Achievement Level Descriptors (ALDs) Maine Science Assessment Grade 5 New Meridian Corporation 2022

Contents

What are ALDs?	3
General Achievement Levels for Maine	
How to read this document and the process used by New Meridian	
Example ALD table showing progression of DCIs	
Grade 5Physical Science Topics	
Topic5.Structure and Properties of Matter	
Grade 5Life Science Topics	
Topic5.Matter and Energy in Organisms and Ecosystems	
Grade 5Earth and Space Science Topics	
Topic5.Earth's Systems	
Topic5.Space Systems: Stars and the Solar System	

What are ALDs?

• The Achievement Level Descriptors (ALDs) document is intended to be used as a guideline to describe the four levels of achievement, levels of student mastery of the Standards & Instruction - Science & Engineering, identified by the Maine DOE. This document is to support the effective teaching and assessment of Maine K–12 science and engineering instructional programs.

• The ALDs are written to align with the Next Generation Science Standards (NGSS) Topics. The NGSS topics are standards that are grouped to show the natural connections between the Disciplinary Core Ideas. To support the intent of the standards for science instruction and assessment in Maine, all Science and Engineering Practices (SEPs) and Cross-Cutting Concepts (CCC) can be used interchangeably with any of the Disciplinary Core Ideas (DCI), not just the ones found in the performance expectations. It is the intent that the SEP and CCC are selected to enhance the application of the DCIs to make sense of a phenomenon presented in a scenario.

General Achievement Levels for Maine

Level 1	Level 2	Level 3	Level 4
Well Below State Expectations	Below State Expectations	At State Expectations	Above State Expectations
The student's work demonstrates a minimal	The student's work demonstrates an	The student's work demonstrates an	The student's work demonstrates a
understanding of essential concepts in science.	incomplete understanding of essential	adequate understanding of essential	thorough understanding of essential
The student's responses demonstrate minimal	concepts in science and inconsistent	concepts in science, including the ability	concepts in science, including the ability to
ability to solve problems. Explanations are	connections among central ideas. The	to make connections among central ideas.	make multiple connections among central
illogical, incomplete, or missing connections	student's responses demonstrate some	The student's responses demonstrate the	ideas. The student's responses demonstrate
among central ideas. There are multiple	ability to analyze and solve problems, but	ability to analyze and solve routine	the ability to synthesize information,
inaccuracies.	the quality of responses is inconsistent.	problems and explain central concepts	analyze and solve difficult problems, and
	Explanation of concepts may be	with sufficient clarity and accuracy to	explain complex concepts using evidence
	incomplete or unclear.	demonstrate general understanding.	and proper terminology to support and
			communicate logical conclusions.

How to read this document and the process used by New Meridian

The <u>NGSS topic</u> is listed in the top left corner (and is a clickable link to the NGSS topic page). The ALD for each of the 4 levels of achievement (Well Below State Expectations; Below State Expectations; At State Expectations; Above State Expectations) runs along the top. The ALD statements are combinations of grade level DCIs (shown in orange and regular font), SEPs (shown in blue and underlined), and CCCs (shown in green and italicized). These are exemplar targets that have been constructed by New Meridian Science staff, with feedback from the ME DOE. Again, the intention is to demonstrate that any DCI can be combined with any SEP and any CCC for a particular topic and grade level. There are NOT ALDs for each individual Performance Expectation (PE).

The left column contains the exact text of the grade level DCIs included within a topic, pulled from the NGSS. For each grade, for most topics, each DCI for each topic is met at least once in at least one of the four achievement levels. The grade-level DCI, SEP, and CCC that were used are listed below each ALD. The SEPs are from the NGSS SEP matrix found here (starting on p. 17), and the CCCs are from the NGSS CCC matrix found here (pp. 15–17).

The reference DCIs are located below the tables and are the DCIs from either the "Above State Expectations" ALD (Grade 5 is MS, and MS is HS), or the "Well Below State Expectations" ALD (Grade 5 is Grades 2–4, MS is Grade 5, and HS is MS). These DCIs are referenced in regard to topic progression.

Example ALD table showing progression of DCIs:

The DCI alone is not what determines the achievement level, rather it is the combination of the 3 dimensions. So, for each exemplar DCI, all other achievement levels could be possible if combined with different SEPs or CCCs. These documents just give the 4 exemplars, rather than the progression of a single dimension across all 4 achievement levels.

Topic	Well Below	Below	At State	Above
5.Structure and Properties of Matter	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Represent data to reveal	•	-	
 Topic DCIs PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to 	Represent data to reveal patterns that indicate that materials can be identified based on their properties, and those properties are suitable for different purposes.	Use evidence (measurements) to support an explanation that matter is conserved when substances are mixed, even if a new substance is formed, given that the total weight of the starting substance(s) is equal to the weight of the new substance(s).		
 Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. 			Plan an investigation to show that gases are made of particles that <i>are too</i> <i>small to be seen</i> but can be detected in other ways.	
 No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) 				Support an argument that a new substance has formed when different substances are mixed.
			I, <u>SEP</u> , and <i>CCC</i>	D.01 D
	PS1.A <u>SEP4 (Evaluate)</u> CCC1 (Patterns)	PS1.A <u>SEP3 (Investigate)</u> <i>CCC3 (Scale, Proportion,</i> <i>and Quantity)</i>	PS1.A PS1.B <u>SEP6 (Reason</u> <u>Scientifically)</u> CCC3 (Scale, Proportion, and Ouantity)	PS1.B <u>SEP7 (Evaluate)</u> CCC2 (Cause and Effect)

Grade 5 Physical Science Topics

Торіс	Well Below	Below	At State	Above
5.Structure and Properties of Matter	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Represent data to reveal	Use evidence	Plan an investigation to	Support an argument
 PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger 	<i>patterns that indicate</i> that materials can be identified based on their properties, and those properties are suitable for different purposes.	(measurements) to support an explanation that matter is conserved when substances are mixed, even if a new substance is formed, given that the total weight of the starting substance(s) is equal to the weight of the new substance(s).	show that gases are made of particles that <i>are too</i> <i>small to be seen</i> but can be detected in other ways.	that a new substance <i>has</i> <i>formed when</i> different substances are mixed.
particles or objects.		Grade Level DCI,	SEP and CCC	
 Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) 	PS1.A SEP4 (Evaluate) CCC1 (Patterns)	PS1.A <u>SEP3 (Investigate)</u> <i>CCC3 (Scale, Proportion,</i> <i>and Quantity)</i>	PS1.A PS1.B <u>SEP6 (Reason</u> <u>Scientifically)</u> <i>CCC3 (Scale, Proportion,</i> <i>and Quantity)</i>	PS1.B SEP7 (Evaluate) CCC2 (Cause and Effect)

Well Below Expectations: Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. Different properties are suited to different purposes. (2, PS1.A)

Above State Expectations: Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS, PS1.B)

Grade 5 Life Science Topics

Торіс	Well Below	Below State	At State	Above State
5.Matter and Energy in Organisms and Ecosystems	State Expectations	Expectations	Expectation	Expectations
Topic DCIs	Use observations to	Use a model to	Support an argument	Ask a question that can
PS3.D Energy in Chemical Processes and Everyday Life	support an explanation that	describe that all	that matter is transferred	be investigated about the
• The energy released [from] food was once energy from the sun that	when the environment	energy from food was	among and within	effects of a newly
was captured by plants in the chemical process that forms plant	changes, organisms may	once energy from the	plants, animals,	introduced species on an
matter (from air and water).	not be able to survive and	sun.	decomposers, and the	ecosystem.
LS2.A Interdependent Relationships in Ecosystems	reproduce.		environment.	
• The food of almost any kind of animal can be traced back to plants.			CI, <u>SEP</u> , and CCC	
Organisms are related in food webs in which some animals eat	LS2.A	PS3.D	LS2.B	LS2.A
plants for food and other animals eat the animals that eat plants.	<u>SEP6 (Reason</u>	SEP2 (Reason	LS1.C	<u>SEP3 (Investigate)</u>
Some organisms, such as fungi and bacteria, break down dead	<u>Scientifically</u>	<u>Scientifically</u>	<u>SEP7 (Evaluate)</u>	CCC7 (Stability and
organisms (both plants or plants parts and animals) and therefore	CCC7 (Stability and	CCC5 (Energy and	CCC5 (Energy and	Change)
operate as "decomposers." Decomposition eventually restores	Change)	Matter)	Matter <u>)</u>	
(recycles) some materials back to the soil. Organisms can survive				
only in environments in which their particular needs are met. A				
healthy ecosystem is one in which multiple species of				
different types are each able to meet their needs in a relatively				
stable web of life. Newly introduced species can damage the				
balance of an ecosystem.				
LS1.C: Organization for Matter and Energy Flow in Organisms				
• Plants acquire their material for growth chiefly from air and water.				
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems				
• Matter cycles between the air and soil and among plants, animals,				
and microbes as these organisms live and die. Organisms obtain				
gases, and water, from the environment, and release waste matter				
(gas, liquid, or solid) back into the environment.				

Well Below State Expectations: When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (3, LS2.C)

Above State Expectations: Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS, LS2.C)

Grade 5 Earth and Space Science Topics

Торіс	Well Below	Below	At State	Above
5.Earth's Systems	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Analyze and interpret data to	Use a model to show how	Use graphs and/or charts to	Use evidence to
ESS2.A: Earth Materials and Systems	determine that the majority	the hydrosphere and the	compare alternative	construct an explanation
• Earth's major systems are the geosphere (solid and	of water found on Earth is	atmosphere interact to form	solutions to environmental	as to how the
molten rock, soil, and sediments), the hydrosphere	salt water.	or melt ice on Earth.	impacts that have occurred	interactions between
(water and ice), the atmosphere (air), and the biosphere			as a result of human	two of Earth's major
(living things, including humans). These systems			activities.	systems lead to
interact in multiple ways to affect Earth's surface				phenomena such as lake
materials and processes. The ocean supports a variety of				effect snow.
ecosystems and organisms, shapes landforms, and				
influences climate. Winds and clouds in the atmosphere		Grade Level DCI,	SEP, and CCC	
interact with the landforms to determine patterns of	ESS2.C	ESS2.A	ESS3.C	ESS2.A
weather.	<u>SEP4 (Evaluate)</u>	SEP2 (Reason Scientifically)	SEP5 (Evaluate)	SEP6 (Reason
ESS2.C: The Roles of Water in Earth's Surface Processes	CCC3 (Scale, Proportion,	CCC4 (Systems and System	CCC7 (Stability and	Scientifically)
• Nearly all of Earth's available water is in the ocean.	and Quantity)	Models)	Change)	CCC4 (Systems and
Most fresh water is in glaciers or underground; only a				System Models)
tiny fraction is in streams, lakes, wetlands, and the				
atmosphere.				
ESS3.C: Human Impacts on Earth Systems				
• Human activities in agriculture, industry, and everyday				
life have had major effects on the land, vegetation,				
streams, ocean, air, and even outer space. But				
individuals and communities are doing things to help				
protect Earth's resources and environments.				

Well Below Expectations: Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. (2, ESS2.C)

Above State Expectations: Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS, ESS2.A)

Торіс	Well Below	Below	At State	Above
5.Space Systems: Stars and the Solar System	State Expectations	State Expectations	Expectations	State Expectations
Topic DCIs	Use data to evaluate claims	Represent data in tables or	Use a model to predict how	Construct an
PS2.B: Types of Interactions	about the force of gravity	graphical displays to reveal	the length and position of a	explanation of observed
• The gravitational force of Earth acting on an object near	pulling all objects on Earth	patterns that indicate why	shadow will change based	relationships in the
Earth's surface pulls that object toward the planet's	downward.	one star/planet is brighter to	on the time of day and the	number of daylight
center.		one observer on Earth than	season.	hours and the months of
ESS1.A: The Universe and its Stars		to another.		the year in the Northern
• The sun is a star that appears larger and brighter than				Hemisphere.
other stars because it is closer. Stars range greatly in		Grade Level DCI,	SEP, and CCC	
their distance from Earth.	PS2.B	ESS1.A	ESSS1.B	ESS1.B
ESS1.B: Earth and the Solar System	SEP7 (Evaluate)	SEP4 (Evaluate)	SEP2 (Reason	SEP6 (Reason
• The orbits of Earth around the sun and of the moon	CCC2 (Cause and Effect)	CCC1 (Patterns)	Scientifically)	Scientifically)
around Earth, together with the rotation of Earth about			CCC2 (Cause and Effect)	CCC2 (Cause and
an axis between its North and South poles, cause				Effect)
observable patterns. These include day and night; daily				
changes in the length and direction of shadows; and				
different positions of the sun, moon, and stars at				
different times of the day, month, and year.				

Well Below Expectations: Pushes and pulls can have different strengths and directions, and can change the speed or direction of its motion or start or stop it. A change in motion of an object can depend on the effects of multiple forces. (K, PS2.A)

Above State Expectations: This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS, ESS1.B)