STATE OF MAINE

MAINE BOARD OF ENVIRONMENTAL PROTECTION AND DEPARTMENT OF ENVIRONMENTAL PROTECTION

IN THE MATTER OF NORDIC AQUAFARMS, INC.

APPLICATIONS FOR ATLANTIC SALMON LAND-BASED AQUACULTURE FACILITY

HEARING - DAY 2 WEDNESDAY, FEBRUARY 12, 2020

PRESIDING OFFICER: ROBERT DUCHESNE

Reported by Robin J. Dostie, a Notary Public and court reporter in and for the state of Maine, on February 12, 2020, at the University of Maine Hutchinson Center, 80 Belmont Avenue, Belfast, Maine, commencing at 8:00 a.m.

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

BOARD MEMBERS PRESENT:
MARK DRAPER
SUSAN LESSARD
JAMES PARKER
STEVEN PELLETIER
ROBERT SANFORD

DEP \& STAFF PRESENT:
GERALD REID, COMMISSIONER, DEP
PEGGY BENSINGER, OFFICE OF THE MAINE ATTORNEY GENERAL
LAURA JENSEN, OFFICE OF THE MAINE ATTORNEY GENERAL
KEVIN MARTIN, OFFICE OF THE COMMISSIONER
BETH CALLAHAN, BUREAU OF LAND RESOURCES
DAWN HALLOWELL, BUREAU OF LAND RESOURCES JOHN HOPECK, BUREAU OF WATER QUALITY NICK LIVESAY, DIRECTOR, BUREAU OF LAND RESOURCES ROB MOHLAR, BUREAU OF WATER QUALITY GREGG WOOD, BUREAU OF WATER QUALITY CINDY BERTOCCI, EXECUTIVE ANALYST, BEP RUTH ANN BURKE, ADMINISTRATIVE ASSISTANT, BEP DAVID MADORE, COMMUNICATIONS DIRECTOR

PARTIES

Applicant:
Nordic Aquafarms, Inc.
Joanna B. Tourangeau, Esq. (Attorney for Applicant)
Drummond Woodsum
84 Marginal Way
Suite 600
Portland, ME 04101-2480
Phone: (207) 253-0567
jtourangeau@dwmlaw.com
David M. Kallin, Esq.
Drummond Woodsum
84 Marginal Way
Suite 600
Portland, ME 04101-2480
Phone: (207) 253-0567
dkallin@dwmlaw.com
Emily Howe, Esq.
Drummond Woodsum
84 Marginal Way
Suite 600
Portland, ME 04101-2480
Phone: (207) 253-0567
ehowe@dwmlaw.com
Intervenors:
Upstream Watch \& Northport Village Corporation
Kristin Racine, Esq.
Curtis Thaxter
One Canal Plaza, Ste. 1000
Portland, ME 04101
Phone: (207 774-9000
kracine@curtisthaxter.com

Michael Lannan
Tech Environmental
33A Front Street
Belfast, ME 04915
Phone: (207) 323-4850
mlannan@techenv.com

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

Kim Ervin Tucker, Esq.
48 Harbour Pointe Drive
Lincolnville, Maine 04849
Phone: (202)841-5439
k.ervitucker@gmail.com

Eleanor Daniels \& Donna Broderick

95 Sirota Drive Searsmont, ME 04973
Phone: (207) 322-6464
ellie@greenstore.com
dl_broderick@hotmail.com

Lawrence Reichard
6 Congress Street \#406
Belfast, ME 04915
Phone: (207) 322-1043
lreichard@gmail.com

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

PARTIES

Intervenors (cont.):
The Fish Are Okay
Diane Hunt Braybrook
\#1 Delemos Street
Belfast ME 04915
Phone: (207) 930-5979
dbraybrook@yahoo.com

Anne Saggese
4 West Waldo Road Belfast ME 04915
Phone: (207) 322-0651
sweethenrys@gmail.com

University of New England

Charles E. Tilburg, Ph.D. University of New England Director of School of Marine Programs 11 Hills Beach Road Biddeford, ME 04005
Phone: (207) 602-2422
ctilburg@une.edu

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

OPENING STATEMENT

UNE :
Dr. Carrie Byron
Examination By:
Ms. Howe
Ms. Racine22

Ms. Daniels 25
Mr. Pelletier
Mr. Duchesne
Mr. Sanford 30,3331

Upstream Watch:
Dr. Neal Pettigrew 34
Examination By:
Mr. Parker
50
Mr. Pelletier 51

Mr. Dill 53

Ms. Tourangeau 72

Ms. Tucker 77

Mr. Sanford 80

Mr. Pelletier 81

Mr. Duchesne 83, 85

Mr. Wood 84

Ms. Bertocci88

INDEX PAGE

INDE
Nordic:
Elizabeth Ransom 91
Adele Fiorillo 104

Tyler Parent 111

Lauren Walsh 119

Examination By:
Ms. Tucker127
Ms. Racine 192
Ms. Daniels 226
Ms. Callahan 228
Dr. Hopeck 241
Ms. Hallowell 245
Mr. Martin 248
Mr. Pelletier 254
Mr. Sanford 257,294
Mr. Draper 263
Ms. Lessard 265
Mr. Parker 270
Ms. Bertocci 273
Mr. Duchesne 276
Ms. Bensinger 286
Ms. Tourangeau 296

OPENING STATEMENT

GMRI :
Dr. Donald Perkins
Examination By:
Ms. Howe 314
Ms. Tucker 317
Ms. Racine 319
Mr. Draper 320
Mr. Pelletier 320
Mr. Sanford 321
Mr. Martin 322
MGL :
Kim Ervin Tucker 327
Paul Bernacki 337
David Black 353
Wayne Canning 362

Examination By:
Ms. Tourangeau 374
Ms. Lessard 406
The Fish Are Okay:
Diane Brabrook408

Dirk Faegre 410

Gef Flimlin413

TRANSCRIPT OF PROCEEDINGS

MR. DUCHESNE: Thank you for your promptness in sitting down. That saves us a good 15 seconds.

Good morning. I now call to order this session of the public hearing on Nordic Aquafarms' applications for Site Location of Development, Natural Resources Protection Act, Air Emissions and Waste Discharge permits.

My name is Robert Duchesne. I am a member of the Board of Environmental Protection and I am the Presiding Officer of the -- for today's hearing. Members of the Board here today are at the moment James Parker of Veazie, Steven Pelletier of Yarmouth, Rob Sanford of Gorham and of course myself. Other persons present are Peggy Bensinger, Assistant Attorney General and Counsel to the Board, Cindy Bertocci, the Board's Executive Analyst, Ruth Ann Burke, the Board's Administrative Assistant, Jerry Reid, the Commissioner of the Department and DEP staff Nick Livesay I believe is not here today, but Rob Mohlar is from DEP Water Quality, Dawn Hallowell and is, I believe in the back or will be, John Hopeck is here and Kevin Martin is here from the Department and Gregg Wood is here.

This is day two of the hearing. Today we
will begin with two witnesses on wastewaters then move to testimony from Nordic on wetlands. We're doing this out of order as an accommodation for people's schedules as I understand it and I appreciate your forbearance, so we're going to start with that as was on the schedule. And we plan to break at approximately 12:30 for lunch.

If there are -- if there are any members of the public here today that would like to ask a question of witnesses that you believe was not covered, you must submit your question to me in writing. Paper is available at the side table. I will review the question, make a determination as to its relevance and ask the question as time permits. The important piece of this is I need to receive your question while the panel is still up here while -during -- and I'll ask it at the time that the Board or Department may be asking questions and so I would ask you to put your writing -- your question in writing, bring it up to Ruth Ann up here, she will then submit it to me and I will probably look it over and decide if we can accommodate the question due to our -- whether it's redundant or pertinent and whether we have sufficient time and those will be the constraints, otherwise we'd just love to get all of

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
the questions in. If there are any members of the public -- let's see, when you do so, I would ask you just come up this way rather than block the doorways as well.

At this time, I ask that all persons testifying who have not already been sworn in, stand and raise their right hand. Do you affirm that the testimony you are about to give is the whole truth and nothing but the truth?
(Witnesses affirm)
MR. DUCHESNE: Thank you. Are there any questions before we begin? I will say that our proceedings are online. The website link is maine.gov/dep/bep.html and at the bottom of that page you'll find a link which will get you to the website for on-air audio. I realize anybody who is listening online and doesn't have that link can't get there, but if you have a friend at home, go ahead and call them.

And with that, I believe we can commence. Yes, and we begin with UNE's opening statement.

DR. CARRIE BYRON: Good morning, Presiding Officer Duchesne, members of the Board, it's my pleasure to be here with you today.

I'm an Assistant Professor of the Marine

Program at the University of New England.
MR. DUCHESNE: And for our listening audience, your name too, please.

AUDIENCE MEMBER: My name is Carrie Byron. Thank you.

MR. DUCHESNE: Okay.
DR. CARRIE BYRON: And I want to thank you for hearing my testimony on a schedule that allows me to honor my teaching obligations at UNE thank you.

I also hold an adjunct position at the University of Maine. I was trained in Marine Sciences and Coastal Resource Management as a National Science Foundation Coastal Institute Fellow at the University of Rhode Island where I received my Ph.D. in Environmental Science in 2010. For that work, I was awarded the Science, Technology, Engineering and Mathematics, or STEM award, for most outstanding university-wide STEM graduate degree of that year. As an undergraduate student, I majored in Zoology, Conservation Biology and Environmental Science.

As a faculty member at UNE, my teaching and research includes the areas of Marine Ecology, Marine Biology, Sustainable Aquaculture and Coastal Resource Management. My research focuses on sustainable
aquaculture and its multi-disciplinary ecological and technological interactions. I also focus on productivity of aquaculture in Maine and its ecological impacts. I have received multiple grants for my research and participated and have recently completed five year, $\$ 20$ million National Science Foundation aquaculture grant to the University of Maine conducted in partnership with the University of New England. This award funded my studies on carrying capacity of coastal marine aquaculture.

MR. DUCHESNE: Great. Thank you. And unless there is any questions on that, we can proceed right to your summary.

DR. CARRIE BYRON: Okay.
MR. DUCHESNE: Thank you.
DR. CARRIE BYRON: The written testimony that I have submitted summarizes my professional scientific opinions, which are based on the best available science to date on aquaculture and environmental issues arising from the proposals before you from Nordic Aquafarms.

As is common in my profession, my submitted written testimony was prepared in consultation with faculty peers and mentors at my institution, UNE. I will summarize my written testimony which covers four
major points. The first being recirculating aquaculture systems for salmon aquaculture, water use, discharge and, finally, escapees. In my expert opinion, the production system proposed by Nordic is best in class utilizing state-of-the-art technology to minimize environmental impact and produce sustainable proteins for human consumption.

So my first point, recirculating aquaculture systems. In terms of environmental impacts there are no better alternatives to salmon aquaculture production than land-based recirculating aquaculture systems. Other less sustainable options include moving into the ocean or less efficient land-based systems. I will acknowledge that ocean-based net pen technologies have advanced significantly over the past two decades, but ocean conditions are changing rapidly with accelerated warming and pollution. In addition, to build an ocean-based system that could produce equivalent scale production as that proposed by Nordic would result in user conflicts with Maine's existing industries in aquatic coastal zones. There is currently no preventing regimes for offshore aquaculture in Federal waters.

Another option is to examine other land-based systems. To be clear, these other types
of land-based systems are quite different than what Nordic has proposed and are quite impactful to the environment. An example is the U.S. production of rainbow trout, another salmonid species of about 50 million pounds per year, 75 percent of which is Idaho. Idaho trout are grown in flow-through concrete troughs with no recirculation. Wastewaters are discharged directly to the Snake River and the amount of water used in nitrogen discharge per pound of fish produced in this system are significantly higher than water use in discharge estimates provided by Nordic for their proposed recirculating aquaculture system.

Recirculating aquaculture systems meet the highest environmental and social standards in the world today. No other alternative salmonid production systems can make this claim. Recirculating aquaculture systems is certified as a best practice by multiple seafood certification bodies, including global GAPs, good aquaculture -agricultural practice, the Aquaculture Stewardship Council, Monterey Seafood Watch Program and the Global Aquaculture Alliance.

My second point is on water use. There is no 100 percent recirculating aquaculture system at
large scale. All recirculating aquaculture systems must exchange a small percentage of the rearing waters for optimum system's performance and for optimal fish health. The amount of water exchanged is usually 2 to 5 percent of the volume of the system and is dependent upon capital investments made in the most modern wastewater treatment technologies and the permitting structures of the jurisdiction in which the systems are located.

Nordic plans to discharge 7.7 million gallons of water per day, and that might seem like a lot of water, however, in comparison to other permits for land-based salmon aquaculture systems it is best in class. You need to consider the amount of water used per pound of salmonid production or production efficiencies. For comparison, the proposed permit of Nordic Aquafarms would use 39 gallons of water per pound of fish produced. This is at least an order of magnitude lower than that permitted for RAS by other U.S. states -- by another U.S. -- another U.S. state and two orders of magnitude lower than what is already permitted and existing at a RAS site in Maine.

From an oceanographic perspective, it is estimated that Penobscot Bay exchanges 2.6 trillion
gallons a day. The planned water use of 7.7 million gallons per day when compared to the bay's daily exchange rate is like that of a single drop of water in a 5 gallon bucket. At these proposed levels of discharge there are no anticipated impacts on bay-wide temperatures or salinities.

My third point on discharges. I first want to establish that aquaculture effluence are not concentrated waste in the same sense as sewage plant waste. Aquaculture effluence have much lower concentrations of total solids and nutrients due to the high degree of filtration and treatment that occurs, however, these effluence can still present environmental concerns when coming from older technologies such as flow-through troughs. After 40 years of research and development in recirculating aquaculture systems there have been significant advances in feeds and wastewater treatment systems that alleviate large scale impacts. At very significant capital and operating costs, Nordic plans to implement the latest advances in feed technology and waste treatment technologies.

Regarding feed, Nordic is at the forefront of sourcing the most sustainable feeds available in the world. Nordic plans to explore economically
viable alternatives to using fish oils and fish meals in their salmon feed to produce -- to improve its fish in, fish out ratios.

Regarding waste treatment systems, Nordic will have one of the world's most sophisticated aquaculture waste treatment systems that will employ state-of-the-art microfiltration screening of such small size that even bacteria will be removed. Nordic will have nitrification units similar to all other recirculating systems in the world today. Nitrification is the process of converting ammonia, a biologically unusable form of nitrogen to nitrate which can be easily taken up by plants, other plankton and other organisms. Nordic then goes beyond their standard technology, Nordic will also use a denitrification system. Denitrification is the process of converting that nitrate into nitrogen gas, a harmless discharge to the atmosphere. These two systems together will remove 85 percent of the total nitrogen, which would exceed any wastewater treatment system of its size in the State of Maine. For perspective, according to a 2011 study done by scientists at USGS, United States Geological Service, and the EPA, Environmental Protection Agency, that examine nutrient sources and transport mechanisms in

Penobscot Bay. They found 17.7 percent from developments, 11.6 percent from agriculture run-off and 4.3 percent from point source discharges. Nordic would add only 0.75 percent, that's less than 1 percent, to the point source discharge figure.

And finally, my fourth point on escapees.
This is really a non-issue. Escapement from
land-based salmonid farms is of no environmental concern. Nordic has 12 barriers in place between the fish grow-out facility and the environment and does not intend to use boats to transfer fish making escapement next to impossible. That concludes my oral testimony. Thank you.

MR. DUCHESNE: Thank you. I believe we can move right to cross-examination.

MS. HOWE: Good morning. Emily Howe from Drummond Woodsum some for Nordic Aquafarms.

MR. DUCHESNE: Try again.
MS. HOWE: Emily Howe, Drummond Woodsum for Nordic Aquafarms.

MR. DUCHESNE: Can everybody in back hear all right? No. If you could pull it a little closer. That should work.

MS. HOWE: Good now?
MR. DUCHESNE: Yes, thank you.

MS. HOWE: Okay. Emily Howe, Drummond Woodsum for Nordic Aquafarms. Dr. Byron, will Nordic's discharge impact the temperature of the bay?

DR. CARRIE BYRON: No. Nordic's discharge will not impact the temperature of the bay. As I said, Nordic intends on discharging 7.7 million gallons per day compared to an exchange rate of the bay of 2.6 trillion gallons a day. That's the equivalent of one drop of water in a 5 gallon bucket. So regardless of the temperature differential between that one drop of water and that 5 gallon bucket a single drop will not impact the temperature of that total volume.

MS. HOWE: And will Nordic's discharge change the salinity of the bay?

DR. CARRIE BYRON: No. Nordic's discharge will not change the salinity of the bay for the same reasons I just explained regarding temperature.

MS. HOWE: Okay. Are you familiar with the denitrification system Nordic plans to use?

DR. CARRIE BYRON: Yes, I am familiar with the denitrification system Nordic plans to use. It goes above and beyond any industry standards or regulatory expectations and it is considered to be a best in class practice.

MS. HOWE: So it's not standard in the industry.

DR. CARRIE BYRON: No, it's not. It's exceptional.

MS. HOWE: Are there better alternatives to large scale land-based aquaculture projects like this?

DR. CARRIE BYRON: No, there are no better alternatives to land-based salmon aquaculture. The state-of-the-art system that Nordic has designed is best in class and goes beyond any permitting requirements in place.

MS. HOWE: Thank you. That's all my questions.

MR. DUCHESNE: Thank you. We can now go to staff and Board questions. Oh, I beg your pardon, yes, we are allowing two questions, I believe.

MS. RACINE: Thank you very much.
MR. DUCHESNE: And we do appreciate the brevity. And, again, we have set a precedent to some extent with Ms. Daniels that intervenors will have some leniency even though they did not ask for time, but we'd like it to be respected for briefness. Thank you.

MS. RACINE: I appreciate that. I'll keep
it to the two questions. Good morning, Dr. Byron.
DR. CARRIE BYRON: Good morning.
MS. RACINE: My name is Kristin Racine and I'm representing Upstream and NVC here and, as I said, I have two questions for you. The first relates to in your December 11 pre-filed testimony you describe how Nordic will be employing state-of-the-art microfiltration screening of .02 to . 04 Micrometers. I was hoping you could clarify this for me because Nordic's MEPDES application and others who have filed testimony in this matter describe the use of a . 4 micron filter. In your opinion, is this a change in the permit application and an agreement that the . 4 micron filtration is not sufficient to protect against bacteria leaks let alone viruses?

DR. CARRIE BYRON: It's my understanding that Nordic is always striving to improve these technologies and these technologies are improving at a quite rapid pace. So, if anything, that filtration is getting smaller and finer to be able to take out smaller particles, smaller bacteria and so that's an improvement.

MS. RACINE: Do you know if that will be a design change because of a smaller filter and the amount of water that needs to be pumped through?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

DR. CARRIE BYRON: I'm sorry, you'll have to ask Nordic that question.

MS. RACINE: And the second question
pertains to you stated in your pre-filed testimony and several times today there are no better alternatives to this best in class RAS technology. Is it not true that certain recent advances in closed RAS and minimum zero discharge RAS being designed and operated in other parts of the U.S., Canada and the Middle East would actually have a much lower water to pound of fish ratio and would not require continuous water input from the ground and surface water sources?

DR. CARRIE BYRON: No. At the scale that Nordic is proposing you absolutely need to be able to utilize some fresh, new water in your system, again, to maintain healthy, clean production of the fish.

MS. RACINE: So the best in class ties into the scale of the project?

DR. CARRIE BYRON: Yes.
MS. RACINE: Thank you.
MR. DUCHESNE: Great. And I believe Ms. Daniels also has a quick follow-up. And I would apply the same rules, it needs to be brief and direct to the point.

MS. DANIELS: I'll do my best. Dr. Byron, you talked about the impact that what the fish are fed has to do with what actually is coming out in the effluent into the bay. And I've been following this issue pretty closely for a couple years here and I have to say that I don't have information yet with any specifics about what Nordic intends to feed the fish. Now, once again, I hear you testify that to cutting edge kinds of feed materials and ways to cut down on the fish meal and supplements, you know, for the Omega $3 s$ and whatever it is that salmon need. I'm no expert on this, but what exactly are the fish going to be fed and how can the DEP actually evaluate the effluent without having some indication of what the fish are going to be fed?

DR. CARRIE BYRON: I'm sorry, I can't speak on behalf of Nordic as to what they're going to be fed, but I can speak to how some alternatives for feed are better for the environment than other forms of feed. Moving away from fish-based protein would be what I would recommend in my expert opinion try and minimize of the fish-based feed to alleviate pressure on marine resources, marine forage fish.

MS. DANIELS: And are you aware of any sources of say insect meal or algae kinds of
additives to fish feed that are available in the quantity to feed 33,000 metric tons of fish at this point in time?

DR. CARRIE BYRON: Certainly moving to insect or bacterial-based sources of protein in feeds would absolutely be a best practice. These technologies are very young, very new and developing rapidly and it's my understanding that Nordic is comitted to following these advances and technology and using the best available technology possible.

MS. DANIELS: Comitted to following these things and using whatever is best available, thank you. And I do have one other comment with regards to soluble nitrogen. In their permit, Nordic does talk about a discharge of 1,600 pounds of soluble nitrogen per day into the bay and which is quite significant and as I understand there are no real guidelines at the DEP for soluble nitrogen at this time although the Legislature has asked for it to become a priority item to bring forward. So my understanding, 1,600 pounds of soluble nitrogen, well, I did a little bit of digging around at our wastewater in Belfast --

MS. TOURANGEAU: Objection. That's clearly testifying, not asking a question.

MR. DUCHESNE: I would agree. If you have a

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
question, it's a good time to ask it.
MS. DANIELS: Right. Right. Do you think that it would be all right to discharge 12 times the amount of discharge of soluble nitrogen into the bay every day that's currently happening from our wastewater treatment plant?

DR. CARRIE BYRON: That's current happening from your waste -- I'm sorry, I don't understand what you're getting at.

MS. DANIELS: The City of Belfast discharges 130 pounds of soluble nitrogen a day and Nordic is in -- predicts discharging 1,600 pounds. Is that -is that a value that alarms you at all?

DR. CARRIE BYRON: With the system that Nordic intends to put in place, no, I am not alarmed. Their systems go above and beyond anything that is regulated or enforced by regulations right now.

MS. DANIELS: So you're talking about the nitrification and the denitrification cycles that you talk about?

DR. CARRIE BYRON: Yes.
MS. DANIELS: Uh-huh. Okay. Thank you.
MR. DUCHESNE: Great. Thank you very much. We will now move to questions from the Board and staff. Yes, Mr. Pelletier.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MR. PELLETIER: Thanks. I appreciate a lot of the comments. A couple of them I'm not sure you'll be able to answer, but the first thing was in terms of temperature and it sounds as though the temperature that you're talking about here is kind of evaluated on a bay-wide kind of process just because of the volume of water in the bay, but there is still going to be at the outfall itself similar to a lot of places you'll see wastewater treatment plants that are along rivers and you'll see places where the ice doesn't freeze where the ducks congregate and I'm assuming there is going to be an area by that discharge point where there will be some sort of measurable impact. Do you have any comment about that?

DR. CARRIE BYRON: I really don't have a comment on that. I think -- I think the only thing that I can say is looking at ecosystem-wide function and productivity you need to look beyond just that immediate couple foot area where the outfall is. I think to me what's important is maintaining ecosystem function and so for that you need to look at a slightly larger scale than just a few feet or meters right at the outfall.

MR. PELLETIER: I'm totally on board with

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
what you're saying and absolutely agree, but then again is it a couple of feet or is it a couple hundred feet or is it a couple hundred yards or, you know, that's the kind of -- that's -- how big is that plume?

DR. CARRIE BYRON: What's that scale? I have not done that calculation, I'm sorry. I can't answer that exactly.

MR. PELLETIER: Thanks. And then -- and two other questions. I'm not sure you'll know, but I don't know who else to ask, but in terms of these screens that they're putting on and the difference between . 2 and. 02 , I'm assuming that would be a huge maintenance issue, you know, keeping those screens from clogging.

DR. CARRIE BYRON: I'm sorry, I am not the best person to answer that question.

MR. PELLETIER: I don't know who else to ask, but you know. And finally, I don't think you'll be able to do this one too, but there is a comment about these circular tanks versus oval tanks and bacterial buildup, any idea, you know, about how -whether -- that the, you know, these elongated oval tanks pose some sort of bacterial -- more bacterial than the round?

DR. CARRIE BYRON: The only thing I can say is bacterial like to adhere surfaces, so the more -the higher the surface area to volume ratio is like that provides for surface for bacteria to adhere to, but I can't imagine a circular versus oval shape has much to do with that --

MR. PELLETIER: Okay.
DR. CARRIE BYRON: -- in and of itself.
MR. PELLETIER: Thank you very much.
DR. CARRIE BYRON: Mmm Hmm.
MR. DUCHESNE: Thank you. I do have a question and I was a government major in college, so I learned nothing useful, but I did -- my way to an MBA later on I learned not to count on statistics, so I always look twice. And the idea that 2.6 trillion gallons a day sloshes back and forth in Penobscot Bay is probably true, but a lot of that sloshes out through Eggemoggin Reach, a lot of it sloshes down to the other end of Deere Isle and Stonington and only a portion of that washes into Belfast Bay, so we're really not talking about 2.6 trillion gallons if I understand correctly. When you look at Belfast Bay you've got it bounded a little bit by Sears Island on one side and Northport on the other side. It's a bit of a cul de sac, so we're not actually talking, I

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
think, about 2.6 trillion. The question the Board is going to have to deal with is with this plume of effluent how much effect is there going to be on the local area of Belfast Bay once you discard the areas that are probably not going to be affected, does that change your calculous much?

DR. CARRIE BYRON: I stand by my statement. Thank you.

MR. DUCHESNE: Thank you. Very helpful. Any -- yes, Mr. Sanford.

MR. SANFORD: So I live near Windham Correctional Center so escapees could be an issue for me.
(Laughter.)
MR. SANFORD: So are you saying that essentially escapees is a non-issue --

DR. CARRIE BYRON: I am.
MR. SANFORD: -- of this project?
DR. CARRIE BYRON: I am.
MR. SANFORD: Okay.
DR. CARRIE BYRON: Yes, escapees is not an issue for this project given the number of barriers that Nordic plans to have in place, you know, typically three barriers might be viewed as a lot and Nordic has 12 in place and they're not using boats to
transport fish, so these fish will never be near the ocean anyway. Where we've had situations of escapees at other farms it's typically because they're using boats to transport fish from offshore holding places or just moving them around between the ocean and the land and at those points escapees could be possible, but that's not a practice that Nordic intends to use.

MR. SANFORD: Okay. So following-up on escapees to the micro, micro level, do you see an issue with potential viruses because I realize that these screens can catch bacteria, but not viruses.

DR. CARRIE BYRON: So these screens are becoming so small that they're almost to the point where they could capture viruses. I would -- I might be going off on a limb right here a little bit, but I would expect in the upcoming years 5, 10 years that we will have that technology for these screens to actually capture viruses, but, yeah, right now we're at the level of capturing bacteria.

MR. SANFORD: Okay. Thank you.
MR. DUCHESNE: Any other questions from Board or staff? Seeing none, we thank you very much.

DR. CARRIE BYRON: Thank you.
MR. DUCHESNE: We have -- I'm sorry, we have recross and redirect -- or redirect and recross, so.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

There is nobody to ask, right. Rescue me.
MS. BENSINGER: Because there is no one to ask you redirect, if you have anything else you'd like to add in response to the questions or to clarify any of your answers on the questions now would be the time to do that.

DR. CARRIE BYRON: Thank you for the opportunity. I have nothing more to add.

MR. DUCHESNE: Great. Good. Thank you very much.

DR. CARRIE BYRON: Thank you.
MR. DUCHESNE: Oh, yes. If you could just hold a moment. Okay. We have a question from the public. Can you explain the increased risk to the health of the fish from using surface water and why aquifer water is used in most modern RAS facilities in use today?

DR. CARRIE BYRON: The question -- I'm trying to understand the question. The question --

DR. DUCHESNE: Yes.
DR. CARRIE BYRON: -- is assuming there is an increased risk to the fish?

MR. DUCHESNE: Using surface water instead of aquifer water.

DR. CARRIE BYRON: I'm sorry, I can't
comment on that. I'm not sure I fully understand the question and what that risk would be.

MR. DUCHESNE: Okay. Great. Well, thank you. I am not sure I can clarify it any better, so.

DR. CARRIE BYRON: Thank you.
MR. DUCHESNE: We can now move to Upstream Watch, I believe, with Dr. Pettigrew.

MS. RACINE: I just want to clarify, I think that we've already established that Mr. Gulezian is here as an accommodation and not going to be testifying.

MR. DUCHESNE: Yes.
MS. RACINE: Okay. Thank you.
MR. DUCHESNE: And also as you're setting up I did want to say on the record I appreciated Nordic's flexibility so far in allowing witnesses -or some of the intervenors a few extra questions even though time was not asked for. It's been a very welcome accommodation. Thank you. You may begin when ready, Mr. -- Dr. Pettigrew.

DR. NEAL PETTIGREW: Yeah. Hi. I'm Neal Pettigrew. I'm a Professor of Oceanography at the University of Maine. I was trained at -- at Woods Hole at MIT. I spent 10 years at the University of New Hampshire and almost the last -- almost the last

30 years at the University of Maine.
So I guess as some of you may know, I have been involved in a lot of ocean observing systems. One in the Gulf of Maine, which was at one time called GoMOOS. It's been going on for 10 -- for 20 years. I have another one that's been going on for close to 10 years down in the Caribbean region around Puerto Rico and the Virgin Islands. And I guess I -this should say -- actually, the first ocean observing system that was used anywhere as far as I know was actually in Penobscot Bay and that was the first, believe it or not, was the first buoys that were put in that used cell phones. In fact, it had the old bag phone and it was a very successful experiment, which led us on to doing other things around -- around the world. So I do have an experiment, which you may have seen some results of, not very many have been put a whole lot in my testimony. But we had four buoys that were kept within Penobscot Bay for about a year and we had another buoy just outside of Penobscot Bay trying to understand the exchange between the bay and also the -- the gulf -- the whole Gulf of Maine. And so those results are basically what I was trying to represent and -- and I want to try and understand
what the -- the modeling and so forth that was done by a Nathan Dill and how it was different from the kind of modeling that we preferred to have done in Penobscot Bay that would actually show what the circulation of the bay is.

Okay. So actually, the first thing I'd like to do if I could is have -- have Gary just read one statement that Mr. Gill had put in his -- in one of his testimonies and then I'd just like to comment on that and move on from there.

GARY GULEZIAN: And I'm Gary Gulezian and I'll be reading a paragraph from the MEPDEs permit application. This is Attachment 12 and it's on Page 7, which is a memorandum from Nathan Dill to Nordic Aquafarms on the results of his modeling. And here is the -- the quote. The information presented here is based entirely upon numerical modeling with limited knowledge of the in-situ conditions at the proposed outfall. It is important to understand that hydrodynamic modeling is not an exact science. As such, any predictions presented here should be considered only as estimates of the proposed dilution and plume behavior. Numerous assumptions and simplifications have been made in this analysis which contribute to significant uncertainty in the modeling
results. In general, these simplifications and assumptions are reasonably conservative such that errors would tend to overpredict negative impacts. However, it is also possible that predictive error could underestimate impacts, thus, it is recommended that a field data collection program be designed and implemented to provide site specific data for further analysis and to validate the accuracy of model results.

DR. NEAL PETTIGREW: Okay. So -- thank you. And I just want to say that I really agree with this statement by himself that we that -- we really need to worry about new data to understand --

MR. DUCHESNE: Yes, if we could push the microphone back.

DR. NEAL PETTIGREW: Oh, right, yeah. Basically, I want to say that I agree strongly with this statement that we really need to get data in the region in order to really understand what the situation is, how it acts, what the circulation of that region is like. And so I'd just like to say that I wanted to make comments that I was very surprised actually that a two-dimensional numerical model was used rather than a three-dimensional numerical model. The reason that this surprises me
is that the first thing is that it vertically averages the entire, you know, not just the circulation but the stratification, everything was vertically average, so you no longer can tell the difference between what's going on near the bottom, near the surface and in between.

The other thing that really concerned me was that there was -- that the forcing for his modeling left out most of the forcing of things that we normally can include in all of these models and basically just had the -- the Penobscot River forcing the flow and then the only other thing were just the tides, just have the tide coming in and out. And so the things that were left out -- the most important think that was left out actually is somewhat of a surprise and that is the exchange between Penobscot Bay and particularly the coastal current and the Penobscot Bay. It turns out that from the work we had done and things we had even seen from satellites we found out that the flow into Penobscot Bay completely is much more important than all of the flow coming out of the river, okay. The circulation is really -- is really driven primarily in the lower part of the bay by the flow from the eastern Maine coastal current that turns into shore. So the
circulation is quite complex. It's not like a typical estuary, okay. So you can imagine what would happen if you -- if you leave that out and, in fact, didn't even include wind. We know that wind makes a big change the circulation. Where is that stuff -in the water that you're going to be pumping in there, where is it going to go, okay. I would assume that people would like to know actually where it goes.

So the way to set up a model is you have only one thing, you have -- because of the water from the river coming out. So basically, as you know from estuaries what happens is you've got this river water coming towards the -- towards the ocean and then there is some entrainment of the -- of the silt water that's -- I mean, the salty water that's beneath it that gets dragged with it, so some flow has to be coming back in at a greater depth, which has the salty water coming back in. However, the net flow, if you vertically integrate over that the net flow is just the water coming out of the river, okay. It all comes offshore. And so the model shows that all of the flow in Penobscot Bay -- the model that he uses shows that all of the models in Penobscot Bay is going south.

Okay. So the actual circulation is quite different. The -- for instance, on the -- on the west side of Islesboro there is more flow going north at depth than the fresher water going south at the surface. And by at the surface, I mean by just the upper couple of meters. All of the rest of the flow is heading north there. If you go to the other side of Islesboro you've got the -- you've got more of the -- of the river water coming out. Then you also have flow coming in near the bottom, but in general on that side if you were to vertically average the net flow is, in fact, to the south, okay. If you go down to Vinalhaven there is a lot more flow coming in from offshore off of the -- off of the bay -- I mean, off of the -- in the gulf into the bay. And if you go to the other side there is more water coming out of the east side of Vinalhaven.

So right where they're talking about this -this water that they're going to be dumping in there I would assume that they would like to know where it's headed, right. And if you -- if you just talk about the tides what actually happens is it just goes back and forth, okay. It's the net flow or the mean flow that really counts where this stuff is going to go. So the tides, as you probably know, has -- there
is a tidal excursion length, right, and -- and actually the tidal excursion length in that region is only about a kilometer and so that water is just staying right there going back and forth and the only thing that is going to move it is the mean flow and which down near the -- you know, down -- and most of the water column is all heading north. Some of it will probably actually even manage to go up the river for some distance.

So that is one of the main situations that I think we would prefer to have a regular three-dimensional model with all of the forcing that goes in there. And, in fact, one was done by Huijie Xue and others years ago, I forget exactly when it was, but it would have been probably right around 2000 or something like that and that does, in fact, show that the flow is going clockwise around Islesboro. It's -- at the surface it's true that most of the time it is going south, but if you integrate it or average it from the bottom up on the west side it's -- it's going north, so that's where this water is going to really go. Some of it will hang -- possibly hang around in -- in Belfast Bay area for a while, some of it will turn around and come back down then start heading go out. We would
like to know how long it's going to stay in the Gulf of Maine before it finally exits and those kinds of things are not done by the type of modeling that was used. The whole model seems to suggest to me that -the whole approach seemed to suggests that you would think that it's going out pretty fast, so he chose a value for the -- for the water -- the fresh water basically coming out of the river or the flow coming out of the river and they used the largest part of the range, which is more than twice as much as the low end of the range. So they used the strongest flow and so what you would think is there is a lot of flow, it's not going to stay very long and it's going to -- it's going to go out into Penobscot -- out into the Gulf of Maine.

So I really think that I would like to see -- I agree with what they said, but I would like to see an experiment done for that region that really allows us to know better. Where was my buoy? It's far south on that west side of Islesboro not up where this -- where this project is going to be run. It would be -- it would be -- I think -- I guess the main point that I'm trying to make is we really need a baseline for this region if we want to understand how well this system will work out there and how to

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
see what changes, if any, have occurred. We need to make a baseline in that region and so that's what I'm -- that I'm hoping happens.

With regard to the other model that was introduced had called CORMIX, I think. I really don't know the details and haven't had the time to actually go in there and -- and look at that, but the basic -- I think it's important to remember the basic idea is they put these, oh, what's the right word, now I'm forgetting it, rather than just putting it out the end of this pipe they're putting on these diffusers, okay. And so the diffusers -- what do the diffusers do? Well, what the diffusers do, they -they get a lot of mixing between what they're pumping in there and what was already in there very fast, very soon right as it always comes out. And so they keep saying that the density of the water that's going in is -- so that it's going to rise and then they worry about, and they should, worry about the fact that up near the surface it's stratified and therefore sometimes at least they're admitting it will not mix it all the way to the surface. If it doesn't, it's going to stay down in the area that is on average going north.

So the idea that they -- using the density
of what they put in and assuming that it's going to come all the way to the surface is not very realistic because most of the mixing or the turbulence that happens is happening right there. So its density is going to become similar to the density of the bottom water and so we don't know how far out -- how far it's going to be able to rise anyway. So that whole idea, I think, I just -- to be perfectly honest, I would like to be able to talk to Mr. Dill about these things rather than having to come to hearing and say these kind of things, so maybe that's a possibility. I would like to help them make plans for the kinds of work that should be done out there to understand the whole system. And then I imagine there is a lot of questions that people are going to be asking and I don't know if I've already spoken too long, but I just got started.

MR. DUCHESNE: As long as you keep speaking effectively, I think you're in good shape.

DR. NEAL PETTIGREW: I guess, for instance, one of the things that worried me was they were talking about tide, you know, they were very into the tides because I think the tidal currents, of course, are stronger than the mean flow especially down deep and they thought that was what was going to do the,
you know, essentially the mixing to get to this thing -- they call it dilution rather than fusion, but it's the same idea. And so they -- so what they did is they told us how strong they thought it was -what it was, it was like 10 centimeters per second, okay. And they're using a steady state model, all right, so they're saying it's got this constant value and that's what it is it and they make a calculation of how much of that mixing occurs.

So first of all, from the model -- from the buoy that I it had in there for a whole year down south where -- where it was narrower and there was a little bit of funneling going on where it should have been stronger it was only 15, not 20, okay. I expected it would be even weaker when you get up around Belfast. It turns out there that was some work done recently and, let's see if I can remember how to say that guy's name, Fandel. He did a measurement and he said that the currents were between 5 and 10, okay. So now we're down to 5 and 10, so if you take the middle value of that like 7 1/2, that tells you -- you can -- you can kind of get an idea that it's a lot smaller. Now, so 7 1/2 relative to 20, that's a big difference, but it gets even stronger than that because that's the -- that's
the amplitude of the tides. That's the maximum tidal current you're going to have and that only happens, you know, twice in a -- and the rest -- half of the time it's zero and half of the time it's -- it's averaging to be about $21 / 2$. So you have to -- you can't just take that value -- this constant value and stick it in and try to expect to understand how this is going to wind up mixing everything, so what you have to do is you have to -- you have to use really what we call the root means square.

Now, what does that mean? It means because, if I can find this for you, roughly for them it means that the average is not halfway between those, so you don't have to divide by 2, you divide by the square root of 2 to get the right answer, so it knocks it down to about a third. So now all of a sudden we're down to 5 meters per second instead of 20 , so it's getting smaller. In addition, when you're -- when you're discharging near the bottom you can expect that the currents right down near the bottom where a lot of this mixing is going to happen very quickly basically, you know, because of the -- the friction down near the bottom it will get even smaller than that. So it is an order of magnitude less really by the time you're done than it was in their -- in their
assumption that you could expect 20 centimeters per second essentially all of the time.

MS. TOURANGEAU: I'm sorry to interject. At this point, the discussion of CORMIX was not in the pre-filed direct testimony and I have allowed this to go on for five minutes, but at this point I am going to have to object.

DR. NEAL PETTIGREW: Okay.
MR. DUCHESNE: All right. Yes, I think you're -- it's probably correct that it is beyond the scope of what has been pre-filed --

DR. NEAL PETTIGREW: Okay.
MR. DUCHESNE: -- and what... The -- the cross-examination might be ready to cover.

DR. NEAL PETTIGREW: Yeah.
MR. DUCHESNE: I think if we can stick closer to what's currently your testimony that would be great.

DR. NEAL PETTIGREW: Okay. So I guess I've certainly talked too long and I, you know, I didn't even bring the notes that I expected to bring today, so I'm just chatting and I just --

MR. DUCHESNE: I guess my question is is this going to be on the exam?
(Laughter.)

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

DR. NEAL PETTIGREW: For some people, but no one here. So I guess I'll just call it quits then and ask for questions.

MR. DUCHESNE: Great. And I believe we go right to cross-examination from Nordic, so.

MS. TOURANGEAU: So given Dr. Pettigrew's request to have a conversation with Mr. Dill, I thought it would be appropriate to do that. So Mr. Dill is going to come up and have a chat with you.

DR. NEAL PETTIGREW: Right now?
MS. TOURANGEAU: Yeah.
DR. NEAL PETTIGREW: Oh, okay.
MS. TOURANGEAU: And I'm going to waive my cross-exam time and allow Mr. Dill to do it instead.

DR. NEAL PETTIGREW: Okay. Yeah, he can -he can ask the questions, but having just a conversation right here is, I don't think, as useful as what I hope we can have which is a conversation in the future.

MR. DUCHESNE: I think we can entertain a preliminary discussion. I think that would be more useful than cross-examination and very enlightening for the Board. We don't want to -- Miss Racine?

MS. RACINE: No, that's fine. I was just --
might I have just two minutes to speak with Dr. Pettigrew for a moment?

MR. DUCHESNE: Sure.
MS. RACINE: Okay. Is that all right?
MR. DUCHESNE: Yeah, five minute break,
please.
MS. RACINE: All right. Thank you so much.
(Break.)
MR. DUCHESNE: Well, thank you. I'll call this back to order now. It's kind of exciting because it's a little bit different than how a Board hearing would normally go. Three of us haven't been on the Board a year, one of us has never presided as an officer on any of this before, so this is all new grounds for me. Things I want to be cautious about, by enlarge we're supposed to be sticking to the pre-filed testimony because all parties have had a chance to review that. Second of all, it's not an opportunity to re-engineer the project. What we're actually doing is examining the application, see where it might be deficient, see what this Board may want to make for our recommendations, et cetera, so there was those limits. And the last thing is it has to be in English so we understand what you're talking
about. And with that in mind, you can go ahead and proceed.

MR. DILL: I guess I --
MR. DUCHESNE: Oops, I'm sorry.
MR. PARKER: I want to ask Mr. Pettigrew a question that maybe they can address, the two of them, while they're the discussing this.

MR. DUCHESNE: Yes, we have a quick question to help set up your discussion from Mr. Parker.

MR. PARKER: I'm not sure it's a quick question, but I'll try to make it quick.

MR. DUCHESNE: Yes, he doesn't actually --
MR. PARKER: Maybe you guys can address this while you're trying to work on something together. But I was quite interested to note that Dr. Byron quoted the volume of the bay but was not willing to get into a discussion about how much water is where and how it moves because when Mr. Pettigrew looked at this he said, well, we've got this water moving around the island, we've got it moving out in different areas, but nobody has addressed the amount of water coming into the bay not from tidal action. The stream itself, okay, that's adjacent to this project puts in 22 million gallons a day. I am sure the Passagassawakeag River puts a lot of water in.

I'm sure the runoff from the shore puts a lot of water in. So you've got -- you don't have a basin sitting there with just what water is in it circulating around, you've got all kinds of additional water coming in and the water coming into that bay above and beyond what this 7 million gallons is a tremendous amount of water and that has to be taken into account if someone is going to try to consider dilution factors and movement occurrence and all that stuff. So I commented Dr. Byron for not getting into a discussion of that because none of that information was provided to anyone. There is a basin out there that holds a certain amount of water and it flushes from certain areas, but it's in-fed every single day from multiple sources.

MR. DUCHESNE: Okay. So we do have that question? And just another set up for the conversation if we can, I think Mr. Pelletier has a question to enable your conversation and then we will get to in-depth questions from Board and staff after we get through this session.

MR. PELLETIER: And I appreciate the indulgence. Just a follow-up on Mr. Parker's question because that's -- putting this in scope and scale is important. And when you're saying the bay
we've -- we've talked about Penobscot Bay, but we've also talked about Belfast Bay and Dr. Pettigrew was also taking about the Gulf of Maine. So I'm not sure how far out there, but in particular Belfast Bay, Rockland Bay -- I mean, Penobscot Bay and then beyond, so just some perspective of location. Thank you.

MR. DUCHESNE: And Ms. Tourangeau.
MS. TOURANGEAU: May I interject just for a second too kind of on the schedule. And I know that Presiding Officer Duchesne said this earlier, but we are taking some of these wastewater witnesses like Dr. Byron and Dr. Pettigrew out of order in order to accommodate scheduling issues and some of these issues when Mr. Dill does testify towards the end will be addressed. And I'm sure it seems a little weird to be doing it this way, but that's part of the reason why you don't have some of the information that you're looking for. It's coming.

MR. DUCHESNE: Wonderful comment. Thank you. Very helpful. And you may proceed.

DR. NEAL PETTIGREW: I am not quite sure where we stand.
(Laughter.)
NATHAN DILL: I was thinking I should

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857
probably introduce myself. So my name is Nathan Dill. I work with Ransom Consulting on behalf of Nordic Aquafarms. I'm a civil coastal engineer. I have a background in --

MS. DOSTIE: Nathan Dill --
NATHAN DILL: Yes.
MS. DOSTIE: -- I don't think your
microphone is on.
NATHAN DILL: Oh, I'm sorry. So I'll start over again. I guess I won't get into a big long introduction because I can do that tomorrow. So my name is Nathan Dill. I'm with Ransom Consulting on behalf of Nordic Aquafarms and I -- this was a little bit unexpected, so I wasn't quite prepared for this, but.

I guess if -- if I could -- if I could start the conversation --

DR. NEAL PETTIGREW: Yes.
NATHAN DILL: -- I'll just go back to the initial quote that you had read out of my -- my memo, which I believe that was a member that was on the -on the CORMIX modeling, the near-field analysis. And -- and I think that, you know, there is sort of a general statement in there about, you know, numerical modeling, you know, is not an exact science, it's
only going to provide you an estimate and I just -- I think that, you know, I think you'd agree with me that all models whether it's a CORMIX model, a 2D ADCIRC model or a three-dimensional FVCOM model or some other three-dimensional they've all suffered that same problem of they're not -- they're not really able to -- they're not reality, they're just an approximation of reality and they all have this challenge of how do you demonstrate that this model is -- is approximating reality well enough and that requires you to go out and collect data and -- and, you know, run the model, deal with all of the, you know, potential issues with trying to develop and run these models can be a challenge but then also show that model is able to be produced from actual observations.

DR. NEAL PETTIGREW: I would agree 100 percent with what you just said. And, for instance, the Princeton model that we used years ago down there, we used it exactly that way. The three-dimensional model had every kind of forcing that you could imagine, heat, you know, heat and all of the flow coming in from offshore and all that kind of stuff and how was it used, how do we make sure it was being reasonable. And the answer was we had two

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
buoys at that time down near Vinalhaven, one on each side, and so the model was basically, you know, we made sure that the model agreed with the flow, that was -- that was there. And that flow was unexpected by everybody. Nobody expected there was so much water coming into Penobscot Bay and that's kind of going around and coming back out the other side of the island. So, yeah, I would agree it's -- you can think of it as a dynamic interpolator really. I mean, that's really what it does. I mean, you know what it is where you have made measurements, you don't know what it is between, so rather than just doing a straight line between them you use dynamics to try and get a better picture of what's between the two points or the five points or whatever that you know. So, yeah, they're much more powerful at doing that than we are but it's just a tool.

NATHAN DILL: And so the -- when I first started looking at this, you know, one of the -- one of the things I had to, you know, had to figure out what, you know, what the field is, how are we going to approach this problem and you look at what the regulations are and it essentially, you know, suggests that you use this model CORMIX, which CORMIX is a -- is not a -- not sort of a discreditizing
numerical model so much as it is a three-dimensional solver that gives, you know, that uses different models to -- I'm not sure how familiar you are with the CORMIX, but it's really designed to be applied in an application for wastewater discharge and -- and it's -- and it looks at -- it looks at how the discharge is going to behave when -- when that -right from when that water is ejected into the water column until it -- until it, you know, goes through a sort of transformation where the momentum of the velocity of the water coming out is kind of stirring up the water around, mixing it together and it looks at, you know, the effects of the buoyancy and the plume, you know, in this case it's -- it's fresh water so it's -- it's fresher water than the water that is -- that is around there just about all of the time, I believe it will be all of the time and so it's going to rise and that will usually dominate over temperature differences when it's potentially colder in the -- in the summertime the discharge would be colder than the -- the -- but so that -that model was kind of the first thing we looked at and one -- one of the difficulties of that model although it's well-established as sort of the model to -- to look at how, you know, how you're going to
dilute water from a discharge like this is that it's a steady state model, so it only kind of considers the current moving in one direction.

MR. DUCHESNE: May I just briefly --
NATHAN DILL: Yes.
MR. DUCHESNE: -- interrupt? There is a lot of testimony type discussion --

NATHAN DILL: Yes.
MR. DUCHESNE: -- and I just need to check and see if you've actually been sworn in as a witness just to make sure we have a --

NATHAN DILL: Oh, no, not yet.
MR. DUCHESNE: So have you -- have you been sworn in?

MS. RACINE: Not yet that.
MR. DUCHESNE: Do you affirm that the testimony that you are about to give is the whole truth and nothing but the truth?

NATHAN DILL: Yes, I do.
MR. DUCHESNE: Thank you. And, again, as much as possible asking questions of the witness -the benefit of this is it's much better to have a qualified scientist asking a question in cross-examination than an attorney. And no offense to the attorney.

MS. TOURANGEAU: I agree.
MR. DUCHESNE: But you're on solid ground here, but I would like to try to keep it as much as possible to questions about some of his testimony that was both pre-filed and also as it pertains to the application.

NATHAN DILL: So I did try to scribble down some questions while Dr. Pettigrew was testifying so maybe I'll just ask them.

DR. NEAL PETTIGREW: Okay.
NATHAN DILL: You know, I guess, you know, were you aware that the CORMIX model is a 3D model and that it looks at the three-dimensional behavior of the discharge?

DR. NEAL PETTIGREW: I had the --
NATHAN DILL: Oh, go ahead. Keep going.
DR. NEAL PETTIGREW: Yeah, as I -- I -- as I have said -- well, maybe I didn't. Yeah, I know very little about the CORMIX model. I know very little about it. I haven't -- I haven't looked into it and so forth. I knew it was a -- that it was a steady state and -- and I wasn't even sure that it was three-dimensional.

NATHAN DILL: Yeah, it does give -- it gives you a three-dimensional picture of what the plume
looks like. And the -- the challenge with it that I tried to point out in the -- in the memo that went to Nordic Aquafarms in it's -- in the -- in the permit application is that it -- it is a -- the problem with CORMIX in a tidal environment is it's a steady state model, so it just -- it just looks at the flow going one way constantly. So you've got -- you've got this, you know, water that's being discharged into a column of water that's essentially moving, you know, in one direction and -- and the challenge with that is in a tidal environment the water actually -- the speeds change and the water may come back and so when that water comes back you've got some of the diluted water still in that water that's moving back.

DR. NEAL PETTIGREW: Absolutely.
NATHAN DILL: And so -- and so -- so what can happen is if you just apply CORMIX to situations like this is it may underestimate what the concentrations are or what the actual dilution is after you had many tidal sessions going back and forth. And so we went to the --

MR. DUCHESNE: So I'm sort of looking for the question here.

NATHAN DILL: Right. Okay. I'll keep going on to the questions. So -- all right. So I guess
would you agree with me that the -- that the currents that are driven by sort of the eastern Maine coastal current that are, you know, driving additional current in addition to the -- to the tidal current would actually be an additive effects -- it would have an additive effect on the instantaneous current at a specific time?

DR. NEAL PETTIGREW: Well, I guess the answer is yes. It's -- it has more effect when you're down in the southern part of the bay. We -but when we put our buoys in there we found out that we still had flow coming in even with drifters that we put in and they weren't drifters at the surface. The drifters were droves that are down at some depth and, yes, so the flow does --

NATHAN DILL: Is that even -- even on an ebbing tide? Or is that a -- is that like highly averaged flow?

DR. NEAL PETTIGREW: It can -- well, some of the flow coming in is about the same size as the tide, yeah, but basically, you know, from our point of view when you care about where stuff is going it's not going due to the tides. The tide is just going back and forth and, like I said, for the size of the tidal current it's not going very far. It's going,
you know, a kilometer or something like that. The real flow is the mean flow.

NATHAN DILL: So is -- so I guess if the ADCIRC model, which we've developed, it doesn't include that current. It also doesn't include wind force.

DR. NEAL PETTIGREW: Exactly.
NATHAN DILL: It's essentially just simulating the tide going back and forth.

DR. NEAL PETTIGREW: Yes.
NATHAN DILL: So what's that going to do to an estimate of the dilution compared to a model that may actually have an additional current that has been providing a larger circulation around Islesboro? If I look at how the -- how the water is going to disperse, you know, throughout the bay.

DR. NEAL PETTIGREW: I am not sure if I understood the question, but let me try to answer it. If you, you know, it's actually -- you have this small little tidal excursion --

NATHAN DILL: Mmm Hmm.
DR. NEAL PETTIGREW: -- and so that water from the tides it just stays in that same area and you just keep adding stuff to it over and over if there weren't any mean flow. Now, the mean flow is
going to move it somewhere else. Some of it may go over towards the -- towards Belfast Bay, harbor or bay, whatever you call it, some of it might go around. So in other words, if it was really going south the way -- the way your model seems to think it is, it -- it would wind up going out a lot faster than -- than it does now because it's -- some of it might go up the river, some of it will go around the other side and come down and so you're going to have more of it in Penobscot Bay than you would have if it just headed south, but I'm not sure if that's what you're asking.

NATHAN DILL: Well, I -- yeah, so it's not exactly because it's not so much -- what I'm not so much -- we're not so much interested from the impacts perspective and where it's going but more how much is diluted, so. So if it's -- if it's going back and forth -- we have many models saying it's going back and forth and may be traveling slowly with the river discharge that -- that's pushing it and I would -- I would -- you haven't seen the full model results --

DR. NEAL PETTIGREW: No.
NATHAN DILL: -- so the ADCIRC model does
actually show that if you get closer to Islesboro the current goes north just from the tidal --

MR. DUCHESNE: Yeah, would you be able to come back and cross-examine --

NATHAN DILL: -- circulating -- yeah, sorry.
MR. DUCHESNE: Would you be available to come back tomorrow and cross-examine Mr. Dill?

DR. NEAL PETTIGREW: I have -- I have -- I teach tomorrow, so I can't.

MR. DUCHESNE: Oh, no. It would have been very enlightening. I do want to as much as possible move forward with questions.

NATHAN DILL: Ask questions. Okay. So I guess what I'm getting at is would you agree with me that adding additional forcing that's going to drive non-tidal currents in the model are going to tend to disperse the, you know, if the -- from a particle tracking respect use particle tracking to represent where the discharge is going to go, if I add additional currents that are non-tidal that they would tend to disperse that -- those particles more throughout the -- the bay. They may -- they may end up going north some, but other times they're going to go south and so that is, you know. Sorry, if that's a question.

DR. NEAL PETTIGREW: Well, I guess it's a hard -- it's a hard answer. I don't really
understand the question, but, yeah, if you can -- if you can say there are events going on and it's generally going north but sometimes it goes south with a wind event or something like that, so, yeah, then it's sort of like you've taken the tidal excursion and extended it a little bit, so that's true that would happen. But, you know, when it spends a while going south and then spends a while going north, I just think that -- I don't know exactly how fast you thought it was going south, whatever the model shows the strongest --

NATHAN DILL: Well, I think if you look -if you look at the ADCIRC model results and I know it's hard to show certain animation of what the tidal excursion looks like, but if you -- I don't know, I guess I'm testifying more than making a question here, but.

DR. NEAL PETTIGREW: Yup.
NATHAN DILL: But the -- your -- the tidal excursion from the ADCIRC model even though it's a two-dimensional model, I guess, would you agree that it's able to -- to simulate conservation of mass in such a way that the tidal excursion that comes out of the model if the -- it's getting the water level right, that in order to get those water levels right
and it's conserving mass that that is going to essentially give you an accurate representation of the tidal excursion.

DR. NEAL PETTIGREW: Well, I certainly am not going to say no because I really don't understand your model very well. The only thing that I thought was that you had -- that you had south flow that was much stronger than we really expected and therefore you're moving it out of a region a lot whereas if it was weaker and it stayed in the region then you would keep adding stuff to the same area of the tidal, so.

NATHAN DILL: Okay. All right. But you don't -- would you agree with me that you don't really know -- and I don't think it's necessarily been reported what exactly the average flow rate coming out of the ADCIRC model is --

DR. NEAL PETTIGREW: No, I don't know. NATHAN DILL: -- compared to what may have come from the POM model or other modeling.

DR. NEAL PETTIGREW: Correct. I don't know.
NATHAN DILL: I think just to change the questions a little bit -- line of questioning a little bit, so are you aware there is other discharges in Penobscot Bay that are discharging nitrogen and nutrients and other things?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

DR. NEAL PETTIGREW: Sure.
NATHAN DILL: Do you know if any of them that have applied the three-dimensional circulation model or even a two-dimensional circulation model to evaluate the -- what's going to happen with those nutrients?

DR. NEAL PETTIGREW: I believe Passagassawakeag River was included in the POM model.

NATHAN DILL: Mmm Hmm.
DR. NEAL PETTIGREW: I'm not sure. I don't remember any others in particular.

NATHAN DILL: I guess I'm not asking about fresh water inflow, I'm asking about wastewater discharges.

DR. NEAL PETTIGREW: No, I have -- no, I have no knowledge of that.

NATHAN DILL: So would you agree with me that applying all these dimensional bay-wide models is kind of going above and beyond what has been done for other wastewater discharges in the bay?

DR. NEAL PETTIGREW: I would -- I would agree, yes.

NATHAN DILL: Yeah, me too. (Laughter.)

MR. DUCHESNE: Thank you. You can continue
in a moment. I just want to say what's valuable to us is one of the things the Board is going to have to wrestle with is what is the actual result of this kind of discharge and because what we heard from the public last night is the same concern that's being echoed here. Is it dispersing so fast that we see negligible effects or does it collect somehow and create unintended effects that we're not aware of. That's probably going to end up being a key point of discussion within the Board as we deliberate, so the clearer we are on it the better. Furthermore, and Mr. Dill will have an opportunity to later testify and be cross-examined, et cetera, so we don't have to get too far in the weeds on -- on his modeling. I think what we do need to do with the questions is your testimony and -- and his reaction to it and the type of questions that would be asked by counsel. So we can finish up.

NATHAN DILL: I guess the question -another question I have is just are you aware that -that the -- there will be, you know, additional data collected and monitoring going forward that will be able to provide more -- more actual, you know, in-situ data in this location --

DR. NEAL PETTIGREW: Well, obviously --

NATHAN DILL: -- before the --
DR. NEAL PETTIGREW: Yup. Sorry.
NATHAN DILL: -- before the plant has sort of ramped up to it's full capacity?

DR. NEAL PETTIGREW: Yeah, I did -- I did read that and I said I'm really pleased about that more data is going to be collected. The question that I always worry about is like who is going to be collecting the data. It is it somebody with the company and do they just tell you what they want you to hear that -- that looks good for them or is it somebody who is going to be sort of just interested in what's really happening in that region. And so that's -- that's the issue. That's why I would like to have discussions and try and help design things like this. Basically just keep saying, you know, we really need this baseline. We don't have a good baseline right now and when just make -- when you make measurements for a few days in the -- in the summer season or all of the seasons it doesn't really mean you know what it's like throughout the season, that's why I like the idea of having a continuous model for about a year so you see all of the seasons. You see all -- that doesn't mean the next year is going to be just like it, but at least gives you a
start. And if I were the company, which I'm not, but, I mean, it's a question of whether are you going to do this only after you've already started building so you're already making changes to the -- to the local region and you're saying that, well, it's only partially being operated right now not a full bore, but -- but you're already putting them in before you've had a chance to make a decision is this a good place, is this enough -- is this too much water, is it not -- or can we do a lot more water than this, we don't know, you know, I certainly don't know the answer to that. I don't know if the company does either.

NATHAN DILL: One more question. Are you familiar with the Penobscot Bay oil spill study that was done by Normandeau for the Department of Environmental Protection and published in -- or reported in 1978?

MS. RACINE: I -- I would object to this as a bit outside the scope of direct, but, I mean.

NATHAN DILL: Well, I -- I just -- if I could --

MR. DUCHESNE: It's borderline, but I'll allow it.

MS. RACINE: Okay.

MR. DUCHESNE: Thank you.
NATHAN DILL: I'm just getting to the testimony regarding the -- the full season. So are you aware that that report provides information from a data that was collected throughout an entire year since 1975 including stratification and data measurements in -- in Belfast Bay?

DR. NEAL PETTIGREW: So that was data that was gathered in real time, so every hour or whatever you get data from the whole year; is that correct?

NATHAN DILL: I -- I -- no, there were not -- there was not a full year of time series recorded, but there were samples and -- and measurements during -- during different time periods ranging throughout the year during different seasons.

DR. NEAL PETTIGREW: I -- I have a vague memory of that. Like you said, it was a long time ago even for me. But -- but the point that I am -that I always make is just having little times when you -- you looked at it here and you looked at it there, we have big changes, as you know. There are a lot of changes that happen and when you were there may or may not have been something that was really typical for that particular -- that particular month or that particular season, so that's why I am in
favor of something that's continuous.
MR. DUCHESNE: Thank you. That's why I allowed the question to get to the point of what kind of measurements do we need to have and over what time period in order to have a better idea of how this whole system works, so I appreciate that.

NATHAN DILL: Just if I could follow-up with that.

MR. DUCHESNE: Briefly.
NATHAN DILL: Are you aware that that data does provide a range of conditions in terms of temperature at depth and the stratification and that -- that information from that report giving that range of stratification throughout the different seasons -- was used to provide the --

MS. RACINE: Objection. I --
NATHAN DILL: -- in the CORMIX modeling?
MS. RACINE: Objection.
MR. DUCHESNE: I'll entertain the objection. I think you're probably going to be sustained on this, but go ahead.

MS. RACINE: Objection. I believe he is more testifying as to someone's opinion about the contents of the report than asking a question about it.

MR. DUCHESNE: Yes, and more to the point, I think this is way outside of any pre-filed testimony.

MS. RACINE: I agree.
MR. DUCHESNE: So the discussion has been effective.

DR. NEAL PETTIGREW: We'll talk about that later.

MR. DUCHESNE: You should have a very entertaining phone call. I do want to check with Miss Tourangeau to see if there is any additional questions that you would like to ask Dr. Pettigrew.

MS. TOURANGEAU: I'll do a couple.
NATHAN DILL: Okay.
MR. DUCHESNE: Okay. Great. Thank you, Mr. Dill.

MS. TOURANGEAU: Good morning.
DR. NEAL PETTIGREW: Good morning.
MS. TOURANGEAU: I'm just going to ask a couple, two probably, questions.

DR. NEAL PETTIGREW: Okay.
MS. TOURANGEAU: So overall you think the best approach would be a year long science experiment to figure out what's going on in the bay?

DR. NEAL PETTIGREW: Yes.
MS. TOURANGEAU: Okay. Assuming that's not
required, would modeling be an acceptable mechanism for determining impacts at the outfall?

DR. NEAL PETTIGREW: Well, I mean, modeling is used by a lot of people rather than actually -actually making actual measurements so you can really tell what's going on, so it's -- it's cheaper and that's why people do that, but me, personally, no, I don't believe that use -- that's not enough. In fact, the models have to be calibrated by the actual data that's existing and data that that's going on in real time is the easiest way to do that.

MS. TOURANGEAU: So there is no alternative in your opinion to doing a full on science experiment that is by modeling? That's -- modeling just is not an adequate substitute in your opinion?

DR. NEAL PETTIGREW: In my opinion, yes, that's correct.

MS. TOURANGEAU: Okay. So a combination of CORMIX, which is 3D modeling, ADCIRC and Maureparticle tracking is not an acceptable modeling regime for you?

DR. NEAL PETTIGREW: No. I mean -- I mean, how did we do -- when we did an experiment 20 , almost -- well, it was more than 20 years ago, what did we do? We had real time data making measurements
at multiple depths. We measured all of the, you know, the temperature, the salinity, we measured all of the currents, we measured all the wind, we measured the atmosphere pressure, we did all of that at a lot of locations. We also had a three-dimensional model running at the same time. We also had drifters that were thrown in to prove that the flow went around the islands. We also had buoy -- I mean, we also went out on boats and did surveys. We spent a whole day going back and forth across the channel to make sure that we got rid of the tidal current and see which way is the flow is going and that kind of thing. So, yeah, we believe that you have to do a lot of different things together. Just putting a model in there is just like -- it's just a very small part of -- as a scientist of what we think we need to do to understand this.

MS. TOURANGEAU: Mmm Hmm. And so although there will be testing that goes on and sampling and all, you know, compliance with all of the applicable regulations after the fact that in combination with modeling of three different varieties in advance is inefficient without a full science experiment?

DR. NEAL PETTIGREW: Well, that's my --
that's my belief, yes.
MS. TOURANGEAU: Okay. Thank you.
DR. NEAL PETTIGREW: I think if you -- I mean, the modeling that has been done is not a three-dimensional circulation model, so they haven't even done that.

MS. TOURANGEAU: The CORMIX modeling, I believe, is a three-dimensional.

DR. NEAL PETTIGREW: That's -- that's steady state. So that's not even -- I mean, that's not even really a model, it's a calculation really.

MS. TOURANGEAU: The Maureparticle also adds on another dimension of that, correct?

DR. NEAL PETTIGREW: Well, all of those models do the same thing. We put the particles in ours too so we can tell exactly, you know, based after we calibrate it with all of the measurements that are going to be in real time we can actually figure out how long by the time this stuff goes out. We do it with things like lobster larvae and stuff. We can put them in saying they're here, how long does it take before they get someplace else, so it's a more -- it's a more complete method if you really are interested in understanding what is actually acting in that area and then you have a, you know, like a --
you basically have this baseline to understand, okay, so now if we go out and we see changes we'll be able to see what the changes were.

MS. TOURANGEAU: And you understand that even the modeling that's been done, the three different types of modeling, the CORMIX, the three-dimensional steady state, the ADCIRC and the Maureparticle has not been done for other discharges?

DR. NEAL PETTIGREW: Oh, other people?
MS. TOURANGEAU: Correct.
DR. NEAL PETTIGREW: I didn't know that for sure, but I --

MS. TOURANGEAU: Yeah.
DR. NEAL PETTIGREW: -- I agree with what you said.

MS. TOURANGEAU: Thank you.
DR. NEAL PETTIGREW: Okay.
MR. DUCHESNE: Thank you very much. I believe we'll go to DEP and staff and Board questions now. Questions from the Board or staff? Let me just double-check.

MS. BENSINGER: Ms. Tucker, did you want to make your request?

MS. TUCKER: There were just a few questions we had based on -- oh, I don't have a microphone.

7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. BENSINGER: Can you use your microphone, please?

MR. DUCHESNE: And be prepared to define --
MS. BENSINGER: No, no, no, use your
microphone.
MS. TUCKER: I don't have a microphone.
MS. BENSINGER: Oh, I'm sorry.
MR. DUCHESNE: And be prepared to define what few is.

MS. TUCKER: Three. Three questions and they're very brief I would hope, but I don't think they're going to elicit a lot, but I do think based on the discussion that we have three questions.

MR. DUCHESNE: Does anybody object? Good. Thank you very much. And, again, we are allowing some latitude so long as it is brief and it's mostly a timekeeping matter for me. We have not gone way past schedule, so we're doing all right on time, so I can entertain the request, but that may not always be true but in this case it is, so please proceed.

MS. TUCKER: Thank you very much. The first question I have, Dr. Pettigrew, is the proposal for this project is to discharge 7.7 million gallons a day of wastewater into the bay every day. Will Nordic really be able to discharge wastewater into
the bay every day or will there be days where the tides or storms or other weather conditions or power outage, although they do have back-up generators, but will there be days where they will not be able to discharge into the bay pursuant to the modeling that's been presented by Mr. Dill and -- and sort of the optimal concept?

MS. TOURANGEAU: This goes beyond the scope of Dr. Pettigrew's pre-filed testimony.

MR. DUCHESNE: It does, yes. I will sustain the objection assuming that was an objection.

MS. TOURANGEAU: It was.
MR. DUCHESNE: Thank you. And if you just narrow the question down to the testimony.

MS. TUCKER: Well, are you concerned about there being times when the wastewater would be discharged into the bay or not circulate the way because of weather conditions?

DR. NEAL PETTIGREW: Well, I guess I'm not quite sure if I understand the -- I have no idea whether they're going to -- like I -- when they say they're going to do so much per day, I have no idea. Is it going to happen all at once part of the day or is it going to be equal all times of the day? I don't have any idea how they're -- how they're
planning on doing this.
MS. TUCKER: And would that change your opinion about the impact of the discharge if it was done at different rates at different times of day or how that was -- the discharge is planned?

DR. NEAL PETTIGREW: I suppose it could be differently. They could pick a different tide if -they could put it all during that time and it would have a change, yeah, they could maybe make it go in a direction they liked better than if they just put it out at all times with the tide.

MS. TUCKER: Based with your experience with the bay are there slack tides or spring and fall variations that would impact whether this model works?

DR. NEAL PETTIGREW: Well, I -- I haven't studied that far north of Islesboro, so I don't know any real details about that, but, I mean, no matter where you are tides change in the spring and their needs and all that good stuff, but I'm sure they're expecting that.

MS. TUCKER: Would you expect that there needs to be storage capacity on days you can't make a discharge to the bay?

MS. TOURANGEAU: Objection. This goes
beyond the scope of any pre-filed testimony.
MR. DUCHESNE: Yeah, sustained.
MS. TUCKER: Thank you.
MR. DUCHESNE: Thank you. Now, we can go to Board and staff questions. Mr. Sanford.

MR. SANFORD: Do you think the models either two-dimensional or three-dimensional adequately account for what appears to be more dynamic hydrologic loading or things that might happen as a result of changing climactic factors? Because we -we seem to be in a period where -- because I know there's data collected on present and past, but if we enter a period of change are the models -- can this be robustly or sufficiently anticipated?

DR. NEAL PETTIGREW: I'm not sure I understand the question, but if you're thinking about ocean climate change things and we know that is happening. As a matter of fact, you know, having a buoy out, you know, talking about something a little bit different but it gives you the idea, we've had a buoy that's out in the northeast channel right next to George's Bank and there is -- the flow, all of the nutrients that come into the Gulf of Maine come in there and that's what makes us have lots of fish and things like that eventually, so we have seen changes,
you know, over the last 10 years or so with the flow has completely changed. Instead of always bringing the nutrients in, now during the winter that slope water goes back out, so, yeah, I mean, the models aren't necessarily going to predict that's going to happen but when you do have a -- when you do have measurements there you see it happening and then you can adjust your models to try and see how that effect will spread throughout more of the gulf and/or the bay, wherever you're doing the modeling. I'm not sure if I answered the question.

MR. SANFORD: Well, yeah. Do you think such changes are likely to continue?

DR. NEAL PETTIGREW: Yes.
MR. SANFORD: Okay.
MR. DUCHESNE: Other questions from the Board? Yes, please proceed.

MR. PELLETIER: I understand that the -- I understand that kind of the big picture principle behind all of this and that Dr. Byron talked about and it kind of makes sense is that dilution is the solution here in the big picture, you know, but the localized effects I think are big huge concerns by many that expressed last night and, you know, temperature and a lot of the different effluence that
are coming out. Is it possible to, you know, to model with the information that we have without conducting a year long science experience as was referenced, a -- something that could actually look at the Belfast Bay locality with existing models right now? Or what I understand from you is we just don't have those data to actually characterize that -- those conditions right now.

DR. NEAL PETTIGREW: I'd say that we probably don't have all of the data we need, but on the other hand, you know, like I said, the Penobscot -- I mean, the Princeton model is no longer the one that we would use and we are starting up another model that's more -- more modern than that. And I can imagine it might be of some use, for instance, when you do have winds coming from the west you get a huge effect on the flow, you know, in that area of -- or Belfast Bay area and a lot of the flow from the river is going to be coming in. But if you had -- if you had water that was just discharged in that area that could very well be -- by the wind could very well wind up on the beach in that area. On the other hand, if it flows in the opposite direction it will wind up bothering Islesboro instead of Belfast. But those kinds of effects can happen, I
mean, storms or even just changes in wind are a big effect and models are capable of doing that. I just don't know how, you know, if we -- I don't know how -- what -- you know, how much of the -- what that water is going to be like that they're going to be discharging. I have no idea of the details of what's going to still be in there.

MR. PELLETIER: Thank you.
MR. DUCHESNE: I'll ask one, I guess. There is a lot of talk about the gulf changing. Mola mola ocean sunfish used to be relatively scares out there and last year they were like speedbumps. Is that really going to invalidate much of the previous experience in model and data collection as things change so rapidly so we don't have such a good historical baseline to go on?

DR. NEAL PETTIGREW: Well, I mean, I think the -- when we -- we have to use -- I mean, one of the -- this is -- it's hard to say this, but the hardest thing we used to have every time we did modeling was getting the salinity correct and we rarely got that right and you really -- you have these open boundaries to everything because the whole ocean is connected and so that is -- that is difficult. I don't -- I don't think that, you know,
as we know more about the changes that are happening then the models can adjust those, but I'm not sure, like I said before, I don't know whether it's useful or not but you can just think about it, but you never really know what's happening unless you're making measurement and then -- and these models really are just it's like a -- it's a dynamic interpolation and so it will do that if you -- if you have some data telling you there have been changes it will try to give you an idea of not just where you had the measurements but nearby also.

MR. DUCHESNE: Yes, Mr. Wood.
MR. WOOD: Dr. Pettigrew, if a discharge permit was issued for this proposed activity, would a dye study be helpful?

DR. NEAL PETTIGREW: I think a dye study would be helpful. A lot of times people might not like it when it happens because, you know, it makes a bit -- but it would be -- I forget what it's called, that red stuff, some people might freak out when they see that, but I think that would be a good idea to see kind of where it would go. The trouble, I mean, the studies, you know, you have to do it at different times of the tide or different times of the year and different, you know, what's the wind doing, but,
yeah, I think it would be a great way to be able to see where, you know, just be able to look from the surface what you're going to be able to see and if not you can lower instruments that can make measurements and find out how much is down there. So, yeah, I think it would be a good idea if you can get people to agree that -- I've had -- I've only done it once and usually people are always -- don't want me to do it.

MR. WOOD: Thank you.
MR. DUCHESNE: We do have one question from the audience. We should probably give you an opportunity to sum up as well for a minute. A question from the audience, what recommendations for further background and baseline data is needed for the Board of Environmental Protection to have sufficient information to judge the applicant's submission regarding currents?

DR. NEAL PETTIGREW: Can you read that to me one more time?

MR. DUCHESNE: Sure. What recommendations for further background and baseline data is needed for the Board of Environmental Protection to have sufficient information to judge the applicant's submission regarding currents? I'd also like to

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
commend the penmanship of the person who wrote this question. Thank you.

DR. NEAL PETTIGREW: I'm not -- I'm not sure I can really -- I don't know what the Board really needs, honestly. I don't know much about the Board. I know that -- all I can -- and, you know, I'm not sure I am answering the question correctly, but I guess I could say that I'm somewhat of an expert relative to most other people about the circulation in Penobscot Bay. I don't think I know enough about it to answer that question myself, so I would assume that you need more information as well.

MR. DUCHESNE: I think maybe the faster way to sum up the question is what advice would you give the Board and what should we pay attention to as we start to deliberate on this? Given the fact that you had some concerns the models that were used, what Mr. Dill was questioning about earlier about his models, how should the Board analyze this when we get to it? Any suggestions?

DR. NEAL PETTIGREW: Well, I don't know how -- how -- I mean, it seems like you'd have to do it like right now and so --

MR. DUCHESNE: No, not yet.
DR. NEAL PETTIGREW: Okay. Well, yeah, I
guess the idea is, I mean, we're taking our time unfortunately, but we -- we are getting ready. I have a lot of data out there. I only mentioned one experiment a number of times when we have other data out there and we're finally getting around feeling how important this is for a lot of people. We're just getting back to this -- to this -- and I -- my only -- the only excuse I want to give you is, you know, I started a bunch of other experiments in the meantime, so we haven't really worked all the way through all of this. We haven't published it yet honestly. And we're developing a new model that will answer -- that will be much better than the -- than the Princeton model that we used in the past. So we're working on that now, but we realize that, you know, that it's not going to happen in the next month or two. We're hoping to get something published, you know, within the year, but.

MR. DUCHESNE: Great.
DR. NEAL PETTIGREW: I'm not sure I'm answering the question.

MR. DUCHESNE: No, that's fine.
DR. NEAL PETTIGREW: Okay.
MR. DUCHESNE: Yes, we have a question from Ms. Bertocci.

MS. BERTOCCI: Okay. We've been down in the details for a while, so I want to just step back and make sure I have a sense of your general assessment of what you feel the probability is that the effluent could sort of stagnate. You talked about the sloshing back and forth, so given the relative inflows of the fresh water from the Penobscot River and from the Passagassawakeag and the other inputs of fresh water what you know about the bisymmetry of Belfast Bay versus Penobscot Bay and your belief about the general circulation, what's your level of concern that we could see stagnation of the Belfast Bay area with the influence from the effluent?

DR. NEAL PETTIGREW: Well, I don't know -- I haven't studied Belfast Bay. I don't know anything about the -- what the bottom really looks like. I haven't paid close attention to it. I guess what I would say is there are always issues that one has to worry about because when you have changes in the bay like you've got a cove or the shoreline curves or something and you have flow going by it and then you have something that's called a secondary circulation that can happen. So imagine you've got flow going this way and then there is this area where the shoreline suddenly goes like that. Well, what do you
think happens? What happens as that this flow goes by, it winds up kind of generating a secondary circulation that goes around and around that cove and so, you know, I mean, things like that could happen. So some of that water that you're trying to get out of Penobscot Bay, some of that may get into that cove and go around for a while, that's -- that's secondary circulation that normally happens. I don't -- I don't have any predictions to tell you where that is going to be. I just can't guarantee you that there aren't places where, yeah, it might hang around longer than we would expect.

MS. BERTOCCI: Thank you.
MR. DUCHESNE: Great. Thank you. We can now, I believe, proceed to redirect.

MS. RACINE: We're going to waive redirect.

MR. DUCHESNE: Okay. There is no cross so we can proceed. Thank you very much. You've been very helpful. We can take a five minute break. (Break.)

MR. DUCHESNE: And as you are moving towards your seats, I would call attention to a few people who have joined the table up here. From the Department, I believe Nick Livesay was sitting in the
back during most of the proceedings; Beth Callahan, Project Manager has joined us up front; Dawn Hallowell, I think, was observing from the back before, she's now up front because these are issues that she deals more closely with than the rest of us; Susan Lessard and Mark Draper from the Board are eligible to participate in this discussion and they have now joined us on the Board as well.

So we can now proceed with Nordic witnesses you can jump right in. Let me just check and make sure everyone has been sworn in. Yeah, Miss Tourangeau is not here. She may have some interest in this. While we're fetching her, if you can just stand for a moment and raise your right hand if you have not been sworn in. Do you affirm the testimony you are about to give is the whole truth and nothing but the truth?
(Witnesses affirm.)
MR. DUCHESNE: Thank you so much. And I'm just going to wait for a moment to make sure Miss Tourangeau is ready.

MS. TOURANGEAU: I need to manage my water resource better.
(Laughter.)
MR. DUCHESNE: Very good. You may proceed.

ELIZABETH RANSOM: Good morning, Presiding Officer Duchesne and members of the Board, members of DEP staff and Board staff as well. Thank you so much for the opportunity to be here today to testify on behalf of Nordic Aquafarms. It's a project I've been working on for about two and a half years now, so I really appreciate the time everyone is taking to review this project.

My name is Elizabeth Ransom. I work as a Principal and Senior Geologist at Ransom Consulting. I hold a Bachelor's degree in Geology from Carleton College and a Master's degree in Geological Sciences from the University of Southern California. I have more than 30 years of experience in environmental consulting with a career spanning a broad range of technical expertise including geologic investigation into groundwater resources, contaminant hydrology and remediation, design implementation of monitoring plans, environmental permitting, alternatives analysis for permitting and remedial alternatives selection and design and implementation of public involvement plans.

In my volunteer life I've also spent seven years on my local Conservation Commission, five years as a chairperson where I was instrumental in writing
the first town bylaws for wetlands protection and was able to see those voted on by the town and accepted into regulation. I've also spent time as one of the founding members of Maine's first chapter of Surfrider Foundation where I worked to get some of the coastal communities to actually provide additional wastewater treatment during the winter months so that we could have improved water quality in our bay.

My role in Nordic Aquafarms has been to oversee the personnel with specific expertise who undertook a variety of tasks for the project, including hydrogeologic investigation, water supply development, discharge modeling and stormwater management. I also coordinated with subcontractors who have specific expertise in air permitting, which you'll hear about later, which is Mainly

Environmental; groundwater modeling, McDonald Morrissey Associates, who you've heard already; wetland formation, vernal surveys -- vernal pool surveys, stream and wildlife, fisheries assessments and benthic studies, Normandeau, who sits to my right and will be speaking soon, and to provide information to the project team. As Ransom's project manager for the Nordic Aquafarms project, I also coordinated

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
preparation of the Natural Resources Protection Act, or NRPA, application as well as the Site Location of Development, or SLODA, application and prepared the alternatives analysis provided in the NRPA application and included as Nordic's Exhibit 6.

In June -- so I'll be talking about two different things today kind of distinct. The first thing I'll be talking about is the alternatives analysis, which is a required document under NRPA. What is that? That's -- that's the document that says why are we here. I think you've heard some testimony from some of the public last night that says this isn't the right place. The alternatives analysis is to tell you why this is, in fact, the right place. I'll also be speaking later about mercury. You've heard, again, some testimony last night about HoltraChem and some concerns about mercury in the bay. I'll be providing you some information on that.

So I'll start with the alternatives analysis. In June of 2017, Nordic Aquafarms asked Ransom to assist with some site selection and environmental permitting for a land-based aquaculture facility. They wanted that facility to be located somewhere between Washington D.C. and the Canada
border knowing that there are -- from their market research they knew that there would be a good market for this. There are many major cities within a close driving distance in that range and their idea is to have not just frozen product, but fresh product that they can get directly to the consumer.

So when we started looking at the project, they were, you know, their purpose -- their driving purpose was that they knew that right now the U.S. is one of the largest consumers of salmon and seafood in general and right now the U.S. only produces about 10 percent of what we consume. So they were looking for a way to help meet that demand and so the purpose of their project is to provide that 33,000 metric tons of high quality seafood to consumers in the Northeastern U.S.

So in -- in laying out their project to us they identified a number of objectives for siting the project to ensure that the project is both economically viable and commercially sustainable as well as environmentally sustainable and specifically this objective included production of the 33,000 metric tons of salmon, reducing the -- the carbon footprint of that addition of fresh farmed Atlantic salmon, producing enough volume of salmon that
they're going to offset the cost of the fixed investment of that infrastructure. So, you know, we've been talking a lot about discharge pipes and large buildings, there is a certain amount of cost to that infrastructure that their production has to then offset. They want to have a production cost per unit of fish that's going to be cost competitive with other suppliers because obviously if they come to market with a product that's too expensive nobody wants to buy that. They also want to provide, you know, not only the 100 direct jobs to the local community but also the indirect jobs that come out of a project of this scale. So, you know, not only are they employing the engineers and the scientists that helped them build this project hopefully, but also there will be suppliers, there will be vendors that they will have during their operational time that will receive a benefit through this project. They also want to see a byproduct market develop. So there are things such as the development of using perhaps cuttings for lobster bait or other byproducts from the facility being used that -- that are part of their purpose in siting this facility.

So -- so how did we go about that? We looked from using geographic information systems data
that's readily available for the -- for the coastline and we looked at some availability of land as well as just general factors about this -- the -- this -both the offshore and on-shore environment. We knew that one of the driving factors in the selection for Nordic was going to be the ability to have cold, clear both fresh and seawater for their project. So contamination would be an issue that they would not want to deal with in a water source, but also water that's too warm is not something they want to be dealing with as an operational concern. To have located down in Florida, for example, would increase their cost to bring that water to a temperature that's right for raising their fish. So on the basis of that alone we had narrowed the opportunity to locate this facility to really the three most northern New England states. Most of the coastline was immediately not suitable as a result of the temperature of seawater.

As we applied these criteria for assessment and we ultimately found that Maine was the only viable option and up to 534 potential properties in Maine were identified an individual assessment of those 534 properties was something Ransom carried out. We ultimately reduced this list to about 40
locations that we visited individually and made site visits to each of those properties to get a better sense of not perhaps doing a full wetlands delineation of each of them, but understand whether there were other perhaps either environmental or operational concerns with those -- with those locations. Things like traffic, I realize that's not a criteria that the Board hears, but it's obviously a piece of Nordic's understanding of how do I get supplies in and out, how do I get my fish to market and is that something with Maine's summer population that might impact the viability of one of these locations. Following that, Nordic -- Erik Heim of Nordic came with Ransom representatives to look at the narrowed down site list and ultimately narrowed that list further.

So how did we -- where did we did we go from there? We summarized and scored four of the remaining locations in the site selection matrix. These potential sites included Belfast and an alternative site in the mid-coast, a northern site and a southern site and based on a potential score of 50 points Belfast scored the highest at about 45. The next closest site was the northern site at 35 points. Based on this assessment, which I have
greatly oversimplified, the Belfast site was selected for potential development. I encourage you to read the full alternatives analysis that was provided as part of the application. The alternatives analysis though is not just merely a tool to why are we in Belfast. It's also how did we lay the site out, did we make the best use of the site that was selected. So as a part of the alternatives analysis we looked at four potential site layouts. Option 1, which included six modules on 49 acres of land; Option 2, which was three modules on 39 acres of land; Option 3 , which is 6 acres -- excuse me, six modules on 54 acres of land; and Option 4, which is five modules on 54 acres of land. These options were then evaluated in accordance with the NRPA guidance for the following criteria; we look at regulatory requirements, environmental impacts, construction and engineering for operational feasibility and financial facility and those were scored in a weighted matrix.

Out of 180 possible points, Option 3, the six modules on 54 acres of land is the preferred alternative with a score of 116 points. Options 1 and 2 do not meet applicable regulatory requirements. So although these options were scored and received scores of 93 and 67 points respectively, they could
not be built. They basically don't meet things like fire code requirements or city setbacks. So and Options 1 and 4 aren't feasible through their either technical, logistical or financial constraints. So there are no practicable alternatives to the preferred alternative.

The alternative analysis also considered specific layouts for the three intake and outfall pipelines. So the pipeline routes included looking at the Little River, which is Option 1; the Eckrote property, which is Option 2; and Option 3 coming up to Tozier Road to the north. The Eckrote property also included three different possible configurations of the pipeline from the shoreline to the discharge and intake points and these include a straight, a slightly curved and a double carved route. The criteria is such for each pipeline route included, again, regulatory requirements, construction considerations, engineering designs, challenges and risks and financial feasibility. The results of the overall alternatives analysis indicate that a six module facility located on 54 acres of land with a curved pipeline through the Eckrote parcel is the only alternative that can meet the project objectives.

So from there, I'm going to kind of transition a little bit into the testimony on mercury and some of this may seem like it's a little ahead, but hopefully as we go down the line with the other people on this panel it will all kind of come together.

So materials excavated for construction of the proposed pipeline will include marine sediments, which will be excavated, set to the side of the excavation on a confined mat area while pipes are being placed and used to refill the excavated area. Excess sediment that doesn't fit back into the pipeline trench because the pipes are now taking up space will be removed from the site for upland disposal. As a preliminary step in evaluating potential disposal options, Normandeau conducted a sampling program to test -- take samples from marine sediment in the vicinity of the proposed pipeline routes under evaluation. Samples were collected using a Vibracore and EPA/U.S. Army Corps of Engineers Regional Implementation Manual guidance. Those samples were collected on November 29, 2018. Multiple samples were collected for grain size while two samples, Samples B3 and A6/A7 composite were submitted for chemical and physical characteristics

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
including metals.
Mercury concentrations were 0.267 micrograms per kilogram -- excuse me, milligrams per kilogram for Sample B3 and not detected at a detection limit of 0.103 milligrams per kilogram for the composite sample comparing those to the Maine Remedial Action Guidelines for mercury looking at the recreational use and exposure pathway standard shows that the mercury concentrations and sediment in the area of the pipeline route are more than an order of magnitude below the applicable Remedial Action Guidelines.

Mercury concentrations at the sample locations in the area of the pipeline route were also compared to available data for this part of the bay from the regional mercury studies such as those conducted for the Penobscot Bay Mercury Study, PRMS, released in 2013 as part of the HoltraChem site. As noted in the PRMS, mercury concentrations substantially decrease with distance from the former HoltraChem site and are in the . 2 to . 3 milligrams per kilogram range in the vicinity of the northwestern end of Islesboro and the mouth of Belfast Bay. In other words, the detailed studies from the HoltraChem facility although the sampling
methodology is somewhat different is fairly extensive and the data we have compares similarly to the data that they have collected. The data of .2 to . 3 milligrams per kilogram are below what we consider the new observed adverse effect level of 3.3 milligrams per kilogram for mercury. In other words, invertebrates including shellfish and worms will have no statistically or biologically significant increases in the frequency or severity of impact from a concentration of .2 to . 3 milligrams per kilogram of mercury.

So the PRMS data ultimately led to some portions of the Penobscot River north of Fort Point and Wilson Point being closed to lobster in 2014. In 2014, the Maine CDC, DMR and DEP conducted a study of lobsters and crabs where they looked at tissue samples to understand better the potential impacts of mercury on the actual shellfish population and that data was then used modify the closure area. The closure area was then extended to south of Squaw Point and Perkins Point. That one lane is roughly six miles north of where the proposed pipeline will be. So we based on this say that there is no significant impacts to shellfish that would, excuse me, would be expected from disturbing mercury with
concentrations of .2 to . 3 milligrams per kilogram.
As I mentioned earlier, part of the reason why we conducted this sampling was to evaluate potential disposal options for the material that's excess from construction. We looked at some of the Maine state landfills that are available to take these types of material and Crossroads Landfill where construction waste would potentially be disposed of is licensed by the State of Maine to dispose of non-hazardous waste. We typically analyze landfill waste using both a total sample methodology and also what's referred to as a TCLP. You take the toxicity characteristic leaching procedure, you evaluate whether or not what we place in that landfill over time is going to leach into groundwater and potentially surface water bodies that aren't near the landfill. If we fail, so-called, the total character -- the total waste numbers, you would then look to actually leach it in a laboratory and simulate what might happen in the landfill.

Typically, we look at something what's called sort of the 20 times rule. Are we less than 20 times the toxicity characteristic concentrations? If so, then we can consider that waste to be non-hazardous. So what we did is we compared the results of the
sampling we had to those TCLP values or the 20 times rule values and said where -- where do we stand? Are we going to have these sediments be something that can, in fact, be disposed of in a landfill.

Of note, we looked at the mercury value. The mercury value applying the 20 times rule that we don't want to exceed is a total of 4 milligrams per kilogram and, again, at . 267 we're well under that 4 milligrams per kilogram, so this material would -- we would expect it to be suitable for disposal of the landfill. Now, a landfill has certain acceptance criteria that they are obligated to meet under their permits and so when the material actually is generated it is customary practice to then have the landfill require that you take one sample for every 500 cubic yards of that material for them to accept it. So obviously what we've collected isn't the final word on sediment sampling, but it's a good indicator of the fact this material will, in fact, be acceptable to the landfill and that we could proceed with an option for upland disposal.

I think I've gone on long enough. I'm going to maybe let Adele speak to some of the wetlands work and. . .

ADELE FIORILLO: Thank you. Good morning,

Officer Duchesne, members of the Board and staff from the DEP. My name is Adele Fiorillo. I am a professional wetland scientist. That certification comes from the Society of Wetland Scientists and is based on experience and education. I have a Master's degree from San Franciso State University in Marine Biology where I focused on wetland ecology for my thesis work. I am a Senior Project Manager with Normandeau Associates and I specialize in delineating, evaluating and characterizing wetlands, fresh water and coastal wetlands, and developing and implementing impact compensation programs as well as including creation, restoration and enhancement of those ecosystems. And I have over 30 years of experience doing this work.

I'd like to give you a sense of the natural resources that are on site based on our studies. I'll start with the fresh water wetlands. The fresh water wetlands on the site are basically two general types of forested wetland and a wet meadow wetland and both of those areas have indications of disturbance. The forested areas have been logged and the wet meadow areas have been -- undergone some agricultural and mowing over the years. And another component of the fresh water wetland is that there
are a considerable amount of invasive species, again, indicating their level of disturbance.

The project area encompasses 54 acres and I calculate that the wetlands represent less than 10 percent of the overall project area. And given the needs of a project of this size, you know, the land area, the proximity to fresh water and salt water it's not unreasonable and almost difficult to find other properties that would have less wetlands on them.

The streams on the site are represented by the intermittent flows. There are no perennial streams on the project site. And the streams essentially develop because they -- they represent overland flow from stormwater. And as the overland flow begins to accumulate it starts to cut into channels and create the actual streams, so there is no connection between the stream channel and groundwater. It's really all overland flow. One component of the project is to improve the flows from these streams into the reservoir. Right now, they're very silty. It's a silty, sandy, clay, loam, soil, so they're highly erodible and so all of this overland flow becomes channelized and actually goes into Reservoir 1, so one of the components to the
project is to clean that up and have this Reservoir 1 with less sediment input.

I wanted to highlight one of the streams on the project site, which is the most easterly stream, we designated that one as S9, Stream 9, and then the lower reaches of that stream are very highly channelized near the water department property, but in the upper reaches have some good riparian habitat that are well vegetated with shrubs and that is the only stream that shows up on the USGS map, so during project design that -- the focus was to avoid that stream and also to incorporate that into the compensation plan to make the channelized aires improved.

We did vernal pool surveys. There are no vernal pools on the project site. And the coastal wetlands on the project site include cobble beach, salt marsh, intertidal and subtidal areas. The salt marsh is a narrow fringe in the upper reaches of the tidal area. And the cobble beach transitions quickly to a mix of sand, silt mud and -- in the intertidal and subtidal areas. Impacts are predominantly temporary or were permanent or relatively small in the coastal wetlands.

The forested and meadow habitats do
represent a varied environment, so it does provide opportunity for wildlife species, but these habitats are not unique. There is a lot of forested and open meadow habitats in Maine and along the coast. One component to the forested area is that we don't expect a significant loss of habitat because the tree removal in the winter will avoid any impact to avian and bat species.

The tidal waterfowl and wading bird habitat out along the coast, again, will be temporarily impacted during construction, but that's a narrow window and that habitat will remain after the project is complete. Inland waterfowl and wading bird habitat is outside the project area although it's adjacent associated with Reservoir 1.

And Elizabeth had noted we did benthic surveys. We did grab samples and took the samples to the laboratory and sorted for benthic organisms and the abundance of the benthic organisms is relatively low. I'll talk a little bit later about what we did find in those samples.

So the quick impact summary. Fresh water wetland impacts are 1,096 in 30 square feet and 3,960 of those square feet are temporary. We have a compensation plan for permanent impacts via the

In-Lieu Fee Program in on-site improvements of 91,065 square feet of riparian area restoration and then all temporary impacts will be restored in place.

Impacts to intermittent streams are measured in linear feet, 1,988 and 120 linear feet of that are temporary. And, again, we have a compensation plan for on-site improvements of 1,623 square feet of streams and drainages and, again, the temporary impact will be restored in place.

Coastal wetland impacts are 638,580 square feet and most of them, 631,877 square feet are temporary and will be restored in place.

Impacts to natural resources have been tabulated and we can -- all of these numbers are included in Nordic Exhibit 13 and also shown on the wetland and stream impact mapping dated October 2019 and that's Exhibit 12.

A little bit on the compensation plan. The compensation plan is dated May 10 of 2019 , was the developed to compensate for unavoidable impacts and it represents a combination of payment into the In-Lieu Fee Program as well as permitting on-site compensation. I'll just go over them briefly. And the impact compensation package is reflected in a plan dated November 4, 2019 as Nordic Exhibit 14 if
you want to refer to that. So on-site compensation includes areas of six different streams -- five different streams on the site and one drainage area. The stream designated as S 9 will restore riparian buffer in areas that are currently unvegetated along the banks over 91,000 square feet. Stream 3, we're going to do native plantings. There is currently a bridge there. We're going to replace the bridge, which is in bad repair. It's along the trail and so it gets widely used so that will be a benefit to the stream and then revegetate state the banks with native vegetation. There is also some stone steps along the steeply sloped trail that are in disrepair that will be repaired for better access to the trail and stabilize that slope with native plantings. The Stream $S 5$ currently is crossed by the trail, but there is really -- it's just a footpath across the streambed, so we're going to put a new bridge in there to prevent further damage to that stream channel. And the same with Stream 6, we're going to put -- we're going to provide streambed protection with a new bridge and revegetate the plantings because all of these slopes are unstable. And then there is a drainage and on the Eckrote property where we're going to stabilize the slopes. There is
currently a plunge pool and stabilize those slopes with native plantings. So all told, permittee responsible on-site compensation totals 92,680 1/2 square feet and that offsets the calculated In-Lieu Fee payment of $\$ 613,466.48$.

And I think that concludes my overview of the project from a wetland and natural resource perspective. I'm going to turn it over to Tyler, who is a fisheries biologist with Normandeau Associates.

TYLER PARENT: Hello. As Adele said, my name is Tyler Parent. I'm a fisheries biologist with Normandeau Associates. My main piece of the project was to assess the potential fisheries impact associated with the proposed action.

The impact assessment was basically split into two pieces. One being some surveys that we conducted in 2018. The first part of that was a diver and video camera survey, so we basically dragged a camera behind a boat as well as a diver from a different tow to characterize the bottom habitat so that we could know what we were working with as well as conducting some water quality samplings to establish some baseline values so that the projected values from Nordic could be compared to them to understand the differences or lack thereof
that we might be encountering, as well as my major piece was a desktop analysis of available literature to look at the species that are available in the area and the impact that might be caused to them.

The major considerations for an impact assessment like this would be the engineering characteristics and so the various design pieces of a project like this can have a major bearing on how much impact there might be, the construction plan, and so that's how they are going to go about building this and the planned characteristics of the facility after it has began operating. In order to do this, I consulted with two state agencies in the State of Maine, those being the Department of Inland Fisheries and Wildlife as well as the Department of Marine Resources and in doing so I basically asked them for a list of species that they would like me to consider for impacts and when they respond I can make life histories and go forward with the impact assessment on that list of species that they've provided. As well as from the camera tows, as well as the diver tows we characterized marine habitat and we took into consideration the fact that Belfast Reservoir Number 1 is a fresh water habitat that is adjacent to the property and we essentially found this. So Belfast

Reservoir Number 1 is viable habitat for some fresh water fish, however because there has been a dam there since the 1980s basically nothing in the marine habitat is going to be accessing that and so it is essentially insulated and this project is not going to have much bearing on what's going on with Belfast Reservoir Number 1 as it's been dammed for so long. Marine habitat is mainly homogenous in the project area and that was determined, like I said, by the diver tows and the camera tows, homogenous being it's very much the same throughout the pipeline route aside from a couple of small vegetation patches closer to shore. And this is -- this is fairly deliberate. This is -- that's good news. When we're looking at a pipeline path like this it's good to see almost nothing there because it will be minimally disruptive to the aquatic community.

Also good to note that pockmarks exist in the bay and so that's an interesting geological feature that is somewhat rare, but these big circular patches that are basically from gas emitting from below the substrate and that can cause complication, however, they deliberately are ending their pipeline before any of the pockmarks exist in the bay. And if you're interested in where those exist relative to
the pipeline there are some figures in some of the filed paperwork if you'd like to know where they are relative to the pipeline.

DMR and Inland Fisheries and Wildiife provided me a list of species and I'm just going to go through them very quick to let you know what I considered. For finfish we looked at American eel, alewife, blue back herring, winter flounder and rainbow smelt. For shellfish I considered American lobster, Atlantic sea scallop, blue mussel and soft shell clam. The Penobscot being so important to the Atlantic salmon and a couple other federally listed species I also without recommendation from the state agencies considered Atlantic salmon, Atlantic sturgeon and short-nosed sturgeon because really the Penobscot River is really the place for Atlantic salmon these days and we should probably consider them in this analysis.

Water use. You will probably hear about it a lot in the future and you've already heard a little bit, but I'll run through it. Their intake will consist of two pipes existing out in Belfast Bay. There will be smaller volume of water pumped from the fresh water source of the Belfast Reservoir Number 1 as well as some well water and some city water from
the Belfast Water District to make up their
collective water use at the facility. The discharge.
All of the water will be filtered before being discharged back into the bay and they've got an impressively exhaustive filtration regimen and you'll hear more about that, I'm sure, and the maximum discharge volume of 7.7 million gallons per day is their projected volume.

For impacts to these various species I separated them into temporary versus permanent. And so temporary is going to occur during construction and that will be mainly in three ways and that's under water noise, turbidity increases and displacement of an aquatic organism could also occur during construction. Permanent impacts would be there is now a new structure is in place after it is built and that can be its own impact. Some loss of eggs and larvae at the intake and changes to water quality could occur and so all of those things are going into potential consideration for impact.

For each of these things mitigation measures will be taken. Under water noise is very common in in-water construction to use a soft start technique and that's basically just starting more quitely than the loudest operational noise that you will be using
for your equipment allowing sort of a warning signal to go out to make sure that mobile organisms are able to vacate the area and have minimal impact.

Turbidity will be minimized. Increases in turbidity will be minimized by floating turbidly curtains, which is also a very common construction practice in water. And then displacement is mainly going to be mitigated by adhering to the very common in-water work window of November 1 through April 1.

So the new structure that's going to be in place, a recent -- fairly recent design change is that the pipeline will now be raised just a little bit off the sea floor and that actually makes the overall permanent footprint much lower than having the pipeline rest on the sea floor the entire way and that will actually allow a narrow migratory corridor for any mobile organisms that might want to move underneath instead of over the pipeline. As far as the intake design, they are having an engineering velocity less than 0.5 feet per second. And water quality, like I said before, all of the water will be filtered using their exhaustive filtration regimen prior to being released into the bay and no adverse impacts are expected from a water quality change.

Now, I will respond a little bit to some
testimony which had to do with my particular expertise. First, by Mr. Bill Bryden. The first thing I want to clarify is that in his testimony he -- he referred to Belfast Bay as Class A water and two things about that, one it is Class SB, which is the marine class, and so Class A is actually not applying to salt water and so that's important to note. And then because we now have the correct Class of SB the projected discharge is supposed to -- it plans to comply with all of the Class SB regulations.

Let's see. The other piece of Mr. Bill Bryden's testimony that pertains to me is that he a few times referred to the Belfast Reservoir Number 1 and the Little River at large as potentially viable Atlantic salmon habitat and, like I mentioned before, that the dam has been there since the 1800s and while maybe a long time ago salmon were there it hasn't been accessible to that species for a very long time and so this project won't have any impact on what's going on.

The second testimony that I'm going to Mr . Richard Podolsky. The main thing that pertains to me in his testimony is the repeated phrase thermal anomaly. And so there were several paragraphs talking about mostly migratory fish and several other
species that I was looking at are migratory encountering what's called a thermal anomaly. And I first want to say that this thermal anomaly does not always mean the water will be hotter than the surrounding water because during the summer it is very likely that their discharge will be colder than the surrounding water. And then if you sort of interpolate there then there will be times when there is not necessarily a noticeable difference. As well as through some modeling it's also been determined that 200 feet from the intake, or sorry, from the discharge it's the projected difference of temperature is 0.3 degrees Celsius is protected value based on our calculations. And then, you know, of course, I'm saying that's 200 feet away. Even if a migratory fish, in this case let's say an Atlantic salmon or a juvenile or an adult river herring, is heading back to its natal water basically Mr. Podolsky said that they would be hitting a thermal wall and that that would essentially prevent continued migration. And even if they have the possibility of coming closer to the intake before realizing that the water is a slightly different temperature they will not abort their migration. These fish are -- are aimed at getting where they
need to go to continue their life histories and the bottom line is a little obstacle like that they will say, well, this water is slightly different temperature than what I was just swimming in and they will change their course while still traveling towards the flow being the Penobscot River or whatever tributary they're trying to find and they will continue their way towards their migratory destination.

Let's see. And that is all I have. Thank you very much.

LAUREN WALSH: Good morning. My name is Lauren Walsh. I'm with Cianbro Corporation. I am their Corporate Environmental Manager. I have been with Cianbro for about nine years now. My responsibilities are implementation of their environmental management system, their policy and their general goals. A lot of that includes working with the projects on construction management access plans.

My project experience includes work with the Sarah Mildred Long Bridge, Portsmouth Naval Shipyard, The Walk Bridge in Connecticut, Pittsfield Solar and the Maine Power Reliability Project. Prior to joining Cianbro in 2010, I worked for nearly five
years with MaineDEP assisting on the development and implementation of the state's Multi-Sector General Permit for Discharge of Industrial Stormwater. My task with that project include permit development and writing, regulatory assistance and compliance for various industries and through that experience I gained quite a bit of knowledge about the various roles and responsibilities of those industries and complying with Maine's Water Quality Standards and the impacts of stormwater from those storm industries. I have a Bachelor of Science in Biology and minor in Chemistry from Moravian College. I am also an active member of the Associated General Contractors of America's Environmental Steering Committee since 2015. This committee regularly participates in meetings and open discussion with both EPA, Army Corps of Engineers, Fish and Wildlife and other regulatory agencies on policies, construction practices and other procedures that effect both of environment and the construction industry as a whole.

Cianbro and Woodard and Curran is the design-build team that is responsible for designing and constructing the seawater access system for the proposed Nordic Aquafarm facility. Cianbro has
provided a review of Woodard and Curran's initial design for the proposed route of the pipeline and the construction. Cianbro as a whole has provided the construction means and methods for the proposed access and overall constructability guidance for this portion of the facility. My role in this through this scope of work I provided a review of the basic erosion and sediment control measures, construction means and methods in respect to avoiding and mitigating the impacts and protecting the resource that is the others on the panel have discussed. The purpose of my testimony today is to review and discuss the construction methods within the intertidal zone to provide a broader picture of the sequence of construction and the means to reduce sedimentation and turbidity from the seawater access construction as a whole. Those items I am going to discuss would be the construction process within the intertidal in the wetland -- in the coastal wetland, work planning within that access zone and to relieve mitigation measures.

To start with, the construction access within the intertidal zone. As noted in my written testimony both the pipeline, both the intakes and discharge portions, will follow a route from the
facility under Route 1 through the Eckrote property before crossing into the coastal wetland and intertidal zone and extending into deeper water. The intertidal zone portion seawater access extends approximately 850 feet from the Maine shoreline in mean high water to mean low water line. The current project requests 100 foot wide access route, so this is important in determining our construction access. We have 100 feet of width. We are only planning to impact a portion of that for construction. So there is a temporary impact as well as the permanent impact to the pipeline.

The first step -- and this is Nordic Exhibit Number 19 that was included in my testimony will provide a picture of that. The first step in constructing our access will be placement of timber mat accessway the full length of that 850 feet. So we'd go from the shoreline out to the low water line. We would place those mats all at once, they'd be anchored down and they would stay through the different tide cycles.

Next, we would position equipment to begin contemplating and planning excavation of the pipeline. That timber mat access would be placed over the pipeline route itself, which is a minimal
portion of that 150 feet. The mat accessway would then -- we'd have equipment, excavation equipment that would travel out that pipe -- the matted access route and begin excavation from the end of the mean low water line back.

We would have barges with cranes on them that would be assisting for the excavation process. The cranes and materials would be staged on those barges. We would use two different types of barges. We'd use a jack-up barge, which is a barge that stays afloat essentially. It has spuds that are fixed and it can be -- it supports low water work very well. It does not ground out onto the bottom, so we would be minimizing within impact within that full 100 foot width to a limited of the spuds themselves.

In addition, we would also propose to use standard spud barges, which would potentially be bottomed out during low water. Those barges would be used to contain any excavated material from the trench itself. So you'd have your matted access route and then you'd have your barges alongside of that matted access route, excavator on the matted access route would excavate a section of the trench, would then put the excavated material onto one of the barges, not the jack-up barge, the jack-up barge will
not support the weight of the excavated material. That excavated material may or may not be sitting on the bottom dependent on the tide cycle and the level of water depending on where we are in that 150 foot zone.

The trench will already be excavated. We have trench boxes that we're proposing to be placed into that trench, so from the crane operated barge they'd take a -- pick a trench box, put it into the trench. The trench would then support the sides of that excavated area to reduce any washing back and forth from any water that would be in that area and obviously it would be a wet environment. Once the trench boxes are put in place, we would also have ready at the same time another material barge with a piping system, section of pipe somewhere from 20 to 40 feet in length, place that pipe connected appropriately depending on where we are in the construction sequence and then we'd begin backfilling that trenched section.

Backfill will consist of stone, which, again, would be staged on one of the jack-up barges or possibly one of the floating barges depending on the tide cycle and the location. The goal -- the ultimate goal of this would be to have all of this
work, this excavated section, 20 to 40 feet in length a one tide cycle, a low tide cycle.

We recognize the furthest 200 to 300 foot stretch that is out towards the mean low water line there is going to be a very short window. We have proposed utilizing a trench box system that would be higher than the mud line, that way if -- if for some reason that section was left open during high water during that tide cycle the washing action would be limited. We'd reduce the risk of a turbidity discharge from any sediment washing out of that trench area, out of that disturbed area. Plus, if the stone is within and around the piping section that's what's going to hold the material in place better. So the key to this would be, you know, scheduling the work for this though low tide cycles.

The -- finally, you know, once everything is in place within the intertidal zone, we'd remove those timber mats as we go covering everything back up and managing any excess sediment from that work
area. That's a brief summary of the general construction -- proposed construction process.

MR. DUCHESNE: Great.
LAUREN WALSH: The --
MR. DUCHESNE: Oh, sorry. I was premature.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

LAUREN WALSH: And I just wanted to speak quickly on the turbidity management. And the excavated material will be placed on those barges. If they were ground out we would have a filter fabric and a containment system. We've used Jersey barriers in the past. We've used various types of filtration devices, BMPs, to make sure we don't have turbidity coming off of the excavated material, so we would have that in place. We would not leave any excavated material on one of those barges that's grounded out through tide cycle. So it would float -- it would go back to a staging area until the tide cycle allows us to put it back in the trench again. The sediment, as Elizabeth mentioned, the material that was not to be placed back within the trench would be tested and sent off-site for a shoreside landfill disposal.

We would use turbidity curtains as was -- as was discussed, which is standard practice. We are also proposing a metered turbidity monitoring program primarily for the open water work, which would assure that we weren't allowing any turbidity discharges that would be beyond the background levels, so. And we would develop a plan in conjunction with the Department for -- for that. And that concludes my -my summary. Thank you.

MR. DUCHESNE: Thank you. And that concludes the testimony and we can go to cross. And Ms. Tucker.

MS. TUCKER: Ms. Ransom, I'm going to start with you. Are you an engineer? I did not hear that.

ELIZABETH RANSOM: No, I'm a professional geologist.

MS. TUCKER: Do you have any expertise in the study of mercury in sedimentation?

ELIZABETH RANSOM: Specific to mercury, no. I have an extensive background in contaminant affected sites, yes.

MS. TUCKER: You -- you mentioned having some alternatives for uses for some of the byproducts of the facility and doing sort of an order as your stream of consciousness went through that. Isn't it true that in Maine salmonids are prohibited for use as, for instance, bait?

ELIZABETH RANSOM: That's correct. At the moment the -- the legislation written around the use of salmonids is from a time when there was substantial concern over its infectious salmon anemia, ISA, from the net pen population being distributed more widely by using it as a bait source. So my understanding is that that's currently what's
on the books and it would need to be changed if significant land-based material were to be used as bait in the future, yeah.

MS. TUCKER: Based on the current proposal for the discharge of water into the bay there is no plan that I have seen that you will rechill the water prior to discharge so that it is the same temperature as the ambient water temperature when it is released even though that technology does exist in this industry; is that correct?

ELIZABETH RANSOM: I think this testimony string or this question strays a little bit from what I was discussing in my testimony. But to your point, I believe there will be more discussion of the discharge itself when Mr. Dill gives his testimony later in the week here.

MS. TUCKER: I would beg to differ because you talked about and several people on this panel have talked about that -- what the water temperature will be after discharge and that the 5 to 30 degrees increase in the temperature at the time of discharge will have no impact, so I'm asking --

ELIZABETH RANSOM: So --
MS. TUCKER: -- do you have any -- isn't there --

ELIZABETH RANSOM: Let me give you a correction then. First of all, the -- the temperature of the discharge as stated in the MEPDES application material is 15 to 18 degrees Celsius, that's roughly 55 to 64 degrees Fahrenheit. The temperature -- the ambient differential that Tyler was talking about earlier is .3 degrees. I have no idea where the 5 to 30 degree number that was in the public statements came from. It's roughly . 3 degrees of temperature differential coming out the -- at any given time what comes out the discharge pipe compared to what's in the surrounding bay waters obviously varies seasonally. Sometimes it's going to be cooler than what's existing and other times it's going to be warmer, but the ambient differential is . 3 degrees.

MS. TUCKER: So are you suggesting that in Penobscot Bay that our temperatures are between 15 and 18 degrees Celsius which would be 55 to 69 degrees ever?

ELIZABETH RANSOM: No. I'm not sure exactly how to explain this. So the temperature profiling obviously shows a gradient from surface to bottom levels and that -- that range of temperatures from surface to bottom changes seasonally and also within a tide cycle. And so what we do, and I think Nate
would be probably the right person to address that in more detail, but what we do when we look at that is we compare the discharge when it comes out to the ranges of temperature that exists in the bay. And there is a, again, I am kind of getting out of my scope, but I think they will be telling you a little bit more about this in his testimony. There is a -there is a range of permitted difference between, you know, so you can -- you can thermally only vary so far from what is in the bay at any given time. And so this discharge will comply with that seasonal variance that's allowed. So it will not be a 30 degree difference. It will not be a 5 degree difference. It has to maintain no more than I believe it's 1.8 at one time of year and 4 degrees in another time of year and so Nordic's discharge will do that. It will meet those standards.

MS. TUCKER: 15 degrees Celsius --
MS. TOURANGEAU: I'm going to object to any more questions on this. It's not within the scope of her pre-filed testimony and she's done her best to answer the question but Mr . Dill is the correct person.

MR. DUCHESNE: It's sustained. I believe that we're asking good questions to the wrong
witness.
MS. TUCKER: Well, I guess I'll be asking him later because he's talking about the temperature too. So when you did your alternatives analysis for placement of the pipeline, isn't it true that we are currently in front of this Board on the third alternative for the route off of the Eckrote lot?

ELIZABETH RANSOM: We actually, as I stated in the alternatives analysis, we looked at three different entry points as well as three different routes within the entry point from the Eckrote lot, so I'm not sure it would be correct to say that it's the third alternative.

MS. TUCKER: I think it's the third alternative off the Eckrote lot.

ELIZABETH RANSOM: Correct. There are three alternatives that were studied from the Eckrote lot.

MS. TUCKER: The first Eckrote lot alternative was submitted in September of 2018, correct?

ELIZABETH RANSOM: We submitted one alternatives analysis with six routes that are shown in that.

MS. TUCKER: Here is my question. Off the Eckrote lot, the original submerged land
application --
MS. TOURANGEAU: Objection. That's not the permit that's here and she's talking -- her -- and filed direct testimony goes to the alternatives analysis.

MS. TUCKER: I wasn't finished with the -- I wasn't finished with the sentence. The original filing to the Board or the DEP at that point was off the Eckrote lot in September of 2018?

MS. TOURANGEAU: Objection. Again, you're -- there was no application to this Board or to the Department of Environmental Protection in September of 2018. It was in May of this -- of last year, 2019, and that application included an entire alternatives analysis.

MS. TUCKER: There was MEPDES permit that we had a hearing on --

MR. DUCHESNE: Before the discussion continues between the two parties and may I interject since there happens to be an objection. I agree that we're straying a little bit outside of what was testified to before and what the expertise is.

MS. TUCKER: If I may have a little leeway because it does have to do with the sediment testing that was done.

MR. DUCHESNE: If you can get more directly to that question --

MS. TUCKER: I will do that.
MR. DUCHESNE: -- that will be helpful.
Thank you.
MS. TUCKER: In November of 2018 , the route was requested to be changed and was changed by Nordic to be a more circuitous route, which we globally called the twisted sister off the Eckrote lot; is that correct?

ELIZABETH RANSOM: There have always been multiple pipeline routes studied as a portion of the alternatives analysis. That goes back to my very first day standing on the -- the property and looking at the alternative ways to possibly get a pipeline out. So, again, I'm not sure I fully understand your question. We've always been studying more than one pipeline route.

MS. TUCKER: In November of 2018, the -- the route for the pipeline that was being proposed at that time by Nordic was off the Eckrote lot and it was the twisted configuration, the second route proposed, correct, in November of 2018?

ELIZABETH RANSOM: I'm -- I'm not sure that November 2018 we had one pipeline route, so I guess I
don't understand your question. The alternatives analysis has always considered multiple pipeline routes.

MR. DUCHESNE: Before I'm going to have to rule on this again, what I think is trying to be grasped at is there seems to be on the basis of your question a ranking of how this was done, 1,2 or 3 and what is being testified or responded to is this has been one of three without any kind of ranking if I'm understanding that correctly.

MS. TUCKER: Actually, here is my point.
MR. DUCHESNE: That would be good.
MS. TUCKER: Presiding Officer Duchesne, the -- the point is that settlement testing was done for mercury in November of 2018.

MS. TOURANGEAU: Objection. At this point we're testifying to the Presiding Officer and not asking a question.

MS. TUCKER: I'm trying to explain.
MS. BENSINGER: If -- if I could maybe help.
MS. TUCKER: That would be good.
MS. BENSINGER: It seems that Ms. Tucker is asking about a change in the proposed preferred route by Nordic and Ms. Ransom is talking about the alternatives analysis which considered all
different -- a variety of routes for the pipeline. If you could just answer the question, Ms. Ransom, about was there a change to the preferred proposed route last fall. I think that's the question.

ELIZABETH RANSOM: I think the preference has always been to have the straightest route possible because that provides for the most operational flexibility, it's the least impactful in most cases and it's less expensive. So if you were to look at the, you know, preference going into things it would be the straightest possible route. I do think maybe I'm -- if I'm not misunderstanding part of your line of questioning is to the -- the sample collection itself. You'll note that if you look at the map --

MS. BENSINGER: If I can interrupt, I think the question is was there a proposed route that was changed to a different proposed route for the pipeline?

ELIZABETH RANSOM: There -- there was a proposed route that had multiple curves that was part of the alternatives and I think we --

MS. BENSINGER: Was the -- the question is was it changed. Was your proposed route changed over time in your application?

Dostie Reporting
7 Morrissette Lane
(207) 621-2857

ELIZABETH RANSOM: There were different maps provided to the Department that definitely updated the route along the way, yes.

MS. BENSINGER: So the route did change.
ELIZABETH RANSOM: One of the proposed routes did change, yes, we proposed a different one.

MS. BENSINGER: To what is proposed now, yes.

ELIZABETH RANSOM: Yes.
MS. BENSINGER: Okay. Thank you.
MS. TUCKER: Thank you. At the time you did testing for your sediment core sampling, you did that, didn't you, along the second route that was then the current route to be proposed? The November 2018 route was the twisted route not a straight route off of the Eckrote lot?

ELIZABETH RANSOM: So all of the routes originate in the same spot, so then the closest to shore samples --

MR. DUCHESNE: I'm sorry, could I just interrupt for a second?

ELIZABETH RANSOM: Sure.
MR. DUCHESNE: Unlike just about everybody else speaking today, you're closer to the mic than most.

ELIZABETH RANSOM: Oh, sorry.
MR. DUCHESNE: I suspect that our listeners online --

ELIZABETH RANSOM: Sorry on that.
MR. DUCHESNE: -- may be being blown out.
ELIZABETH RANSOM: Is this okay?
MR. DUCHESNE: That's better. Thank you.
ELIZABETH RANSOM: Yeah, okay. So all of the -- all of them start in, you know, the same entry point and then from there the three different options diverge and so the sampling that was conducted, some of that sampling is quite close from what is now the preferred alternative and some of that sampling is further away. So, for example, Sample A6/A7 was closer to the more curved route and it's now roughly 750 to, you know, 800 feet from the preferred alternative versus Sample B3, which is roughly 200 feet from the preferred alternative, maybe a little bit less than that.

MS. TUCKER: I'm looking at your Supplemental Exhibit A from November 2018. It looks like Figure 18-1 Location of Sediment Samples.

MS. TOURANGEAU: Is this a Nordic exhibit?
MS. TUCKER: Yes, it is.
MS. TOURANGEAU: What's the number?

MS. TUCKER: I just said it. It's Figure 18-1 from Supplemental Exhibit A from November of 2018.

MS. TOURANGEAU: So that's Nordic Exhibit 18. I'm just trying to help Ms. Ransom find it.

MS. TUCKER: I don't know what its -- what Nordic's number is. It's Figure 18-1.

ELIZABETH RANSOM: Is that what you're referring to?

MS. TUCKER: Yes.
ELISABETH RANSOM: Yup.
MR. DUCHESNE: Just for the Board's sake, could you --

ELIZABETH RANSOM: Yup. It's a map showing -- 18-1, it's a map showing a pipeline route and some sample plots.

MS. RACINE: Can you tell us in --
MR. DUCHESNE: Yeah, tell us --
ELIZABETH RANSOM: Sure. It's in your --
MS. TOURANGEAU: Ms. Tucker, can -- do you know where this is for the Board?

MR. DUCHESNE: Yes, since the question was a reference that was made by Miss Tucker, she can direct us.

MR. MARTIN: If I could clarify, I think
this is an application reference. That Figure 18 is within the application, not necessarily through the Board.

MS. BENSINGER: Yeah, so it's not an exhibit that's before the Board. This is apparently an exhibit that was part of the application; is that correct?

MS. TUCKER: It is part of the application and this goes to the issue of whether sediment testing has been done along the route that's being proposed.

MS. BENSINGER: Right. So that's not an exhibit in evidence. I mean, it's not before the Board and the hearing record. If you're going to offer that exhibit you have to provide copies.

MS. TUCKER: I'll be happy to proffer -provide copies and I proffer that the application Figure 18-1 is -- and it is referenced in the testimony from 12/11/19.

MS. BENSINGER: So Ms. Ransom referenced it in her testimony?

MS. TUCKER: Yes.
MS. BENSINGER: And you didn't attach it?
ELIZABETH RANSOM: I think it is attached. Yes, I think it is attached.

MS. BENSINGER: Oh, it is attached. Okay. Never mind.

MR. SANFORD: Section 18, Page 2.
ELIZABETH RANSOM: Thank you, Mr. Sanford.
MR. SANFORD: It's in Exhibit 7.
MS. TOURANGEAU: It sounds like it's Nordic Exhibit 7. I'm sorry, I can't be more helpful. I don't...

MS. BENSINGER: Is it in the direct or rebuttal?
(Several people respond Direct.)
MR. DUCHESNE: Correct. It is in Section --
MS. TOURANGEAU: 7 would have an in direct because we stopped indirect at 23, I think.

MR. DUCHESNE: One by one we're starting to find it. It's under solid waste. Who knew to look there. I believe most of us are caught up, so you may continue with the questions.

MS. TUCKER: Isn't it true that no sediment core sampling has ever been taken along the currently requested route that shows all of the length of the route with sediment testing done to see if mercury is in the sediment in that location?

ELIZABETH RANSOM: It would be incorrect to say that no sediment testing was done along the
preferred route.
MS. TUCKER: For mercury?
ELIZABETH RANSOM: For mercury, that's correct.

MS. TUCKER: So you never tested for mercury along this route that you're now proposing that the Board approve you to do?

ELIZABETH RANSOM: Not the exact route, no, because as I stated earlier one of those samples is roughly 200 feet away. The other sample is less than 800 feet away and as -- as I noted in my previous summary, these samples are pretty similar to what's been found in more extensive mercury sampling in the bay and we would expect that although there is always variability in the subsurface that any additional samples collected in that area would be a similar range of . 2 to . 3 milligrams per kilogram of mercury.

MS. TUCKER: I believe that you referenced Chapter 5 of the Penobscot River Mercury Study Phase 2 study done by Dr. Yeager in your testimony; is that correct?

ELIZABETH RANSOM: That's correct.
MS. TUCKER: And you studied that?
ELIZABETH RANSOM: I didn't -- I wouldn't say extensive study, but I've read it more than --
more than once and I have certainly looked at the mapping of where mercury has been found and the methodology used to generate that mapping.

MS. TUCKER: This would be referenced in MGL Exhibit 3, I believe. In the excerpts that we provided in Exhibit 3, which are from Chapter 5, we reference estuary samples 7-A, 8-A and 8-C. Would you agree that those also appear on Figure 5-8 of the Chapter -- Chapter 5 report?

MS. TOURANGEAU: Objection. This goes outside the scope of Ms. Ransom's direct testimony, which had referenced Nordic Exhibit 39, which is specific excerpts from the PRMS study only.

MS. TUCKER: Actually, she just made a statement that this -- there is low levels of mercury along this area according to the report, so she clearly understands. I am asking her to look at these figures because as I --

MS. TOURANGEAU: Her pre-filed direct testimony does not address those figures and so --

MS. TUCKER: But her statement here today does and I was --

MS. TOURANGEAU: It shouldn't. It needs to be on the -- can we limit the questions to the direct testimony?

MR. DUCHESNE: I believe this is within the scope of what we're discussing, so I'm going to allow the question.

MS. TUCKER: In looking at Sample 8-A of the estuary study done in Chapter 5. Dr. Yeager reports to the federal court that at 15 to 16 centimeters of depth that the mercury level is 495 nanograms per gram.

MS. TOURANGEAU: Objection. Can you provide that reference?

MS. TUCKER: It's in Exhibit 3. MGL Exhibit 3.

MS. TOURANGEAU: Do you have a copy for Ms. Ransom given that it was not an exhibit?

ELIZABETH RANSOM: Yeah, it would be helpful for me if I can actually see where the sample you're referencing comes from?

MS. TOURANGEAU: And I would also like to object that you are asking Ms. Ransom to testify on someone else's exhibit in a way that was not part of her pre-filled direct or rebuttal testimony and I would object to you're answering that question.

MR. DUCHESNE: And this time I would say that counsel is much closer to reality in terms of -of what I can allow and not, so I need to confine
this to what has been testified on, what was in pr-filed testimony and what this panel is assembled to inform the Board with.

MS. TUCKER: Nordic proposes to dig trenches that are roughly 10 feet deep; is that correct, through the intertidal zone and now into the subtidal out to roughly 30 to 32 feet of water depth at mean low water?

ELIZABETH RANSOM: The depth obviously varies because as you leave shore and you ultimately surface the pipe you'll obviously have depths that are much shallower than 10 feet, but.

MS. TUCKER: Shallower than 5 to 7 inches?
ELIZABETH RANSOM: At some point, you'll break through to the surface so you will cross the 5 to 7 inches.

MS. TUCKER: How much of that will be within the 5 to 7 inch range?

MS. TOURANGEAU: Objection. Again, this goes beyond the scope of pre-filed direct or rebuttal testimony.

MR. DUCHESNE: I think that's a fair question to ask just so we have some scope of what the disturbance is, so I think it's acceptable.

ELIZABETH RANSOM: Are you asking me how
much of it will actually be laid in 5 to 7 inches or are you asking me how much of it will have to break through that layer?

MS. TUCKER: Both.
ELIZABETH RANSOM: So most of the intertidal area will require breaking through that 5 to 7 inches. There will be a much shorter distance that's actually laid in, you know, just that last bit before it surfaces.

MS. TUCKER: Can you quantify that as -- as project manager, can you quantify that length?

ELIZABETH RANSOM: The length that's breaking through I would say is maybe the last -they're laying this pipe in 20 to 40 foot sections, I would say it's that last section that would be breaking through.

MS. TUCKER: So how much from mean low water out to where it breaks through is being disturbed below the depth of 5 to 7 inches?

ELIZABETH RANSOM: Most of the roughly -most of the intertidal area.

MS. TUCKER: So based on that where it's 15 to 16 centimeters that would indicate that where it's 495 nanograms per gram that level of mercury will be disturbed?

ELIZABETH RANSOM: Again, I don't know where this 495 milligram per kilogram sample that you're referencing comes from. The data I reviewed suggests that the levels of mercury in the sediment near where this pipeline is being laid is in the . 2 to . 3 micrograms -- milligrams per kilograms.

MS. TUCKER: But the testing --
ELIZABETH RANSOM: Based on not just my testing but the testing done as a part of the PRMS.

MS. TUCKER: That is the testing done as a consequence of PRMS. That's Dr. Yeager's report from Chapter 5 where that chart comes from.

ELIZABETH RANSOM: The chart doesn't show me any sample locations. As you look at the PRMS, you'll see that concentrations decrease as you move further away from HoltraChem's facility and as you get down to this portion of the bay the line of samples is in the . 2 to . 3 milligram per kilogram range.

MS. TUCKER: Isn't it true that in Figure 5-8 of the PRMS Chapter 5 report it shows where those core samples were taken $7-A, 8-A$ and $8-C$ and it shows that those are the closest ones to where you're proposing to disturb this area and it shows these factors of 500 nanograms per gram or roughly --

MS. TOURANGEAU: Objection.
MS. TUCKER: -- ten times background.
MS. TOURANGEAU: Can you provide an exhibit that shows what you're testifying to so that she can answer the question?

MS. TUCKER: Yes.
MR. DUCHESNE: Yes, I'm going to interrupt for just a second. First of all, the objection is noted and I am uncomfortable with having the witness testify on data that was not hers. I understand that references to other exhibits are possible, but it's not like she could have studied for this test without having experienced pre-filing her testimony and reviewing what she herself is presenting, so I'm going to be a little cautious about allowing a line of questioning that strays past what she has presented the Board and submitted as evidence. Reference to other studies are fine, but she can't -I would find that she can't easily verify or deny what's in somebody else's study, so I would like to narrow the questioning to what she is prepared to deal with.

MS. TUCKER: Well, she has testified that she's familiar with the level of mercury here from the Penobscot River Mercury Study and it doesn't
appear that to be the case. Representations are being made to this Board about this area not having mercury and it's been repeatedly made by this applicant that there is not a concerning level of mercury here. When the federal court's experts that are neutrally appointed by the federal court and done more than a 10 year study on this area says this area has 10 times the background level.

MR. DUCHESNE: I guess -- yes, and this is what concerns me. I believe you'll probably bring this information to the Board later on with other testimony, is that a safe assumption?

MS. TUCKER: Some of it, yes.
MR. DUCHESNE: Okay. Because -- and we look forward to that, but to question the witness on somebody else's testimony and line of expertise on this is venturing a little outside the bounds, so I would like to confine the testimony to what was pre-filed and what this panel is empanelled to talk to us about.

MS. TUCKER: To go back to your other representations about the impacts of putting pipeline out there, what geological or geotechnical surveys and studies did Nordic do of the holocene mud that is in the area of where the pipelines are posed to be
placed?
ELIZABETH RANSOM: Nordic conducted a variety of things. They did -- as Normandeau alluded to earlier, they did sampling for both the geotechnical properties of the material that would be excavated, so -- or supporting the pipeline so they looked at things like grain size analysis of that material. They looked at benthic surveys of that material and they used both a diver and a camera to look for things like changes in the sea floor material, so, you know, is it a boulder, is there a change in the substrate. They also did a more detailed bathymetric survey to evaluate demographic differences. And also they looked at a choice of contractor and the reflecting -- the reflection of those layers as to, you know, are there significant changes in the sediment as you go from the surface to depth, are we, you know, are we finding a bedrock surface or is that material sandy, silty, muddy what have you, so there has been an extensive amount of work on that.

MS. TUCKER: Isn't it true that none of the studies that you've provided give any indication to how holocene mud that's full of methane, which is methane venting -- an active methane venting area in
a 10,000 year old marsh can support this pipeline using the anchors that you've proposed.

ELIZABETH RANSOM: First of all --
MS. TOURANGEAU: Objection. It's outside the scope of Ms. Ransom's testimony.

MR. DUCHESNE: That it seems -- it looks that way to me too. Can you be more specific as to why that is within her testimony right now?

MS. TUCKER: Ms. Ransom has spoken about as the project manager about the ability to put these pipelines using the proposal now this new installation method, but there has been no evidence provided on the impacts of scouring. There's been lots of representations by people on this panel including Ms. Ransom that there is not going to be any turbidity, that the effects are short-term, that it's six months and everything will be back to normal.

MR. DUCHESNE: Okay.
MS. TOURANGEAU: Can I --
MR. DUCHESNE: Yeah, I'm going to allow the question for now.

MS. TOURANGEAU: Can I -- can I make a point though?

MR. DUCHESNE: Absolutely.

MS. TOURANGEAU: So there were -- folks will remember some additional exhibits that came in from Mr. Bernacki, I believe, and that were addressed in the Nineth Procedural Order and in response to those exhibits which raised these kind of issues, Nordic on Monday of this week submitted Nordic Exhibits 39 and 40 and Nordic Exhibit 40 addresses these issues and that came in through Mr. Cotter, so to the extent that you want to ask questions on that, I understand that the Board was going to allow more time, but we should pull Mr. Cotter up to do that.

MR. DUCHESNE: Yeah. I believe they're not even distributed to the Board.

MS. BENSINGER: And Mr. Cotter is schedule to testified when?

MS. TOURANGEAU: He testified already on the SLODA issues.

MS. BENSINGER: Right. And he's not coming back?

MS. TOURANGEAU: Well, we had to kind of figure out how we were going to do that and so it seems like this might be the time.

MR. DUCHESNE: Okay. I would allow that because --

MS. BENSINGER: If you could allow us a
moment we're going to distribute those materials to the Board.

MS. TOURANGEAU: He's coming up again for -on the MEPDES conversation, but that's a subset of -I don't know how you want to handle that.

MR. DUCHESNE: Well, we can't do MEPDES --
MS. TOURANGEAU: Right.
MR. DUCHESNE: -- with the full panel --
MS. TOURANGEAU: Yes.
MR. DUCHESNE: -- but when it comes to the stability of the pipeline on soils and the ocean floor that may have methane bubbles underneath that is a significant part of the conversation and it would be appropriate to --

MS. BENSINGER: Let's take a five minute break and we'll --

MS. TOURANGEAU: Sorry.
MS. BENSINGER: -- distribute those materials to the Board.

MR. DUCHESNE: Great.
MS. BENSINGER: And that was cc'd to all the parties when you submitted it?

MS. TOURANGEAU: Of course. And I've handed out hard copies to the parties that have been in attendance. If you are here and you did not get one,

I brought enough for everyone.
MS. BENSINGER: Thank you.
(Break.)
MR. DUCHESNE: Thank you very much for that brief five minute break. For our listeners at home, Edward Cotter has now joined the panel. If you're just catching up Edward Cotter, Elizabeth Ransom, Adele Fiorillo, Tyler Parent and Lauren Walsh are a panel of five up here and we may resume. And I believe we were delving into a series of questions where Mr. Cotter will be helpful to Ms. Tucker's questions. So you may proceed.

MS. TUCKER: Mr. Cotter, isn't it true that in the fall of 2018 that you testified to the Harbor Committee in Belfast that during one core sample that Nordic collected you found 237 nanograms per gram of mercury?

EDWARD COTTER: I remember testifying to the Harbor Committee about questions that they had regarding city ordinances. I don't recall and I don't have a record of the discussion from that time. But, yes, we did talk about our findings of mercury from our samples.

MS. TUCKER: And wasn't that 237 nanograms per gram?

EDWARD COTTER: I -- I reported whatever our findings were.

MS. TUCKER: And wasn't that core sampling tested --

MS. TOURANGEAU: Objection. This goes beyond the cope of anyone's pre-filed direct and rebuttal testimony in these proceedings.

MS. BENSINGER: Can you please speak up?
MS. TOURANGEAU: Sorry. Objection. This goes beyond the scope of anyone's pre-filed and direct testimony in these proceedings.

MR. DUCHESNE: Yeah, I believe it's relevant to impeaching the testimony, so I'm going to allow it.

EDWARD COTTER: Yes, I -- I recall presenting information to the Harbor Committee.

MS. TUCKER: Are you or Ms. Ransom, either one of can you answer this, familiar with how that core sample or that figure was found was tested?

ELIZABETH RANSOM: Yes. As I stated earlier in my testimony, the samples that were collected by Normandeau were done -- I'm sorry, I'm too close again, aren't I? You'd think I'd learn. So those were tested using the Army Corps of Engineers Regional Implementation Manual Guidance. It is a
compositing soil methodology and it is a methodology that is appropriate to characterization of material for things that you plan to look at for upland disposal.

MS. TUCKER: And isn't it true that in the Penobscot River Mercury Study the court's expert said in order to find the location, depth and level of mercury from HoltraChem dumping that it must have a different testing methodology used where -- in the first 20 centimeters from the surface down every 1 centimeter segment is tested, from 21 to 40 every 2 centimeter segment is tested and from there on every 5 centimeter segment is tested and that's in Chapter 5 of Dr. Yeager's report of the Penobscot River Mercury Study.

ELIZABETH RANSOM: The PRMS methodology is a specific methodology that the court required for the HoltraChem remedial studies. It's not a generally applicable methodology for testing material to be landfilled in the State of Maine. So, yes, I'm aware it's a different methodology than what we used.

MS. TUCKER: And what you did use was a 6 1/2 foot deep core that you composited, in other words, you mixed all of the pieces and the parts of it together before you tested; is that correct?

ELIZABETH RANSOM: One of the samples for mercury was a composite, the other one was a discreet.

MS. TUCKER: The one with 237 nanograms per gram was a composited $61 / 2$ foot core, was it not?

ELIZABETH RANSOM: 200 and -- it's 267 and that was a composite, yes.

MS. TUCKER: So you would have mixed --
MS. TOURANGEAU: Objection for just one second. Can we make sure that folks are using the same -- I'm not quite sure what to call it, but there is some -- people are using nanograms per kilogram and other people are using milligrams per kilogram and I think it's leading to confusion about the numbers being different when they're actually the same.

ELIZABETH RANSOM: Yeah, let me -- I'll clarify that. So Ms. Tucker has been using nanograms per gram which results in a number of 267 . I've been using milligrams per kilogram, which moves that decimal point over and makes it .267. The reason I've been using milligrams per kilogram is that both the Maine Remedial Action Guidelines and the landfill criteria are reported in milligrams per kilogram, so to make direct comparisons out of the data we've
received to the applicable criteria we've been using milligrams per kilograms, but I recognize that a lot of the PRMS data is in nanograms per gram. So hopefully that clarifies if the Board is using the different units.

MS. TUCKER: And in that -- to answer the question, you took a 6 1/2 foot core, you mixed it all together and then tested and got 267 nanograms per gram?

ELIZABETH RANSOM: That's correct.
MS. TUCKER: And according to the Penobscot River Mercury Study chart that you submitted -Nordic submitted yesterday morning as Nordic Exhibit 39, it shows that the expected average of the mercury in the area where you plan to put this pipeline is 200 to 300 nanograms per gram?

ELIZABETH RANSOM: Yes.
MS. TUCKER: And isn't it true that in June of 2016, the Department of Marine Resources and the Maine CDC closed a 7 square mile area at the -- near the upper estuary of Penobscot Bay less than 5 miles from here because they found 40 lobsters over a one year period that had an average of 292 nanograms per gram of mercury in their tail meat?

ELIZABETH RANSOM: So my understanding of
the study you're referring to is that DMR, DEP and Maine CDC looked at lobster tissue analyses as to the -- what they were finding in the different lobster populations who migrate in and out of the sediments both clean and mercury contaminated. And I am not the right person to describe the uptake of mercury in lobsters and how -- what they are in for soil reflect what ultimately is in their tissue. That's more of a biologist question, but it's not a direct correlation. So a lobster being in 200 nanograms per gram of mercury does not necessarily equate to that same level in their tissue. It's much like when we eat tuna fish, we're recommend to not eat it continuously because we will then have more issues with what's in our body from bioaccumulation. It's the same -- an analogous situation with any marine organism it's not exactly what you eat that day that goes directly into your tissues, it takes time and biological processes to make that happen, so. I understand there is a closure there, but it's not directly related to the concentrations. Not a one-to-one correlation.

MS. TUCKER: Isn't it true that Nordic has done no study to see what level of Mercury it could expose lobsters to through resuspending buried

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

HoltraChem mercury that would not result in lobsters taking up additional mercury and closing an additional portion of Penobscot Bay to lobstering?

ELIZABETH RANSOM: It's my interpretation from the study that's already been conducted that the reason the closure line is 6 miles north of Nordic's proposed pipeline location is because those -- those who did study this in detail came to the conclusion that the levels to the south were not enough to make such a closure necessary.

MS. TUCKER: Isn't it true that what the -what they concluded was that because the mercury is buried to the south there is no risk to the lobsters, but if it's unburied that calculation changes, does it not, by dredging?

ELIZABETH RANSOM: This goes a bit beyond anything in my testimony.

MR. DUCHESNE: And I would agree.
MS. TUCKER: Mr. Cotter, isn't it true that in last legislative section when the Maine Lobstering Union and the Sierra Club and others tried to get the Penobscot River Mercury Study standard adopted for all proposed dredging north of the southern tip of Islesboro that Nordic Aquafarms opposed that in the Legislature and you said in the case of the Nordic --

7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. TOURANGEAU: Objection. We're testifying and we're going outside of the scope of the pre-filed.

MR. DUCHESNE: Sustained. That's correct. Sustained.

MS. TUCKER: I'd like to for the record preserve that I'm attempting to impeach Mr. Cotter because he's taken a position in the past that -about the levels of mercury in his testimony to the Legislature, which this body should be able to take notice of under the Chapter -- Title 5 of the Maine Administrative Procedures Act.

MR. DUCHESNE: It does seem to be outside of the scope. Is the objection still raised?

MS. TOURANGEAU: Mr. Cotter just turned around and --

MR. COTTER: I -- I did.
MS. TOURANGEAU: Did you testify?
MR. COTTER: I did.
MR. DUCHESNE: Okay. Go for it.
MS. TUCKER: Isn't it true that in your testimony you said in the case of the Nordic project in Belfast preliminary testing indicates no mercury levels of significant concern in the soils in line with expectations based on the Amec Foster Wheeler

Penobscot River Estuary Study.
EDWARD COTTER: That's correct.
MS. TUCKER: And it's true that the Amec Foster Wheeler Penobscot River Estuary Study is only the Phase 3 study of where to do remediation in the southern tip of Verona Island and Mendall Marsh and has nothing to do with the rest of Penobscot Bay?

EDWARD COTTER: I was referencing a figure in there, which I don't have in front of me, but I believe it's the same one that I'm looking at in the exhibits that show results from parts of the PRMS study. I believe, that was the Phase 2 you just said. So we were looking at relevant data to that testimony which agreed with the results from our testing that had been done.

MS. TUCKER: Isn't it true that under the core sampling methodology from the Corps of Engineers and the EPA that applies for any dredge spoils to be dumped in the aquatic environment in New England. But it says that if the core shows significant stratification subsamples --

MS. TOURANGEAU: Objection. This project doesn't include any --

MS. TUCKER: -- must be made --
MS. TOURANGEAU: -- in-water disposal of
dredge spoils.
MS. BENSINGER: If you could wait until she asks the question before you raise the objection. It's really hard for the court reporter to record two people talking at once. Thank you. So if you would finish asking your question and then if you would pause before you answer it anticipating this objection that would be great.

MS. TUCKER: If the cores show significant stratification subsamples must be made of each layer.

MS. TOURANGEAU: Objection. This project doesn't include any in-water disposal of sediments.

MS. TUCKER: If I may, that's a false statement because all of the dredge spoils -- all of the material removed from -- by trenching and dredging and put on the side under the federal rules and the guidelines from the DEP are considered dredge spoils and when they're put back in the hole it's also considered another set of dredge spoils and so this would apply. It's dredging.

MS. TOURANGEAU: It's not disposal.
MR. DUCHESNE: Yes, I'm going to --
actually, I'm going to allow the question in for reasons that I think this is -- it's drawn the attention to some of the Board members as well.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

There is a little bit of fuzziness in the definition as to what's dredging, what's disposal and the extent we can talk about that I think that's acceptable, so I'm going to allow the question.

EDWARD COTTER: Could you repeat the question, please?

MS. TUCKER: Isn't it true that under the standards of the Corps of Engineers --

MR. DUCHESNE: Mic.
MS. TUCKER: I broke it.
MR. DUCHESNE: If you need to you can use my microphone, I'm barely using it.

MR. TUCKER: I just want to thank Mr. Lannan because he's like the only one on our side of the room that is technologically capable.
(Laughter.)
MS. TUCKER: So if the -- I'm supposed to repeat it again, right? I've lost track of what I'm supposed to do. If the cores show significant stratifications subsamples must be made of each layer.

EDWARD COTTER: You referenced an Army Corps requirement?

MS. TUCKER: Yes.
EDWARD COTTER: I am not sure I am familiar
with the Army Corps requirements for marine disposal, so I can't answer that.

MS. TUCKER: But isn't it considered marine disposal when you take sediment out and put it to the side and then shove it back in the hole that is considered marine disposal by the Corps and the EPA, so this project entails a significant amount, tens of thousands of cubic yards of material being moved and then shoved back in the hole.

MS. TOURANGEAU: Objection. Testifying.
MR. DUCHESNE: Just making sure our court reporter is caught up. I note the objection. I think the court is -- what the Corps does and what the Corps rules are are interesting and perhaps relevant to the discussion but not for the criteria we need to judge on, so I'd like to stay as much focused as possible on the criteria that we have to deal with.

MS. TUCKER: If I may, Presiding Officer, under the DEP rules that standard in the EPA and the Corps is the standard adopted by DEP for testing of sediment.

MS. BENSINGER: You can ask the question, but Mr. Cotter has already answered that he's not familiar with the Corps rules on that particular
topic.
MS. TUCKER: But it is your testimony that nobody ever tested all of the sediment layers pursuant to either the EPA, Corps standard or the PRMS standard?

EDWARD COTTER: I think our testimony is that we have followed current guidelines for removal of material and upland disposal.

MS. TUCKER: Isn't it required even for upland disposal of any material from the aquatic environment that you would still have to comply with the Corps sampling standards and take sediment cores all along the route proposed for the pipeline, not a pre-existing route that no longer is in effect?

EDWARD COTTER: The guidelines that -- that we see are applicable are the disposal guidelines which are under Chapter 400 where we would need to sample material that's been removed prior to shipping off to an upland facility and tested in accordance with the permit requirements in Chapter 400 requirements.

MS. TUCKEr: But don't you have to do the sediment testing before you can dredge, not before you can dispose, before can you dredge?

EDWARD COTTER: I don't know that. I don't
understand where you're getting your parameters from.
MS. TUCKER: The DEP guidelines for dredging.

EDWARD COTTER: Are you able to provide that to me?

MS. TUCKER: Yes, it's on the website and it says for applicants posing to dispose of dredge material in coastal waters, which would include shoving it back in the hole, the Maine Department of Environmental Protection requires the applicant and federal agencies proposing to dispose of dredged material in coastal waters sample and test the material as outlined in the U.S. Environmental Protection Agency and U.S. Army Corps of Engineers joint publication entitle, quote, Evaluation of Dredge Material Proposed for Ocean Disposal, closed quote, 1991.

EDWARD COTTER: I think --
MS. TUCKER: Further requirements for sampling -- sorry, it's a long thing.

MS. BENSINGER: Excuse me, this is not an exhibit that's in evidence; is that correct?

MS. TUCKER: I moved -- I proffer this that the Board take notice of DEP guidance on its own website pursuant to the Administrative Procedures

Acts. We didn't pre-file this. I -- I will file this as a proffer because this issue has come up while we're testifying, so I did not pre-file it, but this is something that's on DEP website so that the Board will be expected to use as its guidance for this application as well.

MS. BENSINGER: And you don't have any copies for the parties?

MS. TUCKER: I can make them over lunch and bring them.

MS. BENSINGER: Can you -- can you show it to Mr. Cotter?

MS. TUCKER: I can.
EDWARD COTTER: I think I can -- my response without looking at that is, you know, this was -- I am not sure that it's true that this is an issue that came up during this testimony. None of our plans have changed. And I do believe in my opinion that Ms. Tucker is taking a very liberal reading of ocean disposal and I do not think that we believe that we agree with that reading of that rule.

MS. TUCKER: I would suggest I'm basing that on the case law and the federal regulations.

MR. DUCHESNE: The suggestion is fine, but can we confine ourselves to questions?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. TUCKER: Sure.
MR. DUCHESNE: Thank you.
MS. TUCKER: What is the area that Nordic is proposing to disturb the sediment in order to install the pipes?

EDWARD COTTER: The square foot area?
MS. TUCKER: Yes.
ELIZABETH RANSOM: The sediment area is -is roughly 40 feet wide by I believe it's 1, 200 and something feet long of intertidal area.

MS. TUCKER: I did not confine myself to intertidal. Every place that you are disturbing the sediment to put the pipelines in and that would include putting your brackets all the way out to the end of the intake.

EDWARD COTTER: If -- if you're talking from our pump house all the way to the end, I think --

MS. TUCKER: No, I'm talking about within the -- from the high water mark out to the end of the intake.

EDWARD COTTER: I think --
MS. TOURANGEAU: Objection. Can I clarify the question? I think what you're asking is for the impacted coastal wetland?

MS. TUCKER: I'm asking for the area where
the sediment is going to be disturbed, not -- there is a different definition being used by Nordic only counting where the little feet of your brackets are. I'm asking for from the tip of the intake pipe to the high water mark.

EDWARD COTTER: And that --
MS. TUCKER: And the width. And -- because it's my understanding the width, which has changed several times, but the width is 100 feet wide of the area to be disturbed.

EDWARD COTTER: Is there still an objection open?

MR. DUCHESNE: There is still an objection open, I think?

MS. TUCKER: Is it like phone a friend for a lifeline?

MR. DUCHESNE: I'm thinking yes. I'd like to buy a vowel.

MS. BENSINGER: The objection -- you were just asking a clarifying question, not objecting to the question.

MS. TOURANGEAU: Correct.
MR. DUCHESNE: Okay. And --
MS. BENSINGER: If -- if you understand the question --

EDWARD COTTER: Yes, I do.
MS. BENSINGER: -- you can answer it.
EDWARD COTTER: So our total temporary impact from high tide line through the end of the pipeline is 631,000 square feet.

MS. TUCKER: And that is an area that's 100 feet wide and how many feet long?

EDWARD COTTER: The length of pipeline.
MS. TUCKER: Which is?
MS. TOURANGEAU: It varies in width though.
EDWARD COTTER: Looking at this chart in front of me, I would say 6,425 feet.

MS. TUCKER: Okay. And along that -- the area from the low water mark out to the tip of the intake, what studies has Nordic done or evaluated and considered regarding the presence of methane in the holocene mud?

EDWARD COTTER: We through our design contract with Cianbro and Woodard and Curran received a study that was conducted by Applied Technology and Management out of Florida. They are a coastal design firm that is quite qualified to evaluate situations such as this. They were -- they provided several technical memos to us that were then used by our design team to develop the design of the pipeline
including anchoring and excavation methodology and installation methodology so far. That included several sediment reviews. It included some of the technical -- or some of the systems that were mentioned by Ms. Ransom before including the core sample -- review of the core samples, the bathymetry studies, the reflector studies. The reports --

MS. TUCKER: I'm sorry, just a point of clarification. Are you talking about the core sampling that was not done along the proposed route that was done along the prior route?

EDWARD COTTER: The core sampling that was done throughout the region of the alternatives analysis so that we could understand the entire area where all of the alternatives were being -- were being considered. Holocene mud, I -- I keep hearing this and had a long discussion with ATM about this. Holocene mud is a technical term basically meaning new mud. It's since the last ice age. Other than that, there is nothing particularly noteworthy about it. It's common. It's in D.C., it's in Boston Harbor, it's in Florida, it's all up and down the east coast. This material it's more important to understand the mechanical and physical properties of it. So we have a study that has shown that it's
mostly 50 percent fines and 50 percent sands. It's an extremely common material. It has its own challenges for construction and for installation of pipelines, but it's something that is done hundreds of times up and down the east coast. Our design team feels very comfortable that this particular location and system provides no special challenges. There are challenges with marine construction just like everywhere else, but they're very comfortable that this particular spot is very standard and they understand the physics and the situation behind it. Relative to the methane, yes, those were looked at. The pockmarks were looked at. We have studies that show that those pockmarks are considered inactive now. There have been no changes in many, many years and for that reason we feel that the pockmarks even though we don't get into the pockmark range we feel that they are stable and inactive.

MS. TUCKER: What report do you base that statement on? Isn't it true that the methane deposits in Penobscot --

EDWARD COTTER: Hold on, let me answer that question.

MR. DUCHESNE: Let him answer the first question, if we may.

MS. TUCKER: Sure.
MS. TOURANGEAU: It's in your report. I'm looking at Nordic Exhibit 38, which is his report in the section on the pockmarks --

EDWARD COTTER: Thank you.
MS. TOURANGEAU: -- and it references the report. I'm sorry for kind of interjecting, but these materials came in late and so we're just looking for a little bit of flexibility.

MR. DUCHESNE: Absolutely. Yes, you may have it.

EDWARD COTTER: So we are looking at a report that was noted in Exhibit 38 and it was labeled as Andrews 2010 and the line that I think is most relevant to this question, the report concludes overall the combined data from our geotechnical surveys provide no compelling evidence for especially active methane production in the shallow sub-sea floor of Belfast Bay, thus, these pockmarks may be inactive.

> MS. TUCKER: Did you review Dr. Kelley's report that he submitted when the Corps of Engineers and the MaineDOT were attempting to get a permit to dump dredge spoils at one of the pockmarks in western Penobscot Bay? It was attached as, I believe, our

Exhibit Number 4.
EDWARD COTTER: This is relative to the Searsport -- proposed Searsport dredge project?

MS. TUCKER: Yes, it was.
EDWARD COTTER: Yes, I did.
MS. TUCKER: And isn't it true that Dr.
Kelley who has studied these pockmarks more over 30 years said that these are very active methane and unstable.

EDWARD COTTER: No, the way I read it was that he witnessed upwelling in these pockmarks, which has to do with tidal currents and the flow of water over and around them and because of the Searsport dredge project included a lot of fines it was his assessment as I read it that the upwelling caused by current of the bottom flow around these would cause those fines to be become resuspended and then end up being pulled out of the pockmark.

MS. TUCKER: Excellent point. So based on those complex currents that causes scouring in the pockmarks, isn't it also true that that same complex current is going to cause scouring around the infrastructure holding the pipelines and resuspend the sediment all along the length of the pipeline?

EDWARD COTTER: No, ATM looked at a scour
analysis of the pipeline and they found that in the area of our pipeline given the small -- relative small diameter of the pipeline and the structures on the sea floor there are not going to additional current that would support sea scour in this area.

MS. TUCKER: And did ATM actually do this testing here or from Florida based on modeling?

EDWARD COTTER: They did analysis based on reports from the location including our dive survey, our current studies and so forth.

MS. TUCKER: So it's your position that there won't be any scouring around the feet of the infrastructure resuspending sediments in the holocene mud?

EDWARD COTTER: It's our position that any scour would be insignificant.

MS. TUCKER: And where in your documents is the report that concludes that after study?

EDWARD COTTER: I don't believe that was in our application. I believe we submitted a design that was based on those recommendations.

MS. TUCKER: You've also mentioned that you base this on sediment testing, but you concur that there has been no sediment core samples taken along the third route that's currently before this Board?

EDWARD COTTER: We have the -- the boring locations are provided and we feel that they provide adequate coverage in the areas of all of the analyses and they're within -- as Ms. Ransom said, several of them are within 1 to 200 feet of the proposed -- the preferred pipeline.

MS. TUCKER: Of core samples that were tested for mercury or grab samples that were taken to look for biotic?

EDWARD COTTER: Core samples that were taken for in this case I'm talking about physical properties.

MS. TUCKER: Can you point that out on your chart because the only ones I see that were taken that were core samples were taken are along the second route and not along the existing pipeline route being requested.

EDWARD COTTER: The B series of cores were taken relatively closely to the preferred pipeline route.

MS. BENSINGER: B what?
EDWARD COTTER: I think it would B-3. Yeah, B-3 in particular. So I'm looking at B-3, which is on the figure that we've been discussing before and that showed -- showed sediment samples including --

MS. TUCKER: Can you just point it out on there?

EDWARD COTTER: Yeah, do you have the --
ELIZABETH RANSOM: Yeah, so this sample, this sample, this sample are all on the pipeline route.

MS. BENSINGER: Okay. We need to have the testimony on the record and the court reporter needs to be able to hear you, Ms. Ransom.

ELIZABETH RANSOM: Sorry.
MS. BENSINGER: Thank you.
ELIZABETH RANSOM: So the -- the samples that are directly on the pipeline route, and I apologize, I have glasses, it's fine print, I'm going to do my best, but there are two samples with an A designation near shoreline.

MS. TUCKER: And that would be in the intertidal zone, correct?

ELIZABETH RANSOM: That's correct. And then there are two samples that are further out, $A-10$ and 11 that are also on the pipeline route.

MS. TUCKER: And those are grab samples only looking for biotic, correct?

ELIZABETH RANSOM: I believe that's correct. And then there is Sample B-3, which I mentioned prior
is within 200 feet of the pipeline that's currently proposed. That's just the north --

MS. TUCKER: And what is the level of
mercury found in Sample B-3?
ELIZABETH RANSOM: It was non-detect. And then there is another sample just to the south of the pipeline route, I would say within 50 feet. I don't have an exact scale, you know, fine point scale on this map, but that would be A-9. And so as Ed was discussing some of the parameters that were submitted to ATM or some of the samples that were submitted to ATM include Samples A-7, A-6, you know, going down through, A-12, there were a number of samples submitted for that geotechnical evaluation to evaluate pipeline routes.

MS. TUCKER: The only samples I'm aware of that you took core samples are -- there are core samples, one was a foot-and-a-half deep, one was 4 1/2 feet deep, you composited those two and then you had one that was $61 / 2$ feet deep and that's the one where you found 267 nanograms per gram after compositing, am I right on that?

ELIZABETH RANSOM: Not if we're talking about geotechnical samples, no. So in addition --

MS. TUCKER: Just core samples. Core

7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
samples.
ELIZABETH RANSOM: Yes, so there were core samples submitted for chemistry to evaluate the sediment for disposal options, but there were also samples submitted for geotechnical parameters looking at crane size and evaluating the amount of fines versus sands to help the design contractors with the design of an armoring and anchoring system for the pipeline itself. So those are separate and distinct and I think that those samples in that dataset, I believe, is in Exhibit 38 that Mr. Cotter submitted.

MR. DUCHESNE: If I may butt in just long enough for timekeeping. And I just want to make sure that everyone is aware that you've had to shuffle a lot of paper, handle a lot of reports, take up additional time that was due to Ms. Tucker's questions, so we're allowing extra time. It won't be unlimited. We're looking for maybe another 10 minutes of potential questioning and I just want to make sure that Ms. Tucker is aware of that if she has any questions for the rest of the panel you don't short change yourself.

MS. TUCKER: I will shift to the others. I think we've covered what we need to here. Regarding the Normandeau work, isn't it true that Normandeau
was debarred from doing any work for the federal government in 1993 because of their failure to properly identify wetlands on Sears Island and their debarment was roughly five years long?

ADELE FIORILLO: I was not employed at Normandeau at that time, however, I understand that that is the case.

MS. TUCKER: Thank you. You're a fisheries biologist; is that correct?

TYLER PARENT: That's correct.
MS. TUCKER: And you -- you testified that you did a diver tow on September 20, 2018 and based on that you found that there would be minimal impacts on lobsters or you found no lobsters or you found no lobsters. I believe in Exhibit 38 from Mr. Cotter it actually says there were no lobsters seen.

TYLER PARENT: That is correct and we have video evidence supporting that as well because we -we did tow a video camera in addition to the divers.

MS. TUCKER: And what was your route for the video camera? Was it on Route 3 for the pipeline?

TYLER PARENT: I cannot remember exactly which of the three.

ELIZABETH RANSOM: Actually, there were multiple camera tows and the camera tows kind of

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
spanned a V window at the time. We were trying to cover the entire, excuse me, we were trying to cover the entire area of the potential routes with the camera tows, so it was multiple tows --

TYLER PARENT: Right.
ELIZABETH RANSOM: -- deliberately spread across the proposed project area.

TYLER PARENT: To characterize the broader area.

MS. TUCKER: And you found no lobsters in that area on any of those tows?

TYLER PARENT: I was not personally under water that day, however, that is what I was told.

MS. TUCKER: And what was the visibility under water that day?

TYLER PARENT: From the camera tows it is plenty to see the substrate, the vegetation and any aquatic organisms.

MS. TUCKER: And did you study the -- any impacts if mercury is disturbed on the impact of lobsters and crabs in this area?

TYLER PARENT: So the -- my -- the way -where I come in is I am told what is the projected impact in this case a potential rise in mercury or lack thereof and from that information I can then
make a distinction. However, the concentrations of mercury found in the soil from our samples are then compared to that of the previous studies further upstream in the Penobscot watershed suggests that it would take a lot more than that to biomagnify to a detectable level in the organisms you're referencing.

MS. TUCKER: So did -- what are the studies that you base that on?

TYLER PARENT: The -- mercury is not part of my direct testimony, however, it is my understanding that it would have to be higher in order to biomagnify to those detectable levels.

MS. TUCKEr: And, again, what -- what literature or report or study do you base that conclusion on?

TYLER PARENT: I am not referencing anything at this moment.

MS. TUCKER: What are the impacts of turbidity during your study?

TYLER PARENT: The impacts of turbidity are intended to be minimal by all of the various mitigation measures that Cianbro intends to apply during the in-water work.

MS. TUCKER: Did you study the -- the impacts on the lobster fishery from the dredge done
previously about 15 years ago in Belfast Harbor?
TYLER PARENT: I did not reference that specifically, however, if you read through my testimony there is some clearly referenced language there that includes how fish are impacted by changes in turbidity levels. That being said, the entire plan is to make sure that that doesn't happen.

MS. TUCKER: And so you base your conclusion that there will be only a problem for six months based on -- you figure it will be, but you haven't done a single study to come to that conclusion and you haven't looked at any of the prior history of the decade long decline in lobsters after the Belfast Harbor dredge?

TYLER PARENT: So like I said, we're not necessarily referencing specific turbidity studies from within Belfast Bay, however, there is a lot of peer reviewed literature on the impact to finfish and shellfish from increased level of turbidity. And like I said, all of that already being out there we -- the entire plan is to make sure that we don't have significant rises in turbidity and the in-water work window is -- is based around the minimum level of biological activity in the area after which we won't be stirring the sediment anymore.

MS. TUCKER: Well, that's also a conclusion, but how do you know you're not going to? You're -you've just dug up tens of thousands of cubic yards of material and stuck it next to the hole, then you shoved it back in the hole and --

LAUREN WALSH: So I think I can speak to some of the turbidity mitigation measures if that's your question.

MS. TUCKER: Yeah, if -- first if we establish what -- what is your expertise in that area? Do you have a prior history of studying the effects of holocene mud with mercury and methane in it?

LAUREN WALSH: Are you asking the question about turbidity protected measures during construction or are you asking about scientific studies?

MS. TUCKER: I'm talking scientific studies of the impacts of this type of soil, this type of methane deposits, this level of mercury.

LAUREN WALSH: Scientific studies, no, I do not have a background of the scientific studies of mercury or...

MS. TUCKER: Then I don't see where it would be really helpful, so I don't think I need to ask
that question of you. Have you studied the impacts of this proposed dredge on the -- from a fisheries biologies perspective on the scallops and the mussel float mussels that are off of Northport?

TYLER PARENT: It's my understanding that there are no commercial shellfish harvesting operations in place within the project area and so I -- I am not sure --

MS. TUCKER: And who told you that?
TYLER PARENT: The DMR biologist that I was emailing with.

MS. TUCKER: What was that name?
TYLER PARENT: I don't have it at the moment nor was it referenced in my testimony because it's not required. I consulted with the Department of Marine Resources.

MS. TUCKER: Would it surprise you to know there is an existing aquaculture facility within less than a half-a-mile where this outfall is going to be off of Northport?

TYLER PARENT: I -- I was specifically told within the project area it is a no -- it is closed to shellfish harvest.

MS. TUCKER: Would it surprise you that that mussel float appears on all of the navigational
charts for this area and has for almost a decade?
TYLER PARENT: I do not know about that particular operation that you're referencing.

MS. TUCKER: And do you know how many
scallop fishermen fish in this area?
TYLER PARENT: I was told by the Department of Marine Resources that it is not a concern for any commercial shellfish operations at this time. And, I'm not sure, stop me here, but recently the Department of Marine Resources released two different reports which assessed essentially the same things we're looking at here. They happened to pare it down to just the federally listed finfish species as well as those shellfish in the area and their concluding statement was essentially that they do not anticipate any significant impacts to fisheries broadly in the area as well as -- the only thing that they mentioned was that they might want to add the pipeline to a navigational chart, but it is the opinion of the Department of Marine Resources that no significant impact will happen from this project.

MS. TUCKER: Isn't it true that the last two sentences of the Denis-Marc Nault submission specifically said that additional sediment testing was needed?

TYLER PARENT: Yes. No, you're -- you are quoting it correctly.

MS. TUCKER: And -- and isn't it true that that report also only talks about the impacts from the construction and ignores any impacts that may occur during construction to the existing crab fishery in that area?

TYLER PARENT: It's very clear that they are not worried about fisheries and, you know, they -they pare it down to that at the very end and after talking about the individual fisheries potentially impacted in the area. It is my opinion as well as that of the Department of Marine Resources that no significant impact will occur from this study.

MS. TUCKER: And isn't true that that report also and the reason we objected to it is that it fails to consider the impact long-term on the lobster fishery?

TYLER PARENT: What impacts do you refer to?
MS. TUCKER: From -- from the impact of dredged spoils disposal in this area, from the impact of the lost fishing grounds from the placement of these pipes, from the impact of the long-term effects of mercury resuspension.

TYLER PARENT: I'm going to go ahead and let

Ed Cotter answer this one.
EDWARD COTTER: I think the report refers to no anticipated impact from the construction. They talk about any impacts of the physical pipeline installation and being on the sea bed. They do not get into discharge, which, of course, we're not getting into here either.

MS. TUCKER: Isn't it true that it also doesn't consider the impact of that pipeline reconfiguration new installation method on the safety of lobstermen that they could get their gear entangled in it during storms and be severely injured by an entanglement?

EDWARD COTTER: I would say it does consider that and --

MS . TUCKER: Where?
EDWARD COTTER: -- and it -- it makes recommendations that the pipeline be marked because it will, in fact, most likely require fishermen to stay clear and this is a small loss of fishing area noted of 149,000 square feet in that area.

MS. TUCKER: And how that number was calculated, 149,000 square feet?

EDWARD COTTER: I -- I can't give you an exact answer because it's not in the memo, but based
on the -- my inference of the paragraphs around it it's a width of clearance that they anticipate would be recommended around the pipeline by the length of the pipeline.

MS. TUCKER: And what is that width?
EDWARD COTTER: They don't identify that.
MS. TUCKER: They meaning DMR?
EDWARD COTTER: Correct.
MS. TUCKER: And is it your -- is it your understanding that where a lobsterman places his traps is where his traps stay during a storm?

EDWARD COTTER: I'm sorry, the -- Ms.
Ransom just pointed it out. It is in there further down. It's 40 feet wide by the length of the exposed pipe.

MS. TUCKER: So what you're saying is 40 feet wide and the length of the pipeline is where no fishing can occur?

EDWARD COTTER: I am reading a letter from DMR to the DEP.

MR. DUCHESNE: And just for timekeeping measures, we are planning to break at 12:30 which is 15 seconds away, so.

MS. TUCKER: Great.
MR. DUCHESNE: If you can focus on whatever
is most important to you in the next question or two. MS. TUCKER: Anyone can answer this. Isn't it true that heat is a pollutant under 33 USC Section 1692?

TYLER PARENT: I don't have direct reference to what you're referencing there, but I can speak to a little bit of what the level of their thermal discharge would do to the various migratory fish in the area and that impact would be very minimal if detectable at all because although the water may be different in temperature, and I'll remind you that it may be hotter or colder than the surrounding water depending on the time of year, it will quickly disperse as designed by their discharge at which point it is not a thermal barrier to where these fish are migrating. And I'll remind you that -- that there is a dam on the Little River so they're not necessarily going to be able to get there anyway and the highest concentration of fish that would be moving through this area are going to the Penobscot River at large and moving up that way. And encountering a small area, and it really is relatively small compared to the area of Belfast Bay and Greater Penobscot Bay, is not going to stop a fish from getting to where it needs to go and nature
will take its course after that.
MS. TUCKER: And you base this on what study that you've done, that your employer has done, that Nordic has done or the DMR even did?

TYLER PARENT: I -- it's not in my testimony, but Normandeau has conducted studies on whether, for example, Atlantic salmon will continue their migratory route if encountered with a thermal plume and they found no significant difference in the rate of travel or the route choice based on that thermal plume in this particular study.

MS. TUCKER: And what about the effect on lobsters?

MR. DUCHESNE: This does seem to be a good place to wrap up. Thank you so much. I appreciate everybody's willingness to allow a little extra room given the circumstances of having to distribute information in additional reports that had just come in. We will take a break for lunch and you will need -- the panel will need to be back for cross-examination after lunch, so we'll finish this panel after the break. How long is the break? We shall reconvene at -- it's a 40 minute break, so we'll reconvene at 10 minutes past 1 o'clock. So 1:10 we'll get going again.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
(Luncheon recess.)
MR. DUCHESNE: So we can continue with our cross-examination. And for anyone to just joined us, we are continuing with our cross-examination of the panel provided by Nordic on wetland, streams and coastal. The baton now passes to Upstream Watch for cross-examination on earlier testimony.

MS. RACINE: Good afternoon, everyone. It is afternoon now, I believe. Ms. Ransom, you were asked by Nordic in June of 2017 to assist with the site selection process; is that right?

ELIZABETH RANSOM: Yes, that's correct.
MS. RACINE: And I think I heard you say that you looked at 534 potential sites from Washington D.C. up to the Canadian border.

ELIZABETH RANSOM: A point of clarification, those 534 sites were actually all of Maine. We actually looked at thousands of sites between D.C. and the Canadian border.

MS. RACINE: Okay. So that was the cored down group.

ELIZABETH RANSOM: Yes.
MS. RACINE: Okay. But because of -- so, in other words, was that partially because of market? I think you discussed that a little bit about how the
market for the salmon played into your consideration. Was that how you got from the thousands to 534 because you were already looking at the market or?

ELIZABETH RANSOM: The -- the primary driver to get us to a more narrowed list was actually water temperature and water cleanliness. So if you look at temperatures from buoy data, Dr. Pettigrew referred earlier to the wonderful system of marine buoys that are out there, there is a readily available dataset for water temperatures and the seasonal variance of water temperature along the coastline and so we were looking for an area where the temperature variation would be within a particular range that would allow them to use that water with a minimal amount of energy expenditures for heating and cooling.

MS. RACINE: And are you talking about the intake pipe?

ELIZABETH RANSOM: Yes. That's correct. Yes.

MS. RACINE: Okay. And at the preference though is for the intake pipe to be further out, to be at a further -- at a deeper -- deeper in the water and you're talking about turbidity and also a bit about temperature, I would imagine those play into that.

ELIZABETH RANSOM: So in -- in regards to temperature it's helpful if that can be fairly constant and fairly cool because that's the range that the salmon prefer, so depending on where you are on the coastline that will dictate how far out it is. So, for example, a place like Eggemoggin Reach you get deep pretty rapidly offshore whereas there are other places where you might have to go quite a distance because of the flat topography.

MS. RACINE: And was the -- and the intake pipe, was it out as far as was ideal in this situation as projected or would it have been deeper would have been more ideal? I think you were saying deeper is always more ideal in terms of temperature and turbidity.

ELIZABETH RANSOM: If you get to a certain depth and that, again, will vary where you are on the coast --

MS. RACINE: Right.
ELIZABETH RANSOM: -- but within a certain perspective there is not substantial gains by going deeper. You know, you get to a concern point where seasonally don't see much variance and so --

MS. RACINE: Is there a minimum depth though?

ELIZABETH RANSOM: I couldn't say there is a minimum depth, no.

MS. RACINE: Okay.
ELIZABETH RANSOM: You know, again, it's location specific.

MS. RACINE: Okay. And you mentioned that you did about 40 site visits.

ELIZABETH RANSOM: Yes.
MS. RACINE: Okay. And --
ELIZABETH RANSOM: Either I did or a member of my staff.

MS. RACINE: Sorry. Members of your staff, yes. Sorry, when I say, the collective...

ELIZABETH RANSOM: Yes.
MS. RACINE: I imagine 40 of just you would be -- that would be quite a lot of time. Actually, though I do have a question, how long did those 40 site visits take?

ELIZABETH RANSOM: I'm not sure I could give you an exact time frame for the site visits, but I do know our site selection process would have spanned six to eight months.

MS. RACINE: Six to eight months and it started in June of 2017?

ELIZABETH RANSOM: Yes.

MS. RACINE: Okay. And during those site visits you said -- I think I heard you this morning say that you did an environmental and an operational assessment, but that you specifically did not look at any wetlands delineation when you were doing those that initial assessments?

ELIZABETH RANSOM: We certainly looked for sites that would be more constructible in the sense of, you know, if it's an area that was obviously very wet. It was less preferable than a site that had high and dry land, but the actual wetlands delineation for the project wasn't done until we were closer to a selection point.

MS. RACINE: Closer to a selection or once you actually make the selection?

ELIZABETH RANSOM: I -- I think until we've gone through a full alternatives analysis you haven't actually, you know, physically made a selection, so I would say it was early in the narrowing down of those four alternatives.

MS. RACINE: So you didn't actually select Belfast until you did the subsequent alternatives analysis and that's where you do the different modules for four different -- so Belfast wasn't selected before you did that?

ELIZABETH RANSOM: No, Belfast -- I'm sorry. Belfast was certainly selected before we went on to the next step of looking at the site layout and how those interplay with the wetlands on site.

MS. RACINE: Okay. So you -- you select Belfast then you do the wetlands delineation for the alternatives analysis?

ELIZABETH RANSOM: Yeah.
MS. RACINE: Okay. And I think I heard Miss Fiorillo -- did I pronounce your name correctly?

ADELE FIORILLO: Yes.
MS. RACINE: Okay. That this site you
estimated about less than 10 percent of wetlands and that's, I think you said, quote, pretty good. I heard you say this morning.

ADELE FIORILLO: I am not sure that I said, quote, pretty good. I said that the site is 54 acres and of that 54 acres less than 10 percent are covered by wetlands and that it would be in my opinion difficult to find a site that met all of the project needs, fresh water, salt water, size of the parcel without having significant wetlands on the site.

MS. RACINE: And in terms of wetlands on this site compared to just talking about those alternative sites, the other I believe there is one,
mid-coast, northern and southern, and I know you don't do wetlands delineation until later on, but is there any comparison in terms of wetlands for those other three sites?

ELIZABETH RANSOM: I can tell you specifically that one of them contains over 90 percent wetlands.

MS. RACINE: Okay. One of them does. What about the other two?

ELIZABETH RANSOM: I can tell you in pretty rough terms on one of them it's pretty similar, perhaps in the 10 to 15 percent range. I really couldn't recall on the other one.

MS. RACINE: Okay. Would any of those sites be considered what's called a brownfield site?

ELIZABETH RANSOM: None of the four sites that made it into the detailed alternatives analysis would be considered brownfield sites. However, I can tell you that as one of the State of Maine's leading brownfields contractors, whose -- we've done as a company over 200 projects in 721 communities in Maine over the last few years alone. We are extremely familiar with the both benefits and challenges of developing in a brownfields area and we were not able to find a site that met Nordic's criteria and could
be developed in a practical manner for this project.

MS. RACINE: So brownfield sites made it into that top 40?

ELIZABETH RANSOM: Ah, no, they made it into the top 40 --

MS. RACINE: Okay.
ELIZABETH RANSOM: -- but just not down to the final ones written about in the alternatives analysis.

MS. RACINE: Got it. When we're talking about Belfast, mid-coast, northern, southern alternatives --

ELIZABETH RANSOM: Exactly.
MS. RACINE: -- that are otherwise identified. Okay. And I understand that you used a scoring matrix, I believe, in Table 22 that's attached to your direct testimony to depict how you scored those sites with Belfast; is that correct?

ELIZABETH RANSOM: Yes, we did.
MS. RACINE: Okay. And I'm just taking a look at this table here and for those who don't have it in front of them, I believe that it's on a scoring system of 5 ; is that correct?

ELIZABETH RANSOM: Yeah. If you could give
me a minute to actually get to my alternatives analysis that would be helpful.

MS. RACINE: Yeah, please.
ELIZABETH RANSOM: Yes, go ahead.
MS. RACINE: Okay. And 5 is the best. Can you get at zero? I am just curious. I don't know.

ELIZABETH RANSOM: I would say that really you can get a zero. So, for example, there are certain criteria that if it failed that criteria it really makes it impossible to do the project. So, for, example if there was no access to seawater, if there was no access to fresh water you would score zero.

MS. RACINE: That makes sense. Okay. So we're on a 0 to 5 scale. And looking on the left-hand column here there is several different criteria and one is access to abundant clean and cold, fresh water and it looks like Belfast got the best score, a number 5. And I don't know if you were here yesterday and we were talking about water supply, but it's my understanding that the initial applications were seeking 1,200 gallons per minute of fresh water from the ground in terms of groundwater and we now know that that's more limited to 455 gallons per minute. When you were making this score,
access to abundant clean and cold water was the assumption that the full 1,200 gallons per minute could be obtained?

ELIZABETH RANSOM: So a point of
clarification, the application has only ever had 455 gallons per minute in the application material for the -- for the groundwater well. So the -- the initial studies did look at a potential for higher rate of intake from wells, but the actual application submittal from May included 455 GPM. But to speak to your point, I think, you know, to go beyond and actually answer your question --

MS. RACINE: I just do want to clarify that one point, I'm looking at MEPDES permit application and that's in October 2018. I'm looking at Form 2D, Question 3B, Attachment 1 and I see this nice flow chart here and it -- it seems to contemplate fresh water from ground water wells 1,200 gallons per minute, so given that you are doing this analysis six to eight months after June 2017 and this is dated late fall of 2018, I'm just wondering if when you were making this assessment about access to abundant clean and cold, fresh water if it was based on that assumption.

ELIZABETH RANSOM: No, our assumptions were
really based more broadly than that. So in looking at the Maine coastline one of the things that you'll note is that a fair bit of it is these rocky headlands that, you know, the bedrock here is not super giving of groundwater and yet the -- some of the river systems that cut into the ocean if we were to try and develop the project in those areas we might find a sand and gravel deposit or something that is going to provide the fresh water, but then we had challenges with the geotechnical material. So when we were looking at the favorability of fresh water development, we were already looking at the fact that Belfast had a community supply that could perhaps provide surplus we were also looking at the reservoir. So right from our very first contact with Belfast Water District, we were looking at the fact that there was a redundancy of water available for this site and that's what's reflected in that 5.

MS. RACINE: So, yeah, reflected in this 5 it says clean and cold, fresh water, are you equating the surface water from the reservoir with the groundwater?

ELIZABETH RANSOM: In the sense that it can be used as fresh water source for the fish, yes. I think we heard testimony yesterday to say that
obviously there are different treatment technologies that would need to be applied and therefore preferences, but yes.

MS. RACINE: I was just wondering why it got a 5 .

ELIZABETH RANSOM: Yup. It -- it's pretty good for the State of Maine on a seacoast property, yup.

MS. RACINE: And then there was another category, ground conditions favorable to construction and Belfast scored a 4 out of 5. I think we now know that and we're heard, you know, over the course of this hearing so far that you're going to have to remove a lot of the soil, so just kind of --

ELIZABETH RANSOM: Yeah, I can expand on that.

MS. RACINE: Yeah.
ELIZABETH RANSOM: So part of the soil is going off, so it -- it varies across the site as to how much would be removed, but it's, I believe, on the order of 14 feet and some of that is -- it's pretty typical when you're doing something that's not slab on grade. A number of us are maybe familiar with our local shopping mall is built on a concrete slab, you don't necessarily have infrastructure
that's going underneath that slab. In this case, we have large fish tanks with support structure beneath them and some of that is to maintain the systems that keep the tanks with clean, fresh water the fish. And there is also a substantial height to these tanks and heights to these buildings and of course air handling material and so forth. So in order to meet height requirements there was a certain assumption that you might have to put some of this material subgrade so as to not make the buildings to tall and so some of that material is not just coming off because we prefer to surround that substructure material with things like gravel and things of known size, but it's also coming off to help with the height restrictions. There is a place where we actually are digging a lot more than that and that's down where the pump station is because we need to be able to have it low enough to pump the material uphill. So, you know, the score is reflective of the fact that there is bedrock near the surface as opposed to weighting down because we want these tanks to be on something firm and I think we -- what I talked about a moment ago when we were looking at water sources, a lot of our sort of flatter portions of the coastline have this very thick mud or silt deposit that's less suitable for
siting these big, heavy tanks of water.
MS. RACINE: No, I get why you're doing it, I'm just saying the fact that you're going to have to take all of the soil and take it elsewhere and it still scores a 4 out of 5 for ground conditions favorable to construction, I just -- it seems like that's a very high score considering that that's going to be quite the effort.

ELIZABETH RANSOM: It's all relative to what's here on the coastal portion of Maine. Obviously, if I were constructing this in the, you know, Utah desert the soils might be different, but it's relative to what's here.

MS. RACINE: I mean, could we conclude that the site was selected first and then this analysis came later?

ELIZABETH RANSOM: No. I think that would be inaccurate.

MS. RACINE: Okay. Oh, and about actually soil and excavating, you had mentioned the marine sediment being taken away and can you tell us where it's going, the marine sediment?

ELIZABETH RANSOM: I don't think that's been fully decided, but I-- I know it is a landfillable material there are a couple of ones that would be
under typical consideration.
MS. RACINE: Are they nearby?
ELIZABETH RANSOM: Reasonably, yeah.
MS. RACINE: How far?
ELIZABETH RANSOM: Uh, Crossroads and
Juniper Ridge are driving distance.
LAUREN WALSH: Maybe an hour,
hour-and-a-half.
MS. RACINE: An hour, hour-and-a-half.
Easily traversable by truck?
ELIZABETH RANSOM: Yes.
MS. RACINE: And is that the same place the soil is going?

ELIZABETH RANSOM: I think Ed could probably speak to where the...

EDWARD COTTER: As having soils on the site that are relatively clean, we haven't found any concerns regarding hazardous materials. We have a lot of options for material right now. There is gravel pits in the Waldo County area. There is other areas that are receiving material right now. As was testified to the city, we'd like to keep those options open because we like to have a lot of bidders, but we have reached out to several facilities and there is a lot of interest in taking
this material in.
MS. RACINE: Mr. Cotter, when did you first have your -- when was your first conversation with the city council here?

EDWARD COTTER: Probably shortly after I joined on with Nordic back in October of 2018.

MS. RACINE: Not until 2018.
EDWARD COTTER: That's when I joined the company.

MS. RACINE: Okay. Miss Fiorillo, I understand that the fresh water wetland boundaries in the plans were delineated according to the 1987 U.S. Army Corps of Engineers Wetlands Delineation Manual and the Regional Supplement; is that correct?

ADELE FIORILLO: Yes, that's correct.
MS. RACINE: And who actually did that
initial delineation? Was it you personally or somebody --

ADELE FIORILLO: No, it wasn't myself personally. All of wetland delineations were done by wetland scientists within Normandeau staff.

MS. RACINE: And Normandeau then performed an initial review of the wetlands on May 3, 4, 2018 and then also July 24, August 27, also 2018, and then May 2019, does that sound accurate?

ADELE FIORILLO: Let's see. Yes, we did a number of studies between May 2018 and February 2019 actually when it comes to wetland delineations, vernal pools surveys and stream assessments.

MS. RACINE: And it's Nordic Exhibit 8, the May 8, 2019 Natural Resources report that it was your sort of initial published --

ADELE FIORILLO: That's right.
MS. RACINE: Okay. -- version of what you found?

ADELE FIORILLO: It's been supplemented since.

MS. RACINE: Yes, I'm glad you brought that up. So in that initial report, it summarized the wetlands that you identified on the site; is that right?

ADELE FIORILLO: Yup.
MS. RACINE: And you assigned a W for wetlands that's labeled 1 though 18; is that correct?

ADELE FIORILLO: Yes.
MS. RACINE: And then sometimes there is an asterisk next to the W and that number, right?

ADELE FIORILLO: Um...
MS. RACINE: It's to indicate a wetland of special significance?

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

ADELE FIORILLO: Yes, correct.
MS. RACINE: Okay.
ADELE FIORILLO: A table. On a table. Yes.
MS. RACINE: That's how you --
ADELE FIORILLO: Yes.
MS. RACINE: Okay. And in some form --
fashion you indicated wetlands of special significance?

ADELE FIORILLO: Yes.
MS. RACINE: And that's a defined term, correct? The Department has rules, Chapter 310, I believe, in the regulations and wetlands of special significance is a defined term that has some...

ADELE FIORILLO: Right. By definition wetlands of special significance are areas of wetlands within 25 feet of a NRPA stream.

MS. RACINE: So it meets that definition?
ADELE FIORILLO: Yes.
MS. RACINE: Yes. And, actually, since the completion of that natural resources report there were some further wetlands delineation, I understand. I believe there were some comments from the DEP back to Nordic that Normandeau went back out but also had a peer review?

ADELE FIORILLO: That's correct.

MS. RACINE: Okay. And after Normandeau went back out and -- in conjunction with that peer review there was some changed designations to -- from drainages to streams; is that correct?

ADELE FIORILLO: That's right.
MS. RACINE: And there was also an added wetland, Number 19?

ADELE FIORILLO: Yes.
MS. RACINE: And Wetland 19 is also a wetland of special significance?

ADELE FIORILLO: Yes, that's correct.
MS. RACINE: And a couple designations were changed, I believe. I think Wetland Number 1 and Wetland Number 15, which had been previously identified were then wetlands of special significance.

ADELE FIORILLO: Well, there was some confusion, I think, on the part of the Department. One of the things I want to make clear is that we were delineating different parcels on this property. So we initiated it with the original water district site and than the Perkins property was added and the Eckrote property was added so we've extended boundaries and connected to areas that weren't previously connected.

MS. RACINE: But you did change the designation for those two to indicate they were wetlands of special significance?

ADELE FIORILLO: For 15 and 19.
MS. RACINE: And 1.
ADELE FIORILLO: And 1.
MS. RACINE: Okay.
ADELE FIORILLO: Yup.
MS. RACINE: And I'm just going to take a step back. Nordic is -- is doing this to get a Natural Resources Protection Act permit because it's proposing to conduct a certain type of activity that is on or near wetlands; is that correct?

ADELE FIORILLO: No, it's on or near a fresh water source and a salt water source.

MS. RACINE: Fresh water. Okay. And it's a Tier 3 individual permit?

ADELE FIORILLO: Yes, that's correct. I -I didn't complete the permit application.

MS. RACINE: Oh, okay. All right. Well, if somebody else wants to -- it's a Tier 3 individual permit?

ADELE FIORILLO: Yes.
MS. RACINE: Okay. So I just want to go back to the wetlands of special significance because
in the rules there are some additional restrictions that apply specifically if the wetlands have that characterization and one of them -- so -- so part of the job of the Board will be to look at the impacts of the project, but there are some things that are just outright not permitted if you're talking about wetlands of special significance and that is activities that are going to involve threatened or endangered species, does that sound correct?

ADELE FIORILLO: Yes. We -- there are no threatened or endangered species on the our project site, however.

MS. RACINE: I thought that all of Maine's eight bat species were listed. Am I mistaken?

ADELE FIORILLO: That's true, but they're not a wetland species.

MS. RACINE: But they are an endangered species?

ADELE FIORILLO: Yes.
MS. RACINE: Okay. So the northern long-eared bat, which is an endangered species is on the property and the property has wetlands of special significance.

ADELE FIORILLO: Is that a statement or -I'm sorry.

MS. RACINE: Yeah, I'm just trying to understand. So we've identified wetlands of special significance. If there are wetlands of special significance there are some particular rules that need to be followed in particular with regards to endangered species. I understand that the long-eared bat is an endangered species and was on the list of eight bats that have been identified as on the site.

MS. BENSINGER: Can you please pose a question?

MS. RACINE: So my question is can she confirm that?

ADELE FIORILLO: We didn't do a species specific survey for bats, but we did look at the habitat and assumed that all of Maine's species of bats would be present and based on that we recommended and the project conformed to time of year restrictions that would prevent impacts to the bat species.

MS. RACINE: And, in fact, there is not an out-and-out prohibition against doing something to the site, but what the -- what the rule contemplates is that your're not to disturb the species and you're also supposed to make sure that the overall project will not affect the continued use or habitation of
the site. Does that sound correct to you, if you know?

ADELE FIORILLO: So what we did was we used both the U.S. Fish and Wildlife 4D guidelines and the Mass Division of Inland and Fish and Wildlife sort of consultation and they agreed that if we conformed to the time of year restriction that we would not have that impact.

MS. RACINE: Yes, I believe there will be tree removal in the winter; is that correct?

ADELE FIORILLO: Yes.
MS. RACINE: And bats are migratory?
ADELE FIORILLO: Correct.
MS. RACINE: Smart -- smart animal in winter in Maine. And so the proposal is to remove the habitat in winter while the bats are gone and when they come back they won't have that habitat anymore. ADELE FIORILLO: Well, there are plenty of forested habitat for them to --

MS. RACINE: But not at that site, not the application of the site that we're talking about.

ADELE FIORILLO: That's correct. One thing to note is that the bats have been listed as threatened because Fish and Wildlife had looked at listing them as endangered but it's not due to loss
of habitats, but they're in that position it's actually due to white nose syndrome.

MS. RACINE: I thought I looked at the Maine site this morning and they were endangered as of October 2015, but if you want to correct me, that's -- that's fine. I thought specifically the long-eared bat was on the endangered list.

ADELE FIORILLO: Let me just check my notes here.

MS. RACINE: Well, what I will say is that the -- the rule I'm citing applies to threatened or endangered, so --

MS. TOURANGEAU: Ms. Racine, could you provide that rule, please, or at least a citation to me so that I can see what you're looking at?

MS. RACINE: So it's in Chapter 310.
MS. TOURANGEAU: I've got that. And I'm looking at wetlands of special significance, which is Section 4.

MS. RACINE: Yeah.
MS. TOURANGEAU: And freshwater wetlands is -- special significance is 4A.

MS. RACINE: Yeah, I can find it for you. Do you want me to...

MS. TOURANGEAU: Yes, please.

MS. RACINE: Sure. So we are in 5D(2)A and B.

MS. TOURANGEAU: All right. So what she's talking about is no unreasonable impacts. This is one and then this is two.

ADELE FIORILLO: Okay. So restate your question, please.

MS. RACINE: So actually, I think you've answered. I just -- I can confirm that you have ceded that tree removal in the winter will avoid any impacts to all of the bat species.

ADELE FIORILLO: Correct.
MS. RACINE: And we established that bats are migratory.

ADELE FIORILLO: Yes.
MS. RACINE: And that the long-eared bat, which is either threatened or endangered.

ADELE FIORILLO: Yeah, you're correct that it's -- it's threatened in the state, but federally it's -- I mean, endangered in the state and threatened by the federal.

MS. RACINE: Okay.
ADELE FIORILLO: Yup.
MS. RACINE: I'm going to move on to vernal pools. You -- you stated in your pre-filed direct
that there were no vernal pools on the site; is that correct?

ADELE FIORILLO: Yes.
MS. RACINE: And you looked for vernal pools
in May 2018, am I correct about that?
ADELE FIORILLO: Yes.
MS. RACINE: You didn't look for vernal pools any other time besides May 2019; is that correct?

ADELE FIORILLO: Well, Maine -- Maine requires two visits to a site if potential vernal pools are found the first visit. We didn't find any, so.

MS. RACINE: So it was just that May.
ADELE FIORILLO: Yeah, May 1, 3 and 4.
MS. RACINE: So you didn't look in a different season, for example.

ADELE FIORILLO: Well, we were actually out on the site doing all kinds of wetland related assessments up to nine days over the course of two years.

MS. RACINE: Some of those dates were in July, right?

ADELE FIORILLO: Yes.
MS. RACINE: Did you ever -- do you -- if
you recall, were you ever there after a major rain event?

ADELE FIORILLO: Oh, yes.
MS. RACINE: Okay. Well, which time was
that?
ADELE FIORILLO: That happened -- actually, that happened during one of the DEP site visits the day after a major rain event which is what resulted in some of the wetland boundary changes.

MS. RACINE: Still no vernal pools though.
ADELE FIORILLO: No vernal pools.
MS. RACINE: I also wanted to ask you about your survey of birds. You used eBird; is that right?

ADELE FIORILLO: Yes.
MS. RACINE: And eBird is essentially a database that allows for a compilation of bird sightings and observations by individual bird watchers?

ADELE FIORILLO: Correct.
MS. RACINE: And based on eBird records, you note that there are eight species of special concern on the site. Paragraph 11 of your pre-filed testimony.

ADELE FIORILLO: Okay. Wait a second.
MS. RACINE: Sure.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

ADELE FIORILLO: Let me get there. Yeah, I don't have 11 on my... Too many pages here. Let me see. And I'm not -- I'm sorry, I'm not finding my...

MR. DUCHESNE: Number 11 of your submitted testimony.

ADELE FIORILLO: Let me pull it up on my computer because I don't have it in front of me.

MS. RACINE: Thank you.
ADELE FIORILLO: I just have a summary in my paperwork here.

MS. RACINE: Well, let my ask you this, you didn't conduct a project specific avian survey; is that correct?

ADELE FIORILLO: Um...
MS. RACINE: Or any on-site --
ADELE FIORILLO: We do do site visits, yes.
MS. RACINE: Specifically?
ADELE FIORILLO: To assess habitat for bird use.

MS. RACINE: In addition to the eBird records.

ADELE FIORILLO: Yes.
MS. RACINE: And what did you conclude?
ADELE FIORILLO: Okay. So here we go. So the conclusion was that terrestrial species likely to
use the on-site habitats based on the habitat preference of certain avian species, eight were listed as special concern and five of greatest conservation need in the Maine Wildlife Action Plan.

MS. RACINE: I'm sorry, I thought that was -- you derived that -- when you said it was likely I thought you derived that from the eBird records, but if you observed it personally, please correct me.

ADELE FIORILLO: Yeah, we did do habitat preferences, direct observations.

MS. RACINE: So those observations -- and are those direct observations stated in that testimony or?

ADELE FIORILLO: Yes.
MS. RACINE: So you said likely to use, did you likely -- but if you directly observed.

ADELE FIORILLO: We directly observed the habitat.

MS. RACINE: The habitat, okay, but not doing a specific catalogue of --

ADELE FIORILLO: That's right.
MS. RACINE: -- the birds there. Okay.
ADELE FIORILLO: That's right.
MS. RACINE: And instead of eBird, did you
consider using a Maine Birding Trail Guide?
ADELE FIORILLO: No.
MS. RACINE: And you also concluded the area where the Little River empties into the bay is a low valued habitat for inland waterfowl and wading birds; is that correct?

ADELE FIORILLO: Yes.
MS. RACINE: Have you ever surveyed the wading birds in the flats where the Little River enters the bay adjacent to where the pipes are proposed to go?

ADELE FIORILLO: We did. We did go out to the entrance of the Little River into the bay and also the bay and did a one day habitat -- or a one day bird survey.

MS. RACINE: A one day survey.
ADELE FIORILLO: Yes.
MS. RACINE: Would you be surprised to learn that the area is frequently teaming with waterfowl?

MS. TOURANGEAU: Objection. That's testimony.

MS. RACINE: She can...
MR. DUCHESNE: Could you rephrase the question. What -- first is what did they observe on their one visit and clarify when that visit was?

MS. RACINE: What did you observe on your one day visit?

ADELE FIORILLO: It was at low tide and so we looked at the substrate because the tidal wading bird habitat is associated with the feeding habitat that provides for the waterfowl and the wading birds and based on what's out there there is some intertidal mudflat, but it's minimal, the eel grass, mussel beds and those kinds of things that they can forage for when invertebrates are not present.

MS. RACINE: What is the date of this visit?
ADELE FIORILLO: There were two dates. Let's see. December 12, 2018 and 26 March 2019.

MS. RACINE: Is it conceivable that there waterfowl in that area that --

ADELE FIORILLO: Oh, of course, yes.
MS. RACINE: Okay. You acknowledge that, I believe, some of the streams will be permanently impacted and some will be filled as a result of this project.

ADELE FIORILLO: Some?
MS. RACINE: Some of the streams.
ADELE FIORILLO: The streams, yes.
MS. RACINE: And you also indicated that Reservoir Number 1 would actually benefit from a
reduced sediment load.
ADELE FIORILLO: Correct.
MS. RACINE: Is one -- in your opinion, is one of the impacts of the removal of these streams would be reduced groundwater recharge if you're restricting the flow of the stream?

ADELE FIORILLO: Based on our assessment the streams don't intercept groundwater. It's all surface flow.

MS. RACINE: All surface flow.
ADELE FIORILLO: Right.
MS. RACINE: Okay. So it will have no affect whatsoever.

ADELE FIORILLO: Right.
MS. RACINE: Miss Walsh, the mats that you described during your testimony on the subsurface, were those disclosed to the Bureau of Parks and Lands when Nordic applied for a submerged land lease?

MS. TOURANGEAU: Objection. That's outside the scope of this application process. You can answer, but.

MR. DUCHESNE: Any advice because I wasn't paying full attention.
(Laughter.)
MR. DUCHESNE: Oh, did that come out of me?
(Laughter.)
MS. BENSINGER: So you objected that it was outside the scope of her direct?

MS. TOURANGEAU: Of all of her testimony.
MS. BENSINGER: All of her testimony.
MS. TOURANGEAU: Yeah.
MR. DUCHESNE: Yes, I would agree.
MS. RACINE: I wouldn't say all of her testimony since she did specifically speak to the mats on the subsurface. If the witness -- if the witness knows they can say whether they were involved in that process.

MS. BENSINGER: But what -- but what is before the Bureau of Parks and Lands isn't an issue for this Board.

MS. RACINE: Just -- just wondering at what point those mats were introduced into this process.

MS. BENSINGER: That would be a more appropriate question.

MS. RACINE: If you know, at what point were the mats introduced into this process, which is subject to many different permits in that location?

LAUREN WALSH: As we were going through the design process --

MR. DUCHESNE: Microphone.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

LAUREN WALSH: Sorry. As we were going through the design process of the pipeline route and the pipe line itself the mats were introduced as a construction measure, I would say in early fall of 2019.

MS. RACINE: Okay. Not until 2019?
LAUREN WALSH: That's my understanding, yes.
MS. RACINE: Okay. And, Mr. Parent, I just have a question for you. I think at the end of your direct, and I can get the citation, you speak about, as we've turned on a little bit earlier today, the -that you don't have concerns about some of the water because of the filtration system. You do speak about the filtration system as a component of your testimony; is that correct?

TYLER PARENT: Are you asking if I have concerns about the discharge water?

MS. RACINE: I think both. I think you spoke to both, am I right? Yeah.

TYLER PARENT: Would you mind rephrasing or restating your question?

MS. RACINE: In other words, your testimony does speak to your assessment of the efficacy in your opinion of the filtration system.

MS. TOURANGEAU: I'm going to object because

Mr. Parent will be appearing again on the discharge permitting part and I think we're supposed to keep those separate.

MR. DUCHESNE: Yes, I would agree with that and I'll sustain that.

MS. RACINE: Okay. Well, then we will meet again.
(Laughter.)
MR. DUCHESNE: It's not your last chance.
MS. RACINE: Thank you very much.
MR. DUCHESNE: I believe Miss Daniels has a couple of questions that she would like to ask. And we will limit it to two questions. And the only reason I limit it to two is because we are about two hours behind in our schedule at this point, so. You may proceed.

MS. DANIELS: Ms. Fiorillo, I had another question about habitat.

ADELE FIORILLO: Okay.
MS. DANIELS: Are you familiar bobolinks?
ADELE FIORILLO: Somewhat yes.
MS. DANIELS: Yeah. Well, having lived on the Perkins Road there are many, many bobolinks there. Do you feel as though this project might disturb or prohibit habitation on this site?

ADELE FIORILLO: We never observed any bobolinks while we were out there on the site. One thing I do know is, you know, certainly the wet meadows and the grassy areas are conducive to their nesting. They do prefer areas that are larger in acreage and I have a feeling that if you combine what's across Perkins Road and what is on the project site it might be a large enough area for them. I -I think that the most limiting factor is from what I understand is the annual mowing regime.

MS. DANIELS: So I've lived for three years 300 feet from the line where this project is proposed and we would often have multiple, multiple nests of Bobolinks behind our house and out into that project field.

MR. DUCHESNE: That's a little bit of testimony, so if you could just go right to the question.

MS. DANIELS: Absolutely.
MR. DUCHESNE: Thank you.
MS. DANIELS: Are you aware that bobolinks are on the -- are a threatened -- a threatened species?

ADELE FIORILLO: I think you are correct, but let me just check.

ADELE FIORILLO: I guess I'll take your word for it.

MR. DUCHESNE: Yeah, thank you very much. Sorry. It was two questions. We are well behind schedule and there is a chance the subject will come up again. Yes, we have DEP Board questions. I will go to Ms. Callahan first.

MS. CALLAHAN: Hello. I have several questions, so I'm going to start from the beginning and start with Ms. Ransom. So your discussion of alternatives included details about site selection and building layout, but I'd also like you to go into a bit more descriptive detail as to the minimization strategies that were considered to reduce the overall impact to natural resources.

ELIZABETH RANSOM: Sure. Absolutely. So in the initial site layout there were a number of efforts to minimize impacts by centralizing the building location. So you'll note that, you know, we have two very large buildings. The grow-out modules always are quite big, but by sort of pushing those together and putting a lot of the supporting infrastructure between those buildings we were trying to minimize impacts to the fact that there were kind of some larger -- there is a larger stream that's
essentially on the eastern border of the site, so we did some things with the actual physical arrangement of the larger structures, the buildings, to move them out of areas that we're trying to protect and enhance like Stream 9, the eastern most stream.

And we also looked at ways to minimize the other infrastructure on the project site itself. So original configurations, for example, had an area that was, you know, sort of a potential turn-around area for vehicles or patio space around the office building and we looked at ways to reduce those so that they were moved further from wetland resource areas and out of the wetland resource areas. So -so the first step was to reduce by way of modifying the layout and also constraining the size of different things like driveways. You know, is it easier for trucks and parking and so forth if you have ample paved area? Yes, but by reducing that we can also reduce impacts to wetlands.

Then we also looked at ways in which we could provide enhancements. So I know Adele talked about right now there is a kind of channelized ditch for part of Stream 9. It's a, you know, mowed grass lawn and when we went on a site visit and observed this and so we looked at ways to make that better.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

We also did some things with some culverts that are on the Eckrote property, which are right now they're sort of hung. The result of that is that as stormwater comes through the culverts on periods of high water there is increased speed, there is not vegetation there to stabilize and you end up with an ongoing impact and so the project is looking to take things like that and turn it into an open-bottomed, natural bottom stream with an archway, a span, so that water can pass naturally and naturally enhance some of the wetlands where they're remaining intact.

So I don't know if I fully answered your question, but we -- we looked for both ways to reduce impacts as well as ways to enhance what is remaining.

MS. CALLAHAN: All right. Thank you. So, yeah, you were just sort of -- you blended into the compensation plan and I actually do have some questions about that. You've mentioned the methods that you plan to do, but I'd like for you to provide a little bit more detail how the compensation plan applies to each resource type and then also how and when would each of the components be implemented.

ELIZABETH RANSOM: So some of what the work entails -- so I think I just mentioned Stream 9. So -- so some of that work is riparian buffer to
this -- to this route.
MR. DUCHESNE: We're just discussing it would be helpful if we could get that map up that we displayed yesterday.

EDWARD COTTER: Sure.
MR. DUCHESNE: If that's readily accessible and easy to put up that might help.

ELIZABETH RANSOM: I can -- I can pause for a minute while he...

MS. TOURANGEAU: Do you want her to pause or do you want her to keep going for time?

MR. DUCHESNE: Yeah, I think -- I think we can keep going.

MR. LIVESAY: I think it would help too, I just happened to flip to this, but it may be helpful, Tab 14 in the pre-filed direct testimony contains the -- the map.

MS. BENSINGER: Exhibit 14?
MR. LIVESAY: Yeah. And it's labeled map compensation plan. I don't know if this would be relevant.

ELIZABETH RANSOM: Yeah, it should help.
MR. DUCHESNE: I would like the Commissioner to note just how helpful Mr. Livesay was.

MR. LIVESAY: That's what I'm here for. I'm
here for the rest of the afternoon.
ELIZABETH RANSOM: So certain -- certain resources are -- have water flow more times than -more often, have a bit more habitat to them and therefore -- so that eastern stream, the Stream 9 that we're talking about, it's continuous not only on the project site, but it also extends beyond Perkins Road so it -- it provides a valuable corridor potentially for wildife and so we looked at the ability to enhance that as part of the project and provide additional riparian buffer. So some of that work will need to take place quite soon because it's area that we will be needing to stabilize slopes. So one of the things that -- referring to your question on schedule is where we have a disruption to an area through the construction process the desire is to stabilize -- restabilize that area quickly so that we don't have issues with erosion and sedimentation control. So as the -- as the construction proceeds, I think you heard either Adele or Lauren refer to restore in place. So, for example, with the pipeline construction as you go through the coastal marsh area you're basically lifting that valuable top layer up and moving it aside, getting your pipeline lain and then you're putting that back, that's -- that's a
fairly immediate process in the scope of the construction schedule.

So, you know, some of the other things are -- plan to occur on land that is actually staying with the Belfast Water District and -- or, excuse me, the City of Belfast. So certain -- a small amount of the restoration projects are actually going to go on in that 250 foot shoreland zone and Adele described earlier some of that is -- is trail related. There is a highly valued trail system that the community enjoys along the Little River and Lower Reservoir and so the plan is to work to do some smaller bits of slope stabilization, rebridging and enhancements to some of the stream crossings along that trial. That's not dependent on our construction per se. It doesn't -- it doesn't have to follow a particular point in our construction sequence to be done.

MS. CALLAHAN: Thank you. Let me backtrack just a little bit on that question. So it's helpful to know more details along the stream, but I want to know a little bit more about what each of the items of -- in the plan are associated with for the resources. For example, the rebridging is associated with which type of resource and the preservation that is associated with which type of resource? Does that
make sense?
ELIZABETH RANSOM: I think so. Between Adele and I, I think we can get where you're going with this. So -- so for Stream 3, which is the one on the furthest kind of west portion of the site.

MS. BENSINGER: Can you use the pointer perhaps on the plan for me?

ELIZABETH RANSOM: There you go. Stream 3. There are native plantings -- well, there will be bridge replacement and then there is native plantings that will be done on the western side. And then on the eastern side we're -- we're looking at primarily slope stabilization, so we're not creating new wetlands. We are looking at stabilizing what's there now and we are looking at ways to improve the pedestrian traffic in there so that it remains in good condition in the future.

For Stream 5 it's looking at 165 1/2 square feet of streambed protection, again, putting in a new bridge so that instead of people walking through the stream they are walking over the stream.

Stream 6, we are also looking at streambed protection and also doing some revegetation along the banks with native plantings to improve the -- the side banks.

We -- I had already talked about Stream 9 with the riparian buffer restoration.

We also have a drainage on the Eckrote property that is heavily culverted that we plan to also improve. It's going to take those three sort of hung culverts -- culverts and we're going to stabilize the slopes at the plunge pool with native plantings and, as I said, we're going to create a span to replace those culverts so that the stream can actually or the drainage can actually flow.

MR. DUCHESNE: Dr. Hopeck. Are you done?
MS. CALLAHAN: Nope.
MR. DUCHESNE: Oh, keep rolling.
MS. CALLAHAN: I have more.
ADELE FIORILLO: Just to add comment about Stream 5. There is currently a concrete and an aluminum pipe in that location that's failed, so we are going to remove that and restore the streambed on Stream 5.

MS. CALLAHAN: In the application there is a proposal for monitoring within Streams 3, 5 and 6. If a permit were to be granted, how would the downstream portion of Streams 3, 5 and 6 be monitored to ensure a natural flow regime?

ELIZABETH RANSOM: So I think what you're
referring to is in our water resources monitoring plan as well as in the current letters.

MS. CALLAHAN: Yes.
ELIZABETH RANSOM: We propose to put something like a weir or a permanent structure in that we can get fairly continuous data to confirm that water is indeed still continuing to flow through those streams and that the flow regime is mirroring what it has had historically.

MS. CALLAHAN: Okay. And you -- and then I have a couple more questions and I think that Ms. Fiorillo can probably answer these. It was mentioned in the beginning that there are invasive species at the proposed site. Would you please clarify what those species are?

ADELE FIORILLO: Endangered species?
ELIZABETH RANSOM: Invasive.
ADELE FIORILLO: Oh, I'm sorry, invasive species. I know there is a lot of glossy buckthorn out there. In the wooded portions the meadow portion is dominated by Calamagrostis to the facultative grass species. It's kind of used for, you know, soil stabilization in the agriculture business. I think it's more naturalized than native -- ah, invasive, but it's not entirely native either. Let me see if
can I come up with a list. Those are the two that come to mind quickly. I'm looking at our wetland delineation report. Part of our natural resources report.

ELIZABETH RANSOM: While she's scanning, the natural resources report is an attachment to the NRPA application for those that are looking for it.

MS. TOURANGEAU: It's also Nordic Exhibit 8.
MS. BENSINGER: B did you say?
MS. TOURANGEAU: 8.
MS. BENSINGER: Okay.
ADELE FIORILLO: So in the wetlands for the most part in the forested areas we have red maple, white pine, hemlock, red spruce. The pine and spruce are typically not wetland species, but they are known to be found in wetlands in the northeast. Let me just find some of the shrubs. Along Stream 9 in the -- in the areas that have shrub cover, again, glossy buckthorn was one of them. In the meadow, cow vetch. Sorry, I don't have a complete list. I'm scanning through paragraphs here. I guess those are the ones that I can come up with quickly.

MS. CALLAHAN: Yeah, that's good. I just wanted to get maybe some representative species that are out there --

ADELE FIORILLO: Okay.

MS. CALLAHAN: -- that you observed. So I have one last question. During the review, the Department requested that Nordic conduct a qualitative evaluation of the biological and physical compensation of on-site streams. That was completed in the record, but I'd like for to you describe the scoring mechanism that you chose for this evaluation and its result. And then also, it's a two-parter, explain how those numerical values that came from that evaluation correlate to reasonableness in particular of the proposed impacts to streams.

ADELE FIORILLO: Okay. Yeah, so based on the Department's recommendation we use the EPA method of qualified habitat evaluation index and what that does is it includes a number of different parameters that you assess. It might be under the pile I gave you. Yup. So what we do is we went to the NRPA streams on the site and we looked at substrate, we looked at in-stream cover, in other words, what the canopy is over the stream. We looked at channel morphology, did it have cut banks, did it have cobble or silt, what the substrate was. We looked a little bit more broadly at the riparian zone, in other words, the zone of vegetation that would be
influenced by water in the channel. We looked at if there were any pools within the channel, areas of water that would pond up or if there were any riffles, areas where water would overflow -- flow over a colony substrate and that's important because it aerates the water and we also looked at the stream gradient and the scoring process assigns numbers to each of those parameters. They're called metrics. And those metrics are designed to assess what's important to aquatic life. And so we looked at all those metrics and when they sum they provide an index that can range in negative to positive with a maximum score to each metric and the higher the cumulative score the better the habitat quality and the score can be as high as 100. And the cumulative score of greater than 70 is considered excellent while scores of less than 30 are considered very poor. And all of ours scored well under 30. I think the highest score we had was 18 and that was on Stream 9.

MS. CALLAHAN: So with those scores can you explain how that correlates to reasonableness of the impacts that are proposed to the on-site streams?

ADELE FIORILLO: Well, it indicates that the streams are very low quality and have very low opportunity for aquatic life, so it's -- it's not

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
unreasonable -- it's not a large impact as in terms of aquatic habitat is concerned.

ELIZABETH RANSOM: I think I'd also -- I mean, I'd like to add also when I was speaking earlier about compensation part of the reason for selecting Stream 9 as an area for compensation and improvement and enhancement and preservation was the fact that it was the highest scoring stream out of the valuation that Normandeau conducted and it's not unreasonable to impact the streams that are scoring so low. So in terms of meeting NRPA's guidelines relative to demonstrating no unreasonable adverse impact the QHEI that Normandeau provided was our mechanism pathway for understanding the values that the different streams provide and where we want to enhance and preserve versus, you know, juggle buildings and so forth.

MS. CALLAHAN: Thank you.
ADELE FIORILLO: Just a quick correction. So the scoring -- the low score was 18 , I'm sorry, the highest score was 42 and that was Stream 9.

MS. CALLAHAN: Thank you. I'm done.
MR. DUCHESNE: Great. And I would also like to say I appreciate the questions because it gets to the heart of one that I was maybe going to get to and
that is the appropriateness of the compensation package being offered when the stream we are preserving is right between the driveway and where the water treatment facility is going to do -- go and so I'm going to wonder probably when we get to more deliberative sessions whether that is a sufficient amount and I appreciate you leading us into that direction.

I think Dr. Hopeck had his hand up prior to Ms. Hallowell. You guys can fight it out.

DR. HOPECK: Two quick questions. First, the new information that came in this morning is there information in there that's specific to whether the substrate in the subtidal zone is capable of supporting the years or the other supporting mechanisms for the pipeline or whether that is stable or unstable?

MS. BENSINGER: Mr. Hopeck, I -- you probably don't know this, but you're probably referring to Exhibits 38 and 39 --

DR. HOPECK: Yes.
MS. BENSINGER: -- of Nordic.
DR. HOPECK: That's correct.
MS. BENSINGER: Just clarifying for the record.

EDWARD COTTER: The substrate was
investigated not only for the Vibracore samples, but also during the -- using the echo-sounding techniques to understand what was under there. The -- the situation that we have with the pipeline is actually that it's buoyant, so supporting the pipeline is not as big of a concern as actually holding it down from floating away or being moved by the tidal and wave forces. So the anchoring system that you see that's proposed either using piles or helical anchors is again more targeted towards lateral and uplift forces and those are both designed for that soil type. We expect that that soil type is anywhere from 4 to 10 meters thick. Below that is a better more competent sand, which if we encounter that that's a good thing, but we are designing based on that layer of soft 50 percent sand, 50 percent fine materials.

DR. HOPECK: Okay. So that anchoring will be discussed more fully or is discussed more fully in those exhibits?

EDWARD COTTER: It is.
DR. HOPECK: Okay.
EDWARD COTTER: At least the -- the analysis that got us to the design is so that the results of the analysis. In other words, we talked about -- let
me open it up. So in there we've got the multi-beam bathymmetry collection. We talk about the wind/wave generation. We talk about Vibracore and sediment analysis including the results. And then we talk about the seismic analysis, which is the echo-sounding that gives us an idea of how thick certain layers are and what to expect below that. The anchor design is -- is touched on in the original application, the NRPA application.

DR. HOPECK: Okay. And then it has come up and I suspect mostly we've got the right group of people to answer this. In the original geotechnical application, the original geotechnical report in the February 27, 2019 report notes that the structural loads, tolerable sediment amounts, grading and drainage plans were not finalized when this report was prepared. So a two-parter, have those been finalized and whether they have been or not are you anticipating any additional geotechnical work with regard to this geotechnical report to the site?

EDWARD COTTER: The report -- the geotechnical report that was prepared by Ransom is considered final on current information that we have. You want to tell your part?

ELIZABETH RANSOM: Yeah, I'll say one more
thing about that. We commonly put that into all our geotechnical reports because it's been our experience that as construction projects proceed it's not uncommon to find something that putting borings throughout the site you can't prepare for and so should there be a need for a design change we want it to be clear that we have a pathway toward getting additional information if it should be needed. So that -- that wasn't meant to imply that we were not considering that to be a final report for the permit process, it's just meant to imply that should something be encountered in the future, we'd like an opportunity to come back and -- and re-evaluate that specific portion of the site for additional geotechnic information if it's warranted.

DR. HOPECK: And certainly we, you know, from our standpoint we see that all of the time and that's the case we often get something that says draft report and it raises the question it's okay.

ELIZABETH RANSOM: Yeah. We didn't call it draft report, but we do intend it to be as comprehensive as possible. It's just we know that conditions can change when you start construction.

DR. HOPECK: Yeah. And we recognize that as long as it's clear on both sides.

ELIZABETH RANSOM: Yeah. I wanted to point that out.

EDWARD COTTER: The other thing to note is, you know, with subsurface conditions obviously we're -- we're making our calculations based on information known as part of the quality control plan. We intend to fully analyze current conditions against anticipated at all times and bring in resources to look at those and make sure that nothing has changed in our design as we go along.

MR. DUCHESNE: Miss Hallowell.
MS. HALLOWELL: Thank you. My question is around Ms. Walsh's testimony. So you gave us a -- a good summary of how construction will occur in the intertidal area. I was hoping you could elaborate on how that relates to the subtidal work, maybe summarize what the subtidal work is and in sequence where do you start? You said you were starting from the deep end of the intertidal area and working landward, how does that relate to the subtidal construction?

LAUREN WALSH: So as far as the subtidal work, the -- the intertidal work would start from the deep end and work in. The subtidal work would be in a similar fashion working from that outside point
back to the intertidal intersect. It is subsurface excavation work. The material would be excavated using a long-reach excavator and a closed bucket up onto a barge whether it be a -- possibly a jack-up barge may be used at that point in time because it would be floating. That material then also would be put back in, so it would be a very similar sequence to the intertidal zone. Trench boxes would not be used at that point. The excavation is less also because as we mentioned that pipe is kind of -- is not as deep as you get out there. It's not buried as deep as it is towards the intertidal -- portions of the intertidal area.

MS. HALLOWELL: So do you start at the subtidal and work your way back or are you leap-frogging as you go?

LAUREN WALSH: No, you're going to start from the furthest point out and work your way back. That's what in the plan right now. That could change, but that's the way it is right now.

EDWARD COTTER: I think one thing to point out too is that the schedule is driven by the window of operations within the subtidal area so that that operation will drive our schedule and the other areas that might be intertidal or upland work would be
phased around that October to April time window, which is less -- which is not flexible.

LAUREN WALSH: I think conceivably we could probably have two places going at the same time and connect depending -- depending on work schedule.

MS. HALLOWELL: Okay. And one final
question, the material that's removed from the excavation and put on the barges, how does that get transported away? Is it the barge that's takes it away --

LAUREN WALSH: Yes.
MS. HALLOWELL: -- is it put on put on dump trucks and --

LAUREN WALSH: The barge will transport it to land and then it will be transported to a truck and then to the disposal facility.

MS. HALLOWELL: So the barge will motor to an existing landing somewhere and then it will be transferred to a truck. You're not going to take it back up the access path?

LAUREN WALSH: No. No. Because that access pad will be removed as we do the intertidal work.

MS. HALLOWELL: Okay. Thank you.
MR. DUCHESNE: Other questions from -- yes, Mr. Miller -- Martin.

MR. MARTIN: So we have received -obviously we heard quite a bit last night about public concerns, some of them were regarding brownfield site as a possible alternative. Could you just discuss what -- for what reasons potentially if a brownfield site is inappropriate for your project? And I think there are other projects that have been proposed that are indeed on brownfields, can you describe what is it about your project that might be different from those that would make a brownfield inappropriate and a greenfield appropriate?

ELIZABETH RANSOM: I'll start and I'll pass it down. I think it's kind of a combined response. So as -- as somebody whose company who does a lot of work on brownfields, I will say that, you know, we obviously looked at some of the benefits that results from working on a site that -- where there might be already existing infrastructure such as a pipeline might already exist. There might be things that actually make that quite desirable. But the downsides to a brownfield site is a lot of our sites -- a lot of our brownfield sites still have existing legacy contamination issues. So when you're trying to provide a clean water source, a fresh water source, if you're trying to derive that source from a
property that has existing contamination that's pretty much a non-starter. So it -- it has to be a brownfield site that somehow also has access to an abundant source of -- of clean water both on the fresh and the seawater side. And that's quite hard in Maine because of the fact we've got a long history of mills and -- and things that have damaged both our fresh water and our coastal resource.

So that's a piece of it, but it also speaks to a little bit sort of timing. All of the brownfields projects follow a time line through a regulatory process where there are, you know, steps to looking at the study of what exactly is impacted and then how do we go about cleaning that up, so there is also a time line here that has to dovetail with Nordic's desire to be kind of be up and running in a couple of years. So part of it -- and then the other piece is logistically physical location and land mass, you know, if -- and then there is also cost. You know, a lot of these existing brownfield sites have structures that would need to be removed and that comes at a -- in some cases a considerable expense because of things like asbestos and lead and so forth in the building. So there is a lot to the consideration of a brownfield versus a greenfield.

And one is not inherently better than the other, but it has to meet the project's needs and in this case we didn't find something that did that. And I think Ed can...

EDWARD COTTER: Nordic Aquafarms has -- has always been interested in considering brownfield sites because as Ms. Ransom mentioned it does bring some advantages along with the challenges that it -it might have. In this case, we did initially consider brownfield sites but the priorities for this project made it such that the brownfields that were considered could not supply those or meet those requirements and would not make the job in our analysis a success, so we had to unfortunately keep looking for other options. The project that we're looking at today on this site provided us the requirements. It also has its own challenges and expenses. It's not that this was a cheaper, easier alternative by any means, but we felt that it was the best opportunity for us to have a successful project and meet the requirements that we set forth in the alternatives analysis.

MR. MARTIN: Thank you. Moving on to stream enhancements. I think Beth covered the scoring system pretty adequately in her questions. I guess
my question is whether adequate measures are in place to provide protections on any stream enhancements. I believe you've mentioned some regarding Stream 9, I'm just wondering whether adequate measures have been proposed or are in the works for, I guess, the other kind of minor ones that you've been handling along the way.

ELIZABETH RANSOM: So there are -- there is a monitoring program that not only covers water -water resources but also monitoring of the plants in the restoration area. So in the water resources monitoring plan we -- we speak of the need for continuing site visits to make sure that areas of stabilization that the plantings actually survive. It's not uncommon to have certain things not take the way you anticipate, so in terms of, you know, ongoing checks on whether or not the restoration is successful that has been added to the plan.

MR. MARTIN: Thank you. One more question regarding streams. We've had plenty of talk about the soil quality and how this surface run-off coming into these streams is obviously in these circumstances that is being removed. Can you describe where this water is coming from? You obviously already previously described in Beth's
questions the weirs and monitoring of that stream flow. Can you mention or describe where that water is now coming from and what measures you have in place to provide that water to the stream?

ELIZABETH RANSOM: So some of the water that flows into the streams actually originate off-site and flows at the site itself and so as you kind of allude to the, you know, the construction will obviously disrupt that natural pattern and so we have a series of foundation drains that will be collecting groundwater as it is intercepted at the site and we also have a stormwater system that collects the stormwater as it comes at the site. The stormwater is handled through stormwater treatment. I know we have people on a panel later that will speak about that. And then the foundation groundwater will be capturing and being able to be used to rewet things as needed to -- to make sure that those streams remain flowing.

MR. MARTIN: Thank you. Regarding -- I don't want to go deeply into any sort of Corps requirements -- Army Corps requirements. Your position obviously is that you're going to be following sold waste regulations for the Department. In the event that a permit is granted, are you
planning to test the material prior to disturbing material as -- for landfill standards?

EDWARD COTTER: Right now we have preliminary analysis done. We do need to do more physical analysis and -- and testing to that material prior to final design as far as helical anchor depths and other anchor requirements. When taking that material, we're -- we're certainly willing to do environmental testing of that material as well. It's not -- we -- I think we would need guidance from the Department because it would be in excess of current requirements. Once the material is removed then we fall under the Chapter 400 requirements, which are quite clear and we can follow those for sampling of disposal material.

MR. MARTIN: Thank you. My last question is regarding the anchoring, which you mentioned somewhat already. I guess some of this material come in earlier this week, so my question would be related to is there any other, I guess, relevant information for the Department and the Board in making such a finding -- that would be relevant in making such a finding one way or another regarding soil stability for the anchors that might not be in the exhibits. Is there anything more that we should be reading in
making those sort of determinations?
EDWARD COTTER: I think in looking at Nordic Exhibit 38 it's -- hopefully I've made it relatively apparent that the soil structure and material is well understood and as I mentioned earlier it is not uncommon to this area. It's a very common situation. The material has -- it is relatively soft. It also has the advantage of being relatively cohesive. Sometimes you end up with soft silt that has no cohesion and that's even more of a difficult challenge. Here we have a material that has some cohesion to it and therefore lends itself well to the anchoring system that we're proposing.

MR. MARTIN: Thank you. That's all I have.
MR. DUCHESNE: Great. Questions from the Board? Yes, Mr. Pelletier.

MR. PELLETIER: This should be simple. If you -- one quick question for Ms. Fiorilla. Can you hear me? One quick question for Ms. Fiorilla.

ADELE FIORILLO: Yes.
MR. PELLETIER: In terms of when you were evaluating the streams and they were examining the streams for the most part they apparently were except for Number 9, but when I look at the methods that you were using they were -- they talk about stream

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
morphology, you know, how it looked and everything like that, but I don't really see anything in there about evaluating whether there were presence of invertebrates or anything like this and I know perhaps you're not going to do the study where you're -- some high quality streams you're going to be looking for certain higher waters that like a lot of oxygen, but still when you're looking at streams you're going to want to look for some invertebrates. Was any of that work done?

ADELE FIORILLO: When we did do the qualitative habitat evaluation we did look for aquatic organisms. We did find some snails. We didn't really find anything beyond that. I know the DEP actually went out there and looked at some streams as well and I think they found some aquatic organisms, but they're very low abundance.

MR. PELLETIER: And I would expect it would, but I just wondered if you knew what they were like, you know, just trichoptera or anything like this. I would maybe expect some of these in there, but.

ADELE FIORILLO: Yeah, I don't think the water regime is sufficient enough for those species.

MR. PELLETIER: Yup. And maybe you can't answer this but maybe Mr. Cotter might, but just
because of the presence of the invasives out there and because of the public comment that we heard last night about so many people walking back and forth out there it might be good consideration to have, you know, an invasive species plan for that in the longer term not just for, you know, the glossy buckthorn but other species that could get developed, but it's just a consideration and a suggestion.

EDWARD COTTER: So you're -- you're making a just a suggestion of -- of monitoring for other invasives?

MR. PELLETIER: Yeah, monitoring control. It's not a big area. 250 feet, you know, for the length that you've got it, but because it's right on the water.

EDWARD COTTER: Well, I will point out that that shoreland zone is intended to be handed over to the city. We are planning on making improvements to it prior to that, so I'd certainly like to work with the city on the long-term plan for -- and also any land trust that might take part in that -- take part in that maintaining of that land.

MR. PELLETIER: All right. It's just a suggestion, but. And then this is one I'm really reluctant to bring up, but I will anyway is the
question about temperature again for Mr. Parent. You talked about the fact that you had detected about a . 3 centigrade difference at I think you said 200 feet out and that was part of the questions about temperatures and I'm assuming that's, you know, there is a lot of fluctuations here, but you came up with a number for a distance. How did you do that?

TYLER PARENT: I would not be the best one to answer that. Nathan Dill who you'll hear from -MR. PELLETIER: Okay. Thank you.

TYLER PARENT: -- another time, but yes.
MR. PELLETIER: Thank you.
MR. DUCHESNE: Mr. Sanford.
MR. SANFORD: So this goes to understanding the -- the modeling and the monitoring in terms of the range of -- or predicting impact. So what's the life of the project on average?

EDWARD COTTER: The construction project?
MR. SANFORD: No, the overall. Because let's say like if environmental conditions change and it's a 20 year thing then we're looking at how might they change over 20 years, so what's the average that you think of for something to have a reasonable return on investment and so forth?

EDWARD COTTER: We -- depending on the

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
infrastructure that we're talking about or the entire project, we expect this project to be viable well past 30 years up to 50 years or more.

MR. SANFORD: Okay.
EDWARD COTTER: And even at that point based on maintenance and replacement of technology, we -we see no reason that concrete tanks won't still be a viable infrastructure well past that.

MR. SANFORD: And for you and Miss Ransom, are the -- the samples referenced in Table 4 of Nordic Example 38 the same reference in Figure 18-1, Section 18, Page 12 of Exhibit 7?

ELIZABETH RANSOM: I believe that they're either the same list or a subset. So hang on just a minute while we look at that. So the table reference in Exhibit 38 that you're referring to is...

MR. PELLETIER: Yup, this one right here.
ELIZABETH RANSOM: -- Table 4?
MR. SANFORD: Yes.
ELIZABETH RANSOM: And then, I'm sorry, the other table reference you made?

MR. SANFORD: This one right here. In your report.

ELIZABETH RANSOM: So that map is a subset of the samples, but, yes, it's the same number and
scheme.
MR. SANFORD: So that might explain if it's a subset because the maximum depth here is 79 inches, which is 200 centimeters, but it sounds like we heard some questions in reference relating to deeper.

ELIZABETH RANSOM: So the -- the samples that were selected for chemical analyses to evaluate not only mercury but other metals and organic compounds and so forth were not the exact same depth ranges as these particular samples because once you take a core and, you know, remove that to be taken to a lab you kind of have to take a different range because that volume of the soil is already gone. Does that make sense?

MR. SANFORD: Well --
ELIZABETH RANSOM: So if they're co-located but they're not necessarily the same depth range.

MR. SANFORD: So did you use 4 inch aluminum agricultural tubing to do your core sampling?

ELIZABETH RANSOM: That may be a question for Normandeau.

ADELE FIORILLO: Yeah, we -- we did use 4 inch diameter Vibracore, but I believe we used a composite -- plastic composite for those samples.

MR. SANFORD: Okay. And so you cut those in
half and -- and did you take --
ADELE FIORILLO: Then they were extracted out in a column.

MR. SANFORD: You extract them out in a column?

ADELE FIORILLO: Yes.
MR. SANFORD: Do you put a polymer or something to solidify them to pull them out or do you --

ADELE FIORILLO: No, because -- well, the samples that we took were multipurpose. One, they were to collect sediment for drain size analysis and for chemical analysis but also assist the benthic community, so.

MR. SANFORD: Yeah, that's a little bit where I'm going at. Like in terms of -- did you get a stratigraphic profile from those?

ADELE FIORILLO: Yes, what we did is we had engineers on board when we collected the samples so they could categorize the layering for their purpose for structural assessments.

MR. SANFORD: Is that layering, is that something you have available that you could make available to the DEP?

ADELE FIORILLO: I believe they put together
data sheets, the engineers did.
MR. SANFORD: Okay. Because one of the things that's helpful to us in understanding is environmental history. It goes to things like, for example, if you picked up the 1938 hurricane with sand deposits in that, so looking at those layers they can tell us somewhat of what's happened in that bay in addition to looking for metals and other things.

MS. BENSINGER: Is that information you have that was not submitted to the Department to date?

ELIZABETH RANSOM: I'd have to look. It's possible that that's actually in as an appendix to one of the existing reports, but I'm -- I mean, sitting here right now, I can't tell you. If it's not --

MS. BENSINGER: Okay.
ELIZABETH RANSOM: -- I'm sure that could be supplied.

MS. BENSINGER: Ms. Tourangeau, can you make a note of that and get back to us before by the end of the hearing as to whether that is in the record and if it is not we could leave the record open for the submission of that information and allow the parties an opportunity to file written comment on it
afterwards. So maybe Ms. Bertocci can keep a list. There may be one or two other things that we my find ourselves in that position.

MS. TOURANGEAU: Can you -- one of you that understands this better than I do give me a like a couple word description of what exactly you're looking for? I'm thinking Vibracore, core, profile logs.

ELIZABETH RANSOM: It's essentially like a boring log.

MS. TOURANGEAU: Okay. Thank you. Sorry. ELIZABETH RANSOM: It's okay.

MS. TOURANGEAU: It's not a boring log.
ELIZABETH RANSOM: It's not boring.
MR. SANFORD: This is very interesting.
MS. BENSINGER: Thank you.
MR. SANFORD: Did you do any Vibracoring in the wetland areas?

ADELE FIORILLO: No, all of the Vibracore work was done off-shore in the intertidal and subtidal.

MR. SANFORD: Okay. Because that would go towards like how old those wetlands were or their dynamic history or any of that.

ADELE FIORILLO: No, we did not. We did do
soil profiles with a hand auger in the wetland and we completed Army Corps data sheets that provided core profiles.

MR. SANFORD: Did you -- in your assessment of those wetlands, did you use the Adamus technique for value and function like Army Corps type?

ADELE FIORILLO: We used the highway
methodology method from the Army Corps. The highway methodology --

MR. SANFORD: Okay.
ADELE FIORILLO: -- which is a generally accepted functions and values assessment.

MR. SANFORD: Okay. Thank you.
MR. DUCHESNE: Mr. Draper.
MR. DRAPER: Hopefully I get close enough. So this is for Miss Ransom and I apologize if you've already answered this, but I may have missed it in some of the confusion. Could you just take minute and describe after you went through your site selection process and narrowed it to the four sites that were more -- more in-depth of an analysis was completed on, can you -- can you talk a little bit more about what the on-site work that was done in each one of those four sites? And I'm not -specific to each one, but I'm assuming there was a
similar level of effort for each four of those. Can you describe a little bit about the field work that was done on-site for those analyses?

ELIZABETH RANSOM: Most of the on-site work honestly was focused on the Belfast property because, yeah, it -- certain things became very clear on some of the other properties as to why they weren't going to ultimately score highly. So, for example, there are things -- I think I mentioned one of the sites had an extremely high proportion of the site that was wetland area and the environmental impacts associated with developing a property like that would be quite challenging. So you didn't necessarily need to go through a lot of engineering or geotechnical work to establish that.

I will say obviously with regard to the alternatives for the pipeline there was additional, you know, obviously a fair bit of additional work that went into establishing why one is more preferable to the other. For example, I spoke about the Tozier Road option. We had a resounding amount of discussion over whether or not that was going to be feasible because there is a height of land that increases to the north and so you needed to ultimately be able to pump the water uphill before
having to come back down to the treatment plant and that was going to involve putting a pump station off-site in that neighborhood which would -- excuse me, wouldn't be permitted. So, you know, depending on the alternative being considered it was a variable level of alternative specific work that was done.

MR. DRAPER: Thank you.
MR. DUCHESNE: More or -- we go to Ms.
Lessard.
MS. LESSARD: Thank you. When was the decision made to raise the pipeline up off the sea floor?

ELIZABETH RANSOM: I'm not sure I could give you a specific date, but it was fairly recent because in July I think we received -- well, two things, we -- we understood that the permanent impact calculation for laying pipe on the surface was quite large and we needed to do something to reduce the overall impacts of the project and that was a construction methodology that could be undertaken to substantially reduce the environmental impacts of the project.

MS. LESSARD: What -- and I'm sure it's in there, but what is the elevation off the sea floor?

ELIZABETH RANSOM: I want to say it's on the
order of a foot, yeah, give or take.
MS. LESSARD: I'm sorry, I didn't...
ELIZABETH RANSOM: One foot give or take. One foot off the ground.

MS. LESSARD: Has there been additional -- I was looking at a marine DMR report that reviewed that was dated January 20 that still referred to it as a -- being located on the sea floor and I'm confused as to...

EDWARD COTTER: The design does include concrete collars at approximately 15 foot spacing, which do rest on the sea floor and that might be what it was referring to. But I think also when you talk with a 35 or so foot water column, something which is a foot off the ground will still be considered on the bottom. That -- that was my reading of it, but it might also be just that the anchors rest on the ground and it also is anchored to the sea floor as well.

MS. LESSARD: But it was still considered at a foot to be considered on the sea floor it would still have the same cumulative impact as if it was on the -- in reading it -- I had to read it that it was on the sea floor because otherwise lifting it a foot doesn't make any difference to your impacts.

TYLER PARENT: Providing just a little bit of space for aquatic organisms to move underneath it between the collars does reduce the square footage of equipment that is touching the sea floor which then would allow those organisms to move freely underneath.

EDWARD COTTER: The current impact
statements do include the square footage of those anchors which are physically touching the sea floor, so in that way it is on the sea floor.

MS. LESSARD: I can't ask the Department if they've gotten any more updated information, but I hope that someone does as we go through this because it's -- that memo doesn't match what I-- or doesn't feel to me like it matches what I am hearing.

ELIZABETH RANSOM: I can try to clarify a little bit. And I don't know, maybe this helps and maybe this doesn't, but if the table here is the sea floor and I have a bed of pipe that is suspended above the sea floor and then my glasses here are serving to be those little anchor points and you can see that my -- my glasses, in fact, touch. The DMR is noting that there are still things that touch the sea floor and those are considered permanent impacts, but this area underneath my glasses case here is no
longer a permanent impact because it allows the passage of things like lobsters and shellfish and so they are considering -- I believe their -- their text if you read through it also speaks to the elevation, not just the -- the contact points, so they are noting that the new design involves those both a raised portion and a permanently impacting touching portion. Does that -- I don't know if that helps at all.

MS. LESSARD: No, I -- I understand what you've said you're going to do. What I didn't understand was DMRs review of that in terms of their written commentary describing what that was. Another question, the -- Ms. Walsh, you mentioned that dredge material was going on a barge --

LAUREN WALSH: Mmm Hmm.
MS. LESSARD: -- and then going where?
Where will it be trucked from?
LAUREN WALSH: So we have not settled on the -- the point of landing of those barges as of yet. Some of the options we -- we've looked at our, you know, Cianbro's facility in Brewer, that's -- an option like that, it will be an option like that that has the ability to easily load that material from the barge to trucks.

MS. LESSARD: So Brewer may be an option?
LAUREN WALSH: Brewer could be an option, yes.

MS. LESSARD: And the second one was in regard to -- or actually the third. All of the material is getting excavated on the site?

LAUREN WALSH: Yes.
MS. LESSARD: Mr. Cotter, I think, may be the one that talked about this, but you mentioned that there were gravel pits in the area that may -but it was my understanding that this material is a clay base or something that will...

EDWARD COTTER: Yeah, that -- during that statement I was referring to upland soils.

MS. LESSARD: And that's part of the natural resource impact of what we're talking about here is the amount that's going to being excavated upland as well?

EDWARD COTTER: (Witness indicating yes.)
MS. LESSARD: So that's why I was asking where that was --

MS. BENSINGER: Please don't nod.
EDWARD COTTER: Yes. I caught that. Yeah, the -- at that point, we are talking about excavation on the site for building footprints which is when I

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
was talking about that. Cianbro would be evaluating options for disposal of the marine sediments.

MS. LESSARD: Okay.
EDWARD COTTER: I guess I would note that several -- many of the same options are still available because once that material is de-watered it will be basically the same material although it may be different physical characteristics.

MS. LESSARD: Okay.
MR. DUCHESNE: Mr. Parker.
MR. PARKER: The question I guess is for Mr. Cotter or Elizabeth, either one. It seems to me that the question we just discussed is sort of schematics. We're talking a 36 inch discharge pipe that's going have wrap around collars that are going to sit on the bottom and every so often the collar will be further anchored by piles. I don't know how you could put a collar around a 36 inch pipe that didn't take up a foot or so of room at the about the bottom. So if that collar is sitting on the bottom the pipe has no choice but to be somewhat off the bottom or you're going to have to sink your collars in. So it seems to me with a 36 inch pipe if you're going to use up to 12 inches for the thickness of the collar it's pretty understandable that pipe is going
to basically sit on the bottom but there will be a gap or a space underneath it. And I don't know if it's designed for any particular use underneath it or just a physical constraint because that's how the construction is built.

ELIZABETH RANSOM: I think part of the design of having that physical space underneath is to have an improved environmental scenario. So it's -it's specifically so that species that aren't able to swim over have ability to use habitat underneath the pipe.

MR. PARKER: Okay. But I think that is a benefit of what you're doing. I really question whether it was a design consideration because DMR didn't consider it a design consideration. They consider the pipe sitting on bottom, so this may be a benefit of how it's being anchored.

EDWARD COTTER: Right. So this was --
MR. PARKER: And you want to argue that it environmentally lets the lobsters and creatures crawl back and forth through, but I don't think DMR gave much credit to that. I think they basically said this is how you're physically going to build it and this is what's going to go down there and they consider it and on the bottom pipe.

EDWARD COTTER: They -- the design was -was reviewed with staff and the recommendation from staff was that we do lift this pipe up off the bottom, which was done during the summer of 2019 . So the -- as far as I know the design that DMR has reviewed the latest, which is in front of you today which shows that the pipes are off the bottom. Whether or not they will recognize that, I'm not sure. But, yes, we -- we do believe that the lifting the pipes off the bottom with a concrete collar is a benefit for the marine ecosystem, which is why that was done.

MR. PARKER: I think your argument there may be a benefit, may be good, but if you didn't lift it off the bottom of the collars you'd have to counter-sink your collars which you're going to disturb more bottom, so it's a 6 and two 3 s from that point of view, but I think there may be a benefit to it, but I question whether the DMR really was concerned about that pipe being on bottom or just physically looking at it as being on bottom.

MR. DUCHESNE: Great. Thank you. Ms. Bertocci, I believe, has a question.

MS. BERTOCCI: Yes. My question, I believe, is for Miss Walsh. And I'm wondering about
construction in the subtidal area and the -- both the intake and the discharge pipes are going to be subsurface -- the sub- -- below the substrate for some length before they transition to sitting on the sea floor and I am not clear how you are backfilling that excavation below water in such a way as to control turbidity. How are you -- could you explain how you're going to backfill that trench in the subtidal area?

LAUREN WALSH: Sure. So you're -- you're asking about the portion of the trench below water -MS. BERTOCCI: Yes.

LAUREN WALSH: -- that is partially buried.
MS. BERTOCCI: Right.
LAUREN WALSH: So, yeah, so that transition there is going to be a section of the pipe, both pipe -- all three, that are partially buried below water. Very carefully I guess would be my frank answer. Slowly you'd excavate that material with a closed dredge bucket --

MS. BERTOCCI: And you -- go ahead.
LAUREN WALSH: -- up onto the barge. Then you put your pipe in. There will be divers who will be connecting everything below grade or, you know, under water. The stone will be placed as well and
then you'd put your material back over. Whatever is excess as far as excess excavated material would be shipped back to land.

MS. BERTOCCI: And so some of that excavated material that you're putting back into the trench is -- is more than just gravel. Some of it is going to be sort of loose soil materials.

LAUREN WALSH: It will be the material that we excavate from the trench, some of that will go back in, yes.

MS. BERTOCCI: And could you explain how you control turbidity if you're taking this material and going back down through some depth of water?

LAUREN WALSH: So the water fills the water column. So we have a turbidity curtain around that area. It would be -- that curtain would be positioned according to the area that we're working on, so according the tide's direction of the flow at the time, very specific to the environmental conditions of that particular day. We also -that -- at that point, we'd have a turbidity monitoring program. With the exposure to the water column we would either be metered monitoring for outside of that area as well as visually monitoring. If there were, we used the term escapee earlier, so

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
if there is some escapee of turbidity we'd stop and let that turbidity subside, monitor how far it went and then mitigate our measure, so we might add an additional turbidity curtain. There are different types of turbidity curtains that you can install, so it would be really dependent on the conditions at the time and the type of material that we were working in.

MS. BERTOCCI: And so --
LAUREN WALSH: Some of that -- some of that -- the material that we'll be working in, some of that would be determined with the additional borings that we would do before we got there.

MS. BERTOCCI: And so what about the maximum depth of water you would be doing this? Is it 30 feet at the deepest point when you start to transition from subgrade to sea floor?

LAUREN WALSH: I would have to look that up. I'm going to say about 30 feet of water. I'm not finding it immediately, but I think it's about 30 feet of water on average.

MS. BERTOCCI: Great.
MR. DUCHESNE: I have good news and bad news. The good news is I don't expect to ask a whole lot of questions during these proceedings. The bad
news is they're all right now.
So we heard a lot from the public about wildlife impacts and we haven't really delved very deeply into it. Most of these will go to Ms. Fiorillo. I sense that Ms. -- you're very comfortable with wetland science issues, maybe not so comfortable with the wildlife impacts part of the statement, so if you need to phone a friend, feel free.

ADELE FIORILLO: Yeah, that's correct. A lot of the wildlife work was done by Dr. Sarah Burnam -- Barnum, a member of Normandeau staff.

MR. DUCHESNE: Oh, perfect. That's good to know. For instance, on hibernating bats, I think you agreed twice earlier that all migrating -- all of the -- all Maine's bats migrate out.

ADELE FIORILLO: Mmm Hmm.
MR. DUCHESNE: In reality, I -- would you
like to amend that statement inasmuch as I think little brown bats, big brown bats, at least one other the species of bat, some of the bats hibernate in our attic over the winter actually don't migrate out. Would that be your understanding?

ADELE FIORILLO: At the -- our assessment basically said that the cover on the site and other
the forested portions of the area do provide good summer roosting habitat for those species that roost in trees and that's the eastern red, the hoary, the silver and -- and there are others that are special concern.

MR. DUCHESNE: Right. Mmm Hmm.
ADELE FIORILLO: And the northern long-eared bat, which, again, we had talked about was state endangered and federally threatened roost under loose bark and tree trunk crevices and hollows. And structures on-site and nearby provide potential summer roosting habitat for the little brown. And then the forest edges near the reservoir are good for feeding areas for those species, particularly the small-footed bat. But there is really -- she's really silent on other than tree removal in winter will avoid any impact to species present there, so.

MR. DUCHESNE: Unless there were bats
actually hibernating in tree trunks there might be some minimal impact there, but, again, we don't know because as I understand it you assume that the conditions are right for them to be there but did not actually look.

ADELE FIORILLO: In that they're migratory species as well, yes.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MR. DUCHESNE: Right. Great. Also, on the subject on Paragraph 9 of your testimony, reptiles and amphibians, you said you made an attempt to assess the presence of observing reptiles and amphibians but the seasonal conditions weren't suitable and you made that one attempt and never rescheduled, never tried again, just...

ADELE FIORILLO: Yeah, you know, that statement was then followed by the stream assessment, which we did -- we did look at further for reptiles and amphibians. But the Maine impetus for our observations of reptiles and amphibians is there were no vernal pools on the site which provides primary habitat for those species.

MR. DUCHESNE: Yup. Mmm Hmm.
ADELE FIORILLO: And then we looked at the habitat and we looked at the known distributions of those invertebrate species, the reptiles and amphibians, and, you know, they tend to have very specific habitats, things like bogs and fens or larger streams and rivers and those habitats are not present so, that's...

MR. DUCHESNE: Yup. Good. I think was willing to accept that because I sort of came to the same conclusions. I just wanted to see if that was
the basis behind your argument. On Paragraph 10 on the next page you said no project-specific avian survey was conducted, but you relied rather heavily on eBird reports.

ADELE FIORILLO: That's right.
MR. DUCHESNE: Did you do that or was it
your partner who was --
ADELE FIORILLO: That was Sarah.
MR. DUCHESNE: Okay. Good. Well, then I won't put you too far on the spot. But in the testimony or in your report rather, which is Appendix 8 from the Nordic pre-filed -- from the Nordic reports. Two links to eBird were provided, so I took the liberty of looking at them to see who my experts were on this and there were five checklists for the Little River hike, so when the -- the testimony says we're relying on these eBird reports to know what's there and there is only five reports I'm wondering who filed those reports. It turns out most of them are people I know and guided, so I can eliminate a little bit. Two of them are from Connecticut. They have property over in Liberty and the summer sometimes. They've been out with me on tours many times. He's worked with power tools all his life so he could not hear a bird sitting on his shoulder
these days. She's actually pretty good. One of them is a senior citizen. She just got her 400th flight bird for North American with an upland sandpiper that I showed her in Columbia over the winter -- over the summer, so she's pretty excited but she's at best an intermediate. So some of our experts so far that we're relying on really are perhaps intermediate at best. Fortunately, you got lucky on the other one, that's Charlie Todd. Charlie Todd is the Inland Fisheries and Wildlife Eagle expert. He's a bird biologist, so when he says something I am paying attention. And fortunately, his visit was on May 20, 2019, so it was before any of this. It was a recreational visit. He had about 24 species in there and, yeah, you probably missed a few, but close enough. So you did get lucky with one expert there. On the other side of the road on Perkins Road you got much luckier. There are 30 reports from there, however 10 of those were from Seth Benz. Seth Benz is a Belfast resident. He's also the bird ecologist for Schoodic Institute and most importantly, he's my partner for birding tours during the summer and thanks to this, I can no longer talk to him until after these proceedings are over.
(Laughter.)

MS. BENSINGER: Is there a question?
MR. DUCHESNE: Yes. And so I'm getting to my question. I'm trying to assess how reliable the report is when it comes to determining what the wildlife impacts to birds are there.

ADELE FIORILLO: Yeah, so basically what we did with that is we relied heavily on eBird reports from both the Little River hiking trail and the Perkins Road fields. They date back to 2013, so we have a pretty long-term observation period there. And than we also looked at the habitat on both the -along the Little River hiking trail and -- and the hay field on Perkins Road and came to the conclusion that the habitat on the project site as far as the forested areas is very similar to that of the hiking trial and the -- and the grasslands on the project site are very similar to the grasslands on Perkins Road. So based on those two observations, we have assumed that those birds that are seen in the eBird reports for both sites can also possibly be on the project site.

MR. DUCHESNE: Yes, and I guess my problem with the methodology is that I'd like you to address so that would be in the form of a question, 36 out of 45 visits there listed by eBird in your source

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
happened outside of the singing season when you can most determine what's there. I think 13 of them were in the dead of winter when there are no songbirds there. In fact, I think many of the visits there are to see if there is a wintering type species, snow buntings were just one of those, for instance, so many of the reports were not during the time period where it would actually tell us anything. So would you like to revisit that methodology to see if it would -- could use some improvement?

ADELE FIORILLO: Well, I guess I'm not qualified to answer that question. I have full confidence in Dr. Barnum that she has a sense of the appropriate habitat on the site and the appropriate species list that would be present there.

MR. DUCHESNE: Mmm Hmm. So probably if it's brought up to Dr. Barnum that bobolinks, for instance, probably would not use the site that's going to be developed. I've certainly seen sites much smaller footprints than that where bobolinks are present and I think the testimony earlier was correct that with the adjacent habitat there they probably do use the area. So, again, to confirm, you never actually took a look to see what birds were there. It's pretty much relying on eBird reports?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

ADELE FIORILLO: And habitat assessment.
MR. DUCHESNE: And habitat assessment.
Okay. Great. Skipping to 12, tidal waterfowl and wading bird habitat, I think you just said recently or a little while ago that you did make visits, you checked there and I think it was in December or January?

ADELE FIORILLO: We did one in December and one in March.

MR. DUCHESNE: Okay.
ADELE FIORILLO: Yes.
MR. DUCHESNE: Considering all of the wading birds are in Florida at the time, would you have expected to see any there?

ADELE FIORILLO: No. And as I said, we looked at the area during the low tide to assess the habitat there and the feeding and foraging grounds and based on that -- we certainly don't say that there won't be any there, but we did say that the feeding habitat that provides for those wading birds would be generally within the intertidal mudflats, that there is not -- and based on the benthic survey as well there is not a lot of invertebrates within the intertidal mudflats. There is no eel grass, there is no mussel beds, so the resources are
limited, however, we didn't say that they wouldn't be present. Of course there is certainly potential that they would be. And our conclusion is that, you know, the work that's going to be done out there is going to be done in the November -- April to November time frame and it's going to be temporary and these species have plenty of mudflat out there to work and if they want to shift their location or, you know, continue to use that location they still can.

MR. DUCHESNE: Mmm Hmm. This question may be a little more for Mr . Parent, but related to that I think it says in the testimony and what you just said there are no known mussel beds there, when we did the site visit there was a flock of 50 common eiders out there right at the entrance of the Little River. Their primary food is mussels. So can you qualify a little bit more how you know there is no mussels in the area at least in that section?

TYLER PARENT: We are not --
MR. DUCHESNE: Yes.
TYLER PARENT: We're are not claiming that the site is completely free of mussels, however, it is not going to have a fisheries impact. And fisheries in this case is defined as taking an aquatic organism for harvest. And so there is some

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
livelihood that there could be some shellfish in the area, however it is not a current resource that is currently being utilized.

MR. DUCHESNE: Great. Thank you, that helps. Again, this one is for Mr. Parent. One thing I can't get my arms around is there is not a lot of disturbance to fisheries in your testimony, but the one concern might be winter flounder. I don't know whether winter flounder are spread evenly along the entire Maine coast or if there are certain places where they tend to gather and breed. Do you have any information whether this is a good area, bad area or is there no such information available?

TYLER PARENT: The habitat is theoretically suitable for winter flounder and spawning, however, the area of impact does not represent a very significant portion of the available habitat even within the Belfast Bay and so the understanding is that that would be an example species where they could be present during the construction window, however, things like the stop/start technique would allow those individuals to vacate the area voluntarily and then resume normal habitation of the area post-construction.

MR. DUCHESNE: Great. Thank you. I believe
we can go down to Ms. Bensinger next.
MS. BENSINGER: Thank you. I have a follow-up question on the Presiding Officer's questions about the site visit looking for reptiles and amphibians. What was the day of that site visit?

ADELE FIORILLO: Let's see. We did the 27th and 28th of August.

MS. BENSINGER: Okay. And you said because of the season -- the seasonal conditions during the site visit were not suitable for observing reptiles or amphibians?

ADELE FIORILLO: Well, and, again, you know, the natural resources report where that statement was made was followed up by the -- the habitat assessment by the streams which was -- that was completed in August, so that's when we did further search for invertebrates and aquatic species.

MS. BENSINGER: So you did another site visit looking for reptiles and amphibians?

ADELE FIORILLO: When we did the streams.
MS. BENSINGER: When you did the streams.
And that was in a different season?
ADELE FIORILLO: That was in August, yes.
MS. BENSINGER: So they were both in August?
ADELE FIORILLO: No, the reptiles and
amphibians survey was March and December.
MS. BENSINGER: Okay. I have a few
questions for Ms. Ransom. Your summary today focused on how the three other finalist alternative sites suited Nordic's needs for practicability generally, which is one of the assets of determining whether something is a reasonable alternative in an alternatives analysis. Can you describe for the other three alternative sites the stream and fresh water wetland impacts that would have been involved with those three sites if they had been chosen?

ELIZABETH RANSOM: I think I spoke a little bit to at least one of these earlier. One of them had a portion of the site that was developed and a portion of the site that wasn't. The -- the project would have needed to utilize, you know, the majority of that land and the undeveloped portion was nearly 90 percent or so wetland, so that in my mind makes that environment --

MS. BENSINGER: And which site was that?
ELIZABETH RANSOM: That would be the one north of Belfast.

MS. BENSINGER: And did you specify in the alternatives analysis the location of that site?

ELIZABETH RANSOM: No, we refer to the sites
as north of the project site, south of the project site and in the mid-coast area. And the reason for that is we don't want to jeopardize somebody else's potential, you know, future ability to do something with those -- the land value of those sites. It's not up to me to, you know.

MS. BENSINGER: Do you provide --
ELIZABETH RANSOM: A mapping.
MS. BENSINGER: -- a mapping of those other sites?

ELIZABETH RANSOM: Yes, we did. We have a mapping that shows the location of the sites, yup. MS. BENSINGER: Okay. And the other two sites?

ELIZABETH RANSOM: So the -- the one to the south of the project site, one of the challenges associated with that, I believe there would be difficulty with obtaining the sufficient quantity of fresh water. So while it had good seawater access, a fresh water resource was a bit more of an unknown. There were some former activities on the site that made reuse perhaps difficult just to, you know, site preparation level.

MS. BENSINGER: Yup, I -- I understand those are factors that go to the appealability and the
practicability of the site from Nordic's use perspective, but what about the environmental impacts of the proposed project on that site in terms of streams and wetlands?

ELIZABETH RANSOM: I'm sorry, yeah, I understand. So that particular one also may have experienced difficulty relative to wetland and ecological impacts. There had been an area of former quarrying associated with that property and so there is ponded water and a habitat that would likely be associated with some of that land. So in terms of ecological impacts that might also have been challenging. And then the northernmost location from an ecological perspective, the way that was configured the topography and the distance to getting to seawater would have increased the footprint of things like the pipeline, which generally, again, leads for more adverse ecological impact, so.

MS. BENSINGER: Thank you. I guess my next question is for Miss Fiorillo. You described that the silt would be cleared up in the streams and -- as part of your compensation and mitigation, how would that be done?

ADELE FIORILLO: Well, part of the answer goes to the stormwater management plan Elizabeth had

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
mentioned. The -- the source of this water comes from off-site but then gathers into these stream channels that has a silty -- predominantly silty substrate, there are some cobble areas but predominantly silty, and that flows down slope towards the reservoir and enters into the reservoir. The -- the stormwater management plan is going to be intercepting and -- and bringing that water around the project site to the -- the base of that 250 foot boundary where we're going to put those weirs in and so that will essentially stop that erosion that occurs from the upper slopes down to the release point.

MS. BENSINGER: When you did the test well pumping, those streams weren't used to discharge any of the water that was pumped from the test wells, were they?

ELIZABETH RANSOM: When the testing was done we discharged the water to a -- what was referred to as a sediment bag. Basically it's a structure that slows down the flow of that water so that you're not just causing additional erosion and so that is on land that, you know, on flat ground and that allows the reduction of both sediments that may be in the water pumping to be captured as well as it slows down
the force of the water so that that doesn't cause additional erosion.

MS. BENSINGER: But the test well pumping, the water was discharged into the streams?

ELIZABETH RANSOM: It was discharged to a sediment bag on land. We actually worked with a member of the Department who came actually out to the site to assist us with understanding how to deal with the water that would be needed during those pump tests.

MS. BENSINGER: And ultimately though where it did go?

ELIZABETH RANSOM: Some of it went through -- depending on which one we're talking about, one of those wells was an open field and that water -- some of it saturated into the ground surrounding the bag itself. In other areas where we were closer to streams I'm sure that some of it ultimately did flow towards streams.

MS. BENSINGER: Your assessment of the streams as silty, did it occur after those test well pumps or before?

ELIZABETH RANSOM: The streams have been assessed throughout the project duration, so before test wells and after.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. BENSINGER: Okay.
ELIZABETH RANSOM: And it's been a silty bottom stream since, you know, probably since the origination of the stream itself.

MS. BENSINGER: Okay. Thank you. And maybe you've already said this before, this is for Miss Fiorillo, how long would the construction period be in total for installing the pipelines from the high water mark all the way out to the end? Is that a six month period or what's the entire --

ADELE FIORILLO: I'm not familiar with the construction plan.

EDWARD COTTER: The schedule is based, again, in that area on the appropriate window for construction. Right now, we are targeting October and it's a four -- starting in October it's a four month window.

MS. BENSINGER: In your view, this may be Mr. Parent or Ms. Fiorillo, how long would it take for the intertidal area that would be disturbed to return to its previous state and functions after construction is complete?

ADELE FIORILLO: I don't know that I can give you a specific time frame, but based on the characteristics of the sediments, I mean, there is a
lot of, you know, sand and silt out there so -- and the same material is going to be added. It's a fairly low energy system indicated by the these small particle sediments, so I expect them to settle out and remain in place fairly quickly.

MS. BENSINGER: What -- what do you mean by fairly quickly?

TYLER PARENT: It will be split into two categories and that's one when you have a sentinel organism that isn't actually leaving the area the then post-construction they could theoretically the very next year if they -- we can use winter flounder as an example, if an individual winter flounder is displaced by construction during one year it can come back the next year or even still have success that same year in a different area within Belfast Bay. However, something that does not necessarily move has a better chance of being impacted and then it would take a slightly longer period of time and so we may be talking about the next year and having just a few individuals having trouble having reproductive success in a single year. However, there is documentation, and I don't know that it was in this particular testimony, but it is definitely in something that we submitted so far, significant
documentation on typical -- when sediment is removed how long does it take an organism of various types to recolonize an area and start successfully reproducing and I don't think it's in this particular document, however, it is common.

MS. BENSINGER: Okay. And one last question, how far apart are the three pipes? I am sure it's somewhere, I just haven't seen it.

LAUREN WALSH: So the trench width itself is about 15 feet, so those -- the two intake pipes are 30 inches a piece, the discharges pipe is 36 inches a piece -- 36 inches and you've got the stone in between, so.

MS. BENSINGER: Thank you.
MR. DUCHESNE: I believe -- I believe Mr. Sanford has a question and we'll review some of the audience questions and review how much time we have.

MR. SANFORD: This is kind of a general one, but I think it's -- and it might be silly, but I think it's important for the background. For the panel, did your background research for the area of potential effect for this project uncover any lists of underground storage tanks, spills, Phase 1 or 2 environmental assessments or anything like that?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

ELIZABETH RANSOM: I'm glad you asked. So we did, in fact, conduct the most typical standard that people refer to as the ASTM standard for environmental due diligence and we looked at the -the state has databases that you can look at in terms of what's happened in the area, where there might be releases at nearby gasoline stations and things like that. We also looked at the site history for the property itself and what we encountered -- we also during some of our well testing and well
installations we looked at, hey, we've got -- while we're pumping this groundwater let's make sure we run some tests. So we were able to document that the groundwater is quite clean. What we did note is that the Belfast Water District building being quite old and having a structure behind it that's quite old it's quite conceivable that the paint is -- has got some lead-based paints in it that would, you know, as they reuse and rehabilitate the building would need to be addressed if disturbed. The other thing we noted is that there is a small area behind the building where we've done some soil testing where there is evidence of historical use of coal and other fuels where we note that there is, you know, some compounds in the ground that would be associated with
the former historic use of burning coal. But, yeah, otherwise it's a very environmentally friendly site in that regard.

MR. DUCHESNE: Great. Thank you. There are submitted questions from the audience, I've reviewed them and a lot of them have now been covered by some of the questions by the Board and we're two hours behind or three hours -- well, depending on where you figure in lunch, but we are well behind now, so I do think we need to move on. But the questions did get the Board's attention, so thank you for that. We'll go to redirect and recross. So redirect.

MS. TOURANGEAU: I will be quick. As quick as can I with -- I have eight questions, maybe nine. I hope that will be helpful. Ed, while I'm trying to get this microphone situated, would you pull up the plan that shows the pipeline? Thank you. And my first question is for you. At what point on the pipeline is it completely -- like can you show me the part that's completely buried with the pointer from where it's buried entirely?

EDWARD COTTER: So we start -- I'll start from the pump station on the western side of Route 1 and it's buried there. It's buried through the Eckrote property, through the intertidal and then

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
this point right here -- actually, let me look at a version I can read a little better because I don't have my glasses on.

MS. TOURANGEAU: You can go up there. I don't know if you can see the markings.

EDWARD COTTER: I've got the drawing right here.

MS. TOURANGEAU: Okay. Sorry.
EDWARD COTTER: So I'm glad I looked. This location right here is the discharge point. I'm sorry, it's right here, the discharge. That's roughly where it exits the soil. So at the 30 foot contour as was testified earlier is where we exit the soil and become a bottom resting pipe.

MS. TOURANGEAU: And is there a transition period where it's coming out of the bottom?

EDWARD COTTER: Yes.
MS. TOURANGEAU: Roughly how long is that?
EDWARD COTTER: So it's from station 3200 to 36, 3700 , depending on exactly where you're looking at, about 5 to 600 feet.

MS. TOURANGEAU: Gotcha. So from -- and where you were at the discharge is -- so it's entirely buried to station 3200?

EDWARD COTTER: Yes.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. TOURANGEAU: And then it's transitioning from station 3200 to 3600 and then it's concrete collars and helical, sorry if I get it wrong, and/or guidepost anchors depending on bottom conditions and collars until you get out to either the discharge or the intake locations?

EDWARD COTTER: Correct.
MS. TOURANGEAU: All right. Did the original anchoring design include rock mattresses over the piping from the transition area at station 3200 to terminus?

EDWARD COTTER: It did. It looked at rock anchors as a way of anchoring and potential protection as needed.

MS. TOURANGEAU: Mmm Hmm. And those were eliminated in order to reduce impact under the Natural Resources Protection Act?

EDWARD COTTER: They were.
MS. TOURANGEAU: Moving on. Elizabeth -Ms. Ransom, sorry. Did the study area for the pipeline alternatives include testing of sediments?

ELIZABETH RANSOM: Yes, it did. In the project area we tested sediments.

MS. TOURANGEAU: Was the Army Corps of Engineers method used for those samples?

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

ELIZABETH RANSOM: Yes.
MS. TOURANGEAU: Will sediments be further analyzed for disposal?

ELIZABETH RANSOM: Yes.
MS. TOURANGEAU: Would all -- any test samples that were taken within the project area be relevant to determining mercury levels that will -may be encountered during construction of the piping?

ELIZABETH RANSOM: Yes.
MS. TOURANGEAU: How big is the overall project area roughly? In the --

ELIZABETH RANSOM: In the width direction we're looking at hundreds of feet.

MS. TOURANGEAU: Right. Is that large or small kind of in the context of determining metals concentrations from historic contamination?

ELIZABETH RANSOM: I am not fully understanding your question, I'm sorry.

MS. TOURANGEAU: Is -- would you expect a significant disparity between samples in a project areas that's a few hundred feet for metals contamination that's historic?

ELIZABETH RANSOM: So in historic release you would expect that a lot of that trending of data has -- has already occurred, so you'll be able
to with abundant samples see the high areas versus the low areas, but there is certainly going to be variability from, you know, some degree of variability from place to place.

MS. TOURANGEAU: Were the samples that you took consistent with those that were taken in the PRMS, was there significant disparity?

ELIZABETH RANSOM: I believe they were consistent with the historical record for the area.

MS. TOURANGEAU: Was there significant disparity?

ELIZABETH RANSOM: No, there was not.
MS. TOURANGEAU: Mr. Parent, is there a thermal anomaly that will impact the fisheries?

TYLER PARENT: That will impact the fisheries, no.

MS. TOURANGEAU: If lobster were present in the project area, would mercury levels in sediment need to be significantly higher to result in concerning levels in lobster meat?

TYLER PARENT: They would need to be higher than those samples tested in order to biomagnify to the point of the action level within the tissue of the lobsters.

MS. TOURANGEAU: Thank you. Mr. Cotter,
what additional geotechnical work will be done prior to or as part of construction?

EDWARD COTTER: Additional samples will be taken along the pipeline route to ensure a full understanding of the physical properties of the soils and to finalize the anchoring design.

MS. TOURANGEAU: Thank you. Ms. Mattson -Ms. Fiorillo. She was recently married. Did the WOSS contain threatened or endangered species? Did the wetlands of special significance themselves contain --

ADELE FIORILLO: No.
MS. TOURANGEAU: -- threatened or endangered species?

ADELE FIORILLO: No.
MS. TOURANGEAU: What is long-eared bat habitat?

ADELE FIORILLO: Yeah, long-eared bat habitat is... Hang on. I have Sarah's text here. I should not have unstapled my papers is what I should not have done. Okay. Here we go. For the northern long-eared bat, loose bark and tree trunk crevices and hollows.

MS. TOURANGEAU: Is that consistent with the type of species that you would expect to see in a

WOSS -- in a wetland of special significance?
ADELE FIORILLO: No.
MS. TOURANGEAU: Thank you.
MR. DUCHESNE: Great. We have recross.
MS. RACINE: No.
MR. DUCHESNE: Okay. Great. Thank you. So I believe we are done with this panel. Great. Okay. We're going to take a five minute break. When we get back we're going to be talking about scheduling because we're...
(Break.)
MR. DUCHESNE: So before we begin the proceedings once again Ms. Bensinger would like to discuss schedule a little bit.

MS. BENSINGER: Hi. We really appreciate all of the parties cooperation and are trying to be flexible and we knew this was always an issue and some days they move more quickly, some days they move more slowly. It's important that the Board and the Department staff get all of their questions answered and the parties get to ask the questions they have as well.

So we are considerably behind schedule. We've been talking about some possible juggling this afternoon. We're going to see how the next two --
what we have coming right now, we have Mr. Perkins GMRI opening statement summary and questions, then we have MGL. We're going to see how those two items go -- those two parties go and see where we are. We understand that Dr. Podolsky would be available on Thursday, so we might do some juggling with the following three items and we're just going to see how it goes and we'll let you know after the next two items. We probably won't have much in the way of time for questions from members of the public. Questioning during the daytime is generally for the parties, the intervenors and the intervenors have worked hard to represent their respective interests, so the questions from the public are only allowed as time permits and at this point we're probably not going to have time for any or maybe just a few just to let people know. So I won't take up any more time.

MR. DUCHESNE: Yes. And I would say if you want to submit questions understanding we may not get to them it still may be valuable to us and if we do have time or if we see one that's pertinent that we didn't ask it would still be valuable, so I think you can submit them but understand we may not have time to get to them.

With that said, I believe we can go to Gulf of Maine Research Institute, Perkins.

DONALD PERKINS: Thank you very much. Presiding Officer Duchesne, members of the Board, Commissioner Reid, Department staff, the Attorney General's Office, thank you for having me here today.

My name is Don Perkins. I serve as President and Chief Executive Officer at the Gulf of Maine Research Institute in Portland, Maine and I've done that since 1995. I would note personally that I was born in Waterville. I spent six years of my life working on Penobscot Bay. In the warm six months I met my wife here. I -- this is my favorite place to be on the water and so I care very deeply about the bay, about the health of the bay and -- and as everybody else in this room does.

In the course of my professional work, I've served on the Gulf of Maine Lobster Foundation Board of Directors, the Maine Lobsters -- the Maine Legislature's Task Force on the Development of Aquaculture. I chaired the Friends of Casco Bay Board for a number of years. I served on the Gulf of Maine Council on Marine Environment. I was involved in the early days of the Gulf of Maine Ocean Observing System Board of Directors that Dr.

Pettigrew described earlier today. And I've served on the Maine Department of Marine Resources Advisory Council, so I come into this discussion looking at the array of fisheries involved, both wild and farmed, the communities involved with a great deal of respect.

I also have a business background. I formerly worked in the finance area working with Native American Tribes, so I have a sense of specialty finance markets akin to what Nordic will be financing its activities in. And I also ran a diagnostics company that used radioactive isotope iodines, so I have an understanding of what it takes to manufacture a company that -- that has risk for the environment and how you do that with a demanding regulatory framework. And while those are outside of the specifics of today, I come at this looking at the big picture point of view of who is this company, what are they setting out to do, how well are they going to be managed, et cetera, and I'll speak to that as we go.

At GMRI, I work with a team of 70 staff. They're interdisciplinary oceongraphers, ecologists -- ecologists, modelers, regulatory experts in the fisheries side, aquaculture experts,
wild fishery management experts. And so I -- I look at the suite of issues here not just narrowly as a chemistry issue or a biology issue but how do these -- how do these questions play out in the way these resources get managed and the way they get used.

Last, I would note that our organization is independent, we're non-profit and we have nothing institutionally at stake here today ourselves. We are here because, as you all well know, this is really a watershed regulatory suite of hearings that's going to set the stage for regulating the evolution of the RAS industry over the next several years.

Over the last five years since 2015 because of our expertise, the various RAS companies have come to us when they first come into the state, so we saw Emergent Holdings, which then turned into Whole Oceans, we saw Nordic, we saw Kingfish. We've met them as they've come into the state as they've tried to understand the landscape. Having watched the aquaculture industry since the late 1980s I've watched this development with great interest. I've watched the evolution of the industry in the trade journals and -- and I was intrigued to see that
industry show up here. I've gotten to know the management of each well. I was asked by the Maine Venture Fund to help them assess the risks and opportunities related to Whole Oceans, so I've been very involved in looking at the details of these businesses.

And the thing that has impressed me about the Nordic approach is that, as you've heard, they really have taken the best practice approach in the areas that are not -- where there is not a strong or clear precedent in terms of how to manage certain issues. They brought a team around them of Nordic of Woodard and Curran of Cianbro related to the marine work that -- that I think is an outstanding team. I've known these organizations for 20 to 30 years. We've worked very closely -- I've worked closely with Cianbro on one very complicated industrial project back in the early '90s and then about seven years ago on a marine construction project for us. So I have a lot of respect for the people at work here.

And, you know, the nature of this hearing process is -- is that the parties pick at each other and try to expose each other's weaknesses. I think that -- that we all understand that and I will just note that these are each outstanding companies and --
and my focus on the marine side really boils down to how well was this pipe -- piping system designed and how well will the construction process be executed by Cianbro and that really gets at the essence of the marine risk.

So with that, I will turn my attention to the specific matters at hand. I am going to address the intertidal impact, the subtidal impact, the mercury issue and I have a comment briefly at the end about monitoring. And the things I'm going to focus on are really what are the practical issues here. We've heard a lot about the details of core samples and the presence of mercury. We hear lots of details, but how does it really hold together as this project gets executed and at the end of the day what are the impacts, if any, to the wildlife, the fisheries and the humans.

So let me shift first to the intertidal
zone. This is fairly straightforward. The intertidal zone is mudflats with some cobble. It's not -- it's not a particularly productive intertidal zone. There is very little algae there. When I looked at the impact, I looked at the area that runs roughly 2,500 feet north and south of the construction site, which reaches from the east end of

Hazeltine Road to the northeast, south to Browns Head. As you've heard, the construction work will be done between the first of November and the first of April. That is -- October to April, that's a six month window. It's a four month -- four months of work including down time during that window and I think what's become evident by now is the proponents picked a season that's optimal for getting the work done while minimizing its impact on species of concern. Migratory fish have gone south or
off-shore. Lobsters, a substantial portion of the lobsters have migrated into the depths of Penobscot Bay and some of them have gone further out into the Gulf of Maine, so it really is the optimal time to do this work at a time when these species are least present. As we heard earlier, the wading birds have gone south. I also noted eider ducks -- I've noted eider ducks in the vicinity, which obviously indicates there that are mussels somewhere there. I also noted that in the video examination of the bottom there was not any significant evidence of mussels and so in the construction corridor I am not concerned about impact on feed for species of concern. And I think the bottom line is that we're only talking about less than 2 percent of that
intertidal area. It's going to be worked on off-season by a company that I've watched work with best practices. If you look at Cianbro's safety record, I've watched them work on the water with incredible discipline and I just think that you couldn't have picked a better company to get this done and get this work done responsibility. Based on all that, I don't see any significant impact happening in intertidal zone given the temporary nature of the work there.

That then takes us to subtidal zone and, again, as you've heard earlier the subtidal area is relatively low energy. It's a mud bottom. There is small cobble in the area surveyed. In the video survey there is not an indication of much vegetation. Same -- same principles hold on the seasonality. Lobsters will -- winter flounder may be present and spawning as was noted previously, but they're mobile, they can get out of the way. And it's a very, very small portion of Belfast Bay that's being worked on. If you look at the area of the bay, the area that's being worked on is -- it's about 7/100 of a percent of the bay, so it's just -- it's a very, very small part of the bottom of this bay. There is not -- as we've heard, this area is not open to harvesting

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
shellfish. To my -- to my knowledge, there is not significant scallop landings in the bay. So that, again, the fishery impact in the winter is -- is minimal.

You've heard that Cianbro is going to conduct this work with silt curtains. You've heard that the -- the pipe is either going to be buried or suspended above the bottom to address the earlier concerns of the pipe ending and serving as a barrier to bottom dwelling organisms, so, you know, when you look at the overall design of this project, I think the long-term impact is negligible.

So that then takes me to the question of mercury, the concern about mercury. We all know about the history up the river due to HoltraChem. Everybody at this point is very familiar with -everybody in this room knows where Verona Island is. We've all looked at the various core samples. And I think the practical points here are the following, that the salinity gradient has done us the first work of keeping the mercury sediment largely entrained up in the river. Secondly, the mercury that has moved out the river has tended to move out as you've all seen to the west side of Islesboro. And so the presence of mercury as we've all heard in Belfast Bay
is typical for bays up and down the coast. It's not at a level for concern of toxicity or of impact on lobster's food, et cetera. So in a very small area bottom you heard previously how Cianbro is going to excavate this area. They're going to do it with care, best practice. They're going to do it within the silt curtains. Given -- given the evidence generated by the Penobscot River Mercury Study over the years and the cores taken, the samples taken by Normandeau, from my point of view there is no evidence of hot spots and so the mercury issue has been understandably raised because it's a -- it's a visible issue, it gets the public concerned, it's a source of legitimate concern, but practically speaking, I don't think that there is a significant risk of a substantial amount of mercury being brought out into the water column. The primary species of concern, lobsters will be largely gone as that happens. If -- if mercury contaminated sediment does come up and get suspended it will settle back down in a relatively short amount of time and so that the, you know, the risk to these organisms, the toxicity of risk to these organisms, the bioaccumulation risks I think are very low. And they have been -- they obviously have been the source of a lot of public
contention, but I think that these issues have been well characterized and I think that Cianbro operationally will manage them well.

The last thing I want to turn to briefly, again, from an operating point of view is I -- from my point of view, again, you look at who are the people that have been hired to work on this project. My experience with the -- with the Nordic staff, with the various engineers, construction company, they have all been talented, dedicated people. As I've asked for information from Nordic, from Ransom, from Woodard and Curran, they have been totally transparent with me as I've tried to understand the details of what they're working on. And so I think we're going to see a well executed project and so that then brings us to the monitoring once the project is operational. And we're not at that stage yet obviously in this process, but when you do get to that stage I would encourage attention to higher frequency of reporting during changes. So when the scale of the operation is scaling up if operations approach a threshold for some reason if there is a change in ownership, if there are significant changes then I would simply urge the Department to make sure that you have visibility into monitoring data at a
significant frequency to just understand what's happening during those periods of change.

So with that, I'll wrap-up and take any questions, I guess.

MR. DUCHESNE: Yes, I believe we're going to go to Nordic for cross, but Ms. Tucker has her hand up. Can you state your question?

MS. TUCKER: I -- I would like to ask -- I apologize, I didn't ask for this witness because he's got his degree in anthropology and MBA, so I didn't think it was going to be relevant, but now since he's discussing the mercury as though he's got a scientific background I'd like to ask questions.

MR. DUCHESNE: Well, as we have been doing, I can permit a limited number of questions and -- but two -- two questions, but we will go to cross, I believe, from Nordic first. Thank you.

MS. HOWE: Mr. Perkins, do you think the construction of this project will harm Maine's lobsters?

DONALD PERKINS: I do not.
MS. HOWE: Why not?
DONALD PERKINS: I think the project has been planned to be executed during the season when lobsters are -- tend to move into deeper water and
move off-shore and hence the interaction with this project with lobsters will be minimal.

MS. HOWE: Okay. And what percentage of the intertidal zone will the construction corridor temporarily impact?

DONALD PERKINS: By my calculation, I think it's about 1.9 -- well, a little less than 2 percent.

MS. HOWE: Okay. And from a habitat and ecological point of view, is that insignificant?

DONALD PERKINS: I think it is insignificant. I think that organisms in that area that there is plenty of other similar habitat to be relied on.

MS. HOWE: Okay. And what percentage of the transition and subtidal zones of Belfast Bay will the construction corridor temporarily impact?

DONALD PERKINS: By my calculation about 7/100 of a percent.

MS. HOWE: And what about permanently impact?

DONALD PERKINS: Well, I think that -- I think permanent impact is a -- what I said in my -in my filed testimony was 9/10,000 of a percent, but I want to underscore that I was defining that as a footprint issue and I would rather say that if we're
thinking about permanent to be conservative let's stay with that 7/100 of a percent --

MS. HOWE: Okay.
DONALD PERKINS: -- and I would just note that that -- that quantity is a very, very small portion of the bottom.

MS. HOWE: Okay. And, again, from the habitat and ecological function point of view, are both of those insignificant?

DONALD PERKINS: Yes.
MS. HOWE: And then lastly, can you just briefly describe or characterize how your experience so far has been with Nordic?

DONALD PERKINS: Yeah. Again, as I said previously, I -- I met Nordic when they first came to -- into the state. I've interacted with them off and on to learn more about the project. Equally important, I've been interacting with people at Ransom, people at Woodard and Curran and what not and, as I said, my experience has been that they have been transparent and provided with me with any information that I asked for.

MS. HOWE: Great. Thank you. That's all I have.

MR. DUCHESNE: Okay. Thank you. As you're
coming up with your two questions in mind, I would like to point out in the pre-filed testimony, Page 5 of his testimony was all about mercury. So it may be that you missed the opportunity to let us know ahead of time, but that's why I'm going to feel comfortable limiting it to two questions.

MS. TUCKER: Thank you. Isn't it true that your expertise and your background is just in anthropology and with an MBA in business so you have no expertise to be able to evaluate the impacts on the lobster fishery of this mercury or really legitimately evaluate the impacts of this -- of the PRMS or the presence or adequacy of the sediment testing done today?

DONALD PERKINS: No, that's absolutely untrue. My academic degrees were in anthropology and in business. Over the course of the last 25 years, I established and have grown the Marine Research Institute that's known internationally. I have 70 people working with me who each in their own way are extraordinary and my job is to -- has been to learn the various fields of science at play, to draw relevant information and make sense of -- of variability, uncertainty and what not. Secondly, I spent four years in the late '80s, early '90s as a
co-founder of Friends of Casco Bay. It was an all volunteer organization that had deep concern about questions like we have at play here today. And without staff, we as volunteers read permit applications like this one here. We got involved in permit issues and what not, so your contention is untrue.

MS. TUCKER: So based on your vast experience with this issue you noted that there is a salinity curtain that keeps the mercury out of the bay that's noted in the PRMS except that Nordic is proposing anywhere from a 15, depending upon which article you read, or a 33 percent amount of fresh water being -- in the water being discharged at 7.7 million gallons per day into the bay, so isn't that going to change the salinity and potentially impact the salinity curtain that so far protected the bay somewhat?

DONALD PERKINS: Okay. So the first thing is that you -- the way you quoted me at the beginning was saying that the salinity curtain prevented mercury from coming down the bay and it did not absolutely prevent mercury. As we know, there is presence of mercury down -- down the bay. Secondly, the fact that Nordic will be pumping fresh water into
the bay I do not think will substantially impact the mercury risk because the disturbance is going to happen before Nordic is operational. So the issue is that -- of concern here is that the bottom is going to be excavated during the construction period and then it's going to be put back and Nordic won't be operational until two years later and so I don't see the relevance of your point of their -- of their fresh water effluent.

MR. DUCHESNE: Great. Thank you. And we can go to Board questions now and staff questions. I beg your pardon. Ms. Racine.

MS. RACINE: And mindful of brevity, I just -- actually have just one question.

MR. DUCHESNE: Oh, please do. Go right ahead.

MS. RACINE: Thank you.
MR. DUCHESNE: I misspoke.
MS. RACINE: Dr. Perkins, if you know -DONALD PERKINS: Ma'am, Mr. Perkins.

MS. RACINE: Mr. Perkins, I'm sorry. We'll keep a record of how many times I make that error during the course of this hearing. Mr. Perkins, if you know, is there a publicly available list of GMRI donors with amounts?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

DONALD PERKINS: There is numerous donor lists, yes.

MS. RACINE: And they're publicly available?
DONALD PERKINS: Yes.
MS. RACINE: Where could we find that?
DONALD PERKINS: They're on our website.
MS. RACINE: Okay. Thanks very much.
MR. DUCHESNE: Great. And now we can go to DEP and DEP questions. Yes, Mr. Draper.

MR. DRAPER: Very brief. The name of your organization is the Gulf of Maine Research Institute, but I just want to make sure I clearly understand what you're presenting here today is not based on any research that your organization has done. This is a review of existing research and work that's been done by Nordic?

DONALD PERKINS: Yes, it is, but I think central here is our knowledge. We're deeply involved in fishery research. We do work on herring, we do work on cod, we do work on lobsters and we're extensively involved in fishery management.

MR. DRAPER: Thank you.
MR. DUCHESNE: Other questions?
Mr. Pelletier.
MR. PELLETIER: Hi, Mr. Perkins. I
appreciate that a lot of the comments you were making were talking about the percentage of habitat impacts. I understand that and it makes sense. Most of your comments though are also about construction impacts and no real comments about operations. This morning we heard a couple of different testimonies about the influences of flows and tides in -- in Penobscot Bay but not so much about Belfast Bay. And with the types of discharges that they're talking about here and particularly thinking about, you know, maybe some of the viral issues and things like that, do you have any particular comment or opinion about risk to the effect as it stands to primarily the Belfast Bay region?

DONALD PERKINS: As you note, I chose not to speak to the impact of effluent into the bay and the reason for that is that at the end of the day the discussion there is around the models used. Our modeling expert -- expertise at GMRI is really a system scale, so we're looking at the entire Gulf of Maine, the entire North Atlantic and so I chose not to comment specifically here because it's a smaller scale than our work is.

MR. PELLETIER: Thank you.
MR. DUCHESNE: Other questions? We'll go
first to Mr. Sanford.
MR. SANFORD: Just to clarify for the record, and I don't mean anything implied by this, but there is no financial or fiduciary interest between GMRI and Nordic?

DONALD PERKINS: No, we have no financial relationship with them. We have no -- yeah, period.

MR. DUCHESNE: Mr. Miller -- Martin. Twice I've done that.

MR. MARTIN: You'll get it eventually.
MR. DUCHESNE: Honestly.
MR. MARTIN: Earlier today we heard a line of questioning regarding the Penobscot River Study and particular sampling methodologies, do you have any comment on that?

DONALD PERKINS: I -- I guess I would comment simply that the sampling that was done there was to characterize the mechanics and the details of how the HoltraChem source mercury was interacting with a marine environment. The -- once you get down into Belfast Bay that information is background information and then the question becomes what's happening -- it's background information and the evidence is that the concentration of mercury down in Belfast Bay is -- is as we've all seen typical of
bays along the coast.
MR. MARTIN: Thank you. That's the only question I have.

MR. DUCHESNE: Great. Any other questions? Seeing none, I'll give you one last opportunity to clarify anything based on the questions you got. Is there anything you feel you need to clarify?

DONALD PERKINS: No. I think, again, I think there are a lot of -- there is obviously a lot of details that you're all digesting and there is a lot of picking back and forth that goes on and I think ultimately the question is how does this get executed on the water, how does it get run and, as I've said, I think there is a very talented group of people here to get that done.

MR. DUCHESNE: Great. Thank you very much. We'll take a five minute break while we reset and get ready for our next panel.
(Break.)
MR. DUCHESNE: I believe we have our next panel ready to go and I'll hand the mic over to Miss Tucker.

MS. TUCKER: Thank you Presiding Officer and members of the Board of Environmental and staff.

MR. SANFORD: Is that on?

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. TUCKER: Oh, I don't know.
MS. BENSINGER: And just to -- since the Board as a whole hasn't been involved in all of the many side conversations, Mr. Canning did not file pre-filed written testimony in case you were thinking you just missed it, but he has been -- the Chair has decided after discussions with the parties that he is allowed to testify.

WAYNE CANNING: I have a statement I filed to you folks.

MS. BENSINGER: It wasn't pre-filed.
WAYNE CANNING: It wasn't -- it wasn't the last two -- two weeks when I wasn't available to have it notarized and all that.

MS. BENSINGER: Right. So he's going to hand in a written version. The Board didn't have it in their packets is what I 'm saying, so thank you.

MS. TOURANGEAU: Can I ask a question real quick too? I had been under -- I see that there is a slideshow up and I had been under the impression that that was going to be recirculated with exhibit numbers on it this morning, but I didn't get that.

MS. BENSINGER: We didn't either. We're hoping that it's exactly as it was --

MS. TUCKER: It -- it is exactly as you
said.
MS. BENSINGER: -- reviewed.
MS. TUCKER: If there is any hiccups from the -- he's got the package you gave me, so he's got it and he will delete anything --

MS. TOURANGEAU: But with the exhibit
numbers on it so we can kind of follow along?
MS. TUCKER: We believe so. We are very hopeful.

MS. TOURANGEAU: And are there any copies of it available?

MS. TUCKER: In his hand.
PAUL BERNACKI: And I'm very -- I'm very happy to just click delete on any slide and it will disappear forever.

MS. BENSINGER: How many slides are there?
PAUL BERNACKI: Ah, I don't know, about 30 of them.

MS. TUCKER: It's about half of what they were originally.

PAUL BERNACKI: Yes.
MS. BENSINGER: How many were in the packet that you had --

MS. TUCKER: It's exactly the same number, whatever that is.

MS. BENSINGER: -- pre- -- to the third version?

MS. TUCKER: I'll trust Joanna's count.
MR. DUCHESNE: Yeah, and just for the record, we believe we have an agreement between the parties on what's allowable and what isn't.

MS. TOURANGEAU: 17.
MS. BENSINGER: 17 slides in the agreed upon version.

PAUL BERNACKI: It was midnight.
MS. TOURANGEAU: I am going to object. This is the third or fourth go around on this and it's been -- over the last three days I've reviewed a hundred and something slides and tried to get a set that was agreed on last night.

MS. TUCKER: This is really a visual aid for you all.

MR. DUCHESNE: Okay. Here is -- if I may.
MS. TUCKER: Yes.
MR. DUCHESNE: I have an objection in front of me. My ruling would be he may proceed with the slideslow, but if we run into difficulty with any of the slides there is a strong risk that we'll simply take down the slideshow and you can go ahead verbally but won't be able to relate to slides that don't
match up to what was agreed to.
PAUL BERNACKI: Thank you, sir.
MR. DUCHESNE: Okay. Thank you.
MS. TUCKER: Thank you very much.
MR. DUCHESNE: You may proceed.
MS. TUCKER: All right. My name is Kim
Ervin Tucker, as you all know. I represent a diverse group of citizens, the Maine Lobstering Union, which represents licensed commercial lobstermen and sternmen from Kittery to Cutler; individual lobstermen representing local lobstermen from the Belfast and mid-coast area, Wayne Canning and David Black, who have decades of experience fishing in the area of Penobscot Bay that NAF proposes to take for its use for pipelines; and Judith Grace and Jeffrey Mabee, who are, we contend, the fee-simple owners by deed in a prior 1970 quiet title judgement of the intertidal land that Nordic Aquafarms proposes to use without their consent for the placement of the pipelines. In addition, I also represent the Friends of Harriet L. Hartley. For the sake of full disclosure, the Harriet L. Hartley conservation area who are the holders of a conservation area that covers the -- all of the intertidal land that Jeffrey and Judy show they own in the prior judgement and
they are not intervenors here.
All of these parties share a common interest in protecting the same area of Penobscot Bay from damage and destruction by Nordic for this project, however, none of these parties or organizations is opposed per se to aquaculture including land-based fish factories where the proposed aquaculture facility will do no harm to the environment or access to and the viability of existing lobster and crab fishing grounds.

Here we direct the Board's attention to; one, Nordic's failure to comply with the requirements in NRPA and the DEP testing protocols relating to completing the required sediment testing in the area Nordic Aquafarms proposes to do extensive dredging, blasting and trenching that this project proposes.

NAF's failure to do sediment testing to determine the location and level of HoltraChem mercury in the area proposed for dredging, blasting and trenching for pipeline placement, sediment testing method -- and not using the sediment testing methods that the federal court's experts have said should be used to properly assess the presence of HoltraChem mercury in the PRMS.

Three, NAS's failure to do the necessary

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
geotechnical studies of the required -- required to assess the impact of this proposed project on the coastal wetlands and bluffs and the suitability of the methane latent and holocene mud in this area for placement of the pipelines as proposed in the most recent installation method.

Four, NAF's failure to do the necessary studies of impacts of the proposed project on the current economic uses of the Penobscot Bay, especially the lobster and crab fishing, scalloping and other existing aquaculture projects including the mussel farm up in Northport. Byssal.

Five, NAS's misrepresentations regarding the adverse impacts of --

MR. DUCHESNE: Yes, just a little bit slower.

MS. TUCKER: Oh, I'm sorry.
MS. DOSTIE: You're reading quite quickly.
MS. TUCKER: I'm going to email this to you.
MS. DOSTIE: Well, that's okay, I'd rather write it as we go.

MS. TUCKER: Okay. Sorry. NAF's misrepresentations regarding the adverse impacts from NAF's proposed project on commercial fishing in the upper bay and beyond. Especially the potential for
disturbing buried HoltraChem mercury from the placement of pipelines using significant blasting, dredging and trenching out along the bay followed by the potential for post-installation, erosion, scouring and sediment resuspension including sediment containing buried HoltraChem mercury from the pipelines themselves and proposed for installation.

I was struck by Mr. Heim's explanation of what brought Nordic Aquafarms into mid-coast Maine to build a land-base salmon farm yesterday. First, he cited the warming oceans as the basis for pursuing a land-based fish farm and then noted that -- that maine has cold, clean water resources as the basis for NAF coming here. But this project proposes to dump 7.7 million gallons a day into the shallow estuary of the upper Penobscot Bay at a depth of approximately 35 feet of wastewater that is 5 degrees to 33 degrees warmer than the ambient water temperatures of this area at various times. To put the volume of wastewater in this perspective, the waters from this facility for the entire Milliken Bayside is only permitted to dump 7 million gallons a year into the same area of Penobscot Bay.

The presence of HoltraChem mercury in this area is not a matter of speculation by the

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
intervenors. The amount and location of HoltraChem mercury, buried or otherwise, that can impact this environment of the Penobscot River watershed and its biota has been the subject of one of the most extensive studies ever conducted of the impacts of industrial dumping of inorganic mercury into an aquatic environment ever conducted in this country. The NRDC and the Maine People's Alliance filed suit in federal court in the late 1990s --

MR. DUCHESNE: A little bit slower.
MS. TUCKER: Sorry. -- over the damage done to the Penobscot River watershed including Penobscot Bay and the upper estuary from HoltraChem's mercury dumping. Under the direction of the federal court in Bangor a panel of neutral court appointed experts did a two phase study over more than a decade to determine where there was mercury in the river and bay attributable to the 12 tons plus of mercury HoltraChem dumped into the river beginning in 1969. The third phase determining where active remediation is needed for several areas where the mercury has not been buried by the grace of Mother Nature by natural attenuation of sediments over time is ongoing. The Penobscot River Mercury Study Phase 1 and 2 studies are accessible through DEP's own website and the

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

NRDC's Mallinckrodt website and I give that and I will circulate it to everyone. Frankly, the NRDC's is a little easier to use. No offense.

As long as the mercury remains buried according to the court's experts, it poses no risk to the health of the bay or its residents, human or otherwise. Where the mercury is in contact with the methylating bacteria in the bay and river methylmercury is formed and can contaminate the entire food web bioaccumulating and biomagnifying as it goes up the food chain. For this reason, the court's experts said no remediation by dredging should be done in the areas where natural processes have buried the mercury. Dredging for remediation was only recommended in areas where the mercury remains at the surface causing active methylmercury contamination. Pretending this mercury does not exist will not prevent an environmental and economic disaster in the mid-coast region if Nordic disturbs, resuspends and spreads the HoltraChem mercury that will not just impact Penobscot Bay but will damage the economy, the entire State of Maine and the reputation for wholesomeness of all lobsters sold under the Maine lobster brand. However, NAF has repeatedly falsely asserted to this Board including
today and to the Legislature last section that there are no mercury levels of concern in the area NAF proposes to dredge, blast and develop despite the lack of any sediment testing done along that route.

Despite this, as will be discussed in more detail by Paul Bernacki, a DEP certified erosion control specialist in Maine, NAF has, according to its own NRPA application and exhibits, failed to do the testing -- necessary sediment testing required of all proposed dredge projects, let alone the specific sediment testing that the experts who have conducted the PRMS have said is needed to show the amount and location of buried HoltraChem mercury.

In addition, neither DMR nor the applicant, NAF, has complied with the statutory requirements in 38 MRS, Section 480D, Subsection 9 for a determination of the impacts of the dredging proposal on fisheries and commercial fishing. Lobstering representative intervenors, Wayne Canning, who is the Zone D lobster representative for District 11, which are the lobstermen that fish in this area, and David Black will discuss their personal knowledge regarding the presence of lobsters and crabs and other commercial fishing in the area proposed for the NAF pipeline, which would be permanently lost to fish --
fishermen. The impact on lobster and crab fishing in the upper estuary from HoltraChem mercury contamination, the impact of any dredging on lobster and crab fishing and the danger posed by the proposed pipeline installation methods. They will discuss the closures of areas in the upper bay to lobster and crab fishing where HoltraChem mercury is present.

Finally, Mr. Bernacki will be discussing the failure of NAF to do proper sediment testing along the route to determine the suitability of this area for the proposed installation method change as well as the prior installation method of the under water sea wall but now the dangling method over the bottom. Thank you.

MR. DUCHESNE: Great.
MS. BENSINGER: A Board member has asked that we clarify based on what's put up there, and I think I can do it, correct me if I'm wrong, that Mr. Bernacki does not work for the Maine Department of Environmental Protection and, correct me, and that it is -- what that means is he has a certification from the Maine Department of Environmental Protection as an erosion and sedimentation control consultant. Would that be correct?

MS. HALLOWELL: Yes.

MS. BENSINGER: Yes. And that's correct?
PAUL BERNACKI: Yes.
MS. BENSINGER: Thank you.
MR. DUCHESNE: Great. Okay. One
announcement also for the public, if I might. We have been talking about what slides will be permissible in the slideshow that's approaching. I just need to explain to the public, I think, who may be curious about why certain slides are not allowed and some are. The hearing process is regulated by state law, the Administrative Procedures Act, and also by state DEP rules. Those rules require pre-filed testimony by certain procedural deadlines. Anything after that may be inadmissible and usually is inadmissible. To the extent that a slideshow comes in at the last minute which augments the presentation that's fine, but it's not an opportunity to put in information that was not previously admissible and that's why there is a concern about does this slideshow comply with the law. It's nothing against what may have been on the slide, it's really just a procedural requirement of the law.

The second thing is in the opening statement I think TRI was mentioned a couple of times. In my opinion there is wide latitude during an opening
statement, however, during testimony, especially summaries of pre-filed testimony, should it come up, I would expect a quick objection and I would suspect an even faster sustained.

MS. TUCKER: There is no discussion -- I should have specified. I was trying to cut my thing down, but I left out the paragraph that I said we are absolutely not discussing TRI at all.

MR. DUCHESNE: Yes. No, I was just
clarifying for the public and all parties.
MS. TUCKER: Yes. Thank you.
MS. TOURANGEAU: Before the testimony starts can, we confirm that the witnesses have been sworn?

MS. BENSINGER: Have you been sworn?
WAYNE CANNING: Sworn this morning.
DAVID BLACK: Yes.
MS. TOURANGEAU: Mr. Bernacki?
MR. DUCHESNE: Yes? Is that a yes?
PAUL BERNACKI: No. That's a no.
MR. DUCHESNE: Okay. Would you please stand and raise your right hand. Do you affirm the testimony you are about to give is the whole truth and nothing but the truth?

PAUL BERNACKI: Yes, sir.
MR. DUCHESNE: Thank you. We may begin.

PAUL BERNACKI: Good afternoon, everybody, the Board, Attorney General's Office and the hard working, dedicated staff at the DEP, Commissioner Reid. Thank you for all of the hard work --

MR. DUCHESNE: This may be a case where the microphone needs to be closer for people up back.

PAUL BERNACKI: Thank you for all of the hard work and effort you've put into this. And I -I'm not very used to doing this, but I know you all pretty well by this point and some of you very well and I am going to speak colloquially and directly. I too have no axes to grind in this except that this is my home, the bay is a place I've been swimming and boating in since I was a child and I care very deeply, so with that I'll get started.

My name is Paul Bernacki. I am a Maine DEP certified erosion and sedimentation contractor, my license number is 2767 , with over 40 years of experience in wetland consultation and land management, shorelands projects, upland, forest farm management projects. My practice and experience in the mitigation of erosion via living shoreline, plant and natural material stabilizations and getting permits from the DEP for various structural shoreline and intertidal projects. I represent the interests
of and manage the shorelands of multiple landowners in the area that will be directly and indirectly impacted by the proposed NAF project. I have been and continue to act as a consultant and intervenors Mabee-Grace whose shoreland I manage and also as an advisor to the Maine Lobstering Union.

In the normal course of applying for DEP and town permits, designing and implementing shoreland projects, I have gathered 40 years of working experience involving property boundaries, practice and have formal associations with licensed surveyors and engineers. As a result, I have extensive personal and professional experience locating things on the ground, high and low tide marks and whose property is whose so I don't run a backhoe on somebody else's property. Locating mean and normal low tide locations is essential to my practice as I am required by law to accurately locate geographical legal boundaries, features, monuments, structures for permitting and construction of every shoreland project I do. I have some 35 years of practice in interpreting actual property law, easement boundary descriptions and plans and surveys as related to the projects I am supervising and designing.

So this is state law. I don't -- I don't
think it's very controversial. We've had it around for quite a while, I think the '70s, and -- the National Resources Protection Act and it's the law that controls what I do on the shoreland and what I do to habitat and how I conduct myself on people's property in relationship to the law. If I violate this law, I am in a lot of trouble and I try very hard not to do that. I have -- I have found that in my practice and in relating to my customers, the DEP and my environment that reading the preamble, the findings and purpose of this Act are profound and -and very important because all of us who work with this we get into the exhibits and the lines and the, you know, details of filling out the applications and the engineering, but the findings and purpose of the actual law are -- are kind of like the guiding principles of what we are doing and why we are doing it as opposed to the details of each project, so I'm just going to do this briefly.

Findings, purpose, shore, tidal, the Legislature finds and declares that the state's rivers, streams, great ponds, fragile mountain areas, fresh water wetlands, significant wildlife habitat, coastal wetlands and coastal sand dune systems are resources of state significance. These resources
have great scenic beauty and unique characteristics, unsurpassed recreational, cultural, historical environmental value with present and future benefits of the citizens of the state and that uses are causing rapid degradation and in some cases the destruction of these critical resources producing significant adverse economic and environmental impacts and threatening the health, the safety and the general welfare of the citizens of the State of Maine. The Legislature further finds and declares that the cumulative effects of frequent minor alterations and occasional major alterations of these resources pose a substantial threat to the environment and the economy of the state and its quality of life. This article is known and may be cited as the Natural Resources Protect Act, but we all call it NRPA.

This is also not controversial in any way for us to look at. This is the application that Elizabeth Ransom signed on behalf of Erik Heim, so she's the agent and I do this all of the time. I sign this application and I swear to tell the truth in the application. And the application has some very specific details and in my -- in my review here -- my -- my thinking on this review and the next

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
paragraph of my pre-filed testimony is the thinking of the review and whether or not this application and all of its attachments have been sufficient for my review to understand whether or not there is a problem here.

That's what I've been asked to do and -- and as you can see, I have a file. I've been working on this for a year-and-a-half. As Mr. Martin knows, I've been working on it for a year-and-a-half and I think as part of my qualifications I just want to say the documents that I have reviewed, I think that's appropriate. Nordic -- and a lot of these are the applicant's actual filed attachments to this application and, again, I don't think that's any problem for anybody here, that's what we're supposed to be working on. So we have Nordic Aquafarms seawater access system, construction narrative, and this is the latest revision, which is January 6, 2020, so sometime during this Board process there has been another revision of this, which I have in my hand and I've reviewed. Maine Department of Environmental --

MS. TOURANGEAU: Objection.
PAUL BERNACKI: -- Protection --
MS. TOURANGEAU: Objection. I think that
that submission is not actually to the Department.
PAUL BERNACKI: Okay. Forget that one. Somebody else can look at that.

MS. BENSINGER: And it is beyond the scope of your pre-filed testimony.

PAUL BERNACKI: No, I don't believe so.
MR. DUCHESNE: But if you decide, you can go ahead without it.

PAUL BERNACKI: Yeah, yeah, thank you, sir. Good work. Maine Department of Environmental Protection issue profile. And I've read the NRPA preamble and it comes with a great guidance document. It's Natural Resources Protection Act and it's a 15-page document that doesn't print page by page and it's general information and basically how to go about doing it and it's another guideline. Another DEP information sheet, which is the guideline for restoration plan for shoreland clearing violations. And, of course, I just recently found out that I was reviewing a memo by Ed -- Edward Cotter from Monday that was in answer to some of the things that I filed, so I referred to this, but I'm not quite sure if I can refer to it as except as I did with my pre-filed testimony before it was there.

MR. DUCHESNE: Yes, in the context of your
pre-filed testimony if it's consistent, that's okay.
PAUL BERNACKI: Thank you. The Attachment 1-B -- well, it's 7.0, Attachment 7, construction plan, and it's not dated, so I don't -- I don't really know where it fits in or if it's been updated, but it's the applicant's construction plan. And in the interest of brevity and time, you see I have all these notes, but I realized somewhere along the process that there are too many things to talk about, so I've looked at all of this stuff and I've studied it all. And this is pre-filed testimony attachment that's been accepted, the Penobscot River Mercury Study, Chapter 5, and these are the excerpts and you all have a copy. Another document that's been accepted is -- is the -- a fellow named Jason Jonkman was the lead author on this and I've spoken with him several times. He's out in California and it's the -- it's about wind and it was paid for by the federal government Department of Energy, but it -it's a development of a conceptual site model for all of the things that a large infrastructure that involves anchors, cables, pipelines, things like that that come from a wind mill site off-shore and it's a 10-page document and the DEP has this to review and recommend to the Board as to its pertinence. I did
have a lot of notes, but I'm not -- that's their job now. Hurry up. Hurry up.
(Laughter.)
PAUL BERNACKI: So Tier 2-3, individual permit, Block 27, Appendix A, add others if required, I'm looking at Appendix B of the application, I've reviewed that. I've reviewed it fairly thoroughly because it's the thing that I most like doing when I get to a jobsite is walking on the beach and looking around and filling out this beautiful little checklist and I have filled out this little checklist for myself. I've got a blank and I've reviewed Miss Fiorillo's statements of -- involving that and this is one of the documents that I found to be insufficient in order for this Board to review as I've stated in my third -- one, two, three -- fourth paragraph, which I haven't read yet. I will read in a moment.

So under activity description the applicant's expert forgot to check the box that says dredge and I will let -- I will let the DEP and the Army Corps of Engineers finish their findings on whether or not excavation and side casting is dredging or not. I've reached my conclusion and you probably know what it is.

Another -- the next thing down that I find significant is that the agent's expert says that the -- there are zero feet of indirect impact to intertidal/subtidal and I really don't see how Cianbro with three giant barges and a timber matway could have zero impact. I never have zero impact when I'm working.

Shoreline character, again, the applicant didn't check bluff bank height from spring high tide and her picture, which is -- I think we've accepted. 12 minutes. There it is. This is the applicant's picture on Appendix B identified as above. And so right in the center of this picture you can see a cottage to the right and just to the left of that is the coastal wetland and in that coastal wetland right there is the cottage and then the coastal wetland, that's where the pipe comes out right there. You can see that to the right of it is a coastal bluff and I've actually observed this lately and it's eroding and it's Boothbay loam, silt and there is active erosion going on here on the Eckrote property. And immediately to the left of this there is a stream --

MS. TOURANGEAU: Excuse me.
PAUL BERNACKI: Yes.
MS. TOURANGEAU: I'd just like to point out
for the record that while the picture and the block to the right-hand side of it were taken from the report, all of the text above the picture, I believe, has been added and is not in any of our materials.

PAUL BERNACKI: Exactly, I've added it to describe this thing exactly because I was asked to have --

MS. TOURANGEAU: I'm not objecting, I'm pointing out --

PAUL BERNACKI: Thank you.
MS. TOURANGEAU: -- that there was a change from the documents that are in the record.

MR. DUCHESNE: And there is some discomfort from the Presiding Officer that when something is taken from the application and used, that's fine. Once new text is added to it it's basically changing the exhibit in a way that starts to get uncomfortable, so I'll let it go a little further, but if there is a lot of this then we may have to move on.

MS. TUCKER: We actually added that description of where it came from so that people would know where it came from, so --

MR. DUCHESNE: Yes, and it's simply okay to show the exhibit and to say where it came from, but
to actually alter the exhibit --
PAUL BERNACKI: I'm sorry, I'll just talk about the bluff. And to the left is a bluff, but more importantly in the bluff there is a structure and the applicant didn't notice that there was actually a structure there. And a little further down its current state of signing adjacent upland and there is some residences along here, but the vast majority of the entire NRPA application site is undeveloped and is essentially not too bad wildland.

Coastal characterization. Time of survey.
I have reviewed the direct testimony of the application, various exhibits and other material submitted by Nordic Aquafarms in support of their application. I have determined these to be incomplete in very many ways and inadequate to make an accurate assessment of all the potential impacts. This testimony is submitted as rebuttal testimony to discuss the blaring omissions in the filings the applicant has provided to the Board and Department. This testimony supplements my prior citizen's comments which are incorporated by reference herein. And I already swore that I am a truthful man.

And I've skipped to Appendix B. Under NRPA Chapter 418 and subsections thereof, NAF must be
required to address various requirements for a proposed reuse of dredge spoils resulting from the proposed NAF pipeline trenching, i.e., dredging. The blasting, redeposit of dredge spoils amounting to at least 30 to 40,000 cubic yards. Adequate studies of this critical data are absent from the material submitted to date by this applicant. They tested but not on the actual site of the testing, the proposed lease area from this submerge land as CS-101 chose. This area has been identified as having significant HoltraChem mercury deposits according to the Phase 2 sediment study conducted by the federal court's experts. I have previously submitted Chapter 5 of the federal court's Phase 2 study to the DEP staff for consideration and incorporate that document here.

The core sampling done by the federal
court's expert was done using the most accurate method for identifying the amount and location of the mercury deposits. This method was developed by the court's neutral experts more than a decade ago during the Phase 1 portion of their studies for the federal court. The Penobscot River Mercury Study standard requires an adequate number of core samples taken from a depth of 90 centimeters with every 1 centimeter segment tested for mercury from 0 to 20
centimeters, every 2 centimeters segment tested from 21 to 40 and every 5 centimeters segment tested from 41 centimeters to the depth achieved down to 90 centimeters where possible. And I want to add that the federal standards require that whatever you're going to call this trench that the dredging of it should be tested to the bottom of the dredging, so that would be down to 10 feet because that's what you're going to be dredging up. Rather, the testing submitted by the applicant was for only three cores, not the whole site, not on the site of the actual project that's been selected at this point ranging in depth from only 1.5 to 6.5 feet, roughly 45 to 200 centimeters, were done along the abandoned second pipeline route. Further, the 1.5 and 4.5 cores were combined with each other prior to testing and the 6.5 foot core had all the material within the core samples combined diluting the level of mercury by mixing contaminated sediments with clean, glacial till and lower levels. I have till -- all of that has been struck and disappeared.

I am going to really summarize this next little piece, which is that as an erosion control -certified erosion control contractor, I have looked at this site very carefully, which is what I'm
required to do and I don't believe there has been any testimony by another certified contractor today, at least that I know of, I've looked at everybody's credentials. And from the wetlands, the little salt marsh 850 feet through this sandy, gravel and bedrock area Cianbro proposes to dig a trench that's 15 feet wide at the bottom, 30 feet wide at the top starting right at a fresh water stream and then chew up the material, blast out the ledge you see in the foreground or any ledge they encounter. They haven't done any geotech tests so they have no idea if there is ledge. And then in the middle of the winter during November stormy season they're going to expose this whole thing and then shove these unconsolidated, saturated, mixed up materials back into this hole. They're going to put gravel around the pipelines down below and at the place this pipeline starts there are two streams coming out that flow an unknown, untested amount of water during the spring floods. What's to keep that water from going down into the crushed stone around the pipe and forming an under, you know, like a culvert getting washed out in your driveway in the springtime? What's to stop it? There is no plan. That's why I can't review -- if I could review the plan, I would review the plan, but there is no
plan. What's to stop that unconsolidated 30 foot wide trench in winter, in stormy season, in the storms of February like we had three years ago which took out banks all the way around that coastline here with 8 foot waves. What's to stop that big 30 foot wide trench of chewed up materials from simply washing out and turning into -- washing all the way down to the gravel for that matter. And all that material and all that silt is going to go this way and that way after the silt curtains. There is no plan for the consolidation. There is no plan for rip rap on top of it. There is absolutely no plan for putting plants on top of it. Now, I'm a living shoreline specialist and what I see is that it's going to tear a 30 foot wide and 850 foot long trench that's going to constantly be eroding and not be stabilized or zero impact at all. Under water, I see 100 foot wide area that's been chewed up with a 5 ton clamshell dredge and a giant long-armed excavator with a 3 or 4 yard bucket. Materials are going to be dropped down through the water column for over 3,000 feet into a big sloppy pile next to the big sloppy ditch because it's unconsolidated, soft sediments. Elizabeth says very soft sediments. They're very soft sediments and 100 foot wide by close to 2,000
foot long not including intertidal, subwater trench is going to be dug and the side-casting which is an official Federal Clean Water Act term, it's called side-casting. And side-casting is redeposited dredge spoils. This is what the DEP guideline says, this is what the federal law says and this is what Peter Tischbein said to me last week and three weeks before. We've been talking about it. I've been studying the law. I've been keeping up-to-date with it. This is a dredging operation plain and simple.

And I'm getting a note that I have to wrap it up, so that's saves you the trouble. So in wrapping it up, yeah, I covered that. I did that pretty well. Side-casting. The courts have found...da, da, da, da. If anybody would to like to know anything more about this project I've been working too hard on it and have all of the documents in one place and I strongly, strongly feel that Cianbro has not done due diligence that Mr. Jim Wilson who is their project engineer for this has signed one document and he's not here today and I think we should hear from Jim Wilson if we -- if we trust Cianbro, why isn't Cianbro here? Why did they send a young woman who is not certified -- not a certified contractor in the state? She mentioned in
her pre-filed testimony that she was certified and then I called up my certifying contact with the DEP and, in fact, she's not certified. So I'm ready to be quiet now now that you're ready to tell me to be quiet. Thank you.

MR. DUCHESNE: Great. Thank you. Continue.
MS. TUCKER: Next will be David Black from Belfast, Maine.

DAVID BLACK: Okay. This microphone works. Mr. Duchesne, Presiding Officer, members of the Board of Environmental Protection and staff, my name is -and guests, my name is David Black. I am a seventh generation inhabitant of this area, a resident and taxpayer of Belfast, Maine, USA and a lobster fisherman working in upper Penobscot Bay for 56 years. I am not today being paid as a scientist, I am not being paid as a lawyer, thank goodness, and I am not being paid as a bureaucrat. However, if I were a bureaucrat and I needed a presiding officer, I would be calling Mr. Duchesne because he has kept this vessel on course for the last two days and I appreciate that very much. Thank you.

Please include the information in this statement as part of the discussion on applications before you regarding the Nordic Aquafarms proposal to
construction multiple pipelines into upper Penobscot Bay and Northport for the purpose or purposes of providing intake and seawater -- intake of seawater and the discharge of effluence from a recirculating aquaculture facility proposed by Nordic Aquafarms to be located in Belfast, Maine.

As a lobster fisherman, I derive a significant portion of my annual income from the area beneath and adjacent to the proposed location of the Nordic Aquafarms pipeline, therefore, I feel I have considerable local knowledge of the area and I feel obligated to use this opportunity to share some of that knowledge with you. I am sure that upon your total review of the local information regarding this project many concerns will arise concerning the environmental dangers and consequences of this proposed pipeline.

I would like to give you some history of the area. Penobscot Bay has a long and productive history of fishing, which has been diminished over time due to many municipal and industrial pollution sources. These pollution sources include decades of raw municipal sewage disposal from many points around the bay, untreated chicken waste from area poultry plants, fish waste from a long operating fish canning
factory and mercury contamination in the bay from the discharge of effluence from a facility in the Penobscot River. Add to these, several dredging projects in Belfast, Searsport and other ports and you begin to see the degree of pollution this bay has suffered in the past. I will discuss these pollution concerns separately.

Municipal sewage. When I was young -actually, I am young.
(Laughter.)
DAVID BLACK: When I was younger, raw sewage was a -- it's late in the day, okay, we've got to add a little something to this, okay. -- raw sewage was a common site in the bay. In recent decades the municipal sewage outfalls around the bay have mostly been identified and corrected. The result has been lower fecal coliform levels and increased availability of clean shellfish resources in the bay.

Industrial waste. During the 20th Century there were two poultry processing plants and one fish canning factory, as I said earlier, in Belfast that dumped untreated chicken waste and some fish waste through large pipelines directly into any Belfast Harbor. The harbor was so foul with this effluent that Belfast Harbor was listed in the U.S. Coast

Pilot publication as a harbor to avoid when cruising the coast of Maine. After the closures of these factories and the elimination of these discharge pipes the bay is cleaner and more appealing to the public and it is becoming a destination for many visitors to Vacationland, however, I can tell you that today the remnants of those discharges remain in the sediment on the bottom of the bay. I believe it will take many a lifetime for this area to completely clean itself.

Dredging. In my experience whenever there is a dredging project at Mack Point in Searsport Harbor the lobster catch in the area slowed for several years until the environment recovered. Additionally, when Belfast Harbor was dredged in 2003, it took a decade for the environment to recover according to a letter from a prominent lobster fishermen's group to the Army Corps of Engineers in 2013, which I included with my original testimony. Please note that the most recent attempt to dredge Searsport Harbor was canceled due to environmental concerns with the bay.

Pipelines. In the year 2000, a sewer line of removed from the Belfast footbridge and it was relocated and extended east to west across the bottom
of Belfast Harbor. This project stopped the summer migration of lobsters into the river which previously had produced very productive fishing for some. The lobster resource in that area never recovered.

Mercury contamination. You've heard a lot about this. I'll throw in my two cents worth. Mercury contamination in the bay from decades of unconfined industrial mercury pools in the Penobscot River being moved down river by the current has resulted in 13 square miles at the mouth of the Penobscot River being closed to all lobster and crab fishing due to methylmercury contamination in these shellfish. Please note that that Nordic pipeline site is less than 6 miles directly downstream from that closed area. Further studies by the federal court that is reviewing the source of that pollution have identified buried mercury in other areas of the bay and specifically in the area of the proposed Nordic Aquafarms pipeline.

Impacts of this project. Can we now feel comfortable with a new pipeline proposal by Nordic Aquafarms to be constructed in Belfast Bay based upon this history? Each of the aforementioned sources of pollution were the result of projects permitted by the State of Maine and by the federal government over
long periods of time. I can think of several reasons to be very cautious of this project and they are as follows; this proposed pipeline is to be located just over one mile from the selected disposal area of the recent and very controversial attempt to dredge Searsport Harbor, which failed due to environmental concerns. Dredging and blasting resulting from this project will produce the same impact as other dredging projects in the area. The construction and operation of this pipeline 6 miles downstream of the area closed due to mercury contamination is directly in another area identified as containing buried mercury that would be continuously impacted by the operation of this project releasing mercury to be ingested by sea life resulting in further -- possible further closures of lobster and crab fishing areas where I make my living.

Concerns. This project proposes discharging 7.7 million gallons of brackish and warm water into the bay every day. I was -- I was -- it was indicated to me by the project engineer for this project who I talked with on the phone that this large volume of water equals nearly 50 percent of the total water volume of this RAS facility being discharged daily. There is presently a RAS system
located in Franklin, Maine which is run by the University of Maine. The operator of that facility has stated to me that they discharge only 10 percent of the total water volume daily, a significant difference from what Nordic is proposing. This is water that would be heated to between 5 degrees Fahrenheit and 30 degrees Fahrenheit above the ambient temperature of seawater from the bay depending on the time of year combined with groundwater from wells which will unquestionably lower the salinity of the discharge water. It is very unreasonable to assume that this water which has been described by the applicant as cleaner than the water being pumped into the facility from the bay should be discarded so soon after mixing and heating. This does not sound like a recirculating aquaculture facility at all but rather a flow-through system. It is my opinion that the discharge of this warm and brackish water into Penobscot Bay will cause lobsters to leave the area for more saline and temperate conditions. This concern alone will cause great economic hardship for myself and other fishermen. The chief technical officer for Nordic Aquafarms explained to me one day in his office that all discharge water from this facility will be run
through a 0.4 micron. Now, they've stated 0.04 micron water filter before re-entering the bay. Again, at the RAS facility system run by the University of Maine the minimum water filter is 40 microns, about -- depending on which filter you use a hundred times finer or a thousand times finer than what is the standard for the RAS system in Franklin, Maine. The manager of that facility stated that filters less -- actually, stated that filters that are finer than 40 microns would clog quickly and be of no value. Nordic Aquafarms has submitted technical data with their application stating that lobsters are absent from this area of the bay. According to DMR statistics, Department of Marine Resources, the total annual landings of lobsters for Waldo County have nearly doubled in the past decade. The proposed location of this pipeline is where this reported resource exists and thrives.

The present design of the pipeline structure suggests an elevated structure secured by chains and anchors. These anchors are proposed to be attached in the silty bottom sediment directly in an area of methane pockets which have been determined by state geologists to be unstable. Tradionally, this very area of the bay has been an occasional anchorage area
for ocean-going ships that for various reasons choose not to anchor closer to the port of Searsport. Picture a ship anchor hooked into a pipeline. You got that picture, didn't you? Yeah, that's a good picture.

As a fisherman working on this bay for 56 years, I have become a mentor for some of the younger fishermen that are hoping to have opportunities to live and prosper on this bay similar to those which I have enjoyed for much of my life. And you had one of them speak to you last night, Hunter Penney was 15-years-old and he is a lobster fisherman that fishes in this area and he wants to make that his career. He wants to keep fishing in Penobscot Bay. The old timers always told me that it was my responsibility to leave this bay in better condition than when I found it for the benefit of the next generations and that is exactly why I am speaking to you today. The construction of this pipeline will be -- will do nothing to improve the health and viability of upper Penobscot Bay and will only serve to diminish the quality of life presently essential for the survival for its many inhabitants.

Please exercise your responsibilities as representatives of the people of the State of Maine
and understand that a better solution for the treatment of wastewater from recirculating aquaculture must be found other than Nordic's out of sight and out of mind pipeline. Your vote in opposition to this project is in order. Leave this bay better than it was when you found it. Thank you very much for listening.

MS. TUCKER: And next, Wayne Canning, who is the Zone D Lobster Council representative for this area.

WAYNE CANNING: Good evening. My name is Wayne Canning. I am a state representative of the Lobster Zone Council in this zone up in the Zone D, District 11 which covers Northport, Belfast, Searsport, Stockton, Bucksport, Verona, Penobscot and Castine.

The purpose of this statement is to provide concerns and facts to the Maine Board of Environmental Protection regarding the licensing request for intake and discharge pipes proposed by Nordic Aquafarms for the RAS project located in Belfast to Northport. And I'd also like to make a note is that each fisherman in this area or anywhere is a business on their own. It is a business which puts -- that helps the economy immensely and also
there is a lot of young people hopefully going to be able to be in the fishery. I had one with me today. It's my grandson. He's been in it three years now and hopefully it will be there for him.

While every fisherman in Zone D in Penobscot Bay will be vastly impacted by this project, those individuals in my District 11 will be impacted most, which would cover the Northport/Belfast area and probably over towards Searsport and Islesboro. As I discuss this project with fishermen regularly, it's very clear that the majority of the fishermen working in the area of this proposed pipe are very concerned and opposed to this project. They're actually afraid or scared that this project with the discharge volume of 7.7 million gallons of water we may end up getting this area closed too. If that's the case we're totally out of business because we've already got a closure over on the other side of Sears Island going across to Wadsworth Cove due to the mercury. Everything north of that there is no fishing. I used to be there.

Local fishermen have the best knowledge of the conditions in the bay and have seen the impacts of other similar projects which have caused great harm to the environment in the upper Penobscot Bay.

Example as follows. And David mentioned some of these also. It's the dredging at Mack Point caused the lobster production to decline in that area or close to the area. For some reason when you disturb the soil of the bottom then the lobsters can smell it or whatever, I don't know what goes on, but they don't -- they don't seem to be happy with it. The dredging in Belfast Harbor in 2003 up in the mooring fields. It was quite lucrative up in there, the best I've ever seen it the years or so before that because I was fishing both sides of the mooring field coming out of the harbor or going in, whichever way I decided to tend it. After they ran the sewer line and dredged that harbor for the mooring field and then they ran a sewer line up about that across the east side to the west side that whole thing shut down. I don't know, I tried it again this year this past season some, you know, I spot tested it. Picked up very, very few lobsters, so those lobsters aren't going up in there anymore because of that disturbance.

And I'm afraid that the Nordic Aquafarms pipeline as proposed will affect the fishing down in this area, which is not too far from where we are today and we fish down through there quite heavily,

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
especially in the fall months when the lobsters are leaving the area some, I fish it very, very serious. I go all the way from Belfast down to Lincolnville, I jump outside of that, I come back up the bay and I go set over again, I'm going back down the bay and every time I set over I'm going into deeper water, I'm trying to find out where the lobsters have moved to. And I probably -- I don't know if I should be telling all this, but...
(Laughter.)
WAYNE CANNING: The lobster fishermen are probably all going to be fishing in that water saying here we go and I'll be out of business anyway.
(Laughter.)
WAYNE CANNING: So anyhow, when I get done over there I'm over in the shipping channel, I'm over on the Islesboro shore and I run them all the way up into Searsport, which has something to do with the dredging going on up in there that's why I'm familiar with that process. So the dredging and the blasting construction of this pipeline will cause lobsters to avoid the area the same as it did in the other dredging projects. And these lobsters will want to go -- I think they're traveling in that area to come in -- to get up in down by the Belfast Park area and
up through that side of that shoreline. They're coming up from the bayside area. That's what I have determined over a long period of fishing.

Buried mercury is also known as a contaminant in the bottom sediment in this area. This mercury contaminant sediment found to be in these locations during the federal court's Penobscot River Mercury Study will observably be disturbed not only by dredging and blasting but by the continuous operation of the pipeline. And -- and I have a -and you folks already probably have all of this information anyway where the mercury study was done and it's closed. This doesn't show the closed off area in this photo, but it also shows a light amount of mercury. There is a color change that comes all the way over on the bottom, comes across from Turtle Head Islesboro, all the Belfast Bay area and Searsport and right to the shoreline where this pipe is going to be.

MS. BENSINGER: Excuse me, Mr. Canning, can you just for the record identify what it is you're pointing to? No, the -- the thing you had in your hand just now that you were referring to.

WAYNE CANNING: What am I pointing for? Oh, this paper here?

MS. BENSINGER: For the stenographer. The court reporter has to --

WAYNE CANNING: Oh.
MS. TUCKER: I can identify that it was actually attached to several things, but one of the easiest ways to describe it is Nordic's Exhibit 39.

MS. BENSINGER: Thank you. I just wanted the reporter to be able to reflect it. Thank you.

MS. TUCKER: Okay.
WAYNE CANNING: Okay. Where am I? Okay. The Penobscot River is now closed to all lobster and crab fishing as far as Stockton Harbor all the way across to the southern part of Wadsworth Cove, which is just a little north of Castine. That's a large closed out area and that's to do with the mercury. It has to do with industry, you know, for somebody who wasn't -- the state or whatever wasn't paying attention to what was being dumped overboard. That's the opinion I get.

As any fisherman can tell you lobsters are very sensitive to even slight changes in the environment. This project proposes to dump enormous amounts of brackish warm water in a small area of Belfast Bay. This alone will cause lobsters and crabs to move away and not return to the area. Many
fishermen will be displaced by the impacts of this project due to the very territorial nature of lobstering society we, as fishermen, it is impossible to relocate your fishing business to someone else's area. And you're pretty well here you are and this is what you got, you better do the best can you with it and hopefully it stays as good as it does.

Interestingly, the pipeline is located just over one mile from the proposed dump site from the Searsport Harbor improvement dredge project that resulted in huge controversy and was finally canceled because it was -- has caused so much destruction to the environment and we're afraid that this project could do the -- could be the same way. We're just -we're real concerned. I mean, this is how we make our living. It's scary really. I'm concerned. And I'm an older fellow and probably I don't have that many years left, but it's not me I'm worried about, it's the people behind me and the younger folks who are going to pursue this type of a job.

It's a very important -- the lobster industry is a very important industry for Waldo County. Remember that this is a very small area now that we have a third of it closed off and up to 100 fishermen, which includes over the Castine area,
probably I'm going to say for this local Northport, Belfast, Searsport location there is probably at least 50 to 60 fishermen in the immediate area. Lobster landings by these 60 fishermen are worth three to five times the amount of those landings to the local mid-coast economy according to the Maine Lobster Institute. This is a significant economic contribution to the Maine economy that will be lost if this project is allowed to proceed.

Additionally, there are several local
fishermen who fish for crabs in the winter months that would be impacted by this project. Because the fishing for crabs -- that brings up another issue too to do with Denis-Marc Neault's letter that he sent to you folks. He stated that there wasn't any lobsters or crabs -- or he didn't even mention the crabs. He didn't even mention the crab fishery at all and that's a pretty good thing up in this area. There is probably five fishermen that's pretty much what they target. So Dennis was incorrect with his statement that he made to you folks. Which I don't know why Denis didn't contact myself or someone -- because I know Denis. I don't know him very well. I know him through the, you know, when I'm with the DMR and my connection with the zone council I've seen Denis
before and we've spoke.
MR. DUCHESNE: I'm just checking in with you, Mr. Canning, on how much more as you're wrapping up.

WAYNE CANNING: Oh.
MR. DUCHESNE: Just for time assessment.
WAYNE CANNING: Can we -- can we do it in about five or six minutes?

MR. DUCHESNE: Can we do it in two?
WAYNE CANNING: Two? Oh, well, I guess we'll have to, it sounds like, don't it, huh?
(Laughter.)
WAYNE CANNING: We'll try to do that. Boy, I don't know. If I've got more can I submit this tomorrow or something with the extra information I don't get to say tonight?

MR. DUCHESNE: Just go right ahead and use all of the next two minutes you want to.

WAYNE CANNING: Well, I'm chewing it up the wrong way, I can tell you that this minute. So I'm going to skip some of this. I'm going to say I'm thinking that this has got to be a very, very serious decision for you folks and that I think as the permit or the way their application is set up now to pump that 7.7 million gallons of water into a bay that
doesn't have any flushing action to speak of is a high risk for the fishermen. I think that's going to -- the potential -- a good potential, I feel, is going to poach us, okay.

Now, I'm going to have to skip a lot of this again, I guess, so we're going to go to Dr. Pettigrew this morning. I was really interested in what he said about the year-long study about the water currents and the tides, I think that should be something that Nordic Aquafarms should be required to do. Maybe would make the fishermen and the local people feel a little better depending on the results. I think that year-long current and tidal information should take place. And also he recommend a dye test. The dye test is just a short-term test, but at least it will be some test, but I like -- I like the sounds of the one where you hook that up and do your testing for the whole bay for a whole year for all seasons. And in regards to Denis' statement about no lobsters, there are some lobsters caught not too -- probably within 2 or 300 feet from where that pipe is going to stop, okay. That's me and this is my grandson and in the back -- jee, I probably swallowed my cough drop now.

MR. DUCHESNE: Are those lobsters legal

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
size?
WAYNE CANNING: Are they legal size? No, we throw them back. We put them in the kennel.

MR. DUCHESNE: They're a little big.
WAYNE CANNING: Yeah, they're a little big. (Laughter.)

WAYNE CANNING: No, we don't fool around with -- we abide by the laws and regulations. I've been at this a long time and I want to continue until I can't go and I want the future young people to be able to go through this whole process because, I'll tell you what, you go out there in October and you look back and you see all of the foliage, the different colors and everything on a nice day, she's some pretty, I can tell you that. But here is something too kind of interesting, here is a picture of a mother with a couple of young ones feeding on shrimp. No one has mentioned shrimp that we have out here.

MR. DUCHESNE: Yeah, we can't -- we can't see from this distance.

WAYNE CANNING: You can't.
MR. DUCHESNE: Well, the older folks can't. WAYNE CANNING: Well, maybe I can -- I know, it's probably because it's not a colored picture,

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
that's why, but maybe I can get one made up and I can turn it in tomorrow that you can take home with you.

MR. DUCHESNE: Well, great. If we can wrap up at this point.

WAYNE CANNING: Yup. I'm all set. I just want -- I just wanted to know if this pipeline from Nordic continues forward with these young porpoises and families feeding on the shrimp, which are coming into the bay will they still be around.

MR. DUCHESNE: Mmm Hmm. Great. And just by way of explanation to the public, we accommodated Mr. Canning because he is an intervenor but has not pre-filed any testimony. It could have been possible for Nordic or any other parties to object and potentially keep you from speaking, but I think Nordic and others were considerate in allowing it to go forward and the Board has, I think, profited from it, so, again, we thank the parties for allowing it to go forward. Thank you for speaking.

WAYNE CANNING: Well, thank you all very much for letting me speak.

MR. DUCHESNE: Okay. We can go, I believe, to cross-examination by Nordic.

MS. TOURANGEAU: Mr. Bernacki, did you submit pre-filed rebuttal testimony on January 16 ,

2020?
PAUL BERNACKI: I think so.
MS. TOURANGEAU: Was your pre-filed --
MR. DUCHESNE: Microphone up, please.
PAUL BERNACKI: Yes. Hold on. Hold on. Go ahead Joanna.

MS. TOURANGEAU: Did you submit pre-filed rebuttal testimony on January 16, 2020?

PAUL BERNACKI: If the attorney will confirm that, I guess so.

MS. TOURANGEAU: I think you have it. It's got the date right on the top.

PAUL BERNACKI: I think so, yeah.
MS. TOURANGEAU: Was your pre-filed testimony made under oath or affirmation that it's true?

PAUL BERNACKI: Yes, ma'am.
MS. TOURANGEAU: Did you reaffirm that oath or affirmation a few minutes ago?

PAUL BERNACKI: I did.
MS. TOURANGEAU: Thank you. I've got too many papers up here.

PAUL BERNACKI: And what is this?
MR. DUCHESNE: Thank you.
MS. TOURANGEAU: These are sworn statements
from Mr. Dorsky and Mr. Gartley regarding the truth of Mr. Bernacki's pre-filed testimony.

MS . BENSINGER: Um --
PAUL BERNACKI: I was -- I am afraid this is about $T R I$ and it should be rejected immediately and --

MS. TOURANGEAU: It's impeachment testimony.
MS. BENSINGER: Wait a minute. Hold on.
MR. DUCHESNE: Okay. One at a time and we're going to go --

MS. BENSINGER: The other parties need a minute to look at it, so let's take a minute and we do too.

MR. DUCHESNE: Yeah.
MS. BENSINGER: You gave us your original here.

MS. TOURANGEAU: On purpose.
MS. BENSINGER: Oh, okay. All right.
PAUL BERNACKI: Well, I'll start here because --

MS. BENSINGER: Hold on.
PAUL BERNACKI: Oh, I'm sorry.
MR. DUCHESNE: Thank you. We are on a break so we can see what we've just been handed.

MS. BENSINGER: Can you tell us where in

Mr. Bernacki's testimony these statements are and whether or not they are part of his pre-filed testimony that was stricken?

MS. TOURANGEAU: They are part of his testimony that was stricken, but the --

MS. BENSINGER: Okay.
MS. TOURANGEAU: -- the statements do not go to the substance, they go to the veracity.

MS. BENSINGER: But this is a topic that is not a hearing topic.

MS. TOURANGEAU: Correct, which means it remains in the record just not on the hearing topic as a comment.

MS. BENSINGER: No, it's stricken. His -oh.

MS. TOURANGEAU: When it's not on a hearing topic it's still in.

MS. BENSINGER: Oh, you're right. So but it's -- are you going to his general truthfulness? Is that the --

MS. TOURANGEAU: Yes. It's just for impeachment purposes. I'm not going to talk about the substance. I'm just going to --

MS. TUCKER: Then we're going to need to talk to Mr. Dorsky whose survey has been designed --

MR. DUCHESNE: Well, again, one at a time and I have to designate who gets the microphone so we can capture it on audio.

MS. TUCKER: Oh.
MR. DUCHESNE: So to the -- Ms. Tourangeau, have you made your point long enough for it to be addressed by Ms. Tucker?

MS. TOURANGEAU: The point of this impeachment exhibit is that testimony that was submitted by a witness that was designated by an intervenor is false. It's not going to the substance of requirements, it's going solely for impeachment purposes as to the truth of the testimony that's been presented to this Board.

MS. BENSINGER: But that testimony isn't the subject of this hearing, so it's not before the Board. The Board hasn't read it, so.

MS. TOURANGEAU: As for truthfulness though I think it's relevant just in the same way that earlier today we were talking about testimony in front of the Legislature with regards to impeachment.

MS. BENSINGER: But that was on a topic that was relevant to the hearing.

MS. TOURANGEAU: So I'm saying that him swearing to the truth before this Board is relevant
to the Board's proceedings and its consideration of the weight and credibility of his testimony.

MR. DUCHESNE: First of all, I'd like to hear from Ms. Tucker and then I'm ready to proceed with a ruling on this.

MS. TUCKER: I would note that in -- and I'm -- I tried not to go to TRI. It wasn't me, I just want it for the record.

PAUL BERNACKI: Me too.
MR. DUCHESNE: Yes, and you won't now
either. This is getting to the truthfulness of the statement.

MS. TUCKER: Yes. Well, so what I -- and as for the truthfulness of the statement from the affiant that signed this filing, Exhibit 41, on May 16, 2019, the same James Dorsky filed a document with the Submerged Land specifically saying that the Eckrotes -- acknowledging that the Eckrotes didn't own this intertidal land and saying that Nordic now owns it based on released deeds that they say they have filed that have blacked out grantors. I don't think you want to go into travail this patch of weeds, but I think that this document should be struck. There is no allegation that anything in the unstruck version of this was a lie and I would have
to say that this statement from Mr. Dorsky and Mr. Gartley is not accurate because even Mr. Dorsky has said that Nordic doesn't own this land, that Harriet L. Hartley owned this land and retained it when she conveyed the land to Fred R. Porter, but now magically these heirs have -- that we don't know who they are because their identities have been blacked out and their address has been blacked out and it's unrecorded for having --

MR. DUCHESNE: Okay. Again, we're getting a little too far into the TRI argument and not the veracity of the witness or the sworn statement.

PAUL BERNACKI: (Ripping up his copy of the impeachment statement.)

MR. DUCHESNE: Given that it's not a hearing topic, I'm advised by counsel, if that's the right term, it's not a hearing topic, it's -- and it's getting into the issues of $T R I$ is not something we're prepared to do at this moment, I'm going to set this aside and rule that we're not going to go down that road at the moment. However, I think we're going to be open to impeachment of the witness if there is other reason to do so.

MS. TUCKER: And if that's the case, I have previously discussed with counsel about the possible
impeachment of Mr . Perkins because when he was asked the question by Mr. Sanford --

MS. TOURANGEAU: Objection.
MS. TUCKER: -- about the finances he didn't reveal that Cianbro was a major donor to TRI.

MR. DUCHESNE: Okay. Different topic.
Sorry. Different topic.
MS. TUCKER: I was told I couldn't respond and I abided by that, but if this -- if this stunt is going to be pulled here then I want to talk about Mr. Perkins' veracity for failing to identify to Mr. Sanford that Cianbro who is putting this pipeline in is a major contributor to them.

MR. DUCHESNE: Okay. We got that part. Thank you very much.

MS. TUCKER: Thank you.
MR. DUCHESNE: You may proceed. Yeah, okay, these aren't in at the moment. Well, they're not in. However, it's duly noted.

MS. TOURANGEAU: I would move that those comments that are addressed in that statement be stricken from the administrative record entirely and not left in for other purposes.

MS. DUCHESNE: Thank you. We'll take that under advisement.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MS. TOURANGEAU: Thank you. Mr. Bernacki, are you aware that the PRMS are not legal methods for characterizing mercury?

PAUL BERNACKI: I don't know -- I think a federal court and Mr. Yeager in relationship to the federal court in being a special master that was assigned by the federal court to study the mercury in Penobscot Bay. I don't know what kind of qualifications of legal or unlegal you're talking, Joanna. Please be more specific.

MS. TUCKER: And I'd object that characterization. Mr. Bernacki --

MR. DUCHESNE: Once again, you would need to be on mic.

MS. TUCKER: I'm sorry.
MR. DUCHESNE: If we can borrow another microphone.

MS. BENSINGER: And --
MR. DUCHESNE: And you may do it from your seat too.

MS. TUCKER: I don't have a mic at my seat.
MR. DUCHESNE: But that's wireless.
MS. TUCKER: Oh, okay.
MR. DUCHESNE: So can you go to your seat and -- if you would or any seat. I think probably it
would be better not to sit behind the person at the podium. If you would be so kind as to -- that looks like a perfect place. Thank you.

MS. TUCKER: I'd object to any questions being asked of Mr. Bernacki, who is not holding himself as an expert in the law and I'd also object to the characterization of the law. Clearly, Judge Woodcock is the law and I'd defy anyone in this room to tell him otherwise if you're in his courtroom. He's -- that was in an established by court order that was affirmed by the First Circuit Court of Appeals and I call that the law.

MS. BENSINGER: What was the question again, please?

MR. DUCHESNE: We're not clear what the objection is about, so if you could repeat the question.

MS. TOURANGEAU: Are you aware that the PRMS testing standards are not a legal method for characterizing mercury?

MR. DUCHESNE: It's a legitimate question, are you aware? You may proceed.

PAUL BERNACKI: I am not aware.
MR. DUCHESNE: Okay. Thank you.
MS. TOURANGEAU: Are you aware that the
levels of mercury in the project area are similar to those identified in the PRMS?

PAUL BERNACKI: I have carefully reviewed all of the applicant's materials for months and months and months and compared them to the Penobscot River Mercury Study results and I have had discussions with numerous geologists. I've been sailing with a chart and a GPS these waters. I actually am very familiar with all of these places and points, the sediments because I anchor and I pull the sediments up. There is good holding bottom and there is not so good holding bottom. I have, like most people in this room except for the lobstermen sitting next to me, a personal long-term knowledge of this bay and I have as a consultant -- my job as a consultant is to consult and it comes -- I tell people what I think and I talk to people who know a whole lot more about all of this that are all accessible the Board and the DEP staff through my proffering of professional documents, my conversations that I have forwarded to Mr. Nick Livesay, with the state geologist and his assistant Steve Dixon, who has forwarded to the DEP through Mr. Livesay. I think you're barking down the wrong road, Joanna. I'm just a consultant.

MR. DUCHESNE: Okay. Yes, we will reply to each other with last names and title.

PAUL BERNACKI: Ms. Tourangeau.
MR. DUCHESNE: All right. You may proceed.
MS. TOURANGEAU: So you're aware that the levels identified in the PRMS in this area are . 2 to . 3 milligrams per kilogram?

PAUL BERNACKI: No. Actually, I'm not aware of that because the applicant hasn't done specific site -- specific testing of this area.

MS. TOURANGEAU: I asked because that's what's identified in the PRMS study, Chapter 5, but it --

MS. TUCKER: I would object to that because you are not being specific. Are you talking about the --

MR. DUCHESNE: You can raise your objection to me and tell me what it is.

MS. TUCKER: Oh, sorry. Ms. Tourangeau -sorry, Tourangeau --

MS. TOURANGEAU: It's like Toronto with a J in place of the T.

MS. TUCKER: Okay, thank you. Tourangeau is talking about, I think, the chart that has the color chart, but actually in the PRMS study the values for
will A-8, 8-C and 7-A, as she's aware, show that there are much higher levels --

MR. DUCHESNE: Okay. You are now testifying. I need to know what the nature of your objection is.

MS. TUCKER: The characterization of they have found this level of mercury, I believe she means on that color chart not actually what they found because they found quite a larger number than that in the report --

MR. DUCHESNE: So once again, what I'm hearing is testimony --

MS. TOURANGEAU: I'd like to finish my question too.

MR. DUCHESNE: Yes. I'm hearing testimony and not an actual objection to the question, so if you can go ahead with your question.

MS. TOURANGEAU: Yes, thank you.
MR. DUCHESNE: Thank you.
MS. TOURANGEAU: So Mr. Bernacki, are you aware that for the project area the levels of mercury that were identified in the Chapter 5 PRMS study for that project area are . 2 to .3 milligrams per kilogram?

MS. TUCKER: Objection. Again, that is not

7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
an accurate statement about what the chapter says.
MR. DUCHESNE: Whether it's accurate or not that's not the objection. The question is can he answer the question and how would he answer it?

MS. BENSINGER: If Mr. Bernacki wishes to answer the question, A, he's not aware of it or, B, he disagrees with the characterization that's up to Mr. Bernacki to answer not for counsel to answer the question.

MR. DUCHESNE: So you may continue with that question and --

PAUL BERNACKI: I heard the question. Thank you.

MR. DUCHESNE: Okay. And your answer would be?

PAUL BERNACKI: Ms. Bensinger, my answer is I will repeat that I have not seen in the applicant's voluminous representations of the current CS-101 route of mercury testing in the project footprint, which is approximately 100 foot wide and some 6,000 feet long, so I really can't compare your apples and oranges for you today.

MR. DUCHESNE: All right. Thank you. You may proceed.

MS. TOURANGEAU: Are you aware that those
numbers, the .2 to .3 milligrams per kilogram are consistent with the samples that Nordic conducted in the project area for mercury?

PAUL BERNACKI: You know, I've studied the sampling methods and I have a huge stack of documents here and I've also consulted with Mr. Peter Tischbein as recently as today and I believe Mr. Tischbein is leaning towards requiring the Army Corps of Engineer Standards for redeposited dredge spoils to be the consideration of the federal government in regards to this project, so I am going to leave it to Peter Tischbein and Mr. Livesay and the able works of the DEP to continue to process this very, very complex thing. I'm just here to talk about my consultation and my clients' knowledge of and our review of whether or not this meets the NRPA standards for a complete enough documentation for the actual site of the proposed project. That's pretty much it.

MS. TOURANGEAU: And are you aware that when Nordic tested its samples for mercury it used the Army Corps written standard?

PAUL BERNACKI: But they're not on the project site. Let me say that again. The samples that were taken are not on the project site.

MS. TOURANGEAU: Where are they?

PAUL BERNACKI: They are off to the side of this project site not actually --

MS. TOURANGEAU: How far?
PAUL BERNACKI: Well, let me just show you. Mr. Cotter stated it already today and I will ask that that record be reviewed because that's the accurate representation. I have no reason to doubt that. They're not on the top of my head. Thank you.

MS. TOURANGEAU: Was his answer that they were within a few hundred feet of the current pipeline route?

MS. TUCKER: Objection. By the pipeline -I think we already established there are no core samples for most of it --

MS. BENSINGER: Ms. Tucker --
MR. DUCHESNE: Once again, that's testimony.
MS. TUCKER: Sorry. Well, I just --
MS. BENSINGER: If we -- please direct your objection to the Presiding Officer.

MS. TUCKER: Yes. If I may ask for clarification from Ms. Tourangeau about when she says the project area, which is an amorphous topic or the pipeline -- because we're talking about the pipeline route and the distance from the current pipeline route.

MS. TOURANGEAU: Great question. Thank you. So I will define that. The project area that we looked at with regards to the pipelines as Ms. Ransom testified earlier today is the area encompassed by all of the Eckrote alternatives. So samples were taken for mercury, correct, Mr. Bernacki --

PAUL BERNACKI: Mmm Hmm. I'm listening.
MR. TOURANGEAU: -- in the area -- the project area adjacent to the pipeline route alternatives that were reviewed by Nordic, correct?

PAUL BERNACKI: So this -- this is the twisted sister that was presented over a year ago and it was in this time frame that Normandeau conducted those tests and if you look at the test chart you'll see that located along the pipeline route that was abandoned there were a number of tests that were done. And one of those tests was called B3, if my memory serves me, and it was over in this area right here and than the other two were over along the bend over here.

MS. TOURANGEAU: Mmm Hmm.
PAUL BERNACKI: And then coming out here there were three or four other sample sites going out. And what was noticeable to me -- most notable to me was that there were no mercury studies done.

The samples were dried out to find out what their water to solid matter rate was. They were -- the top 6 inches was sifted through a fine screen to see if there were miniature clams, worms, benthic organisms in them.

MS. TOURANGEAU: I'm going to object --
PAUL BERNACKI: That occurred most
notably --
MS. TOURANGEAU: -- this is not --
PAUL BERNACKI: I'm not finished answering.
MS. TOURANGEAU: -- in the record.
MR. DUCHESNE: On behalf of the person who has to transcribe all of this, I'm going ask for one conversation at a time. I think that we have your answer and I think that Ms. Tourangeau can clarify.

MS. TOURANGEAU: Well, this visual aid isn't in the record. It's not an exhibit. I'm not sure where it came from just now. I think it's coming off...

PAUL BERNACKI: This is your exhibit. What do you mean?

MS. TOURANGEAU: I don't -- I'm not sure why it...

PAUL BERNACKI: It's your exhibit. It's your plan. You submitted it.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MR. DUCHESNE: Once again, I'm going to go to one person at a time. I'm going to go to Ms. Tourangeau and let her state her objection to what the slide is.

MS. TOURANGEAU: So I think that the -- what we're looking at right now is something that Mr. Bernacki had in his PowerPoint that is an altered version of something that was submitted that is not a Nordic exhibit that was part of an application, so it's kind of a separate objection from the testimony piece, but setting that aside --

MR. DUCHESNE: You don't have to set it aside. What I would like to do is take the slide down --

MS. TOURANGEAU: Okay.
MR. DUCHESNE: -- because I do agree it appears to be altered and I think we can continue with the conversation without actually having the slide up.

MS. TOURANGEAU: Thank you.
MR. DUCHESNE: So we can go ahead with your question. So you can go ahead and take that down and just close it right out.

PAUL BERNACKI: And I'm going to close it for the interest of...

MR. DUCHESNE: Peace and harmony.
PAUL BERNACKI: Respect for the Chair.
MR. DUCHESNE: I don't get that a lot.
Thanks.
MS. TOURANGEAU: So while --
PAUL BERNACKI: And I'm not sure, am I still answering this question or?

MR. DUCHESNE: We may need to.
MS. TOURANGEAU: I think he answered. I'm ready to move on.

MR. DUCHESNE: Okay. You can go ahead to your next question. I think you've succeeded.

MS. TOURANGEAU: So when you were answering the last question, Mr. Bernacki, you pointed to three different locations along the submerged portion of the pipeline route that -- where mercury samples were taken, correct?

PAUL BERNACKI: I'm sorry, that slide isn't up anymore and that last part of it is absolutely gone. Poof.

MR. DUCHESNE: So what would the answer to your question now be?

PAUL BERNACKI: Okay. I'll start all over again. So I've been studying the applicant's application and under the NRPA application, which is
a one-page application, Tier 27 -- I'm sorry, Block 27, Tier $2-3$, you're required to present a construction and erosion plan. So I have been reviewing the construction and erosion plans as were submitted by the applicant across various agencies consistently and they were submitted in digital form. So in other words, it was a full-size engineering PDF digital form. So the thing that is no longer on the screen, I -- I don't run a GIS program. I didn't alter it in any way, sir.

MR. DUCHESNE: Mmm Hmm. Yes, I'm not sure you're getting at the question.

PAUL BERNACKI: Well, I -- I am, but this is a big serious business.

MR. DUCHESNE: Which is fine. For my benefit, I'd like to hear what the question repeated because I forget what you're answering. So, please, Ms. Tourangeau.

PAUL BERNACKI: I'd be happy to hear it again.

MS. TOURANGEAU: So when we are looking at the pipeline, the project area, and the current pipeline route that's in the preferred alternative there were two mercury samples that were taken along the -- a prior alternative but still within the

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
project area about 700 feet off and there was one mercury sample that was taken directly along the submerged portion of the current preferred alternative route; is that correct?

MS. TUCKER: If I may. Again, I'm --
MR. DUCHESNE: It depends. Is there an objection because --

MS. TUCKER: I do have an objection --
MR. DUCHESNE: Your objection would be what?
MS. TUCKER: -- to the usage of the
amorphous phrase project area because, again, these terms are being used interchangeably and project area I would prefer it be defined as to what we're talking about.

MR. DUCHESNE: Okay. Yes, I think I will --
MS. TOURANGEAU: Okay. I will define.
MR. DUCHESNE: Yes, I will overrule. I think project area is loosely understood by the Board and we can go ahead with that term even though it may not be precise at least for this line of questioning and it will suffice. You may proceed, Ms. Tourangeau, or are we still waiting on the answer to the question?

MS. TOURANGEAU: Yes, we're still waiting for an answer.

PAUL BERNACKI: So mind you that I fill out these applications truthfully and the project area is a very specific thing that's shown on an overhead plan, an engineering plan, and a document you submit to the DEP, to the state government under oath has a dimension on it, has to be to scale, the lines on it have to be to scale, it's a very specific place. CS-101 is a very specific place. It was -- it was -I forget all of the numbers. There has been so many alterations to this plan over the last year-and-a-half that I can't keep them straight in my head even though I studied them.

MR. DUCHESNE: Can you give me an estimate on when the answer to the question will begin?

PAUL BERNACKI: The former plans are not the plans. The former plans and the lines and the location on the face of the earth located by GIS, located by graphics, cartography, the samples that were taken are on an abandoned pipe route. There are no samples of mercury on the current CS-101 pipe route. There are no samples for this project testing for mercury on the actual project. I've answered the question again.

MR. DUCHESNE: Okay. You may go ahead with your next question.

MS. TOURANGEAU: Are you aware that metal testing including for mercury will be required to characterize advance of disposal of any waste sediment?

PAUL BERNACKI: That doesn't really suit the needs of a -- depending upon how you figure a 40 to 80,000 cubic yard dredge operation under DEP standards, but I'll leave that to the DEP to actually come to that conclusion themselves. As I have said previously, the Army Corps of Engineers has already made preliminary statements and asked for comments for a dredge operation and a side-casting of dredge materials for 40,000 to 80,000 cubic yards. So the fact that you're going to grab 6,000 yards left over on an area a mile 3,000 feet long or 5,000 feet long and you're going to identify it and you're going to somehow say that's what's going to go to the landfill? It all sounds a little...

MR. DUCHESNE: The opinion of how it sounds is not relevant to answering the question, so if we can focus on that this will be helpful. Thank you. You may proceed.

PAUL BERNACKI: We haven't done any testing of that potential 6,000 cubic yards.

MR. DUCHESNE: Well, let me ask then, Ms.

Tourangeau, if you're satisfied that the question was answered.

MS. TOURANGEAU: I'm ready to move on.
MR. DUCHESNE: Very good. I think the Board is ready to move on. Your next question.

MS. TOURANGEAU: Are you aware that additional sampling for mercury will be done as part of the additional geotechnical work to -- prior to replacement of the anchors?

PAUL BERNACKI: I am aware that this is it right now and that this Board has to decide whether or not the information is sufficient to grant you an application, Ms. Tourangeau.

MS. TOURANGEAU: Are you aware that a wind anchor is 100 times bigger than Nordic's pipeline anchors?

PAUL BERNACKI: No, actually I not aware of that because there was a wind anchor over in Castine for at last two or three years, an experiment by the University of Maine and it was moored and anchored right on my path between Belfast and Castine Harbor and it was just a little guy, so I guess they come in different sizes perhaps.

MS. TOURANGEAU: Are you aware that the trenching will use trench boxes to prevent water flow
into the excavated area during construction?
PAUL BERNACKI: That's on the above the hat line portion of this and I am aware that Cianbro is planning trench boxes. It's very difficult to seal trench boxes for especially large flows from 2 to 3 inch rain events coming down those gullies.

MS. TOURANGEAU: Are you aware that sediment will be placed on contained barges prior to being replaced into the excavated area?

PAUL BERNACKI: That's only for a section of the intertidal and it's really not -- not clear how those barges are going to be affecting the overall sedimentation process especially the open ditch when the tide is running in and out and there is 6 foot waves crashing on that beach, so I think the sedimentation issues as much as we've had reassurances from various individuals with or without any actual construction expertise in this room, I've been working on these mudflats with backhoes and crews up and down the coast of Maine since 1987 and it doesn't sound like a very sound, reliable process to me.

MS. TOURANGEAU: When you use backhoes on the mudflats, do you use timber mats?

PAUL BERNACKI: Yes, we do. Hemlock.

MS. TOURANGEAU: Are you aware that the sedimentation -- when the trench boxes and the sediment is being excavated and the pipeline construction is being done that there will be turbidity curtains that are used?

PAUL BERNACKI: Yeah, I'm glad you brought that subject up because the turbidity curtains will be in place and I've seen them. I've never had to use them because I've never made a big mucky mess, but the turbidity curtains will be in place in the intertidal area and stretched 850 feet out away from shore in an area that's got an exposure of some 6 to 8 miles and the gentleman on the -- at the table with me here and I have seen crashing 8 to 10 foot waves. Now, these things are anchored down with chains down on the bottom, they've got little floats up at the top. I am not at all convinced in this exposed site starting in November that you're actually going to, as much as Miss Fiorillo, who we didn't real get a chance to question very thoroughly this afternoon, I am not convinced that her erosion control plan is going to be effective for the intertidal area during that construction process. But what's really, really clear is that Cianbro has suggested, this anonymous Cianbro presence in our room here which doesn't
actually have an engineer or a representative of actually construction process.

MR. DUCHESNE: We can narrow the
conversation down to the actual question if anyone remembers it.

PAUL BERNACKI: Is that the turbidity curtains will not be used and will not be affected in of dredge area in the subtidal and transition zones in this project.

MR. DUCHESNE: Great.
PAUL BERNACKI: This is open water side-casting.

MR. DUCHESNE: Ms. Tourangeau, you may continue.

MS. TOURANGEAU: Are you aware that the trench boxes extend above to height of the water to avoid wave action?

PAUL BERNACKI: The trench boxes are only going to be used in the upland area into the immediate hat line area in the tidal marsh. They are not proposed according to the latest construction plans I've seen for the intertidal zone at all.

MS. TOURANGEAU: Are you aware that that's inaccurate?

PAUL BERNACKI: I -- I -- I am speechless.

MR. DUCHESNE: I didn't think that was possible.

MS. TOURANGEAU: I'm done then.
(Laughter.)
PAUL BERNACKI: That was for sake the of brevity, sir.

MR. DUCHESNE: Just give me 30 seconds here, if you would. We are going over the original motion about the impeachment of the witness --

MS. TOURANGEAU: Okay.
MR. DUCHESNE: -- and making sure that we are consistent with our understanding of why we arrived at the decision we did, so I'm going to ask Ms. Bensinger to explain it better than I can.

MS. BENSINGER: The Presiding Officer is going to stick with his ruling on not allowing Ms. Tourangeau not to submit Nordic Exhibit 41 -it's just all one exhibit, right?

MS. TOURANGEAU: Yes.
MS. BENSINGER: -- Nordic Exhibit 41 and use it for impeachment purposes. In response to that ruling not allowing that exhibit in and not allowing her to cross on that, Ms. Tourangeau made a motion requesting that Mr. Bernacki's testimony regarding Mr. Dorsky's statements be not even allowed in the
record as comments. We had said that they would be taken into the record as comments on the TRI issue and what the Presiding Officer has decided is that he is not going to remove Mr. Bernacki's stricken testimony from the record as comments, but he will allow this, excuse me, this in as comment. So that's where we stand on that.

MR. DUCHESNE: Great.
MS. RACINE: Presiding Officer Duchesne, may I follow-up on that point on impeachment while we're on the topic very briefly? I understand it's very late.

MR. DUCHESNE: Yes.
MS. RACINE: I just want to put on the record a concern that I had raised but not on the record about questions being asked of witnesses by staff, DEP, the Assistant Attorney General and BEP members, it's come to my attention that this afternoon that some of the responses by the witnesses during that questioning time would be impeachable and there is a reasonable question of veracity. As those answers were given during the question period time and not during direct exam time wouldn't have fallen within the parameters as I understand it of recross and I'm trying to respect those boundaries, but

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
without that I'm now faced with the fact that those responses are in the record as sworn testimony without the opportunity to address the veracity of those statements.

MS. BENSINGER: I think the witness panels that are gone are gone and obviously not all opportunities to impeach can be seized upon and so some opportunities are just lost.

MS. RACINE: So just to confirm, going forward as well for the scope of say recross, with permission is it possible to direct questions to testimony that occurs during that question period because the way we've been operating it seems to be within the parameters of direct.

MS. BENSINGER: You could -- if there is a pressing need you can request it going forward.

MS. RACINE: Thank you.
MR. DUCHESNE: So the ruling on the field stands.

MS. TUCKER: If I may, I think -- I don't know.

MR. DUCHESNE: Yes, Ms. Tucker.
MS. TUCKER: If I may, I have another objection. Since now this is going into the record for a different purpose, I'm afraid I have to request

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
to file Mr. Dorsky's May 16, 2019 statement, which verifies what Mr. Bernacki said. It's from the submerged land lease and I didn't want to do it, but if this is coming in then I need to impeach the impeacher.

MS. BENSINGER: The record on TRI is open for comment and the parties may submit comment into the record on TRI, so it's not part of this hearing. You may submit comment into the record on TRI.

MS. TUCKER: I just want to say you'll regret saying that, but sure.
(Laughter.)
MR. DUCHESNE: Okay. Is everyone with us? We're up to BEP and Board and staff questions.

PAUL BERNACKI: Oh.
MR. DUCHESNE: Oh, yes, you're not off the hook yet. The entire panel isn't. So are there questions? Now you're off the hook. Thank you, there being no questions.

WAYNE CANNING: No questions?
PAUL BERNACKI: No questions.
MR. DUCHESNE: No.
WAYNE CANNING: So can I -- I'm going to
come in tomorrow anyway because I am kind of enjoying this.
(Laughter.)
MR. DUCHESNE: You'll be amazed at how fast that wears off.

WAYNE CANNING: So can I bring this that I didn't get a chance to talk about today? Can I bring it in and --

MS. BENSINGER: No, you're done. I'm sorry, you're finished now.

WAYNE CANNING: So can I submit --
MS. BENSINGER: No.
WAYNE CANNING: -- it to the DEP by the --
MS. BENSINGER: No.
WAYNE CANNING: -- by the 18th?
MS. BENSINGER: Nope. You're done now, sorry.

WAYNE CANNING: Well, what about if -- what about if I have the grandson submit it?
(Laughter.)
MR. DUCHESNE: That's my kind of Mainer, find the rules and work around it.

WAYNE CANNING: But there is a comment period until the 18th though, isn't there?

MR. DUCHESNE: I'm going to Ms. Lessard has a question for Mr. Black.

DAVID BLACK: I thought I was done. You
said you were done.
MS. LESSARD: It's my fault. I -- I apologize. You testified that you were concerned about the presence of the pipeline impacting the lobster fishing. What specific concerns beyond construction does it getting hit by anchors or pulled up with gear or what -- what is the -- what are your other concerns?

DAVID BLACK: My concerns with the pipeline are what comes out the end of the pipe after it is constructed. That would be warm water, low salinity water and the fact that it will be contained in that area for a significant period of time. I think that will impact my ability to catch lobsters in that area.

MS. LESSARD: Thank you.
MR. DUCHESNE: Great. Any other questions? Now, you're off the hook. Thank you. Give us a 30 second pause here for a moment. We're going to check in with Board members and staff just for a second just to see how you're doing and also our reporter. Doing great?

MS. DOSTIE: Awesome.
MR. DUCHESNE: We're trying to decide, first of all, I think people are getting tired. It's been
a long day. We're trying to digest whether there is any more we can do now. We're wondering, for instance, first all if the Board has any commitments or problems staying a little longer. I don't see any major issues there. There -- we're trying to decide what might be the next faster topic to take, wondering if The Fish Are Okay people are willing and able to go now. The answer appears to be yes. That appears to be perhaps another half an hour if -where this will go and then we'll disburse for the night. And we are going to take a five minute break or as long as it takes to get the job done.
(Break.)
MR. DUCHESNE: If we may have everyone's attention for a moment and everybody assembled in their seats. And one clarification on a statement that I made earlier which has been brought to my attention that I misspoke, so if you would clarify.

MS. BENSINGER: The hour is getting late and we're all getting tired and the Presiding Officer just misspoke when he referred to Mr. Bernacki's slide as being potentially altered, that last slide, what he meant to say is it hasn't been submitted as an exhibit, so there wasn't an allegation that that slide was altered. We just wanted to clarify that.

MR. DUCHESNE: Yes. Thank you and I apologize. And at this point, we're ready to go ahead, so you may proceed.

DIANE BRAYBROOK: All right. It's been a long day. We should be quick. And I have to say I have never been through this in my entire life. It's been a real education.

Welcome. And I'm glad to be here. My name is Diane Braybrook. I'm a retired teacher with a Master's degree in Education and I've lived in Belfast for 14 years. Since my retirement, I have been actively involved as a volunteer for the Belfast Chamber of Commerce, the Belfast Farmers' Market and quite a number of other civic organizations including sitting on the Board of Directors for the Maine Celtic Celebration.

I'm here today to speak on the matter of Nordic Aquafarms as President of The Fish Are Okay. This is a citizen-based non-profit organization that has put considerable effort over the past year into keeping concerned citizens in Belfast and surrounding communities up to date on issues and actions related to the Nordic Aquafarms project.

The Fish Are Okay has come to depend upon Belfast resident Gef Flimlin for insight into the

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

Nordic Aquafarms proposal. He has dual insight into the pending applications as both the owner of a property that directly connects with Nordic Aquafarms' project and as a retired professor of aquaculture at Rutger's University with 40 years experience as a leader in the aquaculture industry.

I'd also like to take this opportunity to introduce Dick (sic) Faegre for his willingness to appear as an intervenor on our behalf at this hearing to talk about his personal experience with the water usage issues.

The testimony offered by these two people is representative of many landowners who directly adjoin or who are within the neighborhood of Nordic Aquafarms' project site. In the big picture these landowners share the entire community's desire and demand for environmentally responsible forward thinking design and operations. These property owners have each formed an impression of their trust in Nordic to be confirmed by regulatory fact-finding of this Board and its staff as well as the Belfast Planning Board.

So I'd like to introduce Dick (sic) Faegre who will speak first about the water quality in his well and then Gef Flimlin will be following him.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

Thank you.
DIRK FAEGRE: I might note I have not been sworn.

MR. DUCHESNE: Sworn in, okay. If you may please stand, raise your right hand. Do you affirm the testimony you are about to give is the whole truth and nothing but the truth?

DIRK FAEGRE: I do. I'd say good afternoon, but it's getting on to good evening. Presiding Officer, Board members, staff, Commissioner, my name is Dirk Faegre. I appear today as being part of The Fish Are Okay. My wife and I reside at 46 Herrick Road in Belfast less than a mile from the proposed salmon farm. As one who could be directly affected by Nordic's water withdrawal, I very much appreciate this opportunity to testify for the Board.

Let me make clear from the onset that absent the expertise, regulatory authority, scrutiny and ongoing watchdog responsibilities of the regulatory entities involved, I may well have been opposed to the Nordic project. I can evaluate the project's positive benefits as measured by an increase of the local tax base, educational possibilities and job opportunities. Indeed, I have even quantified the carbon footprint caused by importing the thousands of
pounds of salmon by air -- airfreight from Scotland, Norway and Chile that will be offset by raising salmon on this side of the Atlantic. However, I am far from qualified to evaluate the technical details of the many environmental impacts that could result. Therefore, I'm deeply grateful for the work of this Board and other governmental bodies to be sure.

My concern with the project has primarily been with the groundwater withdrawal wondering how it could affect the water supply for my family. A continuing safely available supply of fresh water is paramount that to include both quantity and quality. However, Nordic without my intervention called and asked if they might install electronic monitoring equipment in my deep drilled well. They were anxious to see what effect from their on-site well would have on my water supply. I was delighted and quickly agreed. Once the monitoring equipment was installed, Nordic tested local wells over an extended period with technicians appearing regularly to download the captured data. Subsequently Nordic's professional hydrologist met with me to explain the results. Throughout this testing period Nordic's staff and outside professionals were polite, intelligent, competent and helpful. I was both surprised and
pleased to have them furnish a signed letter without any prompting from me that assured me they would guarantee the quality and quantity of fresh water or they would make it good up to and including connecting us to Belfast Water District distribution system. What more could one ask than that?

My many interactions with Nordic Aquafarms have reached the impression of a firm that will clearly make a good neighbor and effective part of the Belfast scene. The owners and staff of Nordic have been proactive, sharp, thorough, transparent, trustworthy in dealing with me and other property owners in the neighborhood. Their entire interactions with us were impressive and professional.

Thank you for the opportunity to testify. It's appreciated.

MR. DUCHESNE: And we'll need to move the microphone.

GEF FLIMLIN: Mr. Duchesne, Ms. Bensinger -are we close enough?

MR. DUCHESNE: A little bit closer or higher. That's better, yes. There you go.

GEF FLIMLIN: Board, staff, DEP, Ms. Burke and -- so everybody, thank you for letting me

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
participate in this process.
My name is Gef Flimlin. My wife and I recently built a home at 52 Perkins Road in Belfast. The back property line of which adjoins along its full length the proposed Nordic Aquafarms project site. I am testifying on behalf of The Fish Are Okay, a citizen-based non-profit that has put considerable effort over the past year to keep our neighborhood as well as other concerned neighbors in Belfast and surrounding communities up-to-date on issues and actions related to the Nordic project.

I recently retired as Professor Emeritus from Rutgers University State University in New Jersey. I have been involved in commercial fisheries and aquaculture for about 40 years. I served as a Marine Extension Agent for the Rutgers Cooperative Extension. That's a position that's very much like a County Agricultural Agent who works with farmers, but I have worked with fishermen and a lot of shellfish farmers. I have a degree in biology, a Master's degree in Biology and a Master's degree in Marine and Environmental Science. I did cross my doctor thing out because I do not have a post hole digger as I call a Ph.D.

I have served on the Technical Advisory

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

Committee for the US. Department of Agriculture's Northeast Regional Aquaculture Center on and off for about 18 years --

MS. BENSINGER: A little slower.
MS. DOSTIE: Can you slow down?
GEF FLIMLIN: Oops.
MS. DOSTIE: Thank you.
GEF FLIMLIN: -- ending as the Chair of that committee. I was on the Executive Committee as well as Vice President of the National Shellfisheries Association. I was on the Board and served as the President of the U.S. Aquaculture Society, which is meeting right now in Honolulu and I am here instead of there. That position also put me on the Executive Committee of the World Aquaculture Society. I was on the International Conference for the Exploration of the Seas, Aquaculture Work Group, working with scientists and regulators from Canada and the European Union on aquaculture research priorities. I was the founder of the New Jersey Aquaculture Association and co-founder of the East Coast

Shellfish Growers' Association. I also started the Barnegat Bay Shellfish Restoration Program, which was an environmental stewardship and education program and ran that for 15 years before I retired.

Over the past two years my wife and I have become full-time residents of Belfast. It was during this time that we learned the home we were building on property we purchased many years ago was to have a new neighbor, Nordic's proposed salmon farm, firmly abutting the entire length of our new homesite. The irony and humor of this situation was not --

MS. BENSINGER: Excuse me, can you be -slow down. Take your time.

MS. DOSTIE: It's the end of the day, I'm sorry.

MS. BENSINGER: The court reporter is having trouble transcribing you.

GEF FLIMLIN: Your fingers must be tired.
MS. DOSTIE: They are.
GET FLIMLIN: The irony and humor in this situation was not lost upon friends, family and my professional peers from around the world. We've laughed along with them, although to be honest, this wasn't the best news I've had since my retirement from Rutgers.

In the meantime, it became apparent that the political dynamics within our new neighborhood in Belfast were destined to complicate this news even further. We learned that two neighbors are the
founders respectively of Local Citizens for SMART Growth Salmon Farm, a non-profit organization for the purpose of opposing the Nordic project, as well as Upstream Watch, another non-profit that shares this goal. Nonetheless, it is my wife and I who will likely be the most extensively impacted by Nordic's construction and operations. A 40 foot wooden buffer -- wooded buffer strip is all that separates our property from the building that will house Nordic's core production activities, so we are right there. And after 40 years of promoting aquaculture, I can't be the not in my backyard guy.

So with reference to the applications, the NRPA and -- Site and NRPA applications, I contacted Erik at Nordic -- Erik Heim at Nordic about 10 days after the announcement was made about the possibility of the fish farm being built at that site. I told him who I was, what I did, and that if he failed it would not only be bad for his company, but for aquaculture in general, so he'd better get it right. He certainly concurred. Since then, I have met with him and his engineer many times. I've asked questions about the facility and how things would work. They have been straightforward with their answers. Aside from these newly developing

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
relationships with Nordic folks, I count four aquaculture engineers as friends of long-standing. Two literally wrote the book on Recirculating Aquaculture Systems. I have not hesitated over the past two years to contact them and others for insight into Nordic's design plans and criteria.

Professional curiosity alone would have driven me to investigate Nordic's plans for design and operations, but that wasn't all that I had in mind. My wife and I were also in the process of getting to know our new neighbors, some of whom think the facility will be a great asset and others who don't. In my mind, all opinions are fair and fact -until facts and/or actual experiences prove them wrong. I felt I had the training and experience to sort out at least some of these issues in advance of the deadline for making decisions for building. If nothing else, my wife and I needed to be satisfied that we'd examined all the angles.

So what better place to start than asking Nordic about our own property, our needs, our expectations?

So one of the items that we were allowed, The Fish Are Okay, to talk about was odor. A bad odor at an aquaculture facility is a dead give-away
that poor management is resulting in bad husbandry, resulting in compromised equipment, disease, fish mortality and financial ruin. From my perspective this is an instance in which NIMBYism is fully justified. From conversations with Nordic about their practices, I'm satisfied there will be no whiffs of fish or fish waste reaching my backyard. This includes exchanges that Mr. Cotter and I have had about where they're going to put their exhaust fans on the other side of the building that we back up to, so they're really going out of their way.

Noise. It simply goes with the territory that construction-related noise such as blasting will be an annoyance on and off for five years or more. Nor do local ordinances offer much protection given that blasting is permitted seven days a week between the hours of $6 \mathrm{a} . \mathrm{m}$. and $10 \mathrm{p} . \mathrm{m}$. The Flimlin household is prepared and willing to endure this disturbance as a necessary trade-off --

MS. BENSINGER: Slower.
GEF FLIMLIN: I'm from Jersey, I talk fast.
MS. BENSINGER: I know.
(Laughter.)
GEF FLIMLIN: The Flimlin household is prepared and willing to endure this disturbance as a

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
necessary trade-off for achieving a locally produced food source grown in an environmentally sound way. I've talked with Nordic's folks about disturbances from construction. I'd like to add something at this point. I had eight years of jesuitical education, four years of high school, four years of college, and great men who are scientists and taught a myriad of subjects, but one of the things that they'd always talked about was magus and that is something where what you do is not just for yourself, it's for other people too. And so this is part of our
decision-making process that, you know, it's going to be tough for construction, but it's going to have a great product coming out at the end that will be a benefit for this area and so we took that into -into account when we made our decisions to finally build the full-size house and stay here.

So, in fact, both odor and noise were part of my discussion with Erik Heim when we initially met. I told him that I knew the system wasn't going to be loud, that it wasn't going to smell, but that I'd be really ticked off if he ruined my night sky. He responded he was also a star gazer and that lights at night would not be an issue. I also have a . 22 .

Visual Impact. If we were to be granted my

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857
preference in the setback requirements governing required distances between an industrial facility and a residential property, that distance would easily be twice or more of the setback currently required under our municipal code. Unfortunately, I became involved in the regulatory process too late to influence a change in our existing code. In the face of this realty, Nordic has gone out of its way to offer help in buffering my property from their operations. I've been given my choice of native plantings for the buffer strip, and we will take them up on their offer after construction is beginning. All in all, we've had enough on-site, eyes-on discussions about my needs in establishing and managing this buffer strip that I'm more than satisfied with their cooperative attitude. I pass a window factory down the street daily and it simply blends into our neighborhood. I think this will be the case with Nordic and I don't expect that in the long run it will ruin our property value.

A second aside, right now the Planning Board is meeting downtown to discuss a 20 acre solar farm, which is going in the field right across from our house. So I am here and my wife is at the Planning Board meeting talking about the solar field that is
going in across the street. You know what it's like when you want to watch one tv program and there's three on at one time, it's kind of like that here today.
(Laughter.)
GEF FLIMLIN: So I'm satisfied that Nordic intends to be a good neighbor. I'm satisfied overall that Nordic's design concepts and its operational plans are leading toward an environmentally sound operation that achieves sustainability in producing a high quality product. At the core of my satisfaction, however, is the confidence I have in the Maine -- Maine's Board of Environmental Protection and the state staff to thoroughly evaluate Nordic's applications and to monitor ongoing performance towards achieving these goals.

As this process proceeded, I kept thinking about the people who opposed it and I kept finding that I thought that their feelings about -- about the ability for the state and federal agencies to get everything right was kind of naive. I have worked with the county, state and federal agencies for 40 years and there are some things that I have learned. First, these agencies will accept practically zero risk. They never want lawyers beating down their
doors because they've overlooked something. This brings me to a second place, agencies will always fall on the conservative side of any issue rather than on the other especially when setting regulatory constraints. I have worked with applicants over the years who were fuming about all of the information that is required to get a permit to do something, but people who have not gone through these processes have no idea of the intense labor that state agencies must go through to grant a permit. I have constantly heard from those in opposition to this project that Nordic Aquafarms will kill or pollute the bay. What they don't understand is that Nordic cannot get a discharge permit if the effluent exceeds 20 percent of the assimilative capacity of the receiving waters. So this kind of diligence is essential for the maintenance of the bay for decades to come and it will be the state and federal government that will demand Nordic's adherence to these parameters. The bottom line is that I find it disturbing and somewhat demeaning to the agencies that those in opposition to this land-based fish farm have so little trust in the people who are mandated just to keep the bay viable.

Thank you for the opportunity to testify. I affirm my testimony is true to the best of my
knowledge and belief.
MR. DUCHESNE: Great. Thank you. By the way, a . 22 will take out the bulb but a larger caliber will take out the whole thing.

GEF FLIMLIN: I have a side by side.
(Laughter.)
MR. DUCHESNE: We have an opportunity for cross by Nordic.

MS. HOWE: Mr. Faegre, you have a drilled well within one mile of the project?

DIRK FAEGRE: I believe it's within one mile, yes.

MS. HOWE: And did you observe any impacts from the four pump tests that Nordic performed on your well?

DIRK FAEGRE: I did.
MS. HOWE: You observed impacts?
DIRK FAEGRE: I did. And the hydrologist went over and they showed me and they were insubstantial but noticeable.

MS. HOWE: Okay. So based on the testing done on your well, do you believe there will be negative impacts in your water quality or quantity?

DIRK FAEGRE: From the discussions I had with the professional hydrologist I would say
absolutely not.
MS. HOWE: Okay. Thank you.
Ms. Braybrook --
DIANE BRAYBROOK: Yes.
MS. HOWE: -- is it fair to say that the majority of abutters based on the map in the affidavit attached to your testimony do not oppose to the project as so long as it meets the standards of review before the Board of Environmental Protection and the city of Belfast Planning Board?

DIANE BRAYBROOK: Yes.
MS. HOWE: Mr. Flimlin, what is your perspective of this project as a lay person?

GEF FLIMLIN: As a lay person?
MS. HOWE: Yeah.
GEF FLIMLIN: Well, I've been doing this for 40 years.
(Laughter.)
GEF FLIMLIN: I'm not.
MS. HOWE: Sorry. What is your perspective of the project?

GEF FLIMLIN: I think it's a great project. I think that the constraints are there to be put in place. I think it's planned out very well. I think in terms of how its going to affect the area, I think
it's going to be economically very beneficial for Belfast. And I've -- over the past couple of days people are talking about all these truck loads of dirt going in and out, well, yeah, there's a guy driving each one of those trucks and he's going to get paid. All of those people who are going to work for this -- this construction company are going to get paid. There's a lot of money going into it that's going to be spent in the local economy, so I think there is a very positive effect for that.

MS. HOWE: Thank you. That's all of the questions I have.

MR. DUCHESNE: Thank you. I believe we can proceed to Board questions, Board and staff. I'm looking around and Ms. Lessard.

MS. LESSARD: Mr. Faegre -- I'm sorry, it's been a long day, I didn't push the button. You indicated that Nordic said they would take whatever steps were necessary to ensure that you had water and if something happened to your well that they would connect -- pay for connection to the Belfast Water District; is that correct?

DIRK FAEGRE: It's partially correct. What they said was we'll do whatever it takes to make it good. That could mean drilling a new well for me,
could be providing filters, but the bottom line, and it says so right in the signed letter, that they would connect me to the Belfast Water District, the district water distribution system if it came it that.

MS. LESSARD: Okay. And my question was if that was necessary, does it commit to long-term payment of the bills associated with that since that's not something you would have had to pay prior because you had a private well?

DIRK FAEGRE: I'm sorry, I don't quite understand the question.

MS. LESSARD: They would pay for the installation of connection to water, would they continue to pay that -- the cost of water?

DIRK FAEGRE: The water bill?
MS. LESSARD: The water bill.
DIRK FAEGRE: They certainly didn't say so. I'd love to have them do it.
(Laughter.)
DIRK FAEGRE: Of course, I have to pay for the water in the sense that if the pump fails or the well fails or whatever, so one never gets free water even if you have a well.

MS. LESSARD: It was just a question.

DIRK FAEGRE: Sure.
MS. LESSARD: I have seen other instances where that was the case, so I didn't --

DIRK FAEGRE: I will take that under advisement.
(Laughter.)
GEF FLIMLIN: I'm hoping to get free electricity from them.
(Laughter.)
MR. DUCHESNE: Yes, Mr. Pelletier.
MR. PELLETIER: Thanks very much.
Mr. Flimlin, I -- I appreciate all you're saying about this and I'm not sure how long you've been here today or yesterday, but there has been quite a bit of conversations about water issues from the effluent and circulations in the bay. Can you -- from your own perspective, do you have any big concerns with this or in terms of monitoring?

GEF FLIMLIN: Well, first of all, let's talk about supply because the first comments I made about this project were to the city council and I had two concerns. One was that I thought the property should be zoned agriculture and not industrial because that way if -- if the system failed it could not go to be a tire factory. It would have to remain in some kind
of agriculture process. The second was I was concerned if there would be enough water, but two of my neighbors told me about with the way the laws were written in Maine that if you put a well down you can pretty much go where you want and suck it up. So I had a conversation with Keith Pooler, who is the Executive Director of the Belfast Water District. I said, Keith, do you have enough water? He said I've got two wells that are running now and I've got another one I haven't -- I haven't started to use yet. He said, yeah, I have enough water. So that kind of finished that part.

So then you get to the other end. Now, they'll be taking water in from the bay and yesterday I was here and listening again and again about what happens when there is a drought and, you know, salmon -- remember, salmon go from salt water to fresh water so they're adaptable. They're anadromous fish and so if there is a changes in salinity by a couple parts per thousand, which is a tenth of a part percent that's not going to really hurt them. It may throw off -- it may throw off the growth rate a little bit, but I don't think it would be a big deal. Remember, you've got water in the bay that's probably about 28 parts per thousand and if you add fresh
water to it to get it down to where I think they're planning on it's like 25 or 26 parts per thousand it's not a whole lot of fresh water to bring that -that down. And so it's -- but it's easy enough for them to go, well, if there is a drought we can always go back up the other way and we can grow these in a little bit saltier water and that's still okay. So it goes through the whole system and there is a lot of water coming through here and some of it's -fresh water is going into the early stages for eggs and smolt and things like that that has to be fresh water. Remember, anadromous fish are up in the rivers, they're in fresh water, that's where they grow, okay. And so once they move from there they're going to go into the larger tanks where they're going to be the grow-out tanks. And I've heard people go, oh, they're going to be crowded in there, they're going to -- they don't like being crowded. Salmon are schooling fish. They like to be next to each other. They -- that's the way they get around. The water will move through the thanks, it will make the meat quality better and they'll keep going.

Now, part of the water that's coming in there has to be kept for cooling the system because when the water temperatures get too high they don't
like that. They're stressed. Again, animal husbandry. And so the part of the water that's going back out is coming in and going back out as a cooling unit and not going through the tanks. So once the filter systems get going and they're removing stuff down to and now Dave Noyes is telling me . 04 microns, that's a polishing. That's a really, really high standard that is much higher than Whole Oceans is going. And in terms of the amount of water that's going out, I think Whole Oceans is at 17 million gallons a day and this is 7.7, so I think it's in the right parameters.

I really enjoyed hearing Mr. Black -Captain Black and Captain Canning today. I mean, those are people that I have worked with for 40 years. You know, they're incredibly good observers because if they weren't they wouldn't set their pots in the right place the next time. And so their concerns about this thing are well-founded in their minds of what has to go on. I don't think it's going to be a problem because the temperature -- because the salinity of the water going back is not going to be much different from what it comes in at and the fresh water part of it may actually go to the surface, which might not even impact the bottom of
the bay. Did I speak too fast for again?
MR. PELLETIER: No, you didn't. I -- my wife is from New Jersey.

GEF FLIMLIN: Okay.
(Laughter.)
MR. PELLETIER: Thank you.
MR. DUCHESNE: Great. I see no further questions. So you have an opportunity to clarify anything you may have said under cross-examination from Ms. Howe earlier. Do you wish to clarify anything?

GEF FLIMLIN: No.
MR. DUCHESNE: Then I believe that concludes this panel. And it concludes the day. We need to talk a little bit about what schedule we're going to follow tomorrow. Snow is coming in.

MS. BENSINGER: So the plan is to start in the morning at 8 with Dr. Podolsky and then go to the stormwater and erosion and sedimentation control panel by Nordic of McGlone and Johnston. If there is any issue with a late start, which we don't anticipate because the snow isn't supposed to start until 7, so it shouldn't have accumulated very much. Please keep an eye on your emails, but we're hoping to go ahead as planned. Thank you.

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

MR. DUCHESNE: Great. Thank you.
(Hearing continued at 6:54 p.m.)

Dostie Reporting
7 Morrissette Lane
Augusta, ME 04330
(207) 621-2857

C ERTIFICATE
I, Robin J. Dostie, a Court Reporter and Notary Public within and for the State of Maine, do hereby certify that the foregoing is a true and accurate transcript of the proceedings as taken by me by means of stenograph,
and I have signed:

Court Reporter/Notary Public

My Commission Expires: February 6, 2026

DATED: March 8, 2020

Dostie Reporting
7 Morrissette Lane Augusta, ME 04330
(207) 621-2857

< Dates >
12/11/19
139:19
26 march 201
December 11
$\begin{aligned} & \text { December 12, } \\ & 2018222: 13 \end{aligned}$
FEBRUARY 12,
2020 1:16
February 12,
2020 1:25
February 2019
$\begin{aligned} & \text { February } 27 \\ & 2019243: 14 \end{aligned}$
January 16,
$\begin{aligned} & 2020 \text { 373:25, } \\ & 374: 8 \end{aligned}$
266:7
January 6, 2020
341:18
July 24, august
27 207:24
June 2017
201:20
March 8, 2020
433:17
May 1, 3 217:15
May 10 109:
May 16, 2019
378:15, 404:1
May 20, 2019
280:12
$\begin{gathered} \text { May 2018 } 208: 2 \\ 217: 5 \end{gathered}$
May 2019
207:25, 217:8
May 3, 4, 2018
207:23
May 8, 2019
208: 6
November 1$116: 9$

12/11/19. 139:19
26 march 2019 222:13
April 1 116:9
December 11 23: 6
December 12, 2018 222:13
FEBRUARY 12, 2020 1:16
February 12, 2020 1:25
February 2019
208:2
February 27 , 2019 243:14
February 6, 2026 433:15
January 16, 2020 373:25, 374:8
January 20
January 6, 2020
341:18
July 24, august
27 207:24
June 2017 201:20
March 8, 2020 433:17
May 1, 3 217:15
May 10 109:19
May 16, 2019 378:15, 404:1
May 20, 2019 280:12
May 2018 208:2, 217:5
May 2019
207:25, 217:8
May 3, 4, 2018 207:23
May 8, 2019 208: 6
November 1 116:9
November 2018

133:25, 136:14, 137:21
November 29, 2018 100:22
November 4, 2019 109:25
October 2015 215:5
October 2018 201:15
October 2019 109:16
September 20, 2018 180:12
\#1 5:6
\#406 4:34
\$20 14:6
\$613, 466.48. 111:5
(202) 841-5439 4:19
. 02 23:8, 29:13
. 04 23:9, 430:6
. 2 29:13,
101:21,
102:3,
102:10,
103:1,
141:17,
146:5,
146:18,
384:6,
385:23, 387:1
. 22 423:3
.22. 419:24
.267 104:8
.267. 156:21
. 3 101:21,
102:3,
102:10,
103:1, 129:7,
129:9,
129:15,
141:17,
146:5,
146:18,
257:3, 384:7,
385:23, 387:1
. 4 23:12, 23:14
$<0>$
0 200:15,
348:25
$0.04 \quad 360: 1$
0.103 101:5
0.267 101:2
0.3 118:13
0.4 360:1
0.5 116:20
$0.75 \quad 20: 4$
04005 5:25
$041013: 37,4: 8$
04101-2480
$3: 10,3: 18$,
3:26
04849 4:18
04915 3:44,
4:35, 5:7,
5:14
04973 4:26
< 1 >
1 20:4, 98:9, 98:22, 99:3, 99:10,
106:25,
107:1,
112:24,
113:1, 113:7,
114:24,
117:13,
122:1, 134:7,
155:10,
176:5,
191:24,
201:16,
208:19,
210:13,
211: 6,
222:25,
294:24,
296:23,
331:24,
348:21,
348:24
1,096 108:23
1,200 168:9,

368:24,
386:20,
397:15
100. 239:15

1000 3:36
104 7:6
11 5:24,
177:21,
218:22,
219:2, 219:4,
333:20,
362:14, 363:7
11.6 20:2

111 7:7
116 98:22
119 7:8
12 20:9, 27:3,
31:25, 36:13,
258:12,
270:24,
283:3,
331:18,
345:11
12,14 6:5
12. 109:17

120 109:5
127 7:10
12:30 11:7,
189:22
13 109:15,
282:2, 357:10
130 27:11
14 109:25,
203:21,
231:16,
231:18,
408:11
149,000 188:21,
188:23
$1510: 3,45: 14$, 129:4,
129:17,
130:18,
143:6,
145:22,
183:1,
189:23,
198:12,
210:14,
211:4,

266:11, 294:10, 318:12, 350:6, 414:25
15-page $342: 14$
15-years-old
361:12
150 123:1, 124:4
16 143:6, 145:23
165 234:18
1692 190:4
17 326:8, 430:10
17. 326:7
17.7 20:1

18 129:4, 129:18, 139:1, 140:3, 208:19, 239:19, 240:20, 258:12, 414:3
18-1 137:22,
138:2,
138:15,
139:18, 258:11
18-1. 138:7
18. 138:5

180 98:20
1800s 117:16
18th 405:13, 405:22
19 122:14, 210:7, 210:9, 211: 4
192 7:11
1938 261:5
1969. 331:19

1970 327:17
1975 70:6
1978 69:18
1980s 113:3, 306:22
1987 207:12, 398:20
1990s 331:9
1991. 166:17

141:10,	199:17
156:6,	226 7:12
157:16,	228 7:13
158:10,	23 140:14
176:5, 178:1,	237 153:16,
198:21,	153:24, 156:4
257:3, 259:4,	24 280:14
349:13	241 7:14
2000 41:16,	245 7:15
356:23	248 7:16
2003 356:16,	25 6:9, 209:16,
364 : 8	317:17, 429:2
2010 119:25,	250 233:8,
173:14	256:13, 290:9
2010. 13:15	253-0567 3:11,
2011 19:22	3:19, 3:27
2013 101:18,	254 7:17
281:9, 356:19	257,294 7:18
2014 102:15	26 429:2
2014. 102:14	263 7:19
2015 306:15	265 7:20
2015. 120:15	267 156:6,
2016 157:19	157:8, 178:21
2017 93:21,	267. 156:19
192:10,	27 344:5,
195:24	$393: 1,393: 2$
2018 131:19,	270 7:21
132:9, 133:6,	273 7:22
133:19,	276 7:23
133:23,	2767 337:18
153:14,	27th 286:6
201:21,	28 428:25
207:6, 207:24	$2867: 24$
2018. 111:17,	28th 286:7
132:13,	292 157:23
134:15,	$2967: 25$
138:3, 207:7	2D 54:3, 201:15
2019 109:19,	
132:14,	
225:5, 225:6	< 3 >
2019. 272:4	3 98:12, 98:20,
207 3:11, 3:19,	99:11, 110:6,
3:27, 3:45,	134:7, 142:5,
4:9, 4:27,	142:6, 161:5,
4:36, 5:8,	180:21,
5:15, 5:26	211:17,
20th 355:19	211:21,
21 155:11,	234:4,
349:2	235:21,
22 6:8, 50:24,	235:23,

$351: 20,398:$
$, 000351: 21$,

$$
396: 15
$$

$$
3,960 \quad 108: 23
$$

3. 143:11,

$$
143: 12,234: 8
$$

$$
3.3102: 5
$$

$$
3035: 1,91: 14 \text {, }
$$

$$
105: 14
$$

$$
108: 23
$$

$$
128: 20 \text {, }
$$

$$
129: 8
$$

$$
130: 12
$$

$$
144: 7,174: 7
$$

$$
239: 17
$$

$$
258: 3
$$

$$
275: 15
$$

$$
275: 19
$$

$$
275: 20 \text {, }
$$

280:18,

$$
294: 11 \text {, }
$$

$$
297: 12
$$

$$
307: 15 \text {, }
$$

$$
325: 17
$$

$$
348: 5,350: 7
$$

$$
351: 1, \quad 351: 5
$$

210.1

$$
406: 18
$$

$$
30,336: 11
$$

$$
30.239: 18
$$

$$
300125: 3
$$

$$
157: 16
$$

$$
227: 12,
$$

$$
371: 21
$$

$$
3048: 5
$$

$$
316: 12
$$

$$
310 \quad 209: 11
$$

$$
310 \cdot 215: 16
$$

$$
3148: 7
$$

$$
3178: 8
$$

$$
3198: 9
$$

$$
32 \quad 144: 7
$$

$$
3208: 10,8: 11
$$

$$
3200297: 19
$$

297:24,
298:2, 298:11

$$
3218: 12
$$

$$
322-06515: 15
$$

165:20,
00th 280:2
406 8:21
408 8:23
41 349:3,
378:15,
401:17,
401:20
410 8:24
413 8:25
418 347:25
42 240:21
423 9:4
425 9:5
427 9:6
45 281:25,
349:13
45. 97:23

455 200:24,
201:5, 201:10
46 410:12
48 4:17
480D 333:16
49 98:10
495 143:7,
145:24, 146:2
4A 215:22
4D 214:4
$<5>$
5,000 396:15
-8 142:8
14.21

200:19,
203:5,
203:11,
235:16,
235:19
50 6:16, 16:4,
97:23, 172:1,
178:7,
242:16,
258:3
284:14,
358:23, 369:3
500 104:16,

146:25
51 6:17
52 413:3
53 6:18
534 96:22,
96:24,
192:14,
192:17, 193:2
54 98:12,
98:14, 98:21,
99:22, 106:3,
197:17,
197:18
55 129:5,
129:18
56 353:15, 361: 6
5D (2) A 216:1
< 6 >
6 4:34, 98:12,
110:20,
155:22,
156:5, 157:7,
159:6,
178:20,
234:22,
235:23,
272:17,
357:14,
358:10,
390:3,
398:14,
399:12,
418:17
6,000 386:20,
396:14,
396:24
6,425 170:12
6. 93:5, 235:21
6.5 349:13,

349:16
$60369: 3,369: 4$
600 3:9, 3:17,
3:25, 297:21
602-2422 5:26
631,000 170:5
631,877 109:11
638,580 109:10

64 129:5
67 98:25
680 111:3
69 129:18
6:54 432:3
<7 >
7 36:14, 45:21, 45:23, 51:6, 140:13, 144:13, 144:16, 144:18, 145:1, 145:6, 145:19, 157:20, 258:12, 330:22,
343:3, 431:23
7-A 142:7,
146:22, 385:1
7. 140:5, 140:7
$7.0343: 3$
7.7 17:10, 18:1, 21:6, 77:23, 115:7, 318:14, 330:15, 358:19, 363:15, 370:25, 430:11
7/100 310:22, 315:18, 316:2
70 239:16, 305:22,
317:19
700 394:1
70s 339:2
72 6:19
721 198:21
75 16:5
750 137:16
77 6:20
772-2321 4:9
79 259:3
$<8>$

8 208:5,	91,000 110:6	227:19,
279:12,	91,065 109:1	228:16,
351:5,	92 111:3	317:15,
399:13,	93 98:25	318:23,
399:14,	930-5979 5:8	336:8,
431:18	95 4:25	351:12,
8-A 142:7,		392:19, 424:1
143:4, 146:22		abundance
8-C 142:7,	< A >	108:19,
146:22, 385:1	A-10 177:20	255:17
8. 237:8,	A-12 178:13	abundant
237:10	A-6 178:12	200:17,
80 1:26, 6:21	A-7 178:12	201:1,
80,000 396:7,	A-8 385:1	201:22,
396:13	A-9 178:9	249:4, 300:1
800 137:16,	a.m. 1:27,	abutters 424:6
141:11	418:17	abutting 415:6
80s 317:25	A6/A7 100:24,	academic 317:16
81 6:22	137:14	accelerated
83,85 6:23	abandoned	15:17
$843: 8,3: 16$,	349:14,	accept 104:16,
3:24, 6:24	389:16,	278:24,
$8519: 19$	395:19	421:24
850 122:5,	abide 372:8	acceptable
122:17,	abided 380:9	73:1, 73:20,
350:5,	ability 96:6,	104:20,
351:15,	150:10,	144:24, 163:3
399:11	232:10,	acceptance
88 6:25	268:24,	104:11
8:00 1:27	271:10,	accepted 92:2,
	288:4,	263:12,
	406:14,	343:12,
$<9>$	421:20	343:15,
9 107:5, 229:5,	abort 118:24	345:10
232:5, 235:1,	above 21:23,	access 110:14,
237:17,	27:16, 51:6,	119:19,
240:6, 251:3,	66:19,	120:24,
254:24,	267:20,	121:5,
278:2, 333:16	311:8,	121:16,
9. 229:23,	345:12,	121:20,
230:24,	346:3, 359:7,	121:22,
239:19,	398:2, 400:16	122:4, 122:7,
240:21	absent 348:6,	122:8,
9/10,000 315:23	360:13,	122:16,
90 198:6,	410:17	122:24,
287:18,	Absolutely	123:3,
348:24, 349:3	24:15, 26:6,	123:20,
90s 307:18,	29:1, 59:15,	123:22,
317:25	150:25,	123:23,
$917: 5$	173:10,	200:11,

200:12,
200:17,
201:1,
201:22,
247:20,
247:21,
249:3,
288:19,
328:8, 341:17
accessible
117:18,
231: 6,
331:25,
383:19
accessing 113:4
accessway
122:17, 123:1 accommodate

11:22, 52:14
accommodated
373:11
accommodation
11:3, 34:10,
34:19
accordance
98:15, 165:19
According
19:22,
142:16,
157:11,
207:12,
274:17,
274:18,
332:5, 333:7,
348:11,
356:17,
360:14,
369:6, 400:21
account 51:8,
80:8, 419:16
accumulate
106:16
accumulated
431:23
accuracy 37:8
accurate 65:2,
207:25,
347:17,
348:17,
379:2, 386:1,

386:2, 388:7, 433:5
accurately 338:18
achieved 349:3
achieves 421:10
achieving
419:1, 421:16
acknowledge
15:14, 222:17
acknowledging
378:18
acre 420:22
acreage 227:6
acres 98:10,
98:11, 98:12,
98:13, 98:14,
98:21, 99:22,
106:3,
197:17,
197:18
across 74:11,
110:17,
181:7,
203:19,
227:7,
356:25,
363:19,
364:15,
366:16,
367:13,
393:5,
420:23, 421:1
Act 10:7, 93:1,
160:12,
211:11,
298:17,
335:11,
338:4, 339:3,
339:11,
340:16,
342:13, 352:3
acting 75:24
Action 50:22,
101:6,
101:11,
111:14,
125:9,
156:23,
220:4,

300:23,
371:1, 400:17
actions 408:22,
413:11
active 120:13,
149:25,
173:18,
174:8,
331:20, 332:16, 345:20
actively 408:12
activities
212:8, 288:21, 305:11, 416:10
activity 84:14, 183:24, 211:12, 344:19
Acts 37:20, 167:1
actual 40:1, 54:15, 59:19, 67:3, 67:23, 73:5, 73:9, 102:18, 106:17, 196:11, 201:9, 229:2, 338:22, 339:16, 341:13, 348:8, 349:11, 385:16, 387:17, 395:22, 398:18, 400:4, 417:14
Adamus 263:5
adaptable 428:18
ADCIRC 54:4,
61:4, 62:23,
64:13, 64:20, 65:16, 73:19, 76:7
Add 20:4, 33:4,
$33: 8,63: 17$,
$186: 18$,
$235: 15$,
$240: 4,275: 3$,
$344: 5,349: 4$,
$355: 3$,
$355: 12$,
$419: 4,428: 25$
added $210: 6$,
$210: 22$,
$210: 23$,
$251: 18$,
$293: 2,346: 4$,
$346: 5$,
$346: 16$,
$346: 21$
adding $61: 24$,
$63: 13,65: 11$
addition $15: 18$,
$46: 18,60: 4$,
$94: 24$,
$123: 16$,
$178: 24$,
$180: 19$,
$219: 20$,
$261: 8$,
$327: 20$,
$333: 14$
Additionally
$356: 15$,
$369: 10$
additive $60: 5$,
$60: 6$
additives $26: 1$
adinner
address 50:6,
50:13, 130:1,
142:20,
281:23,
308:7, 311:8, 348:1, 379:8,
403:3
addressed
50:21, 52:16,
151:3,
295:20,
377:7, 380:21
addresses 151:7 adds 75:12
adequacy 317:13
Adequate 73:15,

176:3, 251:1, 251:4, 348:5,
348:23
adequately
80:7, 250:25
adhere 30:2,
30: 4
adherence
422:19
adhering 116:8
adjacent 50:23,
108:15,
112:24,
221:10,
282:22,
347:7, 354:9,
389:9
adjoin 409:13
adjoins 413:4
adjunct 13:10
adjust 81:8,
84:2
Administrative
2:20, 10:18,
160:12,
166:25,
335:11,
380:22
admissible 335:19
admitting 43:21
adopted 159:22,
164:21
adult 118:17
advance 74:23,
396:3, 417:16
advanced 15:15
advances 18:18,
18:21, 24:7, 26:9
advantage 254:8
advantages 250:8
adverse 102:5,
116:23,
240:12,
289:18,
329:14,
329:23, 340:7
advice 86:14,

223:22
advised 379:16
advisement
380:25, 427:5
advisor 338:6
Advisory 305:2, 413:25
aerates 239:6
affect 213:25, 223:13, 364:23, 411:10, 424:25
affected 31:5, 127:12, 400:7, 410:14 affecting 398:12
affiant 378:15
affidavit 424:7
affirm 12:7, 12:10, 57:16, 90:15, 336:21, 410:5, 422:25 affirm. 90:18 affirmation 374:15, 374:19
affirmed 382:11
afloat 123:11
aforementioned 357:23
afraid 363:13, 364:22, 368:13, 375:4, 403:25
afternoon
192:8, 192:9, 232:1, 302:25, 337:1, 399:20, 402:19, 410:8 afterwards 262:1
age 171:19
agencies
112:13, 114:14,

120:18,
166:11,
53:5,
421:20,
421:22,
421:24,
422:2, 422:9,
422:21
166:14
Agent 340:21, 345:2,
413:16, 413:18
ago 41:14,
54:19, 70:18,
73:24,
117:17,
183:1,
204:22,
283:5,
307:18,
348:20,
351:3,
374:19,
389:12, 415:4
agree 26:25,
29:1, 37:11,
37:17, 42:17,
54:2, 54:17,
50:8, 58:1,
64:21, 65:13,
66:17, 66:22,
72:3, 76:14,
85:7, 132:20,
142:8,
159:18,
167:21,
224:7, 226:4,
391:16
agreed 55:3,
161:14,
214:6,
276:15,
326:8,
326:15,
reement
23:13, 326:5

Agricultural
16:21,
105:24,
259:19,
413:18
Agriculture
20:2, 236:23,
414:1,
427:23, 428:1
Ah 199:5,
236:24,
325:17
ahead 12:18,
50:1, 58:16,
71:21, 100:3,
187:25,
200:4,
273:21,
317:4,
319:16,
326:24,
342:8,
370:17,
374:6,
385:17,
391:21,
391:22,
392:11,
394:19,
395:24,
408:3, 431:25
aid 326:16, 390:16
aimed 118:25
Air 10:7,
92:16, 204:6, 411:1
aires 107:13
airfreight
411:1
akin 305:10
alarmed 27:15
alarms 27:13
alewife 114:8
algae 25:25, 308:22
allegation 378:24, 407:24
alleviate

18:19, 25:22
Alliance 16:23,
331: 8
allow 48:15,
69:24,
116:16,
143:2,
143:25,
150:21,
151:10,
151:23,
151:25,
154:13,
162:23,
163:4,
191:16,
193:13,
261:24,
267:5,
285:22, 402:6
allowable 326:6
allowed 47:5,
71:3, 130:12,
303:14,
324:8, 335:9,
369:9,
401:25,
417:23
allowing 22:17,
34:16, 77:15,
116:1,
126:21,
147:15,
179:17,
373:16,
373:18,
401:16,
401:22
allows 13:8,
42:19,
126:12,
218:16,
268:1, 290:23
allude 252:8
alluded 149:3
almost 32:13,
34:25, 73:24, 106:8,
113:16, 186:1
alone 23:15,

```
    96:15,
    198:22,
    333:10,
    359:21,
    367:24, 417:7
alongside
    123:21
alter 347:1,
    393:10
alterations
    340:12,
    395:10
altered 391:7,
    391:17,
    407:22,
    407:25
alternative
    16:16, 73:12,
    97:21, 98:22,
    99:6, 99:7,
    99:24, 131:7,
    131:13,
    131:15,
    131:19,
    133:15,
    137:13,
    137:17,
    137:18,
    197:25,
    248:4,
    250:19,
    265:5, 265:6,
    287:4, 287:7,
    287:9,
    393:23,
    393:25, 394:4
although 26:18,
    56:24, 74:19,
    78:3, 98:24,
    101:25,
    108:14,
    141:14,
    190:10,
    270:7, 415:19
aluminum
    235:17,
    259:18
amazed 405:2
ambient 128:8,
    129:6,
```

129:15,
330:18, 359:8
Amec 160:25, 161:3
amend 276:19
America 120:14
American 114:7, 114:9, 280:3, 305:9
ammonia 19:11
amorphous
388:22,
394:11
amount 16:9, 17:4, 17:14, 23:25, 27:4,
50:21, 51:7, 51:13, 95:4, 106:1,
149:20,
164:7, 179:6,
193:14,
233:6, 241:7,
264:21,
269:17,
312:16,
312:21,
318:13,
331:1,
333:12,
348:18,
350:19,
366:14,
369:5, 430:9
amounting 348:4
amounts 243:15, 319:25, 367:23
amphibians
278:3, 278:5,
278:11,
278:12,
278:19,
286:5,
286:11, 286:19, 287:1
ample 229:18
amplitude 46:1
anadromous 428:18,

429:12
analogous
158:16
analyses 158:2,
176:3, 259:7, 264:3
Analyst 2:19,
10:17
analyze 86:19,
103:10, 245:7
analyzed 299:3
anchor 243:8,
253:6, 253:7,
267:21,
361:2, 361:3,
383:10,
397:15,
397:18
anchorage
360:25
anchored
122:20,
266:18,
270:17,
271:17,
397:20,
399:15
anchoring
171:1, 179:8,
242:9,
242:18,
253:17,
254:13,
298:9,
298:13, 301:6
anchors 150:2,
242:10,
253:24,
266:17,
267:9, 298:4,
298:13,
343:22,
360:21,
397:9,
397:16, 406:6
and/or 81:9, 298:3, 417:14 Andrews 173:14 anemia 127:23 angles 417:19
animal 214:14,
430:1
animation 64:14
Ann 2:20,
10:17, 11:20
Anne 5:12 announcement

335:5, 416:16
annoyance
418:14
annual 227:10,
354:8, 360:15 anomaly 117:24, 118:2, 118:3, 300:14
anonymous
399:24
answered 81:11,
164:24,
216:9,
230:12,
263:17,
302:20,
392:9,
395:22, 397:2
answering 86:7,
87:21,
143:22,
390:10,
392:7,
392:13,
393:17,
396:20
answers 33:5,
402:22,
416:25
anthropology
314:10,
317:9, 317:16
anticipate
186:15,
189:2,
251:16,
431:22
anticipated
18:5, 80:14, 188:3, 245:8
anticipating
162:7, 243:19
anxious 411:15
anybody 12:16,
77:14,
341:15,
352:15
anyhow 365:15
anyway 32:2,
44:7, 190:18,
256:25,
365:13,
366:12,
404:24
apart 294:7
apologize
177:14,
263:16,
314:9, 406:3,
408:2
apparent 254:4,
415:22
apparently
139:5, 254:23
appealability
288:25
appealing 356:4
Appeals 382:12
appear 142:8, 148:1, 409:9, 410:11
appearing
226:1, 411:20
appears 80:8,
185:25,
391:17,
407:8, 407:9
Appendix
261:13,
279:11,
344:5, 344:6,
345:12,
347:24
apples 386:21
applicable
74:21, 98:23,
101:11,
155:19,
157:1, 165:16
Applicant 3:2,
3:6, 85:17, 85:24, 148:4, 166:10,

333:14,
341:13,
343: 6,
344:20,
345:8,
345:11,
347:5,
347:20,
348:7,
349:10,
359:13,
383:4, 384:9,
386:17,
392:24, 393:5
applicants
166:7, 422:5
APPLICATIONS
$1: 12,10: 6$,
200:22,
318:5,
339:14,
353:24,
395:2, 409:2,
416:13,
416:14,
421:15
Applied 56:4, 66:3, $96: 20$, 170:20, 203:2, 223:18 applies 161:18,

215:11,
230:21
apply 24:24,
59:17,
162:20,
182:22, 212:2
applying 66:18, 104:6, 117:7, 338:7
appointed
148:6, 331:15
appreciate
11:5, 22:19,
22:25, 28:1,
51:22, 71:6,
91:7, 191:15, 240:24, 241:7, 302:15,

321:1,
353:22,
410:15,
427:12
appreciated
34:15, 412:17
approach 42:5,
55:22, 72:22,
307:8, 307:9,
313:22
approaching
335:7
appropriate
48:8, 152:14,
155:2,
224:19,
248:11,
282:14,
292:14,
341:12
appropriately
124:18
appropriateness
241:1
approve 141:7
approximately
11:7, 122:5,
266:11,
330:17,
386:20
approximating
54:10
approximation
54:8
April 247:1,
284:5, 309:4
Aquafarm 120:25
aquatic 15:21,
113:17,
115:14,
161:19,
165:10,
181:18,
239:10,
239:25,
240:2,
255:13,
255:16,
267:2,
284:25,

286:17, 331:7 aquifer 33:16, 33:24
archway 230:9
argue 271:19
argument
272:13,
279:1, 379:11
arise 354:15
arising 14:20
armoring 179:8
arms 285:6
Army 100:20,
120:17,
154:24,
163:22,
164:1,
166:14,
207:13,
252:22,
263:2, 263:6,
263:8,
298:24,
344:22,
356:18,
387:8,
387:21,
396:10
arrangement
229:2
array 305:4
arrived 401:13
article 318:13, 340:15
asbestos 249:23
Aside 113:12,
232:24,
379:20,
391:11,
391:13,
416:25,
420:21
asks 162:3
assembled
144:2, 407:15
asserted 332:25
assess 111:13,
219:18,
238:17,
239:9, 278:4,

281:3,
283:16,
307:3,
328:23, 329:2
assessed
186:11,
291:24
assessment
88:3, 96:20,
96:23, 97:25,
111:15,
112: 6,
112:19,
174:15,
196:4,
201:22,
223:7,
225:23,
263:4,
263:12,
276:24,
278:9, 283:1,
283:2,
286:14,
291:20,
347:17, 370:6
assessments
92:21, 196:6,
208:4,
217:20,
260:21,
294:25
asset 417:12
assets 287:6
assigned
208:18, 381:7
assigns 239:7
assimilative
422:15
assist 93:22,
192:10,
260:13, 291:8
assistance
120:5
Assistant 2:20, 10:15, 10:18,
12:25,
383:22,
402:17
assisting

120:1, 123:7	114:16,
Associated	117:15,
108:15,	118:16,
111:14,	191:7,
120:13,	321:21, 411:3
222:5,	ATM 171:17,
233:22,	174:25,
233:23,	175:6,
233:25,	178:11,
264:11,	178:12
288:17,	atmosphere
289:9,	19:18, 74:4
289:11,	attach 139:23
295:25, 426:8	attached
Associates	139:24,
92:19, 105:9,	139:25,
111:9, 111:12	140:1,
Association	173:25,
414:11,	199:18,
414:21,	360:21,
414:22	367:5, 424:7
associations	Attachment
338:11	36:13
assume 39:7,	201:16,
40:20, 86:11,	237:6, 343:2,
277:21,	343:3, 343:11
359:12	attachments
assumed 213:15,	341:3, 341:13
281:19	attempt 278:3,
Assuming 28:12,	278: 6,
29:13, 33:21,	356:20, 358:5
44:1, 72:25,	attempting
78:11, 257:5,	160:7, 173:23
263:25	attendance
assumption	152:25
47:1, 148:12,	attention
201:2,	86:15, 88:17,
201:24, 204:8	89:23,
assumptions	162:25,
36:23, 37:2,	223:23,
201:25	280:12,
assure 126:20	296:11,
assured 412:2	308:6,
asterisk 208:22	313:19,
ASTM 295:3	328:11,
Atlantic 1:12,	367:18,
94:24,	402:18,
114:10,	407:15,
114:12,	407:18
114:14,	attenuation

331:23
attic 276:22
attitude 420:16
Attorney 2:10,
2:11, 3:6, 10:16, 57:24, 57:25, 304:5, 337:2, 374:9, 402:17
attributable 331:18
AUDIENCE 13:3, 13:4, 85:12, 85:14, 294:17, 296:5
audio 12:16, 377:3
auger 263:1
augments 335:16
August 286:7,
286:16,
286:23,
286:24
author 343:16
authority 410:18
availability 96:2, 355:18
available 11:12, 14:19, 18:24, 26:1, 26:10, 26:12, 63:4, 96:1, 101:15, 103:6, 112:2, 112:3, 193:9, 202:17, 260:23, 260:24, 270:6, 285:13, 285:17, 303:5, 319:24, 320:3, 324:13, 325:11, 411:11
Avenue 1:26 average 38:4,

40:11, 41:20, 43:24, 46:13, 65:15, 157:14, 157:23, 257:17, 257:22, 275:21
averaged 60:18
averages 38:2
averaging 46:5
avian 108:7,
219:12,
220:2, 279:2
avoid 107:11,
108:7,
216:10,
277:17,
356:1,
365:22,
400:17
avoiding 121:9
award 13:17, 14:9
awarded 13:16
away 25:20,
118:15,
137:14,
141:10,
141:11,
146:16,
189:23,
205:21,
242:8, 247:9,
247:10,
367:25,
399:11
Awesome 406:23
axes 337:12
$\langle B\rangle$
$B-3176: 22$,
$176: 23$,
$177: 25,178: 4$
B. $3: 6,216: 2$,
$347: 24$,
B3 $100: 24$,
$101: 4$,
$137: 17$,

389:17 Bachelor 91:11, 120:11 back-up 78:3
Backfill
124:21, 273:8 backfilling

124:19, 273:5 background

53:4, 85:15,
85:22,
126:22,
127:11,
147:2, 148:8,
184:22,
294:21,
294:22,
305:7,
314:13,
317:8,
322: 21,
322:23
backhoe 338:15
backhoes
398:19,
398:23
backtrack
233:18
backyard
416:12, 418:7
bacteria 19:8,
23:15, 23:21, 30:4, 32:11, 32:19, 332:8
bacterial
29:22, 29:24, 30:2
bacterial-based 26:5
bad 110:9,
275:23,
275:25,
285:12,
347:10,
416:19,
417:24, 418:1 bag 35:14,

290:20,
291:6, 291:17
bait 95:21,

127:18,
127:24, 128:3
Bangor 331:15
Bank 80:22,
345: 9
banks 110:6,
110:11,
234:24,
234:25,
238:22, 351:4
barely 163:12
barge 123:10,
123:25,
124:8,
124:15,
246:4, 246:5, 247:9,
247:14,
247:17,
268:15,
268:25,
273:22
barges 123:6,
123: 9,
123:17,
123:18,
123:21,
123:25,
124:22,
124:23,
126:3,
126:10,
247:8,
268:20,
345:5, 398:8, 398:12
bark 277:10,
301:22
barking 383:24
Barnegat 414:23
Barnum 276:12, 282:13, 282:17
barrier 190:15, 311: 9
barriers 20:9, 31:22, 31:24, 126:5
base 172:19, 175:23,

182:8,
183:8, 191:2,
269:12,
290:9, 410:23
baseline 42:24,
43:2, 68:17,
68:18, 76:1,
83:16, 85:15,
85:22, 111:23
basic 43:8,
121:7
Basically
35:24, 37:17,
38:11, 39:12,
42:8, 46:22,
68:16, 76:1,
99:1, 105:19,
111:15,
111:18,
112:16,
113:3,
113:21,
115:24,
118:18,
171:18,
270:7, 271:1,
271:22,
276:25,
281:6,
290:20,
342:15,
346:16
basin 51:2,
51:13
basing 167:22
basis 96:14,
134:6, 279:1,
330:11,
330:13
bat 108:8,
212:14,
212:21,
213:7,
213:18,
215:7,
216:16,

276:21,
277:8,
277:15,
301:16,
301:18,
301:22
bathymetric
149:13
bathymetry
171: 6
bathymmetry
243:2
baton 192:6
bats 213:8,
213:14,
213:16,
214:12,
214:16,
214:23,
216:13,
276:14,
276:16,
276:20,
276:21,
277:18
bay-wide 18:6, 28:6, 66:18
bays 312:1,
323:1
Bayside 330:22, 366:2
Beach 5:24, 82:22,
107:17,
107:20,
344:9, 398:15
bearing 112:8, 113: 6
beating 421:25
beautiful
344:10
beauty 340:1
became 264:6, 415:22, 420:5
become 26:19,
44:5, 174:17, 297:14,
309:7, 361:7, 415:2
becomes 106:24,

322: 22
becoming 32:13, 356:5
bed 188:5, 267:19
bedrock 149:18, 202: 4, 204:19, 350:5
beds 222:9,
283:25,
284:13
beg 22:16,
128:17, 319:12
began 112:12
begin 11:1,
12:12, 12:21, 34:19,
122:22,
123: 4,
124:19,
302:12,
336:25,
355:5, 395:14
beginning 228:9, 236:13, 318:20, 331:19, 420:12
begins 106:16
behalf 25:17,
53:2, 53:13,
91:5, 340:20, 390:12, 409:9, 413:6
behave 56:7
behavior 36:23, 58:13
behind 81:20, 111:19, 172:11, 226:15, 227:14, 228:4, 279:1, 295:16, 295:21, 296:8, 296:9, 302:23, 368:19, 382:1
belief 75:1,
88:10, 423:1
Belmont 1:26
Below 101:11, 102: 4,
113:22,
145:19,
242:14,
243:7, 273:3,
273: 6,
273:11,
273:17,
273:24,
350:17
bend 389:19
beneath 39:16, 204:2, 354:9
beneficial 425:1
benefit 57:22, 95:18, 110:10, 222:25, 271:13, 271:17, 272:11, 272:14, 272:18, 361:17, 393:16, 419:15
benefits 198:23, 248:16, 340:3, 410:22
benthic 92:22, 108:16, 108:18, 108:19, 149:8, 260:13, 283:22, 390:4
Benz 280:19, 280:20
BEP 2:19, 2:20, 402:17, 404:14
BERTOCCI 2:19, 6:25, 7:22, 10:17, 87:25,

88:1, 89:13,
262:1,
272:23,
272:24,
273:12,
273:14,
273:21,
274:4,
274:11,
275:9,
275:14,
275:22
besides 217:8
Beth 2:13,
90:1, 250:24,
251:25
beyond 19:15,
21:23, 22:11,
27:16, 28:19,
47:10, 51:6,
52:6, 66:19,
78:8, 80:1,
126:22,
144:20,
154:6,
154:10,
159:16,
201:11,
232:7,
255:14,
329:25,
342:4, 406:5
Biddeford 5:25
bidders 206:24
big 29:4, 39:5, 45:24, 53:10,
70:21, 81:19, 81:22, 81:23, 83:1, 113:20, 205:1,
228:21,
242:7,
256:13,
276:20,
299:10,
305:18,
351:5,
351:22,
372:4, 372:5, 393:14,

399:9,
409:15,
427:17,
428:23
bigger 397:15
Bill 117:2,
117:11,
426:16,
426:17
bills 426:8
bioaccumulating 332:10
bioaccumulation 158:15, 312:23
biological
158:19, 183:24, 238:5
biologically 19:12, 102:8 biologies 185:3 biologist 111:9, 111:11, 158:9, 180:9, 185:10, 280:11
Biology 13:20, 13:24, 105:7, 120:11, 306:3, 413:20, 413:21
biomagnify 182:5, 182:12, 300:22
biomagnifying 332:10
biota 331:4
biotic 176:9, 177:23
bird 108:9, 108:13, 218:16, 218:17, 219:18, 221:15, 222:5, 279:25,

280:3,
280:10,
280:20, 283:4
Birding 221:1,
280:22
birds 218:13,
220:23,
221:5, 221:9,
222:6, 281:5,
281:19,
282:24,
283:13,
283:20,
309:16
bisymmetry 88:9
bits 233:12
Black 4:13,
8:17, 327:13,
333:22,
336:16,
353:7, 353:9,
353:12,
355:11,
405:24,
405:25,
406:9,
430:13,
430:14
blacked 378:21,
379:7, 379:8
blank 344:12
blaring 347:19
blast 333:3,
350: 9
blasting
328:16,
328:19,
330:2, 348:4,
358:7,
365:20,
366:9,
418:13,
418:16
blended 230:16
blends 420:17
Block 12:3,
344:5, 346:1, 393:1
blown 137:5
blue 114:8,

114:10
bluff 345:9,
345:18,
$347: 3,347: 4$
bluffs 329:3
Bmps 126:7
boat 111:19
boating 337:14
boats 20:11, 31:25, 32:4, 74:9
Bobolinks 226:20, 226:23, 227:2, 227:14, 227:21, 282:17, 282:20
bodies 16:20, 103:16, 411:7
body 158:15, 160:10
bogs 278:20
boils 308:1
book 417:3
books 128:1
Boothbay 345:20
border 94:1, 192:15, 192:19, 229:1
borderline 69:23
bore 69:6
boring 176:1, 262:10, 262:13, 262:14
borings 244:4, 275:13
born 304:11
borrow 381:16
Boston 171:21
bothering 82:24
bottomed 123:18
boulder 149:11
boundaries 83:23, 207:11, 210:24,

338:10, 338:19, 402:25
boundary 218:9, 290:10, 338:22
bounded 30:23
bounds 148:17
box 124:9,
125:6, $344: 20$
boxes 124:7,
124:14, 246:8, 397:25, 398:4, 398:5, 399:2,
400:16, 400:18
Boy 370:13
Brabrook 8:23
brackets
168:14, 169:3
brackish 358:19, 359:19, 367:23
brand 332:24
BRAYBROOK 5:5, 408:4, 408:9, 424:3, 424:4, 424:11
break 11:7, 49:5, 89:20, 144:15, 145:2, 152:16, 153:5, 189:22, 191:19, 191:22, 191:23, 302: 8, 323:17, 375:23, 407:11
Break. 49:9, 89:21, 153:3, 302:11, 323:19, 407:13
breaking 145:6, 145:13,
145:16
breaks 145:18
breed 285:11
brevity 22:20, 319:13, 343:7, 401:6
Brewer 268:22, 269:1, 269:2
Bridge 110:8,
110:18,
110:22,
119:22,
119:23,
234:10,
234:20
brief 24:24,
77:11, 77:16, 125:21,
153:5, 320:10
Briefly 57:4,
71:9, 109:23, 308:9, 313:4, 316:12,
339:19, 402:11
briefness 22:23
bring 11:20, 26:20, 47:21, 96:13,
148:10,
167:10,
245:8, 250:7, 256:25, 405:4, 405:5, 429:3
bringing 81:2, 290:8
brings 313:16, 369:13, 422:2
broad 91:15
broader 121:14, 181: 8
broadly 186:16, 202:1, 238:24
Broderick 4:24
broke 163:10
brought 153:1, 208:13,

282:17,
307:12,
312:16,
330:9, 399:6,
407:17
brown 276:20,
277:12
brownfield 198:15,
198:18,
199:3, 248:4,
248:6,
248:10,
248:21,
248:22,
249:3,
249:20,
249:25,
250:6, 250:10
brownfields
198:20,
198:24,
248:8,
248:15,
249:11,
250:11
Browns 309:1
Bryden 117:2, 117:12
bubbles 152:12
bucket 18:4, 21:9, 21:11, 246:3, 273:20, 351:20
Bucksport 362:15
buckthorn 236:19, 237:19, 256:6 buffer 110:5, 230:25, 232:11, 235:2, 416:7, 416:8, 420:11, 420:14
buffering 420:9
build 15:18, 95:15,

271:23, 330:10, 419:17
building 69:3,
112:10,
228:12,
228:19,
229:11,
249:24,
269:25,
295:15,
295:19,
295:22,
415:3, 416:9,
417:17,
418:10
buildings 95:4,
204: 6,
204:10,
228:20,
228:23,
229:3, 240:17
buildup 29:22
built 99:1,
115:17,
203:24,
271:5, 413:3, 416:17
bulb 423:3
bunch 87:9
buntings 282:6
buoy 35:21,
42:19, 45:11,
74:9, 80:19, 80:21, 193:7
buoyancy 56:13
buoyant 242:6
buoys 35:12, 35:19, 55:1, 60:11, 193:8
Bureau 2:13,
2:14, 2:15,
2:16, 2:17,
2:18, 223:17, 224:14
bureaucrat
353:18, 353:19
Buried 158:25, 159:13,

246:11,
273:13,
273:17,
296:20,
296:21,
296:24,
297:24,
311:7, 330:1,
330:6, 331:2,
331:22,
332: 4,
332:14,
333:13,
357:17,
358:12, 366:4
Burke 2:20,
10:18, 412:24
Burnam 276:11 burning 296:1
business
236:23,
305:7, 317:9,
317:17,
362:24,
363:17,
365:13,
368:4, 393:14
businesses
307: 6
butt 179:12
button 425:17
buy 95:10,
169:18
bylaws 92:1
byproduct 95:19
byproducts
95:21, 127:14 Byssal 329:12
$<\mathrm{C}>$
cables 343:22
Calamagrostis
236:21
calculate 106:4
calculated
111:4, 188:23
calculation
29:7, 45:8,
75:11,

159:14,
265:17,
315:6, 315:17
calculations
118:14, 245:5
calculous 31:6
caliber 423:4
calibrate 75:17
calibrated 73:9
California
91:13, 343:17
call 10:4,
12:18, 45:2,
46:10, 48:2,
49:10, 62:3,
72:9, 89:23,
156:11,
244:20,
340:17,
349:6,
382:12,
413:24
CALLAHAN 2:13,
7:13, 90:1,
228:7, 228:8,
230:15,
233:18,
235:12,
235:14,
235:20,
236:3,
236:10,
237:23,
238:2,
239:20,
240:18,
240:22
called 35:5,
43:5, 84:19,
88:22,
103:21,
118:2, 133:9,
198:15,
239:8, 352:3,
353: 2,
389:17,
411:13
calling 353:20
camera 111:18, 111:19,

112:21,
113:10,
149:9,
180:19,
180:21,
180:25,
181:4, 181:16
Canada 24:9,
93:25, 414:18
Canadian
192:15, 192:19
Canal 3:36
canceled 356:21, 368:11
canopy 238:21
capable 83:2,
163:15,
241:14
capacity 14:10,
68:4, 79:23,
422:15
capital 17:6, 18:20
Captain 430:14
capture 32:14,
32:18, 377:3
captured
290:25,
411:21
capturing
32:19, 252:17
carbon 94:23,
410:25
care 60:22, 304:14, 312:6, 337:14
career 91:15, 361:14
carefully
273:18,
349:25, 383:3
Caribbean 35:7
Carleton 91:11
carried 96:24
carrying 14:10
cartography
395:18
carved 99:16

Casco 304:21, 318:1
case 56:14,
77:20, 118:16, 148:1, 159:25, 160:22, 167:23, 176:11, 180:7, 181:24, 204:1, 244:18, 250:2, 250:9, 267:25, 284:24, 324:5, 337:5, 363:16, 379:24, 420:18, 427:3 cases 135:9, 249:22, 340:5
Castine 362:16, 367:14, 368:25, 397:18, 397:21
casting 344:23
catalogue 220:21
catch 32:11, 356:13, 406:14
catching 153:7
categories 293:9
categorize 260:20
category 203:10
caught 140:17, 164:12, 269:23, 371:20
cause 113:22, 174:16, 174:22, 291:1, 359:19, 359:21,

365:21, 367:24
caused 112:4,
174:15,
363:24,
364:2,
368:12,
410:25
causes 174:20
causing 290:22,
332:16, 340:5
cautious 49:16, 147:15, 358:2
cc'd 152:21
CDC 102:15,
157:20, 158:2
ceded 216:10
Celebration 408:16
cell 35:13
Celsius 118:13, 129:4,
129:18,
130:18
Celtic 408:16
Center 1:26,
31:12,
345:13, 414:2
centigrade 257:3
centimeter
155:11, 155:12, 155:13, 348:25
centimeters 45:5, 47:1, 143:6, 145:23, 155:10, 259:4, 348:24, 349:1, $349: 2$, 349:3, $349: 4$, 349:14
central 320:18
centralizing 228:18
cents 357:6
Century 355:19
certain 24:7,
51:13, 51:14, 64:14, 95:4, 104:11, 194:16, 194:20, 200:9, 204:8, 211:12, 220:2, 232:2, 233:6, 243:7, 251:15, 255:7, 264:6, 285:10, 307:11,
335:9, 335:13
Certainly 26:4, 47:20, 65:4, 69:11, 142:1, 196:7, 197:2, 227:3,
244:16, 253:8, 256:19, 282:19, 283:18, 284:2, 300:2, 416:21, 426:18
certification 16:19, 105:3, 334:21
certified
16:18, 333:6, 337:17, 349:24, 350:2, 352:24, 352:25, 353:1, 353:3
certify 433:4
certifying 353:2
cetera 49:23, 67:13, 305:20, 312:3
chain 332:11
chains 360:20, 399:15
Chair 324:6, 392:2, 414:8
chaired 304:21
chairperson
91:25
challenge 54:9,
54:14, 59:1,
59:10, 254:11
challenges
99:19, 172:3, 172:7, 172:8, 198:23, 202:10, 250:8, 250:17, 288:16
challenging 264:13, 289:13
Chamber 408:13
chance 49:19,
69:8, 226:9, 228:5, 293:18, 399:20, 405:5
changed 81:2, 128:1, 133:7, 135:18, 135:24, 167:18, 169:8, 210:3, 210:13, 245:10
changes 43:1, 69:4, 70:21, 70:22, 76:2, 76:3, 80:25, 81:13, 83:1, 84:1, 84:9, 88:19, 115:18, 129:24, 149:10, 149:17, 159:14,
172:15, 183:5, 218:9, 313:20, 313:23, 367:21, 428:19
changing 15:16,

80:10, 83:10, 346:16
channel 74:11, 80:21,
106:18,
110:20,
238:21,
239:1, 239:2, 365:16
channelized
106:24,
107:7,
107:13,
229:22
channels
106:17, 290:3
Chapter 92:4,
141:19,
142:6, 142:9,
143:5,
146:12,
146:21,
155:13,
160:11,
165:17,
165:20,
209:11,
215:16,
253:13,
343:13,
347:25,
348:13,
384:12,
385:22, 386:1
character
103:18, 345:8
characteristic
103:13,
103:23
characteristics 100:25,
112:7,
112:11,
270:8,
292:25, 340:1
characterizatio
n 155:2,
212:3,
347:11,
381:12,

382:7, 385:6, 386:7
characterize
82:7, 111:20, 181:8, 316:12, 322:18, 396:3
characterized
112:22, 313:2
characterizing
105:10, 381:3, 382:20
Charles 5:21
Charlie 280:9
chart 146:12,
146:13,
157:12,
170:11,
176:14,
186:19,
201:17,
383:8,
384:24,
384:25,
385:8, 389:14
charts 186:1
chat 48:9
chatting 47:22
cheaper 73:6,
250:18
check 57:9,
72:9, 90:10, 215:8, 227:25, 344:20, 345:9, 406:19
checked 283:6
checking 370:2
checklist 344:11
checklists 279:15
checks 251:17
chemical
100:25,
259:7, 260:13
Chemistry
120:12,
179:3, 306:3
chew 350:8
chewed 351:6, 351:18
chewing 370:19
chicken 354:24, 355:22
Chief 304:8, 359:23
child 337:14
Chile 411:2
choice 149:14, 191:10, 270:21, 420:10
choose 361:1
chose 42:6, 238:8,
321:15, 321:21, 348:9
chosen 287:11
Cianbro 119:13,
119:15,
119:25,
120:22,
120:25,
121:3,
170:19,
182:22,
268:22,
270:1,
307:13,
307:17,
308:4, 310:3,
311:5, 312:4,
313:2, 345:5,
350:6,
352:19,
352:23,
380:5,
380:12,
398:3,
399:24, 399:25
Cindy 2:19,
10:16
Circuit 382:11
circuitous 133: 8
circular 29:21, 30:5, 113:20
circulate

78:17, 332:2
circulating
51:4, 63:3
circulation
36:5, 37:20,
$38: 3,38: 22$,
39:1, 39:5,
40:1, 61:14,
66:3, 66:4,
75:5, 86:9,
88:11, 88:22, 89:3, 89:8
circulations
427:16
circumstances
191:17,
251:23
citation
215:14, 225:10
cited 330:11, 340:16
cities 94:3
citing 215:11
citizen 280:2,
347:21
citizen-based 408:19, 413:7
Citizens 327:8, 340:4, 340:9, 408:21, 416:1
City 27:10,
99:2, 114:25, 153:20,
206:22,
207:4, 233:6, 256:18, 256:20, 424:10, 427:21
civic 408:14
civil 53:3
claim 16:17
claiming 284:21
clam 114:11
clams 390:4
clamshell
351:19
clarification
171:9,

192:16, 201:5, 388:21, 407:16
clarifies 157:4
clarify 23:9,
33:5, 34:4,
34:8, 117:3,
138:25,
156:18,
168:22,
201:13,
221:25,
236:14,
267:16,
322:2, 323:6,
323:7,
334:17,
390:15,
407:18,
407:25,
431:8, 431:10
clarifying
169:20,
241:24, 336:10
Class 15:5,
17:14, 21:25, 22:11, 24:6, 24:18, 117:4, 117:5, 117:6, 117:8, 117:10
clay 106:22, 269:12
Clean 24:17, 107:1, 158:5, 200:17, 201:1, 201:23, 202:20, 204:4, 206:17, 248:24, 249:4, 295:14, 330:13, 349:19, 352:3, 355:18, 356:10

$\begin{gathered} \text { cleaner } 356: 4, \\ 359: 13 \end{gathered}$
cleaning 249:14
cleanliness
193: 6
clear 15:25,
96:7, 187:8,
188:20,
210:19,
244:7,
244:25,
253:14,
264:6, 273:5,
307:11,
363:11,
382:15,
398:11,
399:24,
410:17
clearance 189:2
cleared 289:21
clearer 67:11
clearing 342:18
Clearly 26:23,
142:17,
183: 4 ,
320:12,
382:7, 412:9
click 325:14
clients 387:15
climactic 80:10
climate 80:17
clockwise 41:17
clog 360:10
clogging 29:15
close 35:7,
88:17, 94:3,
137:12,
154:22,
263:15,
280:15,
351:25,
364:4,
391:23,
391:24,
412:21
closed 24:7,
102:14,
157:20,
166:16,

185:22,
246:3,
273:19,
357:11,
357:15,
358:11,
363:16,
366:13,
367:11,
367:15,
368:24
closely 25:5,
90:5, 176:19, 307:16
Closer 20:23,
47:17, 62:24,
113:13,
118:22,
136:24,
137:15,
143:24,
196:13,
196:14,
291:18,
337:6, 361:2,
412:22
closest 97:24, 136:18, 146:23
closing 159:2
closure 102:19, 102:20, 158:20, 159:6, 159:10, 363:18
closures 334:6, 356:2, 358:16
Club 159:21
co-founder
318:1, 414:21
co-located 259:16
coal 295:23, 296:1
Coast 108:4, 108:10,
171:23,
172:5,
194:18,

285:10,
312:1, 323:1, 355:25, 356:2,
398:20, 414:21
coastline 96:1, 96:17, 193:11, 194:5, 202:2, 204:24, 351:4
cobble 107:17, 107:20, 238:22, 290:4, 308:20, 310:14
cod 320:20
code 99:2,
420:5, 420:7
cohesion 254:10, 254:12
cohesive 254:8
cold 96:6, 200:18, 201:1, 201:23, 202:20, 330:13
colder 56:20, 56:21, 118:6, 190:12
coliform 355:17
collar 270:16, 270:18,
270:20,
270:25, 272:10
collars 266:11, 267:3,
270:15,
270:22,
272:15,
272:16,
298:3, 298:5
collect 54:11,
67:7, 260:12
collected
67:22, 68:7,
$70: 5,80: 12$, 100:19, 100:22, 100:23, 102:3, 104:17, 141:16, 153:16, 154:21, 260:19 collecting 68:9, 252:10 collection 37:6, 83:14, 135:14, 243:2
collective
115:2, 195:13
collects 252:12
College 30:12,
91:12, 120:12, 419:6
colloquially
337:11
colony 239:5
color 366:15,
384:24, 385:8
colored 372:25
colors 372:14
Columbia 280:4
column 41:7,
56:9, 59:9,
200:16,
260:3, 260:5, 266:14,
274:15,
274:23,
312:17,
351:21
combination
73:18, 74:22, 109:21
combine 227:6
combined
173:16, 248:13, 349:16, 349:18, 359:9 comes 39:22, 43:16, 59:13, 64:23, 105:4,

129:11,
130:3,
143:17,
146:3,
146:12,
152:10,
208:3, 230:4,
249:22,
252:13,
281:4, 290:1,
335:16,
342:12,
345:17,
366:15,
366:16,
383:16,
406:10,
430:23
comfortable
172:6, 172:9,
276:6, 276:7,
317:5, 357:21
Comitted 26:9, 26:11
commence 12:20
commencing 1:27
commend 86:1
comment 26:13,
28:14, 28:17,
29:20, 34:1,
36:9, 52:20,
235:15,
256:2,
261:25,
308:9,
321:12,
321:22,
322:15,
322:17,
376:13,
402:6, 404:7,
404:9, 405:21
commentary
268:13
commented 51:10
comments 28:2,
37:22,
209:22,
321:1, 321:4, 321:5,

347:22, 380:21, 396:11,
402:1, 402:2,
402:5, 427:20
Commerce 408:13
Commercial 4:7,
185:6, 186:8,
327:9,
329:24,
333:18,
333:24,
413:14
commercially
94:20
Commission
91:24, 433:15
Commissioner
2:9, 2:12,
10:19,
231:23,
304:5, 337:3, 410:10
commit 426:7
commitments 407:3
Committee 120:15, 153:15, 153:19, 154:16,
414:1, 414:9, 414:15
common 14:22, 115:22,
116:6, 116:8, 171:21, 172:2, 254:6, 284:14, 294:5, 328:2, 355:14
commonly 244:1
COMMUNICATIONS 2:21
communities
92:6, 198:21, 305:5, 408:22, 413:10
community

95:12,
113:17,
233: 10, 260:14, 409:16 companies 306:16, 307:25
company 68:10, 69:1, 69:12, 198:21, 207:9, 248:14, 305:12, 305:14, 305:18, 310:2, 310:6, 313: 9,
416:19, 425:7
386:21
ompared 18:2,
21:7, 61:12,
65:18,
101:15,
103:25,
111:24,
129:11,
190:23,
197:24, 383:5
compares 102:2
comparing 101:6
comparison
17:12, 17:16, 198:3
comparisons 156:25
compelling 173:17
compensate 109:20
ompensation
105:12,
107:13,
108:25,
109:6,
109:19,

109:23,
109:24,
110:1, 111:3,
230:17,
230:20,
231:20,
238:6, 240:5,
240:6, 241:1,
289:22
competent
242:14,
411:25
competitive
95:7
compilation 218:16
complete 75:23, 108:13,
211:19,
237:20,
292:22,
387:17
completed 14:6, 238:6, 263:2, 263:22, 286:15
completely
38:21, 81:2,
284:22, 296:19, 296:20, 356:9
completing 328:14
completion 209:20
complex 39:1, 174:20, 174:21, 387:13
compliance 74:21, 120:5
complicate 415:24
complicated 307:17
complication 113:22
complied 333:15
comply 117:10, 130:11,

165:11, 328:12, 335:20
complying 120:9
component
105:25,
106:20,
108:5, 225:14
components
106:25,
230:22
composite
100:24,
101:5, 156:2,
156:7, 259:24
composited
155:23,
156:5, 178:19
compositing
155:1, 178:22
compounds
259:9, 295:25
comprehensive 244:22
compromised 418:2
computer 219:7
conceivable 222:14, 295:17
conceivably
247:3
concentrated 18:9
concentration 102:10, 190:19, 322:24
concentrations 18:11, 59:19, 101:2, 101:9, 101:13, 101:19, 103:1, 103:23, 146:15 158:21, 182:1, 299:16 concept 78:7 concepts 421:8

$\begin{gathered} \text { conceptual } \\ 343: 20 \end{gathered}$	
$\begin{gathered} \text { concern 20:9, } \\ 67: 5,88: 12, \end{gathered}$	
96:11,	
127:22,	
160:24,	
186:7,	
194:22,	
218:21,	
220:3,	, 242:7,
277:5, 285:8,	
309:10,	
309:24,	
311:14,	
312:2,	
312:14,	
312:18,	
318:2,	
333:2,	
335:19,	
359:21,	
402:15, 411:8	
concerned 38:7,	
78:15, 240:2,	
272:20,	
309:23,	
312:13,	
363:12,	
368:15,	
368:16,	
406:3,	
408:21,	
413:9, 428:2	
concerning	
148: 4 ,	
300:20,	
354:15	
Concerns 18:14,	
81:23, 86:17,	
93:17, 97:6,	
148:10,	
206:18,	
225:12,	
225:17,	
248:3, 311:9,	
354:15,	
355:7,	
356:22,	
358:7,	

concern 20:9
67:5, 88:12,
96:11,
127:22,
160:24,
186:7,
194:22,
218:21,
220:3, 242:7,
277:5, 285:8,
309:10,
309:24,
311:14,
312:2,
312:14,
312:18,
318:2, 319:4,
333:2,
335:19,
359:21,
402:15, 411:8
oncerned 38:7,
78:15, 240:2,
272:20,
309:23,
312:13,
363:12,
368:15,
368:16,
406:3,
408:21,
413:9, 428:2
concerning
148:4,
300:20,
354:15
Concerns 18:14,
81:23, 86:17,
93:17, 97:6,
148:10,
206:18,
225:12,
225:17,
248:3, 311:9,
354:15,
355:7,
358:7,

358:18,
362:18,
406:5, 406:8,
406:9,
427:17,
427:22,
430:19
conclude
205:14,
219:23
concluded
159:12, 221:3
concludes
20:12, 111:6,
126:24,
127:2,
173:15,
175:18,
431:13,
431:14
concluding
186:14
conclusion
159:8,
182:15,
183:8,
183:11,
184:1,
219:25,
281:13,
284:3,
344:24, 396:9
conclusions
278:25
concrete 16:7, 203:24,
235:16, 258:7, 266:11, 272:10, 298:2
concur 175:23
concurred 416:21
condition 234:17, 361:16
conditions 15:16, 36:18, 71:11, 78:2, 78:18, 82:8,

203: 10,
205:5,
244:23,
245:4, 245:7,
257:20,
274:20,
275: 6,
277:22,
278:5, 286:9, 298:4,
359:21, 363:23
conducive 227:4
conduct 211:12, 219:12,
238:4, 295:2, 311:6, 339:5
conducted 14:8, 100:16,
101:17,
102:15,
103:3,
111:17,
137:11,
149:2, 159:5,
170:20,
191:6, 240:9, 279:3, 331:5, 331:7,
333:11,
348:12,
387:2, 389:13
conducting
82:3, 111:22
Conference
414:16
confidence
282:13,
421:12
configuration 133:22
configurations
99:13, 229:8
configured
289:15
confine 143:25, 148:18, 167:25, 168:11
confined 100:10
confirm 213:12, 216:9, 236:6, 282:23,
336:13,
374:9, 403:9
confirmed 409:20
conflicts 15:20
conformed
213:17, 214:6
confused 266:8
confusion
156:14,
210:18,
263:18
congregate 28:11
Congress 4:34
conjunction
126:23, 210:2
connect 247:5, 425:21, 426:3 connected 83:24, 124:17, 210:24, 210:25
Connecticut 119:23, 279:21
connecting 273:24, 412:5
connection 106:18, 369:25, 425:21, 426:14
connects 409:3
consciousness 127:16
consent 327:19
consequence 146:11
consequences 354:16
Conservation 13:20, 64:22, 91:24, 220:4, 327:22, 327:23
conservative 37:2, 316:1, 422:3
conserving 65:1
consider 17:14,
51:9, 102:4,
103:24,
112:17,
114:17,
187:17,
188:9,
188:14,
221:1,
250:10,
271:15,
271:16,
271:25
considerable 106:1, 249:22, 354:11, 408:20, 413:8
considerably 302:23
considerate 373:16
consideration 112:23, 115:20, 193:1, 206:1, 249:25, 256:4, 256:8, 271:14, 271:15, 348:15, 378:1, 387:10
considerations 99:19, 112:5
considered 21:24, 36:22, 99:7, 114:7, 114:9, 114:14, 134:2, 134:25, 162:17, 162:19, 164:3, 164:6, 170:16, 171:16,

172:14, 198:15, 198:18, 228:14, 239:16, 239:17, 243:23, 250:12, 265:5, 266:15, 266:20, 266:21, 267:24
Considering 205:7,
244:10, 250:6, 268:3, 283:12
considers 57:2
consist 114:22, 124:21
consistent 300:6, 300:9, 301:24, 343:1, 387:2, 401:12
consistently 393: 6
consolidation 351:11
constant 45:7, 46:6, 194:3
constantly 59:7, 351:16, 422:10
constraining 229:15
constraint 271: 4
constraints 11:25, 99:4, 422:5, 424:23
constructabilit y 121:5
constructed 357:22, 406:11
constructible 196:8
constructing

120:24,
122:16,
205:11
construction-re
lated 418:13
consult 383:16
consultant
334:23,
338:4,
383:15,
383:16,
383:25
consultation
14:23, 214:6,
337:19,
387:14
consulted
112:13,
185:15, 387:6
Consulting
53:2, 53:12,
91:10, 91:15
consume 94:12
consumer 94:6
consumers
94:10, 94:15
consumption
15: 7
cont. 4:2, 5:2
contact 202:15,
268:5, 332:7,
353:2,
369:22, 417:5
contacted
416:14
contain 123:19,
301:9, 301:11
contained
398:8, 406:12
containing
330.6, 358.12
containment
126:5
contains 198:6,
231:16
contaminant
91:17,
127:11,
contaminate

332: 9
contaminated 158:5,
312:19, 349:19
contamination
96:8, 248:23, 249:1,
299:16,
299:22,
332:17,
334:3, 355:1,
357:5, 357:7,
357:12,
358:11
contemplate 201:17
contemplates 213:22
contemplating 122:23
contend 327:16
contention
313:1, 318:6
contents 71:24
context 299:15, 342:25
Continue 66:25, 81:13, 119:1, 119:8, 140:18, 191:7, 192:2, 284:9, 338:4, 353:6, 372:9, 386:10, 387:13, 391:17, 400:14, 426:15
continued 118:21, 213:25, 432:3
continues
132:19, 373:7
continuing
192:4, 236:7,
251:13,
411:11
continuous
24:11, 68:22,

71:1, 232:6, 236:6, 366:9
continuously
158:14,
358:13
contour 297:13
contract 170:19
contractor
149:15,
337:17,
349:24,
350:2, 352:25
Contractors
120:14,
179:7, 198:20
contribute
36:25
contribution 369:8
contributor 380:13
control 121:8, 232:19, 245:6, 256:12, 273:7,
274:12, 333:7, 334:23, 349:23, 349:24, 399:21, 431:19
controls 339:4
controversial 339:1, 340:18, 358:5
controversy 368:11
conversation 48:7, 48:18, 48:19, 51:18, 51:19, 53:17, 152: 4, 152:13, 207:3, 390:14, 391:18, 400:4, 428:6 conversations

324: 4,
383:21,
418:5, 427:15
converting
19:11, 19:17
conveyed 379:5
convinced
399:17,
399:21
cool 194:3
cooler 129:13
cooling 193:15,
429:24, 430:3
cooperation
302:16
Cooperative
413:16,
420:15
coordinated
92:15, 92:25
cope 154:6
copies 139:15,
139:17,
152:24,
167:8, 325:10
copy 143:13,
343:14,
379:13
cored 192:20
cores 162:9,
163:19,
165:12,
176:18,
312:9,
349:10,
349:15
CORMIX 43:5,
47:4, 53:22,
54:3, 55:24,
56:4, 58:12,
58:19, 59:5,
59:17, 71:17,
73:19, 75:7,
76:6
Corporate
119:14
Corporation
3:32, 119:13
Corps 100:20, 120:17,

154:24,
161:17,
163:8,
163:22,
164:1, 164:6,
164:13,
164:14,
164:21,
164:25,
165:4,
165:12,
166:14,
173:22,
207:13,
252:21,
252:22,
263:2, 263:6,
263:8,
298:24,
344:22,
356:18,
387:8,
387:21,
396:10
corrected 355:16
correction 129:2, 240:19
Correctional 31:12
correctly 30:22, 86:7, 134:10,
187:2, 197:10
correlate 238:11
correlates 239:21
correlation
158:10,
158:22
corridor
116:16,
232:8,
309:22,
315:4, 315:16
cost 95:1,
95:4, 95:6, 95:7, 96:13, 249:20,

426:15
costs 18:20
cottage 345:14, 345:16
cough 371:23
Council 16:22, 207:4,
304:23,
305:3, 362:9, 362:13, 369:25, 427:21
Counsel 10:16, 67:17,
143:24,
379:16,
379:25, 386:8
count 30:14,
326:3, 417:1
counter-sink 272:16
counting 169:3
country 331:7
counts 40:24
County 206:20, 360:16, 368:23, 413:18, 421:22
couple 25:5, 28:2, 28:20, 29:2, 29:3, 40:6, 72:12, 72:19, 113:12, 114:12, 205:25, 210:12, 226:12, 236:11, 249:17, 262:6, 321:6, 335:24, 372:17, 425:2, 428:20
course 10:14, 44:23,
118:15, 119:5, 152:23,
$188: 6$,
$203: 12$,
$204: 6$,
$217: 20$,
$222: 16$,
$284: 2$,
$304: 17$,
$317: 17$,
$319: 23$,
$338: 7$,
$342: 19$,
$353: 21$,
$426: 21$
courtroom 382:9
courts 352:14
Cove 88:20,
89:3, 89:6,
363:19,
367:13
cover 47:14, 181:2,
237:18,
238:20, 276:25, 363:8
coverage 176:3
covered 11:11, 179:24,
197:18,
250:24,
296:6, 352:13
covering 125:19
covers 14:25,
251:9,
327:24,
362:14
cow 237:19
crab 187:6,
328:9,
329:10,
334:1, 334:4,
334:7,
357:11,
358:16,
367:12,
369:17
crabs 102:16, 181:21, 333:23, 367:25, 369:11,

369:13, 369:16
crane 124:8, 179: 6
cranes 123:6, 123: 8
crashing 398:15, 399:14
crawl 271:20
create 67:8, 106:17, 235:8
creating 234:13
creation 105:13
creatures
271:20
credentials 350: 4
credibility 378:2
credit 271:22
crevices
277:10, 301:22
crews 398:20
criteria 96:20, 97:8, 98:16, 99:17, 104:12, 156:24,
157:1,
164:15,
164:17,
198:25,
200:9, 200:17, 417:6
critical 340:6, 348:6
cross 89:18, 127:2,
144:15,
314:6,
314:16, 401:23, 413:22, 423:8
cross-exam 48:15
cross-examinati on 20:15,
47:14, 48:5,

48:23, 57:24, 191:21,
192:3, 192:4, 192:7,
373:23, 431:9
cross-examine
$63: 2,63: 5$
cross-examined 67:13
crossed 110:16
crossing 122:2
crossings 233:14
Crossroads 103:7, 206:5
crowded 429:17, 429:18
cruising 356:1
crushed 350:20
CS-101 348:9,
386:18,
395:8, 395:20
ctilburg@une.ed u 5:27
cubic 104:16, 164:8, 184:3, 348:5, 396:7, 396:13, 396:24
cul 30:25
cultural 340:2
culvert 350:22
culverted 235:4
culverts 230:1, 230:4, 235:6, 235:9
cumulative 239:13, 239:15, 266:22, 340:11
curiosity 417:7
curious 200:6, 335: 9
Curran 120:22, 121:1, 170:19, 307:13, 313:12, 316:19
currently 15:22, 27:5, 47:17, 110:5, 110:7,
110:16,
111:1,
127:25,
131:6,
140:20,
175:25,
178:1,
235:16,
285:3, 420:4
currents 44:23, 45:19, 46:20,
60:1, 63:14,
63:18, 74:3,
85:18, 85:25,
174:12,
174:20, 371:9
curtain 274:15,
274:16,
275:4,
318:10,
318:17,
318:21
curtains 116:5, 126:17, 275:5, 311:6, 312:7, 351:10, 399:5, 399:7, 399:10, 400:7 Curtis 3:35
curved 99:16, 99:23, 137:15
curves 88:20, 135: 21
customary 104:14
customers 339:9
cut 25:9,
106:16,
202: 6,
238:22, 259:25, 336:6
Cutler 327:10 cutting 25:9 cuttings 95:21 cycle 124:3,

124:24,
125:2, 125:9,
126:11,
126:12,
129:25
cycles 27:19,
122:21,
125:16
< D >
da 352:15
daily 18:2,
358:25,
359:4, 420:17
dam 113:2,
117:16,
190:17
damage 110:19,
328: 4,
331:11,
332:21
damaged 249:7
dammed 113:7
danger 334:4
dangers 354:16
dangling 334:13
DANIELS 4:24,
$6: 9,7: 12$,
22:21, 24:23,
25:1, 25:24,
26:11, 27:2,
27:10, 27:18,
27:22,
226:11,
226:17,
226:20,
226:22,
227:11,
227:19,
227:21
database 218:16
databases 295:5
dataset 179:10, 193: 9
date 14:19,
222:11,
261:11,
265:14,
281:9, 348:7,

374:12, 408:22
DATED 109:16, 109:19, 109:25, 201:20, 266:7, 343:4, 433:17
dates 217:22, 222:12
Dave 430:6
DAVID 2:21,
3:14, 4:13,
8:17, 327:12, 333:21, 336:16, 353:7, 353:9, 353:12, 355:11, 364:1, 405:25, 406:9
Dawn 2:14,
10:21, 90:2
days 68:19,
78:1, 78:4,
79:23,
114:17,
217:20,
280:1,
302:18,
304:24,
326:13,
353:21,
416:15,
418:16, 425:2
daytime 303:11
dbraybrook@yaho
o.com 5:9
de 30:25
de-watered 270: 6
dead 282:3, 417:25
deadline 417:17
deadlines 335:13
deal 31:2,
54:12, 96:9, 147:22, 164:18,

291:8, 305:5, 428:23
dealing 96:11, 412:12
deals 90:5
debarment 180:4
debarred 180:1
decade 183:13,
186:1,
331:16,
348:20,
356:16,
360:16
decades 15:16, 327:13,
354:22,
355:14,
357:7, 422:17
December 283:6, 283:8, 287:1
decide 11:22, 342:7, 397:11, 406:24, 407:5
decided 205:24, 324:7,
364:13, 402:3
decimal 156:21
decision 69:8,
265:11,
370:23,
401:13
decision-making 419:12
decisions
417:17,
419:16
declares
339:21,
340:10
decline 183:13,
364:3
decrease
101:20,
146:15
dedicated
313:10, 337:3
deed 327:17
deeds 378:20
deep 44:24,

144:5,
155:23,
178:18,
178:19,
178:20,
194:7,
245:19,
245:24,
246:11,
246:12,
318:2, 411:15
deeper 122:3,
193:22,
194:12,
194:14,
194:22,
259:5,
314:25, 365:6
deepest 275:16
deeply 252:21,
276:4,
304:14,
320:18,
337:15, 411:6
Deere 30:19
deficient 49:22
define 77:3,
$77: 8,389: 2$,
394:16
defined 209:10,
209:13,
284:24,
394:13
defining 315:24
definitely
136:2, 293:24
definition
163:1, 169:2,
209:14, 209:17
defy 382:8
degradation 340:5
degree 13:18,
18:12, 91:11, 91:12, 105:6, 129:8,
130:13,
300:3,
314:10,

355:5,
408:10,
413:20,
413:21
degrees 118:13,
128:20,
129:4, 129:5,
129:7, 129:9,
129:15,
129:18,
129:19,
130:15,
130:18,
317:16, 330:17, 330:18, 359:6, 359:7
Delemos 5:6
delete 325:5, 325:14
deliberate 67:10, 86:16, 113:14
deliberately 113:23, 181:6
deliberative 241: 6
delighted 411:17
delineated 207:12
delineating 105:10, 210:20
Delineation 97:4, 196:5, 196:12, 197:6, 198:2, 207:13, 207:17, 209:21, 237:3
delineations 207:20, 208:3
delved 276:3
delving 153:10
demand 94:13, 409:17, 422:19
demanding 305:15
demeaning 422:21
demographic 149:13
demonstrate 54:9
demonstrating 240:12
Denis 369:22, 369:23, 369:25, 371:19
Denis-marc 186:23, 369:14
Denitrification 19:16, 21:20, 21:22, 27:19
Dennis 369:20
density 43:17, 43:25, 44:4, 44:5
deny 147:19
depend 408:24
dependent 17:6, 124:3,
233:15, 275:6
depending 124:4,
124:18,
124:23,
190:13,
194:4, 247:5, 257:25, 265:4, 291:14, 296:8, 297:20, 298:4, 318:12, 359:9, 360:5, 371:12, 396:6
depends 394:6
depict 199:18
deposit 202:8, 204:25
deposits
172:21,
184:20,
261:6,

348:11,
348:19
depth 39:18,
40:4, 60:14,
71:12, 143:7,
144:7, 144:9,
145:19,
149:18,
155:7,
194:17,
194:24,
195:2, 259:3,
259:9,
259:17,
274:13,
275:15,
330:16,
348:24,
349:3, $349: 13$
depths 74:1,
144:11,
253:6, 309:12
derive 248:25, 354:7
derived 220:6, 220:7
describe 23:7,
23:11, 158:6,
238:7, 248:9,
251:24,
252:2,
263:19,
264:2, 287:8,
316:12,
346:6, 367:6
described
223:16,
233: 8,
251:25,
289:20,
305:1, 359:13
describing 268:13
description
262: 6,
344:19,
346:22
descriptions 338:23
descriptive

228:13
desert 205:12
design-build
120:23
designate 377:2
designated 107:5, 110:4, 377:10
designation
177:16, 211:2
designations
210:3, 210:12
designed 22:10, 24:8, 37:6, 56:4, 190:14, 239:9,
242:12,
271:3, 308:2, 376:25
designing 120:23, 242:16, 338:8, 338:24
designs 99:19
desirable 248:20
desire 232:16, 249:16, 409:16
desktop 112:2
Despite 333:3, 333:5
destination 119:9, 356:5
destined 415:24
destruction 328:4, 340:6, 368:12
detail 130:2, 159:8, 228:13, 230:20, 333:6
detailed 101:24, 149:13, 198:17
details 43:6, 79:18, 83:6, 88:2, 228:11, 233:20,

308:12,
308:14,
313:14,
322:18,
323:10,
339:14,
339:18,
340:24, 411:4
detectable
182: 6,
182:12,
190:10
detected 101:4,
257:2
detection 101:4
determination
11:13, 333:17
determinations
254:1
determine
282:2,
328:18,
331:17,
334:10
determined
113:9,
118:10,
275:12,
347:15,
360:23, 366:3
determining
73:2, 122:8,
281:4, 287:6,
299:7
299:15,
331:20
develop 54:13,
95:19,
106:14,
126:23,
170:25,
202:7, 333:3
developed 61:4,
109:20,
199:1, 256:7,
282:19,
287:14,
developing

26:7, 87:12, 105:11, 198:24, 264:12, 416:25
Development 10:6, 18:16, 92:14, 93:3, 95:20, 98:2, 120:1, 120:4, 202:12, 304:20, 306:23, 343:20
developments 20:2
devices 126:7
diagnostics 305:12
diameter 175:3, 259:23
DIANE 5:5, 8:23, 408:4, 408:9, 424:4, 424:11
Dick 409:8, 409:23
dictate 194:5
differ 128:17
difference
29:12, 38:5,
45:24, 118:9,
118:12,
130:8,
130:13,
130:14,
191:9, 257:3, 266:25, 359:5
differences
56:19,
111:25,
149:14
differential
21:10, 129:6, 129:10, 129:15
differently 79:7
difficult
83:25, 106:8,

197:20, 254:10, 288:22, 398:4
difficulties
56:23
difficulty
288:18,
289:7, 326:22
diffusers
43:12, 43:13
dig 144:4,
350: 6
digest 407:1
digesting 323:10
digger 413:23
digging 26:22,
204:15
digital 393:6, 393:8
diligence 295:4, 352:19, 422:16
dilute 57:1
diluted 59:13, 62:17
diluting 349:18
dilution 36:22, 45:2, 51:9, 59:19, 61:12, 81:21
dimension
75:13, 395:6
dimensional 66:18
diminish 361:22
diminished 354:20
Direct. 140:11
direction 57:3, 59:10, 79:10, 82:24, 241:8, 274:18, 299:12, 331:14
directly 16:8, 94:6, 133:1, 158:18, 158:21,

177:13,
220:17,
220:18,
337:11,
338:2,
355:23,
357:14,
358:11,
360:22,
394:2, 409:3,
409:13,
410:14
Director 2:16,
2:21, 5:23,
428:7
Directors
304:19,
304:25,
408:15
DIRK 8:24,
410:2, 410:8,
410:11,
423:11,
423:16,
423:18,
423:24,
425:23,
426:11,
426:16,
426:18,
426:21,
427:1, 427:4
dirt 425:4
disagrees 386:7
disappear
disappeared
349:21
disaster 332:19
disburse 407:10
discard 31:4
discarded
359:15
discharged
16:8, 59:8
78:17, 82:20,
115:4,
290:19,
291:4, 291:5,
318:14,

177:13, 220:17, 220.18 337:11, 338:2, 355:23, 357:14, 358:11, 360:22, 394:2, 409:3, 409:13, 410:14
Director 2:16, 2:21, 5:23, 428:7
Directors
304:19,
304:25, 408:15
DIRK 8:24,
410:2, 410:8, 410:11, 423:11, 423:16, 423:18, 423:24, 426:11, 426:16,
426:18,
426:21,
427:1, 427:4
dirt 425:4
disagrees 386:7
disappear
325:15
disappeared 349:21
disaster 332:19
disburse 407:10
discard 31:4
discarded 359:15
discharged 16:8, 59:8,
78:17, 82:20, 115:4,
290:19, 318:14,

358:25
discharges
18:7, 20:3,
27:10, 65:24,
66:14, 66:20,
76:8, 126:21,
294:11,
321:9, 356:7
discharging
21:6, 27:12,
46:19, 65:24,
83:6, 358:18
discipline 310:5
disclosed
223:17
disclosure 327:22
discomfort 346:13
discreditizing 55:25
discreet 156:3
discuss 121:13,
121:18,
248:5,
302:14,
333:22,
334:5,
347:19,
355: 6,
363:10,
420:22
discussed
121:11,
126:18,
192:25,
242:19,
270:13,
333:5, 379:25
discussing
50:7, 128:13,
143:2,
176:24,
178:10,
231:2,
314:12,
334:8, 336:8
discussion
47:4, 48:22,

50:9, $50: 17$, 51:11, 57:7, 67:10, 72:4,
77:13, 90:7,
120:16,
128:14,
132:18,
153:21,
164:15,
171:17,
228:10,
264:22,
305:3,
321:18,
336:5,
353:24,
419:19
discussions
68:15, 324:7,
383:7,
420:13,
423:24
disease 418:2
disparity
299:20,
300:7, 300:11
disperse 61:16, 63:15, 63:19, 190:14
dispersing 67:6
displaced
293:14, 368:1
displacement
115:14, 116:7
displayed 231:4
Disposal
100:15,
100:16,
103: 4,
104:10,
104:21,
126:16,
155:4,
161:25,
162:12,
162:21,
163:2, 164:1, 164:4, 164:6, 165:8, 165:10,

165:16,
166:16,
167:20,
179:4,
187:21,
247:16,
253:15,
270:2, 299:3,
354:23,
358:4, 396:3
dispose 103:9,
165:24,
166:7, 166:11
disposed 103:8,
104:4
disrepair
110:13
disrupt 252:9
disruption
232:15
disruptive
113:17
distance 41:9, 94:4, 101:20, 145:7, 194:9, 206:6, 257:7, 289:15,
372:21,
388:24, 420:3
distances 420:2
distinct 93:7,
179:9
distinction
182:1
distribute
152:1,
152:18,
191:17
distributed
127:24,
distribution
412:5, 426:4
distributions
278:17
District 115:1, 202:16,
210:21,
295:15,

333:20,
362:14,
363:7, 412:5,
425:22,
426:3, 426:4,
428:7
disturb 146:24,
168:4,
213:23,
226:25,
272:17, 364:4
disturbance
105:22,
106:2,
144:24,
285:7, 319:2,
364:21,
418:19,
418:25
disturbances
419:3
disturbed
125:12,
145:18,
145:25,
169:1,
169:10,
181:20,
292:20,
295:20, 366:8
disturbing
102:25,
168:12,
253:1, $330: 1$,
422:20
disturbs 332:19
ditch 229:22,
351:23,
398:13
dive 175:9
diver 111:18,
111:19,
112:21,
113:10,
149:9, 180:12
diverge 137:11
divers 180:19,
273:23
diverse 327:7
divide 46:14

Division 214:5
Dixon 383:23
dkallin@dwmlaw. com 3:20
dl_broderick@ho
tmail.com
4:29
DMR 102:15,
114:4, 158:1, 185:10, 189:7,
189:20,
191:4, 266:6,
267:22,
271:14, 271:21, 272:5,
272:19, 333:14, 360:14, 369:24
Dmrs 268:12
doctor 413:22
document 93:9, 93:10, 294:4, 295:13, 342:12, 342:14, 343:14, 343:24, 348:15, 352:21, 378:16, 378:23, 395:4
documentation 293:23, 294:1, 387:17
documents 175:17, 341:11, 344:14, 346:12, 352:17, 383:20, $387: 5$
dominate 56:18
dominated 236:21
Don 304:7
don@gmri.org 4:10

DONALD 4:6,
8:5, 304:3,
314:21,
314:23,
315:6,
315:10,
315:17,
315:21,
316:4,
316:10,
316:14,
317:15,
318:19,
319:20,
320:1, 320:4,
320: 6,
320:17,
321:15,
322: 6,
322:16, 323:8
Donna 4:24
donor 320:1,
380:5
donors 319:25
doors 422:1
doorways 12:3
Dorsky 375:1,
376:25,
378:16,
379:1, 379:2,
401:25, 404:1
Dostie 1:23,
53:5, 53:7,
329:18,
329:20,
406:23,
414:5, 414:7,
415:10,
415:15, 433:2
double 99:16
double-check
76:21
doubled 360:16
doubt 388:7
dovetail 249:15
download 411:20
downsides
248:21
downstream
235:23,

357:14,
358:10
downtown 420:22
draft 244:19,
244:21
dragged 39:17, 111:19
drain 260:12
drainage 110:3, 110:24,
235:3,
235:10,
243:16
drainages
109:8, 210:4
drains 252:10
DRAPER 2:2,
7:19, 8:10,
90:6, 263:14,
263:15,
265:7, 320:9,
320:10,
320:22
draw 317:22
drawing 297:6
drawn 162:24
dredged 166:11,
187:21,
356:15,
364:14
Dredging
159:15,
159:23,
162:16,
162:20,
163:2, 166:3,
328:15,
328:19,
330:3,
332:12,
332:14,
333:17,
334:3,
344:24,
348:3, $349: 6$,
349:7, 349:9,
352:10,
355:3,
356:11,
356:12,

358:7, 358:9, 364:2, 364:8, 365:19,
365:20,
365:23, 366:9
dried 390:1
drifters 60:12, 60:13, 60:14, 74:7
drilled 411:15, 423:9
drilling 425:25
Drive 4:17,
4:25, 63:13, 246:24
driven 38:23, 60:2, 246:22, 417:8
driver 193:4
driveway 241:3, 350:22
driveways
229:16
driving 60:3, 94:4, 94:8, 96:5, 206:6, 425:5
drop 18:3, 21:9, 21:11, 21:12, 371:23
dropped 351:21
drought 428:16, 429:5
droves 60:14
Drummond 3:7,
3:15, 3:23, 20:17, 20:19, 21:1
dry 196:11
dual 409:1
ducks 28:11,
309:17, 309:18
due 11:22,
18:11, 60:23, 179:16,
214:25,
215:2, 295:4, 311:15, 352:19,

354:21,
356:21,
357:12,
358: 6,
358:11,
363:19, 368:2 dug 184:3,

352:2
duly 380:19
dump 173:24,
247:12,
330:15,
330:22,
367:22, 368:9
dumped 161:19,
331:19,
355:22,
367:18
dumping 40:19,
155:8, 331:6,
331:14
dune 339:24
duration 291:24
dwelling 311:10
dye 84:15,
84:16,
371:14,
371:15
dynamic 55:9, 80:8, 84:7,
262:24
dynamics 55:13,
415:23
< E >
E. 5:21

Eagle 280:10
Earlier 52:11,
86:18, 103:2,
129:7, 141:9,
149:4,
154:20,
192:7, 193:8,
225:11,
233:9, 240:5, 253:19,
254:5,
274:25,
276:15,

282:21,
287:13,
297:13,
305:1,
309:16,
310:12,
311:8,
322:12,
355:21,
377:20,
389:4,
407:17,
431:10
early 196:19,
225:4,
304:24,
307:18,
317:25,
429:10
earth 395:17
easement 338:22
easier 229:17,
250:18, 332:3
easiest 73:11, 367:6
Easily 19:13,
147:19,
206:10,
268:24, 420:3
East 24:10,
40:17,
171:23,
172:5
308:25,
356:25,
364:16,
414:21
easterly 107:4
eastern 38:24,
60:2, 229:1,
229:5, 232:5,
234:12, 277:3
easy 231:7,
429:4
eat 158:13,
158:14,
158:17
ebbing 60:17
ebird 218:13,
218:15,

218:20,
219:20,
220:7,
220:25,
279:4,
279:13,
279:17,
281:7,
281:19,
281:25,
282:25
echo-sounding
242:3, 243:6
echoed 67:6
Eckrote 99:10, 99:12, 99:23, 110:24,
122:1, 131:7,
131:11,
131:15,
131:17,
131:18,
131:25,
132:9, 133:9,
133:21,
136:16,
210:23,
230:2, 235:3,
296:25,
345:21, 389:5
Eckrotes 378:18
ecological
14:1, 14:4,
289:8,
289:12,
289:14,
289:18,
315:9, 316:8
ecologist 280:21
ecologists 305:24
Ecology 13:23, 105:7
economic 329:9, 332:18, 340:7, 359:22, 369:7
economically 18:25, 94:20,

425:1
economy $332: 22$,
340:14,
362:25,
369:6, 369:8,
425:9
ecosystem
cosystem-wide
28:18
cosystems
105:14
d 178:9,
188:1,
206:14,
250:4,
296:15,
342:20
edge 25:9
edges 277:13
Education
105:5, 408:7,
408:10,
414:24, 419:5
educational
410:23
eel 114:7,
222:8, 283:24
effect 31:3,
$60: 6,60: 9$,
81:8, 82:17,
83:2, 102:5,
120:20,
165:14,
191:12,
294:23,
321:13,
411:16,
425:10
effective 72:5,
399:22, 412:9
effectively
44:19
effects 56:13,
60:5, 67:7,
82:25,
150:16,
187:23,

340:11
efficacy 225:23
efficiencies
17:16
efficient 15:13
effluence 18:8, 18:10, 18:13, 81:25, 354:4, 355:2
effluent 25:4, 25:14, 31:3, 88:4, 88:13, 319:9,
321:16,
355:24,
422:14,
427:15
effort 205:8,
264:1, 337:8,
408:20, 413:8
efforts 228:18
Eggemoggin
30:18, 194:6
eggs 115:18,
429:10
ehowe@dwmlaw.co
m 3:28
eider 309:17, 309:18
eiders 284:15
eight 195:22,
195:23,
201:20,
212:14,
213:8,
218:21,
220:2,
296:14, 419:5
Either 69:13,
80:6, 97:5,
99:3, 154:17,
165:4, 188:7,
195:10,
216:17,
232:20,
236:25,
242:10,
258:14,
270:12,
274:23,

298:5, 311:7, 324:23,
378:11
ejected 56:8
elaborate 245:15
Eleanor 4:24
electricity 427: 8
electronic 411:14
elevated 360:20
elevation
265:24, 268:4
elicit 77:12
eligible 90:7
eliminate
279:20
eliminated 298:16
elimination 356:3
ELISABETH 138:11
ellie@greenstor e.com 4:28
elongated 29:23
elsewhere 205:4
email 329:19
emailing 185:11
emails 431:24
Emergent 306:18
Emeritus 413:12
Emily 3:22, 20:16, 20:19, 21:1
Emissions 10:7
emitting 113:21
empanelled 148:19
employ 19:6
employed 180:5
employer 191:3
employing 23:7, 95:14
empties 221:4
enable 51:19
encompassed 389:4
encompasses

277:9, 301:9, 301:13
ending 113:23, 311:9, 414:8
endure 418:18, 418:25
Energy 193:15, 293:3,
310:13,
343:19
enforced 27:17
Engineer 53:3, 127:5,
352:20,
358:21,
387:8, 400:1, 416:22
Engineering
13:17, 98:18, 99:19, 112:6, 116:19,
264:14,
339:15,
393:7, 395:4
Engineers
95:14,
100:21,
120:17,
154:24,
161:17,
163:8,
166:14,
173:22,
207:13,
260:19,
261:1,
298:25,
313: 9,
338:12,
344:22,
356:18,
396:10, 417:2
England 5:19,
5:22, 13:1, 14:9, 96:17, 161:19
English 49:25
enhance 229:4,
230:10,
230:14,

232: 10, 240:16
enhancement 105:13, 240:7
enhancements 229:21, 233:13, 250:24, 251:2
enjoyed 361:10,
430:13
enjoying 404:24
enjoys 233:11
enlarge 49:17
enlightening 48:23, 63:9
enormous 367:22
enough 54:10, 69:9, 73:8, 86:10, 94:25, 104:22, 153:1, 159:9, 179:13, 204:17, 227:8, 255:23, 263:15, 280:16, 377:6, 387:17, 412:21, 420:13, 428:2, 428:8, 428:11, 429:4
ensure 94:19, 235:24, 301:4, 425:19
entails 164:7, 230:24
entangled 188:12
entanglement 188:13
enter 80:13
enters 221:10, 290:6
entertain
48:21, 71:19, 77:19
entertaining 72: 9
entire 38:2,
70:5, 116:15,
132:14,
171:14,
181:2, 181:3,
183: 6,
183:21,
258:1,
285:10,
292:10,
321:20,
321:21,
330:21,
332:10,
332:22,
347:9,
404:17,
408:6,
409:16,
412:13, 415:6
entirely 36:17,
236:25, 296:21, 297:24, 380:22
entities 410:20
entitle 166:15
entrained
311:21
entrainment 39:15
entrance
221:13,
284:15
entry 131:10, 131:11, 137:9
Environment 16:3, 20:10, 25:19, 59:5, 59:11, 96:4, 108:1,
120:20,
124:13,
161:19,
165:11,
287:19,
304:23,
305:15,
322:20,
328:8, 331:3,
$331: 7$,
$339: 10$,
$340: 14$,
$356: 14$,
$356: 16$,
$363: 25$,
$367: 22$,
$368: 13$
environmentally
$94: 21$,
$271: 20$,
$296: 2$,
$409: 17$,
$419: 2,421: 9$

EPA 19:24,
120:17,
161:18,
164:6,
164:20,
165:4, 238:14
EPA/U 100:20
equal 78:24
Equally 316:17
equals 358:23
equate 158:12
equating 202:20
equipment
116:1,
122:22,
123:2, 267:4,
411:15,
411:18, 418:2
equivalent
15:19, 21:9
Erik 97:13,
340:20,
416:15,
419:19
erodible 106:23
eroding 345:19,
351:16
erosion 121:8, 232:18,
290:11,
290:22,
291:2, 330:4,
333: 6,
334:23,
337:17,
337:22,

345:21,
349:23,
349:24,
393:3, 393:4,
399:21,
431:19
error 37:4,
319:22
errors 37:3
Ervin 4:16,
8:15, 327:7
escapee 274:25, 275:1
escapees 15:3, 20:6, 31:12, $31: 16,31: 21$, 32:2, 32:6, 32: 9
Escapement 20:7, 20:12
Especially 44:24,
173:17, 329:10, 329:25, 336:1, 365:1, 398:5, 398:13, 422:4
Esq 3:6, 3:14,
3:22, 3:34,
4:16
essence 308:4
essential
338:17,
361:22,
422:16
essentially
31:16, 45:1, 47:2, 55:23, 59:9, 61:8, 65:2, 106:14, 112:25,
113:5,
118:20,
123:11, 186:11, 186:15, 218:15,
229:1, 262:9, 290:11,

347:10
establish 18:8,
111:23,
184:10,
264:15
established
34:9, 216:13,
317:18,
382:10,
388:13
establishing
264:19,
420:14
estimate 54:1,
61:12, 395:13
estimated
17:25, 197:13
estimates
16:11, 36:22
estuaries 39:13
Estuary 39:2,
142:7, 143:5,
157:21,
161:1, 161:4,
330:16,
331:13, $334: 2$
et 49:23,
67:13,
305:20, 312:3
European 414:19
evaluate 25:13,
66:5, 103:3,
103:13,
149:13,
170:22,
178:15,
179:3, 259:7,
317:10,
317:12,
410:21,
411:4, 421:14
evaluated 28:6,
98:14, 170:15
evaluating
100:15,
105:10,
179:6,
254:22,
255:3, 270:1
Evaluation

100:19,
166:15,
178:14,
238:5, 238:8,
238:11,
238:15,
255:12
evening 362:11, 410:9
evenly 285:9
event 64:4,
218:2, 218:8, 252:25
events 64:2, 398: 6
eventually
80:25, 322:10
Everybody
20:21, 55:5,
136:23,
191:16,
304:16,
311:16,
311:17,
337:1, 350:3,
407:15,
412:25
everyone 90:11, 91:7, 153:1,
179:14,
192:8, 332:2, 404:13, 407:14
Everything
38:3, 46:8, 83:23,
125:17,
125:19,
150:17,
255:1,
273:24, 363:20, 372:14, 421:21
everywhere 172:9
evidence 139:13, 147:17, 150:12,

166:22, 173:17, 180:18, 295:23, 309:21, 312:7, 312:11, 322:24
evident 309:7
evolution
306:13, 306:24
exact 36:20,
53:25, 141:8, 178:8,
188:25,
195:20, 259:9
Exactly 25:12,
29:8, 41:14,
54:20, 61:7,
62:14, 64:10,
65:15, 75:16, 129:20,
158:17,
180:22,
199:14,
249:13, 262:6, 297:20, 324:24, 324:25, 325:24, 346:5, 346:6, 361:18
exam 47:24, 402:23
Examination
6:6, 6:15, 7:9, 8:6, 8:19, 9:3, 309:20
examine 15:24, 19:25
examined 417:19
examining 49:21, 254:22
Example 16:3, 96:12, 137:14, 191:7, 194:6,

200:8,
200:11,
217:17,
229:8,
232:21,
233:23,
258:11,
261:5, 264:8,
264:20,
285:19,
293:13, 364:1
excavate
123:23,
273:19,
274:9, 312:5
excavated
100:7, 100:9,
100:11,
123:19,
123:24,
124:1, 124:2,
124:6,
124:11,
125:1, 126:3,
126:8, 126:9,
149:6, 246:2,
269:17,
274:2, 274:4,
319:5, 398:1,
398:9, 399:3
excavating
205:20
excavation
100:10,
122:23,
123:2, 123:4,
123:7, 171:1,
246:2, 246:9,
247:8,
269:24,
273:6, 344:23
excavator
123:22,
246:3, 351:19
xceed 19:20,
104: 7
exceeds 422:14
174:19,

239:16
except 254:23,
318:11,
337:12,
342:23,
383:13
exceptional
22:4
excerpts 142:5, 142:13, 343:13
Excess 100:12, 103:5, 125:20, 253:11, 274:2
exchange 17:2, 18:3, 21:7, 35:22, $38: 16$ exchanged 17:4 exchanges

17:25, 418:8
excited 280:5
exciting 49:11
excursion 41:1, 41:2, 61:20, 64:6, 64:15,
64:20, 64:23, 65:3
Excuse 87:8,
98:12, 101:3, 102:24,
166:21,
181:2, 233:5,
265:3,
345:23,
366:20,
402:6, 415:8
executed 308:3, 308:15,
313:15,
314:24,
323:13
Executive 2:19, 10:17, 304:8, 414:9,
414:14, 428:7
exercise 361:24
exhaust 418:9
exhaustive
115:5, 116:22

Exhibits
147:11, 151:2, 151:5, 151:6, 161:11, 241:20, 242:20, 253:24, 333: 8, 339:13, 347:13
exist 113:18, 113:24, 113:25, 128:9, 248:19, 332:18
existing 15:21, 17:22, 73:10, 82:5, 114:22, 129:14, 176:16, 185:18, 187:6, 247:18, 248:18, 248:22, 249:1, 249:20, 261:14, 320:15, 328:9, 329:11, 420:7
exists 130:4, 360:18
exit 297:13
exits 42:2, 297:12
expand 203:15
expect 32:16, 46:7, 46:19, 47:1, 79:22, 89:12, 104:10, 108:6, 141:14, 242:13, 243:7, 255:18, 255:21,
$258: 2$,
$275: 24$,
$293: 4$,
$299: 19$,
$299: 24$,
$301: 25$,
$336: 3,420: 19$
expectations
$21: 24$,
$160: 25$,
$417: 22$
expected $45: 15$,
$47: 21,55: 5$,
$65: 8,102: 25$,
$116: 24$,
$157: 14$,
$167: 5,283: 14$
expecting $79: 21$
expenditures
$193: 15$
expense $249: 23$
expenses $250: 18$
expensive $95: 9$,
$135: 9$
experience
$79: 12,82: 3$,
$83: 14, \quad 91: 14$,
$105: 5$,
$105: 15$,
$119: 21$,
$120: 6,244: 2$,
$313: 8$,
$316: 12$,
$316: 20$,
$318: 9$,
$327: 13$,
$337: 19$,
$337: 21$,
$338: 10$,
$338: 13$,
$356: 11$,
$409: 6$,
$409: 10$,
$417: 15$
experienced
$147: 13,289: 7$
experiences
$417: 14$
experiment
$35: 15,35: 17$,

258:2,
275:24,
293:4,
299:19,
299:24,
301:25,
336:3, 420:19
expectations
21:24,
160:25,
417:22
expected 45:15,
47:21, 55:5,
65:8, 102:25,
116:24,
157:14,
167:5, 283:14
expecting 79:21
xpenditures
193:15
expense 249:23
expenses 250:18 expensive 95:9, 135:9
experience
79:12, 82:3,
83:14, 91:14,
105:5,
119:21,
120:6, 244:2,
313:8,
316:12,
316:20,
318:9,
327:13,
337:19,
337:21,
338:10,
338:13,
56:11,
40: 10
417:15
experienced
147:13, 289:7
experiences
417:14
35:15, 35:17,

42:18, 72:22,
73:13, 73:23,
74:24, 87:4,
397:19
experiments
87:9
expert 15:3,
25:12, 25:21,
86:8, 155:6,
280:10,
280:16,
321:19,
344:20,
345:2,
348:17, 382:6
expertise
91:16, 92:11,
92:16, 117:2,
127:8,
132:22,
148:16,
184:10,
306:16,
317:8,
317:10,
321:19,
398:18,
410:18
experts 148:5,
279:14,
280:6,
305:25,
306:1,
328:22,
331:15,
332:5,
332:12,
333:11,
348:13,
348:20
Expires 433:15
explain 33:14,
129:21,
134:19,
238:10,
239:21,
259:2, 273:7,
274:11,
335:8,
401:14,

411:22
explained
21:18, 359:24
explanation
330:8, 373:11
Exploration
414:16
explore 18:25
expose 158:25, 307:23, 350:13
exposed 189:14, 399:17
exposure 101:8, 274:22, 399:12
expressed 81:24
extend 400:16
extended 64:6, 102:20, 210:23, 356:25, 411:19
extending 122:3
extends 122:4, 232: 7
Extension 413:16, 413:17
extensive 102:1, 127:11, 141:13, 141:25, 149:20, 328:15, 331:5, 338:12
extensively 320:21, 416:6
extent 22:21, 151:8, 163:2, 335:15
extra 34:17, 179:17, 191:16, 370:15
extract 260:4
extracted 260:2
extraordinary 317:21
extremely
172:2,
198:22, 264:10
eye 431:24
eyes-on 420:13
$<\mathrm{F}>$
fabric 126:4
face 395:17, 420:7
faced 403:1
facilities
33:16, 206:25
fact-finding
409:20
factor 227:9
factories
328:7, 356:3
factors 51:9, 80:10, 96:3, 96:5, 146:25, 288:25
factory 355:1,
355:21,
420:16,
427:25
facts 362:18, 417:14
facultative 236:21
faculty 13:22, 14:24
FAEGRE 8:24,
409:8,
409:23,
410:2, 410:8,
410:11,
423:9,
423:11,
423:16,
423:18,
423:24,
425:16,
425:23,
426:11,
426:16, 426:18, 426:21,

427:1, 427:4
Fahrenheit
129:5, 359:7
fail 103:17
failed 200:9, 235:17,
333:8, 358:6, 416:18,
427:24
failing 380:11
fails 187:17,
426:22,
426:23
failure 180:2,
328:12,
328:17,
328:25,
329:7, 334:9
fair 144:22, 202:3,
264:18,
417:13, 424:5
fairly 102:1,
113:13,
116:11,
194:2, 194:3,
233:1, 236:6,
265:14,
293:3, 293:5,
293:7,
308:19, $344: 7$
fall 79:13,
135: 4,
153:14,
201:21,
225:4,
253:13,
365:1, 422:3
fallen 402:23
false 162:13, 377:11
falsely 332:25
familiar 21:19, 21:21, 56:3, 69:15, 147:24, 154:18, 163:25, 164:25, 198:23,

203:23,
226:20,
292:11,
311:16,
365:19, 383:9
families 373:8
family 411:10, 415:17
Fandel 45:18
fans 418:10
Farm 329:12,
330:10, 330:12, 337:20, 410:14, 415:5, 416:2, 416:17, 420:22, 422:22
farmed 94:24, 305:5
Farmers 408:13, 413:18, 413:20
farms 20:8, 32:3
fashion 209:7, 245:25
fast 42:6, 43:15, 64:10, 67:6, 405:2, 418:21, 431:1
faster 62:6, 86:13, 336:4, 407: 6
fault 406:2
favor 71:1
favorability 202:11
favorable 203:10, 205:6
favorite 304:13
feasibility 98:18, 99:20
feasible 99:3, 264:23
feature 113:20
features 338:19
February 351:3
fecal 355:17
fed 25:3, 25:13, 25:15, 25:18
Federal 15:23, 143:6, 148:5, 148: 6, 162:16, 166:11, 167:23, 180:1, 216:21, 328:22, 331:9, 331:14, 343:19, 348:12, 348:14, 348:16, 348:21, 349:5, 352:3, 352: 6, 357:15, 357:25, 366:7, 381:5, 381:6, 381:7, 387:10, 421:20, 421:22, 422:18
federally 114:12, 186:13, 216:19, 277:9
Fee 109:1, 109:22, 111:5 fee-simple 327:16
feed 18:21, 18:23, 19:2, 25:7, 25:9, 25:19, 25:20, 25:22, 26:1, 26:2, 309:23
feeding 222:5, 277:14, 283:17, 283:20, 372:17, 373:8
feeds 18:18, 18:24, 26:5
feel 88:4,
172:16,
172:17,
176:2,
226:24,
267:15,
276:8, 317:5,
323:7,
352:18,
354:10,
354:11,
357:20,
371:3, 371:12
feeling 87:5, 227: 6
feelings 421:19
feels 172:6
Fellow 13:13, 343:15, 368:17
felt 250:19, 417:15
fens 278:20
fetching 90:13
few 28:23,
34:17, 68:19, 76:24, 77:9, 89:23,
117:13,
198:22,
280:15,
287:2,
293:20,
299:21,
303:16,
364:19,
374:19,
388:10
fiduciary 322:4
field 37:6,
55:21,
227:15,
264:2,
281:13,
291:15,
364:11,
364:14,
403:18,
420:23,
420:25
fields 281:9,
317:22, 364:9
fight 241:10
Figure 20:5,
55:20, 72:23, 75:19, 137:22, 138:1, 138:7, 139:1, 139:18, 142:8, 146:20, 151:21, 154:19, 161:8, 176:24, 183:10, 258:11, 296:9,

396:6
figures 114:1, 142:18, 142:20
file 167:1, 261:25, 324:4, 341:7, 404:1
filed 23:11, 114:2, 132:4, 279:19, 315:23, 324:9, 331:8, 341:13, 342:22, 378:16, 378:21
filing 132:8, 378:15
filings 347:19
fill 395:1
filled 222:19, 344:11
filling 339:14, 344:10
fills 274:14
filter 23:12, 23:24, 126:4, 360:2, $360: 4$, 360:5, 430:5
filtered 115:3, 116:22
filters 360:9, 426:1
filtration
18:12, 23:14, 23:19, 115:5, 116:22,
126:6, 225:13, 225:14, 225:24
final 104:18, 199:9, 243:23, 244:10, 247:6, 253:6
finalist 287:4
finalize 301:6
finalized 243:16, 243:18
Finally 15:3, 20:6, 29:19, 42:2, 87:5, 125:17, 334: 8, 368:11, 419:16
finance 305:8, 305:10
finances 380:4
financial 98:18, 99:4, 99:20, 322:4, 322:6, 418:3
financing 305:11
find 12:15,
46:12, 85:5, 106:8, 108:21, 119:7, 138:5, 140:16, 147:19, 155:7, 197:20, 198:25, 202:8, 215:23, 217:12, 237:17,

244:4, 250:3, 255:13,
255:14,
262:2, 320:5, 345:1, 365:7, 390:1,
405:20,
422:20
finding 149:18,
158:3, 219:3,
253:22,
253:23,
275:20,
421:18
Findings
153:22,
154:2,
339:11, 339:15, 339:20, 344:22
finds 339:21, 340:10
fine 48:25,
87:22,
147:18,
167:24,
177:14,
178:8, 215:6,
242:17,
335:17,
346:15, 390:3, 393:15
finer 23:20, 360:6, 360:10
fines 172:1, 174:14, 174:17, 179:6
finfish 114:7, 183:18, 186:13
fingers 415:14
finish 67:18, 162:6, 191:21, 344:22, 385:13
finished 132:6, 132:7, 390:10,

405:8, 428:12
Fiorilla
254:18,
254:19
fire 99:2
firm 170:22,
204:21, 412:8
firmly 415:5
fish-based
25:20, 25:22
Fisheries
92:21, 111:9,
111:11,
111:13,
112:14,
114:4, 180:8,
185:2,
186:16,
187:9,
187:11, 280:10, 284:23, 284:24, 285:7, 300:14, 300:16, 305: 4, 305:25, 308:17, 333:18, 413:14
fisherman
353:15,
354:7, 361:6, 361:12, 362:23, 363:5, 367:20
fishermen
186:5,
188:19, 334:1, 356:18, 359:22, 361:8, 363:10, 363:11, 363:22, 365:11, 368:1, 368:3, 368:25,

369:3, 369:4,	279:15,
369:11,	279:18,
369:19,	302:8,
371:2,	306:15,
371:11,	323:17,
413:19	329:13,
fishery 182:25,	369:5,
187:7,	369:19,
187:18,	370:8,
306:1, 311:3,	407:11,
317:11,	418:14
320:19,	fixed 95:1,
320:21,	123:11
363:2, 369:17	flat 194:9,
fishes 361:13	290:23
fishing 187:22,	flats 221:9
188:20,	flatter 204:24
189:18,	flexibility
327:13,	34:16, 135:8,
328:10,	173:9
329:10,	flexible 247:2,
329:24,	302:17
333:18,	flight 280:2
333:24,	FLIMLIN 8:25,
334:1, 334:4,	408:25,
334:7,	409:25,
354:20,	412:20,
357:3,	412:24,
357:12,	413:2, 414:6,
358:16,	414:8,
361:14,	415:14,
363:20,	415:16,
$364: 11$,	418:17,
364:23,	418:21,
365:12,	418:24,
366:3,	421:6, 423:5,
367:12,	424:12,
368: 4 ,	424:14,
369:13, 406:5	424:16,
fit 100:12	424:19,
fits 343:5	424:22,
Five 14:6,	427:7,
47:6, 49:5,	427:12,
55:15, 89:20,	427:19,
91:24, 98:13,	431:4, 431:12
110:2,	flip 231:15
119:25,	float 126:11,
152:15,	185:4, 185:25
153:5, 153:9,	floating 116:5,
180:4, 220:3,	124:23,

279:15,
302:
306:15,
323:17,
329:13,
369:5,
369:19,
370:8,
407:11,
418:14
fixed 95:1,
123:11
flat 194:9, 290:23
flats 221:9
flatter 204:24
flexibility
34:16, 135:8, 173:9
flexible 247:2, 302:17
flight 280:2
FLIMLIN 8:25,
408:25,
409:25,
412:20,
412:24,
413:2, 414:6,
414:8,
415:14,
415:16,
418:17,
418:21,
418:24,
421:6, 423:5,
424:12,
424:14,
424:16,
424:19,
424:22,
427:7,
427:12,
427:19,
431:4, 431:12
flip 231:15
float 126:11, 185:4, 185:25
floating 116:5, 124:23,

242:8, 246:6
floats 399:16
flock 284:14
floods 350:19
floor 116:13,
116:15,
149:10,
152:12,
173:19,
175:4,
265:12,
265:24, 266:8, 266:12, 266:18, 266:21, 266:24,
267:4, 267:9, 267:10, 267:19, 267:20, 267:24, 273:5, 275:17
Florida 96:12, 170:21, 171:22, 175:7, 283:13 flounder 114:8, 285:8, 285:9, 285:15, 293:12, 293:13, 310:17
flow-through 16:6, 18:15, 359:17
flowing 252:19
flows 82:23,
106:12, 106:20, 252:6, 252:7, 290:5, 321:7, 398:5
fluctuations 257: 6
flushes 51:14
flushing 371:1
focus 14:2, 107:11, 189:25,

308:1,
308:10,
396:21
focused 105:7,
164:17,
264:5, 287:3
focuses 13:25
foliage 372:13
folks 151:1,
156:10,
324:10,
366:11,
368:19,
369:15,
369:21,
370:23,
372:23,
417:1, 419:3
follow 121:25,
233:16,
249:11,
253:14,
325:7, 431:16
follow-up
24:23, 51:23,
71:7, 286:3,
402:10
followed 165:7,
213:5, 278:9,
286:14, 330:3
Following 25:4,
26:9, 26:11,
97:13, 98:16,
252:24,
303:7,
311:19,
409:25
following-up
32:8
follows 358:3, 364:1
food 284:16, 312:3,
332:10,
332:11, 419:2 fool 372:7
foot-and-a-half 178:18
footage 267:3, 267:8
footbridge 356:24
footpath 110:17
footprint 94:24, 116:14, 289:16, 315:25, 386:19, 410:25
footprints 269:25, 282:20
forage 25:23, 222:10
foraging 283:17
forbearance 11:5
Force 61:6, 291:1, 304:20
forces 242:9, 242:11
forcing 38:8, 38:9, 38:11, 41:12, 54:21, 63:13
forefront 18:23
foregoing 433:4
foreground 350:10
forest 277:13, 337:20
forested 105:20, 105:22, 107:25, 108:3, 108:5, 214:19, 237:13, 277:1, 281:15
forever 325:15
Forget 41:14, 84:19, 342:2, 393:17, 395:9
forgetting 43:10
forgot 344:20
Form 19:12, 201:15, 209:6,

281:24,
393:6, 393:8
formal 338:11
formation 92:20
formed 332:9, 409:19
former 101:20, 288:21, 289:8, 296:1, 395:15, 395:16
formerly 305:8
forming 350:21
forms 25:19
Fort 102:13
forth 30:16, 36:1, 40:23, 41:4, 58:21, 59:21, 60:24, 61:9, 62:18, 62:19, 74:10, 88:6, 124:12, 175:10, 204:7, 229:17, 240:17, 249:24, 250:21, 256:3, 257:24, 259:9, 271:21, 323:11
Fortunately 280:8, 280:12
forward 26:20, 63:10, 67:22, 112:19, 148:15, 373:7, 373:17, 373:19, 403:10, 403:16, 409:17
forwarded 383:21, 383:23
Foster 160:25, 161: 4
foul 355:24
found...da
352: 15
Foundation
13:13, 14:7,
92:5, 252:10, 252:16,
304:18
founder 414:20
founders 416:1
founding 92:4
Four 14:25,
35:19, 97:18,
98:9, 196:20,
196:24,
198:16,
263:20,
263:24,
264:1,
292:16,
309:5
317:25,
329:7,
389:23,
417:1, 419:6,
423:14
fourth 20:6,
326:12,
344:16
fragile 339:22
frame 195:20,
284:6,
292:24,
389:13
framework
305:16
Franciso 105:6
frank 273:18
Franklin 359:1, 360:7
Frankly 332:2
freak 84:20
Fred 379:5
free 276:9, 284:22,
426:23, 427:7
freely 267:5
freeze 28:11
frequency
102: 9,

313:20, 314:1 frequent 340:11
frequently
221:19
fresher 40:4, 56:15
freshwater 215:21
friction 46:22
friend 12:18, 169:15, 276:8
friendly 296:2
Friends 304:21, 318:1,
327:20,
415:17, 417:2
fringe 107:19
Front 3:43, 90:2, 90:4, 131:6, 161:9, 170:12, 199:23, 219:7, 272:6, 326:20, 377:21
frozen 94:5
fuels 295:24
full 62:21,
68:4, 69:6,
$70: 3, \quad 70: 12$,
73:13, 74:24,
97:3, 98:3,
122:17,
123:14,
149:24,
152: 8,
196:17,
201:2,
223:23,
282:12,
301: 4,
327:21, 413:5
full-size
393:7, 419:17
full-time 415:2
fully 34:1,
133:16,
205:24,
230:12,
242:19,

245:7,
299:17, 418:4
fuming 422:6
function 28:18, 28:22, 263:6, 316:8
functions 263:12, 292:21
Fund 307:3
funded 14:9
funneling 45:13
furnish 412:1
furthest 125:3, 234:5, 246:18
fusion 45:2
future 48:20,
114:20,
128:3,
234:17, 244:12, 288:4, 340:3, 372:10
fuzziness 163:1
FVCOM 54:4
$<G>$
gained 120:7
gains 194:21
gallon 18:4,
21:9, 21:11
gallons 17:11, 17:17, 18:1, 18:2, 21:7, 21:8, 30:16, 30:21, 50:24, 51:6, 77:23, 115:7, 200:22, 200:25, 201:2, 201:6, 201:18,
318:15, 330:15, 330:22, 358:19, 363:15, 370:25, 430:11
gap 271:2
Gaps 16:20
Gartley 375:1, 379:2
Gary 36:7, 36:11
gas 19:17, 113:21
gasoline 295:7
gather 285:11
gathered 70:9,
338: 9
gathers 290:2
gave 238:17, 245:13,
271:21,
325:4, 375:15
gazer 419:23
gear 188:11, 406:7
GEF 8:25, 408:25,
409:25,
412:20,
412:24,
413:2, 414:6,
414:8,
415:14,
418:21,
418:24,
421:6, 423:5,
424:14,
424:16,
424:19,
424:22,
427:7,
427:19,
431:4, 431:12
General 2:10,
2:11, 10:16,
37:1, 40:10,
53:24, 88:3,
88:11, 94:11, 96:3, 105:19,
119:18,
120:2,
120:13,
125:21,
294:19,
304:6, 337:2,

340:9,
342:15,
376:19,
402:17,
416:20
generally 64:3,
155:18,
263:11,
283:21,
287:5,
289:17,
303:11
generate 142:3
generated
104:14, 312:8
generating 89:2
generation
243:3, 353:13
generations
361:18
generators 78:3
gentleman
399:13
geographic 95:25
geographical 338:18
geologic 91:16
Geological 19:23, 91:12, 113:19, 148:23
Geologist 91:10, 127:7, 383:22
geologists 360:24, 383:7
Geology 91:11
George 80:22
geotech 350:11
geotechnic 244:15
geotechnical 148:23, 149:5,
173:16, 178:14, 178:24, 179:5, 202:10,

243:12,
243:13,
243:19,
243:20,
243:22,
244:2,
264:14,
301:1, 329:1,
397:8
GERALD 2:9
gets 39:17,
45:24,
110:10, 240:24,
308: 4,
308:15,
312:13,
377:2, 426:23
giant 345:5,
351:19
Gill 36:8
GIS 393:9,
395:17
Give 12:8,
57:17, 58:24,
65:2, 84:10,
85:12, 86:14,
87:8, 90:16,
105:16,
129:1,
149:23,
188:24,
195:19,
199:25,
262:5,
265:13,
266:1, 266:3, 292:24,
323:5, 332:1, 336:22, 354:18, 395:13,
401: 7,
406:18, 410:6
give-away
417:25
Given 31:22, 48:6, 86:16, 88:6, 106:5, 129:11,

130:10,
143:14,
175:2,
191:17,
201:19,
310:9, 312:7,
379:15,
402:22,
418:15,
420:10
gives 56:2,
58:24, 68:25,
80:20
128:15, 243:6
giving 71:13,
202:5
glacial 349:19
glad 208:13,
295:1, 297:9, 399:6, 408:8
glasses 177:14,
267:20,
267:22,
267:25, 297:3
Global 16:20,
16:23
globally 133:8
glossy 236:19,
237:19, 256:6
GMRI 8:4,
303:2,
305:22,
319:24,
321:19, 322:5
goal 124:24,
124:25, 416:5
goals 119:18,
421:16
Gomoos 35:5
goodness 353:17
Gorham 10:14
Gotcha 297:22
gotten 267:12, 307:1
governing 420:1
government
30:12, 180:2, 343:19,
357:25,
387:10,

395:5, 422:18 governmental 411:7
GPM 201:10
GPS 383:8
grab 108:17, 176:8,
177:22,
396:14
Grace 4:14,
327:15,
331:22
grade 203:23,
273:24
gradient
129:22,
239:7, 311:20
grading 243:15
graduate 13:18
grain 100:23,
149:7
gram 143:8,
145:24,
146:25,
153:16,
153:25,
156:5,
156:19,
157:3, 157:9,
157:16,
157:24,
158:11,
178:21
grandson 363:3,
371:22,
405:17
grant 14:7,
397:12,
422:10
granted 235:22, 252:25,
419:25
grantors 378:21
grants 14:4
graphics 395:18
grasped 134:6
grass 222:8,
229:23,
236:22,
283:24
grasslands 281:16, 281:17
grassy 227:4
grateful 411:6
gravel 202:8, 204:13, 206:20, 269:10, 274:6, 350:5, 350:16, 351:8
Greater 39:18, 190:24, 239:16
greatest 220:3
greatly 98:1
greenfield 248:11, 249:25
Gregg 2:18, 10:24
grind 337:12
ground 24:12, 58:2, 123:13, 126:4, 200:23, 201:18, 203:10, 205:5, 266:4, 266:15, 266:18, 290:23, 291:16, 295:25, 338:14
grounded 126:10
grounds 49:16, 187:22, 283:17, 328:10
groundwater 91:17, 92:18, 103:15, 106:19, 200:23, 201:7, 202:5, 202:22, 223:5, 223:8, 252:11, 252:16,

295:12,	
	359:10, 411
Group 192:21,	
	243:11
	323:14,
	327:8,
356:18,	
414:17	
$\begin{gathered} \text { grow } 429: 6, \\ 429: 14 \end{gathered}$	
grow-out 20:10,	
429:16	
	Growers 414:22
$\begin{aligned} & \text { grown 16:6, } \\ & 317: 18,419: 2 \end{aligned}$	
$\begin{aligned} & \text { Growth } 416: 2 \text {, } \\ & 428: 22 \end{aligned}$	
guarantee$89: 10,412: 3$	
	guests 353:12
Guidance 98:15,	
100:21,	
	121:5,
154:25,	
166:24,	
167:5,	
253:10,	
342:12	
	Guide 221:1
guided 279:20	
guideline	
	342:16,
	342:17, 352:5
Guidelines	
26:17, 101:7,	
	101:12,
156:23,	
162:17,	
165:7,	
165:15,	
165:16,	
166:2, 214:4,	
	240:11

guidepost 298:4
guiding 339:16
Gulezian 34:9,
36:11
Gulf 4:4, 35:4,

35:23, 40:15,
42:1, 42:15,
52:3, 80:23,
81:9, 83:10,
304:1, $304: 8$,
304:18,
304:22,
304:24,
309:14,
320:11,
321:20
gullies 398:6 guy 45:18,

397:22,
416:12, 425:4
guys 50:13,
241:10
$<\mathrm{H}>$
habitation
213:25,
226:25,
285:23
habitats
107:25,
108:2, 108:4, 215:1, 220:1,
278:20, 278:21
half 46:3,
46:4, 91:6, 260:1,
325:19, 407:9
half-a-mile 185:19
halfway 46:13
HALLOWELL 2:14,
7:15, 10:21,
90:3, 241:10,
245:11,
245:12,
246:14,
247:6,
247:12,
247:17,
247:23,
334:25
Hampshire 34:25
hand 12:7,

82:11, 82:23, 90:14, 241:9, 263:1, 308:7,
314: 6,
323:21,
324:16,
325:12,
336:21,
341:21,
366:23, 410:5
handed 152:23, 256:17, 375:24
handle 152:5, 179:15
handled 252:14
handling 204:6, 251: 6
Hang 41:23,
89:11,
258:14,
301:19
happen 39:3,
46:21, 59:17, 64:7, 66:5, 70:22, 78:23, 80:9, 81:6, 82:25, 87:16, 88:23, 89:4, 103:20, 158:19, 183:7, 186:21, 319:3
happened
186:12,
218:6, 218:7, 231:15, 261:7, 282:1, 295:6, 425:20
happening 27:5, 27:7, 44:4, 68:13, 80:18, 81:7, 84:1,
84:5, 310:9, 314:2, 322:23
happens 39:13,
40:22, 43:3,
44:4, 46:2,
84:18, 89:1, 89:8, 132:20,

312:19,
428:16
happy 139:16,
325:14,
364:7, 393:19
Harbor 62:2,
153:14,
153:19,
154:16,
171:22,
183:1,
183:14,
355:24,
355:25,
356:1,
356:13,
356:15,
356:21,
357:1, 358:6,
364:8
364:12,
364:14,
367:12,
368:10,
397:21
Harbour 4:17
hard 63:25,
64:14, 83:19,
152:24,
162:4, 249:5,
303:13,
337:2, 337:4,
337:8, 339:8,
352:17
hardest 83:20
hardship 359:22
harm 314:19,
328:8, 363:25
harmless 19:18
harmony 392:1
Harriet 327:21,
327:22, 379:4
Hartley 327:21,
327:22, 379:4
harvest 185:23, 284:25
harvesting
185:6, 310:25
hat 398:2,
400:20
hay 281:13
hazardous
206:18
Hazeltine 309:1
Head 309:2,
366:17,
388:8, 395:12
headed 40:21, 62:11
heading 40:7, 41:7, 41:25, 118:18
headlands 202:4
health 17:4,
33:15,
304:15,
$332: 6,340: 8$,
361:20
healthy 24:17
hear 20:21, 25:8, 68:11,
92:17,
114:19,
115:6, 127:5,
177:9,
254:19,
257:9,
279:25,
308:13,
352:22,
378:4,
393:16, 393:19
Hearing 1:15, 10:5, 10:11, 10:25, 13:8, 44:10, 49:13, 132:17,
139:14,
171:16, 203:13,
261:22,
267:15,
307:21,
319:23,
335:10,
376:10,
376:12,
376:16,
377:16,

377:23,
379:15,
379:17,
385:12,
385:15,
404:8, 409:9,
430:13, 432:3
hearings 306:11
hears 97:8
heart 240:25
heat 54:22,
190:3
heated 359:6
heating 193:15, 359:15
heavily 235:4, 279:3, 281:7, 364:25
heavy 205:1
height 204:5, 204:7, 204:14, 264:23, 345:9, 400:16
heights 204:6
Heim 97:13, 330:8, 340:20, 416:15,
419:19
heirs 379:6
helical 242:10, 253:6, 298:3
Hello 111:10, 228:8
help 44:12,
50:9, 68:15, 94:13,
134:20,
138:5, 179:7, 204:14, 231:7, 231:14, 231:22, 307:3, 420:8
helped 95:15
helpful 31:9, 52:21, 84:15, 84:17, 89:20, 133:4, 140:7,
$143: 15$,
$153: 11$,
$184: 25$,
$194: 2,200: 2$,
$231: 3$,
$231: 15$,
$231: 24$,
$233: 19$,
$261: 3$,
$296: 15$,
$396: 21$,
$411: 25$
helps $267: 17$,
$268: 8,285: 5$,
$362: 25$

Hemlock 237:14, 398:25
hence 315:1
hereby 433:4
herein 347:22
Herrick 410:12
herring 114:8,
118:17,
320:19
herself 147:14
hesitated 417:4
hibernate
276:21
hibernating
276:14,
277:19
hiccups 325:3
high 18:12,
94:15, 122:6,
125:8,
168:19,
169:5, 170:4,
196:11,
205:7, 230:5,
239:15,
255:6,
264:10,
292:8, $300: 1$,
338:14,
345:9, 371:2,
419:6,
421:11,
429:25, 430:7
higher 16:11,
30:3, 125:7,

182:11,
201:8,
239:13,
255:7,
300:19,
300:21,
313:19,
385:2,
412:23, 430:8
highest 16:15,
97:23,
190:19,
239:18,
240:8, 240:21
highlight 107:3
highly 60:17,
106:23,
107:6,
233:10, 264:8
highway 263:7, 263:8
hike 279:16
hiking 281:8, 281:12, 281:15
Hills 5:24
hired 313:7
historic 296:1, 299:16, 299:22, 299:23
historical
83:16,
295:23, 300:9, 340:2
historically 236:9
histories
112:19, 119:1
history 183:12,
184:11,
249:6, 261:4,
262:24,
295:8,
311:15,
354:18,
354:20,
357:23
hit 406:6
hitting 118:19

Hmm 30:10,
61:21, 66:9,
74:19,
268:16,
276:17,
277:6,
278:15,
282:16,
284:10,
298:15,
373:10,
389:7,
389:21, 393:11
hoary 277:3
Hold 13:10,
33:13, 91:11,
125:14,
172:22,
308:14,
310:16,
374:5, 375:8, 375:21
holders 327:23
holding 32:4,
174:23, 242:7, 382:5, 383:11, 383:12
Holdings 306:18
holds 51:13
Hole 34:24, 162:18, 164:5, 164:9, 166:9, 184:4, 184:5, 350:15, 413:23
hollows 277:10, 301:23
Holocene 148:24, 149:24, 170:17, 171:16, 171:18, 175:13, 184:12, 329:4
Holtrachem
93:17,

101:18,
101:21,
101:25,
146:16,
155:8,
155:18,
159:1,
311:15,
322:19,
328:18,
328:24,
330:1, 330:6,
330:24,
331:1,
331:13,
331:19,
332: 20,
333:13,
334:2, 334:7,
348:11
home 12:18, 153:5,
337:13,
373:2, 413:3, 415:3
homesite 415:6
homogenous
113:8, 113:10
honest 44:8,
415:19
Honestly $86: 5$,
87:12, 264:5,
322:11
Honolulu 414:13
honor 13:9
hook 371:17,
404:17,
404:18, 406:18
hooked 361:3
hope 48:19,
77:11,
267:13,
296:15
HOPECK 2:15,
7:14, 10:22,
235:11,
241:9,
241:11,
241:18,

241:21,
241:23,
242:18,
242:22,
243:10,
244:16,
244:24
hopeful 325:9
Hopefully
95:15, 100:4, 157:4, 254:3, 263:15, 363:1, 363:4, 368:7
hoping 23:9, 43:3, 87:17, 245:15, 324:24, 361:8, 427:7, 431:24
hot 312:11
hotter 118:4, 190:12
hour 70:9, 206:7, 206:9, 407:9, 407:19
hour-and-a-half 206:8, 206:9
hours 226:15, 296:7, 296:8, 418:17
house 168:17, 227:14, 416:9, 419:17, 420:24
household 418:18, 418:24
huge 29:13, 81:23, 82:17, 368:11, 387:5
Huijie 41:13
human 15:7, 332: 6
humans 308:17
humor 415:7, 415:16
hundred 29:3, 299:21,

326:14,
360:6, 388:10
hundreds 172:4,
299:13
hung 230:3, 235: 6
Hunt 5:5
Hunter 361:11
hurricane 261:5
Hurry 344:2
hurt 428:21
husbandry
418:1, 430:2
Hutchinson 1:26
hydrodynamic 36:20
hydrogeologic 92:13
hydrologic 80:9
hydrologist
411:22,
423:18, 423:25
hydrology 91:17
< I >
ice 28:10, 171:19
Idaho 16:6
idea 29:22, 30:15, 43:9, 43:25, 44:8, 45:3, 45:23, 68:22, 71:5, 78:20, 78:22, 78:25, 80:20, 83:6, 84:10, 84:21, 85:6, 87:1, 94:4, 129:8, 243:6, 350:11, 422:9
ideal 194:11, 194:13, 194:14
identified
94:18, 96:23, 199:16, 208:15, 210:15,

213:2, 213:8,
345:12,
348:10,
355:16,
357:17,
358:12,
383:2, 384:6,
384:12,
385:22
identify 180:3,
189:6,
366:21,
367:4,
380:11,
396:16
identifying
348:18
identities 379:7
ignores 187:5 imagine 30:5, 39:2, 44:14,
54:22, 82:15, 88:23,
193:24,
195:15
immediate
28:20, 233:1,
369:3, 400:20
immediately
96:18,
275:20,
345:22, 375:5
immensely
362:25
impacted
108:11,
168:24,
183:5,
187:12,
222:19,
249:13,
293:18,
338:3,
358:13,
363:6, 363:7,
369:12, 416:6
impactful 16:2,
135:8
impacting

268:7, 406:4
impeach 160:7, 403:7, 404:4
impeachable 402:20
impeacher 404:5
impeaching
154:13
impeachment
375:7,
376:22,
377:9,
377:12,
377:21,
379:14,
379:22,
380:1, 401:9,
401:21,
402:10
impetus 278:11
implement 18:21
Implementation
91:18, 91:21, 100:21,
119:16,
120:2, 154:25
implemented
37:7, 230:22
implementing 105:12, 338:8
implied 322:3
imply 244:9,
244:11
important
11:15, 28:21,
36:19, 38:14,
38:21, 43:8,
51:25, 87:6,
114:11,
117:7, 122:8,
171:23,
190:1, 239:5,
239:10,
294:21,
302:19,
316:18,
339:12,
368:21,
368:22
importantly

280:22, $347: 4$
importing
410:25
impossible
20:12,
200:10, 368:3
impressed 307:7
impression
324:20, 409:19, 412:8
impressive 412:14
impressively
115:5
improve 19:2,
23:17,
106:20, 234:15,
234:24,
235:5, 361:20
improved 92:8, 107:14, 271:8 improvement

23:22, 240:7, 282:10, 368:10
improvements 109:1, 109:7, 256:18
improving 23:18 in-depth 51:20, 263:21
in-fed 51:14
In-lieu 109:1, 109:22, 111:4
in-situ 36:18, 67:24
in-stream 238:20
in-water 115:23, 116:8, 161:25, 162:12, 182:23, 183:22
in. 12:1, 39:19, 50:25, 51:2, 82:19, 90:10, $90: 11$,

191:19,
245:24,
270:23,
273:23,
275:8,
305:11,
376:17,
380:18,
431:16
inaccurate
205:18,
400:24
inactive
172:14,
172:18,
173:20
inadequate 347:16
inadmissible
335:14,
335:15
inappropriate
248:6, 248:11
inasmuch 276:19
Inc. 1:10, 3:4
inch 144:18,
259:18,
259:23,
270:14,
270:18,
270:23, 398:6
inches 144:13,
144:16,
145:1, 145:7,
145:19,
259:3,
270:24,
294:11,
294:12, 390:3
include 15:12,
38:10, 39:4,
61:5, 99:15,
100:8,
107:17,
120:4,
161:23,
162:12,
168:14,

178:12,
266:10,
267:8, 298:9,
298:21,
353:23,
354:22,
411:12
included 66:8,
93:5, 94:22,
97:20, 98:10,
99:9, 99:13,
99:17,
109:15,
122:14,
132:14,
171:2, 171:3,
174:14,
201:10,
228:11,
356:19
includes 13:23,
110:2,
119:18,
119:21,
183:5,
238:16,
368:25, 418:8
including
16:20, 70:6,
91:16, 92:13, 101:1, 102:7,
105:13,
150:15,
171:1, 171:5,
175:9,
176:25,
243:4, 309:6,
328: 6,
329:11,
330:5,
331:12,
332:25,
352:1, $396: 2$,
408:14, 412:4
income 354:8
incomplete 347:16
incorporate
107:12,
348:15
incorporated 347:22
incorrect 140:24, 369:20
increase 96:12, 128:21, 410:22
increased
33:14, 33:22, 183:19, 230:5, 289:16, 355:17
Increases 102:9, 115:13, 116:4, 264:24
incredible 310:5
incredibly 430:16
independent 306:8
INDEX 6:1, 7:1, 8:1, 9:1, 238:15, 239:11
indicate 99:21, 145:23, 208:24, 211:2
indicated 209:7, 222:24, 293:3, 358:21, 425:18
indicates 160:23, 239:23, 309:19
indicating 106:2, 269:19
indication 25:14, 149:23, 310:15
indications 105:21
indicator

104:19
indirect 95:12,
140:14, 345:3 indirectly

338:2
individual
96:23,
187:11,
211:17,
211:21,
218:17,
293:13,
327:10, $344: 4$
individually
97:1
individuals
285:22,
293:21,
363:7, 398:17
indulgence
51:23
Industrial
120:3,
307:17,
331: 6,
354:21,
355:19,
357:8, 420:2,
427:23
industries
15:21, 120:6,
120:8, 120:11
industry 21:23,
22:2, 120:21,
128:10,
306:13,
306:22,
306:24,
307:1,
367:16,
368:22, 409:6
inefficient
74:24
infectious
127:22
inference 189:1
inflow 66:13
inflows 88:7
influence
88:13, 420:6
influenced 239:1
influences 321:7
inform 144:3
infrastructure 95:2, 95:5,
174:23,
175:13,
203:25,
228:23,
229:7,
248:18, 258:1, 258:8, 343:21
ingested 358:15
inhabitant 353:13
inhabitants 361:23
inherently 250:1
initial 53:20,
121:1, 196:6, 200:21, 201:8, 207:17, 207:23, 208:7, 208:14, 228:17
initially 250:9, 419:19
initiated 210:21
injured 188:12
Inland 108:13, 112:14, 114:4, 214:5, 221:5, 280:9
inorganic 331:6
input 24:12, 107:2
inputs 88:8
insect 25:25, 26:5
insight 408:25, 409:1, 417:5
insignificant 175:16,

315:9,
315:11, 316:9
install 168:4,
275:5, 411:14
installation
150:12,
171:2, 172:3,
188:5,
188:10,
329:6, 330:7,
334:5,
334:11,
334:12,
426:14
installations
295:11
installed
411:18
installing
292:8
instance 40:2,
44:20, 54:18,
82:16,
127:18,
276:14,
282:6,
282:18,
407:3, 418:4
instances 427:2
instantaneous 60: 6
Instead 33:23,
46:17, 48:15,
81:2, 82:24,
116:18,
220:25,
234:20,
414:13
Institute 4:4, 13:13, 280:21, 304:2, $304: 9$, 317:19, 320:11, 369:7
institution 14:24
institutionally 306:9
instrumental
91:25
instruments 85: 4
insubstantial 423:20
insufficient 344:15
insulated 113:5
intact 230:11
intake 99:8, 99:15, 114:21, 115:18, 116:19, 118:11, 118:22, 168:15, 168:20, 169:4, 170:15, 193:17, 193:21, 194:10, 201:9, 273:2, 294:10, 298:6, 354:3, 362:20
intakes 121:24
integrate 39:20, 41:20
intelligent 411:24
intend 20:11, 244:21, 245:7
intended 182:21, 256:17
intends 21:6, 25:7, 27:15, 32:7, 182:22, 421:7
intense 422:9
interacted 316:16
interacting 316:18, 322:19
interaction 315:1
interactions 14:2, 412:7,

412:14
intercept 223:8
intercepted 252:11
intercepting 290:8
interchangeably 394:12
interdisciplina
ry 305:23
interest 90:12, 206:25, 306:23, 322:4, 328:2, 343:7, 391:25
interested 50:15, 62:15, 68:12, 75:24, 113:25, 250:6, 371:7
interesting
113:19,
164:14, 262:15, 372:16
Interestingly 368:8
interests 303:13, 337:25
interject 47:3, 52:9, 132:19
interjecting 173:7
intermediate 280:6, 280:7
intermittent 106:12, 109:4
International 414:16
internationally 317:19
interplay 197:4
interpolate 118:8
interpolation 84:7
interpolator 55:9
interpretation

159: 4
interpreting 338:22
interrupt 57:6,
135:16,
136:21, 147:7
intersect 246:1
intertidal/subt
idal 345:4
intervenor
373:12,
377:11, 409:9
Intervenors
3:30, 4:2,
5:2, 22:21,
34:17,
303:12,
328:1, 331:1,
333:19, 338:4
intervention
411:13
intrigued
306:25
introduce 53:1,
409:8, 409:23
introduced
43:5, 224:17,
224:21, 225:3
introduction
53:11
invalidate
83:13
Invasive 106:1,
236:13,
236:17,
236:18,
236:24, 256:5
invasives
256:1, 256:11
invertebrate 278:18
invertebrates 102:7, 222:10, 255:4, 255:9, 283:23, 286:17
investigate 417:8
investigated

242:2
investigation 91:16, 92:13
investment 95:2, 257:24
investments 17:6
involve 212:8, 265:2
involved 35:3, 224:11, 287:10, 304:23, 305:4, 305:5, 307:5, 318:5, 320:18, 320:21, 324:3, 408:12, 410:20, 413:14, 420:5
involvement 91:22
involves 268:6, 343:22
involving 338:10, 344:13
iodines 305:13
irony 415:7, 415:16
ISA 127:23
Island 13:14, 30:23, 50:20, 55:8, 161:6, 180:3, 311:17, 363:18
Islands 35:8, 74:8
Isle 30:19
Islesboro 40:3, 40:8, 41:18, 42:20, 61:14, 62:24, 79:17, 82:24, 101:23, 159:24, 311:24, 363:9,

365:17, 366:17
isotope 305:12
issue 25:5,
29:14, 31:12,
31:22, 32:10,
68:14, 96:8,
139:9, 167:2,
167:16,
224:14,
302:17,
306:3, 308:9,
312:11,
312:13,
315:25,
318:9, 319:3,
342:11,
369:13,
402:2,
419:24,
422:3, 431:21
issued 84:14
issues 14:20,
52:14, 52:15,
54:13, 88:18,
90:4, 151:5,
151:7,
151:17,
158:15,
232:18,
248:23,
276:6, 306:2,
307:12,
308:11,
313:1, 318:6,
321:11,
379:18,
398:16,
407:5,
408:22,
409:11,
413:11,
417:16,
427:15
item 26:20
items 121:17, 233:21,
303:3, 303:7, 303:9, 417:23
itself 28:8,
$30: 8, \quad 50: 23$,
122:25,
123:20,
128:15,
135:14,
179:9, 225:3,
229:7, 252:7, 254:12,
291:17,
292:4, 294:9, 295:9, 356:10
< J >
J. 1:23, 433:2
jack-up 123:10, 123:25,
124:22, 246:4
James 2:4,
10:13, 378:16
January 283:7
Jason 343:15
jee 371:23
Jeffrey 4:14,
327:15,
327:24
JENSEN 2:11
jeopardize 288:3
Jerry 10:18
Jersey 126:5,
413:14,
414:20,
418:21, 431:3
jesuitical
419:5
Jim 352:19, 352:22
Joanna 3:6, 326:3, 374:6, 381:10, 383:25
job 212:4,
250:13,
317:21,
344:1,
368:20, 383:15, 407:12, 410:23

jobs 95:11,	43:17, 44:18,
95:12	58:3, 58:16,
jobsite 344:9	59:24, 61:24,
John 2:15,	65:11, 68:16,
10:22	171:16,
Johnston 431:20	204:4,
joined 89:24,	206:22,
90:2, 90:8,	226:2,
153:6, 192:3,	231:11,
207:6, 207:8	231:13,
joining 119:25	235:13,
joint 166:15	250:14,
Jonkman 343:15	262:1,
journals 306:25	319:22,
Jr 4:6	350:20,
jtourangeau@dwm	361:14,
law.com 3:12	373:15,
Judge 85:17,	395:11,
85:24,	413:8,
164:16, 382:7	422:23,
judgement	429:22,
327:17,	431:24
327:25	keeping 29:14,
Judith 4:14,	311:21,
327:15	352:9, 408:21
Judy 327:25	keeps 318:10
juggle 240:16	Keith 428:6,
juggling	428:8
302:24, 303:6	Kelley 173:21,
July 217:23,	174:7
265:15	kennel 372:3
jump 90:10,	kept 35:19,
365:4	353:20,
June 93:6,	421:17,
93:21,	421:18,
157:18,	429:24
192:10,	Kevin 2:12,
195:24	10:23
Juniper 206:6	key 67:9,
jurisdiction	125:15
17:8	kill 422:12
justified 418:5	kilogram 101:3,
juvenile 118:17	$\begin{aligned} & 101: 5, \\ & 101: 22, \end{aligned}$
	102:4, 102:6,
< K >	102:10,
k.ervitucker@gm	103:1, 104:8,
ail.com 4:20	104:9,
Kallin 3:14	141:17,
Keep 22:25,	146:2,

jobs 95:11, 95:12
jobsite 344:9
10:22
Johnston 431:20
joined 89:24, 90:2, 90:8, 153:6, 192:3, 207:6, 207:8
joining 119:25
joint 166:15
Jonkman 343:15
journals 306:25
Jr 4:6
jtourangeau@dwm
law.com 3:12
Judge 85:17,
85:24,
164:16, 382:7
udgement
327:17,
327:25
Judith 4:14, 327:15
Judy 327:25
juggle 240:16
juggling 302:24, 303:6
July 217:23, 265:15
jump 90:10, 365: 4
June 93:6, 93:21, 157:18, 192:10, 195:24
Juniper 206:6
jurisdiction 17:8
justified 418:5
juvenile 118:17
< K >
.ervitucker@gm ail.com 4:20

Keep 22:25,

43:17, 44:18,
$58: 3,58: 16$,
59:24, 61:24,
65:11, 68:16,
171:16,
204:4,
206:22,
226:2,
231:11,
231:13,
235:13,
250:14,
262:1,
319:22,
350:20,
361:14,
395:11
413:8,
422:23,
429:22,
431:24
keeping 29:14,
311:21,
352:9, 408:21
keeps 318:10
Keith 428:6, 428:8
Kelley 173:21,
174:7
kennel 372:3
ept 35:19,
353:20,
421:17,
421:18,
429:24
Kevin 2:12, 10:23
key 67:9, 125:15
kill 422:12
kilogram 101:3, 101:5, 101:22, 102:4, 102:6, 102:10, 103:1, 104:8, 104:9, 146:2,

146:18, 156:12, 156:13, 156:20, 156:22, 156:24, 384:7, 385:24, 387:1
kilograms
146:6, 157:2
kilometer 41:3,
61:1
Kim 4:16, 8:15, 327: 6
kinds 25:9,
25:25, 42:2,
44:12, 51:4,
82:25,
217:19, 222:9
Kingfish 306:19
Kittery 327:10
knocks 46:15
knowing 94:1
knowledge
36:18, 66:16,
120:7, 311:1, 320:18, 333:22, 354:11, 354:13, 363:22, 383:14, 387:15, 423:1
known 204:13,
237:15,
245:6,
278:17, 284:13, 307:15, 317:19, 340:15, $366: 4$
knows 224:11,
311:17, 341:8
kracine@curtist haxter.com
3:38
Kristin 3:34, 23:3
$<\mathrm{L}>$
L. 327:21,

327:22, 379:4
lab 259:12
labeled 173:14, 208:19,
231:19
labor 422:9
laboratory
103:19,
108:18
lack 111:25,
181:25, 333:4
laid 145:1,
145:8, 146:5
lain 232:24
land-base 330:10
LAND-BASED
1:12, 15:11,
15:13, 15:25,
16:1, 17:13,
20:8, 22:6,
22:9, 93:23,
128:2, 328:6, 330:12,
422:22
Landfill 103:7, 103:10,
103:14,
103:17,
103:20,
104: 4,
104:11,
104:15,
104:20,
126:16,
156:23,
253:2, 396:18
landfillable 205:24
landfilled 155:20
landfills 103:6 landing 247:18, 268:20
landings 311:2, 360:15, 369:4, 369:5
landowners

338:1,
409:13,
409:16
Lands 223:17,
224:14
landscape 306:21
landward 245:20
lane 102:21
language 183:4
Lannan 3:41,
163:13
large 17:1,
18:19, 22:6,
95:4, 117:14,
190:21,
204:2, 227:8,
228:20,
240:1,
265:18,
299:14,
343:21,
355:23,
358:23,
367:14, 398:5
largely 311:21,
312:18
larger 28:23,
61:14, 227:5,
228:25,
229:3,
278:21,
385:9, 423:3, 429:15
largest 42:9,
94:10
larvae 75:20, 115:18
lastly 316:11
late 173:8,
201:21,
306:22,
317:25,
331:9,
355:12,
402:12,
407:19,
420:6, 431:21
lately 345:19
latent 329:4
later 30:14,
67:12, 72:7,
92:17, 93:15,
108:20,
128:16,
131:3,
148:11, 198:2, 205:16, 252:15, 319:7
lateral 242:11
latest 18:21,
272: 6,
341:18, 400:21
latitude 77:16, 335:25
laughed 415:19
Laughter.
31:14, 47:25,
52:24, 66:24, 90:24,
163:16, 223:24, 224:1, 226:8, 280:25,
344:3,
355:10,
365:10,
365:14,
370:12,
372:6, 401:4, 404:12, 405:1, 405:18, 418:23, 421:5, 423:6, 424:18, 426:20, 427:6, 427:9, 431:5
LAURA 2:11
law 167:23, 335:11, 335: 20, 335:22, 338:18, 338:22, 338:25, 339:3, 339:6,

339:7,
339:16,
352:6, 352:9, 382:6, 382:7, 382:8, 382:12
lawn 229:24
Lawrence 4:33
laws 372:8, 428:3
lawyer 353:17
lawyers 421:25
lay 98:6,
424:13,
424:14
layer 145:3,
162:10,
163:21,
232:23,
242:16
layering
260:20,
260:22
layers 149:16, 165:3, 243:7, 261:6
laying 94:17, 145:14, 265:17
layout 197:3, 228:12, 228:17, 229:15
layouts 98:9, 99:8
leach 103:15, 103:19
leaching 103:13
lead 249:23, 343:16
lead-based 295:18
leader 409:6
leading 156:14, 198:19,
241:7, 421:9
leads 289:18
leaks 23:15
leaning 387:8
leap-frogging 246:16
learn 154:23, 221:18,
316:17, 317:21
learned 30:13, 30:14, 415:3, 415:25, 421:23
lease 223:18,
348:9, 404:3
least 17:18, 43:21, 68:25, 135:8,
215:14,
242:23,
276:20,
284:18,
287:13,
309:15,
348:5, 350:3, 369:3,
371:15,
394:20,
417:16
Leave 39:3,
126:9,
144:10,
261:23,
359:20,
361:16,
362:5,
387:11, 396:8
leaving 293:10, 365:2
led 35:15, 102:12
ledge 350:9, 350:10, 350:12
leeway 132:23
left 38:9,
38:14, 38:15, 125:8, 336:7,
345:14,
345:22,
347:3,
368:18, 380:23, 396:14
left-hand

200:16
legacy 248:23
legal 338:19, 371:25,
372:2, 381:2, 381:9, 382:19
legislation 127:20
legislative 159:20
Legislature 26:19, 159:25, 160:10, 304:20, 333:1, 339:21, 340:10, 377:21
legitimate 312: 14, 382:21
legitimately 317:12
lends 254:12
length 41:1,
41:2, 122:17, 124:17, 125:1, 140:21, 145:11, 145:12, 170:8, 174:24, 189:3, 189:14, 189:17, 256:14, 273:4, 413:5, 415: 6
leniency 22:22
less 15:12, 15:13, 20:4, 46:24, 103:22, 106:4, 106:9, 107:2, 116:20, 135:9, 137:19,

141:10,
157:21,
185:18,
196:10,
197:13,
197:18,
204:25,
239:17,
246:9, 247:2,
309:25,
315:7,
357:14,
360:9, 410:13
letter 189:19,
356:17,
369:14,
412:1, 426:2
letters 236:2
letting 373:21,
412:25
level 32:9,
32:19, 64:24,
88:11, 102:5,
106:2, 124:3,
143:7,
145:24,
147:24,
148:4, 148:8,
155:7,
158:12,
158:24,
178:3, 182:6,
183:19,
183:23,
184:20,
190:7, 264:1,
265:6,
288:23,
300:23,
312:2,
328:18,
349:18, 385:7
levels 18:4,
64:25,
126:22,
129:23,
142:15,
146:4, 159:9,
160:9,
160:24,

157:21,
185:18,
196:10,
197:13,
197:18,
204:25,
239:17,
246:9, 247:2,
309:25,
315:7,
357:14,
360:9, 410:13
letter 189:19, 356:17,
369:14,
412:1, 426:2
letters 236:2
letting 373:21, 412:25
level 32:9,
32:19, 64:24,
88:11, 102:5, 106:2, 124:3, 143:7,
145:24,
147:24,
155:7, 148:8,
158:12,
158:24,
178:3, 182:6,
183:19,
183:23,
184:20,
190:7, 264:1,
265:6,
288:23,
300:23,
312:2,
328:18,
349:18, 385:7
levels 18:4,
64:25,
126:22,
129:23,
142:15,
146:4, 159:9,
160:24,

182:12,
183:6, 299:7,
300:18,
300:20,
333:2,
349:20,
355:17,
383:1, 384:6,
385:2, 385:21
liberal 167:19
Liberty 279:14, 279:22
license 337:18
licensed 103:9, 327:9, 338:11
licensing 362:19
lie 378:25
life 91:23,
112:18,
119:1,
239:10,
239:25,
257:17,
279:24,
304:11,
340:15,
358:15,
361:10,
361:22, 408:6
lifeline 169:16
lifetime 356:9
lift 272:3,
272:14
lifting 232:23, 266:24, 272:9
light 366:14
lights 419:23
likely 81:13,
118:6,
188:19,
219:25,
220:7,
220:16,
220:17,
289:10, 416:6
limb 32:15
limit 101:4,
142:24,
226:13,

226:14
limited 36:18,
123:15,
125:10,
200:24,
284:1, 314:15
limiting 227:9,
317: 6
limits 49:24
Lincolnville 4:18, 365:3
linear 109:5
lines 339:13, 395:6, 395:16
link 12:13, 12:15, 12:17
links 279:13
list 96:25, 97:15, 97:16, 112:17, 112:20, 114:5, 193:5, 213:7, 215:7, 237:1, 237:20, 258:14, 262:1, 282:15, 319:24
listed 114:12, 186:13, 212:14, 214:23, 220:3, 281:25, 355:25
listeners 137:2, 153:5
listening 12:16, 13:2, 362:7, 389:7, 428:15
listing 214:25
lists 294:23, 320:2
literally 417:3
literature 112:2, 182:14, 183:18
live 31:11, 361:9
lived 226:22, 227:11, 408:10
livelihood 285:1
Livesay 2:16, 10:20, 89:25, 231:14, 231:19, 231:24, 231:25, 383:22, 383:24, 387:12
living 337:22, 351:13, 358:17, 368:16
load 223:1, 268:24
loading 80:9
loads 243:15, 425:3
loam 106:22, 345:20
Lobstering 4:13, 159:3, 159:20, 327:8, 333:18, 338:6, 368:3
lobsterman 189:10
lobstermen 188:11, 327:9, 327:11, 333:21, 383:13
Local 31:4, 69:5, 91:24, 95:11, 203:24, 327:11, 354:11, 354:14, 363:22, 369:1, 369:6,

369:10,
371:11,
410:23,
411:19,
416:1,
418:15, 425:9
locality 82:5
localized 81:23
locally 419:1
locate 96:16, 338:18
located 17:9,
93:24, 96:12,
99:22, 266:8,
354:6, 358:3,
359:1,
362:21,
368:8,
389:15,
395:17,
395:18
Locating
338:13,
338:16
Location 10:6,
52:6, 67:24,
93:2, 124:24,
137:22,
140:23,
155:7, 159:7,
172:6, 175:9,
195:5,
224:22,
228:19,
235:17,
249:18,
284:8, 284:9,
287:24,
288:12,
289:13,
297:10,
328:18,
331:1,
333:13,
348:18,
354:9,
360:17,
369:2, 395:17
locations 74:5,
97:1, 97:7,

97:13, 97:19, 101:14,
146:14,
176:2, 298:6, 338:17, 366:7, 392:15
$\log 262: 10$, 262:13
logged 105:22
logistical 99:4
logistically 249:18
logs 262:8
long-armed 351:19
long-eared
212:21,
213:6, 215:7,
216:16,
277:7,
301:16, 301:18, 301:22
long-reach 246:3
long-standing 417:2
long-term 187:17, 187:23, 256:20, 281:10, 311:12, 383:14, 426:7
longer 38:4,
82:12, 89:12, 165:14, 256:5, 268:1, 280:23, 293:19, 393:8, 407:4
looks 56:6,
56:12, 58:13, 59:1, 59:6, 64:15, 68:11, 88:16,
137:21, 150:6, 200:18, 382:2
loose 274:7,

277:9, 301:22
loosely 394:18
loss 108:6,
115:17,
188:20,
214:25
lost 163:18,
187:22,
333:25,
369:8, 403:8, 415:17
lots 80:24, 150:14,
308:13
loud 419:21
loudest 115:25
love 11:25,
426:19
low 42:11,
108:20,
122:6,
122:18,
123:5,
123:12,
123:18,
125:2, 125:4,
125:16,
142:15,
144:8,
145:17,
170:14,
204:17,
221:4, 222:3,
239:24,
240:11,
240:20,
255:17,
283:16,
293:3, 300:2,
310:13,
312: 24,
338:14,
338:17,
406:11
Lower 17:19,
17:21, 18:10,
24:10, 38:23,
85:4, 107:6, 116:14,
233:11,

349:20,
355:17,
359:11
lreichard@gmail .com 4:37
luckier 280:18
lucky 280:8,
280:16
lucrative 364:9
lunch 11:7,
167:9,
191:19,
191:21, 296:9
Luncheon 192:1
< M >
M. 3:14

Ma'am 319:20, 374:17
Mabee 4:14, 327:16
Mabee-grace 338: 5
Mack 356:12, 364:2
MADORE 2:21
magically 379:6
magnitude
17:19, 17:21,
46:24, 101:11
magus 419:9
main 41:10,
42:23,
111:12,
117:22
maine.gov/dep/b ep.html 12:14
Mainedep 120:1
Mainedot 173:23
Mainer 405:19
Mainly 92:17,
113:8,
115:12, 116:7
maintain 24:17, 130:14, 204:3
maintaining
28:21, 256:22
maintenance
29:14, 258:6,

422:17
major 15:1,
30:12, $94: 3$
112:1, 112:5,
112:8, 218:1,
218:8,
340:12,
380:5,
380:13, 407:5
majored 13:19
majority
287:16,
347:9,
363:11, 424:6
mall 203:24
Mallinckrodt
332:1
man 347:23
manage 41:8, 90:22,
307:11,
313:3, 338:1, 338:5
managed 305:20, 306:5
Management
13:12, 13:25, 92:15,
119:17,
119:19,
126:2
170:21,
289:25,
290:7, 306:1,
307:2,
320:21,
337:20,
337:21, 418:1
Manager 90:2,
92:24, 105:8, 119:14,
145:11,
150:10, 360:8
managing
125:20,
420:14
mandated 422:23
manner 199:1
Manual 100:21, 154:25,

207:13
manufacture
305:14
map 107:10,
135:15,
138:14,
138:15,
178:9, 231:3,
231:17,
231:19,
258:24, 424:6
maple 237:13
mapping 109:16,
142:2, 142:3,
288:8, 288:9,
288:12
maps 136:1
March 283:9,
287:1
Marginal 3:8, 3:16, 3:24
Mark 2:2, 90:6, 168:19,
169:5,
170:14, 292:9
marked 188:18
Market 94:1,
94:2, 95:9,
95:19, 97:10,
192:24,
193:1, 193:3,
408:13
markets 305:10
markings 297:5
marks 338:14
married 301:8
Marsh 107:18,
107:19,
150:1, 161:6,
232:22,
350:5, 400:20
Martin 2:12,
7:16, 8:13,
10:23,
138:25,
247:25,
248:1,
250:23,
251:19,
252:20,

253:16,
254:14,
322:8,
322:10,
322:12,
323:2, $341: 8$
Mass 64:22,
65:1, 214:5,
249:19
Master 91:12,
105:5, 381:6,
408:10,
413:20,
413:21
mat 100:10,
122:17,
122:24, 123:1
match 267:14, 327:1
matches 267:15
Materials 25:9,
100:7, 123:8,
152:1,
152:19,
173:8,
206:18,
242:17,
274:7, 346:4,
350:15,
351:6,
351:20,
383:4, 396:13
Mathematics
13:17
matrix 97:19, 98:19, 199:17
mats 122:19,
125:19,
223:15,
224:10,
224:17,
224:21,
225:3, 398:24
matted 123:3,
123:20,
123:22
MATTER 1:9,
23:11, 77:17,
79:18, 80:18,
330:25,

351:8, 390:2, 408:17
matters 308:7
mattresses 298:9
Mattson 301:7 matway 345:5
Maureparticle
73:20, 75:12,
76:8
maximum 46:1,
115:6,
239:12,
259:3, 275:14
MBA $30: 14$,
314:10, 317:9
Mcdonald 92:18
Mcglone 431:20
meadow 105:20, 105:23,
107:25,
108:4,
236:20, 237:19
meadows 227:4
meal 25:10, 25:25
meals 19:1
meaning 171:18, 189:7
means 46:10, 46:11, 46:12, 121:4, 121:9, 121:15, 250:19, 334:21, 376:11, 385:7, 433:6
meant 244:9, 244:11, 407:23
meantime 87:10, 415:22
measurable 28:14
measure 225:4, 275:3
measured 74:1, 74:2, 74:3, 74:4, 109:4,

410:22
measurement
45:19, 84:6
measurements
55:11, 68:19,
70:7, 70:14,
71:4, 73:5,
73:25, 75:17,
81:7, 84:11,
85:5
measures
115:21,
121:8,
121:21,
182:22,
184:7,
184:15,
189:22,
251:1, 251:4,
252:3
meat 157:24, 300:20,
429:22
mechanical
171:24
mechanics
322:18
mechanism 73:1, 238:8, 240:14
mechanisms
19:25, 241:16
meet 16:14,
94:13, 98:23, 99:1, 99:24, 104:12, 130:17, 204:7, 226:6, 250:2, 250:12, 250:21
meeting 240:11, 414:13, 420:22, 420:25
meetings 120:16
meets 209:17, 387:16, 424:8
MEMBER 10:9, 13:4, 13:22, 53:21,

120:13,
195:10,
276:12,
291:7, 334:16
Members 2:1,
10:12, 11:8,
12:1, 12:23,
91:2, 92:4,
105:1,
162:25,
195:12,
303:10,
304:4,
323:24,
353:10,
402:18,
406:20,
410:10
memo 53:20,
59:2, 188:25,
267:14,
342:20
memorandum
36:14
memory 70:17,
389:18
memos 170:24
men 419:7
Mendall 161:6
mention 252:2,
369:16,
369:17
mentioned 87:3, 103:2,
117:15,
126:14,
127:13,
171:5,
175:22,
177:25,
186:17,
195:6,
205:20,
230:18,
230:24,
236:12,
246:10,
250:7, 251:3,
253:17,
254:5, 264:9,

268:14,
269:9, 290:1,
335:24,
352:25,
$364: 1,372: 18$
mentor 361:7
mentors 14:24
MEPDES 23:10, 36:12, 129:3, 132:16, 152:4, 152:6, 201:14
merely 98:5
mess 399:9
met 197:20,
198:25,
304:13,
306:19,
316:15,
411:22,
416:21,
419:20
metal 396:1
metals 101:1,
259:8, 261:8, 299:15, 299:21
metered 126:19, 274:23
meters 28:23, 40:6, 46:17, 242:14
methane 149:24, 149:25,
152:12,
170:16,
172:12,
172:20,
173:18,
174:8,
184:12,
184:20,
329:4, 360:23
method 75:23, 150:12, 188:10,
238:14,
263:8, 298:25,
188:10,
238:14,
263:8, 328:21,
328:21,

329: 6,
334:11,
334:12,
334:13,
348:18,
348:19,
382:19
methodologies
322:14
methodology
102:1,
103:11,
142:3, 155:1,
155: 9,
155:16,
155:17,
155:19,
155:21,
161:17,
171:1, 171:2,
263:8, 263:9,
265:20,
281:23, 282:9
methods 121:4,
121: 9,
121:13,
230:18,
254:24,
328:22,
334:5, 381:2,
387:5
methylating
332: 8
methylmercury 332: 9,
332:16,
357:12
metric 26:2, 94:14, 94:23, 239:13
metrics 239:8, 239:9, 239:11
MGL 8:14, 142: 4,
143:11, 303:3
Mic 136:24, 163:9, 323:21, 381:14, 381:21

Michael 3:41
micro 32:9
microfiltration 19:7, 23:8 micrograms 101:2, 146:6
Micrometers 23:9
micron 23:12, 23:14, 360:1, 360:2
microns 360:5, 360:10, 430:6 Microphone 37:15, 53:8, 76:25, 77:1, 77:5, 77:6, 163:12, 224:25, 296:16, 337:6, 353:9, 374:4, 377:2, 381:17, 412:19
mid-coast 97:21, 198:1, 199:12, 288:2, 327:12, 330:9, 332:19, 369:6 Middle 24:10, 45:21, 350:12
midnight 326:10
migrate 158:4, 276:16, 276:22
migrated 309:12
migrating 190:16, 276:15
migration 118:21, 118:24, 357:2
Migratory 116:16, 117:25, 118:1, 118:16, 119:8, 190:8,

191:8, 214:12, 216:14, 277:24, 309:10
Mildred 119:22
mile 157:20,
358:4, 368:9, 396:15, 410:13, 423:10, 423:12
miles 102:22, 157:21, 159: 6, 357:10, 357:14, 358:10, 399:13
mill 343:23
Miller 247:25, 322: 8
milligram 146:2, 146:18
milligrams
101:3, 101:5, 101:21, 102: 4, 102:6, 102:10, 103:1, 104:7, 104:9, 141:17, 146:6, 156:13, 156:20, 156:22, 156:24, 157:2, 384:7, 385:23, 387:1 Milliken 330:21
million 14:6, 16:5, 17:10, 18:1, 21:6, 50:24, 51:6, 77:23, 115:7, 318:15, 330:15, 330:22, 358:19, 363:15,

370:25, 430:10
mills 249:7
mind 50:1,
140:2,
225:20,
237:2,
287:18,
317:1, $362: 4$, 395:1,
417:10,
417:13
mindful 319:13
minds 430:20
miniature 390:4
minimal 116:3,
122:25,
180:13,
182:21,
190:9,
193:14,
222:8,
277:20,
311:4, 315:2
minimally
113:16
minimization
228:13
minimize 15:6,
25:22,
228:18,
228:24, 229:6
minimized
116:4, 116:5
minimizing
123:14, 309:9
minimum 24:8,
183:23,
194:24,
195:2, 360:4
minor 120:12, 251:6, 340:11
minute 49:5, 85:13, 89:20, 152:15, 153:5, 191:23, 200:1, 200:22, 200:25,

201:2, 201:6,
201:19,
231:9,
258:15,
263:18,
302:8,
323:17,
335:16,
370:20,
375:8,
375:12,
407:11
minutes 47:6, 49:1, 179:19, 191:24, 345:11, $370: 8$, 370:18, 374:19
mirroring 236:8
misrepresentati ons 329:13, 329:23
missed 263:17, 280:15, 317:4, 324:6
misspoke 319:18, 407:18, 407:21
mistaken 212:14 misunderstandin g 135:12
MIT 34:24
mitigate 275:3
mitigated 116:8
mitigating 121:10
mitigation
115:21,
121:21,
182:22,
184:7,
289:22, 337:22
mix 43:22, 107:21
mixed 155:24, 156:8, 157:7, 350:15
mixing 43:14, 44:3, 45:1, 45:9, 46:8, 46:21, 56:12, 349:19, 359:15
mlannan@techenv .com 3:46
Mmm 30:10,
61:21, 66:9, 74:19, 268:16, 276:17, 277:6, 278:15, 282:16, 284:10, 298:15, 373:10, 389:7, 389:21, 393:11
mobile 116:2, 116:17, 310:18
modelers 305:24
models 38:10, 39:24, 54:3, 54:14, 56:3, 62:18, 66:18, 73:9, 75:15, 80:6, 80:13, 81:4, 81:8, 82:5, 83:2, 84:2, 84:6, 86:17, 86:19, 321:18
modern 17:7, 33:16, 82:14
modify 102:19
modifying 229:14
module 99:22
modules 98:10, 98:11, 98:12, 98:13, 98:21, 196:24, 228:20
Mohlar 2:17, 10:21

Mola 83:10
moment 10:12, 33:13, 49:2, 67:1, $90: 14$, 90:20, 127:20, 152:1, 182:17, 185:13, 204:22, 344:18, 379:19, 379:21, 380:18, 406:19, 407:15
momentum 56:10
Monday 151:6, 342:20
money 425:8
monitor 275:2, 421:15
monitored 235:23
monitoring
67:22, 91:18,
126:19,
235:21,
236:1, 251:9,
251:10,
251:12,
252:1,
256:10,
256:12,
257:15,
274:22,
274:23,
274:24,
308:10,
313:16,
313:25,
411:14,
411:18,
427:18
Monterey 16:22
month 70:24,
87:16,
292:10,
292:17, 309:5
months 92:8,

150:17,
183: 9,
195:22,
195:23,
201:20,
304:12,
309:5, 365:1,
369:11,
383:4, 383:5
monuments
338:19
moored 397:20
mooring 364:8, 364:11, 364:14
Moravian 120:12
morning 10:4,
12:22, 20:16,
23:1, 23:2,
72:16, 72:17,
91:1, 104:25,
119:12,
157:13,
196:2,
197:15,
215: 4,
241:12,
321:5,
324:22,
336:15,
371:7, 431:18
morphology
238:22, 255:1
Morrissey 92:19
mortality 418:3
mostly 77:16,
117:25,
172:1,
243:11, 355:15
Mother 331:22, 372:17
motion 401:8, 401:23
motor 247:17
mountain 339:22
mouth 101:23, 357:10
move 11:2, 20:15, 27:24,

34:6, 36:10,
41:5, 62:1,
63:10,
116:17,
146:15,
216:24,
229:3, 267:2,
267:5,
293:17,
296:10,
302:18,
311:23,
314:25,
315:1,
346:20,
367:25,
380: 20,
392:10,
397:3, 397:5,
412:18,
429:14,
429:21
moved 164:8,
166:23,
229:12,
242:8,
311:22,
357:9, 365:7
movement 51:9
moves 50:18, 156:20
Moving 15:13, 25:20, 26:4, 32:5, 50:19, 50:20, 57:3, 59:9, 59:14, 65:9, 89:22, 190:20, 190:21, 232:24, 250:23, 298:19
mowed 229:23
mowing 105:24, 227:10
mucky 399:9
mud 107:21, 125:7, 148:24, 149:24,

170:17,
171:16,
171:18,
171:19,
175:14,
184:12,
204:25,
310:13, 329:4
muddy 149:19
mudflat 222:8,
284:7
mudflats
283:21,
283:24,
308:20,
398:19,
398:24
multi-beam
243:1
multi-disciplin
ary 14:1
Multi-sector
120:2
Multiple 14:4,
16:19, 51:15,
74:1, 100:23,
133:12,
134:2,
135:21,
180:25,
181: 4,
227:13,
338:1, 354:1
multipurpose
260:11
Municipal
354:21,
354:23,
355:8,
355:15, 420:5
mussel 114:10,
185:3,
185:25,
222:9,
283:25,
284:13,
329:12
mussels 185:4, 284:16,
284:18,

284:22,
309:19,
309:22
myriad 419:7
myself 10:14,
53:1, 86:11,
168:11,
207:19,
339:5,
344:12,
359:22,
369:22
< N >
NAF 327:14,
328:17,
329:7,
329:22,
329:24,
330:14,
332:24,
333:2, 333:7,
333:15,
333:24,
334:9, 338:3,
347:25, 348:3
naive 421:21
name 10:9,
13:3, 13:4,
23:3, 45:18,
53:1, 53:12,
91:9, 105:2,
111:11,
119:12,
185:12,
197:10,
304:7,
320:10,
327:6,
337:16,
353:11,
353:12,
362:11,
408:8,
410:10, 413:2
named 343:15
names 384:2
nanograms
143:7,

145:24,
146:25,
153:16,
153:24,
156:4,
156:12,
156:18,
157:3, 157:8, 157:16,
157:23,
158:11,
178:21
narrative 341:17
narrow 78:14,
107:19,
108:11,
116:16,
147:21, 400:3
narrowed 96:15, 97:15, 193:5, 263:20
narrower 45:12
narrowing
196:19
narrowly 306:2
NAS 328:25,
329:13
natal 118:18
Nate 129:25
National 13:13,
14:6, 339:3,
414:10
Native 110:7,
110:12,
110:15,
111:2, 234:9,
234:10,
234:24,
235:7,
236:24,
236:25,
305:9, 420:10
Natural 10:7,
93:1, 105:16, 109:13,
111:7, 208:6, 209:20,
211:11, 228:15,

230:9,
235:24,
237:3, 237:6,
252:9,
269:15,
286:13,
298:17,
331:22,
332:13,
337:23,
340:16,
342:13
naturalized
236:24
naturally
230:10
Nature 190:25,
307:21,
310:10,
331:22,
368:2, 385:4
Nault 186:23
Naval 119:22
navigational
185:25,
186:19
near 31:11, 32:1, 38:5, $38: 6,40: 10$,
41:6, 43:20,
46:19, 46:20,
46:23, 55:1,
103:16,
107:7, 146:4,
157:20,
177:16,
204:19,
211:13,
211:14,
277:13
near-field
53:22
nearby 84:11, 206:2,
277:11, 295:7
nearly 119:25,
287:17,
358:23,
360:16
Neault 369:14
necessarily 65:14, 81:5, 118:9, 139:2, 158:11, 183:16, 190:18, 203:25, 259:17, 264:13, 293:17
necessary 159:10, 328:25, 329:7, 333:9, 418:19,
419:1,
425:19, 426:7
needed 85:15,
85:22,
186:25,
244:8,
252:18,
264:24,
265:18,
287:16,
291:9,
298:14,
331:21,
333:12,
353:19,
417:18
needing 232:13
needs 23:25,
24:24, 79:20,
79:23, 86:5,
106:6,
142:23,
177:8,
190:25,
197:21,
250:2, 287:5,
337:6, 396:6,
417:21,
420:14
negative 37:3, 239:12, 423:23
negligible
67:7, 311:12
neighbor 412:9,

415:5, 421:7 neighborhood 265:3, 409:14, 412:13,
413:9,
415:23,
420:17
neighbors
413:9,
415:25,
417:11, 428:3 neither 333:14 nesting 227:5 nests 227:13
net 15:14,
39:19, 39:20,
40:12, 40:23,
127:23
neutral 331:15, 348:20
neutrally 148:6
newly 416:25
news 113:14,
275:23,
275:24,
276:1,
415:20,
415:24
nice 201:16, 372:14
Nick 2:16,
10:20, 89:25, 383:21
night 67:5,
81:24, 93:12,
93:17, 248:2,
256:3,
326:15,
361:11,
407:11,
419:22,
419:24
Nimbyism 418:4
nine 119:15, 217:20
nine. 296:14
Nineth 151:4
nitrate 19:12, 19:17

Nitrification

$$
19: 9,19: 11
$$ 27:19

nitrogen 16:9, 19:12, 19:17, 19:20, 26:14, 26:15, 26:18, 26:21, 27:4, 27:11, 65:25
No. 20:22,
21:4, 21:16,
24:14, 62:22, 63:8, 73:22,
127:10,
129:20,
178:24,
205:17,
221:2,
247:21, 283:15,
300:16,
301:12,
301:15,
302:2, 302:5,
323: 8,
336:19,
384:8,
404:22,
405:10,
405:12
Nobody 33:1, 50:21, 55:5, 95:9, 165:3
nod 269:22
Noise 115:13, 115:22, 115:25, 418:12, 418:13, 419:18
non-detect 178:5
non-hazardous 103:10, 103:24
non-issue 20:7, 31:16
non-profit 306:8, 408:19,
$413: 7$
$416: 4$
non-starter 249:2
non-tidal
63:14, 63:18
None 32:22,
51:11,
149:22,
167:17,
198:16,
323:5, 328:5
Nonetheless 416:5
Nope 235:12, 405:14
Nor 185:14, 333:14, 418:15
normal 150:18, 285:23, 338:7, 338:16
normally 38:10, 49:13, 89:8
Normandeau
69:16, 92:22, 100:16, 105:9, 111:9, 111:12, 149:3, 154:22, 179:25, 180:6, 191:6, 207:21,
207:22, 209:23, 210:1, 240:9, 240:13, 259:21, 276:12, 312:10, 389:13
North 40:3, 40:7, 41:7, 41:21, 43:24, 62:25, 63:21, 64:3, 64:9, 79:17, 99:12, 102:13, 102:22,

159: 6,
159:23,
178:2,
264:24,
280:3,
287:22,
288:1,
308:24,
321:21,
363:20,
367:14
Northeast
80:21,
237:16,
309:1, 414:2
Northeastern
94:16
northern 96:17, 97:21, 97:24, 198:1,
199:12,
212:20,
277:7, 301:21
northernmost 289:13
Northport 3:32, 30:24, 185:4, 185:20, 329:12, 354:2, 362:14, 362:22, 369:1
Northport/belfa st 363:8
northwestern 101:23
Norway 411:2
nose 215:2
notable 389:24
notably 390:8
notarized 324:14
Notary 1:23, 433:3
note 50:15, 104:5, 113:18, 117:8, 135:14, 164:12,

202:3,
14.23,

18:21,
28:19,
231:24,
245:3,
261:21,
270:4,
295:14,
295:24,
304:10,
306:7,
307:25,
316:4,
321:15,
352:11,
356:20,
357:13,
362:23,
378:6, 410:2
108:16,
121:23,
141:11,
147:9,
173:13,
188:21,
295:21,
309.17,

310:18,
318:9,
318:11,
330:12,
380:19
notes 47:21,
215:8,
243:14,
343:8, 344:1
noteworthy
171:20
nothing 12:9,
30:13, 33:8,
57:18, 90:16,
113:3,
113:16,
161:7,
171:20,
335:21,

336:23,
361:20,
410:7, 417:18
notice 160:11,
166:24, 347:5
noticeable
118:9,
389:24,
423:20
noting 267:23, 268:6
November 133:6, 133:19, 133:23, 134:15, 138:2, 284:5, 309:3, 350:13, 399:18
Noyes 430:6
NRDC 331:8,
332:1, 332:2
NRPA 93:2,
93:4, 93:9,
98:15,
209:16,
237:6,
238:18,
240:11,
243:9,
328:13,
333: 8,
340:17,
342:11,
347:9,
347:24,
387:16,
392:25,
416:14
numbers 103:18, 109:14, 156:15, 239:7, 324:22, 325:7, 387:1, 395:9
numerical 36:17, 37:23, 37:25, 53:24, 56:1, 238:10

Numerous 36:23, 320:1, 383:7
nutrient 19:25
nutrients
18:11, 65:25, 66:6, 80:23, 81:3
NVC 23:4
< O >
o'clock 191:24
oath 374:15, 374:18, 395:5
object 47:7, 69:19, 77:14, 130:19, 143:19, 143:22, 225:25, 326:11, 373:14, 381:11, 382:4, 382:6, 384:14, 390:6 objected 187:16, 224:2
objecting 169:20, $346: 8$
objective 94:22
objectives
94:18, 99:25
obligated 104:12, 354:12
obligations 13:9
observably 366:8
observation 281:10
observations 54:16, 218:17, 220:11, 220:12, 220:13, 278:12, 281:18
observe 221:24,

	$222: 1,423: 13$
	220:8,
	220:17,
	220:18,
	227:1,
	229:24,
	238:2,
	345:19,
	423:17
	observers $430: 16$
	Observing 35:3
	35:10, 90:3,
	278:4,
	286:10,
	304:25
	obstacle 119:2
	obtained 201:3
	obtaining
	288:18
	Obviously
	67:25, 95:
	97:8, 104:
	124:13,
	129:12,
	129:22,
	144:9,
	144:11,
	196:9, 203:1
	205:11,
	245:4, 248:
	248:16,
	251:22,
	251:25,
	252:9,
	252:23,
	264:16,
	264:18,
	309:18,
	312:25,
	313:18,
	323:9, 403:6
	occasional
	340:12,
	360:25
	occur 115:11,
	115:14,
	115:19,
	187: 6,

187:14,
189:18,
233: 4,
245:14,
291:21
occurred 43:1,
299:25, 390:7
occurrence 51:9
occurs 18:13,
45:9, 290:12,
403:12
Ocean 15:13,
15:16, 32:2,
32:5, 35:3, 35:9, 39:14,
80:17, 83:11,
83:24,
152:11,
166:16,
167:19,
202:6, 304:24
ocean-based
15:14, 15:18
ocean-going
361:1
oceanographic
17:24
Oceanography
34:22
Oceans 306:19, 307:4,
330:11,
430:8, 430:10
oceongraphers
305:23
October 207:6, 247:1,
292:15,
292:16,
309:4, 372:12
odor 417:24,
417:25,
419:18
off-season
310:2
off-shore
262:20,
309:11,
315:1, 343:23
off-site

126:16, 252:6, 265:3, 290:2
offense 57:24, 332: 3
offer 139:15, 418:15, 420:8, 420:11
offered 241:2, 409:12
Office 2:10,
2:11, 2:12, 229:10, 304:6, 337:2, 359:24
Officer 1:20, 10:11, 12:23, 49:15, 52:11, 91:2, 105:1, 134:13, 134:17, 164:19, 286:3, 304:4, 304:8, 323:23, 346:14, 353:10, 353:19, 359:23, 388:19, 401:15, 402:3, 402:9, 407:20, 410:10
official 352:3
offset 95:1, 95:6, 411:2
offsets 111:4
offshore 15:22, 32:4, 39:22, 40:14, 54:23, 96:4, 194:7
often 227:13, 232: 4, 244:18, 270:16
oil 69:15
oils 19:1
old 35:14,
150:1,

295:15,
295:16,
361:15
older 18:14,
368:17,
372:23
Omega 25:11
omissions
347:19
on-air 12:16
on-shore 96:4
on-site 109:1,
109:7,
109:22,
110:1, 111:3,
219:15,
220:1, 238:6,
239:22,
263:23,
264:3, 264:4,
277:11,
411:16,
420:13
Once 25:8,
31:4, 78:23,
85:8, 122:19,
125.17'
142:1, 162:5,
196:14,
253:12,
259:10,
270:6,
302:13,
313:16,
322:20,
346:16,
381:13,
385:11,
388:16,
391:1,
411:18,
429:14, 430:4
one-page 393:1
one-to-one
158:22
ne. 136:6,
198:13,

270:12, $342: 2$
ones 146:23,
176:14,
199:9,
205:25,
237:22,
251:6, 372:17
ongoing 230:7,
251:16,
331:23, 410:19, 421:15
online 12:13, 12:17, 137:3
onset 410:17
Oops 50:4,
414: 6
open 83:23, 108:3,
120:16, 125:8, 126:20, 169:12, 169:14, 206:23, 243:1, 261:23, 291:15, 310:25, 379:22, 398:13, 400:11, $404: 6$ open-bottomed 230: 8
OPENING 6:3, 8:3, 12:21, 303:2, 335:23, 335:25
operated 24:9, 69:6, 124:8
operating 18:20, 112:12, 313:5, 354:25, 403:13
operation 186:3, 246:24,

313:21, 352:10, 358:10, 358:14, 366:10, 396:7, 396:12, 421:10
operational
95:17, 96:11, 97:6, 98:18, 115:25, 135:8, 196:3, 313:17, 319:3, 319:7, 421: 8
operationally 313:3
operations
185:7, 186:8, 246:23,
313:21,
321:5,
409:18,
416:7, 417:9, 420: 9
operator 359:2
opinion 15:4,
23:12, 25:21, 71:23, 73:13, 73:15, 73:16, 79:3, 167:18, 186:19, 187:12 197:19, 223:3, 225:24, 321:12, 335:25, 359:18, 367:19, 396:19
opinions 14:18, 417:13
opportunities
307:4, 361:8, 403:7, 403:8, 410:24
opportunity
33:8, 49:20,

206:23,
250:15,
268:21,
270:2, 270:5
oral 20:13
oranges 386:22
Order 10:4,
11:3, 17:18,
37:19, 46:24,
49:11, 52:13,
64:25, 71:5,
101:10,
112:12,
127:15,
151:4, 155:7,
168:4,
182:11,
203:21,
204:7, 266:1,
298:16,
300:22,
344:15,
362:5, 382:10
orders 17:21
ordinances
153: 20,
418:15
organic 259:8
organism
115:14,
158:17,
284:25,
293:10, 294:2
organisms
19:14,
108:18,
108:19,
116:2,
116:17,
181:18,
182: 6,
255:13,
255:17,
267:2, 267:5,
311:10,
312:22,
312:23,
315:11, 390:4
organization
$306: 7,318: 2$,

320:11, 320:14,
408:19, 416:2
organizations
307:15,
328:5, 408:14
original
131:25,
132:7,
210:21,
229:8, 243:8, 243:12, 243:13, 298:9, 356:19,
375:15, 401:8 originally

325:20
originate 136:18, 252:6
origination
292: 4
others 23:10,
41:14, 66:11, 121:11, 159:21, 179:23, 277:4, 344:5, 373:16,
417:5, 417:12
otherwise
11:25,
199:15, 266:24, 296:2, 331:2, 332:7, 382:9
ourselves
167:25,
262:3, 306:9
out-and-out
213:21
outage 78:3
outfall 28:8, 28:20, 28:24, 36:19, 73:2, 99:8, 185:19 outfalls 355:15 outlined 166:13 outright 212:6 outside 35:21,

69:20, 72:2, 132.21

142:11,
150:4, $160: 2$,
160:13,
223:19,
224:3,
245:25,
274:24,
282:1,
305:16,
365:4, 411:24
outstanding
13:18,
307:14,
307:25
oval 29:21,
29:23, 30:5
overall 72:21,
99:21, 106:5,
116:14,
121:5,
173:16,
213:24,
228:14,
257.19,

299:10,
311:11,
398:12, 421:7
overboard
367:18
overflow 239:4
overhead 395:3
overland
106:15,
106:19,
106:24
overlooked 422:1
overpredict 37:3
overrule 394:17
oversee 92:11
oversimplified 98:1
overview 111:6 own 115:17,

166:24,
172:2,
250:17,
317:20,
327:25,
331:25,
333: 8,
362:24,
378:19,
379:3,
417:21,
427:17
owned 379:4
owner 409:2
owners 327:16,
409:19,
412:10,
412:13
ownership
313:23
owns 378:20
oxygen 255:8
$<\mathrm{P}>$
p.m. 418:17,

432: 3
pace 23:19
package 109:24,
241:2, 325:4
packet 325:22
packets 324:17
pad 247:22
Page 6:1, 6:2,
$7: 1,7: 2$,
8:1, 8:2,
9:1, 9:2,
12:14, 36:13,
140:3,
258:12,
279:2, 317:2,
342:14
pages 219:2
paid 88:17,
343:18,
353:16,
353:17,
353:18,
425:6, 425:8
paint 295:17
paints 295:18
panel 11:16,
100:5,
121:11,
128:18,
144:2,
148:19,
150:14, 152:8, 153:6, 153: 9,
179:21,
191:20,
191:22,
192:5,
252:15, 294:22, 302:7,
323:18, 323:21, 331:15, 404:17, 431:14, 431:20
panels 403:5
Paper 11:12, 179:15, 366:25
papers 301:20, 374:22
paperwork
114:2, 219:10
Paragraph
36:12,
218:22,
278:2, 279:1, 336:7, 341:1, 344:17
paragraphs
117:24, 189:1, 237:21
parameters 166:1,
178:10,
179:5,
238:16,
239:8,
402:24, 403:14, 422:19, 430:12
paramount
411:12
parcel 99:23, 197:21
parcels 210:20
pardon 22:16, 319:12
pare 186:12, 187:10
Park 365:25
PARKER 2:4, 6:16, 7:21, 10:13, 50:5, 50:9, 50:10, 50:13, 51:23, 270:10, 270:11, 271:12, 271:19, 272:13
parking 229:17
Parks 223:17, 224:14
partially 69:6, 192:24, 273:13, 273:17, 425:23
participate 90:7, 413:1
participated 14:5
participates 120:16
particle 63:15, 63:16, 293:4
particles 23:21, 63:19, 75:15
particular 52:4, 66:11, 70:24, 70:25, 117:1, 164:25, 172:6, 172:10, 176:23, 186:3, 191:11, 193:13,

213:4, 213:5,
233:16,
238:12,
259:10,
271:3,
274:20,
289:6,
293:24,
294:4,
321:12,
322:14
particularly
38:17,
171:20,
277:14,
308:21,
321:10
PARTIES 3:1,
4:1, 5:1,
49:18,
132:19,
152:22,
152:24,
167:8,
261:25,
302:16,
302:21,
303: 4,
303:12,
307:22,
324:7, 326:6,
328:2, 328:5,
336:10,
373:14,
373:18,
375:11, 404:7
partner 279:7, 280:22
partnership
14:8
parts 24:9,
155:24,
161:11,
428:20,
428:25, 429:2
pass 230:10, 248:12,
420:16
Passagassawakea
g 50:25,

66:8, 88:8 passage 268:2 passes 192:6
past 15:16,
77:18, 80:12,
87:14, 126:6,
147:16,
160:8,
191:24,
258:3, 258:8,
355: 6,
360:16,
364:18,
408:20,
413:8, 415:1,
417:5, 425:2
patch 378:22
patches 113:12,
113:21
path 113:15,
247:20,
397:21
pathway 101:8,
240:14, 244:7
patio 229:10
pattern 252:9
pause 162:7,
231:8,
231:10,
406:19
paved 229:18
pay 86:15,
425:21,
426:9,
426:13,
426:15,
426:21
paying 223:23, 280:11, 367:17
payment 109:21, 111:5, 426:8
PDF 393:7
Peace 392:1
pedestrian 234:16
peer 183:18, 209:24, 210:2
peers 14:24, 415:18

Peggy 2:10,
10:15
pen 15:14, 127:23
pending 409:2
penmanship 86:1
Penney 361:11
percent 16:5, 16:25, 17:5, 19:19, 20:1, 20:2, 20:3, 20:4, 20:5, 54:18, 94:12, 106:5, 172:1, 197:13, 197:18, 198:7, 198:12, 242:17, 287:18, 309:25, 310:22, 315:7, 315:18, 315:23, 316:2, 318:13, 358:23, 359:3, 422:14, 428:21
percentage 17:2, 315:3, 315:14, 321:2
perennial 106:12
perfect 276:13, 382: 3
perfectly 44:8
performance
17:3, 421:16
performed 207:22, 423:14
perhaps 95:21, 97:3, 97:5, 164:14, 198:12, 202:14, 234:7, 255:5,

280:7,
288:22,
397:23, 407:9
period 71:5,
80:11, 80:13,
157:23,
281:10,
282:7, 292:7,
292:10,
293:19,
297:16,
319:5, 322:7,
366:3,
402:22,
403:12,
405:22,
406:13,
411:19,
411:23
periods 70:14, 230:4, 314:2, 358:1
Permanent
107:23,
108:25,
115:10,
115:15,
116:14,
122:11,
236:5,
265:16,
267:24,
268:1,
315:22, 316:1
permanently
222:18, 268:7,
315:19, 333:25
permissible 335: 7
permission 403:11
Permit 17:16, 23:13, 26:14, 36:12, 59:3, 84:14, 120:3, 120:4, 132:3, 132:16, 165:20,

173:23,
201:14,
211:11,
211:17,
211:19,
211:22,
235:22,
244:10,
252:25,
314:15,
318:4, 318:6,
344:5,
370:23,
422: 7,
422:10,
422:14
permits 10:8,
11:14, 17:12,
104:13,
224:22
303:15,
337:24, 338:8
permitted
17:19, 17:22,
130:8, 212:6,
265:4,
330:22,
357:24,
418:16
permittee 111:2
permitting
17:8, 22:11,
91:19, 91:20,
92:16, 93:23,
109:22,
226:2, 338:20
person 29:17,
86:1, 130:1,
130:23,
158:6, 382:1,
390:12,
391:2,
424:13,
424:14
personal
333:22,
338:13,
383:14,
409:10
personally

73:7, 181:12, 207:17,
207:20,
220:8, 304:10
personnel 92:11
persons 10:15,
12:5
perspective
17:24, 19:22,
52:6, 62:16,
111:8, 185:3,
194:21,
289:2,
289:14,
330:20,
418:3,
424:13,
424:20,
427:17
pertains 24:4, 58:5, 117:12, 117:22
pertinence 343:25
pertinent 11:23, 303:22
Peter 352:6, 387:6, 387:11
Ph 5:21, 13:15, 413:24
Phase 141:19, 161:5, 161:12, 294:24, 331:16, 331:20, 331:24, 348:11, 348:14, 348:21
phased 247:1
Phone 3:11, 3:19, 3:27, 3:45, 4:9,
4:19, 4:27,
4:36, 5:8, 5:15, 5:26, 35:14, 72:9, 169:15, 276:8, 358:22
phones 35:13
photo 366:14
phrase 117:23,
394:11
physical
100:25,
171:24,
176:11,
188:4, 229:2,
238:5,
249:18, 253:5, 270:8, 271:4, 271:7, 301:5
physically
196:18,
267:9,
271:23,
272:21
physics 172:11
pick 79:7,
124:9, 307:22
Picked 261:5, 309:8, 310:6, 364:18
picking 323:11
Picture 55:14, 58:25, 81:19, 81:22,
121:14,
122:15,
305:18,
345:10,
345:12,
345:13,
346:1, 346:3, 361:3, 361:4, 361:5,
372:16,
372:25,
409:15
piece 11:15,
97:9, 111:12, 112:2,
117:11,
249:9,
249:18, 294:11, 294:12, 349:23,

391:11
pieces 111:16,
112:7, 155:24
pile 238:17,
351:22
piles 242:10, 270:17
Pilot 356:1
pine 237:14
Pipelines 99:9, 148:25, 150:11, 168:13,
172: 4,
174:23,
292:8,
327:15,
327:20,
329:5, 330:2,
330:7,
343:22, 350:16, 354:1, 355:23, 356:23, 389:3
pipes 95:3,
100:10, 100:13, 114:22, 168:5, 187:23, 221:10, 272:7, 272:10, 273:2, 294:7, 294:10, 356:4, 362:20
piping 124:16, 125:13, 298:10, 299:8, 308:2
pits 206:20, 269:10
Pittsfield 119:23
placed 100:11, 122:24, 124:7, 126:3, 126:15, 149:1,

273:25, 398:8 placement

122:16,
131:5,
187:22,
327:19,
328:20,
329:5, 330:2
places 28:9,
28:10, 32:4,
89:11,
189:10,
194:8, 247:4,
285:10, 383:9
plain 352:10
plankton 19:14
planned 18:1,
79:5, 112:11,
314:24,
424:24,
431:25
Planning 79:1,
121:20,
122:9,
122:23,
189:22,
253:1,
256:18,
398:4,
409:22,
420:21,
420:24,
424:10, 429:2 plans 17:10,

18:20, 18:25,
21:20, 21:22,
31:23, 44:12,
91:19, 91:22,
117:10,
119:20,
167:17,
207:12,
243:16,
338:23,
393:4,
395:15,
395:16,
400:22,
417:6, 417:8,
421:9
plant 18:9,
27:6, 68:3,
265:1, 337:22
plantings
110:7,
110:15,
110:22,
111:2, 234:9,
234:10,
234:24,
235:8,
251:14,
420:10
plants 19:13, 28:9, 251:10,
351:13,
354:25,
355:20
plastic 259:24
play 193:24,
306:4,
317:22, 318:3
played 193:1
Plaza 3:36
Please 13:3, 49:6, 77:2,
77:20, 81:17,
154:8, 163:6,
200:3, 213:9,
215:14,
215:25,
216:7, 220:8,
236:14,
269:22,
319:15,
336:20,
353:23,
356:20,
357:13,
361:24,
374:4,
381:10,
382:14,
388:18,
393:17,
410:5, 431:24
pleased 68:6,
412:1
pleasure 12:24
plenty 181:17,

214:18,
251:20,
284:7, 315:12
plots 138:16
plume 29:5,
$31: 2,36: 23$,
56:14, 58:25,
191:9, 191:11
plunge 111:1,
235:7
Plus 125:12,
331:18
poach 371:4
pockets 360:23
pockmark
172:17,
174:18
pockmarks
113:18,
113:24,
172:13,
172:14,
172:16,
173: 4,
173:19,
173:24,
174:7,
174:11,
174:21
podium 382:2
Podolsky
117:22,
118:19,
303:5, 431:18
Point. 24:25,
102:21,
134:11,
174:19,
246:9,
290:13,
297:10,
373:4, 419:5
Pointe 4:17
pointed 189:13, 392:14
pointer 234:6, 296:20
pointing 346:9, 366:22, 366:24
points 15:1, 32:6, 55:15, 97:23, 97:25, 98:20, 98:22, 98:25, 99:15, 131:10, 267:21, 268:5, 311:19, 354:23, 383:10
policies 120:18
policy 119:17
polishing 430:7
polite 411:24
political
415:23
pollutant 190:3
pollute 422:12
pollution
15:17,
354:21,
354:22,
355:5, 355:6, 357:16, 357:24
polymer 260:7
POM 65:19, 66:8
pond 239:3
ponded 289:10
ponds 339:22
Poof 392:20
pool 92:20, 107:15, 111:1, 235:7
Pooler 428:6
pools 107:16, 208: 4, 216:25, 217:1, 217:4, 217:8,
217:12, 218:10,
218:11, 239:2,
278:13, 357:8 poor 239:17, 418:1
population 97:11,

102:18,
127:23
populations
158: 4
porpoises 373:7
port 361:2
Porter 379:5
portion 30:20,
121:6, 122:4,
122:10,
123:1,
133:12,
146:17,
159:3,
205:10,
234:5,
235:23,
236:20,
244:14,
268:7, 268:8,
273:11,
285:17,
287:14,
287:15,
287:17,
309:11,
310:20,
316: 6,
348:21,
354:8,
392:15,
394:3, 398:3
portions
102:13,
121:25,
204:24,
236:20,
246:12, 277:1
Portland 3:10, 3:18, 3:26, 3:37, 4:8, 304:9
ports 355:4
Portsmouth
119:22
pose 29:24,
213:9, 340:13
posed 148:25, 334:4
poses 332:5
posing 166:7
position 13:10, 122:22, 160:8, 175:11, 175:15, 215:1, 252:23, 262:3, 413:17, 414:14
positioned 274:17
positive 239:12, 410:22, 425:10
possibilities 410:23
possibility 44:11, 118:22, 416:16
possible 26:10, 32:6, 37:4, 57:21, 58:4, 63:9, 82:1, 98:20, 99:13, 135:7,
135:11, 147:11, 164:17, 244:22,
248:4, 261:13, 302:24, 349:4, 358:15, 373:13, 379:25, 401:2, 403:11 possibly 41:23, 124:23, 133:15, 246:4, 281:20 post 413:23
post-constructi on 285:24, 293:11
post-installati
on 330:4
potential
32:10, 54:13,
96:22, 97:20,
97:22, 98:2,
98:9, 100:16,
102:17,
103: 4,
111:13,
115:20,
179:19,
181:3,
181:24,
192:14,
201:8,
217:11,
229:9,
277:11,
284:2, 288:4,
294:23,
298:13,
329:25,
330:4,
347:17,
371:3, 396:24
potentially
56:19, 103:8,
103:16,
117:14,
123:17,
187:11,
232:9, 248:5,
318:16,
373:15,
407:22
pots 430:17
poultry 354:24,
355:20
pound 16:9,
17:15, 17:18, 24:11
pounds 16:5, 26:15, 26:21, 27:11, 27:12, 411:1
Power 78:2,
119:24,
279:24
powerful 55:16
Powerpoint

391:7
pr-filed 144:2
practicability
287:5, 289:1
practicable 99:5
practical 199:1, 308:11, 311:19
practically 312:14, 421:24
practice 16:19, 16:21, 21:25, 26:6, 32:7, 104:14, 116:6, 126:18, 307:9, 312:6, 337:21, 338:10, 338:17, 338:21, 339:9
practices 120:19, $310: 3,418: 6$
pre- 326:1
pre-existing 165:14
pre-file 167:1, 167:3
pre-filing 147:13
pre-filled 143:21
preamble 339:10, 342:12
precedent 22:20, 307:11
precise 394:20
predict 81:5
predicting 257:16
predictions 36:21, 89:9
predictive 37:4
predicts 27:12
predominantly

107:22,
290:3, 290:5
prefer 41:11,
194:4,
204:12,
227:5,
394:13
preferable 196:10, 264:20
preference
135:5,
135:10,
193:20,
220:2, 420:1
preferences
203:3, 220:11
preferred 36:3,
98:21, 99:6,
134:23,
135:3,
137:13,
137:16,
137:18,
141:1, 176:6, 176:19, 393:23, 394:3
preliminary
48:22,
100:15,
160:23,
253:4, 396:11
premature 125:25
preparation
93:1, 288:23
prepare 244:5
prepared 14:23, 53:14, 77:3, 77:8, 93:3, 147:21, 243:17, 243:22, 379:19, 418:18, 418:25
presence 170:16, 255:3, 256:1, 278:4, 308:13,

311:25,
317:13,
318:24,
328:23,
330:24,
333:23,
399:25, 406:4
PRESENT 2:1,
2:8, 10:15,
18:13, 80:12,
213:16,
222:10,
277:17,
278:22,
282:15,
282:21,
284:2,
285:20,
300:17,
309:16,
310:17,
334:7, 340:3,
360:19, 393:2
$\begin{aligned} & \text { presentation } \\ & 335: 17 \end{aligned}$
presented
36:16, 36:21,
78:6, 147:17,
377:14,
389:12
presenting
147:14,
154:16,
320:13
presently
358:25,
361:22
preservation
233:24, 240:7
$\begin{aligned} & \text { preserve 160:7, } \\ & 240: 16 \end{aligned}$
preserving
241:3
presided 49:14
President
304:8,
408:18,
414:10,
414:12
Presiding 1:20,

10:11, 12:22,
52:11, 91:1,
134:13,
134:17,
164:19,
286:3, 304:4,
323:23,
346:14,
353:10,
353:19,
388:19,
401:15,
402:3, 402:9,
407:20, 410:9
pressing 403:16
pressure 25:23,
74:4
Pretending
332:17
pretty 25:5,
42:6, 141:12,
194:7,
197:14,
197:17,
198:10,
198:11,
203: 6,
203:22,
249:2,
250:25,
270:25,
280:1, 280:5,
281:10,
282:25,
337:10,
352:14,
368:5,
369:18,
369:19,
372:15,
387:18, 428:5
prevent 110:19,
118:20,
213:18,
318:23,
332:18,
397:25
prevented 318:21
preventing

15:22
previous 83:13, 141:11, 182:3, 292:21
previously 183:1, 210:14, 210:25, 251:25, 310:18, 312: 4, 316:15, 335:18, 348:13, 357:2, 379:25, 396:10
primarily
38:23,
126:20, 234:12, 321:13, 411:8
primary 193:4,
278:13,
284:16,
312:17
Princeton
54:19, 82:12,
87:14
Principal 91:10
principle 81:19
principles
310:16,
339:17
print 177:14,
342:14
Prior 116:23,
119:24,
128:7,
165:18,
171:11,
177:25,
183:12,
184:11,
241:9, 253:1,
253: 6,
256:19,
301:1,
327:17,
327:25,

$\begin{aligned} & 334: 12, \\ & 347: 21, \\ & 349: 16, \\ & 393: 25, \\ & 397: 8, \quad 398: 8, \\ & 426: 9 \end{aligned}$
priorities
250:10,
414:19
priority 26:19
private 426:10
PRMS 101:17,
101:19,
102:12,
142:13,
146:9,
146:11,
146:14,
146:21,
155:16,
157:3,
161:11,
165:5, 300:7,
317:13,
318:11,
328:24,
333:12,
381:2,
382:18,
383:2, 384:6,
384:12,
384:25,
385:22
proactive
412:11
probability
roblem 54
55:22, 59:4,
183:9,
281:22,
341:5,
341:15,
430:21
problems 407:4
Procedural
151: 4 ,
335:13,
335:22
ocedure

334:12, 349:16, 393:25,
397:8, 398:8, 426:9
priorities
250:10,
414:19
priority 26:19
private 426:10
PRMS 101:17,
101:19,
102:12,
142:13,
146:9,
146:14,
146:21,
155:16,
157:3,
161:11,
165:5, 300:7,
317:13,
318:11,
328:24,
333:12,
381:2,
383:2, $384: 6$, 384:12,
384:25,
385:22
proactive
412:11
probability
88:4
problem 54:6, 55:22, 59:4, 183:9,
281:22,
341:5,
341:15,
problems 407:4
Procedural 151:4, 335:13,
procedure

103:13
Procedures
120:19,
160:12,
166:25,
335:11
proceed 14:12, 50:2, 52:21, 77:20, 81:17, 89:15, 89:19, 90:9, 90:25, 104:20, 153:12,
226:16,
244:3,
326:21,
327:5, 369:9,
378:4,
380:17,
382:22,
384:4,
386:24,
394:21,
396:22,
408:3, 425:14
proceeded
421:17
PROCEEDINGS
10:1, 12:13, 90:1, 154:7, 154:11,
275:25,
280:24,
302:13,
378:1, 433:5
proceeds 232:19
processes 158:19, 332:13, 422:8
processing 355:20
produce 15:6, 15:19, 19:2, 358:8
produced 16:10, 17:18, 54:15, 357:3, 419:1
produces 94:11
producing
94:25, 340:6,

421:10
product 94:5, 95:9, 419:14, 421:11
production 15:4, 15:11, 15:19, 16:3, 16:17, 17:15, 24:17, 94:22, 95:5, 95:6, 173:18, 364:3, 416:10
productive 308:21, 354:19, 357:3
productivity 14:3, 28:19
profession 14:22
Professional 14:17, 105:3, 127: 6, 304:17, 338:13, 383:20, 411:21, 412:15, 415:18, 417:7, 423:25
professionals 411:24
Professor 12:25, 34:22, 409:4, 413:12
proffer 139:16, 139:17, 166:23, 167:2
proffering 383:20
profile 260:17, 262:7, 342:11
profiles 263:1, 263:3
profiling 129:21
profited 373:17
profound 339:11
Program 13:1, 16:22, 37:6, 100:17,

	$\begin{aligned} & 109: 1, \\ & 109: 22, \end{aligned}$
	126:19,
	251:9,
	274:22,
	393:9,
	414:23,
	414:24, 421:2
	$\begin{aligned} & \text { Programs } 5: 23 \text {, } \\ & \text { 105:12 } \end{aligned}$
	prohibit 226:25
	prohibited 127:17
	prohibition
	213:21
	$\begin{aligned} & \text { project-specifi } \\ & \text { c } 279: 2 \end{aligned}$
	projected
	111:24,
	115:8, 117:9,
	118:12,
	181:23,
	194:12
	projects 22:6,
	119:19,
	198:21,
	233:7, 244:3,
	248:7,
	329:11,
	333:10,
	337:20,
	337:21,
	337:25,
	338:9,
	338:24,
	355:4,
	357:24,
	358:9,
	363:24,
	365:23
	prominent
	356:17
	promoting
	416:11
	prompting 412:2
	promptness 10:2
	pronounce
	197:10
	proper 334:9

 109:22,
 126:19,
 251:9,
 274:22,
 393:9,
 414:23,
 414:24, 421:2
 Programs 5:23,
 105:12
 prohibit 226:25
prohibited
127:17
prohibition
213:21
project-specifi
c 279:2
projected
111:24,
115:8, 117:9,
118:12,
181:23,
194:12
projects 22:6,
119:19,
198:21,
233:7, 244:3,
248:7,
249:11,
329:11,
333:10,
337:20,
337:21,
337:25,
338:9,
338:24,
355: 4,
357:24,
358:9,
363:24,
365:23
prominent
356:17
romoting
416:11
prompting 412:2
promptness 10:2
pronounce
197:10
proper 334:9
properly 180:3, 328:23
properties 96:22, 96:24, 97:2, 106:9, 149:5, 171:24, 176:12, 264:7, 301:5
proponents 309:7
proportion 264:10
proposal 77:22, 128: 4, 150:11, 214:15, 235:21, 333:17, 353:25, 357:21, 409:1
proposals 14:20
propose 123:16, 236:4
proposes 144:4, 327:14, 327:18, 328:15, 328:16, 330:14, $333: 3,350: 6$, 358:18, 367:22
proposing
24:15, 124:7, 126:19, 141:6, 146:24, 166:11, 168:4, 211:12, 254:13, 318:12, $359: 5$ prosper 361:9
Protect 23:15, 229:4, 340:16
protected 118:13, 184:15, 318:17
protecting 121:10, 328:3
Protection 1:3, 1:5, 10:7, 10:10, 19:24, 69:17, 85:16, 85:23, 92:1, 93:1, 110:21, 132:12, 166:10, 166:14, 211:11, 234:19, 234:23, 298:14, 298:17, 334:20, 334:22, 339:3, 341:24, 342:11, 342:13, 353:11, 362:19, 418:15, 421:14, 424:9
protections 251:2
protein 25:20, 26:5
proteins 15:7
protocols 328:13
prove 74:7, 417:14
provided 16:11, 51:12, 93:4, 98:3, 112:20, 114:5, 121:1, 121:3, 121:7, 136:2, 142:6, 149:23, 150:13, 170:23, 176:2, 192:5, 240:13, 250:16, 263:2, 279:13, 316:21,
$347: 20$
provides $30: 4$,
$70: 4,135: 7$,
$172: 7,222: 6$,
$232: 8$,
$278: 13$,
$283: 20$
Providing
$\quad 61: 14,93: 18$, 267:1, 354:3, 426:1
proximity 106:7
Public 1:23,
10:5, 11:9
12:2, 33:14,
67:5, 91:21,
93:12, 129:9,
248:3, 256:2,
276:2,
303:10,
303:14,
312:13,
312:25,
335:5, 335:8,
336:10,
356:5,
373:11,
433:3, 433:13
publication
166:15, 356:1 publicly

319:24, 320:3 published

69:17, 87:11,
87:17, 208:7
Puerto 35:8 pull 20:22,

151:11,
219:6, 260:8, 296:16, 383:10
pulled 174:18,
380:10, 406:6
pump 168:17,
204:16,
204:18,
264:25,
265:2, 291:9, 296:23, 370:24,

423:14, 426:22
pumped 23:25,
114:23, 290:16, 359:14
pumping 39:6, 43:14, 290:15, 290:25, 291:3, 295:12, 318:25
pumps 291:22
purchased 415:4
purpose 94:8,
94:9, 94:13,
95:23,
121:12, 260:20,
339:11,
339:15,
339:20,
354:2, 362:17, 375:17, 403:25, 416:3
purposes 354:2, 376:22, 377:13, 380:23, 401:21
pursuant 78:5, 165:4, 166:25
pursue 368:20
pursuing 330:11
push 37:14, 425:17
pushing 62:20, 228:21
puts 50:24, 50:25, 51:1, 362:25
putting 29:12, 43:10, 43:11, 51:24, 69:7, 74:15, 148:22, 168:14, 228:22,

232:25,
234:19,
244:4, 265:2,
274:5,
351:13, 380:12
< Q >
QHEI 240:13
qualifications
341:10, 381:9
qualified
57:23,
170:22,
238:15,
282:12, 411:4
qualify 284:17
qualitative
238:5, 255:12
Quality 2:15,
2:17, 2:18,
10:21, 92:8, 94:15,
111:22,
115:19,
116:21,
116:24,
120:9,
239:14,
239:24,
245:6,
251:21,
255: 6,
340:15, 361:22, 409:24, 411:12, 412:3, 421:11, 423:23, 429:22
quantified 410:24
quantify 145:10, 145:11
quantity 26:2, 288:18, 316:5,

411:12,
quarrying 289:9
Questioning
65:22, 86:18,
135:13,
147:16,
147:21,
179:19,
303:11,
322:13,
394:20,
402:20
quick 24:23,
50:8, 50:10,
50:11,
108:22,

$$
0
$$

240:19,
241:11,
254:18,
254:19,
296:13,
324:19,
336:3, 408:5
quickly 46:21,
107:20,
107:2
232:17,
237:2,
237:22,
293:5, 293:7,
302:18,
329:18,
360:10,
411:17
quiet 327:17,
353:4, 353:5
quitely 115:24
quits 48:2
quote 36:16,
53:20,
166:15, 166:17, 197:14, 197:17
quoted 50:16,
uoting 187:2

$$
<R>
$$

R. $379: 5$
radioactive 305:12
rain 218:1,
218:8, 398:6
rainbow 16:4, 114:9
raise 12:7,
90:14, 162:3, 265:11, 336:21, 384:17, 410:5 raised 116:12, 151:5, 160:14, 268:7, 312:12, 402:15
raises 244:19
raising 96:14, 411:2
ramped 68:4
ran 305:11,
364:13,
364:15,
414:25
range 42:10,
42:11, 71:11, 71:14, 91:15, 94:4, 101:22, 129:23, 130:8,
141:17,
144:18,
146:19,
172:17, 193:13, 194:3, 198:12, 239:12, 257:16, 259:12, 259:17
ranges 130:4, 259:10
ranging 70:15, 349:12
ranking 134:7, 134:9
rap 351:12
rapid 23:19, 340:5
rapidly 15:17, 26:8, 83:15, 194:7
rare 113:20
rarely 83:22
RAS 17:19,
17:22, 24:6, 24:8, 33:16, 306:13, 306:16, 358:24, 358:25, 360:3, 360:7, 362:21
rate 18:3, 21:7, 65:15, 191:10, 201:9, 390:2, 428:22
rates 79:4
Rather 12:3, 37:24, 43:10, 44:10, 45:2, 55:12, 73:4, 279:3, 279:11, 315:25, 329:20, 349:9, 359:17, 422:3
ratio 24:11, 30:3
ratios 19:3
raw 354:23, 355:11, 355:13
re-engineer 49:20
re-entering 360:2
re-evaluate 244:13
Reach 30:18, 194: 6
reached 206:24,

344:24, 412:8 reaches 107:6,

107:8,
107:19,
308:25
reaching 418:7
reaction 67:16
read 36:7,
53:20, 68:6,
85:19, 98:2,
141:25,
174:10,
174:15,
183:3,
266:23,
268:4, 297:2,
318: 4,
318:13,
342:11,
344:17,
377:17
readily 96:1,
193:9, 231:6
reading 36:12,
167:19,
167:21,
189:19,
253:25,
266:16,
266:23,
329:18,
339:10
ready 34:20,
47:14, 87:2,
90:21,
124:15,
323:18,
323:21,
353:3, 353:4,
378:4,
392:10,
397:3, 397:5,
408:2
reaffirm 374:18
real 26:17,
61:2, 70:9,
73:11, 73:25,
75:18, 79:18, 321:5
324:18,

368:15,
399:19, 408:7
realistic 44:2
reality 54:7,
54:8, 54:10,
143:24,
276:18
realize 12:16,
32:10, 87:15,
97:7
realized 343:8
realizing
118:23
realty 420:8
rearing 17:2
reason $37: 25$,
52:18, 103:2,
125:8,
156:21,
159:6,
172:16,
187:16,
226:14,
240:5, 258:7,
288:2,
313:22,
321:17,
332:11,
364:4,
379:23, 388:7
reasonable
54:25,
257:23,
287:7, 402:21
reasonableness
238:11,
239:21
Reasonably
37:2, 206:3
reasons 21:18, 162:24, 248:5, 358:1, 361:1
reassurances 398:17
rebridging 233:13, 233:23
rebuttal
140:10,

143:21,
144:20,
154:7,
347:18,
373:25, 374:8
recall 153:20, 154:15,
198:13, 218:1
receive 11:15, 95:18
received 13:14, 14:4, 98:24, 157:1,
170:19,
248:1, 265:15
receiving
206:21,
422:15
recent 24:7,
116:11,
265:14,
329:6,
355:14, 356:20, 358:5 recently 14:5, 45:17, 186:9, 283:4, 301:8, 342:19,
387:7, 413:3, 413:12
recess. 192:1
recharge 223:5
rechill 128:6
recirculated 324:21
Recirculating 15:1, 15:8, 15:11, 16:12, 16:14, 16:18, 16:25, 17:1, 18:16, 19:10, 354: 4,
359:16,
362:2, 417:3
recirculation 16:7
recognize 125:3, 157:2, 244:24, 272:8 recolonize

294:3
recommend
25:21,
158:13,
343:25,
371:14
recommendation
114:13,
238:14, 272:2
recommendations
49:23, 85:14,
85:21,
175:21,
188:18
recommended
37:5, 189:3, 213:17, 332:15
reconfiguration 188:10
reconvene 191:23, 191:24
recorded 70:13
records 218:20, 219:21, 220:8
recover 356:16
recovered
356:14, 357:4
recreational
101:7,
280:14, 340:2
recross $32: 25$, 296:12, 302: 4, 402:24, 403:10
red 84:20, 237:13, 237:14, 277:3 redeposit 348:4 redeposited 352:4, 387:9
redirect 32:25, 33:3, 89:15, 89:17, 296:12
reduce 121:15, 124:11, 125:10, 228:14,

229:11,
229:14,
229:19,
230:13,
265:18,
265:21,
267:3, 298:16
reduced 96:25,
223:1, 223:5
reducing 94:23,
229:18
reduction 290:24
redundancy 202:17
redundant 11:23
refer 110:1,
187:19,
232:20,
287:25,
295:3, 342:23
Reference
138:23,
139:1, 142:7,
143:10,
147:18,
183:2, 190:5,
258:11,
258:15,
258:21,
259:5,
347:22,
416:13
referenced
82:4, 139:18,
139:20,
141:18,
142:4,
142:12,
163:22,
183:4,
185:14,
258:10
references
147:11, 173:6
referencing
143:17,
146:3, 161:8,
182:6
182:16,

183:16,
186:3, 190:6
referred
103:12,
117:4,
117:13,
193:7, 266:7,
290:19,
342:22,
407:21
referring
138:9, 158:1,
232:14,
236:1,
241:20,
258:16, 266:13, 269:14, 366:23
refers 188:2
refill 100:11
reflect 158:8, 367: 8
reflected
109:24, 202:18, 202:19
reflecting 149:15
reflection 149:15
reflective 204:19
reflector 171:7
regard 43:4,
243:20,
264:16, 269:5, 296:3
Regarding 18:23, 19:4, 21:18, 70:3, 85:18, 85:25, 153:20, 170:16, 179:24, 206:18, 248:3, 251:3, 251:20, 252:20, 253:17,

253:23,
322:13,
329:13,
329:23,
333:22,
353:25,
354:14,
362:19,
375:1, 401:24
regardless
21:10
regards 26:13,
194:1, 213:5,
371:19,
377:21,
387:10, 389:3
regime 73:21,
227:10,
235:24,
236:8, 255:23
regimen 115:5,
116:22
regimes 15:22
region 35:7,
37:19, 37:21,
41:2, 42:18,
42:24, 43:2,
65:9, 65:10,
68:13, 69:5,
171:13,
321:14,
332:19
Regional
100:21,
101:16,
154:25,
207:14, 414:2
regret 404:11
regular 41:11
regularly
120:15,
363:10,
411:20
regulated
27:17, 335:10
regulating
306:12
regulation 92:3
regulations
27:17, 55:23,

74:22,
117:10,
167:23,
209:12,
252:24, 372:8
regulators
414:18
regulatory
21:24, 98:16,
98:23, 99:18,
120:5,
120:18,
249:12,
305:16,
305:24,
306:11,
409:20,
410:18,
410:19,
420:6, 422:4
rehabilitate 295:19
Reichard 4:33
Reid 2:9,
10:19, 304:5, 337: 4
rejected 375:5
relate 245:20,
326:25
related 158:21, 217:19,
233:9,
253:19,
284:11,
307:4,
307:13,
338:23,
408:22,
413:11
relates 23:6, 245:16
relating 259:5, 328:13, 339:9
relationship 322:7, 339:6, 381:5
relationships 417:1
Relative 45:24, 86:9, 88:6,

113:25,
114:3,
172:12,
174:2, 175:2,
205:9,
205:13,
240:12, 289:7
relatively
83:11,
107:23,
108:19,
176:19,
190:23,
206:17,
254:3, 254:7,
254:8,
310:13,
312:21
release 290:12, 299:23
released
101:18,
116:23,
128:8,
186:10,
378:20
releases 295:7
releasing
358:14
relevance
11:14, 319:8
relevant
154:12,
161:13,
164:15,
173:15,
231:21,
253:20,
253:22,
299:7,
314:11,
317:23,
377:19,
377:23,
377:25,
396:20
Reliability 119:24
reliable 281:3, 398:21
relied 279:3,
281:7, 315:13
relieve 121:20
relocate 368:4
relocated
356:25
reluctant
256:25
relying 279:17,
280:7, 282:25
remain 108:12,
252:19,
293:5, 356:7, 427:25
remaining
97:19,
230:11,
230:14
remains 234:16, 332: 4, 332:16, 376:12
Remedial 91:20, 101: 6, 101:11, 155:18, 156:23
remediation
91:18, 161:5, 331:20, 332:12, 332:14
Remember 43:8, 45:17, 66:11, 151:2, 153:18, 180:22, 368:23,
428:17,
428:24,
429:12
remembers 400:5
remind 190:11, 190:16
remnants 356:7
removal 108:7, 165:7, 214:10, 216:10, 223:4, 277:16
remove 19:19,
125:18,
203:14,
214:15,
235:18,
259:11, 402:4
removed 19:8,
100:14,
162:15,
165:18,
203:20,
247:7,
247:22,
249:21,
251:23,
253:12,
294:1, 356:24
removing 430:5
repair 110:9
repaired 110:14
repeat 163:5,
163:18,
382:16,
386:17
repeated
117:23, 393:16
repeatedly 148:3, 332:25
rephrase 221:23
rephrasing
225:20
replace 110:8, 235: 9
replaced 398:9
replacement
234:10,
258:6, 397:9
reply 384:1
Reported 1:23, 65:15, 69:18, 154:1,
156:24, 360:18
Reporter 1:24, 162:4,
164:12,
177:8, 367:2, 367:8, 406:21,

415:12, 433:2
Reporter/notary
433:13
reporting
313:20
reports 143:5,
171:7, 175:9, 179:15, 186:11, 191:18, 244:2, 261:14, 279:4, 279:13, 279:17, 279:18, 279:19, 280:18, 281:7, 281:20, 282:7, 282:25
represent
35:25, 63:16, 106:4,
106:14, 108:1, 285:16, 303:13, 327:7, 327:20, 337:25
representation 65:2, 388:7
Representations 148:1, 148:22, 150:14, 386:18
representative 237:24, 333:19, 333:20, 362:9, 362:12, 400:1, 409:13 representatives 97:14, 361:25 represented 106:11
representing

23:4, 327:11
represents
109:21, 327:9
reproducing
294:3
reproductive
293:21
reptiles 278:2,
278:4,
278:10,
278:12,
278:18,
286:4,
286:10,
286:19,
286:25
reputation
332: 23
request 48:7,
76:23, 77:19, 362:20,
403:16,
403:25
requested
133: 7,
140:21,
176:17, 238:4
requesting
401:24
requests 122:7
require 24:11,
104:15,
145:6,
188:19,
335:12, $349: 5$
required 73:1,
93:9, 155:17,
165:9,
185:15,
328:14,
329:1, 333:9,
338:18,
344:5, 348:1,
350:1,
371:10,
393:2, 396:2,
420:2, 420:4,
422:7
requirement
163:23,

335:22
requirements
22:12, 98:17,
98:23, 99:2,
99:18, 164:1,
165:20,
165:21,
166:19,
204:8,
250:13,
250:17,
250:21,
252:22,
253:7,
253:12,
253:13,
328:12,
333:15,
348:1,
377:12, 420:1
requires 54:11,
166:10,
217:11,
348:23
requiring 387:8
rescheduled 278:7
Rescue 33:1
Research 4:4, 13:23, 13:25, 14:5, 18:16, 94:2, 294:22, 304:2, 304:9, 317:18, 320:11, 320:14, 320:15, 320:19, 414:19
Reservoir 106:21, 106:25, 107:1, 108:15, 112:23,
113:1, 113:7, 114:24, 117:13, 202:15, 202:21,

222:25, 233:11,
277:13, 290:6
reset 323:17
reside 410:12
residences
347:8
resident 280:20, 353:13, 408:25
residential
420:3
residents
332:6, 415:2
resounding
264:21
Resource 13:12, 13:24, 90:23, 111:7, 121:10, 229:12, 229:13, 230:21, 233:24, 233:25, 249:8, 269:16, 285:2, 288:20, 357:4, 360:18 Respect 63:16, 121:9, 305:6, 307:20, 392:2, 402:25
respected 22:23
respective 303:13
respectively
98:25, 416:1
respond 112:18, 116:25,
140:11, 380:8
responded 134:8, 419:23
response 33:4, 151:4, 167:14, 248:13, 401:21

responses	222:19,
402:19, 403:2	230:3, 238:9,
responsibilitie	300:19,
s 119:16,	338:12,
120:8,	355:16,
361:24,	357:24, 411:5
410:19	resulted 218:8,
responsibility	357:10,
310:7, 361:16	368:11
responsible	resulting
111:3,	348:2, 358:7,
120:23,	358:15,
409:17	418:1, 418:2
rest 40:6,	results 35:17,
46:3, 90:5,	35:24, 36:15,
116:15,	$37: 1,37: 9$,
161:7,	62:21, 64:13,
179:21,	99:20,
232:1,	103:25,
266:12,	156:19,
266:17	161:11,
restabilize	161:14,
232:17	242:24,
restate 216:6	243:4,
restating	248:16,
225:21	371:12,
resting 297:14	383:6, 411:22
Restoration	resume 153:9,
105:13,	285:23
109:2, 233:7,	resuspend
235:2,	174:23
251:11,	resuspended
251:17,	174:17
342:18,	resuspending
414:23	158:25,
restore 110:4,	175:13
232:21,	resuspends
235:18	332:20
restored 109:3,	resuspension
109:9, 109:12	187:24, 330:5
restricting	retained 379:4
223:6	retired 408:9,
restriction	409:4,
214:7	413:12,
restrictions	414:25
204:14,	retirement
212:1, 213:18	408:11,
result 15:20,	415:20
67:3, 80:10,	return 257:24,
96:18, 159:1,	292:21,

367:25
reuse 288:22, 295:19, 348:2
reveal 380:5
revegetate
110:11, 110:22
revegetation
234:23
review 11:13, 49:19, 91:8, 121:1, 121:7, 121:13,
171:6,
173:21,
207:23,
209:24,
210:3, 238:3,
268:12,
294:16,
294:17,
320:15,
340:24,
340:25,
341:2, 341:4,
343:24,
344:15,
350:24,
350:25,
354:14,
387:15, 424:9
reviewed 146:3, 183:18,
266:6, 272:2,
272:6, 296:5,
325:2,
326:13,
341:11,
341:21,
344:7,
344:12,
347:12,
383:3, 388:6, 389:10
reviewing 147:14,
342:20, 357:16, 393:4 reviews 171:3
revision

341:18, 341:20
revisit 282:9
rewet 252:17
Rhode 13:14
Richard 117:22
Rico 35:8
rid 74:11
Ridge 206:6
riffles 239:4
right-hand 346:2
rip 351:11
riparian 107:8,
109:2, 110:4,
230:25,
232:11,
235:2, 238:24
Ripping 379:13
rise 43:18,
44:7, 56:18, 181:24
rises 183:22
risk 33:14,
33:22, 34:2,
125:10,
159:13,
305:14,
308:5,
312:16,
312:22,
312:23,
319:2,
321:12,
326:23,
332:5, 371:2,
421:25
risks 99:20, 307:3, 312:23
rivers 28:10, 278:21,
339:22,
429:13
Road 5:13,
5:24, 99:12,
226:23,
227:7, 232:8, 264:21, 280:17, 280:18,

281:9,
281:13,
281:18,
309:1,
379:21,
383:25,
410:13, 413:3
Rob 2:17,
10:14, 10:21
Robert 1:20, 2:6, 10:9
Robin 1:23, 433:2
robustly 80:14
rock 298:9, 298:12
Rockland 52:5
rocky 202:3
role 92:10, 121: 6
roles 120:8
rolling 235:13
room 163:15, 191:16,
270:19,
304:16,
311:17,
382:8, 383:13, 398:18, 399:25
roost 277:2, 277:9
roosting 277:2, 277:12
root 46:10, 46:15
rough 198:11
Roughly $46: 12$, 102:21, 129:5, 129:9, 137:15, 137:17,
141:10,
144:5, 144:7, 145:20,
146:25,
168:9, 180:4, 297:12, 297:18,

299:11,
308:24,
349:13
round 29:25
routes 99:9, 100:19, 131:11, 131:22, 133:12, 134:3, 135:1, 136:6,
136:17,
178:15, 181:3
ruin 418:3, 420:19
ruined 419:22
rule 103:22,
104:2, 104:6, 134:5,
167:21,
213:22,
215:11,
215:14,
379:20
rules 24:24, 162:16, 164:14, 164:20, 164:25, 209:11,
212:1, 213:4, 335:12, 405:20
ruling 326:21, 378:5,
401:16,
401:22,
403:18
run 42:21,
54:12, 54:13,
114:21,
295:12,
323:13,
326:22,
338:15,
359:1,
359:25,
360:3,
365:17,
393:9, 420:19
run-off 20:2, 251:21
running 74:6, 249:16, 398:14, 428:9
runoff 51:1
runs 308:23
Rutger 409:5
Rutgers 413:13, 413:16, 415:21
Ruth 2:20, 10:17, 11:20
$<\mathrm{S}>$
S5 110:16
S9 107:5, 110:4
sac 30:25
safe 148:12
safely 411:11
safety 188:10, 310:3, 340:8
Saggese 5:12
sailing 383:8
sake 138:12,
327:21, 401:5
saline 359:20
salinities 18:6
salinity 21:15,
21:17, 74:2,
83:21,
311:20,
318:10,
318:16,
318:17,
318:21,
359:11,
406:11,
428:19,
430:22
Salmon 1:12,
15:2, 15:10,
17:13, 19:2,
22:9, 25:11, 94:10, 94:23, 94:25, 114:12, 114:14, 114:17,

117:15,
117:17,
118:17,
127:22,
191:7, 193:1,
194:4,
330:10,
410:14,
411:1, 411:3,
415:5, 416:2,
428:17,
429:18
salmonid 16:4,
$16: 16,17: 15$, 20:8
salmonids
127:17,
127:21
salt 106:7,
107:18,
117:7,
197:21,
211:15,
350:4, 428:17
saltier 429:7
salty 39:16, 39:19
Sample 101:4,
101:6,
101:13,
103:11,
104:15,
135:14,
137:14,
137:17,
138:16,
141:10,
143:4,
143:16,
146:2,
146:14,
153:15,
154:19,
165:18,
166:12,
171:6, 177:4,
177:5,
177:25,
178:4, 178:6,
389:23, 394:2
sampling 74:20, 100:17, 101:25, 103:3, 104:1, 104:18, 136:12, 137:11, 137:12, 137:13, 140:20, 141:13, 149:4, 154:3, 161:17, 165:12, 166:20, 171:10, 171:12, 253:14, 259:19, 322:14, 322:17, 348:16, 387:5, 397:7
samplings
111:23
San 105:6
sand 107:21, 202: 8, 242:15, 242:17, 261:6, 293:1, 339:24
sandpiper 280:3
sands 172:1, 179:7
sandy 106:22, 149:19, 350:5
Sarah 119:22, 276:11, 279:8, 301:19
satellites 38:19
satisfaction 421:12
satisfied 397:1,
417:18, 418: 6, 420:15, 421:6, 421:7
saturated
291:16, 350:15
saves 10:3, 352:12
saw 306:17, 306:19
saying 29:1, 31:15, 43:17, 45:7, 51:25, 62:18, 68:16, 69:5, 75:21, 118:15, 189:16, 194:13, 205:3, 318:21, 324:17, 365:12, 377:24, 378:17, 378:19, 404:11, 427:12
says 93:11,
93:13, 148:7, 161:20, 166:7, 180:16, 202:20, 244:18, 279:16, 280:11, 284:12, 344:20, 345:2, 351:24, 352:5, 352:6, 386:1, 388:21, 426:2 SB 117:5, 117:9, 117:10 scale 15:19, 17:1, 18:19, 22:6, 24:14, 24:19, 28:23, 29:6, 51:25, 95:13, 178:8, 200:15, 313:21,

321:20,
321:23,
395:6, 395:7
scaling 313:21
scallop 114:10, 186:5, 311:2
scalloping 329:10
scallops 185:3
scanning 237:5, 237:21
scared 363:14
scares 83:11
scary 368:16
scenario 271:8
scene 412:10
scenic 340:1
schedule 11:6, 13:8, 52:10,
77:18,
151:14,
226:15,
228:5,
232:15,
233:2,
246:22,
246:24,
247:5,
292:13, 302:14, 302:23, 431:15
schedules 11:4
scheduling
52:14,
125:16, 302:9
schematics 270:14
scheme 259:1
Schoodic 280:21
School 5:23, 419: 6
schooling 429:19
Science 13:13, 13:15, 13:16, 13:21, 14:6, 14:19, 36:20, 53:25, 72:22, 73:13, 74:24,

82:3, 120:11, 276:6,
317:22,
413:22
Sciences 13:12, 91:12
Scientific
14:18,
184:16,
184:18,
184:21,
184:22,
314:13
scientist
57:23, 74:17, 105:3, 353:16
Scientists
19:23, 95:14, 105:4,
207:21,
414:18, 419:7
scope 47:11,
51:24, 69:20,
78:8, 80:1,
121:7, 130:6,
130:20,
142:11,
143:2,
144:20,
144:23,
150:5,
154:10,
160:2,
160:14,
223:20,
224:3, 233:1,
342:4, 403:10
score 97:22,
98:22,
200:12, 200:19, 200:25, 204:18,
205:7,
239:13,
239:14,
239:15,
239:18,
240:20,
240:21, 264:8
scored 97:18, 97:23, $98: 19$, 98:24,
199:19, 203:11, 239:18
scores 98:25, 205:5, 239:16, 239:20
scoring 199:17, 199:23, 238:8, 239:7, 240:8, 240:10, 240:20, 250:24
Scotland 411:1
scour 174:25, 175:5, 175:16
scouring 150:13,
174:20,
174:22,
175:12, 330:5
screen 390:3, 393:9
screening 19:7, 23: 8
screens 29:12, 29:14, 32:11, 32:12, 32:17
scribble 58:7
scrutiny 410:18
se 328:6
se. 233:15
sea 114:10,
116:13,
116:15,
149:10,
175:4, 175:5,
188:5,
265:11,
265:24,
266:8,
266:12,
266:18,
266:21,
266:24,
267:4, 267:9,

267:10,
267:18,
267:20,
267:24,
273:5,
275:17,
334:13,
358:15
seacoast 203:7
Seafood 16:19, 16:22, 94:10, 94:15
seal 398:4
search 286:16
Sears 30:23,
180:3, 363:18
Searsmont 4:26
Searsport
174:3,
174:13,
355: 4,
356:12,
356:21,
358:6, 361:2,
362:15,
363:9,
365:18,
366:18,
368:10, 369:2
Seas 414:17
season 68:20, 68:21, 70:3, 70:25,
217:17,
282:1, 286:9,
286:22,
309:8,
314:24,
350:13,
351:2, 364:18
seasonal 130:11, 193:10,
278:5, 286:9
seasonality 310:16
seasonally 129:13, 129:24, 194:23
seasons 68:20, 68:23, 70:15, 71:15, 371:18
seat 381:20, 381:21, 381:24, 381:25
seats 89:23, 407:16
seawater 96:7, 96:19, 120:24, 121:16, 122: 4, 200:11, 249:5, 288:19, 289:16, 341:17, 354:3, 359:8
Second 16:24, 24:3, 45:5, 46:17, 47:2, 49:19, 52:10, 116:20, 117:21, 133:22, 136:13, 136:21, 147:8, 156:10, 176:16, 218:24, 269:4, 335:23, 349:14, 406:19, 406:20, 420:21, 422:2, 428:1
secondary 88:22, 89:2, 89:7
Secondly 311:22, 317:24, 318:24
seconds 10:3, 189:23, 401:7
Section 123:23,

80:11, 100:3,
160:13,
191:14, 364:7
seemed 42:5
seems 42:4,
52:16, 62:5,
86:22, 134:6,
134:22,
150:6,
151:22,
201:17,
205:6,
270:12,
270:23,
403:13
seen 35:17,
38:19, 62:21,
80:25, 128:6,
180:16,
281:19,
282:19,
294:8,
311:24,
322:25,
363:23,
364:10,
369:25,
386:17,
399:8,
399:14,
400:22, 427:2
segment 155:11,
155:12,
155:13,
348:25,
349:1, $349: 2$
seismic 243:5
seized 403:7
select 196:21, 197:5
selected 98:1,
98:7, 196:25,
197:2,
205:15,
259:7,
349:12, 358:4
selecting 240:6
selection
91:21, 93:22,
96:5, 97:19,

192:11, 195:21, 196:13, 196:14, 196:15, 196:18, 228:11, 263:20
send 352:24
Senior 91:10, 105:8, 280:2
sense 18:9,
81:21, 88:3, 97:3, 105:16, 196:8, 200:14, 202:23, 234:1, 259:14, 276:5, 282:13, 305:9, 317:23, 321:3, 426:22
sensitive 367:21
sent 126:16, 369:14
sentence 132:7
sentences 186:23
sentinel 293:9
separate 179:9,
226:3, 391:10
separated
115:10
separately
355:7
separates 416:8
September
131:19,
132:9, 132:13
sequence
121:15,
124:19,
233:17,
245:17, 246:7
series 70:12,
153:10,
176:18,
 39:10, 50:9, 51:17, 100:9, 162:19, 250:21, 306:12, 326:14, 365:5, 365:6, 370:24, 373:5, 379:19, 391:12, 430:17
setback 420:1, 420: 4
setbacks 99:2
Seth 280:19
setting 34:14, 305:19, 391:11, 422:4
settle 293:4, 312:20
settled 268:19
settlement 134:14
seven 91:23, 307:18, 418:16
seventh 353:12
Several 24:5,

117:24,
117:25,
128:18,
140:11,
169:9,
170:23,
171:3, 176:4, 200:16,
206:24,
228:8, 270:5,
306:13,
331:21,
343:17,
355:3,
356:14,
358:1, $367: 5$,
369:10
severely 188:12
severity 102:9
sewage 18:9,
354:23,
355:8,
355:11,
355:13,
355:15
sewer 356:23, 364:13, 364:15
shall 191:23
shallow 173:18, 330:15
Shallower
144:12,
144:13
shape 30:5, 44:19
share 328:2, 354:12, 409:16
shares 416:4
sharp 412:11
sheet 342:17
sheets 261:1, 263:2
shell 114:11
Shellfish 102:7,
102:18,
102:24,
114:9,

183:19, 185:6,
185:23,
186:8,
186:14,
268:2, 285:1,
311:1,
355:18, 357:13, 413:19, 414:22, 414:23
Shellfisheries 414:10
shift 179:23,
284:8, 308:18
ship 361:3
shipped 274:3
shipping
165:18, 365:16
ships 361:1
Shipyard 119:22
shopping 203:24
shore 38:25,
51:1, 113:13, 136:19, 144:10, 339:20, 365:17, 399:12
shoreland 233:8, 256:17, 338:5, 338:8, 338:20, 339:4, 342:18 shorelands 337:20, 338:1
Shoreline
88:20, 88:25, 99:14, 122:5,
122:18,
177:16,
337:22,
337:24,
345:8,
351:14,
366:1, 366:18
shoreside

126:16
short 125:5,
179:22,
312:21
short-nosed
114:15
short-term 150:16,
371:15
shorter 145:7
shortly 207:5
shoulder 279:25
shouldn't
142:23,
431:23
shove 164:5, 350:14
shoved 164:9, 184:5
shoving 166:9
show 36:4,
41:17, 54:14,
62:24, 64:14,
146:13,
161:11,
162:9,
163:19,
167:11,
172:14,
296:19,
307:1,
327:25,
333:12,
346:25,
366:13,
385:1, 388:4
showed 176:25,
280:4, 423:19
showing 138:15
shown 109:15,
131:22,
171:25, 395:3
shows 39:22,
39:24, 64:11,
101:8,
107:10,
129:22,
140:21,
146:21,
146:22,

146:24,
147:4,
157:14,
161:20,
272:7,
288:12,
296:17,
366:14
shrimp 372:18,
373:8
shrub 237:18
shrubs 107:9, 237:17
shuffle 179:14
shut 364:16
sic 409:8,
409:23
Side-casting
352:2, 352:4,
352:14,
396:12,
400:12
sides 124:10, 244:25, 364:11
Sierra 159:21
sifted 390:3
sight 362:4
sightings
218:17
sign 340:22
signal 116:1
signed 340:20,
352:21,
378:15,
412:1, 426:2,
433:8
significance
208:25,
209:8,
209:13,
209:15,
210:10,
210:16,
211:3,
211:25,
212:7,
212:23,
213:3, 213:4,
215:18,

215:22,
301:10,
302:1, 339:25
significantly
15:15, 16:10, 300:19
signing 347:7
silent 277:16
silly 294:20
silt 39:15,
107:21,
204:25,
238:23,
254:9,
289:21,
293:1, 311:6,
312:7,
345:20,
351:9, 351:10
silty 106:22,
149:19,
290:3, 290:5,
291:21,
292:2, 360:22
silver 277:4
similar 19:9,
28:8, 44:5,
141:12,
141:16,
198:11,
245:25,
246:7, 264:1,
281:15,
281:17,
315:12,
361:9,
363:24, 383:1
similarly 102:2
simple 254:17,
352:10
simplifications
36:24, 37:1
simply 313:24,
322:17,
326:23,
346:24,
351: 6,
418:12,
420:17
simulate 64:22,

195:23,
201:19,
292:9,
304:11,
304:12,
309:4, 370:8
size 19:8,
19:21, 60:20,
60:24,
100:23,
106:6, 149:7,
179: 6,
197:21,
204:13,
229:15,
260:12,
372:1, 372:2
sizes 397:23
skip 370:21,
371:5
skipped 347:24
Skipping 283:3
sky 419:22
slab 203:23,
203:25, 204:1
slack 79:13
slide 325:14,
335:21,
391:4,
391:13,
391:19,
392:18,
407:22,
407:25
slides 325:16,
326:8,
326:14,
326:23,
326:25,
335:6, 335:9
slideshow
324:20,
326:24,
335:7,
335:15,
335:20
slideslow
326:22
slight 367:21
slightly 28:23,

99:16,
118:23,
119:3, 293:19
SLODA 93:3,
151:17
slope 81:3,
110:15,
233:13,
234:13, 290:5
sloped 110:13
slopes 110:23,
110:25,
111:1,
232:13,
235:7, 290:12
sloppy 351:22
sloshes 30:16,
$30: 17,30: 18$
sloshing 88:6
slow 414:5,
415:9
slowed 356:13
Slower 329:16,
331:10,
414:4, 418:20
Slowly 62:19,
273:19, 302:19
slows 290:21, 290:25
small 17:2,
19:8, 32:13,
61:20, 74:16,
107:23,
113:12,
175:2, 175:3,
188:20,
190:22,
190:23,
233:6, 293:3,
295:21,
299:15,
310:14,
310:20,
310:23,
312:3, 316:5,
367:23,
368:23
small-footed
277:15
smaller 23:20,
23:21, 23:24, 45:23, 46:18, 46:23,
114:23,
233:12,
282:20,
321:22
SMART 214:14, 416:1
smell 364:5,
419:21
smelt 114:9
smolt 429:11
snails 255:13
Snake 16:8
Snow 282:5,
431:16,
431:22
so-called 103:17
social 16:15
Society 105:4,
368:3,
414:12,
414:15
soft 114:10,
115:23,
242:16,
254:7, 254:9,
351:23,
351:24,
351:25
soil 106:22,
155:1, 158:8,
182:2,
184:19,
203:14,
203:18,
205:4,
205:20,
206:13,
236:22,
242:12,
242:13,
251:21,
253:23,
254:4,
259:13,
263:1, 274:7,

295:22,
297:12,
297:14, 364:5
soils 152:11,
160:24,
205:12,
206:16,
269:14, 301:5
Solar 119:23,
420:22,
420:25
sold 252:24, 332:23
solely 377:12
solid 58:2,
140:16, 390:2
solidify 260:8
solids 18:11
soluble 26:14,
26:15, 26:18,
26:21, 27:4,
27:11
solution 81:22, 362:1
solver 56:2
Somebody 68:9,
68:12,
147:20,
148:16,
207:18,
211:21,
248:14,
288:3,
338:16,
342:3, 367:16
somehow 67:7,
249:3, 396:17
someone 51:8,
71:23,
143:20,
267:13,
368:4, 369:22
someplace 75:22
sometime 341:19
Sometimes
43:21, 64:3,
129:13,
208:21,
254:9, 279:23
Somewhat 38:15,

86:8, 102:1, 113:20, 226:21, 253:17, 261:7,
270:21,
318:18,
422:20
somewhere 62:1, 93:25,
124:16, 247:18, 294:8, 309:19, 343:8
songbirds 282:3
soon 43:16,
92:23,
232:12, 359:15
sophisticated 19:5
sorted 108:18
sound 207:25,
212:9, 214:1, 359:16, 398:21, 419:2, 421:9
sounds 28:4, 140:6, 259:4, 370:11, 371:16, 396:18, 396:19
source 20:3, 20:5, 96:9, 114:24, 127:24, 202:24, 211:15, 248:24, 248:25, 249:4, 281:25, 290:1, 312:14, 312:25, 322:19, 357:16, 419:2
sources 19:25, 24:13, 25:25,

26:5, 51:15,
254.23,
354.22,

357:23
sourcing 18:24
south 39:25,
40:4, 40:12,
41:19, 42:20,
45:12, 62:5,
62:11, 63:22,
64:3, 64:8,
64:10, 65:7,
102:20,
159:9
178:6, 288:1,
288:16,
308:24,
309:1,
309:10,
309:17
Southern 60:10,
91:13, 97:22,
159:23,
161:6, 198:1,
199:12,
367:13
space 100:14,
229:10,
267:2, 271:2,
271:7
spacing 266:11
span 230:9,
235:9
spanned 181:1,
195:21
spanning 91:15
spawning
285:15,
310:18
speaking 44:18,
92:23, 93:15,
136:24,
240:4,
312:15,
361:18,
373:15,
373:19
268:4
special 172:7, 208:25, 209:7 209:12, 209:15, 210:10, 210:15, 211:3, 211:25, 212:7, 212:22, 213:2, 213:3, 215:18, 215:22, 218:21, 220:3, 277:4, 301:10, 302:1, 381:6
specialist
333:7, 351:14
specialize 105:9
specialty 305:10
Specifically 94:21, 183:3, 185:21, 186:24, 196:4, 198:6, 212:2, 215:6, 219:17, 224:9, 271:9, 321:22, 357:18, 378:17
specifics 25:7, 305:17
specified 336:6
specify 287:23
speculation 330:25
speechless 400:25
speed 230:5
speedbumps 83:12
speeds 59:12
spends 64:8
spent 34:24,
74:10, 91:23,

92:3, $304: 11$, 317:25, 425:9
spill 69:15
spills 294:24
split 111:15,
293:8
spoils 161:18, 162:1, 162:14, 162:18, 162:19, 173:24, 187:21, 348:2, 348:4, 352:5, 387:9
spoke 225:19, 264:20, 287:12, 370:1
spoken 44:16, 150:9, 343:16
spot 136:18, 172:10, 279:10, 364:18
spots 312:11
spread 81:9, 181:6, 285:9
spreads 332:20
spring 79:13, 79:19, 345:9, 350:19
springtime 350:23
spruce 237:14
spud 123:17
spuds 123:11, 123:15
square 46:10, 46:14, 108:23, 108:24, 109:2, 109:7, 109:10, 109:11, 110:6, 111:4, 157:20, 168:6, 170:5, 188:21, 188:23, 234:18,

267:3, 267:8, 357:10
Squaw 102:20
stability
152:11,
253:23
stabilization 233:13,
234:13,
236:23,
251:14
stabilizations 337:23
stabilize
110:15,
110:25,
111:1, 230:6,
232:13,
232:17, 235:7
stabilized 351:17
stabilizing
234:14
stable 172:18, 241:16
stack 387:5
stage 306:12, 313:17, 313:19
staged 123:8, 124:22
stages 429:10
staging 126:12
stagnate 88:5
stagnation
88:12
stake 306:9
stand 12:6,
31:7, 52:23,
90:14, 104:2, 336:20,
402:7, 410:5
standard 19:15,
22:1, 101:8,
123:17,
126:18,
159:22,
164:20,
164:21,
165:4, 165:5,

172:10,
295:2, 295:3,
348:22,
360:7,
387:21, 430:8
Standards
16:15, 21:23,
120:9,
130:17,
163:8,
165:12,
253:2, 349:5,
382:19,
387:9,
387:16,
396:8, 424:8
standing 133:14
standpoint 244:17
stands 321:13, 403:19
star 419:23
start 11:5,
41:25, 53:9,
53:16, 69:1,
86:16, 93:20,
105:18,
115:23,
121:22,
127:4, 137:9,
228:9,
228:10,
244:23,
245:18,
245:23,
246:14,
246:17,
248:12,
275:16,
294:3,
296:22,
375:19,
392:23,
417:20,
431:17,
431:21,
431:22
started 44:17,
55:19, 69:3,
87:9, 94:7,

195:24,
337:15,
414:22,
428:10
starting 82:13,
115:24,
140:15,
245:18,
292:16,
350:7, 399:18
starts 106:16,
336:12,
346:17, 350:17
state-of-the-ar
t 15:5, 19:7,
22:10, 23:8
stated 24:4,
129:3, 131:8,
141:9,
154:20,
216:25,
220:13,
344:16,
359:3, $360: 1$,
360:8, 360:9, 369:15, 388:5
statement.
379:14
statements
129:9, 267:8,
344:13,
374:25,
376:1, 376:7, 396:11, 401:25, 403:4
States 17:20, 19:23, 96:17
stating 360:12
station 204:16, 265:2,
296:23,
297:19,
297:24,
298:2, 298:10
stations 295:7
statistically 102: 8
statistics
30:14, 360:14

```
statutory
    333:15
stay 42:1,
    42:13, 43:23,
    122:20,
    164:16,
    188:20,
    189:11,
    316:2, 419:17
stayed 65:10
staying 41:4,
    233:4, 407:4
stays 61:23,
    123:10, 368:7
Ste 3:36
steady 45:6,
        57:2, 58:21,
        59:5, 75:9,
        76:7
steeply 110:13
Steering 120:14
STEM 13:17,
    13:18
stenograph
    433:6
stenographer
    367:1
step 88:2,
    100:15,
    122:13,
    122:15,
    197:3,
    211:10,
    229:14
steps 110:12,
        249:12,
        425:19
sternmen 327:10
Steve 383:23
Steven 2:5,
    10:13
Stewardship
    16:21, 414:24
stick 46:7,
    47:16, 401:16
sticking 49:17
stirring 56:11,
    183:25
Stockton
    362:15,
```

367:12
stone 110:12,
124:21,
125:13,
273:25,
294:12,
350:21
Stonington
30:19
stop 186:9,
190:24,
275:1,
290:11,
350:23,
351:1, 351:5,
371:22
stop/start
285:21
stopped 140:14, 357:1
storage 79:23, 294:24
storm 120:10, 189:11
storms 78:2,
83:1, 188:12,
351:3
Stormwater
92:14,
106:15,
120:3,
120:10,
230:4,
252:12,
252:13,
252:14,
289:25,
290:7, 431:19
stormy 350:13, 351:2
straight 55:13, 99:15,
136:15,
395:11
straightest
135:6, 135:11
straightforward 308:19,
416:24
strategies

228:14
stratification 38:3, 70:6,
71:12, 71:14, 161:21, 162:10
stratifications 163:20
stratified 43:20
stratigraphic 260:17
straying 132:21
strays 128:12, 147:16
streambed 110:18, 110:21, 234:19, 234:22, 235:18
Street 3:43, 4:7, 4:34, 5:6, 420:16, 421:1
stressed 430:1
stretch 125:4
stretched 399:11
stricken 376:3, 376:5, 376:14, 380:22, 402:4
string 128:12
strip 416:8, 420:11. 420:14
striving 23:17
strong 45:4, 307:10, 326:23
stronger 44:24, 45:14, 45:25, 65:8
strongest 42:11, 64:11
strongly 37:17, 352:18
struck 330:8, 349:21,

378:24
structural
243:14,
260:21,
337:24
structure
115:16,
116:10,
204:2, 236:5,
254:4,
290:20,
295:16, 347:4, 347:6, 360:19, 360:20
structures
17:8, 175:3,
229:3,
249:21,
277:11,
338:19
stuck 184:4
student 13:19
studied 79:17,
88:15,
131:17,
133:12,
141:23,
147:12,
174:7, 185:1,
343:10,
studying
133:17,
184:11,
352:9, 392:24
stuff 39:5,
40:24, 51:10,
54:24, 60:22,
61:24, 65:11,
75:19, 75:20,
79:20, 84:20,
343:10, 430:5
stunt 380:9
sturgeon 114:15
sub- 273:3
sub-sea 173:18
subcontractors
92:15
subgrade 204:9,

275:17
subject 224:22, 228:5, 278:2,
331: 4,
377:16, 399:7
subjects 419:8
submerge 348:9
Submerged
131:25,
223:18,
378:17,
392:15,
394:3, 404:3
submission
85:18, 85:25,
186:23,
261:24, 342:1
submit 11:11,
11:21,
303:20,
303:24,
370:14,
373:25,
374:7, 395:4,
401:17,
404:7, 404:9,
405:9, 405:17
submittal
201:10
subsamples
161:21,
162:10,
163:20
Subsection
333:16
subsections
347:25
subsequent
196:22
Subsequently
411:21
subset 152:4,
258:14,
258:24, 259:3
subside 275:2
substance
376:8,
376:23,
377:11
substantial

127:22, 194:21, 204:5, 309:11, 312:16, 340:13
substantially 101:20, 265:21, 319:1
substitute 73:15
substrate
113:22, 149:12, 181:17,
222: 4,
238:19,
238:23,
239:5,
241:14,
242:1, 273:3,
290:4
substructure 204:12
subsurface
141:15,
223:16,
224:10,
245:4, 246:1,
273:3
subtidal
107:18,
107:22,
144:6,
241:14,
245:16,
245:17,
245:20,
245:22,
245:24,
246:15,
246:23,
262:21,
273:1, 273:9, 308:8,
310:11, 310:12
315:15, 400:8
subwater 352:1
succeeded

392:12
success 250:14,
293:15,
293:22
successful
35:14, 250:20, 251:18
successfully 294:3
suck 428:5
sudden 46:16
suddenly 88:25
suffered 54:5,
355: 6
suffice 394:21
sufficient
11:24, 23:14,
85:17, 85:24,
241:6,
255:23,
288:18,
341:3, 397:12
sufficiently
80:14
suggest 42:4,
167:22
suggested
399:24
suggesting
129:16
suggestion
167:24,
256:8,
256:10,
256:24
suggestions
86:20
suggests 42:5,
55:24, 146:3,
182:4, 360:20
suit 331:8,
396:5
suitability
329:3, 334:10
suitable 96:18,
104:10,
204:25,
278:6,
285:15,

286:10
Suite 3:9,
3:17, 3:25,
306:2, 306:11
suited 287:5
sum 85:13,
86:14, 239:11
summaries 336:2
summarize
14:25,
245:17,
349:22
summarized
97:18, 208:14
summarizes
14:17
summary 14:13,
108:22,
125:21,
126:25,
141:12,
219:9,
245:14,
287:3, 303:2
summer 68:20,
97:11, 118:5,
272:4, 277:2,
277:12,
279:22,
280:5,
280:23, 357:1
summertime
56:20
sunfish 83:11
super 202:5
supervising
338:24
Supplement
207:14
Supplemental
137:21, 138:2
supplemented
208:11
supplements
25:10, 347:21
supplied 261:19 suppliers 95:8,

95:16
supplies 97:10
supply 92:13,

200:21, 202:13, 250:12,
411:10,
411:11,
411:17,
427:20
support 124:1,
124:10,
150:1, 175:5,
204:2, 347:14
supporting
149:6,
180:18,
228:22,
241:15, 242:6
supports 123:12
suppose 79:6
supposed 49:17,
117:9,
163:17,
163:19,
213:24,
226:2,
341:15,
431:22
surface 24:12,
30:3, 30:4,
$33: 15,33: 23$,
38:6, 40:5,
41:18, 43:20,
43:22, 44:2,
60:13, 85:3,
103:16,
129:22,
129:24,
144:11,
144:15,
149:17,
149:19,
155:10,
202:21,
204:20,
223:9,
223:10,
251:21,
265:17,
332:16,
430:25
surfaces 30:2,

145:9
Surfrider 92:5
surplus 202:14
surprise 38:16,
185:17,
185:24
surprised
37:23,
221:18,
411:25
surprises 37:25
surround 204:12
surrounding
118:5, 118:7,
129:12,
190:12,
291:17,
408:21,
413:10
survey 111:18,
149:13,
175:9,
213:14,
218:13,
219:12,
221:15,
221:16,
279:3,
283:22,
287:1,
310:15,
347:11,
376:25
surveyed 221:8,
310:14
surveyors
338:11
surveys 74:10,
92:20, 92:21,
107:15,
108:17,
111:16,
148:23,
149:8,
173:17,
208:4, 338:23
survival 361:23
survive 251:14
Susan 2:3, 90:6 suspect 137:2,

243:11, $336: 3$ suspended

267:19,
311:8, 312:20
sustain 78:10, 226:5
sustainability 421:10
Sustainable 13:24, 13:25, 15:7, 15:12, 18:24, 94:20, 94:21
Sustained 71:20, 80:2, 130:24,
160:4, 160:5, 336:4
swallowed 371:23
swear 340:22
swearing 377:25
sweethenrys@gma
il.com 5:16
swim 271:10
swimming 119:4, 337:13
swore 347:23
Sworn 12:6,
57:10, 57:14, 90:11, $90: 15$, 336:13,
336:14,
336:15,
374:25,
379:12,
403:2, 410:3, 410: 4
syndrome 215:2
Systems 15:2, 15:9, 15:12, 15:14, 15:25, 16:1, 16:14, 16:17, 16:18, 17:1, 17:9, 17:13, 18:17, 18:18, 19:4, 19:6, 19:10, 19:19, 27:16, 35:3, 95:25,

171:4, 202:6, 204:3,
339:24,
417:4, 430:5
< T >
T. 384:22

Tab 231:16
Table 11:12,
89:24,
199:17,
199:22,
209:3,
258:10,
258:15,
258:18,
258:21,
267:18,
399:13
tabulated 109:14
tail 157:24
talented
313:10,
323:14
talked 25:2,
47:20, 52:1,
52:2, 81:20,
88:5, 128:18,
128:19,
204:22,
229:21,
235:1,
242:25,
257:2, 269:9,
277:8,
358:22,
419:3, 419:9
talks 187:4
tall 204:10
tanks 29:21,
29:24, 204:2, 204:4, 204:5, 204:21,
205:1, 258:7,
294:24,
429:15,
429:16, 430:4
target 369:20
targeted 242:11
targeting
292:15
Task 120:4, 304:20
tasks 92:12
taught 419:7
tax 410:23
taxpayer 353:14
TCLP 103:12, 104:1
teach 63:7
teacher 408:9
teaching 13:9, 13:22
team 92:24, 120:23, 170:25, 172:5, 305:22, 307:12, 307:14
teaming 221:19
tear 351:15
Tech 3:42
Technical 91:16, 99:4, 170:24, 171:4, 171:18, 359:23, 360:12, 411:4, 413:25
technicians 411:20
technique 115:23, 263:5, 285:21
techniques 242:3
technological 14:2
technologically 163:15
technologies 15:15, 17:7, 18:15, 18:22, 23:18, 26:7, 203:1
Technology

13:16, 15:5,
18:21, 19:15,
24:6, 26:9,
26:10, 32:17,
128:9,
170:20, 258:6
tells 45:22
temperate
359:20
temperatures
18:6, 129:17,
129:23,
193:7,
193:10,
257:5,
330:19,
429:25
temporarily
108:10,
315:5, 315:16
temporary
107:23,
108:24,
109:3, 109:6,
109:8,
109:12,
115:10,
115:11,
122:11,
170:3, 284:6, 310: 9
ten 147:2
tend 37:3,
63:14, 63:19,
278:19,
285:11,
314:25, 364:13
tended 311:23
tens 164:7, 184:3
tenth 428:20
term 171:18, 209:10, 209:13, 256:6, 274:25, 352:3, 379:17, 394:19
terminus 298:11
terms 15:9,
28:4, 29:11,
71:11,
143:24, 194:14, 197:23, 198:3, 198:11, 200:23, 240:1, 240:11, 251:16, 254:21, 257:15, 260:16, 268:12, 289:3, 289:11, 295:5, 307:11, 394:12, 424:25, 427:18, 430:9
terrestrial 219:25
territorial 368:2
territory 418:12
test 100:17, 147:12, 166:12, 253:1, 290:14, 290:16, 291:3, 291:21, 291:25, 299:5, 371:14, 371:15, 371:16, 389:14
tested 126:15, 141:5, 154:4, 154:19, 154:24, 155:11, 155:12,

155:13,
157:8, 165:3,
165:19,
176:8, 298:23, 300:22, 348:7, 348:25, 349:1, $349: 2$, 349:7,
364:18,
387:20,
411:19
testified
132:22,
134:8, 144:1,
147:23,
151:15,
151:16,
153:14,
180:11,
206:22,
297:13,
389:4, 406:3
testify 25:8,
52:15, 67:12,
91:4, 143:19,
147:10,
160:18,
324:8,
410:16,
412:16,
422:24
Testifying
12:6, 26:24,
34:11, 58:8,
64:16, 71:23,
134:17,
147:4,
153:18,
160:2,
164:10,
167:3, 385:4,
413: 6
testimonies
36:9, 321:6
tests 291:10,
295:13,
350:11,

389:14,
389:16,
389:17,
423:14
text 268:3,
301:19,
346:3, 346:16
Thanks 28:1,
29:9, 280:23,
320:7, 392:4,
427:11,
429:21
Thaxter 3:35
themselves
123:15,
301:10,
330:7, 396:9
theoretically 285:14, 293:11
thereof 111:25, 181:25, 347:25
thermal 117:23, 118:2, 118:3, 118:20, 190:7, 190:15, 191:8, 191:11, 300:14
thermally 130:9
thesis 105:8
they'll 428:14, 429:22
They've 54:5,
112:20,
115: 4,
267:12,
279:23,
306:20,
360:1,
399:16, 422:1
thick 204:25,
242:14, 243:6
thickness
270:24
thinking 52:25, 80:16,
169:17,

262:7, 316:1, 321:10,
324:5,
340:25,
341:1,
370:22,
409:18,
421:17
third 18:7,
46:16, 131:6,
131:13,
131:14,
175:25,
269:5, 326:1, 326:12, 331:20, 344:16, 368:24
thorough 412:11
thoroughly
344:7, 399:20, 421:14
though 22:22, 28:4, 34:18, 64:20, 98:5, 125:16, 128:9, 150:24, 170:10, 172:17, 193:21, 194:25, 195:17, 208:19, 218:10, 226:24, 291:11, 314:12, 321: 4, 377:18, 394:19, 395:12, 405:22
thousand 360:6, 428:20, 428:25, 429:2
thousands
164:8, 184:3, 192:18,

193:2, 410:25
threat 340:13
threatened
212:8,
212:11,
214:24,
215:11,
216:17,
216:19,
216:21,
227:22,
277:9, 301:9, 301:13
threatening 340:8
three-dimension al 37:24,
41:12, 54:4, 54:5, 54:21, 56:1, 58:13, 58:23, 58:25, 66:3, 74:6, 75:5, 75:8, $76: 7,80: 7$
Three. 77:10, 180:23
threshold 313:22
thrives 360:18
Throughout
61:16, 63:20,
68:21, 70:5, 70:15, 71:14,
81:9, 113:11,
171:13,
244:5,
291:24,
411:23
throw 357:6, 372:3, 428:22
thrown 74:7
Thursday 303:6 ticked 419:22 tidal 41:1,

41:2, 44:23, 46:1, 50:22, 59:5, 59:11, 59:20, 60:4, 60:25, 61:20, 62:25, 64:5,

64:14, 64:19,
64:23, 65:3,
65:11, 74:12,
107:20,
108:9,
174:12,
222:4, 242:8,
283:3,
339:20,
371:13,
400:20
tide 38:13,
44:22, 60:17, 60:21, 60:23,
61:9, 79:7,
79:11, 84:24,
122:21,
124:3,
124:24,
125:2, 125:9,
125:16,
126:11,
126:12,
129:25,
170:4, 222:3,
274:18,
283:16,
338:14,
338:17,
345:9, 398:14
tides 38:13,
40:22, 40:25,
44:23, 46:1,
60:23, 61:23,
78:2, 79:13,
79:19, 321:7,
371:9
Tier 211:17,
211:21,
344:4, 393:1, 393:2
ties 24:18
Tilburg 5:21
till 349:20
timber 122:16,
122:24,
125:19,
345:5, 398:24
timekeeping
77:17,

179:13, 189:21
timers 361:15
timing 249:10
tip 159:23,
161:6, 169:4, 170:14
tire 427:25
tired 406:25, 407:20, 415:14
Tischbein 352:7, 387:6, 387:7, 387:12
tissue 102:16, 158:2, 158:8, 158:12, 300:23
tissues 158:18
Title 160:11, 327:17, 384:2
Todd 280:9
together 19:19, 50:14, 56:12, 74:15, 100:6, 155:25, 157:8, 228:22, 260:25, 308:14
tolerable 243:15
tomorrow 53:11, 63:5, 63:7,
370:15, 373:2, 404:24, 431:16
ton 351:18
tonight 370:16
tons 26:2, 94:14, 94:23, 331:18
took 108:17, 112:22, 157:7, 178:17, 260:11, 279:13, 282:24,

$\begin{aligned} & 300: 6, \quad 351: 4, \\ & 356: 16, \\ & 419: 15 \end{aligned}$
tool 55:17,
98:5
tools 279:24
top 199:4,
199:6,
232:23,
350:7,
351:12,
351:13,
374:12,
388:8, 390:2,
399:17
opic 165:1,
376:9,
376:10,
376:12,
376:17,
377:22,
379:16,
379:17,
380:6, 380:7,
388:22,
402:11, 407:6
topography
194:9, 289:15
Toronto 384:21
total 18:11,
19:19, 21:13,
103:11,
103:17,
103:18,
104:7, 170:3,
292:8,
354:14,
358:24,
359:4, 360:15
totally 28:25,
313:12,
363:17
totals 111:3
touch 267:22,
267:23
touched 243:8
touching 267:4,
267:9, 268:7
tough 419:13
ours 279:23,

300:6, 351:4, 419:15
tool 55:17,
98:5
tools 279:24
top 199:4,
199:6,
232:23,
350:7,
351:12,
351:13,
374:12,
388:8, 390:2,
399:17
topic 165:1,
376:9,
376:10,
376:12,
376:17,
377:22,
379:16,
379:17,
380:6, 380:7,
388:22,
402:11, 407:6
topography
194:9, 289:15
Toronto 384:21
total 18:11,
19:19, 21:13,
103:11,
103:17,
103:18,
104:7, 170:3,
292:8,
354:14,
358:24,
359:4, 360:15
totally 28:25, 313:12,
363:17
totals 111:3
touch 267:22,
267:23
touched 243:8
touching 267:4, 267:9, 268:7
tough 419:13
tours 279:23,

280:22
tow 111:20,
180:12, 180:19
toward 244:7, 421:9
towards 39:14,
52:15, 62:2,
89:22, 119:6,
119:8, 125:4,
242:11,
246:12,
262:23,
290:6,
291:19,
363:9, 387:8,
421:16
town 92:1,
92:2, 338:8
tows 112:21,
112:22,
113:10,
180:25,
181:4,
181:11,
181:16
toxicity 103:12, 103:23, 312:2, 312:22
Tozier 99:12, 264:21
track 163:18
tracking 63:16, 73:20
trade 306:24
trade-off 418:19, 419:1
Tradionally 360:24
traffic 97:7, 234:16
Trail 110:9, 110:13, 110:14, 110:16, 221:1, 233:9, 233:10, 281:8, 281:12
trained 13:11,

34:23
training 417:15
transcribe 390:13
transcribing 415:13
TRANSCRIPT 10:1, 433:5
transfer 20:11
transferred 247:19
transformation 56:10
transition 100:2, 273:4, 273:15, 275:17, 297:15, 298:10, 315:15, 400:8
transitioning 298:1
transitions 107:20
transparent 313:13, 316:21, 412:11
transport 19:25, 32:1, 32:4, 247:14
transported 247:9, 247:15
traps 189:11
travail 378:22
travel 123:3, 191:10
traveling 62:19, 119:5, 365:24
traversable 206:10
treatment 17:7, 18:12, 18:18, 18:22, 19:4, 19:6, 19:20, 27:6, 28:9, 92:7, 203:1, 241:4, 252:14,

265:1, $362: 2$
tree 108:6,
214:10,
216:10,
277:10,
277:16,
277:19,
301:22
trees 277:3
tremendous 51:7
trenched 124:20
trenches 144:4
trenching
162:15,
328:16,
328:20,
330:3, 348:3,
397:25
trending 299:24
TRI 335:24,
336:8, 375:5,
378:7,
379:11,
379:18,
380:5, 402:2,
404:6, 404:8,
404:9
trial 233:14, 281:16
Tribes 305:9
tributary 119:7
trichoptera
255:20
tried 59:2,
159:21,
278:7,
306:20,
313:13,
326:14,
364:17, 378:7
trillion 17:25,
21:8, 30:15,
30:21, 31:1
trouble 84:22,
293:21,
339:7,
352:12,
415:13
troughs 16:7,
18:15
trout 16:4,
16:6
truck 206:10,
247:15,
247:19, 425:3
trucked 268:18
trucks 229:17, 247:13, 268:25, 425:5
trunk 277:10, 301:22
trunks 277:19
trust 256:21, 326:3,
352:23,
409:19,
422:22
trustworthy
412:12
truth 12:8, 12:9, 57:18, 90:16, 90:17, 336:22,
336:23,
340:22,
375:1,
377:13,
377:25, 410:7
truthful 347:23
truthfully 395:2
truthfulness 376:19,
377:18,
378:11,
378:14
Try 20:18,
25:21, 35:25, 46:7, 50:11, 51:8, 55:14, 58:3, 58:7, 61:18, 68:15, 81:8, 84:9, 202:7,
267:16,
307:23,
339:7, 370:13
trying 33:19,
35:21, 35:24, 42:23, 50:14,

54:13, 89:5, 119:7, 134:5,
134:19,
138:5, 181:1,
181:2, 213:1,
228:23,
229:4,
248:23,
248:25,
281:3,
296:15,
302:16,
336:6, 365:7,
402:25,
406:24,
407:1, 407:5
tubing 259:19
tuna 158:13
turbidly 116:5
turbulence 44:3
turn 41:24, 111:8, 230:8, 308:6, 313:4, 373:2
turn-around 229:9
turned 160:15, 225:11, 306:18
turning 351:7
turns 38:18, 38:25, 45:16, 279:19
Turtle 366:16
tv 421:2
Twice 30:15, 42:10, 46:3, 276:15, 322:8, 420:4
twisted 133:9, 133:22, 136:15, 389:12
two-dimensional 37:23, 64:21, 66:4, 80:7
two-parter 238:9, 243:17
two. 87:17, 190:1

```
type 42:3,
    57:7, 67:17,
    184:19,
    211:12,
    230:21,
    233:24,
    233:25,
    242:12,
    242:13,
    263:6, 275:7,
    282:5,
    301:25,
    368:20
types 15:25,
    76:6, 103:7,
    105:20,
    123:9, 126:6,
    275:5, 294:2,
    321:9
typical 39:2,
    70:24,
    203:22,
    206:1, 294:1,
    295:2, 312:1,
    322:25
Typically
    31:24, 32:3,
    103:10,
    103:21,
    237:15
```

< U >
ultimate 124:25
ultimately
96:21, 96:25,
97:15,
102:12,
144:10,
158:8, 264:8,
264:25,
291:11,
291:19,
323:12
unavoidable
109:20
unburied 159:14
uncertainty
36:25, 317:24
uncomfortable

147:9, $346: 18$
uncommon 244:4, 251:15, 254:6
unconfined 357:8
unconsolidated 350:14, 351:1, 351:23 uncover 294:23 underestimate 37:5, 59:18
undergone 105:23
undergraduate 13:19
underground 294:24
underneath
116:18,
152:12,
204:1, 267:2,
267:6,
267:25,
271:2, 271:3,
271:7, 271:10
underscore
315:24
understandable 270:25
understandably
312:12
understanding
23:16, 26:8,
26:20, 75:24,
97:9, 127:25,
134:10,
157:25,
169:8,
182:10,
185:5,
189:10,
200:21,
225:7,
240:14,
257:14,
261:3,
269:11,
276:23,
285:18,
291:8,

299:18, 301:5, 303:20, 305:13, 401:12
understands 142:17, 262:5 understood

61:18, 254:5, 265:16, 394:18
undertaken
265:20
undertook 92:12
undeveloped
287:17,
347:10
UNE 6:4, 12:21,
13:9, 13:22,
14:24
unexpected
53:14, 55:4
Unfortunately
87:2, 250:14, 420:5
unintended 67:8
Union 4:13,
159:21,
327:8, 338:6,
414:19
unique 108:3,
340:1
unit 95:6, 430:4
United 19:23
units 19:9, 157:5
University
1:25, 5:19,
5:22, 13:1,
13:11, 13:14,
14:7, 14:8,
34:23, $34: 24$,
35:1, 91:13,
105:6, 359:2,
360:4,
397:20,
409:5, 413:13
university-wide
13:18
unknown 288:20, 350:18
unlegal 381:9
Unless 14:12,
84:5, 277:18
Unlike 136:23
unlimited
179:18
unquestionably
359:10
unreasonable
106:8, 216:4,
240:1,
240:10,
240:12, 359:12
unrecorded 379:9
unstable 110:23, 174:9, 241:17, 360:24
unstapled 301:20
unstruck 378:25
unsurpassed 340:2
untested 350:18
until 56:9,
126:12,
162:2,
196:12, 196:16, 196:22, 198:2, 207:7, 225:6, 280:24, 298:5, 319:7, 356:14, 372:9, 405:22, 417:14, 431:23
untreated 354:24, 355:22
untrue 317:16, 318:7
unusable 19:12
unvegetated 110:5
up-to-date 352:9, 413:10 upcoming 32:16 updated 136:2, 267:12, 343:5
uphill 204:18, 264:25
upland 100:14, 104:21, 155:3, 165:8, 165:10, 165:19, 246:25, 269:14, 269:17, 280:3, 337:20, 347:7, 400:19
uplift 242:11
upper 40:6,
107:8,
107:19,
157:21,
290:12,
329:25,
330:16,
331:13,
334:2, 334:6,
353:15, 354:1,
361:21, 363:25
Upstream 3:32, 6:13, 23:4, 34:6, 182:4, 192:6, 416:4
uptake 158:6
upwelling 174:11, 174:15
urge 313:24
USA 353:14
usage 394:10, 409:11
USC 190:3
useful 30:13, 48:18, 48:23, 84:3
user 15:20
uses 39:23, 56:2, 127:14, 329:9, 340:4
USGS 19:23, 107:10
Utah 205:12
utilize 24:16, 287:16
utilized 285:3
utilizing 15:5, 125: 6
< V >
vacate 116:3, 285:22
Vacationland 356: 6
vague 70:16
validate 37:8
valuable 67:1, 232:8, 232:23, 303:21, 303:23
valuation 240:9
value 27:13, 42:7, 45:7, 45:21, 46:6, 104:5, 104:6, 118:13,
263:6, 288:5, 340:3, 360:11, 420:20
valued 221:5, 233:10
values 104:1, 104:2, 111:23, 111:24, 238:10, 240:14, 263:12, 384:25
variability 141:15, 300:3, 300:4, 317:24
variable 265:5
variance
130:12,
193:10,
194:23
variation
193:12
variations
79:14
varied 108:1
varies 129:13,
144:10,
170:10,
203:19
varieties 74:23
variety 92:12,
135:1, 149:3
various 112:7, 115:9, 120:6, 120:7, 126:6, 182:21, 190:8, 294:2, 306:16, 311:18, 313: 9, 317:22, 330:19, 337:24, 347:13,
348:1, 361:1,
393:5, 398:17
vary 130:9,
194:17
vast 318:8,
347:8
vastly 363:6
Veazie 10:13
vegetated 107:9
vegetation
110:12,
113:12,
181:17,
230:6,
238:25,
310:15
vehicles 229:10
velocity 56:11,
116:20
vendors 95:16
venting 149:25

Venture 307:3 venturing

148:17
veracity 376:8, 379:12,
380:11,
402:21, 403:3
verbally 326:24
verifies 404:2
verify 147:19
vernal 92:20,
107:15,
107:16,
208:4,
216:24,
217:1, 217:4,
217:7,
217:11,
218:10,
218:11,
278:13
Verona 161:6, 311:17,
362:15
version 208:9, 297:2,
324:16,
326:2, 326:9,
378:25, 391:8
versus 29:21, 30:5, 88:10, 115:10,
137:17,
179:7,
240:16,
249:25, 300:1
vertically
38:1, 38:4,
39:20, 40:11
vessel 353:21
vetch 237:20
via 108:25, 337:22
viability
97:12, 328:9, 361:21
viable 19:1, 94:20, 96:22, 113:1, 117:14,

258:2, 258:8, 422:23
Vibracore 100:20, 242:2, 243:3, 259:23, 262:7, 262:19
Vibracoring 262:17
Vice 414:10
vicinity 100:18, 101:22, 309:18
video 111:18, 180:18, 180:19, 180:21, 309:20, 310:14
view 60:22, 272:18, 292:18, 305:18, 312:10, 313:5, 313:6, 315:9, 316:8
viewed 31:24
Village 3:32
Vinalhaven 40:13, 40:17, 55:1
violate 339:6
violations 342:18
viral 321:11
Virgin 35:8
viruses 23:15, 32:10, 32:11, 32:14, 32:18
visibility 181:14, 313:25
visible 312:13
visit 217:12,
221:25,
222: 2,
222:11,
229:24,
280:12,

280:14,
284:14,
286:4, 286:5,
286:10,
286:19
visited 97:1
visitors 356:6
visits 97:2,
195:7,
195:18,
195:20,
196:2,
217:11,
218:7,
219:16,
251:13,
281:25,
282:4, 283:5
Visual 326:16,
390:16,
419:25
visually 274:24
volume 17:5,
21:13, 28:7, 30:3, 50:16, 94:25,
114:23,
115:7, 115:8,
259:13,
330:20,
358:23,
358:24,
359:4, 363:14
voluminous
386:18
voluntarily
285:23
volunteer
91:23, 318:2,
408:12
volunteers
318: 4
vote 362:4
voted 92:2
vowel 169:18
< W >
W. $4: 6$
wading 108:9,

108:13,
221:5, 221:9,
222:4, 222:6,
283:4,
283:12,
283:20,
309:16
Wadsworth 363:19,
367:13
Wait 90:20,
162:2,
218:24, 375:8
waiting 394:22, 394:24
waive 48:14, 89:16
Waldo 5:13, 206:20, 360:16, 368:22
Walk 119:23
walking 234:20, 234:21, 256:3, 344:9
wall 118:20, 334:13
wanted 37:22, 93:24, 107:3, 126:1,
218:12,
237:24,
245:1,
278:25,
367:7, 373:6, 407:25
wants 95:10, 211:21, 361:13, 361:14
warm 96:10, 304:12, 358:19, 359:18, 367:23, 406:11
warmer 129:15, 330:18
warming 15:17, 330:11
warning 116:1
warranted
244:15
washed 350:22
washes 30:20
washing 124:11, 125:9, 125:11, 351:7
Washington 93:25, 192:15
Waste 10:8, 18:9, 18:10, 18:22, 19:4, 19:6, 27:8, 103:8, 103:10, 103:11, 103:18, 103:24, 140:16, 252:24, 354:24, 354:25, 355:19, 355:22, 396:3, 418:7
wastewater 17:7, 18:18, 19:20, 26:22, 27:6, 28:9, 52:12, 56:5, 66:13, 66:20, 77:24, 77:25, 78:16, 92:7, 330:17, 330:20, 362:2
Wastewaters 11:1, 16:7
Watch 3:32, 6:13, 16:22, 34:7, 192:6, 416:4, 421:2
watchdog 410:19
watched $306: 21$, 306:23, 306:24, 310:2, 310:4 watchers 218:18 waterfowl 108:9,

108:13,
221:5,
221:19,
222: 6,
222:15, 283:3
waters 15:23,
17:3, 129:12,
166:8,
166:12,
255:7,
330:21,
383:8, 422:15
watershed
182: 4,
306:11,
331:3, 331:12
Waterville
304:11
wave 242:8,
400:17
waves 351:5,
398:15,
399:14
ways 25:9,
115:12,
133:15,
229:6,
229:11,
229:20,
229:25,
230:13,
230:14,
234:15,
347:16, 367:6
weaker 45:15,
65:10
weaknesses
307:23
wears 405:3
weather 78:2,
78:18
web 332:10
website 12:13,
12:15, 166:6,
166:25,
167:4, 320:6,
331:25, 332:1
WEDNESDAY 1:16
weeds 67:14,
378:23
week 128:16, 151: 6,
253:19,
352:7, 418:16
weeks 324:13, 352: 7
weight 124:1, 378:2
weighted 98:19
weighting 204:20
weir 236:5
weird 52:17
weirs 252:1, 290:10
Welcome 34:19, 408: 8
welfare 340:9
well-establishe d 56:24
well-founded 430:19
wells 201:9, 201:18, 290:16, 291:15, 291:25, 359:10, 411:19, 428:9
West 5:13, 40:3, 41:21, 42:20, 82:16, 234:5, 311:24, 356:25, 364:16
western 173:24, 234:11, 296:23
wet 105:20, 105:23, 124:13, 196:10, 227:3
Whatever 25:11, 26:12, 55:15, 62:3, 64:11, 70:9, 119:7, 154:1, 189:25, 274:1,

325:25,
349:5, $364: 6$,
367:17,
425:18,
425:24,
426:23
whatsoever
223:13
Wheeler 160:25, 161:4
whenever 356:11
whereas 65:9, 194:7
wherever 81:10
whichever
364:12
whiffs 418:7
white 215:2, 237:14
wholesomeness 332: 23
whom 417:11
wide 122:7, 168:9, 169:9, 170:7,
189:14, 189:17, 335:25, 350:7, 351:2, 351: 6,
351:15, 351:18, 351:25, 386:20
widely 110:10, 127:24
width 122:9, 123:15, 169:7, 169:8, 169:9, 170:10, 189:2, 189:5, 294:9, 299:12
wife 304:13,
410:12,
413:2, 415:1, 416:5,
417:10, 417:18,
420:24, 431:3
wild 305:4,
306:1
wildland 347:10
Wildlife 92:21,
108:2,
112:15,
114: 4,
120:17,
214:4, 214:5,
214:24,
220:4, 232:9,
276:3, 276:7,
276:11,
280:10,
281:5,
308:16,
339:23
willing 50:16,
253: 8,
278:24,
407:7,
418:18,
418:25
willingness 191:16, 409:8
Wilson 102:14, 352: 20, 352: 22
wind 39:4,
46:8, 61:5,
62:6, 64:4,
74:3, 82:21,
82:22, 82:24,
83:1, 84:25, 343:18, 343:23, 397:14, 397:18
wind/wave 243:2
Windham 31:11
window 108:12, 116:9, 125:5, 181:1,
183:23,
246:22,
247:1,
285:20,
292:14,
292:17,
309:5, 309:6,

420:16
winds 82:16, 89:2
winter 81:3,
92:7, 108:7,
114:8,
214:10,
214:14,
214:16,
216:10,
276:22,
277:16,
280:4, 282:3,
285:8, 285:9,
285:15,
293:12,
293:13,
310:17,
311:3,
350:12,
351:2, 369:11
wintering 282:5
wireless 381:22
wish 431:10
wishes 386:5
withdrawal
410:15, 411:9
without 25:14,
74:24, 82:2,
114:13,
134:9,
147:12,
167:15,
197:22,
318: 4,
327:19,
342:8,
391:18,
398:17,
403:1, 403:3,
411:13, 412:1
Witness 57:10,
57:21, 131:1,
147:9,
148:15,
224:10,
224:11,
269:19,
314:9,
377:10,

379:12,
379:22,
401:9, 403:5
witnessed
174:11
Witnesses 11:1, 11:10, 12:10, 34:16, 52:12, 90:9, 90:18, 336:13, 402:16, 402:19
woman 352:24
wonder 241:5
wondered 255:19
Wonderful
52:20, 193:8
wondering
201:21,
203:4,
224:16,
251:4,
272:25,
279:18,
407:2, 407:7, 411: 9
WOOD 2:18, 6:24, 10:24, 84:12, 84:13, 85:10
Woodard 120:22, 121:1,
170:19, 307:13, 313:12, 316:19
Woodcock 382:8
wooded 236:20, 416:8
wooden 416:7
Woods 34:23
Woodsum 3:7,
$3: 15,3: 23$,
20:17, 20:19, 21:2
word 43:9, 104:18, 228:1, 262:6
words 62:4, 101:24,

$\begin{aligned} & 102: 6, \\ & 155: 24, \end{aligned}$
192:24,
225:22,
238:20,
238:25,
242:25, 393:7
worked 87:10,
92:5, 119:25,
279:24,
291:6,
303:13,
305:8,
307:16,
310:1,
310:20,
310:22,
413:19,
421:21,
422:5, 430:15
working 87:15,
91:6, 111:21,
119:18,
245:19,
245:25,
248:17,
274:17,
275:7,
275:11,
304:12,
305:8,
313:14,
317:20,
337:3, 338:9,
341:7, 341:9,
341:16,
345:7,
352:17,
353:15,
361:6,
363:11,
398:19,
414:17
works 71:6,
79:15, 251:5,
353:9,
387:12,
413:18
World 16:16,
18:25, 19:5,

102: 6,
155:24,
192:24,
225:22,
238:20,
238:25,
242:25, 393:7
worked 87:10,
92:5, 119:25,
279:24,
291:6,
303:13,
305: 8
307:16,
310:1,
310:20,
310:22,
413:19,
421:21,
orking 87:15,
91:6, 111:21,
119:18,
245:19,
245:25,
248:17,
274:17,
5:7,
304:12,
305:8,
313:14,
317:20,
337:3, 338:9,
341:7, 341:9,
341:16,
345:7,
352:17,
353:15,
363:11,
398:19,
414:17
works 71:6,
79:15, 251:5,
353: 9,
387:12,
413:18
18:25, 19:5,

19:10, 35:16,
414:15,
415:18
worms 102:7, 390:4
worried 44:21, 187:9, 368:18 worry 37:13, 43:19, 68:8, 88:19
worth 357:6, 369:4
WOSS 301:9, 302:1
wrap 191:15, 270:15, 352:11, 373:3
wrap-up 314:3
wrapping
352:13, 370:3
wrestle 67:3
write 329:21
writing 11:12, 11:19, 11:20, 91:25, 120:5
written 14:16, 14:23, 14:25, 121:23,
127:20,
199:9,
261:25,
268:13,
324:5,
324:16, 387:21, 428:4
wrote 86:1, 417:3
< X >
Xue 41:14
< Y >
yard 351:20, 396:7
yards 29:3, 104:16,
164:8, 184:3, 348:5,

396:13, 396:14, 396:24
Yarmouth 10:13
Yeager 141:20, 143:5, 146:11, 155:14, 381:5
year-and-a-half 341:8, 341:9, 395:11
year-long
371:8, 371:13
yes. 269:19
yesterday 157:13, 200:20, 202:25, 231:4, 330:10, 427:14, 428:14
young 26:7, 352:24, 355:8, 355:9, 363:1, 372:10, 372:17, 373:7
younger 355:11, 361:7, 368:19
your're 213:23
yourself 179:22, 419:10
Yup 64:18, 68:2, 138:11, 138:14, 203:6, 203:8, 208:17, 211:8, 216:23, 238:18, 255:24, 258:17, 278:15, 278:23, 288:12, 288:24, 373:5

```
< Z >
zero 24:8,
    46:4, 200:6,
    345:3, 345:6,
    351:17,
    421:24
zero. 200:8,
    200:13
Zone 121:14,
    121:20,
    121:23,
    122:3, 122:4,
    124:5,
    125:18,
    144:6,
    177:18,
    233: 8,
    238:24,
    238:25,
    241:14,
    246:8,
    256:17,
    308:19,
    308:20,
    308:22,
    310:9,
    310:11,
    315: 4,
    333:20,
    362:9,
    362:13,
    363:5,
    369:25,
    400:22
zoned 427:23
zones 15:21,
    315:15, 400:8
Zoology 13:20
```

