Final Report

Population Genetic Structure of Anadromous Rainbow Smelt in US Waters

A Project of the NMFS Proactive Species Conservation Program

Principle Investigator: David Berlinsky, Associate Professor of Biological Sciences, University of New Hampshire

Additional Project Participants:	Adrienne Kovach, Research Assistant Professor of Natural
	Resources, University of New Hampshire
	Timothy Breton, Biological Sciences, UNH
	Lauren Wyatt, Biological Sciences, UNH
	Al Baker, Biological Sciences, UNH

Report Submission Date: February 28, 2011

Objectives:

- 1) Determine the relative amount of periphyton in spawning habitat for anadromous rainbow smelt in selected coastal rivers in Maine, NH, and Massachusetts
- 2) Determine potential impacts of periphyton growth and sediment deposition on smelt egg hatch
- 3) Identify dominant species of organisms in the periphyton community associated with rainbow smelt spawning substrate in the gulf of Maine Region
- 4) Determine the amount of genetic variation in Rainbow smelt within and among various New England estuaries.

<u>Objective 1</u>. Determine the relative amount of periphyton in spawning habitat for anadromous rainbow smelt in selected coastal rivers in Maine, NH, and Massachusetts

Periphyton samples were collected by biologists during the spring of 2009 in Maine, NH, and Massachusetts and transferred to UNH. In the laboratory, periphyton samples were transferred to pre-weighed aluminum weigh boats (using distilled water) to determine dry weight (DW), ash dry weight (ADW), and ash free dry weight (AFDW) by the methods of American Public Health Association, APHA, (1992). To determine DW $(g/m^2/day)$, the samples were dried at 105°C, cooled in a desiccator, and then weighed to the nearest 0.0001 g (Mettler Toledo AB54-S) multiple days in succession until the weights differed by no more than 0.0008 g. Samples were then ignited for 1 hr in a muffle furnace at 500°C, re-hydrated (~5 mL) and re-dried at 105°C, cooled in a desiccator, and again weighed to determine the ADW ($g/m^2/day$). The DW represents both inorganic and organic material ADW, represents only inorganic material. The AFDW (ADW subtracted from the DW) represents the organic portion and is also expressed as $g/m^2/day$.

Table 1. Dry weight, ash dry weight and ash-free dry weight of periphyton samples collected from smelt spawning Rivers.

	Sample ID	AFDW (g/m ² /day)	Comments	Sample ID	AFDW (g/m ² /day)	Comments
	4-15 LC Rock1	0.0239		6-18-09 East Bay Tile 1	0	No detectable difference in DW & ADW
	4-15 LC Rock2	0.0406		6-18-09 East Bay Tile 2	0.0009	
	4-15 LC Rock3	0.012		6-18-09 East Bay Tile 3	0	No detectable difference in DW & ADW
	4-15 LC Rock4	0.0418		6-18-09 East Bay Tile 4	0.0007	
	4-15 LC Rock5	0.0095		6-18-09 East Bay Tile 5	0.0005	
	4-15 LC T1	0.0074		6-25-09 Chandler Rock 2	0.0106	
_	4-15 LC T2	0.0056		6-25-09 Chandler Rock 1	0.0136	
_	4-15 LC T3	0.0048		6-25-09 Chandler Rock 3	0.0115	
_	4-15 LC T4	0.0034		6-25-09 Chandler Rock 4	0.0074	
	4-15-LCT5	0.0049		6-25-09 Chandler Rock 5	0.0189	
_	5-29-09 EB Rock 1	0.0015	No detectable difference in DW & ADW	6-25-09 Chandler Tile 1	0.0166	
-	5 29 09 EB Rock 2	0.0032		6 25 09 Chandler Tile 2	0.0049	
-	5 20 00 EP Pook 2	0.0032		6 25 00 Chandler Tile 2	0.0049	
-	5 20 00 EP Pook 4	0.0013	No detectable difference in DW & ADW	6 25 00 Chandler Tile 4	0.0010	
_	5-29-09 ED ROCK 4	0	No detectable difference in DW & ADW	6-25-09 Chandler T lie 4	0.0039	
-	5-29-09 EB ROCK 5	0	No detectable difference in Dw & ADw	6-25-09 Chandler Tile 5	0.0086	
	5-29-09 EB Tile T	0.0004	N I II POC I DWA ADW	6-4-09 Chandler Rock 1	0.0089	
-	5-29-09 EB Tile 2	0	No detectable difference in DW & ADW	6-4-09 Chandler Rock 2	0.0052	
_	5-29-09 EB Tile 3	0.0008		6-4-09 Chandler Rock 3	0.0124	
_	5-29-09 EB Tile 4	0	No detectable difference in DW & ADW	6-4-09 Chandler Rock 4	0.0056	
	5-29-09 EB Tile 5	0	No detectable difference in DW & ADW	6-4-09 Chandler Rock 5	0.012	
	5-9-09 Chan Tile 1	0.002		DM 4-27-09 Rock1	0.0007	
L	5-9-09 Chan Tile 2	0.0008		DM 4-27-09 Rock2	0.001	
	5-9-09 Chan Tile 3	0	No detectable difference in DW & ADW	DM 4-27-09 Rock3	0.0013	
L	5-9-09 Chan Tile 4	0.0007		DM 4-27-09 Rock4	0	No detectable difference in DW & ADW
4	5-9-09 Chandler Rock 1	0.0045		DM 4-27-09 Rock5	0	No detectable difference in DW & ADW
4	5-9-09 Chandler Rock 2	0.0107		DM 6-1-09 R5	0.0014	
ć	5-9-09 Chandler Rock 3	0.0087		DM 6-1-09 Rock1	0.0011	
:	5-9-09 Chandler Rock 4	0.0077		DM 6-1-09 Rock2	0.0056	
:	5-9-09 Chandler Rock 5	0.0147		DM 6-1-09 Rock3	0.003	
:	5-9-09 East Bay Rock 5	0	No detectable difference in DW & ADW	DM 6-1-09 Rock4	0.0009	
	5-9-09 EB Rock 1	0	No detectable difference in DW & ADW	DM 6-1-09 T1	0.0005	
	5-9-09 EB Rock 2	0	No detectable difference in DW & ADW	DM 6-1-09 T2	0.0005	
	5-9-09 EB Rock 3	0	No detectable difference in DW & ADW	DM 6-1-09 T3	0.0002	
	5-9-09 EB Rock 4	0	No detectable difference in DW & ADW	DM 6-1-09 T4	0	No detectable difference in DW & ADW
	5-9-09 EB Tile 1	0	No detectable difference in DW & ADW	DM 6-1-09 T 5	0.0023	
	5-909 EB Tile 2	0	No detectable difference in DW & ADW	DMB-Rock1-5/11/09	0.0178	
-	5-9-09 FB Tile 3	0.0002		DMB-Rock2-5/11/09	0.0159	
_	5-9-09 EB Tile 4	0.0034		DMB-Rock3-5/11/09	0.0185	
	6/25/09 DM R1	0.003		DMB-Rock4-5/11/09	0	No detectable difference in DW & ΔDW
_	6/25/09 DM R1	0.0001		DMB-Rock5-5/11/09	0	No detectable difference in DW & ADW
_	6/25/09 DM R2	0.0001	No detectable difference in DW & ADW	DM-T4-6/25/09	0.0003	No detectable difference in DW & NDW
-	6/25/09 DM R3	0.0003		DM T5 6/25/09	0.0003	
-	6/25/09 DM R5	0.0003		DM Tile1 6/25/09	0.0004	
-	6/25/09 DM T2	0.0002		EP 0600 2	0.0008	
-	0/25/09 DM T2	0.0003		FR 0609 - 2	0.0000	No detected differences in DW/ 9- ADW/
_	6/23/09 DM 13	0.0002		FR 0009 - 3	0 0002	No detectable difference in DW & ADW
_	0-12-09 LC R2	0.0141		FR 091-3	0.0002	
	6-12-09 LC R3	0.0163		FR0609-1	0	No detectable difference in DW & ADW
	6-12-09 LC R4	0.0197		FR0609-1	0	No detectable difference in DW & ADW
⊢	6-12-09 LC R5	0.0251		FR0609-3	0.0004	
	6-12-09 LC Rock1	0.0398		FR0609-4	0	No detectable difference in DW & ADW
	6-12-09 LC T4	0.0372		FR0609-5	0	No detectable difference in DW & ADW
F	6-12-09 LC T 5	0.0175		FR0609-R1	0.0007	
	6-12-09 LC Tile 1	0.0575		FR0609-R2	0.0038	
6	-18-09 East Bay Rock 1	0	No detectable difference in DW & ADW	FR0609-R3	0.001	
6	-18-09 East Bay Rock 2	0	No detectable difference in DW & ADW	FR0609-R3	0	No detectable difference in DW & ADW
6	10.00 E (D D 1 2	0	No detectable difference in DW & ADW	FR0609-R4	0.0047	
	-18-09 East Bay Rock 3	0	No detectable difference in DW & ADW	1100009 10	0.00.	
6	-18-09 East Bay Rock 3 -18-09 East Bay Rock 4	0	No detectable difference in DW & ADW	FR0609-R5	0.0007	

TRE01-100.000751.CT.1.4.3-090.0025TRE01-20No devestable difference in UK A.5001.CT.2.4.51.3096.0019TRE01-40No devestable difference in UK A.5001.CT.2.4.51.2090.0019TRE01-40No devestable difference in UK A.5001.CT.1.4.52.090.0012TRE01-40No devestable difference in UK A.5001.CT.1.4.52.090.0012TRE01-60.010No devestable difference in UK A.5001.CT.1.4.52.090.0013TRE01-60.010No devestable difference in UK A.500NoACE 0.55.2.090.0013TRE01-60.010No devestable difference in UK A.500MACE 0.55.2.090.0012TRE00-70.001No devestable difference in UK A.500MACE 0.55.2.090.0012TRE00-70.0012No devestable difference in UK A.500MACE 0.57.2.990.0012TRE00-70.0012No devestable difference in UK A.500MACE 0.57.2.990.0012TRE00-70.0012No devestable difference in UK A.500MACE 0.57.2.990.0012TRE00-70.0012No devestable difference in UK A.500MACE 0.57.590.0012TRE00-7 <th>Sample ID</th> <th>AFDW (g/m²/day)</th> <th>Comments</th> <th>Sample ID</th> <th>AFDW (g/m²/day)</th> <th>Comments</th>	Sample ID	AFDW (g/m ² /day)	Comments	Sample ID	AFDW (g/m ² /day)	Comments
FR01-1 0 No execute afferese in DW & ADW LCT2+29-09 0.003 FR01-4 0 No decatable afferese in DW & ADW LCT3+29-99 0.0039 FR01-5 0 No decatable afferese in DW & ADW LCT3+29-99 0.0035 FR01-7 0 No decatable afferese in DW & ADW LCT4-29-09 0.0025 FR01-7 0 No decatable afferese in DW & ADW LCT4-42-90 0.0025 FR01-7 0 No decatable afferese in DW & ADW MACC60+R2-04 0.0211 FR01-7 0 No decatable afferese in DW & ADW MACC60+R2-04 0.0212 FR01-7 0 No decatable afferese in DW & ADW MACC60+R2-04 0.0211 FR01-7 0 No decatable afferese in DW & ADW MACC60+R2-04 0.0212 FR01-70 0.0103 No decatable afferese in DW & ADW MACC60+R2-04 0.0226 FR01-71 0.02012 No decatable afferese in DW & ADW MACC60-R2-04 0.0212 FR01-71 0.02012 No decatable afferese in DW & ADW MACC60-R2-04 0.0214 FR001313 <td>FR091-10</td> <td>0.0087</td> <td></td> <td>LC-T1-4-29-09</td> <td>0.0026</td> <td></td>	FR091-10	0.0087		LC-T1-4-29-09	0.0026	
HB01-1 0 No descubia differenze in DW & AUW LCT 2-01207 0.0090 HB01-3 0 No descubia differenze in DW & AUW LCT 2-01207 0.0090 HB01-1 0 No descubia differenze in DW & AUW LCT 2-01207 0.0021 HB01-3 0.006 LCT 2-01207 0.0021 HB01-4 0.0010 LCT 2-01207 MACK 0-0224 HB01-4 0.0010 MACK 0-0124 MACK 0-0224 HB01-4 0.0012 MACK 0-0124 MACK 0-0224 HB01-10 0.0012 MACK 0-11-0 0.0021 HB01-11 0.0012 MACK 0-11-0 0.0023 HB01-14 0.0012 MACK 0-11-0 0.0024 HB01-14 0.0012 MACK 0-11-0 0.0024 HB01-14 0.0012 MACK 0-11-0	FR091-2	0	No detectable difference in DW & ADW	LC-T2-4-29-09	0.003	
PR091-4 0 No descubals difference in DV & ADW LCT 31-23-09 0.00996 PR091-6 0.0109 LCT 31-23-09 0.00973 PR091-6 0.0109 LCT 31-23-09 0.0023 PR091-7 0 No descubals difference in DV & ADW LCT 31-23-09 0.0023 PR091-8 0.0061 No descubals difference in DV & ADW MACR 518-29 0.0113 PR091-9 0 No descubals difference in DV & ADW MACR 518-29 0.0123 PR091-91 0 No descubals difference in DV & ADW MACR 517-19 0.0224 PR091-91 0 No descubals difference in DV & ADW MACR 517-19 0.0204 PR091-91 0.0125 COURDER MACR 517-19 0.0024 PR091-10 0.0123 COURDER MACR 50-17-59 0.0014 PR091-11 0.0123 COURDER MACR 50-17-59 0.0015 PR091-13 0.0114 COURDER MACR 50-17-59 0.0014 PR091-14 0.0025 COURDER 0.00154 MACR 50-17-59 0.00154 <t< td=""><td>FR091-2</td><td>0</td><td>No detectable difference in DW & ADW</td><td>LC-T2-6/12/09</td><td>0.0099</td><td></td></t<>	FR091-2	0	No detectable difference in DW & ADW	LC-T2-6/12/09	0.0099	
FR001-5 0 No decadad afference in DW & AUM LCT 5-01200 0.0071 H8001-0 0.010 No decadad afference in DW & AUM LCT 54-29-09 0.0021 H8001-3 0.006 LCT 54-29-09 0.0025 H8001-3 0.006 LCT 54-29-09 0.0025 H8001-3 0.006 MACR-61-82-00 0.0131 J80009-2 0 No decadad afference in DW & AUM MACR-61-82-00 0.0212 J80009-11 0 No decadad afference in DW & AUM MACR-61-81-00 0.0228 J80009-11 0 No decadad afference in DW & AUM MACR-61-72-00 0.0238 J80009-14 0.0012 MACR-61-72-00 0.0024 MACR-61-72-00 0.0024 J80001-10 No decadad afference in DW & AUM MACR-61-72-00 0.0021 MACR-61-72-00 0.0021 J8001-10 No decadad afference in DW & AUM MACR-66-12-00 0.0012 MACR-66-12-00 0.0013 J8001-14 0.0025 MACR-66-12-00 0.0161 MACR-66-12-00 0.0161 J8001-14 0.00252	FR091-4	0	No detectable difference in DW & ADW	LC-T3-4-29-09	0.0096	
FR891-6 0.0109 CTT-4-2.994 0.0053 PR891-8 0.0061 No deresible difference in DW & A DW MAC R0-37.4-199 0.0053 PR891-9 0.006 MA deresible difference in DW & A DW MAC R0-37.4-199 0.0113 PR801-9 0.00 No deresible difference in DW & A DW MAC R0-37.8-199 0.0111 PR801-9 0.00 No deresible difference in DW & A DW MAC R0-37.8-199 0.0023 PR801-9 0.00 No deresible difference in DW & A DW MAC R0-37.8-199 0.0023 PR801-91 0.00 No deresible difference in DW & A DW MAC R0-37.1-99 0.0023 PR801-10 0.015 Mac RC-80.87.1-99 0.0023 MAC R0-37.1-99 PR801-10 0.012 MAC R0-87.1-99 0.0015 MAC R0-87.1-99 0.0015 PR801-11 0.012 MAC R0-87.1-99 0.0016 MAC R0-87.1-99 0.0016 PR801-10 0.012 MAC R0-87.490 0.0125 MAC R0-87.199 0.0016 PR801-10 0.012 MAC R0-87.490 0.0125 MAC R0-87.490 0.012	FR091-5	0	No detectable difference in DW & ADW	LC-T3-6/12/09	0.0773	
FR01-7 0 No descable difference in DW & ADW LCT 5-L-22-09 0.0027 FR01-9 0.006 Constraints difference in DW & ADW MAC RE0-R8-09 0.0121 JR000-2 0 No descable difference in DW & ADW MAC RE0-R8-09 0.0121 JR000-4 0 No descable difference in DW & ADW MAC RE0-R8-09 0.0101 JR000-4 0 No descable difference in DW & ADW MAC RE0-R8-09 0.0103 JR000-4 0 No descable difference in DW & ADW MAC RE0-R8-09 0.0010 JR000-4 0.0015 Constraints difference in DW & ADW MAC RE0-R8-109 0.0028 JR000-4 0.0015 Constraints difference in DW & ADW MAC RE0-R8-109 0.0016 JR001-10 0.0034 Constraints difference in DW & ADW MAC RE0-R8-109 0.0016 JR001-13 0.0113 Constraints difference in DW & ADW MAC RE0-R8-109 0.0013 JR001-14 0.0133 Constraints difference in DW & ADW MAC RE0-R8-109 0.0016 JR001-14 0.0133 Constraints difference in DW & ADW MAC RE0-R8-109 </td <td>FR091-6</td> <td>0.0109</td> <td></td> <td>LC-T4-4-29-09</td> <td>0.0021</td> <td></td>	FR091-6	0.0109		LC-T4-4-29-09	0.0021	
FR01-3 0.06d MAC R0-8.1-00 0.023 JH009-2 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0113 JR009-3 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0101 JR009-1 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0013 JR009-84 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0023 JR009-94 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0023 JR009-94 0.0045 MAC R0-8.2-09 0.0023 MAC R0-8.2-09 0.0023 JR009-101 0 No detectable difference in DW & ADW MAC R0-8.2-09 0.0024 MAC R0-8.2-09 0.0025 JR0091-11 0.012 MAC R0-8.2-09 0.0135 MAC R0-8.2-09 0.0125 JR0091-14 0.0025 MAC R0-8.2-09 0.0025 MAC R0-8.2-09 0.0025 JR0091-14 0.0025 MAC R0-8.2-09 0.0025 MAC R0-8.2-09 0.0025 JR0091-34 0.00629 MAC R0-8.2-09 0.0025	FR091-7	0	No detectable difference in DW & ADW	LC-T5-4-29-09	0.0055	
FR019-90.0060.000.0012BR009-20No derecable difference in DV & ADWMAC CR0-378-000.0212BR009-40No derecable difference in DV & ADWMAC CR0-378-000.0213BR009-40No derecable difference in DV & ADWMAC CR0-378-000.0231BR009-810No derecable difference in DV & ADWMAC CR0-378-000.0038BR009-840.0013CR0-278-000.0038BR099-850.0105CR0-278-000.0034BR099-840.0135CR0-278-000.0034BR091-100.0134CR0-278-000.0034BR091-110.0135CR0-278-000.0153BR091-140.0135CR0-278-000.0164BR091-140.0135CR0-278-000.0164BR091-140.0135CR0-278-000.0164BR091-140.0135CR0-278-000.0163BR091-140.0135CR0-278-000.0131BR091-140.0270CR0-278-000.0132BR091-140.0270CR0-278-000.0274BR091-140.0270CR0-278-000.0274BR091-150.0074CR0-278-000.0274BR091-140.0072CR0-278-000.0214BR091-140.0072CR0-278-000.0214BR091-140.0072CR0-278-000.0214BR091-140.0072CR0-278-000.0214BR091-140.0072CR0-278-000.0214BR091-140.0073CR0-278-000.0214 <t< td=""><td>FR091-8</td><td>0.0061</td><td></td><td>MA-CR-03-R1-09</td><td>0.0267</td><td></td></t<>	FR091-8	0.0061		MA-CR-03-R1-09	0.0267	
JP1099-2 0 Nx detcable difference in DW & ADW MACR-01-88-09 0.0101 JB0099-1 0 Nx detcable difference in DW & ADW MACR-03-88-09 0.0018 JB0099-81 0 Nx detcable difference in DW & ADW MACR-03-18-09 0.0028 JB0099-82 0.0015 Nx detcable difference in DW & ADW MACR-03-18-09 0.0024 JB0191-01 0 Nx detcable difference in DW & ADW MACR-03-17-09 0.0024 JB0191-10 0 Nx detcable difference in DW & ADW MACR-03-17-09 0.0014 JB011-10 0.0012 MACR-03-17-09 0.0014 MACR-03-17-09 0.0014 JB011-10 0.0012 MACR-03-18-109 0.0016 MACR-03-18-109 0.0016 JB011-11 0.0123 MACR-03-18-109 0.0017 MACR-03-18-109 0.0016 JB011-14 0.0026 MACR-03-12-09 0.0017 MACR-03-12-09 0.0016 JB011-14 0.0027 MACR-03-12-09 0.0017 MACR-03-12-09 0.0017 JB011-14 0.0020 MACR-03-12-09 0.00121<	FR091-9	0.006		MA-CR-03-R2-09	0.0183	
IB009-2 0 No descende difference in DW & ADW MACR0.35.84.09 0.0101 IB009-4 0 No descende difference in DW & ADW MACR0.35.84.09 0.0238 IB009-81 0 No descende difference in DW & ADW MACR0.35.70 0.0012 IB009-82 0.0012 MACR0.35.70 0.0028 IB009-83 0.0012 MACR0.35.75.09 0.0013 IB001-10 0.0034 MACR0.35.75.09 0.0012 IB011-1 0.1155 MACR0.35.75.09 0.0012 IB011-1 0.0115 MACR0.37.160 0.0041 IB011-3 0.0112 MACR0.37.160 0.0014 IB011-3 0.0112 MACR0.37.160 0.0014 IB011-3 0.0123 MACR0.37.160 0.0135 IB011-3 0.0124 MACR0.37.160 0.0131 IB011-4 0.0055 MACR0.37.160 0.0124 IB011-4 0.0050 MACR0.37.160 0.0124 IB011-4 0.0051 MACR0.37.160 0.0214 IB011-4 0.0055	JF1009-2	0	No detectable difference in DW & ADW	MA-CR-03-R3-09	0.0212	
JB0093 0 No detectable difference in DW & ADW MACR0.31.12.09 L0028 JB00409.81 0 No detectable difference in DW & ADW MACR0.31.72.09 L0086 JB00409.82 0.0102 MACR0.31.72.09 L00886 MACR0.31.72.09 L00886 JB00409.84 0.0145 MACR0.31.74.09 L0028 MACR0.31.74.09 L0028 JB00409.84 0.0145 MACR0.31.74.09 L00172 MACR0.31.74.09 L00134 JB00409.11 0.0034 MACR0.31.74.09 L00146 MACR0.31.74.09 L00146 JB0013.3 0.0112 MACR0.31.74.09 L00146 MACR0.31.74.09 L00146 JB0013.41 0.0025 MACR0.31.74.09 L00133 MACR0.31.74.09 L00133 JB0013.42 0.0029 MACR0.31.74.09 L0035 MACR0.31.74.09 L00133 JB0013.43 0.0029 MACR0.31.74.09 L00324 MACR0.32.14.09 L00214 JB0013.43 0.0029 MACR0.31.74.09 L00232 MACR0.31.74.09 L00232 MACR0.31.74.09 L00232 MA	JR0609-2	0	No detectable difference in DW & ADW	MA-CR-03-R4-09	0.0101	
IBR099-4 0 No detectable difference in DW & ADW MACR.01-T1.09 0.00128 IBR099-R2 0.0012 0.0028 MACR.01-T1.298 0.0028 IBR099-R4 0.0045 MACR.01-T1.298 0.0028 MACR.01-T1.298 0.0028 IBR091-R1 0 No detectable difference in DW & ADW MACR.01-T1.098 0.0012 MACR.01-T1.098 0.0012 IBR091-R1 0.0053 MACR.01-T1.098 0.0012 MACR.01-T1.098 0.0012 IBR091-R1 0.0012 MACR.01-T1.098 0.0012 MACR.01-T1.098 0.0012 IBR091-R3 0.0114 MACR.01-T1.098 0.00155 MACR.01-T1.098 0.00155 IBR091-R3 0.0069 MACR.01-T1.098 0.0055 MACR.01-T1.098 0.0055 IBR091-R3 0.0060 MACR.01-T1.098 0.0012 MACR.01-T1.098 0.0012 IBR091-R3 0.0060 MACR.01-T1.098 0.0014 MACR.01-T1.098 0.0015 IBR091-R3 0.0060 MACR.01-T1.098 0.0023 MACR.01-T1.098 0.0023 IBR091-R3<	JR0609-3	0	No detectable difference in DW & ADW	MA-CR-03-R5-09	0.0208	
IB0009-81 0 No detectable difference in DW & ADW MACR0.517-109 0.0036 MACR0.517-109 0.0016 MACR0.517-109 0.0016 MACR0.517-109 0.0016 MACR0.517-109 0.0016 MACR0.611-09 0.0016 MACR0.611-09 0.0015 MACR0.611-09 0.0015 MACR0.611-09 0.0015 MACR0.611-09 0.0015 MACR0.611-09 0.0015 MACR0.611-09 0.0013	JR0609-4	0	No detectable difference in DW & ADW	MA-CR-03-T1-09	0.0028	
BR009-R2 0.0012 MACR.03.73.09 0.0028 JB009-R4 0.0045 MACR.03.73.09 0.0028 JB009-R4 0.0165 MACR.03.73.09 0.0024 JB011 0 No detectable difference in DW & ADW MACR.04.61.409 0.0151 JB011-1 0.0012 MACR.06.81.09 0.00154 JB011-3 0.0135 MACR.06.75.09 0.0024 JB011-3 0.0123 MACR.06.75.09 0.0025 JB011-3 0.0025 MACR.06.75.09 0.0025 JB011-3 0.0022 MACR.06.75.09 0.0025 JB011-3 0.0022 MACR.06.75.09 0.0025 JB011-3 0.0022 MACR.06.75.09 0.00274 JB011-4 0.0064 MACR.06.71.09 0.0123 JB011-5 0.0066 MACR.06.71.09 0.0224 JB011-6 0.0061 MACR.06.71.09 0.0234 JB011-7 O No detectable difference in DW & ADW MACR.09.71.09 0.0234 JB011-8 0.0012 MACR.09.71.09	JR0609-R1	0	No detectable difference in DW & ADW	MA-CR-03-T2-09	0.0086	
BR009-B3 0.0045 MA.CR 03-74-09 0.0034 BR01-10 0 No detectable difference in DW & ADW MA.CR 04.64.14-09 0.0159 BR01-11 0.0012 MA.CR 06.48.1-09 0.0159 BR013-13 0.0012 MA.CR 06.48.1-09 0.0168 BR013-33 0.0114 MA.CR 06.48.1-09 0.0025 BR013-34 0.0025 MA.CR 06.48.1-09 0.0025 BR013-32 0.0020 MA.CR 06.48.1-09 0.0025 BR013-32 0.0020 MA.CR 06.47.1-09 0.0055 BR013-32 0.0020 MA.CR 06.47.1-09 0.0055 BR013-32 0.0069 MA.CR 06.47.1-09 0.0055 BR013-32 0.0601 MA.CR 06.47.1-09 0.0123 BR013-32 0.0601 MA.CR 06.47.1-09 0.0123 BR013-32 0.0602 MA.CR 06.47.1-09 0.0224 BR013-32 0.0612 MA.CR 09.47.1-09 0.0224 BR013-3 0.0612 MA.CR 09.47.1-09 0.0224 BR013-82 0.0612 MA.CR 09.47.1-09	JR0609-R2	0.0012		MA-CR-03-T3-09	0.0028	
IRK009-R5 0.0105 MA CR0513-09 0.0072 JR091-01 0 No detectable difference in DW & ADW MA CR06-R1.09 0.0159 JR091-11 0.0015 MA CR06-R1.09 0.0016 JR091-31 0.0135 MA CR06-R3.09 0.0046 JR0913-3 0.0114 MA CR06-R3.09 0.0021 JR0913-3 0.0114 MA CR06-R3.09 0.0023 JR0913-4 0.0025 MA CR06-R3.09 0.0023 JR0913-5 0.0092 MA CR06-R3.09 0.0023 JR0913-82 0.0014 MA CR06-R3.09 0.0025 JR0913-83 0.0141 MA CR06-R3.09 0.0274 JR0913-85 0.0661 MA CR06-R3.09 0.0224 JR091-5 0.0006 MA CR06-R3.09 0.0224 JR091-6 0.0385 MA CR06-R3.09 0.0224 JR091-7 0 No detectable difference in DW & ADW JR1009-81 0.0020 MA CR09-R3.09 0.0232 JR1009-81 0.0023 MA CR09-R3.09 0.0334	IR0609-R4	0.0045		MA-CR-03-T4-09	0.0034	
JR001-01 O.000 No detectable difference in DW & ADW JR001-01 0.0034 MACR-06-R1-09 0.00159 JR001-13 0.0112 MACR-06-R1-09 0.00159 JR001-13 0.0123 MACR-06-R1-09 0.0159 JR001-13 0.0123 MACR-06-R1-09 0.0168 JR001-13 0.0012 MACR-06-R1-09 0.0161 JR001-32 0.0113 MACR-06-R1-09 0.00159 JR001-34 0.0025 MACR-06-R1-09 0.00159 JR001-32 0.0012 MACR-06-R1-09 0.00159 JR001-84 0.0021 MACR-06-R1-09 0.0053 JR001-84 0.0014 MACR-06-R1-09 0.0055 JR001-84 0.0014 MACR-06-R1-09 0.00124 JR001-84 0.0014 MACR-09-R1-09 0.0124 JR001-75 0.0004 MACR-09-R1-09 0.0124 JR1009-31 0 No detectable difference in DW & ADW JR1009-84 0.0014 MACR-09-T1-09 0.0234 JR1009-84 0.00137	IR0609-R5	0.0105		MA-CR-03-T5-09	0.0072	
JR01-10 On Gale and entropy of the second entrop	IR091-01	0.0105	No detectable difference in DW & ADW	MA-CR-06-R1-09	0.0159	
JR011-32 0.0012 0.0013 JR011-32 0.0128 MACRA07.E-09 0.0168 JR0113-2 0.0128 MACRA07.E-09 0.0168 JR0113-3 0.0114 MACRA07.E-09 0.0168 JR0113-4 0.0025 MACRA06.E-09 0.0251 JR0113-4 0.0022 MACRA06.T2-09 0.00551 JR0113-82 0.0069 MACRA06.T3-09 0.00551 JR0113-84 0.0143 MACRA06.T3-09 0.00551 JR0113-84 0.0202 MACRA07.E-09 0.0123 JR0113-85 0.0681 MACRA07.E-09 0.0123 JR011-4 0.0004 MACRA07.E-09 0.0123 JR011-4 0.0004 MACRA09.E-09 0.0161 JR011-6 0.0385 MACRA09.E-09 0.0161 JR0109-1 0.0121 MACRA09.E-09 0.0161 JR1009-3 0 No detectable difference in DW & ADW JR1009-81 0.0022 MACRA09.E-109 0.0326 JR1009-82 0.0013 MACRA09.E-109 <td< td=""><td>IR001 10</td><td>0.0034</td><td>The detectable difference in DW & ADW</td><td>MA_CP 06 P2 00</td><td>0.0046</td><td></td></td<>	IR001 10	0.0034	The detectable difference in DW & ADW	MA_CP 06 P2 00	0.0046	
JR0913-1 0.0135 0.014 JR0913-2 0.013 MACR.067.8-09 0.0241 JR0913-3 0.0114 MACR.067.8-09 0.0251 JR0913-4 0.0025 MACR.067.8-09 0.0251 JR0913-4 0.0025 MACR.067.8-09 0.0251 JR0913-4 0.0029 MACR.067.3-09 0.00351 JR0913-83 0.0143 MACR.067.3-09 0.0079 JR0913-84 0.0202 MACR.067.3-09 0.0244 JR0913-84 0.0202 MACR.067.8-09 0.0214 JR091-5 0.00061 MACR.067.8-09 0.0214 JR091-6 0.0385 MACR.067.8-09 0.0124 JR091-7 0 No detectable difference in DW & ADW MACR.09.8-109 0.0224 JR009-1 0.0012 MACR.09.71-09 0.0326 MACR.09.71-09 0.0336 JR1009-81 0.0021 MACR.09.71-09 0.0334 MACR.09.71-09 0.0347 JR1009-82 0.0014 MACR.09.71-09 0.0334 MACR.12.81-09 0.0137	IR001 2	0.0034		MA_CP 06 D2 00	0.0040	
JR0913-1 0.0128 MA-K.200R.4-09 0.021 JR0913-3 0.0114 MA-K.200R.4-09 0.0021 JR0913-4 0.0025 MA-K.200R.4-09 0.00133 JR0913-5 0.0029 MA-K.200R.4-09 0.0058 JR0913-81 0.0029 MA-K.200R.4-09 0.0058 JR0913-82 0.0029 MA-K.200R.4-09 0.0058 JR0913-84 0.0202 MA-K.200R.4-09 0.0058 JR0913-85 0.0661 MA-K.200R.4-09 0.0051 JR091-6 0.0334 MA-K.200R.4-09 0.0021 JR091-1 0.0016 MA-K.200R.4-09 0.0222 JR091-1 0.0012 MA-K.200-R-109 0.0212 JR009-1 0.0027 MA-K.200-R-109 0.0226 JR1009-81 0.0027 MA-K.200-T-109 0.0324 JR1009-82 0.0026 MA-K.21-28-109 0.0137 JR1009-83 0.0102 MA-K.21-28-109 0.0137 JR1009-84 0.0026 MA-K.21-27-109 0.0137 JR1009-84	JR091-3	0.0012		MA-CR-00-R3-09	0.0241	
JR0913-2 0.0128 JR0913-3 0.0114 JR0913-4 0.0025 JR0913-4 0.0029 JR0913-81 0.0069 JR0913-82 0.0029 JR0913-84 0.0143 JR0913-84 0.0224 JR0913-84 0.0224 JR0913-84 0.0204 JR0914 0.0661 JR0915 0.0661 JR0914 0.0004 JR0915 0.0661 JR0916 0.0385 JR0917 0 JR0916 0.0385 JR0917 0 JR0916 0.0335 JR0917 0 JR0916 0.0326 JR0917 0 JR0917 0 JR0917 0 JR0109-3 0 JR1009-4 0.0021 JR1009-81 0.0023 JR1009-82 0.0015 JR1009-84 0.0016 JR1009-84 0.0266 JR1009	JR0913-1 IB0012-2	0.0133		MA CP 06 P5 00	0.0241	
JR0913-3 0.0114 Image 101 MA-CR-0071-09 O.0033 JR0913-4 0.0025 MA-CR-0071-09 0.0087 JR0913-R1 0.0069 MA-CR-0071-09 0.0079 JR0913-R2 0.0021 MA-CR-0071-09 0.0055 JR0913-R4 0.0202 MA-CR-0071-09 0.0021 JR0913-R5 0.0681 MA-CR-0071-09 0.0274 JR0913-R5 0.0604 MA-CR-009-R1-09 0.0213 JR091-5 0.0004 MA-CR-009-R1-09 0.0221 JR091-7 0 No detectable difference in DW & ADW MA-CR-009-R1-09 0.0326 JR1009-1 0.0012 MA-CR-00-71-09 0.0234 JR1009-1 0.0027 MA-CR-00-71-09 0.0236 JR1009-81 0.0027 MA-CR-00-71-09 0.0234 JR1009-82 0.0053 MA-CR-12-71-09 0.0317 JR1009-84 0.0026 MA-CR-12-71-09 0.0132 JR1009-80 0.0166 MA-CR-12-71-09 0.0132 JR1009-80 0.0266 MA-CR-12-71-09 <td>JR0913-2 JR0012-2</td> <td>0.0128</td> <td></td> <td>MA-CR-06-R3-09</td> <td>0.0023</td> <td></td>	JR0913-2 JR0012-2	0.0128		MA-CR-06-R3-09	0.0023	
JR0913-4 0.0025 MA-CR-06-T3-09 0.0058 / JR0913-R1 0.0099 MA-CR-06-T3-09 0.0079 JR0913-R2 0.0012 MA-CR-06-T3-09 0.0058 JR0913-R3 0.0143 MA-CR-06-T3-09 0.0058 JR0913-R3 0.0143 MA-CR-06-T3-09 0.0027 JR0913-R3 0.00681 MA-CR-07-R1-09 0.0213 JR091-A 0.0004 MA-CR-07-R3-09 0.0224 JR091-6 0.0385 MA-CR-07-R3-09 0.0222 JR091-7 0 No detectable difference in DW & ADW MA-CR-07-R1-09 0.0226 JR1009-1 0.0012 MA-CR-07-R1-09 0.0226 JR1009-3 0 No detectable difference in DW & ADW MA-CR-07-R1-09 0.0226 JR1009-82 0.0015 MA-CR-07-R1-09 0.0244 MA-CR-07-R1-09 0.0244 JR1009-83 0.0015 MA-CR-12-R1-09 0.0337 MA-CR-12-R1-09 0.0137 JR1009-84 0.0015 MA-CR-12-R1-09 0.0137 MA-CR-12-R1-09 0.0111 MA-CR-12-R1-09 <td>JR0913-3</td> <td>0.0114</td> <td></td> <td>MA-CR-06-11-09</td> <td>0.0135</td> <td></td>	JR0913-3	0.0114		MA-CR-06-11-09	0.0135	
JR0913-S1 0.0092 Image: Signal Signa	JR0913-4	0.0025		MA-CR-06-12-09	0.0587	
JR0913-R1 0.0069 MA-CR-01-14-09 0.0028 JR0913-R2 0.0029 MA-CR-06-T5-09 0.0023 JR0913-R3 0.0143 MA-CR-06-T5-09 0.0027 JR0913-R3 0.0202 MA-CR-07-82-09 0.0123 JR0913-R3 0.0064 MA-CR-09-R2-09 0.0124 JR0913-R5 0.0006 MA-CR-09-R2-09 0.0224 JR091-6 0.0385 MA-CR-09-R2-09 0.0224 JR091-7 0 No detectable difference in DW & ADW MA-CR-09-R2-09 0.0306 JR1009-1 0.0012 MA-CR-09-T1-09 0.0263 JR1009-3 0 No detectable difference in DW & ADW MA-CR-09-T1-09 0.0248 JR1009-4 0.0021 MA-CR-09-T1-09 0.0248 MA-CR-09-T1-09 0.0248 JR1009-R1 0.0027 MA-CR-12-R2-09 0.0317 MA-CR-12-R2-09 0.0131 JR1009-R3 0 No detectable difference in DW & ADW MA-CR-12-R2-09 0.0131 JR1009-R4 0.0016 MA-CR-12-T1-09 0.0137 MA-CR-12-T2-09	JR0913-5	0.0092		MA-CR-06-13-09	0.0079	
IR0913-R2 0.0029 MA-CR-05-T5-09 0.0025 IR0913-R3 0.0143 MA-CR-09-R1-09 0.0274 IR0913-R4 0.0202 MA-CR-09-R2-09 0.0123 JR0913-R5 0.0661 MA-CR-09-R3-09 0.0244 JR091-4 0.0004 MA-CR-09-R3-09 0.0213 JR091-5 0.0006 MA-CR-09-R3-09 0.0214 JR091-6 0.0385 MA-CR-09-T1-09 0.0226 JR091-7 0 No detectable difference in DW & ADW MA-CR-09-T2-09 0.0309 JR1009-3 0 No detectable difference in DW & ADW MA-CR-09-T3-09 0.0263 JR1009-4 0.0022 MA-CR-09-T3-09 0.0334 MA-CR-09-T5-09 0.0334 JR1009-R1 0.0012 MA-CR-12-R2-09 0.0344 MA-CR-12-R2-09 0.0344 JR1009-R3 0.0015 MA-CR-12-R2-09 0.0111 MA-CR-12-R2-09 0.0111 JR1009-R4 0.0014 MA-CR-12-R2-09 0.0111 MA-CR-12-R2-09 0.0111 LC 5-19-09 Rock5 0.0109 MA-CR-12-R2-09<	JR0913-R1	0.0069		MA-CR-06-14-09	0.0058	
IR0913-R3 0.0143 MA-CR-09-R2-09 0.0274 IR0913-R4 0.0202 MA-CR-09-R2-09 0.0123 IR0913-R5 0.0681 MA-CR-09-R2-09 0.0123 IR0913-R5 0.0064 MA-CR-09-R2-09 0.0123 IR091-6 0.0385 MA-CR-09-R2-09 0.0123 IR091-7 0 No detectable difference in DW & ADW MA-CR-09-T2-09 0.0326 IR1009-1 0.0022 MA-CR-09-T3-09 0.0263 Immediate IR1009-81 0.0021 MA-CR-09-T3-09 0.0324 Immediate IR1009-81 0.0027 MA-CR-09-T3-09 0.0324 Immediate IR1009-R1 0.0027 MA-CR-09-T3-09 0.0324 Immediate IR1009-R2 0.0053 MA-CR-02-R2-09 0.0347 Immediate IR1009-R3 0.0014 MA-CR-12-R3-09 0.0111 Immediate IR1009-R4 0.0266 MA-CR-12-R3-09 0.0117 Immediate IC 5-19-09 Rock1 0.0266 MA-CR-12-T3-09 0.0111 Immediate	JR0913-R2	0.0029		MA-CR-06-T5-09	0.0055	
IR0913-R4 0.0202 MA-CR-09-R2-09 0.0123 IR0913-R5 0.0064 MA-CR-09-R3-09 0.0244 IR091-6 0.00385 MA-CR-09-R3-09 0.0214 JR091-7 0 No detectable difference in DW & ADW MA-CR-09-R3-09 0.0252 JR090-8 0 0.0385 MA-CR-09-R3-09 0.0215 JR091-7 0 No detectable difference in DW & ADW MA-CR-09-T3-09 0.0236 JR1009-1 0.0012 MA-CR-09-T3-09 0.0263 MA-CR-09-T3-09 0.0263 JR1009-81 0.0027 MA-CR-09-T3-09 0.0334 MA-CR-09-T3-09 0.0324 JR1009-R3 0.0015 MA-CR-12-R1-09 0.0334 MA-CR-12-R1-09 0.0347 JR1009-R3 0.0015 MA-CR-12-R2-09 0.0111 MA-CR-12-R1-09 0.0137 JR1009-R4 0.0026 MA-CR-12-R3-09 0.014 MA-CR-12-R3-09 0.0175 JLC 5-19-09 Rock1 0.0266 MA-CR-12-T3-09 0.0174 MA-CR-12-T3-09 0.0174 LC 5-19-09 Rock3 0.0109 M	JR0913-R3	0.0143		MA-CR-09-R1-09	0.0274	
IR0913-R5 0.0681 (MACR-09-R3-09 0.0244 IR091-4 0.0004 (MACR-09-R4-09 0.0161 IR091-5 0.0006 (MACR-09-R4-09 0.0161 IR091-7 0 No detectable difference in DW & ADW (MACR-09-R4-09 0.0326 IR1009-1 0.0012 (MACR-09-R1-09 0.0263 (MACR-09-R1-09 0.0248 IR1009-3 0 No detectable difference in DW & ADW (MACR-09-R1-09 0.0263 (MACR-09-R1-09 0.0248 IR1009-4 0.0022 (MACR-09-R1-09 0.0330 (MACR-09-R1-09 0.0334 IR1009-81 0.0027 (MACR-09-R1-09 0.0324 (MACR-09-R1-09 0.0324 IR1009-82 0.0053 (MACR-12-R3-09 0.0131 (MACR-12-R3-09 0.0131 IR1009-84 0.0014 (MACR-12-R3-09 0.0111 (MACR-12-R3-09 0.0111 IC 5-19-09 Rock2 0.0479 (MACR-12-R3-09 0.0117 (MACR-12-R3-09 0.0117 IC 5-19-09 Rock3 0.0109 (MACR-12-R1-09 0.0117 (MACR-12-R1-09 0.0	JR0913-R4	0.0202		MA-CR-09-R2-09	0.0123	
JR091-4 0.0004 MA-CR-09-R4-09 0.0161 JR091-5 0.0005 MA-CR-09-R5-09 0.0122 JR091-7 0 No detectable difference in DW & ADW MA-CR-09-T1-09 0.0326 JR1009-1 0.0012 MA-CR-09-T1-09 0.0223 MA-CR-09-T3-09 0.0263 JR1009-4 0.0021 MA-CR-09-T1-09 0.0234 MA-CR-09-T3-09 0.0248 JR1009-5 0.0021 MA-CR-09-T1-09 0.0334 MA-CR-09-T3-09 0.0324 JR1009-71 0.0027 MA-CR-12-R1-09 0.0324 MA-CR-12-R1-09 0.0324 JR1009-R2 0.0033 MA-CR-12-R1-09 0.013 MA-CR-12-R1-09 0.013 JR1009-R3 0.0015 MA-CR-12-R1-09 0.013 MA-CR-12-R1-09 0.013 JR1009-R4 0.0016 MA-CR-12-R1-09 0.013 MA-CR-12-R1-09 0.0137 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T1-09 0.0137 MA-CR-12-T1-09 0.0137 JR1009-R5 0.0190 MA-CR-12-T1-09 0.0117 <t< td=""><td>JR0913-R5</td><td>0.0681</td><td></td><td>MA-CR-09-R3-09</td><td>0.0244</td><td></td></t<>	JR0913-R5	0.0681		MA-CR-09-R3-09	0.0244	
JR091-5 0.0006 MA-CR-09-R5-09 0.0252 JR091-6 0.0385 MA-CR-09-T1-09 0.0326 JR1009-1 0.0012 MA-CR-09-T1-09 0.0326 JR1009-3 0 No detectable difference in DW & ADW MA-CR-09-T3-09 0.0248 JR1009-4 0.0022 MA-CR-09-T5-09 0.033 MA-CR-09-T5-09 0.033 JR1009-5 0.0021 MA-CR-12-R1-09 0.0324 MA-CR-12-R1-09 0.0324 JR1009-R1 0.0027 MA-CR-12-R1-09 0.0337 MA-CR-12-R1-09 0.0137 JR1009-R2 0.0053 MA-CR-12-R1-09 0.0137 MA-CR-12-R1-09 0.0137 JR1009-R4 0.0014 MA-CR-12-T1-09 0.0175 MA-CR-12-T2-09 0.0175 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T3-09 0.0111 MA-CR-12-T3-09 0.0117 LC 5-19-09 Rock1 0.0079 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 0.0117 LC 5-19-09 Rock3 0.0079 MA-CR-12-T3-09 0.01175 MA-CR-12-T3-09 0.0	JR091-4	0.0004		MA-CR-09-R4-09	0.0161	
JR091-6 0.0325 MA-CR-09-T1-09 0.0326 JR091-70No detectable difference in DW & ADWMA-CR-09-T2-09 0.0309 JR1009-30No detectable difference in DW & ADWMA-CR-09-T3-09 0.02263 JR1009-40.0022MA-CR-09-T5-09 0.0334 JR1009-50.0021MA-CR-09-T5-09 0.0324 JR1009-R20.0053MA-CR-09-T5-09 0.0334 JR1009-R30.0015MA-CR-09-T5-09 0.0324 JR1009-R40.0014MA-CR-09-T5-09 0.0347 JR1009-R50No detectable difference in DW & ADWMA-CR-12-R2-09 0.0347 JR1009-R50No detectable difference in DW & ADWMA-CR-12-R1-09 0.0134 JR1009-R50No detectable difference in DW & ADWMA-CR-12-R1-09 0.0111 JR1009-R50No detectable difference in DW & ADWMA-CR-12-T2-09 0.0111 JLC 5-19-09 Rock10.0266MA-CR-12-T1-09 0.0137 LC 5-19-09 Rock30.0266MA-CR-12-T2-09 0.0175 LC 5-19-09 Rock30.0079MA-CR-09-R1-09 0.0137 LC 5-19-09 Tile10.0079MA-CR-09-R1-09 0.0111 LC 5-19-09 Tile20.0079MA-CR-09-R1-09 0.00132 LC 5-19-09 Tile40.0082MA-CR-09-R1-09 0.00137 LC 5-19-09 Tile50.008MA-FR-09-R1-09 0.0111 LC-ROCK3-4-29-090.00258MA-FR-09-T1-09 0.0093 LC-ROCK3-4-29-090.00356MA-FR-09-T1-09 0.0045 LC-R	JR091-5	0.0006		MA-CR-09-R5-09	0.0252	
JR091-7 0 No detectable difference in DW & ADW MA-CR-09-T2-09 0.0309 JR1009-1 0.0012 MA-CR-09-T3-09 0.0263 JR1009-3 0 No detectable difference in DW & ADW MA-CR-09-T3-09 0.0248 JR1009-44 0.0021 MA-CR-09-T5-09 0.033 Important (Comportant (Comportat (Comport	JR091-6	0.0385		MA-CR-09-T1-09	0.0326	
JR1009-1 0.0012 MA-CR-09-T3-09 0.0263 JR1009-3 0 No detectable difference in DW & ADW MA-CR-09-T3-09 0.0248 JR1009-40 0.0021 MA-CR-09-T3-09 0.0248 JR1009-50 0.0021 MA-CR-09-T3-09 0.0248 JR1009-R1 0.0027 MA-CR-09-T3-09 0.0248 JR1009-R2 0.0053 MA-CR-09-T3-09 0.0248 JR1009-R3 0.0015 MA-CR-09-T3-09 0.0248 JR1009-R3 0.0015 MA-CR-09-T3-09 0.0248 JR1009-R3 0.0015 MA-CR-09-T3-09 0.033 JR1009-R3 0.0015 MA-CR-02-TS-09 0.0347 JR1009-R4 0.0014 MA-CR-12-R3-09 0.0111 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T1-09 0.0137 LC 5-19-09 Rock1 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-T3-09 LC 5-19-09 Rock5 0.0109 MA-CR-12-T3-09 0.0175 MA-FR-09-R1-09 0.0175 LC 5-19-09 Tile2 0.0079 MA-FR	JR091-7	0	No detectable difference in DW & ADW	MA-CR-09-T2-09	0.0309	
JR109-3 0 No detectable difference in DW & ADW MA-CR-09-TA-09 0.0248 JR1009-4 0.0022 MA-CR-09-TA-09 0.0334 JR1009-5 0.0021 MA-CR-09-TA-09 0.0324 JR1009-R1 0.0027 MA-CR-09-TA-09 0.0324 JR1009-R2 0.0053 MA-CR-02-TA-09 0.0324 JR1009-R3 0.0013 MA-CR-12-R3-09 0.00347 JR1009-R4 0.0014 MA-CR-12-R3-09 0.0137 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-TA-09 0.0111 JR1009-R4 0.0266 MA-CR-12-T1-09 0.0137 MA-CR-12-T3-09 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-T3-09 LC 5-19-09 Rock3 0.0109 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 LC 5-19-09 Rock3 0.0109 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 0.0175 LC 5-19-09 Rock3 0.0079 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 0.0111 LC 5-19-09 Tile3 0.0079 <	JR1009-1	0.0012		MA-CR-09-T3-09	0.0263	
JR1009-4 0.0022 MA-CR-09-T5-09 0.033 JR1009-S1 0.0027 MA-CR-12-R1-09 0.0324 JR1009-R1 0.0027 MA-CR-12-R2-09 0.0347 JR1009-R2 0.0053 MA-CR-12-R3-09 0.0069 JR1009-R3 0.0014 MA-CR-12-R3-09 0.013 JR1009-R4 0.0014 MA-CR-12-R3-09 0.0111 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-R3-09 0.0137 JR1009-R4 0.0206 MA-CR-12-R3-09 0.0111 MA-CR-12-R3-09 LC 5-19-09 Rock2 0.0479 Ma-CR-12-R3-09 0.0137 MA-CR-12-R3-09 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-R3-09 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-R3-09 LC 5-19-09 Rock3 0.0106 MA-CR-12-T3-09 0.0111 MA-CR-12-R3-09 0.0117 LC 5-19-09 Tile1 0.0065 MA-GR MA-FR-09-R2-09 0.0137 MA-FR-09-R3-09 0.0111 LC 5-19-09 Tile2 0.007 MA-GR-12-R1-09 0.0032 MA-FR-09-R3-09 0.00111 M	JR1009-3	0	No detectable difference in DW & ADW	MA-CR-09-T4-09	0.0248	
IR1009-5 0.0021 MA-CR-12-R1-09 0.0324 JR1009-R1 0.0027 MA-CR-12-R1-09 0.0347 JR1009-R2 0.0053 MA-CR-12-R2-09 0.01347 JR1009-R3 0.0015 MA-CR-12-R3-09 0.0069 JR1009-R4 0.0014 MA-CR-12-R4-09 0.013 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-R4-09 0.0111 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-R4-09 0.0137 LC 5-19-09 Rock1 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-T3-09 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-T3-09 LC 5-19-09 Rock4 0.0358 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 0.0137 LC 5-19-09 Tile3 0.007 MA-CR-12-T3-09 0.0137 MA-CR-12-T3-09 0.0137 LC 5-19-09 Tile4 0.0082 MA-FR-09-R1-09 0.0137 MA-FR-09-R1-09 0.0137 LC S-19-09 Tile4 0.0082 MA-FR-09-T1-09 0.0008 MA-FR-09-T3-09 0.00	JR1009-4	0.0022		MA-CR-09-T5-09	0.033	
JR1009-R1 0.0027 MA-CR-12-R2-09 0.0347 JR1009-R2 0.0053 MA-CR-12-R2-09 0.0347 JR1009-R3 0.0015 MA-CR-12-R2-09 0.0069 JR1009-R4 0.0014 MA-CR-12-R4-09 0.013 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-R1-09 0.0137 LC 5-19-09 Rock1 0.0266 MA-CR-12-T1-09 0.0137 LC 5-19-09 Rock2 0.0479 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock5 0.0109 MA-CR-12-T3-09 0.014 LC 5-19-09 Tile1 0.0065 MA-CR-12-T3-09 0.0137 LC 5-19-09 Tile2 0.0079 MA-CR-12-T3-09 0.0137 LC 5-19-09 Tile2 0.0079 MA-CR-12-T3-09 0.0111 LC 5-19-09 Tile2 0.008 MA-FR-09-T2-09 0.01	JR1009-5	0.0021		MA-CR-12-R1-09	0.0324	
IR1009-R2 0.0053 MA-CR-12-R3-09 0.0069 IR1009-R3 0.0015 MA-CR-12-R3-09 0.0069 IR1009-R4 0.0014 MA-CR-12-R3-09 0.013 IR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-R3-09 0.0111 IR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T1-09 0.0137 ILC 5-19-09 Rock1 0.0266 MA-CR-12-T3-09 0.014 MA-CR-12-T3-09 ILC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.0175 MA-CR-12-T3-09 ILC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 MA-CR-12-T5-09 0.0175 ILC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 MA-CR-12-T5-09 0.0175 ILC 5-19-09 Tile3 0.0070 MA-CR-12-T5-09 0.0175 MA-CR-12-T5-09 0.0175 ILC 5-19-09 Tile3 0.0070 MA-FR-09-R5-09 0.0032 MA-FR-09-R5-09 0.0032 ILC 5-19-09 Tile3 0.008 MA-FR-09-T3-09 0.0118 MA-FR-09-T3-09 0.0018 ILC SOCK 4-4-29-	JR1009-R1	0.0027		MA-CR-12-R2-09	0.0347	
JR1009-R3 0.0015 MA-CR-12-R4-09 0.013 JR1009-R4 0.0014 MA-CR-12-R4-09 0.013 JR1009-R5 0 No detectable difference in DW & ADW LC 5-19-09 Rock1 0.0206 MA-CR-12-R5-09 0.0137 LC 5-19-09 Rock2 0.0479 MA-CR-12-T3-09 0.017 LC 5-19-09 Rock3 0.0266 MA-CR-12-R1-09 0.017 LC 5-19-09 Rock4 0.0358 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-CR-12-R1-09 0.0137 LC 5-19-09 Rock5 0.0109 MA-CR-12-R1-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-CR-12-R1-09 0.0137 LC 5-19-09 Tile3 0.007 MA-CR-12-R1-09 0.0137 LC 5-19-09 Tile5 0.008 MA-FR-09-R1-09 0.0111 LC 5-19-09 Tile5 0.008 MA-FR-09-R1-09 0.0032 LC ROCK3-4-29-09 0.0244 MA-FR-	JR1009-R2	0.0053		MA-CR-12-R3-09	0.0069	
JR1009-R4 0.0014 MA MA CR-12-R5-09 0.0111 JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T1-09 0.0137 MA LC 5-19-09 Rock1 0.02060 MA MA-CR-12-T2-09 0.017 MA LC 5-19-09 Rock2 0.0266 MA MA-CR-12-T3-09 0.014 MA LC 5-19-09 Rock3 0.0266 MA MA-CR-12-T3-09 0.017 MA LC 5-19-09 Rock4 0.0358 MA MA-CR-12-T3-09 0.0175 MA LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 MA MA LC 5-19-09 Rock5 0.0109 MA-FR-09-R1-09 0.0137 MA MA LC 5-19-09 Tile1 0.0055 MA MA-FR-09-R2-09 0.0137 MA LC 5-19-09 Tile3 0.0079 MA MA-FR-09-R1-09 0.0111 MA LC 5-19-09 Tile5 0.008 MA MA-FR-09-R1-09 0.0015 MA LC 70CK 4-4-29-09 0.0284 MA-FR-09-T3-09 0.0118	JR1009-R3	0.0015		MA-CR-12-R4-09	0.013	
JR1009-R5 0 No detectable difference in DW & ADW MA-CR-12-T1-09 0.0137 LC 5-19-09 Rock1 0.0206 MA-CR-12-T2-09 0.017 LC 5-19-09 Rock2 0.0479 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock4 0.0358 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-CR-12-T5-09 0.0137 LC 5-19-09 Tile2 0.0079 MA-CR-12-T5-09 0.0137 LC 5-19-09 Tile3 0.007 MA-FR-09-R1-09 0.0111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 7-ROCK1-4-29-09 0.0248 MA-FR-09-T3-09 0.0045 LC-ROCK5-4-29-09 0.0195 MA-FR-09-T3-09 0.0045 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R1-09 0.0045	JR1009-R4	0.0014		MA-CR-12-R5-09	0.0111	
LC 5-19-09 Rock1 0.0206 MA-CR-12-T2-09 0.017 LC 5-19-09 Rock2 0.0479 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock3 0.0266 MA-CR-12-T4-09 0.0009 LC 5-19-09 Rock4 0.0358 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-FR-09-R1-09 0.0111 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile3 0.007 MA-FR-09-R1-09 0.0111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R1-09 0.0111 LC 5-19-09 Tile5 0.008 MA-FR-09-R1-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.019 MA-FR-09-T3-09 0.0093 MA-FR-09-T3-09 0.0045 LC-ROCK3-4-29-09 0.0124 MA-FR-09-T3-09 0.0045 LC-ROCK5-4-29-09 0.0196 MA-FR-09-T5-09 0.0045 MA-FR-09-T5-09	JR1009-R5	0	No detectable difference in DW & ADW	MA-CR-12-T1-09	0.0137	
LC 5-19-09 Rock2 0.0479 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock3 0.0266 MA-CR-12-T3-09 0.014 LC 5-19-09 Rock4 0.0358 MA-CR-12-T4-09 0.0009 LC 5-19-09 Rock5 0.0109 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-FR-09-R1-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0111 LC 5-19-09 Tile3 0.007 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile4 0.0082 MA-FR-09-R1-09 0.019 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 7-00 K1-4-29-09 0.0258 MA-FR-09-T2-09 0.019 LC-ROCK3-4-29-09 0.00412 MA-FR-09-T5-09 0.018 LC-ROCK4-29-09 0.0035 MA-FR-09-T5-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R1-09 0.0284	LC 5-19-09 Rock1	0.0206		MA-CR-12-T2-09	0.017	
LC 5-19-09 Rock3 0.0266 MA-CR-12-T4-09 0.0009 LC 5-19-09 Rock4 0.0358 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-FR-09-R1-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile3 0.007 MA-FR-09-R2-09 0.00111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC ROCK1-4-29-09 0.0258 MA-FR-09-T1-09 0.0093 LC-ROCK3-4-29-09 0.00412 MA-FR-09-T5-09 0.0118 LC-ROCK4-4-29-09 0.00155 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Rock2	0.0479		MA-CR-12-T3-09	0.014	
LC 5-19-09 Rock4 0.0358 MA-CR-12-T5-09 0.0175 LC 5-19-09 Rock5 0.0109 MA-FR-09-R1-09 0.0175 LC 5-19-09 Tile1 0.0065 MA-FR-09-R1-09 0.0137 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile3 0.007 MA-FR-09-R4-09 0.0111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 7-00 K1-4-29-09 0.0258 MA-FR-09-T3-09 0.019 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Rock3	0.0266		MA-CR-12-T4-09	0.0009	
LC 5-19-09 Rock5 0.0109 MA-FR-09-R1-09 0.0137 LC 5-19-09 Tile1 0.0065 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile3 0.007 MA-FR-09-R4-09 0.0111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 7-00CK1-4-29-09 0.0258 MA-FR-09-T3-09 0.019 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Rock4	0.0358		MA-CR-12-T5-09	0.0175	
LC 5-19-09 Tile1 0.0065 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile2 0.0079 MA-FR-09-R2-09 0.0099 LC 5-19-09 Tile3 0.007 MA-FR-09-R4-09 0.0111 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC 7-00 Tile5 0.008 MA-FR-09-T2-09 0.019 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.0093 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0118 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Rock5	0.0109		MA-FR-09-R1-09	0.0137	
LC 5-19-09 Tile2 0.0079 MA-FR-09-R4-09 0.0111 LC 5-19-09 Tile3 0.007 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.019 LC-ROCK3-4-29-09 0.0244 MA-FR-09-T3-09 0.0093 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0118 LC-ROCK5-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Tile1	0.0065		MA-FR-09-R2-09	0.0099	
LC 5-19-09 Tile3 0.007 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile4 0.0082 MA-FR-09-R5-09 0.0032 LC 5-19-09 Tile5 0.008 MA-FR-09-R5-09 0.008 LC 5-19-09 Tile5 0.008 MA-FR-09-T1-09 0.008 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.019 LC-ROCK2-4-29-09 0.0244 MA-FR-09-T4-09 0.0118 LC-ROCK3-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Tile2	0.0079		MA-FR-09-R4-09	0.0111	
LC 5-19-09 Tile4 0.0082 MA-FR-09-T1-09 0.008 LC 5-19-09 Tile5 0.008 MA-FR-09-T2-09 0.019 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.0093 LC-ROCK2-4-29-09 0.0244 MA-FR-09-T4-09 0.0118 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R1-09 0.0284	LC 5-19-09 Tile3	0.007		MA-FR-09-R5-09	0.0032	
LC 5-19-09 Tile5 0.008 MA-FR-09-T2-09 0.019 LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.0093 LC-ROCK2-4-29-09 0.0244 MA-FR-09-T4-09 0.0118 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0	LC 5-19-09 Tile4	0.0082		MA-FR-09-T1-09	0.008	
LC-ROCK1-4-29-09 0.0258 MA-FR-09-T3-09 0.0093 LC-ROCK2-4-29-09 0.0244 MA-FR-09-T4-09 0.0118 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC 5-19-09 Tile5	0.008		MA-FR-09-T2-09	0.019	
LC-ROCK2-4-29-09 0.0244 MA MA-FR-09-T4-09 0.0118 LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC-ROCK1-4-29-09	0.0258		MA-FR-09-T3-09	0.0093	
LC-ROCK3-4-29-09 0.0412 MA-FR-09-T5-09 0.0045 LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC-ROCK2-4-29-09	0.0244		MA-FR-09-T4-09	0.0118	
LC-ROCK4-4-29-09 0.0035 MA-FR-12-R1-09 0.0284 LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC-ROCK3-4-29-09	0.0412		MA-FR-09-T5-09	0.0045	
LC-ROCK5-4-29-09 0.0196 MA-FR-12-R2-09 0 No detectable difference in DW & ADW	LC-ROCK4-4-29-09	0.0035		MA-FR-12-R1-09	0.0284	
	LC-ROCK5-4-29-09	0.0196		MA-FR-12-R2-09	0	No detectable difference in DW & ADW

Sample ID	AFDW (g/m ² /day)	Comments
MA-FR-12-R3-09	0.0038	
MA-FR-12-R4-09	0	No detectable difference in DW & ADW
MA-FR-12-R5-09	0.0158	
MA-FR-12-T1-09	0.0094	
MA-FR-12-T2-09	0.0011	
MA-FR-12-T3-09	0	No detectable difference in DW & ADW
MA FP 12 T4 09	0.0081	
MA ED 12 T5 00	0.0031	
MA-FR-12-13-09	0.0023	
MA-MR-03-R1-09	0.0247	
MA-MR-03-R2-09	0.0219	
MA-MR-03-R3-09	0.0323	
MA-MR-03-R4-09	0.0343	
MA-MR-03-R5-09	0.0304	
MA-MR-03-T1-09	0.0018	
MA-MR-03-T2-09	0.0018	
MA-MR-03-T3-09	0.001	
MA-MR-03-T4-09	0	No detectable difference in DW & ADW
MA-MR-03-T 5-09	0	No detectable difference in DW & ADW
MA-MR-06-R1-09	0.0132	
MA-MR-06-R2-09	0.0349	
MA-MR-06-R3-09	0.0188	
MA-MR-06-R4-09	0.0061	
MA-MR-06-R5-09	0.0299	
MA-MR-06-T1-09	0.0206	
MA-MR-06-T2-09	0.0286	
MA-MR-06-T3-09	0.0398	
MA-MR-06-T4-09	0.0222	
MA-MR-06-T5-09	0.0328	
MA MP 00 P1 00	0.0151	
MA MP 00 P2 00	0.0008	
MA MD 00 D2 00	0.0008	
MA MD 00 D4 00	0.0120	
MA-MR-09-R4-09	0.0323	
MA-MR-09-R5-09	0.0375	
MA-MR-09-11-09	0.0798	
MA-MR-09-T2-09	0.0549	
MA-MR-09-T3-09	0.0413	
MA-MR-09-T4-09	0.0507	
MA-MR-09-T5-09	0.0411	
MA-MR-12-R1-09	0.0113	
MA-MR-12-R2-09	0.0037	
MA-MR-12-R3-09	0.005	
MA-MR-12-R4-09	0.0051	
MA-MR-12-R5-09	0.0013	
MA-MR-12-T1-09	0.0041	
MA-MR-12-T2-09	0.0062	
MA-MR-12-T3-09	0.0045	
MA-MR-12-T4-09	0.0013	
MA-MR-12-T5-09	0.0062	
MA-NR-03-R1-09	0.0756	
MA-NR-03-R2-09	0.0335	
MA-NR-03-R3-09	0.0508	
MA-NR-03-R4-09	0.0286	
MA_NR_03_R5_00	0.0230	
MA ND 02 T1 00	0.0239	
MA NR 02 T2 00	0.008/	
MA-NK-03-12-09	0.0126	
MA-NR-03-T3-09	0.0042	
MA-NR-03-T4-09	0.0049	
MA-NR-03-T5-09	0.0089	

Sample ID	AFDW $(g/m^2/dav)$	Comments
MA-NR-06-R1-09	0.0296	common us
MA-NR-06-R2-09	0.0491	
MA-NR-06-R3-09	0.034	
MA NP 06 P4 09	0.044	
MA NR 06 R5 00	0.044	
MA-NR-06-R3-09	0.0439	N. J. (
MA-NR-06-11-09	0	No detectable difference in DW & ADW
MA-NR-06-12-09	0	No detectable difference in DW & ADW
MA-NR-06-T3-09	0	No detectable difference in DW & ADW
MA-NR-06-T4-09	0	No detectable difference in DW & ADW
MA-NR-06-T5-09	0	No detectable difference in DW & ADW
MA-NR-09-R1-09	0.0681	MA-NR-09-R1-09
MA-NR-09-R2-09	0.049	
MA-NR-09-R3-09	0.021	
MA-NR-09-R4-09	0.019	
MA-NR-09-R5-O9	0.0249	
MA-NR-09-T1-09	0.0133	
MA-NR-09-T2-09	0.0114	
MA-NR-09-T3-09	0.0078	
MA-NR-09-T4-09	0.0044	
MA-NR-09-T5-09	0.0192	
MA-NR-12-R1-09	0	No detectable difference in DW & ADW
MA-NR-12-R2-09	0	No detectable difference in DW & ADW
MA_NR_12_R3_00	0.0041	The detectuble difference in D w & ADW
MA-NR-12-R3-09	0.0041	No detectable difference in DW & ADW
MA-NR-12-R4-09	0 0112	No detectable difference in DW & ADW
MA-NK-12-K3-09	0.0112	
MA-KF-09-K3	0.0077	N. J. (
ML 5/19/09 Rock1	0	No detectable difference in DW & ADW
ML 5/19/09 Rock2	0	No detectable difference in DW & ADW
ML 5/19/09 Rock3	0	No detectable difference in DW & ADW
ML 5/19/09 Rock4	0	No detectable difference in DW & ADW
ML 5/19/09 Rock5	0.0011	
ML-Rock1-4/29/09	0.0002	
ML-Rock2-4/29/09	0	No detectable difference in DW & ADW
ML-Rock3-4/29/09	0.0009	
ML-Rock4-4/29/09	0.0005	
ML-Rock5-4/29/09	0	No detectable difference in DW & ADW
SQ 01	0.0078	
SQ 02	0.0045	
SQ 03	0.0043	
SQ 04	0.0037	
SQ 05	0.0057	
SQ 06	0.0146	
SQ 07	0.0193	
SO 08	0.0126	
50.09	0.0138	
SQ 10	0.0158	
SQ 10	0.0035	
SQ 12	0.0035	
SQ 13	0.0020	
SQ 14	0.0034	
SQ 15	0.0051	
SQ 16	0.0076	
SQ 17	0.0026	
SQ 17	0.0053	
SQ 18	0.009	
SQ 19	0.004	
SQ 20	0.0043	
SQROCK 01	0.0032	
SQROCK 02	0.0114	

Sample ID	AFDW (g/m ² /day)	Comments
SQROCK 04	0.0573	
SQROCK 05	0.0087	
SQROCK 06	0.0016	
SQROCK 07	0.0063	
SQROCK 08	0.0021	
SOROCK 09	0.0091	
SOROCK 10	0.0099	
SOROCK 11	0.0089	
SOROCK 12	0.003	
SOROCK 13	0.0055	
SOROCK 14	0.0035	
SQROCK 14	0.0049	
SQROCK 15	0.0073	
SQROCK 10	0.0137	
SQROCK 17	0.0022	
SQROCK 18	0.0095	
SQROCK 19	0.0053	
SQROCK 20	0.0118	
TB 4-26-09 Rock1	0.0093	
TB 4-26-09 Rock2	0.0337	
TB 4-26-09 Rock3	0.0056	
TB 4-26-09 Rock4	0.0034	
TB 4-26-09 Rock5	0.0079	
TB 4-26-09 T1	0.0149	
TB 4-26-09 T2	0.0054	
TB 4-26-09 T3	0.006	
TB 4-26-09 T4	0.0058	
TB 4-26-09 T5	0.0031	
TB 6-10-09 R2	0.001	
TB 6-10-09 R3	0.0029	
TB 6-10-09 R5	0	No detectable difference in DW & ADW
TB 6-10-09 T1	0.0091	
TB 6-10-09 T2	0.007	
TB 6-10-09 T3	0.0165	
TB 6-10-09 T4	0.0084	
TB 6-10-09 T5	0.0035	
TP P1 5 15 00	0.0035	
TP P1 6/10/00	0.0070	
TD-R1-0/10/09	0.0021	
TD D2 5 10 00 5/152	0.0011	
TB-R2-5-19-09 5/15?	0.0046	
I B-R2-7-6-09	0.0007	
TB-R3-5-12-09 5/15?	0.0021	
TB-R3-5-15-09	0.0039	
TB-R3-7-6-09	0.0017	
TB-R4-6-10-09	0.0073	
TB-R4-7-6-09	0.0049	
TB-R5-5-15-09	0.0018	
TB-R5-7-6-09	0.0024	
TB-T1-7-6-09	0	No detectable difference in DW & ADW
TB-T2-5-15-09	0.0067	
TB-T3-5-15-09	0.0023	
TB-T5-5-15-09	0.0039	
TB-Tile4-5-15-09	0.0024	
WIN 01	0.0036	
WIN 02	0.0031	
WIN 03	0.0047	
WIN 04	0.0054	
WIN 05	0.0042	
WIN 06	0.0167	

Sample ID	AFDW (g/m ² /day)	Comments
WIN 07	0.0062	
WIN 08	0.005	
WIN 09	0.0047	
WIN 10	0.0204	
WIN 11	0.0206	
WIN 12	0.0137	
WIN 13	0.0166	
WIN 14	0.0142	
WIN 15	0.0113	
WIN 16	0.0024	
WIN 17	0.0084	
WIN 18	0.0028	
WIN 19	0.0215	
WIN 20	0.1725	
WINROCK 01	0.0049	
WINROCK 02	0.0107	
WINROCK 03	0.007	
WINROCK 04	0.0093	
WINROCK 05	0.0062	
WINROCK 06	0.0028	
WINROCK 07	0.0166	
WINROCK 08	0.0039	
WINROCK 09	0.0026	
WINROCK 10	0.0115	
WINROCK 11	0.0177	
WINROCK 12	0.0062	
WINROCK 13	0.0197	
WINROCK 14	0.0149	
WINROCK 15	0.0111	
WINROCK 16	0.0091	
WINROCK 17	0.0289	
WINROCK 18	0.0063	
WINROCK 19	0.0053	
WINROCK 20	0.0087	

Objectives 2 and 3.

- 1) Determine potential impacts of periphyton growth and sediment deposition on smelt egg hatch
- 2) Identify dominant species of organisms in the periphyton community associated with rainbow smelt spawning substrate in the gulf of Maine Region

The following text was included in a manuscript published in the journal "Aquatic Sciences".

Abstract

The decline in anadromous rainbow smelt (*Osmerus mordax*) populations may be due to anthropogenic causes including spawning habitat degradation. The purpose of this study was to assess the survival of rainbow smelt embryos incubated under sediment layers of different depths (0.00, 0.25, 1.00, and 6.00 g/45.6 cm²) and in contact with periphyton communities of different biomass. Embryo survival was also assessed when cultured on periphyton in combination with sterilized sediment or eutrophying compounds (nitrates and phosphates). Oxygen consumption was monitored from embryos cultured alone, on periphyton layers, and under a sediment layer. Survival was significantly reduced under the highest sediment treatment and attributed to low oxygen availability to the embryos. Embryonic survival was also significantly reduced when incubated on the highest periphyton biomass. Embryos under the sediment layer consumed oxygen at a significantly greater rate than the controls, and the dissolved oxygen concentration below the sediment-water interface decreased to near anoxic. These results suggest that embryonic survival could be impacted in rivers with heavy sedimentation or a high standing biomass of periphyton.

Introduction

The rainbow smelt, *Osmerus mordax* (Mitchill), is a small anadromous fish found along the Northwest Atlantic and Northeast Pacific coasts of North America that is enjoyed as a food fish, and has supported important commercial and recreational fisheries (Buckley, 1989; Klein-MacPhee, 2002). Smelt also serve as an important prey item for many piscivorous fish and bird species. On the Atlantic coast, the southern-most portion of its range has contracted, such that spawning populations are only found in rivers north of Cape Cod, and significant population declines have also been reported in specific rivers within their extant range (Chase and Childs, 2001; Klein-MacPhee, 2002). In response to declining Atlantic populations, rainbow smelt were listed as a "species of concern" by the US National Marine Fisheries Service in 2004 (NOAA, 2004).

The reasons for these population declines are not entirely clear, but human activities in the coastal zone have been implicated in the decline of many anadromous species, including smelt (Murawski and Cole, 1978). Declines in smelt abundance in Massachusetts have been linked to declining water quality from industrial pollution, loss of eelgrass beds, and obstructions in rivers that may prevent upstream migrations (Chase and Childs, 2001; Klein-MacPhee, 2002). As smelt are weak swimmers and are unable to traverse fish ladders, dam construction may also be detrimental to smelt populations, as they prevent spawning smelt from reaching desirable spawning habitats and may expose embryos and larvae to saline environments prematurely (Crestin, 1973). Additionally, as smelt spawn in the spring, the demersal eggs are exposed to runoff from snow melt and spring storms, which may be acidic and/or contain silt and contaminants from anthropogenic activities, such as urbanization (Geffen, 1990; Walling, 1995; Lapierre et al., 1999).

The developing embryos and larval stages of the teleost life cycle are considered to be the most sensitive to environmental stressors (Geffen, 1990; Swanson, 1996) and concern has been raised about the possible effects that degraded water quality has had on rainbow smelt populations. In a previous study, Fuda et al. (2007) demonstrated that smelt are tolerant to a wide range of abiotic environmental factors including salinity, ultraviolet radiation, dissolved oxygen (DO), nitrates, phosphates, and pH during their early developmental stages. In that study, however, smelt embryos incubated in natural spawning rivers became covered with silt, debris, and fungi that impacted hatching success. The purpose of the present study was to investigate the effects

of silt, periphyton communities, and eutrophying compounds on oxygen availability and embryonic smelt survival in controlled laboratory conditions (Fig. 1).

Materials and methods

Egg collection

During their annual spawning migration (March-May 2007-2008), adult rainbow smelt were captured with fyke nets in New Hampshire (NH) rivers that are tributaries of the Great Bay estuary. The smelt were transported to the University of New Hampshire (UNH), Durham, NH, anesthetized with tricaine methanesulfonate (100 mg L⁻¹ Tricaine-S; Western Chemicals, Ferndale, WA) and manually spawned (Ayer et al., 2005) using multiple males and females (n > 6). While no agents were used to remove egg adhesiveness, the degree of egg adhesive and were incubated in 3 L polyethylene hatching jars, with vigorous aeration (5 or 10 ± 1°C, salinity 0) for 2-4 days, prior to assessing fertilization success. Only viable embryos were used in those studies. Embryonic development can be observed using a dissecting microscope because viable embryos are translucent while non-viable embryos are opaque. In Experiment 1, the eggs were leggs on each tile were enumerated 8 days post fertilization (DPF). In Experiment 3, the adhesive eggs were directly transferred to clay bricks and fertilization was assessed 2 DPF. Directly pouring the embryos onto the tiles and bricks introduced some variability in the numbers among replicates, but variation among treatments was not significant as determined by ANOVA.

Sediment collection

Sediment was collected from the intertidal zone of the Oyster River, Durham, NH, at low tide, and sieved through a 300 µm nylon mesh. Sediment was dried at 70°C, sieved again, and sterilized by autoclaving at 123°C for 15 min.

Experiment 1. The effect of sedimentation on embryo survival

Following fertilization, embryos were gently poured to form a uniform monolayer (129 - 640 embryos) on 16 slate tiles (~104 cm²) and were held in 40 L aquaria (10 \pm 1°C, salinity 0), with supplemental aeration. After determining fertilization success (8 DPF), the embryos were covered with low, medium, and high sediment levels (0.25, 1.00 and 6.00 g dry weight; DW, n = 4/treatment). A piece of polyvinyl chloride (PVC) tube (diameter = 7.6 cm) was used to direct a slurry of sediment over the eggs (area = 45.6 cm²). Well-water alone was added to the control treatment (n = 4). Sediment was allowed to settle for one hour before the tube was removed. Embryos were distinguishable in the low and medium treatments (< 1 mm cover) but not in the high treatment (~1 mm cover). Following sediment settlement, water was circulated over the covered embryos with small aquarium pumps (~250 L hr⁻¹), that were placed ~26.7 cm vertically and ~22.3 cm horizontally away from the embryos. Prior to hatching (14 DPF), a stream of freshwater was used to gently remove the sediment, and live and dead embryos were enumerated. Survival was assessed as the number of live embryos remaining from the initial number of live plated.

Experiment 2. The effect of sedimentation on embryonic respiration

Oxygen consumption by sediment-covered embryos was measured with a Unisense Clark-type OX50 dissolved oxygen (DO) glass micro-electrodes with guard cathode (50 μ m diameter, Unisense, Aarhus, Denmark), connected to a Unisense PA2000 picoammeter (Unisense, Denmark). The electrodes (stirring sensitivity < 2%; response time, t₉₀ < 5 s) were calibrated linearly at experimental temperature and salinity using air-saturated water (atmospheric O₂) and oxygen-free water (gaseous N₂).

Ten embryos were transferred to each of two 5 ml borosilicate glass, aluminum foil-covered beakers, with a transfer pipette and maintained at 10 ± 1 °C. The oxygen probe and a slurry of sediment were introduced

through two holes (~3 mm diameter) made in the foil. The micro-oxygen electrodes were then lowered to the bottom of the beakers, and positioned < 1 mm from the embryos. Sterilized sediment (0.45 g, equivalent on a g/cm^2 basis to the 6.00 g treatment described above; Expt. 1) that was aerated for 24 hr to remove a portion of the chemical oxygen demand was added to one beaker using a pasture pipette. Well-water was then added to fill both beakers.

Oxygen concentration profiles were recorded (Unisense Profix 3.10; Unisense, Denmark) for 15-26 hr periods, after which embryos, water, and aerated sediment were replaced. Following each experiment (21-36 hr), the embryos were rinsed and examined to confirm viability. Electrodes were re-calibrated prior to each profile. DO concentrations were measured every 8.31 s, and recorded measurements were averages of 100 consecutive readings. Across a range of high DO concentrations, the linear portions of the oxygen consumption regressions were estimated visually from each profile and the slopes of these lines were used to calculate the routine metabolic rates (Cech, 1990; Torrans, 2007).

To determine the oxygen demand of the sterilized sediment alone, DO profiles were recorded in beakers containing sediment but no embryos (n = 2). The oxygen consumption rate between embryos covered and not covered with sediment were compared after correcting for oxygen consumed by the sediment alone. The slopes of the two regressions were compared using a Student's t-test for each day tested (Zar, 1999).

To obtain a vertical oxygen concentration profile, oxygen measurements were taken 72 hr after the addition of the sediment (n = 2) at various depths above and below the sediment. Measurements in increments of 0.05 mm were taken from under the sediment to 5.50 mm above the sediment, and increments of 1.00 mm were measured from 5.50-19.07 mm above the sediment.

Conditions for periphyton experiments 3-4.

Embryos were transferred to terracotta clay bricks (n = 4/treatment; area = $\sim 0.0206 \text{ m}^2$) with polypropylene transfer pipettes 2-4 DPF. The treatment (periphyton cover) and control (no periphyton) bricks were held in 9.5 L glass aquaria, submerged under 5 cm of well-water held at $10 \pm 1^{\circ}$ C, salinity 0, with supplemental aeration, and a 12 Light:12 Dark photoperiod ($\sim 1200 \text{ lx}$ light; Milwaukee Instruments, SM700, Rockymount, NC, USA). Periphyton biomass and composition were determined as described below. Viability was assessed (10-12 DPF) by enumerating the live and dead embryos and hatching success was determined 18-20 DPF.

Experiment 3. The effects of periphyton and sedimentation on embryo survival

Embryos (36-89/treatment, ~80% fertilization; 2 DPF) were distributed to bricks without periphyton, or to bricks with natural periphyton collected from the Squamscott and Crane (Danvers, MA) Rivers. The Crane River was selected because high periphyton loads were observed on submerged substrate. Additionally, the periphyton-covered bricks collected from the Squamscott River were covered with sediment (0.00, 0.25, and 1.00 g DW) as described in Experiment 1 above. Viability was assed at 12 DPF and successful hatching at 20 DPF.

Experiment 4. The effects of periphyton and eutrophying compounds on embryo survival

Embryos (64-126/treatment; 2 DPF) were plated on periphyton-covered bricks collected from the Crane River as described above. Eggs were reared under one of four conditions: (1) background levels of nitrates (0.4 mg L^{-1} NO₃⁻, sodium nitrate, Fisher Scientific, Fair Lawn, NJ, USA) and phosphates (0.04 mg L^{-1} , Sigma-Aldrich, St. Louis, MO, USA), (2) elevated nitrates (10.0 mg L^{-1} and background phosphate), (3) elevated phosphates (0.10 mg L^{-1} ; background nitrate), and (4) elevated nitrate and phosphate. Well-water was used in all treatments and embryos plated on bricks with no periphyton and background levels of nitrates and phosphates served as controls. Daily water changes (2/3 volume) with the target nutrient levels began 6 DPF. Viability was assessed at 10 DPF and hatching success at 18 DPF.

Experiment 5. Oxygen concentrations in the embryo micro-environment

Embryos (~20) were plated on bricks with natural periphyton (Squamscott River) as described in Experiment 3 above, and on control bricks without periphyton. Bricks were maintained in 9.5 L glass aquaria

with well-water at $10 \pm 1^{\circ}$ C and salinity 0. Slight aeration was added to the system to simulate an oxygenated river. Oxygen concentrations were recorded continuously in the micro-environment of a single embryo (< 1 mm) from 4 DPF until hatch was observed (10-12 DPF) using the micro-oxygen probes and recording device described above. Readings were made ~20 cm from aeration source (Tetra*tec* AP100). A reading was taken every 8.31 s and recorded oxygen measurements were averages of 100 consecutive readings.

Sediment and periphyton organic content

The dry weight, ash dry weight (ADW), and ash free dry weight (AFDW) of sediment and periphyton samples from each experiment (n = 4) were determined using the methods of the American Public Health Association (APHA, 1992). Periphyton samples were collected from rocks or bricks from 12 smelt-spawning rivers in Massachusetts, New Hampshire, and Maine between March and May 2008 and processed to estimate the standing periphyton biomass (Table 2). DW represents both inorganic and organic material, while ADW represents inorganic material only. To determine the DW (g m⁻²), scraped periphyton samples from measured areas (0.006-0.013 m²) were transferred to pre-weighed aluminum weigh boats, dried at 105°C, cooled in a desiccator, and weighed to the nearest 0.0001 g (Mettler Toledo AB54-S) over multiple days (3-4 days) in succession until the weights differed by no more than 0.0008 g. Samples were then ignited for 1 hr in a muffle furnace at 500°C, re-hydrated (~5 ml), dried at 105°C, cooled in a desiccator, and weighed to determine the ADW (g m⁻²). The AFDW (DW-ADW) represents the organic portion and is also expressed as g m⁻². Relative organic (AFDW/DW x 100) and inorganic (ADW/DW x 100) matter content was also calculated (Thomas et al., 2006).

Periphyton Taxonomic Composition

A measured area of periphyton from each experiment (0.006-0.011 m²) was scraped and preserved in 2% "M³" fixative (5 g potassium iodide, 10 g iodine, 50 ml glacial acetic acid, 250 ml formalin in 1 L distilled water) to determine taxonomic composition to the genus level (APHA, 1992). Using a light microscope (Olympus CH-2 Melville, New York, 40X, 100X, and 400X magnification) at least 300 algal cells were counted in triplicate from a preserved sample to determine a relative abundance estimate, where each algal or diatom filament was recorded as a single cell (Smith, 1950; Prescott, 1978; Weitzel et al., 1979; Wehr and Sheath, 2003).

Statistical analysis

Percentage data were arcsine transformed. ANOVA at a significance level of p < 0.05 was performed using SYSTAT 10 (Systat Software, Inc., San Jose, California, USA). A Tukey-Kramer test was used to determine differences between treatments when significant effects were observed. A Student's t-test (Zar, 1999) was used to determine differences between oxygen consumption using SigmaPlot 11 and SYSTAT 10 (Systat Software, Inc., San Jose, California, USA).

Results

Experiment 1. The effect of sedimentation on embryo survival

There were no significant differences in survival among the control (83%) and 0.25 and 1.00 g sediment treatments (75-76%, p > 0.678; Table 1). The highest sediment treatment (6.00 g) had a significantly lower survival (53%, p = 0.018; Table 1) than that of the controls. The sediment was primarily composed of inorganic material (~96%). The average DW, ADW, and AFDW for the sediment treatments are presented in Table 1.

Experiment 2. The effect of sedimentation on embryonic respiration

Embryos under the sediment layer consumed oxygen at a significantly greater rate than the controls at 22, 25, 27, and 29 DPF (p < 0.001; Figs. 2b-e). Consumption under the sediment treatment increased with age (Fig. 2f), and DO concentrations fell below 5 µmol O₂ in 12.1, 4.7, 3.5, and 2.1 hr for embryos at 22, 25, 27, and 29 DPF, respectively. All embryos removed from the sediment and examined after the completion of the

experiment were viable. DO levels below the sediment without embryos fell below 5 μ mol in 34.9 hr. The vertical profile indicated levels of unchanging DO concentration (45 μ mol O₂), 3-7 mm above the sediment-water interface (Fig. 3). Above this area, the DO concentrations increased, while below the sediment-water interface the DO concentration decreased to near anoxia (Fig. 3).

Experiment 3. The effects of periphyton and sedimentation on embryo survival

Embryos incubated on periphyton from the Squamscott River, with or without additional sediment, had survival (49-55%) that was not different from the control (61%, $p \ge 0.306$; Table 1), while those incubated on periphyton from the Crane River had significantly lower survival (17%, p < 0.001; Table 1). Hatching success did not differ among treatments (p = 0.117; Table 1). The periphyton from both rivers was primarily composed of inorganic material (>91%) but the periphyton from the Crane River had a significantly higher (p < 0.001) biomass (AFDW) than that from all other sources (Table 1). Periphyton from both rivers were primarily composed of diatom genera (96%), specifically the genus *Synedra* comprised over 67% of the total. Diatoms were observed adhering to the chorions of live embryos from all periphyton treatments. This was especially true of those from the Crane River, some of which were completely covered by diatoms (predominately *Cymbella* sp).

Experiment 4. The effects of periphyton and eutrophying compounds on embryo survival

No significant differences in survival (p = 0.967) or hatch (p = 0.909) were found among embryos grown in the presence of periphyton, with or without nutrient enrichment, compared to controls (Table 1). Periphyton was primarily composed of inorganic material (> 82%) and had a biomass (DW, ADW) that was significantly lower (p < 0.001) than the sample from the Crane River collected a week earlier (Experiment 3). Periphyton was primarily composed of diatoms (93%), especially *Synedra* (57%). As in Experiment 3, diatoms, predominately *Cymbella* sp., were found adhering to the embryos from the Crane River treatments.

Experiment 5. Oxygen concentrations in the micro-environment of embryos

Embryos incubated on natural periphyton experienced DO concentrations that cycled during the periods of light and darkness. DO levels dropped below saturation (251 μ mol O₂) during darkness but rose considerably during simulated daylight. Embryos in the control treatment remained at or above saturation throughout the experiment. DO in the natural periphyton treatment ranged from 393-556 μ mol and 0-243 μ mol during the light and dark phases, respectively (Fig. 4). Some embryos were observed hatching following culture on both periphyton communities.

Standing periphyton biomass

Periphyton biomass (DW, ADW, and AFDW) was variable among rivers in the three states and within rivers sampled temporally (Table 2). The highest periphyton biomass was recorded from the Crane River (MA), while low levels were present in Mast Landing (ME) and Deer Meadow Brook (ME) Rivers (Table 2).

Discussion

The importance of sufficient oxygen levels for normal development and embryonic survival has been demonstrated for a number of fish species, including Walleye (*Stizostedion vitreum*; Oseid and Smith, 1971), lake herring (*Coregonus artedii*; Brooke and Colby, 1980), and steelhead trout (*Oncorhynchus mykiss*; Rombough, 1988). The effects of low DO levels are often most evident during the more advanced stages of embryonic development, when oxygen demands are highest (Rombough, 1988; Louhi et al., 2008). The developing embryo acts as an "oxygen sink" so that even at relatively high water velocities, the partial pressure of oxygen at the embryo surface may be much less than that of the surrounding water (Daykin, 1965). In pristine settings, the cold, fast moving, river water in which smelt spawn would be fully oxygen-saturated, but the presence of dams or other obstructions to water flow, as well as sediment, periphyton, and detritus accumulation, may limit oxygen availability. Although the effects of low DO on embryonic smelt survival have

not been investigated in natural settings, long-term exposure to poorly oxygenated water was shown to reduce hatching in laboratory studies (Fuda et al., 2007).

In the present study, a sediment covering (~1 mm) over a 6 day period significantly reduced embryo survival. These results are similar to those reported in several other teleost species, such as Atlantic salmon (*Salmo salar*) and whitefish (*Coregonus* sp.) where fine sediment deposits reduced embryo survival by restricting oxygen exchange from the macro-environment (Venting-Schwank and Livingstone, 1994; Greig et al., 2005). Significant mortality was also observed in Atlantic herring (*Clupea harengus*) embryos following a precipitating phytoplankton bloom (Morrison et al., 1991). In laboratory and field studies with several salmonid species such as Atlantic salmon (*Lapointe et al., 2004*), fall-chinook (*Oncorhynchus tshawytscha*; Shelton and Pollock, 1966), and Coho salmon (*Oncorhynchus kisutch*; Meyer, 2003), fine sediment was shown to reduce embryo survival by restricting gravel permeability and oxygen delivery to the redds. Sediment adhesion can also impact embryonic development by restricting oxygen exchange through the micropores of the chorion (Louhi et al., 2008).

In addition to restricting oxygen delivery through advection, respiration, and oxygen uptake by particulate organic carbon (POC), sediment can deplete DO in riverine systems and generate near anoxic levels at the substrate water interface (Jorgensen and Revsbech, 1985). Reduced embryonic survival may result if developing embryos are deposited on, or covered by, a layer of this respiring material, as oxygen transport to the embryo will be diminished by the low DO concentration gradient in the microenvironment. Both advection and sediment respiration are believed to be responsible for low oxygen conditions experienced by whitefish embryos in eutrophic lakes (Lahti et al., 1979; Wilkonska and Zuromska, 1982; Venting-Schwank and Livingstone, 1994). The sediment used in the present study, although dried, sterilized, and aerated, depleted oxygen in the micro-environment directly above the sediment. In natural settings, smelt embryo survival may be impacted under thinner sediment layers than found in the present studies because un-sterilized sediment would likely harbor respiring microbes that would further deplete oxygen availability.

Periphyton communities can also affect the DO concentration in an embryo's micro-environment, as the assemblage of microorganisms that comprise the periphyton (algae, protozoans, and bacteria) can act as both a source and sink for oxygen (McIntire, 1966; Carlton and Wetzel, 1987). Due to photosynthesis, water can be supersaturated with oxygen during the daylight hours, but approach anoxia in the dark from net respiration (McIntire, 1966; Carlton and Wetzel, 1987). Diurnal DO fluctuations were found in the present study, but it is unlikely this would affect embryo survival because 36 hr periods of anoxia were not shown to affect embryonic smelt survival in this study.

The standing biomass of periphyton among and within smelt-spawning rivers in New England appears to be highly variable and temporally unstable. Periphyton distribution can be affected by light intensity, substrate type, temperature, nutrient levels, and grazing invertebrates (Trainor, 1978). Although no organized sampling protocol was followed in the present study, periphyton samples collected 7 days apart from the same general location in the Crane River differed greatly in biomass. The high biomass from the Crane River samples was comprised primarily of inorganic matter but it is not known if this was from silica comprising the diatom walls or sediment and detrital matter trapped by mucilage and mucilaginous stalks secreted by the diatoms (Karlström, 1978; Hoagland et al., 1982; Roemer et al., 1984). Embryo survival was significantly lower only when incubated on periphyton with the highest biomass, but was unaffected by the presence of lower amounts of similar periphyton, or samples to which sediment or eutrophying compounds (nitrates, phosphate) were added. The reasons for the increased embryo mortality are unknown and representative periphyton availability prohibited direct comparisons among these samples. Additional studies are required to examine the quantity and composition of periphyton communities in smelt spawning rivers and to determine their possible impacts on smelt survival.

In summary, survival of rainbow smelt embryos was lower when cultured with sediment cover or periphyton of high biomass. Reduced survival may have been due to prolonged exposure to low oxygen conditions resulting from compromised advection and substrate respiration.

References

- American Public Health Association, APHA, 1992. Standard methods for the examination of water and wastewater 18th edition. American Public Health Association, Washington, D.C.
- Ayer, M.H., C. Benton, W. King, J. Kneebone, S. Elzey, M. Toran, K. Grange and D.L. Berlinsky, 2005. Development of practical culture methods for rainbow smelt larvae. North American Journal of Aquaculture 67: 202-209.
- Brooke, L.T. and P.J. Colby, 1980. Development and survival of embryos of lake herring at different constant oxygen concentrations and temperatures. Progressive Fish Culturist 42: 3-9.
- Buckley, J.L., 1989. Species profiles: life histories an environmental requirements of coastal fishes and invertebrates (North Atlantic) - rainbow smelt. U.S. Fish and Wildlife Service Biological Report 82(11.106) U.S. Army Corps of Engineers TR EL-82-4.
- Carlton, R.G. and R.G. Wetzel, 1987. Distributions and fates of oxygen in periphyton communities. Canadian Journal of Botany 65: 1031-1037.
- Cech, J.J., 1990. Respirometry. In: C.B. Schreck and P.B. Moyle (eds.), Methods for fish biology. American Fisheries Society, Bethesda, Maryland, pp. 335-362.
- Chase, B.C. and A.R. Childs, 2001. Rainbow smelt (*Osmerus mordax*) spawning habitat in the Weymouth-Fore River. Massachusetts Division of Marine Fisheries Technical Report TR-5.
- Crestin, D.S., 1973. Some aspects of the biology of adults and early life stages of the rainbow smelt, *Osmerus mordax* (Mitchill), from the Weweantic River Estuary, Wareham-Marion, Massachusetts, 1968. M.S. thesis, University of Massachusetts, Amherst, 108 pp.
- Daykin, P.N., 1965. Application of mass transfer theory to the problem of respiration of fish eggs. Journal of the Fisheries Research Board of Canada 22: 159-171.
- Fuda, K.M., B.M. Smith, M.P. Lesser, B.J. Legare, H.R. Breig, R.B. Stack and D.L. Berlinsky, 2007. The effects of environmental factors on rainbow smelt *Osmerus mordax* embryos and larvae. Journal of Fish Biology 71: 539-549.
- Geffen, A.J., 1990. Response of rainbow smelt, *Osmerus mordax* (Mitchill), eggs to low pH. Journal of Fish Biology 37: 865-871.
- Greig, S.M., D.A. Sear, D. Smallman and P.A. Carling, 2005. Impact of clay particles on the cutaneous exchange of oxygen across the chorion of Atlantic salmon eggs. Journal of Fish Biology 66: 1681-1691.
- Hoagland, K.D., S.C. Roemer and J.R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatom (*Bacillariophyceae*). American Journal of Botany 69: 188-213.
- Jorgensen, B.B. and N.P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography 30: 111-122.
- Karlström, U., 1978. Role of the organic layer on stones in detrital metabolism in streams. Vereinigung für Theoretische und Angewandte Limnologie 20: 1463-1470.
- Klein-MacPhee, G., 2002. Smelts: family Osmeridae. In: B.B. Collette and G. Klein-MacPhee (eds.), Bigelow and Schroeder's fishes of the Gulf of Maine, Smithsonian Institution Press, Washington D.C, pp. 162-170.
- Lahti, E., H. Oksman and P. Shemeikka, 1979. On the survival of vendace eggs in different lake types. Aqua Fennica 9: 62-67.
- Lapierre, L., C. Cormier, G. Trencia and G. Verreault, 1999. Periphyton of four St. Lawrence estuary tributaries used for rainbow smelt spawning. In: First North American Workshop on Rainbow Smelt, Quebec, Quebec, Canada, 21-23 February 1999, pp 33-38.
- Lapointe, M.F., N.E. Bergeron, F. Bérubé, M. Pouliot and P. Johnston, 2004. Interactive effects of substrate sand and silt contents, redd-scale hydraulic gradients, and interstitial velocities on egg-to-emergence survival of Atlantic salmon (*Salmo salar*). Canadian Journal of Fisheries and Aquatic Sciences 61: 2271-2277.
- Louhi, P., A. Mäki-Petäys and J. Erkinaro, 2008. Spawning habitat of Atlantic salmon and brown trout: general criteria and intragravel factors. River Research and Applications 24: 330-339.

- McIntire, C.D., 1966. Some factors affecting respiration of periphyton communities in lotic environments. Ecology 47: 918-930.
- Meyer, C.B., 2003. The importance of measuring biotic and abiotic factors in the lower egg pocket to predict coho salmon eggs survival. Journal of Fish Biology 62: 534-548.
- Morrison, J.A., I.R. Napier and J.C. Gamble, 1991. Mass mortality of herring eggs associated with a sedimenting diatom bloom. ICES Journal of Marine Science 48: 237-245.
- Murawski, S.A. and C.F. Cole, 1978. Population dynamics of anadromous rainbow smelt *Osmerus mordax*, in a Massachusetts river system. Transactions of the American Fisheries Society 107: 535-542.
- National Oceanic and Atmospheric Administration, NOAA, 2004. Species of Concern NOAA National Marine Fisheries Service: Rainbow smelt *Osmerus mordax*. National Marine Fisheries Service, Proactive Conservation Program. Available online at
 - http://www.nmfs.noaa.gov/pr/pdfs/species/rainbowsmelt_detailed.pdf. Accessed 7 Jan 2009.
- Oseid, D.M. and L.L. Smith, 1971. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progressive Fish Culturist 33: 81-85.
- Prescott, G.W., 1978. How to know the freshwater algae, William C. Brown Company Publishers, Dubuque, Iowa, 293 pp.
- Roemer, S.C., K.D. Hoagland and J.R. Rosowski, 1984. Development of a freshwater periphyton community as influenced by diatom mucilages. Canadian Journal of Botany 62: 1799-1813.
- Rombough, P.J., 1988. Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and alevins of steelhead, *Salmo gairdneri*. Canadian Journal of Zoology 66: 651-660.
- Shelton, J.M. and R.R. Pollock, 1966. Siltation and egg survival in incubation channels. Transactions of the American Fisheries Society 95: 183-187.
- Smith, G.M., 1950. The freshwater algae of the United States, McGraw-Hill Book Company, Inc., New York, 719 pp.
- Swanson, C., 1996. Early development of milkfish: effects of salinity on embryonic and larval metabolism, yolk absorption and growth. Journal of Fish Biology 48: 405-421.
- Thomas, S., E.E. Gaiser and F.A. Tobias, 2006. Effects of shading on calcareous benthic periphyton in a shorthydroperiod oligotrophic wetland (Everglades, FL, USA). Hydrobiologia 569: 209-221.
- Torrans, E.L., 2007. Design and testing of a closed, stirring respirometer for measuring oxygen consumption of channel catfish eggs. North American Journal of Aquaculture 69: 185-189.
- Trainor, F.R., 1978. Introductory Phycology, John Wiley and Sons, New York, 542 pp.
- Ventling-Schwank, A.R. and D.M. Livingstone, 1994. Transport and burial as a cause of whitefish (*Coregonus* sp.) egg mortality in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 1908-1919.
- Walling, D.E., 1995. Suspended sediments in a changing environment. In: A.M. Gurnel and G.E. Petts (eds.), Changing river channels, John Wiley and Sons, Chichester, United Kingdom, pp. 149-176.
- Wehr, J.D. and R.G. Sheath, 2003. Freshwater algae of North America, ecology and classification, Academic Press, San Diego, California, 917 pp.
- Weitzel, R.L., L. Sanocki and H. Holecek, 1979. Sample replication of periphyton collected from artificial substrates. In: R.L. Weitzel (ed.) Methods and Measurements of Periphyton Communities: A Review, ASTM STP 690. American Society for Testing and Materials, Philadelphia, Pennsylvania, pp 90-115.
- Wilkonska, H. and H. Zuromska, 1982. Effect of environmental factors and egg quality on the mortality of spawn in *Coregonus albula* (L.) and *Coregonus lavaretus* (L.). Polskie Archiwum Hydrobiologii 29: 123-157.
- Zar, J.H., 1999. Biostatistical Analysis 4th edition, Prentice Hall, Upper Saddle River, New Jersey, 929 pp.

Figure Legends

Figure 1 Summary of Experiments

Figure 2 Regressions of decreasing mean (\pm S.E., n = 100) oxygen concentration (µmol O₂) over time from 10 rainbow smelt embryos with no sediment (\bigcirc , control) and covered with 0.45 g sediment (\bigcirc , treatment), a) 20, b) 22, c) 25, d) 27, and e) 29 days post fertilization (DPF). Linear portions of the regressions were estimated visually and regression equations are indicated. Asterisks (*) indicate a statistical difference (p < 0.0001) in slope (oxygen consumption) between the control and corrected sediment treatment on days specified postfertilization. f) Uncorrected consumption regressions of embryos (only) covered with sediment 22 (\triangle), 25 (\square), 27 (x), and 29 (\bigcirc) (DPF) and sediment (only) (\blacklozenge , \pm S.E., n = 2)

Figure 3 Mean (\pm S.E., n = 2) vertical oxygen profile (µmol O₂) above and below a sediment layer (0.45 g sediment) with no embryos present (Experiment 2). Shaded area indicates sediment layer.

Figure 4 Mean (\pm S.E., n = 100) dissolved oxygen concentrations (µmol O₂) measured next to an embryo on a brick covered with (\bullet) or without (\bigcirc) "natural" periphyton (Experiment 5) during a 12 light (L):12 dark (D) light cycle. Time during L (900 lx) and D (0 lx) phases represented by unshaded and shaded backgrounds, respectively. Dashed line indicates 100% saturation, 251 µmol O₂.

Table 1 Mean (\pm S.E., n = 4) embryonic survival (%) and hatch (%). Mean (\pm S.E., n = 4) DW, ADW, and AFDW of sediment (Experiment 1) and periphyton (Experiments 3 and 4) treatments, expressed as g m⁻² and % of DW. Significant differences (ANOVA, Tukey's test: p < 0.05) between treatments within an experiment are indicated by different superscript letters within a column and comparisons between periphyton biomass among experiments by different superscript numbers within a column.

Experiment	Treatment	% Survival	% Hatch	DW	ADW (%)	AFDW (%)
1	Control	$82.4\pm5.9^{\rm a}$	ND	-	-	-
	0.25 g	$76.2\pm4.6^{a,b}$	ND	54.3 ± 0.2	$51.9 \pm 0.3 \; (97.5)$	2.4 ± 0.0 (4.3)
	1.00 g	$75.5\pm5.8^{a,b}$	ND	216.4 ± 0.4	$208.1 \pm 0.7 \; (96.2)$	8.3 ± 0.3 (3.8)
	6.00 g	53.6 ± 4.1^b	ND	1296.5 ± 3.7	$1261.2\pm 5.4\ (97.3)$	35.3 ± 2.7 (2.7)
3	Control	61.5 ± 6.5^{a}	$92.4\pm4.8^{\rm a}$			
	Squamscott - Natural	55.6 ± 4.2^{a}	68.3 ± 6.7^a	35.3 ± 4.81^{1a}	$32.3 \pm 5.01^{1a} (91.1)$	$2.9 \pm 0.21^{1a} (8.9)$
	Crane - Natural	$17.8\pm2.9^{\rm b}$	74.3 ± 8.1^a	251.5 ± 22.53^{2b}	235.8 ±1 8.23 ^{2b} (94.1)	$15.7 \pm 5.02^{2b} (5.9)$
	Squamscott + 0.25 g	$49.5\pm3.3^{\rm a}$	$75.3\pm8.2^{\rm a}$			
	Squamscott + 1.00 g	50.4 ± 2.3^a	77.4 ± 6.5^a			
4	Control	$81.1\pm5.8^{\rm a}$	$95.5\pm1.8^{\rm a}$			
	Crane - Natural	$77.5\pm5.4^{\rm a}$	$89.9\pm2.8^{\rm a}$	124.6 ± 17.52^3	$103.5 \pm 17.52^3 (82.1)$	$21.0 \pm 1.82^2 (17.9)$
	Crane + N	$82.1\pm3.6^{\rm a}$	$92.5\pm1.7^{\rm a}$			
	Crane + P	$80.0\pm4.6^{\rm a}$	93.2 ± 1.9^{a}			
	Crane + N + P	81.4 ± 4.8^a	88.6 ± 2.5^{a}			

ND = no data.

State	Divor	Doto	DW	$\mathbf{A} \mathbf{D} \mathbf{W} (0/2)$	
State	Rivel	Date	Dw	ADW (%)	AFDW (%)
ME	Tannery Brook	6 May	58.8 ± 14.8	$41.0 \pm 8.7 (72.5)$	$17.7 \pm 7.2 \ (27.5)$
ME	Mast Landing*	9 April	0.5 ± 0.4	0.4 ± 0.4 (85.7)	$0.1 \pm 0.1 (14.3)$
	Deer Meadow				
ME	Brook*	9 April	0.2 ± 0.0	$0.1 \pm 0.0 (44.4)$	0.1 ± 0.0 (55.6)
NH	Squamscott	24 Mar	15.3 ± 3.4	$13.9 \pm 3.3 \ (90.3)$	1.4 ± 0.2 (9.7)
NH	Squamscott	5 April	35.3 ± 4.8	$32.3 \pm 5.0 \ (91.1)$	2.9 ± 0.3 (8.9)
NH	Winnicut*	5 May	7.0 ± 4.8	4.3 ± 2.4 (73.3)	2.7 ± 2.3 (26.7)
NH	Lampery	5 May	1.8 ± 1.2	$1.5 \pm 1.1 \ (68.5)$	$0.3 \pm 0.1 \ (31.5)$
NH	Bellamy	6 May	8.2 ± 4.0	$7.1 \pm 3.8 \ (86.3)$	$1.1 \pm 0.6 (13.7)$
NH	Oyster	6 May	72.0 ± 14.8	$64.3 \pm 13.9 \ (89.2)$	$7.6 \pm 1.6 \ (10.8)$
NH	Squamscott	7 May	75.7 ± 21.9	$69.4 \pm 22.5 \; (88.4)$	$6.3 \pm 0.7 \ (11.6)$
NH	Salmon Falls	7 May	179.5 ± 111.2	114.2 ± 50.9 (83.3)	65.2 ± 61.3 (16.7)
MA	Crane	5 April	251.5 ± 22.5	235.8 ± 18.2 (94.1)	$15.8 \pm 5.0 \ (5.9)$
MA	Crane	18 April	124.6 ± 17.5	103.5 ± 17.5 (82.1)	$21.1 \pm 1.8 (17.9)$
MA	Saugus	11 May	169.7 ± 34.3	163.2 ± 33.8 (96.5)	$6.5 \pm 0.7 \ (3.5)$
MA	Crane	11 May	120.2 ± 60.1	107.3 ± 25.7 (89.1)	$12.9 \pm 3.0 \ (10.9)$
MA	Mill	11 May	101.5 ± 40.2	$86.5\pm37.0\ (79.8)$	$15.0 \pm 3.9 \ (20.2)$
MA	Parker	11 May	27.1 ± 9.8	$24.5 \pm 9.1 \ (89.1)$	$2.6 \pm 0.7 \ (10.9)$
MA	Little	11 May	165.4 ± 57.5	$158.9 \pm 56.1 \ (95.2)$	6.5 ± 1.4 (4.8)

Table 2 Mean (\pm S.E, n = 4). DW, ADW, and AFDW of standing periphyton biomass taken during the 2008 smelt spawning season from Massachusetts (MA), New Hampshire (NH), and Maine (ME) expressed as g m⁻² and % of DW.

Asterisk (*) indicates n = 3.

Figure 4.

<u>Objective 4</u>: To determine the genetic variation among rainbow smelt (*Osmerus mordax*) from multiple river systems in New England.

Purpose

In response to the Species of Concern status of rainbow smelt in the Northeast, a collaborative Proactive Species Conservation Program was launched with grant funding by NMFS. Program goals included increasing our understanding of the population status, ecology and structure of smelt in river systems in the Northeast. Prior to this effort, no studies had been conducted on the population genetic structure of rainbow smelt in this region. Knowledge of population genetic structure is critical for informing conservation management.

The objective of this project was to determine the genetic variation among rainbow smelt (Osmerus mordax) from multiple river systems in New England.

Methods

Fin clip samples of adult smelt were obtained from New Hampshire Fish & Game, Maine Division of Inland Fisheries & Wildlife, and Massachusetts Division of Marine Fisheries, collected during spawning runs. A total of 2748 samples were collected from 18 rivers during 2006-2010 (Table 1). Four additional small collections from the Winnicut River and Cascade Brook were not used in analyses due to insufficient sample size (<30 individuals).

DNA was extracted from fin clips using the Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, California). Genotyping was performed using a suite of 11 microsatellite loci (Coulson et al. 2006), following published protocols optimized for 3 sets of multiplex PCR amplifications. PCR products were electrophoresed using an automated DNA sequencer (ABI 3130; Applied Biosystems) and alleles were scored manually using PEAKSCANNER software (ABI). Two loci, *Omo3* and *Omo16* were found to be linked in all populations and were dropped from further analyses. Multilocus genotypes for the remaining 10 loci were compiled for individuals and population genetic analyses were performed using multiple individual and population-level analyses.

Descriptive statistics, including observed and expected heterozygosties, allelic richness (a measure of within population genetic diversity), and tests of Hardy Weinberg equilibrium and linkage disequilibrium were conducted in GENEPOP (Raymond and Rousset 1995) and FSTAT (Goudet 1995). Population differentiation was evaluated by analysis of pair-wise population FST, calculated in FSTAT, and chord distances (Cavalli-Sforza and Edwards 1967). We tested for temporal stability in the population genetic structure by AMOVA, using the program ARLEQUIN (Schneider et al. 2000). We further evaluated the level of population structuring and connectivity among rivers using individual-based Bayesian clustering methods of STRUCTURE (Pritchard et al. 2000) and BAPS (Corander et al. 2008). We ran STRUCTURE using the LOCPRIOR model (Hubisz et al. 2009), which is suited to perform for systems with weak genetic structure. We ran BAPS using the group clustering algorithm. We also used the predefined clustering algorithm in BAPS to evaluate evidence of structuring at the river level. This analysis was followed by an assignment test approach, in which we used the genotype data to assign individuals back to their most likely population of origin. We report the percentage of

correct self-assignments (percent of individuals correctly assigned to the river in which they were sampled), as a measure of river-level structuring (following Waples and Gaggiotti 2006). Lastly, we evaluated the spatial extent of the observed genetic structure using spatial autocorrelation analysis in GENALEX (Peakall and Smouse 2006).

Collection by river and year	Sample size
Cobscook Bay 2008	91
Cobscook Bay 2009	95
Chandler River 2009	36
Chandler River 2010	96
Pleasant River 2010	96
Penobscot River 2008	95
Penobscot River 2009	95
Marsh River 2008	79
Marsh River 2009	96
Kennebec River 2009	82
Harraseeket River 2008	90
Harraseeket River 2009	96
Long Creek 2009	96
Salmon Falls 2008	51
Oyster River 2007	95
Bellamy River 2007	67
Bellamy River 2008	76
Lamprey River 2008	95
Squamscott River 2007	48
Squamscott River 2008	94
Squamscott River 2009	96
Parker River 2008	99
Parker River 2009	96
Saugus River 2006	37
Saugus River 2007	81
Saugus River 2008	82
Fore River 2006	94
Fore River 2008	100
Jones River 2008	108
Jones River 2009	96
Weweantic River 2008	95
Total:	2748

 Table 1. Rainbow smelt fin clip samples collected from 18 rivers in Maine, New Hampshire and Massachusetts 2006-2010.

Results & Interpretation

Multilocus genotypes with no more than 4 missing loci were obtained for 2572 samples. Observed heterozygosities were similarly high for all rivers (mean $H_0 = 0.859$), except the Weweantic, in which they were slightly reduced ($H_0 = 0.765$). Observed and expected heterozygosities did not deviate from Hardy-Weinberg expectations. Allelic richness (the sample-sized adjusted number of alleles per locus) was significantly reduced in the Weweantic samples relative to all other rivers, except the Cobscook, which was only significantly reduced relative to the Squamscott River collection (ANOVA blocked by locus; Figure 1). These findings suggest that smelt populations in the Weweantic have slightly lower genetic diversity

relative to smelt in the other rivers, which may be consistent with the status of these populations at the most southern extent of the current range of the species. Populations at the edges of species' ranges often have reductions in population size or diversity.

Figure 1. Mean allelic richness across 10 loci for rainbow smelt from 18 rivers in Maine, New Hampshire and Massachusetts. Bars with different letters are significantly different (P<0.05, ANOVA).

To follow up on our findings of reduced genetic diversity in Weweantic, we tested for signatures of population bottlenecks (severe reductions in population size in the recent past) using two complementary approaches, BOTTLENECK (Piry et al. 1999) and M-RATIO (Williamson-Nateson 2005). We found no evidence, with either approach, that any of the smelt populations had experienced a genetic bottleneck, suggesting that either the observed reductions in genetic diversity were not associated with a severe population decline, or that a population reduction was very recent or potentially ongoing (these 2 approaches are not designed to detect slow or currently ongoing population reductions).

For population genetic structure to be meaningful, it must be demonstrated that the differences among rivers/sites are significantly greater than the differences between years within the same rivers/sites (Waples 1998). To evaluate the annual variability in population genetic structure, we conducted an AMOVA (molecular analysis of variance, which partitions genetic variation hierarchically, similar to an ANOVA) using 10 rivers that were sampled in >1 year. We found no significant variation among annual samples from individual rivers, but highly significant differences among different rivers (P<0.001), suggesting that the genetic variation we observed among rivers was very stable over time. Therefore, yearly samples from the same rivers were pooled for further analyses.

We found highly significant differentiation among the 18 rivers overall, with a global F_{ST} of 0.015. This level of differentiation is very similar to that found for other anadromous fish in the region, including salmon in Maine (King et al. 2001, Spidle et al. 2003) and smelt in New Brunswick, Nova Scotia and Prince Edward Island (Bradbury et al. 2006). Interestingly, Bradbury et al. (2006), found an order of magnitude higher differentiation ($F_{ST} = 0.11$) for smelt

in Newfoundland, with structuring on the scale of estuaries and bays. The higher divergence in this system is likely a function of the topography of the Newfoundland coastline, which is much more structured with geographically distinct bays, relative to the more uniform coastline of the Northeast US.

Many pairs of individual rivers were also differentiated, with pair-wise F_{ST} s ranging from 0 (for geographically proximate rivers that shared the same estuary in Great Bay, NH) to 0.08 (for the most geographically separated rivers of Cobscook Bay in ME and Weweantic in MA. The Weweantic River, followed by the Cobscook Bay collection, showed the strongest divergence and both were significantly differentiated from all other rivers. Overall, genetic variation followed an isolation by distance pattern, such that were was a significant correlation between genetic and geographic distance (Mantel test, $r^2 = 0.467$, p<0.0001). Spatial autocorrelation analyses indicated significant fine-scale spatial genetic structure extended to approximately 180 km. Similarly, Bradbury et al. (2006) found the spatial extent of genetic structure in Newfoundland was approximately 150 km, although an order of magnitude greater.

Despite these trends for isolation by distance and large and fine-scales, genetic differentiation was not consistent across geographic distances for the whole study area, and several rivers from northern Massachusetts to coastal Maine were genetically quite similar. To evaluate the genetic similarities among rivers, we used the results of Bayesian clustering analyses from STRUCTURE and BAPS. These analyses use the genetic data to cluster the populations (rivers) together into genetically similar groupings. Results of STRUCTURE suggested strongest support for the presence of 5 genetically distinct groups (top bar graph in Figure 2), consisting of 1) Cobscook, 2) Penobscot, 3) Chandler, Pleasant, Marsh, Kennebec, Harraseeket, Long Creek, the NH rivers of the Great Bay estuary, and Parker River, 4) Saugus Fore and Jones, and 5) Weweantic (top bar graph in Figure 2). Within these groupings, Parker River is a mixture of the NH-ME grouping and the Saugus-Fore grouping, and Jones is a mixture of the Saugus-Fore and Weweantic groupings. There was also some evidence to support 6 groups, similar to the 5 above, but with some differentiation of Harraseeket and Long Creek (bottom bar graph in Figure 2). The 6 groupings showed higher admixture than the 5 groupings, especially within the ME and NH rivers. Analyses with BAPS yielded similar results, but did not suggest as fine-scale structuring, with only 4 genetically similar groups detected: 1) Cobscook, 2) Chandler River south to Parker River, 3) Saugus, Fore and Jones Rivers, and 4) Weweantic River (Figure 3). A synthesis of these results is presented in Figure 4, which depicts on a map the geographic composition of each of the genetically distinct groupings. Assignment test results supported the 5 STRUCTURE groupings with 60-85% correct self-assignments (highest for Cobscook and Weweantic and lowest for Penobscot).

Figure 2. Results of genetic clustering analysis with STRUCTURE for smelt from 18 rivers, with k=5 genetically similar groupings in the top panel and k = 6 in the bottom panel. Colors depict the genetic cluster membership; rivers that are comprised of >1 color are admixed between groups.

Figure 3. Results of genetic clustering analysis by group (river) with BAPS for smelt from 18 rivers. K= 4 (shown) was the most likely number of genetic groupings.

We also found evidence of finer-scale genetic structure at the scale of individual rivers, although much weaker than at the level of the groups described above. The predefined clustering method of BAPS partitioned the samples by river or estuary (in the case of the Great Bay, NH samples), although admixture among rivers was evident (Figure 4). Results of the assignment tests supported the river level structuring, but indicated it was highly variable among rivers, with 10% - 84% of individuals per river assigned correctly to the river in which they were sampled (Table 2). With 16 rivers, only 6% of individuals would be expected to be correctly assigned by random chance alone. Nonetheless, self-assignments in the 10-20% range suggest only a weak river-specific genetic signal.

	%
	correctly
River	assigned
Cobscook	73
Chandler	22
Pleasant	10
Penobscot	41
Marsh	20
Kennebec	16
Harraseeket	27
Long Creek	18
Great Bay, NH	15
Parker	23
Saugus	31
Fore	36
Jones	57
Weweantic	82

Table 2. Percentage correct self-assignments for smelt from 18 rivers (the 5 NH rivers from the Great Bay estuary were combined for this analysis).

Figure 4. Map depicting the genetic groupings of smelt from 16 rivers, based on a synthesis of genetic clustering analyses from STRUCTURE and BAPS. Black circles indicate the 4 most genetically distinct groupings, with red circles indicating two additional weakly differentiated groups. Overlapping circles (around Parker River and Jones) indicate admixture between 2 groups.

Figure 5. Results of predefined clustering analyses in BAPS, indicating fine-scale structure at the level of individual rivers or estuary (in the case of Great Bay, NH rivers).

Summary and Conclusion

Genetic diversity was high for smelt from the 18 rivers overall, with a reduction in Weweantic and a slight reduction in Cobscook. There was no evidence that the populations had undergone a recent population bottleneck, although an ongoing bottleneck could not be ruled out. Smelt from most rivers were significantly differentiated from each other, with the exception of the most geographically proximate ones. Smelt from the 5 rivers in the Great Bay estuary were genetically homogenous, suggesting smelt did not home strongly to individual rivers. Straying among rivers beyond the level of the estuary was also evident, as gene flow was relatively high among many rivers in the NH- coastal ME region. Overall, genetic differentiation was highly correlated with geographic differentiation, supporting an isolation by distance model. The level of differentiation in the system (global $F_{ST} = 0.015$) was similar to that of other anadromous fish in the region. Genetic structuring was not apparent on an estuarine or bay-scale level, but rather was explained by 4-6 genetic groupings, which differentiated the Weweantic and Cobscook rivers most strongly, and combined the Saugus, Fore and Jones rivers into one grouping, and the remaining rivers from Parker River, MA to Chandler River, ME into another grouping. Weaker divergence was evident in the Penobscot River and a grouping of the Harraseeket and Long Creek samples. On a finer-scale, we found evidence for weak river-level structuring, suggesting widespread straving among most adjacent rivers. We attribute the observed patterns of genetic structuring to the topographic features of the coastline. The most differentiated rivers were located near topographically distinct features, such as capes (Cape Cod, Cape Ann) or enclosed bays, (Cobscook and Penobscot), which may serve as barriers to dispersal or function in larval retention. Areas of highest gene flow corresponded to a stretch of the NH-ME coastline that is topographically unstructured. Our findings give important new insight into the population structure of smelt in US waters

Recommendations for Future Study

Based on the findings of this study, we recommend additional sampling be conducted in rivers located in and near the enclosed bays (Penobscot, Cobscook) and surrounding the Harraseeket and Long Creek sampling areas. A finer-scale sampling effort focused around the topographically structured areas will increase our understanding of the scale of larval retention and the influence of topography on gene flow and straying among rivers.

References

Bradbury, I.R., M.W. Coulson, S.E. Campana, and P. Bentzen. 2006. Morphological and genetic differentiation in anadromous smelt Osmerus mordax (Mitchill): disentangling the effects of geography and morphology on gene flow. Journal of Fish Biology 69C: 95-114.

Cavalli-Sforza, L.L. and A.W.F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Gen. 19: 233-257.

Corander J, Marttinen P, Sirén J, Tang J. (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9:539.

Coulson, M.W., I.G. Paterson, A. Green, R. Kepkay, and P. Bentzen. 2006. Characterization of di- and tetranucleotide microsatellite markers in a rainbow smelt (Osmerus mordax). Molecular Ecology Notes 6: 942-944.

Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485-486

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322–1332.

King, T. L., S. T. Kalinowski, W. B. Schill, A. P. Spidle, and B. A. Lubinski. 2001. Population structure of Atlantic salmon (*Salmo salar* L.): a range-wide perspective from microsatellite DNA variation. Molecular Ecology 10:807–821.

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288-295

Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502-503

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959

Raymond M, Rousset F (1995) GENEPOP (version 1.2) population genetic software for exact tests and ecumenicism. J Hered 86:248-249

Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

Spidle AP, Kalinowski ST, Lubinski BA, Perkins DL, Beland KF, Kocik JF, King TL (2003) Population structure of Atlantic Salmon in Maine with Reference to Populations from Atlantic Canada. Transactions of the American Fisheries Society 132:196-209. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

Waples and Gaggiotti. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology 15: 1419-1439.

Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551-562