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FOREWORD
Stephen J. Andrle, SHRP 2 Deputy Director

Driver response to congestion and road pricing is an essential element to forecasting the
future use of roadway systems and estimating the effect that pricing has on demand and
route choice. Though many studies have been conducted in the past and revenue studies are
routinely done for proposed toll roads, there is still a need for improving the behavioral basis
for forecast. The objective of this project was to develop mathematical descriptions of the full
range of highway user behavioral responses to congestion, travel time reliability, and pricing.
These descriptions were achieved by mining existing data sets. The report estimates a series
of nine utility equations, progressively adding variables of interest. This research explores the
effect on demand and route choice of demographic characteristics, car occupancy, value of
travel time, value of travel time reliability, situational variability, and an observed toll aversion
bias. The primary audience for this research is professionals who develop travel demand and
traffic forecasts. Policy makers may also have an interest in the behavioral findings that could
have policy implications. Equations for commercial drivers were not developed since their
routes are normally determined, in part, by contracts and company policies.

The researchers for this study identified both revealed and stated preference data sets that
could be mined to estimate equations on driver responses to congestion and tolls. The
primary data sets were from Seattle and New York. Supporting data sets, used for testing
transferability of the equations, included San Francisco, Minneapolis, Chicago, San Diego,
Orange County (CA), and Baltimore. A hierarchical choice framework was used. The choice
framework considers first residential location and activities, followed by primary destination
and intermediate stops, mode of travel, occupancy (when applicable), time of day, departure
window, and finally route choice.

The basic utility equation features travel time and cost with coefficients estimated from
the data sets. Additional levels of disaggregation may be used depending on the availability
of data. In the next level, the equation specifies time to mean “free flow” and “congested”
time. The data analysis indicates that drivers perceive every minute driving in congested
conditions at 1.5 to 2.0 times longer than free flow travel time. In the next level, which
adjusts the cost term for income, research shows that the value of travel time increases with
income, but not linearly. The cost term is subsequently disaggregated by auto occupancy,
followed by personal characteristics such as trip purpose, age, and gender. Sensitivity test-
ing shows that segmentation by trip purpose is significant, but other personal character-
istics are not extremely significant. Travel time reliability, considered in the next level, is
the standard deviation of travel time adjusted for distance. This equation recognizes that
the value of travel time reliability for short trips (e.g., 5 miles), especially trips to and from
work, is greater. The next variable revealed from the data is a toll aversion bias, represent-
ing a psychological perception over and above time-cost trade-offs. The toll aversion bias
is equivalent to 15-20 minutes of travel time even in areas with a long history of toll roads.
The final term in the complete equation represents unobserved heterogeneity. This variable
is significant because it represents what may be called “trip pressure” or other situational
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factors in which there is a penalty for lateness (e.g., trips to the airport or to pick up children).
People making such trips are often willing to pay a toll rate higher than demographic or trip
purpose characteristics would indicate.

This research reveals a number of policy implications. Drivers place a value on travel time
across a wide range from $5 to over $50 per hour and approaching $100 per hour when
trip pressure is high. Therefore, toll levels have to be significant to influence congestion.
Travelers’ responses to congestion and pricing are also dependent on the options avail-
able. Driver response to congestion and pricing usually escalates from changing a route
or departure time, to switching to transit if available, to rescheduling trips, and finally
moving or changing jobs. Providing travel options is an important complement to aroad
pricing strategy that is aimed at reducing congestion. Finally, improvements to travel
time reliability are as important as improvements to average travel time. This implies that
operational improvements and information provided to travelers may be as valuable as
increases in speed.

The report contains extensive documentation on the estimation of these models and the
policy implications. It also contains insights on the value of travel time reliability and the
use of reliability in travel demand and simulation models.
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Executive Summary

Organization

Project SHRP 2 C04, Improving Our Understanding of How Highway Congestion and Pric-
ing Affect Travel Demand, reviewed and advanced the state of the practice in modeling
the effects of highway congestion and highway pricing on travelers’ decisions, including
choices of facility, route, mode, and time of day (TOD). This Executive Summary is intended
for those who do not have extensive experience in travel demand modeling, but do wish to
learn about and apply the results of the modeling research. The Executive Summary sum-
marizes the objectives, data, methods, and key findings of the research. Each findingis accom-
panied by a discussion of the behavioral modeling issues, analysis results, and implications
for transportation policy.

Reader Navigation

The C04 research aimed at breakthrough advances in travel demand modeling, and simula-
tion was necessarily conducted within a highly specialized conceptual, mathematical, and
technical context. Many important aspects of the work can only fully and meaningfully be
described with theoretical constructs and important technical details that are difficult to
comprehend by most general readers and even many model practitioners. The project team
addressed this dilemma by maintaining continuity in the discussion, which can include both
the more accessible content and the highly technical content, and offering navigation guides
to the reader. Each section of the report typically begins with a discussion aimed at all read-
ers; highly technical details are placed in Appendix A or are flagged in Chapter 6 with the
header Related Technical Detail.

Technical Report

The Technical Report is intended for practitioners who perform or direct modeling of highway
congestion and pricing policies and for planners and decision makers who wish to gain a deeper
technical appreciation and understanding of particular issues. The discussion is organized
around specific modeling questions and hypotheses that were tested, rather than around specific
data sets and choice models.

Chapter 1 describes the research objectives and methodology. Chapter 2 describes the
review and selection of data sources for tests of the travel demand models. The main research
results described in Chapter 3 are organized by model types and features, and the model com-
ponents are compared back-to-back. Chapter 4 covers the network simulation procedures
for congestion and pricing studies, and Chapter 5 describes incorporation of the results into
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practice. Conclusions, main findings, and recommendations for future research are summa-
rized in Chapter 6.

Technical Appendix
and Supplemental Material

Appendix A comprises all technical details related to the specification and estimation of C04
models. An unabridged, unedited version of Chapter 3 is available online at: www.trb.org/Main/
Blurbs/168141.aspx. Appendix A provides the full statistical results for the key models estimated
and discussed in Chapter 3. It is organized according to the types of models estimated and the
data sets used. This appendix is intended for those with experience in estimating discrete choice
models and will be useful to those who wish to estimate choice models on their own data sets. Full
model specifications are included in tabular form, and models are numbered in a logical way cor-
responding to the discussion in Chapter 3.

Appendix A also consists of three short technical memoranda that document and detail the
processing and development of data sets and network simulation formulations, algorithms, and
calibration.

Summary of Objectives
and Methodological Principles

Primary Objectives and Focus of Research

The C04 project was designed to (1) synthesize research findings from the past 30 years on travelers’
responses to changes in both traffic congestion and the price of travel, (2) select the most important
and well-founded behavioral hypotheses, (3) test those hypotheses statistically on the most suitable
data sets available in the United States, and (4) identify ways in which the developed functions
could be incorporated in operational models of travel demand and network simulations. The scope
for the project and the range and quantity of statistical analysis performed were extensive. This
summary report is a distillation of the issues studied and the most important findings.

The focus of the research was to identify the most important contextual influences on indi-
vidual behavioral sensitivity to highway congestion and pricing and to provide guidance on the
relative magnitudes of those influences. In practice, behavioral sensitivities are often expressed
as elasticity—the percentage change in a behavioral outcome divided by the percentage change
in travel time or cost. For example, the elasticity of vehicle miles traveled (VMT) in response to
gasoline price has sometimes been measured at —0.2, meaning that a 10% increase in fuel price
will lead to a 2% decrease in VMT. Although it is tempting to think that behavioral responses can
be predicted by using such a simple measure, the reality is much more complex. For example, the
elasticity of VMT with respect to price is also influenced by the income level of the traveler, the
presence or absence of good transit alternatives, and opportunities such as buying a more efficient
vehicle or finding a job closer to home.

The following sections summarize the methodological principles of the research.

Highway Utility (Generalized Cost) Formulation

The most common approach to dealing with context specificity is to use disaggregate discrete
choice models to predict the choices that a given type of traveler will make for a given type
of trip under specific circumstances. A discrete choice model assumes that when all impor-
tant aspects of a choice are weighed, each choice alternative will have a resulting utility, or
attractiveness, for each specific traveler. The probability that the traveler will choose a specific
alternative is a function of that alternative’s utility relative to the utility of all other available
alternatives.

Copyright National Academy of Sciences. All rights reserved.
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A typical formulation of the utility (U) of a highway alternative can be written as a linear func-
tion of trip time and cost (including all forms of pricing) in the following way:

U=A+axTime+bxCost+¢ (ES.1)

where
A = alternative-specific constant;
a = auto time coefficient;
b = auto cost coefficient; and
€ = term that captures the residual effects of all variables that are not explicitly represented.

Note that A, a, b, and € may be either single terms or functions of other variables (e.g., income
or trip purpose). In certain simple choice contexts like route choice, in which all alternatives are
qualitatively similar, the alternative-specific constants can all be assumed to be equal to zero and
dropped from the equation. However, in more general choice contexts that involve different modes
of travel or different TOD periods, it is essential to account for qualitative differences between
alternatives. In these choice contexts, A may include additional explanatory variables beyond
travel time and cost.

Because utility has no physical dimensions, the coefficients are generally interpreted as relative to
each other, as ratios. For example, if the estimated coefficient for auto travel time is —0.02/minute,
and the estimated coefficient for auto cost is —0.10/$1, then the ratio of the two coefficients (a/b) is
equal to $0.20/minute, or $12/hour. This particular ratio (here designated as value of time [VOT])
can be interpreted as the additional price that a traveler would be willing to pay for a marginal
decrease in travel time (or to avoid a marginal increase in travel time).

The willingness to pay for reduced travel time varies substantially depending on the character-
istics of the traveler and the context of his or her particular trip. Typical U.S. modeling analyses
have only accounted for a limited amount of this variation, usually segmenting by trip purpose
and sometimes by income segments.

Key Behavioral Hypotheses

Most of the tested hypotheses were related to how travel time and cost enter the highway utility
formulation. The simplistic linear form of Equation ES.1 was questioned in many respects. Its
primary drawbacks relate to the unrealistic assumption of a constant VOT.

Previous research identifies three major aspects of highway driving time that influence behav-
ior and are perceived as important components of highway level of service (LOS): quantity
(duration of time in the vehicle); quality (amount of stress or pleasure caused by the particular
driving conditions); and reliability (level of uncertainty with respect to travel time and congestion
levels). Each of these three travel time aspects and travel cost are likely to influence travel choices
differently, although the corresponding effects are often intertwined.

Travel Time Quantity

The duration of travel time influences travelers’ schedules and the alternative uses of the time they
spend traveling. People with busy schedules are usually more likely to seek an alternative that will
gain them a shorter-duration trip. For frequent trips {e.g., commuting), people may be more aware
of the time duration difference between different travel alternatives and also more able to change
their activity schedules to make optimal use of the time saved. Also, the longer is the block of time
saved by choosing a specific travel option, the more likely it is that a traveler will perceive the time
saved. The project team hypothesized that the utility of travel time duration is likely to vary accord-
ing to the time constraints and activity schedule of the traveler and the frequency, TOD, and dis-
tance of a specific trip.
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In practice, engineers often do not have accurate data on travelers’ time constraints or trip
frequency, particularly for forecasts. Trip purpose serves as a proxy, as regular trips to work or
school tend to be the most frequent trips, and are often made by those with the busiest schedules.

Travel Time Quality

Many drivers find driving in stop-and-go traffic more stressful than driving in free-flow condi-
tions and would be willing to pay more to avoid time spent driving in heavy traffic. For example,
many drivers will drive a longer distance to avoid congestion bottlenecks; they may spend the
same amount of time or more in traveling, but in less stressful conditions. These differences in
congestion levels tend to be related to differences in travel time reliability (discussed below), but
those reliability effects are greater than the effects referred to here, which relate only to the physi-
cal and mental stress of time spent in the vehicle, and which would exist even if the duration of
travel time was completely predictable.

Although the stress caused by driving in different conditions may vary from driver to
driver, the analyst can expect to find some systematic effects. In general, people place a higher
value on time savings that arise from reductions in congestion levels than on time savings
from other types of system changes, such as the introduction of shorter-distance routes or
closer destinations. This further implies that time savings will be valued more for specific
facilities and times of day when congestion levels are the highest. People often report that
driving becomes more stressful as the duration of the commute trip increases beyond 30 or
40 minutes. Thus, one might expect the value of time savings to increase with trip distance
or duration, but not in a linear fashion. A possible explanation of the trip-length effects lies
in the structure of the entire daily activity pattern rather than in the commute trip itself.
When commuting time grows beyond 2.5-3 hours per day and is combined with 8.5-9 hours
at work, the total work—commute time makes it difficult to incorporate other activities of a
significant duration.

Travel Time Reliability

Even when average travel times for two highway alternatives are the same, drivers will generally
prefer the more reliable alternative (least day-to-day variability in travel time) or the lower risk
that the travel time will be significantly longer than average. Qualitative and quantitative research
has indicated at least three following reasons for this preference:

1. Negative Consequences of Arriving Late at One’s Destination. These can include missing an
appointment, missing a flight, or losing pay for work time. This consideration gave rise to the
schedule delay concept in measuring travel time reliability, which is discussed in the Technical
Report.

2. Need for Buffer Time to Avoid Arriving Late. Travelers concerned about a late arrival must
begin their trip earlier than they would if the travel time were more reliable. This behavior will
avoid most instances of arriving late, but at the expense of departing earlier and sometimes
arriving too early. This consideration gave rise to a concept in measuring travel time reliability
that operates with estimates of buffer time based on the travel time distribution shape.

3. Discomfort Related to the Uncertainty of How Long the Trip Will Take on any Given Day.
This approach operates with the simplest quantitative measures (e.g., standard deviation)
of travel time variability and probably has the best chance of being incorporated in opera-
tional models.

Quantitative research into VOT variability and value of reliability (VOR) has lagged

because of the lack of data on the day-to-day travel time variability that drivers face for par-
ticular trips. Measuring variability requires an estimate of the travel time distribution, which
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can be translated into measures such as standard deviation or buffer time represented by the
80th or 90th percentile of travel time versus the median. Estimates of the distribution for an
entire trip distance from origin to destination (O-D) are also needed. However, because the
correlation between travel times on different links in a network is a complex function of the
network configuration and structure of the traffic flows, the distribution for an O-D time is
not simply the sum of the distributions across highway links. As a result, O-D-level estimates
are quite rare, unless one has extensive global positioning system (GPS)-based trace data over
time, or some other means of estimating O-D variability (such as one specifically applied in
the current study). Most previous quantitative research into VOR has been based solely on
stated preference (SP) data, particularly in Europe. This project makes one of the most thor-
ough efforts to date to overcome these data limitations and obtain estimates using revealed
preference (RP) data from different regions of the United States.

Travel Cost

Various auto-related costs can influence the utility of a particular trip alternative (in terms of route,
departure time, carpooling, and so forth). Although costs such as vehicle maintenance and insur-
ance can vary with the mileage driven, the travel decisions made for a given trip are more strongly
influenced by the direct costs of parking, tolls, and fuel. This research focuses on toll costs because
they are most important in terms of future road-pricing policy and because they tend to provide
the clearest and most statistically advantageous contexts for measuring the importance of price in
choosing between highway travel options.

The sensitivity of travel behavior to a specific type of travel cost depends primarily on
(1) how much of the cost a traveler actually has to pay (e.g., cotravelers may share the cost of
fuel or tolls) and (2) how affordable that cost is for the particular traveler. The team hypoth-
esized that the most important contextual differences determining the sensitivity of travel
behavior to price are related to income, vehicle occupancy, and travel purpose. This behavioral
mechanism should be considered in the regional network context. In particular, the presence
of a reasonable transit alternative plays a major role in determining the final outcome of con-
gestion and pricing.

Data and Methods to Test
Behavioral Hypotheses

Only a few of the more than 100 surveys identified were adopted. These were chosen for the
probability that they could support various travel time reliability measures, as well as toll and
nontoll routes for the same trip. The team relied on the three types of travel survey data
described below.

Revealed Preference Data

RP data are observed data on actual choices made by travelers. Although RP data are always prefer-
able, the existing RP data sets have many limitations. RP data are collected from travel diaries in
which survey respondents report all of the travel and activities they undertake in the course of a
representative weekday. Because the respondents typically do not report either all of the available
{but nonchosen) trip alternatives, or all of the travel times and costs related to the chosen and
nonchosen alternatives, those supply-side LOS measures must be inferred from representations of
the highway and transit networks. This task can be expensive and time-consuming. Only those RP
data sets that can be supported by a well-calibrated regional travel demand model with network
simulations implemented for multiple periods of a day are usable. The RP-type Household Surveys
in New York City and Seattle, Washington, were adopted for many statistical tests because they
could be supported by the necessary LOS variables.
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Stated Preference Data

SP data are responses by survey respondents to questions about hypothetical travel situations.
These data are collected in SP choice experiments that are customized around the context of an
actual reported trip that a respondent has recently made. The SP approach can be used to study the
demand for an alternative that does not actually exist, such as a new tolled highway facility. The
choice set of available travel alternatives and the related times and costs are explicitly specified for
respondents, which avoids the difficulty and expense of inferring those supply variables after the
fact. The obvious disadvantage of SP data is that the choices are hypothetical, so there is less confi-
dence that the analysis results will reflect true behavioral relationships. This concern is perhaps
strongest in the case of complex variables such as travel time variability, which are difficult to por-
tray clearly to SP respondents. In the current project, SP data were a complementary source that
helped explore situations that were not observed in RP surveys.

Experimental Revealed Preference Data

The approach of experimental revealed preference data merges the best characteristics of RP and
SP approaches by measuring actual choices from experimental contexts created on actual travel
networks. An example is a system of tolls introduced temporarily in a road network and charged
via electronic tolling, but only to specific drivers who are participating in the experiment. Experi-
mental RP data from the recent Traffic Choices Study in Seattle were used in the current research.

Data Analysis Methods and Key Data Sets

After a careful assessment of RP and SP data sets from across the United States, the team selected
a handful of data sets that would best support the planned range of analyses (Table ES.1). The
New York and Seattle metropolitan regions were selected as the primary regions for RP data
analysis because the Household Travel Survey data sets from these areas, together with associ-
ated highway and transit network supply data, could support detailed disaggregate model
estimation. In addition, the Puget Sound Regional Council had carried out an innovative
mileage-based tolling experiment that provided a unique source of RP data that comple-
mented the other Seattle region RP and SP data sets. SP data sets from San Francisco and
Los Angeles, California, were also analyzed.

Table ES.1. Data Sets Used for Analysis

Experimental
Geographic Area Planning Agency RP Data SP Data RP Data
New York metropolitan | New York Metropol- | 1997 Household
region itan Transporta- Travel Survey
tion Council (1-day diary)
Seattle metropolitan Puget Sound 2006 Household | 2006 highway toll | 2006 Travel
region Regional Council Travel Survey SP experiment Choices tolling
(2-day diary) (follow-up with experiment
2006 survey (GPS-based
respondents) tolling
simulation)
San Francisco County | San Francisco 2007 downtown
County Transpor- area pricing SP
tation Authority experiment
Los Angeles County Los Angeles Metro- 2008 managed
politan Transit toll-lane SP
Authority experiment
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Table ES.2. Types of Choice Models Supported by the Data Sets

Toll versus Departure Mode and Other
Nontoli Time Occupancy Choice
Data Set Route Choice Choice Choice Dimensions
New York region 1997 RP household survey X X X X
Seattle region 2006 RP household survey X X X
Seattle region 2006 Traffic Choices pricing X X
experiment
Seattle 2006 SP toll experiment X X
San Francisco 2007 SP area pricing X X
experiment
Los Angeles 2008 SP managed-lane X X X
experiment

Table ES.2 summarizes the aspects of choice represented in each of the primary data sets. The
New York regional household travel survey RP data set supports the widest range of modeling.
Because this region has tolled bridges and tunnels and has collected data on whether those tolls
were paid on the respondents’ actual trips, the data can be used to model the choice between
tolled and free routes. The data also support models of departure time choice (analyzing the
times of day that respondents chose to make their trips as a function of congestion levels) and
mode choice (the decision to drive alone, carpool, or use bus or rail as a function of the travel
times and costs of the different modes). New York, a transit-rich area with an extreme level of
congestion and well-established toll facilities, provides a variety of data for exploring trade-offs
between travelers’ travel time and costs.

Because travel diary data sets provide a complete picture of a representative day’s travel, they
can be used to model other dimensions of travel choice, such as number of trips made for dif-
ferent purposes, as well as longer-term decisions, such as the number of automobiles to own.

The Seattle region 2006 household RP survey data are comparable to those from the New York
region, with the exception that the Seattle region had few tolled facilities at that time. Thus, the
Seattle data will not support models of toll versus nontoll route choice, although they can be used
to model the influence of other travel costs such as fuel and transit fares on mode choice. In con-
trast, the Seattle Traffic Choices experimental RP data offered tolls that varied by distance, facility
type, and TOD, so these data are suitable for modeling route and departure time choices. The GPS-
based data collection method did not provide information on vehicle occupancy or the use of non-
auto modes, so its data are not useful for modeling mode or auto occupancy choice or other choice
dimensions.

Each of the analyzed SP data sets focused on specific choice dimensions with respect to tolls.
All of them offered respondents toll levels that varied by TOD, so the data sets are useful for mod-
eling the effects of pricing (and congestion) on departure time. Some also offered the options of
free alternative routes or competing transit alternatives, so those data sets can be used for route
choice or mode choice analysis, respectively. There were at least two RP data sets and two SP data
sets to model each of the main travel choice dimensions.

In order to focus on the national goals established for SHRP 2 and because of the necessity
of managing the data sets and supporting them by the regional travel models and network simu-
lations available to the project team, data from other countries were not considered. The team
believes most of the results can be extended (at least qualitatively or conceptually) to areas outside
the United States. But because regional conditions play a significant role in shaping travel behav-
ior, a direct transfer of model structures and coefficient values to areas outside the United States
is not recommended.
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Analysis Approach for improved
Demand Modeling

The team tested the same types of variables and functional specifications of the generalized cost
on multiple data sets and choice contexts and looked for consistencies that suggested the most
reliable practices and productive paths for modeling the effects of highway congestion and pric-
ing. This systematic approach involved the following steps:

¢ The first models used the most basic specifications for each data set and each choice dimension
(e.g., route or mode choice) separately, using only simple time and cost variables included in
Equation ES.1;

» Additional variables (e.g., segmentation variables for income and car occupancy) were then
systematically added to the models;

» Model complexity was gradually increased when possible to simultaneously model different travel
decisions using nested hierarchical choice structures, such as a joint model of departure time
choice and mode choice; and

¢ The probabilistic distribution (spread) of the key travel time coefficients was estimated using
advanced mixed logit specifications.

This stepwise analysis approach across several data sets revealed the stability and generality
of the modeling results and allowed a recommendation for a generalized cost specification.

The team recommends using a highway utility function of the general form (Equation
ES.2), which is an extension of the simplified form (Equation ES.1):

U=A+a xTimex(1+a,xD+a,x D*)+bx[Cost/(I' xO")]+¢xSTD/D (ES.2)

where
A = alternative-specific bias constant for tolled facilities;
a, = basic travel time coefficient (ideally estimated as a random coefficient to capture
unobserved user heterogeneity);
Time = average travel time;
a,, a5 = coefficients reflecting the impact of travel distance on the perception of travel time;
D =travel distance;
Cost = monetary cost (e.g., tolls, parking, and fuel);
I = (household) income of the traveler;
O = vehicle occupancy;
& f = coefficients reflecting effect of income and occupancy on the perception of cost;
STD = day-to-day standard deviation of the travel time; and
¢ = coefficients reflecting the impact of travel time (un)reliability.

Equation ES.2 includes travel cost explicitly scaled by income and vehicle occupancy; travel
time reliability (variability) is included separately from the typical, or median, travel time. The
team found that the standard deviation of travel time divided by distance gave the strongest and
most consistent results for the reliability effect. Conceptually, this variable represents the day-
to-day variability in highway travel speed (time divided by distance is the inverse of speed).

The distance-based term by which travel time is multiplied expresses an important distance
effect on travel time perception and VOT. This term represents a polynomial function of distance
that scales travel time in the following way:

Timex(1+a2 X D+a;s XDZ) (ES3)

For travel segments with a short average distance, the distance-related effects are insignificant,
and the entire multiplier can be dropped. For longer segments, such as commuting to work in
large metropolitan areas, the distance effects are significant. VOT can grow or decline with dis-
tance depending on the sign and magnitude of coefficients a,, as.
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The suggested form for accounting for travelers’ perceptions of travel costs corresponds to the
monetary cost scaled by power functions of both income and vehicle occupancy:

Cost/(I¢ xOF) (ES.4)

Coefficients g, flie in the unit interval. If the coefficient is close to zero, the corresponding scaling
effect becomes insignificant and can be dropped. If the coefficient is close to 1.0, the scaling effect
reaches the maximum. The most statistically significant values were found by exploring the
entire range of possible values.

The recommended and most statistically significant main measure of travel time reliability is
the day-to-day standard deviation of travel time by auto, divided by distance:

STD/D (ES.5)

This reliability measure is especially practical for RP-based models because it obviates one of the
most problematic features of most RP data sets: correlation between travel time, travel cost, and
practically any travel reliability measure, including standard deviation or buffer time. This mea-
sure has a plausible behavioral interpretation: Travelers may perceive travel time variability as a
relative (qualitative) measure rather than an absolute (quantitative) measure. This behavioral
assumption is appealing in the context of the entire highway utility (Equation ES.2), in which
travel time and cost are included in an absolute fashion; thus the reliability term plays a comple-
mentary role and explains what has not yet been explained by the time and cost terms.
VOT can be calculated as

VOT=%><(1+a2><D+a3><D2)><(IE><Of) (ES.6)

In a general case, VOT is a function of travel distance, income, and car occupancy for each travel seg-

ment. If the model is explicitly segmented by these variables, then the formula for VOT can be simpli-

fied and made specific to each segment by differentiation of the basic time and cost coefficients.
VOR can be calculated as follows:

(ES.7)

exOf
VOR:%xM

D

Like VOT, VOR is a function of travel distance, income, and car occupancy for each travel segment
unless a more detailed explicit segmentation is applied. VOR is inversely proportional to distance
(i.e., the longer the distance, the greater the magnitude of the reliability measure}, although a
longer distance tends to dampen travel time variation. The portion of travel time variability that
is proportional to the average travel time is accounted for in the loaded travel time coefficient
a,. Thus, only the residual variation of travel time expressed as standard deviation per unit
distance is accounted for in the reliability term.

Finally, the reliability ratio (RR) can be calculated as a measure of the relative importance of
reduction of (un)reliability versus average travel time savings:

VOR _ ¢ L (ES.8)

=VOT_(11 (1+L12XD+{13XD2)XD

Logically, the reliability ratio is a function of travel distance rather than a fixed value. The reli-
ability ratio usually declines with distance, a fact that cannot be taken out of the functional form
(Equation ES.2), in which the terms for (loaded) travel time and travel time reliability comple-
ment each other. .

This form of highway utility (Equation ES.2), with its choices for route type, mode, car occu-
pancy, and TOD, can be incorporated in operational travel demand models in the near future.

Copyright National Academy of Sciences. All rights reserved.



Improving Our Understanding of How Highway Congestion and Pricing Affect Travel Demand
10

Through these primary choice dimensions, the impacts of congestion and pricing can be fur-
ther propagated through the model system chain to affect destination choice, trip frequency,
and other choice dimensions.

impacts of Congestion and Pricing on Travel
Demand: Behavioral Insights and Implications
for Policy and Modeling

Key study findings are related to the estimated values of the parameters in Equation ES.2. These
findings are presented as a series of 11 key behavioral insights, along with the implications of
these insights for road pricing congestion management and improved travel modeling;

e Variation in VOT across highway users;

¢ Income and willingness to pay;

» Auto occupancy or group travel and willingness to pay;
 Constraints on TOD shifting (carpools and single-occupant vehicles);
¢ Importance of VOR and its relationship to VOT;

» Effect of travel distance on VOT and VOR;

» Evidence of negative toll bias;

¢ Hierarchy of likely responses to change in tolls and congestion;
* Summary of user segmentation factors;

» Avoiding simplistic approaches to forecasting; and

e Data limitations and GPS-based data collection methods.

Variation in Value of Time Across Highway Users
Key Finding

VOT varies widely, from $5 to $50/hour across income groups, vehicle occupancies, and travel
purposes. There is significant situational variation (unobserved heterogeneity), with some people
willing to pay almost nothing to save time, and with others willing to pay more than $100/hour.

Implications for Policy

The wide distribution of willingness to pay confirms that pricing can effectively serve the impor-
tant function of market discrimination and demand management. Because most travelers have a
relatively low willingness to pay, any price that affects all travelers, such as a general toll for all lanes
of a highway, may influence demand at fairly modest levels. In contrast, prices for high-occupancy
toll (HOT) and express lanes can be set at fairly high levels and adjusted to attract a relatively small
percentage of travelers with the highest willingness to pay. Pricing policies should be applied after
a careful analysis of possible negative implications for low-income users.

Implications for Modeling

Most models used for travel demand forecasting have assumed a single VOT. Only occasionally
have different cost coefficients been used for different income groups and vehicle occupancy levels.
Differentiation of VOT is even less typical in network simulation procedures. These practices
result in significant aggregation biases that affect the accuracy of traffic and revenue forecasts.
Whenever possible, random coefficients should be used to estimate the distribution of VOT across
the population. For general use, newer activity-based forecasting models that use a microsimula-
tion approach can simulate a different VOT for each person and trip, providing the most
disaggregate treatment of VOT, and thus avoiding one important source of possible errors and
biases in the forecasts.
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Income and Willingness to Pay
Key Finding

Household and personal income has a strong relationship with VOT and willingness to pay, but the
relationship appears to be less then linear. To account for the income effect, cost variables in travel
models (including tolls) should be divided by household income, raised to a power in the range 0.6
to 0.8 depending on the trip purpose (e.g., for a power of 0.7, doubling income increases VOT by
62%; halving income decreases VOT by 38%).

Implications for Policy

The income effect is strong, so that many of the benefits of pricing are purchased by those who can
most afford them, and equity considerations cannot be discounted. Lower-income travelers also
derive benefits in the form of increased options, as well as improvements in traffic conditions if
total capacity can be increased through priced facilities. The parallel effect of car occupancy miti-
gates the income effect. Low-income commuters have more opportunities to carpool and share
commuting costs than do high-income commuters. High-occupancy vehicle (HOV) and HOT
lanes, as well as transit, represent viable alternatives for low-income travelers.

Implications for Modeling

Forecasting models typically use income either in a simplified linear form to scale travel costs or as
a segmentation variable, with different cost coefficients in different income ranges. Neither approach
seems entirely appropriate. The assumption of linearity with income seems too strong, particularly
in higher income ranges, and the piecewise linear approach often results in strong nonlinearities or
discontinuities in the effect of income that do not have a strong statistical or behavioral basis. The
recommended approach is empirically justified across a wide body of evidence and provides a
smooth response surface for forecasting.

Auto Occupancy or Group Travel and Willingness to Pay
Key Finding

Auto occupancy has a strong estimated relationship with VOT and willingness to pay. The relation-
ship appears to be slightly less than linear. To account for occupancy effects, cost and toll variables
in travel models should be divided by occupancy raised to a power in the range 0.7 to 0.8.

Implications for Policy

Because a group of vehicle occupants is generally willing to pay more than a solo driver, a tolled
facility is likely to attract a higher percentage of multioccupant vehicles than will a free facility,
even if no special carpool discount is offered; in effect, a carpool discount is being offered to a group
that tends to value it the least. However, ridesharing increases system capacity, and the conversion
of HOV lanes to HOT lanes may potentially discourage carpooling among individuals with higher
VOT by offering solo drivers the same travel time advantage without the added inconvenience of
ridesharing. Thus, free or discounted toll lanes for carpools will encourage carpoolers, even if it
does not attract much additional ridesharing.

In general, low-income commuters have a higher probability of forming a carpool than do
high-income commuters. Low-income workers normally have a fixed work schedule, which
simplifies carpooling logistics, and they tend to live in dense residential clusters where the pro-
cess of collecting and distributing passengers requires minimal extra time. In addition, low-
income jobs tend to form clusters of multiple jobs. This factor may vary with the structure of
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the metropolitan area, however, as large clusters of high-income jobs may be present in the
central business district (CBD).

The higher opportunity for carpooling among low-income workers mitigates the equity con-
cerns regarding pricing, because costs can be shared within the carpool. Faced with significant tolls,
high-income workers can only switch to transit, but low-income workers can use transit or HOV
lanes. This consideration is frequently missed in policy analysis of pricing projects, which may
result in exaggerated equity concerns.

Implications for Modeling

Dividing travel cost by vehicle occupancy is a fairly standard practice in applied modeling. The
team’s main recommendation is to divide costs by a function of occupancy that is somewhat less
than linear. Income-specific components in the car occupancy choice are needed to reflect differ-
ential opportunities to carpool by income. Simplified approaches based on average occupancy
coefficients tend to mask these important effects and portray pricing projects in an extreme way
with respect to different income groups.

Constraints on Time-of-Day Shifting:
Carpools and Single-Occupant Vehicles

Key Finding

Although commute carpools generally have a higher VOT, they also tend to have tighter schedul-
ing constraints and tend to be less flexible in their capacity to shift departure time away from the
peak period and hour.

The team consistently found that ridesharing commuters are more likely to travel in the heart
of the peak periods than those who drive alone. Carpool commuters must coordinate their com-
mute schedules with cotravelers, so it is less likely that they can adjust their departure times
earlier or later to avoid peak congestion or pricing.

Implications for Policy

Because carpooling commuters generally have little opportunity to retime their trips to avoid
peak congestion times, TOD pricing and other peak-spreading policies will tend to be less suc-
cessful in influencing their behavior. To avoid inadvertently discouraging ridesharing, policies
should be designed to offer some level of advantage of travel time or price (or both) for HOVs.
Congestion pricing policies could be more effective if they were accompanied by policies encour-
aging employers in the CBD (or other relevant congestion pricing zones) to shift working hours
and introduce flexible or compressed work weeks.

Implications for Modeling

Modeling studies intended to predict peak spreading behavior and response to TOD pricing
should include different sensitivities for different car-occupancy levels. In general, the propensity
to switch from the peak hour to a different hour is inversely proportional to vehicle occupancy.

Importance of Value of Reliability and Relationship to Value of Time
Key Finding

Travelers tend to value variation in travel time reliability (day-to-day variability) at least as highly
as they value variations in the usual travel time. Various ways of specifying the variability variable
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were tested, but the measure that produced the most consistent results was the standard deviation
of travel time divided by journey distance.

Evaluating the estimation results to impute the reliability ratio (the value of reducing the stan-
dard deviation of travel time by 1 minute divided by the value of reducing the average travel time
by 1 minute, or VOR/VOT for an average trip distance) obtained ratios in the range 0.7 to 1.5 for
various model specifications. SP studies from Europe give typical values in that same range for auto
travel, with higher ranges up to 2.5 for rail and transit travel. The SP results, however, indicate that
the estimates may vary depending on how the reliability concept is presented to respondents. Thus,
it is crucial to obtain new estimates based on actual choices at the trip level.

Implications for Policy

Highway investments that can improve travel time reliability will tend to be just as beneficial for
travelers as investments to reduce typical travel times. This finding underlines the importance of
addressing key bottleneck points and using transportation systems management and intelligent
transportation systems to monitor and adapt to congestion levels on the network, as well as
systems to avoid nonrecurrent congestion and to recover from it as quickly as possible. For man-
aged lanes and other priced facilities, the “guarantee” of a reliable travel time may be of great
value. This makes variable pricing, and especially that of dynamically priced lanes, one of the more
effective pricing forms that are attractive for the user. These findings also emphasize the impor-
tance of effective accident management, as the consequences of traffic accidents constitute a
significant share of long delays.

Implications for Modeling

Although models can be estimated using measures of day-to-day travel time variables from real and
simulated highway networks, further progress is needed before this method is feasible for most
travel demand forecasts, particularly in terms of widespread collection of data for actual levels of
travel time variability at the O-D level. Certain technical issues must also be resolved on the net-
work simulation side, specifically the incorporation of travel time reliability in route choice and the
generation of O-D travel time distributions instead of average travel times. In the near term, this
method may be most applicable to corridor- and facility-level forecasts. Some simplified implicit
measures of reliability (such as perceived highway time by congestion levels, as explained below)
can be applied with the existing model structures and network simulation procedures.

Effect of Travel Distance on Value of Time and Value of Reliability
Key Finding

Savings on average or typical travel time (VOT') are valued more highly for longer trips than for
short trips, except for a special effect on commuting trips over 40 miles. For VOR, there is a relative
damping effect for longer trips. These findings suggest the efficacy of using higher-priced managed
lanes to address key bottlenecks and lower distance-based tolls on the wider highway network.

Implications for Policy

Traffic bottlenecks tend to increase the variability (unreliability) of all trips that pass through them,
regardless of total trip distance, and the results indicate that all travelers will derive considerable
benefit from making the system more reliable. In contrast, improvements that increase average
speeds or reduce travel distances without substantially improving reliability will not be valued very
highly by those who only use the facility for a short distance. Thus, distance-based tolls are appro-
priate in general, but higher prices that are not based on distance may be more appropriate for
addressing key bottlenecks.
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Implications for Modeling

Because VOT and VOR tend to vary with O-D trip distance, using a constant VOT and VOR for a
wide range of trip lengths is an unreasonable simplification pertinent to most travel models. For
the most accurate predictions, this distinction should be used in demand-forecasting models.

Evidence of Negative Toll Bias
Key Finding

There is a significant negative bias against paying a toll, regardless of the toll amount. This prefer-
ence is generally supported across travel purposes by RP and SP data, as well as by research in
behavioral economics. The estimated toll penalty effect for auto trips is generally equivalent to
as much as 15-20 minutes of travel time.

Implications for Policy

The resistance to paying a toll appears to present an obstacle to the effective widespread introduction
of congestion pricing policies. However, a pricing policy can be effective even if only a limited pro-
portion of drivers pay the toll, and as with VOT, the resistance to paying any toll at all may vary widely
across the population. In that sense, toll bias becomes another dimension of market discrimination,
similar to VOT. Resistance can be overcome by a guaranteed superior LOS in terms of travel time
savings and improvements in reliability. Tolling existing facilities only to collect revenue, but without
a substantial LOS improvement, would generally be perceived negatively by highway users.

Resistance to paying a toll is likely to fade as road pricing becomes more ubiquitous and more
convenient. In the past, drivers had to wait in lines to pay tolls, which in itself could explain a
good deal of resistance to tolls. Now, electronic tolling has made paying the toll both faster and
less noticeable in terms of the amount of money being spent. The more widespread becomes
electronic road pricing, the more it can be expected that antitoll bias will reduce.

Implications for Modeling

Antitoll thresholds are avoided in forecasting on the basis that they are not rational in economic
terms. Empirically, however, they do appear to be real, so they should be included to obtain the most
accurate results, at least for short-term forecasts. This bias will result in a more conservative traffic
and revenue forecast if travel time savings are insignificant, but it also may result in a more optimistic
forecast for pricing projects that improve travel time significantly. For longer-term forecasts, it may
be appropriate to explore scenarios with reduced or eliminated antitoll bias terms.

Hierarchy of Likely Responses to Changes in Tolls and Congestion
Key Finding

Traveler responses to congestion and pricing depend on the range and attractiveness of available
alternatives. The models estimated for this project covered a range of travel choices. When possible,
nested hierarchical models were estimated to determine which types of choices are most sensitive to
travel time and cost changes. The highest propensity for change appears to be between tolled and
nontolled routes. A change of route requires little or no adjustment in travel schedule, and the choice
can even be made en route. Travelers also show a fairly high propensity for making minor shifts in
departure time of an hour or less, since the smaller is the shift, the less rescheduling of activities is
required, and the more familiar the traveler is likely to be with the typical traffic conditions over time.

Somewhat less likely are changes in travel mode or car occupancy, which may include switch-
ing between auto and transit or between driving alone and ridesharing. Mode shifting is most
prevalent for commute trips and other frequent trips for which information about transit ser-
vices or possible carpoolers is most available or worth investigating.
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Less likely responses to changes in congestion or pricing are changes in the choice of destination
locations, the rescheduling of trips to very different times of day, and changes in the frequency of
making trips from home. These types of changes are the least likely for activities that are most
constrained, such as work and school trips or medical appointments. For more flexible types of
trips, these types of shifts may actually be more likely than changing the mode of travel.

In the longer term, people may make greater changes as opportunities arise and life-cycle
transitions occur. These shifts include changing the number or type of vehicles owned (or both)
and the location of home, work, school, and other key travel anchor points relative to one
another. The present project outlines an approach to modeling longer-term responses to conges-
tion and pricing by means of accessibility measures that are derived from the estimated primary
choice of route, mode, and TOD.

Implications for Policy

Decisions influencing traffic congestion and the cost of driving can affect travel behavior, and
the relationships are often complex and can shift over time. This aspect of travel behavior argues
for using advanced demand simulation models to guide policy, rather than relying on mental
models and experience. The most predictable effects tend to be those that require only minor
adjustments, such as choosing to travel at a slightly different TOD. To make pricing policies more
effective in tackling congestion, the presence of competitive alternative modes and destinations
should be carefully considered. Pricing policies are most effective in combination with transit
improvement and smart land use development.

Implications for Modeling

Modeling systems should be able to represent the influences of travel time and cost on all of the types
of decisions listed above, and the models should be integrated so that appropriate relative sensitivi-
ties are reflected at the different hierarchical levels. These relative sensitivities should also allow for
variation in travel segments and travelers. Such modeling requires an activity-based microsimula-
tion model, ideally used in combination with accurate dynamic simulation of traffic congestion.

Summary of User Segmentation Factors
Key Finding

Many potential factors can affect VOT, VOR, or traveler responses to congestion and pricing,
including person, household, land use, and travel characteristics. It will never be possible in regional
travel models designed for long-term forecasting to account for all the details of user characteristics.
However, it is possible to account explicitly for the most important and systematic effects and to
apply reasonable assumptions about the probabilistic distributions of VOT and VOR in order to
account for the residual heterogeneity.

Implications for Policy

Most of the important factors that affect traveler responses to congestion and pricing are
highly differentiated by highway user groups. In calculation of user benefits, the analysis must
be implemented with a user segmentation that at a minimum includes trip purpose (work
and nonwork); income group and car occupancy (three to four categories each); and com-
muting distance and household size (two to three categories each). It is highly desirable to
account for significant unobserved user heterogeneity and situational variability by applying
probabilistic VOT/VOR rather than deterministic VOT/VOR. Simplified methods that oper-
ate with an average VOT/VOR are subject to significant aggregation biases and will not ade-
quately portray a pricing project.
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Implications for Modeling

Segmentation is crucial for policy evaluation, and modeling systems should be segmented accord-
ing to the main effects described above. Traditional four-step demand models and static traffic
assignments, still the most common tools in practice, are of little use because limited segmentation
is one of their major constraints. In addition, it is practically impossible to incorporate distributed
parameters in these aggregate constructs. Activity-based models (ABMs) on the demand side
and dynamic traffic assignment (DTA) on the network simulation side offer the potential for
significantly better platforms for modeling highway congestion and pricing because they are both
based on the concept of individual microsimulation.

Avoiding Simplistic Approaches to Forecasting
Key Finding

Although many key effects and tendencies related to the highway utility function are similar
across data sets and regions in the United States, many additional effects associated with person
types, household composition, transit availability, and land use are specific to each region. There-
fore, any simplified surrogate equations or elasticity calculations need to be interpreted and
applied with caution.

Implications for Policy

Interregional comparisons and analogies and general rules with respect to expected demand elas-
ticity in relation to congestion and pricing must be applied cautiously. In general, they should not
be used for evaluating pricing projects and policies or comparing different pricing alternatives.
Properly portraying congestion and pricing effects, as well as the large magnitude of possible
impacts (positive or negative), fully justifies a serious modeling approach with a corresponding
data collection effort.

Implications for Modeling

The functional forms for the highway utility function developed in the present research should be
applied within a framework of regional travel models in which all needed structural inputs and
market segments can be supported. Such travel models can fully address regional specifics and
take advantage of available data. The best framework is a complete regional travel model system
in which an advanced travel demand model (preferably of the activity-based microsimulation
type) is integrated with an advanced network simulation tool (preferably DTA with micro-
simulation of individual vehicles).

Data Limitations and Global Positioning
System-Based Data Collection Methods

Key Finding

The availability of data sets adequate to support the analyses undertaken in this study was
extremely limited, especially for travel time reliability. This kind of difficulty should decrease,
because the use of GPS and probe vehicles and other distributed wireless technologies to collect
data on actual travel times and speeds is growing rapidly.

Implications for Policy

With more comprehensive and credible data on travel times and speeds, including measures of
travel time reliability, policy makers will have a significantly better basis for advocating new
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projects and policies, including pricing. The entire issue of improving travel time reliability can
finally shift from qualitative analysis to quantitative analysis.

Implications for Modeling

New sources of information are essential for estimation and calibration of travel demand models
and network simulation tools. Crude LOS variables created by static assignment procedures have
always formed one of the weakest components in travel modeling, frequently manifested in illogi-
cal values of model coefficients that must be constrained to ensure reasonable model sensitivities.
All travel demand and network simulation models would benefit from better estimates of O-D
travel times by TOD. Special benefits would be provided to and could be exploited by advanced
models that incorporate travel time reliability measures.

Network Simulation Models to Support
Congestion and Pricing Studies

Salient points of the C04 research with respect to network simulation tools include the following:

Need for Microsimulation. Capturing user responses to pricing and reliability is best accom-
plished through microsimulation of individual traveler decisions in a network platform; a time-
dependent analysis tool is required because the time dimension is essential to evaluating the
impact of congestion pricing and related measures. Microsimulation of individual traveler
choices provides the most general and scalable approach to evaluate the measures of interest in
this study;

Need for More Robust DTA. The current generation of available simulation-based DTA
models only considers fixed, albeit time-varying, O-D trip patterns. Greater use and utility
will result from integrating DTA with an activity-based demand model and incorporating
user attributes, including systematic and random heterogeneity of user preferences;
Improved Algorithms for Regional Scale Modeling. Finding equilibrium time-varying flows has
been based on the relatively inefficient method of successive averages, a method that does not scale
well for application to large metropolitan networks. New implementations of the method of suc-
cessive averages and other algorithms that exploit the vehicle-based approach of simulation-based
DTA have been demonstrated on large actual networks in this research effort;

Traveler Heterogeneity. Incorporating heterogeneity of user preferences is an essential require-
ment for modeling user responses to pricing in both travel demand models and network
simulation tools. New algorithms that exploit nonparametric multicriteria shortest-path pro-
cedures allow VOT to be continuously distributed across users. Efficient implementations of
these algorithms have been demonstrated for large network application as part of this study;
and

Network Reliability Measures. In a network simulation model, (1) route choice must include
the reliability measures in a way consistent with mode and other choices, and (2) network
path—building algorithms must generate O-D measures, along with average travel time and cost,
to feed back to the demand model. Two practical approaches are proposed to estimate variability
measures of travel time in the context of network assignment tools. The first exploits trajectory
information in micro- and mesosimulation tools; the second employs a robust relation estab-
lished between the first and second moments of the travel time per unit distance. These methods
are fully compatible with the adopted functional form of the highway utility and reliability mea-
sures like standard deviation of travel time per unit distance.

The proposed integrated model framework is a demonstration of a trip-based integration of

a well-calibrated mode choice model in practice and a simulation-based dynamic traffic micro-
assignment model. This framework is sufficiently flexible to incorporate other dimensions
(e.g., destination and departure time choices) in addition to the mode choice dimension from the
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demand side, and it can be readily extended to an activity-based integration of demand models and
an activity-based dynamic traffic microassignment model.

Dynamic mode share and toll road usage results of the proposed integrated model are
demonstrated on the large-scale New York metropolitan network. The convergence of
the proposed algorithms is also examined. The proposed model uniquely addresses the needs
of metropolitan agencies for prediction of mode and path choices and the resulting network
flow patterns, and it can evaluate a wide range of road-pricing scenarios on large-scale
networks.

Incorporation of Results in Applied Travel Models

Different model structures offer different options for the inclusion of advanced forms of the
highway utility function. Although certain components can be incorporated in any properly
segmented model, others, such as travel time reliability measures or probabilistically distributed
VOT, impose strict constraints on the model structure. The main related issues of incorporation
of the proposed form of the utility function are addressed in the following sections.

Transferability of Model Structures and Parameters
Between Regions, Choice Contexts, and Studies

The study results have three levels of generalization: (1) understanding of general rules of travel
behavior and identification of major impacts and mechanisms leading to conceptual model
structures, (2) mathematical structures of associated choice models and associated forms of the
highway utility function, and (3) estimated choice models with the obtained values of coefficients
and significance of particular variables.

The first two levels of transferability—model approaches and structures—can be effectively
generalized. Most of the functional forms for highway utility were statistically significant in such
different regions as New York City and Seattle, and there was agreement between major findings
based on RP and SP types of data. However, a direct transfer of model coefficient values from
region to region, or from choice context to choice context, is not recommended. For different
areas, even similar choice contexts such as trip mode choice versus tour mode choice may require
a significant rescaling of parameters. It practice, it also may be difficult to ensure exactly the same
level of model segmentation and variable definition.,

The best way to transfer a model structure from region to region is to reestimate it based on local
data using the model specification in the current study as the prototype. In transferability tests
(e.g., from New York to Seattle), the absolute majority of model coefficients that were significant for
one region were significant for the other region, although the values varied.

A second-best approach is to recalibrate the model on aggregate local data rather than fully
reestimating it in a disaggregate fashion. Recalibration can be done after the model has been
implemented and the results have been compared to the aggregate targets externally established
for each choice dimension. Recalibration and full reestimation differ in that only a subset of
parameters (bias constants that do not interact with any person, household, land use, or LOS
variables) are allowed to change.

Using Study Results in Applied Forecasting Models

An applied forecasting model must meet certain requirements that in turn impose objective limi-
tations on the functional forms of highway utility, specifically, travel time reliability measures.
The research results of this study are grounded in one or more of four applied modeling contexts:

e Aggregate (Four-Step) Demand Models. Although these models offer a limited frame-
work for incorporating congestion and pricing effects, some of the main features of the
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highway utility function can be incorporated by including the suggested generalized cost
components in the mode choice utilities for highway modes. The mode choice model has to
differentiate highway modes by three to four occupancy categories and toll or nontoll route,
which would result in six to eight highway modes. After adequate segmentation by trip pur-
pose, income groups, and TOD, several hundred trip tables may be generated. However, any
additional segmentation by using person, household, or land use characteristics or adding
additional choice models would be impossible.

* ABMs Implemented in a Microsimulation Fashion. These models are characterized by a fully
disaggregate structure and rely on individual microsimulation of households and persons.
They take full advantage of a detailed level of segmentation by household and person charac-
teristics and can include complicated decision-making chains and behavioral mechanisms. The
suggested form of the highway utility can be fully implemented, including route-type, mode,
and TOD choices. Variables such as income and parameters like VOT can be continuously
distributed to account for unobserved heterogeneity (situational variation).

* Static Traffic Assignment. It is probably impossible to incorporate travel time reliability
measures in this framework except by use of simplified proxies. Several simplified approaches
can be implemented with these models that are still used by many metropolitan planning
organizations and departments of transportation. For example, the perceived highway time
concept can be readily incorporated on both the demand and network simulation sides.
Some improvements to the current state of the practice can be achieved with a multiclass
assignment in which vehicle classes are defined by occupancy, route type, and (possibly)
VOT-based groups. This practice, however, may result in more than 20 vehicle classes and
long run times for large regional networks.

e DTA with Microsimulation of Individual Vehicles. These models are characterized by a
fully disaggregate structure and rely on individual microsimulation of vehicles. Similar to
ABMs, they can take full advantage of a detailed level of segmentation by household and
person characteristics linked to each vehicle, and they can also incorporate probabilisti-
cally distributed VOT to account for unobserved user heterogeneity. With the new techni-
cal features described in this study, these models can incorporate the suggested O-D
measures of travel time reliability in route choice, as well as generate reliability skims to
feed back to the demand model.

The major applications framework for the proposed models primarily takes into account the
full regional model framework, although facility- and corridor-level models are also taken into
account. For deep understanding and proper modeling of congestion and pricing impacts, a full
framework, with chosen and nonchosen alternatives, should be available to both users and non-
users, for which full regional travel data set and model are needed. At both the model estimation
stage and the application stage, it is essential to know LOS variables such as travel time, cost, and
reliability for nonchoice routes, modes, TOD periods, and destinations.

The most promising long-term direction for DTA modeling is the integration of an activity-
based demand model with DTA, in which both models are implemented in a fully disaggregate
microsimulation fashion with enhanced typological, temporal, and spatial resolution.

Incorporation of Travel Time Reliability in Operational Models

The incorporation of travel time reliability measures in demand models, and especially in net-
work simulations models, still represents a major challenge, especially if the modeling system is
tobe practical in terms of run time and data support. In general, there are four possible approaches
to quantifying reliability:

* Indirect Measure: This concept is based on statistical evidence that in congestion conditions,
travelers perceive each minute with a certain weight. Perceived highway time is not a direct
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measure of reliability, but it can serve as a proxy for reliability because the perceived weight of
each minute spent in congestion is a consequence of associated unreliability.

e First Direct Measure: Time Variability (Distribution) Measures. This direct approach assumes
that several independent measurements of travel time are known that allow for forming the travel
time distribution and calculation of derived measures, such as buffer time.

» Second Direct Measure: Schedule Delay Cost. According to this concept, the direct impact of
travel time unreliability is measured through cost functions (penalties expressed in monetary
terms) of being late (or early) compared with the planned schedule of the activity. This approach
assumes that the desired schedule is known for each person and activity undertaken in the course
of the modeled period.

o Third Direct Measure: Loss of Activity Participation Utility. This approach assumes that each
activity has a certain temporal utility profile and that individuals plan their schedules to achieve
maximum total utility over the modeled period, taking into account expected travel times. An
extended travel time due to unreliability can be associated with a loss of a participation in the
corresponding activity. Similar to the schedule delay concept, this approach suffers from data
requirements that are difficult to meet in practice.

Current possibilities for incorporating each approach within the specific frameworks of both
demand modeling and network simulation and supporting it with the necessary input data are
summarized in Table ES.3.

Summary of Recommended Model Parameters

A summary of the recommended (default) values for all coefficients applied in the highway utility
function (Equation ES.2) is given in Table ES.4. These parameters are recommended for use in
operational models only if a full disaggregate estimation of regional data cannot be implemented.
In that case, careful aggregate validation and calibration of the entire model system, including route-
type, mode, and TOD choices, will be needed.

Table ES.3. Incorporation of Travel Time Reliability Approaches in Operational Models

Method Demand Model Network Simulation

Straightforward and does not require
structural changes

Perceived highway Straightforward and does not require
time structural changes

Network route choice has to incorporate
reliability measures that are not addi-
tive by links; this requires explicit
route enumeration. O-D reliability
measures need to be generated

Time distribution
(mean variance)

Straightforward and does not require
structural changes

Network route choice has to incorporate
reliability measures that are not addi-
tive by links; this requires explicit route
enumeration. O-D travel time distribu-
tions should be generated either ana-
lytically or through multiple simulations

Preferred arrival time has to be exter-
nally specified for each trip

Schedule delay cost

Loss of participation | Temporal utility profiles have to be Network route choice needs to incorpo-

in activities

specified for each activity; entire-day
schedule consolidation model has to
be applied

rate reliability measures that are not
additive by links; this requires explicit
route enumeration. O-D travel time
distributions have to be generated
either analytically or through multiple
simulations
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Table ES.4. Recommended Coefficient Values

Examples of Population and Travel

Model Coefficients Characteristics Derived Measures
Distance {mi) Cost
Coefficient
Time with
Coefficient Toll Income
Exponent |Household with Bias and
Travel Toll Time Cost SDpermi | Exponent for Car Income Car Di Di i Occupancy| VOT | VOR | Reliability
Purpose Bias {min) Linear | Squared | (cents) {min/mi) | for Income { Occupancy {$/year) |Occupancy {mi} Effect {min) Effects $/h) $/h) Ratio
ToWork and | -0.85 |-0.0425| 0.02024 | -0.000266 | —-1.25 -0.625 0.6 08 30,000 1.0 5.0 —-0.0465 183 -0.0026 10.8 29.% 2.69
Business 30,000 20 5.0 —-0.0465 18.3 -0.0015 18.9 50.7 2.69
30,000 3.0 8.0 —-0.0465 18.3 -0.0011 26.1 70.2 2.69
30,000 1.0 10.0 —-0.0500 17.0 -0.0026 1.6 14.6 1.25
30,000 20 10.0 —0.0500 17.0 -0.0015 20.3 25.4 1.25
30,000 3.0 10.0 -0.0600 17.0 -0.0011 28.0 35.1 125
30,000 1.0 20.0 —0.0552 15.4 ~0.0026 12.9 7.3 0.57
30,000 2.0 20.0 -0.0552 15.4 -0.0015 22.4 12.7 0.57
30,000 3.0 20.0 —0.05852 15.4 -0,0011 31.0 17.5 0.57
60,000 1.0 5.0 —-0.0485 18.3 -0.0017 16.4 44.2 2.69
60,000 20 5.0 —0.0465 18.3 -0.0010 28.6 76.9 2.69
60,000 3.0 5.0 —0.0465 18.3 -0.0007 39.6 106.4 2.69
60,000 1.0 10.0 —0.0500 17.0 -0.0017 17.7 221 1.26
60,000 2.0 10.0 —0.0500 17.0 —-0.0010 30.7 38.4 1.25
60,000 3.0 10.0 ~0.0500 17.0 -0.0007 42.5 53.2 1.25
60,000 1.0 200 —0.0552 16.4 -0.0017 19.5 1.0 0.57
60,000 20 20.0 —0.0852 16.4 -0.0010 33.9 19.2 0.57
60,000 3.0 20.0 -0,0552 154 -0.0007 46.9 26.6 0.57
100,000 1.0 5.0 —0.0465 18.3 -0.0013 2238 80.0 2.69
100,000 2.0 5.0 —0.0465 18.3 -0.0007 38.9 | 1045 2.69
100,000 3.0 5.0 —0.0465 18.3 —-0.0005 53.8 144.5 2.69
100,000 1.0 10.0 —0.0500 17.0 -0.0013 24.0 30.0 1.26
100,000 2.0 10.0 —0.0500 17.0 —-0.0007 4.8 522 1.25
100,000 3.0 10.0 | -0.0500 17.0 ~0.0005 57.8 72.2 1.25
100,000 1.0 20.0 -0.0552 154 -0.0013 26.5 15.0 0.57
100,000 2.0 20.0 —0.0562 15.4 -0.0007 46.1 26.1 0.57
100,000 3.0 20.0 —-0.0552 15.4 -0.0005 63.8 36.1 0.57

(continued on next page)
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Table ES.4. Recommended Coefficient Values (continued)

Examples of Population and Travel

Model Coefficients Characteristics Derived Measures
Distance {mi) Cost
Coefficient
Time with
Coefficient Toll Income
Exponent | Household with Bias and
Travel Toll Time Cost SD per mi Exponent for Car Income Car Di: Di ival Occupancy | VOT VOR | Reliability
Purpose Bias | (min) Linear | Squared | (cents) (min/mi) | for Income | Occupancy | ($/year) |Occupancy {mi) Effect {min) Effects $m) | $m) Ratio
From Work -0.95 | -0.0425 | 0.02024 | -0.000266 | -1.44 ~0.545 0.6 0.8 30,000 1.0 5.0 —0.0465 204 -0.0030 9.4 221 234
;rl::iness 30,000 20 5.0 -0.0465 20.4 -0.0017 16.4 384 2.34
30,000 30 5.0 —-0.0465 204 -0.0012 227 831 2.34
30,000 1.0 10.0 -0.0500 19.0 —0.0030 101 1.0 1.09
30,000 2.0 10.0 -0.0500 19.0 -0.0017 17.6 19.2 1.09
30,000 3.0 10.0 —-0.0500 19.0 -0.0012 243 26.6 1.09
30,000 1.0 20.0 -0.0552 17.2 -0.0030 1.2 55 0.49
30,000 2.0 20.0 —0.0552 17.2 -0.0017 19.4 9.6 0.49
30,000 3.0 20.0 —0.0552 17.2 —0.0012 26.8 13.3 0.49
60,000 1.0 5.0 —0.0465 204 -0.0020 14.3 33.4 2.34
60,000 2.0 5.0 -0.0465 20.4 -0.0011 248 58.2 2.34
60,000 3.0 5.0 -0.0465 20.4 —-0.0008 344 80.5 2.34
60,000 1.0 10.0 —-0.0500 19.0 ~0.0020 16.3 16.7 1.09
60,000 2.0 10.0 -0.0500 19.0 —0.0011 26.7 29.1 1.09
60,000 3.0 100 -0.0500 19.0 —0.0008 36.9 40.3 1.08
60,000 1.0 20.0 —0.0552 17.2 -0.0020 16.9 8.4 0.49
60,000 20 20.0 —0.0552 17.2 -0.0011 29.5 14.6 0.49
60,000 3.0 20.0 -0.0552 17.2 -0.0008 40.8 201 0.49
100,000 1.0 5.0 —-0.0465 204 -0.0014 194 45.4 2.34
100,000 20 5.0 —0.0465 20.4 -0.0008 337 79.1 2.34
100,000 3.0 5.0 —0.04865 204 -0.0006 46.7 | 109.4 2.34
100,000 1.0 100 —0.0500 18.0 -0.0014 20.8 22,7 1.09
100,000 20 100 —0.0500 19.0 -0.0008 36.3 39.5 1.09
100,000 3.0 10.0 —0.0500 19.0 —0.0006 50.1 54,7 1.09
100,000 1.0 200 —0.0552 17.2 —-0.0014 23.0 11.4 0.49
100,000 20 200 —0.0552 17.2 —0.0008 40.0 19.8 0.49
100,000 3.0 200 —0.0552 17.2 -0.0006 85.4 273 0.48

(continued on next page)
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Table ES.4. Recommended Coefficient Values (continued)

Examples of Population and Travel
Model Coefficients Characteristics Derived Measures
Distance (mi) Cost
Coefficient
Time with
Coefticient Toll Income
Exponent |Household with Bias and
Travel Toll Time Cost SD per mi Exponent for Car Income Car Distance | Di: Equival O vOT VOR | Reliability

Purpose Bias (min) Linear | Squared {cents) (min/mi) | for Income | Occupancy {$/year) |Occupancy {mi) Effect {min) Effects $/h) $/h) Ratio
Nonwork -1.2 {-0.0335 0 4] -0.5228 -0.418 0.5 0.7 30,000 1.0 5.0 -0.0335 35.8 ~0.0030 6.7 16.8 2.50
30,000 20 5.0 -0.0335 358 -0.0019 10.8 27.0 2.50
30,000 3.0 5.0 ~0.0335 358 ~0.0014 14.4 35.9 250
30,000 1.0 10.0 -0.0335 35.8 —-0.0030 6.7 8.3 125
30,000 2.0 10.0 -0.0335 358 -0.0019 10.8 138 1.25
30,000 3.0 10.0 -0.0335 358 -0.0014 14.4 17.9 1.26
30,000 1.0 20.0 -0.0335 35.8 —0.0030 6.7 42 0.62
30,000 20 20.0 —0.0335 35.8 -0.0019 10.8 6.7 0.62
30,000 3.0 20.0 -0.0335 35.8 -0.0014 14.4 9.0 0.62
60,000 1.0 5.0 —0.0335 358 —-0.0021 9.4 235 2.50
60,000 2.0 5.0 -0.0335 35.8 -0.0013 16.3 38.2 2.50
60,000 3.0 5.0 —0.0335 358 -0.0010 203 50.7 2.50
60,000 1.0 10.0 -0.0335 35.8 ~0.0021 9.4 11.8 1.26
60,000 2.0 100 -0.0335 358 -0.0013 15.3 19.1 1.25
60,000 3.0 10.0 —-0.0335 35.8 -0.0010 20.3 25.4 1.25
60,000 1.0 20.0 -0.0335 35.8 -0.0021 94 59 0.62
60,000 2.0 20.0 -0.0335 35.8 -0.0013 | 153 95 062
60,000 3.0 20.0 —0.0335 35.8 -0.0010 20.3 12.7 0.62
100,000 1.0 5.0 —0.0335 358 -0.0017 12.2 30.3 2.50
100,000 2.0 5.0 -0.0335 35.8 —-0.0010 | 19.8 | 493 2.50
100,000 3.0 5.0 -0.0335 358 —0.0008 26.2 65.5 2.50
100,000 1.0 10.0 -0.0335 35.8 —0.0017 | 122 | 152 1.25
100,000 2.0 10.0 -0.0335 35.8 ~0.0010 | 198 | 246| 125
100,000 3.0 10,0 -0.0335 358 —0.0008 | 262 | 327 1.25
100,000 1.0 20.0 -0.0335 35.8 -0.0017 | 122 76 0.62
100,000 2.0 200 -0.0335 35.8 00010 | 198 | 123| o062
100,000 3.0 20,0 -0.0335 35.8 —-0.0008 | 262 | 164 0.62

Note: SD = Standard deviation.
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