Numeracy Opportunities in Water Quality PBL (Grades K-12)

Regardless of grade level, students working with numeracy opportunities and demands will also be engaging in some/many of the guiding principles and standards for mathematical practices.

• Guiding Principles:

- o A clear and effective communicator
- A self-directed and lifelong learner
- A creative and practical problem solver
- o A responsible and involved citizen
- o An integrative and informed thinker

• Standards for Mathematical Practice:

- Make sense of problems and persevere in solving them
- Reason abstractly and quantitatively
- Construct viable arguments and critique the reasoning of others
- Model with mathematics
- Use appropriate tools strategically
- Attend to precision
- Look for and make use of structure
- o Look for and express regularity in repeated reasoning

The following pages will provide you with information regarding naturally occurring numeracy opportunities focused on plastic pollution:

- Childhood (K-5)
- Early Adolescence (6-8)
- Adolescence (9-diploma)
- Possible guiding questions

Childhood (K-5)

Math Focus Strands:

Quantitative Reasoning:

- Measurements and Units:: Use appropriate measurement tools (e.g., test kits, sensors) to collect data.
- Measure the temperature from different water sources, and in the case of ponds or lakes, from various depths.
- Using student-built water filters, measure the flow rate through the filter based on the materials.
- Using a daily water quality log to document clarity, pH, temp, salinity, dissolved oxygen, etc., for a period of time.
- Estimate and calculate water use for daily activities (washing hands, brushing teeth, cooking, etc.)

• Algebraic Reasoning:

Operations and Algebraic Thinking:

- Sorting water samples by specific characteristics (clarity, temp, pH, etc.)
- Build a water filter and look for patterns and relationships based on the materials used in each layer.
- Look for patterns and relationships between the locations where water samples are collected and the variables present at each site.
- Use the above patterns and relationships to make predictions
- Use data collected on water use for daily activities to calculate the amount used over a set period of time (week, month, year).
- Students track water quality over a period of time to look for patterns and predict changes due to climate events

Statistical Reasoning:

Measurement & Data:

- Represent data from water use, water samples, filter experimentation, and water quality with charts and/or graphs
- Survey students on their daily water use and represent the findings graphically.
- Collect and analyze rainwater. Record results over time to look for patterns based on seasons and make predictions.
- Collect data on the effects of single-source pollution (for instance, fertilizer causing algae blooms)
- Students collect and analyze data from multiple water sources (tap, stream, river, lake, above a dam, below a dam, bottled water, ect) and show results graphically. Use the results to make predictions.

Examp	1_	۸۰	+i.	<i>,</i> i+i	٠.,
Examb	ıe	AC	u١	/IU	es:

Early Adolescence (6-8)

Math Focus Areas:

- Quantitative Reasoning:
 - Measurements and Units:
 - Use appropriate measurement tools (e.g., test kits, sensors) to collect data.
 - Convert between different units (ppm, mg/L, mL, liters, etc.).
 - Understand scale, precision, and estimation when measuring.
 - Rates & Ratios:
 - Calculate water flow rates in rivers and streams.
 - Analyze ratios of pollutants to safe drinking standards.
 - Compare concentration levels between different test sites.
- Algebraic Reasoning:

0

- Geometric Reasoning:
 - Geometry
- Statistical Reasoning:
 - Statistics and Probability:
 - Record, organize, and analyze data using tables, graphs, and statistical measures.

.

Example Activities:

- 1. **Budgeting for Solutions** Students calculate the costs of various water filtration options.
- 2. **Community Presentation** Students use data visualization and argumentation to advocate for local water policies..

Adolescence (9-diploma)

Math Focus Areas:

Algebraic Reasoning:

- o Model relationships between pollution levels and human activity.
- o Predict changes in water quality over time using linear and exponential functions.
- o Create equations to represent trends in water contamination.

• Statistical Reasoning:

- Data Collection and Analysis: Conduct water testing (pH, dissolved oxygen, turbidity, nitrates, etc.).; Record, organize, and analyze data using tables, graphs, and statistical measures.
- Analyze probability of contamination events based on environmental and human factors.
- o Create statistical models to determine risk factors for water pollution.
- o Interpret trends using mean, median, mode, and standard deviation.

Geometric Reasoning:

- Map watershed areas using GIS or hand-drawn maps.
- o Calculate surface area and volume of water bodies.
- Model the effects of runoff and erosion on landscapes.

• Financial & Economic Literacy:

- O Calculate costs of water filtration, conservation efforts, or cleanup projects.
- o Assess the economic impact of water pollution on local communities.
- o Compare costs and benefits of sustainable water management solutions.

Example Activities:

- 1. **Trend Modeling** Students apply algebra and statistics to predict water quality changes.
- 2. **Community Presentation** Students use data visualization and argumentation to advocate for local water policies.

Alignment with Maine Solutionaries Framework

- **Systems Thinking** Understanding the interplay between human activities, environmental policies, and water quality.
- **Critical Thinking & Problem-Solving** Evaluating sources of pollution and designing mitigation strategies.
- **Collaboration & Civic Engagement** Partnering with community organizations, government agencies, and scientists.
- **Innovation & Advocacy** Proposing data-driven solutions for water conservation and pollution prevention.

Some guiding questions about water quality

Note: these questions might be good for all of the age ranges but might be answered differently by them.

- 1. How can we measure it?
- 2. What are some of the different issues pertaining to water quality?
- 3. Are water quality issues more local or more global?
- 4. What are some of the things that have been to address water quality concerns in the past? Are those measures still in place?