MEMORANDUM (DRAFT) Date:  November 20, 2015

To: Mark Voorhees, EPA Region |
Tetra Tech, Inc.
10306 Eaton Place, Suite 340 From: Guoshun Zhang, Khalid Alvi — Tetra Tech
Fairfax, VA 22030
Telephone (703) 385-6000

Subject: Update of long-term runoff time series for
Fax (703) 385-6007

various land uses in New England

Under WA 4-35, Tetra Tech is tasked to update long-term pollutant runoff time series for
typical land uses in the region. The time series update consists of two aspects: 1. To update
annual average pollutant loading rates for Total Nitrogen (TN), Total Phosphorous (TP),
Total Suspended Solids (TSS), and Zinc (Zn), and 2. To expand the time series duration of
01/01/1992-12/31/2002 to 01/01/1992-12/31/2014. This memorandum introduces the
background information for the time series update, the overall strategy for the time series
update, and the final results.

1. Background of the Long-Term Runoff Time Series

When developing long-term BMP performance curves for the region in a previous
assignment, runoff time series for the period of 01/01/1992 to 12/31/2002 were created for
simulating BMP processes (Tetra Tech, 2008). In that effort, the time series for TSS, TP,
TN, and Zn were developed for 5 land uses including Commercial, Industrial, High Density
Residential, Medium Density Residential, and Low Density Residential. Typical pollutant
loading rates for these land uses and pollutant combinations are summarized in Table 1.

Table 1. Pollutant loading rates for previous round of long-term time series generation.

Pollutant loading export rates
(Ibs/ac-yr)

Land cover/Source category TSS TP TN Zn
Commercial 1.000 15 9.8 2.1
Industrial 670 13 4.7 0.4
High-Density Residential 420 10 6.2 0.7
Medium-Density Residential 250 0.3 3.9 0.1
Low-Density Residential 65 0.04 0.4 0.04

Source: Shaver et al. 2007

A set of Stormwater Management Model (SWMM) were set up to simulate the land use
and pollutant combinations. Using the long-term rainfall time series as input, SWMM
model buildup and washoff parameters were calibrated to match the annual average loading
rates in Table 1. The calibrated time series were later used for estimating cumulative BMP
performances (Tetra Tech, 2008).



A similar set of pollutant time series were developed in a later study for three communities
in Upper Charles River, Massachusetts (Tetra Tech, 2009), and the rates are summarized
in Table 2. In comparison with the pollutant loading rates in Table 1, the pollutant loading
rates for the three Upper Charles River communities were for TP only, with more land use
categories that are separated into pervious and impervious categories.

Table 2. Annual average TP loading rates for three Upper Charles River communities.

TP load export | Land surface P load Source of
Land use rate (kgfhalyr) cover (kg/halyr) export rate
Agriculture ~ 05 Pervious 05 1
Commercial ~ 1.679 Impervious 2.5 2
Pervious 0.3
Impervious 1
F t 0.13 3
ores Pervious 01
Impervious 1.5
F 0.9 2
reeway Pervious 0.3
High-density 1119 Impervious 25 5
residential ' Pervious 0.3
: Impervious 2
Industrial 1.455 2
ndustria Pervious 0.3
Low-density residential 0.30 Impervious 1 3
(rural) ' Pervious 0.15
Medium-density Impervious 1.5
residential 0.560 Pervious 0.3 2
Impervious 1
Open space 0.30 Pervious 035 3

Sources: (1) Budd and Meals 1994; (2) Shaver et al. 2007; (3) Mattson and Isaac 1999
Notes:
* Agriculture includes row crops, actively managed hay fields and pasture land.

** Institutional type land uses such as government properties, hospitals, and schools are included in the
commercial land use category for the purpose of calculating phosphorus loadings.

2. Planned Updates to Long-Term Pollutant Runoff Time Series

EPA Region 1 continues to compile and assess representative stormwater pollutant loading
information. Consequently, it is desirable to update long-term pollutant loading time series
to incorporate the most recent knowledge into the stormwater management decision-
making processes across the region. Consideration of factors such as rainfall concentrations
of certain pollutants (e.g. TP and TN) and further assessments of stormwater runoff quality
from impervious and pervious surface separately are areas where refinements to the time
series can be made. Additionally, it is desirable to expand the previous time series duration,
01/01/1992 to 12/31/2002, to include current climate data for decision-makers who are
interested in knowing the climate impacts from a more recent time frame.

Long-term pollutant runoff time series are updated in recognition of the practical needs.
The updates modify pollutant loading rates in reflection of more recent loading rate
estimations and expand the duration of loading rates to a more recent ending time (e.g.
12/31/2014).



Tables 3 to 6 below present the updated annual average pollutant loading rates for TP, TN,
TSS, and Zn, respectively, and the sources for the updated loading rates are also included.
As shown in the tables, updated loading rates are provided for eight land uses, each with
both a pervious and impervious loading rate. For each of the land use and pollutant
combination, new time series are generated for the time period of 01/01/1992 to
12/31/2014.

Table 3. Proposed annual average TP loading rates (rainfall concentration of TP
considered).

Phosphorus Source
Category by Land Use

Land Surface Cover

Phosphorus
Load Export
Rate, Kg/halyr

Comments

Commercial
(Com) Industrial (Ind) &
Institutional

Directly connected
impervious

Pervious

See* DevPERV

Derived using a combination of the Lower
Charles USGS Loads study and NSWQ
dataset. This PLER is approximately 75%
of the HDR PLER and reflects the
difference in the distributions of SW TP
EMCs between Commercial/Industrial
and Residential.

Multi-Family (MFR) and
High-Density Residential
(HDR)

Directly connected
impervious

2.6

Pervious

See* DevPERV

Largely based on loading information
from Charles USGS loads, SWMM HRU
modeling, and NSWQ data set

Medium -Density
Residential (MDR)

Directly connected
impervious

2.2

Pervious

See* DevPERV

Largely based on loading information
from Charles USGS loads, SWMM HRU
modeling, and NSWQ data set

Low Density Residential
(LDR) - "Rural"

Directly connected
impervious

1.7

Pervious

See* DevPERV

Derived in part from Mattson & Issac,
HRU modeling, lawn runoff TP quality
information from Chesapeake Bay and
subsequent modeling to estimate PLER
for DCIA (Table 14) to approximate
literature reported composite rate 0.3
ka/halyr.

Highway (HWY)

Directly connected
impervious

1.5

Pervious

See* DevPERV

Largely based on USGS highway runoff
data, HRU modeling, information from
Shaver et al and subsequent modeling to
estimate PLER for DCIA for literature
reported composite rate 0.9 kg/ha/yr.

Directly connected

impervious 1.7 Derived from Matjcson & Is_sac and
subsequent modeling to estimate PLER
Forest (For) for DCIA that corresponds with the
Pervious 0.13 literature reported composite rate of 0.13
kg/halyr (Table 14)
Open Land (Open) Directly connected 17 Derived in part from Mattson & Issac,

impervious

HRU modeling, lawn runoff TP quality




Phosphorus Source
Category by Land Use

Land Surface Cover

Phosphorus
Load Export
Rate, Kg/halyr

Pervious

See* DevPERV

Comments

information from Chesapeake Bay and
subsequent modeling to estimate PLER
for DCIA (Table 14) to approximate
literature reported composite rate 0.3
kg/halyr.

Directly connected

impervious 17 Derived from Budd, L.F. and D.W. Meals

Agriculture (Ag) and subsequent modeling to estimate
. PLER for DCIA to approximate reported

Pervious 0.5 composite PLER of 0.5 kg/ha/yr.
*Developed Land Pervious
(DevPERV)- Hydrologic Pervious 0.03
Soil Group A
*Developed Land Pervious . Derived from SWMM and P8 - Curve
(DevPERV)- Hydrologic Pervious 0.13 Number continuous simulation HRU
Soil Group B modeling with assumed TP concentration
*Developed Land Pervious of 0.2 mg/L for pervious runoff from
(DevPERYV) - Hydrologic Pervious 0.24 developed lands. TP of 0.2 mg/L is based
Soil Group C on TB-9 (CSN, 2011), and other PLER
*Developed Land Pervious Iitera_tqre and assumes unfertilized
(DevPERV) - Hydrologic Pervious 0.33 condition due to the upcoming MA
Soil Group C/D phosphorus fertilizer control legislation.
*Developed Land Pervious
(DevPERYV) - Hydrologic Pervious 0.41

Soil Group D

Table 4. Proposed annual average TN loading rates (rainfall concentration of TN

considered).

Nitrogen Source Category

Land Surface Cover

Runoff Nitrogen
Load Export

Comments

oy Lanal g Rate, Kg/halyr
Commercial i[r)Tl]reecrt\I/)i/O(l:Jc;nnected 16.9 WISE modeling by Geosyntec for the
. P Squamscot River IMP, 2014. Average of
(Com) Industrial (Ind) & f ft 4 other i .
Institutional NLER for rooftops an ot er impervious
Pervious See* DevPERV | surfaces for commercial and industrial

Directly connected

. . : ) 15.8 WISE modeling by Geosyntec for the
Multi-Family (MFR) and IMpervious Squamscot River IMP, 2014. Average of
High-Density Residential f . d other i .
(HDR) NLERs for rooftops an other impervious

Pervious See* DevPERV | surfaces for residential
Medium -Density Directly connected 15.8 WISE modeling by Geosyntec for the

Residential (MDR)

impervious

Squamscot River IMP, 2014. Average of




Nitrogen Source Category
by Land Use

Land Surface Cover

Runoff Nitrogen
Load Export
Rate, Kg/halyr

Pervious

See* DevPERV

Comments

NLERs for rooftops and other impervious
surfaces for residential

Low Density Residential
(LDR) - "Rural"

Directly connected
impervious

15.8

Pervious

See* DevPERV

WISE modeling by Geosyntec for the
Squamscot River IMP, 2014. Average of
NLERs for rooftops and other impervious
surfaces for residential

Highway (HWY)

Directly connected
impervious

114

Pervious

See* DevPERV

WISE modeling by Geosyntec for the
Squamscot River IMP, 2014. Average of
NLERs for roadways and freeway
impervious surfaces

Directly connected

WISE modeling by Geosyntec for the

. ! 12.7 Squamscot River IMP, 2014. NLER for
impervious
roadways
Derived from SWMM and P8 - Curve
Forest (For) Number continuous simulation HRU
Pervious 06 modeling with assumed TN concentration
' of 0.8 mg/L for pervious runoff from
forest lands. Median TN conc. of 0.8
mg/l by (Budd and Meals, 1994)
Directly connected 127 WISE modeling by Geosyntec for the
Open Land (Open) impervious ' Squamscot River IMP, 2014. NLER for
Pervious See* DevPERV | roadways

Directly connected

WISE modeling by Geosyntec for the

. ! 12.7 Squamscot River IMP, 2014. NLER for
impervious
roadways
. Derived from SWMM and P8 - Curve
Agriculture (Ag) Number continuous simulation HRU
Pervious 29 modeling with assumed TN concentration
' of 2.5 mg/L for pervious runoff from
agriculture lands. Median TN conc. of
2.5 mg/l by (Budd and Meals, 1994)
*Developed Land Pervious
(DevPERV)- Hydrologic Pervious 0.3
Soil Group A .
- Derived from SWMM and P8 - Curve
*Developed Land Pervious _ Number continuous simulation HRU
(DevPERV)- Hydrologic Pervious 1.3 modeling with assumed TN concentration
Soil Group B of 2.0 mg/L for pervious runoff from
*Developed Land Pervious developed lands. TN of 2.0 mg/L is based
(DevPERV) - Hydrologic | Pervious 2.7 on TB-9 (CSN, 2011), and other PLER
Soil Group C literature and assumes 50% of unfertilized
- and 50% fertilized conditions.
*Developed Land Pervious
(DevPERYV) - Hydrologic Pervious 3.4

Soil Group C/D




Nitrogen Source Category

Runoff Nitrogen

by Land Use Land Surface Cover Load Export Comments
y Rate, Kg/halyr
*Developed Land Pervious
(DevPERYV) - Hydrologic Pervious 4.1
Soil Group D
Table 5. Proposed annual average TSS loading rates.
Runoff TSS
IS SOLIJ_raCrE: dCSz;gory 57 Land Surface Cover Load Export Comments
Rate, Kg/halyr
impervious 423 Number continuous simulation HRU
modeling with assumed TSS
Commercial concentration of 43 mg/L for impervious
(Com) Industrial (Ind) & runoff from commercial and Industrial
Institutional Pervious See* DevPERV lands. EMC of 43 mg/L is the median

EMC for commercial and industrial from
the NSQD, 2008 for Rainfall regions 1
and 2

Multi-Family (MFR) and
High-Density Residential
(HDR)

Directly connected
impervious

492

Pervious

See* DevPERV

Medium -Density

Directly connected

492

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed TSS
concentration of 50 mg/L for impervious
runoff from residential lands. EMC of 50

Residential (MDR) |mpe_rv|ous mg/L is the median EMC for residential
Pervious See* DevPERV | from the NSQD, 2008 for Rainfall regions
Directly connected land 2

Low Density Residential imperv%/ous 492

(LDR) - "Rural" -
Pervious See* DevPERV
Directly connected 1659 Derived for MassDOT by VHB "Long-
Impervious Term Continuous Simulation for Pollutant

. Loading and Treatment for MassDOT

Highway (HWY) . Impaired Waters Program" (June 2012)

Pervious See* DevPERV

using highway runoff data collected by
the USGS for MassDOT

Directly connected

impervious

. ? 728
Forest (For) IMpervious

Pervious See* DevPERV

_Directly connected 798
Open Land (Open) IMPervious

Pervious See* DevPERV
Agriculture (Ag) Directly connected 798

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed TSS
concentration of 74 mg/L for impervious
runoff from forest lands. EMC of 74
mg/L is the median EMC for open land
from the NSQD, 2008 for Rainfall regions
land 2




TSS Source Category by
Land Use

Land Surface Cover

Runoff TSS
Load Export
Rate, Kg/halyr

Comments

Zinc Source Category by

Land Surface Cover

Load Export

Pervious See* DevPERV
*Developed Land Pervious
(DevPERV)- Hydrologic Pervious 8
Soil Group A
*Developed Land Pervious
(DevPERV)- Hydrologic Pervious 33 Derived from SWMM and P8 - Curve
Soil Group B Number continuous simulation HRU
*Developed Land Pervious modeling \.Nith assumed TSS :
(DevPERV) - Hydrologic Pervious 67 concentration of 50 mg/L for pervious
Soil Group C runoff from (_:ieveloped .Iands. TSSEMC
of 50 mg/L is the median EMC for
*Developed Land Pervious residential from the NSQD, 2008 for
(DevPERYV) - Hydrologic Pervious 85 Rainfall regions 1 and 2
Soil Group C/D
*Developed Land Pervious
(DevPERYV) - Hydrologic Pervious 102
Soil Group D
Table 6. Proposed annual average Zn loading rates.
Runoff Zinc

Comments

L) Lee Rate, Kg/halyr
Directly connected 154 Derived from SWMM and P8 - Curve
impervious ' Number continuous simulation HRU
modeling with assumed Total Zinc
Commercial concentration of 156 pg/L for impervious
(Com) Industrial (Ind) & runoff from commercial and Industrial
Institutional lands. Zn of 156 pg/L is based on the
Pervious See* DevPERV median EMCs for commercial and

industrial categories from the NSQD,
2008 for Rainfall regions 1 and 2

Multi-Family (MFR) and
High-Density Residential
(HDR)

Directly connected
impervious

0.79

Pervious

See* DevPERV

Medium -Density
Residential (MDR)

Directly connected
impervious

0.79

Pervious

See* DevPERV

Low Density Residential
(LDR) - "Rural"

Directly connected
impervious

0.79

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed Total Zinc
concentration of 80 ug/L for impervious
runoff from residential lands. Zn of 80
Mg/L is based on the median EMC for
residential from the NSQD, 2008 for
Rainfall regions 1 and 2




Zinc Source Category by
Land Use

Land Surface Cover

Runoff Zinc
Load Export
Rate, Kg/halyr

Pervious

See* DevPERV

Comments

Highway (HWY)

Directly connected
impervious

1.97

Pervious

See* DevPERV

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed Total Zinc
concentration of 200 pg/L for impervious
runoff from highways. Zn of 200 pg/L is
based on Table 3-10 from Fundamentals
of Urban Runoff, 2007.

Forest (For)

Directly connected
impervious

0.79

Pervious

0.05

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed Total Zinc
concentration of 80 pg/L for impervious
runoff from residential lands. Zn of 80
Mg/L is based on the the median EMC for
residential from the NSQD, 2008 for
Rainfall regions 1 and 2

Open Land (Open)

Directly connected
impervious

111

Pervious

See* DevPERV

Derived from SWMM and P8 - Curve
Number continuous simulation HRU
modeling with assumed Total Zinc
concentration of 113 pg/L for impervious
runoff from open lands. Zn of 113 pg/L
is based on the on the the median for open
land for the NSQD, 2008 for Rainfall
regions 1 and 2

Directly connected

. ! 0.79

impervious
Agriculture (Ag)

Pervious See* DevPERV
*Developed Land Pervious
(DevPERV)- Hydrologic Pervious 0.006
Soil Group A
*Developed Land Pervious
gDoﬁVgrEoF;V)é Hydrologic Pervious 0.025 Derived from SWMM and P8 - Curve

P Number continuous simulation HRU
*Developed Land Pervious modeling with assumed Total Zinc
(DevPERYV) - Hydrologic Pervious 0.052 concentration of 39 pg/L for pervious
Soil Group C runoff from developed lands. Zn of 39
- /L is based on Table 3-10 from

*Developed Land Pervious HY
(DevPERV) - Hydrologic Pervious 0.066 Fundamentals of Urban Runoff, 2007.
Soil Group C/D
*Developed Land Pervious
(DevPERYV) - Hydrologic Pervious 0.08

Soil Group D




3. Strategy for Pollutant Time Series Update

Similar to the pollutant time series creation in previous BMP performance curve
development (Tetra Tech, 2008) and the three Upper Charles River communities study
(Tetra Tech, 2009), the update of pollutant time series consists of setting up the SWMM
model for unit-area land uses, calibrating the SWMM buildup and washoff parameters to
match the pollutant loading rates specified in Tables 3 to 6, and processing the SWMM
outputs for SUSTAIN input. There are two additional steps in SWMM model calibration
in comparison to the two previous calibration exercises for TP and TN: inclusion of rainfall
concentrations of TN and TP, and using the calibrated buildup and washoff parameters for
impervious surfaces against the TP and TN EMCs from the Region’s representative SW
database. A separate study was performed under Task 9 to calibrate the SWMM buildup
and washoff parameters for a generic impervious cover. The detailed methodology and the
outcome of that study is reported in a technical memo 9.1 “Memo_Buildup Washoff
Calibration Approach” and technical memo 9.2 “Memo_Buildup Washoff Calibration
Results”. A scaling factor (calibration parameter) was introduced to the maximum buildup
possible under different impervious land use categories to further calibrate the annual
average loading rates for TN and TP long-term timeseries developed under this task.

Rainfall concentrations of TN and TP are specified as constant values in SWMM model
setup. According to the Region, the TN rainfall concentration is set as 0.31 mg/L, and the
TP rainfall concentration is set as 0.017 mg/L.

4. Results

The time series for TN, TP, Zn, and TSS have been calibrated against the target values
specified in Tables 3 to 6. The buildup and washoff parameters for TP and TN were
selected from the calibrated parameters identified under Task 9 effort. The maximum
storage capacity was adjusted iteratively until the long-term average annual loading rate
matched the targeted values. Table 7 to Table 10 show the calibrated buildup and washoff
parameters used in SWMM model for developing the long-term timeseries for eight land
use categories.

Table 7. Calibrated Buildup and Washoff Parameters for TN.

Buildup Parameters Washoff Parameters
Max Buildup
Storage Rate (per Washoff Washoff

Land Use Type (Ib/acre) day) Coeff. Exponent
ﬁ(;?i]trl?t?(r)ﬂ:: ((I(rl](s))m) Industrial (Ind) & 0517 0.2 ) 1
geiligei?irglll(yH(gﬂRF)R) and High-Density 0.476 0.2 ) 1
Medium -Density Residential (MDR) 0.476 0.2 2 1
Low Density Residential (LDR) - "Rural" 0.476 0.2 2 1
Highway (HWY) 0.310 0.2 2 1
Forest (For) 0.359 0.2 2 1
Open Land (Open) 0.359 0.2 2 1
Agriculture (Ag) 0.359 0.2 2 1
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Buildup Parameters

Washoff Parameters

Hydrologic Soil Group D

Max Buildup

Storage Rate (per Washoff Washoff
Land Use Type (Ib/acre) day) Coeff. Exponent
Forest (ForPERV) Pervious 0.698 0.1 1 2
Agriculture (AgPERV) Pervious 4.383 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group A 1.630 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group B 1.765 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C 1.753 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C/D 1.714 0.1 1 2
Developed Land Pervious (DevPERYV) - 1564 01 1 )

Table 8. Calibrated Buildup and Washoff Parameters for TP.

Buildup Parameters

Washoff Parameters

Hydrologic Soil Group D

Max Buildup

Storage Rate (per Washoff Washoff
Land Use Type (Ib/acre) day) Coeff. Exponent
Commercial (Com), Industrial (Ind) &
Institutional (Ins) 0.069 0.2 2 1
Multi-Family (MFR) and High-Density
Residential (HDR) 0.093 0.2 2 !
Medium -Density Residential (MDR) 0.075 0.2 2 1
Low Density Residential (LDR) - "Rural" 0.056 0.2 2 1
Highway (HWY) 0.052 0.2 2 1
Forest (For) 0.056 0.2 2 1
Open Land (Open) 0.056 0.2 2 1
Agriculture (Ag) 0.056 0.2 2 1
Forest (ForPERV) Pervious 0.194 0.1 1 2
Agriculture (AgPERV) Pervious 0.798 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group A 0.174 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group B 0.194 0.1 1 2
Developed Land Pervious (DevPERYV) -
Hydrologic Soil Group C 0.170 0.1 1 2
Developed Land Pervious (DevPERYV) -
Hydrologic Soil Group C/D 0.185 0.1 1 2
Developed Land Pervious (DevPERV) - 0.175 01 1 )
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Table 9. Calibrated Buildup and Washoff Parameters for Zn.

Buildup Parameters

Washoff Parameters

Hydrologic Soil Group D

Max Buildup

Storage Rate (per Washoff Washoff
Land Use Type (Ib/acre) day) Coeff. Exponent
Commercial (Com), Industrial (Ind) &
Institutional (Ins) 0.253 0.3 1 2
Multi-Family (MFR) and High-Density
Residential (HDR) 0.130 03 1 2
Medium -Density Residential (MDR) 0.130 0.3 1 2
Low Density Residential (LDR) - "Rural" 0.130 0.3 1 2
Highway (HWY) 0.323 0.3 1 2
Forest (For) 0.134 0.2 1 2
Open Land (Open) 0.187 0.2 1 2
Agriculture (Ag) 0.134 0.2 1 2
Forest (ForPERV) Pervious 0.083 0.1 1 2
Agriculture (AgPERV) Pervious 0.041 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group A 0.038 0.1 1 2
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group B 0.041 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C 0.042 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C/D 0.042 0.1 1 2
Developed Land Pervious (DevPERYV) - 0.038 01 1 )

Table 10. Calibrated Buildup and Washoff Parameters for TSS.

Buildup Parameters

Washoff Parameters

Hydrologic Soil Group A

Max Buildup

Storage Rate (per Washoff Washoff
Land Use Type (Ib/acre) day) Coeff. Exponent
ﬁzwtﬂ?{)ﬂ:ll ((I(?]:)m) Industrial (Ind) & 69.159 03 1 )
E/Ieuslitéei?irglllg/H([l;/lRF)R) and High-Density 30.440 03 1 2
Medium -Density Residential (MDR) 80.440 0.3 1 2
Low Density Residential (LDR) - "Rural” 80.440 0.3 1 2
Highway (HWY) 271.238 0.3 1 2
Forest (For) 122.362 0.2 1 2
Open Land (Open) 122.362 0.2 1 2
Agriculture (Ag) 122.362 0.2 1 2
Forest (ForPERV) Pervious 54.009 0.1 1 2
Agriculture (AgPERV) Pervious 54.009 0.1 1 2
Developed Land Pervious (DevPERV)- 49.490 01 1 2
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Buildup Parameters Washoff Parameters
Max Buildup
Storage Rate (per Washoff Washoff

Land Use Type (Ib/acre) day) Coeff. Exponent
Developed Land Pervious (DevPERV)-
Hydrologic Soil Group B >4.009 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C >3.309 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group C/D >3.065 0.1 1 2
Developed Land Pervious (DevPERV) -
Hydrologic Soil Group D 49.738 0.1 1 2

Figures 1 to Figure 4 show the box and whisker plots for the calibrated annual pollutant
loading time series for both impervious and pervious land use categories. Figure 1 shows
that the targeted TN loading rates (annual average value) for impervious areas are slightly
lower than the median values and for pervious areas they are close to the median values.
The targeted loading rates for TP, Zn, and TSS are aligned with the median values.

= Annual Average Value
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Figure 1. Box and whisker plot for calibrated TN loading time series for the period of
01/01/1992 to 12/31/2014.
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Figure 2. Box and Whisker plot for calibrated TP loading time series for the period of
01/01/1992 to 12/31/2014.
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Figure 3. Box and Whisker plot for calibrated Zn loading time series for the period of
01/01/1992 to 12/31/2014.

14



= Annual Average Value

2,500.0
2,000.0
1,500.0 H
=
% 1,000.0
T,
£ L
Y
[F)]
'—
500.0 % # % %
0.0 = = L & &= = T
© 5 & & 5 5 5 5 S 5 S @ C Q Q
A\o\ .Q\O\)‘ '\0\) J;\o\ "Q\OQ Q\OQ 1&\\) A\O\) ) '\0\) . O\)GD -CSS . O\)C} (_..("\ N
N N S R S ST SRR M N & F&°
Ny R & R K L L R Q @ & & N
R \((\ \Q \<’\\ R \\(\ \(r"\ \(\ o ?_b Q QQ Q QQ’ QQ
F & &S & & P F L L &£
N SRS ¢ S & & LS
& & < & & & X @
AN S &L
Loxi\ AN

Figure 4. Box and Whisker plot for calibrated TSS loading time series for the period of
01/01/1992 to 12/31/2014.

In order to compare the observed and simulated EMC statistics (25 percentile, median,
75" percentile, average), the simulated time series results were summarized on daily
basis (average daily concentration) and on event basis (6 hour inter event duration).
Figure 5 to Figure 12 show the box and whisker plots for those comparisons. It seems
daily- and event- based statistics are very similar compared to each other and show a
similar distribution. The simulated average values for TN and TP are very close to the
median values showing a good distribution; whereas, the observed average values for TN
and TP are much higher than the observed median values. The simulated average values
for Zn and TSS are slightly higher than the simulated median values; whereas, the
observed average values for Zn and TSS are closer to the 75™ percentile observed values.

In order to estimate what percentile value of the simulated pollutant concentration would
generate the targeted annual average loading rate using the long-term annual average
flow volume, the simulated event-based average concentration values were ranked and
EMC percentile values were multiplied with the annual average flow volume to generate
a polluting loading curve. The pollutant loading curves for TN, TP, Zn, and TSS were
generated for each impervious land use category and are shown in Figures 13 to 36. The
trend in the simulated time series shows that 27" percentile EMC values for TN and TP
and 80" percentile EMC values for Zn and TSS can be used as representative EMC
values to generate the annual average loading rate from the corresponding impervious
land use category.
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Figure 5. Comparison of calibrated daily TN concentration time series against the
monitored EMC values.
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Figure 6. Comparison of calibrated timeseries EMC (minimum 6 hour inter event
duration) against the monitored EMC values for TN.
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Figure 7. Comparison of calibrated daily TP concentration time series against the
monitored EMC values.
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Figure 8. Comparison of calibrated timeseries EMC (minimum 6 hour inter event
duration) against the monitored EMC values for TP.
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Figure 9. Comparison of calibrated daily Zn concentration time series against the
monitored EMC values.
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Figure 10. Comparison of calibrated timeseries EMC (minimum 6 hour inter event
duration) against the monitored EMC values for Zn.
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Figure 11. Comparison of calibrated daily TSS concentration time series against the
monitored EMC values.
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duration) against the monitored EMC values for TSS.
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Figure 13. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for COM/IND/INS impervious cover.
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Figure 14. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for COM/IND/INS impervious cover.
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Figure 15. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for COM/IND/INS impervious cover.
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Figure 16. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for COM/IND/INS impervious cover.
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Figure 17. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for MFR/HDR impervious cover.
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Figure 18. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for MFR/HDR impervious cover.
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Figure 19. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for MFR/HDR impervious cover.
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Figure 20. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for MFR/HDR impervious cover.
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Figure 21. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for MDR impervious cover.
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Figure 22. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for MDR impervious cover.
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Figure 23. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for MDR impervious cover.
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Figure 24. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for MDR impervious cover.
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Figure 25. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for LDR impervious cover.
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Figure 26. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for LDR impervious cover.
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Figure 27. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for LDR impervious cover.
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Figure 28. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for LDR impervious cover.

27



Highway

Annual Average Flow x EMC —Annual Average Export Rate
30
25
— 20
>
2
"-é-. 15
=z
= 10
5 /
0
0 10 20 30 40 50 60 70 80 90 100

EMC Percentile

Figure 29. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for HWY impervious cover.
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Figure 30. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for HWY impervious cover.
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Figure 31. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for HWY impervious cover.
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Figure 32. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for HWY impervious cover.
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Figure 33. Comparison of calibrated TN timeseries EMC based annual average load
against the targeted annual average export rate for OPEN impervious cover.
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Figure 34. Comparison of calibrated TP timeseries EMC based annual average load
against the targeted annual average export rate for OPEN impervious cover.
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Figure 35. Comparison of calibrated Zn timeseries EMC based annual average load
against the targeted annual average export rate for OPEN impervious cover.
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Figure 36. Comparison of calibrated TSS timeseries EMC based annual average load
against the targeted annual average export rate for OPEN impervious cover.
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MEMORANDUM

DATE: February 20, 2016

TO: Opti-Tool TAC

FROM: Karen Mateleska, EPA Region- |

SUBJECT: Methodology for developing cost estimates for Opti-Tool

Introduction

EPA — Region | offered to provide TetraTech with BMP cost information for the New England Stormwater
Management Optimization Tool (Opti-Tool). The goal was to include the latest available information
that would accurately reflect capital costs for select BMPs installed in the New England region. This
document describes the approach used to determine these values.

The unit cost estimates originally developed as part of a 2010 study were used as the basis/starting-
point for the cost estimates for the Opti-Tool. This study, entitled Stormwater Management Plan for
Spruce Pond Brook Subwatershed, was produced by the Charles River Watershed Association (CRWA).
The full report can be viewed at: http://www.crwa.org/hs-fs/hub/311892/file-636820515-

pdf/Our Work /Blue Cities Initiative/Scientific and Technical/CRWA Franklin Plan.pdf. This
subwatershed in the Town of Franklin (in eastern Massachusetts) was selected, in part, because it
represented one of the many communities in the watershed that would be required to reduce nutrient
(phosphorus) loads in stormwater runoff as part of EPA’s Phase || MS4 General Stormwater Permit and a
TMDL for Nutrients in the Upper/Middle Charles River. The cost estimates developed in the study can
predominantly be attributed to CRWA and both Rich Claytor and Nigel Pickering of Horsley Witten
Group (CRWA et al. 2010). The development of these costs was based on a literature review of BMP
cost information and Claytor’s extensive experience working in this field with Massachusetts
communities. These values were originally reported in Appendix B of the aforementioned CRWA
document. Those cost estimates have also been used in additional stormwater studies supported by
EPA — Region |, including the Sustainable Stormwater Funding Evaluation for the Upper Charles River
Communities of Bellingham, Franklin, and Milford, MA (2011). (That report can be viewed at:
http://www.epa.gov/regionl/npdes/charlesriver/pdfs/20110930-SWUtilityReport.pdf)

Before simply relying on the CRWA cost estimates, additional research was conducted of publicly
available (online) resources to determine if more recent BMP cost information for the New England
region was available. These resources included:

e EPA’s LID webpage: http://water.epa.gov/polwaste/green/

e EPA’s 2013 Article: Case Studies Analyzing the Economic Benefits of Low Impact Development
and Green Infrastructure Programs: http.//water.epa.qov/polwaste/qreen/upload/lid-qgi-
programs_report 8-6-13 combined.pdf
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e New England Environmental Finance Center: http://efc.muskie.usm.maine.edu/

e UNC Environmental Finance Center’s Catalog of Finance Publications on Green Infrastructure
Approaches to Stormwater Management (This spreadsheet provides a catalog of 46 publications
related on green infrastructure for stormwater management that have finance relevance;
Several of the sources from the catalog were reviewed for this document) :
http://www.efc.sog.unc.edu/reslib/item/catalog-green-infrastructure-and-stormwater-finance-
publications

e Houle, et al. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID
and Conventional Stormwater Management:
http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/Houle JEE July-2013.pdf

e University of New Hampshire Stormwater Center’s Forging the Link: Linking the Economic
Benefits of LID and Community Decisions: http://www.unh.edu/unhsc/forging-link-topics

e Center for Neighborhood Technology’s Green Values Stormwater Tool Box:
http://qgreenvalues.cnt.org/ which included the Green Values Calculator:
http://greenvalues.cnt.org/national/calculator.php

e Water Environment Research Foundation (WERF): User’s Guide to the BMP and LID Whole Life
Cost Models, Version 2.0: www.werf.org/bmpcost

e Low Impact Development Center: http://www.lowimpactdevelopment.org/

e ECONorthwest’s The Economics of Low-Impact Development: A Literature Review:
http://www.econw.com/our-work/publications/the-economics-of-low-impact-development-a-
literature-review/

e Drexel University’s Low Impact Development Rapid Assessment (LIDRA Model)
http://www.lidratool.org/home/publications.aspx

A review of these resources did highlight the multitude of variables that can impact the cost of installing
LID BMPs and the variety of cost analysis methods that can be used when assessing the cost
effectiveness of various LID storm water controls. For example, many of the resources emphasized that
costs tend to be site specific. Costs often differ significantly among different geographical locations,
depending upon labor and material expenses and the constraints of a particular site. Unfortunately,
most of the aforementioned resources highlighted projects outside of the New England region (with the
exception of the articles by Houle of the UNHSC and New England Environmental Finance Center.)

EPA’s recent (2013) report entitled Case Studies Analyzing the Economic Benefits of Low Impact
Development and Green Infrastructure Programs listed the 7 different types of economic analyses that
were represented by the 13 case studies highlighted in the report. These ranged from the simplest form
of economic analysis (i.e., the capital cost assessment) to more robust forms, including the life cycle cost
assessment. Whole life-cycle costs would provide a more accurate estimate of the cost of installing,
operating, maintaining, and replacing a project (i.e., BMP) throughout its expected lifetime. However
this type of analysis requires solid estimates for capital, land purchase, O&M, and other related costs.

Ideally, the goal was to include a more advanced economic analysis (i.e. — life cycle costs) in the Opti-
Tool while still maintaining some level of simplicity for the end user. However, such a robust economic
analysis does not currently appear possible because the literary search for more recent BMP cost
estimates, reflective of New England states, was largely unsuccessful. However, the search was not
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entirely fruitless. Jamie Houle of the UNHSC did provide extremely valuable information on capital and
maintenance costs for various BMPs that have been tested at the UNHSC. Cost estimates for a
particular BMP available from both the CRWA study and UNHSC were discussed among Mark Voorhees
of EPA, Jamie Houle of UNHSC, and Karen Mateleska of EPA, and a best professional judgment decision
was made.

The recommendation at this time is to use a combination of the CRWA cost estimates and UNHSC costs
estimates as the basis for the Opti-Tool BMP cost estimates, and to use a modified capital cost
assessment (which includes a fixed percentage for Design and Contingency Costs) as well as a separate
field for maintenance hours (from the UNHSC). The details supporting this approach are described
below.

Overview of Scope and Approach

According to a draft memo, dated 6/20/14 from Tetra Tech to EPA Region I, the current SUSTAIN BMP
Cost function has seven major individual components, using a formula that would likely be useful in a
more detailed design mode. For purposes of simplicity, EPA Region | is proposing the following cost
function formula for the tool’s “planning” mode:

General Cost Function Formula = Storage Volume of BMP* (ft®) X Cost Estimate for BMP (S/ft3)

X Adjustment Factor

* Storage Volume of BMP is more accurately defined as (Design) Physical Storage Capacity of BMP; See Section A
below for more details

Initially, the intention was to include the preliminary Operations and Maintenance (O&M) costs in the
general formula (page 3) by simply multiplying the formula results by our Preliminary O & M costs.
However, such an approach would only include one year’s worth of operations and maintenance, which
could have been misleading because it would not have reflected the true life cycle cost of the BMP (i.e.,
assume life cycle of 20 years). However, simply including the 20 year life cycle cost (O&M cost *20) in
the above formula would have greatly increased the cost value and perhaps have created
misconceptions about BMP use and affordability.

Therefore, the subcommittee decided to include the anticipated operation and maintenance hours
required for each BMP per year instead. This parameter was included as a completely separate field in
the Opti-Tool. The rationale was that Opti-Tool users need to understand that operation and
maintenance impact the overall cost-effectiveness of BMPs and should be considered when selecting a
BMP. Including O&M hours (instead of costs) as a separate field, would still highlight this important
consideration for stormwater managers.




A. Storage Volume and Proposed Cost Estimate Values

As highlighted above, the general cost function formula used in the Opti-Tool consists of 3 factors: the
BMP storage volume, the proposed BMP storage volume cost estimate, and the adjustment factor. The
first two factors will be covered together in this memo because they are so closely linked. Table 1
below summarizes the proposed BMP cost estimates for the Opti-Tool.

Table 1: Proposed BMP Cost Estimates for Opti-Tool

Cost ($/ft3) — 2016

BMP (From Opti-Tool) Cost ($/ft3) ! dollars®
Bioretention (Includes rain garden) 13.37 %4 15.46
Dry Pond or detention basin 5.88 24 6.80
Enhanced Bioretention (aka-Bio-filtration 13.523 15.61
Practice)
Infiltration Basin (or other Surface Infiltration
Practice) 5.423 6.24
Infiltration Trench 10.8 23 12.49
Porous Pavement - Porous Asphalt Pavement 4.60 >* 5.32
Porous Pavement - Pervious Concrete 15.63 #* 18.07
Sand Filter 15.51 24 17.94
Gravel Wetland System (aka-subsurface gravel 7.59 24 8.78
wetland)
Wet Pond or wet detention basin 5.88 %% 6.80
Subsurface Infiltration/Detention System (aka- 54.54° 67.85
Infiltration Chamber)

! Footnote: Includes 35% add on for design engineering and contingencies
2 Costs in 2010 dollars
3From CRWA Cost Estimates

4 From UNHSC Cost Estimates; Most of original costs were from 2004 and converted to 2010 dollars using U.S.
Department of Labor (USDOL). (2012). Bureau of Labor Statistics consumer price index inflation calculator.
http://www.bls.gov/data/inflation_calculator.htm

5 From Cost Estimate of MA TT Rizzo Project (2008 Dollars)

62010 costs were converted to 2016 values to adjust for inflation. The ENR Cost Index Method was used for this
conversion.

Table 1 includes all of the BMPs that are included in the Opti-Tool. The unit costs represent the dollar
amount (S) per cubic foot of storage volume (ft3), where the storage volume reflects the (design)
physical static storage capacity that the relevant BMP can hold. This volume includes the volume of
ponding water and the volume of water retained in the porous media or subbase materials if applicable.
(This storage volume does not represent the treated volume of stormwater, which may be significantly
higher than the physical storage volume of a BMP particularly for systems that are sized dynamically or


http://www.bls.gov/data/inflation_calculator.htm

by a water quality flow rate as opposed to a water quality volume.) This unit cost per storage volume
captured by a BMP differs from other (perhaps more traditional) methods that can be used. By choosing
to use the unit cost per storage volume instead of volume of water treated, we are trying to eliminate
confusion over what the actual dimensions of the BMP will be for the costs being

estimated. Additionally, this use of the unit cost per storage volume is consistent with the approach
used in developing the BMP performance curves (used in the Opti-Tool) where the x-axis is the actual
physical storage capacity to hold water. Lastly, expressing the unit costs in this manner will benefit
users who are simply interested in using the unit costs (outside of the Opti-Tool) by eliminating the step
of modeling hydrology and routing the water through the BMP, which can yield widely varying results
depending on modeling approach and supporting assumptions. Attachment A describes the method
used in calculating the design storage volume for each of the selected BMPs.

Also, each unit cost per storage value represents the capital cost of construction/installation of the BMP
and includes a 35% design/engineering/contingency (D & E) cost. This 35% fixed percentage of the total
construction cost follows a general “rule of thumb,” often used by consulting firms. Based upon a
conversation between Mark Voorhees and Jamie Houle (two members of the Opti-Tool cost
subcommittee), a decision was made to include this D&E cost. The values in Table 1 do not include the
cost of purchasing any land, nor does it include any O&M costs (which is discussed in more detail in a
subsequent section). Therefore, each unit cost in Table 1 that was based on the CRWA’s 2010 values
was calculated by multiplying the relevant BMP cost by 1.35.

Since the CRWA study did not include cost estimates for porous pavement or sand filters, which are
BMPs included in the Opti-Tool, relevant data was obtained from Jamie Houle of the University of New
Hampshire Stormwater Center (UNHSC). He also provided additional cost estimates (as denoted by
Footnote 4 in Table 1) for some of the other BMPs included in the tool. UNHSC can provide valuable
data because they have been directly involved with the engineering, design and construction of
numerous LID controls, as well as evaluating multiple stormwater treatment systems over multiple years
at their primary field research facility in Durham, N.H. Since they could provide cost information for
both porous asphalt pavement and pervious concrete, separately, the general category of porous
pavement was divided into the aforementioned two sub-categories.

It should be noted that the costs used for the Opti-tool assume linearity, which will both allow for and
incentivize the scaling to smaller-sized systems. For example, EPA has estimated that smaller capacity
designs for BMPs, rather than large-sized BMPs, can increase both the technical and economic feasibility
of installing controls, particularly for retrofits. The assumption of linearity was made for the following
reasons: 1) Limited data currently exists on the cost of small capacity systems. Until a larger pool of cost
data becomes available which will allow for the development of a non-linear cost curve, the current
method is the best available alternative; 2) As the installation of smaller systems becomes more wide-
spread, it is likely that economies of scale will develop and cost savings will occur. For example, if one
entity is contracted to install multiple small systems at once, materials can be bought in bulk and the
installation process can become more efficient and less expensive; 3) An undersized system built to treat
a large area can be a very cost effective approach. As an example, there should not be a significant cost
difference between a 1-inch system treating 1 acre and a 1/10-inch-system that treats 10 acres, since the
absolute capacity of the system is the same in both cases. This topic of linearity will be revisited in the
future when more data is available.



Since UNHSC typically calculates the capital costs per cubic foot (ft3) treated, using WQy, Jamie Houle
converted the costs to represent the capital costs per BMP storage volume (ft3). This was necessary so
the capital cost data would be consistent with the method used in the Opti-Tool. Also, all of the costs
were converted to 2010, and ultimately 2015, dollars. As with the CRWA costs, the UNHSC capital costs
were already adjusted to include the 35% design/engineering/contingency (D & E) cost. Details of all of
these calculations, and any other assumptions made, are presented in Attachment B.

When developing cost estimates, another topic for consideration was whether or not to address the
issue of inflation. CRWA’s BMP cost estimates were based on capital costs from 2010. As previously
stated, UNHSW's cost estimates have also already been converted to constant 2010 dollars using
consumer price index inflation rates [U.S. Department of Labor (USDOL) 2014].1 Therefore, there was
the option of converting all of these 2010 costs to 2016 costs, using the U.S. Department of Labor’s
consumer price index inflation calculator. However, another suggestion was made to use the ENR Cost
Index method to adjust for inflation instead because it more closely tracks construction work. At least
one New England state (i.e., Vermont) also uses the ENR Cost Index method, so this could provide some
consistency, as well. Therefore, the decision was made to ultimately convert all of the costs to 2016
values using the ENR Cost Index method. These values are reflected in Table 1.

To use the index, one calculates the quotient of the current index number (based on the month and year
of current date) divided by the index number from a given date (e.g., June of 2010). Since the month
was not known for the 2010 costs, the month of June was used as an estimate. This assumption was
used because it falls mid-way between the construction season and would likely provide a reasonable
estimate. Once the quotient was calculated, it was multiplied by the construction cost (found in the
middle column in Table 1, above) to provide the 2016 construction cost value

B. Cost Adjustment Factor

Since the cost of installing a BMP will vary depending on the specific site location, the TAC
subcommittee believed it was important for the Opti-Tool to include a scalable cost adjustment factor.
The proposed cost estimates for the Opti-Tool (in Table 1) are all based on a Cost Adjustment Factor of
1. However, each Opti-Tool user has the option to choose and enter into the tool a cost adjustment
factor that is appropriate for their site. This will adjust the storage volume cost function in the Opti-
Tool.

For example, the CRWA report included the cost factors summarized in Table 2.

1 Reference: U.S. Department of Labor (USDOL). (2014). Bureau of Labor Statistics consumer price index inflation
calculator.” (http://www.bls.gov/data/inflation_calculator.htm)(Sep. 12, 2014)
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Table 2: Example of Cost Adjustment Factors

**EXAMPLE**
Cost
Adjustment

BMP Type Factor
New BMP in undeveloped area 1
New BMP in partially developed area 1.5
New BMP in developed area 2
Difficult installation in highly urban settings 3

(Source: Table 4 of Appendix B of CRWA's Spruce Pond Brook Subwatershed Project for Town of Franklin)

The assumption made was that it would cost more to install a new BMP in a developed area (with more
site constraints) than it would cost to install the same BMP in a previously undeveloped area. So in the
above example, the cost adjustment factor would be 2 for installing a BMP in a previously developed
area versus a cost adjustment factor of 1 for installing a BMP in an undeveloped area.

It should be noted that Table 2 (above) provides just one example of adjustment factors. The factor
should be flexible enough so that another location (or Opti-Tool user) can adjust it, as needed. For
example, the Charles River Watershed (in eastern Massachusetts) used an adjustment factor of 2 for
installing a BMP in a developed area, while the State of Vermont uses an adjustment factor of 1.4 to
estimate the cost of installing a BMP for existing development.

C. Maintenance (O&M) Costs

Originally, one goal was to include Operation and Maintenance (O&M) costs as part of the cost
estimates for the Opti-Tool. These O&M costs would help to provide a more realistic reflection of the
long-term expenses of structural storm water controls, which is obviously critical in the practical, real-
world implementation of BMPs. However, it is difficult to obtain accurate maintenance costs and they
will be highly variable depending on the size, location and equipment needed to perform long-term
O&M.

This point was highlighted by a key finding in EPA’s recent (2013) publication, Case Studies Analyzing the
Economic Benefits of Low Impact Development and Green Infrastructure Programs. The report indicated
that only a small percentage of the entities that implement LID and Gl approach for stormwater
management conduct economic analyses due to the “uncertainties surrounding costs, operation and
maintenance (O&M) requirements, budgetary constraints, and difficulties associated with quantifying
the benefits provided by LID/GI” and the need “to obtain better estimates of the O&M costs associated
with different types of LID/GI projects” was a key finding of the report.

As previously mentioned, one article entitled, Comparison of Maintenance Cost, Labor Demands, and
System Performance for LID and Conventional Stormwater Management (Houle et al. 2013), did contain
relevant information for BMP costs in the New England region. During initial discussions between EPA
Region | (Mark Voorhees) and UNHSC (Jamie Houle), there was concern that not enough data existed on
O&M costs to propose accurate values for each of the BMPs included in the Opti-Tool. There was also



the concern that the O&M costs were not scaleable. For example, initial O&M costs for each BMP were
based on the cost of operation and maintenance per year per acre of IC treated. Scaled differences such
as the annual O&M costs for treating 0.5 acres of IC or 2 acres of IC have not been evaluated and may or
may not result in a simple linear relationship. Yet the Opti-Tool costs subcommittee also realized the
importance of including some maintenance parameter in order to initiate the conversation on the
importance of accounting for O&M to maintain the functionality of the BMPs. Therefore Table 3, below,
presents these annual maintenance costs (in $) for select BMPs, as well as the annual maintenance
hours. Although the O&M costs have been presented in this memo, only the O&M hours will be
included (as a separate field) in the Opti-Tool.

Table 3: Maintenance Costs ($) and Hours per year for select BMPs — From UNHSC

BMP Maintenance Cost ($) per year Annual Maintenance Hours

Bioretention $1,890.00 20.7

Chamber System Not Assessed Not Assessed
Detention Pond $2,380.00 24.0
Gravel Wetland $2,138.33 21.7
Porous Asphalt $1,080.00 6.0
Pervious Concrete $1,080.00 6.0
Retention Pond $3,060.00 28.0
Sand Filter $2,807.50 28.5

*Note: initial costs based on cost of maintenance per year per acre of IC treated

Annual maintenance strategies were evaluated by directly quantifying hours spent categorizing
maintenance activities, and assessing difficulty of those activities. To better illustrate costs and
anticipate maintenance burdens, activities were characterized into distinct categories and a standard
cost structure was applied. This unit conversion can easily be adapted according to local conditions,
current economic climate, and regional cost variations which is why we decided to go with maintenance
hours as those were directly measured and should remain constant. These maintenance activity
categories allow more accurate cost predictions and provide insight into the appropriate assignment of
maintenance responsibilities.

Annual maintenance costs were normalized to 2012 dollars and calculated for all SCMs by both dollars
and personnel hours per acre of IC treated per system per year. It is important to note that inflation was
not considered in life cycle maintenance cost projections.



MEMORANDUM (DRAFT) Date:  October 29, 2015

To: Mark Voorhees, EPA Region |
Tetra Tech, Inc.
10306 Eaton Place, Suite 340 From: Rui Zou, Khalid Alvi — Tetra Tech
Fairfax, VA 22030

Telephone (703) 385-6000 Subject:Buildup and Washoff Calibration Approach
Fax (703) 385-6007 and SW Nutrient EMC Data Analyses

A primary objective of Task 9 of WA 4-35 is to identify a methodology for calibrating
continuous simulation runoff quality models as part of the procedure for developing long-term
cumulative BMP performance estimates of nutrient load reductions.

This memo summarizes the literature review and SW nutrient EMC data analyses that will be
used to support the selected approach for generating nutrient (TN and TP) runoff quality time
series for impervious cover using the Storm Water Management Model (SWMM).

1. Literature Review

Urban storm runoff can result in significant water quality problems. In practice, Best
Management Practices (BMPs) have been used to control urban storm runoff and associated
water quality problems. To improve the efficiency of BMPs, a better understanding of the
processes behind urban runoff and pollutant generation is necessary. In the past decades,
multiple urban nonpoint source pollution models, such as HSPF (Johanson et al., 1980), and
SWMM (Huber and Dickinson, 1988), have been developed and applied effectively in modeling
urban storm water quantity and quality. In these urban nonpoint source pollution models, the
process that pollutants accumulate on the land surface and then are washed off by entering storm
water is generally represented by a combined buildup-and-washoff formulation.

In general, the buildup process is modeled as a first-order dynamic process using two
parameters: accumulation rate, and the maximum unit loading capacity. This formulation
(Overton and Meadows, 1976) was based on observed behavior of many pollutants, where the
pollutant loads on land surface increase since the last major storm until reaching a maximum
value due to wind or other factors preventing further increase in accumulation. This asymptotic
formulation is most commonly used in practical modeling analysis, although some investigators
also apply linear buildup models instead (Barbe et al., 1996). The widely used SWMM model
provides both asymptotic and linear options, though it is generally considered more realistic to
use the nonlinear buildup formulation for urban impervious surfaces. In the buildup model, the
total amount of contaminants is thus a function of the initial mass on the surface area and the
length of the antecedent storm dry period.

When a storm event occurs, the pollutant accumulated on the land surface may be carried away
by stormwater. This process is modeled as a washoff process with a first-order formulation that
results in exponential washoff function (Wang et al, 2011). A stormwater model such as SWMM
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which is formulated with buildup and washoff processes needs to be calibrated before it can be
used to support decision making. Traditionally, the standard calibration method is the trial-and-
error method, which involves manually changing the values of parameters until a reasonable
match between model results and observed data is achieved. This method, although widely used,
suffers a number of drawbacks. First, a trial-and-error calibration process is somewhat subjective
and overwhelmingly relies on the modeler’s experience and insights (Little and Williams, 1992).
Second, it is relatively slow and inefficient in terms of time and effort required. Third, it is not
capable of identifying parameter pattern uncertainty, often producing misleading model
projection results. Finally, when a storm water pollutant model is calibrated using many event
based data, manually calibrating the parameters for a specific site based on data from different
events would be cumbersome and difficult. Therefore, it is highly desirable to have a method that
can overcome these deficiencies.

The essence of the trial-and-error calibration process is to find a set of parameter values that can
reasonably reproduce the observed data. Obviously, the systematic counterpart of the calibration
process, or alternatively so-called inverse method, can be formulated as a nonlinear
optimization problem (NOP), of which the simulation errors regarding observed data are
minimized, subject to the constraints imposed by the physical mechanism underlying the model
or bounds of parameter values (Hopgood 2001; Zou and Lung, 2004). It initially appears to be a
straightforward task to identify a set of parameter that best reproduce the observe data, however,
due to the significant uncertainty which exists in the stormwater pollutant concentration data, as
well as the assumption of uniform impervious land surface properties/loading/precipitation, a
single set of parameters which reproduce the observed data with least error might not be the true
representative parameters. In contrast, equal-finality might dominate the solutions, suggesting
that multiple parameter patterns might be equally valid in reproducing the observed data when
uncertainty is considered.

In light of this situation, instead of finding a unique parameter set, this study proposes to apply
the Multiple Pattern Inverse Modeling approach (MPIM) (Zou and Lung, 2004; Zou et al,
2008) to calibrate the buildup and wash-off process, which will identify multiple distinct
parameter patterns that will reproduce the observed data. Each of these patterns would represent
a potentially possible system of mechanisms underlying the observed data. This approach
provides a way to explicitly address uncertainty in parameter pattern resulting from limited
availability and uncertainty in data, as well as other simplification assumptions.

The MPIM is different from the uncertainty based automatic calibration approach applied in
Avellaneda et al (2009). In Avellaneda et al (2009), the authors apply a Simulated Annealing
(SA) technology to solve an inverse storm water quality model to estimate the buildup and
washoff parameters. The inverse model is applied on an event basis, and the parameter estimated
for each event is dependent on the event characteristics. The multiple parameters derived from
each event are then put together to derive a probabilistic distribution serving as the basis for a
Monte Carlo uncertainty analysis. This approach suffers the following limitations; 1) estimating
parameters based on a single event is unreliable since the parameter values that perform well in
one single storm might not work for other storms, therefore, including such a parameter in
deriving the probabilistic distribution is equivalent to including incorrect data in the process; 2)
the Monte Carlo method suffers the limitation of generating a large number of unrealistic



combinations of parameters, therefore, the resulting distribution of results might not be
representative.

The advantage of MPIM is that it only involves conducting model projection based on identified
behavioral parameter combinations, therefore, each realization of the model prediction represents
a highly possible condition of the real system, providing more reliable quantification of the
model uncertainty. Since the inverse modeling in MPIM is conducted on all the available or
selected representative events, therefore, the identified parameters are more robust and realistic
than the parameters estimated based on a single event. A recent research on SWMM model
calibration applies an approach consistent with the MPIM framework (Bowden and Nipper,
2012), which uses Evolutionary Strategy (ES) to identify multiple plausible buildup-washoff
parameter values and retains them as likely simulators of the system.

In this study, a MPIM framework is proposed to investigate the calibration of impervious area
buildup-washoff dynamics in the New England area based on EMC data. In order to effectively
solve the inverse model for diversified solutions, a genetic algorithm (GA) is selected to solve
the NOP problem. The GA is a population-based stochastic search algorithm that is widely used
in the field of global optimization for solving complex nonlinear optimization models. The
capability of GA has been proven by thousands of applications, showing it can solve a NOP
model with diversified near optima.

2. Proposed Methodology

The subsequent text describes the proposed methodology for calibrating a buildup-washoff
model consistent with the SWMM paradigm.

2.1 Inverse Model Formulation

Suppose a SWMM model is used to simulate multiple events, and the model accuracy is
measured by the root mean square error (RMSE) in terms of event mean concentration (EMC).
Let £ denotes the RMSE of the model with regard to observed data, and EMC_O; represents the
observed EMC value for event i, and EMC_Mi; represents the corresponding model result. Hence
we have:

1)

E =
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To identify the proper parameter values that reproduce the observed data, the following
optimization model is formulated:

Min ¢ (2)

s.t. EMC_Mi= f(Xi1,Xi2,...Xik, P1,P2,...pm), Vi =1,2,..,n 3

Where f represents the simulation model relating EMC to storm characteristics and model
parameters; x represents the storm characteristics; p represents parameters in the buildup-



washoff model. If a SWMM model is used to simulate the storm events, then function f
represents the SWMM model specifically configured for the analysis.

Note that in Eq. (1), the objective function & consists of n storm events, which means that to
estimate the model parameters for a specific site, we need to configure n SWMM models each
simulating a single event. In the meantime, it must be assured that all of them use the same
parameter values. Apparently, doing this would be very cumbersome, especially in this study,
since we would need to estimate parameters for multiple sites. At the first glance, this
cumbersomeness might be bypassed by configuring all the n events in a single model, where the
events are separated by the number of dry days based on data. However, the approach is
subjected to significant limitation because the post-storm pollutant mass is a function of the
buildup and washoff parameters. Therefore, the initial condition after each storm event is
dependent on the parameter values. In a continuous simulation model this is not an issue because
any event is preceded by its actual events, so the initial condition estimated is realistic with
regard to the parameter values. However, in the model where the separate events are organized
together to form a pseudo-continuous simulation, the initial condition resulted from the
preceding event does not represent the real initial condition of the current event, causing
inconsistency problem.

In this study, we propose an approach which would overcome the aforementioned limitations.
This approach involves solving the buildup and washoff dynamics externally based on a process
consistent with the SWMM representation. By solving the buildup and washoff externally, it
avoids the cumbersome process of configuring multiple SWMM models for different events yet
preserving same parameter values. In addition, it would enable a more convenient coupling with
a population-based optimization engine for uncertainty-based parameter identification.

In SWMM, the pollutant buildup is modeled as an ordinary differential equation (ODE) as:

T = a— BN @)

Where, N(t) is the accumulated load on a source area at time t (g/acre); a is the accumulation
rate (g/acre/day); f is the first-order removal rate (/day); Here S is defined as the ratio between
accumulation rate and the maximum load per unit area (g/acre) as:

=2
p= (5)
For an initial storage of No at t=0, the solution to Eq. (4) is:

N(T) = N0e AT + M(1 — e=FT) (6)

Where T is the antecedent dry period before the current storm, and No is the initial pollutant load
after the preceding storm event (g/acre).



In SWMM, multiple different formulations for washoff are available, and the one used in the
present study is the exponential representation that is equivalent to the ODE as below:

dN(t
L8 = —yemN(© ™
Where y is a scaling factor introduced in the SWMM model, which serves as a calibration
parameter. Note that when 6 = 1, this equation is reduced to the traditional first-order
formulation and is analytically solvable. In such a case, the total washoff load of a specific event
can be obtained using the total event runoff depth without needing the hydrograph information.
On the other hand, if 8 # 1, the equation cannot be solved for solutions directly represented as a
function of the total runoff, so a numerical method needs to be adopted to use the hydrograph
information. The most straightforward method is to solve Eq. (7) using a finite difference
method:

N = NE—yQ()PN(H)At (8)

In the present study, since the model is to be calibrated against EMC data, only the cumulative
washoff load is of interest. Therefore, it is desired to derive a model which can directly relate the
cumulative washoff load to the parameters and hydrograph. To achieve this, we consider Eq. (7)
for a period At with constant runoff depth Qt. Suppose the land surface pollutant mass at the
beginning is N* then at the end of the period the mass Nt*1 can be analytically represented as:

N+ = Nt e—yQteAt (9)

As this particular study is intended to develop buildup-washoff parameters representative for
impervious landuse only, the formulation can be further simplified by using the assumption that
surface runoff depth can be approximated by event precipitation depth, i.e. Q; = ;. This
assumption is justified by checking the previously calibrated SWMM hydrological model used to
derive the unit area export ratio for the earlier phase of this project (Figure 1). As shown, the
runoff depth closely approximates the corresponding rainfall depth except for a slight lag in time.
Considering the length of antecedent dry days are usually multiple days, the slight lag in runoff
time is not anticipated to cause significant uncertainty in the buildup/washoff model result.
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Figure 1. Comparing precipitation depth versus impervious area runoff depth simulated by the
calibrated SWMM model

Applying Eq. (9) from the beginning of the storm to anytime during or at the end of the storm,
and using the precipitation depth to substitute the runoff depth would lead to:

N(t) = N(T)e Y EL 1A (10)
The cumulative washoff load W (t) at the end of time t is thus:
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Assume the event end time is T2 (hour), then the EMC can be represented as:

T2
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Combining Eq. (6) and (12), we obtain:
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Note that, on the right hand side of the equation, four parameters are used to predict the EMC
from given antecedent dry days and storm hydrograph.

Note that, assuming for a specific impervious land, there are K events, so for each event, the
predicted EMC would be:

T2k
_yv At 0
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T2k
Zi:l Tik

EMC, =

(14)

where the subscript k represents the event specific value. Apparently, the buildup and wash-off
calibration of the model is essentially to identify the values of the parameters M, 8, y and 6
which would predict the EMC value that match the observed value.

Combining model (2)-(3) with Eg. (14), and incorporating additional bound constraints which
bracket the lower and upper bound of each parameter, the parameter calibration model for the
SWMM equivalent buildup-washoff process is:

Min ¢ (15)
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Where the subscripts “L” and “U” represent the corresponding lower and upper bounds.

Note that for the event based formulation, No is unknown a priori, and it is event-dependent,
therefore, it is not proper to directly treat it as a calibration parameter. Instead, No will be treated
as a source of uncertainty in deriving the parameters through a stepwise calibration scenario
construction (SCSC) approach, i.e., in predicting the EMC of each event in a parameter
estimation iteration, No is treated as constant across the events, and the corresponding solutions
are identified for different No values for analyzing the sensitivity of the parameters to an
uncertain initial condition. In such a construct, each round of parameter identification involves
adding Eq (18) to model (15) to (17)

No=No j (18)

where No jis a prescribed initial condition for each round of optimization, which can be
determined from a lower bound of 0.0 to an upper bound of 100% of the maximum load M, and
a value can be taken in--between based on a step. For example, a 5% increment might be used to
identify a series of initial conditions, and for each initial condition the optimization model is
solved for corresponding parameter values. After obtaining all the solutions, the dependency of
the parameter values to the assumption regarding initial condition can be evaluated for
uncertainty analysis.



2.2 Parameter Pattern Identification

Solving model (15) to (18) can result in a large number of parameter combinations that might
satisfy reasonable calibration criteria. In the case of calibration based on EMC data, two
parameter combinations that result in exactly the same EMC might be due to different intra-
storm dynamics (Bowden and Nipper, 2012). Therefore, it is crucial to preserve the diversity in
the solutions for future scenario analysis for robust decision making. Following the MPIM
paradigm, the solutions after implementing the SCSC procedure are evaluated to refine the
estimate of the range of initial condition. This would likely result in much narrower range for the
initial condition. Based on the new initial condition range, a few refined SCSC scenarios are
designed, and the GA is used to solve the models. Then a parameter pattern identification (PPI)
process is invoked as below:

Step 1; Rank the N individuals throughout the GA searches from the least to the largest;

Step 2: Set the one with the minimum objective function as the benchmark, then set a tolerance
level, such as 10% to sift all the individuals, such that all the individuals with errors within 10%
of the minimum are selected as the candidates for qualified solutions;

Step 3: Apply a clustering algorithm, such as K-means clustering algorithm, to identify distinct
patterns from the candidate solutions, and then identify the elite member of each pattern as the
representative parameter set.

Through these processes, all the likely parameter patterns that reproduce the observed EMC data
equally well, but might be subjected to different intra-storm dynamics, are identified for being
used in future projection analysis.

2.3 Implementation Plan

The proposed methodology as described above is a general framework that covers both the
automatic calibration and the uncertainty analysis scopes. Since in the present stage of the
project, a full exploration of the uncertainty aspect of the approach is unrealistic due to the
limitation on time and resource, this project will focus on the calibration aspect of the approach,
while leaving the possibility of further uncertainty analysis open in subsequent studies.

Another consideration is the availability of data. While it is ideal if EMC data are available for
all impervious landuse types, which would allow estimation of parameter sets that represent the
specific dynamics of each type of landuse, the reality prevents us from doing so, since data are
only available for a subset of landuse types. Therefore, it is desired to reduce the complexity in
parameter estimating by lumping all the data available for landuses together, and applying the
proposed approach to derive a set of parameter that, on-average, represent the general
impervious area.

The third consideration is about the regional representation. The EMC dataset provided by EPA
also includes data from other areas in the U.S. which are outside of the New England region,



however, the purpose of the current study is to obtain representative parameters for the New
England region alone. Therefore, only the data collected in the New England region is used in
this study. Further considering that data collected before a certain year might not be suitable in
the representing current conditions, therefore, the year 2000 is selected to be the threshold, i.e.,
any data collected before the year 2000 is not used in the current model calibration practice.
Applying this criteria, it is determined that only the data from Massachusetts and New
Hampshire will be used in this analysis.

The 4th consideration is the storm size to be focused in the calibration. Per the guidance from
EPA, it is desired to focus the calibration on relatively small-sized rainfall events that are
dominant in the New England region.

With the five considerations, the steps of implementing the proposed approach are as follows:
Step 1: Identify all sites in Massachusetts and New Hampshire;

Step 2: Identify all the Massachusetts and New Hampshire sites with impervious area fraction
>80% associated with data collected after 2000;

Step 3: For all the identified sites, identify the precipitation events with total rain depth equal to
or smaller than 1.0 inch to represent the moderate-to-small size precipitation events;

Step 4: Determine the pollutants that will be used for calibration, herein are TN and TP;

Step 5: For all the identified sites, obtain hourly precipitation data from other data sources such
as NCDC data, or any other site-specific data;

Step 6: Formulate the inverse models for TN and TP for all the identified impervious sites;

Step 7: Develop computer code to solve the inverse model with GA, and identify the parameter
pattern which best fits the observed EMC data as the identified parameter for use in the later time
series generation.

3. SW Nutrient EMC Data Analysis

A large number of EMC data were organized in an Excel file, containing data collected at
various land use sites from different locations in the United States. A preliminary analysis was
done to identify whether there existed any apparent trend or patterns in that data. The analysis
was divided into two major parts: an overall analysis for all data, and the same type of analysis
for data in the New England region only. It was noted that the EMC values for both TN and TP
were lower in New England area as compared to the data available from other parts of the
country. The subsequent sub-sections present the findings from this preliminary analysis.



3.1 Drainage Area

The event mean concentration of TN and TP are plotted against their corresponding drainage
area from all sites (Figure 2) and from New England region only (Figure 3). Although there is no
clear trend line that can be fit for the data, there is a visible pattern that higher pollutant
concentrations exist for smaller drainage areas, particularly for areas less than 100 acre. This
trend is more prominent for TP in the overall dataset, and for TN in the dataset from New
England region. It should be noted that there are several underlying uncertainty factors such as
the land use type, percent imperviousness, rainfall intensity, and others which vary from one data
point to another.
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Figure 2. Comparing EMC for TN and TP versus drainage area (all locations)
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Figure 3. Comparing EMC for TN and TP versus drainage area (New England only)
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3.2 Percent Impervious Land

In general, there is no conclusive relationship between impervious percentage and the pollutant
EMC shown in Figure 4 and Figure 5. However, it seems the pollutant concentration increases
with the increase in percent imperviousness. It should be noted that there are several underlying
uncertainty factors such as the land use type, rainfall intensity, and others which vary from one
data point to another.
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Figure 4. Comparing EMC for TN and TP versus percent imperviousness (all locations)
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Figure 5. Comparing EMC for TN and TP versus percent imperviousness (New England only)
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3.3 Land Use Type

The average EMC value for each pollutant (assigning 10% of the data set as outlier status) in
each land use category is calculated. Figure 6 and Figure 7 show that open land has the lowest
average EMC value for TN. Overall dataset shows that industrial land has the highest average
EMC for TN whereas in the New England dataset, mixed land uses show highest average EMC
for TP. The TN data for industrial, commercial mixed, and freeways mixed land uses are not
available in New England region. It should also be noted that storm sizes, which can influence
the average concentration, are not considered for this calculation.
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Figure 6. Comparing average EMC for TN and TP versus land use type (all locations)
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Figure 7. Comparing average EMC for TN and TP versus land use type (New England only)

12



3.4 Precipitation

Figure 8 and Figure 9 show storm sizes in inches versus EMC values for TN and TP from all
sites in the database and from New England region only. Linear trend lines do not fit accurately
but there is a clear relationship with pollutant concentrations decreasing as rain fall total in an
event increases. The same trend is obvious in the box and whisker plots shown in Figure 10 and
Figure 11. This trend is more obvious for TN as compared to TP and it seems like the first flush
phenomenon is dominant, resulting in higher EMC values for smaller to medium storm sizes as
compared to the large storms.
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Figure 8. Comparing EMC for TN and TP versus rainfall event total (all locations)
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Figure 9. Comparing EMC for TN and TP versus rainfall event total (New England only)
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MEMORANDUM (DRAFT) Date:  October 29, 2015

To: Mark Voorhees, EPA Region |
Tetra Tech, Inc.
10306 Eaton Place, Suite 340 From: Rui Zou, Khalid Alvi — Tetra Tech
Fairfax, VA 22030
Telephone (703) 385-6000 Subject: Buildup and Washoff Calibration Results and
Fax (703) 385-6007 Long-term Continuous Hourly Timeseries

This technical memo summarizes the process and results of the systematic estimation of regional
buildup and washoff parameters for TP and TN using the calibration approach described in
memo 9.1 “Buildup and Washoff Calibration Approach”. The resulting parameters were used to
develop a long term continuous hourly timeseries of TP and TN loading for different impervious
covers used in the opti-tool.

This memo consists of five sections; (1) Data preparation for the calibration model, (2)
Development and verification of Event Based Buildup and Washoff (EBBW) model, (3) Genetic
Algorithm (GA) based calibration of the model, (4) Robust parameter estimation, and (5)
Development of long term continuous hourly timeseries for impervious cover.

1. Data Preparation

The data from the SW database provided by EPA were analyzed and a subset of data was
identified as suitable for this study by following the steps shown below;

Step 1: All the events in Massachusetts and New Hampshire with precipitation depth less than 1
inch and no missing EMC data for TN and TP were extracted from the database;

Step 2: The data were then filtered such that data only after the year 2000 were kept;

Step 3: The hourly precipitation data were downloaded from National Climatic Data Center
(NCDC) for the locations which were closest to the selected EMC monitoring sites;

Step 4: The hourly precipitation data were preprocessed to identify those events corresponding
to the EMC data, and the total rainfall depths were compared with the site specific data in the
SW database. The comparison showed that the total rainfall data from the SW sampling was not
always consistent to that from the NCDC data, indicating that the rainfall pattern from the NCDC
might not always have been representative of that from the SW sampling site. In order to
construct site specific hourly rainfall pattern, the NCDC total rainfall which were within 50%
difference from the sampling site data were maintained. It was assumed that the rainfall pattern
from these NCDC record might have reasonably represented that of the sampling site condition.

Step 5: The hourly rainfall at the sampling sites were then reconstructed by using the total
rainfall at the sampling site to rescale the corresponding NCDC data, such that the total rainfall
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at the site matched the site-specific monitoring data, while the hourly distribution followed that
of the NCDC data. Those site-specific events for which the NCDC rainfall total differed from the
site rainfall total by more than 50%, were discarded as unreliable data to characterize that
specific event.

After following the above steps, in total, 45 data sets were identified, 29 of them from MA sites,
16 from NH sites, and all of these sites were 100% impervious and met the study objectives,
which were to estimate regional buildup and washoff parameters for impervious area, without
differentiating land use types, due to a limited dataset.

Figures 1 and 2 show the EMC data for TN and TP for the selected rainfall events in this study.
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Figure 1. Observed EMC data for TN for the selected rainfall events.
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Figure 2. Observed EMC data for TP for the selected rainfall events.

2. Development and Verification of the Event-Based Buildup and Washoff (EBBW) Model

A computer simulation model was developed to simulate the buildup and washoff dynamics on
an event basis. The purpose of this model was to replicate the behavior of SWMM model in
terms of EMC prediction on an event basis, thus the parameters identified by this model would
be directly applicable to the SWMM model for generating long term model results. The model
was developed through solving the buildup and washoff equations as detailed in technical memo
9.1. The model inputs included initial land surface storage No, antecedent dry period length, two
buildup parameters (Beta and M), and two washoff parameters (gjamma and theta), as well as the
hourly rainfall data. With these inputs, the model predicted the corresponding nutrient EMC.

The EBBW model was developed using the FORTRAN programming language, and the
algorithm and code were then verified by comparing with the SWMM model results for a real
event drawn from the dataset identified. The following steps were taken for the model
verification.

e Anevent of 0.38 in of rainfall was randomly selected from the 45 data points. An hourly
rainfall distribution for the selected event is shown in Figure 3.

e A specific set of model parameters was determined as: No=0.0 Ib/acre; Antecedent dry
days= 7.1, maximum storage capacity M=0.0133 Ib/acre; the buildup accumulation
exponent Beta=0.005; the washoff coefficient Gamma=1.719; and the washoff power
coefficient Theta=0.918.

e A SWMM model for this event was configured and run, and the resulted simulated EMC
was found to be 0.0612 mg/L.



e The EBBW model was run with the same parameters, and the resulted simulated EMC
was found to be 0.0615 mg/L.

Apparently, the result from the EBBW model is equivalent to that of the SWMM, indicating that
the parameter structure and numerical solution between the two models are consistent, therefore,
the parameters identified using the event based model would be applicable to the SWMM model
for long term simulation.
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Figure 3 Rainfall distribution of the selected event for EBBW verification.

3. Genetic Algorithm (GA) Based Calibration

The Genetic Algorithm (GA) is a general-purpose stochastic search and optimization method
inspired by the natural evolution process observed in the biological world. It has been widely
applied in a variety of engineering optimization problems and has been shown to be capable of
solving optimization problems with non-differentiable, nonlinear and multi-modal objective
functions. The basic operations involved in a GA include four major operators including fitness
evaluation/scaling, selection, crossover, and mutation. Due to its popularity, the implementation
procedure of a GA has been covered widely and therefore is not repeated in this memo.

In this study, the EBBW model was coupled with a GA to form a computational platform for
calibrating the buildup-washoff model using observed EMC data. Basically, the calibration model
was formulated as a nonlinear optimization model where the objective function is the simulation
error, and the decision variables are the four buildup and washoff parameters. The GA searched
the entire parameter space to identify the combination of parameters that would result in the
smallest model errors.

As described in memo 9.1, the initial storage No was not considered as a calibration parameter.
Instead, a range of No was used to formulate different optimization models for calibrating the
EBBW model. Therefore, for each specific No, a set of parameters which best reproduce the
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observed EMC data in terms of root mean square error (RMSE) was identified. In this study, we
applied 21 different No values ranging from0.0 to 100% of the maximum storage M, with a step
of 5%. For each of the two pollutants (i.e., TN and TP), 21 parameter optimization models were
formulated and solved using the coupled GA-EBBW framework. The results for the EBBW model
prediction using the identified optimal parameters, as well as the distributions of the identified
parameters, are summarized below.

3.1 Result for TN

For each of the 21 GA-EBBW scenarios (each run with a different initial condition), the parameter
combination which results in the lowest RMSE is identified, resulting in the 21 parameter
combinations shown in Figure 4. As shown, while both the buildup parameters show significant
variability, it appears that the majority of the values for Beta fall within a narrow range near 0.0,
except for two parameters that significantly depart from this pattern. On the other hand, the
variability in maximum accumulation storage M is more evenly distributed, though there is also
the tendency to be more concentrated to the lower end. As for the washoff parameters, Figure 4
shows that Gamma has much less variability than Theta, suggesting the values of Gamma are less
sensitive to the uncertainty in initial condition of the model. To gain further insight about the
variability and distribution of the identified parameters, Figure 5 plots the histograms of each of
the four parameters. Apparently, there is no continuous statistic distribution that can be used to
characterize the parameters, and the values of all the parameters have clear gaps, particularly for
Beta and Theta.
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Figure 5 Distribution of the identified parameters for TN

While the 21 parameter combinations are highly variable, they were all identified through the
optimization process, therefore, it is anticipated that they would perform similarly well in
reproducing the observed data. Figure 6 plots the simulated EMC results using the 21 parameter
combinations against the observed data. As shown, the predicted EMC results differ from each
other between different parameter combinations, but in general they all perform well in
mimicking the observed data, suggesting that they can all be considered calibrated parameters.

To further evaluate the model performance using the distinct parameter combinations, the
simulated model results (21 scenarios) are compared with the observed data using boxplot as in
Figure 7. The first plot in Figure 7 is for the observed data showing some extreme data points as
outliers. It is observed that the model predicts a narrower range of EMC in comparison to the
observed data, and in general, slightly over-predicts the median, 75", and 25" percentile of the
data.
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3.2 Result for TP

For each of the 21 GA-EBBW runs (each run with different initial condition), the parameter
combination which results in the lowest RMSE for TP is identified, resulting in 21 parameter
combinations as shown in Figure 8. Similar to that of TN, the buildup parameters for TP also
show significant variability with the majority of the Beta values falling within a narrow range
between 0.0 to 0.05, except for two parameters that have values of approximately 0.2. The
variability in maximum accumulation storage M spans a near 10-fold range from about 0.03 to
0.3, though most of the values focus on the lower end below 0.1. Compared with the buildup
parameters, the washoff parameters appear to be more evenly distributed, and both Gamma and
Theta demonstrate similar range of variability. To gain further insight about the variability and
distribution of the identified parameters for TP, Figure 9 plots the histograms of each of the four
parameters. It is interesting to notice that M seems to follow a bell shape distribution for values
under 0.1 if the two extreme values far on the right are not counted. Theta also shows a similar
pattern if only the values between 0.6 to 1.2 are counted. For Gamma, the values tend to occur
more frequently for the larger values, and most of the values focus on a narrow range betweenl.7
to 2.0. Beta values are heavily located at values below 0.01.

The performance of the TP EMC model using the optimally identified parameters is
demonstrated in Figure 10 and 11, respectively. As shown by the point-to-point and boxplot
comparison, the identified TP parameters allow the model to reasonably mimic the observed
data, suggesting that they can all be considered calibrated parameters.
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4. Robust Parameter Estimation

After applying the GA-EBBW modeling platform, 21 distinct parameter combinations were
identified for predicting the TN and TP concentrations, and the previous section shows that all the
parameters allow the model to reproduce the observed data reasonably well. Without further
refinement, these parameters might be considered equally valid for being applied to a SWMM
model for predicting stormwater associated pollutant loadings. In this section, however, an effort
is made to further refine the parameters for more robust model prediction.

Considering that in the GA-EBBW process, the 21 parameters were identified using different
assumption of initial condition, i.e., a particular set of parameters were identified which best
reproduced the observed data with regard to the specific initial condition. As shown in the
variability of the GA-EBBW results, the optimal parameter values are sensitive to the initial
condition, therefore, the parameter identified under a specific initial condition might not work well
for another initial condition. Due to lack of data to accurately quantify the initial condition for each
event used in the model calibration, therefore, it is desired to identify the parameters which not
only work for the specific initial condition used for the GA-EBBW process, but also work well for
other initial conditions, i.e., to identify robust parameter sets which would work well under all or
most of the conditions.

In order to achieve this goal, the 21 parameters were applied to all the 21 initial conditions to
predict 441 sets of model results for each pollutant, and each of the results was compared with the
observed data to obtain the corresponding RMSE. The results are described below.

4.1 Robust Parameter ldentification for TN

Figure 12 plots the distribution of simulated error of the 21 parameters with regard to the 21
initial conditions (R_NO), and the parameter set is marked by its corresponding initial condition
(0.0 to 1.0). For example, the parameter set at 0.2 means it was obtained through the GA-EBBW
process with initial storage equal to 20% of the maximum storage. As shown in the preceding
section, while it was not easy to differentiate the performance of those parameter sets through
comparing their accuracy in reproducing the observed data, it is clear that some of the parameters
behave significantly more robustly than the others. For example, while the parameter identified
at 10% of the maximum storage works well for the corresponding initial condition, the prediction
error using this parameter increases rapidly when the actual initial condition departs from 10%,
suggesting that this particular set of parameters is not robust, and that to apply it to predict long
term loadings can lead to significant uncertainties, given the high chance that the real initial
condition would be different from the 10%.

Figure 12 also shows a pattern that the error is approximately lowest from the left bottom to the
right upper corner following the diagonal line. This is easy to understand since the diagonal line
represents the model RMSE for runs where parameter values and initial condition are matched,
i.e. the parameter identified for initial condition of 0.2 is applied to the initial condition of 0.2,
and the parameter identified for initial condition of 0.5 is applied to the initial condition of 0.5.
Even with this pattern, it can be observed that the right part of the error surface is pretty flat,
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suggesting that when these parameters are applied to simulate the entire range of initial
conditions, the resulting errors are similar to the least error. Therefore, these parameters can be
considered robust.

While Figure 12 seems to indicate that the parameters identified with low initial condition are
not robust, this is not exactly the case, since the parameter identified with initial condition equal
to 0.0 is also robust, as shown in Figure 13.

Apparently, the candidates for the final calibration parameters should be those producing the flat
plains on the error surface plots, which are identified and plotted in Figure 14. Compared with
Figure 4, it can be seen that the 13 robust parameter sets in Figure 14 show less variability than
the entire parameter set of 21 individuals. For example, the maximum storage M is now highly
concentrated around value 0.5 Ib/acre. Interestingly, the variability in terms of Beta remains
similar between the entire set and the robust set, suggesting that the entire range of the originally
estimated Beta values are robust.

As for the washoff parameters, the robust set in Figure 14 covers the two extreme ends of
combinations of the entire set. This phenomenon is of particular interest because in some
previous studies, modelers attempted to obtain multiple sets of parameter values and then apply
the average of the parameters as the final parameters. However, as shown in Figure 4 and 14,
while the parameters located at the two ends of the parameters ranges are robust, those values in
between actually are not robust and should be discarded. Therefore, it is not desired to apply the
approach of averaging multiple parameter values in developing parameter values for model
prediction.

Although it appears from visually inspecting Figure 14 that all the robust buildup parameters
belong to three groups, and washoff parameters belong to two or three groups, it is not
straightforward to categorize them based on the visual inspection because the four parameters are
interactively linked, i.e. two buildup parameter sets in group 1 might respectively be associated
with washoff parameter group 1 and 2. Therefore, to further identify the patterns in the robust
parameters, a pattern recognition method needs to be applied.

In this study, we apply the k-means clustering algorithm to classify the parameters into four
groups, where parameters in each of the groups represent a parameter pattern. Figure 15 plots the
resulting parameter classes, with different colors for different classes. As can be seen, the
buildup parameters dominate the differentiation between different parameter patterns for classes
| to 111, while the washoff parameters dominate that for class-1V. The distribution of parameters
in each of the classes is shown in Table 1.

Based on the clustering analysis result, the final representative parameters for conducting future
long term simulation analysis can be identified as the one parameter set from each of the four
classes with the least mean RMSE and included in Table 2. The four parameter combinations can
be used for uncertainty-based prediction analysis to obtain a range of prediction of pollutant
loadings which reflect the parameter pattern uncertainty.
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Table 1. Identified parameter patterns for the TN buildup-washoff model

Class ID Beta M Gamma Theta Mean RMSE
I 0.0050 0.6408 1.9995 0.9453 1.6934
I 0.0109 0.5894 1.9921 0.9529 1.6061
I 0.0088 0.4952 1.9958 0.9180 1.5513
Il 0.1152 0.3039 1.9978 0.9590 1.4260
1] 0.0050 0.4670 2.0000 0.9162 1.5477
1] 0.0051 0.4005 1.9884 0.8604 1.5362
1] 0.0050 0.4063 1.9998 0.9230 1.5345
1] 0.0066 0.3293 1.9905 0.8205 1.5365
1] 0.0050 0.3922 2.0000 0.9816 1.5485
1] 0.0050 0.3456 1.9990 0.9390 1.5629
1] 0.0050 0.3267 2.0000 0.9387 1.5783
1] 0.0050 0.3129 1.9922 0.9431 1.5948
v 0.2000 0.2375 1.6418 0.0983 1.4525

Table 2. Final calibrated parameters for the TN buildup-washoff model

Beta M Gamma Theta Mean RMSE
0.0088 0.4952 1.9958 0.9180 1.5513
0.1152 0.3039 1.9978 0.9590 1.4260
0.0050 0.4063 1.9998 0.9230 1.5345
0.2000 0.2375 1.6418 0.0983 1.4525

Figure 12 Simulation error surface for TN
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Figure 15 Clustered parameter patterns for the TN model

4.2 Robust Parameter ldentification for TP

Figure 16 plots the distribution of simulated error of the 21 parameters with regard to the 21
initial conditions (R_NO) for TP. Same as for the case of TN, the parameters identified for TP
also demonstrate significant variability in robustness. For example, while the parameter
identified at 10% of the maximum storage works well for the corresponding initial condition, the
prediction error using this parameter would increase rapidly when the actual initial condition
departs from 10%, suggesting that this particular set of parameters is not robust, and to apply it
to predict long term loadings could lead to significant uncertainties as there would be high
chances that the real initial condition would be different from the 10%.
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Figure 16 also shows the that the right part of the error surface is flat, suggesting that when these
parameters are applied to simulate the entire range of initial conditions, the resulted errors are
similar to the least error. Therefore, these parameters can be considered robust. It is interesting to
notice that the error surfaces for TN and TP share the similar pattern, that is, there is a ridge of
high simulation error for the parameters identified for low and medium-low initial conditions.
However, at the low end (R_N0=0.0) and higher values (R_N0>0.5), the surface becomes flat for
both TN and TP. The reason of such a common pattern is unknown, and future research might be
needed to further investigate the underlying cause of such a robustness distribution pattern.

Using the same approach as in the case of TN, the 14 candidates for the final calibration
parameters for TP are located in the plain areas on the error surface plots. These 14 parameters
are shown in Figure 18. Compared with Figure 8, it can be seen that the 14 robust parameter sets
show less variability than the entire parameter set. For example, the maximum storage M is now
highly concentrated around value 0.05 Ib/acre. Interestingly, the variability in terms of Beta
remain similar between the entire set and the robust set, suggesting that the entire range of the
originally estimated Beta values are robust. This phenomenon is, again, similar to that of TN.

As for the washoff parameters, the robust set in Figure 18 covers the similar area as the entire
set, though those parameters with lower Theta values are eliminated due to their lack of
robustness.

Results of applying the k-means clustering algorithm to classify the TP parameters into four
groups are shown in Figure 19. As can be seen, the buildup parameters dominate the
differentiation between different parameter patterns for classes Il, 111, and IV, while both the
buildup and washoff parameters dominate that for class I. The distribution of parameters in each
class are shown in Table 3.

Table 3 Identified parameter patterns for the TP buildup-washoff model

Class ID Beta M Gamma Theta Mean RMSE
I 0.0050 0.0479 1.9844 0.9375 0.1368
I 0.0050 0.0510 1.9921 1.0502 0.1294
I 0.0066 0.0487 1.7500 1.0352 0.1243
I 0.0065 0.0478 1.9687 1.1328 0.1213
Il 0.0050 0.0371 1.9824 1.0179 0.1202
Il 0.0058 0.0365 1.8720 1.1564 0.1204
Il 0.0050 0.0352 1.7500 1.1355 0.1214
Il 0.0370 0.0346 1.6250 1.1430 0.1176
Il 0.0085 0.0313 1.9351 1.1718 0.1223
1] 0.0050 0.0289 1.9843 0.9130 0.1195
1 0.0372 0.0275 1.7499 0.9146 0.1145
1] 0.0058 0.0313 1.9920 1.0261 0.1193
v 0.2000 0.0313 1.8338 0.9375 0.1121
v 0.1966 0.0197 1.9882 0.9301 0.1087
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Based on the clustering analysis result, the final representative parameters for conducting future
long term simulation analysis can be identified as the one with the least mean RMSE. These
parameter sets are included in Table 4. The four parameter combinations can be used for
uncertainty-based prediction analysis to obtain a range of prediction of pollutant loadings which
reflect the parameter pattern uncertainty.

Table 4 Final calibrated parameters for the TP buildup-washoff model

Beta M Gamma Theta Mean RMSE
0.0065 0.0478 1.9687 1.1328 0.1213
0.0370 0.0346 1.6250 1.1430 0.1176
0.1966 0.0197 1.9882 0.9301 0.1087
0.0372 0.0275 1.7499 0.9146 0.1145
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Figure 16 Simulation error surface for TP
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Figure 19 Clustered parameter patterns for the TP model

5. Develop Long-term Continuous Hourly Timeseries for Impervious Land Uses

The parameter set resulting in the lowest mean RMSE value (Table 2 for TN and Table 4 for TP)
was selected as a calibrated parameter set for developing the long term continuous hourly
timeseries for impervious land uses.

This particular set of parameters for TN is: Beta=0.115, M=0.304, Gamma=1.998, and
Theta=0.959

This particular set of parameters for TP is: Beta=0.1966, M=0.0197, Gamma=1.988, and
Theta=0.930
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Due to the limited observed dataset from 100% impervious land covers, the observed data was
not differentiated for land use types, and instead, the calibration was performed on a generic
impervious land use category. A scaling factor was introduced to the maximum buildup possible
under different impervious land use categories to further calibrate the annual average loading
rates for TN and TP for developing the long-term timeseries. The continuous hourly simulation
for 23 years (1992 to 2014) was performed using the selected calibrated buildup and washoff
parameters in SWMM model. Figure 20 and Figure 21 show the box and whisker plots for the
simulated annual loading rates for TN and TP, respectively, over 23 years. The green line shows
the annual average value from the entire simulation period which is also the annual load export
rate target. For comparison purposes, the selected calibrated buildup and washoff parameters
were also simulated for 23 years without changing the maximum buildup capacity, and are
shown in the box and whisker plot as the “calibrated impervious” category. The long term
simulation results show that using the calibration parameters “as is” align well with the TP
loading rates for open land impervious surface and low density residential impervious areas, but
produce lower annual average loads for TN. The statistical results (min, 25" percentile, median,
mean, 75" percentile, and maximum) in box and whisker plots show a similar trend between the
calibrated impervious land and the other impervious land categories after applying the scaling
factor to meet the land use-specific annual average load export rate target.
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Figure 20 Box and Whisker plot for TN annual export rates in the continuous simulation model
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Figure 21 Box and Whisker plot for TP annual export rates in the continuous simulation model
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MEMORANDUM (DRAFT) Date:  December 10, 2015

To: Mark Voorhees, EPA Region |
Tetra Tech, Inc.
10306 Eaton Place, Suite 340 From: Guoshun Zhang, Khalid Alvi — Tetra Tech
Fairfax, VA 22030
Telephone (703) 385-6000 Subject: BMP performance calibration approach sensitivity
Fax (703) 385-6007 analysis

Task 10 of WA 4-35 requires that Tetra Tech conduct a sensitivity analysis of the long-term
cumulative BMP performance estimates with regard to BMP model calibration approaches. The
overall goal of the task is twofold: 1) to explore how factors such as rainfall event magnitude,
inter-event dry days, seasons, and the number of calibration events could impact the development
of long-term performance curves, and 2) to serve as a reference point for similar calibration efforts.
Task 10 is set to investigate gravel wetland and biofiltration with internal storage reservoir (ISR)
or enhanced biofiltration for nutrient pollutants (Total Nitrogen and Total Phosphorus). All the
monitored BMP performance data in this memo are from the University of New Hampshire
Stormwater Center (UNHSC).

This memorandum documents the sensitivity analysis results of BMP performance calibration
methods. The steps of rainfall event selection, BMP calibration, and performance curve generation
and comparison, and the final recommendations are discussed.

1. Overview of the Sensitivity Analysis Strategy

An overview of the sensitivity analysis strategy is shown in Figure 1. As shown, the sensitivity
analysis starts with analysis of the available monitored data. Based on the data review, candidate
events are selected for three calibration methods. In the first calibration method, three to five
candidate events are selected, and the BMP hydrologic and water quality performances are
calibrated against the observed data. The calibrated BMP parameters are then checked for
cumulative performances against the observed data, and then used for generating the long-term
BMP performance curves. The long-term time series (1/1/1992 to 12/31/2014) used for the BMP
performance curve generation are the latest set of time series that reflect nutrient loadings from
typical land uses in the Region. Based on previous TMDL implementation knowledge, the BMP
performance curves are generated for only one type of impervious (Commercial_Impervious) in
this study, as the BMP performance curves from various impervious surfaces tend to follow a
similar trend.

Similarly to the first calibration method, the calibration efforts were carried out for calibration
method two and three, in which the calibration events were increased from eight to twelve and
nine to fifteen, respectively. A set of BMP performance curves was also generated following each
calibration method.

A final review of the calibration cumulative performances against the observed data and the BMP
performance curves yields a recommended set of BMP performance curves, and a procedure of
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developing BMP performance curves is also recommended. Details of the sensitivity analysis
strategy are discussed in sections that follow.

Maonitored events
+ Rainfall size Selection
* Dry days "| of calibration events
+ Seasons
3-5 events 8-12 events 9-15 events
Average calibrated Average calibrated Average calibrated
parameters parameters parameters
Individual and Individual and Individual and
cumulative cumulative cumulative
performances performances performances
¥ 1 ¥
BMP performance BMP performance BMP performance
curves curves curves
Final BMP performance Recommended performance
curves curve generation method

Figure 1. Overview of sensitivity analysis regarding BMP performance calibration
approaches.

2. Evaluation of Monitored Rainfall Data

In this step, monitored events for gravel wetland and biofiltration with ISR were compiled and
analyzed. For gravel wetland, there are a total number of 49 recorded events, and 30 for the
biofiltration with ISR. Information about rainfall depth, antecedent dry period, inflow and outflow
pollutant concentrations from gravel wetland and biofiltration with ISR can be found in the
attached table. For some of the events, data for only one pollutant were available. The rainfall
events to be used for the calibration process were selected from the candidate events. All 49 events
form the cumulative performance validation dataset for gravel wetland, and similarly all 30 events
for the biofiltration with ISR. For the purpose of developing a continuous and complete validation
dataset, median inflow EMCs for the whole observed dataset for either TP or TN were assumed
for events that are missing inflow EMC information for TP or TN.

During the data review process, events that did not have both TN and TP monitored performances
at the same time were removed from the candidate list for selecting calibration events.. After the
data reviewing process, 14 monitoring events were selected for the gravel wetland and 14 for the
biofiltration with ISR. The list of events are shown in Table 1 and Table 2.



Table 1. List of gravel wetland candidate monitoring events.

Rainfall Peak Intensity Antecedent Dry Period
Date Depth (in) (in/5-min) (days)
6/4/2008 0.40 0.02 3
4/3/2009 0.79 0.11 3
4/6/2009 1.07 0.07 2
5/5/2009 0.72 0.03 12
6/18/2009 1.47 0.09 3
8/22/2009 0.76 0.38 8
9/11/2009 0.95 0.06 12
9/27/2009 0.51 0.02 14
11/20/2009 0.42 0.01 5
4/16/2010 1.16 0.04 6
6/10/2010 0.67 0.04 3
6/23/2010 0.29 0.02 12
7/21/2010 0.45 0.23 6
9/16/2010 0.49 0.03 3
Table 2. List of biofiltration with ISR candidate monitoring events.
Rainfall | Peak Intensity Antecedent Dry Period
Date Depth (in) (in/5-min) (days)
11/10/2011 0.98 0.06 10
6/22/2012 0.71 0.20 8
7/17/2012 0.19 0.08 1
8/10/2012 0.53 0.07 4
9/8/2012 0.26 0.08 2
11/17/2013 0.27 0.04 6
6/25/2014 0.87 0.11 11
7/13/2014 0.19 0.07 3
07/27/2014 0.39 0.12 2
7/31/2014 0.12 0.03 2
9/2/2014 0.56 0.12 19
9/13/2014 0.12 0.01 5
10/4/2014 0.21 0.02 2
11/1/2014 0.35 0.01 8

3. First Calibration Approach

3.1 Gravel Wetland
In the first calibration approach for gravel wetland, four calibration events were selected, with at
least one event for each season (spring, summer, and fall), and with varying magnitudes of storm



sizes (0.42 inch to 1.47 inch). The events used for gravel wetland calibration are shown in Table
3.

Table 3. List of gravel wetland candidate monitoring events following the first calibration

approach.
Peak Removal
Intensity | Antecedent | Efficiency (RE)
Rainfall (in/5- Dry Period

Date Depth (in) min) (days) TN TP
6/18/2009 1.47 0.09 3 11% -150%
9/27/2009 0.51 0.02 14 -125% 75%
11/20/2009 0.42 0.01 5 31% 75%
6/10/2010 0.67 0.04 3 30% 95%

Individual SUSTAIN models were set up for the gravel wetland. For each event, the models were
first calibrated for the hydrology, and then were calibrated to match the event mean concentration
predictions for TN and TP, separately. The calibrated TN and TP performances are shown in
Tables 4 and 5 below, with the calibrated parameters summarized at the end of the tables.

Table 4. Summary of calibration results for TN for gravel wetland following the first
calibration approach.

Calibration events Values
Observed Inflow 0.9
EMC (mg/L) | Outflow 0.8
6/18/2009 SUSTAIN Calibrated outflow 0.81
prediction Decay 0.03
Perct. removal 0.12
Observed Inflow 0.8
9/27/2009 EMC (mg/L) Out_flow 1.8
Calibrated outflow 1.8
SUSTAIN
prediction Decay -0.08
Perct. removal 0.05
Observed Inflow 1.60
11/20/2009 EMC (mg/L) Out_flow 1.10
Calibrated outflow 1.021
SUSTAIN
prediction Decay 0.05
Perct. removal 0.05
Observed Inflow 1.00
EMC (mg/L) Outflow 0.70
6/10/2010 SUSTAIN Calibrated outflow 0.706
prediction Decay 0.13
Perct. removal 0.12
Calibrated parameters Decay 0.033
(average) Perct. removal 0.085




calibration approach.

Table 5. Summary of calibration results for TP for gravel wetland following the first

Calibration events Values
Observed Inflow 0.02
EMC (mg/L) Outflow 0.05
6/18/2009 SUSTAIN Calibrated outflow 0.047
prediction Decay 0.21
Perct. removal 0.06
Observed Inflow 0.02
EMC (mg/L) Outflow 0.005
9/27/2009 Calibrated outflow 0.005
SUSTAIN
prediction Decay 0.12
Perct. removal 0.03
Observed Inflow 0.02
EMC (mg/L) Outflow 0.005
11/20/2009 Calibrated outflow 0.005
SUSTAIN
prediction Decay 0.1
Perct. removal 0.13
Observed Inflow 0.1
EMC (mg/L) Outflow 0.005
6/10/2010 SUSTAIN Calibrated outflow 0.005
prediction Decay 0.33
Perct. removal 0.42
Calibrated parameters Decay 0.085
(average) Perct. removal 0.160

After the first calibration method is completed for TN and TP, the gravel wetland representation
was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored
events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are
then compared against the monitored data, and the results are summarized in Table 6.

Table 6. Validation of gravel wetland cumulative performances following the first
calibration approach.

First calibration method Monitored | Difference%
TN removal percent 18% 45% -27%
TP removal percent 34% 39% -5%

As shown in the results, the calibrated parameters generate lower removal efficiency for TP and
TN compared to the monitored data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 7, and the BMP performance curves for TN and TP are shown in Figure 2.



Table 7. Long-term gravel wetland performances following the first calibration approach.

0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN 15% 24% 36% 45% 51% 56% 64% 70%
TP 26% 39% 55% 65% 71% 75% 80% 84%
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Figure 2. Gravel wetland performance curves for TN and TP following the first calibration
approach.

3.2 Biofiltration with ISR

In the first calibration approach for biofiltration with ISR, four calibration events were selected
from the summer, fall, and winter seasons, and with vary magnitudes of storm sizes (0.26 inch to
0.71 inch). The events used for biofiltration with ISR calibration is shown in Table 8.

Table 8. List of biofiltration with ISR candidate monitoring events following the first
calibration approach.

Removal
. | Antecedent | g ioncy (RE)
Rainfall Peak Intensity Dry Period TN TP
Date Depth (in) (in/5-min) (days)
06/22/2012 0.71 0.20 8 56% 69%
09/08/2012 0.26 0.08 2 44% 53%
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Individual SUSTAIN models were set up for the biofiltration with ISR system. For each event, the
models were first calibrated for the hydrology, and then were calibrated to match the event mean
concentration predictions for TN and TP, separately. The calibrated TN and TP performances are
shown in Tables 9 and 10 below, with the calibrated parameters summarized at the end of the
tables.

Table 9. Summary of calibration results for TN for biofiltration with ISR following the first
calibration approach.

Calibration events Values
Observed Inflow 25
06/22/2012 EMC (mg/L) Out_flow 1.1
Calibrated outflow 1.13
SUSTAIN
prediction Decay 0.16
Perct. removal 0.06
Observed Inflow 1.6
EMC (mg/L) Outflow 0.9
09/08/2012 SUSTAIN Calibrated outflow 0.92
prediction Decay 0.15
Perct. removal 0.05
Observed Inflow 15
EMC (mg/L) Outflow 1.9
07/27/2014 SUSTAIN Calibrated outflow 1.93
prediction Decay 0.19
Perct. removal 0.14
Observed Inflow 1.4
EMC (mg/L) Outflow 1.6
09/02/2014 SUSTAIN Calibrated outflow 1.64
rediction Decay -0.055
P Perct. removal 0.1
. Decay 0.016
Calibrated parameters (average) Perct. removal 0.088

first calibration approach.

Calibration events Values
Observed Inflow 0.16
06/22/2012 EMC (mg/L) Out_flow 0.05
Calibrated outflow 0.047

SUSTAIN

rediction Decay 0.11
P Perct. removal 0.28
Observed Inflow 0.15
09/08/2012 EMC (mg/L) | Outflow 0.07
SUSTAIN Calibrated outflow 0.072

Table 10. Summary of calibration results for TP for biofiltration with ISR following the



prediction Decay 0.1
Perct. removal 0.22
Observed Inflow 0.09
EMC (mg/L) | Outflow 0.06
07/27/2014 SUSTAIN Calibrated outflow 0.063
prediction Decay 0.14
Perct. removal 0.65
Observed Inflow 0.1
EMC (mg/L) | Outflow 0.13
09/02/2014 SUSTAIN Calibrated outflow 0.126
prediction Decay 0.09
Perct. removal 0.16
. Decay 0.065
Calibrated parameters (average) Perct removal 0.328

After the first calibration method is completed for TN and TP, the biofiltration with ISR
representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30
monitored events. The TN and TP EMC reductions by the calibrated biofiltration with ISR model
were then compared against the monitored data, and the results are summarized in Table 11.

Table 11. Validation of biofiltration with ISR cumulative performances following the first
calibration approach.

First calibration method Monitored | Difference%
TN removal percent 30% 26% 4%
TP removal percent 41% 37% 4%

As shown in the results, the calibrated parameters show slightly high removal efficiency for TN
and TP as compared to the monitored data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 12, and the BMP performance curve is shown in Figure 3.

Table 12. Long-term biofiltration with ISR performances following the first calibration
approach.

0.1in | 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN | 15% 24% 36% 45% 51% 56% 64% 70%
TP 26% 39% 55% 65% 71% 75% 80% 84%
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Figure 3. Biofiltration with ISR performance curves for TN and TP following the first
calibration approach.

4. Second Calibration Approach

4.1 Gravel Wetland

In the second calibration approach for gravel wetland, a total number of eight events were selected
for the calibration efforts. In addition to events shown in Table 3, four more events were added to
the calibration dataset. Wider variations in season, rainfall depth, as well as the antecedent dry
periods were incorporated during the selection process. The four new events are summarized in
Table 13.

Table 13. Additional events added to the gravel wetland calibration dataset in the second
calibration approach.

Removal Efficiency
Rainfall Peak Intensity Antecedent Dry (RE)
Date Depth (in) (in/5-min) Period (days) TN TP
04/06/2009 1.07 0.07 2 69% 56%
08/22/2009 0.76 0.38 8 68% -33%
04/16/2010 1.16 0.04 6 18% 18%
06/23/2010 0.29 0.02 12 55% 90%




Similar to processes in the first calibration approach, SUSTAIN models were set up for each of
the calibration events. The calibration was carried out first for hydrology and then for water quality.
The calibrated TN and TP performances are shown in Tables 14 and 15 below, with the calibrated
parameters summarized at the end of the tables.

Table 14. Summary of calibration results for TN for gravel wetland following the second

calibration approach.

Calibration events Values
Observed Inflow 0.80
EMC (mg/L) | Outflow 0.25
04/06/2009 SUSTAIN Calibrated outflow 0.244
prediction Decay 0.13
Perct. removal 0.12
Observed Inflow 1.90
EMC (mg/L) | Outflow 0.60
08/22/2009 SUSTAIN Calibrated outflow 0.647
prediction Decay 0.12
Perct. removal 0.27
Observed Inflow 11
EMC (mg/L) | Outflow 0.9
04/16/2010 SUSTAIN Calibrated outflow 0.86
prediction Decay 0.04
Perct. removal 0.02
Observed Inflow 1.10
EMC (mg/L) | Outflow 0.50
06/22/2010 SUSTAIN Calibrated outflow 0.495
prediction Decay 0.11
Perct. removal 0.12
Calibrated parameters Decay 0.066
(including the first four events) | Perct. removal 0.109

calibration approach.

Table 15. Summary of calibration results for TP for gravel wetland following the second

Calibration events Values
Observed Inflow 0.09

EMC (mg/L) | Outflow 0.04

4/6/2009 SUSTAIN Calibrated outflow 0.038
prediction Decay 0.09

Perct. removal 0.07

Observed Inflow 0.03

EMC (mg/L) | Outflow 0.04

08/22/2009 SUSTAIN Calibrated outflow 0.041
prediction Decay 0.05

Perct. removal 0.05

Observed Inflow 0.017

4/16/2010 EMC (mg/L) | Outflow 0.014
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SUSTAIN Calibrated outflow 0.014

prediction Decay 0.11

Perct. removal 0.15

Observed Inflow 0.05

EMC (mg/L) | Outflow 0.005

6/22/2010 SUSTAIN Calibrated outflow 0.005
prediction Decay 0.35

Perct. removal 0.40

Calibrated parameters Decay 0.105
(including the first four events) | Perct. removal 0.164

After the second calibration method is completed for TN and TP, the gravel wetland representation
was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored
events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are
then compared against the monitored data, and the results are summarized in Table 16.

Table 16. Validation of gravel wetland cumulative performances following the second
calibration approach.

Second calibration method | Monitored | Difference%
TN removal percent 22% 45% -23%
TP removal percent 35% 39% -4%

As shown in the results, the calibrated parameters generate lower removal efficiency for TN and
exact match for TP as compared to the observed data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 17, and the BMP performance curve is shown in Figure 4.

Table 17. Long-term gravel wetland performances following the second calibration

approach.
0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN 22% 33% 48% 57% 64% 68% 74% 79%
TP 29% 43% 59% 69% 74% 78% 83% 86%
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Figure 4. Gravel wetland performance curves for TN and TP following the second
calibration approach.

4.2 Biofiltration with ISR

In the second calibration approach for biofiltration with ISR, a total number of eight events were
selected for the calibration efforts. In addition to events shown in Table 8, four more events were
added to the calibration dataset. Wider variations in season, rainfall depth, as well as the antecedent
dry periods were incorporated during the selection process. The four new events are summarized
in Table 18.

Table 18. Additional events added to the biofiltration with ISR calibration dataset in the
second calibration approach.

Antecedent Removal Efficiency (RE)
Rainfa_ll Pea_lk Intepsity Dry Period ™ TP
Date Depth (in) (in/5-min) (days)
11/10/2011 0.98 0.06 10 20% 55%
7/17/2012 0.19 0.08 1 44% 65%
08/10/2012 0.53 0.07 4 -9% -200%
11/17/2013 0.27 0.04 6 17% 43%

Similar to processes in the first calibration approach, SUSTAIN models were set up for each of
the calibration event. The calibration was carried out first for hydrology and then for water quality.
The calibrated TN and TP performances are shown in Tables 19 and 20 below, with the calibrated
parameters summarized at the end of the tables.
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second calibration approach.

Table 19. Summary of calibration results for TN for biofiltration with ISR following the

Calibration events Values
Observed Inflow 1
EMC (mg/L) | Outflow 0.8
11/10/2011 Calibrated outflow 0.078
SUSTAIN
prediction Decay 0.47
Perct. removal 0.79
Observed Inflow 3.2
EMC (mg/L) | Outflow 1.8
711712012 Calibrated outflow 1.82
SUSTAIN
prediction Decay 0.18
Perct. removal 0.16
Observed Inflow 1.1
EMC (mg/L) | Outflow 1.2
08/10/2012 SUSTAIN Calibrated outflow 1.16
prediction Decay -0.06
Perct. removal 0.04
Observed Inflow 1.8
EMC (mg/L) | Outflow 15
11/17/2013 SUSTAIN gallbrated outflow égg
rediction ccay '
P Perct. removal 0.04
Calibrated parameters Decay 0.093
(including the first four events) | Perct. removal 0.173

second calibration approach.

Table 20. Summary of calibration results for TP for biofiltration with ISR following the

Calibration events Values
Observed Inflow 0.2
11/10/2011 EMC (mg/L) Out_flow 0.09
Calibrated outflow 0.089
SUSTAIN
prediction Decay 0.16
Perct. removal 0.2
Observed Inflow 0.34
2117/2012 EMC (mg/L) Out_flow 0.12
Calibrated outflow 0.118
SUSTAIN
prediction Decay 0.19
Perct. removal 0.38
Observed Inflow 0.002
EMC (mg/L) | Outflow 0.06
08/10/2012 SUSTAIN Calibrated outflow 0.055
prediction Decay 0.62
Perct. removal 0.08
Observed Inflow 0.07
11/17/2013 EMC (mg/L) | Outflow 0.04
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SUSTAIN Calibrated outflow 0.038

prediction Decay 0.25

Perct. removal 0.26

Calibrated parameters Decay 0.03
(including the first four events) | Perct. removal 0.279

After the first calibration method is completed for TN and TP, the biofiltration with ISR
representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30
monitored events. The cumulative TN and TP EMC reductions by the calibrated biofiltration with

ISR model are then compared against the monitored data, and the results are summarized in Table
21.

Table 21. Validation of biofiltration with ISR cumulative performances following the
second calibration approach.

Second calibration method | Monitored | Difference%
TN removal percent 42% 26% 16%
TP removal percent 36% 37% -1%

As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN
and close match for TP as compared to monitored data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 22, and the BMP performance curve is shown in Figure 5.

Table 22. Long-term biofiltration with ISR performances following the second calibration

approach.
0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN 32% 44% 58% 66% 71% 75% 82% 86%
TP 27% 39% 53% 62% 67% 71% 78% 83%
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Figure 5. Biofiltration with ISR performance curves for TN and TP following the second
calibration approach.

5. Third Calibration Approach

5.1 Gravel Wetland

In the third calibration approach for gravel wetland, all fourteen calibration events were used to
calibrate the SUSTAIN representation. The six additional events used in the third calibration
approach are summarized in Table 23.

Table 23. List of additional gravel wetland events for the third calibration approach.

Antecedent Removal Efficiency (RE)
Rainfa_ll Peqk Intepsity Dry Period ™ TP

Date Depth (in) (in/5-min) (days)

6/4/2008 0.40 0.02 3 45% 100%
4/3/2009 0.79 0.11 3 58% 81%
5/5/2009 0.72 0.03 12 53% 50%
9/11/2009 0.95 0.06 12 67% 92%
7/21/2010 0.45 0.23 6 69% 78%
9/16/2010 0.49 0.03 3 47% 33%

Similar to the first two calibration approaches, individual SUSTAIN models were set up to
calibrate the gravel wetland hydrologic and water quality performances. The calibrated TN and TP
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performances are shown in Tables 24 and 25 below, with the calibrated parameters summarized at
the end of the tables.

Table 24. Summary of calibration results for TN for gravel wetland following the third

calibration approach.

Calibration events Values
Observed Inflow 1.1
EMC (mg/L) | Outflow 0.6
6/4/2008 Calibrated outflow 0.58
SUSTAIN
prediction Decay 0.11
Perct. removal 0.12
Observed Inflow 0.6
EMC (mg/L) | Outflow 0.25
413/2009 Calibrated outflow 0.248
SUSTAIN
prediction Decay 0.05
Perct. removal 0.04
Observed Inflow 1.50
EMC (mg/L) | Outflow 0.7
5/5/2009 Calibrated outflow 0.73
SUSTAIN
prediction Decay 0.14
Perct. removal 0.14
Observed Inflow 1.80
EMC (mg/L) | Outflow 0.25
9/11/2009 Calibrated outflow 0.251
SUSTAIN
prediction Decay 0.2
Perct. removal 0.22
Observed Inflow 0.80
EMC (mg/L) | Outflow 0.25
7/21/2010 SUSTAIN gallbrated outflow 0621436
rediction ccay :
P Perct. removal 0.12
Observed Inflow 1.50
EMC (mg/L) | Outflow 0.80
9/16/2010 SUSTAIN gallbrated outflow 832
rediction ccay :
P Perct. removal 0.05
Calibrated parameters (including | Decay 0.085
the previous eight events) Perct. removal 0.111

calibration approach.

Table 25. Summary of calibration results for TP for gravel wetland following the third

Calibration events Values
Observed Inflow 0.05
6/4/2008 EMC (mg/L) Out_flow 0.005
Calibrated outflow 0.005

SUSTAIN
prediction Decay 0.35
Perct. removal 0.48
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Observed Inflow 0.16

EMC (mg/L) | Outflow 0.03

4/3/2009 Calibrated outflow 0.03
SUSTAIN

prediction Decay 0.14

Perct. removal 0.13

Observed Inflow 0.04

EMC (mg/L) | Outflow 0.02

5/5/2009 Calibrated outflow 0.019
SUSTAIN

prediction Decay 0.15

Perct. removal 0.11

Observed Inflow 0.06

EMC (mg/L) | Outflow 0.005

9/11/2009 Calibrated outflow 0.006
SUSTAIN

prediction Decay 0.33

Perct. removal 0.48

Observed Inflow 0.09

EMC (mg/L) | Outflow 0.02

7/21/2010 SUSTAIN Calibrated outflow 0.02

prediction Decay 0.15

Perct. removal 0.25

Observed Inflow 0.03

EMC (mg/L) | Outflow 0.02

9/16/2010 SUSTAIN Calibrated outflow 0.021

prediction Decay 0.02

Perct. removal 0.03

Calibrated parameters (including | Decay 0.141

the previous eight events) Perct. removal 0.199

After the third calibration method is completed for TN and TP, the gravel wetland representation
was validated using the cumulative dataset (09/2007 to 09/2010) formed by all 49 monitored
events. The cumulative TN and TP EMC reductions by the calibrated gravel wetland model are
then compared against the monitored data, and the results are summarized in Table 26.

Table 26. Validation of gravel wetland cumulative performances following the third
calibration approach.

Third calibration method Monitored | Difference%
TN removal percent 26% 45% -19%
TP removal percent 40% 39% 1%

As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN
and TP as compared to monitored data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 27, and the BMP performance curve is shown in Figure 6.
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Table 27. Long-term gravel wetland performances following the third calibration

approach.
0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN 24% 38% 52% 62% 68% 2% 78% 82%
TP 33% 49% 65% 75% 80% 83% 87% 90%
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Figure 6. Gravel wetland performance curves for TN and TP following the third

5.2 Biofiltration with ISR
In the third calibration approach for biofiltration with ISR, all fourteen calibration events were
used to calibrate the SUSTAIN representation. The six additional events used in the third
calibration approach are summarized in Table 28.

calibration approach.

Table 28. List of additional biofiltration with ISR calibration events for the third

calibration approach.

Antecedent | Removal Efficiency (RE)
Rainf_all Pea_lk Intepsity Dry Period ™ TP
Date Depth (in) (in/5-min) (days)
6/25/2014 0.87 0.11 11 21% 4%
7/13/2014 0.19 0.07 3 48% 89%
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7/31/2014 0.12 0.03 2 48% 38%
9/13/2014 0.12 0.01 5 11% 58%
10/4/2014 0.21 0.02 2 59% 83%
11/1/2014 0.35 0.01 8 57% 75%

third calibration approach.

Calibration events Values
Observed Inflow 1.9
6/25/2014 EMC (mg/L) Out_flow 15
Calibrated outflow 1.45
SUSTAIN
prediction Decay 0.09
Perct. removal 0.04
Observed Inflow 2.7
2113/2014 EMC (mg/L) Out_flow 1.4
Calibrated outflow 1.45
SUSTAIN
prediction Decay 0.13
Perct. removal 0.74
Observed Inflow 2.5
2/31/2014 EMC (mg/L) Out_flow 1.3
Calibrated outflow 1.26
SUSTAIN
prediction Decay 0.30
Perct. removal 0.24
Observed Inflow 0.9
9/13/2014 EMC (mg/L) Out_flow 0.8
Calibrated outflow 0.76
SUSTAIN D 011
rediction ccay '
P Perct. removal 0.15
Observed Inflow 2.2
EMC (mg/L) | Outflow 0.9
10/4/2014 SUSTAIN gallbrated outflow ggi
rediction ccay '
P Perct. removal 0.19
Observed Inflow 1.4
EMC (mg/L) | Outflow 0.6
11/1/2014 SUSTAIN gallbrated outflow 821
rediction ccay '
P Perct. removal 0.20
Calibrated parameters (including | Decay 0.128
the previous eight events) Perct. removal 0.21
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Similar to the first two calibration approaches, individual SUSTAIN models were set up to
calibrate the biofiltration with ISR hydrologic and water quality performances. The calibrated TN
and TP performances are shown in Tables 29 and 30 below, with the calibrated parameters
summarized at the end of the tables.

Table 29. Summary of calibration results for TN for biofiltration with ISR following the




third calibration approach.

Table 30. Summary of calibration results for TP for biofiltration with ISR following the

Calibration events Values
Observed Inflow 0.23
EMC (mg/L) | Outflow 0.22
6/25/2014 Calibrated outflow 0.205
SUSTAIN
prediction Decay 0.03
Perct. removal 0.04
Observed Inflow 0.18
EMC (mg/L) | Outflow 0.02
713/2014 Calibrated outflow 0.022
SUSTAIN
prediction Decay 0.14
Perct. removal 0.65
Observed Inflow 0.16
EMC (mg/L) | Outflow 0.1
7/31/2014 Calibrated outflow 0.096
SUSTAIN
prediction Decay 0.2
Perct. removal 0.21
Observed Inflow 0.12
EMC (mg/L) | Outflow 0.05
9/13/2014 Calibrated outflow 0.051
SUSTAIN
prediction Decay 0.2
Perct. removal 0.26
Observed Inflow 0.12
EMC (mg/L) | Outflow 0.02
10/4/2014 SUSTAIN Calibrated outflow 0.021
prediction Decay 047
Perct. removal 0.39
Observed Inflow 0.12
EMC (mg/L) | Outflow 0.03
11/1/2014 SUSTAIN Calibrated outflow 0.03
prediction Decay 0.37
Perct. removal 0.36
Calibrated parameters (including | Decay 0.118
the previous eight events) Perct. removal 0.296

After the third calibration method is completed for TN and TP, the biofiltration with ISR
representation was validated using the cumulative dataset (10/2011 to 11/2014) formed by all 30
monitored events. The cumulative TN and TP EMC reductions by the calibrated biofiltration with
ISR model are then compared against the monitored data, and the results are summarized in Table
3L

Table 31. Validation of biofiltration with ISR performances following the third calibration

approach.
Third calibration method | Monitored | Difference%
TN removal percent 45% 26% 19%
TP removal percent 44% 37% 7%
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As shown in the results, the calibrated parameters show slightly higher removal efficiency for TN
and TP as compared to monitored data.

The calibrated parameters were then used for BMP performance curve generation. The long-term
time series for the Commercial_Impervious land use and for the period of 01/01/1992 to
12/31/2014 were used for generating the BMP performance curve. The efficiency table is shown
in Table 32, and the BMP performance curve is shown in Figure 7.

Table 32. Long-term biofiltration with ISR performances following the third calibration

approach.
0.1in 0.2in 0.4in 0.6in 0.8in 1.0in 1.5in 2.0in
TN 37% 50% 63% 71% 76% 80% 85% 88%
TP 39% 53% 66% 73% 78% 82% 86% 89%
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Figure 7. Biofiltration with ISR performance curve for TN and TP following the third

calibration approach.

6. Evaluation and Recommendation

After the three calibration approaches were completed for gravel wetland and biofiltration with
ISR, the resulting BMP performance curves from the three calibration approaches were plotted
against each other for the two pollutants and are shown in Figures 8 to 11.
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Figure 8. Comparison of gravel wetland performance curves for TN following the three
calibration approaches.
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Figure 9. Comparison of gravel wetland performance curves for TP following the three
calibration approaches.
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Figure 10. Comparison of biofiltration with ISR performance curves for TP following the
three calibration approaches.
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Figure 11. Comparison of biofiltration with ISR performance curves for TP following the
three calibration approaches.
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As shown in the figures, Approach #2 is a representative of the three calibration approaches for
gravel wetland, with the average treatment efficiency differences from the other two approaches
are about 10% for TN and 5% for TP. As for biofiltration with ISR, Approach #2 is a representative
approach for TN and Approach #1 becomes the representative approach for TP. Overall, Approach
#2 was selected as the approach that incurs intermediate level of efforts while achieving relatively
high reliability.

From the performance curve generation processes for gravel wetland and biofiltration with ISR,
the selection of model calibration events can be set to include 8 to 12 events, with at least one
event from each season and at least two events for each size category (i.e. <0.5 in, 0.5-1.0 in, >1.0
in, depending on the actual rainfall distribution), and at the same time the events are representative
of the antecedent dry period lengths. In addition, events that have negative removal efficiencies
should also be included to have a comprehensive representation of the BMP performances.

Following these recommendations above on selection of calibration events, the Calibration
Approach #2 could be used as a recommended approach for developing BMP performance curve
generations, and the updated flow chart is shown in Figure 12.

6-8 Monitored events
* Rainfall size Individual model
* Dry days calibrations
+ Seasons
Cumulative _ Average calibrated
performances ) parameters

Figure 12. Recommended approach for developing long-term BMP performance curves.

7. Summary

The impacts of calibration strategies on the development of long-term BMP performance curves
are evaluated in this study. Observed gravel wetland and biofiltration with ISR data from UNHSC
were used for the calibration sensitivity analysis. SUSTAIN calibration models were set up for
each individual event and the performances were calibrated. The calibrated BMP calibration
parameters were then averaged for generating long-term performance curves. For sensitivity
analysis purposes, the calibration events were divided into three groups: four events for the first
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group, eight events for the second group, and 14 events for the third group. BMP performance
curves were created for the commercial impervious land use.

The calibration results and final BMP performance curves indicate that six to eight calibration
events with rainfall characteristic variations are reasonable for achieving good calibration results
and for generating performance curves. Following the example analyses, the recommended
procedures for generating long-term BMP performance curves are also provided in this study.
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