

### STATE OF MAINE DEPARTMENT OF TRANSPORTATION 16 STATE HOUSE STATION AUGUSTA, MAINE 04333-0016

Bruce A. Van Note

July 1, 2025

Subject: Bridge Replacement

WIN: 022382.00

Location: Cumberland-Yarmouth

Amendment No. 2

Dear Sir/Ms.:

In the existing plans:

**ADD** the attached LED LIGHT FIXTURE DESIGN CALCULATIONS (21 pages).

The following questions have been received:

**Question**: (1)How does Maine DOT plan to install the Cyclone LEDs on the existing poles? Are there any specific mounting specifications?

**Response**: MaineDOT uses Stainless steel <sup>3</sup>/<sub>4</sub> inch banding of a tenon. Light optics can fit in different fixtures so specific mounting instructions depend on the fixture selected.

**Question** (2)Does Maine DOT have the drawings and calculations for the existing lighting poles needed for the LFRD calculations? These calculations wouldn't be possible without those specifications.

**Response**: See the attached light fixture drawings and calculations.

**Question** (3)Please confirm that the outside housing of the LED fixtures will be grey.

Response: Light fixture housing will be gray.

**Question** (4) Will Maine DOT obligate the Cyclone crosswalk distribution fixtures before the nationwide BABA waiver for FHWA-funded projects expires on 10/1/2025? Response: The contractor is encouraged to order the fixtures before the BABA waiver expiration.

Consider these changes and information prior to submitting your bid on July 16, 2025.

Sincerely,

George M. A. Macdougall P.E. Contracts & Specifications Engineer



#### SHAW BROTHERS CONSTRUCTION, INC.

P.O. Box 69 • 341 Mosher Rd. • Gorham, ME 04038 Tel: (207) 839-2552 • Fax: (207)839-6239 Website: www.shawbrothers.com

Submittal #: 844-29

Date: 04/01/2013

#### SUBMITTAL DATA

To: Maine DOT 16 State House Station Augusta, ME 04333-0016 Attn: Beecher Whitcomb

**Project:** Yarmouth Interchange Yarmouth, ME 04096

We hereby submit the following for your approval.

| Sheet / Spec. No. | Section No. | Item No. | Material |
|-------------------|-------------|----------|----------|
| <u> </u>          |             |          |          |

634.2101 &

634.2102

1 Light Standards

Remarks:

n/a



#### **SUBMITTAL**

DATE:

Wednesday March, 27, 2013

**CONTRACTOR: Shaw Brothers** 

PROJECT: Yarmouth, ME Exit 15 & Park-N-Ride PIN#11086

PRODUCT: Autobahn 17500 Lumen LED Light Fixture & 22500 Lumen LED

**Light Fixture** 

SPECIFICATION: 643.2041 & 643.2042

MANUFACTURER: American Electric Lighting

SUPPLIER: Moulison North Corp

DEVIATION from SPEC: NO

NO. of COPIES: 1

**COMMENTS:** 



### STATE OF MAINE DEPARTMENT OF TRANSPORTATION

Yarmouth I-295 Exit 15

MMC #49309

#### **Design Calculations**

| Item                        | Page |
|-----------------------------|------|
| 7RABD7937300-1S24-1H8-NC-ME | 1    |
| 7RABD8630400-1S24-1H8-NC-ME | 6    |



3/15/13

#### SINGLE PIECE POLE ANALYSIS 2009 AASHTO

Job : Yarmouth, Maine Pole Description : 7RAB7937300

3/11/13

|                                                                                                 | WIND                              | •                                                 |                                                                                                             | SHAFT                                                       |                                                                        |
|-------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|
| Wind Speed =                                                                                    | 110                               | (mph)                                             | Shape =                                                                                                     | R                                                           |                                                                        |
| lce Load =                                                                                      | 0                                 | (psf)                                             | Taper =                                                                                                     | . 0.14                                                      | lin /fe)                                                               |
| lr =                                                                                            | 1                                 | (Wind Imp Factor)                                 | BDAC =                                                                                                      | 7.9                                                         | (in/ft)                                                                |
| Cv =                                                                                            | 1                                 | (Velocity Conv Factor)                            | Length =                                                                                                    | 30                                                          | (in)                                                                   |
| P-∆ Factor =                                                                                    | 1.45                              | Section 4.8.2                                     | Wall =                                                                                                      | 0.1875                                                      | (ft)                                                                   |
|                                                                                                 |                                   |                                                   | Fy =                                                                                                        | 55                                                          | ,                                                                      |
|                                                                                                 |                                   |                                                   | 1 4 ~                                                                                                       | ARM                                                         | (ksi)                                                                  |
|                                                                                                 | UMINAI                            | RE                                                | Tag =                                                                                                       |                                                             |                                                                        |
| Projected Area =                                                                                | 5                                 | (sq ft)                                           | Length =                                                                                                    | 0                                                           | /Es\                                                                   |
| Weight =                                                                                        | 60                                | (lbs)                                             | EPA =                                                                                                       | 0.00                                                        | (ft)                                                                   |
| Cd =                                                                                            | 1                                 |                                                   | Weight =                                                                                                    |                                                             | (sq ft)                                                                |
| Elevation*=                                                                                     | 30                                | (ft)                                              | Torque Arm =                                                                                                | 0                                                           | (lbs)                                                                  |
| Post Top Mntd? =                                                                                | У                                 |                                                   | Y Centroid* =                                                                                               | 0.00                                                        | (ft)                                                                   |
|                                                                                                 |                                   |                                                   | Twin? =                                                                                                     | 0.00                                                        | (ft)                                                                   |
| В                                                                                               | ASEPLA:                           | TE .                                              | i AAttil. =                                                                                                 | n '                                                         |                                                                        |
| Square =                                                                                        | 12                                | (in)                                              |                                                                                                             | LEVATIO                                                     |                                                                        |
|                                                                                                 |                                   | ` ·                                               |                                                                                                             | LEVATIO                                                     | NS                                                                     |
| Thick =                                                                                         | 1                                 | (in)                                              |                                                                                                             |                                                             |                                                                        |
| Thick =<br>Fy =                                                                                 | 1<br>36                           | • •                                               | Base Elev =                                                                                                 | 0                                                           | (ft)                                                                   |
|                                                                                                 |                                   | (in)<br>(ksi)                                     |                                                                                                             |                                                             |                                                                        |
| Fy =                                                                                            |                                   | (ksi)                                             | Base Elev = Grade Elev =                                                                                    | 0                                                           | (ft)<br>(ft)                                                           |
| F <sub>y</sub> =<br><b>ANC</b><br>Diameter =                                                    | 36                                | (ksi)                                             | Base Elev =<br>Grade Elev =<br>T-B                                                                          | 0<br>0<br>BASE BOL                                          | (ft)<br>(ft)                                                           |
| Fy =                                                                                            | 36<br>HOR BO                      | (ksi)<br>DLTS                                     | Base Elev =<br>Grade Elev =<br>T-B<br>Diameter =                                                            | 0<br>0<br>B <b>ASE BOL</b><br>0                             | (ft)<br>(ft)<br>rs<br>(in)                                             |
| F <sub>y</sub> =<br><b>ANC</b><br>Diameter =                                                    | 36<br><b>HOR BO</b><br>1          | (ksi)<br>DLTS<br>(in)                             | Base Elev = Grade Elev =  T-B Diameter = Bolt Circle =                                                      | 0<br>0<br>BASE BOL <sup>*</sup><br>0<br>0                   | (ft)<br>(ft)<br>rs<br>(in)<br>(in)                                     |
| Fy =  ANC  Diameter =  Bolt Circle =                                                            | 36<br>HOR BO<br>1<br>11           | (ksi)<br>PLTS<br>(in)<br>(in)                     | Base Elev =<br>Grade Elev =<br>T-B<br>Diameter =                                                            | 0<br>0<br>B <b>ASE BOL</b><br>0                             | (ft)<br>(ft)<br>rs<br>(in)                                             |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =                                                      | 36<br>HOR BO<br>1<br>11           | (ksi) PLTS (in) (in) (ksi)                        | Base Elev = Grade Elev =  T-B  Diameter = Bolt Circle = Fy =                                                | 0<br>0<br><b>BASE BOL</b><br>0<br>0<br>0                    | (ft)<br>(ft)<br>rs<br>(in)<br>(in)<br>(ksi)                            |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =                                                      | 36<br>HOR BO<br>1<br>11<br>55     | (ksi) PLTS (in) (in) (ksi)                        | Base Elev = Grade Elev =  T-E Diameter = Bolt Circle = Fy =                                                 | 0<br>0<br>BASE BOL'<br>0<br>0<br>0                          | (ft)<br>(ft)<br>FS<br>(in)<br>(in)<br>(ksi)                            |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =                                                      | 36 HOR BO 1 11 55                 | (ksi)  PLTS (in) (in) (ksi)                       | Base Elev = Grade Elev =  T-E Diameter = Bolt Circle = Fy =  MI Projected Area =                            | 0<br>0<br>8ASE BOL<br>0<br>0<br>0<br>0<br>SC LOAD           | (ft)<br>(ft)<br>TS<br>(in)<br>(in)<br>(ksi)<br>2<br>(sq ft)            |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =  MIS  Projected Area =                               | 36 HOR BO 1 11 55 SC LOAD 0       | (ksi)  PLTS  (in)  (in)  (ksi)  1  (sq ft)        | Base Elev = Grade Elev =  T-B Diameter = Bolt Circle = Fy =  MI Projected Area = Weight =                   | 0<br>0<br>8ASE BOL<br>0<br>0<br>0<br>0<br>SC LOAD<br>0      | (ft)<br>(ft)<br>FS<br>(in)<br>(in)<br>(ksi)                            |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =  MIS  Projected Area =  Weight =                     | 36 HOR BO 1 11 55 SC LOAD 0 0     | (ksi)  PLTS  (in)  (in)  (ksi)  1  (sq ft)        | Base Elev = Grade Elev =  T-E Diameter = Bolt Circle = Fy =  MI Projected Area = Weight = Cd =              | 0<br>0<br>8ASE BOL<br>0<br>0<br>0<br>0<br>SC LOAD<br>0<br>0 | (ft)<br>(ft)<br>(fs)<br>(in)<br>(in)<br>(ksi)<br>2<br>(sq ft)<br>(lbs) |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =  MIS  Projected Area =  Weight =  Cd =               | 36 HOR BO 1 11 55 SC LOAD 0 0     | (ksi)  PLTS  (in)  (in)  (ksi)  1  (sq ft)  (lbs) | Base Elev = Grade Elev =  T-E Diameter = Bolt Circle = Fy =  MI Projected Area = Weight = Cd = Elevation* = | 0<br>0<br>0<br>0<br>0<br>0<br><b>SC LOAD</b><br>0<br>0      | (ft)<br>(ft)<br>(ft)<br>(in)<br>(in)<br>(ksi)<br>2<br>(sq ft)<br>(lbs) |
| Fy =  ANC  Diameter =  Bolt Circle =  Fy =  MIS  Projected Area =  Weight =  Cd =  Elevation* = | 36 HOR BO 1 11 55 SC LOAD 0 0 0 0 | (ksi)  DLTS  (in) (in) (ksi)  1  (sq ft) (lbs)    | Base Elev = Grade Elev =  T-E Diameter = Bolt Circle = Fy =  MI Projected Area = Weight = Cd =              | 0<br>0<br>8ASE BOL<br>0<br>0<br>0<br>0<br>SC LOAD<br>0<br>0 | (ft)<br>(ft)<br>(fs)<br>(in)<br>(in)<br>(ksi)<br>2<br>(sq ft)<br>(lbs) |

#### SHAFT DIMENSIONS

3.70

Shape = ROUND Base OD (in) = 7.9 Length (ft) = 30 Top OD (in) =

<sup>\*</sup>Above base elevation

| ROUND    |
|----------|
| Location |
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
| 9        |
| 10       |
| 11       |

|          |          |          | SHAFT SECTION PROPERTIES |         |         |         |      |        |      |
|----------|----------|----------|--------------------------|---------|---------|---------|------|--------|------|
| Location | DAC (in) | DAF (in) | R (in)                   | I (in4) | S (in3) | A (in2) | Κp   | r (in) | С    |
| 1        | 7.90     | na       | 3.86                     | 33.76   | 8.76    | 4.54    | 1.27 | 2.73   | 3.14 |
| 2        | 7.48     | na       | 3.65                     | 28.54   | 7.83    | 4.29    | 1.27 | 2.58   | 3.14 |
| 3        | 7.06     | na       | 3.44                     | 23.89   | 6.95    | 4.05    | 1.27 | 2.43   | 3.14 |
| 4        | 6.64     | na       | 3.23                     | 19.77   | 6.13    | 3.80    | 1.27 | 2.28   | 3.14 |
| 5        | 6.22     | na       | 3.02                     | 16.16   | 5.36    | 3.55    | 1.27 | 2.13   | 3.14 |
| 6        | 5.80     | na       | 2.81                     | 13.01   | 4.64    | 3.30    | 1.27 | 1.98   | 3.14 |
| 7        | 5.38     | na       | 2.60                     | 10.30   | 3.97    | 3.06    | 1.27 | 1.84   | 3.14 |
| 8        | 4.96     | na       | 2.39                     | 8.00    | 3.35    | 2.81    | 1.27 | 1.69   | 3.14 |
| 9        | 4.54     | na       | 2.18                     | 6.07    | 2.79    | 2.56    | 1.27 | 1.54   | 3.14 |
| 10       | 4.12     | na       | 1.97                     | 4.48    | 2.28    | 2.32    | 1.27 | 1.39   | 3.14 |
| 11       | 3.70     | na       | 1.76                     | 3.19    | 1.82    | 2.07    | 1.27 | 1.24   | 3.14 |

#### ALLOWABLE STRESSES

|          |          |        |       | Compact | Non Comp | Slender |          |          |
|----------|----------|--------|-------|---------|----------|---------|----------|----------|
| Location | DAF (in) | b (in) | b/t   | Limit   | Limit    | Limit   | Fb (ksi) | Fv (ksi) |
| 1        | 7.90     | na     | 42.13 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 2        | 7.48     | na     | 39.89 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 3        | 7.06     | na     | 37.65 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 4        | 6.64     | na     | 35.41 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 5        | 6.22     | na     | 33.17 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 6        | 5.80     | na     | 30.93 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 7        | 5.38     | na     | 28.69 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 8        | 4.96     | na     | 26.45 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 9        | 4.54     | na     | 24.21 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 10       | 4.12     | na     | 21.97 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |
| 11       | 3.70     | na     | 19.73 | 68.55   | 137.09   | 237.27  | 48.28    | 24.14    |

#### WIND FORCES

|           | Length | Area    | Centroid  | Kz   | G    | CvVd  | Cd   | Pressure | Force  |
|-----------|--------|---------|-----------|------|------|-------|------|----------|--------|
| Section   | (ft)   | (sq ft) | Elev (ft) |      |      |       |      | (psf)    | (lbs)  |
| Misc #1   | na     | 0.00    | 0.00      | 0.86 | 1.14 | na    | 0.00 | 0.00     | 0.00   |
| Misc #2   | na     | 0.00    | 0.00      | 0.86 | 1.14 | na    | 0.00 | 0.00     | 0.00   |
| 1-2       | 3.00   | 1.92    | 1.49      | 0.86 | 1.14 | 70.49 | 0.51 | 15.51    | 29.82  |
| 2-3       | 3.00   | 1.82    | 4.49      | 0.86 | 1.14 | 66.64 | 0.55 | 16.69    | 30.33  |
| 3-4       | 3.00   | 1.71    | 7.48      | 0.86 | 1.14 | 62.79 | 0.59 | 18.03    | 30.88  |
| 4-5       | 3.00   | 1.61    | 10.48     | 0.86 | 1.14 | 58.94 | 0.64 | 19.58    | 31.47  |
| 5-6       | 3.00   | 1.50    | 13.48     | 0.86 | 1.14 | 55.09 | 0.70 | 21.37    | 32.11  |
| 6-7       | 3.00   | 1.40    | 16.48     | 0.87 | 1.14 | 51.24 | 0.77 | 23.63    | 33.02  |
| 7-8       | 3.00   | 1.29    | 19.48     | 0.90 | 1.14 | 47.39 | 0.86 | 27.09    | 35.02  |
| 8-9       | 3.00   | 1.19    | 22.48     | 0.92 | 1.14 | 43.54 | 0.96 | 31.17    | 37.02  |
| 9-10      | 3.00   | 1.08    | 25.48     | 0.95 | 1.14 | 39.69 | 1.08 | 36.10    | 39.08  |
| 10-11     | 3.00   | 0.98    | 28.47     | 0.97 | 1.14 | 35.84 | 1.10 | 37.74    | 36.89  |
| Arm       | na     | 0.00    | 0.00      | 0.86 | 1.14 | na    | 1.00 | 30.39    | 0.00   |
| Luminaire | na     | 5.00    | 30.00     | 0.98 | 1.14 | na    | 1.00 | 34.69    | 173.43 |

#### **TORSION & DEAD LOAD MOMENTS**

|           |         |        |          |          |       | DL       |
|-----------|---------|--------|----------|----------|-------|----------|
|           | Torsion |        | Torsion  | Dead     | Dead  | Moment   |
|           | Arm     | Force  | Mz       | Load Arm | Load  | Mx       |
| Section   | (ft)    | (lbs)  | (ft-lbs) | (ft)     | (lbs) | (ft-lbs) |
| Misc #1   | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| Misc #2   | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| 1-2       | 0       | 29.82  | 0.0      | 0.0      | 45.1  | 0.0      |
| 2-3       | 0       | 30.33  | 0.0      | 0.0      | 42.6  | 0.0      |
| 3-4       | 0       | 30.88  | 0.0      | 0.0      | 40.0  | 0.0      |
| 4-5       | 0       | 31.47  | 0.0      | 0.0      | 37.5  | 0.0      |
| 5-6       | 0       | 32.11  | 0.0      | 0.0      | 35.0  | 0.0      |
| 6-7       | 0       | 33.02  | 0.0      | 0.0      | 32.5  | 0.0      |
| 7-8       | 0       | 35.02  | 0.0      | 0.0      | 29.9  | 0.0      |
| 8-9       | 0       | 37.02  | 0.0      | 0.0      | 27.4  | 0.0      |
| 9-10      | 0       | 39.08  | 0.0      | 0.0      | 24.9  | 0.0      |
| 10-11     | 0       | 36.89  | 0.0      | 0.0      | 22.4  | 0.0      |
| Arm       | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| Luminaire | 0       | 173.43 | 0.0      | 0.0      | 60.0  | 0.0      |
|           |         |        |          |          |       |          |

#### **MOMENTS**

|           | Wind     | 2ndary   | DŁ       | Load (    | Load Case 1 |          | Case 2     | Control |
|-----------|----------|----------|----------|-----------|-------------|----------|------------|---------|
|           | Moment   | Moment   | Moment   | nc=1.0BL, | tc=0.2BL    | nc≖0.6BL | , tc=0.3BL | LC      |
| Elevation | My       | $M_{y}$  | Mx       | My        | Mx          | My       | Mx         |         |
| (ft)      | (ft-lbs) | (ft-lbs) | (ft-lbs) | (ft-lbs)  | (ft-lbs)    | (ft-lbs) | (ft-lbs)   |         |
| Grade     | 10482    | 62.8     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 0.00      | 10482    | 62.8     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 3.00      | 8999     | 62.8     | 0.0      | NA        | NΑ          | NA       | NA         | NA      |
| 6.00      | 7608     | 58.4     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 9.00      | 6308     | 53.2     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 12.00     | 5101     | 47.3     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 15.00     | 3990     | 40.7     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 18.00     | 2977     | 33.5     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 21.00     | 2066     | 25.7     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 24.00     | 1263     | 17.4     | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 27.00     | 575      | 8.8      | 0.0      | NA        | NA          | NA       | NA         | NA      |
| 30.00     | 0        | 0.0      | 0.0      | NA        | NA          | NA       | NA         | NA      |
|           |          |          |          |           |             |          |            |         |

#### **SUMMARY OF FORCES AND MOMENTS**

| mt.       |          |          |          |                 |       |              |
|-----------|----------|----------|----------|-----------------|-------|--------------|
| Elevation | My       | Мx       | Torsion  | Shear           | Axial | Deflection   |
| (ft)      | (ft-lbs) | (ft-lbs) | (ft-lbs) | (lbs)           | (lbs) | (in)         |
| Grade     | 10544    | 0        | 0        | 50 <del>9</del> | 397   | 0.0          |
| 0.00      | 10544    | 0        | 0        | 509             | 397   | 0.0          |
| 3.00      | 9062     | 0        | 0        | 479             | 352   | 0.2          |
| 6.00      | 7666     | 0        | 0        | 449             | 310   | 0.4          |
| 9.00      | 6361     | 0        | 0        | 418             | 270   | 0.6          |
| 12.00     | 5149     | 0        | 0        | 387             | 232   | 1.0          |
| 15.00     | 4031     | 0        | 0        | 354             | 197   | 1.4          |
| 18.00     | 3011     | 0        | 0        | 321             | 165   | 2.0          |
| 21.00     | 2092     | 0        | 0        | 286             | 135   | 2.7          |
| 24.00     | 1281     | 0        | 0        | 249             | 107   | 3.7          |
| 27.00     | 583      | 0        | 0        | 210             | 82    | 4.9          |
| 30.00     | 0        | 0        | 0        | 0               | 0     | 6.7          |
|           |          |          |          |                 | -     | D 1 Factor - |

P- $\Delta$  Factor = 1.45

#### STRESSES & COMBINED STRESS RATIO

| Elevation | Bending<br>fb | Transv.<br>Shear | Torsional<br>Shear | Axial    | CSR  |
|-----------|---------------|------------------|--------------------|----------|------|
| (ft)      | fb (psi)      | fvb (psi)        | fvt (psi)          | fa (psi) |      |
| 0         |               |                  |                    | ,        |      |
| 0.00      | 14452         | 224              | 0                  | . 88     | 0.30 |
| 3.00      | 13893         | 223              | 0                  | 82       | 0.29 |
| 6.00      | 13233         | 222              | 0                  | 77       | 0.28 |
| 9.00      | 12456         | 220              | 0                  | 71       | 0.26 |
| 12.00     | 11535         | 218              | 0                  | 65       | 0.24 |
| 15.00     | 10433         | 215              | 0                  | 60       | 0.22 |
| 18.00     | 9104          | 210              | 0                  | 54       | 0.19 |
| 21.00     | 7488          | 204              | 0                  | 48       | 0.16 |
| 24.00     | 5512          | 195              | 0                  | 42       | 0.12 |
| 27.00     | 3076          | 182              | 0                  | 36       | 0.06 |
| 30.00     | 0             | 0                | 0                  | 0        | 0.00 |

#### **ANCHOR BOLTS**

|          | Calculated<br>Forces |                | Calculated<br>Stresses |                | Allowable<br>Stresses |                |      |  |
|----------|----------------------|----------------|------------------------|----------------|-----------------------|----------------|------|--|
| Bolt No. | Axial<br>(lbs)       | Shear<br>(lbs) | Axial<br>(psi)         | Shear<br>(psi) | Axial<br>(psi)        | Shear<br>(psi) | CSR  |  |
| 4        | 11602                | 127            | 19154                  | 210            | 43890                 | 21945          | 0.19 |  |
| 3        | 99                   | 127            | 164                    | 210            | 43890                 | 21945          | 0.00 |  |
| 2        | -11404               | 127            | -18826                 | 210            | 36575                 | 21945          | 0.27 |  |
| 1        | 99                   | 127            | 164                    | 210            | 43890                 | 21945          | 0.00 |  |

#### T-BASE BOLTS

|          | Calcu | ulated | Calci | ulated | Allowable |       |     |
|----------|-------|--------|-------|--------|-----------|-------|-----|
|          | For   | rces   | Stre  | esses  | Stre      | esses |     |
| Bolt No. | Axial | Shear  | Axial | Shear  | Axial     | Shear | CSR |
|          | (lbs) | (lbs)  | (psi) | (psi)  | (psi)     | (psi) |     |

#### **BASE PLATE**

| Bend Line Length (in) =            | 9.07  |
|------------------------------------|-------|
| Bend Line Section Modulus (in^3) = | 1.51  |
| Bolt Moment Arm (in) =             | 1.55  |
| Moment (in-lbs) =                  | 17983 |
| Bending Stress (psi) =             | 11896 |
| Allowable Bending Stess (psi) =    | 35910 |
| CSR =                              | 0.33  |

#### SINGLE PIECE POLE ANALYSIS 2009 AASHTO

Job : Yarmouth, Maine tion : 7RAB8630400

Pole Description: 7RAB8630400

3/5/13

| Projected Area =                        | 1.45<br>LUMINAIR<br>5 | (sq ft)                          | Shape = Taper = BDAC = Length = Wall = Fy =  Tag ≈ Length =  | SHAFT  R  0.14  8.6  40  0.1875  55  ARM  0  0 | (in/ft)<br>(in)<br>(ft)<br>(in)<br>(ksi) |
|-----------------------------------------|-----------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------|
| Weight = Cd = Elevation*=               | 60<br>1<br>40         | (lbs)                            | EPA =<br>Weight =<br>Torque Arm =                            | 0.00<br>0<br>0.00                              | (sq ft)<br>(lbs)<br>(ft)                 |
|                                         | y<br>BASEPLAT         | E                                | Y Centroid* =<br>Twin? =                                     | 0.00<br>n                                      | (ft)                                     |
| Square =<br>Thick =<br>Fy =             | 12<br>1<br>36         | (in)<br>(in)<br>(ksi)            | Base Elev =                                                  | 0<br>0                                         | NS<br>(ft)<br>(ft)                       |
| Diameter =<br>Bolt Circle =             | CHOR BOI<br>1<br>12   | (in)<br>(in)                     | T-B<br>Diameter =<br>Bolt Circle =                           | 0<br>0                                         | FS<br>(in)<br>(in)                       |
| Fy = MI Projected Area =                | 55<br>SC LOAD         |                                  |                                                              | 0<br>SC LOAD                                   | (ksi)                                    |
| Weight = Cd = Elevation* = Torque Arm = | 0<br>0<br>0<br>0      | (sq ft)<br>(lbs)<br>(ft)<br>(ft) | Projected Area =  Weight =  Cd =  Elevation* =  Torque Arm = | 0<br>0<br>0<br>0                               | (sq ft)<br>(lbs)<br>(ft)<br>(ft)         |

#### SHAFT DIMENSIONS

Shape = ROUND Base OD (in) = 8.6 Length (ft) = 40 Top OD (in) = 3.00

<sup>\*</sup>Above base elevation

| RO | н | N | n  |
|----|---|---|----|
| 11 | v | · | IJ |

| ROUND     |              |          |           |            |           |         |              |                |                |
|-----------|--------------|----------|-----------|------------|-----------|---------|--------------|----------------|----------------|
|           |              |          | SHAFT     | SECTION PE | ROPERTIES |         |              |                |                |
| Location  | DAC (in)     | DAF (in) | R (in)    | l (in4)    | S (in3)   | A (in2) | Кp           | n /: m \       | _              |
| 1         | 8.60         | na       | 4.21      | 43.81      | 10.42     | 4.95    | 1.27         | r (in)         | C              |
| 2         | 8.04         | na       | 3.93      | 35.63      | 9.08      | 4.62    | 1.27         | 2.97           | 3.14           |
| 3         | 7.48         | na       | 3.65      | 28.54      | 7.83      | 4.29    | 1.27         | 2.78           | 3.14           |
| 4         | 6.92         | na       | 3.37      | 22.46      | 6.67      | 3.96    | 1.27         | 2.58           | 3.14           |
| 5         | 6.36         | na       | 3.09      | 17.31      | 5.61      | 3.63    |              | 2.38           | 3.14           |
| 6         | 5.80         | na       | 2.81      | 13.01      | 4.64      | 3.30    | 1.27         | 2.18           | 3.14           |
| 7         | 5.24         | na       | 2.53      | 9.49       | 3.76      | 2.97    | 1.27         | 1.98           | 3.14           |
| 8         | 4.68         | na       | 2.25      | 6.67       | 2.97      | 2.64    | 1.27         | 1.79           | 3.14           |
| 9         | 4.12         | na       | 1.97      | 4.48       | 2.28      | 2.32    | 1.27<br>1.27 | 1.59           | 3.14           |
| 10        | 3.56         | na       | 1.69      | 2.82       | 1.67      | 1.99    | 1.27         | 1.39           | 3.14           |
| 11        | 3.00         | na       | 1.41      | 1.64       | 1.16      | 1.66    | 1.27         | 1.19           | 3.14           |
|           |              |          |           |            | •         | 1.00    | 1.27         | 0.99           | 3.14           |
|           |              |          | ALLO      | WABLE STR  | RESSES    |         |              |                |                |
| Location  | DAFE         |          |           | Compact    | Non Comp  | Slender |              |                |                |
| 1         | DAF (in)     | b (in)   | b/t       | Limit      | Limit     | Limit   | Fb (ksi)     | Fv (ksi)       |                |
| 2         | 8.60         | na       | 45.87     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 3         | 8.04         | na       | 42.88     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 3<br>4    | 7.48         | na       | 39.89     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 5         | 6.92         | na       | 36.91     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 5<br>6    | 6.36         | na       | 33.92     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 7         | 5.80         | na       | 30.93     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 8         | 5.24         | na       | 27.95     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 9         | 4.68         | na       | 24.96     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 10        | 4.12<br>3.56 | na       | 21.97     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
| 11        | 3.00         | na       | 18.99     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
|           | 3.00         | na       | 16.00     | 68.55      | 137.09    | 237.27  | 48.28        | 24.14          |                |
|           |              |          | 10.       | IND FORCE  | c         |         |              |                |                |
|           | Length       | Area     | Centroid  | Kz         | s<br>G    | CvVd    | •            |                |                |
| Section   | (ft)         | (sq ft)  | Elev (ft) | ***        | J         | CVVU    | Cd           | Pressure       | Force          |
| Misc #1   | na           | 0.00     | 0.00      | 0.86       | 1.14      | na      | 0.00         | (psf)          | (lbs)          |
| Misc #2   | na           | 0.00     | 0.00      | 0.86       | 1.14      | na      | 0.00         | 0.00           | 0.00           |
| 1-2       | 4.00         | 2.77     | 1.98      | 0.86       | 1.14      | 76.27   | 0.00         | 0.00           | 0.00           |
| 2-3       | 4.00         | 2.59     | 5.98      | 0.86       | 1.14      | 71.13   | 0.46         | 14.00          | 38.84          |
| 3-4       | 4.00         | 2.40     | 9.97      | 0.86       | 1.14      | 66.00   | 0.50         | 15.33          | 39.66          |
| 4-5       | 4.00         | 2.21     | 13.97     | 0.86       | 1.14      | 60.87   | 0.56         | 16.90          | 40.56          |
| 5-6       | 4.00         | 2.03     | 17.97     | 0.88       | 1.14      | 55.73   | 0.62<br>0.69 | 18.77          | 41.55          |
| 6-7       | 4.00         | 1.84     | 21.97     | 0.92       | 1.14      | 50.60   |              | 21.57          | 43.72          |
| 7-8       | 4.00         | 1.65     | 25.96     | 0.95       | 1.14      | 45.47   | 0.79         | 25.52          | 46.95          |
| 8-9       | 4.00         | 1.47     | 29.96     | 0.98       | 1.14      | 40.33   | 0.90         | 30.38          | 50.22          |
| 9-10      | 4.00         | 1.28     | 33.95     | 1.01       | 1.14      | 35.20   | 1.05<br>1.10 | 36.58          | 53.65          |
| 10-11     | 4.00         | 1.09     | 37.94     | 1.03       | 1.14      | 30.07   | 1.10         | 39.16          | 50.13          |
| Arm       | na           | 0.00     | 0.00      | 0.86       | 1.14      | na      | 1.00         | 40.09<br>30.39 | 43.83          |
| Luminaire | na           | 5.00     | 40.00     | 1.04       | 1.14      | na      | 1.00         | 36.85          | 0.00<br>184.26 |
|           |              |          |           |            |           | -       |              | JU.0J          | 104.20         |

184.26

#### **TORSION & DEAD LOAD MOMENTS**

|           |         |        |          |          |       | DL       |
|-----------|---------|--------|----------|----------|-------|----------|
|           | Torsion |        | Torsion  | Dead     | Dead  | Moment   |
|           | Arm     | Force  | Mz       | Load Arm | Load  | Мx       |
| Section   | (ft)    | (lbs)  | (ft-lbs) | (ft)     | (lbs) | (ft-lbs) |
| Misc #1   | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| Misc #2   | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| 1-2       | 0       | 38.84  | 0.0      | 0.0      | 65.2  | 0.0      |
| 2-3       | 0       | 39.66  | 0.0      | 0.0      | 60.7  | 0.0      |
| 3-4       | 0       | 40.56  | 0.0      | 0.0      | 56.2  | 0.0      |
| 4-5       | 0       | 41.55  | 0.0      | 0.0      | 51.7  | 0.0      |
| 5-6       | 0       | 43.72  | 0.0      | 0.0      | 47.2  | 0.0      |
| 6-7       | 0       | 46.95  | 0.0      | 0.0      | 42.7  | 0.0      |
| 7-8       | 0       | 50.22  | 0.0      | 0.0      | 38.2  | 0.0      |
| 8-9       | 0       | 53.65  | 0.0      | 0.0      | 33.8  | 0.0      |
| 9-10      | 0       | 50.13  | 0.0      | 0.0      | 29.3  | 0.0      |
| 10-11     | 0       | 43.83  | 0.0      | 0.0      | 24.8  | 0.0      |
| Arm       | 0       | 0.00   | 0.0      | 0.0      | 0.0   | 0.0      |
| Luminaire | 0       | 184.26 | 0.0      | 0.0      | 60.0  | 0.0      |

#### **MOMENTS**

|           | Wind     | 2ndary   | DL       | Load (   | Case 1     | Load     | Case 2      | Control |
|-----------|----------|----------|----------|----------|------------|----------|-------------|---------|
|           | Moment   | Moment   | Moment   | nc=1.0BL | , tc=0.2BL | nc=0.6BL | ., tc=0.3BL | LC      |
| Elevation | Mγ       | $M_{y}$  | Mx       | My       | Mx         | My       | Mx          |         |
| (ft)      | (ft-lbs) | (ft-lbs) | (ft-lbs) | (ft-lbs) | (ft-lbs)   | (ft-lbs) | (ft-lbs)    |         |
| Grade     | 16762    | 204.7    | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 0.00      | 16762    | 204.7    | 0.0      | NA       | NA         | NA       | NΑ          | NΑ      |
| 4.00      | 14307    | 204.7    | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 8.00      | 12010    | 192.2    | 0.0      | NA       | NA         | NA       | NA          | NΑ      |
| 12.00     | 9872     | 177.3    | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 16.00     | 7899     | 159.9    | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 20.00     | 6097     | 140.1    | 0.0      | NΑ       | NA         | NA       | NA          | NΑ      |
| 24.00     | 4476     | 117.7    | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 28.00     | 3050     | 92.9     | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 32.00     | 1832     | 65.2     | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 36.00     | 822      | 34.4     | 0.0      | NA       | NA         | NA       | NA          | NA      |
| 40.00     | 0        | 0.0      | 0.0      | NA       | NA         | NA       | NA          | NA      |

#### SUMMARY OF FORCES AND MOMENTS

| Elevation | My       | Mx       | Torsion  | Shear | Axial | Deflection |
|-----------|----------|----------|----------|-------|-------|------------|
| (ft)      | (ft-lbs) | (ft-lbs) | (ft-lbs) | (lbs) | (lbs) | (in)       |
| Grade     | 16967    | 0        | 0        | 633   | 510   | 0.0        |
| 0.00      | 16967    | 0        | 0        | 633   | 510   | 0.0        |
| 4.00      | 14512    | 0        | 0        | 595   | 445   | 0.3        |
| 8.00      | 12202    | 0        | 0        | 555   | 384   | 0.8        |
| 12.00     | 10049    | 0        | 0        | 514   | 328   | 1.4        |
| 16.00     | 8059     | 0        | 0        | 473   | 276   | 2.3        |
| 20.00     | 6237     | 0        | 0        | 429   | 229   | 3.5        |
| 24.00     | 4594     | 0        | 0        | 382   | 186   | 5.1        |
| 28.00     | 3143     | 0        | 0        | 332   | 148   | 7.3        |
| 32.00     | 1898     | 0        | 0        | 278   | 114   | 10.6       |
| 36.00     | 857      | 0        | 0        | 228   | 85    | 15.4       |
| 40.00     | 0        | 0        | 0        | 0     | 0     | 23.2       |
|           |          |          |          |       |       | D & Contra |

P-∆ Factor = 1.45

#### STRESSES & COMBINED STRESS RATIO

| Elevation | Bending<br>fb        | Transv.<br>Shear | Torsional<br>Shear | Axial    | CSR  |
|-----------|----------------------|------------------|--------------------|----------|------|
| (ft)      | f <sub>b</sub> (psi) | fvb (psi)        | fvt (psi)          | fa (psi) |      |
| 0         |                      |                  |                    | ., ,     |      |
| 0.00      | 19546                | 256              | 0                  | 103      | 0.41 |
| 4.00      | 19188                | 257              | 0                  | 96       | 0.40 |
| 8.00      | 18706                | 258              | 0                  | 89       | 0.39 |
| 12.00     | 18076                | 260              | 0                  | 83       | 0.38 |
| 16.00     | 17245                | 260              | 0                  | 76       | 0.36 |
| 20.00     | 16143                | 260              | 0                  | 69       | 0.34 |
| 24.00     | 14672                | 257              | 0                  | 63       | 0.31 |
| 28.00     | 12697                | 251              | 0                  | 56       | 0.26 |
| 32.00     | 10004                | 240              | 0                  | 49       | 0.21 |
| 36.00     | 6140                 | 230              | 0                  | 43       | 0.13 |
| 40.00     | 0                    | 0                | 0                  | 0        | 0.00 |

#### **ANCHOR BOLTS**

|                  | Calcu<br>For                  |                          |                               | lated<br>sses            |                                  | wable<br>esses                   |                              |
|------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|----------------------------------|------------------------------|
| Bolt No.         | Axial<br>(lbs)                | Shear<br>(lbs)           | Axial<br>(psi)                | Shear<br>(psi)           | Axial<br>(psi)                   | Shear<br>(psi)                   | CSR                          |
| 4<br>3<br>2<br>1 | 17095<br>127<br>-16840<br>127 | 158<br>158<br>158<br>158 | 28221<br>210<br>-27800<br>210 | 261<br>261<br>261<br>261 | 43890<br>43890<br>36575<br>43890 | 21945<br>21945<br>21945<br>21945 | 0.41<br>0.00<br>0.58<br>0.00 |

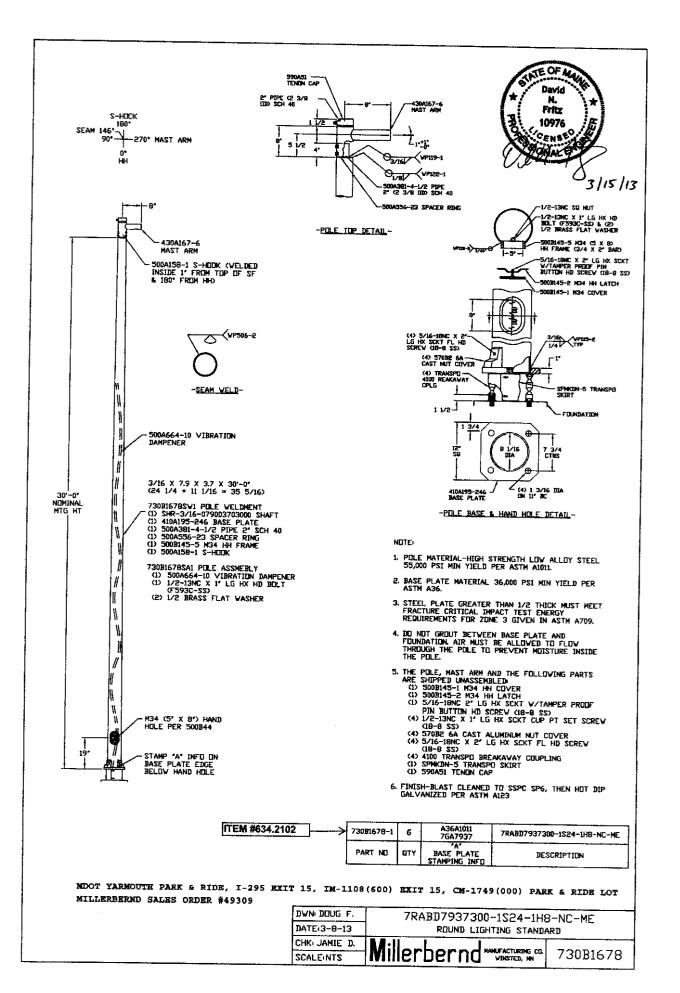
#### **T-BASE BOLTS**

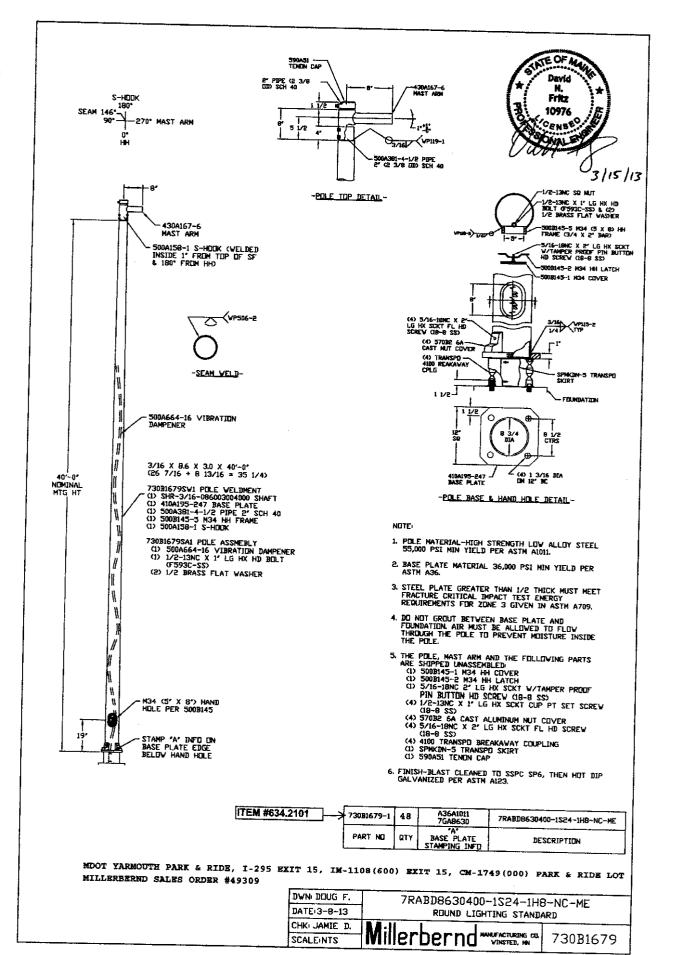
|          | Calcu | ulated | Calcu | alated | Ailowable |       |     |
|----------|-------|--------|-------|--------|-----------|-------|-----|
|          | For   | rces   | Stre  | esses  | Stre      | esses |     |
| Bolt No. | Axial | Shear  | Axial | Shear  | Axial     | Shear | CSR |
|          | (lbs) | (lbs)  | (psi) | (psi)  | (psi)     | (psi) |     |

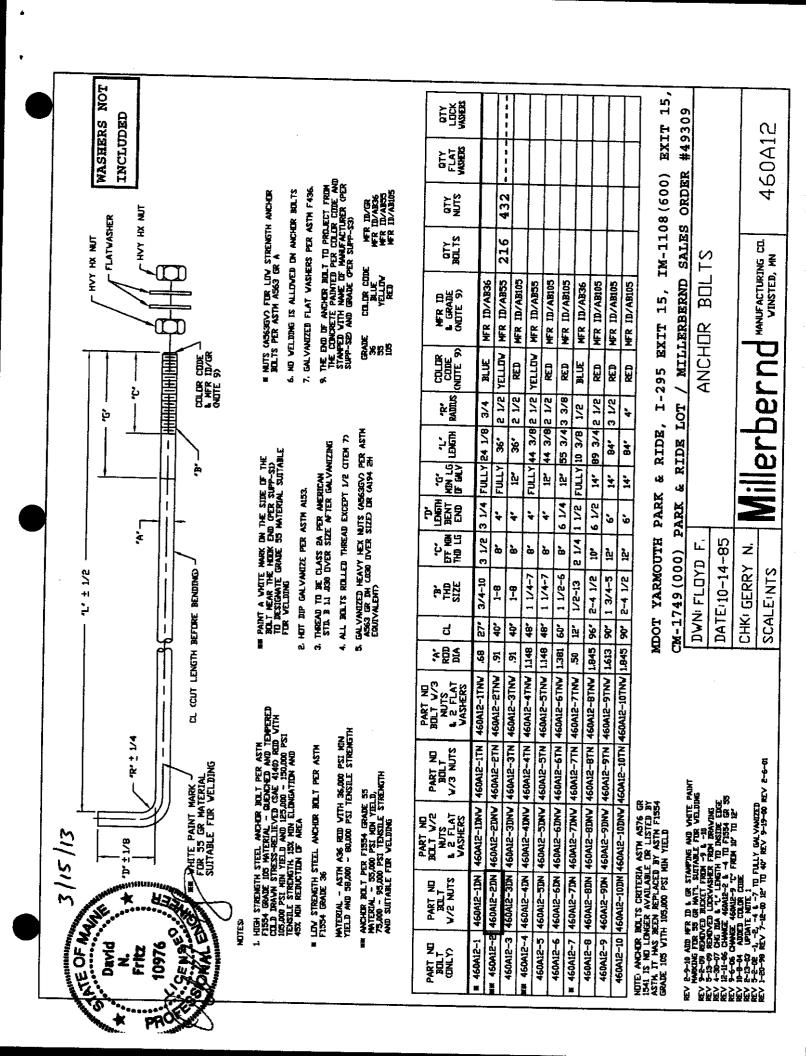
#### **BASE PLATE**

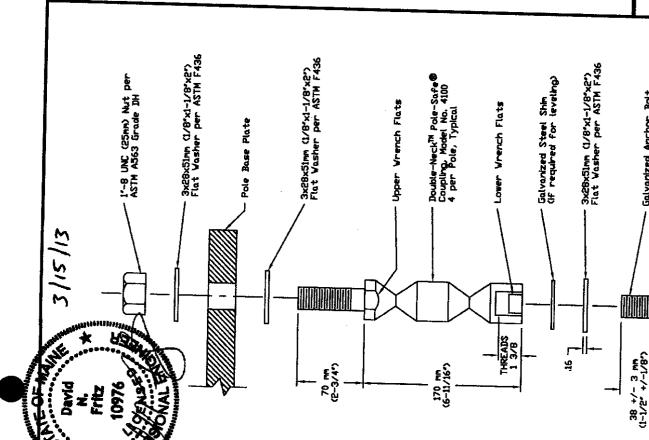
Bend Line Length (in) = 8.37

Bend Line Section Modulus (in^3) = 1.40


Bolt Moment Arm (in) = 1.7


Moment (in-lbs) = 29061


Bending Stress (psi) = 20831


Allowable Bending Stess (psi) = 35910

CSR = 0.58









# SPECIFICATIONS

## Performance Criteria

- Double-Neck™ Pole-Safe® conforms to AASHTO 'Standard specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals,'
  - Double-Neck<sup>T#</sup> Pole-Safe® has been crash-tested and FHWA approved in accordance with the requirements of NCHRP Report 350, "Recommended Procedures for the Safety Performance Evaluation of Highway Features," ณ์
- Maximum Allowable Pole Mass 450 kg (992 LB.) (total, including fixtures). ო

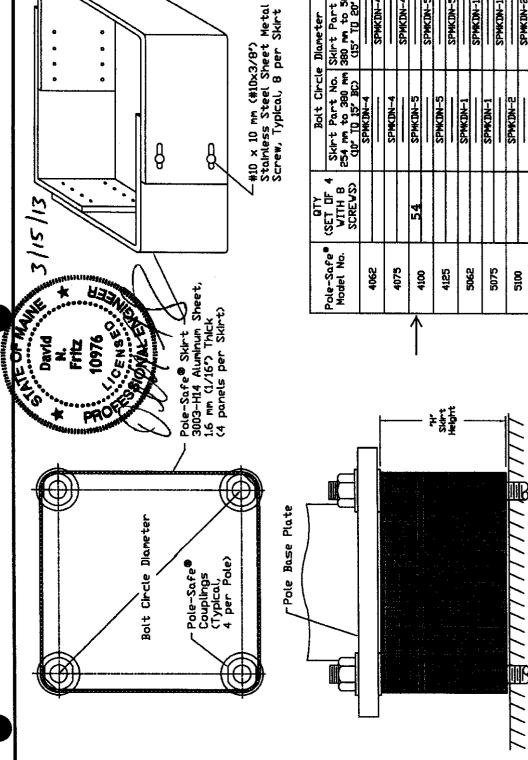
# Physical Properties per Coupling

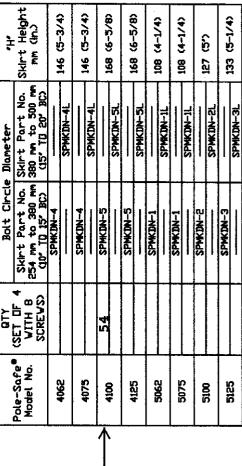
- Ultimate Tensile Strength = 221.5 kN (49.8 kips), アゴンゴムア
- Tensile Yield Strength = 192.0 kN (43.2 kips), minimum, તાં
- Ultimate Restrained shear Strength = 24.5 KN (5.5 kips), minimum. ကံ

# Corrosion Protection

Ali Double-Neck<sup>TM</sup> Pole-Safe® couplings, nuts, bolts, washers, and shims are galvanized after fabrication in accordance with ASTM A153,

## (SET OF 4) 54 QTY


MDOT YARMOUTH PARK & RIDE, I-295 EXIT 15, IM-1108(600) EXIT 15, CM-1749 (000) PARK & RIDE LOT / MMC #49309


Breakaway Support System for Light Poles Pole-Safe® Model No, 4100

Galvanized Anchor Bott 1'-8 UNC (25 mm) Threads



New Rochelle, NY 10801 20 Jones Street 914-636-1000





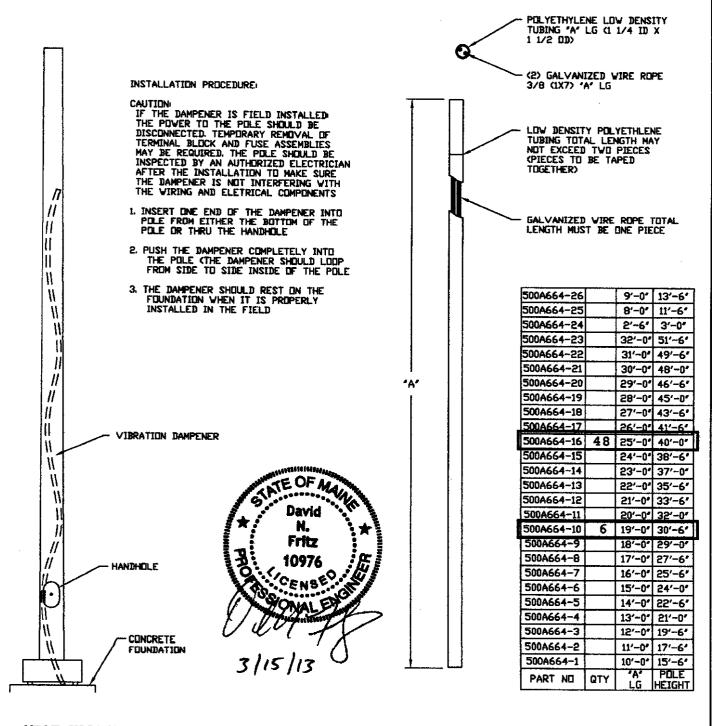
MDOT YARMOUTH PARK & RIDE, I-295 EXIT 15, IM-1108 (600) EXIT 15, CM-1749 (000) PARK & RIDE LOT / MILLERBERND SALES ORDER #49309

Breakaway Support System for Light Poles Pole-Safe® Skirt Details



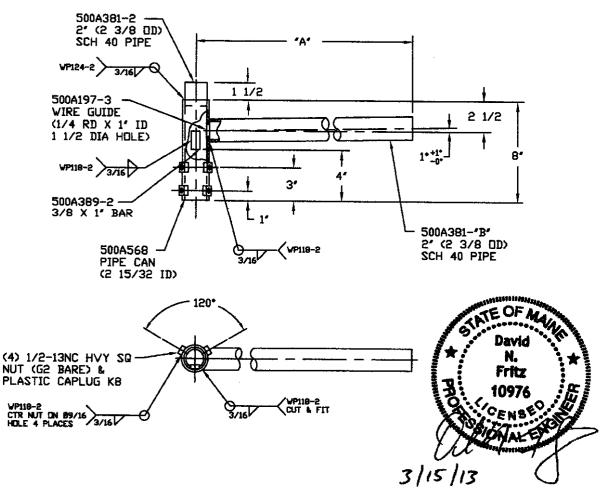
3, Position panels snug against the Pole-Safe Couplings.

4, Tighten all 8 sheet metal screws


2. Thread 8 sheet metal screws through the outside slots into the closest corresponding holes in the adjacent inside panel.

1. Place 4 skirt panels around Pole-Safe Couplings using overlap configuration shown. All 4 sides of the skirt box should have 2 slots facing outside.

INTALLATION INSTRUCTIONS


INDUSTRIES, Inc. The Smart Solutions Company

New Rochelle, NY 10801 20 Jones Street 914-636-1000

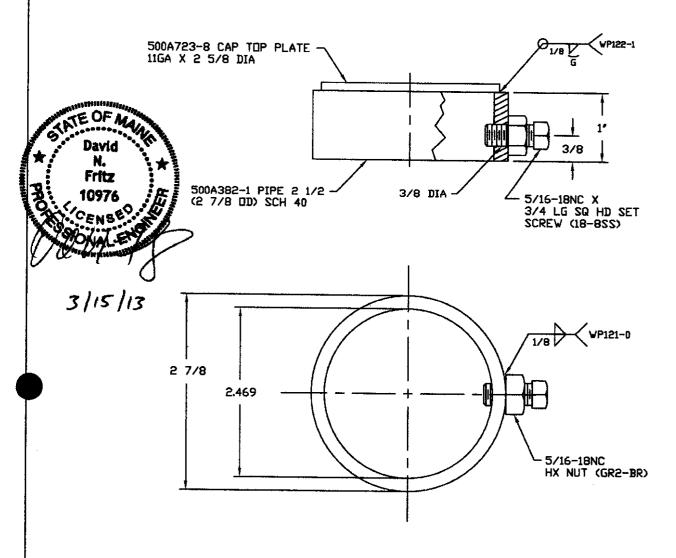


MDOT YARMOUTH PARK & RIDE, I-295 EXIT 15, IM-1108(600) EXIT 15, CM-1749(000) PARK & RIDE LOT / MILLERBERND SALES ORDER #49309

| NI DAVE VI  | POLY/CABLE VII       | RATION D            | AMPENER                       | Y22A 5                                                   |
|-------------|----------------------|---------------------|-------------------------------|----------------------------------------------------------|
| TE: 5-13-03 |                      |                     |                               |                                                          |
| łK:         | Millankana           | MANUFACTURING       | CD                            |                                                          |
| CALE: NTS   | <b>ivi</b> llerderno | VINSTED, M          | ,500                          | )A664                                                    |
|             | ATE: 5-13-03         | ATE: 5-13-03 FDR 15 | ATE: 5-13-03 FOR 15' THRU 50' | FOR 15' THRU 50' POLES  HK:  Millondon of MANAGORING CO. |



#### NOTE


- 1. PIPE MATERIAL- HI-Y50 STRUCTURAL PIPE 50,000 PSI MIN YIELD PER ASTM A500 GRB (A618 GR3 IF SELF WEATHERING)
- THE FOLLOWING PARTS WILL BE SHIPPED UNASSEMBLED;
  - (4) 1/2-13NC X 1" LG HX SCKT CUP PT SET SCREW (18-8 SS) (1) 2 3/8 FLEX CAP (SC SHORT BLACK)
- 3. FINSIH-BLAST CLEANED TO SSPC SP6, THEN HOT DIP GALVANIZED PER ASTM A123

| ł | 430A167-6  | 54  | 8*  | 6 3/4       | 1S24/1H8    |
|---|------------|-----|-----|-------------|-------------|
|   | 430A167-5  |     | 20" | 18 3/4      | 1S24/1H20   |
| Ī | 430A167-4  |     | 72" | 70 3/4      | 1S24/1H72   |
| Ī | 430A167-3  |     | 36" | 34 3/4      | 1S24/1H36   |
| Ī | 430A167-2  |     | 24" | 22 3/4      | 1S24/1H24   |
| ľ | 430A167-1  |     | 12* | 10 3/4      | 1S24/1H12   |
|   | PART<br>ND | QTY | *A* | <b>"</b> B" | MDDEL<br>ND |

MDOT YARMOUTH PARK & RIDE, I-295 EXIT 15, IM-1108(600) EXIT 15, CM-1749(000) PARK & RIDE LOT / MILLERBERND SALES ORDER #49309

REV 4-11-06 MADE "B" 1/4 SMALLER REV 6-17-02 CHG 2" PIPE FROM 1-1/2LG TO 2"LG REV 4-19-02 PUT 1" DN ARM REV 4-18-02 UPDATED FOR M2M REV 6-8-01 ADD 6" ARM REV 5-17-01 ADD 1" & 2" ARM V 12-14-00 3/4 - 1", 2 3/4 - 3" 3 1/2 - 4" REV 10-4-00 UPDATE

| CHK: WADE L. SCALE: NTS | Millerbernd MANUFACTURING CEI. VINSTED, MN | 430A167 |  |  |  |
|-------------------------|--------------------------------------------|---------|--|--|--|
| DATE: 4-22-96           | FOR 2' PIPE TENON                          |         |  |  |  |
| DWN: FLOYD F.           | 1S24/1H MASTARM                            |         |  |  |  |



#### NOTE

- 1. PLATE MATERIAL- LOW CARBON STEEL 36,000 PSI MIN YIELD PER ASTM A36
- 2. PIPE MATERIAL- LOW CARBON STEEL 35,000 PSI MIN YIELD PER ASTM A53
- 3. FINISH- HOT DIP GALVANIZED

|        | 590A51-1   | CAP LESS/SET SCREW |  |
|--------|------------|--------------------|--|
| QTY.54 | → 590A51   | CAP W/SET SCREW    |  |
|        | PART<br>ND | DESCRIPTION        |  |

MDOT YARMOUTH PARK & RIDE, I-295 EXIT 15, IM-1108(600) EXIT 15, CM-1749(000) PARK & RIDE LOT / MILLERBERND SALES ORDER #49309

| • |               |                                           |        |  |  |  |
|---|---------------|-------------------------------------------|--------|--|--|--|
|   | DWN: PAUL F.  | WNI PAUL F. TENON CAP                     |        |  |  |  |
|   | DATE: 9-14-06 | FOR 2' PIPE                               |        |  |  |  |
|   | CHK: WILL Q.  | Milerbernd MANUFACTURING CELL VINSTED, MN | E004E1 |  |  |  |
|   | SCALE: NTS    | MINELDELUG ANGUALTURA CEL                 | 590A51 |  |  |  |