Attachment IX

IECG-001-033 Attachment 1, Page 1 of 70 Docket No. 2017-232

November 20, 2017

# **CENTRAL MAINE POWER**

## ±320 kV HVDC UG Transmission Line and Termination Stations Kennebec River Crossing

HVDC Underground Transmission Line Crossing Report

**PROJECT NUMBER:** 147483

PROJECT CONTACT: Jesse Sawin Les Hinzman Mark Reynolds EMAIL: jesse.sawin@powereng.com mark.reynolds@powereng.com mark.reynolds@powereng.com. PHONE: (207) 869-1443 (208) 788-0577 (503) 892-6733



HVDC Underground Transmission Line Crossing Report

**PREPARED FOR:** CENTRAL MAINE POWER

#### **PREPARED BY**:

JESSE SAWIN

(207) 869-1443 JESSE.SAWIN@POWERENG.COM

LES HINZMAN (208) 788-0577 LES.HINZMAN@POWERENG.COM

MARK REYNOLDS (503) 892-6733 <u>MARK.REYNOLDS@POWERENG.COM</u>

| REVISION HISTORY |             |                       |  |  |  |
|------------------|-------------|-----------------------|--|--|--|
| DATE             | REVISED BY  | REVISION              |  |  |  |
| 10/20/17         | Les Hinzman | A – Issued for Review |  |  |  |
| 11/01/17         | Les Hinzman | B – Draft Report      |  |  |  |
| 11/17/17         | Les Hinzman | 0 – Final Report      |  |  |  |
| 11/20/17         | Les Hinzman | 1 – Final Report      |  |  |  |

## TABLE OF CONTENTS

| INTRODUCTION                                                             | 1 |
|--------------------------------------------------------------------------|---|
| TERMINATION STATION(S) SUMMARY DESCRIPTION                               | 3 |
| CABLE AMPACITY                                                           |   |
| Reliability Assessment                                                   | 5 |
| ESTIMATED COSTS ±320 KV HVDC OVERHEAD AND UNDERGROUND TRANSMISSION LINES | 5 |

#### APPENDICES

ESTIMATE BACKUP UG CABLE AMPACITY STATION LAYOUT AND ROUTE MAPS RELIABILITY ANALYSIS DESIGN CRITERIA

#### INTRODUCTION

The Central Maine Power (CMP) High Voltage Direct Current (HVDC) Transmission Line for the New England Clean Energy Connect (NECEC) Project is a  $\pm 320$  kV HVDC overhead, single circuit or symmetrical monopole (2-line poles) transmission line capable of transferring 1,200 MW. The project is about 207 miles overall with approximately 145 miles within the US. The line extends through Western Maine from the Appalaches Substation in Thetford Mines, Quebec, Canada and terminates near Lewiston, Maine in the United States. CMP is considering a  $\pm 320$ -kV HVDC underground transmission line for the crossing of the Kennebec River.

The ±320-kV HVDC underground transmission line segment would be installed in lieu of an overhead river crossing span. The project would require two overhead-to-underground Cable Termination (Transition) Stations located near the Kennebec River. In order to achieve the 1,200 Megawatt (MW) rating, each pole will require a 2500 mm<sup>2</sup> (nearly equivalent to 5,000 kcmil) copper conductor, cross-linked polyethylene (XLPE) insulated underground cable. A spare cable would be installed that could be connected to either pole after only a brief outage should a cable or termination failure occur.

A Horizontal Directional Drill (HDD), approximately 2,900 feet in length and 360 feet in depth, would be utilized for the Kennebec River crossing to install a duct bank consisting of, at a minimum: three (3) teninch (10") ducts, one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE).



NECEC ±320-kV HVDC Underground Transmission Line - Kennebec River Crossing

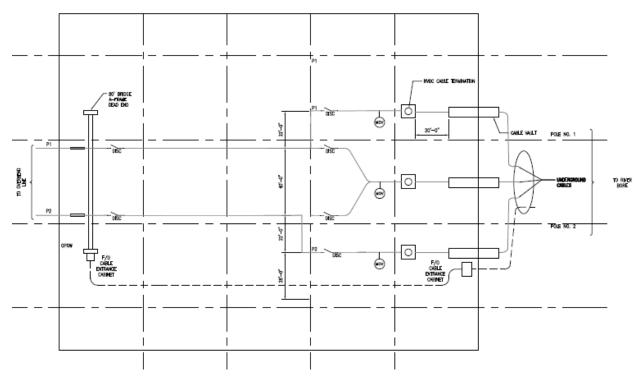
It is anticipated that the HDD could be accomplished with a thirty-six inch (36") bore annulus within the proposed overhead transmission line corridor, which is 300 feet in width. The bore would pass beneath the Kennebec River with approximately thirty-feet (30') of clearance from the river bottom.

The HVDC underground cable installation would require approximately fifteen-hundred feet (1500') of open trenching to connect to the Cable Termination Stations.

Pull-through vaults will be located within each station. These vaults would be utilized for splicing should a termination failure occur allowing for the replacement of a short length of cable for the termination restoration.



Proposed Access Roads


Upgrades on approximately fifteen miles of unimproved roads and the associated bridges would be required to provide access to the Termination Substations in addition to the grading necessary for the stations and the laydown area for the drilling equipment. The costs for the access roads are included in both the Overhead Line estimate and the Termination Substation estimate, but not in the underground estimate.



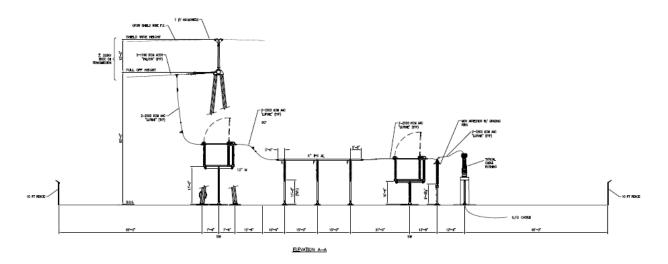
Eastern Access: One-Lane Bridge near East Moxie

Eastern Access: Utilize US Highway 201, Lake Moxie Road, and Indian Pond Road to Black Brook Pond Road. Continue on Brook Pond Road to Fish Road and Fish Pond Road where the access will then extend over local logging roads, although some tree clearing and new roadway may be necessary. Also, bridge weight limits along this route would be questionable and could require upgrades, which were not considered in these estimated costs.

Western Access: From US Highway 201 use Capital Road and Wilson Hill Road to the area near the transition station where the access may require some tree clearing and new roadway.



#### **Termination Station Layout**


#### **Termination Station(s) Summary Description**

The project will include two Kennebec River Termination Stations to transition the underground cable section of  $\pm 320$  kV HVDC transmission system. There would be three underground XLPE Type (Oil Free) Cables installed as well as a section fiber optic cable to transition from overhead optical ground wire (OPGW) to underground type or loose-tube cable. The station development is essentially the same on both sides of the river, with an approximate 200 foot by 250 foot station footprint.

Except for the Overhead Line (OH) deadend the development the overall station would be a low profile arrangement, which will not be visible from the river in the current proposed locations. The termination stations would require some light vehicular access after construction is complete, and would normally have only infrequent operations staff visits to check security and equipment serviceability. There would not be any permanent power (station service) development or building developments at the stations.

The stations will have manually operated disconnect switches to provide for the substitution of the spare cable that would be installed with the two pole cables and the fiber optic underground section. The spare cable would be utilized during the unlikely event of a cable fault in either pole cables and would be identical to the pole cables. Since this reconfiguration has a very low probability event, this is the only time after initial construction where multiple vehicles and CMP personnel would be in the station for the period of 1 to 2 days, performing tests and relocating the removable bus sections.

Since these stations are essentially passive there would be no active security features built into the apparatus or switches. A set of passive cable fault indicators is planned to provide an indication of a cable fault situation that will normally be sensed by the HVDC Terminal Stations. Since modern external fault location technology is good to approximately  $\pm$  500 Meters, a set of passive cable fault locators would be installed on each end of the cables.



Each Cable Termination Station essentially consists of a main deadend to terminate the overhead line section and allow for the transition of OPGW to the Fiber Optic underground cable. This is also an opportunity, if needed, to drop off some of the fibers for a local distribution connection, which is beyond the current project scope.

Inside the station fence will be a set of manual operated disconnect switches to allow for OH and Underground section testing and maintenance activities as well as provide visible means of protecting crews from inadvertent energization of facilities. There would be metal oxide varistors (MOV) surge arrestors at both stations to protect the underground cable from lightning induced high voltage surges. None of the equipment within the station will produce any audible noise, other than the usual low level corona noise levels associated with the transmission line itself.

There would be standard substation fencing around the facility approximately 10 feet tall with barbed wire top. All switches, gates and other equipment would be locked with CMP standard locksets. There will be no active station lighting and if lighting is required for maintenance activities, temporary portable generator supplied lighting would be utilized. Access roadways to the stations would be gated and padlocked as an additional security measure.

#### **Cable Ampacity**

A study was performed to identify a preliminary cable conductor size to meet the requirements for normal loadings of the ±320-kV HVDC underground transmission line crossing of the Kennebec River. Calculations were performed using CYME International's Cable Ampacity Program (CYMCAP) version 7.2 Rev. 3 in accordance with IEC 60287 "Electric Cables – Calculation of the Current Rating". The assumptions for this calculation are based on the design criteria for the project utilizing engineering design experience:

| Nominal Voltage:                              | ±320 kV HVDC                         |
|-----------------------------------------------|--------------------------------------|
| Conductor:                                    | 2500 mm <sup>2</sup> Circular Copper |
| Cable System:                                 | Cross Length Polyethylene (XLPE)     |
| Maximum Conductor Operating Temperature:      |                                      |
| Assumed Native Soil Thermal Resistivity:      |                                      |
| Assumed Thermal Backfill Thermal Resistivity: |                                      |
| Assumed Drilling Fluid Thermal Resistivity:   |                                      |
| Daily (24-Hour) Load Cycle Factor:            |                                      |
| Assumed Earth Ambient Temperature:            |                                      |
| Cable Conduit:                                |                                      |
| Target Ampacity:                              |                                      |

Maximum cable ampacity was calculated for the following case:

Horizontal directional drill 36-inch bore crossing thirty feet (30') beneath the Kennebec River bottom rated for 1,877 Amps. This can be accomplished with a 2,500 mm<sup>2</sup> copper conductor XLPE cable. It should be noted that this cable would limit the overload capability of the HVDC equipment.

#### **Reliability Assessment**

Availability ratings for a  $\pm 320$  kV HVDC overhead and underground transmission lines are similar, however, it should be noted that HVDC cable faults are usually if not always non-restorable without removal and replacement of at least one of the pole conductors, which is why the installed spare cable is being considered.

#### Estimated Costs ±320 kV HVDC Overhead and Underground Transmission Lines

The purpose of these estimates is to create a budgetary comparison of the overhead vs. underground alternatives. Several costs would be the same for both alternatives such as: real estate, owner internal costs, program management, AFUDC, etc. and are not included to simplify the comparison of the two alternatives.

| DESCRIPTION               | COSTS (2017) | COSTS (2021) |
|---------------------------|--------------|--------------|
| UG T-Line                 | \$19,602,100 | \$21,217,943 |
| Transition Station (East) | \$ 7,226,000 | \$ 7,821,655 |
| Transition Station (West) | \$ 7,486,000 | \$ 8,103,087 |
| Total                     | \$34,314,100 | \$37,142,685 |

| DESCRIPTION                             | COSTS (2017) | COSTS (2021) |
|-----------------------------------------|--------------|--------------|
| Overhead T-Line Crossing (3 Structures) | \$ 5,613,717 | \$ 6,076,287 |

IECG-001-033 Attachment 1, Page 9 of 70 Docket No. 2017-232

**APPENDICES** 

| Kennebec Gorge Crossing OH Costs - Option 1 |             |             |                   |  |  |
|---------------------------------------------|-------------|-------------|-------------------|--|--|
|                                             | Material    |             |                   |  |  |
| Overhead Line Summary                       | Costs       | Labor Costs | Total Cost        |  |  |
| (2) Self-Supporting DE Structures           | \$250,221   | \$910,180   | \$1,160,401       |  |  |
| (1) Tangent Structures                      | \$40,643    | \$0         | \$40,643          |  |  |
| Conductor, OPGW, & OHGW                     | \$37,821    | \$56,010    | \$93,831          |  |  |
| Insulators                                  | \$34,580    | \$0         | \$34 <i>,</i> 580 |  |  |
| Hardware                                    | \$903       | \$0         | \$903             |  |  |
| Access, Inspection, Environmental           |             |             |                   |  |  |
| Controls, Clearing, & Mob/Demob             | \$0         | \$3,026,600 | \$3,026,600       |  |  |
| Survey                                      | \$0         | \$100,000   | \$100,000         |  |  |
| Permitting, Engineering, &                  |             |             |                   |  |  |
| Procurement                                 | \$0         | \$201,110   | \$201,110         |  |  |
| Sales Tax                                   | \$20,029.26 | \$0         | \$20,029.26       |  |  |
| Subtotal                                    |             |             | \$4,678,097       |  |  |
| 20% Contingency                             |             |             | \$935,619         |  |  |
| Total (2017)                                |             |             | \$5,613,717       |  |  |
| Total (2021)                                |             |             | \$6,076,287       |  |  |

General Assumptions

- Crossing Length 2,560'
- Tangent Structures Direct Embed Steel Poles
- Dead End Structures Self Supporting Steel Poles on Drilled Shaft Foundations
- 1590 kcmil 54/19 ACSR "Falcon" Conductor Twin Bundled Poles
- OPGW 0.913" Diameter
- OHGW 7 No.7 Alumoweld
- 1 Tangent
- 2 Dead Ends



## Iberdrola - CMP Kennebec River Crossing: +/- 320kV, 1200 MVA HVDC Summary of Costs

| UNDERGROUND LINE SUMMARY                | XLPE Cable S | XLPE Cable System Costs |              |  |
|-----------------------------------------|--------------|-------------------------|--------------|--|
|                                         | Material     | Material                |              |  |
|                                         | Costs        | Labor Costs             | Total Cost   |  |
| Duct Bank                               | \$292,400    | \$496,200               | \$788,600    |  |
| Trenchless Installations                | \$4,785,000  | \$4,785,000             | \$9,570,000  |  |
| Manholes                                | \$360,000    | \$300,000               | \$660,000    |  |
| Cable                                   | \$1,825,000  | \$187,500               | \$2,012,500  |  |
| Splices                                 | \$33,000     | \$0                     | \$33,000     |  |
| Arresters                               | \$17,600     | \$15,000                | \$32,600     |  |
| Additional Cable Accessories            | \$61,100     | \$55,500                | \$116,600    |  |
| Communication System                    | \$16,800     | \$23,800                | \$40,600     |  |
| Temperature Monitoring System           | \$113,200    | \$51,800                | \$165,000    |  |
| Transition Structures, ea               | \$138,000    | \$72,000                | \$210,000    |  |
| Mob/Demob                               | \$0          | \$450,000               | \$450,000    |  |
| Survey                                  | \$0          | \$100,000               | \$100,000    |  |
| Partial Discharge Testing               | \$0          | \$200,000               | \$200,000    |  |
| Engineering and Construction Management | \$0          | \$1,200,000             | \$1,200,000  |  |
| Sales Tax (5.5%)                        | \$434,100    | \$0                     | \$434,100    |  |
| SUBTOTAL                                | \$7,892,100  | \$8,008,800             | \$16,335,000 |  |
| 20% Contingency                         | \$1,665,300  | \$1,601,800             | \$3,267,100  |  |
| TOTAL (2017)                            | \$9,557,400  | \$9,410,600             | \$19,602,100 |  |
| TOTAL (2021)                            |              |                         | \$21,217,943 |  |

#### **Underground Transmission Line Notes:**

- 1. +/-320kV, 1200 MVA, HVDC, 1 cable per pole, 1 installed spare cable 2500 mm^2 Cu, XLPE insulation
- 2. One (1) 2900 ft length, 36 inch dia HDD bores without casings
- 3. 1500 ft total open trench lengths adding both sides
- 4. Fluidized thermal backfill for 100% of the open trench portion of the route
- 5. Six (6) arresters with two (2) spares included
- 6. Six (6) Terminations with two (2) spares included
- 7. One (1) communication circuit, 48 count loose tube fiber optic cable, with testing
- 8. Temperature monitoring equipment included for remote operation
- 9. Costs associated with excavation of rock included
- 10. No reel of spare cable included
- 11. No reactive compensation included
- 12. State sales tax included at 5.5%
- 13. Transition structures, foundations, and access roads included in Transition Station estimate
- 14. Materials used in this cost estimate meet all applicable industry standards
- 15. Costs for: access roads, vegetation and tree clearing included in Transition Station estimate
- 16. Dewatering assumed unnessessary
- 17. Escalation calculated at 2% per year

# CMP 1-Cable Per Pole



# Kennebec River Crossing (Eastern Terminal) HVDC

#### **PLANNING ESTIMATE**

| DESCRIPTION                       | LABOR     | MATERIAL    | L & M                                 |
|-----------------------------------|-----------|-------------|---------------------------------------|
| ESTIMATED COST SUMMARY            |           |             |                                       |
|                                   | 264,000   | 567,000     | 831,000                               |
| EQUIPMENT (outdoor)               |           | · · · · · · | · · · · · · · · · · · · · · · · · · · |
| STRUCTURES                        | 321,000   | 698,000     | 1,019,000                             |
| FOUNDATIONS                       | 278,000   | 108,000     | 386,000                               |
| CABLE & CONDUIT                   | 88,000    | 55,000      | 143,000                               |
| CONTROL ENCLOSURE                 | -         | -           | -                                     |
| SITE IMPROVEMENTS                 | 2,302,000 | 547,000     | 2,849,000                             |
| REMOVALS                          | -         | -           | -                                     |
| <b>TESTING &amp; ENERGIZATION</b> | 95,000    | -           | 95,000                                |
| SUBTOTAL                          | 3,348,000 | 1,975,000   | 5,323,000                             |
|                                   |           |             |                                       |
| CONTRACTOR MOB/DEMOB              |           |             | -                                     |
| CONSTRUCTION MANAGEMENT           |           |             | 216,000                               |
| ENGINEERING                       |           |             | 373,000                               |
| ENVIRONMENTAL                     |           |             |                                       |
| REAL ESTATE COSTS                 |           |             |                                       |
| UTILITY INTERNAL COSTS (0%)       |           |             | -                                     |
| SALES TAX (5.5%)                  |           |             | 109,000                               |
| SUBTOTAL                          |           |             | 6,021,000                             |
|                                   |           |             |                                       |
| CONTINGENCY (20%)                 |           |             | 1,205,000                             |
| TOTAL ESTIMATED COST              |           |             | 7,226,000                             |
| TOTAL ESCALATED COST              | 2021      | 2% per year | 7,821,655                             |

## 1 Cable Per Pole



# Kennebec River Crossing (Western Terminal) HVDC

#### **PLANNING ESTIMATE**

| DESCRIPTION                       | LABOR     | MATERIAL    | L & M     |
|-----------------------------------|-----------|-------------|-----------|
| ESTIMATED COST SUMMARY            |           |             |           |
|                                   | 242.000   | c22 000     | 0.40,000  |
| EQUIPMENT (outdoor)               | 313,000   | 633,000     | 946,000   |
| STRUCTURES                        | 291,000   | 646,000     | 937,000   |
| FOUNDATIONS                       | 390,000   | 151,000     | 541,000   |
| CABLE & CONDUIT                   | 88,000    | 55,000      | 143,000   |
| CONTROL ENCLOSURE                 | -         | -           | -         |
| SITE IMPROVEMENTS                 | 2,302,000 | 547,000     | 2,849,000 |
| REMOVALS                          | -         | -           | -         |
| <b>TESTING &amp; ENERGIZATION</b> | 95,000    | -           | 95,000    |
| SUBTOTAL                          | 3,479,000 | 2,032,000   | 5,511,000 |
|                                   |           |             |           |
| CONTRACTOR MOB/DEMOB              |           |             | -         |
| CONSTRUCTION MANAGEMENT           |           |             | 229,000   |
| ENGINEERING                       |           |             | 386,000   |
| ENVIRONMENTAL                     |           |             |           |
| REAL ESTATE COSTS                 |           |             |           |
| UTILITY INTERNAL COSTS (0%)       |           |             | -         |
| SALES TAX (5.5%)                  |           |             | 112,000   |
| SUBTOTAL                          |           |             | 6,238,000 |
|                                   |           |             |           |
| CONTINGENCY (20%)                 |           |             | 1,248,000 |
| TOTAL ESTIMATED COST              | 2017      |             | 7,486,000 |
| TOTAL ESCALATED COST              | 2021      | 2% per year | 8,103,087 |

IECG-001-033 Attachment 1, Page 14 of 70 Docket No. 2017-232

Estimate Backup

IECG-001-033 Attachment 1, Page 15 of 70 Docket No. 2017-232

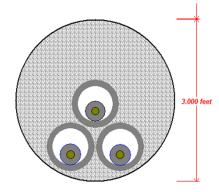
**UG Cable Ampacity** 

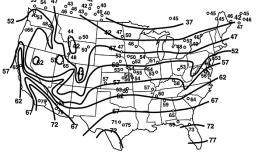


Client: Central Maine Power Project Name: Kennebec River Crossing Project Number: 147483 Prepared By:Ethan EvansDate:15-Nov-17Checked By:Les HinzmanDate:15-Nov-17

#### HDD Bore Design - Ampacity Calculation Summary

|      | Results Installation Assumptions     |                                          |                                                   | ons                            |                 |                                   |                                                               |                                              |
|------|--------------------------------------|------------------------------------------|---------------------------------------------------|--------------------------------|-----------------|-----------------------------------|---------------------------------------------------------------|----------------------------------------------|
| Case | Case Description                     | Steady State Ampacity<br>Requirement (A) | Max Operating<br>Temperature of<br>Conductor (°C) | Max Continuous<br>Ampacity (A) | Load Factor (%) | Earth Ambient<br>Temperature (°F) | Bentonite Drilling Fluid<br>Thermal Resistivity (°C-<br>cm/W) | Native Soil Thermal<br>Resistivity (°C-cm/W) |
|      | 36 inch HDD Bore, 30 ft from top of  |                                          |                                                   |                                |                 | 42                                | 140                                                           | 20                                           |
| 1    | Borehole to Bottom of Kennebec River |                                          |                                                   |                                |                 | 42                                | 140                                                           | 80                                           |
|      | $\pm$ 320 kV HVDC                    | 1875                                     | 70                                                | 1881                           | 100             |                                   |                                                               |                                              |


Calculations modeled using CYMCAP 7.2 Rev. 3


#### Cable

- Conductor size: 2500 mm<sup>2</sup> circular Cu
- Insulation thickness: 846 mils
- Shield type: Aluminum laminate

#### Assumptions

- 36 inch HDD bore without casing, with 10" SDR 9 HDPE Conduit
- Steady state ampacity requirement DC line 1875A (1200 MVA)
- No bonding in DC installations
- Drilling fluid (bentonite) backfill used in bore
- Skin, Proximity Effects, and Dielectric Losses not a factor in DC installations





Mean annual earth temperature observations at individual stations, superimposed on well-water temperature contours.

HDD BORE DETAIL





## CABLE DRAWING 2500 mm<sup>2</sup> Cu XLPE 320kV (HVDC)



| 1 – CONDUCTOR<br>Cross-section:<br>Material:<br>Indicative diameter:                        | Segmented or circular<br>2500 mm²<br>Copper<br>62.3 mm (2.45 inch) |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 2 - INNER SEMI-CONDUCTIVE LAYER<br>Indicative thickness:                                    | 1.5 mm (59 mils)                                                   |
| <b>3 - INSULATION</b><br>Material: cross-linked polyethylene<br>Minimum average thickness*: | 21.5 mm (846 mils)                                                 |
| 4 - OUTER SEMI-CONDUCTIVE LAYER<br>Indicative thickness:                                    | 1.5 mm (59 mils)                                                   |
| 5 - SWELLING TAPES                                                                          |                                                                    |
| 6 - ALUMINUM LAMINATE<br>Indicative thickness:                                              | 0.5 mm (20 mils)                                                   |
| 7 - OUTER SHEATH AND EXTRUDED SEMIC<br>Material: HDPE<br>Minimum average thickness*:        | CONDUCTING LAYER<br>4 mm (157 mils)                                |
| Ũ                                                                                           | х <i>у</i>                                                         |
| INDICATIVE EXTERNAL DIAMETER (D)                                                            | Υ Υ                                                                |
| INDICATIVE WEIGHT:                                                                          | 31.6 KG/M (21.2 LBS/FT)                                            |
| <b>Мілімим велдінд кадіцs**</b><br>- during pulling: 35 D in ducts,<br>- in permanent: 20 D | 30 D on rollers.                                                   |
| MAXIMUM PULLING TENSION**:                                                                  | 22500 lbs (10000 daN)                                              |
| MAXIMUM SIDEWALL PRESSURE:                                                                  | 2000 lbs/ft (3000 daN/m)                                           |

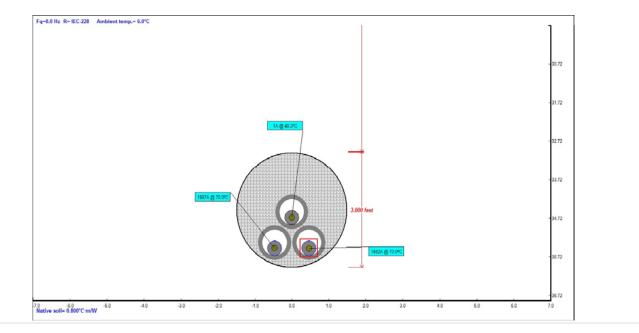
\* The measured thickness at any point may be smaller within the tolerances defined in the IEC 62067 \*\* Real values to be applied during installation will be validated by General Cable based on real installation data, pulling tension, sidewall pressure, once the site survey will be performed on the final cable route. Installation conditions when cables are pulled on rollers shall avoid any excessive side wall pressures and guarantee safe working conditions.

## ELECTRICAL CHARACTERISTICS

Nominal DC resistance at 20°C: Nominal DC resistance at 70°C Nominal capacitance: 0.072 Ω/km (0.0219 Ω/1000ft) 0.087 Ω/km (0.0265 Ω/1000ft) 0.256 μF/km (0.078 μF/1000ft)

Maximum conductor temperature

70°C


|                | Study Summary                                          |  |
|----------------|--------------------------------------------------------|--|
| CYMCAP Version | 2 Revision 01                                          |  |
| Study:         | 320 kV DC and 1200 MW Cable Sizing Calculations Max LF |  |
| Execution:     | 2500mm2 320 kV DC 1 cbl_ph W_Spare 15 deg Tr MaxLF     |  |
| Date:          | 11/15/2017 1:13:18 PM                                  |  |

# General Simulation Data

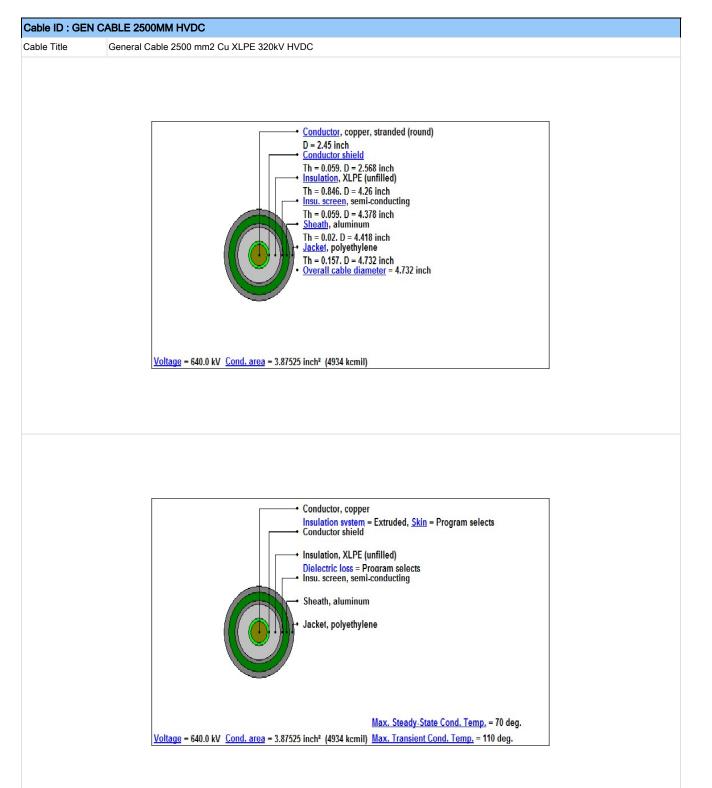
| Steady State Option                                                                                             | Unequally Loaded |
|-----------------------------------------------------------------------------------------------------------------|------------------|
| Consider Electrical interaction between circuits                                                                | No               |
| Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) : | 0.0              |
| Conductor Resistances Computation Option:                                                                       | IEC-228          |

| Installation Type:Multiple Ductbanks/Backfills |         |     |  |  |  |  |
|------------------------------------------------|---------|-----|--|--|--|--|
| Ambient Soil Temperature at Installation Depth | [°C]    | 6.0 |  |  |  |  |
| Native Soil Thermal Resistivity                | [K.m/W] | 0.8 |  |  |  |  |
| Consider Non-Isothermal Earth Surface          |         | No  |  |  |  |  |

| Layer Name | X [ft] | Y [ft] | Width [ft] | Height [ft] | Thermal<br>Resistivity<br>[K.m/W] |
|------------|--------|--------|------------|-------------|-----------------------------------|
| NSTD DB1   | 0.0    | 34.5   | 2.729      | 2.729       | 1.4                               |



| Results Summary |                       |             |           |             |                    |                      |                      |                      |                                  |              |
|-----------------|-----------------------|-------------|-----------|-------------|--------------------|----------------------|----------------------|----------------------|----------------------------------|--------------|
| Cable No.       | Cable ID              | Circuit No. | Feeder ID | Cable Phase | Cable<br>Frequency | Daily Load<br>Factor | X coordinate<br>[ft] | Y coordinate<br>[ft] | Conductor<br>temperature<br>[°C] | Ampacity [A] |
| 1               | GEN CABLE 2500MM HVDC | 1           |           | А           | 0.0                | 1.0                  | 0.47                 | 35.5                 | 70.0                             | 1881.6       |
| 2               | GEN CABLE 2500MM HVDC | 2           |           | А           | 0.0                | 1.0                  | -0.47                | 35.5                 | 70.0                             | 1887.3       |
| 3               | GEN CABLE 2500MM HVDC | 3           |           | А           | 0.0                | 1.0                  | 0.0                  | 34.7                 | 40.3                             | 1.0          |


|                | Cables Report                                          |  |  |  |
|----------------|--------------------------------------------------------|--|--|--|
| CYMCAP Version | 7.2 Revision 01                                        |  |  |  |
| Study:         | 320 kV DC and 1200 MW Cable Sizing Calculations Max LF |  |  |  |
| Execution:     | 2500mm2 320 kV DC 1 cbl_ph W_Spare 15 deg Tr MaxLF     |  |  |  |
| Date:          | 11/15/2017 1:13:18 PM                                  |  |  |  |

| No.  | Description                                                   | Unit                     | 1                      |  |  |  |  |  |  |
|------|---------------------------------------------------------------|--------------------------|------------------------|--|--|--|--|--|--|
| Gen  | General Cable Information                                     |                          |                        |  |  |  |  |  |  |
| 1    | Cable Equipment ID                                            |                          | GEN CABLE 2500MM HVDC  |  |  |  |  |  |  |
| 2    | Number of Cores                                               |                          | Single Core            |  |  |  |  |  |  |
| 3    | Voltage                                                       | [kV]                     | 640                    |  |  |  |  |  |  |
| 4    | Conductor Area                                                | [in²]                    | 3.88                   |  |  |  |  |  |  |
| 5    | Cable Overall Diameter                                        | [in]                     | 4.73                   |  |  |  |  |  |  |
| 6    | Maximum Steady-State Conductor Temperature                    | [°C]                     | 70                     |  |  |  |  |  |  |
| 7    | Maximum Emergency Conductor Temperature                       | [°C]                     | 110                    |  |  |  |  |  |  |
| Con  | ductor                                                        |                          |                        |  |  |  |  |  |  |
| 8    | Material                                                      |                          | Copper                 |  |  |  |  |  |  |
| 9    | Electrical Resistivity at 20°C                                | [μΩ.cm]                  | 1.7241                 |  |  |  |  |  |  |
| 10   | Temperature Coefficient at 20°C                               | [1/K]                    | 0.00393                |  |  |  |  |  |  |
| 11   | Reciprocal of Temperature Coefficient of Resistance<br>(BETA) | [K]                      | 234.5                  |  |  |  |  |  |  |
| 12   | Volumetric Specific Heat (SH)                                 | [J/(K*cm <sup>3</sup> )] | 3.45                   |  |  |  |  |  |  |
| 13   | Construction                                                  |                          | Round Stranded         |  |  |  |  |  |  |
| 14   | Number of Wires Composing Stranded Conductor                  |                          | n/a                    |  |  |  |  |  |  |
| 15   | Conductor Insulation System                                   |                          | Extruded               |  |  |  |  |  |  |
| 16   | Milliken Wires Construction                                   |                          | n/a                    |  |  |  |  |  |  |
| 17   | Ks (Skin Effect Coefficient)                                  |                          | 1                      |  |  |  |  |  |  |
| 18   | Kp (Proximity Effect Coefficient)                             |                          | 1                      |  |  |  |  |  |  |
| 19   | Diameter                                                      | [in]                     | 2.45                   |  |  |  |  |  |  |
| Con  | ductor Shield                                                 |                          |                        |  |  |  |  |  |  |
| 20   | Thickness                                                     | [in]                     | 0.06                   |  |  |  |  |  |  |
| 21   | Diameter                                                      | [in]                     | 2.57                   |  |  |  |  |  |  |
| Insu | lation                                                        |                          |                        |  |  |  |  |  |  |
| 22   | Material                                                      |                          | XLPE Unfilled          |  |  |  |  |  |  |
| 23   | Thermal Resistivity                                           | [K.m/W]                  | 3.5                    |  |  |  |  |  |  |
| 24   | Dielectric Loss Factor - ( tan delta )                        |                          | 0.001                  |  |  |  |  |  |  |
| 25   | Relative Permittivity - ( epsilon )                           |                          | 2.5                    |  |  |  |  |  |  |
| 26   | Specific Insulation Resistance Constant at 60°F - ( K )       | [MQ.1000ft]              | 20000.                 |  |  |  |  |  |  |
| 27   | Thickness                                                     | [in]                     | 0.85                   |  |  |  |  |  |  |
| 28   | Diameter                                                      | [in]                     | 4.26                   |  |  |  |  |  |  |
| Insu | lation Screen                                                 |                          |                        |  |  |  |  |  |  |
| 29   | Material                                                      |                          | Semi Conducting Screen |  |  |  |  |  |  |
| 30   | Thickness                                                     | [in]                     | 0.06                   |  |  |  |  |  |  |
| 31   | Diameter                                                      | [in]                     | 4.38                   |  |  |  |  |  |  |

| Shea | Sheath                                                     |                          |                |  |  |  |  |  |
|------|------------------------------------------------------------|--------------------------|----------------|--|--|--|--|--|
| 32   | Is Sheath Around Each Core?                                |                          | n/a            |  |  |  |  |  |
| 33   | Material                                                   |                          | Aluminum       |  |  |  |  |  |
| 34   | Electrical Resistivity at 20°C                             | [μΩ.cm]                  | 2.8264         |  |  |  |  |  |
| 35   | Temperature Coefficient at 20°C                            | [1/K]                    | 0.00403        |  |  |  |  |  |
| 36   | Reciprocal of Temperature Coefficient of Resistance (BETA) | [K]                      | 228            |  |  |  |  |  |
| 37   | Volumetric Specific Heat (SH)                              | [J/(K*cm <sup>3</sup> )] | 2.5            |  |  |  |  |  |
| 38   | Corrugation Type                                           |                          | Non Corrugated |  |  |  |  |  |
| 39   | Thickness                                                  | [in]                     | 0.02           |  |  |  |  |  |
| 40   | Diameter                                                   | [in]                     | 4.42           |  |  |  |  |  |
| Jack | et                                                         |                          |                |  |  |  |  |  |
| 41   | Material                                                   |                          | Polyethylene   |  |  |  |  |  |
| 42   | Thermal Resistivity                                        | [K.m/W]                  | 3.5            |  |  |  |  |  |
| 43   | Thickness                                                  | [in]                     | 0.16           |  |  |  |  |  |
| 44   | Diameter                                                   | [in]                     | 4.73           |  |  |  |  |  |

| No. | Description                       | Unit    | 1                        |  |  |  |  |  |
|-----|-----------------------------------|---------|--------------------------|--|--|--|--|--|
| Spe | Specific Installation Data        |         |                          |  |  |  |  |  |
| 45  | Cable Equipment ID                |         | GEN CABLE 2500MM HVDC    |  |  |  |  |  |
| 46  | Cable Frequency                   | [Hz]    | 0.0001                   |  |  |  |  |  |
| 47  | Sheath / Shield Bonding           |         | 1 Conductor No Bonding   |  |  |  |  |  |
| 48  | Loss Factor Constant (ALOS)       |         | 0.3                      |  |  |  |  |  |
| 49  | Duct construction                 |         | Polyethylene in Concrete |  |  |  |  |  |
| 50  | Duct material thermal resistivity | [K.m/W] | 3.5                      |  |  |  |  |  |
| 51  | Inside Diameter of the Duct/Pipe  | [in]    | 8.22                     |  |  |  |  |  |
| 52  | Outside Diameter of the Duct/Pipe | [in]    | 10.75                    |  |  |  |  |  |





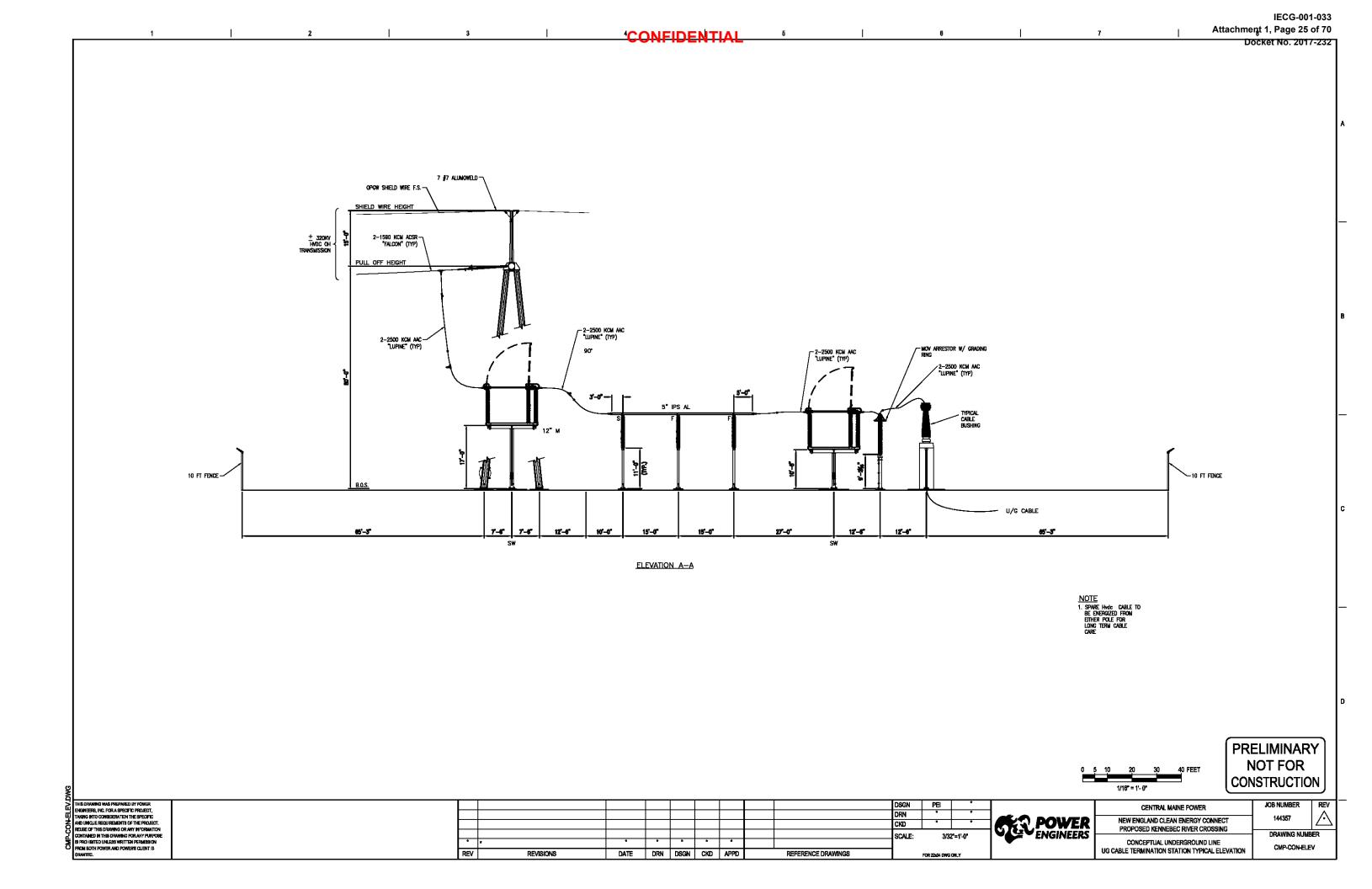
|                | Electrical Parameters                                 |  |  |  |  |  |
|----------------|-------------------------------------------------------|--|--|--|--|--|
| CYMCAP Version | .2 Revision 01                                        |  |  |  |  |  |
| Study:         | 20 kV DC and 1200 MW Cable Sizing Calculations Max LF |  |  |  |  |  |
| Execution:     | 500mm2 320 kV DC 1 cbl_ph W_Spare 15 deg Tr MaxLF     |  |  |  |  |  |
| Date:          | 11/15/2017 1:13:18 PM                                 |  |  |  |  |  |

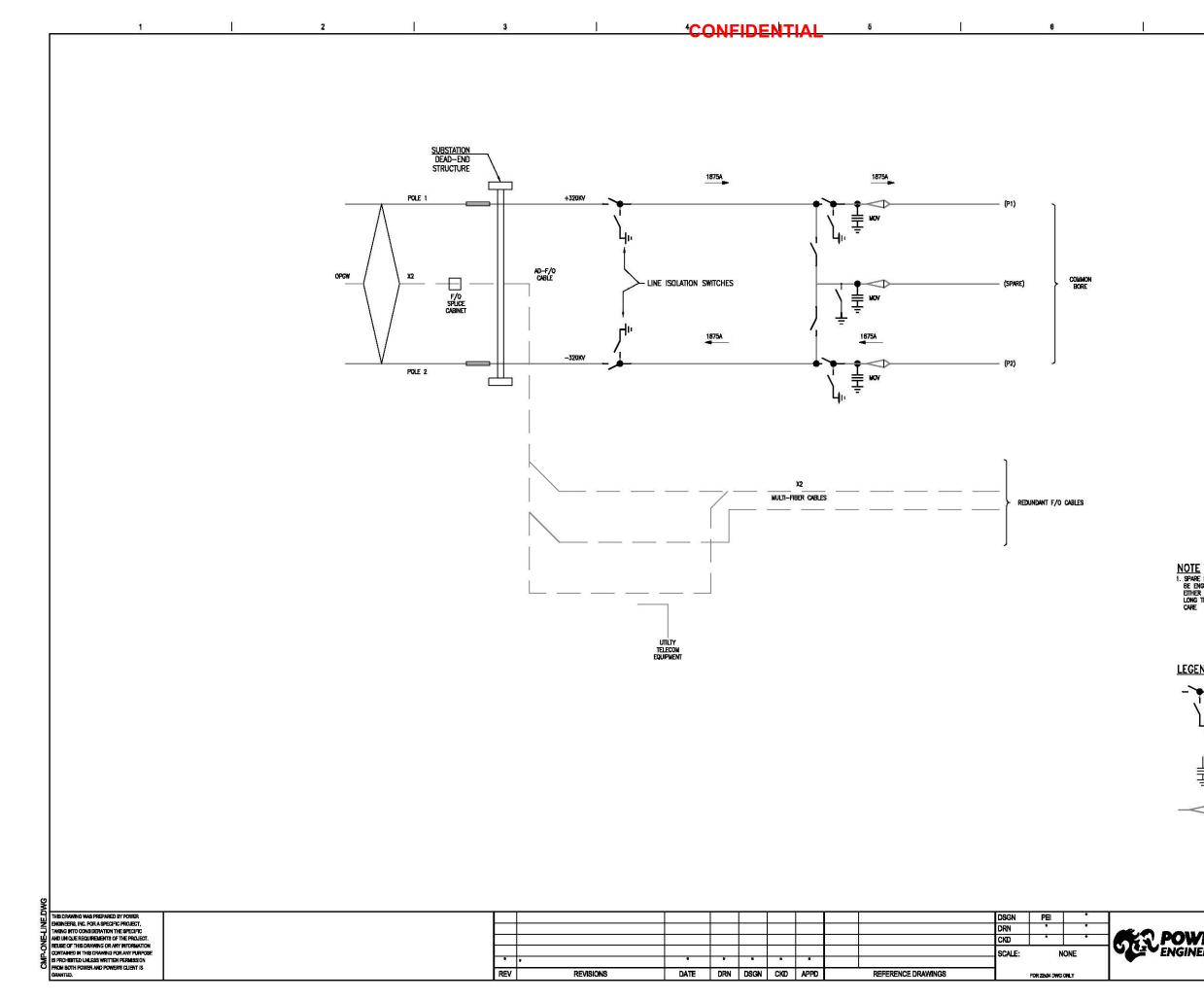
| No.  | Description                                         | Unit        | Cable No.1              | Cable No.2              | Cable No.3              |  |  |  |  |
|------|-----------------------------------------------------|-------------|-------------------------|-------------------------|-------------------------|--|--|--|--|
| 1    | Cable Equipment ID                                  |             | GEN CABLE 2500MM HVDC   | GEN CABLE 2500MM HVDC   | GEN CABLE 2500MM HVDC   |  |  |  |  |
| Resi | Resistances                                         |             |                         |                         |                         |  |  |  |  |
| 2    | DC Resistance of the conductor at 20°C              | [Ω/mile]    | 0.01132                 | 0.01132                 | 0.01132                 |  |  |  |  |
| 3    | DC Resistance of Conductor at Operating Temperature | [Ω/mile]    | 0.01354                 | 0.01354                 | 0.01222                 |  |  |  |  |
| 4    | AC Resistance of Conductor at 20°C                  | [Ω/mile]    | 0.01132                 | 0.01132                 | 0.01132                 |  |  |  |  |
| 5    | AC Resistance of Conductor at Operating Temperature | [Ω/mile]    | 0.01354                 | 0.01354                 | 0.01222                 |  |  |  |  |
| 6    | DC Resistance of Sheath at 20°C                     | [Ω/mile]    | 0.25514                 | 0.25514                 | 0.25514                 |  |  |  |  |
| 7    | DC Resistance of Sheath at Operating Temperature    | [Ω/mile]    | 0.29665                 | 0.29659                 | 0.276                   |  |  |  |  |
| Loss | ;es                                                 |             |                         |                         |                         |  |  |  |  |
| 8    | Conductor Losses                                    | [W/ft]      | 9.08223                 | 9.13685                 | 0.0                     |  |  |  |  |
| 9    | Dielectric Losses                                   | [W/ft]      | 0.00001                 | 0.00001                 | 0.00001                 |  |  |  |  |
| 10   | Metallic Screen Losses                              | [W/ft]      | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 11   | Armor/Pipe Losses                                   | [W/ft]      | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 12   | Total Losses                                        | [W/ft]      | 9.08224                 | 9.13685                 | 0.00001                 |  |  |  |  |
| Сара | acitance, Inductance, Impedance                     |             |                         |                         |                         |  |  |  |  |
| 13   | Capacitance                                         | [µF/mile]   | 0.44096                 | 0.44096                 | 0.44096                 |  |  |  |  |
| 14   | Inductance of Conductor                             | [mH/mile]   | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 15   | Reactance of Conductor                              | [Ω/mile]    | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 16   | Inductance of Metallic Sheath                       | [mH/mile]   | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 17   | Reactance of Metallic Sheath                        | [Ω/mile]    | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 18   | Positive Sequence Impedance                         | [Ω/mile]    | 0.013551 +<br>j0.000000 | 0.013551 +<br>j0.000000 | 0.012215 +<br>j0.000000 |  |  |  |  |
| 19   | Negative Sequence Impedance                         | [Ω/mile]    | 0.013551 +<br>j0.000000 | 0.013551 +<br>j0.000000 | 0.012215 +<br>j0.000000 |  |  |  |  |
| 20   | Zero Sequence Impedance                             | [Ω/mile]    | 0.266459 +<br>j0.000000 | 0.266459 +<br>j0.000000 | 0.266459 +<br>j0.000000 |  |  |  |  |
| 21   | Surge Impedance                                     | [Ω]         | 0.00001                 | 0.00001                 | 0.00001                 |  |  |  |  |
| Othe | ers                                                 | I           |                         |                         |                         |  |  |  |  |
| 22   | Dielectric Stress at Conductor Surface              | [kV/in]     | 568.56764               | 568.56764               | 568.56764               |  |  |  |  |
| 23   | Dielectric Stress at Insulation Surface             | [kV/in]     | 342.74218               | 342.74218               | 342.74218               |  |  |  |  |
| 24   | Insulation Resistance at 60°F (15.8°C)              | [MΩ.1000ft] | 4396.29159              | 4396.29159              | 4396.29159              |  |  |  |  |
| 25   | Reduction Factor                                    |             | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |
| 26   | Charging Current for One Phase                      | [A/mile]    | 0.0001                  | 0.0001                  | 0.0001                  |  |  |  |  |
| 27   | Charging Capacity of three phase system at Uo       | [kvar/mile] | 0.11365                 | 0.11365                 | 0.11365                 |  |  |  |  |
| 28   | Voltage drop for Three Phase System                 | [V/A/mile]  | 0.02346                 | 0.02346                 | 0.02117                 |  |  |  |  |
| 29   | Induced Voltage (standing) on Sheath                | [V/mile]    | n/a                     | n/a                     | n/a                     |  |  |  |  |
| 30   | Induced current on Metallic Screen                  | [A]         | 0.0                     | 0.0                     | 0.0                     |  |  |  |  |



#### ±320 kV HVDC UG Transmission Line - Kennebec River Crossing

A planned Horizontal Directional Drill (HDD), approximately 2,900 feet in length and 360 feet in depth, would be utilized for the crossing of the Kennebec River with a high voltage underground transmission line to install a duct bank consisting of three (3) ten-inch (10") ducts, one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE).


It is anticipated that the HDD could be accomplished within the proposed overhead transmission line corridor, which is 300 feet in width, with a thirty-six inch (36") bore annulus. The bore would pass beneath the Kennebec River with around thirty-feet (30') of clearance from the river bottom.


**Mears Group, Inc.** - Horizontal Directional Drilling/Direct Pipe® 5051 Westheimer Road, Suite 1650 - Houston, TX 77056 - 281.448.2488 – www.mearsHDD.net

Certified in Safety, Quality & Environment: OHSAS 18001:2007, ISO 9001:2015 and ISO 14001:2004

IECG-001-033 Attachment 1, Page 24 of 70 Docket No. 2017-232

**Station Layout and Route Maps** 

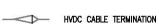




ŝ.



NOTE 1. SPARE Hydre CABLE TO BE ENGERGIZED FROM ETHER POLE FOR LONG TERM CABLE CARE


**LEGEND** 

MANUAL DISCONNECT WITH GROUND BLADE





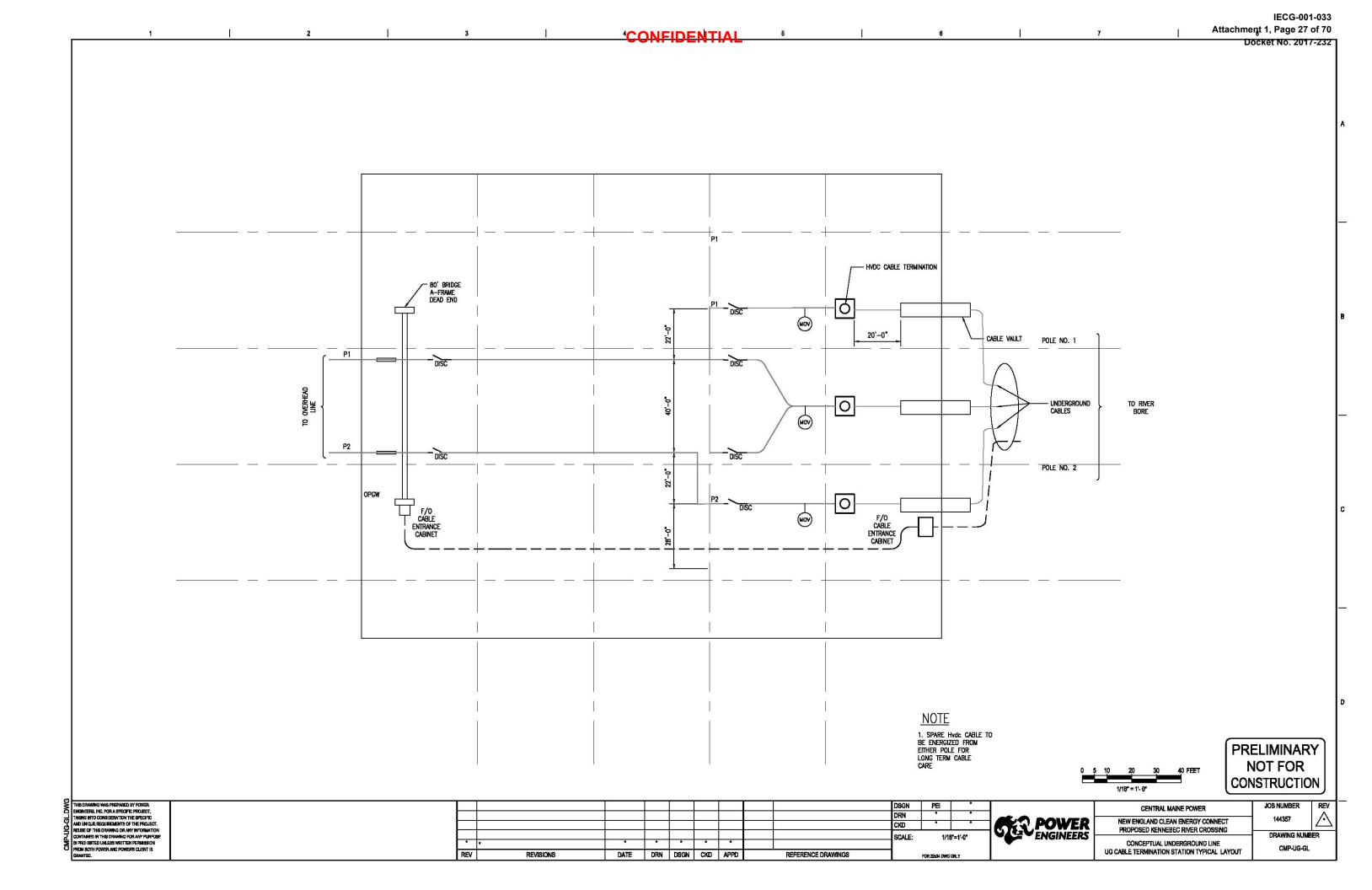
C

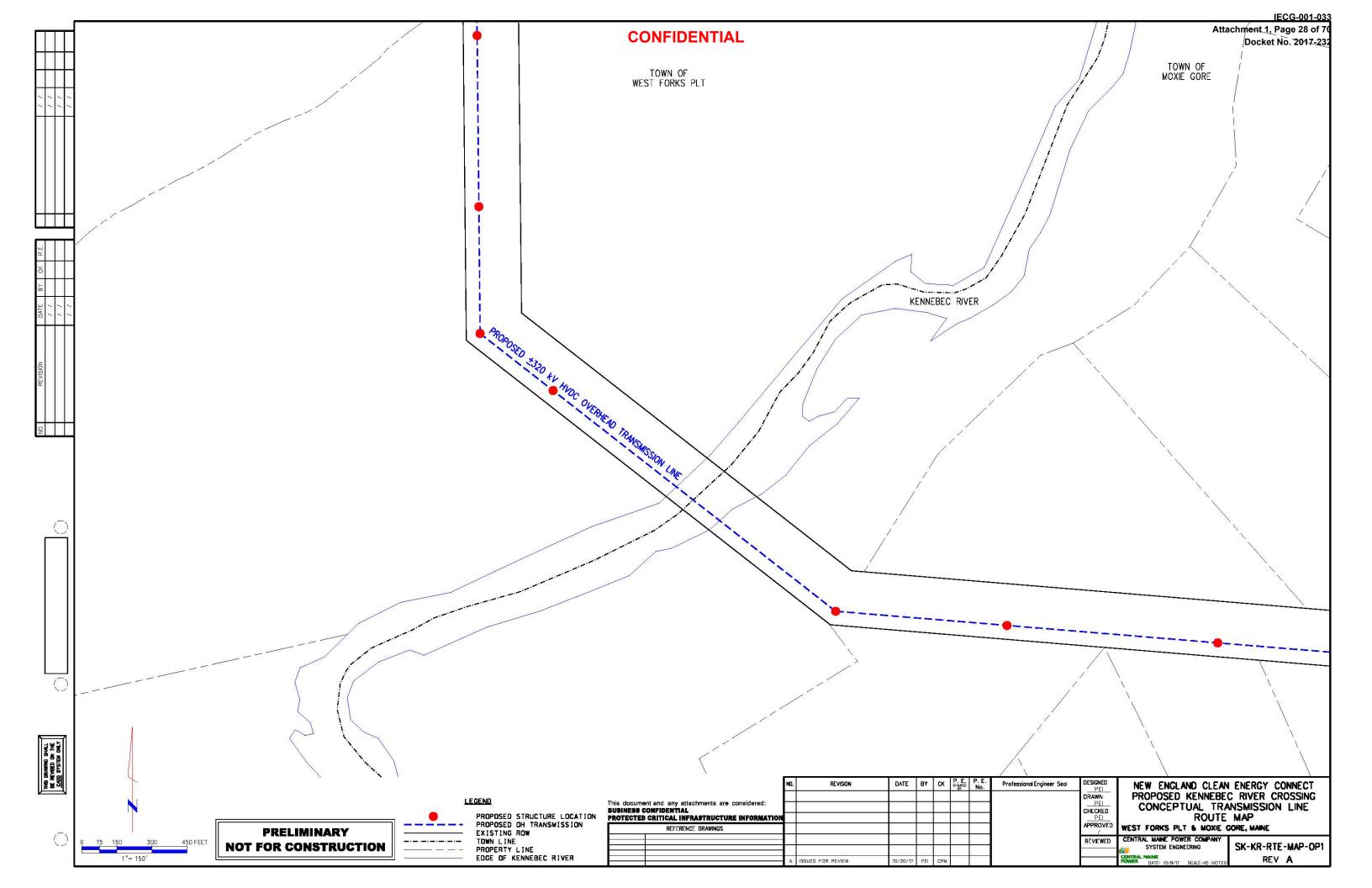


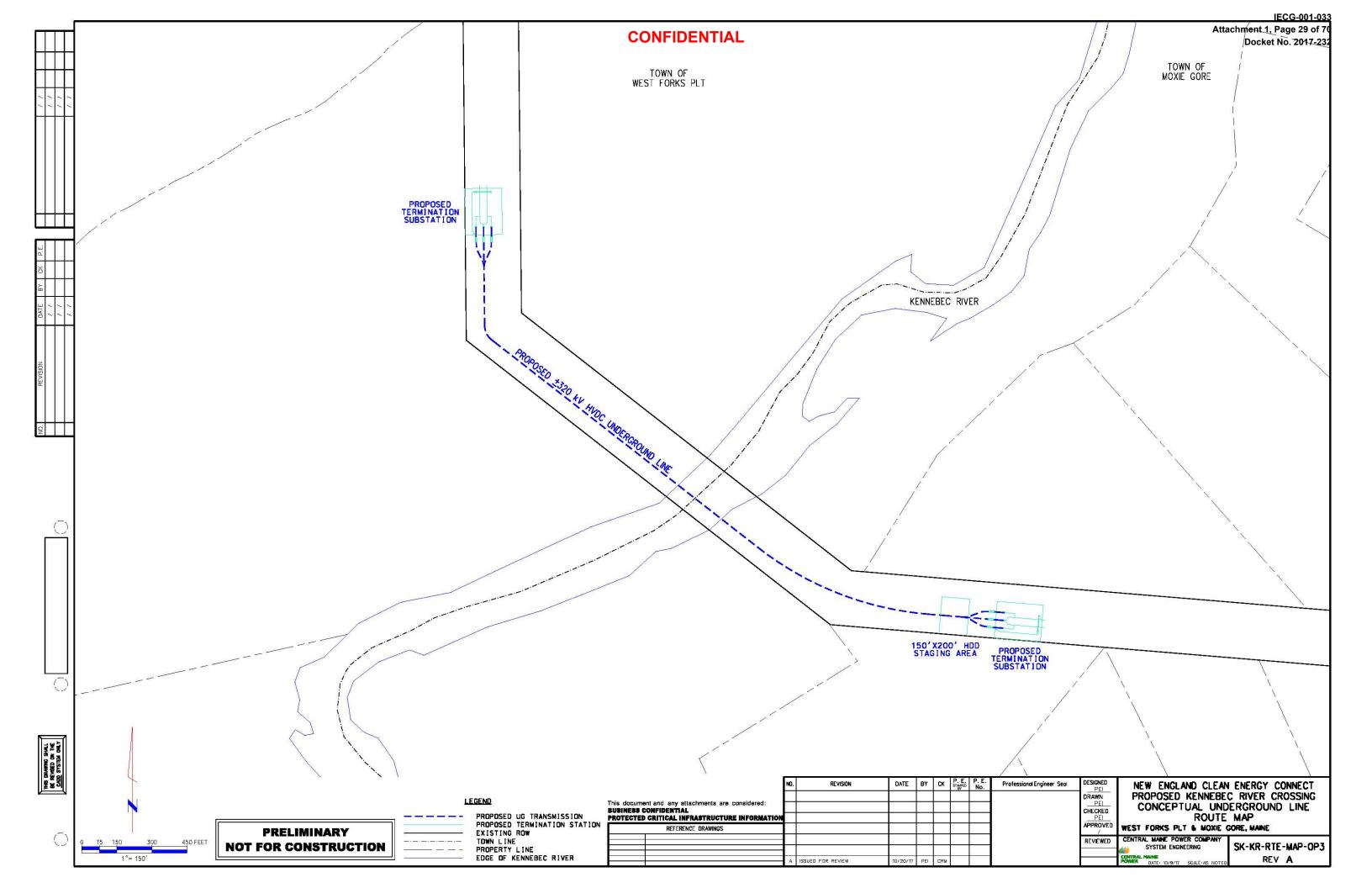


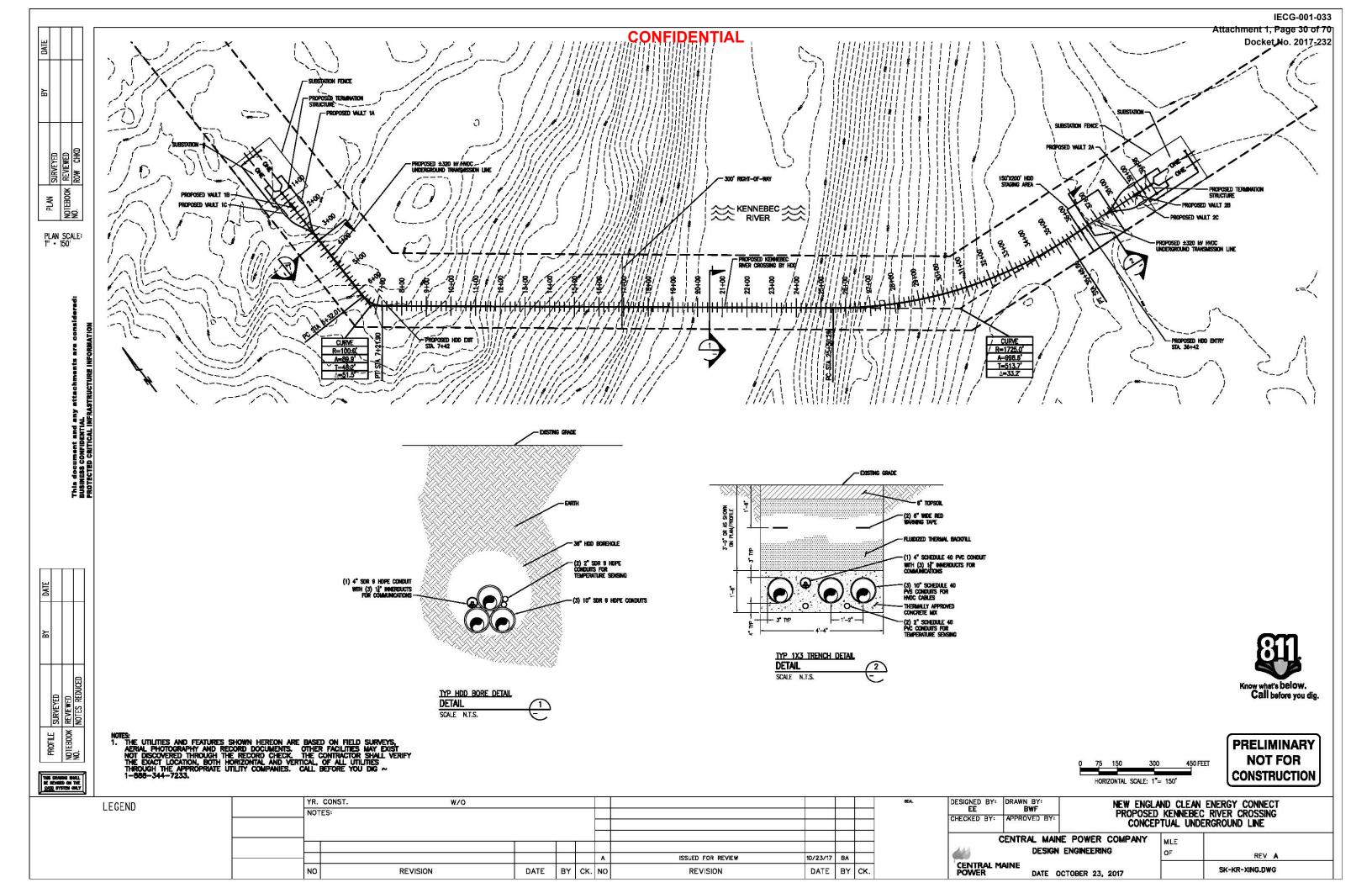








PRELIMINARY NOT FOR CONSTRUCTION


|      | CENTRAL MAINE POWER                                                             | JOB NUMBER                   | REV      |
|------|---------------------------------------------------------------------------------|------------------------------|----------|
| /ER  | NEW ENGLAND CLEAN ENERGY CONNECT<br>PROPOSED KENNEBEC RIVER CROSSING            | 144357                       | <u>_</u> |
| EERS | CONCEPTUAL UNDERGROUND LINE<br>UG CABLE TERMINATION STATION TYPICAL SINGLE LINE | DRAWING NUMB<br>CMP-ONE-LINI |          |

7









IECG-001-033 Attachment 1, Page 31 of 70 Docket No. 2017-232

**Reliability Analysis** 



IECG-001-033 Attachment 1, Page 32 of 70 Docket No. 2017-232

November 20, 2017

# **CENTRAL MAINE POWER**

±320 kV HVDC UG Transmission Line Termination Stations Kennebec River Crossing

Reliability Assessment PROJECT NUMBER: 147483 PROJECT CONTACT: JESSE SAWIN LES HINZMAN MARK REYNOLDS EMAIL: JESSE SAWIN@POWERENG.COM LES.HINZMAN@POWERENG.COM MARK.REYNOLDS@POWERENG.COM PHONE: (207) 869-1443 (208) 788-0577 (503) 892-6733

Preliminary Reliability Assessment

#### PREPARED FOR: CMP PREPARED BY:

MARK A REYNOLDS (503) 892-6733 MARK.REYNOLDS @POWERENG.COM

#### APPROVED BY:

LES HINZMAN (208) 788-0577 LES.HINZMAN @POWERENG.COM

| DOCUMENT HISTORY              |                      |                              |  |  |  |  |  |
|-------------------------------|----------------------|------------------------------|--|--|--|--|--|
| DATE BY                       |                      | REVISION                     |  |  |  |  |  |
| 09/29/17                      | Mark A Reynolds P.E. | A – Issued for Review        |  |  |  |  |  |
| 10/20/17                      | Mark A Reynolds P.E. | B – Issued for Review        |  |  |  |  |  |
| 11/20/17 Mark A Reynolds P.E. |                      | C – Issued with Final Report |  |  |  |  |  |
|                               |                      |                              |  |  |  |  |  |

#### TABLE OF CONTENTS

#### Contents

| 1. | GENERAL                                                                | 1 |
|----|------------------------------------------------------------------------|---|
|    | 1.1 PROJECT DESCRIPTION                                                | 1 |
|    | 1.1.1 Project River Crossing Information Details                       |   |
|    | 1.2 CORRESPONDENCE/PROJECT PERSONNEL                                   | 2 |
|    | 1.2.1 POWER Engineers, Inc.                                            | 2 |
|    | 1.2.2 CMP                                                              | 2 |
| 2. | ELECTRICAL DESIGN STANDARDS                                            | 3 |
|    | 2.1 System Requirements                                                | 3 |
|    | 2.2 ELECTRICAL CLEARANCES                                              | 3 |
|    | 2.3. ELECTRICAL CLEARANCE (+/- 320 HVDC) DESIGN AND WORKING CLEARANCES |   |
|    | HORIZONTAL AND VERTICAL SPACING FOR BUSSES                             |   |
| 3. | ANALYSIS APPROACH                                                      | 5 |
|    | 3.1 HVDC TERMINAL AVAILABILITY (VSC EASTERN INVERTER)                  | 5 |
|    | 3.2 OVERHEAD TRANSMISSION LINE AVAILABILITY (EASTERN SEGMENT)          |   |
|    | 3.3 CABLE TERMINATION STATION AVAILABILITY (EASTERN STATION)           | 5 |
|    | 3.4 CABLE TERMINATION STATION AVAILABILITY (WESTERN STATION)           |   |
|    | 3.5 CABLE SEGMENT AVAILABLITY (RIVER CROSSING)                         | 6 |
|    | 3.7 OVERHEAD TRANSMISSION LINE AVAILABILITY (WESTERN SEGMENT)          | 6 |
|    | 3.8 HVDC TERMINAL AVAILABILITY (VSC WESTERN RECTIFIER)                 | 7 |
|    | 4.1 MTTF/MTTR ASSUMPTIONS                                              | 7 |

## 1. General

#### 1.1 **Project Description**

The Central Maine Power (CMP) High Voltage Direct Current (HVDC) Transmission Line for the New England Clean Energy Connect (NECEC) Project is a  $\pm 320$  kV HVDC overhead, single circuit or symmetrical monopole (2-line poles) transmission line capable of transferring 1,200 MW. The project is about 207 miles overall with approximately 145 miles within the US. The line extends through Western Maine from the Appalaches Substation in Thetford Mines, Quebec, Canada and terminates near Lewiston, Maine in the United States. CMP is considering a  $\pm 320$ -kV HVDC underground transmission line for the crossing of the Kennebec River.

The  $\pm$ 320-kV HVDC underground transmission line segment would be installed in lieu of an overhead river crossing span. The project would require two overhead-to-underground Cable Termination (Transition) Stations located near the Kennebec River. In order to achieve the 1,200 Megawatt (MW) rating, each pole will require a 2500 mm<sup>2</sup> (nearly equivalent to 5,000 kcmil) copper conductor, cross-linked polyethylene (XLPE) insulated underground cable. A spare cable would be installed that could be connected to either pole after only a brief outage should a cable or termination failure occur.

A Horizontal Directional Drill (HDD), approximately 2,900 feet in length and 360 feet in depth, would be utilized for the Kennebec River crossing to install a duct bank consisting of, at a minimum: three (3) teninch (10") ducts, one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE).

- High Reliability Option (DC) with an inexpensive switching station: One (1) cable per pole at  $\pm 320$  kV HVDC with (1) spare cable installed:
  - An installed spare cable
  - Necessary Switches to manually switch in the underground cable
  - Limited Access Road to access the switches
  - No control house/P&C equipment auxiliary services

#### 1.1.1 Project River Crossing Information Details

| Owner's Name:              | Central Maine Power                                         |
|----------------------------|-------------------------------------------------------------|
| Project Name:              | NECEC Program, Kennebec River Crossing                      |
| Project Location:          | Maine                                                       |
| Length:                    | Approximately 4400 feet (First estimate, subject to change) |
| Voltage:                   | ±320 kV HVDC                                                |
| Planned Energization Date: | TBD                                                         |

#### 1.2 **Correspondence/Project Personnel**

### 1.2.1 POWER Engineers, Inc.

| Project Manager                          | Email:<br>Phone:<br>Address: | Russ Clavette<br><u>russ.clavette@powereng.com</u><br>(207) 869-1202<br>303 US Route One<br>Freeport, ME 04032        |
|------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Project Engineer                         | Email:<br>Phone:<br>Address: | Jesse Sawin<br>jesse.sawin@powereng.com<br>(207) 869-1443<br>303 US Route One<br>Freeport, ME 04032                   |
| Project Engineer<br>(Transition Station) | Email:<br>Phone:<br>Address: | Mark Reynolds<br>mark.reynolds@powereng.com<br>(503) 892-6733<br>9320 SW Barbur Blvd, Suite 200<br>Portland, OR 97219 |
| Project Engineer (UG)                    | Email:<br>Phone:<br>Address: | Les Hinzman<br><u>les.hinzman@powereng.com</u><br>(208) 788-0577<br>3940 Glenbrook Dr.<br>Hailey, ID 83333            |
| <b>1.2.2 CMP</b><br>Project Manager      | Email:<br>Phone:<br>Address: | Justin Tribbet<br>Justin.Tribbet@cmpco.com<br>(207) 629-2010<br>83 Edison Dr.                                         |

Augusta, ME 04336

## 2. Electrical Design Standards

### 2.1 System Requirements

| DESCRIPTION Voltage Class Sy   |         | ass System |
|--------------------------------|---------|------------|
| Maximum Phase-to-Phase Voltage | ±320 kV |            |
| Basic Impulse Level (BIL)      | 1300 kV |            |
| Continuous Current, Main Bus   | 3000    |            |
| Ultimate Short Circuit         | TBD kA  | > 20 kA    |

#### 2.2 Electrical Clearances

| DESCRIPTION                                               | Voltage Class System |
|-----------------------------------------------------------|----------------------|
| Operating Voltage                                         | ±320 kV              |
| BIL                                                       | 1300 kV              |
| Minimum Metal to Metal for Phase to                       | 10'-10"              |
| Phase: Recommended:                                       | 14'-0"               |
| Minimum Phase to Ground:                                  | 9'-7''               |
| Recommended:                                              | 11'-6"               |
| Station Post Insulator Height for Standard Strength       | 128"                 |
| Min. Conductor Height for Safety:                         | 18'-10"              |
| Vertical Clearance from Live Parts for Personnel Safety   | 20'-0"               |
| Horizontal Clearance from Live Parts for Personnel Safety | 13'-4"               |
| Height of Conductor Over Roadway:                         | 40'-0"               |

Minimum Clearances based on IEEE Std 1427-2006

#### 2.3. Electrical Clearance (+/- 320 HVDC) design and working clearances

|                                                                                        |                            | C                      | um Phase to<br>fround<br>carances                                      | Recommended<br>Phase to<br>Ground<br>Clearances | Minimum<br>Phase to<br>Phase<br>Clearances<br>Metal to<br>Metal     |                                                                        | ended Phas<br>erline Clea                  | se to Phase<br>rances         |
|----------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|-------------------------------|
| Rated<br>Maximum<br>Phase to<br>Phase<br>voltage or<br>Pole to<br>Pole Pole<br>(kV)(2) | BIL<br>(KV) <sup>(2)</sup> | Rigid<br>Parts<br>(in) | Gap for<br>Ground<br>Switch to<br>Live Parts<br><sup>(3)</sup><br>(in) | Rigid Parts<br>(in)                             | Disc.<br>Switch,<br>Bus<br>Supports,<br>Rigid<br>Conductors<br>(in) | Vertical<br>Break<br>Disc.<br>Switch,<br>Bus<br>Support<br>(5)<br>(in) | Horiz.<br>Break<br>Disc.<br>Switch<br>(in) | Horn<br>Gap<br>Switch<br>(in) |
| ±320                                                                                   | 1300                       | 104                    | 50                                                                     | 110                                             | 155                                                                 | 192                                                                    | 240                                        | 240                           |

(Per CMP Table 1 TM2.71.54 Standard with edit for HVDC Operation ± 320 kV)

#### Horizontal and Vertical Spacing for Busses

| DESCRIPTION                           | Voltage Class System |
|---------------------------------------|----------------------|
| Operating Voltage                     | ±320 kV              |
| BIL                                   | 1300 kV              |
| Low Bus Centerline, Phase to Phase    | 155 inches           |
| High Bus Centerline, Phase to Phase   | 155 inches           |
| Strain Bus Centerline, Phase to Phase | 28'-0"               |
| Low Bus Height (minimum)              | 25'-0"               |
| High Bus Height (minimum)             | 41'-0"               |

## 3. ANALYSIS APPROACH

#### 3.1 HVDC Terminal Availability (VSC Eastern Inverter)

Current VSC HVDC technology offers overall station availabilities in the range of ~99.5 %, total terminal availability. Symmetrical bi-pole availabilities are different than LCC conventional Terminals due to the characteristics of not being able to fall back to a metallic or earth return configuration during the outage of one pole conductor. So, a single pole disturbance will create an instantaneous Bipole outage. Equipment outages will be predominately AC-equipment caused, including outages of significant voltage reductions to cause commutation failure of the rectifier/inverter converters.

#### 3.2 Overhead Transmission Line Availability (Eastern Segment)

 $\pm 320$  kV HVDC transmission line design should provide an overall reliability figure that is only impaired for lightning caused events. As stated earlier a single line pole outage will result in a full system interruption, due to no fallback to metallic return or ground return configurations. Conservative selection of transmission line HVDC insulators with large creepage lengths (> 50 kV/mm) should provide adequate performance for natural pollution (dust) and unequal wetting, or large rainfall wetting of the outdoor insulation. The probability of outages in this segment will most likely be lightning produced outages, of a temporary nature that in most all cases will self-restore. Statistically about 5 to 7 lightning events may be expected, and each of these events will cause a momentary Bipole loss and reclose events of the range of 1.1 to 1.5 second duration, depending on the line clearing times, cable capacitance and length and where the fault was detected.

Automatic reclosure of the OH line segments would normally occur if there was no faults detected at either of the cable termination stations with both protection channels. If a cable fault was detected the automatic reclosure and startup process would be blocked until the cable termination data could be analyses and a decision made on restarting the energization process. The logic checks for the protection would normally occur in less than 20 to 50 MS, but the release of the blocking signal would normally require resetting appropriate lockouts at the HVDC Terminals and both the Cable Termination Stations. This can be done via SCADA supervisory control, but would still require human intervention, so several minutes 30 to 60 minutes may be spent obtaining fault records and verifying all of the switching (if backup pole cables are available) are properly configured.

#### 3.3 Cable Termination Station Availability (Eastern Station)

The ±320 kV HVDC Cable Termination Station has several elements\*\* that will determine the overall link availability. In order to assess this risk consider the joint probability:

- 1. Incoming HVDC Cable Bushing (vertical)
- 2. Support Insulators and buswork
- 3. MOV (Arrestor)
- 4. Disconnect Switch

$$\begin{split} \lambda_{\text{B}} & (\text{Bushing}) = 0.0053 \text{ (Failures/yr)} \\ \lambda_{\text{BUS}} & (\text{System}) = 0.0001 \text{ (Failures/yr)} \\ \lambda_{\text{MOV}} & (\text{Arrestor}) = 0.0001 \text{ (Failure/yr)} \\ \lambda_{\text{DISC}} & (\text{Disc}) = 0.0097 \text{ (Failures/yr.)} \end{split}$$

\*\*Data extracted from available *CIGRE failure data 2014*)

Failure Probability of one Current Path

 $P_{ole} = (1 - \lambda B) * (1 - \lambda BUS) * (1 - \lambda MOV) * (1 - \lambda DISC) =$ 

 $P_{\text{pole}} = (0.9903)^*(0.9999)^*(0.9999)^*(0.9903) = 0.9805$  /year or

 $(0.0195 \times 8760 \text{ hrs/year}) = 170$  (hours of potential outage time)

#### 3.4 Cable Termination Station Availability (Western Station)

The  $\pm 320$  kV HVDC Cable Termination Station has several elements<sup>\*\*</sup> that will determine the overall link availability. In order to assess this risk consider the joint probability:

- 6. Incoming HVDC Cable Bushing (vertical)  $\lambda_B(Bushing) = 0.0053$  (Failures/yr.) 7. Support Insulators and buswork  $\lambda_{BUS}(System) = 0.0001$ (Failures/yr.)
- 7. Support insulators and buswork
- 8. MOV (Arrestor)
- 9. Disconnect Switch

 $\lambda_{B}(Bushing) = 0.0053 (Failures/yr.)$   $\lambda_{BUS}(System) = 0.0001(Failures/yr.)$   $\lambda_{MOV}(Arrestor) = 0.0001(Failure/yr.)$  $\lambda_{DISC}(Disc) = 0.0097 (Failures/yr.)$ 

\*\*Data extracted from available CIGRE failure data 2014

Failure Probability of one Current Path

 $Pole = (1-\lambda B) * (1-\lambda BUS) * (1-\lambda MOV) * (1-\lambda DISC) =$ 

 $P_{\text{pole}} = (0.9903)^*(0.9999)^*(0.9999)^*(0.9903) = 0.9805$  /year or

(0.0195 x 8760 hrs/year) = 170 (hours of potential outage time)

#### 3.5 Cable Segment Availablity (River Crossing)

From publically available sources of about 99.5 % (see section 4.2 below)

#### 3.7 Overhead Transmission Line Availability (Western Segment)

From publically available sources availability of about is assumed 99.977 % (see section 4.2 below)

#### 3.8 HVDC Terminal Availability (VSC Western Rectifier)

Assuming that the rectifier station has the same technology as the Eastern Inverter Station, Current VSC HVDC technology offers overall station availabilities in the range of ~99.5 %, total terminal availability. Symmetrical bi-pole availabilities are different than LCC conventional Terminals due to the characteristics of not being able to fall back to a metallic or earth return Configuration during the outage of one pole conductor. So, a single pole disturbance will create an instantaneous Bipole outage. Equipment outages will be predominately AC-equipment caused, including outages of significant voltage reductions to cause commutation failure of the rectifier/inverter converters.

## 4. OVERVIEW SYSTEM AVAILABLITY

#### 4.1 MTTF/MTTR Assumptions

The HVDC VSC Inverter and Rectifier terminals are described and not under this part of the project scope. However, several assumptions were made to make the reliability estimates in this report, and are in summary below:

- a. MTTF/MTTR are heavily influenced by the ability to have the appropriate trained staff, protected spare parts available to the maintainers/repair staff, and full observable of the remote HVDC Cable Termination Stations. Video surveillance combined with full alarm and control point observability from both HVDC Terminal Stations will provide in most cases the means to diagnose any cable or transmission line impairments, and allow system operators to make the proper operating decisions.
- b. VSC operation during fault recovery needs to be completely tested during FAT (Factory System Testing) and should be tested and timing during all possible impairments. Of particular interest is how long the automated fault location, isolation and reconfiguration process will take (along with the HMI reaction delays)
- c. Due to weather conditions at the Cable Termination Stations during the weather, strategically located parts need to be warehoused either on site or at the nearest convenient township in a protected, secured, and accessible (7 x 24) location.

Spares should consist of at least the following parts for the cable termination station

- Spare insulators for all support and Disconnects
- Spare MOV surge arrestor
- o Spare cable splice kits and re-termination kit
- 0

#### 4.2 Combined Cable System Reliability Figure

The HVDC SC Inverter and Rectifier joint availability is about (according to recent discussions with OEM Suppliers):

99.0 %

Each Cable Termination Station has an availability calculated from typical values (as shown in the report):

98.04 %

Or a joint probability of  $(0.9804)^2 = 0.9614$  or about 96.14 %.

The cable segment should have a reliability

of: (1.0 – 0.0050) = 0.995 or about 99.5 %

The overhead line segments have not been evaluated in this report but typical high performance  $\pm$  320 kV HVDC lines with conservative insulation systems should be in the order of:

Line length of 145 miles (figure the typical outage of 1 outage per 100 miles), so:

145/100 = 1.45 outages per year (from all causes but most probably lightning)

The usual approach is to round off to the next whole number of in this case 2.0 outages per year or:

2/8760=0.000228 (assuming short <1 hour) duration self clearing faults or 0.0028 % per year or in availability 1.0-0.000228=99.977 %

So, an overall availability (without considering MTTR (Mean Time to Repair) :

(OH Line Segment) \* (Cable Segment) \* (Termination Stations) \* (HVDC Stations)

(0.9997) \* (0.995) \* (0.9614) \* (0.990) = 0.9467 or about **467 hours of unavailability (worst case) per year for self-restored faults.** 

If we use figures on typical restoration activities than a MTTR can be calculated, however please note that HVDC cable faults are usually if not always non-restorable without removal and replacement of at least one of the pole conductors. (Please see other documents on MTTR estimates)

#### 4.3 MTTR Considerations for UG Repair\*\*\* (from POWER's Cable Specialists)

In the event of a cable failure: 26 to 29 days; best case scenario, no contingency. Mobilize Electrical Contractor, isolate the failed cable: 1-2 days Remove terminations using man-lift and remove cable end to end -3 days Proof conduit and camera inspection of duct system -3 days If conduit is damaged and the spare must be used; time for routing spare to damaged cable termination position -8 to 10 days Replace a cable between termination structures -2 days Install terminations -6 days Test and energize -3 days

In the event of a termination failure: 19 - 20 days; best case scenario, no contingency, assumes no civil work. Mobilize Contractor, isolate the failed cable: 1-2 days Mobilize UG T-Line Contractor with equipment: 5 days Remove termination using man-lift and cable to pull-through vault – 2 days Replace a short piece of cable between the pull-through vaults to the termination structure – 2 days Install termination – 3 days Install splice – 3 days Test and energize – 3 days

\*\*\*Assuming no installed spare cable. Spare materials are stored on site and an agreement would be in place for Contractors to mobilize immediately; no inclement weather or poor access conditions have been considered.

NOTE: This scenario explored in 4.3 above illustrates why CMP elected to install a spare cable in the final report

### CONFIDENTIAL

IECG-001-033 Attachment 1, Page 44 of 70 Docket No. 2017-232

**Design Criteria** 



IECG-001-033 Attachment 1, Page 45 of 70 Docket No. 2017-232

November 20, 2017

## **CENTRAL MAINE POWER**

## ±320 kV HVDC UG Transmission Line Kennebec River Crossing

Design Information Package

PROJECT NUMBER: 147483

PROJECT CONTACT: LES HINZMAN <u>EMAIL:</u> LES.HINZMAN @POWERENG.C <u>OM PHONE:</u> (208) 788-0577



Design Information Package

#### PREPARED FOR: CMP PREPARED BY:

LES HINZMAN (208) 788-0577 LES.HINZMAN @POWERENG.COM

#### APPROVED BY:

-

| - |
|---|
|   |

| DOCUMENT HISTORY |             |                              |  |
|------------------|-------------|------------------------------|--|
| DATE             | BY          | REVISION                     |  |
| 09/11/17         | Les Hinzman | A – Issued for Review        |  |
| 09/29/17         | Les Hinzman | B – Issued for Review        |  |
| 10/20/17         | Les Hinzman | C – Issued for Review        |  |
| 11/20/17         | Les Hinzman | D – Issued with Final Report |  |
|                  |             |                              |  |

#### TABLE OF CONTENTS

| 1.0 G | ENERAL                                                                                                                                                                  | . 1                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|       | <b>1.1 PROJECT INFORMATION 1.2 CORRESPONDENCE/PROJECT PERSONNEL</b> 1.2.1 POWER Engineers, Inc.         1.2.2 CMP. <b>1.3 PROJECT DESCRIPTION</b>                       | <b>1</b><br>1<br>. 1     |
| 2.0   | ROUTE DESCRIPTION                                                                                                                                                       | . 2                      |
|       | 2.1 ROUTE<br>2.2 MINIMUM EASEMENT REQUIREMENTS                                                                                                                          | 2                        |
| 3.0   | UNDERGROUND SYSTEM PARAMETERS                                                                                                                                           | . 3                      |
|       | <ul> <li>3.1 CABLE SYSTEM OPERATING PARAMETERS</li> <li>3.2 UNDERGROUND CABLE INSTALLATION PARAMETERS</li> <li>3.2.1 XLPE Cable System (Open Trench and HDD)</li> </ul> | 3                        |
| 4.0   | ELECTRICAL SYSTEM DESIGN CRITERIA                                                                                                                                       | . 4                      |
|       | <ul> <li>4.1 CODES AND STANDARDS</li></ul>                                                                                                                              | . <b>4</b><br>. 4<br>. 4 |

## **1.0 GENERAL**

#### 1.1 **Project Information**

| Owner's Name:              | Central Maine Power                    |
|----------------------------|----------------------------------------|
| Project Name:              | NECEC Program, Kennebec River Crossing |
| Project Location:          | Maine                                  |
| Length:                    | Approximately 4400 feet                |
| Voltage:                   | ±320 kV HVDC                           |
| Planned Energization Date: | TBD                                    |

#### 1.2 Correspondence/Project Personnel

#### 1.2.1 POWER Engineers, Inc.

| 1.2.11 OWER Engineers, inc.              |                                    |                                                                                                                              |  |
|------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Project Manager                          | Email:<br>Phone:<br>Address:       | Russ Clavette<br><u>russ.clavette@powereng.com</u><br>(207) 869-1202<br>303 US Route One Freeport, ME 04032                  |  |
| Project Engineer (Station                | s)<br>Email:<br>Phone:<br>Address: | Jesse Sawin<br>jesse.sawin@powereng.com<br>(207) 869-1443<br>303 US Route One<br>Freeport, ME 04032                          |  |
| Project Engineer (UG)                    | Email:<br>Phone:<br>Address:       | Les Hinzman<br><u>les.hinzman@powereng.com</u><br>(208) 788-0577<br>3940 Glenbrook Dr.<br>Hailey, ID 83333                   |  |
| Project Engineer<br>(Transition Station) | Email:<br>Phone:<br>Address:       | Mark Reynolds<br><u>mark.reynolds@powereng.com</u><br>(503) 892-6733<br>9320 SW Barbur Blvd, Suite 200<br>Portland, OR 97219 |  |
| 1.2.2 CMP                                |                                    |                                                                                                                              |  |
| Project Manager                          | Email:<br>Phone:<br>Address:       | Justin Tribbet<br>Justin.Tribbet@cmpco.com<br>(207) 629-2010<br>83 Edison Dr.<br>Augusta, ME 04336                           |  |

#### 1.3 **Project Description**

The Central Maine Power (CMP) High Voltage Direct Current (HVDC) Transmission Line for the New England Clean Energy Connect (NECEC) Project is a  $\pm 320$  kV HVDC overhead, single circuit or symmetrical monopole (2-line poles) transmission line capable of transferring 1,200 MW. The project is about 207 miles overall with approximately 145 miles within the US. The line extends through Western Maine from the Appalaches Substation in Thetford Mines, Quebec, Canada and terminates near Lewiston, Maine in the United States. CMP is considering a  $\pm 320$ -kV HVDC underground transmission line for the crossing of the Kennebec River.

The projects includes two Cable Termination Substations near the Kennebec River. A planned 2,900 foot Horizontal Directional Drill would be utilized with 1500 feet of direct buried concrete encased duct bank consisting of three (3) ten-inch (10") ducts one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE) for the crossing of the Kennebec River with two (2) poles and an installed spare for the  $\pm 320$  kV HVDC underground transmission line to include ducts for fiber optic cables and distributed temperature sensing.

- □ High Reliability Option (DC) with an inexpensive switching station: One (1) cable per pole at  $\pm 320$  kV HVDC with (1) spare cable installed:
  - An installed spare cable
  - Necessary Switches to manually switch in the underground cable
  - o Limited Access Road to access the switches
  - No control house/P&C equipment auxiliary services

#### 2.0 ROUTE DESCRIPTION

A Horizontal Directional Drill (HDD), approximately 2,900 feet in length and 360 feet in depth, would be utilized for the Kennebec River crossing to install a duct bank consisting of, at a minimum: three (3) teninch (10") ducts, one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE).

It is anticipated that the HDD could be accomplished with a thirty-six inch (36") bore annulus within the proposed overhead transmission line corridor, which is 300 feet in width. The bore would pass beneath the Kennebec River with approximately thirty-feet (30') of clearance from the river bottom.

The HVDC underground cable installation would require approximately fifteen-hundred feet (1500') of open trenching to connect to the Cable Termination Stations.

#### 2.1 Route

Approx. 2900' drill with approximately 1,500' open trench.

#### 2.2 Minimum Easement Requirements

Property Easement: 300' existing easement intended for overhead transmission line

#### 3.0 UNDERGROUND SYSTEM PARAMETERS

#### 3.1 Cable System Operating Parameters

The underground cable system will be operated under the following requirements:

| Nominal Voltage           | ±320 kV  |
|---------------------------|----------|
| Nominal Frequency         | DC       |
| Maximum Steady State Load | 1200 MVA |

#### 3.2 Underground Cable Installation Parameters

The cable system will require a horizontal directional drill with open trenching leading a transition station on either side.

#### 3.2.1 XLPE Cable System (Open Trench and HDD)

The majority of the overall route will be installed using open cut trenching construction methods. The open cut trenching construction will be designed based on the following criteria.

| Minimum Burial Depth to Top of Conduit                 | 36 inches                 |
|--------------------------------------------------------|---------------------------|
| Minimum Sweep Radius                                   | 12 feet                   |
| Ambient Soil Temperature (Assumed)                     | 6°C                       |
| Native Soil Thermal Resistivity (Assumed)              | 80°C-cm/W at 6% moisture  |
| Bentonite Drilling Fluid Thermal Resistivity (Assumed) | 140°C-cm/W at 6% moisture |

### 4.0 ELECTRICAL SYSTEM DESIGN CRITERIA

#### 4.1 Codes and Standards

The system electrical design for the underground lines shall be in accordance with the latest revision of all applicable industry codes and standards as well as applicable regulations of the Federal, State, and Local authorities.

The following codes that will be used are as follows:

- National Electrical Safety Code 2017
- AEIC CS9-2015
- Cigre TB-496-2012
- ICEA S-108-720-2012
- ICEA P-45-482-2007
- IEC 62067-2011

#### 4.2 Underground Cable and Accessories

This section describes the cable and accessories that will be used for the underground electrical system. All accessories will be designed and verified to accommodate the cable construction described below via a qualified type test in accordance with IEC 141-1

#### 4.2.1 Cable

|                     | Cubic                                     |                                      |  |
|---------------------|-------------------------------------------|--------------------------------------|--|
|                     | Cable Type (Solid Dielectric, HPFF, etc.) | Solid Dielectric                     |  |
|                     | Voltage Class                             | ±320 kV HVDC                         |  |
|                     | Conductor Size                            | 2,500 mm <sup>2</sup>                |  |
|                     | Conductor Type and Construction           | Compact segmented or circular copper |  |
|                     | Insulation Material                       | XLPE                                 |  |
|                     | Insulation Thickness                      | 21.5 mm (approx.)                    |  |
|                     | Shield Type                               | Copper Laminate                      |  |
|                     | Jacket Type                               | HDPE                                 |  |
|                     | Fault Current Magnitude                   | TBD                                  |  |
|                     | Fault Current Duration                    | TBD                                  |  |
|                     | Minimum Bend Radius                       | TBD                                  |  |
|                     | Supplied by                               | TBD                                  |  |
| 4.2.2 Cable Splices |                                           |                                      |  |
|                     | Splice Style                              | TBD                                  |  |
|                     | Voltage Class                             | ±320 kV HVDC                         |  |
|                     | Quantity                                  | (Spares TBD)                         |  |
|                     | BIL                                       | 1300 kV                              |  |
|                     |                                           |                                      |  |

Supplied by

TBD

Comments: Cable splices are not required on initial installation; spare splices are to be kept in stores to avoid long lead-times.

#### 4.2.3 Splice Manholes (Pull-through)

| Splice Manhole Type (Precast or Cast in Place) Precast |                |  |
|--------------------------------------------------------|----------------|--|
| Splice Manhole Size (L' x W' x H' outside)             | TBD            |  |
| Number of Circuits per Manhole                         | TBD            |  |
| Number of Splicing Menholes                            | ( Dull Through |  |

| Number of Splicing Manholes             | 6 Pull-Through Vaults        |
|-----------------------------------------|------------------------------|
| Minimum Cover                           | 24"                          |
| Number of Access Lids                   | 2                            |
| Vault Spacing                           | TBD                          |
| Vault Loading Requirements (H-20, etc.) | H-20                         |
| Supplied by                             | Underground Civil Contractor |
| Comments                                |                              |



IECG-001-033 Attachment 1, Page 53 of 70 Docket No. 2017-232

November 20, 2017

## **CENTRAL MAINE POWER**

±320 kV HVDC UG Transmission Line Termination Stations Kennebec River Crossing

|                                                                                                                                    | Design Criteria Package |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
|                                                                                                                                    |                         |
| PROJECT NUMBER:<br>147483<br>PROJECT CONTACT:<br>MARK REYNOLDS<br>EMAIL:<br>MARK.REYNOLDS@POWERENG.COM<br>PHONE:<br>(503) 892-6733 |                         |
| PROJECT CONTACT:<br>LES HINZMAN <u>EMAIL:</u><br>LES.HINZMAN @POWERENG.C<br><u>OM</u> PHONE:<br>(208) 788-0577                     |                         |
|                                                                                                                                    |                         |

### CONFIDENTIAL

### Preliminary Design Criteria Package

#### PREPARED FOR: CMP PREPARED BY:

MARK A REYNOLDS (503) 892-6733 MARK.REYNOLDS @POWERENG.COM

#### APPROVED BY:

-

-

| DOCUMENT HISTORY |                      |                                 |
|------------------|----------------------|---------------------------------|
| DATE             | BY                   | REVISION                        |
| 09/21/2017       | Mark A Reynolds P.E. | A – Issued for Review           |
| 09/22/2017       | Mark A Reynolds P.E. | B – Revised from first comments |
| 10/19/2017       | Mark A Reynolds P.E. | C – Revised to final option     |
| 11/20/2017       | Mark A Reynolds P.E. | D – Issued with Final Report    |
|                  |                      |                                 |

#### TABLE OF CONTENTS

#### Contents

| 1.  | GENERAL                                                                               | 1 |
|-----|---------------------------------------------------------------------------------------|---|
|     | <b>1.1 PROJECT DESCRIPTION</b> 1.1.1       Project River Crossing Information Details |   |
|     | 1.2 CORRESPONDENCE/PROJECT PERSONNEL                                                  | 2 |
|     | 1.2.1 POWER Engineers, Inc                                                            |   |
| •   |                                                                                       |   |
| 2.  | CODES AND STANDARDS                                                                   |   |
|     | 2.1 TRANSMISSION STANDARDS INCLUDING CLIMATE & ENVIRONMENTAL DOCUMENTS                | 3 |
| 3.  | ELECTRICAL DESIGN STANDARDS                                                           | 4 |
|     | 3.1 System Requirements                                                               |   |
|     | 3.2 ELECTRICAL CLEARANCES                                                             |   |
|     | 13. ELECTRICAL CLEARANCE (+/- 320 HVDC), DESIGN AND WORKING CLEARANCES                |   |
| 4.  | ELECTRICAL DESIGN PARAMETERS                                                          |   |
|     | 4.1 RIGID BUS                                                                         | 5 |
|     | 4.2 JUMPER BUS                                                                        | 6 |
|     | 4.3 STRAIN BUS                                                                        | 6 |
| 5.  | STRUCTURES                                                                            | 6 |
| 6.0 | FOUNDATIONS AND CONCRETE                                                              | 6 |
|     | 6.1 FOUNDATION TYPE & APPLICATION                                                     |   |
|     | 6.2 FOUNDATION DESIGN PARAMETERS                                                      |   |
|     | 6.3 CONCRETE & ANCHOR BOLTS                                                           |   |
| 7.  | GROUNDING                                                                             | 7 |
|     | 7.1 GROUND GRID DESIGN REQUIREMENTS                                                   | 8 |
| 8.  | FENCING                                                                               | 8 |
|     | 8.1 MAIN FENCE TYPE & MATERIAL                                                        | 9 |
| 9.  | LOW VOLTAGE CABLE (600V & BELOW)                                                      | 9 |
|     | 9.1 CONTROL CABLE                                                                     |   |
|     | 9.2 FIBER OPTIC ADSS/DIELECTRIC CABLE                                                 | 9 |
| 10. | CONDUIT & CABLE TRENCH REQUIREMENTS                                                   | 9 |
|     | 10.1 CABLE TRENCH                                                                     |   |
|     | 10.2 CONDUIT SYSTEM1                                                                  |   |
|     | 10.3 Splice Vaults (Pull-through & other applications)1                               |   |
| 11. | SUBSTATION LIGHTING1                                                                  | 0 |

| 12.         | SUBSTATION LIGHTNING PROTECTION                                         |
|-------------|-------------------------------------------------------------------------|
| 13.         | WIND LOADING CRITERIA 11                                                |
| 14.         | MAXIMUM ICING (RADIAL COATING TO ASSUME) 11                             |
| 15.         | EXPECTED LIGHTNING PROBABILITIES 11                                     |
| 16.         | POLLUTION LEVELS (INCLUDING DUST BORNE CAUSED) 11                       |
| 17.         | TEMPERATURE EXTREMES                                                    |
| 18.         | HUMIDITY EXTREMES                                                       |
| 19.         | SNOWFALL MAXIMUM                                                        |
| 20.         | RAINFALL MAXIMUM                                                        |
| 21.<br>LOCA | SEISMIC LEVELS (IEEE 693, MOST PROBABLY "LOW PERFORMANCE" IN THIS TION) |
| 22.<br>STOR | OIL CONTAINMENT (AS PERTAINING TO DOUBLE WALL ALARMED OIL               |
|             | AGE TANK SYSTEM) 13                                                     |
| 23.         | AGE TANK SYSTEM)                                                        |
|             |                                                                         |

## 1. General

#### 1.1 **Project Description**

The Central Maine Power (CMP) High Voltage Direct Current (HVDC) Transmission Line for the New England Clean Energy Connect (NECEC) Project is a  $\pm 320$  kV HVDC overhead, single circuit or symmetrical monopole (2-line poles) transmission line capable of transferring 1,200 MW. The project is about 207 miles overall with approximately 145 miles within the US. The line extends through Western Maine from the Appalaches Substation in Thetford Mines, Quebec, Canada and terminates near Lewiston, Maine in the United States. CMP is considering a  $\pm 320$ -kV HVDC underground transmission line for the crossing of the Kennebec River.

The project includes two Cable Termination Substations near the Kennebec River. A planned 2,900 foot Horizontal Directional Drill would be utilized with 1500 feet of direct buried concrete encased duct bank consisting of three (3) ten-inch (10") ducts one (1) four-inch (4") duct, and two (2) two-inch (2") ducts (all HDPE) for the crossing of the Kennebec River with two (2) poles and an installed spare for the  $\pm 320$  kV HVDC underground transmission line to include ducts for fiber optic cables and distributed temperature sensing.

High Reliability Option (DC) with an inexpensive switching station: One (1) cable per pole at  $\pm 320$  kV HVDC with (1) spare cable installed:

- An installed spare cable
- Necessary Switches to manually switch in the underground cable
- o Limited Access Road to access the switches
- No control house/P&C equipment auxiliary services

#### 1.1.1 Project River Crossing Information Details

| Owner's Name:              | Central Maine Power                                        |
|----------------------------|------------------------------------------------------------|
| Project Name:              | NECEC Program, Kennebec River Crossing                     |
| Project Location:          | Maine                                                      |
| Length:                    | Approximately 4400 feet (First estimate subject to change) |
| Voltage:                   | ±320 kV HVDC                                               |
| Planned Energization Date: | TBD                                                        |

#### 1.2 Correspondence/Project Personnel

#### 1.2.1 POWER Engineers, Inc.

| Project Manager                             | Email:<br>Phone:<br>Address: | Russ Clavette<br><u>russ.clavette@powereng.com</u><br>(207) 869-1202<br>303 US Route One Freeport, ME 04032                          |
|---------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Project Engineer<br>(Stations)              | Email:<br>Phone:<br>Address: | Jesse Sawin<br>jesse.sawin@powereng.com<br>(207) 869-1443<br>303 US Route One<br>Freeport, ME 04032                                  |
| Project Engineer<br>(Transition Station)    | Email:<br>Phone:<br>Address: | Mark Reynolds<br><u>mark.reynolds@powereng.com</u><br>(503) 892-6733<br>3 Centerpointe Drive Suite 500<br>Lake Oswego, OR 97035-8663 |
| Project Engineer<br>(Underground T-Line) En | nail:<br>Phone:<br>Address:  | Les Hinzman<br>les.hinzman@powereng.com<br>(208) 788-0577<br>3940 Glenbrook Dr.<br>Hailey, ID 83333                                  |

#### 1.2.2 CMP

Project Manager

Justin Tribbet Email: Justin.Tribbet@cmpco.com Phone: (207) 629-2010 Address: 83 Edison Dr. Augusta, ME 04336

## 2. Codes and Standards

#### 2.1 Transmission Standards including Climate & Environmental Documents

A summary of the codes, industry standards, and guides to be used are included below, including IEEE Standards and Owner Specific Standards (as available).

| AASHTO | American Association of State and Highway Transportation Officials |
|--------|--------------------------------------------------------------------|
|        | American Association of State and Highway Transportation Officials |
| ACI    | American Concrete Institute                                        |
| AGA    | American Galvanizers Association                                   |
| AISC   | American Institute of Steel Construction                           |
| ANSI   | American National Standards Institute                              |
| ASCE   | America Society of Civil Engineers                                 |
| ASME   | America Society of Mechanical Engineers                            |
| ASTM   | American Society for Testing and Materials                         |
| AWS    | American Welding Society                                           |
| CFR    | Code of Federal Regulations                                        |
| IBC    | International Building Code                                        |
| IEC    | International Electrotechnical Commission                          |
| IEEE   | Institute of Electrical and Electronics Engineers                  |
| MBC    | Minnesota Building Code                                            |
| MBMA   | Metal Building Manufacturers Association                           |
| NEC    | National Electric Code, 2014 Edition                               |
| NEMA   | National Electrical Manufacturers Association                      |
| NESC   | National Electric Safety Code, C2-2012                             |
| NFPA   | National Fire Protection Association                               |
| OSHA   | Occupational Safety and Health Organization                        |
|        |                                                                    |

The current revision of all relevant standards shall apply (unless otherwise noted) including:

| AASHTO: | Standard for Aggregates                                                       |
|---------|-------------------------------------------------------------------------------|
| ANSI:   | C2 – National Electrical Safety Code (2012)                                   |
| ASCE:   | 113 – Substation Structure Design Guide (2008)                                |
| IEEE:   | 80 – Guide for Safety in AC Substation Grounding                              |
|         | 525 – Guide for the Design and Installation of Cable Systems in Substations   |
|         | 605 – Guide for Design of Substation Rigid Bus Structures                     |
|         | 693 – Recommended Practice for Seismic Design of Substations                  |
|         | 998 – Guide for Direct Lightning Stroke Shielding of Substations              |
| NFPA:   | 70 – National Electric Code                                                   |
| MBC:    | Maine Building Code (2015 or latest edition)                                  |
| OSHA:   | 1910.269 - Electric Power Generation, Transmission, and Distribution, Law and |
|         | Regulations                                                                   |
| IEC     | IEC 60815 Guide for the Selection of Insulators in Respect of Polluted Levels |

The current revision of all relevant standards form CMP shall apply (unless otherwise noted) including:

| CMP <i>TM</i> 2.71.345<br>CMP 2.72.64<br>CMP 2.72.65-103 | CMP Structural Steel Standards<br>CMP Structural Steel Standards<br>CMP Structural Steel Standards |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| CMP 2.71.9 (Series)                                      | CMP Foundations Standards                                                                          |
| CMP TM 2.71.08 (Rev 2)<br>CMP TM 2.73.19                 | CMP Control Building Standards<br>CMP Control House Electrical Standards                           |
| CMP TM 2.71.11                                           | CMP Lighting Standards                                                                             |
| CMP TM 2.71.77                                           | CMP Grounding Standards                                                                            |
| CMP TM 2.71.54                                           | CMP Electrical Clearance Standards                                                                 |
| CMP TM 2.71.53                                           | CMP Bus Design Standards                                                                           |

## 3. Electrical Design Standards

#### 3.1 System Requirements

| DESCRIPTION                    | Voltage Class System |        |
|--------------------------------|----------------------|--------|
| Maximum Phase-to-Phase Voltage | ±320 kV              |        |
| Basic Impulse Level (BIL)      | 1300 kV              |        |
| Continuous Current, Main Bus   | 3000 A               |        |
| Ultimate Short Circuit         | TBD kA               | >20 kA |

#### 3.2 Electrical Clearances

| DESCRIPTION                                               | Voltage  |  |
|-----------------------------------------------------------|----------|--|
| Operating Voltage                                         | ±320 kV  |  |
| BIL                                                       | 1300 kV  |  |
| Minimum Metal to Metal for Phase to                       | 10'-10"  |  |
| Phase: Recommended:                                       | 14'-0"   |  |
| Minimum Phase to Ground:                                  | 9'-7"    |  |
| Recommended:                                              | 11'-6"   |  |
| Station Post Insulator Height for Standard Strength       | 128"     |  |
| Min. Conductor Height for Safety:                         | 18'-10'' |  |
| Vertical Clearance from Live Parts for Personnel Safety   | 20'-0"   |  |
| Horizontal Clearance from Live Parts for Personnel Safety | 13'-4"   |  |
| Height of Conductor Over Roadway:                         | 40'-0"   |  |

Minimum Clearances based on IEEE Std 1427-2006

#### 13. Electrical Clearance (+/- 320 HVDC), design and working clearances

|                                                                                             |                            | C                      | um Phase to<br>fround<br>arances                                       | Recommended<br>Phase to<br>Ground<br>Clearances | Minimum<br>Phase to<br>Phase<br>Clearances<br>Metal to<br>Metal     |                                                                        | ended Phas<br>rline Clea                   | se to Phase<br>rances         |
|---------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|-------------------------------|
| Rated<br>Maximum<br>Phase to<br>Phase<br>voltage or<br>Pole to<br>Pole Pole<br>$(kV)^{(2)}$ | BIL<br>(KV) <sup>(2)</sup> | Rigid<br>Parts<br>(in) | Gap for<br>Ground<br>Switch to<br>Live Parts<br><sup>(3)</sup><br>(in) | Rigid Parts<br>(in)                             | Disc.<br>Switch,<br>Bus<br>Supports,<br>Rigid<br>Conductors<br>(in) | Vertical<br>Break<br>Disc.<br>Switch,<br>Bus<br>Support<br>(5)<br>(in) | Horiz.<br>Break<br>Disc.<br>Switch<br>(in) | Horn<br>Gap<br>Switch<br>(in) |
| ±320                                                                                        | 1300                       | 104                    | 50                                                                     | 110                                             | 155                                                                 | 192                                                                    | 240                                        | 240                           |

(Per CMP Table 1 TM2.71.54 Standard with edit for HVDC Operation ± 320 kV)

#### 3.3 Horizontal and Vertical Spacing for Busses

| DESCRIPTION                           | Voltage    |  |
|---------------------------------------|------------|--|
| Operating Voltage                     | ±320 kV    |  |
| BIL                                   | 1300 kV    |  |
| Low Bus Centerline, Phase to Phase    | 155 inches |  |
| High Bus Centerline, Phase to Phase   | 155 inches |  |
| Strain Bus Centerline, Phase to Phase | 28'-0"     |  |
| Low Bus Height (minimum)              | 25'-0"     |  |
| High Bus Height (minimum)             | 41'-0"     |  |

## 4. ELECTRICAL DESIGN PARAMETERS

#### 4.1 Rigid Bus

| DESCRIPTION            | VOLTAGE |                   |
|------------------------|---------|-------------------|
| Nominal Voltage:       | ±320 kV |                   |
| Type (Tube, Other):    | Al Tube |                   |
| Ampacity:              | 3000A   | (CMP<br>Standard) |
| Material / Alloy:      | 6063-T6 |                   |
| Short Circuit Current: | TBD kA  | > 20 kA           |

#### 4.2 Jumper Bus

| DESCRIPTION                                  | VOLTAGE |                   |
|----------------------------------------------|---------|-------------------|
| Nominal Voltage:                             | ±320 kV |                   |
| Ampacity:                                    | 3000A   | (CMP<br>Standard) |
| Connections (Compression / Bolted / Welded): | TBD     |                   |

#### 4.3 Strain Bus

| DESCRIPTION                                  | VOLTAGE |                   |
|----------------------------------------------|---------|-------------------|
| Nominal Voltage:                             | ±320 kV |                   |
| Ampacity:                                    | 3000A   | (CMP<br>Standard) |
| Connections (Compression / Bolted / Welded): | TBD     |                   |

### 5. Structures

Substation structural steel is to be designed in conformance with ASCE standards and per CMP Substation Standard Specification as listed. The design will consider shipping restrictions and minimize the need for special offloading equipment and provisions. Steel designs are to include all assembly hardware and anchoring systems (anchor bolts, rods, etc.) along with torque requirements.

## 6.0 FOUNDATIONS AND CONCRETE

#### 6.1 Foundation Type & Application

Foundations will be designed to be in accordance with all relevant CMP design standards as listed. All station dead end foundations are primarily compression/uplift type foundations. The equipment support foundations are primarily laterally loaded (moment type) foundations. Slab type foundation will also be used as appropriate for equipment mounting.

#### 6.2 Foundation Design Parameters

The foundation design shall consider the following soil properties for each soil layer

- Soil type
- Thickness of soil layer
- Soil density (unit weight)
- Soil friction angle
- Pressure meter Modulus
- Undrained shear strength
- Adhesion factor
- Cohesion
- Horizontal stress coefficient, ko
- Depth to ground water (both at time of drilling and estimated high)

All foundations will be designed for a 6" minimum reveal above the top rock cover. All drilled pier foundations shall be designed according to the L-pile parameters provided in the geotechnical reports. The soil parameters provided are reduced to account for soil loosening resulting from frost dissipation to a depth of 6 feet. Due to the 72 inch frost depth all slab foundations will require soil correction in order to prevent frost heave. Soil correction will consist of either 6 ft. of non-frost susceptible fill, or 4" of foam insulation to be placed under the foundation. All CMP Standards listed shall apply, unless otherwise stated.

#### 6.3 Concrete & Anchor Bolts

The concrete used in the foundations shall have a minimum 28-day compressive strength of 4,500 psi with a water to cement ratio not to exceed 0.45. Concrete placed under water shall have a minimum 28-day compressive strength of 5,000 psi. All concrete specifications, concrete design and reinforcing steel requirements shall be in accordance with the latest Minnesota adopted edition of the Building Code Requirements for Reinforced Concrete (ACI-318). All vertical reinforcing steel shall be ASTM A-615 Grade 60 and all lateral (hoops) reinforcing steel shall be ASTM A-615 Grade 60. A minimum of three inches (3 in.) of clear space is required from the outermost reinforcing steel to the side of the excavation. Cast in place anchor bolts shall be ASTM F1554 GR 36 or ASTM A615 Grade 75 deformed bars, threaded at the end(s). Epoxy anchor bolts shall be HILTI HIT HY200. (Refer to applicable CMP Standards)

## 7. Grounding

The substation grounding design shall provide a ground mat system consisting of main ground grid conductors, ground rods, grounding mats and structure ground stingers as necessary for a complete grounding installation. The substation grounding system for each installation will be designed to meet the recommendations defined in IEEE 80 and Owner design standards.

All equipment, cabinets, structures, fencing, gates are to be connected to the main ground grid. Below grade ground grid conductors shall be bonded at each joint and ground rod using either exothermic connections or compression style connectors. Above grade connections to buildings, equipment, cabinets and strictures shall use compression type connectors. Ground stinger connections shall be 4/0 minimum.

The grid design will be based on maximum available symmetrical fault current levels and a clearing time of 0.5 seconds. The acceptable limits for touch and step potential used in designing the grounding system shall be in accordance with IEEE 80. The grid design will be modeled in CDEGS. (Refer to applicable CMP Standards as listed)

#### 7.1 Ground Grid Design Requirements

The substation ground grid shall meet the following minimum requirements: (Refer to applicable CMP Standards as listed)

- Main Ground grid will be made up of minimum 4/0 CU, 19 strand, soft drawn.
- Ground grid is to be buried eighteen inches (18 in.) below the top of sub grade (not including top rock)
- Ground grid will be installed three feet (3 ft.) outside the fence line perimeter.
- The ground grid must be extended at all entrance gates, so that the outermost ground conductor is always three feet (3 ft.) away from the extent of fence metalwork including gate swing areas.
- Ground rods shall be located and connected to the ground grid per design calculations.
- Ground rod length shall be determined by the ground grid design and geotechnical investigation.
- Dedicated ground rods are required at each set of surge arresters and at all shield wire attachment structures.
- Control building shall have two tinned or silver plated ground pads with NEMA 4-hole pads on opposite corners of the structure which are to be connected to the ground grid.
- Below grade copper mats shall be installed at each disconnect switch operator.
- A layer of minimum four inch (4 in.) deep crushed (not smooth rounded), washed rock,  $\frac{3}{4}$ " to 1" grade, to be used throughout the substation area and up to five feet (5 ft.) beyond the fence boundary.
- Fence is to be connected to the main grid at all corners posts and every other line post. Fence is to be grounded using #4 CU, 7 strands, soft drawn.

## 8. Fencing

The substation yard will be secured with a chain link fence consisting of steel posts, a minimum of nine (9) feet of galvanized steel wire woven fabric in accordance with ASTM A392, Class 2 and at least three (3) strands of 12.5 USWG steel barbed wire in accordance with ASTM A121, Class 3. The gate and corner posts shall be imbedded six (6) feet into a concrete foundation. Line posts shall be direct driven. Gates shall be installed as required to allow ready access to qualified personnel and adequate turning radius for the equipment necessary to construct, maintain and operate the substation. The design and construction shall comply with MP and NESC requirements. Signage will be installed in accordance with NESC, ANSE Z535 and MP requirements. (Refer to applicable CMP Standards as listed)

#### 8.1 Main Fence Type & Material

Fence Type (Type) Fence Height Fence Material (Type) Fence Foundation

Drive Gates, Size, & Quantity Personnel Gates, Size, & Quantity Chain Link 9 Ft (+1 ft barbed wire) Galvanized Steel Fabric Augured concrete Pier Perimeter Footing and direct driven Two, 24' One, 4'

## 9. Low Voltage Cable (600V & Below)

All power and control cables (if required) shall be in accordance with CMP Standard Specifications Flame Retardant Power & Control Cable. (Refer to applicable CMP Standards as listed)

#### 9.1 Control Cable

No active control cables are planned for this facility.

#### 9.2 Fiber Optic ADSS/Dielectric Cable

All Fiber Optic Cables will be furnished and installed by other contractors and the specification requirements will be in other documents. (CMP Telecommunications Standards will be applied in this area)

## **10. CONDUIT & CABLE TRENCH REQUIREMENTS**

#### 10.1 Cable Trench

No cable trench is expected for the termination stations

#### 10.2 Conduit System

A complete conduit system shall be provided to complete all routing needs for the cabling system. The minimum conduit size used in below grade applications shall be two inches (2 in). The minimum conduit size for above grade applications shall be one inch (1 in). Below grade conduits shall be PVC. Above grade conduits shall be Rigid Galvanized Steel (RGS) or Flexible Liquid Tight (Flex). Below grade elbows for risers shall be 90° RGS with a 24" minimum radius. All other below grade elbows shall be PVC with 24" minimum radius.

The conduits shall be installed with all appropriate hardware to meet NEC requirements and shall include lock nuts, joints/couplers, bell ends, watertight provisions, etc. as required to provide for a complete system. (Refer to applicable CMP Standards as listed)

#### 10.3 Splice Vaults (Pull-through & other applications)

The cable and splice vaults will generally be part of the EHV cable installation contractors scope of work. It is envisioned that the vaults will be placed before major substation above grade work is completed. Salient features include:

- a. Splice Manhole Type (Precast or Cast in Place) Precast
- Splice Manhole Size (L' x W' x H' outside) TBD b.
- Number of Circuits per Manhole One pole or spare per manhole c.
- d. Number of Splicing Manholes 6 Pull-Through Vaults 24"
- Minimum Cover e.
- Number of Access Lids 2 f.
- Vault Spacing TBD g.
- Vault Loading Requirements (H-20, as required determined by location) h.

#### **Substation Lighting** 11.

No permanent active lighting systems are planned for these stations. Only temporary generator supplied portable lighting will be used during nighttime maintained operations.

## **12.** Substation Lightning Protection

The substation shall be protected from lightning strokes to meet the Isokeraunic level. The stroke protection system shall consist of dead end structures, static masts, support hardware and shield wires directly connected to the ground grid. Shielding shall be based on the use of the rolling sphere analysis method per IEEE 998-2012, including failure probability as noted in Section 3 and Annex D. Shield wire routings shall be parallel to bus work whenever possible and routed to minimize main bus crossings.

Static wires shall be 7#7 Alumoweld steel electrically connected to the ground grid (either directly or via the terminating structure) on both ends of the static wire span. OPGW static wires will also be allowed for use as needed. All shield poles and dead ends used for shielding shall have a ground rod installed within three (3) feet of the structure with a minimum of two (2) separate connections between the structure the and the substation grounding. (Refer to applicable CMP Standards as listed)

## 13. Wind Loading Criteria

| DESCRIPTION                       | MPH |
|-----------------------------------|-----|
| Average Wind Speed: (Basic)       | 40  |
| Highest Wind Maximum: (ASCE 7-16) | 113 |
| Gust Factor                       | TBD |

## 14. Maximum icing (radial coating to assume)

| DESCRIPTION                           | Inches Radial |
|---------------------------------------|---------------|
| Average                               | 0.5           |
| Highest Icing Maximum: (CMP Standard) | 1.5           |
| Highest Icing Maximum (ASCE 7-16)     | 1.0           |

## 15. Expected Lightning probabilities

TBD based on overall Transmission Line design parameters.

## 16. Pollution Levels (including dust borne caused)

Without any local condition information to fully determine the pollution including blowing dust at the two Termination Stations it has been assumed that the (per IEC 60815) that the following creepage lengths will be used:

| Type of Insulation                  | Creepage<br>Length |
|-------------------------------------|--------------------|
| Porcelain Insulators/Bushings       | 50 mm/kV           |
| Silicone Rubber Insulators/Bushings | 40 mm/kV           |
|                                     |                    |

## **17.** Temperature extremes

| DESCRIPTION                   | Temperature |
|-------------------------------|-------------|
| Lowest (Centigrade)           | -40° C      |
| Highest Possible (Centigrade) | +40° C      |
|                               |             |

## **18. Humidity Extremes**

| DESCRIPTION                                              |     |
|----------------------------------------------------------|-----|
| Average Low                                              | 61% |
| Highest Expected                                         | 82% |
| (needs further investigation at cable termination sites) |     |

## 19. Snowfall Maximum

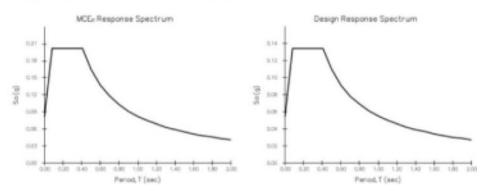
| DESCRIPTION                                                  | Inches/24<br>hours |
|--------------------------------------------------------------|--------------------|
| Average                                                      | 12                 |
| Highest Accumulation                                         | 40                 |
| (needs further investigation at the cable termination sites) |                    |

## 20. Rainfall Maximum

| DESCRIPTION                    | Inches/hr. |
|--------------------------------|------------|
| Average (15 minute Intensity)  | 4.39       |
| Highest (60 minutes Intensity) | 1.79       |

## 21. Seismic Levels (IEEE 693, most probably "low performance" in this location)

The local Seismic levels in accordance with USGS Mapping appear to be classified as an IEEE 693 "LOW PERFORMANCE" (for "Essential Facilities"). This level of seismic performance may be modified after detailed geotechnical investigations are completed.


Building Code Reference Document 2012/2015 International Building Code (which utilizes USOS hazard data available in 2008) Site Coordinates 45.34696°N, 69.95856°W Site Soil Classification Site Class B – "Rock" Risk Category IV (e.g. essential facilities)



**USGS-Provided Output** 

| <b>S</b> <sub>5</sub> = | 0.202 g | Ses = | 0.202 g | $S_{\text{HS}} =$ | 0.134 g |  |
|-------------------------|---------|-------|---------|-------------------|---------|--|
| S, =                    | 0.082 g | Sm =  | 0.082 g | S. =              | 0.055 g |  |

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.



# 22. Oil containment (as pertaining to double wall alarmed oil storage tank system)

No active oil storage of containment systems are planned for these termination stations.

## 23. Station security video surveillance, and intrusion alarming

No active security measures are planned for these stations.

## 24. Telecommunications & Protection & Control Overview

No active telecommunications or protection equipment is planned for these stations. Passive cable fault locators will be utilized on each cable termination.

## 25. Prefabricated Substation Buildings (EEE) & Associated Auxiliary Power Systems

No Buildings are planned for this station development at this time.