

Mosquito/Arbovirus Surveillance

Charles Lubelczyk Maine Medical Center Research Institute Scarborough, ME

Wildlife Health and Emerging Disease

Silent cycles of wildlife disease - <u>enzootic</u>

Flanders virus, trivitattus virus – mosquito-borne

Squirrel pox – squirrel to squirrel transmission

No impact other than to specific wildlife host

Minimal public health or veterinary importance

Wildlife Health and Emerging Disease

- <u>Epizootic or epidemic cycles</u> of wildlife disease ('Jumping the species barrier'')
- West Nile virus, eastern equine encephalitis mosquitoborne
- Lyme disease, Powassan encephalitis tick-borne
- Chronic wasting disease deer to livestock transmission
- -Human, veterinary, livestock, wildlife health issues
 Non-target spillover of disease (accidental hosts)

Arboviral cycle

- Reservoirs
 - Avian species
 - Arthropod vectors (ticks/mosquitoes)
 - Seasonality of disease
 - Host preference
 - 'Dead End' Hosts

Mosquito Vectors - EEE

- Enzootic vectors
 - Genus Culiseta
 - Ornithophillic
 - Habitat forested wetlands
- Bridge vectors
 - Genera Coquillettiddia, Aedes (Ochleratutus), Culex
 - Catholic feeders'
 - Habitat variable, but wetland associated

Mosquito Vectors – WNV/SLE

- Enzootic vectors
 - Genus Culex
 - Ornithophillic
 - Habitat container breeders (nutrient rich water source)
 - Urban vs natural areas (Rochlin et al 2008)
- Bridge vectors
 - Genera Coquillettiddia, Aedes (Ochleratutus), Culex
 - Catholic feeders'
 - Habitat variable, but wetland associated

Mosquito Habitat

- Cs melanura (EEE)
 - Red maple swamps or other acidic forested wetlands
 - Open forested uplands (eastern hemlock)
 - Oftentimes low visibility
 of disease activity (it
 takes a dead horse to see
 it!)

Mosquito Habitat

- Culex pipiens/Cx restuans (WNV)
 - Artificial container breeding, with high nutrient content
 - Tires
 - 'Kiddie pools'
 - Buckets
 - Cemeteries
 - Suburban or urban environments
 - Disease activity may be highly visible
 - "There's a dead crow on the lawn, honey!"

Mosquito Habitat

- Aedes vexans(EEE & WNV)
 - Temporary waterbodies following rainfall
- Aedes canadensis(EEE & WNV)
 Permanent woodland (shaded) pools
- Aedes sollicitans(EEE & WNV)
 Saltmarshes
- *Cq perturbans*(EEE & WNV)
 Cattail marshes

Deer Sero-surveys

AIM: evaluate the potential for using deer sero surveys to track and map the distribution of EEEV in the state of Maine.

The overall aim is to develop a comprehensive EEEV surveillance system based on detailed information of EEEV regional distribution and focal locations within the state of Maine.

Tracking Disease

- Use of cervids to look for EEE activity
 - $-\sim$ 7-12% antibody + animals across Maine

Deer Sera Tested = 226 EEE Positive = 16 % Positive = 7.1%

Tracking Disease

• Large samples to look for clusters spatially and temporally

EEE Ab+ Animals

Both WTD and Moose, 2009-2014

High clustering of positivity in northern Maine 3 sites in Aroostook County

Kennebec County

Lower Clustering of Positives Piscataquis County Interior York County Washington County Lower Penobscot County

Tracking Disease

- Entomologic Surveillance (mosquito trapping)
 - 30 sites across Maine
 - Collaborative effort between MMCRI, MECDC and ME DACF

Tracking Disease

- Veterinary/public health surveillance
 - Rapid response investigation at site of activity (sick horse)
 - Mosquito collection and testing

Summer 2012 - Pheasant Outbreak

- Captive pheasant flock (Lebanon, ME), reports of sudden deaths occurring in flock
 - Original flock size of 75 birds; one dead bird tested positive for EEEV

Pheasant Flock Mortality Timeline

- Of the original 75 birds:
 - 39 birds died suddenly, as reported by landowner
 - 36 birds were euthanized

Rapid Response - Methods

- Rapid response mosquito trapping on site (Lebanon)
- Two light traps placed in forested wetlands near flock enclosure
 - Red maple swamp
 - Hemlock swamp
- September 7 September 30

Predicting Disease

- Models created with geographic information systems (GIS)
 - Adding biologic data with environmental data to predict where either vectors or disease may concentrate

WNV model – urban mosquitoes

EEE model v2– across rural counties, targeting small locations

 Created to improve mosquito surveys but also emergency response

The New Kid on the Block - Zika

- How to track, where to look?
 - Use of emergent cups to collect Ae albopictus/Ae egypti larvae
 - Concentrations on port districts with incoming ship traffic in southern Maine (Portland, Kittery)
- Urban environments
 - Search for artificial containers that may act as breeding habitat for vectors
 - GIS model for urban Culex sampling

