
# Achievement Level Descriptors (ALDs) Grade 8 Maine Science Assessment New Meridian Corporation 2022



### Contents

| What are ALDs?                                                 |    |
|----------------------------------------------------------------|----|
| General Achievement Levels for Maine                           | 4  |
| How to read this document and the process used by New Meridian | 5  |
| Grade 8Physical Science Topics                                 | 7  |
| TopicMS.Structure and Properties of Matter                     | 8  |
| TopicMS.Forces and Interactions                                |    |
| TopicMS.Chemical Reactions                                     |    |
| TopicMS.Energy                                                 |    |
| TopicMS.Waves and Electromagnetic Radiation                    |    |
| Grade 8Life Science Topics                                     | 14 |
| TopicMS.Matter and Energy in Organisms and Ecosystems          |    |
| TopicMS.Interdependent Relationships in Ecosystems             |    |
| TopicMS.Natural Selection and Adaptation                       |    |
| TopicMS.Growth, Development, and Reproduction of Organisms     |    |
| TopicMS.Structure, Function, and Information Processing        | 21 |
| Grade 8Earth and Space Science Topics                          |    |
| TopicMS.Weather and Climate                                    | 23 |
| TopicMS.Earth's Systems                                        | 24 |
| TopicMS.Space Systems                                          |    |
| TopicMS.History of Earth                                       |    |
| TopicMS.Human Impacts                                          | 27 |



## What are ALDs?

• The Achievement Level Descriptors (ALDs) document is intended to be used as a guideline to describe the four levels of achievement, levels of student mastery of the Standards & Instruction - Science & Engineering, identified by the Maine DOE. This document is to support the effective teaching and assessment of Maine K-12 science and engineering instructional programs.

• The ALDs are written to align with the Next Generation Science Standards (NGSS) Topics. The NGSS topics are standards that are grouped to show the natural connections between the Disciplinary Core Ideas. To support the intent of the standards for science instruction and assessment in Maine, all Science and Engineering Practices (SEPs) and Cross-Cutting Concepts (CCCs) can be used interchangeably with any of the Disciplinary Core Ideas (DCIs), not just the ones found in the performance expectations. It is the intent that the SEP and CCC are selected to enhance the application of the DCIs to make sense of a phenomenon presented in a scenario.



## General Achievement Levels for Maine

| Level 1                                         | Level 2                                    | Level 3                                    | Level 4                                       |
|-------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Well Below State Expectations                   | <b>Below State Expectations</b>            | At State Expectations                      | Above State Expectations                      |
| The student's work demonstrates a minimal       | The student's work demonstrates an         | The student's work demonstrates an         | The student's work demonstrates a             |
| understanding of essential concepts in science. | incomplete understanding of essential      | adequate understanding of essential        | thorough understanding of essential           |
| The student's responses demonstrate minimal     | concepts in science and inconsistent       | concepts in science, including the ability | concepts in science, including the ability to |
| ability to solve problems. Explanations are     | connections among central ideas. The       | to make connections among central ideas.   | make multiple connections among central       |
| illogical, incomplete, or missing connections   | student's responses demonstrate some       | The student's responses demonstrate the    | ideas. The student's responses demonstrate    |
| among central ideas. There are multiple         | ability to analyze and solve problems, but | ability to analyze and solve routine       | the ability to synthesize information,        |
| inaccuracies.                                   | the quality of responses is inconsistent.  | problems and explain central concepts      | analyze and solve difficult problems, and     |
|                                                 | Explanation of concepts may be             | with sufficient clarity and accuracy to    | explain complex concepts using evidence       |
|                                                 | incomplete or unclear.                     | demonstrate general understanding.         | and proper terminology to support and         |
|                                                 |                                            |                                            | communicate logical conclusions.              |



### How to read this document and the process used by New Meridian

The <u>NGSS topic</u> is listed in the top left corner (and is a clickable link to the NGSS topic page). The ALD for each of the 4 levels of achievement (Well Below State Expectations; Below State Expectations; At State Expectations; Above State Expectations) runs along the top. The ALD statements are combinations of grade level DCIs (shown in orange and regular font), SEPs (shown in blue and underlined), and CCCs (shown in green and italicized). These are exemplar targets that have been constructed by New Meridian Science staff, with feedback from the ME DOE. Again, the intention is to demonstrate that any DCI can be combined with any SEP and any CCC for a particular topic and grade level. There are NOT ALDs for each individual Performance Expectation (PE).

The left column contains the exact text of the grade level DCIs included within a topic, pulled from the NGSS. For each grade, for most topics, each DCI for each topic is met at least once in at least one of the four achievement levels. The grade-level DCI, SEP, and CCC that were used are listed below each ALD. The SEPs are from the NGSS SEP matrix found here (starting on p. 17), and the CCCs are from the NGSS CCC matrix found here (p. 15–17).

The reference DCIs are located below the table and are the DCIs from either the "Above State Expectations" ALD (Grade 5 is MS, and MS is HS), or the "Well Below State Expectations" ALD (Grade 5 is Grades 2–4, MS is Grade 5, and HS is MS). These DCIs were referenced in regards of topic progression.

### Example ALD table showing progression of DCIs:

The DCI alone is not what determines the achievement level, rather it is the combination of the 3 dimensions. So, for each exemplar DCI, all other achievement levels could be possible, if combined with different SEPs or CCCs. These documents just give the 4 exemplars, rather than the progression of a single dimension across all 4 achievement levels.

| Торіс                                                      | Well Below                  | Below                        | At State                    | Above                      |
|------------------------------------------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 5.Structure and Properties of Matter                       | State Expectations          | State Expectations           | Expectations                | State Expectations         |
| Topic DCIs                                                 | Represent data to reveal    |                              |                             |                            |
| <b>PS1.A: Structure and Properties of Matter</b>           | patterns that indicate that |                              |                             |                            |
| • Matter of any type can be subdivided into particles that | materials can be identified |                              |                             |                            |
| are too small to see, but even then the matter still       | based on their properties,  |                              |                             |                            |
| exists and can be detected by other means. A model         | and those properties are    |                              |                             |                            |
| showing that gases are made from matter particles that     | suitable for different      |                              |                             |                            |
| are too small to see and are moving freely around in       | purposes.                   |                              |                             |                            |
| space can explain many observations, including the         |                             | Use evidence                 |                             |                            |
| inflation and shape of a balloon and the effects of air    |                             | (measurements) to support    |                             |                            |
| on larger particles or objects.                            |                             | an explanation that matter   |                             |                            |
| • Measurements of a variety of properties can be used to   |                             | is conserved when            |                             |                            |
| identify materials. (Boundary: At this grade level,        |                             | substances are mixed,        |                             |                            |
| mass and weight are not distinguished, and no attempt      |                             | even if a new substance is   |                             |                            |
| is made to define the unseen particles or explain the      |                             | formed, given that the       |                             |                            |
| atomic-scale mechanism of evaporation and                  |                             | total weight of the starting |                             |                            |
| condensation.)                                             |                             | substance(s) is equal to     |                             |                            |
| • The amount (weight) of matter is conserved when it       |                             | the weight of the new        |                             |                            |
| changes form, even in transitions in which it seems to     |                             | substance(s).                |                             |                            |
| vanish.                                                    |                             |                              | Plan an investigation to    |                            |
| PS1.B: Chemical Reactions                                  |                             |                              | show that gases are made    |                            |
| • When two or more different substances are mixed, a       |                             |                              | of particles that are too   |                            |
| new substance with different properties may be             |                             |                              | small to be seen but can be |                            |
| formed.                                                    |                             |                              | detected in other ways.     |                            |
| • No matter what reaction or change in properties          |                             |                              |                             | Support an argument that a |
| occurs, the total weight of the substances does not        |                             |                              |                             | new substance has formed   |
| change. (Boundary: Mass and weight are not                 |                             |                              |                             | when different substances  |
| distinguished at this grade level.)                        |                             |                              |                             | are mixed.                 |
|                                                            |                             |                              | CI, <u>SEP</u> , and CCC    |                            |
|                                                            | PS1.A                       | PS1.A                        | PS1.A                       | PS1.B                      |
|                                                            | <u>SEP4 (Evaluate)</u>      | SEP3 (Investigate)           | PS1.B                       | SEP7 (Evaluate)            |
|                                                            | CCC1 (Patterns)             | CCC3 (Scale, Proportion,     | SEP6 (Reason                | CCC2 (Cause and Effect)    |
|                                                            |                             | and Quantity)                | Scientifically)             |                            |
|                                                            |                             |                              | CCC3 (Scale, Proportion,    |                            |
|                                                            |                             |                              | and Quantity)               |                            |



## Grade 8 Physical Science Topics

| Торіс                                                                                                            | Well Below                                   | Below                               | At State                                             | Above                                       |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|------------------------------------------------------|---------------------------------------------|
| MS.Structure and Properties of Matter                                                                            | State Expectations                           | State Expectations                  | Expectations                                         | State Expectations                          |
| Topic DCIs                                                                                                       | Ask questions that arise                     | Use a model to predict              | Apply scientific principles                          | Analyze and interpret                       |
| PS1.A Structure and Properties of Matter                                                                         | from observations to seek                    | <u>changes</u> within a system      | to construct an explanation                          | data to provide evidence<br>that when a new |
| • Substances are made from different types of atoms, which                                                       | additional information that                  | (e.g., changes in state,            | that the rearrangement of                            |                                             |
| combine with one another in various ways. Atoms form                                                             | matter is made of atoms,                     | temperature, kinetic energy         | atoms due to a chemical                              | substance is formed, the                    |
| molecules that range in size from two to thousands of atoms.                                                     | atoms form molecules, and                    | of molecules) when                  | reaction <i>can result in</i> the formation of a new | new substance has different properties than |
| • Each pure substance has characteristic physical and chemical                                                   | the spacing of the molecules can help define | thermal energy is added or removed. | substance.                                           | the reactants.                              |
| properties (for any bulk quantity under given conditions) that                                                   | the state of matter.                         | removed.                            | substance.                                           | the reactants.                              |
| can be used to identify it.                                                                                      | the state of matter.                         | Crede Level DCL                     | SED and CCC                                          |                                             |
| • Gases and liquids are made of molecules or inert atoms that                                                    | PS1.A                                        | Grade Level DCI,<br>PS1.A           | PS1.B                                                | PS1.B                                       |
| are moving about relative to each other.                                                                         | SEP1 (Investigate)                           | PSI.A<br>PS3.A                      | SEP6 (Reason                                         | SEP7 (Evaluate)                             |
| • In a liquid, the molecules are constantly in contact with                                                      | CCC4 (Systems and                            | SEP2 (Reason                        | Scientifically)                                      | CCC2 (Cause and                             |
| others; in a gas, they are widely spaced except when they                                                        | System Models)                               | Scientifically)                     | CCC2 (Cause and Effect)                              | <i>Effect</i> )                             |
| happen to collide. In a solid, atoms are closely spaced and                                                      | System Models)                               | CCC4 (Systems and System            | CCC2 (Cause and Effect)                              | Ejjeci                                      |
| may vibrate in position but do not change relative locations.                                                    |                                              | Models)                             |                                                      |                                             |
| • Solids may be formed from molecules, or they may be                                                            |                                              | widdels)                            |                                                      |                                             |
| extended structures with repeating subunits (e.g., crystals).                                                    |                                              |                                     |                                                      |                                             |
| • The changes of state that occur with variations in temperature                                                 |                                              |                                     |                                                      |                                             |
| or pressure can be described and predicted using these models of matter.                                         |                                              |                                     |                                                      |                                             |
| of matter.<br>PS1.B: Chemical Reactions                                                                          |                                              |                                     |                                                      |                                             |
| ~                                                                                                                |                                              |                                     |                                                      |                                             |
| • Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original |                                              |                                     |                                                      |                                             |
| substances are regrouped into different molecules, and these                                                     |                                              |                                     |                                                      |                                             |
| new substances have different properties from those of the                                                       |                                              |                                     |                                                      |                                             |
| reactants.                                                                                                       |                                              |                                     |                                                      |                                             |
| PS3.A: Definitions of Energy                                                                                     |                                              |                                     |                                                      |                                             |
| • The term "heat" as used in everyday language refers both to                                                    |                                              |                                     |                                                      |                                             |
| thermal energy (the motion of atoms or molecules within a                                                        |                                              |                                     |                                                      |                                             |
| substance) and the transfer of that thermal energy from one                                                      |                                              |                                     |                                                      |                                             |
| object to another. In science, heat is used only for this second                                                 |                                              |                                     |                                                      |                                             |
| meaning; it refers to the energy transferred due to the                                                          |                                              |                                     |                                                      |                                             |
| temperature difference between two objects.                                                                      |                                              |                                     |                                                      |                                             |
| • The temperature of a system is proportional to the average                                                     |                                              |                                     |                                                      |                                             |
| internal kinetic energy and potential energy per atom or                                                         |                                              |                                     |                                                      |                                             |
| molecule (whichever is the appropriate building block for the                                                    |                                              |                                     |                                                      |                                             |
| system's material). The details of that relationship depend on                                                   |                                              |                                     |                                                      |                                             |
| the type of atom or molecule and the interactions among the                                                      |                                              |                                     |                                                      |                                             |
| atoms in the material. Temperature is not a direct measure of                                                    |                                              |                                     |                                                      |                                             |
| a system's total thermal energy. The total thermal energy                                                        |                                              |                                     |                                                      |                                             |
| (sometimes called the total internal energy) of a system                                                         |                                              |                                     |                                                      |                                             |

| depends jointly on the temperature, the total number of atoms |  |  |
|---------------------------------------------------------------|--|--|
| in the system, and the state of the material.                 |  |  |

Well Below State Expectations: Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5, PS1.A)

Above State Expectations: The MS DCIs do not overlap with the HS DCIs for this topic.

| Торіс                                                        | Well Below                           | Below                      | At State                     | Above                   |
|--------------------------------------------------------------|--------------------------------------|----------------------------|------------------------------|-------------------------|
| MS.Forces and Interactions                                   | State Expectations                   | State Expectations         | Expectations                 | State Expectations      |
| Topic DCIs                                                   | Plan an investigation to             | Analyze and interpret data | Use mathematical             | Develop a model to      |
| PS2.A: Forces and Motion                                     | produce data to serve as             | about the relationship     | representations to describe  | describe the effects of |
| • For any pair of interacting objects, the force exerted by  | evidence about gravitational         | between the material an    | that a change in an object's | changing the distance   |
| the first object on the second object is equal in strength   | forces based on the <i>reference</i> | object is made of and the  | motion is proportional to    | between two magnets on  |
| to the force that the second object exerts on the first, but | point of Earth's surface.            | object's magnetic          | the forces acting on the     | the magnetic fields/    |
| in the opposite direction (Newton's third law).              |                                      | force/strength.            | object and the mass of the   | force.                  |
| • The motion of an object is determined by the sum of the    |                                      |                            | object.                      |                         |
| forces acting on it; if the total force on the object is not |                                      |                            |                              |                         |
| zero, its motion will change. The greater the mass of the    |                                      | Grade Level DCI,           |                              |                         |
| object, the greater the force needed to achieve the same     | PS2.B                                | PS2.B                      | PS2.A                        | PS2.B                   |
| change in motion. For any given object, a larger force       | SEP1 (Investigate)                   | SEP4 (Evaluate)            | SEP5 (Evaluate)              | SEP2 (Reason            |
| causes a larger change in motion.                            | CCC4 (Systems and System             | CCC1 (Patterns)            | CCC3 (Scale, Proportion,     | Scientifically)         |
| • All positions of objects and the directions of forces and  | Models)                              |                            | and Quantity)                | CCC2 (Cause and         |
| motions must be described in an arbitrarily chosen           |                                      |                            |                              | Effect)                 |
| reference frame and arbitrarily chosen units of size. In     |                                      |                            |                              |                         |
| order to share information with other people, these          |                                      |                            |                              |                         |
| choices must also be shared.                                 |                                      |                            |                              |                         |
| <b>PS2.B:</b> Types of Interactions                          |                                      |                            |                              |                         |
| • Electric and magnetic (electromagnetic) forces can be      |                                      |                            |                              |                         |
| attractive or repulsive, and their sizes depend on the       |                                      |                            |                              |                         |
| magnitudes of the charges, currents, or magnetic             |                                      |                            |                              |                         |
| strengths involved and on the distances between the          |                                      |                            |                              |                         |
| interacting objects.                                         |                                      |                            |                              |                         |
| • Gravitational forces are always attractive. There is a     |                                      |                            |                              |                         |
| gravitational force between any two masses, but it is very   |                                      |                            |                              |                         |
| small except when one or both of the objects have large      |                                      |                            |                              |                         |
| mass—e.g., Earth and the sun.                                |                                      |                            |                              |                         |
| • Forces that act at a distance (electric, magnetic, and     |                                      |                            |                              |                         |
| gravitational) can be explained by fields that extend        |                                      |                            |                              |                         |
| through space and can be mapped by their effect on a test    |                                      |                            |                              |                         |
| object (a charged object, a magnet, or a ball,               |                                      |                            |                              |                         |
| respectively).                                               |                                      |                            |                              |                         |

### **Reference DCIs:** Well Below Expectations: N/A

Above State Expectations: Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS, PS2.B)

| Торіс                                                      | Well Below                      | Below                        | At State                     | Above                    |
|------------------------------------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------|
| MS.Chemical Reactions                                      | State Expectations              | State Expectations           | Expectations                 | State Expectations       |
| Topic DCIs                                                 | Ask questions to identify a     | Use a model to describe that | Plan an investigation to     | Analyze and interpret    |
| <b>PS1.A: Structure and Properties of Matter</b>           | pure substance by observing     | the total number of atoms    | produce data to serve as the | data to provide          |
| • Each pure substance has characteristic physical and      | patterns in several chemical    | does not change in a         | basis for evidence that mass | evidence that a chemical |
| chemical properties (for any bulk quantity under given     | or physical properties such     | chemical reaction.           | is conserved in a chemical   | reaction has released    |
| conditions) that can be used to identify it.               | as color, shape, reactivity, or |                              | reaction.                    | energy or absorbed       |
| PS1.B: Chemical Reactions                                  | conductivity.                   |                              |                              | energy.                  |
| • Substances react chemically in characteristic ways. In a |                                 |                              |                              |                          |
| chemical process, the atoms that make up the original      |                                 | Grade Level DCI,             | SEP, and CCC                 |                          |
| substances are regrouped into different molecules, and     | PS1.A                           | PS1.B                        | PS1.B                        | PS1.B                    |
| these new substances have different properties from        | SEP1 (Investigate)              | SEP2 (Reason Scientifically) | SEP3 (Investigate)           | <u>SEP4 (Evaluate)</u>   |
| those of the reactants.                                    | CCC1 (Patterns)                 | CCC5 (Energy and Matter)     | CCC5 (Energy and Matter)     | CCC5 (Energy and         |
| • The total number of each type of atom is conserved, and  |                                 |                              |                              | Matter)                  |
| thus the mass does not change.                             |                                 |                              |                              |                          |
| • Some chemical reactions release energy, others store     |                                 |                              |                              |                          |
| energy.                                                    |                                 |                              |                              |                          |

Well Below Expectations: Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5, PS1.A)

Above State Expectations: Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. (HS, PS1.B)

| Торіс                                                       | Well Below                     | Below                         | At State                   | Above                    |
|-------------------------------------------------------------|--------------------------------|-------------------------------|----------------------------|--------------------------|
| <u>MS.Energy</u>                                            | State Expectations             | State Expectations            | Expectations               | State Expectations       |
| Topic DCIs                                                  | Interpret graphic displays to  | Make a quantitative and/or    | Apply mathematical         | Provide evidence to      |
| <b>PS3.A: Definitions of Energy</b>                         | identify that energy is        | qualitative claim regarding   | processes to predict what  | support the claim that a |
| • Motion energy is properly called kinetic energy; it is    | transferred (and conserved)    | the relationship between the  | will happen to an object's | certain material         |
| proportional to the mass of the moving object and grows     | from stored energy when the    | potential energy of a system  | kinetic energy as its mass | transfers thermal        |
| with the square of its speed.                               | object is not moving (but at a | consisting of a magnet and a  | and/or speed increases.    | energy more effectively  |
| • A system of objects may also contain stored (potential)   | height) to kinetic energy      | magnetic object and the       |                            | than a different         |
| energy, depending on their relative positions.              | when the object is in motion.  | distance between the objects. |                            | material.                |
| • Temperature is a measure of the average kinetic energy    |                                |                               |                            |                          |
| of particles of matter. The relationship between the        |                                | Grade Level DCI,              | SEP, and CCC               |                          |
| temperature and the total energy of a system depends on     | PS3.A                          | PS3.C                         | PS3.A                      | PS1.B                    |
| the types, states, and amounts of matter present.           | PS3.B                          | SEP6 (Reason Scientifically)  | SEP5 (Evaluate)            | SEP7 (Evaluate)          |
| <b>PS3.B:</b> Conservation of Energy and Energy Transfer    | SEP4 (Evaluate)                | CCC4 (Systems and System      | CCC3 (Scale, Proportion,   | CCC5 (Energy and         |
| • When the motion energy of an object changes, there is     | CCC5 (Energy and Matter)       | Models)                       | and Quantity)              | <i>Matter)</i>           |
| inevitably some other change in energy at the same time.    |                                |                               |                            |                          |
| • The amount of energy transfer needed to change the        |                                |                               |                            |                          |
| temperature of a matter sample by a given amount            |                                |                               |                            |                          |
| depends on the nature of the matter, the size of the        |                                |                               |                            |                          |
| sample, and the environment.                                |                                |                               |                            |                          |
| • Energy is spontaneously transferred out of hotter regions |                                |                               |                            |                          |
| or objects and into colder ones.                            |                                |                               |                            |                          |
| <b>PS3.C: Relationship Between Energy and Forces</b>        |                                |                               |                            |                          |
| • When two objects interact, each one exerts a force on     |                                |                               |                            |                          |
| the other that can cause energy to be transferred to or     |                                |                               |                            |                          |
| from the object.                                            |                                |                               |                            |                          |

Well Below Expectations: Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4, PS3.B)

Above State Expectations: Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS, PS3.D)

| Торіс                                                          | Well Below                   | Below                          | At State                              | Above                   |
|----------------------------------------------------------------|------------------------------|--------------------------------|---------------------------------------|-------------------------|
| MS.Waves and Electromagnetic Radiation                         | State Expectations           | State Expectations             | Expectations                          | State Expectations      |
| Topic DCIs                                                     | Use a model to describe      | Analyze and interpret data to  | Use graphical displays to             | Construct an            |
| PS4.A: Wave Properties                                         | repeating patterns of a wave | determine similarities and     | determine the path that light         | explanation that        |
| • A simple wave has a repeating pattern with a specific        | (wavelength, frequency,      | differences between the        | takes through or off various          | includes qualitative or |
| wavelength, frequency, and amplitude.                          | amplitude).                  | patterns of analog and digital | materials such as air, glass,         | quantitative            |
| • A sound wave needs a medium through which it is              |                              | signals.                       | and water.                            | relationships about the |
| transmitted.                                                   |                              |                                |                                       | patterns of light waves |
| PS4.B: Electromagnetic Radiation                               |                              |                                |                                       | and sound waves         |
| • When light shines on an object, it is reflected, absorbed,   |                              |                                |                                       | passing through         |
| or transmitted through the object, depending on the            |                              |                                |                                       | different media.        |
| object's material and the frequency (color) of the light.      |                              | Grade Level DCI,               | · · · · · · · · · · · · · · · · · · · | 1                       |
| • The path that light travels can be traced as straight lines, | PS4.A                        | PS4.C                          | PS4.B                                 | PS4.A                   |
| except at surfaces between different transparent materials     | SEP2 (Reason Scientifically) | <u>SEP4 (Evaluate)</u>         | <u>SEP4 (Evaluate)</u>                | PS4.B                   |
| (e.g., air and water, air and glass) where the light path      | CCC1 (Patterns)              | CCC (Patterns)                 | CCC6 (Structure and                   | SEP6 (Reason            |
| bends.                                                         |                              |                                | Function)                             | Scientifically)         |
| • A wave model of light is useful for explaining               |                              |                                |                                       | CCC1 (Patterns)         |
| brightness, color, and the frequency-dependent bending         |                              |                                |                                       |                         |
| of light at a surface between media.                           |                              |                                |                                       |                         |
| • However, because light can travel through space, it          |                              |                                |                                       |                         |
| cannot be a matter wave, like sound or water waves.            |                              |                                |                                       |                         |
| <b>PS4.C: Information Technologies and Instrumentation</b>     |                              |                                |                                       |                         |
| • Digitized signals (sent as wave pulses) are a more           |                              |                                |                                       |                         |
| reliable way to encode and transmit information.               |                              |                                |                                       |                         |

Well Below Expectations: Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4, PS4.A)

Above State Expectations: The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS, PS4.A)



## Grade 8 Life Science Topics

| Торіс                                                                                                                   | Well Below                | Below                     | At State                        | Above State                |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------------|----------------------------|
| MS.Matter and Energy in Organisms and Ecosystems                                                                        | State Expectations        | State Expectations        | Expectations                    | Expectations               |
| Topic DCIs                                                                                                              | Students can use          | Students can use          | Students can identify the       | Construct an argument      |
| LS1.C: Organization for Matter and Energy Flow in                                                                       | qualitative or            | observations              | limitations of a model that     | supported by evidence that |
| Organisms                                                                                                               | quantitative data to show | or measurements as        | shows how matter is             | within an organism, when   |
| • Plants, algae (including phytoplankton), and many                                                                     | how matter and energy     | evidence that plants      | transferred among and           | food molecules are broken  |
| microorganisms use the energy from light to make sugars                                                                 | are transferred between   | use energy from light     | within plants, animals,         | down, they are rearranged  |
| (food) from carbon dioxide from the atmosphere and water                                                                | producers, consumers,     | to convert carbon dioxide | decomposers, and the            | into new molecules that    |
| through the process of photosynthesis, which also releases                                                              | and decomposers, and      | and water into oxygen and | environment.                    | either support growth or   |
| oxygen. These sugars can be used immediately or stored                                                                  | the growth of organisms   | sugars, which can be      |                                 | are released as energy.    |
| for growth or later use.                                                                                                | and populations is        | consumed by other         |                                 |                            |
| • Within individual organisms, food moves through a series                                                              | limited by the            | organisms for energy.     |                                 |                            |
| of chemical reactions in which it is broken down and                                                                    | availability              |                           |                                 |                            |
| rearranged to form new molecules, to support growth, or to                                                              | of resources and          |                           |                                 |                            |
| release energy.                                                                                                         | competition for those     |                           |                                 |                            |
| LS2.A: Interdependent Relationships in Ecosystems                                                                       | resources.                |                           |                                 |                            |
| • Organisms, and populations of organisms, are dependent on                                                             |                           |                           | CI, <u>SEP</u> , and <i>CCC</i> |                            |
| their environmental interactions both with other living                                                                 | LS2.B                     | LS1.C                     | LS2.A                           | LS1.C                      |
| things and with nonliving factors.                                                                                      | SEP2 (Reason              | LS2.B                     | LS2.B                           | <u>SEP7 (Evaluate)</u>     |
| • In any ecosystem, organisms and populations with similar                                                              | <u>Scientifically</u>     | SEP3 (Investigate)        | LS2.C                           | CCC5 (Energy and           |
| requirements for food, water, oxygen, or other resources                                                                | CCC5 (Energy and          | CCC4 (Systems and System  | SEP5 (Evaluate)                 | Matter)                    |
| may compete with each other for limited resources, access                                                               | Matter)                   | Models)                   | Primary CCC5 (Energy and        |                            |
| to which consequently constrains their growth and                                                                       |                           |                           | Matter)                         |                            |
| reproduction.                                                                                                           |                           |                           | Secondary CCC7 (Stability       |                            |
| • Growth of organisms and population increases are limited                                                              |                           |                           | and Change)                     |                            |
| by access to resources.                                                                                                 |                           |                           |                                 |                            |
| LS2.B: Cycle of Matter and Energy Transfer in Ecosystems                                                                |                           |                           |                                 |                            |
| • Food webs are models that demonstrate how matter and                                                                  |                           |                           |                                 |                            |
| energy is transferred between producers, consumers, and                                                                 |                           |                           |                                 |                            |
| decomposers as the three groups interact within an                                                                      |                           |                           |                                 |                            |
| ecosystem. Transfers of matter into and out of the physical                                                             |                           |                           |                                 |                            |
| environment occur at every level. Decomposers recycle                                                                   |                           |                           |                                 |                            |
| nutrients from dead plant or animal matter back to the soil                                                             |                           |                           |                                 |                            |
| in terrestrial environments or to the water in aquatic                                                                  |                           |                           |                                 |                            |
| environments. The atoms that make up the organisms in an                                                                |                           |                           |                                 |                            |
| ecosystem are cycled repeatedly between the living and                                                                  |                           |                           |                                 |                            |
| nonliving parts of the ecosystem.                                                                                       |                           |                           |                                 |                            |
| LS2.C: Ecosystem Dynamics, Functioning, and Resilience                                                                  |                           |                           |                                 |                            |
| • Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological |                           |                           |                                 |                            |
|                                                                                                                         |                           |                           |                                 |                            |
| component of an ecosystem can lead to shifts in all its populations.                                                    |                           |                           |                                 |                            |
| populations.                                                                                                            |                           | 1                         |                                 |                            |

Well Below State Expectations: Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5, LS2.B)

Above State Expectations: As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. (HS, LS1.C)

| Торіс                                                     | Well Below                    | Below                     | At State                     | Above                     |
|-----------------------------------------------------------|-------------------------------|---------------------------|------------------------------|---------------------------|
| MS.Interdependent Relationships in Ecosystems             | State Expectations            | State Expectations        | Expectations                 | State Expectations        |
| Topic DCIs                                                | Ask questions that arise from | Revise an experimental    | Construct an explanation of  | Consider limitations of   |
| LS2.A: Interdependent Relationships in Ecosystems         | observations to clarify       | design to produce data to | the interdependent           | several human resource    |
| • Similarly, predatory interactions may reduce the number | whether interactions among    | serve as evidence that    | relationships of organisms   | sustainability efforts to |
| of organisms or eliminate whole populations of            | organisms are classified as   | supports the claim        | with both biotic and abiotic | increase ecosystem        |
| organisms. Mutually beneficial interactions, in contrast, | competitive, predatory, or    | that greater biodiversity | factors in an ecosystem.     | biodiversity based on     |
| may become so interdependent that each organism           | mutually beneficial.          | indicates a healthier     |                              | set criteria.             |
| requires the other for survival. Although the species     |                               | ecosystem.                |                              |                           |
| involved in these competitive, predatory, and mutually    |                               |                           |                              |                           |
| beneficial interactions vary across ecosystems, the       |                               | Grade Level DCI,          | SEP, and CCC                 |                           |
| patterns of interactions of organisms with their          | LS2.A                         | LS2.C                     | LS2.A                        | LS2.C                     |
| environments, both living and nonliving, are shared.      | SEP1 (Investigate)            | SEP3 (Investigate)        | SEP6 (Reason                 | SEP4 (Evaluate)           |
| LS2.C: Ecosystem Dynamics, Functioning, and Resilience    | CCC4 (Systems and System      | CCC2 (Cause and Effect)   | Scientifically)              | CCC7 (Stability and       |
| • Biodiversity describes the variety of species found in  | Models)                       |                           | CCC5 (Energy and Matter)     | Change)                   |
| Earth's terrestrial and oceanic ecosystems. The           |                               |                           |                              |                           |
| completeness or integrity of an ecosystem's biodiversity  |                               |                           |                              |                           |
| is often used as a measure of its health.                 |                               |                           |                              |                           |

Well Below Expectations: When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (3, LS2.C)

Above State Expectations: Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (HS, LS2.C)

Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline-and sometimes the extinction-of some species. (HS, LS2.C)

| Торіс                                                     | Well Below                    | Below                      | At State                     | Above                      |
|-----------------------------------------------------------|-------------------------------|----------------------------|------------------------------|----------------------------|
| MS.Natural Selection and Adaptation                       | State Expectations            | State Expectations         | Expectations                 | State Expectations         |
| Topic DCIs                                                | Use a model to describe the   | Interpret a data set to    | Analyze and interpret data   | Use mathematical           |
| LS4.A Evidence of Common Ancestry and Diversity           | relative age of fossils based | identify the relationship  | for patterns in anatomical   | representations of the     |
| • The collection of fossils and their placement in        | on the pattern of their       | between the prevalence of  | similarities amongst several | proportions of each        |
| chronological order (e.g., through the location of the    | location in rock layers.      | variations of a particular | organisms to determine the   | variation of phenotype,    |
| sedimentary layers in which they are found or through     |                               | heritable trait and the    | relative position of those   | for a certain trait within |
| radioactive dating) is known as the fossil record. It     |                               | environments in which they | organisms in a cladogram.    | a population over a        |
| documents the existence, diversity, extinction, and       |                               | occur.                     |                              | period of time, <u>to</u>  |
| change of many life forms throughout the history of life  |                               |                            |                              | support the scientific     |
| on Earth.                                                 |                               |                            |                              | conclusion that the        |
| • Anatomical similarities and differences between various |                               |                            |                              | population has             |
| organisms living today and between them and organisms     |                               |                            |                              | evolved/is evolving.       |
| in the fossil record, enable the reconstruction of        |                               |                            |                              |                            |
| evolutionary history and the inference of lines of        |                               | Grade Level DCI,           |                              |                            |
| evolutionary descent.                                     | LS4.A                         | LS4.B                      | LS4.A                        | LS4.C                      |
| Comparison of the embryological development of            | SEP2 (Reason Scientifically)  | <u>SEP4 (Evaluate)</u>     | SEP4 (Evaluate)              | SEP5 (Evaluate)            |
| different species also reveals similarities that show     | CCC1 (Patterns)               | CCC2 (Cause and Effect)    | CCC1 (Patterns)              | CCC7 (Stability and        |
| relationships not evident in the fully-formed anatomy.    |                               |                            |                              | Change)                    |
| LS4.B: Natural Selection                                  |                               |                            |                              |                            |
| • Natural selection leads to the predominance of certain  |                               |                            |                              |                            |
| traits in a population, and the suppression of others.    |                               |                            |                              |                            |
| LS4.C: Adaptation                                         |                               |                            |                              |                            |
| • Adaptation by natural selection acting over generations |                               |                            |                              |                            |
| is one important process by which species change over     |                               |                            |                              |                            |
| time in response to changes in environmental conditions.  |                               |                            |                              |                            |
| Traits that support successful survival and reproduction  |                               |                            |                              |                            |
| in the new environment become more common; those          |                               |                            |                              |                            |
| that do not become less common. Thus, the distribution    |                               |                            |                              |                            |
| of traits in a population changes.                        |                               |                            |                              |                            |

Well Below Expectations: Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4, ESS1.C)

Above State Expectations: Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment's limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. (HS, LS4.C)

| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wall Balaw                                                                                                                                                                                                                                                                                          | Bolow                                                                                                                                                                                                                                                                                                                  | At State                                                                                                                                                                                                                                                                                  | Abovo                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| <ul> <li>Topic<br/>MS.Growth. Development, and Reproduction of Organisms</li> <li>Topic DCIs<br/>LS1.B: Growth and Development of Organisms</li> <li>Animals engage in characteristic behaviors that increase<br/>the odds of reproduction. (MS-LS1-4)</li> <li>Plants reproduce in a variety of ways, sometimes<br/>depending on animal behavior and specialized features<br/>for reproduction. (MS-LS1-4)</li> <li>Genetic factors as well as local conditions affect the<br/>growth of the adult plant. (MS-LS1-5)</li> <li>LS3.A: Inheritance of Traits</li> <li>Genes are located in the chromosomes of cells, with each<br/>chromosome pair containing two variants of each of<br/>many distinct genes. Each distinct gene chiefly controls<br/>the production of specific proteins, which in turn affects<br/>the traits of the individual. Changes (mutations) to genes<br/>can result in changes to proteins, which can affect the<br/>structures and functions of the organism and thereby<br/>change traits. (MS-LS3-1)</li> <li>Variations of inherited traits between parent and<br/>offspring arise from genetic differences that result from<br/>the subset of chromosomes (and therefore genes)<br/>inherited. (MS-LS3-2)</li> <li>LS3.B: Variation of Traits</li> <li>In sexually reproducing organisms, each parent<br/>contributes half of the genes acquired (at random) by the<br/>offspring. Individuals have two of each chromosome and<br/>hence two alleles of each gene, one acquired from each<br/>parent. These versions may be identical or may differ<br/>from each other. (MS-LS3-2)</li> <li>In addition to variations that arise from sexual<br/>reproduction, genetic information can be altered because<br/>of mutations. Though rare, mutations may result in</li> </ul> | Well Below<br>State Expectations         Ask questions that arise from<br>observations of pollinators<br>interacting with structures of<br>plants to clarify how animals<br>may increase a plant's<br>reproductive success.         LS1.B<br>SEP1 (Investigate)<br>CCC6 (Structure and<br>Function) | Below         State Expectations         Analyze and interpret data to determine similarities and differences in the resulting offspring of plants that have modified traits due to humans.         Grade Level DCL,         LS1.B         LS4.B         LS3.A         SEP4 (Evaluate)         CCC2 (Cause and Effect) | At State<br>Expectations<br>Develop and use a model<br>(Punnett square) to predict<br>the probability of<br>phenotypes of the offspring<br>from a certain parental cross<br>with known genotypes.<br>SEP, and CCC<br>LS3.A<br>LS3.B<br>SEP2 (Reason<br>Scientifically)<br>CCC1 (Patterns) | Above<br>State ExpectationsApply scientific<br>principles to construct<br>an explanation as to how<br>a mutation in a gene(s)<br>may affect protein<br>structure and therefore<br>protein function.LS3.B<br>SEP6 (Reason<br>Scientifically)<br>CCC6 (Structure and<br>Function) |
| <ul> <li>parent. These versions may be identical or may differ<br/>from each other. (MS-LS3-2)</li> <li>In addition to variations that arise from sexual<br/>reproduction, genetic information can be altered because</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| influence certain characteristics of organisms by<br>selective breeding. One can choose desired parental traits<br>determined by genes, which are then passed on to<br>offspring. (MS-LS4-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |

Well Below Expectations: Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3, LS1.B)

Above State Expectations: In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS, LS3.B)

| Торіс                                                       | Well Below                     | Below                         | At State                      | Above                   |
|-------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------|
| MS.Structure, Function, and Information Processing          | State Expectations             | State Expectations            | Expectations                  | State Expectations      |
| Topic DCIs                                                  | Analyze and interpret data to  | Use a model to describe how   | Plan an investigation,        | Construct an            |
| LS1.A: Structure and Function                               | identify differences in        | the heart and blood vessels   | including what tools and      | explanation of how a    |
| • All living things are made up of cells, which is the      | cellular structures that       | work together as the          | data are needed, to identify  | given stimuli is        |
| smallest unit that can be said to be alive. An organism     | provide evidence for plant     | circulatory system to         | at both the macroscopic       | processed by sensory    |
| may consist of one single cell (unicellular) or many        | cells being able to make their | transport blood and nutrients | (entire organisms or objects) | receptors and the       |
| different numbers and types of cells (multicellular).       | own food while animal cells    | throughout the body.          | and microscopic (cells or     | behavior that occurs as |
| • Within cells, special structures are responsible for      | cannot.                        |                               | magnified part of object)     | a result.               |
| particular functions, and the cell membrane forms the       |                                |                               | scales whether several        |                         |
| boundary that controls what enters and leaves the cell.     |                                |                               | samples are living or         |                         |
| • In multicellular organisms, the body is a system of       |                                |                               | nonliving.                    |                         |
| multiple interacting subsystems. These subsystems are       |                                | Grade Level DCI,              | SEP, and CCC                  |                         |
| groups of cells that work together to form tissues and      | LS1.A                          | LS1.A                         | LS1.A                         | LS1.D                   |
| organs that are specialized for particular body functions.  | SEP4 (Evaluate)                | SEP2 (Reason Scientifically)  | SEP1 (Investigate)            | SEP6 (Reason            |
| LS1.D: Information Processing                               | CCC6 (Structure and            | CCC4 (Systems and System      | CCC3 (Scale, proportion,      | Scientifically)         |
| • Each sense receptor responds to different inputs          | Function)                      | Models)                       | and quantity)                 | CCC2 (Cause and         |
| (electromagnetic, mechanical, chemical), transmitting       |                                |                               |                               | Effect)                 |
| them as signals that travel along nerve cells to the brain. |                                |                               |                               |                         |
| The signals are then processed in the brain, resulting in   |                                |                               |                               |                         |
| immediate behaviors or memories.                            |                                |                               |                               |                         |

Well Below Expectations: Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4, LS1.A)

Above State Expectations: Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS, LS1.A)



## Grade 8 Earth and Space Science Topics

| Торіс                                                                   | Well Below                 | Below                  | At State                   | Above                    |
|-------------------------------------------------------------------------|----------------------------|------------------------|----------------------------|--------------------------|
| MS.Weather and Climate                                                  | State Expectations         | State Expectations     | Expectations               | State Expectations       |
| Topic DCIs                                                              | Ask questions to clarify   | Develop a model to     | Apply scientific ideas or  | Use mathematical         |
| ESS2.C: The Roles of Water in Earth's Surface Processes                 | how climate describes a    | show how sunlight      | evidence to construct an   | representations to       |
| • The complex patterns of the changes and the movement of water in      | range of an area's typical | influences weather and | explanation that weather   | support explanations     |
| the atmosphere, determined by winds, landforms, and ocean               | weather conditions and     | climate.               | and climate are            | that global climate      |
| temperatures and currents, are major determinants of local weather      | the extent to which those  |                        | influenced by interactions | change is a result of an |
| patterns.                                                               | conditions vary over       |                        | involving sunlight, the    | increase in greenhouse   |
| • Variations in density due to variations in temperature and salinity   | years.                     |                        | oceans, landforms, and     | gases in the             |
| drive a global pattern of interconnected ocean currents.                |                            |                        | the atmosphere, as well    | atmosphere, which has    |
| ESS2.D: Weather and climate                                             |                            |                        | as human activities.       | led to increasing global |
| • Weather and climate are influenced by interactions involving          |                            |                        |                            | temperatures that        |
| sunlight, the ocean, the atmosphere, ice, landforms, and living things. |                            |                        |                            | impact local weather.    |
| These interactions vary with latitude, altitude, and local and regional |                            |                        | CI, <u>SEP</u> , and CCC   |                          |
| geography, all of which can affect oceanic and atmospheric flow         | ESS2.D                     | ESS2.D                 | ESS3.D                     | ESS3.D                   |
| patterns. Because these patterns are so complex, weather can only be    | SEP1 (Investigate)         | SEP2 (Reason           | ESS2.C                     | SEP5 (Evaluate)          |
| predicted probabilistically.                                            | CCC7 (Stability and        | Scientifically)        | SEP6 (Reason               | CCC2 (Cause and          |
| • The ocean exerts a major influence on weather and climate by          | Change)                    | CCC2 (Cause and        | Scientifically)            | Effect)                  |
| absorbing energy from the sun, releasing it over time, and globally     |                            | Effect)                | CCC2 (Cause and Effect)    |                          |
| redistributing it through ocean currents.                               |                            |                        |                            |                          |
| ESS3.D: Global Climate Change                                           |                            |                        |                            |                          |
| • Human activities, such as the release of greenhouse gases from        |                            |                        |                            |                          |
| burning fossil fuels, are major factors in the current rise in Earth's  |                            |                        |                            |                          |
| mean surface temperature (global warming). Reducing the level of        |                            |                        |                            |                          |
| climate change and reducing human vulnerability to whatever climate     |                            |                        |                            |                          |
| changes do occur depend on the understanding of climate science,        |                            |                        |                            |                          |
| engineering capabilities, and other kinds of knowledge, such as         |                            |                        |                            |                          |
| understanding of human behavior and on applying that knowledge          |                            |                        |                            |                          |
| wisely in decisions and activities.                                     |                            |                        |                            |                          |

Well Below State Expectations: Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2) Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3, ESS2.D)

Above State Expectations: Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS, ESS2.D)

| Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well Below                                                                                                                                                  | Below                                                                                                                                         | At State                                                                                                          | Above                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MS.Earth's Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State Expectations                                                                                                                                          | State Expectations                                                                                                                            | Expectations                                                                                                      | State Expectations                                                                                                                                                                                                                       |
| <ul> <li>Topic DCIs</li> <li>ESS2.A: Earth's Materials and Systems</li> <li>All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth's materials and living organisms.</li> <li>ESS2.C: The Roles of Water in Earth's Surface Processes</li> </ul> | Apply scientific ideas to<br>identify pros and cons of<br>using either a <i>renewable or a</i><br><i>nonrenewable resource</i> for a<br>particular purpose. | Use graphical displays to<br>identify relationships<br>between the location of<br>different natural resources<br>and past geologic processes. | Develop a model to describe<br>a <i>sequence of processes</i> that<br>resulted in a particular rock<br>formation. | Apply scientific<br>principles to construct<br>an explanation as to<br>how the <i>energy from the</i><br><i>sun</i> , as well as gravity,<br>are responsible for the<br>movement of water<br>throughout the parts of<br>the water cycle. |
| <ul> <li>Water continually cycles among land, ocean, and<br/>atmosphere via transpiration, evaporation, condensation<br/>and crystallization, and precipitation, as well as downhill<br/>flows on land.</li> <li>Global movements of water and its changes in form are</li> </ul>                                                                                                                                                                                  | ESS3.A<br>SEP6 (Reason Scientifically)<br>CCC7 (Stability and Change)                                                                                       | Grade Level DCI,<br>ESS3.A<br>SEP4 (Evaluate)<br>CCC2 (Cause and Effect)                                                                      | SEP, and CCC<br>ESS2.A<br>SEP2 (Reason<br>Scientifically)                                                         | ESS2.C<br>SEP6 (Reason<br>Scientifically)                                                                                                                                                                                                |
| <ul> <li>propelled by sunlight and gravity.</li> <li>ESS3.A: Natural Resources</li> <li>Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes.</li> </ul>                                    |                                                                                                                                                             |                                                                                                                                               | CCC5 (Energy and Matter)                                                                                          | CCC5 (Energy and<br>Matter)                                                                                                                                                                                                              |

Well Below Expectations: Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. (5, ESS3.C)

Above State Expectations: The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space. (HS, ESS2.D)

| Торіс                                                          | Well Below                        | Below                             | At State                     | Above                       |
|----------------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------|
| MS.Space Systems                                               | State Expectations                | State Expectations                | Expectations                 | State Expectations          |
| Topic DCIs                                                     | Ask questions to clarify a        | <u>Use a model to explain the</u> | Apply scientific evidence to | Construct an argument       |
| ESS1.A: The Universe and Its Stars                             | <i>model</i> of the solar system. | relationship between the          | construct an explanation for | based on scientific         |
| • Patterns of the apparent motion of the sun, the moon, and    |                                   | positions of the sun, moon,       | how the planets of the solar | reasoning that seasons      |
| stars in the sky can be observed, described, predicted,        |                                   | and Earth in a solar eclipse.     | system are held in orbit.    | are a result of the tilt of |
| and explained with models.                                     |                                   |                                   |                              | Earth's axis of rotation    |
| • Earth and its solar system are part of the Milky Way         |                                   |                                   |                              | and not a result of         |
| galaxy, which is one of many galaxies in the universe.         |                                   |                                   |                              | Earth's proximity to the    |
| ESS1.B: Earth and the Solar System                             |                                   |                                   |                              | Sun.                        |
| • The solar system consists of the sun and a collection of     |                                   | Grade Level DCI,                  | SEP, and CCC                 |                             |
| objects, including planets, their moons, and asteroids that    | ESS1.B                            | ESS1.A                            | ESS1.B                       | ESS1.B                      |
| are held in orbit around the sun by its gravitational pull     | SEP1 (Investigate)                | ESS1.B                            | SEP6 (Reason                 | SEP7 (Evaluate)             |
| on them.                                                       | CCC4 (Systems and System          | SEP2 (Reason Scientifically)      | Scientifically)              | CCC2 (Cause and             |
| • This model of the solar system can explain eclipses of       | Models)                           | CCC4 (Systems and System          | CCC4 (Systems and System     | Effect)                     |
| the sun and the moon. Earth's spin axis is fixed in            |                                   | Models)                           | Models)                      |                             |
| direction over the short-term but tilted relative to its orbit |                                   |                                   |                              |                             |
| around the sun. The seasons are a result of that tilt and      |                                   |                                   |                              |                             |
| are caused by the differential intensity of sunlight on        |                                   |                                   |                              |                             |
| different areas of Earth across the year.                      |                                   |                                   |                              |                             |
| • The solar system appears to have formed from a disk of       |                                   |                                   |                              |                             |
| dust and gas, drawn together by gravity.                       |                                   |                                   |                              |                             |

Well Below Expectations: The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. (MS, PS2.B)

Above State Expectations: N/A

| Торіс                                                                                                   | Well Below                    | Below                       | At State                     | Above                   |
|---------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|------------------------------|-------------------------|
| MS.History of Earth                                                                                     | State Expectations            | State Expectations          | Expectations                 | State Expectations      |
| Topic DCIs                                                                                              | Ask questions that arise from | Use a model to determine    | Apply scientific principles  | Analyze and interpret   |
| ESS1.C: The History of Planet Earth                                                                     | an observation of pictures of | the relative age of fossils | to provide an explanation    | data on maps to provide |
| • The geologic time scale interpreted from rock strata                                                  | a landform many years apart   | based on their placement in | for the multiple geoscience  | evidence that tectonic  |
| provides a way to organize Earth's history. Analyses of                                                 | regarding the processes that  | rock strata.                | processes that have occurred | plates have moved       |
| rock strata and the fossil record provide only relative                                                 | have caused changes to the    |                             | over varying time scales     | throughout the history  |
| dates, not an absolute scale.                                                                           | landform throughout those     |                             | (such as crater formation    | of Earth, shifting land |
| • Tectonic processes continually generate new ocean sea                                                 | years.                        |                             | and then erosion) that have  | masses and producing    |
| floor at ridges and destroy old sea floor at trenches.                                                  |                               |                             | resulted in a particular     | geologic features.      |
| ESS2.A: Earth's Materials and Systems                                                                   |                               |                             | surface feature.             |                         |
| • The planet's systems interact over scales that range from                                             |                               | Grade Level DCI,            | SEP, and CCC                 |                         |
| microscopic to global in size, and they operate over                                                    | ESS2.A                        | ESS1.C                      | ESS2.A                       | ESS2.B                  |
| fractions of a second to billions of years. These                                                       | ESS2.C                        | SEP2 (Evaluate)             | SEP6 (Reason                 | SEP4 (Evaluate)         |
| interactions have shaped Earth's history and will                                                       | SEP1 (Investigate)            | CCC1 (Patterns)             | Scientifically)              | CCC3 (Scale,            |
| determine its future.                                                                                   | CCC7 (Stability and Change)   |                             | CCC3 (Scale, Proportion,     | Proportion, and         |
| ESS2.B: Plate Tectonics and Large-Scale System                                                          |                               |                             | and Quantity)                | Quantity)               |
| Interactions                                                                                            |                               |                             |                              |                         |
| • Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how |                               |                             |                              |                         |
| Earth's plates have moved great distances, collided, and spread apart.                                  |                               |                             |                              |                         |
| ESS2.C: The Roles of Water in Earth's Surface Processes                                                 |                               |                             |                              |                         |
| • Water's movements—both on the land and                                                                |                               |                             |                              |                         |
| underground-cause weathering and erosion, which                                                         |                               |                             |                              |                         |
| change the land's surface features and create                                                           |                               |                             |                              |                         |
| underground formations.                                                                                 |                               |                             |                              |                         |

Well Below Expectations: Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4, ESS2.A)

Above State Expectations: Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth's formation and early history. (HS, ESS1.C)

| Торіс                                                     | Well Below                    | Below                        | At State                     | Above                   |
|-----------------------------------------------------------|-------------------------------|------------------------------|------------------------------|-------------------------|
| MS.Human Impacts                                          | State Expectations            | State Expectations           | Expectations                 | State Expectations      |
| Topic DCIs                                                | Ask questions to clarify      | Analyze data to identify     | Use maps showing historical  | Construct an argument   |
| ESS3.B: Natural Hazards                                   | evidence of the tradeoffs of  | potential environmental      | natural hazards to explain   | supported by evidence   |
| • Mapping the history of natural hazards in a region,     | growing a particular crop in  | impacts of fossil fuel usage | the correlation between a    | that increases in human |
| combined with an understanding of related geologic        | the shade as opposed to       | by humans as either sudden   | particular abiotic factor,   | populations and per     |
| forces can help forecast the locations and likelihoods of | growing the crop in full sun, | or gradual.                  | such as temperature, and the | capita consumption of   |
| future events.                                            | which requires deforestation. |                              | frequency or severity of a   | natural resources have  |
| ESS3.C: Human Impacts on Earth Systems                    |                               |                              | particular natural hazard.   | negatively impacted     |
| • Human activities have significantly altered the         |                               |                              |                              | Earth.                  |
| biosphere, sometimes damaging or destroying natural       |                               |                              |                              |                         |
| habitats and causing the extinction of other species. But |                               | Grade Level DCI,             | SEP, and CCC                 |                         |
| changes to Earth's environments can have different        | ESS3.C                        | ESS3.C                       | ESS3.B                       | ESS3.C                  |
| impacts (negative and positive) for different living      | SEP1 (Investigate)            | SEP4 (Evaluate)              | SEP4 (Evaluate)              | SEP6 (Reason            |
| things.                                                   | CCC7 (Stability and Change)   | CCC4 (Systems and System     | CCC1 (Patterns)              | Scientifically)         |
| Typically as human populations and per-capita             |                               | Models)                      |                              | CCC2 (Cause and         |
| consumption of natural resources increase, so do the      |                               |                              |                              | Effect)                 |
| negative impacts on Earth unless the activities and       |                               |                              |                              |                         |
| technologies involved are engineered otherwise.           |                               |                              |                              |                         |

Well Below Expectations: Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. (5, ESS3.C)

Above State Expectations: The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS, ESS3.C)