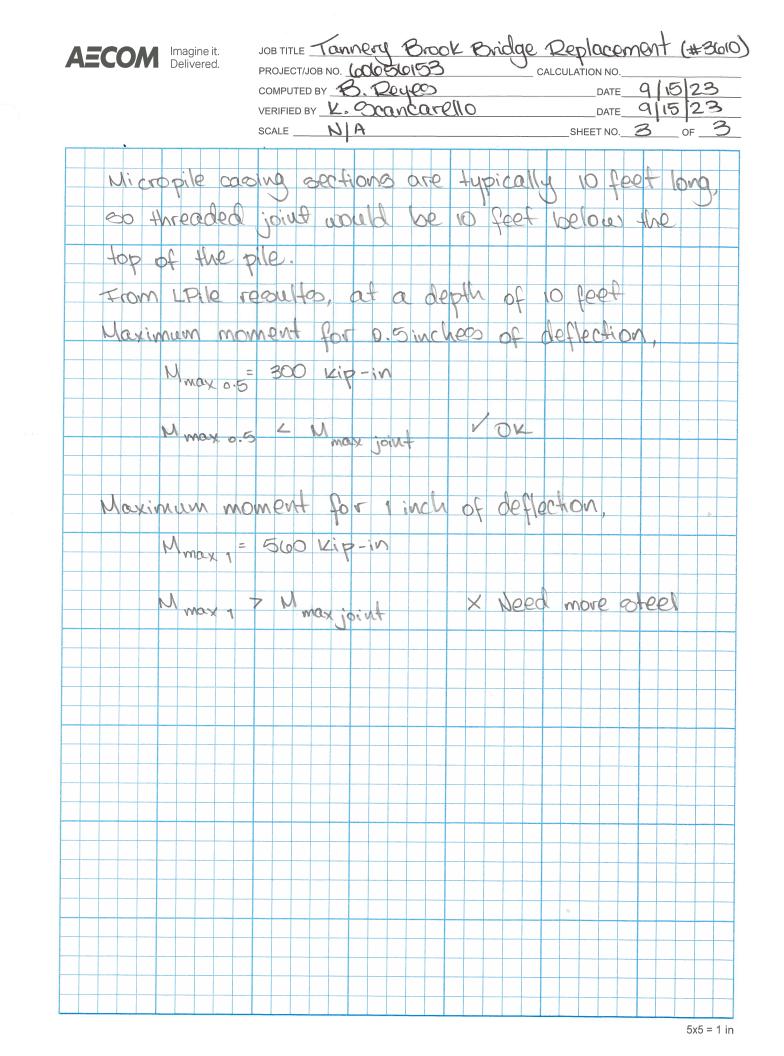
Pile-head deflection=1.00000000 inchesComputed slope at pile head=0.000000 radiansMaximum bending moment=-1182394. inch-lbsMaximum shear force=-53189. lbsDepth of maximum bending moment=0.000000 feet below pile head Copper of maximum shear force=0.000000 feet below pile headNumber of iterations=8 Number of zero deflection points = 4 _____ Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Load Axi al Pile-head Pile-head Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile No. 1 Load 1 2 Load 2 I bs inches radians I bs in-Ibs ____ ____
 1
 y, in
 0.5000
 S, rad
 0.00
 230000.
 0.5000
 0.00
 -22674.
 -642802.

 2
 y, in
 1.0000
 S, rad
 0.00
 230000.
 1.0000
 0.00
 -53189.
 -1182394.
 Maximum pile-head deflection = 1.0000000000 inches Maximum pile-head rotation = 0.000000000 radians = 0.000000 deg.

maximum pite-nead rotation = 0.000000000 radians = 0.000000 deg.


Summary of Warning Messages


The following warning was reported 2970 times


**** Warning ****

This warning is for an input value for uniaxial compressive strength that has been specified for a soil defined using the vuggy limestone criteria. The input value is outside of the range of 1,000 to 2,500 psi (6,895 to 17,237 kPa) which were used in actual field tests on which this theory is based. Higher or lower values may be applicable but the user is warned about the theoretical and testing limitations.

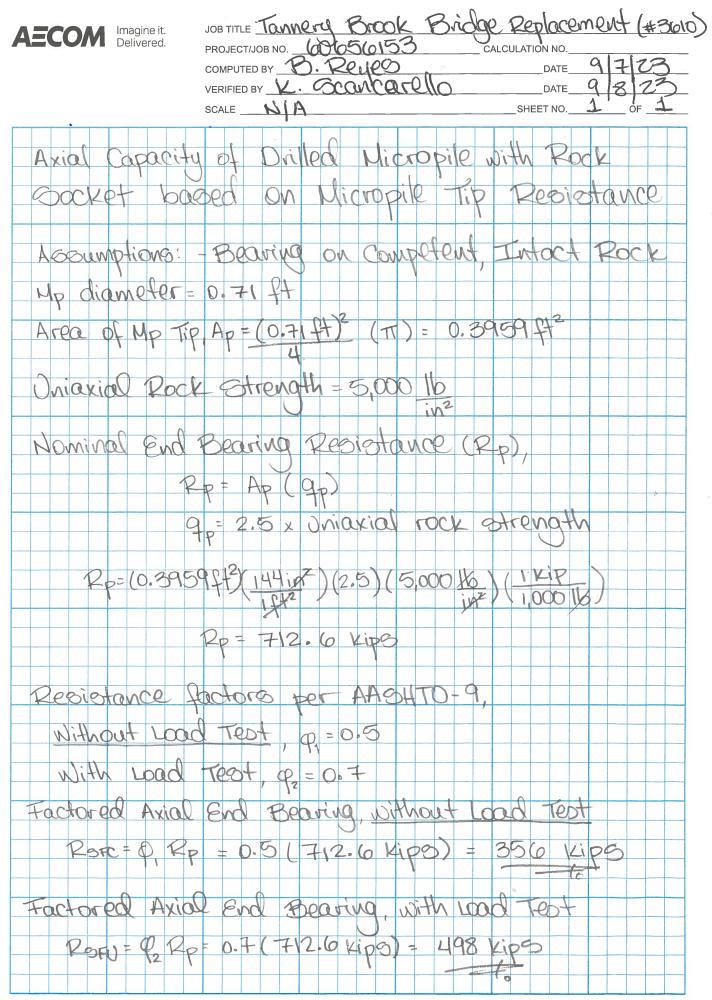
The analysis ended normally.

Micropile Calculations

Axial Capacity of Drilled Micropile with Rock Socket based on Micropile Tip Resistance

Assumptions: - Bearing on competent, intact granite

Micropile	Area of Micropile Tip,	Uniaxial Rock
Diameter (ft)	Ap (ft ²)	Strength (psi)
0.71	0.3941	5000


Notes: 1) Tip resistance for micropile founded on competent granite, strength limited to the compressive strength of the grout, 5,000 psi

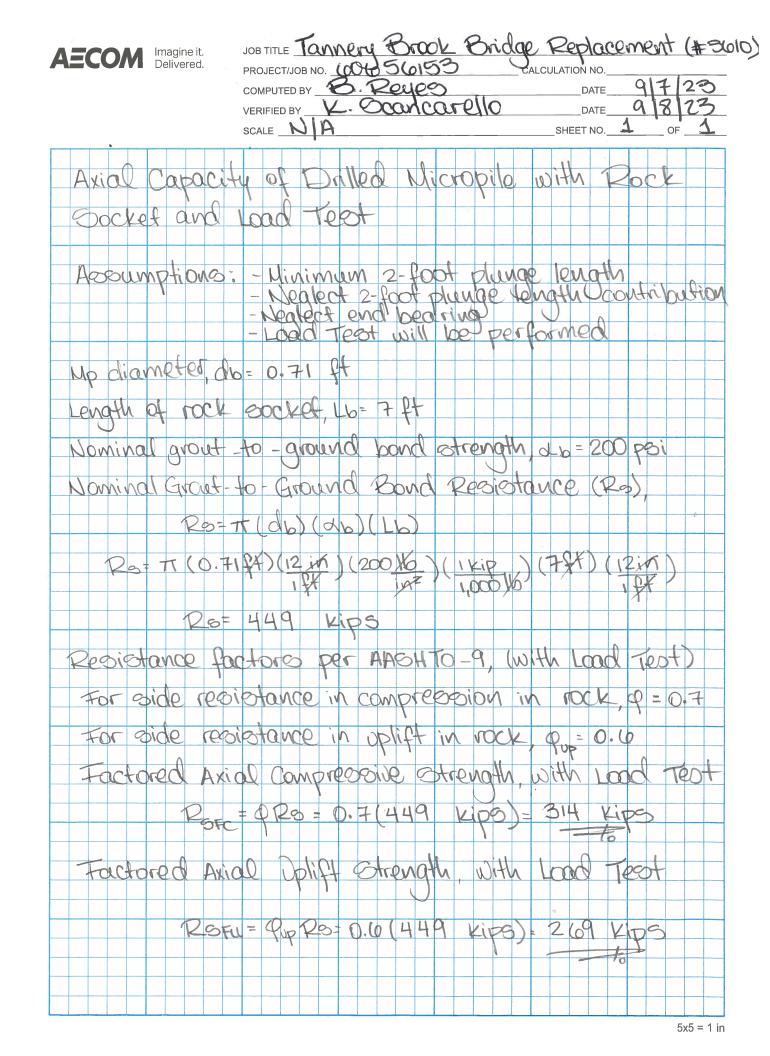
Nominal End Bearing Resistance (R_p) $Rp = Ap * q_p$ where, Ap = Area of pile tip q_p = Unit tip resistance= 2.5 * Uniaxial Rock Strength (Eq. 10.8.3.5.4c-1) Rp= 709.3 kips From AASHTO-9 Table 10.5.5.2.5-1, For Tip Resistance in Compression on Rock: 0.5 Assumes no Load Test φ= For Tip Resistance in Compression on Rock, with Load Test: 0.7 Assumes Load Test, therefore values in AASHTO-9 φ= Table 10.5.5.2.3-1 apply, but no greater than 0.7 Factored Axial End Bearing, without Load Test

R_{SFC}= 354.7 kips

Factored Axial End Bearing, with Load Test

R _{SFU} =	496.5	kips	

Micropile Axial Capacity Tannery Brook Bridge Replacement (#3610) Norway, ME Project No. 60656153


Axial Capacity of Drilled Micropile with Rock Socket and Load Test

Assumptions: Minimum 2-foot plunge length Neglect 2-foot plunge length contribution to axial resistance Neglect end bearing Load test will be performed

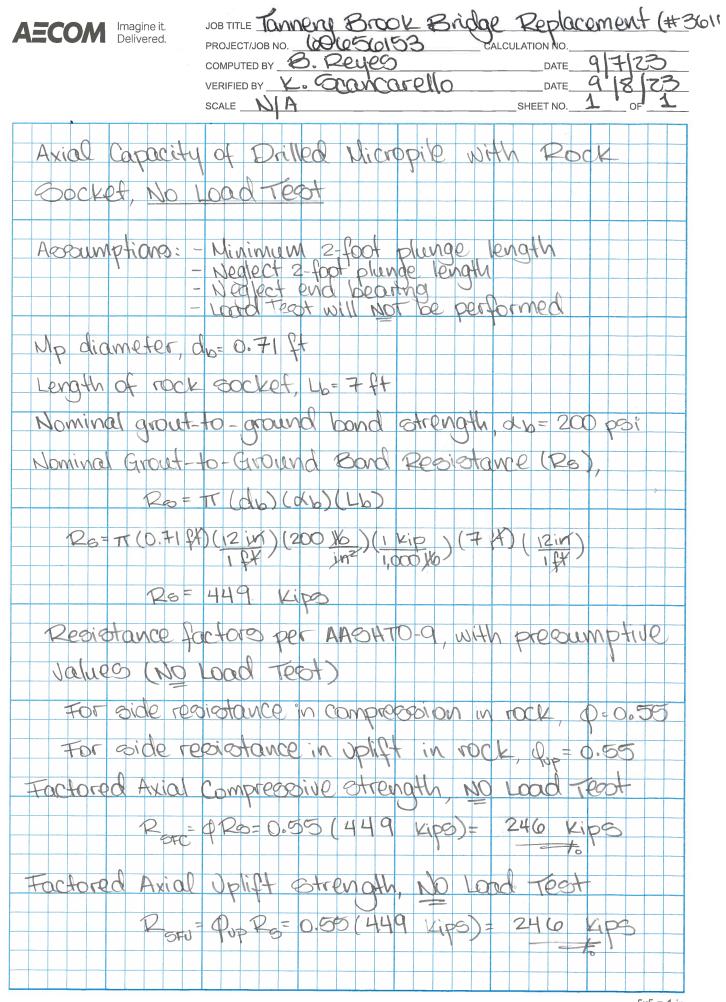
Micropile Diameter, d _b (ft)	Length of Rock Socket, L _b (ft)	Nominal Grout-to- Ground Bond Strength, α _b (psi)	
0.71	6	200	
	t-to-Ground Bond Stren C10.9.3.5.2-1	igth based on values pr	ovided in AASHTO-9
Nominal grout-	to-ground bond resistan	ice(Rs)	
	Rs= $\pi d_b \alpha_b L_b$		(Eq. 10.9.3.5.2-1)
where,			
	d _b = Diameter of microp	ile drill hole through b	onded length
	α_b = Nominal micropile	grout-to-ground bond	strength
	L_{b} = micropile bonded le	ength	
Rs=	384.5	kips	
1.3-	304.0	Kip3	
	Table 10.5.5.2.5-1,		
For Side Resista	nce in Compression in R		
	φ=	0.7	Assumes Load Test, therefore values in AASHTO-9
Eor Sido Docista	nco in Unlift in Dock		Table 10.5.5.2.3-1 apply, but no greater than 0.7
FUI SIDE RESISTA	nce in Uplift in Rock,	0.6	Assumes Load Test, therefore values in AASHTO-9
	φ=	0.0	Table 10.5.5.2.3-1 apply, but no greater than 0.7
Factored Axial (Compressive Strength, w	vith Load Test	
	·····p································		
R _{SFC} =	269.2	kips	1
•			-

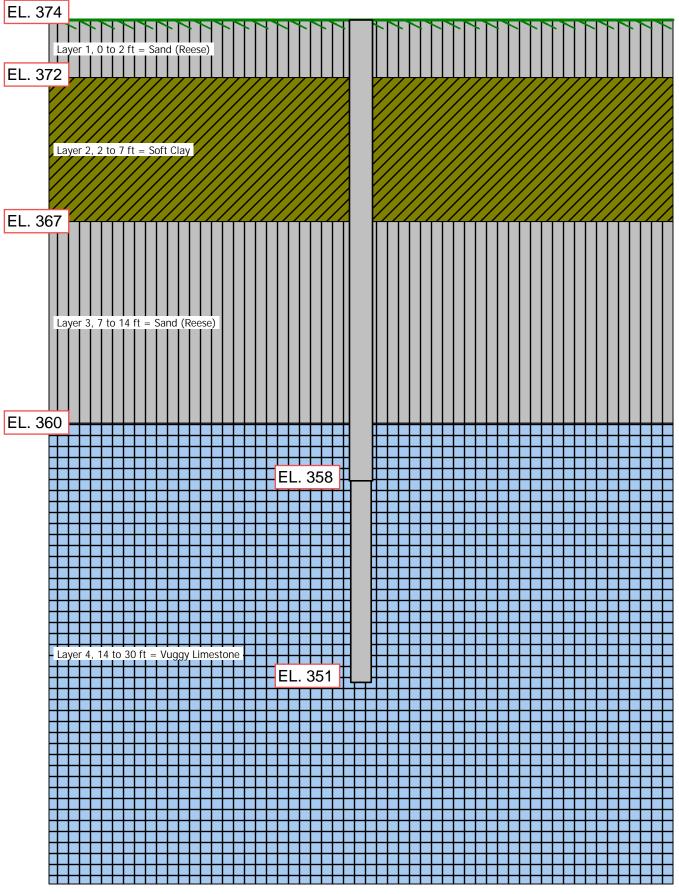
Factored Axial Uplift Strength, with Load Test

R _{SFU} = 230.7 kips				
	R _{SFU} =	230.7	kips	

Micropile Axial Capacity Tannery Brook Bridge Replacement (#3610) Norway, ME Project No. 60656153

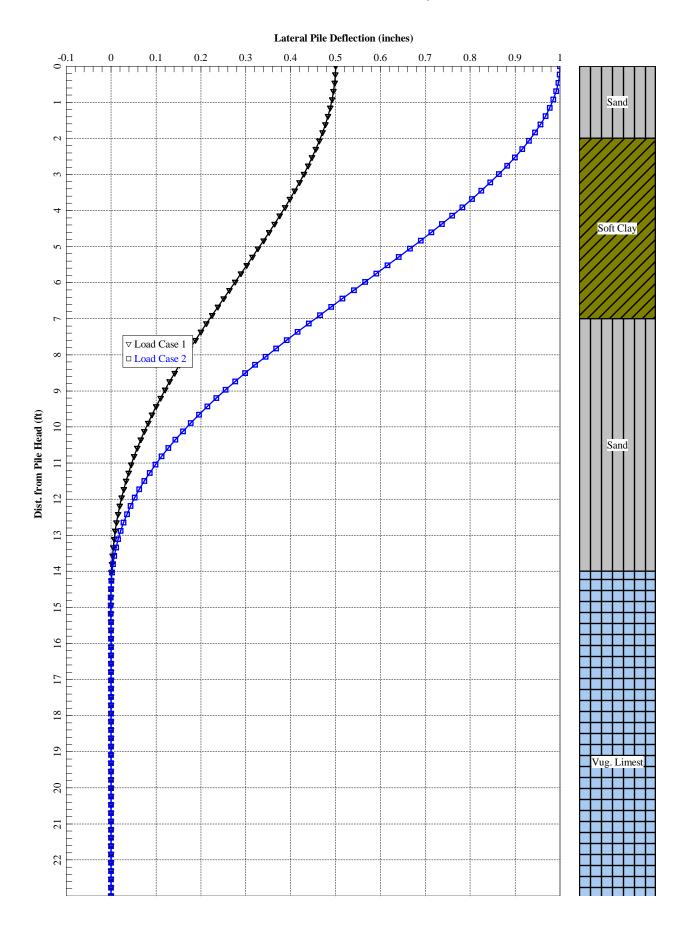
Axial Capacity of Drilled Micropile with Rock Socket, No Load Test

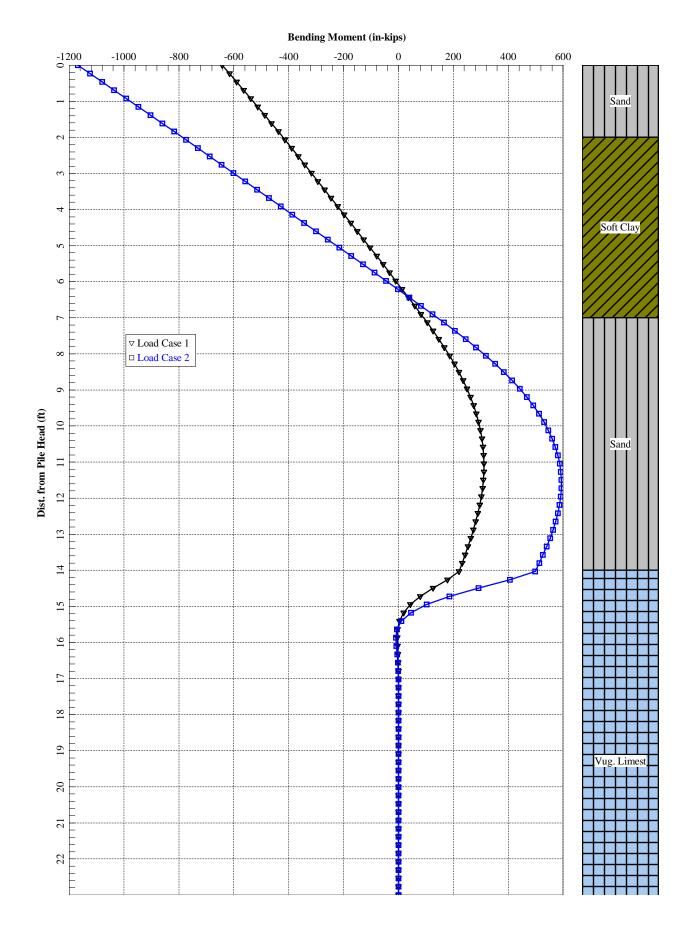

Assumptions: Minimum 2-foot plunge length Neglect 2-foot plunge length contribution to axial resistance Neglect end bearing Presumptive values, Load Test <u>will not be performed</u>

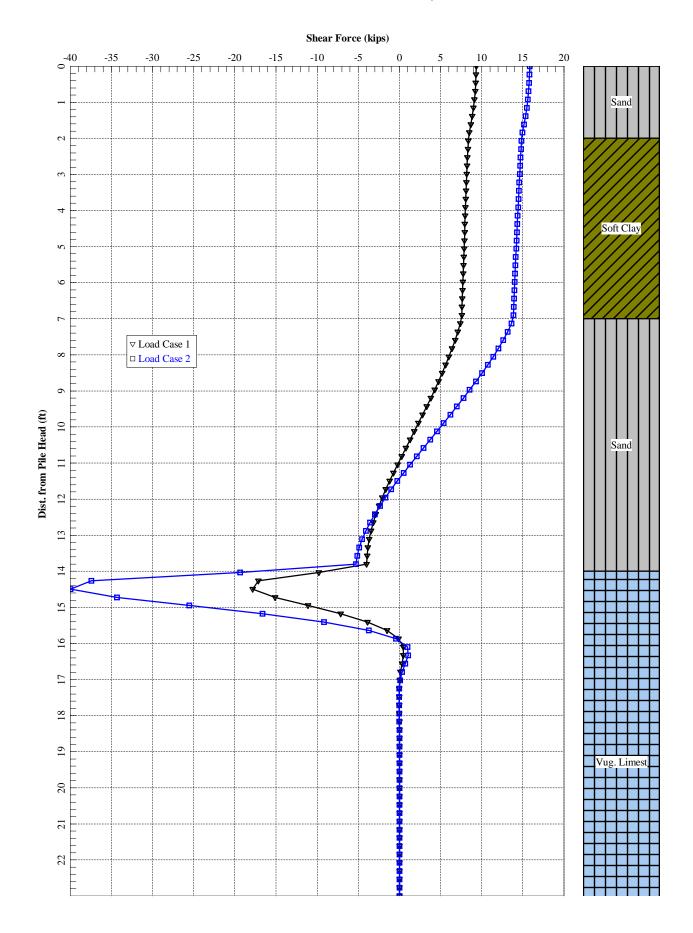

		-	-		
Micropile	Length of Rock Socket,	Nominal Grout-to-			
Diameter, d _b	$L_{\rm b}$ (ft)	Ground Bond			
(ft)	$L_{b}(II)$	Strength, α_{b} (psi)			
0.71	7	200			
Notes: 1) Grou	it-to-Ground Bond Strer	ngth based on values p	rovided in AASHTO-9		
Table	C10.9.3.5.2-1				
Nominal grout-	to-ground bond resistar	nce(Rs)			
5	Rs= $\pi * d_h * \alpha_h * L_h$	· · /	(Eq. 10.9.3.5.2-1)		
where,					
	d _b = Diameter of microp	oile drill hole through h	oonded length		
	$\alpha_{\rm b}$ = Nominal micropile	•	•		
	5 1	0 0	strengtri		
	L _b = micropile bonded le	ength			
R _S =	448.6	kips			
From AASHTO-9	9 Table 10.5.5.2.5-1,				
For Side Resista	ince in Compression in F	Rock,			
	φ=	0.55	Based on Presumptive Values - Assumes no Load Test		
For Side Resista	ince in Uplift in Rock,				
	φ=	0.55	Based on Presumptive Values - Assumes no Load Test		
	r				
Factored Axial Compressive Strength, without Load Test					
	<u></u>				

R_{SFC}= 246.7 kips

Factored Axial Uplift Strength, without Load Test


R_{SFU}= 246.7 kips





LPile 2022.12.02, © 2022 by Ensoft, Inc.

Note: Elevations correspond to NAVD88 datum

LPile for Windows, Version 2022-12.002
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
AECOM Chelmsford, MA
Serial Number of Security Device: 235486653
This copy of LPile is licensed for exclusive use by:
AECOM, LPILE GLobal, GLobal License
Use of this software by employees of AECOM other than those of the office site in LPILE Global, Global License is a violation of the software license agreement.
Files Used for Analysis
Path to file locations: \Secure_DCS\Resources\Legacy\Private\AE_Depts\Geot\PROJECT FILES (GEOTECH)\Tannery Brook Bridge Norway ME - 60656153\Calculations\Micropiles\
Name of input data file: Tannery Brook Micropile Lateral Capacity_R1 Corrosion.lp12d
Name of output report file: Tannery Brook Micropile Lateral Capacity_R1 Corrosion.lp12o
Name of plot output file: Tannery Brook Micropile Lateral Capacity_R1 Corrosion.lp12p
Name of runtime message file: Tannery Brook Micropile Lateral Capacity_R1 Corrosion.lp12r
Date and Time of Analysis
Date: September 15, 2023 Time: 14:37:46
Problem Title
Project Name: Tannery Brook Bridge Replacement
Job Number: 60656153
Client: TY Linn
Engineer: B Reyes

Description: Lateral Analysis of Micropiles based on Boring BB-NTB-101

	Р	Program Options and	Settings	
- Conve Engi neer	ional Options: ntional Analysis ing Units Used for stomary System Unit			
- Maxim - Defle - Maxim	Control Options: um number of iterat ction tolerance for um allowable deflec r of pile increment	convergence ti on	= 1.0000E- = 100.00	500 -05 in 000 in 100
	Type and Number of c loading specified			
 Anal y No di Loadi Input Input Compu Push- 	f p-y modification sis uses layering c stributed lateral I ng by lateral soil of shear resistanc of moment resistan tation of pile-head over analysis of pi ing analysis of pil	correction (Method of oads are entered movements acting or the at the pile tip r ice at the pile tip l foundation stiffned le not selected	of Georgiadis) n pile not selected not selected	ed
 Value soil Print No p- 	t files use decimal s of pile-head defl reaction are printe ing Increment (noda	ection, bending mor d for full length o I spacing of output outed and reported f	nent, shear force, and of pile.	
		structural Propertie	es and Geometry	
Total le	f pile sections def ngth of pile ground surface bel	ĩi ned	= = 23.0 = 0.00	000 ft
Pile dia	meters used for p-y	curve computations	are defined using 4	points.
			ilues interpolated wit pile diameter vs. de	
Point No.	Depth Below Pile Head feet	Pile Diameter inches		
1 2 3	0.000 16.000 16.000	9. 5000 9. 5000 8. 5000		

Input Structural Properties for Pile Sections:

Pile Section No. 1:		
Section 1 is a drilled shaft with permanent casing Length of section Casing outside diameter	= =	16.000000 ft 9.500000 in
Pile Section No. 2:		
Section 2 is a round drilled shaft, bored pile, or Length of section Shaft Diameter	CI DH = =	pile 7.000000 ft 8.500000 in
Soil and Rock Layering Information	tion	
The soil profile is modelled using 4 layers		
Layer 1 is sand, p-y criteria by Reese et al., 1974		
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Friction angle at top of layer Friction angle at bottom of layer Subgrade k at top of layer Subgrade k at bottom of layer		0.0000 ft 2.000000 ft 57.600000 pcf 57.600000 pcf 32.000000 deg. 32.000000 deg. 27.000000 pci 27.000000 pci
Layer 2 is soft clay, p-y criteria by Matlock, 1970		
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Undrained cohesion at top of layer Undrained cohesion at bottom of layer Epsilon-50 at top of layer Epsilon-50 at bottom of layer		2.000000 ft 7.000000 ft 47.600000 pcf 47.600000 pcf 50.000000 psf 50.000000 psf 0.020000 0.020000
Layer 3 is sand, p-y criteria by Reese et al., 1974		
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Friction angle at top of layer Subgrade k at top of layer Subgrade k at bottom of layer		7.000000 ft 14.000000 ft 62.600000 pcf 62.600000 pcf 34.000000 deg. 34.000000 deg. 60.000000 pci 60.000000 pci
Layer 4 is strong rock (vuggy limestone)		
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Uniaxial compressive strength at top of layer Uniaxial compressive strength at bottom of layer	= = = =	14.000000 ft 30.000000 ft 92.600000 pcf 92.600000 pcf 5000. psi 5000. psi

(Depth of the lowest soil layer extends 7.000 ft below the pile tip)

	Summa	ry of Input S	oil Propertie	s				
Layer	Soi I Туре	Layer	Effective	Cohesi on	Angle of	Uni axi al	E50	
Num.	Name	Depth	Unit Wt.		Friction	qu	or	kpy
	(p-y Curve Type)	ft	pcf	psf	deg.	psi	krm	pci
1	Sand	0.00	57.6000		32.0000			
27.0000 27.0000	(Reese, et al.)	2.0000	57.6000		32.0000			
27.0000	Soft	2.0000	47.6000	50.0000			0.02000	
	CI ay	7.0000	47.6000	50.0000			0.02000	
3 60. 0000	Sand	7.0000	62.6000		34.0000			
60.0000	(Reese, et al.)	14.0000	62.6000		34.0000			
4 4	Strong Rock	14.0000	92.6000			5000.		
	(Vuggy Limestone)	30.0000	92.6000			5000.		

----------Static Loading Type _____

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____

Number of loads specified = 2

Load No.	Load Type		Condi ti on 1		Condi ti on 2	Axial Thrust Force, Ibs	Compute Top y vs. Pile Length	Run Analysis
1	5	у =	0.500000 in	S =	0.0000 in/in	230000.	N. A.	Yes
2	5	y =	1.000000 in	S =	0.0000 in/in	230000.	N. A.	Yes

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

_____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ . _ _ _ _ _ _

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 2

Pile Section No. 1:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Permanent Casing:

Length of Section	=	16.000000 ft
Outer Diameter of Casing	=	9.500000 in
Concrete Cover Thickness Inside Casing	=	3.000000 in
Casing Wall Thickness	=	0.482500 in
Moment of Inertia of Steel Casing	=	139.334052 in^4
Yield Stress of Casing	=	80000. psi
Elastic Modulus of Casing	=	29000000. psi
Number of Reinforcing Bars	=	1 bar
Area of Single Reinforcing Bar	=	0.790000 sq. in.
Edge-to-Edge Bar Spacing	=	-1.00000 in
Maximum Concrete Aggregate Size	=	0.500000 in
Ratio of Bar Spacing to Aggregate Size	=	-2.00
Offset of Center of Rebar Cage from Center of Pile	=	0.0000 in
Yield Stress of Reinforcing Bars	=	75000. psi
Modulus of Elasticity of Reinforcing Bars	=	29000000. psi
Gross Area of Pile	=	70.882184 sq. in.
Area of Concrete	=	56.423291 sq. in.
Cross-sectional Area of Steel Casing	=	13.668893 sq. in.
Area of All Steel (Casing and Bars)	=	14.458893 sq. in.
Area Ratio of All Steel to Gross Area of Pile	=	20.40 percent
Axial Structural Capacities:		

Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As	=	1344.601 kips
Tensile Load for Cracking of Concrete	=	-71.843 kips
Nominal Axial Tensile Capacity	=	-1152.761 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	X	Y
Number	inches	sq. in.	i nches	i nches
1	1.000000	0. 790000	0. 00000	0. 00000

NOTE: The positions of the above rebars were computed by LPile

Concrete Properties:

Compressive Strength of Concrete	=	4000. psi
Modulus of Elasticity of Concrete	=	3604997. psi
Modulus of Rupture of Concrete	=	-474.34165 psi
Compression Strain at Peak Stress	=	0.001886
Tensile Strain at Fracture of Concrete	=	-0.0001154
Maximum Coarse Aggregate Size	=	0.500000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	ki ps
1	230.000

Definitions of Run Messages and Notes: -

 $[\]ensuremath{\mathsf{C}}$ = concrete in section has cracked in tension.

Y = stress in reinforcing steel has reached yield stress.
 T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in

concrete more than 0.003. See ACI 318-14, Section 21.2.3. Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 230.000 kips

Bending Max Casing Run	Bendi ng	Bendi ng	Depth to	Max Comp	Max Tens	Max Conc	Max Steel
Curvature Stress Msg	Moment	Stiffness	N Axis	Strai n	Strai n	Stress	Stress
rad/in.	in-kip	kip-in2	in	in/in	in/in	ksi	ksi
ksi							
0. 00000125 10. 6635681	6. 1582342	4926587.	294.2148963	0.0003678	0.0003559	1. 4075122	10. 5120431
0. 00000250 10. 8341005	12. 3271323	4930853.	149. 4833687	0.0003737	0.0003500	1. 4275515	10. 5310505
0. 00000375 11. 0046762	18. 4960238	4932273.	101.2399245	0.0003796	0.0003440	1. 4475180	10. 5501012
0. 00000500 11. 1752952	24.6649052	4932981.	77.1185011	0.0003856	0. 0003381	1. 4674118	10. 5691952
0. 00000625 11. 3459575	30. 8337734	4933404.	62.6458860	0.0003915	0.0003322	1. 4872328	10. 5883325
0. 00000750 11. 5166631	37.0026250	4933683.	52.9976751	0.0003975	0.0003262	1.5069810	10. 6075131
0. 00000875 11. 6874120	43. 1714569	4933881.	46. 1062666	0.0004034	0.0003203	1. 5266562	10. 6267370
0.00001000 11.8582043	49. 3402656	4934027.	40. 9378595	0.0004094	0. 0003144	1. 5462584	10. 6460043
0.00001125	55.5090480	4934138.	36.9181202	0.0004153	0. 0003085	1.5657876	10. 6653149
0. 00001250	61.6778007	4934224.	33.7024482	0.0004213	0.0003025	1.5852436	10. 6846687
0. 00001375	67.8465204	4934292.	31.0715524	0.0004272	0.0002966	1.6046266	10. 7040659
0. 00001500	74.0152040	4934347.	28.8792389	0.0004332	0.0002907	1.6239362	10. 7235064
0. 00001625	80. 1838480	4934391.	27.0242962	0.0004391	0. 0002848	1.6431726	10. 7429903
0. 00001750	86.3524493	4934426.	25.4344308	0.0004451	0.0002789	1.6623357	10. 7625174
0. 00001875	92. 5210045	4934454.	24.0566270	0.0004511	0.0002729	1. 6814254	10. 7820879
0. 00002000	98. 6895104	4934476.	22.8511235	0.0004570	0.0002670	1. 7004416	10. 8017017
0.00002125	104.8579636	4934492.	21. 7875141	0.0004630	0.0002611	1. 7193842	10. 8213588
0. 00002250 13. 5685092	111.0263609	4934505.	20.8421500	0.0004689	0.0002552	1. 7382533	10. 8410592
0. 00002375 13. 7397779	117. 1946991	4934514.	19.9963607	0.0004749	0.0002493	1. 7570488	10. 8608029
0. 00002500 13. 9110896	123. 3629750	4934519.	19. 2352102	0.0004809	0. 0002434	1. 7757705	10. 8805896
0. 00002625 14. 0824450	129. 5311849	4934521.	18. 5466071	0.0004868	0.0002375	1. 7944185	10. 9004200
0. 00002750	135. 6993258	4934521.	17.9206586	0.0004928	0.0002316	1.8129927	10. 9202937
0. 00002875	141.8673944	4934518.	17.3491923	0.0004988	0.0002257	1.8314930	10. 9402107
0. 00003000	148. 0353874	4934513.	16.8253981	0.0005048	0.0002198	1.8499194	10. 9601711
0. 00003125 14. 7682998	154. 2033016	4934506.	16.3435552	0.0005107	0.0002139	1.8682718	10. 9801748
0.00003250	160. 3711336	4934496.	15.8988231	0.0005167	0.0002080	1.8865501	11.0002218

14.9398718							
0. 00003375 15. 1114871	166. 5388801	4934485.	15. 4870783	0.0005227	0.0002021	1. 9047543	11.0203121
0. 00003500	172.7065379	4934473.	15.1047866	0.0005287	0.0001962	1. 9228843	11.0404458
0. 00003625	178.8741038	4934458.	14.7489011	0.0005346	0.0001903	1.9409401	11.0606228
0. 00003750	185.0415743	4934442.	14. 4167811	0.0005406	0.0001844	1.9589216	11.0808431
0. 00003875	191. 2089463	4934424.	14. 1061268	0.0005466	0. 0001785	1. 9768288	11. 1011067
0. 00004000	197. 3762164	4934405.	13.8149257	0.0005526	0.0001726	1. 9946615	11. 1214137
0. 00004125	203. 5433814	4934385.	13.5414094	0.0005586	0. 0001667	2.0124198	11. 1417640
0.00004250	209. 7104380	4934363.	13.2840175	0.0005646	0.0001608	2.0301035	11. 1621577
16. 3140077 0. 00004375 16. 4859697	215.8773829	4934340.	13.0413678	0.0005706	0.0001549	2.0477127	11. 1825947
0. 00004500	222.0442128	4934316.	12.8122318	0.0005766	0. 0001491	2.0652472	11.2030750
0.00004625	228. 2109245	4934290.	12.5955140	0.0005825	0. 0001432	2.0827069	11. 2235986
0.00004750	234. 3775146	4934263.	12.3902337	0.0005885	0. 0001373	2. 1000919	11.2441657
0. 00004875	240. 5439798	4934235.	12. 1955113	0.0005945	0. 0001314	2. 1174021	11.2647760
0. 00005125	252.8765228	4934176.	11.8346500	0.0006065	0. 0001197	2. 1517978	11. 3061267
0.00005375	265. 2085269	4934112.	11.5074685	0.0006185	0. 0001079	2. 1858934	11.3476508
0. 00005625	277. 5399661	4934044.	11.2094760	0.0006305	0.00009616	2. 2196885	11. 3893483
0. 00005875 18. 5528943	289. 8708140	4933971.	10. 9369464	0.0006425	0.00008442	2. 2531826	11. 4312193
0. 00006125	302. 2010443	4933895.	10. 6867617	0.0006546	0.00007269	2. 2863752	11. 4732636
0. 00006375	314. 5306307	4933814.	10. 4562932	0.0006666	0.00006096	2.3192659	11. 5154814
0. 00006625	326.8595470	4933729.	10.2433088	0.0006786	0.00004924	2. 3518541	11. 5578727
0. 00006875	339. 1877668	4933640.	10.0459012	0.0006907	0.00003753	2. 3841394	11. 6004374
0. 00007125	351. 5152638	4933548.	9.8624307	0.0007027	0.00002582	2. 4161214	11. 6431757
0. 00007375	363.8420118	4933451.	9.6914800	0.0007147	0.00001412	2.4477995	11. 6860874
0. 00007625 20. 9721977	376. 1679844	4933351.	9. 5318177	0.0007268	0.00000243	2. 4791732	11. 7291727
0. 00007875	388. 4931554	4933246.	9. 3823687	0.0007389	-0.00000926	2.5102422	11. 7724315
0. 00008125	400. 8174983	4933138.	9.2421902	0.0007509	-0.00002095	2.5410058	11.8158639
0. 00008375	413. 1409869	4933027.	9. 1104520	0.0007630	-0.00003262	2. 5714636	11.8594699
0. 00008625	425. 4635948	4932911.	8.9864203	0.0007751	-0.00004430	2. 6016152	11. 9032495
0. 00008875	437. 7852072	4932791.	8.8694433	0.0007872	-0.00005596	2. 6314599	11. 9472018
0. 00009125	450. 1054427	4932662.	8.7589397	0.0007993	-0.00006762	2.6609969	11. 9913225
0. 00009375	462. 4237800	4932520.	8.6543894	0.0008113	-0.00007928	2.6902254	12.0356059
0. 00009625	474. 7396594	4932360.	8.5553263	0.0008235	-0.00009092	2.7191442	12.0800453
0. 00009875 24. 0951091	487.0525196	4932177.	8. 4613311	0.0008356	-0. 000103	2.7477524	12. 1246341
0. 0001013 0. 4428905	499. 3618176	4931969.	8.3720262	0.0008477	-0. 000114	2.7760490	12. 1693655
0. 0001038 24. 7761331 C	510. 4731781	4920223.	8. 2821932	0.0008593	-0. 000126	2.8028594	12. 1995581
24. //01331 6							

0.0001063	522. 3981352	4916688.	8. 1998330	0.0008712	-0. 000138	2.8301638	12.2397504
25. 1193754 C 0. 0001088	534. 2732959	4912858.	8. 1210958	0.0008832	-0. 000150	2.8571131	12. 2794281
25. 4621031 C 0. 0001113	546.0877868	4908654.	8.0456825	0.0008951	-0. 000162	2.8836947	12. 3184116
25.8041366 C 0.0001138	557.8554175	4904223.	7.9734285	0.0009070	-0.000174	2.9099243	12.3568819
26. 1456569 C 0. 0001163	569. 5816802	4899627.	7.9041507	0.0009189	-0. 000186	2.9358086	12. 3949088
26.4867338 C							
0.0001188 26.8274283 C	581.2710138	4894914.	7.8376787	0.0009307	-0. 000197	2.9613535	12. 4325533
0. 0001213 27. 1673611 C	592.9005772	4889902.	7.7737313	0.0009426	-0. 000209	2. 9865319	12. 4694361
0.0001238 27.5069757 C	604. 4992956	4884843.	7.7122789	0.0009544	-0. 000221	3. 0113782	12.5060007
0. 0001263 27. 8462647 C	616.0667669	4879737.	7.6531714	0.0009662	-0. 000233	3. 0358929	12. 5422397
0. 0001288 28. 1848605 C	627.5822089	4874425.	7.5961736	0.0009780	-0. 000245	3.0600506	12. 5777855
0. 0001313	639. 0781577	4869167.	7.5413079	0.0009898	-0. 000257	3.0838913	12. 6131816
28.5233066 C 0.0001338	650. 5291337	4863769.	7.4883386	0.0010016	-0.000269	3. 1073843	12.6479781
28.8611531 C 0.0001363	661. 9564251	4858396.	7.4372524	0.0010133	-0. 000281	3. 1305559	12. 6825346
29.1987596 C 0.0001388	673. 3498449	4852972.	7.3879014	0.0010251	-0. 000293	3. 1533940	12. 7166656
29. 5359406 C 0. 0001413	684.7168334	4847553.	7.3402226	0.0010368	-0.000305	3. 1759079	12.7504905
29.8728155 C 0.0001438	696. 0544709	4842118.	7. 2941154	0.0010485	-0. 000317	3. 1980947	12. 7839534
30. 2093284 C 0. 0001463	707. 3695506	4836715.	7.2495261	0.0010602	-0. 000329	3. 2199628	12.8171685
30. 5455935 C 0. 0001488	718. 6533178	4831283.	7.2063382	0.0010719	-0. 000341	3. 2415017	12.8499638
30. 8814388 C 0. 0001588	763. 5748362	4809920.	7.0466628	0.0011187	-0. 000389	3. 3244965	12. 9787214
32. 2223964 C 0. 0001688	808. 1747748	4789184.	6. 9051534	0.0011652	-0.000438	3. 4024740	13. 1037670
33.5596420 C							
0.0001788 34.8937375 C	852. 4951362	4769204.	6.7788696	0.0012117	-0. 000486	3. 4755038	13. 2256625
0. 0001888 36. 2251175 C	896. 5673472	4750026.	6.6654707	0.0012581	-0. 000535	3. 5436411	13. 3448425
0.0001988 37.5545550 C	940. 4324116	4731735.	6.5631460	0.0013044	-0. 000584	3. 6069504	13.4620800
0.0002088 38.8823978 C	984. 1107124	4714303.	6.4703614	0.0013507	-0. 000632	3.6654669	13. 5777228
0. 0002188 40. 2090258 C	1028.	4697699.	6.3858685	0.0013969	-0. 000681	3. 7192225	13. 6921508
0.0002288	1071.	4681894.	6. 3086417	0.0014431	-0. 000730	3. 7682446	13.8057746
41.5348496 C 0.0002388	1114.	4666779.	6.2377394	0.0014893	-0.000779	3.8125353	13. 9183956
42.8596706 C 0.0002488	1157.	4652336.	6. 1724531	0.0015354	-0. 000828	3.8521164	14. 0304061
44. 1838811 C 0. 0002588	1200.	4638588.	6. 1122420	0.0015815	-0.000877	3.8870147	14. 1426338
45.5083088 C 0.0002688	1243.	4625393.	6.0564546	0.0016277	-0.000925	3.9172139	14. 2544159
46.8322909 C 0.0002788	1286.	4612759.	6.0046882	0.0016738	-0. 000974	3.9427292	14. 3663457
48.1564207 C 0.0002888	1328.	4600647.	5.9565520	0.0017200	-0. 001023	3.9635622	14. 4786502
49.4809252 C 0.0002988	1371.	4588992.	5.9116531	0.0017661	-0. 001072	3.9797063	14. 5910819
50.8055569 C 0.0003088	1413.	4577779.	5.8697215	0.0018123	-0.001121	3. 9911630	14.7040413
52. 1307163 C 0. 0003188	1456.	4566993.	5.8305113	0.0018585	-0. 001170	3. 9979275	14. 8178362
53.4567112 C	1498.			0.0019047	-0. 001218		14. 9316024
0.0003288	1470.	4556537.	5. 7936834	0.0019047	-0.001210	3. 9991262	14. 7310024

54.7826774 C	45.40	151(101	5 7504000	0.0010500	0.0040/7	0.0007404	15 04/0000
0.0003388	1540.	4546481.	5.7591882	0.0019509	-0.001267	3.9997194	15.0469230
56.1101980 C	1500	450/714	F 70//000	0.0010070	0.00101/	2 0000714	15 1/04000
0.0003488	1582.	4536714.	5.7266889	0.0019972	-0.001316	3.9999714	15. 1624232
57.4378982 C 0.0003588	1624.	4507040	F (0(0700	0 0000425	0.0012/5	3. 9989713	15. 2787289
58. 7664039 C	1024.	4527243.	5.6960789	0.0020435	-0.001365	3. 9989713	15. 2787289
0. 0003688	1666.	4518080.	5.6672777	0.0020898	-0.001413	3. 9993435	15. 3966241
60. 0964991 C	1000.	4010000.	5.0072777	0.0020696	-0.001413	3. 9993433	15. 3900241
0. 0003788	1708.	4509144.	5.6400667	0.0021362	-0.001462	3.9995523	15. 5152694
61. 4273444 C	1706.	4509144.	5.0400007	0.0021302	-0.001402	3. 9990025	15. 5152094
0. 0003888	1750.	4500407.	5.6143123	0.0021826	-0.001511	3.9996509	15.6345684
62.7588434 C	1750.	4500407.	5.0145125	0.0021620	-0.001511	3. 9990309	15. 0545064
0. 0003988	1791.	4491904.	5.5899955	0.0022290	-0.001559	3.9996700	15. 7555525
64.0920275 C	1771.	4471704.	5. 5077755	0.0022270	-0.001337	3. 7770700	13.7555525
0. 0004088	1833.	4483625.	5.5670078	0.0022755	-0.001608	3.9996159	15.8781876
65. 4268626 C	1055.	4403023.	5. 5070070	0.0022733	-0.001000	3. ///013/	13. 0701070
0. 0004188	1874.	4475525.	5.5451661	0.0023220	-0. 001656	3.9994698	16.0014056
66. 7622806 C	1074.	4470020.	3. 3431001	0.0023220	0.001000	3. 7774070	10.0014030
0.0004288	1915.	4467610.	5.5244055	0.0023686	-0.001705	3. 9991912	16. 1253981
68.0984731 C							
0.0004388	1957.	4459904.	5.5047080	0.0024152	-0.001753	3. 9987174	16. 2508759
69.4361509 C							
0.0004488	1998.	4452402.	5.4859976	0.0024618	-0.001801	3.9999847	16. 3777742
70.7752492 C							
0.0004588	2039.	4445089.	5.4682115	0.0025085	-0.001850	3.9998952	16. 5061170
72.1157920 C							
0.0004688	2080.	4437940.	5.4512025	0.0025553	-0.001898	3. 9994921	16.6347064
73.4565814 C							
0.0004788	2121.	4430968.	5.4349552	0.0026020	-0.001946	3. 9986443	16. 7640070
74.7980820 C							
0. 0004888	2162.	4424182.	5. 4194578	0.0026488	-0.001994	3. 9999852	16. 8945134
76.1407884 C							
0.0004988	2203.	4417567.	5.4046676	0.0026956	-0.002043	3.9995564	17.0262598
77.4847348 C							17 1500710
0.0005088	2244.	4411132.	5.3905311	0.0027424	-0.002091	3.9983795	17. 1590712
78.8297462 C	0005		5 07700/0	0.0007004	0.000100	0.00001/0	47.0040400
0.0005188	2285.	4404674.	5.3770968	0.0027894	-0.002139	3.9999168	17.2942490
80.000000 CY	2225	420/00/	F 2(4040F	0.00002/7	0.00010/	2 00004/0	17 4000100
0. 0005288 80. 0000000 CY	2325.	4396986.	5.3648485	0.0028367	-0.002186	3.9990469	17. 4398182
0. 0005388	2364.	4387142.	5.3541386	0.0028845	-0.002234	3. 9999258	17. 6023139
80. 0000000 CY	2304.	430/142.	0.0041000	0.0026645	-0.002234	3. 9999200	17.0023139
0. 0005488	2401.	4374575.	5.3453125	0.0029332	-0.002280	3.9994696	17.7885897
80. 0000000 CY	2401.	43/43/3.	3. 3433123	0.0027332	-0.002200	J. 7774070	17.7003097
0. 0006088	2587.	4249189.	5.3282178	0.0032436	-0.002540	3.9999965	19. 4317986
80. 0000000 CY	2007.	727/10/.	5. 5202170	0.0002400	0.002040	J. /////J	17. 4317 700
0. 0006688	2734.	4087513.	5.3467184	0.0035756	-0.002778	3. 9981913	21.7058440
80.0000000 CY	2.01.		510107101	1.0000.00	0.0020	2	
0. 0007288	2849.	3908839.	5.3736289	0.0039160	-0.003007	3.9998226	24.2220045
80.000000 CY							

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.	Max. Tens.
No.	kips	in-kip	Strain	Strain
 1	230.000	2440. 595	0.00300000	-0.00233575

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACl 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Load No.	Resist. Factor	Nominal Ax. Thrust kips	Nominal Moment Cap in-kips	UIt. (Fac) Ax. Thrust kips	UIt. (Fac) Moment Cap in-kips	Bend. Stiff. at Ult Mom kip-in^2
1	0. 65	230.000000	2441.	149. 500000	1586.	4535764.
1	0. 75	230.000000	2441.	172. 500000	1830.	4484071.
1	0. 90	230.000000	2441.	207.000000	2197.	4418654.

Pile Section No. 2:

Dimensions and Properties of Drilled Shaft (Bored Pile):

Length of Section	=	7.000000 ft
Shaft Diameter	=	8.500000 in
Concrete Cover Thickness (to edge of long. rebar)	=	3.000000 in
Number of Reinforcing Bars	=	1 bar
Yield Stress of Reinforcing Bars	=	75000. psi
Modulus of Elasticity of Reinforcing Bars	=	29000000. psi
Gross Area of Shaft	=	56.745017 sq. in.
Total Area of Reinforcing Steel	=	0.790000 sq. in.
Area Ratio of Steel Reinforcement	=	1.39 percent
Edge-to-Edge Bar Spacing	=	-1.00000 in
Maximum Concrete Aggregate Size	=	0.500000 in
Ratio of Bar Spacing to Aggregate Size	=	-2.00
Offset of Center of Rebar Cage from Center of Pile	=	0.0000 in
Axial Structural Capacities:		

Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As	=	249.497 kips
Tensile Load for Cracking of Concrete	=	-25.915 kips
Nominal Axial Tensile Capacity	=	-59.250 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	X	Y
Number	inches	sq. in.	i nches	i nches
1	1.000000	0. 790000	0. 00000	0. 00000

NOTE: The positions of the above rebars were computed by LPile

Concrete Properties:

Compressive Strength of Concrete	=	4000. psi
Modulus of Elasticity of Concrete	=	3604997. psi
Modulus of Rupture of Concrete	=	-474.34165 psi
Compression Strain at Peak Stress	=	0.001886
Tensile Strain at Fracture of Concrete	=	-0.0001154
Maximum Coarse Aggregate Size	=	0.500000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	ki ps
1	230.000

Definitions of Run Messages and Notes:

- C = concrete in section has cracked in tension.
- Y = stress in reinforcing steel has reached yield stress.
- T = ACl 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACl 318-14, Section 21.2.3.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 230). 000	κi	ps
--------------------------	--------	----	----

Bendi ng Curvature rad/i n.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Comp Strain in/in	Max Tens Strain in/in	Max Conc Stress ksi	Max Steel Run Stress Msg ksi
Curvature rad/i n. 0.00000125 0.00000250 0.00000250 0.00000500 0.00000625 0.00000750 0.00001000 0.00001125 0.00001125 0.00001250 0.00001750 0.00001750 0.00001750 0.00001750 0.00001755 0.00002500 0.00002250 0.00002500 0.00002750 0.00002750 0.00002750 0.00002750 0.00002875	Moment in-kip 0. 4004984 0. 8390452 1. 2775519 1. 7159990 2. 1543668 2. 5926357 3. 0307861 3. 4687984 3. 9066530 4. 3443301 4. 7818102 5. 2190736 5. 6561006 6. 0928715 6. 5293666 6. 9655662 7. 4014506 7. 837000 8. 2721946 8. 7070147 9. 1414403 9. 5754518 10. 0090292	Sti ffness ki p-i n2 320399. 335618. 340681. 343200. 344699. 345685. 346376. 346880. 347258. 347546. 347768. 347768. 347768. 347768. 347768. 348068. 348164. 348233. 348278. 348304. 348278. 348304. 348211. 348245. 348198. 348140.	N Axi s in 1028. 516. 1651310 345. 5329081 260. 2186115 209. 0314856 174. 9079453 150. 5350254 132. 2562435 118. 0402206 106. 6681290 97. 3643515 89. 6118097 83. 0525263 77. 4308034 72. 5591291 68. 2968695 64. 5364810 61. 1943188 58. 2043473 55. 5137381 53. 0797254 50. 8673191 48. 8476142	Strain in/in 0.0012851 0.0012957 0.0012957 0.0013011 0.0013064 0.0013118 0.0013172 0.0013226 0.0013280 0.0013280 0.0013280 0.0013388 0.0013388 0.0013442 0.0013550 0.0013659 0.0013659 0.0013659 0.0013659 0.0013714 0.0013769 0.0013878 0.0013878 0.0013933 0.0013989 0.0014044	Strain in/in 0.0012745 0.0012692 0.0012639 0.0012533 0.0012481 0.0012481 0.0012428 0.0012376 0.0012376 0.0012373 0.0012219 0.0012219 0.0012219 0.0012011 0.0012011 0.0011959 0.0011805 0.0011855 0.0011851 0.0011651 0.0011601	Stress ksi 3. 5936088 3. 6007064 3. 6077535 3. 6147497 3. 6216949 3. 6285886 3. 6354305 3. 6422204 3. 6489578 3. 6556426 3. 6622742 3. 668525 3. 6753770 3. 6818476 3. 6882637 3. 6946252 3. 7009317 3. 7071828 3. 7133783 3. 7195178 3. 7256009 3. 7316274 3. 7375970	Stress ksiMsg37. 130387737. 147740837. 165356937. 183236237. 219784437. 219784437. 219784437. 257385737. 276581437. 315763337. 356000037. 356000037. 376514037. 36000037. 418334437. 439640937. 461211837. 505147737. 550143337. 550143337. 5730390
$\begin{array}{c} 0.00003000\\ 0.00003125\\ 0.00003250\\ 0.00003250\\ 0.00003500\\ 0.00003500\\ 0.00003625\\ 0.00003750\\ 0.00003750\\ 0.00004125\\ 0.00004125\\ 0.00004250\\ 0.00004250\\ 0.00004250\\ 0.00004250\\ 0.00004500\\ 0.00004500\\ 0.00004500\\ 0.00004750\\ 0.00004750\\ 0.00004750\\ 0.00004875\\ 0.00005125\\ 0.00005375\\ 0.0000525\end{array}$	10. 4421525 10. 8748020 11. 3069576 11. 7385995 12. 1697075 12. 6002616 13. 0302419 13. 4596281 13. 8884002 14. 3165379 14. 7440211 15. 1708295 15. 5969428 16. 0223407 16. 4470029 16. 8709088 17. 7163701 18. 5585605 19. 3973147	348072. 347994. 347906. 347810. 347706. 347593. 347473. 347745. 347068. 346918. 346762. 346599. 346429. 346253. 346070. 345685. 345276. 344841.	46. 9965232 45. 2938128 43. 7223623 42. 2675875 40. 9169878 39. 6597866 38. 4866443 37. 3894264 36. 3610153 35. 3951560 34. 4863296 33. 6296477 32. 8207652 32. 0558067 31. 3313048 30. 6441477 29. 3709388 28. 2168631 27. 1660384	0.0014099 0.0014154 0.0014210 0.0014265 0.0014321 0.0014377 0.0014432 0.0014488 0.0014601 0.0014657 0.0014657 0.0014657 0.0014713 0.0014713 0.0014769 0.0014826 0.0014826 0.0014820 0.0014820 0.0014820 0.0014820 0.0015053 0.0015167 0.0015281	0. 0011549 0. 0011549 0. 0011447 0. 0011397 0. 0011397 0. 0011295 0. 0011245 0. 0011245 0. 0011195 0. 0011094 0. 0010994 0. 0010994 0. 0010994 0. 0010995 0. 0010845 0. 0010795 0. 0010598 0. 0010500	 7435092 7493638 7551604 7665785 7721992 7777606 7832624 7887043 7940858 794067 8046666 8098653 8150022 8200772 8250899 8349268 8445103 8538377 	37. 5962002 37. 6196273 37. 6433203 37. 6672795 37. 6675052 37. 7159976 37. 7407570 37. 7657836 37. 8166399 37. 8424701 37. 8424701 37. 9215727 37. 9484787 37. 9756546 38. 0308172 38. 1443971

0.00005875	20. 2324670	344382.	26.2052855	0.0015396	0.0010402	3.8629060	38. 2028210
0.00006125	21.0638506	343900.	25.3235774	0.0015511	0.0010304	3.8717127	38. 2623388
0.00006375	21.8912976	343393.	24.5116165	0.0015626	0.0010207	3.8802548	38. 3229544
0.00006625	22.7146394	342862.	23.7615092	0.0015742	0.0010111	3.8885295	38. 3846715
0.00006875	23. 5337063	342308.	23.0665096	0.0015858	0.0010014	3.8965340	38. 4474944
0.00007125	24.3483275	341731.	22.4208192	0.0015975	0.0009919	3.9042654	38. 5114272
0.00007375	25. 1583310	341130.	21.8194254	0.0016092	0.0009823	3.9117208	38. 5764745
0.00007625	25. 9635438	340505.	21.2579735	0.0016209	0.0009728	3. 9188974	38. 6426409
0.00007875	26. 7637916	339858.	20.7326614	0.0016327	0.0009633	3. 9257921	38. 7099312
0.00008125	27.5588986	339186.	20. 2401553	0.0016445	0.0009539	3. 9324021	38.7783506
0.00008375	28. 3486880	338492.	19.7775196	0.0016564	0.0009445	3. 9387243	38.8479042
0.00008625	29. 1329815	337774.	19.3421591	0.0016683	0.0009351	3.9447558	38. 9185975
0.00008875	29. 9115991	337032.	18.9317709	0.0016802	0.0009258	3.9504935	38. 9904361
0.00009125	30. 6843596	336267.	18.5443048	0.0016922	0.0009165	3. 9559344	39.0634261
0.00009375	31.4510801	335478.	18.1779292	0.0017042	0.0009073	3.9610753	39. 1375734
0.00009625	32. 2115761	334666.	17.8310031	0.0017162	0. 0008981	3.9659132	39. 2128844
0.00009875	32.9656612	333829.	17.5020514	0.0017283	0.0008890	3.9704449	39. 2893657
0.0001013	33.7131474	332969.	17.1897452	0.0017405	0.0008798	3.9746671	39. 3670241
0.0001038	34.4538448	332085.	16.8928835	0.0017526	0.0008708	3.9785768	39. 4458665
0.0001063	35. 1875617	331177.	16.6103783	0.0017649	0.0008617	3.9821706	39. 5259004
0.0001088	35.9141041	330245.	16.3412421	0.0017771	0.0008527	3. 9854453	39.6071332
0.0001113	36. 6332762	329288.	16.0845759	0.0017894	0.0008438	3. 9883975	39. 6895728
0.0001138	37.3448800	328307.	15.8395600	0.0018017	0.0008349	3.9910238	39.7732272
0.0001163							
	38. 0487150	327301.	15.6054453	0.0018141	0.0008260	3.9933209	39.8581048
0. 0001188	38. 7445788	326270.	15. 3815458	0.0018266	0.0008172	3. 9952853	39. 9442142
0.0001213	39. 4322661	325215.	15.1672320	0.0018390	0.0008084	3.9969135	40. 0315644
0.0001238	40. 1115694	324134.	14.9619258	0.0018515	0.0007997	3. 9982020	40. 1201646
0.0001263	40. 7822786	323028.	14.7650945	0.0018641	0.0007910	3. 9991471	40. 2100244
0.0001288	41.4441807	321897.	14.5762471	0.0018767	0.0007823	3.9997453	40. 3011536
0.0001313	42.0970599	320740.	14.3949301	0.0018893	0.0007737	3.9999929	40. 3935625
0.0001338	42.7392242	319546.	14.2207476	0.0019020	0.0007651	3. 9999981	40. 4873532
0.0001363	43.3687831	318303.	14.0533365	0.0019148	0.0007566	3.9999998	40. 5826433
0.0001388	43.9847990	317008.	13.8923461	0.0019276	0.0007482	3.9999956	40. 6794935
0.0001413	44.5867944	315659.	13.7374432	0.0019404	0.0007398	3.9999640	40.7779366
0.0001438	45.1747247	314259.	13.5883118	0.0019533	0.0007314	4.0000000	40.8779782
0.0001463	45.7484334	312810.	13.4446588	0.0019663	0.0007232	3.9999993	40. 9796313
0.0001488	46. 3080893	311315.	13.3062062	0.0019793	0.0007149	3.9999964	41.0828879
0.0001588	48. 4114361	304954.	12.7994180	0.0020319	0.0006825	3.9998977	41.5116366
0.0001688	50. 3110782	298140.	12.3576712	0.0020854	0.0006510	3.9999110	41.9647445
0.0001788	52.0270462	291060.	11.9697867	0.0021396	0.0006202	3.9998226	42.4408477
0.0001888	53.5773454	283853.	11.6269659	0.0021946	0.0005902	3.9999769	42.9386460
0. 0001988	54.9817537	276638.	11. 3221377	0.0022503	0.0005609	3. 9997528	43. 4565872
0.0002088	56.2534224	269477.	11.0496666	0.0023066	0.0005322	3.9997677	43.9936107
0.0002188	57.4087259	262440.	10.8048891	0.0023636	0.0005042	3.9997321	44.5482816
0.0002288	58. 4601325	255563.	10. 5839994	0.0024211	0.0004767	3.9999637	45. 1194475
0.0002388	59. 4153816	248860.	10. 3838931	0.0024792	0.0004498	3.9999624	45.7063940
0.0002488	60. 2874626	242362.	10.2018799	0.0025377	0.0004233	3.9997610	46. 3078020
0.0002588	61.0840644	236074.	10.0357532	0.0025968	0.0003974	3.9999791	46. 9228490
0.0002688	61.8115124	229996.	9.8836517	0.0026562	0.0003719	3.9996297	47.5508516
0.0002788	62.4762380	224130.	9.7439752	0.0027161	0.0003468	3.9998573	48. 1910760
0.0002888	63.0858101	218479.	9.6153240	0.0027764	0.0003220	3.9999636	48.8426108
0. 0002988	63. 6445678	213036.	9.4965284	0.0028371	0.0002977	3.9999976	49. 5049143
0.0003088	64.1556684	207792.	9.3865865	0.0028981	0.0002737	3.9995443	50. 1775907
0.0003188	64.6237975	202741.	9.2845984	0.0029595	0.0002501	3.9993469	50.8600228
0. 0003288	65.0533735	197881.	9. 1897742	0.0030211	0.0002268	3.9993087	51.5516011
0.0003388	65.4476717	193203.	9. 1014317	0.0030831	0.0002037	3.9994048	52. 2518563
	65.8093470						
0.0003488		188701.	9.0189751	0.0031454	0.0001810	3.9999993	52.9603956
0.0003588	66. 1397228	184362.	8.9418929	0.0032079	0.0001585	3.9999736	53. 6770342
0.0003688	66.4427266	180184.	8.8696922	0.0032707	0.0001363	3. 9998791	54.4011624
0. 0003788		176162.		0.0033337	0.0001303	3. 9996616	55. 1323170
	66.7212163		8.8019438				
0.0003888	66. 9777872	172290.	8.7382651	0.0033970	0.00009263	3. 9992514	55.8700578
0.0003988	67.2138697	168561.	8.6783278	0.0034605	0.00007111	3.9999962	56. 6141283
0.0004088	67. 4281927	164962.	8. 6218773	0.0035242	0.00004982	3.9998269	57. 3647621
0.0004188	67.6261514	161495.	8. 5685837	0.0035881	0.00002872	3.9993267	58. 1210052
0.0004288	67.8089149	158155.	8.5182080	0.0036522	0.0000781	3.9999971	58.8826109
0.0004388	67.9729807	154924.	8. 4706020	0.0037165	-0.00001290	3. 9997181	59.6502385
0.0004488	68. 1249731	151811.	8.4254809	0.0037809	-0.00003344	3. 9988777	60. 4225944
0.0004588	68. 1249731	148501.	8.3934572	0.0038505	-0.00004888	3.9999724	61.3430231

Summary of Results for Nominal Moment Capacity for Section 2

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain	Max. Tens. Strain
1	230.000	64.906	0.00300000	0.00023476

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Load No.	Resist. Factor	Nominal Ax. Thrust kips	Nominal Moment Cap in-kips	UIt. (Fac) Ax. Thrust kips	UIt. (Fac) Moment Cap in-kips	Bend. Stiff. at Ult Mom kip-in^2
1	0. 65	230.000000	64. 906136	129. 738471*	42. 188989	320569.
1	0. 75	230.000000	64.906136	159.054375*	48.679602	303992.
1	0.90	230.000000	64.906136	207.000000	58. 415523	255855.

* Maximum axial load including effects of accidental eccentricity (ACI 318)

Layering Correction Equivalent Depths of Soil & Rock Layers										
Layer No.	Top of Layer Below Pile Head ft	Equi val ent Top Depth Bel ow Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	FO Integral for Layer Ibs	F1 Integral for Layer Ibs				
1 2 3 4	0.00 2.0000 7.0000 14.0000	0.00 3.8933 3.3614 14.0000	N. A. No No No	No No No Yes	0.00 987.4977 2769. N. A.	987. 4977 1781. 53164. N. A.				

Notes: The FO integral of Layer n+1 equals the sum of the FO and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Displacement and Pile-head Rotation (Loading Type 5) Displacement of pile head = 0.500000 inches Rotation of pile head Axial load on pile head

= 0.000E+00 radians = 230000.0 lbs

Depth X feet	Deflect. y inches	Bending Moment in-Ibs	Shear Force Ibs	SI ope S radi ans	Total Stress psi *	Bending Stiffness Ib-in^2	Soil Res. p Ib/inch	Soil Spr. Es*H Ib/inch	Distrib. Lat. Load Ib/inch
0. 00	0. 5000	-639082.	0022	0.00	0.00	4 975,00	0.00	0.00	0.00
0.00	0. 5000	-639082. -614102.	9022. 8998.	0.00 -3.55E-04	0.00 0.00	4. 87E+09 4. 87E+09	0.00 -8.288	0.00 45.7937	0.00 0.00
0. 4600	0. 4980	-588964.	8961.	-6.95E-04	0.00	4.89E+09	-18.075	100. 1682	0.00
0. 6900	0. 4957	-563753.	8897.	-0.00102	0.00	4. 90E+09	-28.536	158.8986	0.00
0. 9200	0. 4924	-538557.	8804.	-0.00133	0.00	4. 91E+09	-39.077	219.0291	0.00
1. 1500	0. 4883	-513467.	8682.	-0. 00163	0.00	4. 92E+09	-49.064	277.3125	0.00
1. 3800	0.4834	-488568.	8533.	-0.00191	0.00	4.93E+09	-58.961	336.6180	0.00
1. 6100	0. 4778	-463945.	8358.	-0. 00217	0.00	4. 93E+09	-67.915	392.3112	0.00
1.8400	0. 4714	-439674.	8159.	-0.00243	0.00	4.93E+09	-76.018	445.0424	0.00
2.0700	0.4644	-415826.	8034.	-0.00267	0.00	4.93E+09	-14.733	87.5570	0.00
2.3000 2.5300	0. 4567 0. 4484	-391943. -368032.	7993. 7953.	-0. 00289 -0. 00310	0.00 0.00	4. 93E+09 4. 93E+09	-14.651 -14.562	88.5354 89.6221	0.00 0.00
2. 5300	0. 4484 0. 4396	-368032. -344101.	7953. 7913.	-0.00310	0.00	4.93E+09 4.93E+09	-14.562 -14.465	90. 8210	0.00
2. 9900	0. 4390	-320158.	7873.	-0.00330	0.00	4. 93E+09 4. 93E+09	-14.362	92.1366	0.00
3. 2200	0. 4203	-296211.	7834.	-0.00366	0.00	4. 93E+09	-14. 251	93.5742	0.00
3. 4500	0. 4100	-272267.	7795.	-0.00382	0.00	4. 93E+09	-14. 133	95.1399	0.00
3.6800	0.3993	-248335.	7756.	-0.00397	0.00	4.93E+09	-14.009	96.8406	0.00
3. 9100	0. 3881	-224421.	7717.	-0.00410	0.00	4. 93E+09	-13.877	98.6845	0.00
4.1400	0.3766	-200532.	7679.	-0.00422	0.00	4.93E+09	-13.739	100.6803	0.00
4.3700	0. 3648	-176678.	7642.	-0. 00432	0.00	4. 93E+09	-13.594	102.8384	0.00
4.6000	0.3528	-152864.	7604.	-0.00441	0.00	4. 93E+09	-13.443	105.1701	0.00
4.8300	0.3405	-129098.	7567.	-0.00449	0.00	4.93E+09	-13.284	107.6884	0.00
5.0600	0.3280	-105388.	7531.	-0.00456	0.00	4.93E+09	-13.120	110.4078	0.00
5. 2900 5. 5200	0. 3153 0. 3025	-81740. -58161.	7495. 7459.	-0. 00461 -0. 00465	0.00 0.00	4. 93E+09 4. 93E+09	-12.949 -12.771	113. 3445 116. 5171	0.00 0.00
5. 7500	0. 3025	-34660.	7439. 7424.	-0.00465	0.00	4.93E+09 4.93E+09	-12.771	119.9462	0.00
5. 9800	0. 2767	-11242.	7390.	-0.00469	0.00	4. 93E+09	-12.307	123.6552	0.00
6. 2100	0. 2638	12086.	7356.	-0.00469	0.00	4. 93E+09	-12.201	127.6706	0.00
6. 4400	0. 2508	35316.	7323.	-0.00468	0.00	4. 93E+09	-11.998	132.0220	0.00
6. 6700	0. 2379	58443.	7290.	-0.00465	0.00	4.93E+09	-11.789	136.7433	0.00
6.9000	0. 2252	81458.	7258.	-0.00461	0.00	4.93E+09	-11.574	141.8727	0.00
7.1300	0. 2125	104357.	7089.	-0. 00456	0.00	4.93E+09	-110. 398	1434.	0.00
7.3600	0.2000	126378.	6774.	-0. 00449	0.00	4. 93E+09	-118. 298	1633.	0.00
7.5900	0. 1877	147453.	6437.	-0.00442	0.00	4.93E+09	-125.546	1846.	0.00
7.8200	0.1756	167519.	6079.	-0.00433	0.00	4.93E+09	-134.088	2107.	0.00
8. 0500 8. 2800	0. 1638 0. 1523	186504. 204338.	5697. 5293.	-0. 00423 -0. 00412	0.00 0.00	4. 93E+09 4. 93E+09	-142.368 -150.260	2399. 2724.	0.00 0.00
8.5100	0. 1525	204338.	4869.	-0.00412	0.00	4.93L+09 4.93E+09	-157.564	3083.	0.00
8. 7400	0. 1302	236294.	4425.	-0. 00387	0.00	4. 93E+09	-164.177	3481.	0.00
8. 9700	0. 1197	250298.	3964.	-0.00374	0.00	4. 93E+09	-170.015	3921.	0.00
9. 2000	0.1095	262918.	3487.	-0.00359	0.00	4.93E+09	-175.005	4409.	0.00
9.4300	0.09983	274112.	2999.	-0.00344	0.00	4.93E+09	-179.076	4951.	0.00
9.6600	0.09054	283844.	2500.	-0.00329	0.00	4.93E+09	-182.163	5553.	0.00
9.8900	0.08168	292087.	1995.	-0. 00313	0.00	4. 93E+09	-184.210	6225.	0.00
10. 1200	0.07328	298824.	1485.	-0.00296	0.00	4.93E+09	-185.165	6974.	0.00
10.3500	0.06533	304044.	974.0872	-0.00279	0.00	4.93E+09	-184.988	7815.	0.00
10.5800	0.05786	307747.	465.3784 -37.969	-0.00262	0.00	4.93E+09	-183.642	8760.	0.00
10. 8100 11. 0400	0. 05086 0. 04434	309942. 310647.	-37.969	-0. 00245 -0. 00228	0.00 0.00	4. 93E+09 4. 93E+09	-181. 103 -177. 353	9828. 11040.	0.00 0.00
11. 2700	0.03830	309890.	-032.039	-0.00228	0.00	4.93L+09 4.93E+09	-172.386	12423.	0.00
11. 5000	0.03274	307711.	-1483.	-0.00193	0.00	4. 93E+09	-166.204	14013.	0.00
11. 7300	0.02765	304156.	-1931.	-0.00176	0.00	4. 93E+09	-158.820	15854.	0.00
11.9600	0.02303	299284.	-2358.	-0.00159	0.00	4.93E+09	-150.257	18006.	0.00
12. 1900	0.01888	293160.	-2759.	-0.00142	0.00	4.93E+09	-140.551	20551.	0.00
12. 4200	0.01517	285862.	-3132.	-0.00126	0.00	4.93E+09	-129. 748	23601.	0.00
12.6500	0.01191	277474.	-3461.	-0.00110	0.00	4.93E+09	-108.495	25138.	0.00
12.8800	0.00908	268160.	-3727.	-9.51E-04	0.00	4.93E+09	-84.195	25595.	0.00
13.1100	0.00666	258111.	-3930.	-8.04E-04	0.00	4.93E+09	-62.864	26052.	0.00
13. 3400 13. 5700	0.00464	247490. 236443.	-4078. -4180.	-6.63E-04	0.00	4.93E+09	-44.560 -29.319	26509. 26966.	0.00
13.5700	0. 00300 0. 00173	236443. 225088.	-4180. -4244.	-5.28E-04 -3.98E-04	0. 00 0. 00	4. 93E+09 4. 93E+09	-29.319 -17.163	26966. 27423.	0.00 0.00
14.0300	0.00173 8.01E-04	225088.	-4244. -9797.	-3.98E-04 -2.76E-04	0.00	4.93E+09 4.93E+09	-17.163	27423. 1. 38E+07	0.00
14. 2600	2. 05E-04	171360.	-16740.	-1.68E-04	0.00	4. 93E+09	-1025.	1. 38E+07	0.00
14. 4900	-1. 27E-04	121329.	-17280.	-8.63E-05	0.00	4. 93E+09	634. 1533	1. 38E+07	0.00

14. 7200	-2.71E-04	76085.	-14532.	-3.11E-05	0.00	4. 93E+09	1357.	1.38E+07	0.00
14. 7200	-2. 71E-04 -2. 98E-04			-3. TTE-05 1. 71E-06		4. 93E+09 4. 93E+09	1357.	1. 38E+07 1. 38E+07	
14. 9500	-2.98E-04 -2.62E-04	41150. 17565.	-10601. -6735.	1. 7 IE-06 1. 81E-05	0.00 0.00	4.93E+09 4.93E+09	1492.	1.38E+07 1.38E+07	0.00 0.00
		3951.	-0735. -3559.			4.93E+09 4.93E+09	991, 6229		
15.4100	-1.98E-04			2.42E-05	0.00			1.38E+07	0.00
15.6400	-1.29E-04	-2111.	-1303.	2.47E-05	0.00	4.93E+09	643.0494	1.38E+07	0.00
15.8700	-6.22E-05	-3273.	13.2121	2.32E-05	0.00	4.93E+09	310. 7930	1.38E+07	0.00
16.1000	-7.68E-07	-2067.	447.4078	1.40E-05	0.00	3.44E+08	3.8415	1.38E+07	0.00
16.3300	1.49E-05	-821.171	349.8391	2.30E-06	0.00	3.35E+08	-74.543	1.38E+07	0.00
16.5600	1.19E-05	-138.851	164.6545	-1.68E-06	0.00	3.20E+08	-59.648	1.38E+07	0.00
16.7900	5.65E-06	89.8511	43.3592	-1.89E-06	0.00	3. 20E+08	-28.247	1.38E+07	0.00
17.0200	1.51E-06	102.8891	-6.008	-1.06E-06	0.00	3. 20E+08	-7.527	1. 38E+07	0.00
17.2500	-1.92E-07	58.0295	-15.067	-3.65E-07	0.00	3. 20E+08	0. 9624	1. 38E+07	0.00
17.4800	-5. 11E-07	20. 1838	-10. 215	-2.83E-08	0.00	3. 20E+08	2. 5531	1. 38E+07	0.00
17.7100	-3.49E-07	1.6763	-4.285	6.58E-08	0.00	3. 20E+08	1.7444	1. 38E+07	0.00
17.9400	-1.47E-07	-3.552	-0. 861	5.77E-08	0.00	3. 20E+08	0. 7364	1.38E+07	0.00
18. 1700	-3.02E-08	-3.152	0.3630	2.89E-08	0.00	3. 20E+08	0. 1508	1.38E+07	0.00
18.4000	1.21E-08	-1.585	0.4878	8.46E-09	0.00	3. 20E+08	-0.06028	1.38E+07	0.00
18.6300	1.66E-08	-0.469	0.2903	-3.86E-10	0.00	3. 20E+08	-0.08287	1.38E+07	0.00
18.8600	9.93E-09	0. 01758	0.1074	-2.33E-09	0.00	3. 20E+08	-0.04964	1.38E+07	0.00
19.0900	3.70E-09	0. 1264	0.01338	-1.71E-09	0.00	3. 20E+08	-0.01850	1.38E+07	0.00
19. 3200	4.78E-10	0.09359	-0. 01546	-7.64E-10	0.00	3. 20E+08	-0.00239	1.38E+07	0.00
19. 5500	-5.19E-10	0.04205	-0.01517	-1.80E-10	0.00	3. 20E+08	0.00260	1.38E+07	0.00
19. 7800	-5.17E-10	0.01005	-0.00803	4.42E-11	0.00	3. 20E+08	0.00258	1.38E+07	0.00
20.0100	-2.75E-10	-0.00232	-0.00257	7.75E-11	0.00	3. 20E+08	0.00138	1.38E+07	0.00
20.2400	-8.87E-11	-0.00421	-5.73E-05	4.94E-11	0.00	3. 20E+08	4.43E-04	1.38E+07	0.00
20.4700	-2.56E-12	-0.00270	5.72E-04	1.96E-11	0.00	3. 20E+08	1.28E-05	1.38E+07	0.00
20.7000	1.93E-11	-0.00108	4.57E-04	3.28E-12	0.00	3. 20E+08	-9.66E-05	1.38E+07	0.00
20.9300	1.56E-11	-1.85E-04	2.16E-04	-2.16E-12	0.00	3. 20E+08	-7.79E-05	1.38E+07	0.00
21.1600	7.41E-12	1.16E-04	5.73E-05	-2.46E-12	0.00	3. 20E+08	-3.70E-05	1.38E+07	0.00
21.3900	1.99E-12	1.34E-04	-7.52E-06	-1.39E-12	0.00	3. 20E+08	-9.95E-06	1.38E+07	0.00
21.6200	0.00	7.59E-05	-1.96E-05	0.00	0.00	3.20E+08	1.20E-06	1.38E+07	0.00
21.8500	0.00	2.65E-05	-1.33E-05	0.00	0.00	3.20E+08	3.32E-06	1.38E+07	0.00
22.0800	0.00	2.33E-06	-5.59E-06	0.00	0.00	3.20E+08	2.29E-06	1.38E+07	0.00
22.3100	0.00	-4.43E-06	-1.06E-06	0.00	0.00	3.20E+08	9.86E-07	1.38E+07	0.00
22.5400	0.00	-3.64E-06	5.79E-07	0.00	0.00	3. 20E+08	2.05E-07	1. 38E+07	0.00
22.7700	0.00	-1.28E-06	6.65E-07	0.00	0.00	3. 20E+08	-1. 43E-07	1. 38E+07	0.00
23.0000	0.00	0.00	0.00	0.00	0.00	3. 20E+08	-3.39E-07	6900000.	0.00
_0.0000	0.00	0.00	5.00	0.00	5. 50	2.202.00	5.572 57	2700000	0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.50000000 inches
Computed slope at pile head	=	0.000000 radi ans
Maximum bending moment	=	-639082. inch-1bs
Maximum shear force	=	-17280. Ibs
Depth of maximum bending moment	=	0.000000 feet below pile head
Depth of maximum shear force	=	14.49000000 feet below pile head
Number of iterations	=	7
Number of zero deflection points	=	8

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

	conditions a nt of pile h	re Displacen ead	nent and P	ile-head Ro		(Loadi ng 1. 000000	JI /			
Rotation of pile head Axial load on pile head						. 000E+00 230000. 0				
Depth X	Deflect. y	Bending Moment	Shear Force	SI ope S	Tot Stre		endi ng ffness	Soil Res. p	Soil Spr. Es*H	Distrib. Lat. Load

feet	i nches	in-Ibs	l bs	radi ans	psi *	lb-in^2	l b/i nch	l b/i nch	l b/i nch
0.00	1.0000	-1174186.	15361.	0.00	0.00	4.65E+09	0.00	0.00	0.00
0.2300		-1131608.	15335.	-6.85E-04	0.00	4.65E+09	-8.288	22.8960	0.00
0.4600		-1088667.	15299.	-0.00134	0.00	4.68E+09	-18.075	50.0770	0.00
0. 6900	0. 9916	-1045455.	15234.	-0. 00197	0.00	4. 69E+09	-28.536	79.4248	0.00
0. 9200	0. 9853	-1002071.	15141.	-0.00257	0.00	4.71E+09	-39.077	109.4562	0.00
1.1500	0.9774	-958611.	15019.	-0.00315	0.00	4.72E+09	-49.064	138.5437	0.00
1.3800	0.9680	-915169.	14870.	-0.00369	0.00	4.74E+09	-58.961	168.1167	0.00
1.6100	0.9570	-871839.	14695.	-0.00421	0.00	4.76E+09	-67.915	195.8568	0.00
1. 8400 2. 0700	0. 9447 0. 9311	-828705. -785846.	14497. 14366.	-0. 00470 -0. 00517	0.00 0.00	4. 78E+09 4. 80E+09	-76. 018 -18. 577	222.0860 55.0676	0.00 0.00
2. 3000	0. 9311 0. 9162	-742842.	14300.	-0.00517	0.00	4.80E+09 4.82E+09	-18.477	55.6626	0.00
2. 5300	0. 9102	-699708.	14315.	-0.00501	0.00	4.82L+09 4.84E+09	-18.369	56. 3229	0.00
2. 7600	0. 8830	-656462.	14214.	-0. 00641	0.00	4.86E+09	-18.251	57.0505	0.00
2. 9900	0.8648	-613117.	14163.	-0.00677	0.00	4.88E+09	-18. 125	57.8479	0.00
3. 2200	0. 8456	-569691.	14114.	-0.00710	0.00	4. 90E+09	-17.990	58.7180	0.00
3.4500	0. 8256	-526198.	14064.	-0.00741	0.00	4. 92E+09	-17.847	59.6642	0.00
3. 6800	0.8047	-482653.	14015.	-0.00769	0.00	4.93E+09	-17.696	60.6905	0.00
3. 9100	0. 7831	-439072.	13966.	-0.00795	0.00	4.93E+09	-17.536	61.8012	0.00
4.1400	0.7609	-395468.	13918.	-0. 00818	0.00	4.93E+09	-17.368	63.0016	0.00
4.3700	0. 7380	-351856.	13871.	-0. 00839	0.00	4. 93E+09	-17.192	64.2975	0.00
4.6000	0. 7145	-308250.	13823.	-0. 00858	0.00	4.93E+09	-17.008	65.6954	0.00
4.8300	0.6906	-264665.	13777.	-0.00874	0.00	4.93E+09	-16.816	67.2027	0.00
5.0600	0.6663	-221113.	13731.	-0.00887	0.00	4.93E+09	-16.617	68.8277	0.00
5. 2900	0.6417	-177610.	13685.	-0.00898	0.00	4.93E+09	-16.409	70.5797	0.00
5. 5200 5. 7500	0. 6167 0. 5916	-134168. -90802.	13640. 13596.	-0. 00907 -0. 00913	0.00 0.00	4. 93E+09 4. 93E+09	-16. 194 -15. 971	72. 4690 74. 5075	0.00 0.00
5. 9800	0. 5918	-90602. -47526.	13590.	-0.00913	0.00	4.93E+09 4.93E+09	-15. 740	76. 7082	0.00
6. 2100	0. 5410	-4352.	13509.	-0.00919	0.00	4. 93E+09 4. 93E+09	-15.502	79.0862	0.00
6. 4400	0. 5156	38705.	13466.	-0.00918	0.00	4. 93E+09	-15. 255	81.6582	0.00
6. 6700	0. 4903	81632.	13424.	-0.00914	0.00	4. 93E+09	-15.002	84.4432	0.00
6. 9000	0. 4652	124415.	13383.	-0.00909	0.00	4. 93E+09	-14.741	87.4626	0.00
7.1300	0.4402	167043.	13144.	-0.00900	0.00	4.93E+09	-158.772		0.00
7.3600	0. 4155	208401.	12679.	-0.00890	0.00	4.93E+09	-178.141	1183.	0.00
7.5900	0. 3911	248328.	12159.	-0.00877	0.00	4.93E+09	-198.520	1401.	0.00
7.8200	0.3670	286655.	11580.	-0.00862	0.00	4.93E+09	-221.305	1664.	0.00
8.0500	0. 3435	323195.	10945.	-0. 00845	0.00	4. 93E+09	-238.569	1917.	0.00
8.2800	0. 3204	357802.	10272.	-0.00826	0.00	4.93E+09	-249.624	2150.	0.00
8.5100	0.2979	390381.	9569.	-0.00805	0.00	4.93E+09	-259.604	2405.	0.00
8.7400	0. 2760 0. 2547	420843.	8840.	-0.00782	0. 00 0. 00	4. 93E+09 4. 93E+09	-268.454	2685.	0.00
8. 9700 9. 2000	0. 2547 0. 2341	449112. 475117.	8089. 7317.	-0. 00758 -0. 00732	0.00	4. 93E+09 4. 93E+09	-276. 138 -282. 637	2992. 3332.	0.00 0.00
9. 2000	0. 2341	498800.	6530.	-0.00732	0.00	4.93L+09 4.93E+09	-287.953	3709.	0.00
9. 6600	0. 1952	520112.	5730.	-0.00676	0.00	4. 92E+09	-292.108	4130.	0.00
9.8900	0. 1769	539014.	4919.	-0.00647	0.00	4. 91E+09	-295.146	4604.	0.00
10. 1200	0. 1595	555476.	4102.	-0.00616	0.00	4. 91E+09	-297.127	5141.	0.00
10.3500	0. 1429	569476.	3281.	-0.00584	0.00	4.90E+09	-297.757	5749.	0.00
10. 5800	0. 1273	581003.		-0.00552	0.00	4. 90E+09	-296.541	6432.	0.00
10.8100	0. 1125	590064.	1647.	-0.00519	0.00	4.89E+09	-293.419	7200.	0.00
11.0400	0.09862	596679.	843.7682	-0. 00485	0.00	4.89E+09	-288.343	8070.	0.00
11. 2700	0.08569	600883.	57.6874	-0. 00451	0.00	4.89E+09	-281.281	9060.	0.00
11.5000	0.07370	602729.	-706.133	-0.00417	0.00	4.89E+09	-272.212	10194.	0.00
11.7300	0.06265	602285.	-1442.	-0.00383	0.00	4.89E+09	-261.134	11505.	0.00
11.9600	0.05253	599636.	-2145.	-0.00349	0.00	4.89E+09	-248.059	13032.	0.00
12. 1900 12. 4200	0.04336	594883.	-2809.	-0. 00316 -0. 00282	0.00	4.89E+09	-233.017 -216.057	14833.	0.00
12. 4200	0. 03511 0. 02777	588141. 579543.	-3428. -3999.	-0.00282	0.00 0.00	4.89E+09 4.90E+09	-197.251	16987. 19605.	0.00 0.00
12. 8800	0.02777	569234.	-4515.	-0.00247	0.00	4.90E+09	-176.695	22857.	0.00
13. 1100	0.02134	557376.	-4964.	-0. 00185	0.00	4. 90E+09	-149.021	26052.	0.00
13. 3400	0.01110	544184.	-5317.	-0.00154	0.00	4. 91E+09	-106.656	26509.	0.00
13. 5700	0.00727	529986.	-5562.	-0.00124	0.00	4. 91E+09	-70.990	26966.	0.00
13.8000	0.00425	515057.	-5719.	-9.49E-04	0.00	4. 92E+09	-42.216	27423.	0.00
14.0300	0.00203	499624.	-19780.	-6.64E-04	0.00	4.93E+09	-10147.	1.38E+07	0.00
14.2600	5.82E-04	406716.	-37797.	-4.11E-04	0.00	4.93E+09	-2909.	1.38E+07	0.00
14.4900	-2.38E-04	291508.	-40169.	-2.15E-04	0.00	4.93E+09	1189.	1.38E+07	0.00
14.7200	-6.07E-04	185256.	-34336.	-8.21E-05	0.00	4. 93E+09	3037.	1.38E+07	0.00
14.9500	-6.91E-04	102076.	-25377.	-1.73E-06	0.00	4. 93E+09	3455.	1.38E+07	0.00
15.1800	-6.17E-04	45179.	-16351.	3.95E-05	0.00	4.93E+09	3085.	1.38E+07	0.00
15.4100	-4.73E-04	11767.	-8828.	5.54E-05	0.00	4.93E+09	2366.	1.38E+07	0.00
15.6400	-3. 11E-04	-3623.	-3414.	5.77E-05	0.00	4. 93E+09	1557.	1.38E+07	0.00

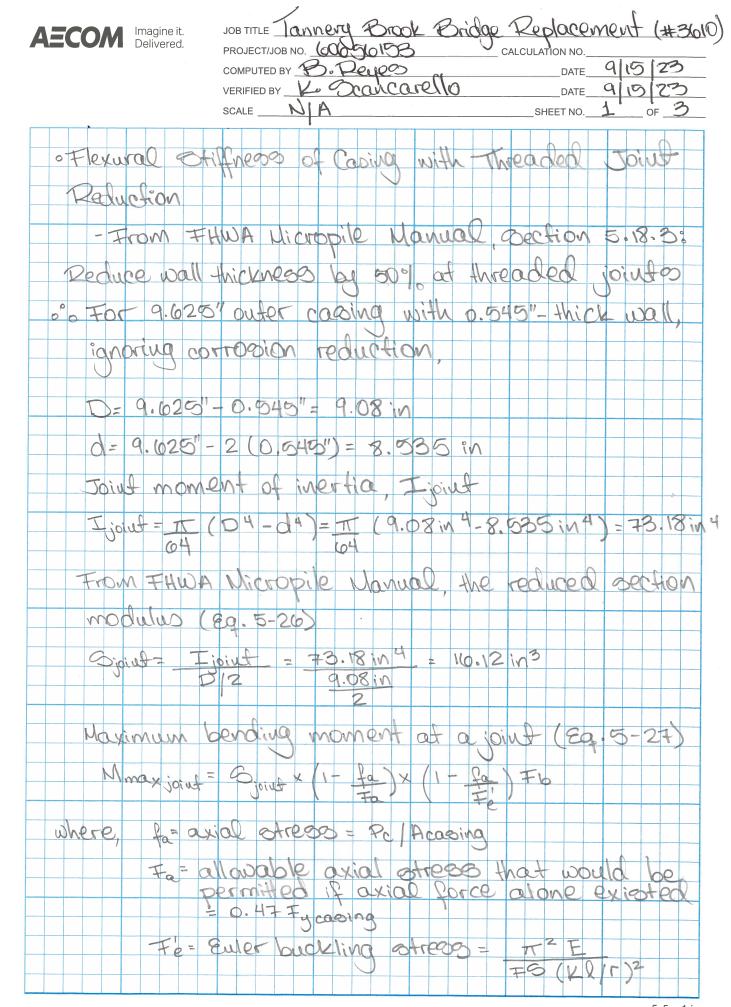
15.8700	-1.55E-04	-7154.	-196.852	5.46E-05	0.00	0 4.93E+09	774.9510	1.38E+07	0.00
16. 1000	-9.71E-06	-4779.	939.5894	3.37E-05	0.00	3. 48E+08	48.5573	1.38E+07	0.00
16.3300	3.09E-05	-2010.	793.4250	6.66E-06	0.00	3. 44E+08	-154.474	1.38E+07	0.00
16. 5600	2.70E-05	-407.366	393.7296	-3.15E-06	0.00	3. 21E+08	-135.161	1.38E+07	0.00
16. 7900	1.35E-05	167.6400	114.0678	-4.18E-06	0.00	3. 20E+08	-67.493	1.38E+07	0.00
17.0200	3.95E-06	227.5974	-6.331	-2.48E-06	0.00	3. 20E+08	-19.753	1.38E+07	0.00
17.2500	-1.86E-07	135.8412	-32.305	-9.14E-07	0.00	3. 20E+08	0.9309	1.38E+07	0.00
17.4800	-1.09E-06	50. 4331	-23. 477	-1.11E-07	0.00	3. 20E+08	5.4662	1.38E+07	0.00
17.7100	-8.01E-07	6.3884	-10.405	1.33E-07	0.00	3. 20E+08	4.0062	1.38E+07	0.00
17.9400	-3.57E-07	-7.174	-2.411	1.30E-07	0.00	3. 20E+08	1.7867	1.38E+07	0.00
18. 1700	-8.40E-08	-7.086	0.6342	6.85E-08	0.00	3. 20E+08	0. 4201	1.38E+07	0.00
18.4000	2.08E-08	-3.760	1.0701	2.18E-08	0.00	3. 20E+08	-0. 104	1.38E+07	0.00
18.6300	3.63E-08	-1.207	0.6757	4.07E-10	0.00	3. 20E+08	-0. 182	1.38E+07	0.00
18.8600	2.31E-08	-0.03054	0.2657	-4.92E-09	0.00	3. 20E+08	-0. 115	1.38E+07	0.00
19.0900	9.14E-09	0.2663	0.04330	-3.91E-09	0.00	3. 20E+08	-0.04572	1.38E+07	0.00
19. 3200	1.53E-09	0.2134	-0.03034	-1.84E-09	0.00	3. 20E+08	-0.00764	1.38E+07	0.00
19. 5500	-1.01E-09	0. 1012	-0.03388	-4.86E-10	0.00	3. 20E+08	0.00507	1.38E+07	0.00
19. 7800	-1.15E-09	0.02700	-0.01893	6.65E-11	0.00	3. 20E+08	0.00576	1.38E+07	0.00
20.0100	-6.48E-10	-0.00341	-0.00651	1.68E-10	0.00	3. 20E+08	0.00324	1.38E+07	0.00
20.2400	-2.24E-10	-0.00913	-4.87E-04	1.14E-10	0.00	3. 20E+08	0.00112	1.38E+07	0.00
20. 4700	-1.80E-11	-0.00624	0.00119	4.79E-11	0.00	3. 20E+08	9.02E-05	1.38E+07	0.00
20.7000	4.00E-11	-0.00264	0.00104	9.66E-12	0.00	3. 20E+08	-2.00E-04	1.38E+07	0.00
20. 9300	3.53E-11	-5.42E-04	5.16E-04	-4.04E-12	0.00	3. 20E+08	-1.76E-04	1.38E+07	0.00
21. 1600	1.77E-11	2.15E-04	1.51E-04	-5.44E-12	0.00	3. 20E+08	-8.84E-05	1.38E+07	0.00
21.3900	5.21E-12	2.96E-04	-7.48E-06	-3.24E-12	0.00	3. 20E+08	-2.61E-05	1.38E+07	0.00
21.6200	0.00	1.78E-04	-4.20E-05	-1.20E-12	0.00	3. 20E+08	1.08E-06	1.38E+07	0.00
21.8500	-1.42E-12	6.62E-05	-3.06E-05	0.00	0.00	3. 20E+08	7.11E-06	1.38E+07	0.00
22.0800	-1.05E-12	8.66E-06	-1.36E-05	0.00	0.00	3. 20E+08	5.27E-06	1.38E+07	0.00
22.3100	0.00	-8.86E-06	-3.00E-06	0.00	0.00	3. 20E+08	2.39E-06	1.38E+07	0.00
22.5400	0.00	-8.12E-06	1.09E-06	0.00	0.00	0 3.20E+08	5.71E-07	1.38E+07	0.00
22.7700	0.00	-2.98E-06	1.48E-06	0.00	0.00	0 3. 20E+08	-2.86E-07	1. 38E+07	0.00
23.0000	0.00	0.00	0.00	0.00	0.00	0 3.20E+08	-7.88E-07	6900000.	0.00

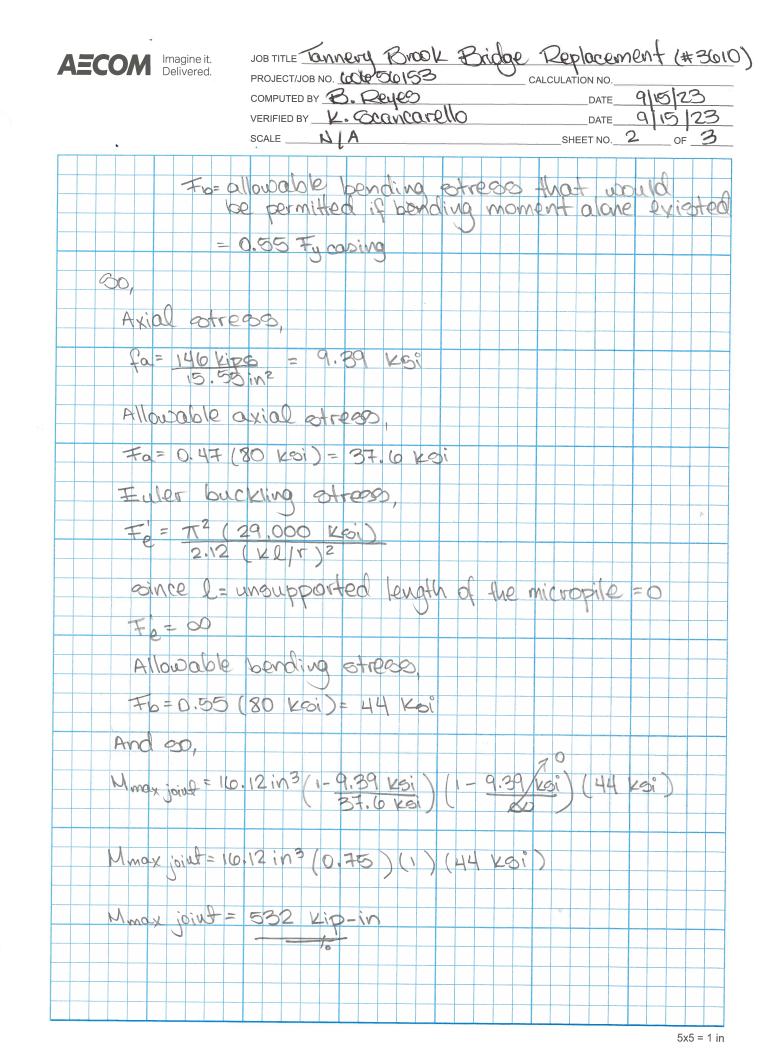
* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

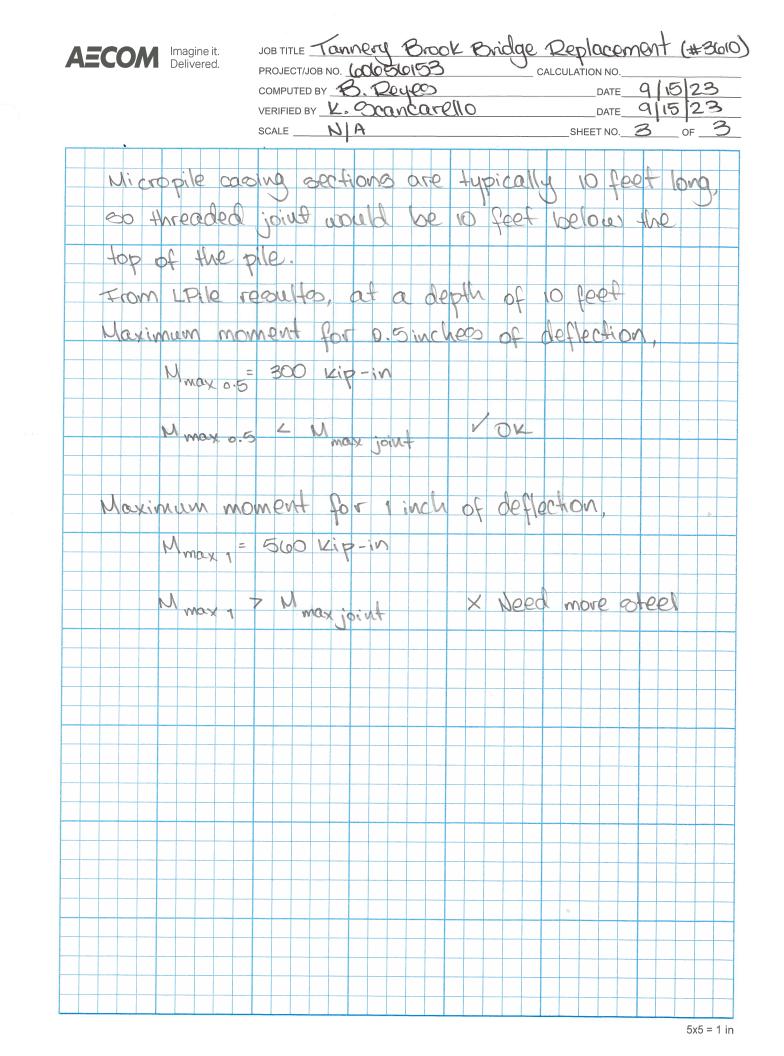
Output Summary for Load Case No. 2:

Pile-head deflection	=	1.00000000 inches
Computed slope at pile head	=	0.000000 radi ans
Maximum bending moment	=	-1174186. inch-Ibs
Maximum shear force	=	-40169. Ibs
Depth of maximum bending moment	=	0.000000 feet below pile head
Depth of maximum shear force	=	14.49000000 feet below pile head
Number of iterations	=	8
Number of zero deflection points	5 =	8

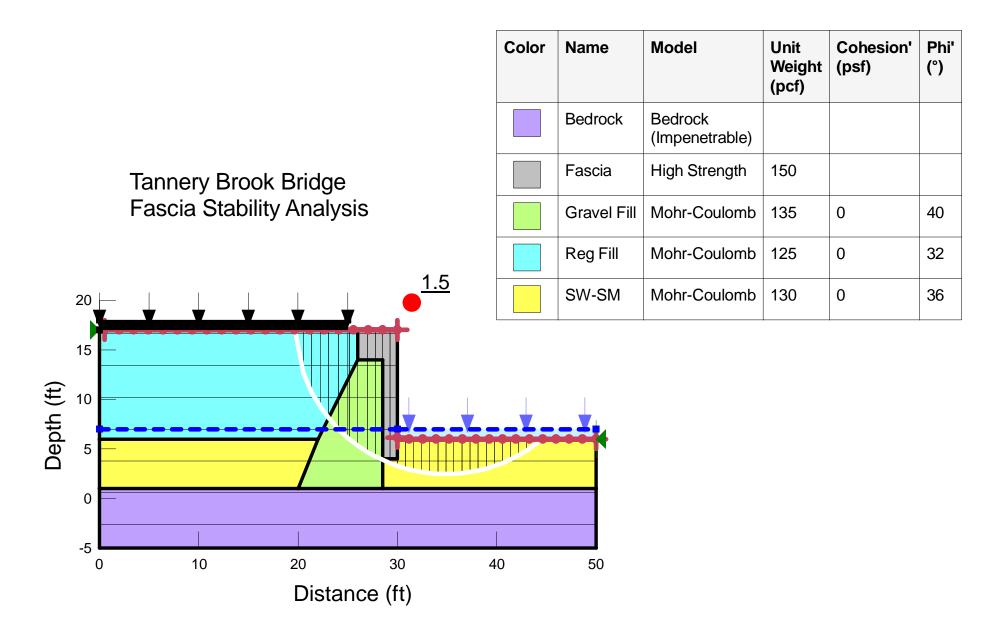
Summary of Pile-head Responses for Conventional Analyses


Definitions of Pile-head Loading Conditions:


Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians


Load Load Case Type No. 1	Pile-head Load 1	Load Type 2		Loadi ng	Pile-head Deflection inches	Rotation	in Pile	in Pile
1 y, in	0. 5000	S, rad	0.00	230000.	0. 5000	0. 00	-17280.	-639082.

2 y, in 1.0000 S, rad 0.00 230000. 1.0000 0.00 -40169. -1174186.


The analysis ended normally.

Stability Analysis

Tannery Brook Bridge

Report generated using GeoStudio 2016. Copyright © 1991-2017 GEO-SLOPE International Ltd.

File Information

File Version: 8.16 Created By: Reyes, Bivian Last Edited By: Reyes, Bivian Revision Number: 25 Date: 6/28/2022 Time: 2:22:43 PM Tool Version: 8.16.5.15361 File Name: Tannery Brook Facia.gsz Directory: \na.aecomnet.com\lfs\AMER\Chelmsford-USCHL1\Secure_DCS\Resources\Legacy\Private\AE_Depts\Geot\PROJECT FILES (GEOTECH)\Tannery Brook Bridge Norway ME - 60656153\Calculations\Slope W\ Last Solved Date: 6/28/2022 Last Solved Time: 2:22:46 PM

Project Settings

Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1

Analysis Settings

Tannery Brook Bridge Description: Stability Analysis for Existing Bridge with fascia Kind: SLOPE/W Method: Morgenstern-Price Settings **Side Function** Interslice force function option: Half-Sine **PWP Conditions Source:** Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum Convex Angle: 5 ° **Optimize Critical Slip Surface Location: No Tension Crack** Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 30 F of S Tolerance: 0.01

Minimum Slip Surface Depth: 0.1 ft Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Fascia

Model: High Strength Unit Weight: 150 pcf Pore Water Pressure Piezometric Line: 1

Gravel Fill

Model: Mohr-Coulomb Unit Weight: 135 pcf Cohesion': 0 psf Phi': 40 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

SW-SM

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 36 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Bedrock

Model: Bedrock (Impenetrable) Pore Water Pressure Piezometric Line: 1

Reg Fill

Model: Mohr-Coulomb Unit Weight: 125 pcf Cohesion': 0 psf Phi': 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range Left-Zone Left Coordinate: (0.5, 17) ft Left-Zone Right Coordinate: (30, 17) ft Left-Zone Increment: 20 Right Projection: Range Right-Zone Left Coordinate: (30, 6.140566) ft Right-Zone Right Coordinate: (50, 6) ft Right-Zone Increment: 15 Radius Increments: 15

Slip Surface Limits

Left Coordinate: (0, 17) ft Right Coordinate: (50, 6) ft

Piezometric Lines

Piezometric Line 1

Coordinates

	X (ft)	Y (ft)
Coordinate 1	0	7
Coordinate 2	30	7
Coordinate 3	50	7

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 250 pcf Direction: Vertical

Coordinates

X (ft)	Y (ft)
0	17
0	18
25	18

Points

	X (ft)	Y (ft)
Point 1	0	1
Point 2	20	1
Point 3	30	6
Point 4	28.5	6
Point 5	28.5	17
Point 6	30	17
Point 7	50	1
Point 8	50	6
Point 9	0	17
Point 10	0	6
Point 11	0	-5
Point 12	50	-5
Point 13	30	7
Point 14	50	7
Point 15	0	7
Point 16	27	6
Point 17	27.8	6
Point 18	28.5	14
Point 19	26	14
Point 20	26	17
Point 21	22	6
Point 22	28.5	1

Point 23	28.5	4
Point 24	30	4

Regions

	Material	Points	Area (ft²)
Region 1	Fascia	5,18,4,3,13,6	16.5
Region 2	Bedrock	1,11,12,7,22,2	300
Region 3	Reg Fill	9,10,21,19,20	270
Region 4	Gravel Fill	21,16,17,4,18,19	36
Region 5	Fascia	20,19,18,5	7.5
Region 6	Gravel Fill	21,2,22,23,4,17,16	37.5
Region 7	Fascia	4,23,24,3	3
Region 8	SW-SM	23,22,7,8,3,24	104.5
Region 9	SW-SM	21,10,1,2	105

Current Slip Surface

Slip Surface: 3,520 F of S: 1.5 Volume: 140.40124 ft³ Weight: 18,791.524 lbs Resisting Moment: 194,155.91 lbs-ft Activating Moment: 129,793.32 lbs-ft Resisting Force: 10,204.145 lbs Activating Force: 6,838.5172 lbs F of S Rank (Analysis): 1 of 5,376 slip surfaces F of S Rank (Query): 1 of 5,376 slip surfaces Exit: (44.629182, 6) ft Entry: (19.675, 17) ft Radius: 15.229583 ft Center: (34.888166, 17.706955) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	20.097873	14.827737	-488.45082	153.81636	96.115132	0
Slice 2	20.943619	11.677483	-291.87496	406.95321	254.29259	0
Slice 3	21.789365	9.9824099	-186.10238	554.10244	346.24163	0
Slice 4	22.635111	8.6906487	-105.49648	674.79335	421.65768	0
Slice 5	23.557789	7.5579846	-34.818237	745.90321	625.88711	0
Slice 6	24.528796	6.5620102	27.330565	900.63596	732.79024	0
Slice 7	25.073575	6.0620102	58.530565	832.20864	649.19299	0
Slice 8	25.573575	5.6700176	82.990904	908.0126	692.27541	0
Slice 9	26.5	5.0097205	124.19344	1,098.9759	817.9396	0
Slice 10	27.4	4.4534084	158.90731	1,236.0072	903.79411	0
Slice 11	28.15	4.0546666	183.78881	1,355.4286	983.1225	0
Slice 12	28.875	3.7206969	204.62852	1,600.3378	1,014.0422	0
Slice 13	29.625	3.4213129	223.31008	1,745.9506	1,106.263	0
Slice 14	30.406366	3.1579734	239.74246	343.21571	75.177715	0
Slice	31.219099	2.9318805	253.85066	404.43413	109.4053	0

15						
Slice 16	32.031831	2.7533471	264.99114	466.57586	146.45987	0
Slice 17	32.844563	2.620679	273.26963	528.78539	185.64306	0
Slice 18	33.657296	2.5326696	278.76142	589.5592	225.8078	0
Slice 19	34.470028	2.4885418	281.51499	646.6875	265.31336	0
Slice 20	35.28276	2.4879127	281.55425	697.26532	302.03177	0
Slice 21	36.095493	2.5307769	278.87952	737.81066	333.43299	0
Slice 22	36.908225	2.6175062	273.46762	764.51727	356.76846	0
Slice 23	37.720957	2.7488657	265.27078	773.64453	369.35515	0
Slice 24	38.53369	2.9260492	254.21453	762.01207	368.93651	0
Slice 25	39.346422	3.1507355	240.1941	727.5266	354.06779	0
Slice 26	40.159154	3.4251746	223.0691	669.63656	324.45025	0
Slice 27	40.971887	3.7523135	202.65564	589.59809	281.13014	0
Slice 28	41.784619	4.1359804	178.71482	490.45185	226.49021	0
Slice 29	42.597352	4.5811576	150.93577	376.6587	163.99731	0
Slice 30	43.410084	5.0943981	118.90956	253.41975	97.727373	0
Slice 31	44.222816	5.6844837	82.08822	125.82156	31.774134	0

Appendix F

Geophysical Test Results

Geophysical Investigation Main St. (Rt. 117/118) ME Bridge No. 3610 over Tannery (Bird) Brook

Norway, ME

Prepared for

AECOM

June, 2022

We Save Structures[™]

NDTCORPORATION.COM

NDT CORPORATION 153 Clinton Road, Sterling, MA 01564 Main: 978-563-1327 | Fax: 978-563-1340 eMail: Info@NDTCorporation.com

June 10, 2022

Todd Dwyer, PE Geotechnical Department Manager AECOM 250 Apollo Drive Chelmsford, MA 01824 todd.dwyer@aecom.com

Subject: NDT Report for Nondestructive Testing Investigation to identify the abutment geometry and depth to rock Bridge # 3610 carrying Main St. (Rt. 117) over Tannery (Bird) Brook located in Norway, Maine.

Dear Mr. Dwyer:

NDT Corporation (NDT) is pleased to submit this report to AECOM for nondestructive testing including ground penetrating radar (GPR), seismic refraction and sonic/ultrasonic reflection measurements at the above referenced project location. Based on information provided to NDT by AECOM, the objective of these measurements is to better define the abutment geometry and the bearing strata/bearing elevation (rock or soil) to assist AECOM to evaluate this structure.

We thank you for the opportunity to perform this work and look forward to being of service to you in the future. If you have any questions or require additional information, call the undersigned at 978-573-1327.

Sincerely,

William Home

William Horne NDT Corporation

We Save Structures[™]

TABLE OF CONTENTS

1.0	INTRODUCTION AND PURPOSE Pag		Page 1
2.0	LOCATION AND S	URVEY CONTROL	Page 1
3.0	METHODS OF INV	ESTIGATION	
	• • • • • • • • • • • • • • • • • • • •	ENETRATING RADAR RASONIC TESTING EFRACTION	Page 1 Page 1 Page 2
4.0	RESULTS		Page 3
	FIGURES		
	APPENDIX 1	GROUND PENETRATING RADA	AR
	APPENDIX 2	SONIC/ULTRASONIC TESTING	
	APPENDIX 3	SEISMIC REFRACTION	

We Save Structures[™]

1.0 INTRODUCTION AND PURPOSE:

The geophysical investigation conducted by NDT Corporation on May 25th, 2022, used ground penetrating radar (GPR), sonic/ultrasonic reflection and seismic refraction measurements to determine the abutment geometry and the top of rock profile along a 100 foot line of coverage along the east abutment of the bridge. The results of this testing will assist AECOM with their evaluation of this structure.

2.0 LOCATION AND SURVEY CONTROL

The general location of the project area is shown in Figure 1. GPR data was collected on top of the bridge in both directions (east to west and west to east) to determine the construction of the abutments. Lines were collected 25-30 feet past each abutment to ensure that the back of the abutment was located. A Seismic line of data was collected along a 100-foot-long line located in the streambed in between the east abutment and center pier. Figure 2 shows the location of each of the GPR and seismic line of coverage. Sonic/ultrasonic measurements were made on the on both the masonry blocks and the concrete portion of the abutment to help determine the thickness of each section.

Elevation data is referenced to the low chord measurement taken at the upstream center pier, low chord measurements, top of water to top of bridge slab, were made at both the up and downstream center pier (upstream 7', downstream 7'9"). These measurements in addition to the depth to each seismic hydrophone are added to the results of the seismic profile to get a depth of rock profile.

3.0 METHODS OF INVESTIGATION

3.1 Ground Penetrating Radar (GPR)

The ground penetrating radar (GPR) method uses a pulsed electromagnetic signal that is transmitted to and reflected by a "target" (re-bar, wire, moisture, etc.) back to the point of transmission. The wave transmission and reflection are dependent on the contrast in electrical properties (dielectric constant and conductivity) of the material(s) being investigated. Since these electrical properties are affected by moisture content in the concrete; saturated or moist conditions reflect energy, cause high attenuation and limit signal penetration. Metal reinforcing typically are easily detected because it is high conductivity in comparison to concrete which produces strong reflections. GPR targets indicate the location and approximate depths of metal targets; it cannot determine the size of reinforcing.

GPR detects reinforcing perpendicular to the direction of the line of coverage, therefore, to detect longitudinal reinforcing a transverse line of data would be collected and to detect transverse reinforcing, a longitudinal line of data would be collected. From this data an average spacing and time to reflector (rebar) is determined. Using the average time to reflector (rebar) an average signal velocity is used to calculate the depth of cover. Appendix 1 has a more detailed discussion of the GPR survey method.

3.2 Sonic/Ultrasonic Pulse Velocity Testing

The sonic/ultrasonic data were acquired using a system developed by NDT Corporation specifically for testing concrete. This system uses a projectile impact energy source, a 2.5 foot long four sensor array with sensors spaced 0, 0.5, 1.5, and 2.5 feet from the source and a PC for

1

M-22024ME

We Save Structures[™]

NDTCORPORATION.COM

onsite data display for quality assurance as the data is acquired and to archive the data for future playback and processing.

The projectile impact produces stress waves in the concrete; these stress waves are detected by the array of sensors which measure the amplitude of the stress wave in time (time domain data). This data is used to determine the time required for a compressional and shear wave to travel from the impact point to each of the sensors and the frequency content of the recorded signals. Compressional and shear wave velocity values are calculated using the travel times and the distance between the impact point and sensors.

Sonic/ultrasonic, compressional and shear wave transmission velocity values are used to determine the mechanical characteristics of concrete. The transmission velocity values determine the elastic deformational characteristics of the concrete, including the Young's, Bulk, and shear modulus values as well as Poisson's ratio and a calculated strength value. These values are principally controlled by the presence of cracking, voiding or weaker strength concrete. Strength values are expected to be within 500 psi of values determined from laboratory compressive strength test. This accuracy is dependent on the degree and attitude of fracturing. Appendix 2 has a more detailed description of the sonic/ultrasonic testing method.

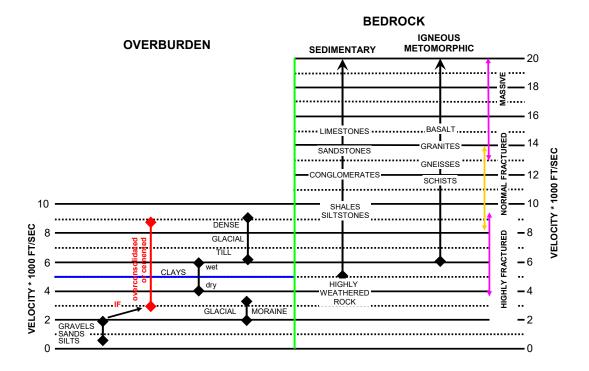
3.3 SEISMIC REFRACTION:

Seismic refraction data was acquired with a 12-channel system with 5 and 10 foot geophone spacing and seismic energy generated approximately every 50 feet with a "seisgun" or sledge hammer energy source. Seismic Refraction utilizes the natural energy transmitting properties of the soils and rocks and is based on the principle that the velocity at which seismic waves travel through the earth is a function of the physical properties (elastic moduli and Poisson's ratio) of the materials. Refracted compressional wave data are used to evaluate material types and thickness, profile top of bedrock, and to determine the approximate depth to layer interfaces. A more complete discussion of the seismic refraction survey method is included in Appendix 1.

The seismic refraction data were interpreted using the critical distance method. Delayed bedrock wave arrivals were used to portray the bedrock surface more accurately between critical distance depth calculations. The delayed arrivals at individual geophone locations are an indicator of variability in the rock surface. Delayed arrivals indicate thicker overburden over the bedrock. Variations of 3-5 feet are not accurately profiled, particularly in shallow (less than 10 feet deep) bedrock areas.

Overburden with a 1,000-1,500+/- ft/sec velocity is consistent with normally consolidated soils/sands/fill material typical of natural soils, fluvial deposits, and/or construction fill. Till with a 2,000 to 2,600 ft/sec velocity value is consistent with unstratified glacial drift or ground moraine. These tills are typically deposited by receding glaciers consisting of an admixture of clays, sands and gravels with occasional and sometimes frequent boulders associated with an ablation till. Overburden and Till layers with "dry" velocities of less than 5,000 ft/sec are indistinguishable when saturated and assume the velocity of water 5,000+/- ft/sec when saturated. These overburden/soils/tills are susceptible to scour.

Bedrock velocities of less than 10,000 ft/sec are indicative of highly weathered and/or fractured rock typical of sedimentary and low-grade metamorphic rocks such as shales, silt stones and


2

M-22024ME

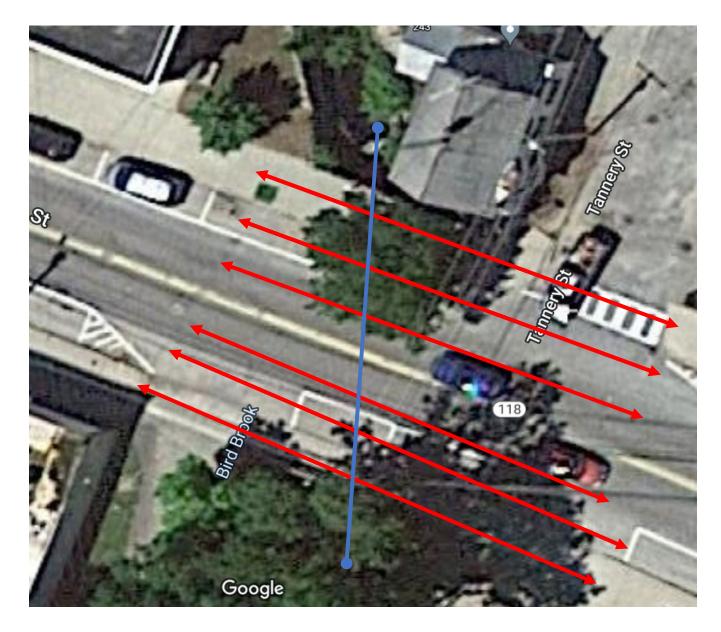
We Save Structures[™]

NDTCORPORATION.COM

schists. Bedrock with a velocity of 10,000 to 15,000 ft/sec is indicative of competent bedrock that will require drilling and blasting for removal. This velocity range is typical of competent sedimentary and metamorphic rocks such as sandstones, limestones, schists, and gneisses. Bedrock velocities greater than 15,000 ft/sec are indicative of massive bedrock typical in metamorphic and igneous rocks such as gneisses, granites and basalts.

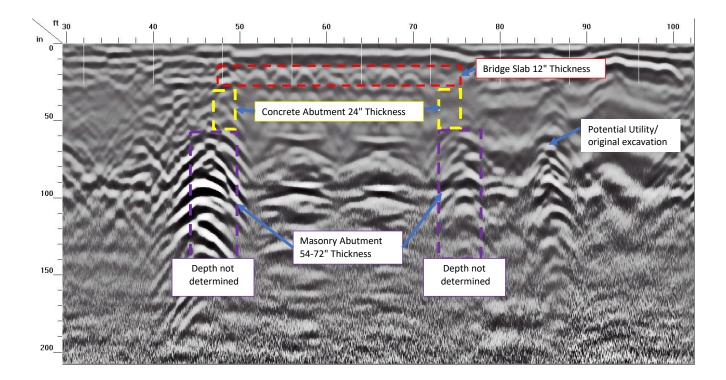
5.0 **RESULTS:**

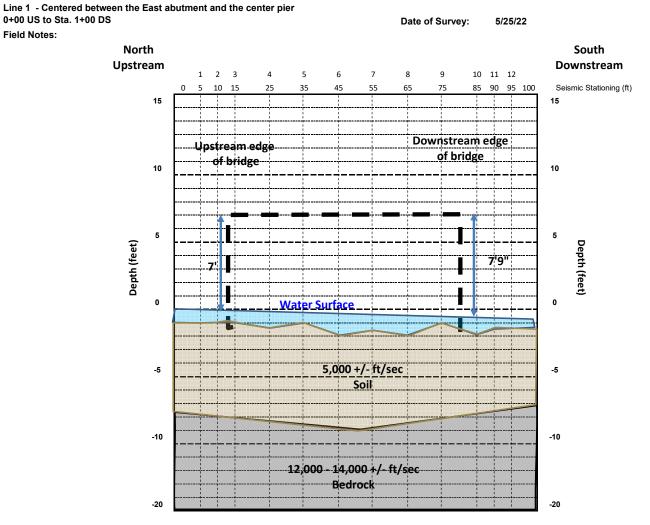
Interpretation of the GPR and Sonic/ultrasonic data determined that the masonry portion of the abutments ranges from 54-72 inches in total thickness, and the concrete section of the abutment is 24 inches thick. The GPR data has an approximate depth of penetration 10-12 feet and does not give an indication of a batter or a stepped-out back of abutment to this depth. Figure 3 is an annotated GPR record which shows the abutment thicknesses.


Figure 4 is a seismic refraction profile with the depth of rock. Seismic Refraction results indicate that there is a 5-6 feet of saturated fill/soil materials with a velocity of 5,000+/-ft/sec overlying a bedrock with a seismic velocity of 14,000+/- ft/sec. Measurements from the top of the existing bridge slab to the water/river surface was 7-7.75 feet below this elevation. Seismic data indicates the top of rock surface ranging from 14 to 16 feet from the top of the existing bridge slab (5 to 6 feet below the water surface at the time of the survey).

FIGURES

Geophysical Top of Rock Survey Main St. (Routes 117 & 118) crossing Bird Brook Norway, ME	Area of Investigation	
prepared for AECOM by NDT Corporation	June 2022	Figure 1




GPR Line of Coverage

Seismic Refraction Line of Coverage

Geophysical Top of Rock Survey Main St. (Routes 117 & 118) crossing Bird Brook Norway, ME	Lines of Coverage Map	
prepared for AECOM by NDT Corporation	June 2022	Figure 2

Geophysical Top of Rock Survey Main St. (Routes 117 & 118) crossing Bird Brook Norway, ME prepared for AECOM by NDT Corporation	Annotated GPR Record with Thicknesses	
	June 2022	Figure 3

Main Street over Bird Brook, Norway, ME

Geophysical Top of Rock Survey Main St. (Routes 117 & 118) crossing Bird Brook Norway, ME	Line 1 Seismic Profile near East Abutment	
prepared for AECOM by NDT Corporation	June 2022	Figure 4

Field Notes:

APPENDIX 1

GPR Method of Investigation

APPENDIX: GROUND PENETRATING RADAR

Ground Penetrating Radar (GPR) is an electrical geophysical method for evaluating subsurface conditions by transmitting high frequency electromagnetic waves into the ground and detecting the energy reflected back to the surface. Electromagnetic signals are transmitted from the antenna (transmitter and receiver) at ground surface and reflected back to the antenna from interfaces with differing electrical (dielectric constant and conductivity) properties. The greater the contrast in the electrical properties between two materials, the more energy that is reflected to the surface and the more defined results are.

GPR SYSTEM:

GPR systems consist of: Control unit (pulse transmitter, digital recorder, data storage, monitor); and an antenna(s) and survey wheel.

The GPR control unit is a computer which controls data acquisition parameters, such as sampling rate, range, gain control, filtering, etc. The Control Unit also visually displays the data, digitally archives the data, and allows for play back of the data.

Coaxial cable connects the control unit to the antenna. The antenna(s) are sealed and shielded in fiberglass housing.. Selection of the antenna is dictated by the requirements of the survey. For high resolution, near-surface data, a high frequency antenna is used; for deeper penetration investigation, a lower frequency antenna is used. Typically the 100 to 400 MHz antennas are used for geologic surveys; 400 to 900MHz are used for utility, near surface voiding settlement, foundation, etc surveys while the 900 to 1500 MHz are used for concrete reinforcing assessment.

APPLICATIONS

Ground Penetrating Radar (GPR) can be used to locate underground pipes, buried drums, foundations, voids in rock and concrete, soil settlement, determine stratigraphy, depth to water table, buried artifacts, filled excavations, and locate voids/settlement behind walls and under floor slabs, etc. GPR is also a good tool for evaluating concrete structures such as

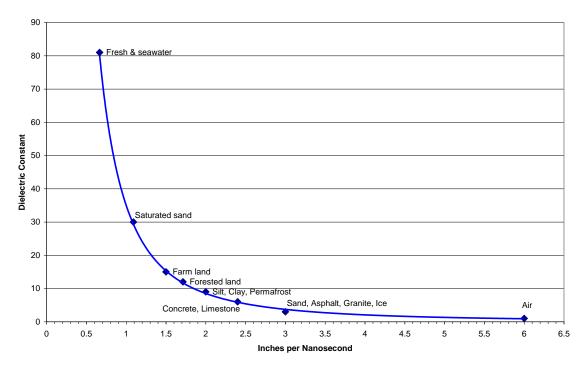
bridges, walls, beams, ceilings, etc where the GPR can locate rebar and conduits, quantify rebar spacing, cover variability over reinforcing, and concrete thickness.

GPR reflections typically occur at subsurface discontinuities such as:

- Buried metal objects (utilities, tanks, reinforcing)
- Open and water filled voids
- Water table
- Soil stratification
- Seepage paths
- Bedrock fractures

DETPH OF PENETRATION AND LIMITATIONS

The depth of penetration of GPR is site specific, limited by the attenuation of the electromagnetic energy. Signal attenuation is controlled by four different mechanisms:

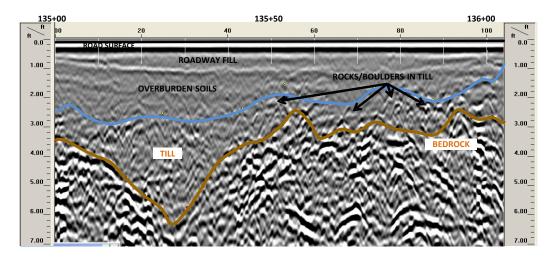

- Scattering: energy losses due to scattering occur when signals are dispersed in random directions, away from the receiving antenna, by closely spaced rebar or large irregular shaped objects, such as boulders or tree stumps.
- High conductivity layers: the greater the conductivity values of materials at a site, the more signal attenuation or less penetration. (Mineral content, high moisture content, water table, metal plates, etc.)

Signal penetration is also dependent on the frequency of the antenna. High frequency antennas have shallow penetration and high resolution. Low frequency antennas have greater depths of penetration, but the resolution of small and near surface targets is reduced. Listed below are antenna frequency, approximate depths of penetration and typical application. (Depths of penetration are in ideal conditions if a highly conductive layer, such as a brackish water table, steel plate, etc., is present all antennas will be limited to the depth of this layer.)

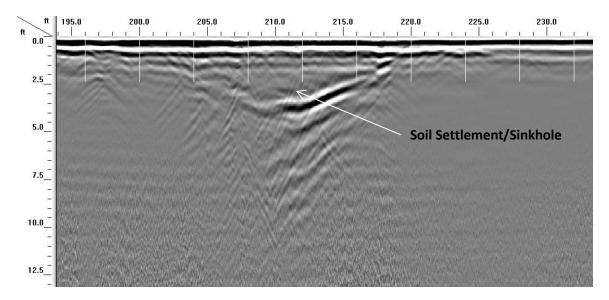
1500 and 1600 MHz	+/-2 feet	Asphalt/Concrete thickness Wire mesh/rebar/conduit location Voiding within and behind structures
900 MHz	3-5 feet	Concrete thickness Rebar and utility location Voiding within and behind structures
400 MHz	10-15 feet	Concrete/Masonry thickness Utility location Soil settlement/sinkhole development Geologic and Environmental mapping Archaeological Surveys
200 MHz	25-30	Soil settlement/sinkhole development

		Geologic and Environmental mapping Archaeological Surveys
100 MHz	+/-50	Soil settlement/sinkhole development Geologic and Environmental mapping Archaeological Surveys

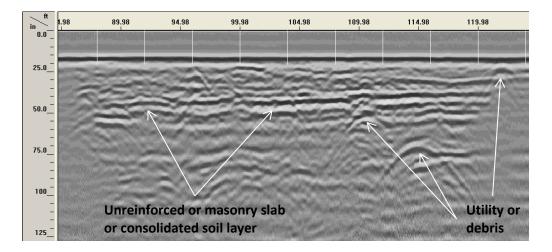
Depth of investigation can be estimated using material dielectric constants and the diagram shown below. Typically 2 inches per nanosecond can be used as an average signal velocity for most materials and sites. When available an onsite depth calibration can be conducted to determine the electrical properties (speed of the signal) of the materials at the site. Depth calibrations typically consist of collecting GPR data over a metal target with a known depth. Known utilities, and buried metal plates are good targets for calibrations. GPR surveys can be very effective when coupled with other geophysical surveys and/or ground truth methods to verify, correlate and extrapolate GPR results. GPR surveys are a fast and cost effective method to collect data over large or obstructed sites, and isolate anomalies and areas where borings or other methods can be focused for the best interest of a project.

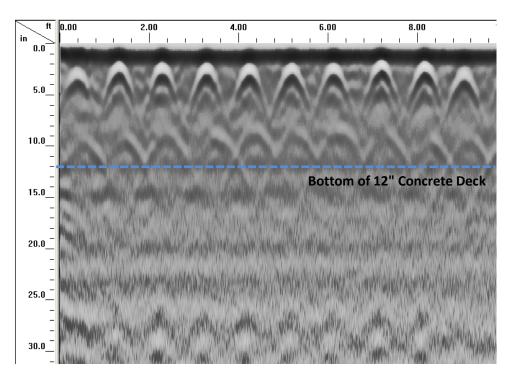


Material Velocity - Dielectric Constant


ACQUISITION AND INTERPRETATION:

Radar data are typically acquired at a slow walking speed along a grid pattern of survey lines or a series of parallel lines. Data is displayed on LCD screen for field verification and quality control of results and digitally saved. Calibrated measuring wheels are used to automatically added footage/station markers to the digital data. The saved data can be printed or post processed. Interpretation of GPR data is subjective. GPR results should be verified with borings or test pits. GPR lines indicate a cross-section in time/depth along a survey line.


Natural soils or fill placed in lifts during construction retain moisture between material interfaces and typically have horizontal or near horizontal bedding planes. These conditions cause a change in conductivity which shows as continuous reflective layers on GPR data. The strength of a reflected signal and/or the continuity of the reflector across the record may be indicative of a stratigraphic contact, water table, top of rock, back of wall/slab.



Locations where GPR data indicate theses horizontal bedding planes/layers are sloping, draped or disturbed can be indication of soil settlement, trenching and/or voiding. Areas where GPR data is less reflective, indicating fine soil materials (clays and silts) have been washed or eroded away or areas that are more reflective, indicating loose soil conditions where moisture has accumulated are also indicative of and associated with settlement, sinkholes, and voiding.

Often point targets, such as reinforcing, buried utilities, boulders, create a distinctive parabolic feature on GPR records. Point targets trending perpendicular to the direction of the line of coverage are detected, therefore to detect longitudinal reinforcing a transverse line of data would be collected and to detect transverse reinforcing, a longitudinal line of data would be collected. Plotting point targets of similar signal strength, depth, and shape located along the grid of GPR lines give the trend and location of individual utilities and/or reinforcing.

Top Reinforcing 12" spacing 2+/- inches cover Bottom Reinforcing 12" spacing 8-9 inches cover

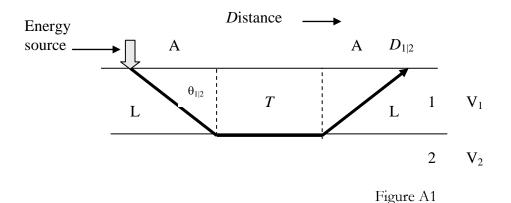
APPENDIX 2

SONIC/ULTRASONIC METHOD OF INVESTIGATION

APPENDIX SONIC/ULTRASONIC NONDESTRUCTIVE TESTING OF CONCRETE

The sonic/ultrasonic measurements made to determine the characteristics of concrete (or rock) are generated by a relatively low energy source as a single discrete wide band impulse with a pulsed transducer, projectile, mechanical hammer, etc. Practical problems and the condition of the concrete surface largely determine the source(s) to be used. A rough concrete surface that has deposits of organic materials or mineral deposits generally requires a more powerful energy source whereas a relatively new or wet concrete may be inspected by the use of a pulsed transducer or other higher frequency source. In general high frequency sources that may work well in the laboratory may be unusable for field conditions. High frequency sources have the advantage of high resolution but the disadvantage of low penetration. While metals can be tested in the megahertz range, such signals in concrete will not have measurable signals for more than an inch in thickness. The energy source should be sufficient to maximize the resolution, have sufficient penetration to examine the concrete being tested and enough energy to excite the fundamental frequencies being sought.

The transmitted energy is in the form of three principal wave types: compressional (contraction/expansion, spring-like particle motion), shear (traction-sliding motion), and surface waves (combination of motions). Each boundary that has density and or velocity contrast will reflect and/or refract these waves. Compressional and shear wave velocity values are determined by the Young's, shear and bulk moduli values as well as the density and Poisson's Ratio. In turn the velocity can be used to determine the moduli values and Poisson's Ratio given that the density is known or can be assumed. The moduli values measured are the dynamic moduli values at low strain. In general, the difference between the dynamic values and the static values is almost entirely controlled by the crack densities of Using the modulus values, a reasonable estimate of the unconfined the concrete. compressive strength can be determined. The strength is largely dependent on the crack density of the concrete and for static tests, the orientation of the cracks. For static testing, cracks perpendicular to the axis of the core and perpendicular to the directed stress will produce a strength (static) that is not greatly different from uncracked concrete. The applied stress closes or compresses the cracks. Cracks that are near 45° to the direction of stress will result in lowest static strength. The approximate orientation of the cracks can be determined with dynamic measurements of the velocity values in different directions.


NDT Corporation makes several determinations from one energy impact. The velocity is measured directly from the energy point of impact to a linear array(s) of sensors on the surface. The array length is usually in excess of the thickness of the concrete being tested. In addition to the velocity measurements, reflections are measured individually or determined from a frequency analysis of the time domain recordings. Each reflecting surface (change of density and/or velocity) produces a multi-path reflection in the layer it bounds. A generated wave will travel to a delamination surface and reflect back to the surface of the concrete where it is reflected back to the delamination, resulting in multi-reflections that are apparent in the frequency domain. These reverberations (echoes) are particularly diagnostic of delaminations, cracked or decomposed inclusions by the particular frequency band generated at the mechanical discontinuity. If a delamination is

severe or large in area, the reflected signals are strong resulting in a low frequency, high amplitude, and long duration "ringing" signal or a drum head effect that is usually quite distinguishable. This is the basis of the 'chain drag" using the human ear as the sensor to recognize frequency differences. The ear however is limited in its perception and will only distinguish within the hearing range.

DIRECT AND REFRACTED ENERGY

One of the advantages of the sonic/ultrasonic method is its ability to "look through" overlying materials coatings, particularly decomposed "softer layers" when the array(s) is configured properly. This is done using refracted waves associated with the different layer velocities or by careful examination of the resonant frequencies associated with such layering.

The diagram below shows the wave path for refracted energy generated for a softer (1) lower velocity layer over a harder (2) higher velocity layer. For example asphalt (1) over good concrete (2). The wave is bent (similar to the appearance of a stick in water) and travels along the boundary between the lower velocity layer and the higher velocity layer and radiates back to the surface. The higher velocity of the good concrete allows the refracted wave to overtake the direct wave in layer 1 at some distance designated as D_{1/2}. To the left of this point the lower velocity of layer 1 will be measured and beyond it the velocity of the deeper layer 2 is measured.

The time for the direct path is D/V_{1} ; the refracted path time is $2L/V_1+(D_{1|2}-2A)/V_2$. The array of sensors is placed in the distance direction and the time elapsed (travel time) from the time of energy impact to the sensor distance is measured. The velocity is determined from this time-distance measurement(s). The angle θ is the angle between the perpendicular to the layer and the incident wave that is critically refracted. The sine of this angle is the velocity of the first layer divided by that of the second layer (Snell's Law). The distance shown $D_{1|2}$ is the point on the surface where the refracted time arrival equals that of the direct wave (the refracted wave travels at a higher velocity than the direct wave).

$$\frac{D}{T} = \frac{D - 2\tan\Theta}{V_2} + \frac{2T}{V_1\cos\Theta}$$

The thickness is expressed as:

$$T = \frac{D_{1|2}}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$$

D is the distance and T is the thickness. Since the times as well as the distances are measured, then V₁ and V₂ are determined. If a plot of distance versus time is made then the resulting graph will look like Figure A2.

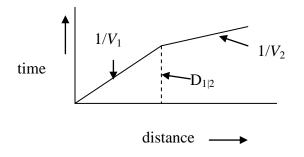


Figure A2

If the concrete has no overlay then the concrete velocity is simply D/T.

The resonant frequencies are determined by the thickness and velocity of the material. Since the velocity is measured as above, then the thickness can be determined directly.

The resonance of a simple beam is given by:

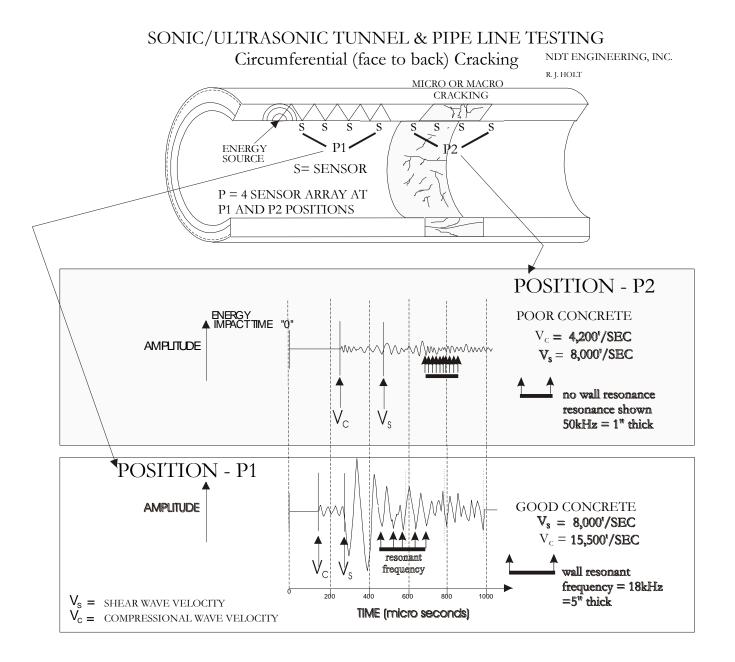
$$f = \frac{nV}{2L} \qquad (fixed - fixed, free - free) \quad where \ n = 1, 2, 3 - - -$$
$$f = \frac{nV}{4L} \quad (open - fixed), \quad where \quad n = 1, 3, 5, 7 - - -$$

Since the frequency and velocity are measured, the thickness is determined. This thickness can be the thickness of the concrete floor, deck slabs, or column being measured or it can be the thickness of concrete overlying a delamination.

While the refracted wave is dependent only on a contrast in velocity, a reflection can take place where there is a change in velocity or density or both. The impedance (RF reflection coefficient) which causes a wave to be reflected is given by:

SONIC/ULTRASONIC APPENDIX

RF =
$$\frac{\rho_2 V_2 - \rho_1 V_1}{\rho_2 V_2 + \rho V_{11}}$$


Where ρ is the density and V is the velocity of the material. The impedence determines the strength of the reflection. The contrast between an air filled void at the back of or within the concrete is significant; the velocity in air is 1,000ft/sec. and the velocity of good concrete is 13,000ft/sec. The density differences are of course very large between the concrete and air. A similar difference exists for a water filled void where the velocity in water is 5,000ft/sec. and concrete is nearly a factor of 2.5 denser. Voiding behind a liner or under a slab is usually well distinguished by a distinct " ringing" resonant frequency, reffered to above as a drum head effect.

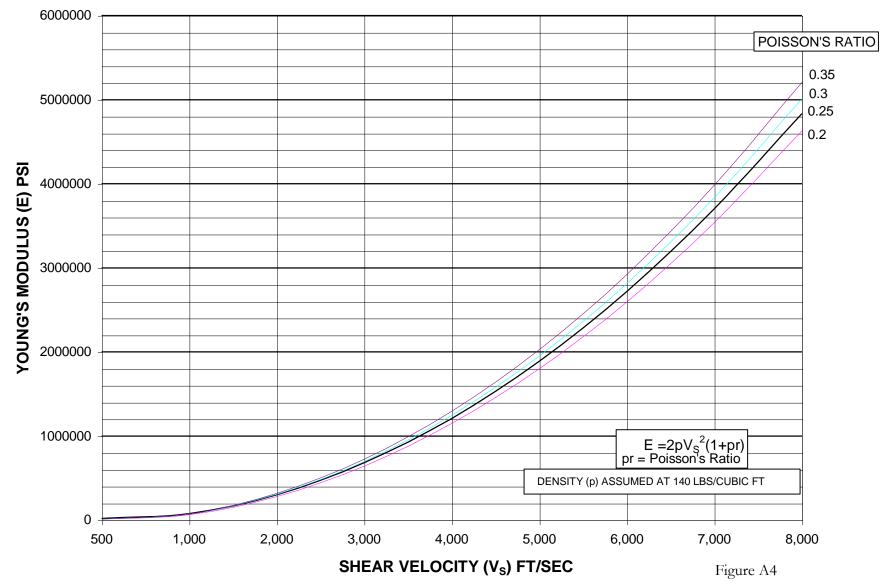
MODULI VALUES AND STRENGTH

The moduli values as stated above are determined from the velocity values using an assumed or measured density. The density is usually the best known or best estimated value for the concrete, its variance generally does not affect the calculations significantly.

The relationships for Young's modulus versus the compressional velocity are shown in Figure A4; shear modulus versus the shear velocity Figure A5; Poisson's Ratio versus the compressional and shear wave velocities Figure A6; and finally a relationship between the velocity values (compressional and shear) and the unconfined compressiive strength of concrete, Figure A7.

Figure A3 is illustrative of a tunnel liner or pipe investigation where there has been circumferential damage, perhaps at a construction joint or an outside zone of weakness (rock shear or fault, soil washout etc.) that has affected the integrity of the liner. The damage need not be visible; there can be a 20% reduction in the strength of the concrete from micro-cracking that is not visible to the naked eye. The process of deteroration of most concrete starts at the micro level and with continued stress the micro cracks coalesce into macro cracks and finally to spalling. The ability to measure at the micro level well in advance of future needed repairs provides a management tool for establishing proirities for repair, projected budgets, and asset valuation

SONIC/ULTRASONIC TIME AMPLITUDE RECORDS FOR FOURTH SENSOR - POOR AND GOOD CONCRETE


FIGURE A3

SONIC/ULTRASONIC APPENDIX

NDT CORPORATION

YOUNG'S MODULUS - SHEAR VELOCITY- POISSON'S RATIO

NDT ENGINEERING, INC. R. J. HOLT

SHEAR MODULUS - SHEAR VELOCITY

NDT ENGINEERING, INC. R.J.HOLT

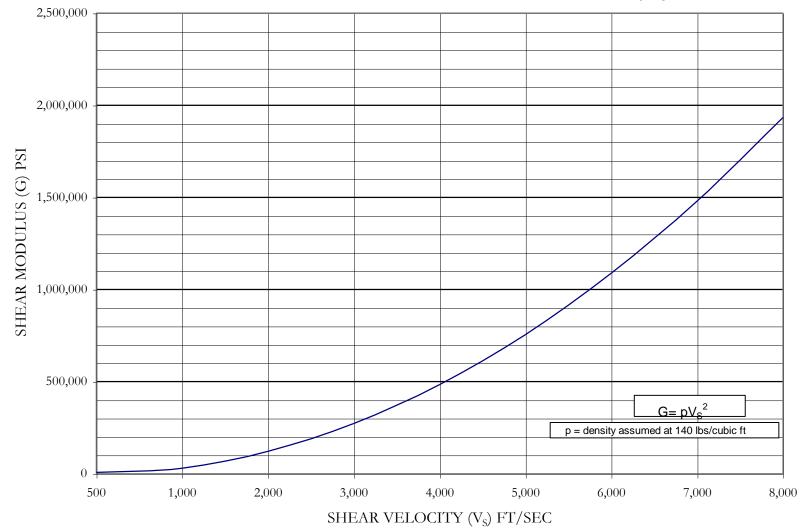
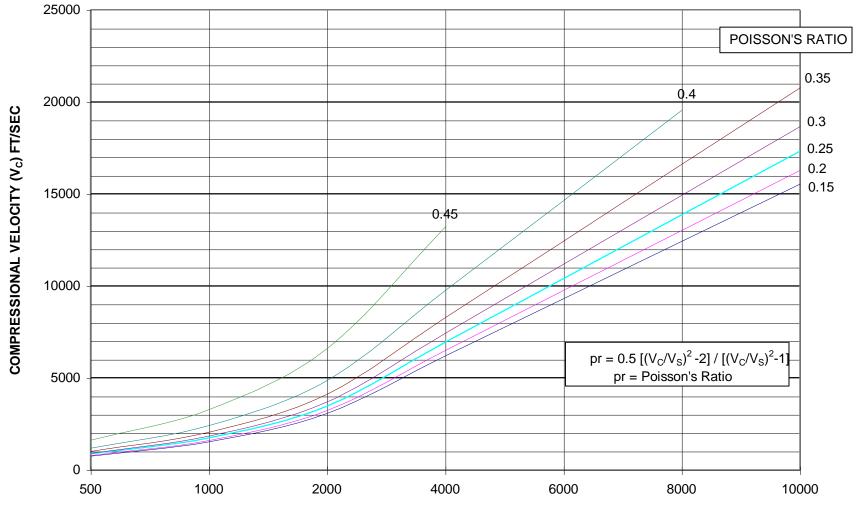
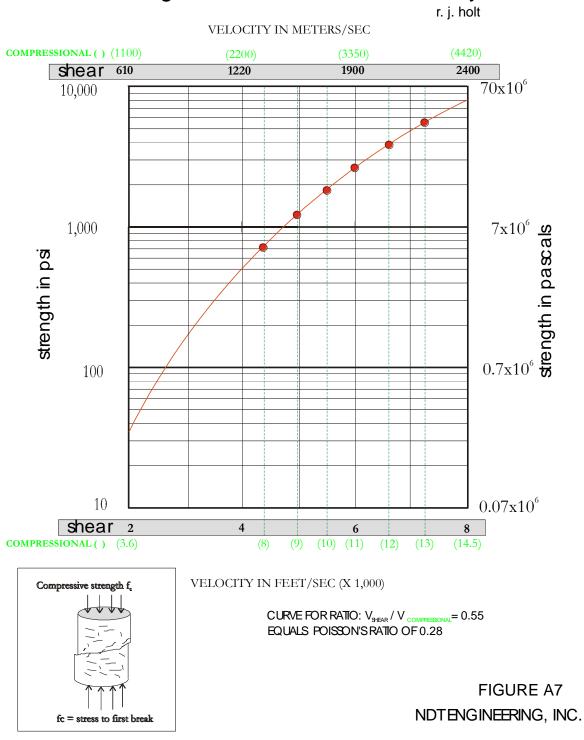



Figure A5


COMPRESSIONAL VELOCITY - SHEAR VELOCITY - POISSON'S RATIO

NDT ENGINEERING, INC. R J HOLT

SHEAR VELOCITY (Vs) (FT/SEC)

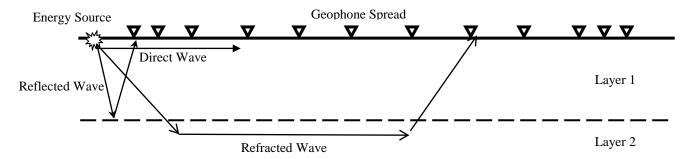
Figure A6

strength of concrete versus velocity

APPENDIX 3

SEISMIC REFRACTION

APPENDIX: SEISMIC REFRACTION


OVERVIEW

Seismic exploration methods utilize the natural energy transmitting properties of the soils and rocks and are based on the principle that the velocity at which seismic waves travel through the earth is a function of the physical properties (elastic moduli and Poisson's ratio) of the materials. Energy is generated at the ends and at the center of the seismic spread. The geophone/hydrophone is in direct contact with the earth/water and converts the earth's motion resulting from the energy generation into electric signals with a voltage proportional to the particle velocity of the ground motion. The field operator can amplify and filter the seismic signals to minimize background noise. Data are recorded on magnetic disk and can be printed in the field. Interpretations are based on the time required for a seismic wave to travel form a source to a series of geophones/hydrophones located at specific intervals along the ground surface. The resultant seismic velocities are used for:

- * Material identification.
- * Stratigraphic correlation.
- * Depth determinations.
- * Calculation of elastic moduli values and Poison's ratio.

A variety of seismic wave types, differing in resultant particle motion, are generated by a near surface seismic energy source. The two types of seismic waves for seismic exploration are the compressional (P) wave and the shear (S) wave. Particle motion resulting from a (P-wave) is an oscillation, consisting of alternating compression and dilatation, orientated parallel to the direction of propagation. An S-wave causes particle motion transverse to the direction of propagation. The P-wave travels with a higher velocity of the two waves and is of greater importance for seismic surveying. The following discussions are concerned principally with P-waves.

Possible seismic wave paths include a direct wave path, a reflected wave path or a refracted wave path. These wave paths are illustrated in FIGURE A1. The different paths result in different travel times, so that the recorded seismic waveform will theoretically show three distinct wave arrivals. The direct and refracted wave paths are important to seismic refraction exploration while the reflected wave path is important for seismic reflection studies.

FIGURE A1: SEISMIC WAVE PATHS FOR DIRECT WAVE, REFLECTED WAVE AND REFRACTED WAVE ILLUSTRATING EFFECTS OF A BOUNDARY BETWEEN MATERIALS WITH DIFFERENT ELASTIC PROPERTIES

Seismic waves incident on the interface between materials of different elastic properties at what is termed the critical angle are refracted and travel along the top of the lower layer. The critical angle is a function of the seismic velocities of the two materials. These same waves are then refracted back to the surface at the same angle. The recorded arrival times of these refracted waves, because they depend on the properties and geometry of the subsurface, can be analyzed to produce a vertical profile of the subsurface. Information such as the number, thickness and depths of stratigraphic layers, as well as clues to the composition of these units can be ascertained.

The first arrivals at the geophones/hydrophones located near the energy source are direct waves that travel through the near surface. At greater distances, the first arrival is a refracted wave. Lower layers typically are higher velocity materials, therefore the refracted wave will overtake both the direct wave and the reflected wave, because of the time gained travelling through the higher velocity material compensates for the longer wave path. Depth computations are based on the ratio of the layer velocities and the distance from the energy source to the point where refracted wave arrivals over take direct arrivals.

Although not the usual case, a constraint on refraction theory is that material velocities ideally should increase with depth. If a velocity inversion exists, i.e. where a higher velocity layer overlies a low velocity layer, depths and seismic velocities can be calculated but the uncertainty in calculations is increased unless borehole data are available.

APPLICATIONS

Seismic refraction technique is an accurate and effective method for determining the thickness of subsurface geologic layers. Applications for engineering design, assessment, and remediation as well as ground water and hydrogeologic studies include:

- * Continuous profiling of subsurface layers including the bedrock surface
- * Water-table depth determinations
- * Mapping and general identification of significant stratigraphic layers
- * Detection of sinkholes and cavities
- * Detection of bedrock fracture zones
- * Detection of filled-in areas
- * Elastic moduli and Poisson's ratio values for subsurface layers

Seismic refraction investigations are particularly useful because seismic velocities can be used for material identification. FIGURE A2 presents a guide to material identification based on P-wave seismic velocities. In rocks and compacted overburden material, the seismic waves travel from grain to grain so that the measured seismic velocity value is a direct function of the solid material. In porous or fractured rock and most overburden materials the seismic waves travel partly or wholly though the fluid between the grains.

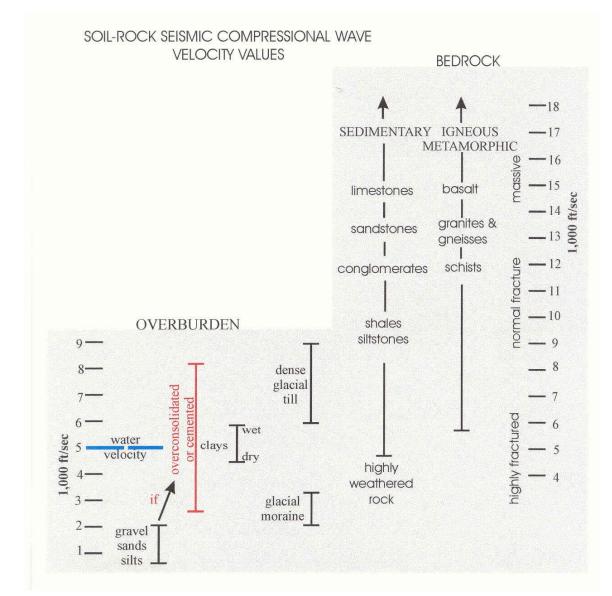


FIGURE A2: GUIDE TO MATERIAL IDENTIFICATION BY P-WAVE VELOCITY

Seismic compressional wave velocities in unconsolidated deposits are significantly affected by water saturation. The seismic velocity values of unsaturated overburden materials such gravels, sands and silts generally fall in the range of 1,000 to 2,000 ft/sec. When these materials are water saturated, that is when the space between individual grains are 100% filled with water, the seismic velocities range from 4,800 to 5,100 ft/sec, equivalent to the compressional P-wave velocity of sound in water. This is because the seismic wave assumes the velocity of the faster medium, that of water. Even a small decrease in the saturation level will substantially lower the measured P-wave velocity of

the material. Because of this velocity contrast between saturated and unsaturated materials, the water table acts as a strong refractor.

Seismic investigations over unconsolidated deposits are used to map stratigraphic discontinuities and to unravel the gross stratigraphy of the subsurface. These can be vertically as in the case of a dense till layer beneath a layer of saturated material or horizontally as in the case of the boundaries of a fill material. Often these boundaries represent significant hydrologic boundaries, such as those between aquifers and aquicludes.

A common use of seismic refraction is the determination of the thickness of a saturated layer in unconsolidated sediments and the depth to relatively impermeable bedrock or dense glacial till. Continuous subsurface profiles and even contour maps of the top of a particular horizon or layer of interest can be developed from a suite of seismic refraction data.

Bedrock velocities FIGURE A2 vary over a broad range depending on variables, which include:

- * Rock type
- * Density
- * Degree of jointing/fracturing
- * Degree of weathering

Fracturing and weathering generally reduce seismic velocity values in bedrock. Low velocity zones in seismic data must be evaluated carefully to determine if they are due to overburden conditions or fractured/weathered or perhaps even faulted bedrock.

EQUIPMENT:

The basic equipment necessary to conduct a seismic refraction investigation consists of:

- * Energy source
- * Seismometers (Geophones/Hydrophones)
- * Seismic cables
- * Seismograph

Energy sources used for seismic surveys are categorized as either non-explosive or explosive. The energy for a non-explosive seismic signal can be provided by one of the following:

- * Sledge Hammer (very shallow penetration)
- * Weight Drop
- * Seisgun
- * Airgun
- * Sparker
- * Vibrators (for reflection surveys)

Explosive sources can be categorized as:

- * Dynamite
- * Primers
- * Blasting Agents

Choice of energy source is dependent on site conditions, depth of investigation, and seismic technique chosen as well as local restrictions. Explosive sources may be prohibited in urban areas where non-explosive sources can be routinely used. Deeper investigations usually require a larger energy source: therefore, explosives may be required for sufficient penetration.

Geophones/Hydrophones are sensitive vibration detectors, which convert ground motion to an electric voltage for recording the seismic wave arrivals. Seismic cables, which link the geophones/hydrophones and seismograph are generally fabricated with pre-measured locations for the geophones/hydrophones and shot point definitions.

The seismograph can be single channel or multi-channel, although, multi-channel seismographs (12 to 24 channels) are preferred and necessary for all but the simplest of very shallow surveys. The seismograph, amplifies (increases the voltage output of the geophones), conditions/filters the data, and produces analog and digital archives of the data. The analog archive is in the form of a thermal print of the data, which can be printed directly after acquisition in the field. The digital archive is stored on magnetic disk and can be used for subsequent computer processing and enable more extensive and detailed interpretation of seismic data.

ACQUISITION CONSIDERATIONS:

Several concerns arise before data collection, which must be addressed before of any seismic survey:

- * Geophone spacing and Spread length
- * Energy Source (discussed above)
- * On-site utilities and cultural features (buildings, high tension lines, buried utilities, etc.)
- * Vibration generating activities
- * Geology
- * Topography

To acquire seismic refraction data, a specific number of geophones are spaced at regular intervals along a straight line on the ground surface; this line is commonly referred to as a seismic spread. The length of spread determines the depth of penetration; a longer spread is required for a greater depth of penetration. Spread length should be approximately three to five times the required depth of penetration. Required resolution will control the number of geophones in each spread and the distance between each geophone. Closer spacings and more geophones usually result in more detail and greater resolution.

Cultural effects such as vibration generating activities, on-site utilities, and building affect where data can be acquired, and where lines/spreads are located. High volume traffic areas may require nighttime acquisition. If the survey is to be conducted near a

building where vibration-sensitive manufacturing is conducted, data acquisition may be constrained to particular time intervals and appropriate energy sources must be used. Over head and buried utilities must be located an avoided, for both safety and induced electrical noise concerns. Since the seismic method measures ground vibration, it is inherently sensitive to noise from a variety of sources such as traffic, wind, rain etc. Signal Enhancement, such as record stacking, accomplished by adding a number of seismic signals from a repeated source, causes the seismic signal to "grow" out of the noise level, permitting operation in noisier environments and at greater source to phone spacings.

Knowledge of site geology can be used to determine the energy source. Some geologic materials, such as loose, unsaturated alluvium, do not transmit seismic energy as well and a powerful energy source may be required. Geologic conditions also dictate whether or not drilled shotholes are required. Site geology can also dictate the positioning of seismic lines/spreads. Where a bedrock depression of a feature is suspected, seismic lines should be orientated perpendicular to the suspected trend of the feature. Seismic cross profiles may be necessary to confirm depths to a particular refracting horizon.

The topography of a site dictates whether or not surveyed elevations are required. If possible, refraction profile lines should be positioned along level topography. For highly variable topography, a continuous elevation profile may be required to ensure sufficiently accurate cross-sections and to permit the use of time corrections in the interpretation of the refraction data.

DATA PRESENTATION AND INTERPETATION:

Interpretation of seismic refraction data involves solving a number of mathematical equations with the refraction data as it is presented on a travel-time versus distance chart. Seismic refraction data FIGURE A3 can be processed by plotting the "First Arrival" travel times at each geophone location. The preferred format of data presentation is a graph (Travel Time Plot) illustrated in FIGURE A4, in which travel time in milliseconds is plotted against source-receiver distance. From such a chart, the velocities of each layer can be obtained directly from the increase slope of each straight-line segment. Using the velocities the critical angle of refraction for each boundary can be calculated using Snell's Law. Then, utilizing these velocities, and angles and the recorded distances to crossover points (where line segments cross); the depths and thickness of each layer can be calculated using simple geometric relationships.

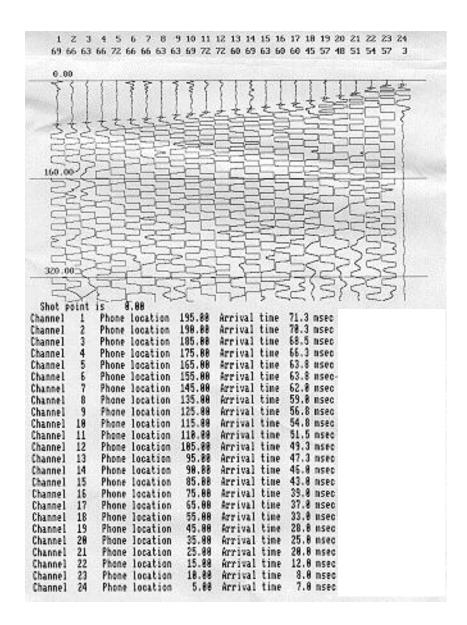
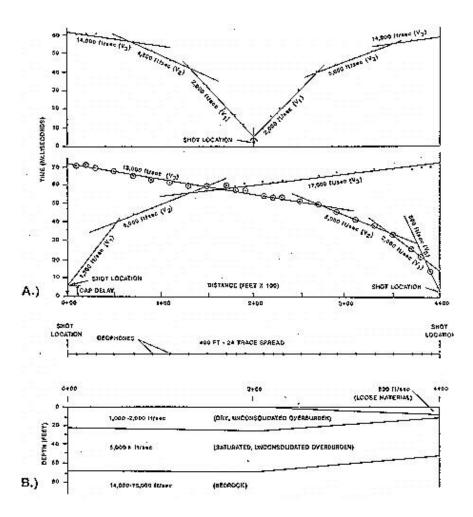



FIGURE A3: TYPICAL 24 CHANNEL ANALOG SEISMIC REFRACTION RECORD, WITH FIRST ARRIVAL TIMES

FIGURE A4:

A: TRAVEL-TIME PLOTS; UPPER PLOT IS A CENTER SHOT, LOWER PLOT IS TWO END SHOTSB: RESULTING PROFILE OF SUBSURFACE MATERIALS SHOWING INTERFACE BETWEEN DIFFERENT SEISMIC VELOCITY LAYERS

The results of any seismic survey, refraction or reflection are usually presented in profile form showing elevations of seismic horizons/layers. Data acquired on a grid basis can be contoured and used to construct isopach maps. Seismic velocities and therefore, generalized material identifications should be presented on refraction profiles along with any test borings used for correlation to establish confidence in the overall subsurface data, both seismic and borings.

Where profiles indicate dipping boundaries, calculation of dips, true depths and true velocities involve more complicated equations. Further more, corrections for differing elevations and varying thicknesses of weathered zones must often be made. Fracturing and weathering generally reduce seismic velocity values in bedrock. Consequently, travel-time plots with late arrivals must be evaluated carefully to determine if the late arrival times (slower velocities) are due to overburden conditions or fractured/weathered bedrock.

Very thin layers or low velocity zones often complicate the travel-time chart as well. Although not the usual case, one constraint on refraction theory is that material velocities ideally should increase with depth. If a velocity inversion exists, i.e. where a higher velocity layer overlies a low velocity layer, depths and seismic velocities can be calculated but the uncertainty in calculations is increased unless borehole velocity data are available.

ADVANTAGES AND LIMITATIONS:

The seismic refraction technique, when properly employed, is the most accurate of the geophysical methods for determining subsurface layering and materials. It is extremely effective in that as much as 2,000 linear feet or more of profiling can be acquired in a field day. The resulting profiles can be used to minimize drilling and place drilling at locations where borehole information will be maximized resulting in cost-effective exploration. A standard drilling program runs the risk of missing key locations due to drillhole spacing. This risk is substantially reduced when refraction is used.

In summary, the advantages and limitations of the seismic techniques are:

Advantages:

- * Material identification
- * Subsurface data over broader areas at less cost than drilling
- * Relatively accurate depth determination
- * Correlation between drillholes
- * Preliminary results available almost immediately
- * Rapid data processing

Limitations:

- * As depth of interest and geophone spacing increases, resolution decreases
- * Thin layers may be undetected
- * Velocity inversions may add uncertainty to calculations
- * Susceptible to noise interference in urban areas, which require use of grounded cables and equipment, signal enhancement and alternative energy sources.