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Under WA 4-35, Tetra Tech is tasked to update long-term pollutant runoff time series for 

typical land uses in the region. The time series update consists of two aspects: 1. To update 

annual average pollutant loading rates for Total Nitrogen (TN), Total Phosphorous (TP), 

Total Suspended Solids (TSS), and Zinc (Zn), and 2. To expand the time series duration of 

01/01/1992-12/31/2002 to 01/01/1992-12/31/2014. This memorandum introduces the 

background information for the time series update, the overall strategy for the time series 

update, and the final results.  

 
1. Background of the Long-Term Runoff Time Series  

When developing long-term BMP performance curves for the region in a previous 

assignment, runoff time series for the period of 01/01/1992 to 12/31/2002 were created for 

simulating BMP processes (Tetra Tech, 2008). In that effort, the time series for TSS, TP, 

TN, and Zn were developed for 5 land uses including Commercial, Industrial, High Density 

Residential, Medium Density Residential, and Low Density Residential. Typical pollutant 

loading rates for these land uses and pollutant combinations are summarized in Table 1.  

 

Table 1. Pollutant loading rates for previous round of long-term time series generation. 

 
 

A set of Stormwater Management Model (SWMM) were set up to simulate the land use 

and pollutant combinations. Using the long-term rainfall time series as input, SWMM 

model buildup and washoff parameters were calibrated to match the annual average loading 

rates in Table 1. The calibrated time series were later used for estimating cumulative BMP 

performances (Tetra Tech, 2008).  
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A similar set of pollutant time series were developed in a later study for three communities 

in Upper Charles River, Massachusetts (Tetra Tech, 2009), and the rates are summarized 

in Table 2. In comparison with the pollutant loading rates in Table 1, the pollutant loading 

rates for the three Upper Charles River communities were for TP only, with more land use 

categories that are separated into pervious and impervious categories.  

 

Table 2. Annual average TP loading rates for three Upper Charles River communities.  

 
 
2. Planned Updates to Long-Term Pollutant Runoff Time Series 

EPA Region 1 continues to compile and assess representative stormwater pollutant loading 

information. Consequently, it is desirable to update long-term pollutant loading time series 

to incorporate the most recent knowledge into the stormwater management decision-

making processes across the region. Consideration of factors such as rainfall concentrations 

of certain pollutants (e.g. TP and TN) and further assessments of stormwater runoff quality 

from impervious and pervious surface separately are areas where refinements to the time 

series can be made. Additionally, it is desirable to expand the previous time series duration, 

01/01/1992 to 12/31/2002, to include current climate data for decision-makers who are 

interested in knowing the climate impacts from a more recent time frame.  

 

Long-term pollutant runoff time series are updated in recognition of the practical needs. 

The updates modify pollutant loading rates in reflection of more recent loading rate 

estimations and expand the duration of loading rates to a more recent ending time (e.g. 

12/31/2014).  
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Tables 3 to 6 below present the updated annual average pollutant loading rates for TP, TN, 

TSS, and Zn, respectively, and the sources for the updated loading rates are also included. 

As shown in the tables, updated loading rates are provided for eight land uses, each with 

both a pervious and impervious loading rate. For each of the land use and pollutant 

combination, new time series are generated for the time period of 01/01/1992 to 

12/31/2014.   

 

Table 3. Proposed annual average TP loading rates (rainfall concentration of TP 

considered).  

Phosphorus Source 

Category by Land Use 
Land Surface Cover 

Phosphorus 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Commercial 

(Com)  Industrial (Ind) & 

Institutional  

Directly connected 

impervious  
2 

Derived using a combination of the Lower 

Charles USGS Loads study and NSWQ 

dataset. This PLER is approximately 75% 

of the HDR PLER and reflects the 

difference in the distributions of SW TP 

EMCs between Commercial/Industrial 

and Residential. 

Pervious See* DevPERV 

Multi-Family (MFR) and 

High-Density Residential 

(HDR) 

Directly connected 

impervious 
2.6 Largely based on loading information 

from Charles USGS loads, SWMM HRU 

modeling, and NSWQ data set Pervious See* DevPERV 

Medium -Density 

Residential (MDR) 

Directly connected 

impervious 
2.2 Largely based on loading information 

from Charles USGS loads, SWMM HRU 

modeling, and NSWQ data set Pervious See* DevPERV 

Low Density Residential 

(LDR) - "Rural" 

Directly connected 

impervious 
1.7 

Derived in part from Mattson & Issac, 

HRU modeling, lawn runoff TP quality 

information from Chesapeake Bay and 

subsequent modeling to estimate PLER 

for DCIA (Table 14) to approximate 

literature reported composite rate 0.3 

kg/ha/yr. 

Pervious See* DevPERV 

Highway (HWY) 

Directly connected 

impervious 
1.5 Largely based on USGS highway runoff 

data, HRU modeling, information from 

Shaver et al and subsequent modeling to 

estimate PLER for DCIA for literature 

reported composite rate 0.9 kg/ha/yr. 
Pervious See* DevPERV 

Forest (For) 

Directly connected 

impervious 
1.7 Derived from Mattson & Issac and 

subsequent modeling to estimate PLER 

for DCIA that corresponds with the 

literature reported composite rate of 0.13 

kg/ha/yr (Table 14)  
Pervious 0.13 

Open Land (Open) 
Directly connected 

impervious 
1.7 

Derived in part from Mattson & Issac, 

HRU modeling, lawn runoff TP quality 



4 

 

Phosphorus Source 

Category by Land Use 
Land Surface Cover 

Phosphorus 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Pervious See* DevPERV 

information from Chesapeake Bay and 

subsequent modeling to estimate PLER 

for DCIA (Table 14) to approximate 

literature reported composite rate 0.3 

kg/ha/yr. 

Agriculture (Ag) 

Directly connected 

impervious 
1.7 Derived from Budd, L.F. and D.W. Meals 

and subsequent modeling to estimate 

PLER for DCIA to approximate reported 

composite PLER of 0.5 kg/ha/yr. Pervious 0.5 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group A   

Pervious 0.03 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TP concentration 

of 0.2 mg/L for pervious runoff from 

developed lands.  TP of 0.2 mg/L is based 

on TB-9 (CSN, 2011), and other PLER 

literature and assumes unfertilized 

condition due to the upcoming MA 

phosphorus fertilizer control legislation. 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group B 

Pervious 0.13 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C  

Pervious 0.24 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C/D 

Pervious 0.33 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group D   

Pervious 0.41 

 

Table 4. Proposed annual average TN loading rates (rainfall concentration of TN 

considered).  

Nitrogen Source Category 

by Land Use 
Land Surface Cover 

Runoff Nitrogen 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Commercial 

(Com)  Industrial (Ind) & 

Institutional  

Directly connected 

impervious  
16.9 WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. Average of 

NLER for rooftops and other impervious 

surfaces for commercial and industrial   Pervious See* DevPERV 

Multi-Family (MFR) and 

High-Density Residential 

(HDR) 

Directly connected 

impervious 
15.8 WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. Average of 

NLERs for rooftops and other impervious 

surfaces for residential Pervious See* DevPERV 

Medium -Density 

Residential (MDR) 

Directly connected 

impervious 
15.8 

WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. Average of 
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Nitrogen Source Category 

by Land Use 
Land Surface Cover 

Runoff Nitrogen 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Pervious See* DevPERV 
NLERs for rooftops and other impervious 

surfaces for residential 

Low Density Residential 

(LDR) - "Rural" 

Directly connected 

impervious 
15.8 WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. Average of 

NLERs for rooftops and other impervious 

surfaces for residential Pervious See* DevPERV 

Highway (HWY) 

Directly connected 

impervious 
11.4 WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014.  Average of 

NLERs for roadways and freeway 

impervious surfaces  Pervious See* DevPERV 

Forest (For) 

Directly connected 

impervious 
12.7 

WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. NLER for 

roadways   

Pervious 0.6 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TN concentration 

of 0.8 mg/L for pervious runoff from 

forest lands. Median TN conc.  of 0.8 

mg/l by (Budd and Meals, 1994) 

Open Land (Open) 

Directly connected 

impervious 
12.7 WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. NLER for 

roadways   Pervious See* DevPERV 

Agriculture (Ag) 

Directly connected 

impervious 
12.7 

WISE modeling by Geosyntec for the 

Squamscot River IMP, 2014. NLER for 

roadways   

Pervious 2.9 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TN concentration 

of 2.5 mg/L for pervious runoff from 

agriculture  lands. Median TN conc.  of 

2.5 mg/l by (Budd and Meals, 1994) 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group A   

Pervious 0.3 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TN concentration 

of 2.0 mg/L for pervious runoff from 

developed lands.  TN of 2.0 mg/L is based 

on TB-9 (CSN, 2011), and other PLER 

literature and assumes 50% of unfertilized 

and 50% fertilized conditions. 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group B 

Pervious 1.3 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C  

Pervious 2.7 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C/D 

Pervious 3.4 
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Nitrogen Source Category 

by Land Use 
Land Surface Cover 

Runoff Nitrogen 

Load  Export 

Rate, Kg/ha/yr 

Comments 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group D   

Pervious 4.1 

 

 

Table 5. Proposed annual average TSS loading rates.  

TSS Source Category by 

Land Use 
Land Surface Cover 

Runoff TSS 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Commercial 

(Com)  Industrial (Ind) & 

Institutional  

Directly connected 

impervious  
423 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TSS 

concentration of 43 mg/L for impervious 

runoff from commercial and Industrial 

lands.  EMC of  43 mg/L is the median 

EMC for commercial and industrial from 

the NSQD, 2008 for Rainfall regions 1 

and 2 

Pervious See* DevPERV 

Multi-Family (MFR) and 

High-Density Residential 

(HDR) 

Directly connected 

impervious 
492 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TSS 

concentration of 50 mg/L for impervious 

runoff from residential lands.  EMC of  50 

mg/L is the median EMC for residential 

from the NSQD, 2008 for Rainfall regions 

1 and 2 

Pervious See* DevPERV 

Medium -Density 

Residential (MDR) 

Directly connected 

impervious 
492 

Pervious See* DevPERV 

Low Density Residential 

(LDR) - "Rural" 

Directly connected 

impervious 
492 

Pervious See* DevPERV 

Highway (HWY) 

Directly connected 

impervious 
1659 Derived for MassDOT by VHB "Long-

Term Continuous Simulation for Pollutant 

Loading and Treatment for MassDOT 

Impaired Waters Program" (June 2012) 

using highway runoff data collected by 

the USGS for MassDOT 

Pervious See* DevPERV 

Forest (For) 

Directly connected 

impervious 
728 Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TSS 

concentration of 74 mg/L for impervious 

runoff from forest lands.  EMC of  74 

mg/L is the median EMC for open land 

from the NSQD, 2008 for Rainfall regions 

1 and 2 

Pervious See* DevPERV 

Open Land (Open) 

Directly connected 

impervious 
728 

Pervious See* DevPERV 

Agriculture (Ag) 
Directly connected 

impervious 
728 
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TSS Source Category by 

Land Use 
Land Surface Cover 

Runoff TSS 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Pervious See* DevPERV 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group A   

Pervious 8 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed TSS 

concentration of 50 mg/L for pervious 

runoff from developed lands.   TSS EMC 

of  50 mg/L is the median EMC for 

residential from the NSQD, 2008 for 

Rainfall regions 1 and 2  

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group B 

Pervious 33 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C  

Pervious 67 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C/D 

Pervious 85 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group D   

Pervious 102 

 

Table 6. Proposed annual average Zn loading rates.  

Zinc Source Category by 

Land Use 
Land Surface Cover 

Runoff Zinc 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Commercial 

(Com)  Industrial (Ind) & 

Institutional  

Directly connected 

impervious  
1.54 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 156 µg/L for impervious 

runoff from commercial and Industrial 

lands.  Zn of 156 µg/L is based on the 

median EMCs for commercial and 

industrial categories from the NSQD, 

2008 for Rainfall regions 1 and 2 

Pervious See* DevPERV 

Multi-Family (MFR) and 

High-Density Residential 

(HDR) 

Directly connected 

impervious 
0.79 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 80 µg/L for impervious 

runoff from residential lands.   Zn of  80 

µg/L is based on the median EMC for 

residential from the NSQD, 2008 for 

Rainfall regions 1 and 2 

Pervious See* DevPERV 

Medium -Density 

Residential (MDR) 

Directly connected 

impervious 
0.79 

Pervious See* DevPERV 

Low Density Residential 

(LDR) - "Rural" 

Directly connected 

impervious 
0.79 
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Zinc Source Category by 

Land Use 
Land Surface Cover 

Runoff Zinc 

Load  Export 

Rate, Kg/ha/yr 

Comments 

Pervious See* DevPERV 

Highway (HWY) 

Directly connected 

impervious 
1.97 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 200 µg/L for impervious 

runoff from highways.  Zn of 200 µg/L is 

based on Table 3-10 from Fundamentals 

of Urban Runoff, 2007. 
Pervious See* DevPERV 

Forest (For) 

Directly connected 

impervious 
0.79 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 80 µg/L for impervious 

runoff from residential lands.   Zn of  80 

µg/L is based on the the median EMC for 

residential from the NSQD, 2008 for 

Rainfall regions 1 and 2 

Pervious 0.05 

Open Land (Open) 

Directly connected 

impervious 
1.11 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 113 µg/L for impervious 

runoff from open lands.  Zn of 113 µg/L 

is based on the on the the median for open 

land for the NSQD, 2008 for Rainfall 

regions 1 and 2  

Pervious See* DevPERV 

Agriculture (Ag) 

Directly connected 

impervious 
0.79   

Pervious See* DevPERV   

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group A   

Pervious 0.006 

Derived from SWMM and P8 - Curve 

Number continuous simulation HRU 

modeling with assumed Total Zinc 

concentration of 39 µg/L for pervious 

runoff from developed lands.  Zn of 39 

µg/L is based on Table 3-10 from 

Fundamentals of Urban Runoff, 2007. 

*Developed Land Pervious 

(DevPERV)- Hydrologic 

Soil Group B 

Pervious 0.025 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C  

Pervious 0.052 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group C/D 

Pervious 0.066 

*Developed Land Pervious 

(DevPERV) - Hydrologic 

Soil Group D   

Pervious 0.08 
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3. Strategy for Pollutant Time Series Update 

Similar to the pollutant time series creation in previous BMP performance curve 

development (Tetra Tech, 2008) and the three Upper Charles River communities study 

(Tetra Tech, 2009), the update of pollutant time series consists of setting up the SWMM 

model for unit-area land uses, calibrating the SWMM buildup and washoff parameters to 

match the pollutant loading rates specified in Tables 3 to 6, and processing the SWMM 

outputs for SUSTAIN input. There are two additional steps in SWMM model calibration 

in comparison to the two previous calibration exercises for TP and TN: inclusion of rainfall 

concentrations of TN and TP, and using the calibrated buildup and washoff parameters for 

impervious surfaces against the TP and TN EMCs from the Region’s representative SW 

database. A separate study was performed under Task 9 to calibrate the SWMM buildup 

and washoff parameters for a generic impervious cover. The detailed methodology and the 

outcome of that study is reported in a technical memo 9.1 “Memo_Buildup Washoff 

Calibration Approach” and technical memo 9.2 “Memo_Buildup Washoff Calibration 

Results”. A scaling factor (calibration parameter) was introduced to the maximum buildup 

possible under different impervious land use categories to further calibrate the annual 

average loading rates for TN and TP long-term timeseries developed under this task.  

 

Rainfall concentrations of TN and TP are specified as constant values in SWMM model 

setup. According to the Region, the TN rainfall concentration is set as 0.31 mg/L, and the 

TP rainfall concentration is set as 0.017 mg/L.  

 
4. Results 

The time series for TN, TP, Zn, and TSS have been calibrated against the target values 

specified in Tables 3 to 6. The buildup and washoff parameters for TP and TN were 

selected from the calibrated parameters identified under Task 9 effort. The maximum 

storage capacity was adjusted iteratively until the long-term average annual loading rate 

matched the targeted values. Table 7 to Table 10 show the calibrated buildup and washoff 

parameters used in SWMM model for developing the long-term timeseries for eight land 

use categories.  

 

Table 7. Calibrated Buildup and Washoff Parameters for TN.  

Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 
Commercial (Com),  Industrial (Ind) & 

Institutional (Ins) 0.517 0.2 2 1 

Multi-Family (MFR) and High-Density 

Residential (HDR) 0.476 0.2 2 1 

Medium -Density Residential (MDR) 0.476 0.2 2 1 

Low Density Residential (LDR) - "Rural" 0.476 0.2 2 1 

Highway (HWY) 0.310 0.2 2 1 

Forest (For) 0.359 0.2 2 1 

Open Land (Open) 0.359 0.2 2 1 

Agriculture (Ag) 0.359 0.2 2 1 
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Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 

Forest (ForPERV) Pervious 0.698 0.1 1 2 

Agriculture (AgPERV) Pervious 4.383 0.1 1 2 
Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group A   1.630 0.1 1 2 

Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group B 1.765 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C  1.753 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C/D 
1.714 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group D   
1.564 0.1 1 2 

 

Table 8. Calibrated Buildup and Washoff Parameters for TP.  

Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 
Commercial (Com),  Industrial (Ind) & 

Institutional (Ins) 0.069 0.2 2 1 

Multi-Family (MFR) and High-Density 

Residential (HDR) 0.093 0.2 2 1 

Medium -Density Residential (MDR) 0.075 0.2 2 1 

Low Density Residential (LDR) - "Rural" 0.056 0.2 2 1 

Highway (HWY) 0.052 0.2 2 1 

Forest (For) 0.056 0.2 2 1 

Open Land (Open) 0.056 0.2 2 1 

Agriculture (Ag) 0.056 0.2 2 1 

Forest (ForPERV) Pervious 0.194 0.1 1 2 

Agriculture (AgPERV) Pervious 0.798 0.1 1 2 
Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group A   0.174 0.1 1 2 

Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group B 0.194 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C  0.170 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C/D 
0.185 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group D   
0.175 0.1 1 2 
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Table 9. Calibrated Buildup and Washoff Parameters for Zn.  

Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 
Commercial (Com),  Industrial (Ind) & 

Institutional (Ins) 0.253 0.3 1 2 

Multi-Family (MFR) and High-Density 

Residential (HDR) 0.130 0.3 1 2 

Medium -Density Residential (MDR) 0.130 0.3 1 2 

Low Density Residential (LDR) - "Rural" 0.130 0.3 1 2 

Highway (HWY) 0.323 0.3 1 2 

Forest (For) 0.134 0.2 1 2 

Open Land (Open) 0.187 0.2 1 2 

Agriculture (Ag) 0.134 0.2 1 2 

Forest (ForPERV) Pervious 0.083 0.1 1 2 

Agriculture (AgPERV) Pervious 0.041 0.1 1 2 
Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group A   0.038 0.1 1 2 

Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group B 0.041 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C  0.042 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C/D 
0.042 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group D   
0.038 0.1 1 2 

 

Table 10. Calibrated Buildup and Washoff Parameters for TSS.  

Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 
Commercial (Com),  Industrial (Ind) & 

Institutional (Ins) 69.159 0.3 1 2 

Multi-Family (MFR) and High-Density 

Residential (HDR) 80.440 0.3 1 2 

Medium -Density Residential (MDR) 80.440 0.3 1 2 

Low Density Residential (LDR) - "Rural" 80.440 0.3 1 2 

Highway (HWY) 271.238 0.3 1 2 

Forest (For) 122.362 0.2 1 2 

Open Land (Open) 122.362 0.2 1 2 

Agriculture (Ag) 122.362 0.2 1 2 

Forest (ForPERV) Pervious 54.009 0.1 1 2 

Agriculture (AgPERV) Pervious 54.009 0.1 1 2 
Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group A   49.490 0.1 1 2 
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Land Use Type 

Buildup Parameters Washoff Parameters 

Max 
Storage 
(lb/acre) 

Buildup 
Rate (per 

day) 
Washoff 

Coeff. 
Washoff 

Exponent 
Developed Land Pervious (DevPERV)- 

Hydrologic Soil Group B 54.009 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C  53.309 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group C/D 
53.065 0.1 1 2 

Developed Land Pervious (DevPERV) - 

Hydrologic Soil Group D   
49.738 0.1 1 2 

 

Figures 1 to Figure 4 show the box and whisker plots for the calibrated annual pollutant 

loading time series for both impervious and pervious land use categories. Figure 1 shows 

that the targeted TN loading rates (annual average value) for impervious areas are slightly 

lower than the median values and for pervious areas they are close to the median values. 

The targeted loading rates for TP, Zn, and TSS are aligned with the median values. 

 

 
Figure 1. Box and whisker plot for calibrated TN loading time series for the period of 

01/01/1992 to 12/31/2014. 
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Figure 2. Box and Whisker plot for calibrated TP loading time series for the period of 

01/01/1992 to 12/31/2014. 
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Figure 3. Box and Whisker plot for calibrated Zn loading time series for the period of 

01/01/1992 to 12/31/2014. 
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Figure 4. Box and Whisker plot for calibrated TSS loading time series for the period of 

01/01/1992 to 12/31/2014. 

 

In order to compare the observed and simulated EMC statistics (25th percentile, median, 

75th percentile, average), the simulated time series results were summarized on daily 

basis (average daily concentration) and on event basis (6 hour inter event duration). 

Figure 5 to Figure 12 show the box and whisker plots for those comparisons. It seems 

daily- and event- based statistics are very similar compared to each other and show a 

similar distribution. The simulated average values for TN and TP are very close to the 

median values showing a good distribution; whereas, the observed average values for TN 

and TP are much higher than the observed median values. The simulated average values 

for Zn and TSS are slightly higher than the simulated median values; whereas, the 

observed average values for Zn and TSS are closer to the 75th percentile observed values. 

 

In order to estimate what percentile value of the simulated pollutant concentration would 

generate the targeted annual average loading rate using the long-term annual average 

flow volume, the simulated event-based average concentration values were ranked and 

EMC percentile values were multiplied with the annual average flow volume to generate 

a polluting loading curve. The pollutant loading curves for TN, TP, Zn, and TSS were 

generated for each impervious land use category and are shown in Figures 13 to 36. The 

trend in the simulated time series shows that 27th percentile EMC values for TN and TP 

and 80th percentile EMC values for Zn and TSS can be used as representative EMC 

values to generate the annual average loading rate from the corresponding impervious 

land use category.  
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Figure 5. Comparison of calibrated daily TN concentration time series against the 

monitored EMC values. 

 

 
Figure 6. Comparison of calibrated timeseries EMC (minimum 6 hour inter event 

duration) against the monitored EMC values for TN. 
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Figure 7. Comparison of calibrated daily TP concentration time series against the 

monitored EMC values. 

 

 
Figure 8. Comparison of calibrated timeseries EMC (minimum 6 hour inter event 

duration) against the monitored EMC values for TP. 
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Figure 9. Comparison of calibrated daily Zn concentration time series against the 

monitored EMC values. 

 

 
Figure 10. Comparison of calibrated timeseries EMC (minimum 6 hour inter event 

duration) against the monitored EMC values for Zn. 
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Figure 11. Comparison of calibrated daily TSS concentration time series against the 

monitored EMC values. 

 

 
Figure 12. Comparison of calibrated timeseries EMC (minimum 6 hour inter event 

duration) against the monitored EMC values for TSS. 
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Figure 13. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for COM/IND/INS impervious cover. 

 

 
Figure 14. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for COM/IND/INS impervious cover. 
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Figure 15. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for COM/IND/INS impervious cover. 

 

 
Figure 16. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for COM/IND/INS impervious cover. 
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Figure 17. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for MFR/HDR impervious cover. 

 

 
Figure 18. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for MFR/HDR impervious cover. 
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Figure 19. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for MFR/HDR impervious cover. 

 

 
Figure 20. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for MFR/HDR impervious cover. 
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Figure 21. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for MDR impervious cover. 

 

 
Figure 22. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for MDR impervious cover. 
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Figure 23. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for MDR impervious cover. 

 

 
Figure 24. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for MDR impervious cover. 
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Figure 25. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for LDR impervious cover. 

 

 
Figure 26. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for LDR impervious cover. 
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Figure 27. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for LDR impervious cover. 

 

 
Figure 28. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for LDR impervious cover. 
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Figure 29. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for HWY impervious cover. 

 

 
Figure 30. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for HWY impervious cover. 
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Figure 31. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for HWY impervious cover. 

 

 
Figure 32. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for HWY impervious cover. 
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Figure 33. Comparison of calibrated TN timeseries EMC based annual average load 

against the targeted annual average export rate for OPEN impervious cover. 

 

 
Figure 34. Comparison of calibrated TP timeseries EMC based annual average load 

against the targeted annual average export rate for OPEN impervious cover. 
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Figure 35. Comparison of calibrated Zn timeseries EMC based annual average load 

against the targeted annual average export rate for OPEN impervious cover. 

 

 
Figure 36. Comparison of calibrated TSS timeseries EMC based annual average load 

against the targeted annual average export rate for OPEN impervious cover. 
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MEMORANDUM 

 

DATE:  February 20, 2016 

TO:  Opti-Tool TAC 

FROM:  Karen Mateleska, EPA Region- I 

 

SUBJECT:   Methodology for developing cost estimates for Opti-Tool  

 

Introduction  

EPA – Region I offered to provide TetraTech with BMP cost information for the New England Stormwater 

Management Optimization Tool (Opti-Tool).  The goal was to include the latest available information 

that would accurately reflect capital costs for select BMPs installed in the New England region.  This 

document describes the approach used to determine these values.  

The unit cost estimates originally developed as part of a 2010 study were used as the basis/starting-

point for the cost estimates for the Opti-Tool.  This study, entitled Stormwater Management Plan for 

Spruce Pond Brook Subwatershed, was produced by the Charles River Watershed Association (CRWA).  

The full report can be viewed at: http://www.crwa.org/hs-fs/hub/311892/file-636820515-

pdf/Our_Work_/Blue_Cities_Initiative/Scientific_and_Technical/CRWA_Franklin_Plan.pdf.   This 

subwatershed in the Town of Franklin (in eastern Massachusetts) was selected, in part, because it 

represented one of the many communities in the watershed that would be required to reduce nutrient 

(phosphorus) loads in stormwater runoff as part of EPA’s Phase II MS4 General Stormwater Permit and a 

TMDL for Nutrients in the Upper/Middle Charles River.   The cost estimates developed in the study can 

predominantly be attributed to CRWA and both Rich Claytor and Nigel Pickering of Horsley Witten 

Group (CRWA et al. 2010).  The development of these costs was based on a literature review of BMP 

cost information and Claytor’s extensive experience working in this field with Massachusetts 

communities.  These values were originally reported in Appendix B of the aforementioned CRWA 

document.  Those cost estimates have also been used in additional stormwater studies supported by 

EPA – Region I, including the Sustainable Stormwater Funding Evaluation for the Upper Charles River 

Communities of Bellingham, Franklin, and Milford, MA (2011).  (That report can be viewed at:  

http://www.epa.gov/region1/npdes/charlesriver/pdfs/20110930-SWUtilityReport.pdf)       

Before simply relying on the CRWA cost estimates, additional research was conducted of publicly 

available (online) resources to determine if more recent BMP cost information for the New England 

region was available.  These resources included: 

 EPA’s LID webpage: http://water.epa.gov/polwaste/green/ 

 EPA’s 2013 Article: Case Studies Analyzing the Economic Benefits of Low Impact Development 

and Green Infrastructure Programs: http://water.epa.gov/polwaste/green/upload/lid-gi-

programs_report_8-6-13_combined.pdf   

http://www.crwa.org/hs-fs/hub/311892/file-636820515-pdf/Our_Work_/Blue_Cities_Initiative/Scientific_and_Technical/CRWA_Franklin_Plan.pdf
http://www.crwa.org/hs-fs/hub/311892/file-636820515-pdf/Our_Work_/Blue_Cities_Initiative/Scientific_and_Technical/CRWA_Franklin_Plan.pdf
http://www.epa.gov/region1/npdes/charlesriver/pdfs/20110930-SWUtilityReport.pdf
http://water.epa.gov/polwaste/green/
http://water.epa.gov/polwaste/green/upload/lid-gi-programs_report_8-6-13_combined.pdf
http://water.epa.gov/polwaste/green/upload/lid-gi-programs_report_8-6-13_combined.pdf
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 New England Environmental Finance Center: http://efc.muskie.usm.maine.edu/  

 UNC Environmental Finance Center’s Catalog of Finance Publications on Green Infrastructure 

Approaches to Stormwater Management (This spreadsheet provides a catalog of 46 publications 

related on green infrastructure for stormwater management that have finance relevance; 

Several of the sources from the catalog were reviewed for this document) : 

http://www.efc.sog.unc.edu/reslib/item/catalog-green-infrastructure-and-stormwater-finance-

publications   

 Houle, et al. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID 

and Conventional Stormwater Management: 

http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/Houle_JEE_July-2013.pdf  

 University of New Hampshire Stormwater Center’s Forging the Link: Linking the Economic 

Benefits of LID and Community Decisions: http://www.unh.edu/unhsc/forging-link-topics  

 Center for Neighborhood Technology’s Green Values Stormwater Tool Box: 

http://greenvalues.cnt.org/ which included the Green Values Calculator:  

http://greenvalues.cnt.org/national/calculator.php 

 Water Environment Research Foundation (WERF): User’s Guide to the BMP and LID Whole Life 

Cost Models, Version 2.0: www.werf.org/bmpcost  

 Low Impact Development Center: http://www.lowimpactdevelopment.org/ 

 ECONorthwest’s The Economics of Low-Impact Development: A Literature Review: 

http://www.econw.com/our-work/publications/the-economics-of-low-impact-development-a-

literature-review/  

 Drexel University’s Low Impact Development Rapid Assessment (LIDRA Model)  

http://www.lidratool.org/home/publications.aspx 

 

A review of these resources did highlight the multitude of variables that can impact the cost of installing 

LID BMPs and the variety of cost analysis methods that can be used when assessing the cost 

effectiveness of various LID storm water controls.  For example, many of the resources emphasized that 

costs tend to be site specific.  Costs often differ significantly among different geographical locations, 

depending upon labor and material expenses and the constraints of a particular site.  Unfortunately, 

most of the aforementioned resources highlighted projects outside of the New England region (with the 

exception of the articles by Houle of the UNHSC and New England Environmental Finance Center.)     

EPA’s recent (2013) report entitled Case Studies Analyzing the Economic Benefits of Low Impact 

Development and Green Infrastructure Programs listed the 7 different types of economic analyses that 

were represented by the 13 case studies highlighted in the report.  These ranged from the simplest form 

of economic analysis (i.e., the capital cost assessment) to more robust forms, including the life cycle cost 

assessment.  Whole life-cycle costs would provide a more accurate estimate of the cost of installing, 

operating, maintaining, and replacing a project (i.e., BMP) throughout its expected lifetime.   However 

this type of analysis requires solid estimates for capital, land purchase, O&M, and other related costs. 

Ideally, the goal was to include a more advanced economic analysis (i.e. – life cycle costs) in the Opti-

Tool while still maintaining some level of simplicity for the end user.  However, such a robust economic 

analysis does not currently appear possible because the literary search for more recent BMP cost 

estimates, reflective of New England states, was largely unsuccessful.  However, the search was not 

http://efc.muskie.usm.maine.edu/
http://www.efc.sog.unc.edu/reslib/item/catalog-green-infrastructure-and-stormwater-finance-publications
http://www.efc.sog.unc.edu/reslib/item/catalog-green-infrastructure-and-stormwater-finance-publications
http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/Houle_JEE_July-2013.pdf
http://www.unh.edu/unhsc/forging-link-topics
http://greenvalues.cnt.org/
http://greenvalues.cnt.org/national/calculator.php
http://www.werf.org/bmpcost
http://www.lowimpactdevelopment.org/
http://www.econw.com/our-work/publications/the-economics-of-low-impact-development-a-literature-review/
http://www.econw.com/our-work/publications/the-economics-of-low-impact-development-a-literature-review/
http://www.lidratool.org/home/publications.aspx
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entirely fruitless.  Jamie Houle of the UNHSC did provide extremely valuable information on capital and 

maintenance costs for various BMPs that have been tested at the UNHSC.  Cost estimates for a 

particular BMP available from both the CRWA study and UNHSC were discussed among Mark Voorhees 

of EPA, Jamie Houle of UNHSC, and Karen Mateleska of EPA, and a best professional judgment decision 

was made.   

The recommendation at this time is to use a combination of the CRWA cost estimates and UNHSC costs 

estimates as the basis for the Opti-Tool BMP cost estimates, and to use a modified capital cost 

assessment (which includes a fixed percentage for Design and Contingency Costs) as well as a separate 

field for maintenance hours (from the UNHSC).   The details supporting this approach are described 

below.   

 

Overview of Scope and Approach 

According to a draft memo, dated 6/20/14 from Tetra Tech to EPA Region I, the current SUSTAIN BMP 

Cost function has seven major individual components, using a formula that would likely be useful in a 

more detailed design mode.  For purposes of simplicity, EPA Region I is proposing the following cost 

function formula for the tool’s “planning” mode:  

General Cost Function Formula =   Storage Volume of BMP* (ft3)  X  Cost Estimate for BMP ($/ft3)         

                                                                                      X Adjustment Factor 

 * Storage Volume of BMP is more accurately defined as (Design) Physical Storage Capacity of BMP; See Section A 

below for more details 

Initially, the intention was to include the preliminary Operations and Maintenance (O&M) costs in the 

general formula (page 3) by simply multiplying the formula results by our Preliminary O & M costs.  

However, such an approach would only include one year’s worth of operations and maintenance,  which 

could have been misleading because it would not have reflected the true life cycle cost of the BMP (i.e., 

assume life cycle of 20 years).  However, simply including the 20 year life cycle cost (O&M cost *20) in 

the above formula would have greatly increased the cost value and perhaps have created 

misconceptions about BMP use and affordability.   

Therefore, the subcommittee decided to include the anticipated operation and maintenance hours 

required for each BMP per year instead.  This parameter was included as a completely separate field in 

the Opti-Tool.   The rationale was that Opti-Tool users need to understand that operation and 

maintenance impact the overall cost-effectiveness of BMPs and should be considered when selecting a 

BMP.  Including O&M hours (instead of costs) as a separate field, would still highlight this important 

consideration for stormwater managers.    
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A. Storage Volume and Proposed Cost Estimate Values 

 

As highlighted above, the general cost function formula used in the Opti-Tool consists of 3 factors: the 

BMP storage volume, the proposed BMP storage volume cost estimate, and the adjustment factor.  The 

first two factors will be covered together in this memo because they are so closely linked.   Table 1 

below summarizes the proposed BMP cost estimates for the Opti-Tool.   

 

Table 1: Proposed BMP Cost Estimates for Opti-Tool 

BMP (From Opti-Tool) Cost ($/ft3) 1 
Cost ($/ft3) – 2016 

dollars6 

Bioretention (Includes rain garden) 13.37 2,4 15.46 

Dry Pond or detention basin 5.88 2,4 6.80 

Enhanced Bioretention (aka-Bio-filtration 
Practice) 

13.5 2,3 15.61 

Infiltration Basin (or other Surface Infiltration 
Practice) 5.4 2,3 

 
6.24 

Infiltration Trench  10.8 2,3 12.49 

Porous Pavement - Porous Asphalt Pavement  4.60 2,4 5.32 

Porous Pavement - Pervious Concrete 15.63 2,4 18.07 

Sand Filter 15.51 2,4 17.94 

Gravel Wetland System (aka-subsurface gravel 
wetland) 

7.59 2,4 8.78 

Wet Pond or wet detention basin 5.88 2,4 6.80 

Subsurface Infiltration/Detention System (aka-
Infiltration Chamber)  

54.545 67.85 

1 Footnote:  Includes 35% add on for design engineering and contingencies 

2 Costs in 2010 dollars 

3 From CRWA Cost Estimates  

4 From UNHSC Cost Estimates; Most of original costs were from 2004 and converted to 2010 dollars using U.S. 

Department of Labor (USDOL). (2012). Bureau of Labor Statistics consumer price index inflation calculator. 

http://www.bls.gov/data/inflation_calculator.htm  

5 From Cost Estimate of MA TT Rizzo Project (2008 Dollars) 

6 2010 costs were converted to 2016 values to adjust for inflation.  The ENR Cost Index Method was used for this 

conversion.   

Table 1 includes all of the BMPs that are included in the Opti-Tool.  The unit costs represent the dollar 

amount ($) per cubic foot of storage volume (ft3), where the storage volume reflects the (design) 

physical static storage capacity that the relevant BMP can hold.  This volume includes the volume of 

ponding water and the volume of water retained in the porous media or subbase materials if applicable.   

(This storage volume does not represent the treated volume of stormwater, which may be significantly 

higher than the physical storage volume of a BMP particularly for systems that are sized dynamically or 

http://www.bls.gov/data/inflation_calculator.htm


5 
 

by a water quality flow rate as opposed to a water quality volume.)  This unit cost per storage volume 

captured by a BMP differs from other (perhaps more traditional) methods that can be used.  By choosing 

to use the unit cost per storage volume instead of volume of water treated, we are trying to eliminate 

confusion over what the actual dimensions of the BMP will be for the costs being 

estimated.  Additionally, this use of the unit cost per storage volume is consistent with the approach 

used in developing the BMP performance curves (used in the Opti-Tool) where the x-axis is the actual 

physical storage capacity to hold water.  Lastly, expressing the unit costs in this manner will benefit 

users who are simply interested in using the unit costs (outside of the Opti-Tool) by eliminating the step 

of modeling hydrology and routing  the water through the BMP, which can yield widely varying results 

depending on modeling approach and supporting assumptions.  Attachment A describes the method 

used in calculating the design storage volume for each of the selected BMPs.   

Also, each unit cost per storage value represents the capital cost of construction/installation of the BMP 

and includes a 35% design/engineering/contingency (D & E) cost.  This 35% fixed percentage of the total 

construction cost follows a general “rule of thumb,” often used by consulting firms.  Based upon a 

conversation between Mark Voorhees and Jamie Houle (two members of the Opti-Tool cost 

subcommittee), a decision was made to include this D&E cost.  The values in Table 1 do not include the 

cost of purchasing any land, nor does it include any O&M costs (which is discussed in more detail in a 

subsequent section).  Therefore, each unit cost in Table 1 that was based on the CRWA’s 2010 values 

was calculated by multiplying the relevant BMP cost by 1.35.   

Since the CRWA study did not include cost estimates for porous pavement or sand filters, which are 

BMPs included in the Opti-Tool, relevant data was obtained from Jamie Houle of the University of New 

Hampshire Stormwater Center (UNHSC).  He also provided additional cost estimates (as denoted by 

Footnote 4 in Table 1) for some of the other BMPs included in the tool.  UNHSC can provide valuable 

data because they have been directly involved with the engineering, design and construction of 

numerous LID controls, as well as evaluating multiple stormwater treatment systems over multiple years 

at their primary field research facility in Durham, N.H.  Since they could provide cost information for 

both porous asphalt pavement and pervious concrete, separately, the general category of porous 

pavement was divided into the aforementioned two sub-categories. 

It should be noted that the costs used for the Opti-tool assume linearity, which will both allow for and 

incentivize the scaling to smaller-sized systems.  For example, EPA has estimated that smaller capacity 

designs for BMPs, rather than large-sized BMPs, can increase both the technical and economic feasibility 

of installing controls, particularly for retrofits.  The assumption of linearity was made for the following 

reasons: 1) Limited data currently exists on the cost of small capacity systems.  Until a larger pool of cost 

data becomes available which will allow for the development of a non-linear cost curve, the current 

method is the best available alternative; 2) As the installation of smaller systems becomes more wide-

spread, it is likely that economies of scale will develop and cost savings will occur.  For example, if one 

entity is contracted to install multiple small systems at once, materials can be bought in bulk and the 

installation process can become more efficient and less expensive; 3) An undersized system built to treat 

a large area can be a very cost effective approach.  As an example, there should not be a significant cost 

difference between a 1-inch system treating 1 acre and a 1/10-inch-system that treats 10 acres, since the 

absolute capacity of the system is the same in both cases.  This topic of linearity will be revisited in the 

future when more data is available.        
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Since UNHSC typically calculates the capital costs per cubic foot (ft3) treated, using WQv, Jamie Houle 

converted the costs to represent the capital costs per BMP storage volume (ft3).  This was necessary so 

the capital cost data would be consistent with the method used in the Opti-Tool.  Also, all of the costs 

were converted to 2010, and ultimately 2015, dollars.  As with the CRWA costs, the UNHSC capital costs 

were already adjusted to include the 35% design/engineering/contingency (D & E) cost.  Details of all of 

these calculations, and any other assumptions made, are presented in Attachment B.  

When developing cost estimates, another topic for consideration was whether or not to address the 

issue of inflation. CRWA’s BMP cost estimates were based on capital costs from 2010.     As previously 

stated, UNHSW’s cost estimates have also already been converted to constant 2010 dollars using 

consumer price index inflation rates [U.S. Department of Labor (USDOL) 2014].1  Therefore, there was 

the option of converting all of these 2010 costs to 2016 costs, using the U.S. Department of Labor’s 

consumer price index inflation calculator.  However, another suggestion was made to use the ENR Cost 

Index method to adjust for inflation instead because it more closely tracks construction work.  At least 

one New England state (i.e., Vermont) also uses the ENR Cost Index method, so this could provide some 

consistency, as well.   Therefore, the decision was made to ultimately convert all of the costs to 2016 

values using the ENR Cost Index method.  These values are reflected in Table 1.    

To use the index, one calculates the quotient of the current index number (based on the month and year 

of current date) divided by the index number from a given date (e.g., June of 2010).   Since the month 

was not known for the 2010 costs, the month of June was used as an estimate.  This assumption was 

used because it falls mid-way between the construction season and would likely provide a reasonable 

estimate.  Once the quotient was calculated, it was multiplied by the construction cost (found in the 

middle column in Table 1, above) to provide the 2016 construction cost value 

 

B. Cost Adjustment Factor 

Since the cost of installing a BMP will vary depending on the specific site location, the TAC 

subcommittee believed it was important for the Opti-Tool to include a scalable cost adjustment factor.  

The proposed cost estimates for the Opti-Tool (in Table 1) are all based on a Cost Adjustment Factor of 

1.  However, each Opti-Tool user has the option to choose and enter into the tool a cost adjustment 

factor that is appropriate for their site.  This will adjust the storage volume cost function in the Opti-

Tool. 

For example, the CRWA report included the cost factors summarized in Table 2. 

 

 

 

 

                                                           
1 Reference: U.S. Department of Labor (USDOL). (2014).   Bureau of Labor Statistics consumer price index inflation 
calculator.” 〈http://www.bls.gov/data/inflation_calculator.htm〉(Sep. 12, 2014) 
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Table 2: Example of Cost Adjustment Factors 

BMP Type 

**EXAMPLE** 
Cost 

Adjustment 
Factor 

New BMP in undeveloped area 1 

New BMP in partially developed area 1.5 

New BMP in developed area 2 

Difficult installation in highly urban settings 3 
(Source: Table 4 of Appendix B of CRWA's Spruce Pond Brook Subwatershed Project for Town of Franklin) 

The assumption made was that it would cost more to install a new BMP in a developed area (with more 

site constraints) than it would cost to install the same BMP in a previously undeveloped area.  So in the 

above example, the cost adjustment factor would be 2 for installing a BMP in a previously developed 

area versus a cost adjustment factor of 1 for installing a BMP in an undeveloped area.   

It should be noted that Table 2 (above) provides just one example of adjustment factors.  The factor 

should be flexible enough so that another location (or Opti-Tool user) can adjust it, as needed.  For 

example, the Charles River Watershed (in eastern Massachusetts) used an adjustment factor of 2 for 

installing a BMP in a developed area, while the State of Vermont uses an adjustment factor of 1.4 to 

estimate the cost of installing a BMP for existing development.  

C. Maintenance (O&M) Costs 

Originally, one goal was to include Operation and Maintenance (O&M) costs as part of the cost 

estimates for the Opti-Tool.  These O&M costs would help to provide a more realistic reflection of the 

long-term expenses of structural storm water controls, which is obviously critical in the practical, real-

world implementation of BMPs.  However, it is difficult to obtain accurate maintenance costs and they 

will be highly variable depending on the size, location and equipment needed to perform long-term 

O&M.   

This point was highlighted by a key finding in EPA’s recent (2013) publication, Case Studies Analyzing the 

Economic Benefits of Low Impact Development and Green Infrastructure Programs.  The report indicated 

that only a small percentage of the entities that implement LID and GI approach for stormwater 

management conduct economic analyses due to the “uncertainties surrounding costs, operation and 

maintenance (O&M) requirements, budgetary constraints, and difficulties associated with quantifying 

the benefits provided by LID/GI” and the need “to obtain better estimates of the O&M costs associated 

with different types of LID/GI projects” was a key finding of the report. 

As previously mentioned, one article entitled, Comparison of Maintenance Cost, Labor Demands, and 

System Performance for LID and Conventional Stormwater Management (Houle et al. 2013), did contain 

relevant information for BMP costs in the New England region.   During initial discussions between EPA 

Region I (Mark Voorhees) and UNHSC (Jamie Houle), there was concern that not enough data existed on 

O&M costs to propose accurate values for each of the BMPs included in the Opti-Tool.  There was also 
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the concern that the O&M costs were not scaleable.  For example, initial O&M costs for each BMP were 

based on the cost of operation and maintenance per year per acre of IC treated. Scaled differences such 

as the annual O&M costs for treating 0.5 acres of IC or 2 acres of IC have not been evaluated and may or 

may not result in a simple linear relationship.  Yet the Opti-Tool costs subcommittee also realized the 

importance of including some maintenance parameter in order to initiate the conversation on the 

importance of accounting for O&M to maintain the functionality of the BMPs.  Therefore Table 3, below, 

presents these annual maintenance costs (in $) for select BMPs, as well as the annual maintenance 

hours.  Although the O&M costs have been presented in this memo, only the O&M hours will be 

included (as a separate field) in the Opti-Tool.           

                           

Table 3: Maintenance Costs ($) and Hours per year for select BMPs – From UNHSC 

BMP Maintenance Cost ($) per year Annual Maintenance Hours 

Bioretention $1,890.00 20.7 

Chamber System Not Assessed Not Assessed 

Detention Pond $2,380.00 24.0 

Gravel Wetland $2,138.33 21.7 

Porous Asphalt $1,080.00 6.0 

Pervious Concrete $1,080.00 6.0 

Retention Pond $3,060.00 28.0 

Sand Filter $2,807.50 28.5 

*Note: initial costs based on cost of maintenance per year per acre of IC treated  

 

Annual maintenance strategies were evaluated by directly quantifying hours spent categorizing 

maintenance activities, and assessing difficulty of those activities. To better illustrate costs and 

anticipate maintenance burdens, activities were characterized into distinct categories and a standard 

cost structure was applied. This unit conversion can easily be adapted according to local conditions, 

current economic climate, and regional cost variations which is why we decided to go with maintenance 

hours as those were directly measured and should remain constant.  These maintenance activity 

categories allow more accurate cost predictions and provide insight into the appropriate assignment of 

maintenance responsibilities. 

Annual maintenance costs were normalized to 2012 dollars and calculated for all SCMs by both dollars 

and personnel hours per acre of IC treated per system per year.  It is important to note that inflation was 

not considered in life cycle maintenance cost projections. 
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A primary objective of Task 9 of WA 4-35 is to identify a methodology for calibrating 

continuous simulation runoff quality models as part of the procedure for developing long-term 

cumulative BMP performance estimates of nutrient load reductions.  

 

This memo summarizes the literature review and SW nutrient EMC data analyses that will be 

used to support the selected approach for generating nutrient (TN and TP) runoff quality time 

series for impervious cover using the Storm Water Management Model (SWMM). 

 

1. Literature Review 

 

Urban storm runoff can result in significant water quality problems. In practice, Best 

Management Practices (BMPs) have been used to control urban storm runoff and associated 

water quality problems. To improve the efficiency of BMPs, a better understanding of the 

processes behind urban runoff and pollutant generation is necessary. In the past decades, 

multiple urban nonpoint source pollution models, such as HSPF (Johanson et al., 1980), and 

SWMM (Huber and Dickinson, 1988), have been developed and applied effectively in modeling 

urban storm water quantity and quality. In these urban nonpoint source pollution models, the 

process that pollutants accumulate on the land surface and then are washed off by entering storm 

water is generally represented by a combined buildup-and-washoff formulation. 

 

In general, the buildup process is modeled as a first-order dynamic process using two 

parameters: accumulation rate, and the maximum unit loading capacity. This formulation 

(Overton and Meadows, 1976) was based on observed behavior of many pollutants, where the 

pollutant loads on land surface increase since the last major storm until reaching a maximum 

value due to wind or other factors preventing further increase in accumulation. This asymptotic 

formulation is most commonly used in practical modeling analysis, although some investigators 

also apply linear buildup models instead (Barbé et al., 1996). The widely used SWMM model 

provides both asymptotic and linear options, though it is generally considered more realistic to 

use the nonlinear buildup formulation for urban impervious surfaces. In the buildup model, the 

total amount of contaminants is thus a function of the initial mass on the surface area and the 

length of the antecedent storm dry period.  

 

When a storm event occurs, the pollutant accumulated on the land surface may be carried away 

by stormwater. This process is modeled as a washoff process with a first-order formulation that 

results in exponential washoff function (Wang et al, 2011). A stormwater model such as SWMM 
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which is formulated with buildup and washoff processes needs to be calibrated before it can be 

used to support decision making. Traditionally, the standard calibration method is the trial-and-

error method, which involves manually changing the values of parameters until a reasonable 

match between model results and observed data is achieved. This method, although widely used, 

suffers a number of drawbacks. First, a trial-and-error calibration process is somewhat subjective 

and overwhelmingly relies on the modeler’s experience and insights (Little and Williams, 1992). 

Second, it is relatively slow and inefficient in terms of time and effort required. Third, it is not 

capable of identifying parameter pattern uncertainty, often producing misleading model 

projection results. Finally, when a storm water pollutant model is calibrated using many event 

based data, manually calibrating the parameters for a specific site based on data from different 

events would be cumbersome and difficult. Therefore, it is highly desirable to have a method that 

can overcome these deficiencies. 

 

The essence of the trial-and-error calibration process is to find a set of parameter values that can 

reasonably reproduce the observed data. Obviously, the systematic counterpart of the calibration 

process, or alternatively so-called inverse method, can be formulated as a nonlinear 

optimization problem (NOP), of which the simulation errors regarding observed data are 

minimized, subject to the constraints imposed by the physical mechanism underlying the model 

or bounds of parameter values (Hopgood 2001; Zou and Lung, 2004). It initially appears to be a 

straightforward task to identify a set of parameter that best reproduce the observe data, however, 

due to the significant uncertainty which exists in the stormwater pollutant concentration data, as 

well as the assumption of uniform impervious land surface properties/loading/precipitation, a 

single set of parameters which reproduce the observed data with least error might not be the true 

representative parameters. In contrast, equal-finality might dominate the solutions, suggesting 

that multiple parameter patterns might be equally valid in reproducing the observed data when 

uncertainty is considered.  

 

In light of this situation, instead of finding a unique parameter set, this study proposes to apply 

the Multiple Pattern Inverse Modeling approach (MPIM) (Zou and Lung, 2004; Zou et al, 

2008) to calibrate the buildup and wash-off process, which will identify multiple distinct 

parameter patterns that will reproduce the observed data. Each of these patterns would represent 

a potentially possible system of mechanisms underlying the observed data. This approach 

provides a way to explicitly address uncertainty in parameter pattern resulting from limited 

availability and uncertainty in data, as well as other simplification assumptions.  

 

The MPIM is different from the uncertainty based automatic calibration approach applied in 

Avellaneda et al (2009). In Avellaneda et al (2009), the authors apply a Simulated Annealing 

(SA) technology to solve an inverse storm water quality model to estimate the buildup and 

washoff parameters. The inverse model is applied on an event basis, and the parameter estimated 

for each event is dependent on the event characteristics. The multiple parameters derived from 

each event are then put together to derive a probabilistic distribution serving as the basis for a 

Monte Carlo uncertainty analysis. This approach suffers the following limitations; 1) estimating 

parameters based on a single event is unreliable since the parameter values that perform well in 

one single storm might not work for other storms, therefore, including such a parameter in 

deriving the probabilistic distribution is equivalent to including incorrect data in the process; 2) 

the Monte Carlo method suffers the limitation of generating a large number of unrealistic 
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combinations of parameters, therefore, the resulting distribution of results might not be 

representative. 

 

The advantage of MPIM is that it only involves conducting model projection based on identified 

behavioral parameter combinations, therefore, each realization of the model prediction represents 

a highly possible condition of the real system, providing more reliable quantification of the 

model uncertainty. Since the inverse modeling in MPIM is conducted on all the available or 

selected representative events, therefore, the identified parameters are more robust and realistic 

than the parameters estimated based on a single event. A recent research on SWMM model 

calibration applies an approach consistent with the MPIM framework (Bowden and Nipper, 

2012), which uses Evolutionary Strategy (ES) to identify multiple plausible buildup-washoff 

parameter values and retains them as likely simulators of the system.  

 

In this study, a MPIM framework is proposed to investigate the calibration of impervious area 

buildup-washoff dynamics in the New England area based on EMC data. In order to effectively 

solve the inverse model for diversified solutions, a genetic algorithm (GA) is selected to solve 

the NOP problem. The GA is a population-based stochastic search algorithm that is widely used 

in the field of global optimization for solving complex nonlinear optimization models. The 

capability of GA has been proven by thousands of applications, showing it can solve a NOP 

model with diversified near optima. 

 

2. Proposed Methodology 

 

The subsequent text describes the proposed methodology for calibrating a buildup-washoff 

model consistent with the SWMM paradigm. 

 

2.1 Inverse Model Formulation 

 

Suppose a SWMM model is used to simulate multiple events, and the model accuracy is 

measured by the root mean square error (RMSE) in terms of event mean concentration (EMC). 

Let 𝜀 denotes the RMSE of the model with regard to observed data, and EMC_Oi represents the 

observed EMC value for event i, and EMC_Mi represents the corresponding model result. Hence 

we have: 

 

𝜀 = √
∑ (𝐸𝑀𝐶_𝑀𝑖− 𝐸𝑀𝐶_𝑂𝑖)2𝑛

𝑖=1

𝑛

2

       (1) 

To identify the proper parameter values that reproduce the observed data, the following 

optimization model is formulated: 

 

Min  𝜀          (2) 

s.t.  EMC_Mi= f(xi1,xi2,…xik,  p1,p2,…pm), ∀ 𝑖 = 1,2, … , 𝑛   (3) 

Where f represents the simulation model relating EMC to storm characteristics and model 

parameters; x represents the storm characteristics; p represents parameters in the buildup-
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washoff model. If a SWMM model is used to simulate the storm events, then function f 

represents the SWMM model specifically configured for the analysis. 

 

Note that in Eq. (1), the objective function 𝜀 consists of n storm events, which means that to 

estimate the model parameters for a specific site, we need to configure n SWMM models each 

simulating a single event. In the meantime, it must be assured that all of them use the same 

parameter values. Apparently, doing this would be very cumbersome, especially in this study, 

since we would need to estimate parameters for multiple sites. At the first glance, this 

cumbersomeness might be bypassed by configuring all the n events in a single model, where the 

events are separated by the number of dry days based on data. However, the approach is 

subjected to significant limitation because the post-storm pollutant mass is a function of the 

buildup and washoff parameters. Therefore, the initial condition after each storm event is 

dependent on the parameter values. In a continuous simulation model this is not an issue because 

any event is preceded by its actual events, so the initial condition estimated is realistic with 

regard to the parameter values. However, in the model where the separate events are organized 

together to form a pseudo-continuous simulation, the initial condition resulted from the 

preceding event does not represent the real initial condition of the current event, causing 

inconsistency problem.  

 

In this study, we propose an approach which would overcome the aforementioned limitations. 

This approach involves solving the buildup and washoff dynamics externally based on a process 

consistent with the SWMM representation. By solving the buildup and washoff externally, it 

avoids the cumbersome process of configuring multiple SWMM models for different events yet 

preserving same parameter values. In addition, it would enable a more convenient coupling with 

a population-based optimization engine for uncertainty-based parameter identification. 

 

In SWMM, the pollutant buildup is modeled as an ordinary differential equation (ODE) as: 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝛼 − 𝛽𝑁(𝑡)        (4) 

Where, N(t) is the accumulated load on a source area at time t (g/acre); 𝛼 is the accumulation 

rate (g/acre/day); 𝛽 is the first-order removal rate (/day); Here 𝛽 is defined as the ratio between 

accumulation rate and the maximum load per unit area (g/acre) as: 

 

𝛽=
𝛼

𝑀
           (5) 

For an initial storage of N0 at t=0, the solution to Eq. (4) is: 

 

𝑁(𝑇) = 𝑁0𝑒−𝛽𝑇 + 𝑀(1 − 𝑒−𝛽𝑇)      (6) 

 

Where T is the antecedent dry period before the current storm, and N0 is the initial pollutant load 

after the preceding storm event (g/acre). 
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In SWMM, multiple different formulations for washoff are available, and the one used in the 

present study is the exponential representation that is equivalent to the ODE as below: 

 
𝑑𝑁(𝑡)

𝑑𝑡
= −𝛾𝑄(𝑡)𝜃𝑁(𝑡)        (7) 

Where 𝛾 is a scaling factor introduced in the SWMM model, which serves as a calibration 

parameter. Note that when 𝜃 = 1, this equation is reduced to the traditional first-order 

formulation and is analytically solvable. In such a case, the total washoff load of a specific event 

can be obtained using the total event runoff depth without needing the hydrograph information. 

On the other hand, if 𝜃 ≠ 1, the equation cannot be solved for solutions directly represented as a 

function of the total runoff, so a numerical method needs to be adopted to use the hydrograph 

information. The most straightforward method is to solve Eq. (7) using a finite difference 

method: 

 

𝑁𝑡+1 = 𝑁𝑡 − 𝛾𝑄(𝑡)𝜃𝑁(𝑡)Δ𝑡       (8) 

In the present study, since the model is to be calibrated against EMC data, only the cumulative 

washoff load is of interest. Therefore, it is desired to derive a model which can directly relate the 

cumulative washoff load to the parameters and hydrograph. To achieve this, we consider Eq. (7) 

for a period Δ𝑡 with constant runoff depth Qt.  Suppose the land surface pollutant mass at the 

beginning is Nt then at the end of the period the mass 𝑁𝑡+1 can be analytically represented as: 

 

𝑁𝑡+1 = 𝑁𝑡  𝑒−𝛾𝑄𝑡
𝜃Δ𝑡         (9) 

As this particular study is intended to develop buildup-washoff parameters representative for 

impervious landuse only, the formulation can be further simplified by using the assumption that 

surface runoff depth can be approximated by event precipitation depth, i.e. 𝑄𝑡 ≈ 𝑟𝑡. This 

assumption is justified by checking the previously calibrated SWMM hydrological model used to 

derive the unit area export ratio for the earlier phase of this project (Figure 1). As shown, the 

runoff depth closely approximates the corresponding rainfall depth except for a slight lag in time.  

Considering the length of antecedent dry days are usually multiple days, the slight lag in runoff 

time is not anticipated to cause significant uncertainty in the buildup/washoff model result. 
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Figure 1. Comparing precipitation depth versus impervious area runoff depth simulated by the 
calibrated SWMM model 

 

Applying Eq. (9) from the beginning of the storm to anytime during or at the end of the storm, 

and using the precipitation depth to substitute the runoff depth would lead to: 

 

𝑁(𝑡) = 𝑁(𝑇)𝑒−𝛾 ∑ 𝑟𝑖
𝜃Δ𝑡

𝑡/Δ𝑡
𝑖=1         (10) 

The cumulative washoff load W (t) at the end of time t is thus: 

 

𝑊(𝑡) = 𝑁(𝑇)(1 − 𝑒−𝛾 ∑ 𝑟𝑖
𝜃Δ𝑡

𝑡
Δ𝑡
𝑖=1 )       (11) 

Assume the event end time is T2 (hour), then the EMC can be represented as: 

 

𝐸𝑀𝐶 =
𝑁(𝑇)(1−𝑒

−𝛾 ∑ 𝑟𝑖
𝜃Δ𝑡

𝑇2
Δ𝑡
𝑖=1 )

∑ 𝑟𝑖

𝑇2
Δ𝑡
𝑖=1

        (12) 

 

Combining Eq. (6) and (12), we obtain: 

 

𝐸𝑀𝐶 =
[𝑁0𝑒−𝛽𝑇+𝑀(1−𝑒−𝛽𝑇)](1−𝑒

−𝛾 ∑ 𝑟𝑖
𝜃

𝑇2
Δ𝑡
𝑖=1 Δ𝑡)

∑ 𝑟𝑖

𝑇2
Δ𝑡
𝑖=1

      (13) 
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Note that, on the right hand side of the equation, four parameters are used to predict the EMC 

from given antecedent dry days and storm hydrograph. 

 

Note that, assuming for a specific impervious land, there are K events, so for each event, the 

predicted EMC would be: 

 

𝐸𝑀𝐶𝑘 =
[𝑁0𝑘𝑒−𝛽𝑇𝑘+𝑀(1−𝑒−𝛽𝑇𝑘)](1−𝑒

−𝛾 ∑ 𝑟𝑖𝑘
𝜃

𝑇2𝑘
Δ𝑡

𝑖=1 Δ𝑡)

∑ 𝑟𝑖𝑘
𝑇2𝑘
𝑖=1

     (14) 

where the subscript k represents the event specific value. Apparently, the buildup and wash-off 

calibration of the model is essentially to identify the values of the parameters M, 𝛽, 𝛾 and 𝜃 

which would predict the EMC value that match the observed value.  

 

Combining model (2)-(3) with Eq. (14), and incorporating additional bound constraints which 

bracket the lower and upper bound of each parameter, the parameter calibration model for the 

SWMM equivalent buildup-washoff process is: 

 

Min  𝜀           (15) 

s.t.  EMC_Mk=
[𝑁0𝑘𝑒−𝛽𝑇𝑘+𝑀(1−𝑒−𝛽𝑇𝑘)](1−𝑒

−𝛾 ∑ 𝑟𝑖𝑘
𝜃

𝑇2𝑘
Δ𝑡

𝑖=1 Δ𝑡)

∑ 𝑟𝑖𝑘
𝑇2𝑘
𝑖=1

, ∀ 𝑘 = 1,2, … , 𝑛 (16) 

(𝑀𝐿 , 𝛽𝐿 , 𝛾𝐿 , 𝜃𝐿) ≤ (M, , 𝛾, 𝜃) ≤ (𝑀𝑈 , 𝛽𝑈, 𝛾𝑈, 𝜃𝑈)     (17) 

 

where the subscripts “L” and “U” represent the corresponding lower and upper bounds.  

 

Note that for the event based formulation, N0 is unknown a priori, and it is event-dependent, 

therefore, it is not proper to directly treat it as a calibration parameter. Instead, N0 will be treated 

as a source of uncertainty in deriving the parameters through a stepwise calibration scenario 

construction (SCSC) approach, i.e., in predicting the EMC of each event in a parameter 

estimation iteration, N0 is treated as constant across the events, and the corresponding solutions 

are identified for different N0 values for analyzing the sensitivity of the parameters to an 

uncertain initial condition. In such a construct, each round of parameter identification involves 

adding Eq (18) to model (15) to (17) 

 

N0=N0_j         (18) 

where N0_j is a prescribed initial condition for each round of optimization, which can be 

determined from a lower bound of 0.0 to an upper bound of 100% of the maximum load M, and 

a value can be taken in- between based on a step. For example, a 5% increment might be used to 

identify a series of initial conditions, and for each initial condition the optimization model is 

solved for corresponding parameter values. After obtaining all the solutions, the dependency of 

the parameter values to the assumption regarding initial condition can be evaluated for 

uncertainty analysis. 
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2.2 Parameter Pattern Identification 

 

Solving model (15) to (18) can result in a large number of parameter combinations that might 

satisfy reasonable calibration criteria. In the case of calibration based on EMC data, two 

parameter combinations that result in exactly the same EMC might be due to different intra-

storm dynamics (Bowden and Nipper, 2012). Therefore, it is crucial to preserve the diversity in 

the solutions for future scenario analysis for robust decision making. Following the MPIM 

paradigm, the solutions after implementing the SCSC procedure are evaluated to refine the 

estimate of the range of initial condition. This would likely result in much narrower range for the 

initial condition. Based on the new initial condition range, a few refined SCSC scenarios are 

designed, and the GA is used to solve the models. Then a parameter pattern identification (PPI) 

process is invoked as below: 

 

Step 1; Rank the N individuals throughout the GA searches from the least to the largest; 

 

Step 2: Set the one with the minimum objective function as the benchmark, then set a tolerance 

level, such as 10% to sift all the individuals, such that all the individuals with errors within 10% 

of the minimum are selected as the candidates for qualified solutions; 

 

Step 3: Apply a clustering algorithm, such as K-means clustering algorithm, to identify distinct 

patterns from the candidate solutions, and then identify the elite member of each pattern as the 

representative parameter set. 

 

Through these processes, all the likely parameter patterns that reproduce the observed EMC data 

equally well, but might be subjected to different intra-storm dynamics, are identified for being 

used in future projection analysis. 

 

2.3 Implementation Plan 

 

The proposed methodology as described above is a general framework that covers both the 

automatic calibration and the uncertainty analysis scopes. Since in the present stage of the 

project, a full exploration of the uncertainty aspect of the approach is unrealistic due to the 

limitation on time and resource, this project will focus on the calibration aspect of the approach, 

while leaving the possibility of further uncertainty analysis open in subsequent studies.  

 

Another consideration is the availability of data. While it is ideal if EMC data are available for 

all impervious landuse types, which would allow estimation of parameter sets that represent the 

specific dynamics of each type of landuse, the reality prevents us from doing so, since data are 

only available for a subset of landuse types. Therefore, it is desired to reduce the complexity in 

parameter estimating by lumping all the data available for landuses together, and applying the 

proposed approach to derive a set of parameter that, on-average, represent the general 

impervious area.  

 

The third consideration is about the regional representation. The EMC dataset provided by EPA 

also includes data from other areas in the U.S. which are outside of the New England region, 
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however, the purpose of the current study is to obtain representative parameters for the New 

England region alone. Therefore, only the data collected in the New England region is used in 

this study.  Further considering that data collected before a certain year might not be suitable in 

the representing current conditions, therefore, the year 2000 is selected to be the threshold, i.e., 

any data collected before the year 2000 is not used in the current model calibration practice. 

Applying this criteria, it is determined that only the data from Massachusetts and New 

Hampshire will be used in this analysis. 

 

The 4th consideration is the storm size to be focused in the calibration. Per the guidance from 

EPA, it is desired to focus the calibration on relatively small-sized rainfall events that are 

dominant in the New England region.  

 

With the five considerations, the steps of implementing the proposed approach are as follows: 

 

Step 1: Identify all sites in Massachusetts and New Hampshire; 

 

Step 2: Identify all the Massachusetts and New Hampshire sites with impervious area fraction 

>80% associated with data collected after 2000; 

 

Step 3: For all the identified sites, identify the precipitation events with total rain depth equal to 

or smaller than 1.0 inch to represent the moderate-to-small size precipitation events; 

 

Step 4: Determine the pollutants that will be used for calibration, herein are TN and TP; 

 

Step 5: For all the identified sites, obtain hourly precipitation data from other data sources such 

as NCDC data, or any other site-specific data; 

 

Step 6: Formulate the inverse models for TN and TP for all the identified impervious sites;  

 

Step 7: Develop computer code to solve the inverse model with GA, and identify the parameter 

pattern which best fits the observed EMC data as the identified parameter for use in the later time 

series generation. 

 

3. SW Nutrient EMC Data Analysis 

 

A large number of EMC data were organized in an Excel file, containing data collected at 

various land use sites from different locations in the United States.  A preliminary analysis was 

done to identify whether there existed any apparent trend or patterns in that data. The analysis 

was divided into two major parts: an overall analysis for all data, and the same type of analysis 

for data in the New England region only. It was noted that the EMC values for both TN and TP 

were lower in New England area as compared to the data available from other parts of the 

country. The subsequent sub-sections present the findings from this preliminary analysis.  
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3.1 Drainage Area 

 

The event mean concentration of TN and TP are plotted against their corresponding drainage 

area from all sites (Figure 2) and from New England region only (Figure 3). Although there is no 

clear trend line that can be fit for the data, there is a visible pattern that higher pollutant 

concentrations exist for smaller drainage areas, particularly for areas less than 100 acre. This 

trend is more prominent for TP in the overall dataset, and for TN in the dataset from New 

England region. It should be noted that there are several underlying uncertainty factors such as 

the land use type, percent imperviousness, rainfall intensity, and others which vary from one data 

point to another.   

 

 
Figure 2. Comparing EMC for TN and TP versus drainage area (all locations) 

 

 

 
Figure 3. Comparing EMC for TN and TP versus drainage area (New England only) 

 



11 

 

 

3.2 Percent Impervious Land 

 

In general, there is no conclusive relationship between impervious percentage and the pollutant 

EMC shown in Figure 4 and Figure 5.  However, it seems the pollutant concentration increases 

with the increase in percent imperviousness. It should be noted that there are several underlying 

uncertainty factors such as the land use type, rainfall intensity, and others which vary from one 

data point to another. 

 

 
Figure 4. Comparing EMC for TN and TP versus percent imperviousness (all locations) 

 

 

 
Figure 5. Comparing EMC for TN and TP versus percent imperviousness (New England only) 
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3.3 Land Use Type 

 

The average EMC value for each pollutant (assigning 10% of the data set as outlier status) in 

each land use category is calculated. Figure 6 and Figure 7 show that open land has the lowest 

average EMC value for TN. Overall dataset shows that industrial land has the highest average 

EMC for TN whereas in the New England dataset, mixed land uses show highest average EMC 

for TP. The TN data for industrial, commercial mixed, and freeways mixed land uses are not 

available in New England region. It should also be noted that storm sizes, which can influence 

the average concentration, are not considered for this calculation. 

 

 
Figure 6. Comparing average EMC for TN and TP versus land use type (all locations) 

 

 

 
Figure 7. Comparing average EMC for TN and TP versus land use type (New England only) 
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3.4 Precipitation 

 

Figure 8 and Figure 9 show storm sizes in inches versus EMC values for TN and TP from all 

sites in the database and from New England region only. Linear trend lines do not fit accurately 

but there is a clear relationship with pollutant concentrations decreasing as rain fall total in an 

event increases. The same trend is obvious in the box and whisker plots shown in Figure 10 and 

Figure 11. This trend is more obvious for TN as compared to TP and it seems like the first flush 

phenomenon is dominant, resulting in higher EMC values for smaller to medium storm sizes as 

compared to the large storms.  

 

 
Figure 8. Comparing EMC for TN and TP versus rainfall event total (all locations) 

 

 

 
Figure 9. Comparing EMC for TN and TP versus rainfall event total (New England only) 
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Figure 10. Box Whisker plot for TN versus rainfall event total (New England only) 

 

 

 
Figure 11. Box Whisker plot for TP versus rainfall event total (New England only) 
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This technical memo summarizes the process and results of the systematic estimation of regional 

buildup and washoff parameters for TP and TN using the calibration approach described in 

memo 9.1 “Buildup and Washoff Calibration Approach”. The resulting parameters were used to 

develop a long term continuous hourly timeseries of TP and TN loading for different impervious 

covers used in the opti-tool.  

 

This memo consists of five sections; (1) Data preparation for the calibration model, (2) 

Development and verification of Event Based Buildup and Washoff (EBBW) model, (3) Genetic 

Algorithm (GA) based calibration of the model, (4) Robust parameter estimation, and (5) 

Development of long term continuous hourly timeseries for impervious cover.   

 

1. Data Preparation 

 

The data from the SW database provided by EPA were analyzed and a subset of data was 

identified as suitable for this study by following the steps shown below; 

 

Step 1: All the events in Massachusetts and New Hampshire with precipitation depth less than 1 

inch and no missing EMC data for TN and TP were extracted from the database; 

 

Step 2: The data were then filtered such that data only after the year 2000 were kept; 

 

Step 3: The hourly precipitation data were downloaded from National Climatic Data Center 

(NCDC) for the locations which were closest to the selected EMC monitoring sites; 

 

Step 4: The hourly precipitation data were preprocessed to identify those events corresponding 

to the EMC data, and the total rainfall depths were compared with the site specific data in the 

SW database. The comparison showed that the total rainfall data from the SW sampling was not 

always consistent to that from the NCDC data, indicating that the rainfall pattern from the NCDC 

might not always have been representative of that from the SW sampling site. In order to 

construct site specific hourly rainfall pattern, the NCDC total rainfall which were within 50% 

difference from the sampling site data were maintained. It was assumed that the rainfall pattern 

from these NCDC record might have reasonably represented that of the sampling site condition.  

 

Step 5: The hourly rainfall at the sampling sites were then reconstructed by using the total 

rainfall at the sampling site to rescale the corresponding NCDC data, such that the total rainfall 
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at the site matched the site-specific monitoring data, while the hourly distribution followed that 

of the NCDC data. Those site-specific events for which the NCDC rainfall total differed from the 

site rainfall total by more than 50%, were discarded as unreliable data to characterize that 

specific event. 

 

After following the above steps, in total, 45 data sets were identified, 29 of them from MA sites, 

16 from NH sites, and all of these sites were 100% impervious and met the study objectives, 

which were to estimate regional buildup and washoff parameters for impervious area, without 

differentiating land use types, due to a limited dataset.  

 

Figures 1 and 2 show the EMC data for TN and TP for the selected rainfall events in this study.  

 

 
Figure 1. Observed EMC data for TN for the selected rainfall events. 
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Figure 2. Observed EMC data for TP for the selected rainfall events. 

 

 

2. Development and Verification of the Event-Based Buildup and Washoff (EBBW) Model 

 

A computer simulation model was developed to simulate the buildup and washoff dynamics on 

an event basis. The purpose of this model was to replicate the behavior of SWMM model in 

terms of EMC prediction on an event basis, thus the parameters identified by this model would 

be directly applicable to the SWMM model for generating long term model results. The model 

was developed through solving the buildup and washoff equations as detailed in technical memo 

9.1. The model inputs included initial land surface storage N0, antecedent dry period length, two 

buildup parameters (Beta and M), and two washoff parameters (gamma and theta), as well as the 

hourly rainfall data. With these inputs, the model predicted the corresponding nutrient EMC. 

 

The EBBW model was developed using the FORTRAN programming language, and the 

algorithm and code were then verified by comparing with the SWMM model results for a real 

event drawn from the dataset identified. The following steps were taken for the model 

verification. 

 An event of 0.38 in of rainfall was randomly selected from the 45 data points. An hourly 

rainfall distribution for the selected event is shown in Figure 3. 

 A specific set of model parameters was determined as: N0=0.0 lb/acre; Antecedent dry 

days= 7.1, maximum storage capacity M=0.0133 lb/acre; the buildup accumulation 

exponent Beta=0.005; the washoff coefficient Gamma=1.719; and the washoff power 

coefficient Theta=0.918. 

 A SWMM model for this event was configured and run, and the resulted simulated EMC 

was found to be 0.0612 mg/L. 



4 

 

 The EBBW model was run with the same parameters, and the resulted simulated EMC 

was found to be 0.0615 mg/L. 

 

Apparently, the result from the EBBW model is equivalent to that of the SWMM, indicating that 

the parameter structure and numerical solution between the two models are consistent, therefore, 

the parameters identified using the event based model would be applicable to the SWMM model 

for long term simulation. 

  

 

 
Figure 3 Rainfall distribution of the selected event for EBBW verification. 

 

 

3. Genetic Algorithm (GA) Based Calibration 

 

The Genetic Algorithm (GA) is a general-purpose stochastic search and optimization method 

inspired by the natural evolution process observed in the biological world.  It has been widely 

applied in a variety of engineering optimization problems and has been shown to be capable of 

solving optimization problems with non-differentiable, nonlinear and multi-modal objective 

functions. The basic operations involved in a GA include four major operators including fitness 

evaluation/scaling, selection, crossover, and mutation.  Due to its popularity, the implementation 

procedure of a GA has been covered widely and therefore is not repeated in this memo. 

In this study, the EBBW model was coupled with a GA to form a computational platform for 

calibrating the buildup-washoff model using observed EMC data. Basically, the calibration model 

was formulated as a nonlinear optimization model where the objective function is the simulation 

error, and the decision variables are the four buildup and washoff parameters. The GA searched 

the entire parameter space to identify the combination of parameters that would result in the 

smallest model errors.  

As described in memo 9.1, the initial storage N0 was not considered as a calibration parameter. 

Instead, a range of N0 was used to formulate different optimization models for calibrating the 

EBBW model. Therefore, for each specific N0, a set of parameters which best reproduce the 
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observed EMC data in terms of root mean square error (RMSE) was identified. In this study, we 

applied 21 different N0 values ranging from0.0 to 100% of the maximum storage M, with a step 

of 5%.  For each of the two pollutants (i.e., TN and TP), 21 parameter optimization models were 

formulated and solved using the coupled GA-EBBW framework. The results for the EBBW model 

prediction using the identified optimal parameters, as well as the distributions of the identified 

parameters, are summarized below. 

 

3.1 Result for TN 

 

For each of the 21 GA-EBBW scenarios (each run with a different initial condition), the parameter 

combination which results in the lowest RMSE is identified, resulting in the 21 parameter 

combinations shown in Figure 4. As shown, while both the buildup parameters show significant 

variability, it appears that the majority of the values for Beta fall within a narrow range near 0.0, 

except for two parameters that significantly depart from this pattern. On the other hand, the 

variability in maximum accumulation storage M is more evenly distributed, though there is also 

the tendency to be more concentrated to the lower end. As for the washoff parameters, Figure 4 

shows that Gamma has much less variability than Theta, suggesting the values of Gamma are less 

sensitive to the uncertainty in initial condition of the model. To gain further insight about the 

variability and distribution of the identified parameters, Figure 5 plots the histograms of each of 

the four parameters. Apparently, there is no continuous statistic distribution that can be used to 

characterize the parameters, and the values of all the parameters have clear gaps, particularly for 

Beta and Theta. 
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Figure 4 TN Parameter values identified using the GA-EBBW search 
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Figure 5 Distribution of the identified parameters for TN 

 

While the 21 parameter combinations are highly variable, they were all identified through the 

optimization process, therefore, it is anticipated that they would perform similarly well in 

reproducing the observed data. Figure 6 plots the simulated EMC results using the 21 parameter 

combinations against the observed data.  As shown, the predicted EMC results differ from each 

other between different parameter combinations, but in general they all perform well in 

mimicking the observed data, suggesting that they can all be considered calibrated parameters. 

 

To further evaluate the model performance using the distinct parameter combinations, the 

simulated model results (21 scenarios) are compared with the observed data using boxplot as in 

Figure 7. The first plot in Figure 7 is for the observed data showing some extreme data points as 

outliers. It is observed that the model predicts a narrower range of EMC in comparison to the 

observed data, and in general, slightly over-predicts the median, 75th, and 25th percentile of the 

data.  

 

 

 

 

 



8 

 

 
Figure 6 Comparing simulated TN EMC against observed values—point to point 

 

 
Figure 7 Comparing simulated TN EMC against observed values—boxplot 
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3.2 Result for TP 

 

For each of the 21 GA-EBBW runs (each run with different initial condition), the parameter 

combination which results in the lowest RMSE for TP is identified, resulting in 21 parameter 

combinations as shown in Figure 8. Similar to that of TN, the buildup parameters for TP also 

show significant variability with the majority of the Beta values falling within a narrow range 

between 0.0 to 0.05, except for two parameters that have values of approximately 0.2. The 

variability in maximum accumulation storage M spans a near 10-fold range from about 0.03 to 

0.3, though most of the values focus on the lower end below 0.1. Compared with the buildup 

parameters, the washoff parameters appear to be more evenly distributed, and both Gamma and 

Theta demonstrate similar range of variability. To gain further insight about the variability and 

distribution of the identified parameters for TP, Figure 9 plots the histograms of each of the four 

parameters. It is interesting to notice that M seems to follow a bell shape distribution for values 

under 0.1 if the two extreme values far on the right are not counted. Theta also shows a similar 

pattern if only the values between 0.6 to 1.2 are counted. For Gamma, the values tend to occur 

more frequently for the larger values, and most of the values focus on a narrow range between1.7 

to 2.0. Beta values are heavily located at values below 0.01. 

 

The performance of the TP EMC model using the optimally identified parameters is 

demonstrated in Figure 10 and 11, respectively.  As shown by the point-to-point and boxplot 

comparison, the identified TP parameters allow the model to reasonably mimic the observed 

data, suggesting that they can all be considered calibrated parameters. 
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Figure 8 Parameter values identified using the GA-EBBW search for TP 
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Figure 9 Distribution of the identified parameters for TP 
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Figure 10 Comparing simulated TP EMC against observed values—point to point 

 

 
Figure 11 Comparing simulated TP EMC against observed values—boxplot 
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4. Robust Parameter Estimation 

 

After applying the GA-EBBW modeling platform, 21 distinct parameter combinations were 

identified for predicting the TN and TP concentrations, and the previous section shows that all the 

parameters allow the model to reproduce the observed data reasonably well. Without further 

refinement, these parameters might be considered equally valid for being applied to a SWMM 

model for predicting stormwater associated pollutant loadings. In this section, however, an effort 

is made to further refine the parameters for more robust model prediction. 

Considering that in the GA-EBBW process, the 21 parameters were identified using different 

assumption of initial condition, i.e., a particular set of parameters were identified which best 

reproduced the observed data with regard to the specific initial condition. As shown in the 

variability of the GA-EBBW results, the optimal parameter values are sensitive to the initial 

condition, therefore, the parameter identified under a specific initial condition might not work well 

for another initial condition. Due to lack of data to accurately quantify the initial condition for each 

event used in the model calibration, therefore, it is desired to identify the parameters which not 

only work for the specific initial condition used for the GA-EBBW process, but also work well for 

other initial conditions, i.e., to identify robust parameter sets which would work well under all or 

most of the conditions. 

In order to achieve this goal, the 21 parameters were applied to all the 21 initial conditions to 

predict 441 sets of model results for each pollutant, and each of the results was compared with the 

observed data to obtain the corresponding RMSE.  The results are described below. 

 

4.1 Robust Parameter Identification for TN 

 

Figure 12 plots the distribution of simulated error of the 21 parameters with regard to the 21 

initial conditions (R_N0), and the parameter set is marked by its corresponding initial condition 

(0.0 to 1.0). For example, the parameter set at 0.2 means it was obtained through the GA-EBBW 

process with initial storage equal to 20% of the maximum storage.  As shown in the preceding 

section, while it was not easy to differentiate the performance of those parameter sets through 

comparing their accuracy in reproducing the observed data, it is clear that some of the parameters 

behave significantly more robustly than the others. For example, while the parameter identified 

at 10% of the maximum storage works well for the corresponding initial condition, the prediction 

error using this parameter increases rapidly when the actual initial condition departs from 10%, 

suggesting that this particular set of parameters is not robust, and that to apply it to predict long 

term loadings can lead to significant uncertainties, given the high chance that the real initial 

condition would be different from the 10%. 

  

Figure 12 also shows a pattern that the error is approximately lowest from the left bottom to the 

right upper corner following the diagonal line. This is easy to understand since the diagonal line 

represents the model RMSE for runs where parameter values and initial condition are matched, 

i.e. the parameter identified for initial condition of 0.2 is applied to the initial condition of 0.2, 

and the parameter identified for initial condition of 0.5 is applied to the initial condition of 0.5.  

Even with this pattern, it can be observed that the right part of the error surface is pretty flat, 
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suggesting that when these parameters are applied to simulate the entire range of initial 

conditions, the resulting errors are similar to the least error. Therefore, these parameters can be 

considered robust. 

 

While Figure 12 seems to indicate that the parameters identified with low initial condition are 

not robust, this is not exactly the case, since the parameter identified with initial condition equal 

to 0.0 is also robust, as shown in Figure 13.  

 

Apparently, the candidates for the final calibration parameters should be those producing the flat 

plains on the error surface plots, which are identified and plotted in Figure 14. Compared with 

Figure 4, it can be seen that the 13 robust parameter sets in Figure 14 show less variability than 

the entire parameter set of 21 individuals. For example, the maximum storage M is now highly 

concentrated around value 0.5 lb/acre. Interestingly, the variability in terms of Beta remains 

similar between the entire set and the robust set, suggesting that the entire range of the originally 

estimated Beta values are robust. 

 

As for the washoff parameters, the robust set in Figure 14 covers the two extreme ends of 

combinations of the entire set. This phenomenon is of particular interest because in some 

previous studies, modelers attempted to obtain multiple sets of parameter values and then apply 

the average of the parameters as the final parameters. However, as shown in Figure 4 and 14, 

while the parameters located at the two ends of the parameters ranges are robust, those values in 

between actually are not robust and should be discarded. Therefore, it is not desired to apply the 

approach of averaging multiple parameter values in developing parameter values for model 

prediction.  

 

Although it appears from visually inspecting Figure 14 that all the robust buildup parameters 

belong to three groups, and washoff parameters belong to two or three groups, it is not 

straightforward to categorize them based on the visual inspection because the four parameters are 

interactively linked, i.e. two buildup parameter sets in group 1 might respectively be associated 

with washoff parameter group 1 and 2. Therefore, to further identify the patterns in the robust 

parameters, a pattern recognition method needs to be applied.  

 

In this study, we apply the k-means clustering algorithm to classify the parameters into four 

groups, where parameters in each of the groups represent a parameter pattern. Figure 15 plots the 

resulting parameter classes, with different colors for different classes. As can be seen, the 

buildup parameters dominate the differentiation between different parameter patterns for classes 

I to III, while the washoff parameters dominate that for class-IV. The distribution of parameters 

in each of the classes is shown in Table 1. 

 

Based on the clustering analysis result, the final representative parameters for conducting future 

long term simulation analysis can be identified as the one parameter set from each of the four 

classes with the least mean RMSE and included in Table 2. The four parameter combinations can 

be used for uncertainty-based prediction analysis to obtain a range of prediction of pollutant 

loadings which reflect the parameter pattern uncertainty.  
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Table 1. Identified parameter patterns for the TN buildup-washoff model 

 

Class ID Beta M Gamma Theta Mean RMSE 

I 0.0050 0.6408 1.9995 0.9453 1.6934 

I 0.0109 0.5894 1.9921 0.9529 1.6061 

I 0.0088 0.4952 1.9958 0.9180 1.5513 

II 0.1152 0.3039 1.9978 0.9590 1.4260 

III 0.0050 0.4670 2.0000 0.9162 1.5477 

III 0.0051 0.4005 1.9884 0.8604 1.5362 

III 0.0050 0.4063 1.9998 0.9230 1.5345 

III 0.0066 0.3293 1.9905 0.8205 1.5365 

III 0.0050 0.3922 2.0000 0.9816 1.5485 

III 0.0050 0.3456 1.9990 0.9390 1.5629 

III 0.0050 0.3267 2.0000 0.9387 1.5783 

III 0.0050 0.3129 1.9922 0.9431 1.5948 

IV 0.2000 0.2375 1.6418 0.0983 1.4525 

 

Table 2. Final calibrated parameters for the TN buildup-washoff model 

 

Beta M Gamma Theta Mean RMSE  

0.0088 0.4952 1.9958 0.9180 1.5513  

0.1152 0.3039 1.9978 0.9590 1.4260  

0.0050 0.4063 1.9998 0.9230 1.5345  

0.2000 0.2375 1.6418 0.0983 1.4525  

 

 
Figure 12 Simulation error surface for TN 
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Figure 13 Simulation error contour for TN 
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Figure 14 Robust parameter values identified for TN 
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Figure 15 Clustered parameter patterns for the TN model 

 

 

4.2 Robust Parameter Identification for TP 

 

Figure 16 plots the distribution of simulated error of the 21 parameters with regard to the 21 

initial conditions (R_N0) for TP.  Same as for the case of TN, the parameters identified for TP 

also demonstrate significant variability in robustness. For example, while the parameter 

identified at 10% of the maximum storage works well for the corresponding initial condition, the 

prediction error using this parameter would increase rapidly when the actual initial condition 

departs from 10%, suggesting that this particular set of parameters is not robust, and to apply it 

to predict long term loadings could lead to significant uncertainties as there would be high 

chances that the real initial condition would be different from the 10%.  
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Figure 16 also shows the that the right part of the error surface is flat, suggesting that when these 

parameters are applied to simulate the entire range of initial conditions, the resulted errors are 

similar to the least error. Therefore, these parameters can be considered robust. It is interesting to 

notice that the error surfaces for TN and TP share the similar pattern, that is, there is a ridge of 

high simulation error for the parameters identified for low and medium-low initial conditions. 

However, at the low end (R_N0=0.0) and higher values (R_N0>0.5), the surface becomes flat for 

both TN and TP. The reason of such a common pattern is unknown, and future research might be 

needed to further investigate the underlying cause of such a robustness distribution pattern. 

 

Using the same approach as in the case of TN, the 14 candidates for the final calibration 

parameters for TP are located in the plain areas on the error surface plots. These 14 parameters 

are shown in Figure 18. Compared with Figure 8, it can be seen that the 14 robust parameter sets 

show less variability than the entire parameter set. For example, the maximum storage M is now 

highly concentrated around value 0.05 lb/acre. Interestingly, the variability in terms of Beta 

remain similar between the entire set and the robust set, suggesting that the entire range of the 

originally estimated Beta values are robust.  This phenomenon is, again, similar to that of TN. 

 

As for the washoff parameters, the robust set in Figure 18 covers the similar area as the entire 

set, though those parameters with lower Theta values are eliminated due to their lack of 

robustness. 

 

Results of applying the k-means clustering algorithm to classify the TP parameters into four 

groups are shown in Figure 19. As can be seen, the buildup parameters dominate the 

differentiation between different parameter patterns for classes II, III, and IV, while both the 

buildup and washoff parameters dominate that for class I. The distribution of parameters in each 

class are shown in Table 3.  

 

Table 3 Identified parameter patterns for the TP buildup-washoff model 

 

Class ID Beta M Gamma Theta Mean RMSE 

I 0.0050 0.0479 1.9844 0.9375 0.1368 

I 0.0050 0.0510 1.9921 1.0502 0.1294 

I 0.0066 0.0487 1.7500 1.0352 0.1243 

I 0.0065 0.0478 1.9687 1.1328 0.1213 

II 0.0050 0.0371 1.9824 1.0179 0.1202 

II 0.0058 0.0365 1.8720 1.1564 0.1204 

II 0.0050 0.0352 1.7500 1.1355 0.1214 

II 0.0370 0.0346 1.6250 1.1430 0.1176 

II 0.0085 0.0313 1.9351 1.1718 0.1223 

III 0.0050 0.0289 1.9843 0.9130 0.1195 

III 0.0372 0.0275 1.7499 0.9146 0.1145 

III 0.0058 0.0313 1.9920 1.0261 0.1193 

IV 0.2000 0.0313 1.8338 0.9375 0.1121 

IV 0.1966 0.0197 1.9882 0.9301 0.1087 
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Based on the clustering analysis result, the final representative parameters for conducting future 

long term simulation analysis can be identified as the one with the least mean RMSE. These 

parameter sets are included in Table 4. The four parameter combinations can be used for 

uncertainty-based prediction analysis to obtain a range of prediction of pollutant loadings which 

reflect the parameter pattern uncertainty.  

 

Table 4 Final calibrated parameters for the TP buildup-washoff model 

 

Beta M Gamma Theta Mean RMSE 

0.0065 0.0478 1.9687 1.1328 0.1213 

0.0370 0.0346 1.6250 1.1430 0.1176 

0.1966 0.0197 1.9882 0.9301 0.1087 

0.0372 0.0275 1.7499 0.9146 0.1145 

 

 
Figure 16 Simulation error surface for TP 
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Figure 17 Simulation error contour for TP 
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Figure 18 Robust parameter values identified for TP 
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Figure 19 Clustered parameter patterns for the TP model 

 

 

5. Develop Long-term Continuous Hourly Timeseries for Impervious Land Uses 

 

The parameter set resulting in the lowest mean RMSE value (Table 2 for TN and Table 4 for TP) 

was selected as a calibrated parameter set for developing the long term continuous hourly 

timeseries for impervious land uses.  

 

This particular set of parameters for TN is: Beta=0.115, M=0.304, Gamma=1.998, and 

Theta=0.959 

 

This particular set of parameters for TP is: Beta=0.1966, M=0.0197, Gamma=1.988, and 

Theta=0.930 
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Due to the limited observed dataset from 100% impervious land covers, the observed data was 

not differentiated for land use types, and instead, the calibration was performed on a generic 

impervious land use category. A scaling factor was introduced to the maximum buildup possible 

under different impervious land use categories to further calibrate the annual average loading 

rates for TN and TP for developing the long-term timeseries. The continuous hourly simulation 

for 23 years (1992 to 2014) was performed using the selected calibrated buildup and washoff 

parameters in SWMM model. Figure 20 and Figure 21 show the box and whisker plots for the 

simulated annual loading rates for TN and TP, respectively, over 23 years. The green line shows 

the annual average value from the entire simulation period which is also the annual load export 

rate target. For comparison purposes, the selected calibrated buildup and washoff parameters 

were also simulated for 23 years without changing the maximum buildup capacity, and are 

shown in the box and whisker plot as the “calibrated impervious” category. The long term 

simulation results show that using the calibration parameters “as is” align well with the TP 

loading rates for open land impervious surface and low density residential impervious areas, but 

produce lower annual average loads for TN. The statistical results (min, 25th percentile, median, 

mean, 75th percentile, and maximum) in box and whisker plots show a similar trend between the 

calibrated impervious land and the other impervious land categories after applying the scaling 

factor to meet the land use-specific annual average load export rate target.   

 

 
Figure 20 Box and Whisker plot for TN annual export rates in the continuous simulation model 
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Figure 21 Box and Whisker plot for TP annual export rates in the continuous simulation model 
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Task 10 of WA 4-35 requires that Tetra Tech conduct a sensitivity analysis of the long-term 

cumulative BMP performance estimates with regard to BMP model calibration approaches. The 

overall goal of the task is twofold: 1) to explore how factors such as rainfall event magnitude, 

inter-event dry days, seasons, and the number of calibration events could impact the development 

of long-term performance curves, and 2) to serve as a reference point for similar calibration efforts. 

Task 10 is set to investigate gravel wetland and biofiltration with internal storage reservoir (ISR) 

or enhanced biofiltration for nutrient pollutants (Total Nitrogen and Total Phosphorus). All the 

monitored BMP performance data in this memo are from the University of New Hampshire 

Stormwater Center (UNHSC).  

 

This memorandum documents the sensitivity analysis results of BMP performance calibration 

methods. The steps of rainfall event selection, BMP calibration, and performance curve generation 

and comparison, and the final recommendations are discussed.  

 

1. Overview of the Sensitivity Analysis Strategy 

An overview of the sensitivity analysis strategy is shown in Figure 1. As shown, the sensitivity 

analysis starts with analysis of the available monitored data. Based on the data review, candidate 

events are selected for three calibration methods. In the first calibration method, three to five 

candidate events are selected, and the BMP hydrologic and water quality performances are 

calibrated against the observed data. The calibrated BMP parameters are then checked for 

cumulative performances against the observed data, and then used for generating the long-term 

BMP performance curves. The long-term time series (1/1/1992 to 12/31/2014) used for the BMP 

performance curve generation are the latest set of time series that reflect nutrient loadings from 

typical land uses in the Region. Based on previous TMDL implementation knowledge, the BMP 

performance curves are generated for only one type of impervious (Commercial_Impervious) in 

this study, as the BMP performance curves from various impervious surfaces tend to follow a 

similar trend.  

 

Similarly to the first calibration method, the calibration efforts were carried out for calibration 

method two and three, in which the calibration events were increased from eight to twelve and 

nine to fifteen, respectively. A set of BMP performance curves was also generated following each 

calibration method.  

 

A final review of the calibration cumulative performances against the observed data and the BMP 

performance curves yields a recommended set of BMP performance curves, and a procedure of 
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developing BMP performance curves is also recommended. Details of the sensitivity analysis 

strategy are discussed in sections that follow.  

 

 
 

Figure 1. Overview of sensitivity analysis regarding BMP performance calibration 

approaches. 

 

2. Evaluation of Monitored Rainfall Data  

In this step, monitored events for gravel wetland and biofiltration with ISR were compiled and 

analyzed. For gravel wetland, there are a total number of 49 recorded events, and 30 for the 

biofiltration with ISR. Information about rainfall depth, antecedent dry period, inflow and outflow 

pollutant concentrations from gravel wetland and biofiltration with ISR can be found in the 

attached table. For some of the events, data for only one pollutant were available. The rainfall 

events to be used for the calibration process were selected from the candidate events. All 49 events 

form the cumulative performance validation dataset for gravel wetland, and similarly all 30 events 

for the biofiltration with ISR. For the purpose of developing a continuous and complete validation 

dataset, median inflow EMCs for the whole observed dataset for either TP or TN were assumed 

for events that are missing inflow EMC information for TP or TN.  

 

During the data review process, events that did not have both TN and TP monitored performances 

at the same time were removed from the candidate list for selecting calibration events.. After the 

data reviewing process, 14 monitoring events were selected for the gravel wetland and 14 for the 

biofiltration with ISR. The list of events are shown in Table 1 and Table 2.  
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Table 1. List of gravel wetland candidate monitoring events. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent Dry Period 

(days) 

6/4/2008 0.40 0.02 3 

4/3/2009 0.79 0.11 3 

4/6/2009 1.07 0.07 2 

5/5/2009 0.72 0.03 12 

6/18/2009 1.47 0.09 3 

8/22/2009 0.76 0.38 8 

9/11/2009 0.95 0.06 12 

9/27/2009 0.51 0.02 14 

11/20/2009 0.42 0.01 5 

4/16/2010 1.16 0.04 6 

6/10/2010 0.67 0.04 3 

6/23/2010 0.29 0.02 12 

7/21/2010 0.45 0.23 6 

9/16/2010 0.49 0.03 3 

 

Table 2. List of biofiltration with ISR candidate monitoring events. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent Dry Period 

(days) 

11/10/2011 0.98 0.06 10 

6/22/2012 0.71 0.20 8 

7/17/2012 0.19 0.08 1 

8/10/2012 0.53 0.07 4 

9/8/2012 0.26 0.08 2 

11/17/2013 0.27 0.04 6 

6/25/2014 0.87 0.11 11 

7/13/2014 0.19 0.07 3 

07/27/2014 0.39 0.12 2 

7/31/2014 0.12 0.03 2 

9/2/2014 0.56 0.12 19 

9/13/2014 0.12 0.01 5 

10/4/2014 0.21 0.02 2 

11/1/2014 0.35 0.01 8 

 

 

3. First Calibration Approach  
 

3.1 Gravel Wetland 

In the first calibration approach for gravel wetland, four calibration events were selected, with at 

least one event for each season (spring, summer, and fall), and with varying magnitudes of storm 
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sizes (0.42 inch to 1.47 inch). The events used for gravel wetland calibration are shown in Table 

3. 

 

Table 3. List of gravel wetland candidate monitoring events following the first calibration 

approach. 

Date 

Rainfall 

Depth (in) 

Peak 

Intensity 

(in/5-

min) 

Antecedent 

Dry Period 

(days) 

Removal 

Efficiency (RE) 

TN TP 

6/18/2009 1.47 0.09 3 11% -150% 

9/27/2009 0.51 0.02 14 -125% 75% 

11/20/2009 0.42 0.01 5 31% 75% 

6/10/2010 0.67 0.04 3 30% 95% 

 

Individual SUSTAIN models were set up for the gravel wetland. For each event, the models were 

first calibrated for the hydrology, and then were calibrated to match the event mean concentration 

predictions for TN and TP, separately. The calibrated TN and TP performances are shown in 

Tables 4 and 5 below, with the calibrated parameters summarized at the end of the tables.   

 

Table 4. Summary of calibration results for TN for gravel wetland following the first 

calibration approach. 

Calibration events Values 

6/18/2009 

Observed 

EMC (mg/L) 

Inflow 0.9 

Outflow 0.8 

SUSTAIN 

prediction 

Calibrated outflow 0.81 

Decay 0.03 

Perct. removal 0.12 

9/27/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.8 

Outflow 1.8 

SUSTAIN 

prediction 

Calibrated outflow 1.8 

Decay -0.08 

Perct. removal 0.05 

11/20/2009 

 

Observed 

EMC (mg/L) 

Inflow 1.60 

Outflow 1.10 

SUSTAIN 

prediction 

Calibrated outflow 1.021 

Decay 0.05 

Perct. removal 0.05 

6/10/2010 

Observed 

EMC (mg/L) 

Inflow 1.00 

Outflow 0.70 

SUSTAIN 

prediction 

Calibrated outflow 0.706 

Decay 0.13 

Perct. removal 0.12 

Calibrated parameters 

(average) 

Decay 0.033 

Perct. removal 0.085 
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Table 5. Summary of calibration results for TP for gravel wetland following the first 

calibration approach. 

Calibration events Values 

6/18/2009 

Observed 

EMC (mg/L) 

Inflow 0.02 

Outflow 0.05 

SUSTAIN 

prediction 

Calibrated outflow 0.047 

Decay -0.21 

Perct. removal 0.06 

9/27/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.02 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.005 

Decay 0.12 

Perct. removal 0.03 

11/20/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.02 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.005 

Decay 0.1 

Perct. removal 0.13 

6/10/2010 

Observed 

EMC (mg/L) 

Inflow 0.1 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.005 

Decay 0.33 

Perct. removal 0.42 

Calibrated parameters 

(average) 

Decay 0.085 

Perct. removal 0.160 

 

After the first calibration method is completed for TN and TP, the gravel wetland representation 

was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored 

events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are 

then compared against the monitored data, and the results are summarized in Table 6. 

 

Table 6. Validation of gravel wetland cumulative performances following the first 

calibration approach. 

 First calibration method Monitored Difference% 

TN removal percent 18% 45% -27% 

TP removal percent 34% 39% -5% 

 

As shown in the results, the calibrated parameters generate lower removal efficiency for TP and 

TN compared to the monitored data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 7, and the BMP performance curves for TN and TP are shown in Figure 2.  
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Table 7. Long-term gravel wetland performances following the first calibration approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  15% 24% 36% 45% 51% 56% 64% 70% 

TP  26% 39% 55% 65% 71% 75% 80% 84% 

 

 

 
Figure 2. Gravel wetland performance curves for TN and TP following the first calibration 

approach. 

 

3.2 Biofiltration with ISR 

In the first calibration approach for biofiltration with ISR, four calibration events were selected 

from the summer, fall, and winter seasons, and with vary magnitudes of storm sizes (0.26 inch to 

0.71 inch). The events used for biofiltration with ISR calibration is shown in Table 8. 

 

Table 8. List of biofiltration with ISR candidate monitoring events following the first 

calibration approach. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent 

Dry Period 

(days) 

Removal 

Efficiency (RE) 

TN TP 

06/22/2012 0.71 0.20 8 56% 69% 

09/08/2012 0.26 0.08 2 44% 53% 
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07/27/2014 0.39 0.12 2 -27% 33% 

09/02/2014 0.56 0.12 19 -14% -30% 

 

Individual SUSTAIN models were set up for the biofiltration with ISR system. For each event, the 

models were first calibrated for the hydrology, and then were calibrated to match the event mean 

concentration predictions for TN and TP, separately. The calibrated TN and TP performances are 

shown in Tables 9 and 10 below, with the calibrated parameters summarized at the end of the 

tables.   

 

Table 9. Summary of calibration results for TN for biofiltration with ISR following the first 

calibration approach. 

Calibration events Values 

06/22/2012 

 

Observed 

EMC (mg/L) 

Inflow 2.5 

Outflow 1.1 

SUSTAIN 

prediction 

Calibrated outflow 1.13 

Decay 0.16 

Perct. removal 0.06 

09/08/2012 

Observed 

EMC (mg/L) 

Inflow 1.6 

Outflow 0.9 

SUSTAIN 

prediction 

Calibrated outflow 0.92 

Decay 0.15 

Perct. removal 0.05 

07/27/2014 

Observed 

EMC (mg/L) 

Inflow 1.5 

Outflow 1.9 

SUSTAIN 

prediction 

Calibrated outflow 1.93 

Decay -0.19 

Perct. removal 0.14 

09/02/2014 

Observed 

EMC (mg/L) 

Inflow 1.4 

Outflow 1.6 

SUSTAIN 

prediction 

Calibrated outflow 1.64 

Decay -0.055 

Perct. removal 0.1 

Calibrated parameters (average) 
Decay 0.016 

Perct. removal 0.088 

 

Table 10. Summary of calibration results for TP for biofiltration with ISR following the 

first calibration approach. 

Calibration events Values 

06/22/2012 

 

Observed 

EMC (mg/L) 

Inflow 0.16 

Outflow 0.05 

SUSTAIN 

prediction 

Calibrated outflow 0.047 

Decay 0.11 

Perct. removal 0.28 

09/08/2012 

 

Observed 

EMC (mg/L) 

Inflow 0.15 

Outflow 0.07 

SUSTAIN Calibrated outflow 0.072 
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prediction Decay 0.1 

Perct. removal 0.22 

07/27/2014 

Observed 

EMC (mg/L) 

Inflow 0.09 

Outflow 0.06 

SUSTAIN 

prediction 

Calibrated outflow 0.063 

Decay 0.14 

Perct. removal 0.65 

09/02/2014 

Observed 

EMC (mg/L) 

Inflow 0.1 

Outflow 0.13 

SUSTAIN 

prediction 

Calibrated outflow 0.126 

Decay -0.09 

Perct. removal 0.16 

Calibrated parameters (average) 
Decay 0.065 

Perct. removal 0.328 

 

After the first calibration method is completed for TN and TP, the biofiltration with ISR 

representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30 

monitored events. The TN and TP EMC reductions by the calibrated biofiltration with ISR model 

were then compared against the monitored data, and the results are summarized in Table 11. 

 

Table 11. Validation of biofiltration with ISR cumulative performances following the first 

calibration approach. 

 First calibration method Monitored Difference% 

TN removal percent 30% 26% 4% 

TP removal percent 41% 37% 4% 

 

As shown in the results, the calibrated parameters show slightly high removal efficiency for TN 

and TP as compared to the monitored data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 12, and the BMP performance curve is shown in Figure 3.  

 

Table 12. Long-term biofiltration with ISR performances following the first calibration 

approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  15% 24% 36% 45% 51% 56% 64% 70% 

TP  26% 39% 55% 65% 71% 75% 80% 84% 
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Figure 3. Biofiltration with ISR performance curves for TN and TP following the first 

calibration approach. 

 

4. Second Calibration Approach  

 

4.1 Gravel Wetland 

In the second calibration approach for gravel wetland, a total number of eight events were selected 

for the calibration efforts. In addition to events shown in Table 3, four more events were added to 

the calibration dataset. Wider variations in season, rainfall depth, as well as the antecedent dry 

periods were incorporated during the selection process. The four new events are summarized in 

Table 13.  

 

 

Table 13. Additional events added to the gravel wetland calibration dataset in the second 

calibration approach. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent Dry 

Period (days) 

Removal Efficiency 

(RE) 

TN TP 

04/06/2009 1.07 0.07 2 69% 56% 

08/22/2009 0.76 0.38 8 68% -33% 

04/16/2010 1.16 0.04 6 18% 18% 

06/23/2010 0.29 0.02 12 55% 90% 
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Similar to processes in the first calibration approach, SUSTAIN models were set up for each of 

the calibration events. The calibration was carried out first for hydrology and then for water quality. 

The calibrated TN and TP performances are shown in Tables 14 and 15 below, with the calibrated 

parameters summarized at the end of the tables.   

 

Table 14. Summary of calibration results for TN for gravel wetland following the second 

calibration approach. 

Calibration events Values 

04/06/2009 

Observed 

EMC (mg/L) 

Inflow 0.80 

Outflow 0.25 

SUSTAIN 

prediction 

Calibrated outflow 0.244 

Decay 0.13 

Perct. removal 0.12 

08/22/2009 

Observed 

EMC (mg/L) 

Inflow 1.90 

Outflow 0.60 

SUSTAIN 

prediction 

Calibrated outflow 0.647 

Decay 0.12 

Perct. removal 0.27 

04/16/2010 

Observed 

EMC (mg/L) 

Inflow 1.1 

Outflow 0.9 

SUSTAIN 

prediction 

Calibrated outflow 0.86 

Decay 0.04 

Perct. removal 0.02 

06/22/2010 

Observed 

EMC (mg/L) 

Inflow 1.10 

Outflow 0.50 

SUSTAIN 

prediction 

Calibrated outflow 0.495 

Decay 0.11 

Perct. removal 0.12 

Calibrated parameters 

(including the first four events) 

Decay 0.066 

Perct. removal 0.109 

 

Table 15. Summary of calibration results for TP for gravel wetland following the second 

calibration approach. 

Calibration events Values 

4/6/2009 

Observed 

EMC (mg/L) 

Inflow 0.09 

Outflow 0.04 

SUSTAIN 

prediction 

Calibrated outflow 0.038 

Decay 0.09 

Perct. removal 0.07 

08/22/2009 

Observed 

EMC (mg/L) 

Inflow 0.03 

Outflow 0.04 

SUSTAIN 

prediction 

Calibrated outflow 0.041 

Decay -0.05 

Perct. removal 0.05 

4/16/2010 
Observed 

EMC (mg/L) 

Inflow 0.017 

Outflow 0.014 
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SUSTAIN 

prediction 

Calibrated outflow 0.014 

Decay 0.11 

Perct. removal 0.15 

6/22/2010 

Observed 

EMC (mg/L) 

Inflow 0.05 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.005 

Decay 0.35 

Perct. removal 0.40 

Calibrated parameters 

(including the first four events) 

Decay 0.105 

Perct. removal 0.164 

 

After the second calibration method is completed for TN and TP, the gravel wetland representation 

was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored 

events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are 

then compared against the monitored data, and the results are summarized in Table 16. 

 

Table 16. Validation of gravel wetland cumulative performances following the second 

calibration approach. 

 Second calibration method Monitored Difference% 

TN removal percent 22% 45% -23% 

TP removal percent 35% 39% -4% 

 

As shown in the results, the calibrated parameters generate lower removal efficiency for TN and 

exact match for TP as compared to the observed data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 17, and the BMP performance curve is shown in Figure 4.  

 

Table 17. Long-term gravel wetland performances following the second calibration 

approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  22% 33% 48% 57% 64% 68% 74% 79% 

TP  29% 43% 59% 69% 74% 78% 83% 86% 
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Figure 4. Gravel wetland performance curves for TN and TP following the second 

calibration approach. 

 

4.2 Biofiltration with ISR 

In the second calibration approach for biofiltration with ISR, a total number of eight events were 

selected for the calibration efforts. In addition to events shown in Table 8, four more events were 

added to the calibration dataset. Wider variations in season, rainfall depth, as well as the antecedent 

dry periods were incorporated during the selection process. The four new events are summarized 

in Table 18.  

 

Table 18. Additional events added to the biofiltration with ISR calibration dataset in the 

second calibration approach.  

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent 

Dry Period 

(days) 

Removal Efficiency (RE) 

TN TP 

11/10/2011 0.98 0.06 10 20% 55% 

7/17/2012 0.19 0.08 1 44% 65% 

08/10/2012 0.53 0.07 4 -9% -200% 

11/17/2013 0.27 0.04 6 17% 43% 

 

Similar to processes in the first calibration approach, SUSTAIN models were set up for each of 

the calibration event. The calibration was carried out first for hydrology and then for water quality. 

The calibrated TN and TP performances are shown in Tables 19 and 20 below, with the calibrated 

parameters summarized at the end of the tables.   
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Table 19. Summary of calibration results for TN for biofiltration with ISR following the 

second calibration approach. 

Calibration events Values 

11/10/2011 

 

Observed 

EMC (mg/L) 

Inflow 1 

Outflow 0.8 

SUSTAIN 

prediction 

Calibrated outflow 0.078 

Decay 0.47 

Perct. removal 0.79 

7/17/2012 

 

Observed 

EMC (mg/L) 

Inflow 3.2 

Outflow 1.8 

SUSTAIN 

prediction 

Calibrated outflow 1.82 

Decay 0.18 

Perct. removal 0.16 

08/10/2012 

Observed 

EMC (mg/L) 

Inflow 1.1 

Outflow 1.2 

SUSTAIN 

prediction 

Calibrated outflow 1.16 

Decay -0.06 

Perct. removal 0.04 

11/17/2013 

Observed 

EMC (mg/L) 

Inflow 1.8 

Outflow 1.5 

SUSTAIN 

prediction 

Calibrated outflow 1.49 

Decay 0.09 

Perct. removal 0.04 

Calibrated parameters 

(including the first four events) 

Decay 0.093 

Perct. removal 0.173 

 

Table 20. Summary of calibration results for TP for biofiltration with ISR following the 

second calibration approach. 

Calibration events Values 

11/10/2011 

 

Observed 

EMC (mg/L) 

Inflow 0.2 

Outflow 0.09 

SUSTAIN 

prediction 

Calibrated outflow 0.089 

Decay 0.16 

Perct. removal 0.2 

7/17/2012 

 

Observed 

EMC (mg/L) 

Inflow 0.34 

Outflow 0.12 

SUSTAIN 

prediction 

Calibrated outflow 0.118 

Decay 0.19 

Perct. removal 0.38 

08/10/2012 

Observed 

EMC (mg/L) 

Inflow 0.002 

Outflow 0.06 

SUSTAIN 

prediction 

Calibrated outflow 0.055 

Decay -0.62 

Perct. removal 0.08 

11/17/2013 
Observed 

EMC (mg/L) 

Inflow 0.07 

Outflow 0.04 
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SUSTAIN 

prediction 

Calibrated outflow 0.038 

Decay 0.25 

Perct. removal 0.26 

Calibrated parameters 

(including the first four events) 

Decay 0.03 

Perct. removal 0.279 

 

After the first calibration method is completed for TN and TP, the biofiltration with ISR 

representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30 

monitored events. The cumulative TN and TP EMC reductions by the calibrated biofiltration with 

ISR model are then compared against the monitored data, and the results are summarized in Table 

21. 

 

Table 21. Validation of biofiltration with ISR cumulative performances following the 

second calibration approach. 

 Second calibration method Monitored Difference% 

TN removal percent 42% 26% 16% 

TP removal percent 36% 37% -1% 

 

As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN 

and close match for TP as compared to monitored data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 22, and the BMP performance curve is shown in Figure 5.  

 

Table 22. Long-term biofiltration with ISR performances following the second calibration 

approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  32% 44% 58% 66% 71% 75% 82% 86% 

TP  27% 39% 53% 62% 67% 71% 78% 83% 
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Figure 5. Biofiltration with ISR performance curves for TN and TP following the second 

calibration approach. 

 

5. Third Calibration Approach  

 

5.1 Gravel Wetland 

In the third calibration approach for gravel wetland, all fourteen calibration events were used to 

calibrate the SUSTAIN representation. The six additional events used in the third calibration 

approach are summarized in Table 23.  

 

Table 23. List of additional gravel wetland events for the third calibration approach. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent 

Dry Period 

(days) 

Removal Efficiency (RE) 

TN TP 

6/4/2008 0.40 0.02 3 45% 100% 

4/3/2009 0.79 0.11 3 58% 81% 

5/5/2009 0.72 0.03 12 53% 50% 

9/11/2009 0.95 0.06 12 67% 92% 

7/21/2010 0.45 0.23 6 69% 78% 

9/16/2010 0.49 0.03 3 47% 33% 

 

Similar to the first two calibration approaches, individual SUSTAIN models were set up to 

calibrate the gravel wetland hydrologic and water quality performances. The calibrated TN and TP 
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performances are shown in Tables 24 and 25 below, with the calibrated parameters summarized at 

the end of the tables.   

 

Table 24. Summary of calibration results for TN for gravel wetland following the third 

calibration approach. 

Calibration events Values 

6/4/2008 

 

Observed 

EMC (mg/L) 

Inflow 1.1 

Outflow 0.6 

SUSTAIN 

prediction 

Calibrated outflow 0.58 

Decay 0.11 

Perct. removal 0.12 

4/3/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.6 

Outflow 0.25 

SUSTAIN 

prediction 

Calibrated outflow 0.248 

Decay 0.05 

Perct. removal 0.04 

5/5/2009 

 

Observed 

EMC (mg/L) 

Inflow 1.50 

Outflow 0.7 

SUSTAIN 

prediction 

Calibrated outflow 0.73 

Decay 0.14 

Perct. removal 0.14 

9/11/2009 

 

Observed 

EMC (mg/L) 

Inflow 1.80 

Outflow 0.25 

SUSTAIN 

prediction 

Calibrated outflow 0.251 

Decay 0.2 

Perct. removal 0.22 

7/21/2010 

Observed 

EMC (mg/L) 

Inflow 0.80 

Outflow 0.25 

SUSTAIN 

prediction 

Calibrated outflow 0.246 

Decay 0.13 

Perct. removal 0.12 

9/16/2010 

Observed 

EMC (mg/L) 

Inflow 1.50 

Outflow 0.80 

SUSTAIN 

prediction 

Calibrated outflow 0.83 

Decay 0.03 

Perct. removal 0.05 

Calibrated parameters (including 

the previous eight events) 

Decay 0.085 

Perct. removal 0.111 

 

Table 25. Summary of calibration results for TP for gravel wetland following the third 

calibration approach. 

Calibration events Values 

6/4/2008 

 

Observed 

EMC (mg/L) 

Inflow 0.05 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.005 

Decay 0.35 

Perct. removal 0.48 
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4/3/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.16 

Outflow 0.03 

SUSTAIN 

prediction 

Calibrated outflow 0.03 

Decay 0.14 

Perct. removal 0.13 

5/5/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.04 

Outflow 0.02 

SUSTAIN 

prediction 

Calibrated outflow 0.019 

Decay 0.15 

Perct. removal 0.11 

9/11/2009 

 

Observed 

EMC (mg/L) 

Inflow 0.06 

Outflow 0.005 

SUSTAIN 

prediction 

Calibrated outflow 0.006 

Decay 0.33 

Perct. removal 0.48 

7/21/2010 

Observed 

EMC (mg/L) 

Inflow 0.09 

Outflow 0.02 

SUSTAIN 

prediction 

Calibrated outflow 0.02 

Decay 0.15 

Perct. removal 0.25 

9/16/2010 

Observed 

EMC (mg/L) 

Inflow 0.03 

Outflow 0.02 

SUSTAIN 

prediction 

Calibrated outflow 0.021 

Decay 0.02 

Perct. removal 0.03 

Calibrated parameters (including 

the previous eight events) 

Decay 0.141 

Perct. removal 0.199 

 

After the third calibration method is completed for TN and TP, the gravel wetland representation 

was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored 

events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are 

then compared against the monitored data, and the results are summarized in Table 26. 

 

Table 26. Validation of gravel wetland cumulative performances following the third 

calibration approach. 

 Third calibration method Monitored Difference% 

TN removal percent 26% 45% -19% 

TP removal percent 40% 39% 1% 

 

As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN 

and TP as compared to monitored data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 27, and the BMP performance curve is shown in Figure 6.  
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Table 27. Long-term gravel wetland performances following the third calibration 

approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  24% 38% 52% 62% 68% 72% 78% 82% 

TP  33% 49% 65% 75% 80% 83% 87% 90% 

 

 
Figure 6. Gravel wetland performance curves for TN and TP following the third 

calibration approach. 

 

5.2 Biofiltration with ISR 

In the third calibration approach for biofiltration with ISR, all fourteen calibration events were 

used to calibrate the SUSTAIN representation. The six additional events used in the third 

calibration approach are summarized in Table 28.  

 

Table 28. List of additional biofiltration with ISR calibration events for the third 

calibration approach. 

Date 

Rainfall 

Depth (in) 

Peak Intensity 

(in/5-min) 

Antecedent 

Dry Period 

(days) 

Removal Efficiency (RE) 

TN TP 

6/25/2014 0.87 0.11 11 21% 4% 

7/13/2014 0.19 0.07 3 48% 89% 
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7/31/2014 0.12 0.03 2 48% 38% 

9/13/2014 0.12 0.01 5 11% 58% 

10/4/2014 0.21 0.02 2 59% 83% 

11/1/2014 0.35 0.01 8 57% 75% 

 

Similar to the first two calibration approaches, individual SUSTAIN models were set up to 

calibrate the biofiltration with ISR hydrologic and water quality performances. The calibrated TN 

and TP performances are shown in Tables 29 and 30 below, with the calibrated parameters 

summarized at the end of the tables.   

 

Table 29. Summary of calibration results for TN for biofiltration with ISR following the 

third calibration approach. 

Calibration events Values 

6/25/2014 

 

Observed 

EMC (mg/L) 

Inflow 1.9 

Outflow 1.5 

SUSTAIN 

prediction 

Calibrated outflow 1.45 

Decay 0.09 

Perct. removal 0.04 

7/13/2014 

 

Observed 

EMC (mg/L) 

Inflow 2.7 

Outflow 1.4 

SUSTAIN 

prediction 

Calibrated outflow 1.45 

Decay 0.13 

Perct. removal 0.74 

7/31/2014 

 

Observed 

EMC (mg/L) 

Inflow 2.5 

Outflow 1.3 

SUSTAIN 

prediction 

Calibrated outflow 1.26 

Decay 0.30 

Perct. removal 0.24 

9/13/2014 

 

Observed 

EMC (mg/L) 

Inflow 0.9 

Outflow 0.8 

SUSTAIN 

prediction 

Calibrated outflow 0.76 

Decay 0.11 

Perct. removal 0.15 

10/4/2014 

Observed 

EMC (mg/L) 

Inflow 2.2 

Outflow 0.9 

SUSTAIN 

prediction 

Calibrated outflow 0.93 

Decay 0.21 

Perct. removal 0.19 

11/1/2014 

Observed 

EMC (mg/L) 

Inflow 1.4 

Outflow 0.6 

SUSTAIN 

prediction 

Calibrated outflow 0.57 

Decay 0.21 

Perct. removal 0.20 

Calibrated parameters (including 

the previous eight events) 

Decay 0.128 

Perct. removal 0.21 
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Table 30. Summary of calibration results for TP for biofiltration with ISR following the 

third calibration approach. 

Calibration events Values 

6/25/2014 

 

Observed 

EMC (mg/L) 

Inflow 0.23 

Outflow 0.22 

SUSTAIN 

prediction 

Calibrated outflow 0.205 

Decay 0.03 

Perct. removal 0.04 

7/13/2014 

 

Observed 

EMC (mg/L) 

Inflow 0.18 

Outflow 0.02 

SUSTAIN 

prediction 

Calibrated outflow 0.022 

Decay 0.14 

Perct. removal 0.65 

7/31/2014 

 

Observed 

EMC (mg/L) 

Inflow 0.16 

Outflow 0.1 

SUSTAIN 

prediction 

Calibrated outflow 0.096 

Decay 0.2 

Perct. removal 0.21 

9/13/2014 

 

Observed 

EMC (mg/L) 

Inflow 0.12 

Outflow 0.05 

SUSTAIN 

prediction 

Calibrated outflow 0.051 

Decay 0.2 

Perct. removal 0.26 

10/4/2014 

Observed 

EMC (mg/L) 

Inflow 0.12 

Outflow 0.02 

SUSTAIN 

prediction 

Calibrated outflow 0.021 

Decay 0.47 

Perct. removal 0.39 

11/1/2014 

Observed 

EMC (mg/L) 

Inflow 0.12 

Outflow 0.03 

SUSTAIN 

prediction 

Calibrated outflow 0.03 

Decay 0.37 

Perct. removal 0.36 

Calibrated parameters (including 

the previous eight events) 

Decay 0.118 

Perct. removal 0.296 

 

After the third calibration method is completed for TN and TP, the biofiltration with ISR 

representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30 

monitored events. The cumulative TN and TP EMC reductions by the calibrated biofiltration with 

ISR model are then compared against the monitored data, and the results are summarized in Table 

31. 

 

Table 31. Validation of biofiltration with ISR performances following the third calibration 

approach. 

 Third calibration method Monitored Difference% 

TN removal percent 45% 26% 19% 

TP removal percent 44% 37% 7% 
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As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN 

and TP as compared to monitored data.  

 

The calibrated parameters were then used for BMP performance curve generation. The long-term 

time series for the Commercial_Impervious land use and for the period of 01/01/1992 to 

12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown 

in Table 32, and the BMP performance curve is shown in Figure 7.  

 

Table 32. Long-term biofiltration with ISR performances following the third calibration 

approach. 

 0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in 

TN  37% 50% 63% 71% 76% 80% 85% 88% 

TP  39% 53% 66% 73% 78% 82% 86% 89% 

 

 

 
Figure 7. Biofiltration with ISR performance curve for TN and TP following the third 

calibration approach. 

 

6. Evaluation and Recommendation  

After the three calibration approaches were completed for gravel wetland and biofiltration with 

ISR, the resulting BMP performance curves from the three calibration approaches were plotted 

against each other for the two pollutants and are shown in Figures 8 to 11.  
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Figure 8. Comparison of gravel wetland performance curves for TN following the three 

calibration approaches. 

 
Figure 9. Comparison of gravel wetland performance curves for TP following the three 

calibration approaches. 
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Figure 10. Comparison of biofiltration with ISR performance curves for TP following the 

three calibration approaches. 

 
Figure 11. Comparison of biofiltration with ISR performance curves for TP following the 

three calibration approaches. 
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As shown in the figures, Approach #2 is a representative of the three calibration approaches for 

gravel wetland, with the average treatment efficiency differences from the other two approaches 

are about 10% for TN and 5% for TP.  As for biofiltration with ISR, Approach #2 is a representative 

approach for TN and Approach #1 becomes the representative approach for TP. Overall, Approach 

#2 was selected as the approach that incurs intermediate level of efforts while achieving relatively 

high reliability.  

 

From the performance curve generation processes for gravel wetland and biofiltration with ISR, 

the selection of model calibration events can be set to include 8 to 12 events, with at least one 

event from each season and at least two events for each size category (i.e. ≤0.5 in, 0.5-1.0 in, ≥1.0 

in, depending on the actual rainfall distribution), and at the same time the events are representative 

of the antecedent dry period lengths. In addition, events that have negative removal efficiencies 

should also be included to have a comprehensive representation of the BMP performances.  

 

Following these recommendations above on selection of calibration events, the Calibration 

Approach #2 could be used as a recommended approach for developing BMP performance curve 

generations, and the updated flow chart is shown in Figure 12.  

 

 
 

Figure 12. Recommended approach for developing long-term BMP performance curves. 

 

7. Summary 

The impacts of calibration strategies on the development of long-term BMP performance curves 

are evaluated in this study. Observed gravel wetland and biofiltration with ISR data from UNHSC 

were used for the calibration sensitivity analysis. SUSTAIN calibration models were set up for 

each individual event and the performances were calibrated. The calibrated BMP calibration 

parameters were then averaged for generating long-term performance curves. For sensitivity 

analysis purposes, the calibration events were divided into three groups: four events for the first 



 

25 

 

group, eight events for the second group, and 14 events for the third group. BMP performance 

curves were created for the commercial impervious land use.  

 

The calibration results and final BMP performance curves indicate that six to eight calibration 

events with rainfall characteristic variations are reasonable for achieving good calibration results 

and for generating performance curves. Following the example analyses, the recommended 

procedures for generating long-term BMP performance curves are also provided in this study.  

 

 

 


