

GEOTECHNICAL DESIGN REPORT Mitchell Bridge Culvert Replacement BRIDGE NO. 0216 MAINE DOT WIN 022238.00 GORHAM, MAINE

October 2024 09.0026220.00

Prepared for: Maine Department of Transportation Augusta, Maine

Prepared by: GZA GeoEnvironmental, Inc.

707 Sable Oaks Drive | Suite 150 | South Portland, Maine 04106 207.879.9190

31 Offices Nationwide www.gza.com

Copyright© 2024 GZA GeoEnvironmental, Inc.

VIA EMAIL

October 21, 2024 File No. 09.0026220.00

Ms. Laura Krusinski, P.E. Maine Department of Transportation 16 State House Station Augusta, Maine 04333-0016

Re: Geotechnical Design Report Mitchell Bridge No. 0216 Culvert Replacement Mitchell Hill Road over Nonesuch River Maine Department of Transportation WIN 022238.00 Gorham, Maine

Dear Laura:

We are pleased to provide this Geotechnical Design Report, which includes geotechnical design recommendations for the replacement of Mitchell Bridge Culvert, Mitchell Hill Road over Nonesuch River in Gorham, Maine. Our work was completed in accordance with GZA GeoEnvironmental, Inc.'s (GZA's) June 30, 2020, Multi-PIN contract number 20200603000000000000009 with the Maine Department of Transportation (MaineDOT) Bridge Program and Assignment Letter No. 11 dated January 3, 2024 for WIN 022238.00, and the attached *Limitations* contained in **Appendix A** of this report.

It has been a pleasure serving MaineDOT on this phase of the project, and we look forward to our continued work with you through project completion. If you have any questions regarding the report, please do not hesitate to contact the undersigned.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Blaine M. Cardali, P.E. Senior Project Manager

Andrew R. Blaisdell, P.E. Consultant Reviewer

Christopher L. Snow, P.E. Principal

BMC/ARB/CLS:erc p:\09 jobs\0026200s\09.0026220.00 - medot - mitchell bridge, gorham\report\draft 26220.00 gorham mitchel bridge culvert gdr 09.27.24.docx

Attachment: Geotechnical Design Report

Built on trust.

ENVIRONMENTA ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

707 Sable Oaks Drive Suite 150 South Portland, ME 04106 T: 207.879.9190 F: 207.536.1173 www.gza.com

Page *i*

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 OBJECTIVES AND SCOPE OF SERVICES	1
2.0	SUBSURFACE EXPLORATIONS	2
3.0	LABORATORY TESTING	2
4.0	SUBSURFACE CONDITIONS	3
	4.1 SURFICIAL AND BEDROCK GEOLOGY	3
	4.2 SUBSURFACE PROFILE	3
	4.2.1 Bedrock	4
	4.2.2 Groundwater	4
5.0	ENGINEERING EVALUATIONS	5
	5.1 GENERAL	5
	5.2 APPROACH EMBANKMENTS	5
	5.3 FOUNDATION TYPE	5
	5.4 LOAD AND RESISTANCE FACTORS	5
	5.5 SPREAD FOOTING DESIGN CONSIDERATIONS	6
	5.5.1 Settlement	6
	5.5.2 Strength Bearing Resistance	6
	5.6 SEISMIC DESIGN CONSIDERATIONS	7
	5.7 LATERAL EARTH PRESSURE	7
	5.8 FROST PROTECTION	7
6.0	RECOMMENDATIONS	7
	6.1 EMBANKMENT DESIGN CONSIDERATIONS	7
	6.2 BOX CULVERT AND INLET AND OUTLET WALL DESIGN	7
	6.3 RECOMMENDATIONS FOR FOUNDATIONS	8
7.0	CONSTRUCTION CONSIDERATIONS	8
	7.1 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING	9
	7.2 SUBGRADE PREPARATION	9

TABLE OF CONTENTS (continued)

FIGURES

FIGURE 1	Locus Plan
FIGURE 2	Boring Location Plan
FIGURE 3	Interpretive Subsurface Profile

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Test Boring Logs
APPENDIX C	Rock Core Photo Log
APPENDIX D	Laboratory Test Report
APPENDIX E	Calculations

1.0 INTRODUCTION

This report presents the results of the geotechnical evaluation by GZA GeoEnvironmental, Inc. (GZA) for the replacement of Mitchell Bridge No. 0216 Culvert in Gorham, Maine. Our work was completed in accordance with GZA's June 30, 2020, Multi-PIN contract number 20200603000000000709 with the Maine Department of Transportation (MaineDOT) Bridge Program and Assignment Letter No. 11 dated January 3, 2024 for WIN 022238.00, and the attached *Limitations* contained in **Appendix A** of this report.

1.1 BACKGROUND

The project includes replacement of the Mitchell Bridge No. 0216 carrying Mitchell Hill Road over the Nonesuch River in Gorham, Maine, the location of which is shown on **Figure 1**. The bridge was originally constructed in 1928 or earlier and had consisted of timber stringers resting on stone abutments. Prior to 1990 the structure had been updated with steel-ribbed decking on steel beams supported by concrete capped stone abutments and was replaced in 1990. The 1990 bridge is a two-span, steel-bolted, pipe culvert with a maximum span of 14 feet per pipe. Recent inspections have shown that the condition of the culverts is structurally deficient. It was noted that rust nodules and scaling have occurred over the lengths of the culverts and the northern culvert pipe has experienced minor deflections at the center.

We understand plans are to construct a new, 74-foot-long box culvert with a span of 25 feet, a rise of 8 feet, and an 11-degree skew. The culvert will have 1-foot-tall precast headwalls and 2-foot-deep toe walls at the inlet and outlet. The box culvert invert will be embedded with 12 inches of special fill to create a natural streambed. The prepared subgrade is anticipated to consist of a 1-foot-thick layer of Underdrain backfill material placed on stabilization/reinforcement geotextile overlying the natural subgrade, as will be discussed further herein. The project is planned to maintain the current road alignment, as shown on **Figure 2**.

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to evaluate subsurface conditions and to provide geotechnical engineering recommendations for the proposed culvert replacement. To meet these objectives, GZA completed the following Scope of Services:

- Reviewed the results of three test borings and laboratory testing completed by MaineDOT;
- Conducted final design phase geotechnical engineering analyses for:
 - soil and bedrock properties;
 - stability and settlement of approach embankments;
 - frost susceptibility and drainage of approach subgrade materials;
 - AASHTO LRFD load and resistance factors associated with geotechnical design elements;
 - spread footing design considerations, including bearing resistance, sliding resistance and settlement;
 - seismic design considerations;

- Developed geotechnical engineering recommendations including spread footings bearing on soil, culvert backfill type and properties, earth pressures and seismic design parameters; geotechnical construction considerations; and
- Prepared this report summarizing our findings and design recommendations.

2.0 SUBSURFACE EXPLORATIONS

Three test borings were drilled and logged by MaineDOT between May 20 and 27, 2021 at the locations shown on **Figure 2, Boring Location Plan**. Borings BB-GNR-101 and -101A were drilled on the northwest side of the existing culverts, and BB-GNR-102 was drilled on the southeast side. BB-GNR-101A was terminated on a probable cobble/boulder in the upper portion of the fill and was offset and redrilled as BB-GNR-101. The test borings were drilled using a CME-45C drill rig to depths ranging from approximately 80 to 88 feet below ground surface (bgs) and were terminated in the bedrock.

The borings were drilled using 3- and 4-inch driven casing and drive-and-wash drilling techniques. Standard penetration testing (SPT) and split-spoon sampling were performed at 5-foot typical intervals using a 24-inch-long, 1-3/8-inch inside-diameter sampler. The sampler was driven with a 140-lb calibrated automatic hammer with a 30-inch drop from a truck-mounted drill rig. The boring logs indicate a hammer efficiency factor at the time of drilling of 0.89. In situ field vane shear tests were conducted at typical 5- to 10-foot depth intervals in clay soils. Two vane shear tests were attempted at each test interval. Three thin-walled tube samples were collected in BB-GNR-102 to provide samples for use in laboratory compressibility testing. Approximately 5 to 10 feet of bedrock core was obtained in borings BB-GNR-101 and -102 using NQ2 coring equipment. At the completion of drilling, the borings were backfilled with cuttings and sand. The as-drilled locations and elevations were surveyed by MaineDOT.

Drafts of the logs were prepared in Geosystem Logdraft[®] by MaineDOT. GZA subsequently reviewed the logs and made edits to reflect laboratory soil test results and our interpretation of stratification. The final logs are provided in **Appendix B**.

3.0 LABORATORY TESTING

Soil testing was performed by MaineDOT Testing Laboratories in Bangor, Maine. The testing program included:

- Ten (10) gradation analysis with hydrometer / MaineDOT Frost Classification / Unified Soil Classification System (USCS) assessments;
- Eight (8) sets of Atterberg Limits;
- Ten (10) moisture content tests; and
- Three (3) 1-dimensional consolidation (compressibility) tests.

Results of the testing are included in Appendix D.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

Based on available geologic mapping¹, the surficial unit in the vicinity of the bridges consists of Stream alluvium, described as gravel, sand, and silt deposited on floodplains of modern streams. The Presumpscot Formation, which consists of a stratified mixture of sand, silt and clay deposited by glacial melt, is also present. Thin drift areas and glacial till are mapped east of the bridge and described as less than 10 feet of a poorly sorted mixture of gravel, sand, silt and clay over bedrock.

Marine regressive sand deposits were also mapped in the area surrounding the subject site.

Bedrock mapping² in the vicinity of the site shows the bridge is located near the Nonesuch River Fault which separates the Berwick and Eliot formations. The site lies just west of the fault within the Berwick Formation, which is described as medium-bedded, medium grey plagioclase biotite granofels, locally with abundant calcite that can have interbeds of two-mica garnet schist. The Eliot Formation, east of the fault, is described as fine-grained, medium grey phyllite with ankerite and calcite.

4.2 SUBSURFACE PROFILE

Five soil units were encountered in the test borings below surficial asphalt and above bedrock: Fill, Alluvium Clay and Silt, Alluvium Sand, Marine Clay, and Glacial Till. Approximately 6 inches of asphalt pavement was encountered in the test borings. The thicknesses and generalized descriptions of the soil units are presented in the following table in descending order from the ground surface. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in **Appendix B**. An interpretive subsurface profile based on the test boring results is presented as **Figure 3**, **Interpretive Subsurface Profile**.

¹ Retelle, Michael J. (compiler) , 1999, Surficial geology of the Old Orchard Beach quadrangle, Maine: Maine Geological Survey, Open-File Map 99-94, map, scale 1:24,000. Maine Geological Survey Maps. 1012. http://digitalmaine.com/mgs_maps/1012

 ² Hussey, Arthur M., II, 2003, Bedrock geology of the Old Orchard Beach quadrangle, Maine: Maine Geological Survey, Open-File Map 03-96, 7 p. report, 13 figures, 1 plate, photographs, color map, scale 1:24,000. Maine Geological Survey Maps.
 32. http://digitalmaine.com/mgs_maps/32

		GENERALIZED SUBSURFACE CONDITIONS
Subsurface Unit	Approximate Encountered Thickness (ft)	Generalized Description
Fill	11 to 12	Brown, medium dense to dense, fine to coarse SAND, some to trace silt, little to trace gravel, with probable cobbles and boulders. (USCS: SP-SM, SM). MaineDOT Frost Classification = 0-II Encountered in all borings.
Alluvium – Clay/Silt	4 to 8	Grey, medium stiff to stiff, Silty CLAY, little sand. (USCS: SC-SM, SM, ML, CL) MaineDOT Frost Classification = III-IV Encountered in boring BB-GNR-101 and -102.
Alluvium – Sand	4 to 5	Grey, loose to medium dense, SAND, trace to some silt. (USCS: SP-SM, SM, SC-SM) MaineDOT Frost Classification = II Encountered in boring BB-GNR-101 and -102.
Marine Clay	46 to 53	Grey, soft to stiff, Silty CLAY to Clayey SILT, trace fine sand. (USCS: CL) MaineDOT Frost Classification = III-IV Encountered in boring BB-GNR-101 and -102.
Glacial Till	3 to 5	<u>Variable from:</u> Grey, very dense, Gravelly SAND, some Silt <u>to:</u> Very dense, fine to coarse SAND, some gravel, little silt. (USCS: SM) <i>Encountered in boring BB-GNR-101 and -102.</i>
Top of Bedrock Elevation		Approximately El30.6 to -42.7 (70.5 to 87.7 feet bgs)

4.2.1 Bedrock

Bedrock was cored in two test borings. Bedrock was described as very hard to hard, fresh to slightly weathered, fine grained, tan to black, GRANOFELS. Joints are very close to moderately spaced, horizontal to high angle, fresh to slightly weathered, planar to undulating, fresh to discolored, tight, with calcite infilling. The Rock Quality Designation in the core runs ranged from 67 to 92 percent indicating fair to excellent quality rock.

4.2.2 Groundwater

The groundwater level was measured in boring BB-GNR-101 at a depth of 10 feet bgs, corresponding to El. 29.9, which is roughly coincident with the Q 1.1 (EL 29.0). The water level was recorded in a boring completed using wash boring techniques that typically affect the water level. Fluctuations in groundwater levels will occur due to variations in season, precipitation, river levels and construction activity in the area. Consequently, water levels during and after construction are likely to vary from those encountered in the borings at the time the observations were made.

5.0 ENGINEERING EVALUATIONS

5.1 GENERAL

GZA has conducted geotechnical engineering evaluations in accordance with 2020 AASHTO LRFD Bridge Design Specifications, 9th Edition (herein designated as AASHTO) and the MaineDOT Bridge Design Guide, 2003 Edition, with updates through 2018 (MaineDOT BDG). The sections that follow describe the evaluations and the geotechnical basis for each element. Supporting calculations are included in **Appendix E**.

5.2 APPROACH EMBANKMENTS

The proposed embankment will remain on the current horizontal alignment and vertical profile. Minor grading of the side slopes is anticipated to achieve the final slope angles of 2 feet horizontal to 1 foot vertical (2H:1V) or flatter.

We anticipate that the embankments will be reconstructed over primarily loose to medium dense Alluvium and Fill overlying stiff to soft Marine Clay. Due to the typical strength and moderate compressibility of the Marine Clay and since no raise in grade is proposed, embankment global stability and settlement are not considered to be concerns for the project.

5.3 FOUNDATION TYPE

The culvert is proposed to consist of a box culvert with a span of 25 feet and a rise of 8 feet bearing on a 1-foot-thick layer of Underdrain Backfill Material, Type C (MaineDOT Pay Item 203.55 Culvert Bedding Stone), separated from the natural Alluvium – Sand on the bottom and sides by Stabilization/Reinforcement Geotextile (MaineDOT Standard Specification 722.01).

5.4 LOAD AND RESISTANCE FACTORS

AASHTO LRFD load factors should be applied to horizontal earth pressure (EH), vertical earth pressure (EV), earth surcharge (ES), and live load surcharge (LS) loads, using the load factors for permanent loads (γ_p) provided in LRFD Table 3.4.1-2 for strength limit state foundation design.

The recommended LRFD resistance factors for strength limit state design of foundations were derived from LRFD Tables 10.5.5.2.2-1, 10.5.5.2.3-1 and 10.5.5.2.4-1 and are presented in the following table.

GEOTECH	INICAL RESISTANCE FACTORS – STRENGTH	LIMIT STATE	
Foundation Resistance Type	Method/Condition	Resistance Factor (φ)	AASHTO Reference
Bearing	Theoretical Method in Sand using SPT	0.45	10.5.5.2.2-1
Sliding	Precast Concrete Placed on Sand	0.90	10.5.5.2.2-1

Resistance factors for service and extreme limit state design should be taken as 1.0.

5.5 SPREAD FOOTING DESIGN CONSIDERATIONS

The bottom of the culvert and inlet and outlet walls will be underlain by 12 inches of Underdrain Backfill Material, resulting in excavation depths of approximately 14 to 15 feet below existing grades. At these depths, the exposed soils are anticipated to consist of loose to medium dense Alluvium - Sand. However, the Alluvium - Sand is underlain by a stiff to soft layer of Marine Clay. The following sections discuss settlement and bearing related to the proposed culvert foundations.

5.5.1 Settlement

GZA evaluated the effective stress at the bearing elevation of the proposed box culvert under the existing conditions and the proposed conditions. The results indicate that the proposed construction will result in a slight decrease in effective stress. Therefore, consolidation of the underlying clay is not anticipated. However, elastic settlement is anticipated during foundation construction and backfill placement. We estimate the post-construction foundation settlement will be 1 inch or less. Calculations are presented in **Appendix E**.

5.5.2 Strength Bearing Resistance

The Alluvium - Sand stratum located below the bearing elevation is relatively thin, ranging between 5 to 7 feet thick, and is underlain by a stiff to soft marine clay. GZA considered this two-layer system in evaluating the bearing resistance. The bearing resistance values for the strength condition were developed using AASHTO Equation C10.6.3.1.2f-1 which accounts for a two-layer system with a strong layer overlying a weak layer.

The calculated bearing resistance values are presented in **Appendix E** and are presented in the table below for the culvert.

	BEARING RESISTANCE VALUES FOR FOOTINGS ON SOIL													
Footing	Footing Width (feet)	Nominal Bearing Resistance (ksf)	Factored Bearing Resistance, Strength Limit State (ksf)	Service Bearing Resistance (ksf)										
Precast Culvert	27	7.2	3.3	3.3										

Service Bearing Resistance

GZA evaluated the effective stress at the bearing elevation of the proposed box culvert under the existing conditions and the proposed conditions. The results indicate that the proposed construction will result in a slight decrease in effective stress. For the service condition, GZA considered the anticipated no-stress-increase situation, indicating that consolidation of the underlying clay is not anticipated, and any clay settlement would be elastic. Since the Alluvium – Sand is a granular material, we anticipate that any compression of that layer would occur elastically as the fill is placed. Based on the elastic settlement anticipated, we estimate the post-construction foundation settlement will be 1 inch or less. Calculations are presented in **Appendix E**.

5.6 SEISMIC DESIGN CONSIDERATIONS

Per AASHTO LRFD Article 3.10.1, seismic analysis is not required for buried structures except where they cross active faults. The site is located adjacent to a known fault. However, the Nonesuch Fault³ is documented to be inactive. Therefore, seismic design parameters are not required.

5.7 LATERAL EARTH PRESSURE

The precast culvert walls will be restrained from lateral movement at the top and bottom. Therefore, the box culvert walls should be designed for at-rest earth pressure conditions. Culvert inlet and outlet headwalls are a few feet high or shorter. These short walls should be designed for at-rest earth pressure conditions. Inlet and Outlet Walls that extend beyond the box culvert and are independent of the box culvert are considered free to rotate and should be designed for Rankine active earth pressure with a 2H:1V backslope. The material properties will be controlled by the backfill material, which is anticipated to consist of BDG Type 4 soil. Soil properties for Type 4 soil are provided in **Section 6.2** of this report.

5.8 FROST PROTECTION

Fill soils are anticipated to be present at the culvert, inlet/outlet walls and embankments, either as existing fill, imported backfill, or Alluvial - Sand deposits. Based on the MaineDOT BDG, Section 5.2.1, the Freezing Index for the site is 1,275, and with fine to coarse-grained moderate-moisture content (10 to 20 percent) soils near the riverbed, the estimated depth of frost penetration is approximately 5.1 feet. However, the BDG does not specify frost embedment requirements for culverts.

6.0 RECOMMENDATIONS

6.1 EMBANKMENT DESIGN CONSIDERATIONS

Embankment side slopes should be designed with MaineDOT typical slope angles of 2H:1V or flatter for a loam and seed surface finish. Where a riprap surface treatment is used, a 1.75H:1V slope angle is acceptable. Riprap should also be provided for scour protection where the embankment side slopes will be near or below typical water levels in the Nonesuch River. The extent and nature of scour countermeasures will be evaluated by others.

6.2 BOX CULVERT AND INLET AND OUTLET WALL DESIGN

- Backfill between the culvert and inlet and outlet walls should consist of MaineDOT 703.19 Granular Borrow, MaineDOT BDG Type 4 soil. Recommended soil properties for Type 4 soils are as follows:
 - Internal Friction Angle of Soil = 32°
 - Soil Total Unit Weight = 125 pcf

³ Hussey, Arthur M., II, 2003, Bedrock geology of the Old Orchard Beach quadrangle, Maine: Maine Geological Survey, Open-File Map 03-96, 7 p. report, 13 figures, 1 plate, photographs, color map, scale 1:24,000. Maine Geological Survey Maps. 32. http://digitalmaine.com/mgs_maps/32

- At-rest Earth Pressure, $K_0 = 0.47$ (use for design of box culvert walls and inlet and outlet headwalls)
- Rankine Active Earth Pressure, $K_a = 0.46$ (use for design of culvert inlet and outlet walls unsupported from box and free to rotate, assumes slope of 2H:1V behind wall)
- Live load surcharge should be applied as a uniform lateral surcharge pressure using the equivalent fill height (H_{eq}) values developed in accordance with LRFD Section 3.11.6.4, based on the culvert/inlet and outlet wall height and distance from the wall backface to the edge of traffic. A minimum H_{eq} of 2 feet is recommended.

6.3 RECOMMENDATIONS FOR FOUNDATIONS

- The proposed box culvert and footings should be supported on 12 inches of MaineDOT 703.22 Underdrain Backfill Material, Type C separated on bottom and sides by Stabilization/Reinforcement Geotextile installed over undisturbed Alluvium -Sand, except for the precast concrete toe walls, which should bear directly on naturally deposited Alluvium – Sand or Alluvium - Clay/Silt. Culvert bearing pressures should be checked to confirm that they are less than the resistance values presented in Section 5.5 of this report.
- In order to limit seepage beneath the culvert, the Underdrain backfill should not extend upstream or downstream beyond the limits of the key/cutoff walls on the base. The cutoff walls should bear directly on naturally deposited Alluvium Sand or Alluvium Clay/Silt or compacted Granular Borrow for Underwater Backfill MaineDOT 703.19.
- The culvert subgrade surfaces should be cleaned of soil that is loosened by the excavation process prior to placement of the Underdrain Backfill Material, and if the subgrade is dry, the surface may be proof-compacted. Bearing surface preparation should be in accordance with **Section 7.2**.
- The Underdrain Backfill Material, Type C bedding for the culvert should be placed in maximum 6-inch lifts and densified with several passes of a walk-behind roller or large plate compactor.
- The base resistance against sliding was evaluated in accordance with AASHTO Article 10.6.3.4 using $\phi_{f'}$ = 32 degrees and C = 0.8 for the culvert (precast concrete). Nominal sliding resistance coefficient for culvert was calculated as C*tan $\phi_{f'}$ and is equal to 0.50. The factored sliding resistance coefficient for the strength condition is 0.45 for the culvert and inlet/outlet walls, based on a resistance factor (ϕ_{T}) of 0.9 for the strength limit state.
- Passive resistance on the toe of footings should be neglected when evaluating sliding and overturning.

7.0 CONSTRUCTION CONSIDERATIONS

This section provides guidance regarding quality control during excavation, dewatering, and foundation subgrade preparation and protection. These items are discussed in the paragraphs that follow.

7.1 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING

Excavations for culvert foundations are anticipated to extend approximately 14 to 16 feet below existing grades and up to 4 feet below the Q 1.1 (El. 29). Sheet-pile-supported and/or open cut excavation techniques are anticipated to be suitable for this project. If temporary sheet piling is used, approximately ½ to 1 inch of additional settlement would be anticipated due disturbance of the underlying Marine Clay. Therefore, the removal of temporary sheeting should occur prior to final paving of the roadway.

Damming and diversion and/or temporary dewatering are anticipated to be necessary to control groundwater and/or stream inflow in excavations. Depending on permitting and water levels at the time of construction, we anticipate that it would be possible to dam the stream with sandbags and an impermeable membrane, and temporarily divert the flow through a pipe so the contractor can construct foundations in the dry. It may also be necessary to employ localized pumping from sumps to maintain dewatering. It is anticipated that inflow of surface water or runoff to excavations can be handled by open pumping from sumps installed at the bottoms of excavations. Sumps should be fitted with geotextile or sand filters to prevent loss of subgrade fines during pumping. Dewatering discharge should be managed in accordance with the contractor's Stormwater Prevention Plan and MaineDOT Best Management Practices.

7.2 SUBGRADE PREPARATION

Even with damming and diversion, excavation bases may be wet. If the exposed surface of the Alluvium – Sand is saturated, Stabilization/Reinforcement Geotextile (MaineDOT Standard Specification 722.01) Should be placed directly on the subgrade, and then the first lift of Underdrain Backfill, Type C may be placed. The surface of the Type C material may then be densified as previously described. In the event that the subgrade exhibits weaving or rutting, compaction should be continued without vibration.

TABLES

TABLE 1Summary of Subsurface ExplorationsMitchell Bridge #0216 carries Mitchell Hill Road
Gorham, Maine

GZA job#: 09.0026220.00

							Top of Strat	um Elevation (ft)				Stratu	m Thickness (f	t)					Gr	oundwater
Boring ID	Station	Offset	Ground Surface El. (ft)	Asphalt	Fill	Alluvium Clay/Silt	Alluvium Sand	Marine Clay	Glacial Till	Bedrock	Asphalt	Fill	Alluvium Clay/Silt	Alluvium Sand	Marine Clay	Glacial Till	Bedrock Depth (ft)	Bottom of Boring Depth (ft)	Bottom of Boring El. (ft)	El. (ft)	Depth (ft)
BB-GNR-101	5+50.5	7.7' Rt.	39.9	NE	39.9	28.9	24.4	19.7	-27.1	-30.6	NE	11.0	4.5	4.7	46.8	3.5	70.5	80.5	-40.6	29.9	10
BB-GNR-101A	5+52.2	7.7' Rt.	39.9	NE	39.9	NE	NE	NE	NE	NE	NE	> 4.5	NE	NE	NE	NE	NE	4.5	35.4	NE	NE
BB-GNR-102	5+94.4	7.5' Lt.	40.0	40.0	39.5	28.0	20.0	15.0	-38.0	-42.7	0.5	11.5	8.0	5.0	53.0	4.7	82.7	87.7	-47.7	NM	NM

El. = Elevation, NE = Not Encountered, NM = Not Measured, NP = Not Penetrated, > = Boring Terminated in Stratum

Notes:

1. Refer to the boring logs in Appendix B for additional information.

2. Project elevation datum is North American Vertical Datum (NAVD 88), unless noted otherwise.

3. As-drilled locations were surveyed by MaineDOT and provided to GZA.

4. Stratum depths, thickness and elevations are rounded to the nearest 0.1 foot as interpreted on the boring logs, but this does not represent the precision of the data.

FIGURES

	MITCHEL	BRIDGE			z			NS
	MAINEDOT W	/IN 022238.00			[] []			GE PLA
	GORHAN	I, MAINE			RTA			BRIDG
NTERPR	RETIVE SUB	SURFACE	PROFILE	AINE	IOdSN	_		
ARED BY:		PREPARED FOR:		.M	RAJ	800		8.00
GZA Geo Enginee	Environmental, Inc. ers and Scientists	OF TRANSF	PARTMENT	OF OF)F T	2223		2223
MGR: BMC	ww.gza.com REVIEWED BY: ARB	BRIDGE P CHECKED BY: CLS		ATF	L L	8		0
NED BY: BMC	DRAWN BY: SKB	SCALE: AS SHOWN	3	ST	TEN			
: 0/21/2024	09.0026220.00	REVISION NO. 0	5		E.			0216
					PA			SE NO
					DE			BRIDO
						2		
					TURE	MBE		
					GNAT	E. NU		ATE
				TE L	2024 SI			
				A 100	80			
					DCE			
				AN EATO	AG	ראותדו		
				DE	MED C	ED3		
foot				ANAGER	D-REVIE	-DETAIL	42 S	48
ncountered Groundw	ater Level			PROJ. M	CHECKE	DESIGN3	RE VISIO	E VISIO
/residual) in pounds	s per square foot.				-1015		<u>L</u>	-
ration)						L L	112	3
								Ş
Bottom of Expl	oration, Refusal						DD	-
Bottom of Explo	ration, No Refusal					AN	Ē	a.
				С Е	ЕR	ERI		いち
				SID	ΛI	MB	Б О	1
				BF	<u>рс</u> ,	2	I	2
50				Γ	JCH	Ξ	ă	ว้
				ΗE	LSL	D D	5	2
10				TC	INC	8 8	Ŀ	-
				M	ž	RB	ΛI'	7
(Profile.dgn)	provide by					SCA	5 E J	2
						- W	D	۲ T
and -102 te in an elec	est borings tronic file					HA	р Б	2
-+						10F	ΕN	
ilended to c ies between	sonvey strata			\vdash			-	-
n aeveloped and sample	DY es.			SF	1EE	i nu	ΝВ	ΕK
and are pro efer to the e	bably exploration					R		
						U		
					0	F 2	1	
				_	_	-	_	

APPENDIX A – LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

P:\09 Jobs\0026200s\09.0026220.00 - MEDOT - Mitchell Bridge, Gorham\Report\FINAL 26220.00 Gorham Mitchel Bridge Culvert GDR 10.21.24.docx

APPENDIX B – TEST BORING LOGS (BY MAINEDOT)

	UNIFIE	ED SOIL C	LASSIFIC	CATION SYSTEM	MODIFIED BURMISTER SYSTEM			
МА	JOR DIVISIO	ONS	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS (little or no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines. Poorly-graded gravels, gravel sand mixtures, little or no fines.	Descriptive Term tracePortion of Total (%) 0 - 10 littlelittle11 - 20 somesome21 - 35 adjective (e.g. Sandy, Clayey)adjective (e.g. Sandy, Clayey)			
	half o ger th e size				TERMS DESCRIBING DENSITY/CONSISTENCY			
e size)	(more than fraction is lar siev	GRAVEL WITH FINES (Appreciable amount of	GM GC	Silty gravels, gravel-sand-silt mixtures. Clayey gravels, gravel-sand-clay mixtures.	Coarse-grained soils (more than half of material is larger than No. 200 sieve): Includes (1) clean gravels; (2) Silty or Clayey gravels; and (3) Silty, Clayey or Gravelly sands. Density is rated according to standard penetration resistance (N-value).			
f mate 0 siev		fines)			Density of Standard Penetration Resistance Cohesionless Soils N-Value (blows per foot)	-		
than half c han No. 20	SANDS	CLEAN SANDS	SW	Well-graded sands, Gravelly sands, little or no fines	Very loose 0 - 4 Loose 5 - 10 Medium Dense 11 - 30 Dense 31 - 50			
(more larger t	of coarse than No. 4 e)	(little or no fines)	SP	Poorly-graded sands, Gravelly sand, little or no fines.	Very Dense > 50 Fine-grained soils (more than half of material is smaller than No. 200			
	e than half i is smaller sieve siz	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	sieve): Includes (1) inorganic and organic silts and clays; (2) Gravelly, Sandy or Silty clays; and (3) Clayey silts. Consistency is rated according to undrained shear strength as indicated. Approximate			
	(more fraction	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Undrained Consistency of SPT N-Value Shear Field Cohesive soils (blows per foot) Strength (psf) Guidelines			
			ML	Inorganic silts and very fine sands, rock flour, Silty or Clayey fine sands, or Clayey silts with	Very Soft WOH, WOR, WOP, <2 0 - 250 Fist easily penetrates Soft 2 - 4 250 - 500 Thumb easily penetrates Medium Stiff 5 - 8 500 - 1000 Thumb penetrates witit	; es th		
FINE-	SILTS AN	SILTS AND CLAYS slig		slight plasticity.	moderate effort Stiff 9 - 15 1000 - 2000 Indented by thumb with great effort Very Stiff 16 - 30 2000 - 4000 Indented by thumbrai	th		
SOILS	(liquid limit l	less than 50)		clays, Silty clays, lean clays.	Hard >30 over 4000 Indented by thinkhail With difficulty	il		
is ize)			OL	clays of low plasticity.	RQD (%) = sum of the lengths of intact pieces of core* > 4 inches length of core advance			
alf of material lo. 200 sieve s	SILTS AN	SILTS AND CLAYS		TS AND CLAYS		Inorganic silts, micaceous or diatomaceous fine Sandy or Silty soils, elastic silts.	Rock Quality Based on RQD Rock Quality RQD (%) Very Poor ≤25	
e than h			СН	Inorganic clays of high plasticity, fat clays.	Poor 26 - 50 Fair 51 - 75 Good 76 - 90			
(mor smalle	(liquid limit gr	reater than 50)	ОН	Organic clays of medium to high plasticity, organic silts.	Excellent 91 - 100 Desired Rock Observations (in this order, if applicable): Color (Munsell color chart)			
	HIGHLY (SC	ORGANIC	Pt	Peat and other highly organic soils.	Rock Type (granitic, fine-grained, etc.) Rock Type (granite, schist, sandstone, etc.) Hardness (very hard, hard, mod. hard, etc.) Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.)			
Desired Sc Color (Mun Moisture (d Density/Co Texture (fin Name (San Gradation (Plasticity (n Structure (l: Bonding (w Cementatic Geologic O Groundwat	ii Observat sell color cha ry, damp, m nsistency (fri e, medium, d, Silty Sand well-graded, on-plastic, s ayering, frac ell, moderati n (weak, mo rigin (till, ma er level	tions (in this art) oist, wet) om above ri- coarse, etc. d, Clay, etc., poorly-grac lightly plasti tures, crack ely, loosely, oderate, or s rine clay, all	ght hand s including led, uniforn c, moderat s, etc.) etc.,) trong) uvium, etc	applicable): ide) portions - trace, little, etc.) n, etc.) tely plastic, highly plastic)	Geologic discontinuities/jointing: -dip (horiz - 0-5 deg., low angle - 5-35 deg., mod. dipping - 35-55 deg., steep - 55-85 deg., vertical - 85-90 deg.) -spacing (very close - <2 inch, close - 2-12 inch, mod. close - 1-3 feet, wide - 3-10 feet, very wide >10 feet) -tightness (tight, open, or healed) -infilling (grain size, color, etc.) Formation (Waterville, Ellsworth, Cape Elizabeth, etc.) RQD and correlation to rock quality (very poor, poor, etc.) ref: ASTM D6032 and FHWA NHI-16-072 GEC 5 - Geotechnical Site Characterization, Table 4-12 Recovery (inch/inch and percentage) Rock Core Rate (X.X ft - Y.Y ft (min:sec))			
Ke	<i>Maine L</i> y to Soil a Fiel	Departme Geotechi and Rock d Identific	nt of Tra nical Sec Descrip ation Inf	ansportation ction otions and Terms ormation	Sample Container Labeling Requirements: WIN Blow Counts Bridge Name / Town Sample Recovery Boring Number Date Sample Number Personnel Initials Sample Depth Fersonnel Initials			

I	Maine	e Dep	artment	of Transporta	tion	Proj	ect:	Mitche	ll Bric	lge #0216 carries Mitchell	Boring No.:	NR-101	
		<u>:</u> 	Soil/Rock Expl	oration Log ARY UNITS		Loca	ation	Hill Ro Gorf	oad ov am, N	er Nonesuch River laine	WIN:	2223	38.00
Drill	er:		MaineDOT		Elevatio	on (ft.)		39.9			Auger ID/OD:	5" Solid Stem	
Ope	rator:		Daggett/Jay		Datum:	. ,		NAV	D88		Sampler:	Standard Split	Spoon
Log	ged By:		J. Manahan		Rig Typ	e:	CME 45C				Hammer Wt./Fall:	140#/30"	-
Date	Start/Fi	nish:	5/20/2021, 5/2	5/2021	Drilling	Metho	d:	Case	d Was	h Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+50.5, 7.7 ft	Rt.	Casing	ID/OD:		NW-	3"		Water Level*:	10.0 ft bgs.	
Ham	mer Effi	ciency F	actor: 0.89		Hamme	r Type	: .	Automa	tic 🖂	Hydraulic 🗆	Rope & Cathead	_	
Defini	tions:	Comple		R = Rock Co	ore Sample			S _u =	Peak/R	emolded Field Vane Undrained She	ear Strength (psf) T _v	= Pocket Torvane She	ar Strength (psf)
MD = U = T MU = V = Fi MV =	Unsuccess hin Wall Tul Unsuccess eld Vane Si Unsuccess	ful Split Sp be Sample ful Thin Wa hear Test, ful Field Va	oon Sample Atterr II Tube Sample At PP = Pocket Per ne Shear Test Att	HSA = Hollo RC = Roller WOH = Weig hetrometer woR/C = W WO1P = We	w Stem Auger Cone ght of 140lb. H eight of Rods	r Iammer or Casin erson	g	9u(la q _p = 1 N-uno Hamr N ₆₀ = N ₆₀ =	D) = La Jnconfi correcte ner Effic SPT N (Hamr	ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annual l-uncorrected Corrected for Hamme ner Efficiency Factor/60%)*N-unco	I Calibration Value PI = er Efficiency G = rrected C =	= Liquid Limit = Plastic Limit = Plasticity Index : Grain Size Analysis : Consolidation Test	Jent
				Sample Information									Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	Casing	Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Remarks	3	Laboratory Testing Results/ AASHTO and Unified Class.
0						ss	А						
							_						
							_						
- 5 -												1 1 (7:11)	
5	1D	24/8	5.00 - 7.00	15/21/14/13	35 52					Brown, damp, very dense, i	tine to coarse SAND, lit	tle gravel, (Fill).	
							_						
							,						
- 10 -							/			2D (10 0-11 0 ft bos) Brow	vn moist loose fine to a	coarse SAND	
	2D/A	24/16	10.00 - 12.00	WOH/3/3/5	6 9	4	ŀ	28.9		some silt, little gravel, woo	d (timber cribbing), (Fill). 11.0	
						1:	5	20.9		2D/A (11.0-12.0 ft bgs.) Gr	rey, damp, stiff, Silty CL	AY, little sand,	
						1	7			(Alluvium-Clay/Silt).			
							c						
							-						
- 15 -						2	/			^a Casing sunk to 15.5 ft bgs	s.		
	3D/MV	24/16	15.50 - 17.50	3/3/3/3	6 9		4	24.4		Grey, wet, loose, fine SAN	D, some silt, trace clay,	15.5- trace medium sand	G#340968 A-2-4, SC-SM
						2:	>			(Alluvium-Sand). Failed 55x110 mm vane att	empt, would not push.		WC=21.1% Non-Plastic
						2	7						
						3	0						
- 20 -		2.1/5.1	20.00 27.0-	1/0/0/0			y 	19.7		4D (20.0-20.2 ft bgs.) Grey	, moist, loose, SAND, tr	ace silt, (Alluvium-	G#340060
	4D/A	24/24	20.00 - 22.00	1/2/2/2	4 6	HY PU	SH			Sand).		20.2-	A-6, CL
										4D/A (20.2-22.0 ft bgs.) Gr trace fine sand (Marine Cla	rey, moist, medium stift y).	f, Silty CLAY,	WC=38.8% LL=39
													PL=23 PI=16
							\neg						
25	orke:					$ \rangle$				1			
Kem	arks:												
Lef	Left 50 ft of NW Casing in bore hole on 5/20/2021, until we returned on 5/25/2021.												
Stratif	ication lines	s represent	approximate bour	ndaries between soil types; tr	ansitions may	be grad	ual.				Page 1 of 4		
* Wat than	er level read	dings have ent at the t	been made at time me measurement	es and under conditions state s were made.	ed. Groundwa	ater flucti	uation	s may o	cur du	e to conditions other	Boring No).: BB-GNR-	101
	1.20										U		

Ν	Maine	e Dep	artment	of Transporta	ation		Project	Mitche	ell Bri	idge #0216 carries Mitchell	Boring No.:	BB-GI	NR-101
			Soil/Rock Exp US CUSTOM	loration Log ARY UNITS			Locatio	Hill Ro n: Gorl	oad ov am, N	ver Nonesuch River Maine	WIN:	2223	38.00
					1		(4.)						
Drille	er:		MaineDOT		Elevat	ion	(ft.)	39.9	1000		Auger ID/OD:	5" Solid Stem	9
Oper	ator:		Daggett/Jay		Datum	:		NAV	D88		Sampler:	Standard Split	Spoon
Logo	Jed By:		J. Manahan	25/2021	Rig Ty	pe:	- 411-	CMI	45C	1.0.1	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nisn:	5/20/2021, 5/2	25/2021	Drilling	g IVI	ethod:	Case	d Wa	ish Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+50.5, /./ It	Kt.	Casing	עו ק ייייד	/OD:	. NW-	5		water Level :	10.0 ft bgs.	
Definit	ions:	ciency F	actor: 0.89	R = Rock Co	ore Sample	eri	rype:	Automa Su =	tic 🖂 Peak/F	Hydraulic L Remolded Field Vane Undrained She	Rope & Cathead \Box	= Pocket Torvane She	ar Strength (psf)
D = Split Spoon Sample SSA = Solid Stem Auger $S_{U(lab)}$ = Lab Vane Undrained Shear Strength (psf) MD = Unsuccessful Split Spoon Sample Attempt HSA = Hollow Stem Auger q_p = Unconfined Compressive Strength (ksf) U = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw Field SPT N-value WH = Unsuccessful Thin Wall Tube Sample Attempt WOH = Weight of 140 lb. Hammer WOH2 - Weight of Rods or Casing N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency Factor = Rig Specific Annual Call MV = Unsuccessful Field Vane Shear Test Attempt WOH2 = Weight of One Person N ₆₀ = SPT N-uncorrected Corrected for Hammer Efficiency Factor/60%)*N-uncorrected												= Water Content, per = Liquid Limit = Plastic Limit : Plasticity Index Grain Size Analysis Consolidation Test	cent
				Sample Information	-			<u> </u>					Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks	:	Testing Results/ AASHTO and Unified Class.
25	5D	24/24	25.00 - 27.00	WOR/WOR/WOR/			OPEN			Grey, wet, medium stiff, Si	lty CLAY, (Marine Clay).	
	V1 V1/2		25.63 - 26.00 26.63 - 27.00	Su=759/89 psf Su=804/67 psf			HOLE			55x100 mm vane raw torqu V1: 17.0/2.0 ft-lbs V1/2: 18.0/1.5 ft-lbs	e readings:		
- 30 -				WOR/WOR/WOR/						Grey, wet, soft, Silty CLAY	7, trace fine sand, (Marir	ne Clay).	G#340970
	6D 	24/24	30.00 - 32.00 30.63 - 31.00	WOR						55x100 mm vane raw torqu	e readings:		A-6, CL
	V2/2		31.63 - 32.00	Su=313/22 psf Su=335/45 psf						V2: 7.0/0.5 ft-lbs			WC=37.6% LL=33
										v 2/2: 7.5/1.0 It-Ibs			PL=22 PI-11
								-					F1-11
							$ \rangle \rangle$						
							\square	1					
- 35 -		24/14	25.00.25.00	WOR/WOR/WOR/						Similar to 6D, except media	um stiff.		
	7D 	24/14	35.00 - 37.00 35.63 - 36.00	WOR Su=960/45 pcf			PUSH			55x100 mm vane raw torqu	e readings:		
	V3/2		36.63 - 37.00	Su=804/67 psf						V3: 21.5/1.0 ft-lbs			
										V 5/2. 10.0/1.5 H 105			
- 40 -	80	24/15	40.00 - 42.00	WOR/WOR/WOR/						Similar to above.			
	V4	21/13	40.63 - 41.00	WOR Su=804/54 psf				-		55x100 mm vane raw torqu	e readings:		
	V4/2		41.63 - 42.00	Su=826/54 psf						V4/2: 18.5/1.2 ft-lbs			
								1		1			
								-		1			
15													
45 -	9D	24/13	45.00 - 47.00	WOR/WOR/WOR/						Similar to above.Grey, wet, (Marine Clay)	, medium stiff, Silty CLA	AY, trace fine sand,	G#340971 A-6 CL
	V5		45.63 - 46.00	Su=781/67 psf				1		55x100 mm vane raw torqu	e readings:		WC=37.0%
	V5/2		46.63 - 47.00	Su=781/45 psf						V5: 17.5/1.5 ft-lbs V5/2: 17.5/1.0 ft-lbs			LL=36 PL-23
										粗			PI=13
								1		Ħ			
							$\left \right $	-		翻			
50										₩			
Rem	arks:												
Left	50 ft of 1	NW Casir	ig in bore hole	on 5/20/2021, until we re	turned on t	5/25	5/2021.						
Char a life	option "-		approvimate b	ndorion hotwann an ³¹ time	roncition	0115	o gradu - '				Page 2 of 4		
stratifi	cauon line	s represent	approximate bou	nuaries between soil types; ti	ansitions ma	ay De	e gradual.				Paye 2 01 4		
than	those pres	ungs nave sent at the t	been made at tim	ies and under conditions stati ts were made.	ea. Ground	watei	1 nuctuatio	ns may o	cur du	ue to conditions other	Boring No	BB-GNR-	101

Γ	Maine	e Depa	artment	of Transport	ation		Projec	t: M	itchell Brid	ge #0216 carries Mitchell	Boring No.:	BB-GI	NR-101
		<u>-</u>	Soil/Rock Exp	Noration Log			Locati	on:	ll Road ov Gorham, N	er Nonesuch River aine	10/1NL	222	22.00
													00.00
Drille	er:		MaineDOT		Eleva	ation	1 (ft.)		39.9		Auger ID/OD:	5" Solid Stem	
Oper	ator:		Daggett/Jay		Datu	m:			NAVD88		Sampler:	Standard Split	Spoon
Logo	jed By:		J. Manahan		Rig T	ype	:		CME 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/20/2021, 5/2	25/2021 Bt	Drilli	ng N	lethod:		Cased Was	n Boring	Core Barrel:	NQ-2"	
Hom.	mor Effi	cionev E	3+30.3, 7.7 II	Kl.	Ham	ner	Type:	A 11	nw-5	Hydroulio 🗆	Pope & Cathood	10.0 ft bgs.	
Definit	ions:		actor: 0.89	R = Rock C	ore Sample	•	1900.	Au	S _u = Peak/R	emolded Field Vane Undrained Sh	ear Strength (psf) $T_V =$	Pocket Torvane She	ar Strength (psf)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$													cent
MV =	Unsuccess	ful Field Va	ne Shear Test At	tempt WO1P = W	eight of On	e Per	son		N ₆₀ = (Hami	ner Efficiency Factor/60%)*N-unco	rrected C =	Consolidation Test	
		· ·	٩	Sample Information	σ				_				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in	Sample Dept (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrecte	N ₆₀	Casing Blows	Elevation	(ft.) Graphic Log	Visual De	escription and Remarks		Results/ AASHTO and Unified Class.
50	10D	24/24	50.50 - 52.50	WOR/WOR/WOR/						Crow wat madium stiff Si	ilty CLAV troop fine con	(Marina Class)	
	V6	-	51.13 - 51.50	Su=804/89 psf						55x100 mm vane raw torqu V6: 18.0/2.0 ft-lbs	ie readings:	i, (Marine Clay).	
	V6/2		52.13 - 52.50	Su=1027/112 psf				_		V6/2: 23.0/2.5 ft-lbs			
- 55 -	11D	24/24	55.00 - 57.00	WOR/WOH/WOR/				1		Grey, wet, stiff, Silty CLA	Y, (Marine Clay).		
	V7 V7/2		55.63 - 56.00	Su=1161/179 psf						V7: 26.0/4.0 ft-lbs	ie readings:		
	V 1/2		50.05 - 57.00	Su=1161/246 psr				_		V7/2: 26.0/5.5 ft-lbs			
- 60 -	120	24/24	60.00 60.00	WOR/WOR/WOR/				-		Similar to above.			
		24/24	60.00 - 62.00 60.63 - 61.00	WOR Su=1473/268 psf						55x100 mm vane raw torqu	ie readings:		
	V8/2		61.63 - 62.00	Su=1696/268 psf						V8/2: 38.0/6.0 ft-lbs			
							$ \rangle $						
							+	-					
- 65 -							Į V	_		Grev, wet, stiff, Clavey SII	T. little fine sand. (Marii	ne Clav).	
	13D MV	24/24	65.00 - 67.00 65.63 - 65.63	WOR/WOR/WOH/14 Would Not Push			17			Failed 4=55x110 mm vane	attempt.		
							31					(7.0)	
							29	7-				6/.0-	
							62						
- 70							47						
10	14D	6/5	70.00 - 70.50	50 BOD - 00%			NQ-2	2 - :	30.6	Grey, wet, very dense, Gra	velly SAND, some silt, (C	ilacial Till). 70.5-	
	_KI		-/0.30 - /3.30	KQD = 90%						R1: Bedrock: Tan to black,	0.6 ft. , fine-grained, GRANOFE	ELS, hard, fresh to	
								-		slightly weathered. Joints a horizontal to low angle fre	re very close to moderate sh to slightly weathered	ly spaced, planar_smooth	
								_		fresh to discolored, tight, w	vith calcite infilling.	pianai, sinooui,	
										[Berwick Formation] Rock Quality = Good			
75										R1: Core Times (min:sec) 70.5-71.5 ft (4:02)			
Rem	arks:		1		I		1						
Left	50 ft of 1	NW Casin	g in bore hole	on 5/20/2021, until we re	eturned or	n 5/2	5/2021.						
Stratifi	Stratification lines represent approximate boundaries between soil types; transitions may be gradual. Page 3 of 4												
* Wate	er level read	dings have	been made at tim	nes and under conditions stat	ted. Grour	dwate	er fluctua	tions m	ay occur du	to conditions other	Denimuki		101
than	those pres	ent at the ti	me measuremen	ts were made.								.: BB-GNR-	101

I	Main	e Dep	artment	of Transport	atior	1	Project	Mitch	ell Brid	ge #0216 carries Mitchell	Boring No.:	BB-GN	NR-101
		-	Soil/Rock Exp US CUSTOM	Dioration Log ARY UNITS			Locatio	n: Gor	ham, M	aine	WIN:	2223	38.00
Duill			N: DOT				(44)	20.0			A	511.0 1:1.0	
Drill	er:		MaineDO1		Ele	vatior	1 (ft.)	39.9	1000		Auger ID/OD:	5" Solid Stem	Succe
Ope	rator:		L Manahan		Dat	um:	-	NA CM	V D88		Sampler:	Standard Split	Spoon
Log	gea By:		J. Manahan	25/2021	Rig	Туре		СМ	E 45C	р.:	Hammer Wt./Fail:	140#/30"	
Date	start/F	inisn:	5/20/2021, 5/2	25/2021	Drii	ling N	Nethoa:	Case	ed was	n Boring	Core Barrei:	NQ-2"	
Bori	ng Loca	ition:	5+50.5, 7.7 ft	Rt.	Cas	sing it	J/OD:	NW	-3"		water Level :	10.0 ft bgs.	
Defini	itions:	ICIENCY F	actor: 0.89	R = Rock	Core Sam	nmer	Type:	Autom Su =	atıc ⊠ Peak/Re	Hydraulic L emolded Field Vane Undrained Sh	Rope & Cathead \square ear Strength (psf) $T_{y} =$	Pocket Torvane She	ar Strength (psf)
D = S MD = U = T MU = V = F MV =	iplit Spoon Unsuccess hin Wall Tu Unsuccess ield Vane S <u>Unsuccess</u>	Sample sful Split Sp ube Sample sful Thin Wa Shear Test, <u>sful Field Va</u>	oon Sample Atter all Tube Sample A PP = Pocket Pe ine Shear Test At	SSA = Sol mpt HSA = Hol RC = Rolle Attempt WOH = W wonetrometer WOR/C = V	id Stem A low Stem er Cone eight of 14 Weight of Veight of 0	Auger Auger 40 lb. Ha Rods o <u>One Per</u>	ammer r Casing rson	Su(la 9p = N-un Ham N ₆₀ N ₆₀	ab) = Lab Unconfil correcte mer Effic = SPT N = (Hamr	Vane Undrained Shear Strength I ned Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamm- ner Efficiency Factor/60%)'N-unco	(psf) WC = LL = PL = el Calibration Value PI = er Efficiency G = C	e Water Content, pero Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	cent
	<u> </u>			Sample Information	-			<u> </u>	{				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Remarks		Testing Results/ AASHTO and Unified Class.
75	R2	60/60	75.50 - 80.50	RQD = 67%				-35.6		71.5-72.5 ft (3:55) 72.5-73.5 ft (2:47) 73 5-74 5 ft (1:30)			
										74.5-75.5 ft (2:12)			
										R2: Bedrock: Tan to black.	fine-grained, GRANOFE	75.5 LS, fresh to	
										slightly weathered. Primary	y joints are very close to m sh to slightly weathered r	noderately spaced,	
							$ \rangle /$	1		fresh to discolored, tight, w	with calcite infilling. Secon	dary joints are	
- 80 -							$+ \vee$	-40.6		[Berwick Formation]	igie, undurating, smooth n	esii, tigiit.	
								1		Rock Quality = Fair R2: Core Times (min:sec)			
								-		75.5-76.5 ft (1:54) 76.5-77.5 ft (1:54)			
										77.5-78.5 ft (1:47) 78 5 79 5 ft (1:49)			
										79.5-80.5 ft (1:53)			
										100% Recovery			
- 85 -										Bottom of Exploratio	n at 80.5 feet below grou	nd surface.	
- 90 ·													
								-					
								1					
- 95 -							+						
								-					
							-						
100							1	1					
<u>Rem</u>	harks:						-		1	1			
Lef	t 50 ft of	NW Casir	ig in bore hole	on 5/20/2021, until we	returned	on 5/2	5/2021.						
Stratif	fication line	es represent	approximate bou	undaries between soil types;	transition	is may t	oe gradual.				Page 4 of 4		
* Wat	er level rea	adings have	been made at tim	nes and under conditions sta	ated. Gro	undwat	er fluctuatio	ns may c	occur due	to conditions other			101
thar	n those pre	sent at the t	ime measuremen	nts were made.							Boring No.	: BB-GNR-	101

Ν	Maine Department of Transporta Soil/Rock Exploration Log						Project	Mitch Hill R	ell Bridge #0216 carries Mitchell oad over Nonesuch River	Boring No.:	BB-GNF	R-101A
		Ĺ	JS CUSTOM	ARY UNITS			Locatio	n: Gor	ham, Maine	WIN:	222	38.00
Drillir	na Cont	actor:	MaineDOT		Eleva	ation	(ft.)	39.9		Auger ID/OD:	5" Dia.	
Opera	ator:		Daggett/Jay		Datu	m:	. ,	NAV	VD88	Sampler:	N/A	
Loga	Logged By: I Manahan B							CM	E 45C	Hammer Wt./Fall:	N/A	
Date	Start/Fin	nish:	5/20/2021:08	:00-0815	Drilli	na M	ethod:	Soli	d Stem Auger	Core Barrel:	N/A	
Borin	a Locat	ion:	5+52.2. 7.7 ft	Rt.	Casir	na ID	/OD:	N/A		Water Level*:	None Observe	d
Definition S = Sar B = Buon MD = U U = Thi MV = U V = Fie	ons: D = mple off Au cket Samp Insuccessf In Wall Tub Insuccessf Id Vane Sh	n Sample Flights Ion Sample Atten Ne Shear Test Att PP= Pocket Per	MU = Unsucc R = Rock Cor SSA = Solid { HSA = Hollov RC = Roller C tempt WOH = Weig retrometer WOR/C = Weig	essful Thir e Sample Stem Auge v Stem Aug cone ht of 140lb. ight of Roc	r ger . Hamn ds or C	Tube Sam ner asing	ple Atterr	pt WO1P = Weight of 1 Person $S_{U} = Peak/Remolded Field Vane U S_{U(lab)} = Lab Vane Undrained She q_{p} = Unconfined Compressive Stre N-value = Raw Field SPT N-value T_{V} = Pocket Torvane Shear Streng WC = Water Content, percent \cong =:$	ndrained Shear Strength (psf) ar Strength (psf) ngth (ksf) th (psf) Similar or Equal too	LL = Liquid Lin PL = Plastic Lin Pl = Plasticity I G = Grain Size C = Consolidat	iit nit ndex Analysis ion Test	
		_	1	Sample Information			1	-				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	iption and Remarks		Testing Results/ AASHTO and Unified Class.
0						SSA			Brown Sand and Gravel cuttings.			
											4.5	
- 5 -							-		Bottom of Exploration a REFUSAL, Boring was terminate and drilled BB-GNR-101.	it 4.5 feet below ground si d due to probable cobble/b	urface. oulder. Offset	
- 10 -							-					
- 15 -							-					
- 20 -							-					
Stratific * Water than t	arks: ation lines r level read	represent a ings have b ent at the tir	, approximate bou veen made at tim me measuremen	ndaries between soil types; t es and under conditions stat ts were made.	ransitions i	may be	e gradual.	ins may c	ccur due to conditions other	Page 1 of 1 Boring No.	: BB-GNR	-101A

Γ	Maine	e Dep	artment	of Transporta	tion		Project:	Mitche	ell Brid	ge #0216 carries Mitchell	Boring No.:	BB-GN	NR-102
Soli/Rock Exploration Log US CUSTOMARY UNITS							Locatio	n: Gorh	am, M	aine	WIN:	2223	38.00
Drille	er:		MaineDOT		Eleva	atior	n (ft.)	40.0			Auger ID/OD:	5" Solid Stem	
Oper	ator:		Daggett/Jay		Datu	m:	. ,	NAV	'D88		Sampler:	Standard Split	Spoon
Logo	ed By:		J. Manahan		Rig 1	ype	:	CME	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/25-27/2021		Drilli	ng N	lethod:	Case	d Was	h Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+94.4. 7.5 ft]	Lt.	Casi	na II	D/OD:	HW-	4" & N	JW-3"	Water Level*:	None Observed	1
Ham	mer Effi	ciency F	actor: 0.89		Ham	mer	Type:	Automa	tic 🛛	Hydraulic 🗆	Rope & Cathead □		
Defini	ions:			R = Rock Co	re Sampl	е		S _u =	Peak/R	emolded Field Vane Undrained Sh	ear Strength (psf) T _v	= Pocket Torvane She	ar Strength (psf)
D = S MD = U = T MU = V = Fi MV =	blit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S <u>Unsuccess</u>	Sample iful Split Sp be Sample iful Thin Wa hear Test, ful Field Va	oon Sample Atterr III Tube Sample At PP = Pocket Per <u>ne Shear Test Att</u>	SSA = Solid npt HSA = Hollov RC = Roller (ttempt WOH = Weig netrometer WOR/C = Wolf wonty WO1P = Weig Sample Information Sample Information	Stem Aug w Stem A Cone ght of 140 eight of R ight of Or	ger uger Ib. Ha ods o ie Per	immer r Casing rson	S _{u(la} q _p = 1 N-uno Hamr N ₆₀ = N ₆₀ =	_{D)} = Lat Jnconfii correcte ner Effic = SPT N = (Hamr	Vane Undrained Shear Strength hed Compressive Strength (ksf) d = Raw Field SPT N-value siency Factor = Rig Specific Annua -uncorrected Corrected for Hamm- ner Efficiency Factor/60%)*N-unco	(psf) WC LL · PL Il Calibration Value PI = er Efficiency G = rrected C =	2 = Water Content, pero = Liquid Limit = Plastic Limit = Plastic limit = Plasticity Index = Grain Size Analysis = Consolidation Test	sent
Depth (ft.)	Jeptin (IL.) Sample No. Pen./Rec. (in.) Blows (/6 in.) Strength psf) or RQD (%)				V-uncorrected V60		Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks			Laboratory Testing Results/ AASHTO and Unified Class.
0							SSA	39.5	****	6" HMA.		0.5	
												0.5	

- 5 -	1D	24/20	5.00 - 7.00	12/7/7/13	14	21				Brown, damp, medium den	ise, fine to coarse SAND	, trace silt, trace	G#340972
	10	24/20	5.00 - 7.00	12/1/113	14	21				gravel, (Fill).			A-1-b, SW-SM WC=2.9%

							$\Box \Lambda /$						
- 10 -										Dark grey, fine to coarse S	AND, some silt, little gr	avel, trace	
	2D	24/19	10.00 - 12.00	4/2/2/2	4	6	27			organics, (Fill).			
							36						
							40	28.0				— — — —12.0-	
							40						
							52						
							64						
- 15 -					_				///	Grey, wet, medium stiff, Si	ilty CLAY, little fine san	d, (Alluvium-Clay/	
	3D	24/2	15.00 - 17.00	3/2/3/3	5	7	50		[]]]	Silt).			
							53			1			
							60	1		1			
										1			
							45			1			
							52			Roller Coned ahead from 1	9.0-20.0 ft bgs.		
- 20 -	45	0.1/2	20.00 22.00		12	10		20.0	(//)	Grev wet medium dense	fine to coarse SAND to	- $ -20.0$	
	4D	24/3	20.00 - 22.00	5/5////	12	18	55			Sand).	me to coaise SAIND, ITa	at sin, (Anuviuni-	
							56						
							123	1		1			
									[]]]	1			
							96		[]]]	1			
25							84			1			
Rem	arks:		1				1	I	<u>xx//</u>	4			
5/25	5/2021, le	ft 25.0 ft o	of casing in hole	е.									
Stratif	cation line	s represent	approximate bour	ndaries between soil types; tra	ansitions	may t	e gradual.				Page 1 of 4		
* Wate	er level rea	dings have	been made at time	es and under conditions state	ed. Grour	ndwat	er fluctuatio	ns may o	ccur due	e to conditions other			
than	those pres	ent at the t	me measurement	ts were made.				., 5			Boring No	b.: BB-GNR-	102

Γ	Maine	e Depa	artment	atio	n	Projec	t: Mit	chel	1 Brid	ge #0216 carries Mitchell	Boring No.:	BB-G	NR-102	
Soil/Rock Exploration Log US CUSTOMARY UNITS							Locati	Hill on: G	i Roa iorha	ad ove 1m, Ma	r Nonesuch River aine		222	22.00
				<u>ARY UNITS</u>								WIN:		38.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	4(0.0			Auger ID/OD:	5" Solid Stem	
Oper	rator:		Daggett/Jay		Dat	tum:		N	AVI	D88		Sampler:	Standard Split	Spoon
Logo	jed By:		J. Manahan		Rig	ј Туре:	:	C	ME	45C		Hammer Wt./Fall:	140#/30"	
Date	Date Start/Finish: 5/25-27/2021					lling M	lethod:	<u> </u>	ased	Wash	Boring	Core Barrel:	NQ-2"	-
Born	ng Locat	tion:	5+94.4, 7.5 tt	Lt.		sing IL	/OD:	<u>H</u>	W-4	"& N	W-3"		None Observe	d
Ham Definit	tions:	ciency F	actor: 0.89	R = Rock C	ore Sam	nple	Type:	Auto Sr	$mating = P_{i}$	ic ⊠ eak/Re	Hydraulic L molded Field Vane Undrained She	Rope & Cathead ear Strength (psf) T _V =	Pocket Torvane She	ear Strength (psf)
D = Sp MD = U = Th MU = V = Fi	blit Spoon S Unsuccess hin Wall Tut Unsuccess eld Vane S	Sample ful Split Spo be Sample ful Thin Wa hear Test,	oon Sample Atter III Tube Sample / PP = Pocket Po	SSA = Solic mpt HSA = Hollo RC = Roller Attempt WOH = We enetrometer WOR/C = V WO1P = W	d Stem A ow Stem r Cone light of 1 Weight of	Auger Auger 40 lb. Ha f Rods of	ammer r Casing	Su qp N- Hi N	u(lab) = Ur unco amme 60 =) = Lab nconfin orrected er Effici SPT N-	Vane Undrained Shear Strength (ed Compressive Strength (ksf) d = Raw Field SPT N-value iency Factor = Rig Specific Annual uncorrected Corrected for Hamme cr Efficiency Easter (20%) "N-uncorr	psf) WC LL = PL = Calibration Value PI = er Efficiency G = recented C =	= Water Content, per = Liquid Limit = Plastic Limit Plasticity Index Grain Size Analysis	cent
			Ne Shear Test A	Sample Information	eightors	Une r en	3011		<u>30 - ,</u>	(Παι			Consolidation rost	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
25	5D	24/24	25.00 - 27.00	WOH/WOH/1/WOH	1	1	65	- 15	5.0	Ĥ	Grev wet, very soft, Clayer	v SILT trace fine sand, t	25.0	G#303113
							47				(Marine Clay).	,,		A-6, CL WC=35.9% LL=32 PI -20
							46	_						PL=20 PI=12
	V1 V1/2		28.63 - 29.00	Su=804/45 pst			36	-			55x110 mm vane raw torqu V1: 18.0/1.0 ft-lbs	e readings:		
- 30 -	1U	24/24	30.50 - 32.50				OPEN	1			V1/2: 17.0/0.5 ft-lbs Grey, moist, medium stiff, S	Silty CLAY, trace fine sa	and, (Marine	G,C#340973
											Clay).	,,		A-6, CL WC=37.0%
														PL=23
	V2	 	33.13 - 33.50	Su=625/22 psf			\square				55x110 mm vane raw torqu V2: 14.0/1.0 ft-lbs	e readings:		PI=12
- 35 -	V2/2		34.13 - 34.50	Su=714/22 psf		<u> </u>	\vdash	_			V2/2: 10.0/0.5 It-IDS			
	MD V3	24/0	35.00 - 37.00	WOR/WOR/WOR/ WOR							55x110 mm vane raw torqu	e readings:		
	V3/2		36.63 - 37.00	Su=893/45 psf Su=804/22 psf							V3: 20.0/1.0 ft-lbs V3/2: 18.0/0.5 ft-lbs	2		
- 40 -											Grev moist. Silty CLAY, ti	race sand., trace gravel ()	Marine Clav).	G C#340974
	2U	24/24	40.00 - 42.00									ince suita, and g (name exy,	A-6, CL WC=35.5% LL=32 PL=21
	V4	ļ	42.63 - 43.00	Su=714/54 psf					ł		55x110 mm vane raw torqu	e readings:		PI=11
	V4/2	 	43.63 - 44.00	Su=781/45 psf			$\left \right $	_			V4: 16.0/1.2 ft-lbs V4/2: 17.5/1.0 ft-lbs			
- 45 -	6D	24/16	45.00 - 47.00	WOR/WOR/WOR/ WOR			$\left \right $	-			Grey, wet, medium stiff, Sil	lty CLAY, (Marine Clay).	
	V5 V5/2		45.63 - 46.00	Su=826/89 psf Su=737/67 psf			$\uparrow \uparrow$	1			V5: 18.5/2.0 ft-lbs	le readings.		
											V 5/2: 10.5/1.5 It-108			
		ļ												
50									1					
<u>Rem</u> 5/25	<u>arks:</u> 5/2021, let	ft 25.0 ft c	of casing in ho	le.										
Stratifi	ication lines	s represent	approximate bou	indaries between soil types; t	transitior	ns may b	e gradua	l.				Page 2 of 4		
than	those pres	dings have l ent at the ti	been made at tim ime measuremer	nes and under conditions stat	ted. Gro	Jundwate	r fluctuat	ions ma	y occ	cur due	to conditions other	Boring No	BB-GNR	-102

Ι	Maine	e Dep	artment	of Transporta	tion		Proj	ect:	Mitche	ell Brio	lge #0216 carries Mitchell	Boring No.:	BB-GI	NR-102
		<u> </u>	Soil/Rock Exp				Loca	atio	Hill R 1: Gorl	oad ov nam, N	er Nonesuch River Iaine	14/161	222	20 00
			03 0031010	AKT ONTS								VVIIN.		58.00
Drille	er:		MaineDOT		Eleva	tion	(ft.)		40.0			Auger ID/OD:	5" Solid Stem	
Oper	rator:		Daggett/Jay		Datur	n:			NAV	/D88		Sampler:	Standard Split	Spoon
Logo	ged By:	nich	J. Manahan			ype: og M	: lothc	.d.	CMI	45C	h Boring	Hammer Wt./Fall:	140#/30" NO 2"	
Bori	ng Loca	Lt.	Casin	a IE	D/OD		HW	4" & 1	NW-3"	Water Level*:	None Observed	1		
Ham	mer Effi	ciency F	actor: 0.89		Hamn	ner	Туре	:	Automa	tic 🛛	Hydraulic 🗆	Rope & Cathead □		
Definit D = S MD = U = T MU = V = Fi MV =	tions: plit Spoon S Unsuccess nin Wall Tu Unsuccess eld Vane S <u>Unsuccess</u>	Sample sful Split Spo be Sample sful Thin Wa shear Test, sful Field Va	R = Rock Co SSA = Solid. hpt HSA = Hollow RC = Roller (WOH = Weig netrometer WOR/C = Weig work/C = W Wolf = Wolf = Wolf Sample Information	re Sample Stem Aug v Stem Au Cone ht of 140 l eight of Rc ght of One	er ger b. Ha ids or <u>e Per</u> s	ammer r Casir son	ng	S _u = S _{u(la} q _p = N-un Hami N ₆₀ : N ₆₀ :	Peak/R b) = La Unconfi correcte ner Effi = SPT N = (Hami	emolded Field Vane Undrained Sh o Vane Undrained Shear Strength ned Compressive Strength (ksf) d = Raw Field SPT N-value ciency Factor = Rig Specific Annua I-uncorrected Corrected for Hamm mer Efficiency Factor/60%)*N-unco	ear Strength (psf) Tv = 1 (psf) WC = LL = LL = Il Calibration Value PI = F er Efficiency G = C rrected C = C	Pocket Torvane She Water Content, per Liquid Limit Plastic Limit Plasticity Index irain Size Analysis onsolidation Test	ar Strength (psf) cent	
əpth (ft.)	ample No.	en./Rec. (in.)	ample Depth .)	ows (/6 in.) near rength sf) RQD (%)	-uncorrected	30	asing	SWO	evation .)	aphic Log	Visual De	escription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class
50	Х	4	(Jt Sc	ಕ ರ ಸ ರ ಲಿ ಶ	ż	ž	Ű	ā	El (H	Ū HHHH	Grev moist medium stiff	Silty CLAV trace sand (Marine Clav)	G C#340975
	3U	24/24	50.00 - 52.00	WOR/WOR							Grey, moist, meanum sun,	Sity CLAT, trace said, (I	name Ciay).	A-4, CL WC=33.8% LL=30 PL=20
	V6 V6/2		52.63 - 53.00 53.63 - 54.00	Su=1049/112 pst Su=826/89 psf							55x110 mm vane raw torqu V6: 23.5/2.5 ft-lbs V6/2: 18.5/2.0 ft-lbs	ue readings:		PI=10
- 55 -											Dropped in NW Casing 55	.0 ft bgs., then casing sank	to 60.0 ft bgs.	
- 60 -	7D	24/24	60.00 - 62.00	WOR/WOR/WOR/ WOR							Grey, wet, very soft, Silty (CLAY, trace fine sand, (M	arine Clay).	
- 65 -	8D	24/24	65.00 - 67.00	WOR/WOR/WOR/ WOR							Grey, wet, very soft, Claye (Marine Clay).	y SILT, trace fine sand, tra	ce gravel	G#303114 A-6, CL WC=30.3%
							w	OR						LL=34 PL=22 PI=12
							W	он 0						
- 70 -	9D	24/16	70.00 - 72.00	WOR/WOR/3/2	3	4		7			Grey, wet, very soft, Silty (CLAY, trace fine sand, (M	arine Clay).	
								7						
75							1	4						
<u>Rem</u> 5/25	arks: 5/2021, le	ft 25.0 ft o	of casing in hol	e.										
Stratif * Wate than	ication line er level rea those pres	s represent dings have sent at the ti	approximate bou been made at tim me measuremen	ndaries between soil types; tra es and under conditions state ts were made.	ansitions n d. Ground	hay b dwate	e grac er fluct	iual. uatio	ns may o	ccur du	e to conditions other	Boring No.	: BB-GNR-	102

I	Maine	e Depa	artment	of Transport	ation	Project	: Mitche	ell Brid	ge #0216 carries Mitchell	Boring No.:	BB-GI	NR-102
		5	Soil/Rock Expl	loration Log		Locatio	Hill Ro n: Gort	oad ove am, M	er Nonesuch River aine	14/161	222	28.00
		<u>(</u>	<u>13 CUSTON/</u>	ART UNITS							222.	58.00
Drill	er:		MaineDOT		Elevation	on (ft.)	40.0			Auger ID/OD:	5" Solid Stem	
Ope	rator:		Daggett/Jay		Datum:		NAV	D88		Sampler:	Standard Split	Spoon
Log	ged By:		J. Manahan		Rig Typ	e:	CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/25-27/2021	x .	Drilling	Method:	Case	d Wash	1 Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+94.4, 7.5 ft	Lt.	Casing	ID/OD:	HW-	4" & N	IW-3"	Water Level":	None Observe	1
Defini	tions:	ciency Fa	actor: 0.89	R = Rock C	ore Sample	r Type:	Automa S ₁₁ =	tıc ⊠ Peak/Re	Hydraulic L molded Field Vane Undrained Sh	Rope & Cathead \square ear Strength (psf) T_{V} :	= Pocket Torvane She	ar Strength (psf)
D = S MD = U = T MU = V = Fi MV =	plit Spoon S Unsuccess hin Wall Tu Unsuccess eld Vane S <u>Unsuccess</u>	Sample iful Split Spo be Sample iful Thin Wa hear Test, <u>ful Field Var</u>	oon Sample Atterr II Tube Sample A PP = Pocket Per he Shear Test Att	SSA = Solic npt HSA = Hollo RC = Roller ttempt WOH = We metrometer WOR/C = V empt WO1P = W Sample Information	Stem Auger ow Stem Auge Cone ght of 140 lb. /eight of Rods eight of One F	r Hammer or Casing erson	S _u (la q _p = 1 N-uno Hamr N ₆₀ = 1 N ₆₀ =	_{D)} = Lab Jnconfin corrected ner Effic = SPT N- = (Hamm	Vane Undrained Shear Strength (led Compressive Strength (ksf) J = Raw Field SPT N-value iency Factor = Rig Specific Annua -uncorrected Corrected for Hamm er Efficiency Factor/60%)*N-unco	(psf) WC LL PL Il Calibration Value PI = er Efficiency G = rrected C =	E = Water Content, per E Liquid Limit Plastic Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	cent
		и.)	th	<u> </u>	eq							Laboratory Testing
Depth (ft.)	Sample No.	Pen./Rec. (i	Sample Dep (ft.)	Blows (/6 in Shear Strength (psf) or RQD (%)	N-uncorrect	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	escription and Remarks	3	Results/ AASHTO and Unified Class.
75	10D	24/24	75.00 - 77.00	WOR/1/3/10	4 6	12			Grey, wet, medium stiff, SI trace gravel (Marine Clay).	ILT, some clay, some fin	e to medium sand,	
						16	4					
						9	-38.0				— — — —78.0	
						18	-					
- 80 -						20	-					
	11D	19.2/16	81.00 - 82.60	13/19/30/30(1.2)	49 73	38	-		Brown, wet, very dense, fir (Glacial Till)	ne to coarse SAND, some	e gravel, little silt,	
	R1	60/60	82.70 - 87.70	RQD = 92%		NQ-2	-42.7					
									Top of Bedrock at Elev4: R1: Bedrock: Black, fine-g	2.7 ft. grained, GRANOFELS, v	ery hard, fresh.	
- 85 -									smooth, tight, with calcite i Rock Quality = Excellen	infilling.	esn, pianar,	
									[Berwick Formation] R1: Core Times (min:sec)			
							-		82.7-83.7 ft (1:08) 83.7-84.7 ft (1:40)			
							-47.7		84.7-85.7 ft (1:29) 85.7-86.7 ft (1:51) 86.7-87.7 ft (1:50) 100% Recovery			
- 90 -									Bottom of Exploration	n at 87.7 feet below gro	und surface.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						_	_					
							-					
							-					
							-					
- 95 -						_	1					
							1					
							1					
							1					
100												
Rem	arks:	ft 25 0 A	f angina in 1-1									
5/2	572021, le	n 23.0 ft 0	n casing in hole	ς.								
Stratif	ication line	s represent :	approximate bour	ndaries between soil types; t	ransitions ma	y be gradual				Page 4 of 4		
* Wate	er level rea	dings have t ent at the fin	been made at tim	es and under conditions stat	ed. Groundw	ater fluctuati	ons may o	cur due	to conditions other	Borina Na	BB-GNR	102
and											= <u>=</u> 51.00	~ -

APPENDIX C – ROCK CORE PHOTO LOG

Mitchell Bridge No. 0216 Culvert Replacement MaineDOT WIN 022238.00, Gorham, Maine Rock Core Photographs

			Recovery	Recovery				Вох
Boring No.	Run	Depth (ft)	(in)	(%)	RQD (in)	RQD (%)	Rock Type	Row
BB-GNR-101	R1	70.5 - 75.5	60	100	54	90	GRANOFELS	1
BB-GNR-101	R2	75.5 - 80.5	60	100	40	67	GRANOFELS	2
BB-GNR-102	R1	82.7 - 87.7	60	100	55	92	GRANOFELS	3

- Notes: 1. Box row corresponds to the core box section in which the rock core sample is contained; Row 1=Top, Row 3=Bottom.
 - 2. Top of each core run is on the left and increases with depth to the right.
 - 3. Photos presented above show rock cores in the dry.

APPENDIX D – LABORATORY TEST RESULTS
State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	Gorha	Gorham Work Number: 22238.00									
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	ssification	1
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-GNR-101, 3D	5+50.5	7.7 Rt.	15.5-17.5	340968	1	21.1	-N	P-	SC-SM	A-2-4	
BB-GNR-101, 4D/A	5+50.5	7.7 Rt.	20.2-22.0	340969	1	38.8	39	16	CL	A-6	
BB-GNR-101, 6D	5+50.5	7.7 Rt.	30.0-32.0	340970	1	37.6	33	11	CL	A-6	IV
BB-GNR-101, 9D	5+50.5	7.7 Rt.	45.0-47.0	340971	1	37.0	36	13	CL	A-6	
BB-GNR-102, 1D	5+94.4	7.5 Lt.	5.0-7.0	340972	2	2.9			SW-SM	A-1-b	0
BB-GNR-102, 5D	5+94.4	7.5 Lt.	25.0-27.0	303113	2	35.9	32	12	CL	A-6	
BB-GNR-102, 1U	5+94.4	7.5 Lt.	30.5-32.5	340973	3	37.0	35	12	CL	A-6	
BB-GNR-102, 2U	5+94.4	7.5 Lt.	40.0-42.0	340974	3	35.5	32	11	CL	A-6	IV
BB-GNR-102, 3U	5+94.4	7.5 Lt.	50.0-52.0	340975	3	33.8	30	10	CL	A-4	IV
BB-GNR-102, 8D	5+94.4	7.5 Lt.	65.0-67.0	303114	2	30.3	34	12	CL	A-6	
			L						ļ		
Classification of th	ese soil samr	les is in a	cordance wit		assificatio	on Svet	em M-	145-4) This cla	ssification	
is followed by the	"Frost Suscer	tibility Rat	ing" from zero	non-froet e	uscentible	a) to Cla	ass IV	(hiah	v frost su	scentible)	
The "Frost Sus	ceptibility Rat	ing" is had	sed upon the M	/aineDOT an	d Corns of	f Engin	eers C	lassif	ication Sv	stems	
GSDC = Grain Size Distribu	Ition Curve as	determined		88_93 (1006)	and/or $\Delta \mathfrak{S}$		22-63	Rean	nroved 100	98)	
				JU-33 (1990)		101 0 4	22-03	(i veah	pioved 198	.0)	

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98 LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98 NP = Non Plastic

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

UNIFIED CLASSIFICATION

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	BB-GNR-101/3D	5+50.5	7.7 RT	15.5-17.5	SAND, some silt, trace clay.	21.2			NP
٠	BB-GNR-101/4DA	5+50.5	7.7 RT	20.2-22.0	Silty CLAY, trace sand.	38.8	39	23	16
	BB-GNR-101/6D	5+50.5	7.7 RT	30.0-32.0	Silty CLAY, trace sand.	37.6	33	22	11
\bullet	BB-GNR-101/9D	5+50.5	7.7 RT	45.0-47.0	Silty CLAY, trace sand.	37	36	23	13
X									

WI	N					
022238.00						
Tov	vn					
Gorham						
Reported	Reported by/Date					
WHITE, TERRY A	6/23/2021					

UNIFIED CLASSIFICATION

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	BB-GNR-102/1D	5+94.4	7.5 LT	5.0-7.0	SAND, trace silt, trace gravel.	2.9			
•	BB-GNR-102/5D	5+94.4	7.5 LT	25.0-27.0	Clayey SILT, trace sand, trace gravel.	35.9	32	20	12
	BB-GNR-102/8D	5+94.4	7.5 LT	65.0-67.0	Clayey SILT, trace sand, trace gravel.	30.3	34	22	12
\bullet									
X									

WI	N				
022238.00					
Τον	vn				
Gorham					
Reported by/Date					
WHITE, TERRY A	6/23/2021				

	Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	WC, %	LL	PL	PI
0	BB-GNR-102/1U	5+94.4	7.5 LT	30.5-32.5	Silty CLAY, trace sand.	37	35	23	12
۲	BB-GNR-102/2U	5+94.4	7.5 LT	40.0-42.0	Silty CLAY, trace sand, trace gravel.	35.5	32	21	11
	BB-GNR-102/3U	5+94.4	7.5 LT	50.0-52.0	Clayey SILT, trace sand.	33.8	30	20	10
X									

WI	N					
022238.00						
Τον	wn					
Gorham						
Reported	Reported by/Date					
WHITE, TERRY A	9/13/2023					

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		-			-			-			
		S A	A M P	LEI	NFO	RM	A T	I O N			
Reference No.	Boring	No./Samp	le No.		Sample Description					Sampled	Received
340968	BB-0	GNR-101	1/3D		GEOTECHNICAL (DISTURBED))	5/20/2021	6/8/2021
Sample Type: GE	OTECHNIC	AL Loca	ation:		Station:	5+50.5	i Of	fset, ft:	- 7.7 R	T Dbfg, ft:	15.5-17.5
WIN/Town 022238	8.00 - GORI	НАМ						Sample	r: JAME	S MANAH	AN
		.,	т	сет	DEC	11 1	те	campic		•,,,	
				<u> </u>	KE S	UL	I O				
Sieve Analysis	s (T 88)				Mis	scella	neous	Tests			
	, (1 00)		Liq	uid Limit @ 2	5 blows (T a	39), %					
Wash Meth	lod		Pla	astic Limit (T 9	90), %						
	.00		Pla	asticity Index ((T 90), %					NP	
SIEVE SIZE	%		Sp	ecific Gravity,	Corrected	to 20°C (1	Г 100)		2	2.63	
U.S. [SI]	Passing		Lo	ss on Ignition,	, % (T 267)						
3 in. [75.0 mm]			Wa	ater Content (T 265), %				2	21.2	
1 in. [25.0 mm]											
³ ⁄ ₄ in. [19.0 mm]											
¹ / ₂ in. [12.5 mm]					Coi	nsolid	ation (T 216)			
¾ in. [9.5 mm]					Crimmingo N	Notor Co		(1 210)			
¹ / ₄ in. [6.3 mm]					mmmings, v	Water Col	ment, %				
No. 4 [4.75 mm]	100.0					Initial	Final		Void Batio	% Strain	
No. 10 [2.00 mm]	100.0		W	ater Content.	%			Pmin	natio	Strain	
No. 40 [0.425 mm]	98.6		D	rv Densitv. Ibs	s/ft ³			Pp	_		
No. 60 [0.250 mm]	0010		V	oid Ratio				' Pmax			
No. 100 [0.150 mm	ון		Sa	aturation, %				Cc/C'c			
No. 200 [0.075 mm	1] 29.6										
[0.0345 mm]	18.5		١	/ane She	ear Test	on Sl	helby	Tubes	(Maine	DOT)	
[0.0221 mm]	16.4	Depth		3 In.	6	In.	Wat	er D	ocorintion	of Matorial S	Sampled at the
[0.0129 mm]	14.4	taken in	U. Shea	r Remold	U. Shear	Remol	d Conte	ent, D	Va	rious Tube D	epths
[0.0093 mm]	10.3		tons/ft²	tons/It ²	tons/ft ²	tons/fi	[2] /0				
[0.0066 mm]	8.2										
[0.0033 mm]	6.2										
[0.0014 mm]	4.1										
		1									

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/21/2021

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

						-					
		S A	MP	LE I	NFO	RM	ΑΤΙ	0 N			
Reference No.	Boring	No./Sample	e No.	Sample Description						Sampled	Received
340969	BB-G	NR-101/	4DA	(GEOTECHNICAL (DISTURBED)					5/20/2021	6/8/2021
Sample Type: GEO		AL Loca	ation:		Station:	5+50.5	Off	set, ft:	- 7.7 R	T Dbfg, ft:	20.2-22.0
WIN/Town 022238 0	0 - GORH	НΔМ					ç	Sample	.IAME	S MANAH	ΔΝ
			т	гот	пге		· •	Jampio	· O/ III E	0 11/4 //4 //	
				E S I	RE S	ULI	3				
Sieve Analysis (T 88)				Mis	cellan	eous	Tests			
Oleve Analysis (1 00)		Liq	uid Limit @ 2	5 blows (T 8	9), %				39	
Wash Methor	Ч		Pla	astic Limit (T 9	0), %					23	
wash wethou	4		Pla	asticity Index (T 90), %					16	
SIEVE SIZE	%		Specific Gravity, Corrected to 20°C (T 100)				2	.75			
U.S. [SI]	Passing		Lo	ss on Ignition,	% (T 267)						
3 in. [75.0 mm]			Wa	ater Content (Г 265), %				3	8.8	
1 in. [25.0 mm]											
³ ⁄ ₄ in. [19.0 mm]											
1/2 in. [12.5 mm]					Cor	eolida	tion (T 216)			
¾ in. [9.5 mm]				-				1 210)			
¹ / ₄ in. [6.3 mm]				1	rimmings, v	Vater Cont	tent, %				
No. 4 [4.75 mm]	(00.0				1	nitial	Final		Void	%	
No. 10 [2.00 mm]	100.0		10	lator Contont	0/			Pmin	Ratio	Strain	
No. 20 [0.850 mm]	00.0		VV	nu Donoitu Ibo	///			Pn			
No. 40 [0.425 mm]	99.0			aid Patia	/110			Pmax			
No. 100 [0.250 mm]			S	aturation %							
No. 200 [0.130 mm]	98.1							00/00			
[0.0227 mm]	91.3		١	Vane She	ar Test	on Sh	elbv T	ubes	(Maine	DOT)	
[0.0146 mm]	88.8	Depth		3 In.	6	In.	Wate	r	<u> </u>	- /	
[0.0088 mm]	83.7	taken in	U. Shea	r Remold	U. Shear	Remold	Conte	nt, D	escription Va	of Material S rious Tube D	Sampled at the
[0.0065 mm]	78.6	tube, ft	tons/ft ²	2 tons/ft2	tons/ft ²	tons/ft ²	%				
[0.0047 mm]	76.1										
[0.0025 mm]	60.9										
[0.0011 mm]	48.2										

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/21/2021

TOWN	Gorham	Reference No.	340969
WIN	022238.00	Water Content, %	38.8
Sampled	5/20/2021	Liquid Limit @ 25 blows (T 89), %	39
Boring No./Sample No.	BB-GNR-101/4DA	Plastic Limit (T 90), %	23
Station	5+50.5	Plasticity Index (T 90), %	16
Depth	20.2-22.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		S /	AMP	LE I	NFO	RM	ΑΤ	ION			
Reference No.	Borina	No./Samp	le No.		Sa	mple D	escriptio	on		Sampled	Received
340970	BB-0	SNR_10	1/6D							5/20/2021	6/8/2021
Sample Type: GE			ation:		Station [.]	5+50 4	5 Of	fset ft [.]	<u>,</u> 77 B.	T Dbfa ft [.]	30 0-32 0
			allonn		otation	0+00.		Samploi	· IAME		00.0-02.0 ANI
	GON		_					Sample			AN
				ESI	RES	UL	IS				
Sieve Analysis	(T 88)				Mi	scella	neous	Tests			
Sieve Analysis	5(100)		Lic	quid Limit @ 2	5 blows (T	89), %				33	
Wash Meth	Ind		Pla	astic Limit (T 9	90), %	<u> </u>				22	
Washiwean			Pla	asticity Index (T 90), %					11	
SIEVE SIZE	%		Sp	pecific Gravity,	Corrected	to 20°C (T 100)		2	.70	
U.S. [SI]	Passing		Lo	ess on Ignition,	% (T 267)						
3 in. [75.0 mm]			Water Content (T 265), %						3	7.6	
1 in. [25.0 mm]											
³ / ₄ in. [19.0 mm]											
¹ / ₂ in. [12.5 mm]					Со	nsolid	lation	(T 216)			
<u>%</u> in. [9.5 mm]					rimmings	Water Co	ontent %	(,			
¹ /4 III. [6.3 IIIII]					mmigs,		, nicht, 78		Void	0/	
No. $10[2.00 \text{ mm}]$	100.0					Initial	Final		Ratio	% Strain	
No. 20 [0.850 mm]	100.0		V	later Content,	%			Pmin			
No. 40 [0.425 mm]	100.0		D	ry Density, Ibs	s/ft ³			Рр			
No. 60 [0.250 mm]			V	oid Ratio				Pmax			
No. 100 [0.150 mm	ןו		S	aturation, %				Cc/C'c			
No. 200 [0.075 mm	ו] 99.4								/		
[0.0238 mm]	90.2			Vane She	ear Test	t on S	helby	Tubes	(Maine	DOT)	
[0.0153 mm]	87.7	Depth teken in	II Shor	3 In.	6 II Shoar	In. Romo	Wat	er D	escription	of Material S	Sampled at the
[0.0092 mm]	82.9	tube, ft	tons/ft ²	² tons/ft ²	tons/ft ²	tons/f	iu Conta it ² %		Var	ious Tube D	epths
[0.0069 mm]	75.6										
[0.0030 mm]	70.7 56 1										
[0.0020 mm]	41 4										
	71.7										

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/21/2021

TOWN	Gorham	Reference No.	340970
WIN	022238.00	Water Content, %	37.6
Sampled	5/20/2021	Liquid Limit @ 25 blows (T 89), %	33
Boring No./Sample No.	BB-GNR-101/6D	Plastic Limit (T 90), %	22
Station	5+50.5	Plasticity Index (T 90), %	11
Depth	30.0-32.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		0 /					АТ				
	Devices			LEI	NFU					Correctord	Dessived
Reference No.	Boring	No./Samp	ie ino.		Sa	mple D	escriptio	on		Sampled	Received
340971	BB-C	GNR-101	1/9D	<u>(</u>	GEOTEC	HNICA	L (DIST	URBED	<u>)</u>	5/20/2021	6/8/2021
Sample Type: GEO	TECHNIC	AL Loc	ation:		Station:	5+50.5	5 0	ffset, ft:	7.7 F	RT Dbfg, ft:	45.0-47.0
WIN/Town 022238.0	0 - GORH	IAM						Sample	r: JAME	ES MANAH	AN
			т	FST	RFS	UΙ	ΤS				
Sieve Analysis (T 88)										
				uid Limit @ 2	5 blows (T 8	39), %		36			
Wash Method	d		Pla	astic Limit (T 9	0), %					23	
	-		Pla	asticity Index (T 90), %					13	
SIEVE SIZE	%		Sp	ecific Gravity,	Corrected t	o 20°C (T 100)			2.77	
U.S. [SI]	Passing		Los	ss on Ignition,	% (T 267)						
3 in. [75.0 mm]			Wa	ater Content (1	tent (T 265), %					37.0	
1 in. [25.0 mm]											
34 in. [19.0 mm]											
1/2 in. [12.5 mm]					Cor	aalid	ation	(T 016)			
¾ in. [9.5 mm]					COL	isona	ation	(1 2 1 0)	/		
¹ / ₄ in. [6.3 mm]				Т	rimmings, V	Vater Co	ontent, %				
No. 4 [4.75 mm]	100.0					nitial	Final		Void	%	
No. 10 [2.00 mm]	100.0					intiai	i mai		Ratio	Strain	
No. 20 [0.850 mm]			W	ater Content,	%			Pmin	_		
No. 40 [0.425 mm]	99.7		Di	ry Density, Ibs	/ft³			Рр	_		
No. 60 [0.250 mm]			Vo	oid Ratio				Pmax	_		
No. 100 [0.150 mm]			Sa	aturation, %				Cc/C'c			
No. 200 [0.075 mm]	99.3							T			
[0.0230 mm]	90.7			vane She	ear lest	on S	neiby	lubes	(Maine	e DOT)	
[0.0149 mm]	88.1	Depth teken in		3 In.	6	In. Bomo	Wat	ter D	escriptio	n of Material S	Sampled at the
[0.0091 mm]	80.4	tube, ft	tons/ft ²	tons/ft ²	0. Snear	tons/f		ent,	· Va	arious Tube D	epths
[0.0067 mm]	75.2		10113/11	tons/it	10113/11	10113/1	•				
[0.0049 mm]	70.0										
[0.0026 mm]	57.0										
[0.0011 mm]	44.1										

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/18/2021

TOWN	Gorham	Reference No.	340971
WIN	022238.00	Water Content, %	37
Sampled	5/20/2021	Liquid Limit @ 25 blows (T 89), %	36
Boring No./Sample No.	BB-GNR-101/9D	Plastic Limit (T 90), %	23
Station	5+50.5	Plasticity Index (T 90), %	13
Depth	45.0-47.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

SAMPLEINFORMATIONReference No.Boring No./Sample No.Sample DescriptionSampled340972BB-GNR-102/1DSample Centrematication:5/25/2021Sample Type:GEOTECHNICAL Location:Station: 5+94.4Offset, ft: 7.5LT Dbfg, ft: 5	Received 6/8/2021 5.0-7.0
Reference No.Boring No./Sample No.Sample DescriptionSampled340972BB-GNR-102/1DGEOTECHNICAL (DISTURBED)5/25/2021Sample Type: GEOTECHNICAL Location:Station: 5+94.4Offset, ft: 7.5LT Dbfg, ft: 5	Receiveo 6/8/2021 5.0-7.0
340972 BB-GNR-102/1D GEOTECHNICAL (DISTURBED) 5/25/2021 Sample Type: GEOTECHNICAL Location: Station: 5+94.4 Offset, ft: 7.5 LT Dbfg, ft: 5	6/8/2021 5.0-7.0
Sample Type: GEOTECHNICAL Location: Station: 5+94.4 Offset, ft: 7.5 LT Dbfg, ft: 5	5.0-7.0
WIN/Town 022238.00 - GORHAM Sampler: JAMES MANAHAN	J
IESI RESULIS	
Sieve Analysis (T 27, T 11) Miscellaneous Tests	
Liquid Limit @ 25 blows (T 89), %	
Wash Mothod Plastic Limit (T 90), %	
Plasticity Index (T 90), %	
SIEVE SIZE % Specific Gravity, Corrected to 20°C (T 100)	
U.S. [SI] Passing Loss on Ignition, % (T 267)	
3 in. [75.0 mm] Water Content (T 265), % 2.9	
1 in. [25.0 mm]	
³ ⁄ ₄ in. [19.0 mm]	
^{1/2} In. [12.5 mm] 100.0 Concolidation (T 216)	
½ in. [12.5 mm] 100.0 ¾ in. [9.5 mm] 98.4	
½ In. [12.5 mm] 100.0 ¾ in. [9.5 mm] 98.4 ¼ in. [6.3 mm] 97.2 Trimmings, Water Content, %	
V2 In. [12.5 mm] 100.0 % in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 Initial Final Void %	
1/2 In. [12.5 mm] 100.0 3/s in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 Water Content, % Void % Ratio Strain	
100.0 Consolidation (T 216) % in. [9.5 mm] 98.4 ¼ in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.405 mm] 28.0	
Y2 In. [12.5 mm] 100.0 36 in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 Na. 60 [0.250 mm] 29.8 Vaid Batio Pmin Vaid Batio Pmax	
100.0 Consolidation (T 216) 36 in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2	
½ In. [12.5 mm] 100.0 ¾ in. [9.5 mm] 98.4 ¼ in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2	
½ IN. [12.5 mm] 100.0 ¾ in. [9.5 mm] 98.4 ¼ in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2	
100.0 100.0 36 in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2 Vane Shear Test on Shelby Tubes (Maine DOT)	
1/2 In. [12.5 mm] 100.0 % in. [9.5 mm] 98.4 1/4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2 Vane Shear Test on Shelby Tubes (Maine DOT) Depth taken in 3 ln. 6 ln. Water Content, C	mpled at the
V2 In. [12.5 mm] 100.0 % in. [9.5 mm] 98.4 V4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2 Vane Shear Test on Shelby Tubes (Maine DOT) Depth taken in tube, ft 3 ln. 6 ln. Water Content, % U. Shear Remold U. Shear Remold Various Tube Depti	mpled at the ths
V2 In. [12.5 mm] 100.0 % in. [9.5 mm] 98.4 V4 in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2 Vane Shear Test on Shelby Tubes (Maine DOT) Depth taken in tube, ft 3 ln. 6 ln. Water Content, % Description of Material San Various Tube Dept	mpled at the ths
V2 In. [12.5 mm] 100.0 % in. [9.5 mm] 98.4 ¼ in. [6.3 mm] 97.2 No. 4 [4.75 mm] 95.9 No. 10 [2.00 mm] 88.4 No. 20 [0.850 mm] 58.1 No. 40 [0.425 mm] 29.8 No. 60 [0.250 mm] 20.2 No. 100 [0.150 mm] 14.2 No. 200 [0.075 mm] 8.2 Vane Shear Test on Shelby Tubes (Maine DOT) Depth 3 ln. 6 ln. taken in U. Shear Remold U. Shear Remold Cons/ft² Description of Material San Various Tube Dept 3 ln. 6 ln. % Various Tube Dept	mpled at the oths

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/11/2021

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		S A	MPL	LEI	NFO	RM	A T	I O N			
Reference No.	Boring	No./Sample	e No.		Sa	mple De	scriptic	n		Sampled	Received
303113	BB-0	GNR-102	2/5D		GEOTECI	HNICAL	(DIST	URBED)	5/25/2021	6/8/2021
Sample Type: GEC		AL Loca	ation:	Station: 5+94.4 Offset, ft: 7.5						L T Dbfa, ft:	25.0-27.0
WIN/Town 022238	00 - GORI	НАМ			AN						
			. .	• с т	р г е			campio	J. Oran		
				51	RES	UL	13				
Sieve Analysis	(T 88)				Mis	scellar	neous	Tests	;		
			Liqu	id Limit @ 2	5 blows (T 8	9), %				32	
Wash Method			Plas	stic Limit (T 9	90), %					20	
	Washi Method				T 90), %					12	
SIEVE SIZE	%		Spe	cific Gravity,	Corrected t	o 20°C (T	100)			2.71	
U.S. [SI]	Passing		Loss	s on Ignition,	% (T 267)						
3 in. [75.0 mm]			Wat	er Content (T 265), %					35.9	
1 in. [25.0 mm]											
34 in. [19.0 mm]	100.0										
1/2 in. [12.5 mm]	98.1				Cor	solida	ation (T 216	\		
³ ‰ in. [9.5 mm]	98.0			-		Matan Can			/		
¹ / ₄ in. [6.3 mm]	98.0			1	rimmings, v	vater Con	itent, %				
No. 4 [4.75 mm]	98.0				1	nitial	Final		Void	% Strain	
No. 10 [2.00 mm]	97.9		Wa	ter Content	%			Pmin	nalic	Strain	
No. 20 [0.850 mm]	07.7		Dry	v Density Ibs	/ft3			Pn			
No. 60 [0.425 mm]	51.1		Voi	id Ratio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Pmax			
No. 100 [0.150 mm]	1		Sat	turation, %				Cc/C'c			
No. 200 [0.075 mm]	95.9			,							
[0.0276 mm]	82.8		V	ane She	ear Test	on Sh	elby [•]	Tubes	(Main	e DOT)	
[0.0178 mm]	80.0	Depth	3	In.	6	In.	Wat	er _			
[0.0105 mm]	77.0	taken in	U. Shear	Remold	U. Shear	Remole	d Conte	ent, D	Vescriptio	arious Tube D	Sampled at the
[0.0076 mm]	71.4	tube, it	tons/ft ²	tons/ft ²	tons/ft ²	tons/ft ²	2 %				
[0.0055 mm]	65.7										
[0.0028 mm]	51.4										
[0.0012 mm]	42.8										

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/21/2021

TOWN	Gorham	Reference No.	303113
WIN	022238.00	Water Content, %	35.9
Sampled	5/25/2021	Liquid Limit @ 25 blows (T 89), %	32
Boring No./Sample No.	BB-GNR-102/5D	Plastic Limit (T 90), %	20
Station	5+94.4	Plasticity Index (T 90), %	12
Depth	25.0-27.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		6 1	MD			DМ	ΛТ		N			
		δ Α										
Reference No.	Boring	No./Sample	e No.		Sa	ample D	escrip	tion		Samp	led	Received
340973	BB-0	GNR-102	/1U	G	EOTECH	INICAL	(UND	STU	RBED)	5/26/20	021	6/8/2021
Sample Type: GEO	TECHNIC	AL Loca	tion:		Station:	5+94.4	4 (Offset	t, ft: 7.5	LT Dbfg	, ft:	30.5-32.5
WIN/Town 022238.0	0 - GORI	HAM						Sar	npler: JAN	IES MAN		AN
			T	сет	рге		те		1			
				5 1	K E J	UL	13					
Siovo Analysis (T 88)			Miscellaneous Tests								
Sieve Analysis (1 00)		Lic	iquid Limit @ 25 blows (T 89), %						35		
Wash Matha	4		Pla	astic Limit (T 9			23					
	4		Pla	asticity Index (T 90), %					12		
SIEVE SIZE	%		Sp	ecific Gravity,	Corrected	to 20°C (T 100)			2.77		
U.S. [SI]	Passing		Lo	ss on Ignition,	% (T 267)							
3 in. [75.0 mm]			Wa	ater Content (⁻	T 265), %					37.0		
1 in. [25.0 mm]												
¾ in. [19.0 mm]												
½ in. [12.5 mm]					60	ncolid	lation	/т 4	216)			
¾ in. [9.5 mm]					0.0	nsonu	alion		210)			
¼ in. [6.3 mm]				Т	rimmings,	Water Co	ontent, %)	40.1			
No. 4 [4.75 mm]						Initial	Final		Voi	d %		
No. 10 [2.00 mm]	100.0				0/	14.00	00.01		Rati	o Strai	n	
No. 20 [0.850 mm]			N	/ater Content,	%	41.39	29.05		nin			
No. 40 [0.425 mm]	99.5		D	ry Density, lbs	s/ft ³	31.351	95.96	3 Pp				
No. 60 [0.250 mm]			V	old Ratio		1.13	108.0	Pm	nax /Cla			
No. 100 [0.150 mm]	00.2		5			101.63	100					
10.200 [0.073 mm]	92.5		1	Vane She	ar Tes	t on S	helby	/ Tul	bes (Mai	ne DOT)	
[0.0142 mm]	90.0	Depth		3 In.	6	in.	w	ator			/	
[0.0083 mm]	87.5	taken in	U. Shea	r Remold	U. Shear	Remo	ld Cor	itent,	Description	on of Mater	rial Sa	ampled at the
[0.0063 mm]	80.0	tube, ft	tons/ft ²	² tons/ft ²	tons/ft ²	tons/f	ťť	%			De De	puis
[0.0047 mm]	72.5	0.0-0.5	0.21	0	0.18	0	3	7.9	Alternating	layers of lig	ght to and sr	dark grey clay,
[0.0025 mm]	57.5					Ť				in		
[0.0011 mm]	42.5	0.75-1.25	0.18	0	0.14	0	3	8.4	occasional	layers of lig black lines 12 5	gnt to and s in	dark grey clay, pots, silt line at
		1.25-1.65	0.17	0	0.19	0	3	6.6	Alternating occasional	layers of lig plack lines a 6.5. 18.5. a	ght to and sp and 19	dark grey clay, pots, silt lines at 9.5 in.
		1.65-2.0	0.16	0	0.19	0	4	4.1	Alternating occasional b	layers of lig lack lines ar	ght to nd sp	dark grey clay, ots, silt line at 22

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 9/15/2021

in.

TOWN	Gorham	Reference No.	340973
WIN	022238.00	Water Content, %	37
Sampled	5/26/2021	Liquid Limit @ 25 blows (T 89), %	35
Boring No./Sample No.	BB-GNR-102/1U	Plastic Limit (T 90), %	23
Station	5+94.4	Plasticity Index (T 90), %	12
Depth	30.5-32.5	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		<u>۸</u> 2	MD		NEO	R M	Δ	тι	O N			
	р. і						A				0	Desciond
Reference No.	Boring	No./Sampi	e No.		5	ample D	esc	criptior	1		Sampled	Received
340974	BB-0	GNR-102	2/2U	G	EOTECH	INICAL	(UI	NDIST	URBED))	5/26/2021	6/8/2021
Sample Type: GEO	TECHNIC	AL Loca	ation:		Station	5+94.4	4	Offs	set, ft:	7.5 L	T Dbfg, ft:	40.0-42.0
WIN/Town 022238.0	0 - GORH	HAM						S	ampler:	JAME	S MANAH	AN
			Т	EST	RES	UL	T	S				
					Mi	دالمء	no	0118	Tasts			
Sieve Analysis (T 88)		1 1	iquid Limit @ (25 blows (T	80) %	110	ous	10313		32	
	-			lastic Limit (T	20 DIOWS (1	09), 70					21	
Wash Method	d		P				11					
	0/		C C		(1 90), 70	to 20°C (T 10	0)			11 77	
U.S. [SI]	% Passing				, Conecteu	10 20 0 (1 10	,0)			2.77	
2 in [75.0 mm]	·			latar Cantant	(T, 265) 0/)E E	
3 III. [75.0 IIIII]			VV	ater Content ((1 205), %					•	55.5	
$\frac{1}{111}$ [23.0 mm]												
$\frac{1}{16}$ in [12.5 mm]												
³ / ₃ in [9.5 mm]	100.0				Co	nsolid	lati	ion (Г 216)			
¹ / ₄ in [6.3 mm]	99.1			·	Trimmings,	Water Co	onter	nt, %	3	8.3		
No. 4 [4.75 mm]	99.0									Void	%	
No. 10 [2.00 mm]	98.9					Initial	Fi	inal		Ratio	Strain	
No. 20 [0.850 mm]			V	Vater Content	, %	45.12	29	9.36	Pmin			
No. 40 [0.425 mm]	98.4		C	Dry Density, Ib	s/ft³	80.54	95	5.71	Рр			
No. 60 [0.250 mm]			\sim	/oid Ratio		1.16	0.	819	Pmax			
No. 100 [0.150 mm]			S	Saturation, %		108.34	1	00	Cc/C'c			
No. 200 [0.075 mm]	98.1					1					н	
[0.0224 mm]	91.6			Vane Sh	ear Tes	t on S	he	lby T	ubes (Maine	e DOT)	
[0.0151 mm]	84.0	Depth		3 In.	e	6 In.		Wate	Dos	cription	of Matorial S	campled at the
[0.0090 mm]	78.8	taken in	U. Shea	ar Remold	U. Shear	Remo	ld	Conter	it, Des	Va	rious Tube D	epths
[0.0066 mm]	73.8	1000, 11	tons/ft	tons/ft ²	tons/ft ²	tons/f	ť	/0	Altern	ating lave	ers of light to c	lark grev clay Silt
[0.0048 mm]	68.6	0.0-0.5	0.2	0	0.19	0		40.7	line	s at 1", 1	.25", 5.5". 0.7	5" concretion at
[0.0025 mm]	58.5						_		Altern	ating lave	6.25". ers of light to c	lark grev clav. Silt
[0.0011 mm]	43.2	0.8-1.3	0.22	0	0.16	0		38.9	lines	at 11", 1	12.5", 14.25".	1" concretion at
		1.3-1.8	0.2	0	0.19	0		39.9	Alterna line	ating laye s at 17", fraon	lark grey clay. Silt very small shell o 20.25".	
		1.8-2.2	0.19	0	0.19	0		39.7	, Alterna	ating laye	ers of light to o ", 25". Few ve	lark grey clay. Silt ry small shell

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 9/15/2021

fragments 25" to 26".

TOWN	Gorham	Reference No.	340974
WIN	022238.00	Water Content, %	35.5
Sampled	5/26/2021	Liquid Limit @ 25 blows (T 89), %	32
Boring No./Sample No.	BB-GNR-102/2U	Plastic Limit (T 90), %	21
Station	5+94.4	Plasticity Index (T 90), %	11
Depth	40.0-42.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		S A	MP	LE I	NFO	RM	Α	ΤI	ΟN				
Reference No.	Boring	No./Sample	e No.		Sa	mple D	Des	criptio	'n			Sampled	Received
340975	BB-0	GNR-102	/3U	G	ЕОТЕСН	NICAL	. (U	NDIS	TURB	<u>ED)</u>		5/26/2021	6/8/2021
Sample Type: GEO	TECHNIC	AL Loca	tion:		Station:	5+94.4	4	Of	fset, ft:	7.5	LT	Dbfg, ft:	50.0-52.0
WIN/Town 022238.0	00 - GORH	HAM						:	Sampl	er: JAN	IES	MANAH	AN
			т	FST	RFS	11.1	т	S					
							<u> </u>	<u> </u>					
Sieve Analysis	(T 88)												
			Lic	quid Limit @ 2	5 blows (T 8	39), %		3	80				
Wash Metho	d		Pla	astic Limit (T 9	90), %			2	20				
					Plasticity Index (T 90), %								
SIEVE SIZE	%		Sp	Specific Gravity, Corrected to 20°C (T 100)								74	
U.S. [SI]	Passing		Lo	ss on Ignition,	% (T 267)								
3 in. [75.0 mm]			W	ater Content (T 265), %						33	3.8	
1 in. [25.0 mm]]	
¾ in. [19.0 mm]													
½ in. [12.5 mm]					0	!! .	1-4	:	T 04/	• •			
¾ in. [9.5 mm]					COL	nsolic	Jat	ion (1 216)			
¼ in. [6.3 mm]				Т	rimmings, \	Nater Co	onte	nt, %		37.3			
No. 4 [4.75 mm]	100.0					Initial		linal		Voi	d	%	
No. 10 [2.00 mm]	99.9					initial		illai		Rati	0	Strain	
No. 20 [0.850 mm]			V	/ater Content,	%	43.4	43.4 31.		Pmin				
No. 40 [0.425 mm]	99.6		D	ry Density, Ibs	s/ft ³ 7	9.382	92	2.217	Рр				
No. 60 [0.250 mm]			V	oid Ratio		1.15	0	.855	Pmax				
No. 100 [0.150 mm]			S	aturation, %	1	02.99		100	Cc/C'c				
No. 200 [0.075 mm]	99.1					_							
[0.0224 mm]	91.4			Vane She	ear Test	t on S	She	elby 1	Tube	s (Maii	ne	DOT)	
[0.0151 mm]	83.8	Depth		3 In.	6	In.		Wate	er I	Descriptio	on o	f Material S	ampled at the
[0.0092 mm]	76.2	taken in tube ft	U. Shea	r Remold	U. Shear	Remo	010 #12	Conte %	nt,	١	/ari	ous Tube D	epths
[0.0067 mm]	71.1		tons/it	- tons/it-	tons/it-	tons/	11-	70	Alte	ernating la	vers	s of light to d	ark grev clay. Silt
[0.0050 mm]	63.5	0.0-0.5	0.24	0	0.21	0		35.	0	line wi	th w	hite residue	4" to 4.25".
[0.0026 mm]	53.3								Alte	ernating la	vers	s of light to d	ark grev clav Silt
[0.0012 mm]	40.7	0.625-1	0.17	0	0.14	0		40.	7	lines at 8.5", 10".		0".	
		1-1.5	0.13	0	0.14	0		39.	Alte	ernating la line	iyers es at	s of light to d 12.25", 15.5	ark grey clay. Silt 5", 16.5".

Comments:

AUTHORIZATION AND DISTRIBUTION

0.18

0

38.6

Reported by: GREGORY LIDSTONE

1.5-2

0.1

0

Date Reported: 9/15/2021

Alternating layers of light to dark grey clay. Silt lines at 18.75", 20.25", 22.5". 0.75" concretion at 23".

TOWN	Gorham	Reference No.	340975
WIN	022238.00	Water Content, %	33.8
Sampled	5/26/2021	Liquid Limit @ 25 blows (T 89), %	30
Boring No./Sample No.	BB-GNR-102/3U	Plastic Limit (T 90), %	20
Station	5+94.4	Plasticity Index (T 90), %	10
Depth	50.0-52.0	Tested By	BBURR

MaineDOT TESTING LABORATORIES

GEOTECHNICAL TEST REPORT Central Laboratory

		S /	MD			РM	ΛТ				
Reference No	Boring	Un /Samn								Samplod	Received
	Doning									5/26/2021	6/9/2021
303114	BB-C	aNR-102	2/8D		GEOTEC	HNICA	L (DIST	URBED		J/20/2021	0/0/2021
Sample Type: GE	OTECHNIC	AL Loc	ation:	Station: 5+94.4 Offset, ft: 7.5						Dbfg, ft:	65.0-67.0
WIN/Town 022238	8.00 - GORH	IAM			AN						
			т	= S T	RFS		T S				
Sieve Analysis	s (T 88)										
,			Liq	uid Limit @ 2	5 blows (T &	39), %				34	
Wash Method			Pla	stic Limit (T 9	90), %			22			
Plas				sticity Index (T 90), %					12	
SIEVE SIZE	%		Sp	ecific Gravity,	Corrected t	to 20°C (T 100)		2	.69	
U.S. [SI]	Passing		Los	s on Ignition,	% (T 267)						
3 in. [75.0 mm]			Wa	iter Content (T 265), %			3	0.3		
1 in. [25.0 mm]]	
³ ⁄ ₄ in. [19.0 mm]											
1⁄2 in. [12.5 mm]					0	!: .		(T 01 C)			
¾ in. [9.5 mm]					Cor	ISOIIO	ation	(1 216)			
1⁄4 in. [6.3 mm]	100.0			Т	Trimmings, \	Nater Co	ontent, %				
No. 4 [4.75 mm]	99.9					nitial	Final		Void	%	
No. 10 [2.00 mm]	99.8					inntiai	i mai		Ratio	Strain	
No. 20 [0.850 mm]			W	ater Content,	%			Pmin			
No. 40 [0.425 mm]	99.3		Dr	y Density, Ibs	s/ft ³			Рр			
No. 60 [0.250 mm]			Vo	oid Ratio				Pmax			
No. 100 [0.150 mm	ןו		Sa	aturation, %				Cc/C'c			
No. 200 [0.075 mm	1] 92.8			/ O I		•		- 1	/		
[0.0281 mm]	78.4		\	ane She	ear lest	on S	nelby	lubes	(Maine	DOT)	
[0.0181 mm]	75.6	Depth		3 In.	6	In. Domo	Wa	ter D	escription	of Material S	Sampled at the
[0.0106 mm]	72.9	tube, ft	tons/ft2	tons/ft ²	tons/ft ²	tons/f		kent,	Var	ious Tube D	epths
[0.0077 mm]	67.3		tons/it	tons/it	tons/it	10113/1	•				
[0.0056 mm]	61.7										
[0.0028 mm]	47.6										
[0.0013 mm]	39.2										

Comments:

AUTHORIZATION AND DISTRIBUTION

Reported by: GREGORY LIDSTONE

Date Reported: 6/21/2021

TOWN	Gorham	Reference No.	303114
WIN	022238.00	Water Content, %	30.3
Sampled	5/26/2021	Liquid Limit @ 25 blows (T 89), %	34
Boring No./Sample No.	BB-GNR-102/8D	Plastic Limit (T 90), %	22
Station	5+94.4	Plasticity Index (T 90), %	12
Depth	65.0-67.0	Tested By	BBURR

One-Dimensional Consolidation by ASTM D2435 - Method B SUMMARY REPORT

					Before Test	After Test
Current Vertical Effective Stress:			Water Content, %	41.39	29.05	
Preconsolidation Stress:			Dry Unit Weight, pcf	81.351	95.963	
Compression Ratio:			Saturation, %	101.63	100.00	
Diameter: 2.495 in Height: 1.002 in		Void Ratio	1.13	0.81		
LL: 35	PL: 23	PI: 12	GS: 2.78			

	Project: GORHAM	Location:	Project No.: 22238.00				
	Boring No.: BB-GNR-102/1U	Tested By: Greg Lidstone	Checked By:				
	Sample No.:	Test Date: 8/6/2021	Test No.: 340973				
	Depth: 30.5-32.5 FT	Elevation:					
	Description: Grey Clay						
	Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test						
	Displacement at End of Increment						

Project No.: 22238.00

Checked By: --Depth: 30.5-32.5 FT Elevation: --

Project: GORHAM Boring No.: BB-GNR-102/1U Sample No.: --Test No.: 340973

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Measured Specific Gravity: 2.78 Initial Void Ratio: 1.13 Final Void Ratio: 0.807	Liquid Limit: Plastic Limit: Plasticity Ind	35 23 ex: 12	Specimen Diameter Initial Height: 1 Final Height: 0.85	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.85 in	
	Before Consolidation Trimmings Specimen+Ring		After Consolidation Specimen+Ring Trimming:		
Container ID	4	RING	RING+BASE	82	
Wt. Container + Wet Soil, gm	111.77	410.01	397.10	199.52	
Wt. Container + Dry Soll, gm Wt. Container, gm	97.550 62.100	262.17	262.17	64.900	
Wt. Dry Soil, gm Water Content %	35.450	104.56	104.56	104.32	
Void Ratio		1.13	0.807	29.03	
Degree of Saturation, %		101.63	100.00		
Dry Unit Weight, pcf		81.351	95.963		

Tested By: Greg Lidstone Test Date: 8/6/2021 Sample Type: Intact

Location: --

Project: GORHAM Boring No.: BB-GNR-102/1U Sample No.: --Test No.: 340973 Location: --Tested By: Greg Lidstone Test Date: 8/6/2021 Sample Type: Intact Project No.: 22238.00 Checked By: --Depth: 30.5-32.5 FT Elevation: --

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Displacement at End of Increment

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	tsf	- in		8	min	ft²/sec	1/tsf	ft/day	
1	0.118	0.01448	1.10	1.45	94.257	2.57e-007	1.23e-001	8.53e-005	
2	0.125	0.01330	1.10	1.33	41.356	5.79e-007	-1.62e-001	-2.53e-004	
3	0.250	0.01944	1.09	1.94	19.975	1.19e-006	4.90e-002	1.58e-004	
4	0.500	0.02956	1.07	2.95	12.553	1.87e-006	4.04e-002	2.03e-004	
5	1.00	0.04264	1.04	4.26	12.676	1.80e-006	2.61e-002	1.27e-004	
6	2.00	0.06633	0.990	6.62	11.777	1.87e-006	2.37e-002	1.19e-004	
7	4.00	0.1133	0.890	11.3	25.470	8.01e-007	2.35e-002	5.07e-005	
8	8.00	0.1669	0.776	16.7	15.862	1.15e-006	1.34e-002	4.14e-005	
9	4.00	0.1622	0.786	16.2	0.673	2.56e-005	1.16e-003	7.97e-005	
10	2.00	0.1576	0.796	15.7	2.427	7.16e-006	2.31e-003	4.47e-005	
11	1.00	0.1517	0.808	15.1	5.510	3.19e-006	5.86e-003	5.05e-005	
12	0.500	0.1442	0.824	14.4	27.054	6.61e-007	1.49e-002	2.66e-005	
13	1.00	0.1481	0.816	14.8	12.712	1.41e-006	7.74e-003	2.95e-005	
14	2.00	0.1533	0.805	15.3	0.000	0.00e+000	5.16e-003	0.00e+000	
1.5	4.00	0.1609	0.789	16.1	4.178	4.19e-006	3.82e-003	4.31e-005	
16	8 00	0 1776	0 753	17 7	5 619	3 02e-006	4 17e-003	3 40e-005	
17	16 0	0 2137	0 676	21 3	8 012	1 99e-006	4 50e-003	2 41e-005	
18	4 00	0 2007	0 704	20.0	2 316	6 68e-006	1 08e-003	1 95e-005	
19	1 00	0 1866	0 734	18.6	8 033	1 99e-006	4 71e-003	2 53e-005	
20	0 250	0 1712	0 767	17 1	45 941	3 61e-007	2 05e-002	2 00e-005	
21	0 0625	0.1592	0.792	15.9	0 000	0 000+000	6 39e-002	0 000+000	
21	0.0023	0.1352	0.752	10.9	0.000	0.00000000	0.000 002	0.0000000	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Ratio	at End	T50	Cv	Mv	k	Ca
	tsf	in		90	min	ft²/sec	1/tsf	ft/day	응
1	0.118	0.01448	1.10	1.45	0.000	0.00e+000	1.23e-001	0.00e+000	0.00e+000
2	0.125	0.01330	1.10	1.33	0.000	0.00e+000	-1.62e-001	-0.00e+000	0.00e+000
3	0.250	0.01944	1.09	1.94	3.589	1.54e-006	4.90e-002	2.04e-004	0.00e+000
4	0.500	0.02956	1.07	2.95	5.435	1.00e-006	4.04e-002	1.09e-004	0.00e+000
5	1.00	0.04264	1.04	4.26	2.126	2.50e-006	2.61e-002	1.76e-004	0.00e+000
6	2.00	0.06633	0.990	6.62	0.000	0.00e+000	2.37e-002	0.00e+000	0.00e+000
7	4.00	0.1133	0.890	11.3	0.000	0.00e+000	2.35e-002	0.00e+000	0.00e+000
8	8.00	0.1669	0.776	16.7	4.407	9.60e-007	1.34e-002	3.46e-005	0.00e+000
9	4.00	0.1622	0.786	16.2	0.158	2.53e-005	1.16e-003	7.89e-005	0.00e+000
10	2.00	0.1576	0.796	15.7	0.000	0.00e+000	2.31e-003	0.00e+000	0.00e+000
11	1.00	0.1517	0.808	15.1	0.000	0.00e+000	5.86e-003	0.00e+000	0.00e+000
12	0.500	0.1442	0.824	14.4	0.000	0.00e+000	1.49e-002	0.00e+000	0.00e+000
13	1.00	0.1481	0.816	14.8	1.825	2.28e-006	7.74e-003	4.77e-005	0.00e+000
14	2.00	0.1533	0.805	15.3	1.158	3.56e-006	5.16e-003	4.96e-005	0.00e+000
15	4.00	0.1609	0.789	16.1	0.000	0.00e+000	3.82e-003	0.00e+000	0.00e+000
16	8.00	0.1776	0.753	17.7	0.996	3.96e-006	4.17e-003	4.45e-005	0.00e+000
17	16.0	0.2137	0.676	21.3	2.105	1.76e-006	4.50e-003	2.14e-005	0.00e+000
18	4.00	0.2007	0.704	20.0	0.000	0.00e+000	1.08e-003	0.00e+000	0.00e+000
19	1.00	0.1866	0.734	18.6	0.000	0.00e+000	4.71e-003	0.00e+000	0.00e+000
20	0.250	0.1712	0.767	17.1	12.319	3.13e-007	2.05e-002	1.73e-005	0.00e+000
21	0.0625	0.1592	0.792	15.9	0.000	0.00e+000	6.39e-002	0.00e+000	0.00e+000

One-Dimensional Consolidation by ASTM D2435 - Method B SUMMARY REPORT

					Before Test	After Test
Current Vertical Effective Stress:			Water Content, %	45.12	29.36	
Preconsolidation Stress:			Dry Unit Weight, pcf	80.54	95.71	
Compression Ratio:			Saturation, %	108.34	100.00	
Diameter: 2.495 in	Diameter: 2.495 in Height: 1 in		Void Ratio	1.16	0.82	
LL: 32	PL: 21	PI: 11	GS: 2.79			

	Project: GORHAM Location:		Project No.: 22238.00				
	Boring No.: BB-GNR-102/2U Tested By: Greg Lidstone		Checked By:				
	Sample No.:	Test Date: 8/13/2021	Test No.: 340974				
	Depth: 40.0-42.0 FT	Elevation:					
	Description: Grey Clay						
	Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test						
	Displacement at End of Increment						

Project No.: 22238.00

Checked By: --Depth: 40.0-42.0 FT Elevation: --

Project: GORHAM Boring No.: BB-GNR-102/2U Sample No.: --Test No.: 340974

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Estimated Specific Gravity: 2.79 L. Initial Void Ratio: 1.16 P. Final Void Ratio: 0.819 P.	iquid Limit: S lastic Limit: lasticity Inde	32 21 ex: 11	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.84 in After Consolidation		
	Before Co	onsolidation			
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	203	RING	RING	227	
Wt. Container + Wet Soil, gm	105.14	412.17	395.88	196.52	
Wt. Container + Dry Soil, gm	93.810	365.53	365.53	166.22	
Wt. Container, gm	64.230	262.17	262.17	63.020	
Wt. Dry Soil, gm	29.580	103.36	103.36	103.20	
Water Content, %	38.30	45.12	29.36	29.36	
Void Ratio		1.16	0.819		
Degree of Saturation, %		108.34	100.00		
Dry Unit Weight, pcf		80.540	95.710		

Tested By: Greg Lidstone Test Date: 8/13/2021 Sample Type: Intact

Location: --

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

Project: GORHAM Boring No.: BB-GNR-102/2U Sample No.: --Test No.: 340974 Location: --Tested By: Greg Lidstone Test Date: 8/13/2021 Sample Type: Intact Project No.: 22238.00 Checked By: --Depth: 40.0-42.0 FT Elevation: --

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Displacement at End of Increment

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	т90	Cv	Mv	k	
	tsf	- in		8	min	ft²/sec	1/tsf	ft/day	
1	0.0630	0.03650	1.08	3.65	24.805	9.53e-007	5.79e-001	1.49e-003	
2	0.125	0.04275	1.07	4.27	56.920	3.98e-007	1.01e-001	1.08e-004	
3	0.250	0.05061	1.05	5.06	33.918	6.57e-007	6.29e-002	1.12e-004	
4	0.500	0.06084	1.03	6.08	21.919	9.98e-007	4.09e-002	1.10e-004	
5	1.00	0.07495	0.999	7.49	11.475	1.86e-006	2.82e-002	1.41e-004	
6	2.00	0.09810	0.949	9.81	12.536	1.63e-006	2.32e-002	1.02e-004	
7	4.00	0.1492	0.839	14.9	18.841	1.00e-006	2.56e-002	6.90e-005	
8	8.00	0.2058	0.716	20.6	18.998	8.74e-007	1.41e-002	3.33e-005	
9	4.00	0.2005	0.728	20.1	3.597	4.33e-006	1.32e-003	1.54e-005	
10	2.00	0.1941	0.742	19.4	6.062	2.61e-006	3.18e-003	2.23e-005	
11	1.00	0.1869	0.757	18.7	13.288	1.21e-006	7.27e-003	2.37e-005	
12	0.500	0.1786	0.775	17.9	39.351	4.16e-007	1.66e-002	1.86e-005	
13	1.00	0.1817	0.768	18.2	5.066	3.26e-006	6.25e-003	5.48e-005	
14	2.00	0.1896	0.751	19.0	10.683	1.52e-006	7.86e-003	3.23e-005	
1.5	4.00	0.2003	0.728	20.0	8.468	1.88e-006	5.38e-003	2.73e-005	
16	8.00	0.2216	0.682	22.2	10.179	1.50e-006	5.30e-003	2.15e-005	
17	16.0	0 2597	0 600	26.0	16 165	8 75e-007	4 77e-003	1 13e-005	
18	4.00	0.2456	0.630	24.6	1.879	7.29e-006	1.18e-003	2.31e-005	
19	1 00	0 2289	0 667	22 9	16 819	8 49e-007	5 58e-003	1 28e-005	
20	0 250	0 2097	0 708	21 0	66 260	2 26e-007	2 56e-002	1 56e-005	
21	0 0625	0 1911	0 748	19 1	221 064	7 100-008	9 910-002	1 90e-005	
	0.0020	0.1011	0.,10	10.1	221.001		5.520 002	2.900 000	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Ratio	at End	т50	Cv	Mv	k	Ca
	tsf	in		8	min	ft²/sec	1/tsf	ft/day	8
1	0.0630	0.03650	1.08	3.65	0.000	0.00e+000	5.79e-001	0.00e+000	0.00e+000
2	0.125	0.04275	1.07	4.27	10.415	5.05e-007	1.01e-001	1.37e-004	0.00e+000
3	0.250	0.05061	1.05	5.06	0.000	0.00e+000	6.29e-002	0.00e+000	0.00e+000
4	0.500	0.06084	1.03	6.08	4.841	1.05e-006	4.09e-002	1.16e-004	0.00e+000
5	1.00	0.07495	0.999	7.49	4.307	1.15e-006	2.82e-002	8.75e-005	0.00e+000
6	2.00	0.09810	0.949	9.81	4.114	1.16e-006	2.32e-002	7.22e-005	0.00e+000
7	4.00	0.1492	0.839	14.9	0.000	0.00e+000	2.56e-002	0.00e+000	0.00e+000
8	8.00	0.2058	0.716	20.6	0.000	0.00e+000	1.41e-002	0.00e+000	0.00e+000
9	4.00	0.2005	0.728	20.1	0.000	0.00e+000	1.32e-003	0.00e+000	0.00e+000
10	2.00	0.1941	0.742	19.4	1.130	3.25e-006	3.18e-003	2.78e-005	0.00e+000
11	1.00	0.1869	0.757	18.7	0.000	0.00e+000	7.27e-003	0.00e+000	0.00e+000
12	0.500	0.1786	0.775	17.9	0.000	0.00e+000	1.66e-002	0.00e+000	0.00e+000
13	1.00	0.1817	0.768	18.2	0.000	0.00e+000	6.25e-003	0.00e+000	0.00e+000
14	2.00	0.1896	0.751	19.0	2.414	1.57e-006	7.86e-003	3.32e-005	0.00e+000
15	4.00	0.2003	0.728	20.0	2.155	1.71e-006	5.38e-003	2.49e-005	0.00e+000
16	8.00	0.2216	0.682	22.2	2.314	1.53e-006	5.30e-003	2.19e-005	0.00e+000
17	16.0	0.2597	0.600	26.0	2.522	1.30e-006	4.77e-003	1.68e-005	0.00e+000
18	4.00	0.2456	0.630	24.6	0.531	6.00e-006	1.18e-003	1.90e-005	0.00e+000
19	1.00	0.2289	0.667	22.9	0.000	0.00e+000	5.58e-003	0.00e+000	0.00e+000
20	0.250	0.2097	0.708	21.0	0.000	0.00e+000	2.56e-002	0.00e+000	0.00e+000
21	0.0625	0.1911	0.748	19.1	0.000	0.00e+000	9.91e-002	0.00e+000	0.00e+000

One-Dimensional Consolidation by ASTM D2435 - Method B

					Before Test	After Test
Current Vertical Effective Stress:			Water Content, %	43.40	31.20	
Preconsolidation Stress:			Dry Unit Weight, pcf	79.382	92.217	
Compression Ratio:			Saturation, %	102.99	100.00	
Diameter: 2.495 in Height: 1 in		Void Ratio	1.15	0.85		
LL: 30	PL: 20	PI: 10	GS: 2.74			

	Project: GORHAM	Location:	Project No.: 22238.00				
	Boring No.: BB-GNR-102/3U Tested By: Greg Lidstone		Checked By:				
	Sample No.:	Test Date: 8/17/2021	Test No.: 340975				
	Depth: 50.0-52.0 FT	Elevation:					
	Description: Grey Clay						
	Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test						
	Displacement at End of Increment						

Project No.: 22238.00

Checked By: --Depth: 50.0-52.0 FT Elevation: --

Project: GORHAM Boring No.: BB-GNR-102/3U Sample No.: --Test No.: 340975

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Estimated Specific Gravity: 2.74 Initial Void Ratio: 1.15 Final Void Ratio: 0.855	Liquid Limit: Plastic Limit: Plasticity Ind	30 20 ex: 10	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.86 in After Consolidation		
	Before Co Trimmings	onsolidation Specimen+Bing			
	1111111190	opcoincitititig	opoormoniting	1111111190	
Container ID	32	RING	RING+BASE	40	
Wt. Container + Wet Soil, gm	100.15	408.36	395.92	195.01	
Wt. Container + Dry Soil, gm	86.570	364.12	364.12	163.27	
Wt. Container, gm	50.140	262.19	262.19	61.540	
Wt. Dry Soil, gm	36.430	101.93	101.93	101.73	
Water Content, %	37.28	43.40	31.20	31.20	
Void Ratio		1.15	0.855		
Degree of Saturation, %		102.99	100.00		
Dry Unit Weight, pcf		79.382	92.217		

Tested By: Greg Lidstone Test Date: 8/17/2021 Sample Type: Intact

Location: --

Project: GORHAM Boring No.: BB-GNR-102/3U Sample No.: --Test No.: 340975 Location: --Tested By: Greg Lidstone Test Date: 8/17/2021 Sample Type: Intact Project No.: 22238.00 Checked By: --Depth: 50.0-52.0 FT Elevation: --

Soil Description: Grey Clay Remarks: Maine Sensitive Load/Unload/Reload/Unload Consolidation Test

Displacement at End of Increment

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	т90	Cv	Mv	k	
	tsf	- in		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	min	ft²/sec	1/tsf	ft/day	
1	0.0737	0.009261	1.13	0.926	129.840	1.87e-007	1.26e-001	6.35e-005	
2	0.125	0.01394	1.12	1.39	75.220	3.19e-007	9.12e-002	7.85e-005	
3	0.250	0.02261	1.11	2.26	31.296	7.56e-007	6.93e-002	1.41e-004	
4	0.500	0.03505	1.08	3.50	13.567	1.71e-006	4.97e-002	2.29e-004	
5	1.00	0.04948	1.05	4.95	17.600	1.28e-006	2.88e-002	9.96e-005	
6	2.00	0.06848	1.01	6.85	10.958	1.98e-006	1.90e-002	1.02e-004	
7	4.00	0.1113	0.915	11.1	17.592	1.16e-006	2.14e-002	6.67e-005	
8	8.00	0.1757	0.776	17.6	28.853	6.25e-007	1.61e-002	2.71e-005	
9	4.00	0.1704	0.788	17.0	2.404	6.99e-006	1.32e-003	2.49e-005	
10	2.00	0.1627	0.804	16.3	4.618	3.69e-006	3.85e-003	3.83e-005	
11	1.00	0.1537	0.824	15.4	21.093	8.25e-007	8.99e-003	2.00e-005	
12	0.500	0.1440	0.845	14.4	47.866	3.72e-007	1.94e-002	1.94e-005	
13	1.00	0.1487	0.835	14.9	12.678	1.41e-006	9.36e-003	3.57e-005	
14	2.00	0.1579	0.815	15.8	14.454	1.22e-006	9.20e-003	3.02e-005	
15	4.00	0.1700	0.789	17.0	8.859	1.94e-006	6.03e-003	3.15e-005	
16	8.00	0.1939	0.737	19.4	12.117	1.36e-006	5.97e-003	2.19e-005	
17	16.0	0.2386	0.641	23.9	17.851	8.45e-007	5.59e-003	1.27e-005	
18	4.00	0.2221	0.676	22.2	2.186	6.66e-006	1.37e-003	2.46e-005	
19	1.00	0.2030	0.718	20.3	12.158	1.25e-006	6.37e-003	2.15e-005	
2.0	0.250	0.1801	0.767	18.0	88.614	1.81e-007	3.05e-002	1.49e-005	
21	0.0625	0.1587	0.813	15.9	195.931	8.65e-008	1.14e-001	2.66e-005	
	Applied	Final	Void	Strain	Log				_
	Applied Stress	Final Displacement	Void Ratio	Strain at End	Log T50	Cv	Mv	k	Ca
	Applied Stress tsf	Final Displacement in	Void Ratio	Strain at End %	Log T50 min	Cv ft²/sec	Mv 1/tsf	k ft/day	Ca %
1	Applied Stress tsf 0.0737	Final Displacement in 0.009261	Void Ratio 1.13	Strain at End % 0.926	Log T50 min 0.000	Cv ft²/sec 0.00e+000	Mv 1/tsf 1.26e-001	k ft/day 0.00e+000	Ca % 0.00e+000
1 2	Applied Stress tsf 0.0737 0.125	Final Displacement in 0.009261 0.01394	Void Ratio 1.13 1.12	Strain at End % 0.926 1.39	Log T50 min 0.000 0.000	Cv ft²/sec 0.00e+000 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002	k ft/day 0.00e+000 0.00e+000	Ca % 0.00e+000 0.00e+000
1 2 3	Applied Stress tsf 0.0737 0.125 0.250	Final Displacement in 0.009261 0.01394 0.02261	Void Ratio 1.13 1.12 1.11	Strain at End % 0.926 1.39 2.26	Log T50 min 0.000 0.000 0.000	Cv ft²/sec 0.00e+000 0.00e+000 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000
1 2 3 4	Applied Stress tsf 0.0737 0.125 0.250 0.500	Final Displacement 0.009261 0.01394 0.02261 0.03505	Void Ratio 1.13 1.12 1.11 1.08	Strain at End % 0.926 1.39 2.26 3.50	Log T50 min 0.000 0.000 0.000 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00	Final Displacement 0.009261 0.01394 0.02261 0.03505 0.04948	Void Ratio 1.13 1.12 1.11 1.08 1.05	Strain at End % 0.926 1.39 2.26 3.50 4.95	Log T50 min 0.000 0.000 0.000 0.000 4.559	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00	Final Displacement 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85	Log T50 min 0.000 0.000 0.000 0.000 4.559 3.956	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00	Final Displacement 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1	Log T50 min 0.000 0.000 0.000 0.000 4.559 3.956 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.61e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000	Ca 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 4.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.61e-002 1.32e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 4.00 2.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.32e-003 3.85e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 2.22e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 2.14e-006 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 2.88e-002 1.90e-002 2.14e-002 1.61e-002 1.32e-003 8.99e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 2.22e-005 0.00e+000	Ca 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 12	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 2.00 4.00 2.00 0.500	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.845	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 1.178	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 1.61e-002 1.32e-003 3.85e-003 8.99e-003 1.94e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 12 13	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.845 0.835	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 11.178 2.482	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.32e-003 3.85e-003 8.99e-003 1.94e-002 9.36e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 4.00 2.00 1.00 0.500 1.00 2.00	Final Displacement in 0.009261 0.03305 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.825 0.835 0.835	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 11.178 2.482 4.450	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.19e-007	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.32e-003 3.85e-003 8.99e-003 9.36e-003 9.20e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005 2.28e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Applied Stress tsf 0.0737 0.125 0.250 1.00 2.00 4.00 2.00 4.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 4.00	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579 0.1700	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.824 0.825 0.835 0.815 0.789	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 1.178 2.482 4.450 2.200	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.19e-007 1.81e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 2.88e-002 1.90e-002 1.61e-002 1.32e-003 8.99e-003 8.99e-003 1.94e-002 9.36e-003 9.20e-003 6.03e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005 2.95e-005	Ca 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 2.00 1.00 0.500 1.00 2.00 4.00 0.500 0.500 0.500 0.500 0.800	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579 0.1700 0.1939	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.824 0.835 0.835 0.835 0.815 0.789 0.737	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0 19.4	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 11.178 2.482 4.450 2.200 4.206	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.19e-007	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 1.42e-002 1.32e-003 3.85e-003 1.94e-002 9.36e-003 9.20e-003 6.03e-003 5.97e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005 2.28e-005 2.95e-005 1.46e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 8.00 1.00 0.500 1.00 2.00 4.00 8.00 1.00 2.00 0.00 2.00 1.00 2.00 2	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579 0.1700 0.1939 0.2386	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.824 0.845 0.835 0.835 0.815 0.789 0.737 0.641	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0 19.4 23.9	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 1.857 0.000 11.178 2.482 4.450 2.200 4.206 4.472	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.19e-007 1.81e-006 9.08e-007 7.84e-007	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.32e-003 3.85e-003 8.99e-003 9.20e-003 6.03e-003 5.59e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005 2.28e-005 2.28e-005 1.46e-005 1.18e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 2 3 4 15 6 7 11 2 3 4 12 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 11 2 3 4 5 6 7 8 9 11 12 3 4 5 6 7 11 12 3 14 5 6 7 11 12 3 14 5 6 7 11 12 3 14 5 6 7 11 12 3 14 5 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 2.00 1.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 1.00 0.500 1.00 2.00 4.00 2.00 0.100 2.00 4.00 4	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579 0.1700 0.1939 0.2386 0.2221	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.824 0.845 0.835 0.815 0.789 0.737 0.641 0.676	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0 19.4 23.9 22.2	Log T50 min 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 11.178 2.482 4.450 2.200 4.206 4.472 0.865	Cv ft ² /sec 0.00e+000 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 0.00e+000 3.70e-007 1.68e-006 9.19e-007 1.81e-006 9.08e-007 3.91e-006	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 2.88e-002 1.90e-002 2.14e-002 1.61e-002 1.32e-003 8.99e-003 1.94e-002 9.36e-003 9.20e-003 6.03e-003 5.97e-003 1.37e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.93e-005 4.23e-005 2.28e-005 2.95e-005 1.46e-005 1.45e-005	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 112 13 14 5 16 17 18	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 2.00 1.00 0.500 1.00 2.00 4.00 2.00 0.500 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 1	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1579 0.1700 0.1939 0.2386 0.2221 0.2030	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.845 0.845 0.845 0.845 0.845 0.815 0.789 0.737 0.641 0.676 0.718	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0 19.4 23.9 22.2 20.3	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 0.000 1.857 0.000 1.178 2.482 4.450 2.200 4.206 4.472 0.865 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.08e-007 7.84e-007 3.91e-006 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 1.61e-002 1.32e-003 3.85e-003 3.85e-003 9.36e-003 9.36e-003 6.03e-003 5.59e-003 5.59e-003 6.37e-003	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 2.22e-005 0.00e+000 1.93e-005 4.23e-005 2.95e-005 1.46e-005 1.18e-005 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 18 20	Applied Stress tsf 0.0737 0.125 0.250 0.500 1.00 2.00 4.00 0.500 1.00 0.500 1.00 2.00 4.00 0.500 1.00 2.00 4.00 0.500 0.500 0.500 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.200000000	Final Displacement in 0.009261 0.01394 0.02261 0.03505 0.04948 0.06848 0.1113 0.1757 0.1704 0.1627 0.1537 0.1440 0.1487 0.1537 0.1579 0.1700 0.1579 0.1700 0.1939 0.2386 0.2221 0.2030 0.1801	Void Ratio 1.13 1.12 1.11 1.08 1.05 1.01 0.915 0.776 0.788 0.804 0.824 0.845 0.835 0.815 0.789 0.737 0.641 0.676 0.718 0.767	Strain at End % 0.926 1.39 2.26 3.50 4.95 6.85 11.1 17.6 17.0 16.3 15.4 14.4 14.9 15.8 17.0 19.4 23.9 22.2 20.3 18.0	Log T50 min 0.000 0.000 0.000 4.559 3.956 0.000 0.000 1.857 0.000 1.178 2.482 4.450 2.200 4.206 4.472 0.865 0.000 0.000	Cv ft ² /sec 0.00e+000 0.00e+000 1.15e-006 1.28e-006 0.00e+000 0.00e+000 0.00e+000 2.14e-006 0.00e+000 3.70e-007 1.68e-006 9.19e-007 1.81e-006 9.08e-007 7.84e-007 3.91e-006 0.00e+000	Mv 1/tsf 1.26e-001 9.12e-002 6.93e-002 4.97e-002 2.88e-002 1.90e-002 2.14e-002 1.32e-003 3.85e-003 3.85e-003 9.20e-003 9.20e-003 5.97e-003 5.59e-003 1.37e-003 3.05e-002	k ft/day 0.00e+000 0.00e+000 0.00e+000 8.93e-005 6.54e-005 0.00e+000 0.00e+000 0.00e+000 2.22e-005 1.93e-005 2.28e-005 2.28e-005 1.46e-005 1.45e-005 1.45e-005 0.00e+000	Ca % 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000

10/21/2024 MAINE DEPARTMENT OF TRANSPORTATION MITCHELL BRIDGE NO. 0216 CULVERT REPLACEMENT 09.0026220.00

APPENDIX E – CALCULATIONS

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 Engineers and Scientists JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: <u>Footings Bearing on Alluvial sand/</u> <u>Marine Clay (Culvert)</u> SHEET: <u>1 OF 9</u> CALCULATED BY<u>B. Cardali 9/18/2024</u> CHECKED BY<u>C. Snow 9/18/202</u>4

Objective

Calculate soil bearing resistance for a culvert bearing on naturally deposited alluvium - sand above a marine clay deposit for a sand over a weaker cohesive soil. Evaluate strength and service bearing resistance at the top of the clay. Additionally check bearing resistance of the upper sand for punching failure into the clay.

References

- 1. American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications: Customary U.S. Units, 9th edition, 2020, (AASHTO LRFD), Articles 10.5.5.2.2 and 10.6.3.1.
- 2. Terzaghi, Peck & Mesri, Soil Mechanics in Engineering Practice, Third Edition, 1996.

Soil Properties and Geotechnical Inputs for Underlying Marine Clay

$\varphi_f \coloneqq 0 \text{deg}$	Internal friction angle of cohesionless soil of underlying clay				
$\phi_b \coloneqq 0.45$	Bearing resistance factor as specified in Table 10.5.5.2.2-1 (Theoretical Method, SPT Data, Strength Limi Spread Footing)				
c∴= .8ksf	Cohesion of the Marine Clay (base) below the upper sand, taken as undrained shear strength				
$\gamma := 120 \text{pcf}$	Unit weight of soil above or below the bearing depth of the footing				
N _c := 5.14	Cohesion term bearing capacity factor as specified in Table 10.6.3.1.2a-1				
$N_q := 1$	Surcharge term bearing capacity factor as specified in Table 10.6.3.1.2a-1				
$N_{\gamma} := 0$	Total unit weight term bearing capacity factor as specified in Table 10.6.3.1.2a-1				
C _{wq} , C _{wy} :=	Correction factors to account for the location of the groundwater table as specified in Table 10.6.3.1.2a-2				
	Depth to water table at or below depth of footing (D _f) $C_{Wq} \coloneqq 0.5$ $C_{W\gamma} \coloneqq 0.5$				

Methodology

Utilize AASHTO equation C10.6.3.1.2f-1 to calculate the nominal bearing resistance of a sand over a weaker clay layer. Per 10.6.3.1.2, the nominal bearing resistance of the clay should be calculated assuming a "fictitious" footing of the same dimensions is supported directly on the weaker deposit. The calculated nominal resistance of the weaker layer is then used in equation 10.6.3.1.2f-1. Additionally, the bearing of the upper sand layer should be check for resistance of punching shear into the underlying marine clay layer.

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099 JOB: __09.0026220.00 Mitchell Bridge SUBJECT: Footings Bearing on Alluvial sand/ Marine Clay (Culvert) SHEET: ____ 2 OF 9 CALCULATED BY__ B. Cardali 9/18/2024 CHECKED BY_ C. Snow 9/18/2024

Engineers and

Scientists

Strength Limit Design

$$\label{eq:qn=cNcm+} \begin{split} q_n &= cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5 \gamma B N_{\gamma m} C_{w\gamma} \\ q.D &= \qquad \varphi_{b} \times q_n \end{split}$$

Nominal Bearing Resistance Formula

Factored Bearing Resistance Formula

Correction Factors

$$d_{qtable}(B_1) \coloneqq \frac{D_f}{B_1} \qquad \qquad d_{qtable}(B_1) \qquad \qquad d_{qtable}$$

$$s_{c}(B_{1}) \coloneqq 1 + \left(\frac{B_{1}}{L_{1}}\right) \left(\frac{N_{q}}{N_{c}}\right)$$
$$s_{c}(B_{1}) =$$
$$\boxed{1.06}$$
$$1.07$$
$$1.09$$
$$1.1$$
$$1.11$$

$$s_{\gamma}(B_1) := 1 - 0.4 \left(\frac{B_1}{L_1}\right)$$
$$s_{\gamma}(B_1) = \frac{0.88}{0.85}$$
$$0.82$$

0.8

0.77

GZA GeoEnvironmental, Inc 707 Sable Oaks Drive Suite 150 South Portland, Maine 04106 207-879-9190 Fax 207-879-0099

Bearing Capacity Factors

$$\begin{array}{rl} N_{cm}(B_{1}) \coloneqq N_{c} \cdot s_{c}(B_{1}) & & N_{cm}(B_{1}) \\ \hline 5.44 \\ \hline 5.51 \\ \hline 5.58 \\ \hline 5.65 \\ \hline 5.72 \end{array}$$

$$N_{\gamma m}(B_{1}) := N_{\gamma} \cdot s_{\gamma}(B_{1}) \qquad N_{\gamma m}(B_{1}) =$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: <u>Footings Bearing on Alluvial sand/</u> <u>Marine Clay (Culvert)</u> SHEET: <u>3 OF 9</u> CALCULATED BY <u>B. Cardali 9/18/2024</u> CHECKED BY <u>C. Snow 9/18/202</u>4

 $\mathbf{N}_{qm}\!\left(\mathbf{B}_{1}\right)\coloneqq\mathbf{N}_{q}\!\cdot\!\mathbf{s}_{q}\!\left(\mathbf{B}_{1}\right)\!\cdot\!\mathbf{d}_{q}$

Nominal Bearing Resistance

$$q_{n}(B_{1}) \coloneqq \overline{\left(c \cdot N_{cm}(B_{1}) + \gamma \cdot D_{f} \cdot N_{qm}(B_{1}) \cdot C_{wq} + 0.5 \cdot \gamma \cdot B_{1} \cdot N_{\gamma m}(B_{1}) \cdot C_{w\gamma}\right)} \qquad q_{n}(B_{1}) = \frac{5.6}{5.7}$$

$$\frac{5.8}{5.8}$$

$$\frac{5.8}{5.9}$$

Engineers and

Scientists

=

Check nominal bearing resistance using AASHTO equation C10.6.3.1.2f-1
JOB: 09.0026220.00 Mitchell Bridge GZA Engineers and GeoEnvironmental, Inc Scientists SUBJECT: Footings Bearing on Alluvial sand/ 707 Sable Oaks Drive Marine Clay (Culvert) Suite 150 SHEET: 4 OF 9 South Portland, Maine 04106 CALCULATED BY B. Cardali 9/18/2024 207-879-9190 CHECKED BY C. Snow 9/18/2024 Fax 207-879-0099 Nominal bearing resistance of a a fictitious footing of the same dimensions (27 feet wide by $q_b := 5.7 \cdot ksf$ 73 feet long) but supported directly on the lower layer surface. (Calculated above) $H_{s2} := 7 \cdot ft$ Distance to top of clay below bottom of footing (thickness of sand layer) Width of culvert base $B := 27 \cdot ft$ $L_1 = 73 \cdot ft$ Length of culvert base

 $q_{n.layered} := q_{b} \cdot e = 7.2 \cdot ksf \quad \text{AASHTO Equation C.10.6.3.1.2f-1}$

(b) Figure 10.6.3.1.2e-1—Two-Layer Soil Profiles

Factored Bearing Resistance - Strength Limit State

$$q_{\rm D} := \phi_{\rm b} \cdot q_{\rm n.layered} = 3.3 \, \rm ksf$$

GZA recommends the use of the nominal bearing resistance of 7.2 ksf and a factored bearing resistance of 3.3 ksffor design.

Service Limit Design

GZA calculated the proposed and existing effective stress at the proposed culvert base elevation (see calculation in Appendix E) and concluded that the proposed construction will result in a net zero increase in bearing pressure. Therefore, GZA anticipates settlement will be limited to elastic settlement during construction.

AASHTO provides Table C10.6.2.5.1-1 (attached) of presumptive bearing resistances of spread footings when a settlement limited bearing resistance is required. This table may be used with sufficient knowledge of the geological conditions present at the site.

		Bearing Resistance (ksf)		
Type of Bearing Material	Consistency in Place		Recommended	
		Ordinary Range	Value	
Homogeneous Inorganic clay, sandy or silty clay (CL,CH)	Medium dense to dense	2 - 6	3.3	

Check Nominal Bearing Resistance of Upper Sand

 $\phi_{f,s} := 30 \text{deg}$ Internal friction angle of cohesionless soil above weaker deposit

JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: <u>Footings Bearing on Alluvial sand/</u> <u>Marine Clay (Culvert)</u> SHEET: <u>5 OF 9</u> CALCULATED BY<u>B. Cardali 9/18/2024</u> CHECKED BY<u>C. Snow 9/18/202</u>4

Engineers and

Scientists

Strength Limit Design for Sand Layer

36.91

38.17

39.43

40.69

Correction Factors

$$\begin{aligned} d_{qtable.s}(B_{1}) &\coloneqq \frac{D_{f.s}}{B_{1}} & d_{qtable.s}(B_{1}) \\ & \text{Using Table 10.6.3.1.2a-4} & d_{qx} \coloneqq 1 & d_{qassumed soil above footing less competent than soil below footing.} \\ s_{c.s}(B_{1}) &\coloneqq 1 + \left(\frac{B_{1}}{L_{1}}\right) \left(\frac{N_{q.s}}{N_{c.s}}\right) & s_{q.s}(B_{1}) \coloneqq 1 + \left(\frac{B_{1}}{L_{1}}\tan(\varphi_{f.s})\right) & s_{\gamma.s}(B_{1}) \coloneqq 1 - 0.4 \left(\frac{B_{1}}{L_{1}}\right) \\ & \frac{s_{c}(B_{1})}{1.09} & \frac{s_{q}(B_{1})}{1.1} & \frac{s_{q}$$

22.3

23.1

23.8 24.5

Engineers and Scientists JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: Footings Bearing on Alluvial sand/ <u>Marine Clay (Culvert)</u> SHEET: <u>6 OF 9</u> CALCULATED BY <u>B. Cardali 9/18/2024</u> CHECKED BY <u>C. Snow 9/18/2024</u>

 $q_{n.s}(B_1) =$

31.834.937.840.543.1

·ksf

$$N_{\gamma m.s}(B_{1}) := N_{\gamma.s} \cdot s_{\gamma.s}(B_{1}) \qquad N_{\gamma m.s}(B_{1}) = \frac{19.7}{19.1}$$

$$\frac{19.7}{19.1}$$

$$\frac{18.5}{17.9}$$

$$17.2$$

Nominal Bearing Resistance

$$q_{n.s}(B_1) \coloneqq \overline{\left(c_s \cdot N_{cm.s}(B_1) + \gamma_s \cdot D_{f.s} \cdot N_{qm.s}(B_1) \cdot C_{wq} + 0.5 \cdot \gamma_s \cdot B_1 \cdot N_{\gamma m.s}(B_1) \cdot C_{w\gamma}\right)}$$

Conclusion

GZA recommends a nominal bearing resistance of 7.2 ksf and a factored bearing resistance of 3.3 ksf based on a resistance factor of .45. Considering GZA's experience with the alluvial sand at the site and the underlying presumpscot formation clay, GZA recommends utilizing a service bearing resistance of 3.3 ksf, based on a a homogeneous inorganic clay, sandy or silty clay (CL,CH) that is medium stiff.

Engineers and Scientists JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: <u>Footings Bearing on Alluvial sand/</u> <u>Marine Clay (Culvert)</u> SHEET: <u>7 OF 9</u> CALCULATED BY <u>B. Cardali 9/18/2024</u> CHECKED BY <u>C. Snow 9/18/2024</u>

Table C10.6.2.5.1-1—Presumptive Bearing Resistance for Spread Footing Foundations at the Service Limit State Modified after U.S. Department of the Navy (1982)

		Bearing Resistance (ksf)	
			Recommended
Type of Bearing Material	Consistency in Place	Ordinary Range	Value of Use
Massive crystalline igneous and metamorphic rock:	Very hard, sound rock	120-200	160
granite, diorite, basalt, gneiss, thoroughly cemented	-		
conglomerate (sound condition allows minor cracks)			
Foliated metamorphic rock: slate, schist (sound	Hard sound rock	60-80	70
condition allows minor cracks)			
Sedimentary rock: hard cemented shales, siltstone,	Hard sound rock	30-50	40
sandstone, limestone without cavities			
Weathered or broken bedrock of any kind, except	Medium hard rock	16-24	20
highly argillaceous rock (shale)			
Compaction shale or other highly argillaceous rock	Medium hard rock	16-24	20
in sound condition			
Well-graded mixture of fine- and coarse-grained soil:	Very dense	16-24	20
glacial till, hardpan, boulder clay (GW-GC, GC, SC)	-		
Gravel, gravel-sand mixture, boulder-gravel	Very dense	12-20	14
mixtures (GW, GP, SW, SP)	Medium dense to dense	8-14	10
	Loose	4-12	6
Coarse to medium sand, and with little gravel (SW,	Very dense	8-12	8
SP)	Medium dense to dense	4-8	6
	Loose	2-6	3
Fine to medium sand, silty or clayey medium to	Very dense	6-10	6
coarse sand (SW, SM, SC)	Medium dense to dense	4-8	5
	Loose	2–4	3
Fine sand, silty or clayey medium to fine sand (SP,	Very dense	6-10	6
SM, SC)	Medium dense to dense	4-8	5
	Loose	2–4	3
Homogeneous inorganic clay, sandy or silty clay	Very dense	6-12	8
(CL, CH)	Medium dense to dense	2-6	4
	Loose	1–2	1
Inorganic silt, sandy or clayey silt, varved silt-clay-	Very stiff to hard	4-8	6
fine sand (ML, MH)	Medium stiff to stiff	2-6	3
	Soft	1-2	1

Engineers and Scientists JOB: __09.0026220.00 Mitchell Bridge SUBJECT: Footings Bearing on Alluvial sand/ Marine Clay (Culvert) SHEET: _____ 8 OF 9 CALCULATED BY___B. Cardali 9/18/2024 CHECKED BY__C. Snow 9/18/2024

Table 10.6.3.1.2a-1—Bearing Capacity Factors N_c (Prandtl, 1921), N_g (Reissner, 1924), and N_y (Vesic, 1975)

¢,	N _c	N_q	N_{γ}	ϕ_f	N _c	N_q	N_{γ}
0	5.14	1.0	0.0	23	18.1	8.7	8.2
1	5.4	1.1	0.1	24	19.3	9.6	9.4
2	5.6	1.2	0.2	25	20.7	10.7	10.9
3	5.9	1.3	0.2	26	22.3	11.9	12.5
4	6.2	1.4	0.3	27	23.9	13.2	14.5
5	6.5	1.6	0.5	28	25.8	14.7	16.7
6	6.8	1.7	0.6	29	27.9	16.4	19.3
7	7.2	1.9	0.7	30	30.1	18.4	22.4
8	7.5	2.1	0.9	31	32.7	20.6	26.0
9	7.9	2.3	1.0	32	35.5	23.2	30.2
10	8.4	2.5	1.2	33	38.6	26.1	35.2
11	8.8	2.7	1.4	34	42.2	29.4	41.1
12	9.3	3.0	1.7	35	46.1	33.3	48.0
13	9.8	3.3	2.0	36	50.6	37.8	56.3
14	10.4	3.6	2.3	37	55.6	42.9	66.2
15	11.0	3.9	2.7	38	61.4	48.9	78.0
16	11.6	4.3	3.1	39	67.9	56.0	92.3
17	12.3	4.8	3.5	40	75.3	64.2	109.4
18	13.1	5.3	4.1	41	83.9	73.9	130.2
19	13.9	5.8	4.7	42	93.7	85.4	155.6
20	14.8	6.4	5.4	43	105.1	99.0	186.5
21	15.8	7.1	6.2	44	118.4	115.3	224.6
22	16.9	7.8	7.1	45	133.9	134.9	271.8

Table 10.6.3.1.2a-2—Coefficients C_{nq} and C_{ny} for Various Groundwater Depths

D_w	Cwg	Cwy	
0.0	0.5	0.5	
D_f	1.0	0.5	
$>1.5B + D_f$	1.0	1.0	

Where the position of groundwater is at a depth less than 1.5 times the footing width below the footing base, the bearing resistance is affected. The highest anticipated groundwater level should be used in design.

JOB: <u>09.0026220.00 Mitchell Bridge</u> SUBJECT: Footings Bearing on Alluvial sand/ Marine Clay (Culvert) SHEET: <u>9 OF 9</u> CALCULATED BY <u>B. Cardali 9/18/2024</u> CHECKED BY <u>C. Snow 9/18/202</u>4

Factor	Friction Angle	Cohesion Term (s_c)	Unit Weight Term (s_{γ})	Surcharge Term (s_g)
Shape Factors s_c, s_{γ}, s_q	$\phi_f = 0$	$1 + \left(\frac{B}{5L}\right)$	1.0	1.0
		$(B)(N_q)$	(B)	(B,,)

Engineers and

Scientists

Table 10.6.3.1.2a-4-	-Depth Correction	Factor d
----------------------	-------------------	----------

Friction Angle, ϕ_f (degrees)	D_f/B	d_q
	1	1.20
20	2	1.30
32	4	1.35
	8	1.40
	1	1.20
27	2	1.25
37	4	1.30
	8	1.35
	- 1	1.15
10	2	1.20
42	4	1.25
	8	1.30

The depth correction factor should be used only when the soils above the footing bearing elevation are as competent as the soils beneath the footing level; otherwise, the depth correction factor should be taken as 1.0.

Linear interpolations may be made for friction angles in between those values shown in Table 10.6.3.1.2a-4.

Engineers and Scientists JOB: 09.0026220.00 Mitchell Bridge SUBJECT: Lateral Earth Pressures SHEET: 1 OF 1 CALCULATED BY B.Cardali 9/20/2024 CHECKED BY S.Snow 9/20/24

Subject:	Eval uate lateral earth pressure coefficients for a precast box culvert walls, inlet and outlet head walls and in-line wingwalls.				
References:	 MaineDOT Bridge Design Guide, Chapter 3 AASHTO LRFD Bridge Design Specifications, 9th Edition (2020) U.S. ArmyCorps of Engineers Engineer Manual 1110-2-2502, Retaining and Flood Walls 				
Input Parameters:					
$\phi := 32 \text{deg}$	Effective angle of internal friction (<i>Granular borrow, Soil Type 4, BDG Table 3-3</i>)				
$\delta_{f} \coloneqq 19.5 \text{deg}$	Average value, precast concrete against clean s and/silty sand-gravel mixture (AASHTO LRFD Table 3.11.5.3-1)				
$\beta := 26.6 \text{deg}$	Angle of backfill to the horizontal (2H:1V Backfill Slope behind unsupported in-line wingwalls)				
$\theta := 90 \cdot \deg$	Angle of back face of wall to the horizontal				

Earth Pressure Coefficients:

Outlet Walls Fixed to Box Culvert:

Assume translation and rotation of culvert with inlet and outlet walls is inadequate to achieve active earth pressure. Therefore, design for at-rest earth pressure.

 $K_0 := 1 - \sin(\phi) = 0.47$

At-rest Earth Pressure Coefficient

Outlet Walls free to rotate:

The earth pressure is applied to a plane extending vertically up from the heel of the wall base, and the weight of the soil on the inside of the vertical plane is considered as part of the wall weight. The failure sliding surface is not restricted by the top of the wall or back face of wall. Use Rankine theory for active earth pressure.

For unsupported culvert walls extending beyond the box, with horizontal backslope:

$$K_{ar} := tan \left(45 deg - \frac{\Phi}{2}\right)^2$$
 $K_{ar} = 0.31$

For a sloped 2H:1V backfill:

$$K_{ar} := \cos(\beta) \cdot \frac{\left[\cos(\beta) - \sqrt{(\cos(\beta))^2 - (\cos(\phi))^2}\right]}{\left[\cos(\beta) + \sqrt{(\cos(\beta))^2 - (\cos(\phi))^2}\right]}$$
$$K_{ar} = 0.46$$

March 2014

Frost Penetration Calculation Mitchell Bridge Replacement GZA File No. 09.0026220.00 Page 1 of 2

Frost Penetration Calculation Mitchell Bridge Replacement GZA File No. 09.0026220.00 Page 2 of 2

	Desian	Frost Penetration (in)					
	Freezing	Coarse Grained Fi			ine Graine	d	
	Index	w=10%	w=20%	w=30%	w=10%	w=20%	w=30%
	1000	66.3	55.0	47.5	47.1	40.7	36.9
76	1100	69.8	57.8	49.8	49.6	42.7	38.7
<u>/5</u>	1200	73.1	60.4	52.0	51.9	44.7	40.5
	1300	76.3	63.0	54.3	54.2	46.6	42.2
	1400	79.2	65.5	56.4	56.3	48.5	43.9
	1500	82.1	67.9	58.4	58.3	50.2	45.4
	1600	84.8	70.2	60.3	60.2	51.9	46.9
	1700	87.5	72.4	6 60.9" =	5.1'	53.5	48.4
	1800	90.1	74.5	64.0	64.0	55.1	49.8
	1900	92.6	76.6	65.7	65.8	56.7	51.1
	2000	95.1	78.7	67.5	67.6	58.2	52.5
	2100	97.6	80.7	69.2	69.3	59.7	53.8
	2200	100.0	82.6	70.8	71.0	61.1	55.1
	2300	102.3	84.5	72.4	72.7	62.5	56.4
	2400	104.6	86.4	74.0	74.3	63.9	57.6
	2500	106.9	88.2	75.6	75.9	65.2	58.8
	2600	109.1	89.9	77.1	77.5	66.5	60.0

Table 5-1 Depth of Frost Penetration

Notes: 1. w = water content

2. Where the Freezing Index and/or water content is between the presented values, linear interpretation may be used to determine the frost penetration.

Granular and fine grained materials anticipated near the abutment bearing elevations have an average water content of 10 percent of coarse grained materials and fine grained materials near the abutment have an average water content of 20 percent. Based on the MaineDOT BDG, Section 5.2.1 and a Freezing index of 1,275 the estimated depth of frost penetration is 61 inches or 5.1 feet.