MAINE DEPARTMENT OF TRANSPORTATION HIGHWAY PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For Slope Stabilization on:

ROUTE 102A & SHORE ROAD TREMONT, MAINE

Prepared by:
Kathleen Maguire, P.E.
Senior Geotechnical Engineer

Reviewed by: Cody Russell, P.E. Geotechnical Engineer

Hancock County WIN 23020.00

Soils Report 2023-30 Federal No. 2302000

October 25, 2023

Table of Contents

1.0	INTRODUCTION	. 2
2.0	GEOLOGIC SETTING	. 2
3.0	SUBSURFACE INVESTIGATION	. 2
4.0	LABORATORY TESTING	. 3
5.0	SUBSURFACE CONDITIONS	. 3
5.1 5.2 5.3 5.4 5.5	SANDY GRAVEL, GRAVELLY SAND, AND SAND LAYERSBEDROCKGROUNDWATER	. 4 . 4 . 5 . 5
6.0	GEOTECHNICAL ANALYSES AND RECOMMENDATIONS	. 6
6.1 6.2 6.3	RIPRAP SLOPES	. 7
7.0	CLOSURE	. 7
Sheet		
	1 – Location Map	
Sneet	2 – Boring Location Plan	

Appendix A – Boring Logs Appendix B – Laboratory Test Results Appendix C – Slope Stability Analyses

1.0 Introduction

The purpose of this Geotechnical Design Report is to present subsurface information and make geotechnical design and construction recommendations for a slope stabilization project along an approximately 0.13-mile portion of Route 102A and Shore Road in Tremont, shown on Sheet 1 – Location Map. The project is needed to address two (2) sections of the slope along Bass Harbor on the west side of the road that have been eroded by tidal action and rainfall. The eroded slopes are steeper than 1.5H:1V and in some areas are steeper than 1H:1V. The crest of the eroded slopes are close to the back of the existing guardrail at the roadway edge in some locations. If left untreated, continued material loss along the slopes could result in loss of the roadway section and closure of Route 102A and Shore Road. The proposed repair scope includes placement of riprap armored slopes. The riprap will be keyed existing ground along the harbor edge at the toe of the proposed slopes. Guardrail will be re-installed along Route 102A where necessary. Route 102A is a Highway Corridor Priority 1 road.

2.0 GEOLOGIC SETTING

According to the Reconnaissance Surficial Geology of the Northern Portion of the Bass Harbor Quadrangle, Maine, Open File No. 16-14 (2016) published by the Maine Geological Survey (MGS), the surficial soils along the project consist of Artificial Fill and Presumpscot Formation consisting of silt and clay with sand layers.

According to the MGS map titled Bedrock Geologic Map of Maine (1985) the bedrock along the project consists of mafic to felsic volcanic rocks of the Castine Formation.

3.0 Subsurface Investigation

Five (5) borings (HB-TRM-101 through HB-TRM-105) were drilled for this project between October 6 and 8, 2020 by the MaineDOT drill crew using a trailer mounted drill rig. Exploration locations are shown on Sheet 2 – Boring Location Plan. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented on the Boring Log in Appendix A.

The borings were drilled using solid stem auger, cased wash boring, and rock core drilling techniques. Soil samples were obtained in all the borings at 5-foot intervals using Standard Penetration Test (SPT) methods. The MaineDOT drill rig is equipped with an automatic hammer to drive the split spoon. The MaineDOT calibrated automatic hammer delivers approximately 48 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values (N₆₀) computed by applying an average energy transfer factor of 0.89 to the raw field N-values. Bedrock was cored in borings HB-TRM-101, HB-TRM-103, HB-TRM-104, and HB-TRM-105 using an NQ 2-inch core barrel and the Rock Core Designation (RQD) of the core was calculated. No refusal surface was encountered in boring HB-TRM-102.

The MaineDOT Geotechnical Team member selected the boring locations, drilling methods, designated type and depth of sampling, reviewed field logs for accuracy and identified field and laboratory testing requirements. A North East Transportation Training and Certification Program (NETTCP) certified Subsurface Investigator logged the subsurface conditions encountered. The boring and probe were located in the field by taping to surveyed site features after completion of the drilling program.

4.0 LABORATORY TESTING

A laboratory testing program was conducted on select soil samples obtained in the test borings to assist in soil classification, evaluation of engineering properties of the soils and geologic assessment of the project site. Laboratory testing consisted of thirteen (13) standard grain size analyses and natural water content, three (3) standard grain size analyses with natural water content and hydrometer, and two (2) Atterberg Limits tests. The results of the laboratory tests are in Appendix B – Laboratory Test Results. Laboratory test results are also summarized on the boring logs in Appendix A.

5.0 SUBSURFACE CONDITIONS

Subsurface conditions encountered at the test borings generally consisted of pavement and fill soils underlain by interbedded layers of clayey silt, sandy silt, and silty clay, underlain by sandy gravel, gravelly sand, and sand underlain by bedrock. The boring locations are shown on Sheet 2 – Boring Location Plan. The boring logs are in Appendix A – Boring Logs.

5.1 Pavement and Fill Soils

The subsurface investigations found areas of pavement and roadway fill soils along the project. The pavement thickness ranged from approximately 6 to 7.5 inches. The fill soils consisted of:

- Brown, damp, fine to coarse sand, some gravel, trace to little silt,
- Brown, damp, gravelly fine to coarse sand, and
- Brown, damp, silty fine to coarse sand, trace gravel.

The thickness of the fill ranged from approximately 1.4 feet to 9.0 feet. Five (5) SPT N 60 -values obtained the in the fill ranged from 18 to 37 blows per foot (bpf) indicating that the fill is medium dense to dense in consistency.

A water contents from five (5) samples obtained within the fill layer ranged from approximately 6% to 19%. Grain size analyses conducted on five (5) sample of the fill resulted in the soil being classified as an A-1-b or A-4 under the AASHTO Soil Classification System and an SW-SM or SM under then Unified Classification System.

5.2 Interbedded Silt and Clay

The fill layer is underlain by interbedded layers of clayey silt, sandy silt, and silty clay. The layers consisted of:

- Olive brown, damp, clayey silt, trace fine to coarse sand, trace gravel,
- Light brown, moist, fine to coarse sandy silt, trace gravel, and
- Olive, moist, Silty fine to coarse sand, trace gravel.

The thickness of the interbedded layers of clayey silt, sandy silt, and silty clay ranged from approximately 2.5 to 4.5 feet but was not present in all the borings. Three (3) SPT N 60 -values obtained the in the interbedded layers of clayey silt, sandy silt, and silty clay ranged from 15 and 21 bpf indicating that the interbedded layers of clayey silt, sandy silt, and silty clay are stiff to very stiff in consistency.

Water contents from four (4) samples obtained within the interbedded layers of clayey silt, sandy silt, and silty clay ranged from approximately 15% to 23%. Grain size analyses conducted on four (4) samples of the interbedded layers of clayey silt, sandy silt, and silty clay resulted in the soil being classified as an A-4, A-6 or A-7-6 under the AASHTO Soil Classification System and an CL under the Unified Soil Classification System.

The following table summarizes the results of Atterberg Limits tests done on two (2) samples of the silty clay:

Boring No. and	Water	Liquid	Plastic	Plasticity	Liquidity
Sample No.	Content (%)	Limit	Limit	Index	Index
HB-TRM-102 2D	23.3	44	21	23	0.1
HB-TRM-104 2D	23.0	36	20	16	0.2

Interpretation of these results indicate that the silt clay has medium to high plasticity. The silty clay is overconsolidated, meaning it has experienced higher stresses in the past.

5.3 Sandy Gravel, Gravelly Sand, and Sand Layers

The fill layer or interbedded layers of clayey silt, sandy silt, and silty clay, where present, are underlain by layers of sandy gravel, gravelly sand, and sand. These layers consisted of:

- Grey, dry, fine to coarse sandy gravel, trace silt,
- Brown, damp to wet, gravelly fine to coarse sand, trace silt, occasional cobbles, and
- Light brown and brown, moist to wet, fine to coarse sand, trace to some gravel, trace to some silt, occasional cobbles.

The thickness of the sandy gravel, gravelly sand, and sand layers ranged from approximately 2.2 to 17.5 feet. The full thickness of the sandy gravel, gravelly sand, and sand was not penetrated in all borings. Nine (9) SPT N 60 -values obtained the in the layers of sandy gravel, gravelly sand, and

sand ranged from 16 to 98 bpf indicating that the layers of sandy gravel, gravelly sand, and sand are medium dense to very dense stiff in consistency.

Water contents from seven (7) samples obtained within the layers of sandy gravel, gravelly sand, and sand ranged from approximately 2% to 16%. Grain size analyses conducted on seven (7) samples of the layers of sandy gravel, gravelly sand, and sand resulted in the soil being classified as an A-1-a, A-1-b, A-3, or A-2-4 under the AASHTO Soil Classification System and an SW-SM, SP, SP-SM, SM, or GW-GM under the Unified Soil Classification System.

5.4 Bedrock

The depth to bedrock ranged from approximately 6.7 feet below ground surface (bgs) in boring HB-TRM-105 to greater than approximately 27.0 feet in boring HB-TRM-102 where no refusal surface was encountered. A 5-foot bedrock core was drilled in the borings where bedrock was encountered.

The following table summarizes the bedrock information:

Boring No.	Station	Offset (feet)	Approximate Depth to Bedrock (feet)	Approximate Elevation of Bedrock Surface (feet)	RQD (%) ¹
HB-TRM-101	201+00	7.0 Left	21.0	-5.6	7
HB-TRM-103	12+08	6.5 Left	13.7	-0.4	25
HB-TRM-104	13+50	7.0 Left	15.4	-2.6	28
HB-TRM-105	15+50	7.5 Left	6.7	5.2	15

¹ RQD = Rock Quality Designation

The bedrock in the area is identified as mafic to felsic volcanic rocks of the Castine Formation. The RQD of the bedrock cores ranged from 7% to 28% corresponding to rock quality of very poor to poor.

5.5 Groundwater

Groundwater level was observed in borings HB-TRM-101, HB-TRM-103, and HB-TRM-4. The measured groundwater level in the borings ranged from approximately 6.0 to 7.0 feet bgs. The water level is indicated on the boring log in Appendix A. Groundwater levels can be expected to fluctuate subject to seasonal variations, local soil conditions, topography, precipitation, and construction activity.

6.0 GEOTECHNICAL ANALYSES AND RECOMMENDATIONS

The project scope is to reconstruct the eroded slopes along Bass Harbor on the west side of Route 102A and Shore Road. The crest of the eroded slope is close to the back of the existing guardrail at the roadway edge in many locations. The proposed repair scope includes placement of riprap armored slopes that will be keyed existing ground along the harbor edge at the toe of the proposed slope. The following sections discuss the geotechnical-related analyses and recommendations of the proposed riprap slope.

6.1 Slope Stability Analyses

Four (4) cross sections along the slope were analyzed to evaluate the existing and proposed slope stability. The cross sections were chosen to represent four (4) critical slope locations along the project. Geostudio Slope/W software was used to evaluate the slopes. The stability analyses were based on subsurface conditions encountered in the borings drilled in the roadway shoulder at the crest of the existing slope. In accordance with AASHTO LRFD Bridge Design Specifications 9th Edition 2020 (LRFD) Article 11.6.3.7 evaluation of earth slopes where geotechnical parameters are well defined shall achieve a factor of safety of 1.3 (equivalent to a resistance factor of 0.75).

The southern proposed slopes along Shore Road (approximate stationing labeled 200+00 to 201+50 +/-) turning onto Route 102A (approximate stationing labeled 300+00 to 301+00 +/- and 11+00 to 14+00 +/-) will be reconstructed using 2H:1V riprap slopes. Due to adjacent property owner concerns, the northern proposed slopes along Route 102A (approximate stationing labeled 15+00 to 16+50 +/-) will be reconstructed using 1.5H:1 riprap slopes. Both slope angles have been analyzed and are expected to perform well over time although the 2H:1V slopes are anticipated to perform slightly better than the 1.5H:1V slopes.

The results of these analyses are presented in the following table:

Station	Existing Slope Angle	Existing Slope Factor of Safety	Proposed Slope Angle	Proposed Slope Factor of Safety with 4 feet of Heavy Riprap
201+00	Variable	0.634	2H:1V	1.382
300+50	Variable	0.991	2H:1V	1.354
12+00	Variable	0.936	2H:1V	1.368
15+50	Variable	0.885	1.5H:1V	1.328

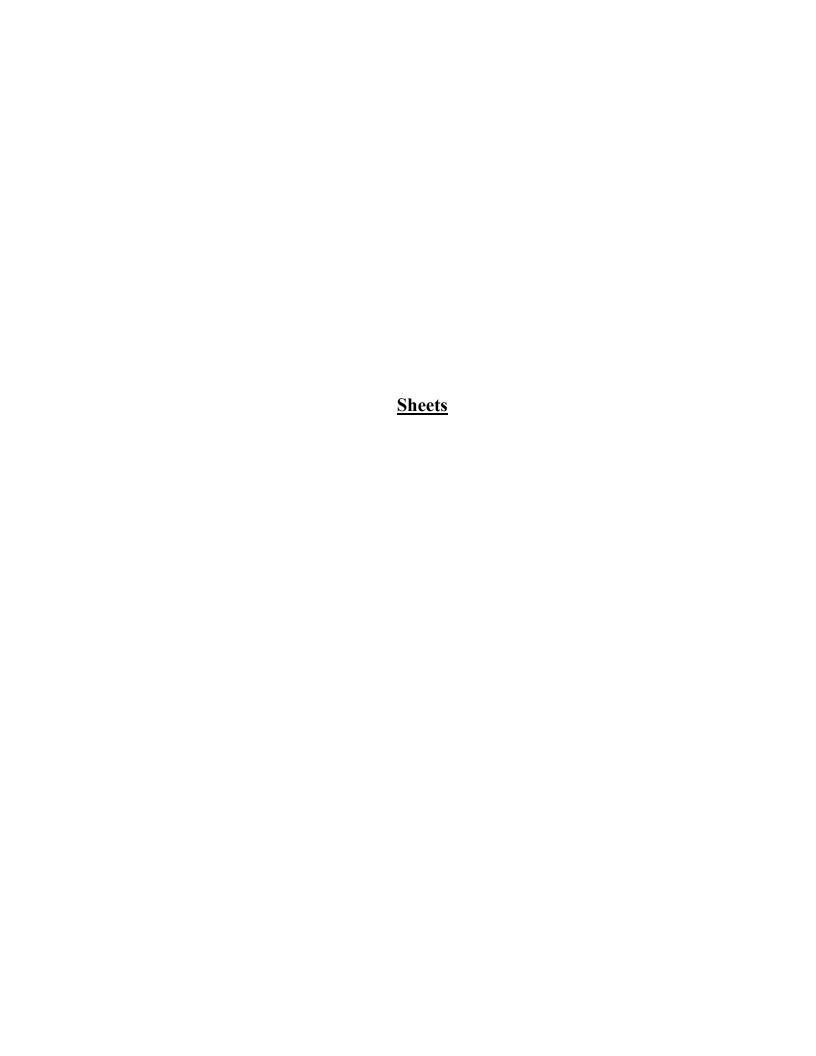
Based on these analyses, all of the proposed slopes require riprap keyed in at the toe for stability. This riprap slope treatment will help to protect the slope from future scour and erosion caused by tidal and rainwater runoff forces. Appendix C – Slope Stability Analyses presents the existing and final slope configuration results from these slope stability analyses.

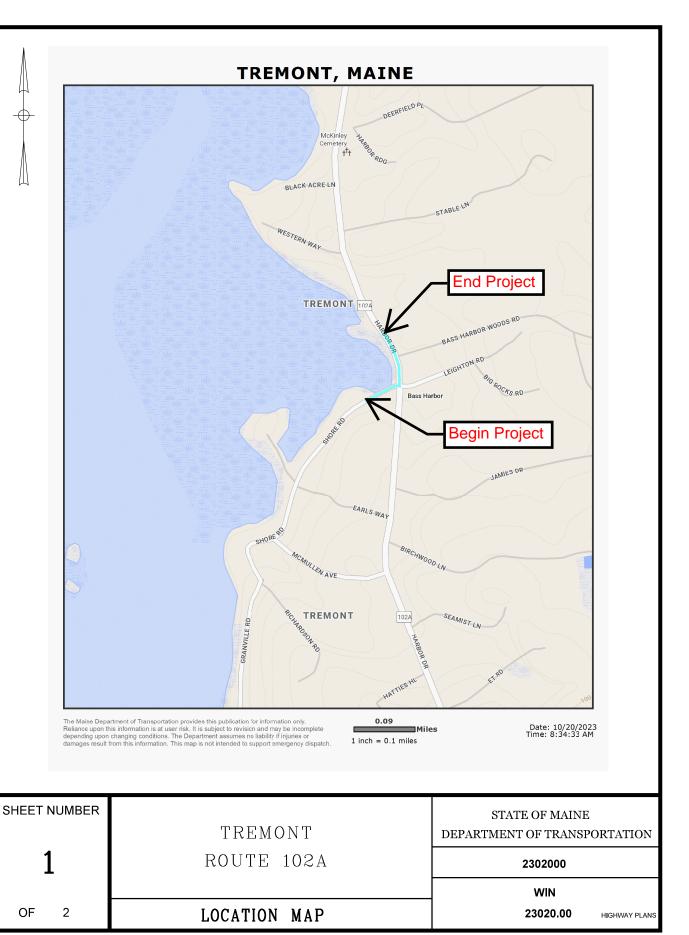
6.2 Riprap Slopes

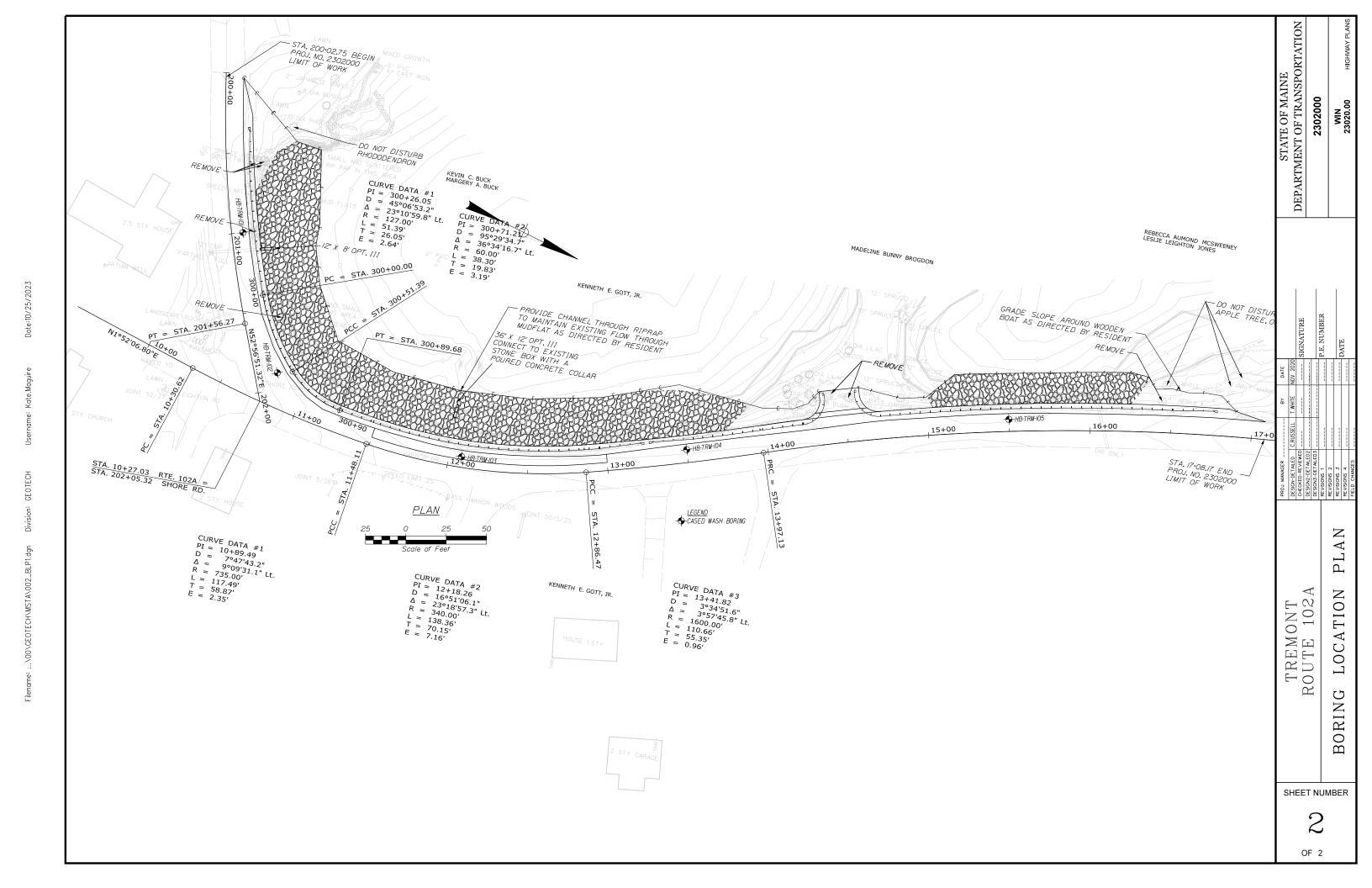
The proposed riprap slope along the Bass Harbor shall be constructed as shown on the project plans with slopes ranging from 2H:1V to 1.5H:1V. The proposed slopes shall be armored with 4 feet of riprap conforming to MaineDOT Standard Specification Section 703.28 Heavy Riprap underlain by a non-woven Class 1 Erosion Control Geotextile that meets the requirements for MaineDOT Standard Specification 722.03 that is underlain by a 1-foot layer of Protective Aggregate Cushion conforming to MaineDOT Standard Specification 703.19 Granular Borrow Material for Underwater Backfill.

6.3 Additional Construction Considerations

During construction the Contractor shall control groundwater and surface water infiltration using temporary ditches, sumps, granular drainage blankets, stone ditch protection or hand-laid riprap with geotextile underlayment to divert groundwater and surface water to allow construction in the dry.


The construction of the riprap key at the toe of the proposed slope and placement of riprap on the slopes should be done during low tide or with the use of cofferdams to minimize the amount of silt that could potentially impact the Harbor.


7.0 CLOSURE


This report has been prepared for the use of the MaineDOT Highway Program for specific application to the proposed slope stabilization on Route 102A and Shore Road in Tremont, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use or warranty is expressed or implied.

In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. These analyses and recommendations are based in part upon a limited subsurface investigation at discrete exploratory locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.

It is recommended that a geotechnical engineer be provided the opportunity for a review of the design and specifications in order that the earthwork and foundation recommendations and construction considerations presented in this report are properly interpreted and implemented in the design and specifications.

Appendix A

Boring Logs

	UNIFIE	D SOIL CI	_ASSIFIC	CATION SYSTEM		MODIFIED E	BURMISTER S	YSTEM
MA	JOR DIVISIO	ONS	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravelsand mixtures, little or no fines.	tr li	tive Term ace ttle	<u>Port</u>	ion of Total (%) 0 - 10 11 - 20 21 - 35
	of coars than No. ze)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines.	adjective (e.g.	Sandy, Clayey) TFRM	S DESCRIBIN	36 - 50 G
	half rger re siz				1		Y/CONSISTEN	-
	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures.	sieve): Includes (1) clean gravels; (2) S	of material is larger the ilty or Clayey gravels; ited according to stand	and (3) Silty,
tterial is	(n fra	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand-clay mixtures.	penetration resista		·	enetration Resistance
of ma 00 sie					Cohesion	nless Soils		e (blows per foot)
(more than half of material is larger than No. 200 sieve size)	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Lo Mediur	loose lose n Dense ense		0 - 4 5 - 10 11 - 30 31 - 50
(more t	coarse an No. 4	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very	Dense	naterial is smaller thar	> 50
	e than half of coarse h is smaller than No. 4 sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organ (3) Clayey silts. Cons	nic silts and clays; (2)	
	(more the fraction is	FINES (Appreciable amount of	SC	Clayey sands, sand-clay mixtures.	Consistency of	SPT N-Value	Approximate Undrained Shear	Field
		fines)	ML	Inorganic silts and very fine	Cohesive soils Very Soft Soft	(blows per foot) WOH, WOR, WOP, <2 2 - 4	Strength (psf) 0 - 250 250 - 500	Guidelines Fist easily penetrates
	SILTS AN	ID CLAYS		sands, rock flour, Silty or Clayey fine sands, or Clayey silts with slight plasticity.	Medium Stiff Stiff	5 - 8 9 - 15	500 - 1000 1000 - 2000	Thumb easily penetrates Thumb penetrates with moderate effort Indented by thumb with
FINE- GRAINED SOILS			CL	Inorganic clays of low to medium plasticity, Gravelly clays, Sandy clays, Silty clays, lean clays.	Very Stiff Hard	16 - 30 >30	2000 - 4000 over 4000	great effort Indented by thumbnail Indented by thumbnail
33123	(liquid limit l	ess than 50)	OL	Organic silts and organic Silty	Rock Quality Des	ignation (RQD):	of intact pieces of	with difficulty
ial is e size)				clays of low plasticity.	RQD (%) =		length of core action NQ rock core (dvance
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	MH	Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts.		Rock Quality Ba	RQD (%)	
e than hal r than No			СН	Inorganic clays of high plasticity, fat clays.		Very Poor Poor Fair Good	≤25 26 - 50 51 - 75 76 - 90	
(mor	(liquid limit gr	eater than 50)	ОН	Organic clays of medium to high plasticity, organic silts.	Desired Rock O	Excellent bservations (in th	91 - 100 nis order, if applic	able):
		ORGANIC IILS	Pt	Peat and other highly organic soils.	Texture (aphanit	tic, fine-grained, et nite, schist, sandsto hard, hard, mod. h	one, etc.)	
Desir 16	". 01			Parl IA	=		ht, moderate, mod.	severe, severe, etc.)
	<u>il Observat</u> sell color cha		order, if	applicable):		tinuities/jointing: -dip (horiz - 0-5 de	a low angle - 5-35	deg., mod. dipping -
Moisture (d	ry, damp, m	oist, wet)				35-55 deg., stee	ep - 55-85 deg., ve	rtical - 85-90 deg.)
		om above riç coarse, etc.)		ide)			se - <2 inch, close -	*
				portions - trace, little, etc.)		close - 1-3 feet, -tightness (tight, op	, wide - 3-10 feet, v oen, or healed)	ery wide > 10 feet)
Gradation (well-graded,	poorly-grad	ed, uniforr	n, etc.)		-infilling (grain size	e, color, etc.)	
Plasticity (n	on-plastic, s	lightly plastic tures, cracks	c, moderat	tely plastic, highly plastic)			Cape Elizabeth, etc. y (very poor, o	
		ely, loosely,					H-16-072 GEC 5 -	,
Cementatio	n (weak, mo	derate, or s	trong)	,	Site Character	rization, Table 4-12	2	
Geologic O Groundwate		rine clay, all	uvium, etc)	Rock Core Rate	nch and percentage (X.X ft - Y.Y ft (min	n:sec))	
	Maine L	Departme	nt of Tra	ansportation	Sample Conta	ainer Labeling F	Requirements: Blow Counts	
		Geotechi		-	Bridge Name		Sample Recove	ery
Ke		and Rock d Identific		otions and Terms ormation	Boring Numbe Sample Numb Sample Depth	er er	Date Personnel Initia	•
<u> </u>					<u> </u>			

l	Main	_		of Transporta	atioı	n	Proje	ect:			ation Route 102A (Shore	Boring No.:	HB-TF	RM-101
			Soil/Rock Exp				Loca	tio	Road	nont, M	aine			
			US CUSTOM	ARY UNITS						. ,		WIN:	2302	20.00
D=:11			MainaDOT		TEIS		/£4 \		15			Augus ID/OD:	5" Solid Stem	
Drill			MaineDOT		_	vation	(11.)		15.4			Auger ID/OD:		C
⊢÷-	rator:		Daggett		+					VD88		Sampler:	Standard Split	Spoon
_	ged By:		B. Wilder	20.15.20	+	Type:		_	_	E 45C	n :	Hammer Wt./Fall:	140#/30"	
-	Start/Fi		10/6/2020; 11		_	lling M					1 Boring	Core Barrel:	NQ-2"	
-	ng Loca		201+00, 7.0 ft	Lt.	+	sing ID			NW			Water Level*:	7.0 ft bgs.	
Defini		ciency F	actor: 0.89	R = Rock C		mmer i	ı ype:		Autom S=		Hydraulic ☐ molded Field Vane Undrained She	Rope & Cathead ar Strength (psf) Tue	= Pocket Torvane She	ar Strength (psf)
D = S MD = U = T MU = V = F	plit Spoon S Unsuccess hin Wall Tu Unsuccess ield Vane S	ful Split Sp be Sample ful Thin Wa hear Test,	oon Sample Atten all Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = Solic SSA = Hollo HSA = Hollo RC = Roller WOH = Wei netrometer WOR/C = W	Stem A ow Stem Cone ight of 1- Veight of	Auger Auger 40lb. Hai Rods or	Casin	g	S _{u(l:} q _p = N-ur Ham N ₆₀	ab) = Lab Unconfir corrected mer Effic = SPT N	Vane Undrained Shear Strength (ped Compressive Strength (ksf) 1 = Raw Field SPT N-value iency Factor = Rig Specific Annual uncorrected Corrected for Hamme er Efficiency Factor/60%)*N-uncor	osf) WC LL = PL : Calibration Value PI = or Efficiency G =	= Water Content, per = Liquid Limit = Plastic Limit : Plasticity Index Grain Size Analysis Consolidation Test	cent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Des	scription and Remarks	ı	Laboratory Testing Results/ AASHTO and Unified Class.
0							SS	A	14.8		7½" HMA		0.6	
	1D/A	24/17	1.00 - 3.00	4/5/7/7	12	18					1D (1.0-2.0 ft bgs.) Brown, SAND, some gravel, trace s			G#340876 A-1-b, SW-SM
									13.4		1D/A (2.0-3.0 ft bgs.) Olive		yey SILT, trace	
											fine to coarse sand, trace gra		,	A-4, CL
														WC=15.1%
									10.9				4.5	
- 5 -	an	24/20	500 500	20/20/22/45							Grey, dry, very dense, fine t	to coarse Sandy GRAVE	EL, trace silt.	G#340878
	2D	24/20	5.00 - 7.00	20/20/32/47	52	77								A-1-a, GW- GM
														WC=1.5%
									6.0		Cobble from 9.1-9.4 ft bgs.			
10									0.0			S 11 6 4 C	9.4-	
"	3D	24/20	10.00 - 12.00	23/24/27/29	51	76					Brown, damp, very dense, C occasional cobble.	ravelly fine to coarse S	AND, trace silt,	
								1						
							\sqcup	Н	1.4	*****			— — — — 14.0·	
١							$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/						
- 15	4D	24/18	15.00 - 17.00	32/32/34/39	66	98	68	~			Brown, wet, very dense, Gra	avelly fine to coarse SA	ND, trace silt,	G#340879
		21/10	13.00 17.00	32/32/34/37			-	_			occasional cobble.			A-1-a, SW-SM WC=8.4%
							10	6						
							16	8						
							92	2						
							92	2						
- 20 -	-	10/0	20.00. 21.00	11/50			-	_			Brown, wet, very dense, Gra	avelly fine to coarse SA	ND, trace silt,	
	5D	12/2	20.00 - 21.00	11/50			50)	-5.6		occasional cobble.		21.0	
	R1	60/55	21.20 - 26.20	RQD = 7%			NQ	-2		70 A	Top of Bedrock at Elev5.0		21.0	
											Roller Coned ahead to 21.2 R1:Bedrock: Mafic to felsic		Formation).	
											Rock Quality = Very Poor			
											R1:Core Times (min:sec) 21.2-22.2 ft (3:16)			
											22.2-23.2 ft (3:42)			
25 Rem	arks:									22.753	23.2-24.2 ft (3:48)			
Stratit	ication line	s represent	approximate hou	ndaries between soil types; t	ransition	ns mav h	e gradi	ual				Page 1 of 2		
l			•	es and under conditions stat		-	-		ns may o	ccur due	to conditions other			

Boring No.: HB-TRM-101

Maine Department of Transports Soil/Rock Exploration Log US CUSTOMARY UNITS					tatio	n	Project:			cation Route 102A (Shore	Boring No.:	HB-TI	RM-101
							Locatio	Road) n: Tre		laine	WIN:	230	20.00
Drille			M-iDOT		Fie		(64.)	15 /			Auger ID/OD:	5" Solid Stem	
	ator:		MaineDOT			vation	ι (π.)	15.4	VD88		Auger ID/OD: Sampler:	Standard Split	Cnoon
•	ged By:		Daggett B. Wilder			Type			E 45C		Hammer Wt./Fall:	140#/30"	З рооп
	Start/Fi	nich:	10/6/2020; 1	1.30 15.30			lethod:			n Boring	Core Barrel:	NQ-2"	
	ng Loca		201+00, 7.0 1		_	sing IE		NW		1 Bornig	Water Level*:	7.0 ft bgs.	
			actor: 0.89	it Et.	_	mmer		Autom		Hydraulic □	Rope & Cathead	7.010 053.	
Definit D = Sp MD = I U = Th MU = I V = Fie	ions: olit Spoon : Unsuccess nin Wall Tu Unsuccess eld Vane S	Sample sful Split Sp be Sample sful Thin W Shear Test,	oon Sample Atte	mpt HSA = Hc RC = Roll Attempt WOH = W enetrometer WOR/C =	Core Sam lid Stem A bllow Stem er Cone leight of 14 Weight of Weight of	uger Auger Auger 40 lb. Ha	ammer r Casing	S _u = S _{u(la} q _p = N-ur Ham N ₆₀	Peak/Reab) = Lab Unconfine Icorrecte Imer Effice = SPT N	molded Field Vane Undrained She Vane Undrained Shear Strength (ket) led Compressive Strength (kst) a Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamme ler Efficiency Factor/60%)*N-unco	ear Strength (psf) T _V psf) W LL Pt I Calibration Value PI er Efficiency G	= Pocket Torvane She C = Water Content, per = Liquid Limit = Plastic Limit = Plasticity Index = Grain Size Analysis = Consolidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) and Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remark	s	Laboratory Testing Results/ AASHTO and Unified Class
25	0)		0,0	ш 0, 0, С 0						24.2-25.2 ft (3:48)			
							$+$ \forall	-10.8	1	25.2-26.2 ft (4:50) 92% Recovery			
								10.0		Bottom of Exploration	n at 26.2 feet below gro	26.2 ound surface.	1
										•	o .		
30 -													
30													
								1					
								1					
								-					
35 -													
55													
								1					
								-					
40 -													
								1					
								1					
45 -													
								1					
50 Rem	arks:	l	1	1			1	·	1				<u> </u>
Stratifi	cation line	s represen	t approximate boo	undaries between soil types	; transitior	ns may b	e gradual.				Page 2 of 2		
		-	been made at tir	mes and under conditions st	tated. Gro	oundwate	er fluctuatio	ns may o	occur due	to conditions other	Boring N	o.: HB-TRM	-101

1	Main	e Dep	artment	of Transport	atio	n	Proje	ct:			ation Route 102A (Shore	Boring No.:	HB-11	KM-102
			Soil/Rock Exp				Loca	tior	Road) Tren		laine	l		
		!	US CUSTOM/	ARY UNITS								WIN:	2302	20.00
Drill	or.		MaineDOT		Fle	vation	(ft \		16.3			Auger ID/OD:	5" Solid Stem	
-	rator:		Daggett		_	tum:	(11.)			/D88		Sampler:	Standard Split	Spoon
⊢-	ged By:		B. Wilder		_	Type:				E 45C		Hammer Wt./Fall:	140#/30"	Брооп
<u> </u>	Start/Fi	inish:	10/7/2020; 07:	:00-10:00	_	lling M		1:			n Boring	Core Barrel:	N/A	
	ng Loca		201+90, 14.0			sing ID			NW-			Water Level*:	None Observe	d.
_			actor: 0.89		_	mmer			Automa		Hydraulic □	Rope & Cathead □		
Defini	tions:			R = Rock C	ore Sam	nple	71		S _u =	Peak/Re	molded Field Vane Undrained She	ear Strength (psf) T _v :	= Pocket Torvane She	ar Strength (psf)
	plit Spoon : Unsuccess		oon Sample Atten	SSA = Solid mpt HSA = Holl							Vane Undrained Shear Strength (led Compressive Strength (ksf)		= Water Content, per = Liquid Limit	cent
		ube Sample	all Tube Sample A	RC = Roller attempt WOH = We		40lh Hai	nmer				d = Raw Field SPT N-value iency Factor = Rig Specific Annual		= Plastic Limit = Plasticity Index	
V = Fi	eld Vane S	Shear Test,	PP = Pocket Pe ine Shear Test Att	netrometer WOR/C = V	Veight of	f Rods or	Casing	9	N ₆₀ =	= SPT N	-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-uncor	er Efficiency G =	Grain Size Analysis Consolidation Test	
IVIV =	Unsuccess	siui rieiu va		Sample Information	eigiii oi	One Fer	SULL		1460 =	- (mainin	let Efficiency Factor/60 /6) N-uncol	Trected C =	Consolidation Test	
		(in.)			Ď					1				Laboratory Testing
	ė	. <u></u>	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected				_	Graphic Log	Visual De	scription and Remarks	•	Results/
h (#	l elc	/Rec		s (/6 r gth	COL		ا و	ړ	atior	Pic	Visual De	Scription and Remarks	•	AASHTO and
Depth (ft.)	Sample No.	Pen./Rec.	t.)	low: thea tren ssf) r RC	ų.	N ₆₀	Casing	š	Elevation (ft.)	irap				Unified Class.
	S	<u> </u>	<u>ν ε</u>	<u>a w w n o</u>	z	Z	0 (<u>n</u>	ш₩	Ö	6" HMA			
`							SS	4	15.8	***		GAND (FIII)	0.5	
										\bowtie	Brown, damp, Gravelly fine Cobble from 1.0-1.3 ft bgs.		•	
			+					\dashv		₩				
	1D	24/18	2.00 - 4.00	3/5/5/5	10	15			13.8		1D (2.5-4.0 ft bgs.) Light b	rown, moist, stiff, fine t	o coarse Sandy	G#340860
											SILT, trace gravel.		j	A-4, CL WC=15.8%
- 5 -									11.3				5.0	G#240001
	2D	24/24	5.00 - 7.00	3/4/8/9	12	18			11.0		Olive, moist, very stiff, Silt	y CLAY, trace fine sand		G#340881 A-7-6, CL
														WC=23.3%
														LL=44 PL=21
														PI=23
							\perp	/						
							$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	۱ ا	6.8	Seg.			9.5	
- 10 -	3D	24/18	10.00 - 12.00	8/9/6/8	15	22	15				Light brown, moist, medium	m dense, fine to coarse S	AND, trace gravel,	G#340882 A-3, SP
				0.77.0.0						60 Y 0	trace silt.			WC=4.3%
							26			600				
							110	5		0 0 00 0 00 0 00 0 00				
							88			25.00 0.00				
							00	_	2.3	જુ:::ુર્કે કુ:::ઉ			— — — — 14.0·	
1.5							14	1		° 6.60°.				
- 15 -	4D	24/4	15.00 - 17.00	8/12/7/8	19	28	12			500 a . p	Brown, wet, medium dense silt, occasional cobble.	, fine to coarse SAND, s	ome gravel, trace	
		- " "		0.520							siit, occasioliai cobbie.			
							14			00				
							32			e				
										200 80 200 80				
							50	_		9.00 0 00 80 9 00				
										90pp				
- 20 -	5D	24/12	20.00 - 22.00	11/13/13/13	26	39	37			8.900°	Brown, wet, dense, fine to	coarse SAND, little grav	el, trace silt.	G#340883
			20.00 22.00	11/13/13/13						8000				A-1-b, SP-SM WC=13.1%
							61			6.5.9.9 6.5.9.9				
							69			96. 00 196. 00				
							98			°85:4:8 85::088				
25							140	5		80.98				
Rem	arks:					<u> </u>				177.0%				I .
Stratif	ication line	s represent	approximate bour	ndaries between soil types;	transition	ns may b	e gradu	ıal.				Page 1 of 2		

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Boring No.: HB-TRM-102

Maine Department of Transpo				of Transpor	tation		Project:			zation Route 102A (Shore	Boring No.:	HB-TR	RM-102
							Locatio	Road) n: Trer		Iaine		2200	
			US CUSTOM.	ARY UNITS							WIN:	2302	20.00
Drill	er:		MaineDOT		Eleva	ation	(ft.)	16.3			Auger ID/OD:	5" Solid Stem	
Ope	rator:		Daggett		Datu	m:		NAV	/D88		Sampler:	Standard Split	Spoon
Log	ged By:		B. Wilder		Rig 1	Гуре		CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	10/7/2020; 07	:00-10:00	_		lethod:			n Boring	Core Barrel:	N/A	
-	ing Loca		201+90, 14.0	ft Lt.	Casii			NW			Water Level*:	None Observed	ĺ
-	nmer Effi	ciency F	actor: 0.89	R = Roc	Ham		Туре:	Automa		Hydraulic ☐ emolded Field Vane Undrained Sh	Rope & Cathead ear Strength (psf) Ty =	Pocket Torvane She	ar Strength (psf)
D = S MD = U = T MU = V = F	Split Spoon S Unsuccess Thin Wall Tu Unsuccess Tield Vane S	sful Split Spe be Sample sful Thin Wa shear Test,	oon Sample Atter Ill Tube Sample A PP = Pocket Pe ne Shear Test At	SSA = S MPA	olid Stem Aug dollow Stem A bller Cone Weight of 140 = Weight of R Weight of On	ger .uger Ib. Ha lods or	r Casing	S _{u(la} q _p = N-un Ham N ₆₀ :	b) = Lab Unconfii correcte mer Effic = SPT N	Vane Undrained Shear Strength I ned Compressive Strength (ksf) d= Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamm ner Efficiency Factor/60%)*N-unco	psf) WC LL = PL = I Calibration Value PI = er Efficiency G =	= Water Content, pero Liquid Limit = Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		<u>.</u>		•					1				Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log		escription and Remarks		Results/ AASHTO and Unified Class.
23	6D	24/14	25.00 - 27.00	10/12/30/44	42	62		-10.7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Brown, wet, very dense, fir	ne to coarse SAND, little	gravel, trace silt.	
								-10.7		Bottom of Exploratio NO REFUSAL	n at 27.0 feet below grou		
- 30													
								<u> </u> 					
- 35													
- 40													
- 45													
50													
	narks:				'		•	•	•				
Strati	fication lines	s represent	approximate bou	undaries between soil type	es; transitions	may b	e gradual.				Page 2 of 2		
		-	been made at tim	nes and under conditions ants were made.	stated. Grour	ndwate	er fluctuatio	ns may o	ccur due	to conditions other		.: HB-TRM-	·102

I	Main	_		of Transport	tatio	n	Project			zation Route 102A (Shore	Boring No.:	HB-TF	RM-103
			Soil/Rock Expl US CUSTOMA				Location	Road on: Tre		Iaine	WIN:	2302	20.00
Drill	or.		MaineDOT		Fle	vation	/f+ \	13.	3		Auger ID/OD:	5" Solid Stem	
	rator:		Daggett		-	tum:	(11.)		VD88		Sampler:	Standard Split	Spoon
					_						-		эрооп
	ged By:		B. Wilder	00.11.20	_	Type			E 45C		Hammer Wt./Fall:	140#/30"	
	Start/F		10/7/2020; 10:		-		lethod:			n Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	12+08, 6.5 ft I	.t.	Ca	sing IC)/OD:	NW	7-3"		Water Level*:	7.0 ft bgs.	
		iciency F	actor: 0.89			mmer	Type:		natic 🗵		Rope & Cathead	D 1 (T 0)	0: 11 / 0
MD = U = TI MU = V = Fi	plit Spoon Unsuccess nin Wall Tu Unsuccess eld Vane S	sful Split Sp ube Sample sful Thin Wa Shear Test,	all Tube Sample A PP = Pocket Per ane Shear Test Att	RC = Rolle WOH = W	lid Stem A ollow Stem er Cone /eight of 1 Weight of Veight of	Auger n Auger 40lb. Ha f Rods o	Casing	S _{u(l} q _p = N-u Han N ₆₀	ab) = Lab Unconfii ncorrecte nmer Effic = SPT N	emolded Field Vane Undrained She Vane Undrained Shear Strength (in hed Compressive Strength (ksf) d = Raw Field SPT N-value eiency Factor = Rig Specific Annual -uncorrected Corrected for Hamme her Efficiency Factor/60%)*N-uncor	psf)	Pocket Torvane She. Water Content, per- Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
				Sample Information				$\overline{}$	1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class
0							SSA	12.	8	6" HMA		0.5	
	1D	24/17	1.00 - 3.00	4/13/12/14	25	37		· · · · · · · · · · · · · · · · ·		Brown, damp, dense, fine to (Fill).	o coarse SAND, some gr	——————————————————————————————————————	G#340884 A-1-b, SW-SN WC=6.6%
- 5 -	2D	24/16	5.00 - 7.00	6/9/7/5	16	24				Brown, damp, medium den silt, (Fill).	se, fine to coarse SAND,	some gravel, trace	;
· 10 -								3.8				9.5-	
10	3D	24/15	10.00 - 12.00	5/5/6/14	11	16	16 32 57		3000 2000 2000 2000 2000 2000 2000 2000	Brown, wet, medium dense silt.	, fine to coarse SAND, so	me gravel, little	G#340885 A-1-b, SW-SN WC=15.9%
- 15 -	R1	60/57	13.70 - 18.70	RQD = 25%			a80 NQ-2	-0.4	1 2 2	a80 blows for 0.7 ft. Top of Bedrock at Elev0. R1:Bedrock: Mafic to felsic Rock Quality = Very Poor		13.7-Formation).	
15								-		R1:Core Times (min:sec) 13.7-14.7 ft (2:39) 14.7-15.7 ft (3:59) 15.7-16.7 ft (5:17) 16.7-17.7 ft (5:35)			
		1	+ +				++/	1	N.A	17.7-18.7 ft (6:03)			
- 20 -							V	-5.4	4	97% Recovery Bottom of Exploration	n at 18.7 feet below grou	nd surface.	
								_ - -					
								1					
25													
Kem	arks:												
Stratif	ication line	es represent	t approximate bour	ndaries between soil types;	; transitio	ns may b	e gradual.				Page 1 of 1		
		-	been made at time	es and under conditions stats were made.	tated. Gro	oundwate	er fluctuation	ons may	occur due	to conditions other	Boring No.	: HB-TRM	-103

N	Main	e Dep	artment -	of Transport	atio	n	Proj	ect:			ation Route 102A (Shore	Boring No.:	HB-TF	RM-104
			Soil/Rock Expl				Loca	atio	Road)	nont, M	aine			
			US CUSTOMA	ARY UNITS								WIN:	2302	20.00
Drille			MaineDOT		Ele	vation	/f+ \		12.8			Auger ID/OD:	5" Solid Stem	
-	ator:		Daggett		$\overline{}$	tum:	(11.)			VD88		Sampler:	Standard Split	Spoon
⊢-	ged By:		B. Wilder		_	Type:				E 45C		Hammer Wt./Fall:	140#/30"	эрооп
─	Start/Fi	nich:	10/7/2020; 13:	00.15:30	-	lling M		۹٠	_		Boring	Core Barrel:	NQ-2"	
-	ng Loca		13+50, 7.0 ft L		$\overline{}$	sing ID			NW		Domig	Water Level*:	6.0 ft bgs.	
-				л.	_	mmer .					Hydronlio 🗆		0.0 It bgs.	
Definit		Clefficy I	actor: 0.89	R = Rock C			урс	-	Autom S ₁₁ =		Hydraulic ☐ molded Field Vane Undrained She	Rope & Cathead ☐ ar Strength (psf) T _v =	Pocket Torvane She	ar Strength (psf)
	olit Spoon : Unsuccess		oon Sample Attem	SSA = Solid					S _{u(la}	ab) = Lab Unconfir	Vane Undrained Shear Strength (p ed Compressive Strength (ksf)		Water Content, per Liquid Limit	cent
		be Sample	all Tube Sample At	RC = Roller ttempt WOH = We		4∩lh Hai	mmer		N-ur	corrected	I = Raw Field SPT N-value lency Factor = Rig Specific Annual		Plastic Limit Plasticity Index	
V = Fi	eld Vane S	hear Test,	PP = Pocket Per ane Shear Test Atte	netrometer WOR/C = V	Weight of	f Rods or	Casir	ıg	N ₆₀	= SPT N	uncorrected Corrected for Hamme	r Efficiency G = 0	Grain Size Analysis Consolidation Test	
IVIV =	Unsuccess	siui rieiu va		Sample Information	reignt or	One Pers	SOLI		N60		er Efficiency Factor/60%)*N-uncor	rected C = C	consolidation rest	
		- i			- D					1				Laboratory Testing
·	9	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected				_	Graphic Log	Visual Des	scription and Remarks		Results/
Depth (ft.)	Sample No.	% %		s (/6 gth	COL		و	S	Elevation (ft.)	Pic.	Visual Des	scription and itematics		AASHTO and
ept	am	en.	t.)	slow shea strer strer osf)	<u> </u>	09 _N	Casing	NO!	t.)	rap				Unified Class.
0	0)	ш.	+ 00 =	ш 00 00 5 0							6" HMA			
							SS	A	12.3				0.5	
	1D	24/19	1.00 - 3.00	3/6/8/5	14	21				\bowtie	Brown, damp, medium dens (Fill).	se, Silty fine to coarse SA	ND, trace gravel,	G#340886 A-4, SM
										\bowtie	(1).			WC=16.5%
										\bowtie				
									93				4.5	
- 5 -									0		Olive, moist, very stiff, Silty	v CLAV trace fine to cos		G#340887
	2D	24/24	5.00 - 7.00	2/3/11/11	14	21					gravel.	y CLAT, trace fine to coa	ise said, trace	A-6, CL
														WC=23.0% LL=36
			+											PL=20
									5.3	90000 90000 111111111111111111111111111			7.5	PI=16
										000000				
			+ +				\vdash	+		p:0 0 00				
10 -								_		90.00 90.00	75	0.1375 45.4		G 112 40000
10	3D	24/18	10.00 - 12.00	3/6/20/21	26	39	_	ļ.		80 08 80 08	Brown, wet, dense, fine to c	coarse SAND, little silt, t	race gravel.	G#340888 A-2-4, SM
							5	0		000 000 0000 0000 0000 0000 0000 0000				WC=15.7%
							-	0		ේ දිද්ද ම්ප්රීය ම කි				
							5	6		0 8 98 50 98				
							6	3		o o : o o				
									-1.2	90000 V			— — — —14.0·	
- 15 -							8	7		8 24 8				
13	4D	4.8/4	15.00 - 15.40	50(4.8")			a3	80	-2.6	00.00	a30 blows for 0.4 ft. Olive, wet, very dense, fine	to coarse SAND, little sil	t, (Till).	
	R1	60/57	15.40 - 20.40	RQD - 28%			NC)-2			Top of Bedrock at Elev2.0		15.4-	
			++								R1:Bedrock: Mafic to felsic		Formation).	
											Rock Quality = Poor R1:Core Times (min:sec)			
											15.4-16.4 ft (1:20)			
			+								16.4-17.4 ft (1:27) 17.4-18.4 ft (1:56)			
- 20 -								/		N. W	18.4-19.4 ft (2:14)			
20								/	-7.6	54.459	19.4-20.4 ft (2:22) 97% Recovery			
													20.4	
			\perp								Bottom of Exploration	at 20.4 feet below grou	nd surface.	
25														
	arks:													
l														
l														
<u> </u>												I Borred dd		
Ι.		-		ndaries between soil types;		-	-					Page 1 of 1		
		-	been made at time ime measurements	es and under conditions sta s were made.	ated. Gro	oundwate	r fluct	uatio	ns may o	ccur due	to conditions other	Boring No.	: HB-TRM	-104

I	Main	e Depa	artment	of Transporta	atioı	n	Proje				zation Route 102A (Shore	Boring No.:	HB-TI	RM-105
			Soil/Rock Exp				Locat		Road) Trer	nont, M	laine			
		<u> </u>	US CUSTOM/	ARY UNITS						,		WIN:	2302	20.00
Drill	er:		MaineDOT		Fle	vation	(ft.)		11.9			Auger ID/OD:	5" Solid Stem	
-	rator:		Daggett			tum:	()			/D88		Sampler:	Standard Split	Spoon
⊢-	ged By:		B. Wilder		Rig	Туре				E 45C		Hammer Wt./Fall:	140#/30"	
_	Start/Fi	inish·	10/8/2020; 08:	·00-10·00	-	lling N		1.			h Boring	Core Barrel:	NQ-2"	
-	ng Loca		15+50, 7.5 ft I			sing IC			NW			Water Level*:	None Observe	d
-			actor: 0.89	<u> </u>	_	mmer			Automa		Hydraulic □	Rope & Cathead	Trone Observe	<u>u</u>
Defini		iciciicy i	uctor: 0.02	R = Rock Co			. урс.				emolded Field Vane Undrained She	ear Strength (psf) T _V =	Pocket Torvane She	
MD = U = TI MU = V = Fi	hin Wall Tu Unsuccessield Vane S	sful Split Spo be Sample sful Thin Wa Shear Test,	oon Sample Atten all Tube Sample A PP = Pocket Pe ne Shear Test Att	RC = Roller Attempt WOH = Wei Enetrometer WOR/C = W	ow Stem Cone ight of 14 leight of	Auger 40lb. Ha Rods or	Casing	J	q _p = N-un Ham N ₆₀ :	Únconfir correcte mer Effic = SPT N	v Vane Undrained Shear Strength (ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual -uncorrected Corrected for Hammen ner Efficiency Factor/60%)*N-uncol	LL = PL = PL = I Calibration Value PI = er Efficiency G = 0	= Water Content, per Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	I
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	0	Casing	sw	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and
	Sar	Per	Sar (ft.)	She Stre (psi	ż	09 _N	Sä	<u> </u>	E (E	Gra				Unified Class.
0	1D/A	24/19	1.00 - 3.00	12/12/7/4	19	28	SSA	\neg	11.4		6" HMA 1D (1.0-2.0 ft bgs.) Brown, SAND, some gravel, little s 1D/A (2.0-3.0 ft bgs.) Brow coarse SAND, trace gravel,	silt, (Fill). vn, moist, medium dense,	Silty fine to	G#340889 A-1-b, SM WC=6.3% G#340890 A-4, SM WC=18.5%
- 5 -	2D	14.4/12	5.00 - 6.20	14/28/50(2.4")			15	\mathcal{A}	7.4	2 4 4 2 4 5 2 4 4 2 4 2	Brown, moist, very dense, t silt, (Till).	fine to coarse SAND, som	—4.5 ne gravel, some	G#340891 A-1-b, SM
	R1	60/60	6.70 - 11.70	RQD = 15%			a4(5.2	20 .00 20 .00 20 .00	a40 blows for 0.7 ft. Roller Coned ahead from 6	.2-6.7 ft bgs.		WC=8.7%
							NQ-	2	5.2		Top of Bedrock at Elev. 5.2	2 ft.	6.7	1
			1					_			R1:Bedrock: Mafic to felsion		Formation).	
											Rock Quality = Very Poor R1:Core Times (min:sec)			
											6.7-7.7 ft (3:53)			
- 10 -			 	+				\dashv			7.7-8.7 ft (5:46) 8.7-9.7 ft (5:07)			
											9.7-10.7 ft (4:42)			
							$ \ \lor $	/	0.2		10.7-11.7 ft (4:46) 100% Recovery			
									0.2		<u> </u>	n at 11.7 feet below grou	——11.7- and surface.	
- 15 -														
								\dashv						
- 20 -								\exists						
								4						
			1					_						
l								\neg						
25 Rem	arks:										l .			L
Stratif	ication line	s represent	approximate bou	ndaries between soil types; tr	ransition	ns may b	e gradu	al.				Page 1 of 1		
			been made at tim	nes and under conditions state ts were made.	ed. Gro	oundwate	r fluctua	ations	s may o	ccur due	e to conditions other	Boring No	.: HB-TRM	-105

Appendix B

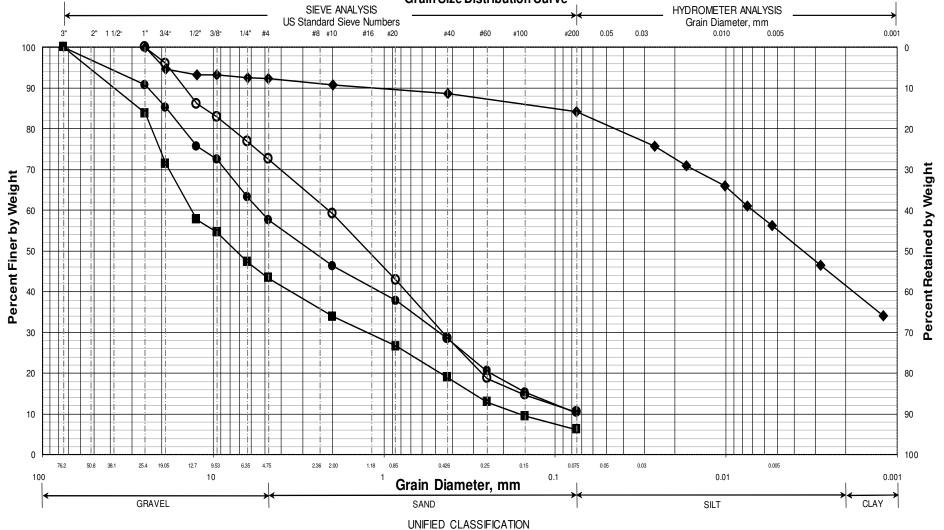
Laboratory Test Results

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s): Tremont Work Number: 23020.00

Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	I. Classification		1
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%				AASHTO	
HB-TRM-101, 1D	201+00	7.0 Lt.	1.0-2.0	340876	1	11.6			SW-SM		0
HB-TRM-101, 1D/A	201+00	7.0 Lt.	2.0-3.0	340877	1	15.1			CL	A-4	IV
HB-TRM-101, 2D	201+00	7.0 Lt.	5.0-7.0	340878	1	1.5			GW-GM		0
HB-TRM-101, 4D	201+00	7.0 Lt.	15.0-17.0	340879	1	8.4			SW-SM		0
HB-TRM-102, 1D	201+90	14.0 Lt.	2.5-4.0	340880	2	15.8			CL	A-4	IV
HB-TRM-102, 2D	201+90	14.0 Lt.	5.0-7.0	340881	2	23.3	44	23	CL	A-7-6	Ш
HB-TRM-102, 3D	201+90	14.0 Lt.	10.0-12.0	340882	2	4.3			SP	A-3	0
HB-TRM-102, 5D	201+90	14.0 Lt.	20.0-22.0	340883	2	13.1			SP-SM	A-1-b	0
HB-TRM-103, 1D	12+08	6.5 Lt.	1.0-3.0	340884	2	6.6			SW-SM	A-1-b	0
HB-TRM-103, 3D	12+08	6.5 Lt.	10.0-12.0	340885	2	15.9			SW-SM	A-1-b	0
HB-TRM-104, 1D	13+50	7.0 Lt.	1.0-3.0	340886	3	16.5			SM	A-4	III
HB-TRM-104, 2D	13+50	7.0 Lt.	5.0-7.0	340887	3	23.0	36	16	CL	A-6	III
HB-TRM-104, 3D	13+50	7.0 Lt.	10.0-12.0	340888	3	15.7			SM	A-2-4	Ш
HB-TRM-105, 1D	15+50	7.5 Lt.	1.0-2.0	340889	3	6.3			SM	A-1-b	Ш
HB-TRM-105, 1D/A	15+50	7.5 Lt.	2.0-3.0	340890	3	18.5			SM	A-4	III
HB-TRM-105, 2D	15+50	7.5 Lt.	5.0-6.2	340891	3	8.7			SM	A-1-b	Ш

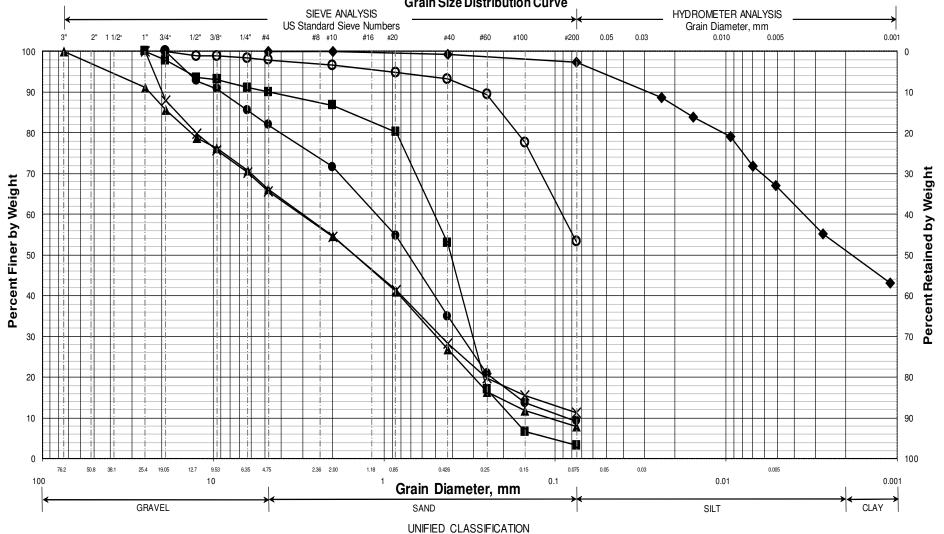
Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible). The "Frost Susceptibility Rating" is based upon the MaineDOT and Corps of Engineers Classification Systems.


GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

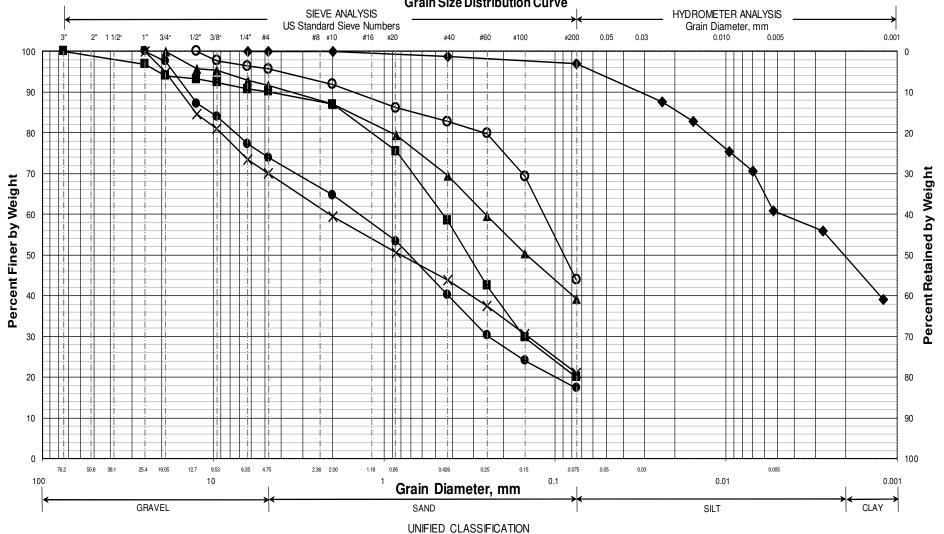
LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98 NP = Non Plastic

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98


Maine Department of Transportation Grain Size Distribution Curve

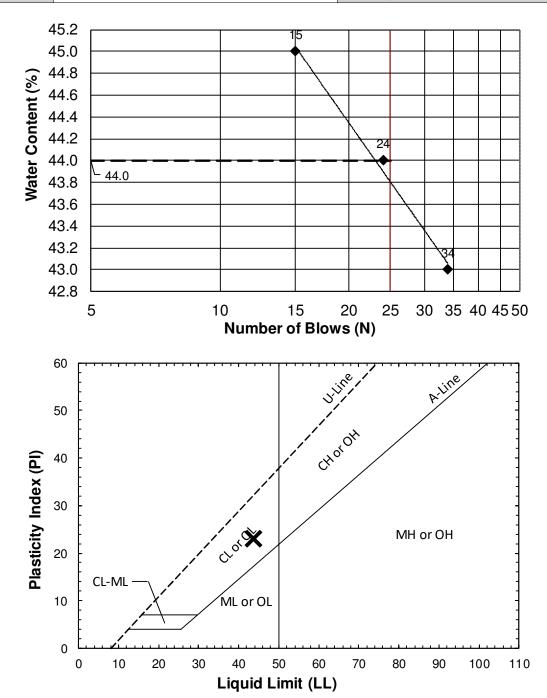
	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	HB-TRM-101/1D	201+00	7.0 LT	1.0-2.0	SAND, some gravel, trace silt.	11.6			
♦	HB-TRM-101/1DA	201+00	7.0 LT	2.0-3.0	Clayey SILT, trace sand, trace gravel.	15.1			
	HB-TRM-101/2D	201+00	7.0 LT	5.0-7.0	Sandy GRAVEL, trace silt.	1.5			
	HB-TRM-101/4D	201+00	7.0 LT	15.0-17.0	Gravelly SAND, trace silt.	8.4			
\blacktriangle									
X									

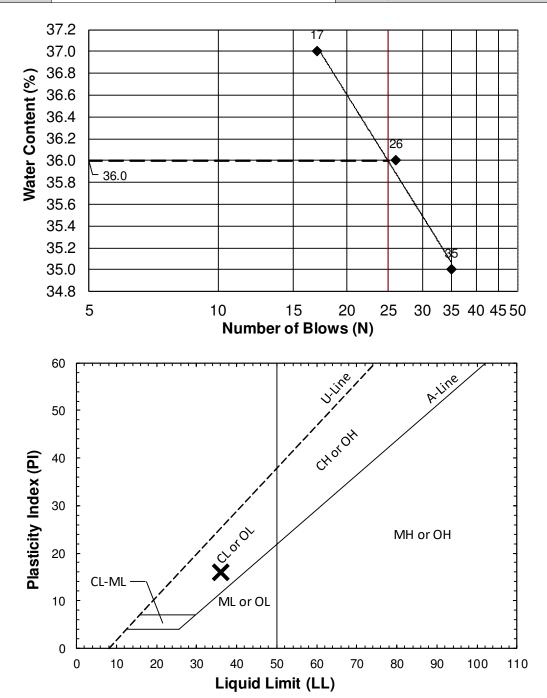
WI	N				
023020.00					
Town					
Tremont					
Reported	by/Date				
WHITE, TERRY A	12/17/2020				


Maine Department of Transportation Grain Size Distribution Curve

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	HB-TRM-102/1D	201+90	14.0 LT	2.5-4.0	Sandy SILT, trace gravel.	15.8			
♦	HB-TRM-102/2D	201+90	14.0 LT	5.0-7.0	Silty CLAY, trace sand.	23.3	44	21	23
	HB-TRM-102/3D	201+90	14.0 LT	10.0-12.0	SAND, trace gravel, trace silt.	4.3			
	HB-TRM-102/5D	201+90	14.0 LT	20.0-22.0	SAND, little gravel, trace silt.	13.1			
\blacktriangle	HB-TRM-103/1D	12+08	6.5 LT	1.0-3.0	SAND, some gravel, trace silt.	6.6			
X	HB-TRM-103/3D	12+08	6.5 LT	10.0-12.0	SAND, some gravel, little silt.	15.9			

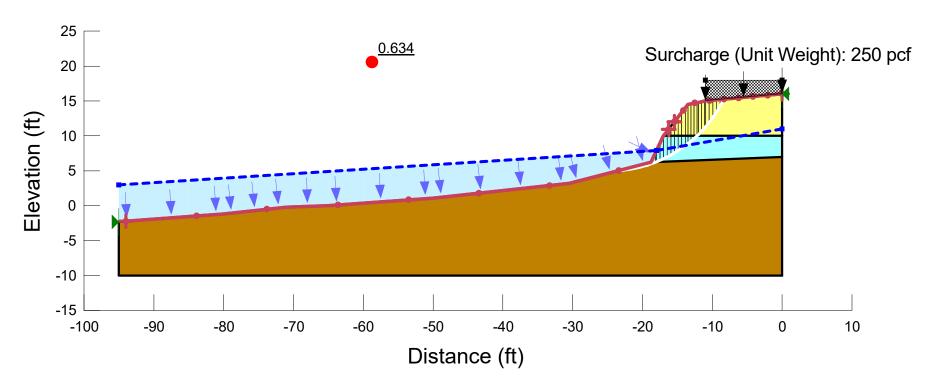
WI	N				
023020.00					
Town					
Tremont					
Reported	by/Date				
WHITE, TERRY A	12/17/2020				


Maine Department of Transportation Grain Size Distribution Curve

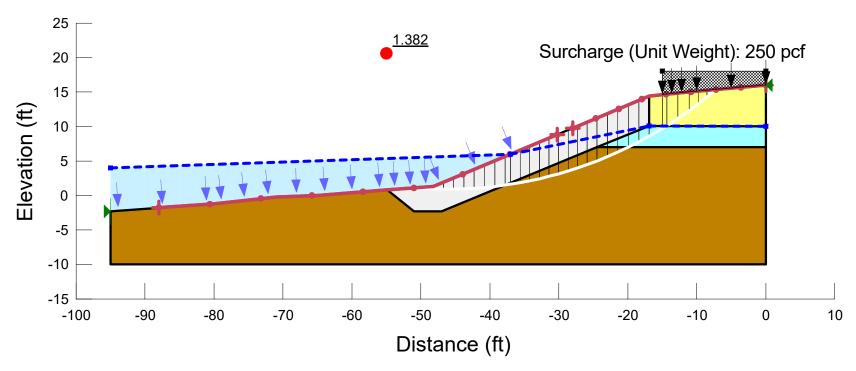

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	HB-TRM-104/1D	13+50	7.0 LT	1.0-3.0	Silty SAND, trace gravel.	16.5			
♦	HB-TRM-104/2D	13+50	7.0 LT	5.0-7.0	Silty CLAY, trace sand, trace gravel.	23.0	36	20	16
	HB-TRM-104/3D	13+50	7.0 LT	10.0-12.0	SAND, little silt, trace gravel.	15.7			
	HB-TRM-105/1D	15+50	7.5 LT	1.0-2.0	SAND, some gravel, little silt.	6.3			
\blacktriangle	HB-TRM-105/1DA	15+50	7.5 LT	2.0-3.0	Silty SAND, trace gravel.	18.5			
X	HB-TRM-105/2D	15+50	7.5 LT	5.0-6.2	SAND, some gravel, some silt.	8.7			

WI	N				
023020.00					
Town					
Tremont					
Reported	by/Date				
WHITE, TERRY A	12/17/2020				

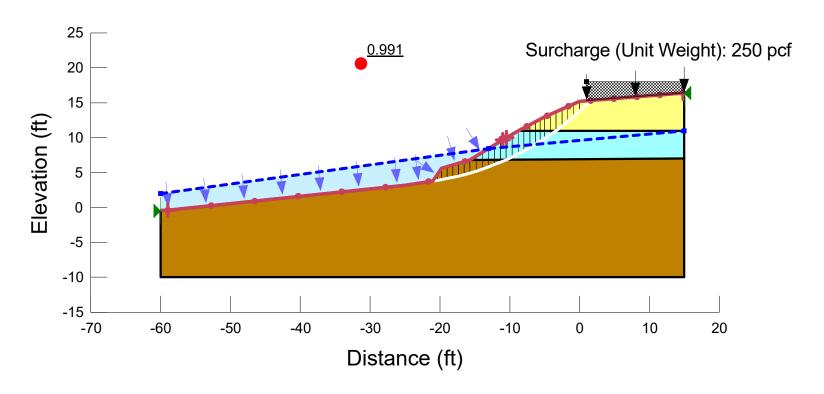
TOWN	Tremont	Reference No.	340881
WIN	023020.00	Water Content, %	23.3
Sampled	10/7/2020	Liquid Limit @ 25 blows (T 89), %	44
Boring No./Sample No.	HB-TRM-102/2D	Plastic Limit (T 90), %	21
Station	201+90	Plasticity Index (T 90), %	23
Depth	5.0-7.0	Tested By	BBURR


TOWN	Tremont	Reference No.	340887
WIN	023020.00	Water Content, %	23
Sampled	10/7/2020	Liquid Limit @ 25 blows (T 89), %	36
Boring No./Sample No.	HB-TRM-104/2D	Plastic Limit (T 90), %	20
Station	13+50	Plasticity Index (T 90), %	16
Depth	5.0-7.0	Tested By	BBURR

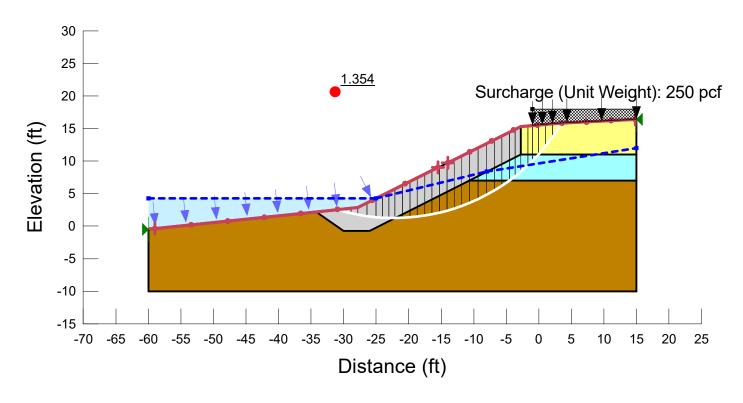
Appendix C


Slope Stability Analyses

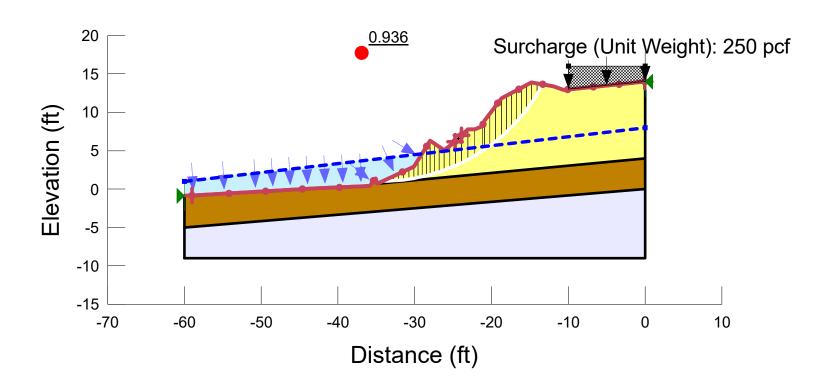
Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Native Sand	125	0	34
	Sand/FIII	125	0	32
	Silt	115	0	28


File Name: 201+00 Existing Condition.gsz

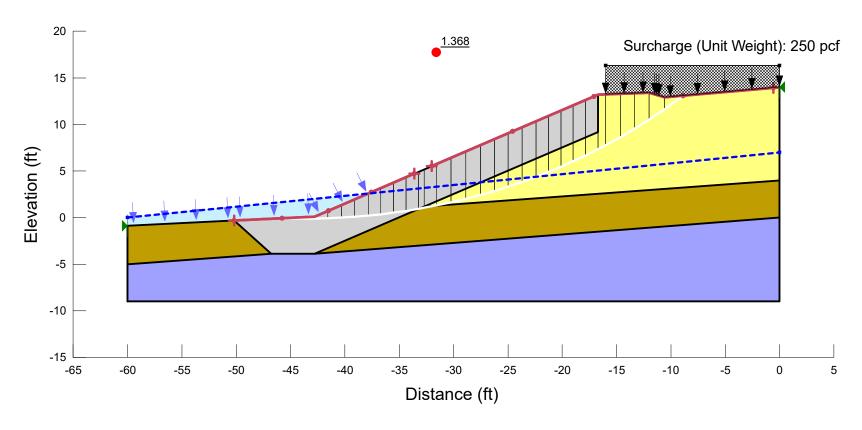
Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Native Sand	125	0	34
	Riprap	145	0	42
	Sand/Fill	125	0	32
	Silt	115	0	28


File Name: 201+00 with 4 ft Riprap.gsz

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Native Sand	125	0	34
	Sand/Fill	125	0	32
	Silt	115	0	28

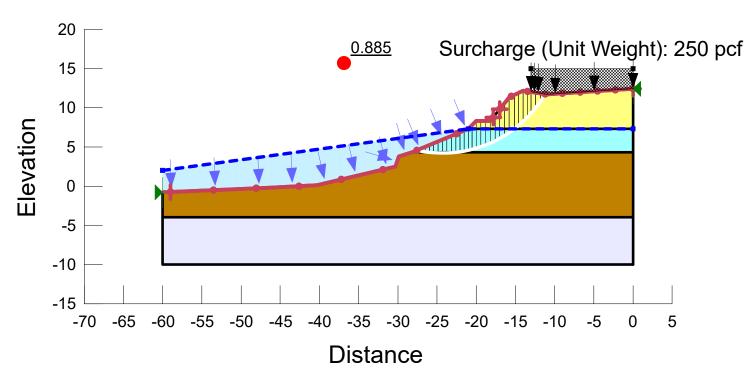

File Name: 300+50 Existing Condition.gsz

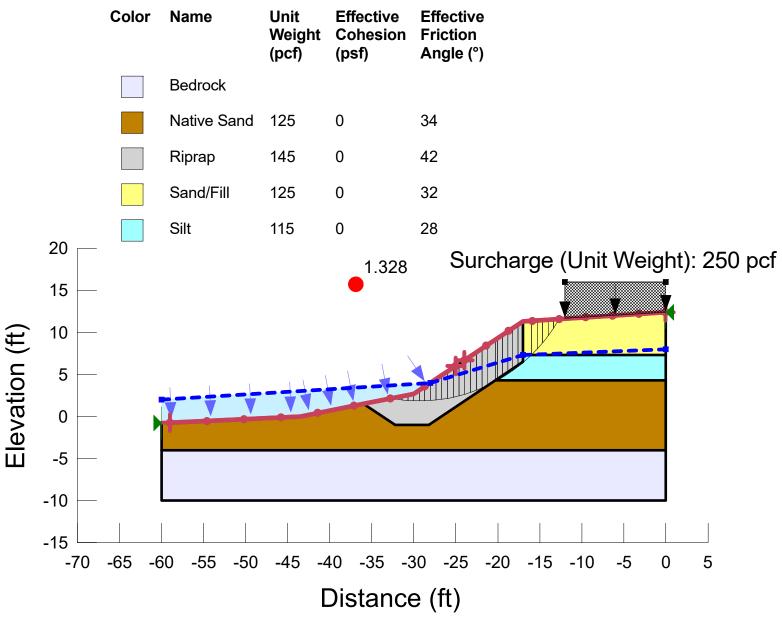
Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Native Sand	125	0	34
	Riprap	145	0	42
	Sand/Fill	125	0	32
	Silt	115	0	28


File Name: 300+50 with 4 ft Riprap.gsz

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Bedrock			
	Native Sand	125	0	34
	Sand/Fill	125	0	32

File Name: 12+00 Existing Conditions.gsz


Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Bedrock			
	Native Sand	125	0	34
	Riprap	145	0	42
	Sand/Fill	125	0	32


Method: Spencer

File Name: 12+00 with 4 ft Riprap.gsz

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Bedrock			
	Native Sand	125	0	34
	Sand/FIII	125	0	32
	Silt	115	0	28

File Name: 15+50 Existing Condition.gsz

File Name: 15+50 with 4 ft Riprap.gsz