Achievement Level Descriptors (ALDs) Grade High School Maine Science Assessment New Meridian Corporation 2022

Contents

What are ALDs?	
General Achievement Levels for Maine	4
How to read this document and the process used by New Meridian	5
Example ALD table showing the progression of DCIs:	6
Physical Science Topics	7
Topic HS.Structure and Properties of Matter	8
Topic HS.Forces and Interactions	9
Topic HS.Chemical Reactions	
Topic HS.Energy	
Topic HS.Waves and Electromagnetic Radiation	
Life Science Topics	
Topic HS.Matter and Energy in Organisms and Ecosystems	
Topic HS.Interdependent Relationships in Ecosystems	
Topic HS.Natural Selection and Evolution	
Topic HS.Inheritance and Variation of Traits	
Topic HS.Structure and Function	
Earth and Space Science Topics	23
Topic HS.Weather and Climate	24
Topic HS.Earth's Systems	25
Topic HS.Space Systems	27
Topic HS.History of Earth	
Topic HS.Human Sustainability	

What are ALDs?

• The Achievement Level Descriptors (ALDs) document is intended to be used as a guideline to describe the four levels of achievement, levels of student mastery of the Standards & Instruction - Science & Engineering, identified by the Maine DOE. This document is to support the effective teaching and assessment of Maine K-12 science and engineering instructional programs.

• The ALDs are written to align with the Next Generation Science Standards (NGSS) Topics. The NGSS topics are standards that are grouped to show the natural connections between the Disciplinary Core Ideas. To support the intent of the standards for science instruction and assessment in Maine, all Science and Engineering Practices (SEPs) and Cross-Cutting Concepts (CCC) can be used interchangeably with any of the Disciplinary Core Ideas (DCI), not just the ones found in the performance expectations. It is the intent that the SEP and CCC are selected to enhance the application of the DCIs to make sense of a phenomenon presented in a scenario.

General Achievement Levels for Maine

Level 1	Level 2	Level 3	Level 4
Well Below State Expectations	Below State Expectations	At State Expectations	Above State Expectations
The student's work demonstrates a minimal	The student's work demonstrates an	The student's work demonstrates an	The student's work demonstrates a
understanding of essential concepts in science.	incomplete understanding of essential	adequate understanding of essential	thorough understanding of essential
The student's responses demonstrate minimal	concepts in science and inconsistent	concepts in science, including the ability	concepts in science, including the ability to
ability to solve problems. Explanations are	connections among central ideas. The	to make connections among central ideas.	make multiple connections among central
illogical, incomplete, or missing connections	student's responses demonstrate some	The student's responses demonstrate the	ideas. The student's responses demonstrate
among central ideas. There are multiple	ability to analyze and solve problems, but	ability to analyze and solve routine	the ability to synthesize information,
inaccuracies.	the quality of responses is inconsistent.	problems and explain central concepts	analyze and solve difficult problems, and
	Explanation of concepts may be	with sufficient clarity and accuracy to	explain complex concepts using evidence
	incomplete or unclear.	demonstrate general understanding.	and proper terminology to support and
			communicate logical conclusions.

How to read this document and the process used by New Meridian

The NGSS topic is listed in the top left corner (and is a clickable link to the NGSS topic page). The ALD for each of the 4 levels of achievement (Well Below State Expectations; Below State Expectations; At State Expectations; Above State Expectations) runs along the top. The ALD statements are combinations of grade level DCIs (shown in orange and regular font), SEPs (shown in blue and underlined), and CCCs (shown in green and italicized). These are exemplar targets that have been constructed by New Meridian Science staff, with feedback from the ME DOE. Again, the intention is to demonstrate that any DCI can be combined with any SEP and any CCC for a particular topic and grade level. There are NOT ALDs for each individual Performance Expectation (PE).

The left column contains the exact text of the grade level DCIs included within a topic, pulled from the NGSS. For each grade, for most topics, each DCI for each topic is met at least once in at least one of the four achievement levels. The grade-level DCI, SEP, and CCC that were used are listed below each ALD. The SEPs are from the NGSS SEP matrix found here (starting on p. 17), and the CCCs are from the NGSS CCC matrix found here (p. 15–17).

The reference DCIs are located below the tables and are the DCIs from either the "Above State Expectations" ALD (Grade 5 is MS, and MS is HS), or the "Well Below State Expectations" ALD (Grade 5 is Grades 2–4, MS is Grade 5, and HS is MS). These DCIs are referenced in regard to topic progression.

Example ALD table showing the progression of DCIs:

The DCI alone is not what determines the achievement level, rather it is the combination of the 3 dimensions. So, for each exemplar DCI, all other achievement levels could be possible, if combined with different SEPs or CCCs. These documents just give the 4 exemplars, rather than the progression of a single dimension across all 4 achievement levels.

Торіс	Well Below	Below	At State	Above
5. Structure and Properties of Matter	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Represent data to reveal	-		
 PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) 	Represent data to reveal patterns which indicate that materials can be identified based on their properties, and those properties are suitable for different purposes.	Use evidence (measurements) to support an explanation that matter is conserved when substances are mixed, even if a new substance is formed, given that the total weight of the starting substance(s) is equal to		
• The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish.		the weight of the new substance(s).		
PS1.B: Chemical Reactions			Plan an investigation to	
• When two or more different substances are mixed, a new substance with different properties may be			show that gases are made	
formed.			of particles that <i>are too</i> <i>small to be seen</i> but can be	
 No matter what reaction or change in properties 			detected in other ways.	
occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)				Support an argument that a new substance <i>has formed</i> <i>when</i> different substances are mixed.
			TI, <u>SEP</u> , and <i>CCC</i>	
	PS1.A SEP4 (Evaluate) CCC1 (Patterns)	PS1.A <u>SEP3 (Investigate)</u> <i>CCC3 (Scale, Proportion,</i> <i>and Quantity)</i>	PS1.A PS1.B <u>SEP6 (Reason</u> Scientifically)	PS1.B SEP7 (Evaluate) CCC2 (Cause and Effect)
		απα Quantity)	CCC3 (Scale, Proportion, and Quantity)	

High School Physical Science Topics

Торіс	Well Below	Below	At State	Above
HS.Structure and Properties of Matter	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Analyze data to make	Plan an investigation to	Develop or revise a model	Develop a model to
PS1.A Structure and Properties of Matter	valid scientific claims that	produce data to serve as	to predict the reactivity	illustrate the differences
• Each atom has a charged substructure consisting of a	atoms consist of	evidence supporting the	(e.g., attraction and	between the nuclear
nucleus, which is made of protons and neutrons,	subatomic particles that	claim that each element	repulsion between	processes of fusion,
surrounded by electrons.	determine the properties	has characteristic	electrically charged	fission, and radioactive
• The periodic table orders elements horizontally by the	and characteristics of	properties which can be	particles, leading to the	decay, including the
number of protons in the atom's nucleus and places those	elements.	predicted based on the	type of bond formed)	changes in energy
with similar chemical properties in columns. The repeating		placement on the periodic	between different atoms	involved in each process.
patterns of this table reflect patterns of outer electron		table.	based on their placement in	
states.			the periodic table.	
• The structure and interactions of matter at the bulk scale			CI, <u>SEP</u> , and <i>CCC</i>	
are determined by electrical forces within and between	PS1.A	PS1.A	PS1.A	PS1.C
atoms.	<u>SEP4 (Evaluate)</u>	SEP3 (Investigate)	PS2.B	<u>SEP2 (Reason</u>
PS1.C: Nuclear Processes	CCC6 (Structure and	CCC1 (Patterns)	SEP2 (Reason	Scientifically)
• Nuclear processes, including fusion, fission, and	Function)		Scientifically)	CCC5 (Energy and
radioactive decays of unstable nuclei, involve release or			CCC1 (Patterns)	Matter)
absorption of energy. The total number of neutrons plus				
protons does not change in any nuclear process.				
PS2.B: Types of Interactions				
• Attraction and repulsion between electric charges at the				
atomic scale explain the structure, properties, and				
transformations of matter, as well as the contact forces				
between material objects.				

Reference DCI: Well Below State Expectations: Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS, PS1.A)

Topic HS.Forces and Interactions	Well Below State Expectations	Below State Expectations	At State Expectations	Above State Expectations
 Topic DCIs PS2.A: Forces and Motion Newton's second law accurately predicts changes in the motion of macroscopic objects. Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such 	Use Newton's 2nd law to make a hypothesis about what happens to the motion of an object when there is a change in force or mass.	Use a model to support explanations that a magnetic field <i>can be generated by</i> an electric circuit.	Construct an argument based on data that the total momentum of a system is conserved in a collision between 2 objects.	Use mathematical representations to support the claim that the gravitational force between 2 objects is dependent upon the masses of the objects and their distance apart.
 change is balanced by changes in the momentum of objects outside the system. PS2.B: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. 	PS2.A SEP3 (Investigate) CCC2 (Cause and Effect)	Grade Level DCI, PS2.B SEP2 (Reason Scientifically) CCC2 (Cause and Effect)	SEP, and CCC PS2.A SEP7 (Evaluate) CCC4 (Systems and System Models)	PS2.B SEP5 (Evaluate) CCC1 (Patterns)

Well Below State Expectations: The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (MS, PS2.A)

Торіс	Well Below	Below	At State	Above
HS.Chemical Reactions	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Use a model to predict the	Use mathematical	Develop or revise a model to	Apply scientific
PS1.A: Structure and Properties of Matter	properties and interactions of	representations to support a	predict the products of a	reasoning to link
• The periodic table orders elements horizontally by the	atoms based on the repeating	claim that the number of	chemical reaction based on	evidence to support an
number of protons in the atom's nucleus and places those	patterns found on the	different kinds of atoms in a	properties of the reactants.	explanation that in
with similar chemical properties in columns. The	periodic table.	chemical reaction is		a chemical reaction, all
repeating patterns of this table reflect patterns of outer		balanced between the		energy is conserved.
electron states.		products and the reactants.		
• A stable molecule has less energy than the same set of		Grade Level DCI,	SEP, and CCC	
atoms separated; one must provide at least this energy in	PS1.A	PS1.B	PS1.A	PS1.A
order to take the molecule apart.	SEP2 (Reason Scientifically)	SEP5 (Evaluate)	PS1.B	PS1.B
PS1.B: Chemical Reactions	CCC1 (Patterns)	CCC5 (Energy and Matter)	SEP2 (Reason	SEP6 (Reason
• Chemical processes, their rates, and whether or not			Scientifically)	Scientifically)
energy is stored or released can be understood in terms			CCC5 (Energy and Matter)	CCC5 (Energy and
of the collisions of molecules and the rearrangements of				<i>Matter)</i>
atoms into new molecules, with consequent changes in				
the sum of all bond energies in the set of molecules that				
are matched by changes in kinetic energy.				
• In many situations, a dynamic and condition-dependent				
balance between a reaction and the reverse reaction				
determines the numbers of all types of molecules				
present.				
• The fact that atoms are conserved, together with				
knowledge of the chemical properties of the elements				
involved, can be used to describe and predict chemical				
reactions.				

Well Below State Expectations: Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS, PS1.B)

Торіс	Well Below	Below	At State	Above
HS.Energy	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Plan an investigation to	Provide evidence that	Use computational	Construct an
PS3.A: Definitions of Energy	produce data that can serve	thermal equilibrium has been	representations of the	explanation as to why
• Energy is a quantitative property of a system that	as evidence to support the	reached in <i>a system</i> .	potential energy of a ball at	the potential energy in
depends on the motion and interactions of matter and	claim that the type of		the top of a hill and of the	an electrical field
radiation within that system. That there is a single	material used in a closed		kinetic energy of the ball in	between 2 charged
quantity called energy is due to the fact that a system's	system affects the transfer of		motion to support an	objects decreases as the
total energy is conserved, even as, within the system,	thermal energy.		explanation that <i>energy</i> in a	objects move farther
energy is continually transferred from one object to			system is conserved.	apart.
another and between its various possible forms.		Grade Level DCI,	SEP, and CCC	
• At the macroscopic scale, energy manifests itself in	PS3.A	PS3.B	PS3.B	PS3.C
multiple ways, such as in motion, sound, light, and	SEP3 (Investigate)	SEP6 (Reason Scientifically)	SEP5 (Evaluate)	SEP6 (Reason
thermal energy.	CCC5 (Energy and Matter)	CCC4 (Systems and System	CCC5 (Energy and Matter)	Scientifically)
• These relationships are better understood at the		Models)		CCC2 (Cause and
microscopic scale, at which all of the different				Effect)
manifestations of energy can be modeled as a				
combination of energy associated with the motion of				
particles and energy associated with the configuration				
(relative position of the particles). In some cases the				
relative position energy can be thought of as stored in				
fields (which mediate interactions between particles).				
This last concept includes radiation, a phenomenon in				
which energy stored in fields moves across space.				
PS3.B: Conservation of Energy and Energy Transfer				
• Conservation of energy means that the total change of				
energy in any system is always equal to the total energy				
transferred into or out of the system.				
• Energy cannot be created or destroyed, but it can be				
transported from one place to another and transferred				
between systems.				
• Mathematical expressions, which quantify how the				
stored energy in a system depends on its configuration				
(e.g., relative positions of charged particles, compression				
of a spring) and how kinetic energy depends on mass and				
speed, allow the concept of conservation of energy to be				
used to predict and describe system behavior.				
• The availability of energy limits what can occur in any				
system.				
• Uncontrolled systems always evolve toward more stable				
states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their				
(e.g., water flows downhill, objects hotter than their surrounding environment cool down).				
surrounding environment cool down).		I		

 PS3.C: Relationship Between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. 		
PS3.D: Energy in Chemical Processes		
• Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment.		

Well Below State Expectations: The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS, PS3.B)

Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS, PS3.B)

Торіс	Well Below	Below	At State	Above
HS.Waves and Electromagnetic Radiation	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Ask and/or evaluate	Construct an explanation as	Apply scientific reasoning	Make and defend a
PS4.A: Wave Properties	questions to <i>choose</i>	to why a lightning strike is	to link evidence to the claim	claim based on evidence
• The wavelength and frequency of a wave are related to	<i>between colors</i> for a model	seen before the thunder is	that increasing the	for why an <i>X</i> -ray
one another by the speed of travel of the wave, which	sports team uniform that	heard.	amplitude, not the	functions better to
depends on the type of wave and the medium through	would make the wearer		frequency, of a radio wave	diagnose a broken bone
which it is passing.	feel cooler outside on a		will increase the volume of	than an ultrasound.
• Information can be digitized (e.g., a picture stored as the	sunny day.		the music.	
values of an array of pixels); in this form, it can be stored		Grade Level DCI	, <u>SEP</u> , and <i>CCC</i>	
reliably in computer memory and sent over long distances	PS4.B	PS4.A	PS4.A	PS4.C
as a series of wave pulses.	SEP1 (Investigate)	SEP6 (Reason	SEP6 (Reason	SEP6 (Evaluate)
• [From the 3–5 grade band endpoints] Waves can add or	CCC2 (Cause and Effect)	Scientifically)	Scientifically)	CCC6 (Structure and
cancel one another as they cross, depending on their		CCC3 (Scale, Proportion,	CCC2 (Cause and Effect)	Function)
relative phase (i.e., relative position of peaks and troughs		and quality)		
of the waves), but they emerge unaffected by each other.				
(Boundary: The discussion at this grade level is qualitative				
only; it can be based on the fact that two different sounds				
can pass a location in different directions without getting				
mixed up.)				
PS4.B: Electromagnetic Radiation				
• Electromagnetic radiation (e.g., radio, microwaves, light)				
can be modeled as a wave of changing electric and				
magnetic fields or as particles called photons. The wave				
model is useful for explaining many features of				
electromagnetic radiation, and the particle model explains				
other features.				
• When light or longer wavelength electromagnetic				
radiation is absorbed in matter, it is generally converted				
into thermal energy (heat). Shorter wavelength				
electromagnetic radiation (ultraviolet, X-rays, gamma				
rays) can ionize atoms and cause damage to living cells.Photoelectric materials emit electrons when they absorb				
• Photoelectric materials emit electrons when they absorb light of a high-enough frequency.				
PS4.C: Information Technologies and Instrumentation				
 Multiple technologies based on the understanding of 				
• Multiple technologies based on the understanding of waves and their interactions with matter are part of				
everyday experiences in the modern world (e.g., medical				
imaging, communications, scanners) and in scientific				
research. They are essential tools for producing,				
transmitting, and capturing signals and for storing and				
interpreting the information contained in them.				
interpreting the information contained in them.	1	1		1

Well Below State Expectations: When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. (MS, PS4.B)

High School Life Science Topics

Торіс	Well Below	Below	At State	Above
HS.Matter and Energy in Organisms and Ecosystems	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Ask questions to seek	Develop or revise a model	Analyze data to make	Apply scientific
LS1.C: Organization for Matter and Energy Flow in	additional information	based on evidence that	valid and reliable	reasoning to provide
Organisms	about	illustrates that the products	scientific claims that	evidence to support the
• The process of photosynthesis converts light energy to stored	how plants use energy	of photosynthesis become	through the process of	explanation that as a part
chemical energy by converting carbon dioxide plus water into	from light	the reactants of cellular	cellular respiration,	of cellular respiration,
sugars plus released oxygen.	to convert carbon dioxide	respiration and are the	some of the energy from	sugar molecules are
• The sugar molecules thus formed contain carbon, hydrogen,	and water into oxygen	molecules that are	food molecules is lost to	rearranged to make
and oxygen: their hydrocarbon backbones are used to make	and sugars, which can be	rearranged to support	the environment, while	amino acids and other
amino acids and other carbon-based molecules that can be	consumed by other	growth or released as	the rest is transferred to	carbon-based
assembled into larger molecules (such as proteins or DNA),	organisms for energy.	energy within organisms in	cellular energy, which	macromolecules, which
used for example to form new cells.		a food web.	can be used to maintain	can be used to form new
• As matter and energy flow through different organizational			homeostasis.	cells.
levels of living systems, chemical elements are recombined in		Grade Level DCI	<u>, SEP</u> , and <i>CCC</i>	
different ways to form different products.	LS1.C	LS1.C	LS1.C	LS1.C
• As a result of these chemical reactions, energy is transferred	SEP1 (Investigate)	LS2.B	LS2.B	SEP6 (Reason
from one system of interacting molecules to another. Cellular	CCC5 (Energy and	SEP2 (Reason	SEP4 (Evaluate)	Scientifically)
respiration is a chemical process in which the bonds of food	<i>Matter)</i>	Scientifically)	CCC5 (Energy and	CCC5 (Energy and
molecules and oxygen molecules are broken and new		primary CCC4 (Systems	Matter)	Matter)
compounds are formed that can transport energy to muscles.		and System models)		
Cellular respiration also releases the energy needed to maintain		secondary CCC5 (Energy		
body temperature despite ongoing energy transfer to the		and Matter)		
surrounding environment.				
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems				
• Photosynthesis and cellular respiration (including anaerobic				
processes) provide most of the energy for life processes.				
• Plants or algae form the lowest level of the food web. At each				
link upward in a food web, only a small fraction of the matter				
consumed at the lower level is transferred upward, to produce				
growth and release energy in cellular respiration at the higher				
level. Given this inefficiency, there are generally fewer				
organisms at higher levels of a food web. Some matter reacts				
to release energy for life functions, some matter is stored in				
newly made structures, and much is discarded. The chemical				
elements that make up the molecules of organisms pass				
through food webs and into and out of the atmosphere and soil,				
and they are combined and recombined in different ways. At				
each link in an ecosystem, matter and energy are conserved.				
• Photosynthesis and cellular respiration are important				
components of the carbon cycle, in which carbon is exchanged				
among the biosphere, atmosphere, oceans, and geosphere				
through chemical, physical, geological, and biological				
processes.				

Well Below State Expectations: Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use. (MS, LS1.C)

Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. (MS, LS2.B)

Topic	Well Below	Below	At State	Above
HS.Interdependent Relationships in Ecosystems	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs LS2.A: Interdependent Relationships in Ecosystems	<u>Ask questions to determine</u> relationships between group	<u>Use a model to predict the</u> effects of a particular	<u>Use</u> mathematical	Develop models based on evidence to predict
 Ecosystems have carrying capacities, which are limits to 	behavior and a species'	<i>change</i> in environmental	<i>representations</i> to support claims <i>that the carrying</i>	the differences in the
• Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can	chances for survival.	conditions on species	capacity of a population is	effects of a <i>modest</i>
support. These limits result from such factors as the	chances for survival.	expansion or extinction.	based on factors such as	disturbance vs. a major
availability of living and nonliving resources and from		expansion of extinction.	competition and disease.	disturbance on an
such challenges such as predation, competition, and			competition and disease.	ecosystem.
disease. Organisms would have the capacity to produce				
populations of great size were it not for the fact that		Grade Level DCI	SEP. and CCC	
environments and resources are finite. This fundamental	LS2.D	LS4.C	LS2.A	LS2.C
tension affects the abundance (number of individuals) of	SEP1 (Investigate)	SEP2 (Developing and	SEP5 (Evaluate)	SEP2 (Reason
species in any given ecosystem.	CCC2 (Cause and Effect)	Using Models)	CCC1 (Patterns)	Scientifically)
LS2.C: Ecosystem Dynamics, Functioning, and Resilience		CCC2 (Cause and Effect)		CCC7 (Stability and
• A complex set of interactions within an ecosystem can				Change)
keep its numbers and types of organisms relatively				
constant over long periods of time under stable				
conditions. If a modest biological or physical				
disturbance to an ecosystem occurs, it may return to its				
more or less original status (i.e., the ecosystem is				
resilient), as opposed to becoming a very different				
ecosystem. Extreme fluctuations in conditions or the				
size of any population, however, can challenge the				
functioning of ecosystems in terms of resources and habitat availability.				
• Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat				
destruction, pollution, introduction of invasive species,				
overexploitation, and climate change—can disrupt an				
ecosystem and threaten the survival of some species.				
LS2.D: Social Interactions and Group Behavior				
• Group behavior has evolved because membership can				
increase the chances of survival for individuals and their				
genetic relatives.				
LS4.C: Adaptation				
• Changes in the physical environment, whether naturally				
occurring or human induced, have thus contributed to				
the expansion of some species, the emergence of new				
distinct species as populations diverge under different				
conditions, and the decline-and sometimes the				
extinction-of some species.				

Topic	Well Below State Expectations	Below State Expectations	At State	Above State Expectations
 HS.Natural Selection and Evolution Topic DCIs LS4.A: Evidence of Common Ancestry and Diversity Genetic information, like the fossil record, provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence. LS4.B: Natural Selection 	State Expectations <u>Make a hypothesis about</u> how a change in environmental conditions could contribute to the extinction of a species.	State Expectations <u>Analyze data</u> to identify the <i>cause-and-effect relationship</i> between genetic variation of a trait in a species, a competitive advantage of a variation, and the evolution of that trait in a species.	Expectations <u>Apply scientific evidence</u> from <i>patterns</i> shown by at least two sources (fossils, anatomy, embryology, or biochemistry) to propose an explanation of a species' ancestry.	State Expectations <u>Apply concepts of</u> <u>statistics and probability</u> <i>to determine patterns</i> of change in the distribution of phenotypes in a population to predict how selective pressure may change the distribution over time.
 Natural selection Natural selection occurs only if there is both (1) variation 		Grade Level DCI,	SEP and CCC	
 in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. LS4.C: Adaptation Evolution is a consequence of the interaction of four 	LS4.C SEP1 (Investigate) CCC7 (Stability and Change)	LS4.C SEP1 (Investigate) CCC7 (Stability and Change)	LS4.A <u>SEP6 (Reason</u> <u>Scientifically)</u> <i>CCC1 (Patterns)</i>	LS4.B LS4.C <u>SEP5 (Evaluate)</u> CCC1 (Patterns)
• Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment's limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment.				
 Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. 				

 Adaptation also means that the distribution of traits in a population can change when conditions change. Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline-and sometimes the autimation of some species. 		
extinction-of some species.		
• Species become extinct because they can no longer		
survive and reproduce in their altered environment. If		
members cannot adjust to change that is too fast or		
drastic, the opportunity for the species' evolution is lost.		

Well Below State Expectations:

Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS, LS4.C)

Торіс	Well Below	Below	At State	Above
HS.Inheritance and Variation of Traits	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs LS1.B: Growth and Development of Organisms	Ask questions to seek additional information as to	<u>Apply scientific principles to</u> <u>explain the relationship</u>	<u>Use a model to explain that</u> genetic variability among	<u>Analyze data using the</u> patterns shown in a
 In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) 	why certain traits are only found in specific types of environments.	between <i>the structures of</i> chromosomes, DNA molecules, and genes.	organisms within the same population is <i>due to</i> errors in DNA replication or mutations in genes that can be <i>caused by</i> environmental factors.	pedigree to identify the genotypes of individuals represented in the pedigree.
to both daughter cells. Cellular division and				
differentiation produce and maintain a complex		Grade Level DCI,		
organism, composed of systems of tissues and organs	LS3.B	LS3.A	LS1.B	LS3.A
that work together to meet the needs of the whole	SEP1 (Investigate)	SEP6 (Reason Scientifically)	LS3.B	SEP4 (Evaluate)
organism. (HS-LS1-4)	CCC6 (Structure and	CCC6 (Structure and	SEP2 (Reason	CCC1 (Patterns)
LS3.A: Inheritance of Traits	Function)	Function)	<u>Scientifically</u>	
• Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1)			CCC2 (Cause and Effect)	
 LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2) 				
 Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus, the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2), (HS-LS3-3) 				

Well Below State Expectations: In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism. (MS, LS3.B)

Торіс	Well Below	Below	At State	Above
HS.Structure and Function	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Ask questions to clarify	Use a model to describe	Develop a model showing	Analyze data (DNA
LS1.A: Structure and Function	how cells can become	how the parts of multiple	how the steps of the feedback	sequences) in order to
• Systems of specialized cells within organisms help them	specialized to carry out	body systems interact with	mechanisms involved in a	make valid and reliable
perform the essential functions of life.	different functions in	each other to allow an	biological process, such as	claims that the function
• All cells contain genetic information in the form of	multicellular organisms.	organism to perform a given	developing a fever, help to	of DNA is the same for
DNA molecules. Genes are regions in the DNA that		function.	maintain homeostasis.	all cells, but variations in
contain the instructions that code for the formation of				the structure of DNA
proteins, which carry out most of the work of cells.				allow for the production
Multicellular organisms have a hierarchical structural				of proteins unique to
organization, in which any one system is made up of				different organisms.
numerous parts and is itself a component of the next		Grade Level DC	I <u>, SEP</u> , and <i>CCC</i>	
level.	LS1.A	LS1.A	LS1.A	LS1.A
• Feedback mechanisms maintain a living system's	SEP1 (Investigate)	SEP2 (Reason	SEP2 (Reason Scientifically)	SEP4 (Evaluate)
internal conditions within certain limits and mediate	CCC6 (Structure and	Scientifically)	CCC4 (Stability and Change)	CCC6 (Structure and
behaviors, allowing it to remain alive and functional	Function)	CCC4 (Systems and System		Function)
even as external conditions change within some range.		Models)		
Feedback mechanisms can encourage (through positive				
feedback) or discourage (negative feedback) what is				
going on inside the living system.				

Well Below State Expectations: In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. (MS, LS1.A)

High School Earth and Space Science Topics

Торіс	Well Below	Below	At State	Above
HS.Weather and Climate	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Analyze data to make valid	Use data to construct an	Ask questions that	Predict the impacts on a
ESS2.A: Earth Materials and Systems	<u>claims</u> that weather and climate <i>are influenced</i> by	argument that global climate change is a result	evaluate the interpretation of a data	local environment caused by an aspect
• The geological record shows that changes to global and regional climate can be caused by interactions among	interactions involving	of human activities.	set regarding global	(e.g., temperature,
changes in the sun's energy output or Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers,	sunlight, the oceans, landforms, and the		climate change as a result of an increase in	precipitation, ocean pH, glacial ice, sea level,
vegetation, and human activities. These changes can occur on	atmosphere, as well as human activities.		greenhouse gases in the atmosphere, which has	ocean current, or atmospheric circulation)
a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic	activities.		led to increasing global	of climate change.
cycles. (HS-ESS2-4) ESS2.D: Weather and Climate			temperatures that impact local weather.	
• The foundation for Earth's global climate systems is the		Grade Level DCI, S		
electromagnetic radiation from the sun, as well as its	ESS2.A	ESS2.A	ESS2.D	ESS2.D
reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-	ESS2.D SEP4 (Evaluate)	ESS2.D ESS3.D	ESS3.D SEP1 (Investigate)	ESS3.D SEP2 (Reason
radiation into space. (HS-ESS2-4)	CCC2 (Cause and Effect)	<u>SEP7 (Evaluate)</u>	CCC2 (Cause and $Effect)$	<u>Scientifically</u>
• Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect		CCC2 (Cause and Effect)	Effect)	CCC2 (Cause and Effect)
climate. (HS-ESS2-6), (HS-ESS2-4) ESS3.D: Global Climate Change				
• Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model,				
predict, and manage current and future impacts. (HS-ESS3-5)				

Well Below State Expectations: The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS,ESS2.C)

Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. Because these patterns are so complex, weather can only be predicted probabilistically. (MS, ESS2.D)

Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth's mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS, ESS3.D)

Tonic	Well Relow	Below	At State	Above
 Topic <u>HS.Earth's Systems</u> Topic DCIs ESS2.A: Earth Materials and Systems Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth's interior and gravitational movement of denser materials toward the interior. ESS2.B: Plate Tectonics and Large-Scale System 	Well Below State Expectations Ask questions to determine relationships between the location of hydrothermal vents and other geologic features in the ocean, such as mid-ocean ridges. ESS2.A ESS2.B SEP1 (Investigate) CCC1 (Patterns)	Below State Expectations Develop a model based on evidence to illustrate how a change such as deforestation can result in a feedback loop that affects another Earth system. Grade Level DCI, ESS2.A ESS2.E SEP6 (Reason Scientifically)	At State Expectations Apply scientific reasoning to link evidence to claims that the emergence of photosynthetic organisms led to a change in the concentration of oxygen in the atmosphere, which in part allowed for the evolution of animals. SEP, and CCC ESS2.A SEP2 (Reason Scientifically) CCC7 (Stability and	Above State Expectations Analyze data to make valid claims about the effects of properties of water such as density, polarity, and heat capacity on patterns of temperature and wind, as well as the effects of water in shaping Earth's surfaces. ESS2.C SEP4 (Evaluate) CCC2 (Cause and Effect)
 ESS2.B: Plate Tectonics and Large-Scale System Interactions The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. ESS2.C: The Roles of Water in Earth's Surface Processes The abundance of liquid water on Earth's surface and its unique combination of physical and chemical properties are central to the planet's dynamics. These properties include water's exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. ESS2.D: Weather and Climate The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space. Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. 		CCC7 (Stability and Change)	Change)	Ejjecij

ſ	ESS2.E Biogeology		
	• The many dynamic and delicate feedbacks between the		
	biosphere and other Earth systems cause a continual co-		
	evolution of Earth's surface and the life that exists on it.		

Reference DCIs: N/A

Торіс	Well Below	Below	At State	Above
HS.Space Systems	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Make a qualitative claim	Apply scientific ideas to	Use a model to predict how	Analyze absorption
ESS1.A: The Universe and Its Stars	from given position and time	provide an explanation for	the proportions of hydrogen	spectra to determine the
• The star called the sun is changing and will burn out over	data to support whether the	why Earth orbits the sun and	and helium present in the	composition of an
a lifespan of approximately 10 billion years.	universe is expanding at a	not the moon.	sun change as the sun ages.	exoplanet's atmosphere.
• The study of stars' light spectra and brightness is used to	constant rate in all directions.			
identify compositional elements of stars, their				
movements, and their distances from Earth.		Grade Level DCI,		-
• The Big Bang theory is supported by observations of	ESS1.A	ESS1.A	ESS1.B	ESS1.A
distant galaxies receding from our own, of the measured	SEP6 (Reason Scientifically)	SEP2 (Reason Scientifically)	SEP6 (Reason	SEP4 (Evaluate)
composition of stars and non-stellar gases, and of the	CCC3 (Scale, Proportion,	CCC (Scale, proportion, and	Scientifically)	CCC1 (Patterns)
maps of spectra of the primordial radiation (cosmic	and Quantity)	quantity)	CCC4 (Systems and System	
microwave background) that still fills the universe.			Models)	
• Other than the hydrogen and helium formed at the time				
of the Big Bang, nuclear fusion within stars produces all				
atomic nuclei lighter than and including iron, and the				
process releases electromagnetic energy. Heavier				
elements are produced when certain massive stars				
achieve a supernova stage and explode.				
ESS1.B: Earth and the Solar System				
• Kepler's laws describe common features of the motions				
of orbiting objects, including their elliptical paths around				
the sun. Orbits may change due to the gravitational				
effects from, or collisions with, other objects in the solar				
system.				

Well Below State Expectations: The solar system appears to have formed from a disk of dust and gas, drawn together by gravity. (MS, ESS1.B)

Topic HS.History of Earth	Well Below State Expectations	Below State Expectations	At State	Above State Eurostations
	State Expectations Use a model to determine the	State Expectations	Expectations	State Expectations
Topic DCIs ESS1 C: The History of Blanct Forth		Ask questions to clarify an explanation about <i>the</i>	<u>Apply scientific principles</u>	Apply scientific
ESS1.C: The History of Planet Earth	<i>relative age</i> of when geologic features, such as		to explain the pattern of why continental rocks are much	reasoning to link evidence to claims about
• Continental rocks, which can be older than 4 billion		<i>pattern of</i> impact craters and	older than oceanic rocks.	
years, are generally much older than the rocks of the	islands, formed based on	the age of most rocks on	older than oceanic rocks.	proposed theories of
ocean floor, which are less than 200 million years old.	their position from a mid-	Earth compared to other		events that led to the
• Although active geologic processes, such as plate	ocean ridge.	solar system planets and		origination of Earth's
tectonics and erosion, have destroyed or altered most of		moons.		moon to assess the
the very early rock record on Earth, other objects in the				extent to which the
solar system, such as lunar rocks, asteroids, and				reasoning and data
meteorites, have changed little over billions of years.				support the conclusion.
Studying these objects can provide information about		Grade Level DCI,		
Earth's formation and early history.	ESS2.B	ESS1.C	ESS1.C	ESS1.C
ESS2.A: Earth Materials and Systems	SEP2 (Reason Scientifically)	SEP1 (Investigate)	ESS2.A	SEP6 (Reason
• Earth's systems, being dynamic and interacting, cause	CCC3 (Scale, Proportion,	CCC1 (Patterns)	SEP6 (Reason	Scientifically)
feedback effects that can increase or decrease the	and Quantity)		Scientifically)	CCC2 (Cause and
original changes.			CCC1 (Patterns)	<i>Effect)</i>
ESS2.B: Plate Tectonics and Large-Scale System				
Interactions				
• Plate tectonics is the unifying theory that explains the				
past and current movements of the rocks at Earth's				
surface and provides a framework for understanding its				
geologic history.				
 Plate movements are responsible for most continental 				
and ocean-floor features and for the distribution of most				
rocks and minerals within Earth's crust.				

Well Below State Expectations: Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth's plates have moved great distances, collided, and spread apart. (MS, ESS2.B)

Торіс	Well Below	Below	At State	Above
HS.Human Sustainability	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Make a quantitative and/or	Compare and evaluate	<u>Revise a model to show how</u>	Provide evidence to
ESS3.A: Natural Resources	qualitative claim regarding	possible solutions for natural	recycling can minimize the	support the claim that
• Resource availability has guided the development of	the relationship between	hazard events such as	negative effects of a human	the consumption of
human society.	physical properties of the	landslides based on how they	activity such as mining.	energy resources can
• All forms of energy production and other resource	ocean and biodiversity of the	impact the environment and		change based on the
extraction have associated economic, social,	ocean as compared to the	humans.		needs of the population
environmental, and geopolitical costs and risks as well as	patterns of human activity in			using them.
benefits. New technologies and social regulations can	recent history.			
change the balance of these factors.				
ESS3.B: Natural Hazards		Grade Level DCI,		
• Natural hazards and other geologic events have shaped	ESS3.D	ESS3.B	ESS3.C	ESS3.A
the course of human history; [they] have significantly	SEP6 (Reason Scientifically)	SEP7 (Evaluate)	SEP2 (Reason	ESS3.C
altered the sizes of human populations and have driven	CCC1 (Patterns)	CCC2 (Cause and Effect)	Scientifically)	SEP6 (Reason
human migrations.			CCC2 (Cause and Effect)	<u>Scientifically</u>)
ESS3.C: Human Impacts on Earth Systems				CCC7 (Stability and
• The sustainability of human societies and the				Change)
biodiversity that supports them requires responsible				
management of natural resources.				
• Scientists and engineers can make major contributions				
by developing technologies that produce less pollution				
and waste and that preclude ecosystem degradation.				
ESS3.D: Global Climate Change				
• Through computer simulations and other studies,				
important discoveries are still being made about how the				
ocean, the atmosphere, and the biosphere interact and are				
modified in response to human activities.				

Well Below State Expectations: Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things. (MS, ESS3.C)