## SECTION 11: Soils

Kingfish Maine proposes to construct an enclosed recirculating aquaculture system (RAS) facility with multiple buildings, together with adjunct facilities and equipment on a property at 9 Mason Bay Road in Jonesport. Soils onsite are suitable for development as required in chapter 376, 'Soil Type Standard of the Site Location Law'. It is requested that the requirement for a High Intensity Soil Survey be waived. This request is predicated on the developed data set developed for the project by soils investigations as outlined herein.

Kingfish Maine has retained geotechnical engineers and soil scientists to assess soil information for the subject property for the purposes of determining suitability and limitations for the development of the RAS project. These investigations focused on the utilizable portions of the property. In addition, natural resources were identified and characterized, which identified additional soils characteristics in the wetland areas, as noted below.

A NRCS Soil Resource Report was obtained for the project. Soil types are identified therein as sands and sand loams in areas other than the wetland and peatland in the northerly section of the property.

Geotechnical investigations were performed by SW Cole Engineering in 2020. Soil types are mainly sands described in the geotechnical assessments as fluvial soils. This is consistent and associated with coastal geomorphology, and are suitable for construction. In addition, hydric soils are present in the wetlands onsite. These investigations have identified soils which are suitable for construction, and adequate depths of overburden for the project work to be pursued by conventional means.

A number of machine dug and hand dug test pits for wastewater disposal were also performed. A septic design has been completed for the proposed wastewater disposal areas, and those designs and further test pit data are enumerated in Section 17.

Mapping of the investigations performed are appended to this application. Maps are drawn at scales of 1''=100' for explorations and test pits and at other scales.

Appended to this section are the NRCS soil survey, the geotechnical investigation report which includes logs for borings and probes performed onsite, as well as test pit logs from hand dug test pits from the onsite wastewater disposal investigation.



# APPENDIX 11A

NRCS Soil Survey





United States Department of Agriculture

Natural Resources

Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Washington County Area, Maine

**Kingfish Maine** 



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface<br>How Soil Surveys Are Made                    |    |
|---------------------------------------------------------|----|
| Soil Map                                                |    |
| Soil Map                                                | 9  |
| Legend                                                  | 10 |
| Map Unit Legend                                         | 11 |
| Map Unit Descriptions                                   | 11 |
| Washington County Area, Maine                           | 13 |
| BW—Bucksport and Wonsqueak mucks, 0 to 2 percent slopes | 13 |
| CoB—Colton gravelly sandy loam, 3 to 8 percent slopes   | 15 |
| CRC—Colton-Adams complex, 3 to 15 percent slopes        | 16 |
| Kn—Kinsman sand                                         | 19 |
| KW—Kinsman-Wonsqueak association, 0 to 3 percent slopes | 20 |
| SG—Sebago and Moosabec soils                            | 23 |
| W—Water                                                 | 25 |
| References                                              | 26 |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

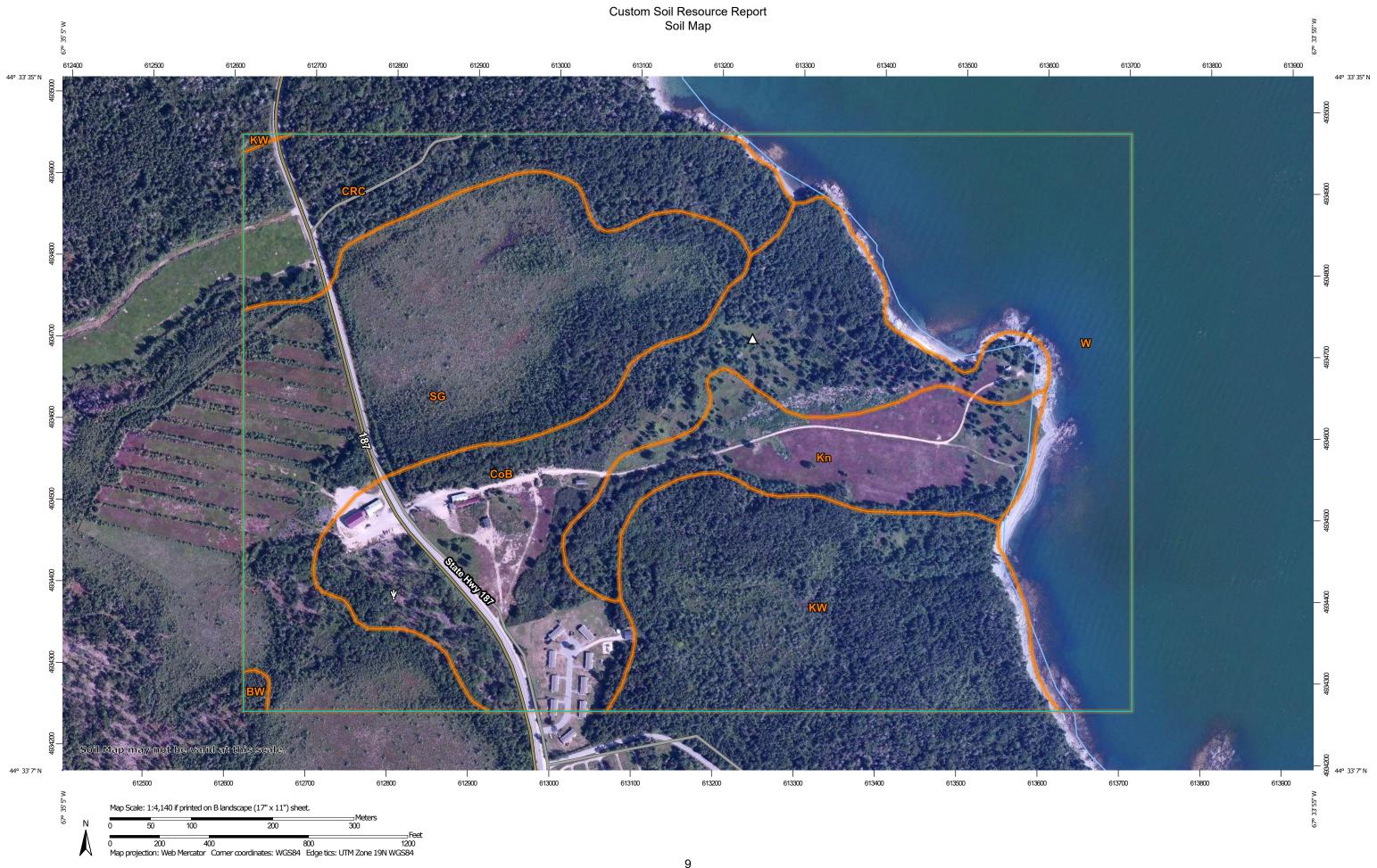
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



|               | MAP LEGEND                                    |                                                                                |                                                                                                                                                                                           | MAP INFORMATION                                                                                                                                                                                                                                           |
|---------------|-----------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | terest (AOI)<br>Area of Interest (AOI)        | W 0                                                                            | Spoil Area<br>Stony Spot                                                                                                                                                                  | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                                                                          |
| Soils         | Soil Map Unit Polygons<br>Soil Map Unit Lines | 00<br>V                                                                        | Very Stony Spot<br>Wet Spot                                                                                                                                                               | Warning: Soil Map may not be valid at this scale.                                                                                                                                                                                                         |
|               | Soil Map Unit Points Point Features           | ۵<br>••                                                                        | Other<br>Special Line Features                                                                                                                                                            | Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of<br>contrasting soils that could have been shown at a more detailed |
| 0<br>2        | ÷                                             |                                                                                | Streams and Canals                                                                                                                                                                        | scale.                                                                                                                                                                                                                                                    |
| ¥<br>♦        | Clay Spot<br>Closed Depression                | Transportation<br>+++ Rails<br>Interstate Highways<br>US Routes<br>Major Roads | Please rely on the bar scale on each map sheet for map measurements.                                                                                                                      |                                                                                                                                                                                                                                                           |
| *             | Gravel Pit<br>Gravelly Spot                   |                                                                                | US Routes<br>Major Roads                                                                                                                                                                  | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                              |
| 0<br>1        | Landfill<br>Lava Flow                         | Backgrour                                                                      | Local Roads                                                                                                                                                                               | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts                                                                                                                               |
| <u>له</u>     | Marsh or swamp<br>Mine or Quarry              | Aerial Photography                                                             | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required. |                                                                                                                                                                                                                                                           |
| 0             | Miscellaneous Water<br>Perennial Water        |                                                                                |                                                                                                                                                                                           | This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.                                                                                                                                                       |
| ~<br>+        | Rock Outcrop<br>Saline Spot                   |                                                                                |                                                                                                                                                                                           | Soil Survey Area: Washington County Area, Maine<br>Survey Area Data: Version 21, Sep 16, 2019                                                                                                                                                             |
| ·<br>··       | Sandy Spot<br>Severely Eroded Spot            |                                                                                |                                                                                                                                                                                           | Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.                                                                                                                                                                           |
| <b>◇</b><br>≫ | Sinkhole<br>Slide or Slip                     |                                                                                |                                                                                                                                                                                           | Date(s) aerial images were photographed: Jul 29, 2010—Aug 21, 2010                                                                                                                                                                                        |
| ø             | Sodic Spot                                    |                                                                                |                                                                                                                                                                                           | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident.               |

| Map Unit Symbol             | Map Unit Name                                              | Acres in AOI | Percent of AOI |  |  |
|-----------------------------|------------------------------------------------------------|--------------|----------------|--|--|
| BW                          | Bucksport and Wonsqueak<br>mucks, 0 to 2 percent slopes    | 0.4          | 0.2%           |  |  |
| СоВ                         | Colton gravelly sandy loam, 3 to 8 percent slopes          | 39.4         | 20.6%          |  |  |
| CRC                         | Colton-Adams complex, 3 to 15 percent slopes               | 18.2         | 9.5%           |  |  |
| Kn                          | Kinsman sand                                               | 16.2         | 8.4%           |  |  |
| КW                          | Kinsman-Wonsqueak<br>association, 0 to 3 percent<br>slopes | 31.6         | 16.5%          |  |  |
| SG                          | Sebago and Moosabec soils                                  | 48.5         | 25.3%          |  |  |
| W                           | Water                                                      | 37.3         | 19.5%          |  |  |
| Totals for Area of Interest |                                                            | 191.5        | 100.0%         |  |  |

# **Map Unit Legend**

# **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not

mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

# Washington County Area, Maine

## BW—Bucksport and Wonsqueak mucks, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: 2ty70 Elevation: 0 to 1,770 feet Mean annual precipitation: 31 to 95 inches Mean annual air temperature: 27 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Not prime farmland

## **Map Unit Composition**

Bucksport and similar soils: 48 percent Wonsqueak and similar soils: 41 percent Minor components: 11 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Bucksport**

## Setting

Landform: Hills, mountains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material and/or woody organic material

## **Typical profile**

*Oa1 - 0 to 12 inches:* muck *Oa2 - 12 to 25 inches:* muck *Oa3 - 25 to 45 inches:* muck *Oa4 - 45 to 65 inches:* muck

## **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: Very high (about 21.7 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

## **Description of Wonsqueak**

## Setting

Landform: Hills, mountains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material over loamy till

#### **Typical profile**

*Oa1 - 0 to 8 inches:* muck *Oa2 - 8 to 32 inches:* muck *2Cg - 32 to 65 inches:* silt loam

### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Very high (about 18.8 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

#### Minor Components

## Peacham, very stony

Percent of map unit: 6 percent Landform: Hills, mountains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

## Brayton, very stony

Percent of map unit: 2 percent Landform: Hills, mountains Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

## Telos, very stony

Percent of map unit: 2 percent Landform: Hills, mountains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

## Croghan

Percent of map unit: 1 percent Landform: Outwash plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

## CoB—Colton gravelly sandy loam, 3 to 8 percent slopes

## Map Unit Setting

National map unit symbol: 2yjfp Elevation: 10 to 2,000 feet Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Farmland of statewide importance

## **Map Unit Composition**

*Colton and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Colton**

## Setting

Landform: Outwash deltas Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy-skeletal glaciofluvial deposits

## **Typical profile**

Ap - 0 to 7 inches: gravelly sandy loam Bs - 7 to 14 inches: gravelly loamy sand BC - 14 to 24 inches: very gravelly coarse sand C - 24 to 65 inches: extremely gravelly coarse sand

## **Properties and qualities**

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very low (about 2.5 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Hydric soil rating: No

#### **Minor Components**

## Adams

Percent of map unit: 10 percent Landform: Outwash deltas Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

#### Sheepscot

Percent of map unit: 3 percent Landform: Outwash deltas Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

#### Croghan

Percent of map unit: 2 percent Landform: Outwash deltas Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

## CRC—Colton-Adams complex, 3 to 15 percent slopes

### Map Unit Setting

National map unit symbol: 2w40h Elevation: 10 to 2,000 feet Mean annual precipitation: 31 to 95 inches Mean annual air temperature: 27 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Farmland of statewide importance

## Map Unit Composition

Colton and similar soils: 50 percent

Adams and similar soils: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Colton**

## Setting

Landform: Kames, eskers Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy-skeletal glaciofluvial deposits

#### **Typical profile**

*Oe - 0 to 4 inches:* moderately decomposed plant material *E - 4 to 6 inches:* gravelly sandy loam *Bs - 6 to 14 inches:* gravelly loamy sand *BC - 14 to 24 inches:* very gravelly coarse sand *C - 24 to 65 inches:* extremely gravelly coarse sand

#### **Properties and qualities**

Slope: 3 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 2.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

### **Description of Adams**

#### Setting

Landform: Kames, eskers Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits

## **Typical profile**

*Oe - 0 to 4 inches:* moderately decomposed plant material *E - 4 to 6 inches:* loamy sand *Bs - 6 to 21 inches:* sand *BC - 21 to 27 inches:* sand *C - 27 to 65 inches:* sand

## **Properties and qualities**

Slope: 3 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 4.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

#### Minor Components

## Croghan

Percent of map unit: 7 percent Landform: Kames, eskers Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

#### Sheepscot

Percent of map unit: 4 percent Landform: Kames, eskers Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

## Nicholville

Percent of map unit: 3 percent Landform: Eskers Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

### Kinsman

Percent of map unit: 1 percent Landform: Kames, eskers Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

## Kn—Kinsman sand

## Map Unit Setting

National map unit symbol: 9I59 Elevation: 10 to 2,100 feet Mean annual precipitation: 30 to 55 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 70 to 160 days Farmland classification: Not prime farmland

## Map Unit Composition

*Kinsman and similar soils:* 75 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Kinsman**

## Setting

Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits derived from granite and gneiss

## **Typical profile**

Oa - 0 to 4 inches: highly decomposed plant material

- H1 4 to 8 inches: sand
- H2 8 to 42 inches: sand
- H3 42 to 65 inches: sand

## **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.9 inches)

## Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Hydric soil rating: Yes

### **Minor Components**

#### Wonsqueak

Percent of map unit: 10 percent Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

## Croghan

Percent of map unit: 7 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

#### Nicholville

Percent of map unit: 4 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

## Peacham

Percent of map unit: 4 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

## KW—Kinsman-Wonsqueak association, 0 to 3 percent slopes

## Map Unit Setting

National map unit symbol: 9I58 Elevation: 10 to 2,100 feet Mean annual precipitation: 30 to 60 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 80 to 160 days Farmland classification: Not prime farmland

## **Map Unit Composition**

Kinsman and similar soils: 45 percent

Wonsqueak and similar soils: 35 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### Description of Kinsman

## Setting

Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits derived from granite and gneiss

#### **Typical profile**

*Oa - 0 to 4 inches:* highly decomposed plant material *H1 - 4 to 8 inches:* sand *H2 - 8 to 42 inches:* sand *H3 - 42 to 65 inches:* sand

## Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Hydric soil rating: Yes

#### **Description of Wonsqueak**

## Setting

Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Organic material

## **Typical profile**

Oa1 - 0 to 8 inches: muck Oa2 - 8 to 30 inches: muck Cg - 30 to 65 inches: silty clay loam

## **Properties and qualities**

*Slope:* 0 to 2 percent *Depth to restrictive feature:* More than 80 inches *Natural drainage class:* Very poorly drained *Runoff class:* Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: About 0 to 6 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Very high (about 13.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: B/D Hydric soil rating: Yes

#### Minor Components

#### Sheepscot

Percent of map unit: 5 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

#### Croghan

Percent of map unit: 5 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

#### Scantic

Percent of map unit: 3 percent Landform: Marine terraces, river valleys Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: Marine Terrace Flat (F144BY001ME) Hydric soil rating: Yes

## Bucksport

Percent of map unit: 3 percent Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

## Roundabout

Percent of map unit: 2 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf *Down-slope shape:* Linear *Across-slope shape:* Linear *Hydric soil rating:* Yes

## Kinsman, stones and boulders > 0.1 percent

Percent of map unit: 1 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

#### Lamoine

Percent of map unit: 1 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

## SG—Sebago and Moosabec soils

## Map Unit Setting

National map unit symbol: 9l6d Elevation: 10 to 2,100 feet Mean annual precipitation: 18 to 55 inches Mean annual air temperature: 34 to 46 degrees F Frost-free period: 80 to 160 days Farmland classification: Not prime farmland

#### Map Unit Composition

Sebago and similar soils: 50 percent Moosabec and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Sebago**

## Setting

Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Organic material

### **Typical profile**

Oa1 - 0 to 12 inches: mucky peat

Oa2 - 12 to 65 inches: mucky peat

#### **Properties and qualities**

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: Very high (about 20.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Hydric soil rating: Yes

#### **Description of Moosabec**

## Setting

Landform: Raised bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Fibrist organic material

#### **Typical profile**

Oi - 0 to 65 inches: peat

#### Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 0 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very high (about 20.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Hydric soil rating: Yes

## **Minor Components**

## **Bucksport**

Percent of map unit: 5 percent Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf *Down-slope shape:* Linear *Across-slope shape:* Linear *Hydric soil rating:* Yes

## Wonsqueak

Percent of map unit: 5 percent Landform: Swamps Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

## W-Water

## Map Unit Composition

*Water:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Water**

Setting Landform: Lakes

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

# **APPENDIX 11B** Geotechnical Report



# REPORT

19-1758.3 S

January 5, 2021

# Explorations, Geotechnical Engineering Services & Soil Resistivity Testing

Proposed Aquaculture Facility Kingfish Maine, Inc. Dun Garvin Road Jonesport, ME

Prepared For:

Kingfish Zeeland Maine c/o: Gartley & Dorsky Engineering & Surveying Attention: William T. Lane, P.E., Vice President P.O. Box 1031 Camden, ME 04843

Prepared By: S. W. Cole Engineering, Inc. 37 Liberty Drive Bangor, ME 04401 Tel: (207) 848-5714



## Geotechnical Engineering

- Construction Materials Testing and Special Inspections
- GeoEnvironmental Services
- Test Boring Explorations

www.swcole.com

| 1.0 INTRODUCTION                                 | . 1 |
|--------------------------------------------------|-----|
| 1.1 Scope and Purpose                            | . 1 |
| 1.2 Site and Proposed Construction               | . 2 |
| 2.0 EXPLORATION AND TESTING                      | . 3 |
| 2.1 Explorations                                 | . 3 |
| 2.1.1 Current Explorations                       | . 3 |
| 2.1.2 Prior Explorations                         | . 3 |
| 2.2 Testing                                      | . 3 |
| 3.0 SUBSURFACE CONDITIONS                        | . 4 |
| 3.1 Soil and Bedrock                             | . 4 |
| 3.1.1 Current Explorations                       | . 4 |
| 3.1.2 Prior Explorations                         | . 5 |
| 3.2 Groundwater                                  | . 5 |
| 3.3 Thermal Resistivity                          | . 5 |
| 3.4 Electrical Resistivity                       | . 6 |
| 4.0 EVALUATION AND RECOMMENDATIONS               |     |
| 4.1 General Findings                             | . 6 |
| 4.2 Site and Subgrade Preparation                | . 7 |
| 4.3 Excavation and Dewatering                    | . 8 |
| 4.4 Foundations and Walls                        | . 9 |
| 4.5 Foundation Drainage                          | 10  |
| 4.6 Slab-On-Grade                                | 10  |
| 4.7 Entrance Slabs, Sidewalks and Exterior Slabs |     |
| 4.8 Embankment Construction                      | 11  |
| 4.9 Backfill and Compaction                      | 12  |
| 4.10 Weather Considerations                      | 13  |
| 4.11 Design Review and Construction Testing      | 13  |
| 5.0 CLOSURE                                      | 14  |
|                                                  |     |

Exploration Logs, Refusal Summary Sheet & Key

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Limitations

Laboratory Test Results

Electrical Resistivity Test Results

Figures

## TABLE OF CONTENTS

www.swcole.com



19-1758.3 S

January 5, 2021

Kingfish Zeeland Maine c/o: Gartley & Dorsky Engineering & Surveying Attention: William T. Lane, P.E., Vice President P.O. Box 1031 Camden, ME 04843

Subject: Explorations, Geotechnical Engineering Services & Soil Resistivity Testing Proposed Aquaculture Facility Kingfish Maine, Inc. Dun Garvin Road Jonesport, ME

Dear Bill:

In accordance with our Proposal dated September 29, 2020, we have performed explorations, a geotechnical evaluation and soil resistivity testing for the subject project. This report summarizes our findings and geotechnical recommendations and its contents are subject to the limitations set forth in Appendix A.

S. W. Cole Engineering, Inc. (S.W.COLE) previously performed a geotechnical investigation and submitted a Preliminary Geotechnical Report, dated March 23, 2020, which has been superseded by this report.

# **1.0 INTRODUCTION**

# 1.1 Scope and Purpose

The purpose of our services was to obtain additional subsurface information at the site in order to develop design geotechnical recommendations relative to foundations and earthwork associated with the proposed construction. Our scope of services included completion of eighteen test boring, nine ledge probes and three test pit explorations, soil resistivity testing, geotechnical laboratory testing, a geotechnical analysis of the subsurface findings and preparation of this report.



## **1.2 Site and Proposed Construction**

The site is located on Dun Garvin Road in Jonesport, Maine. The site generally consists of undeveloped areas with several small structures from previous development. The site includes open field area bordered by moderate to heavily wooded areas. The site is generally bisected by an existing gravel surfaced roadway. The site is bound along the eastern extent by the Atlantic Ocean. Based on the provided topographical information, the site for the proposed development generally slopes downward from west to east, from about elevation 65 to 35 feet.

We understand development plans call for construction of an aquaculture facility to produce Dutch Yellowtail fish. Based on the Site Plan, dated December 14, 2020, from Gartley & Dorsky Engineering & Surveying (Gartley & Dorsky), we understand the main building, identified as Building 2, will include a structure on the order of 509,808 square feet (SF). We understand current design concepts for Building 2 include a Finish Floor Elevation (FFE) at elevation 55 feet. We understand grow-out tanks are proposed within Building 2 and will be founded at the on-grade slab elevation. We anticipate the foundations will extend up to 10 feet below the proposed FFE to allow for plumbing and utilities below on-grade slabs. We understand Building 1 is proposed directly north of building 2 and will include a structure on the order of 55,000 SF. We understand current design concepts for Building 1 include a FFE at elevation 54 feet. We understand the buildings will include multi-level, steel-framed construction with spread footing foundations and on-grade and elevated slabs.

Additionally, smaller ancillary structures associated with the facility are proposed along the northern and southern extents. We understand a pump station associated with the intake and outlet pipes is proposed to the east of the buildings, adjacent to the Atlantic Ocean. Additionally, we understand access drives and parking areas are proposed adjacent to the building structures.

Existing grades within the footprints of Buildings 1 and 2 generally slope downward from west to east from about elevation 62 to 36 feet requiring tapered cuts approaching 7 feet and tapered fills approaching 20 feet to achieve proposed FFE. Additionally, based on the proposed foundations extending to depths of about 10 feet below FFE, cuts on the order of 17 feet will be required to achieve proposed bottom of foundation grades. Details regarding structural loading are unknown at this time.



Proposed and existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

# 2.0 EXPLORATION AND TESTING

## 2.1 Explorations

## 2.1.1 Current Explorations

Eighteen test borings (B-101 through B-118) and 9 ledge probes (P-101 through P-109) were made at the site from October 26 to 29, 2020 by S. W. Cole Explorations, LLC. Three test pits (TP-1 through TP-3) were made at the site on November 23, 2020 to perform in-situ thermal resistivity testing. The test pits were made by Hanscom Construction, Inc. of Marshfield, Maine working under subcontract to S.W.COLE. The exploration locations were selected by Gartley & Dorsky and S.W.COLE. The explorations were established in the field by S.W.COLE using a sub-meter mapping grade GPS unit.

The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the explorations, a refusal summary sheet and a key to the notes and symbols used on the logs are attached in Appendix C. The elevations shown on the exploration logs and refusal summary sheet were interpolated from existing ground contours as shown on the "Exploration Location Plan".

## 2.1.2 Prior Explorations

S.W.COLE performed a geotechnical investigation and submitted a Preliminary Geotechnical Report, dated March 23, 2020. The approximate location of our prior explorations, including twenty test borings (B-1 through B-20) and eleven ledge probes (P-1 through P-11), are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the prior explorations are attached in Appendix C.

## 2.2 Testing

The explorations were drilled using hollow-stem auger and cased wash-boring techniques. The soils were sampled at 2 to 5 foot intervals using a split spoon sampler and Standard Penetration Testing (SPT) methods. SPT blow counts are shown on the logs. Upon encountering bedrock, test borings B-101, B-102, B-110 and B-114 were advanced about 5 feet into bedrock using NQ2 rock core drilling techniques.



Soil and rock core samples obtained from the explorations were returned to our laboratory for further classification and testing. Rock core unit weight and unconfined compression testing was performed on two samples of the obtained rock core; results are presented on the boring logs. Four grain size analyses tests were performed on selected soil samples; results are attached in Appendix D. Moisture content testing was performed on four samples; results are presented on the boring logs.

S.W.COLE performed Wenner Array soil resistivity testing services at the site. The testing was performed in general accordance with ASTM G57 and IEEE 81-1983 methods along one test spread location. The approximate test lines were located in the field by S.W.COLE using a mapping grade Trimble GPS receiver and are shown on the "Exploration Location Plan".

Field measurements of thermal resistivity were made at three test pit locations utilizing a KD2 Pro thermal property analyzer. Results of the thermal resistivity testing are shown on the test pit logs attached in Appendix C.

# 3.0 SUBSURFACE CONDITIONS

# 3.1 Soil and Bedrock

# 3.1.1 Current Explorations

Underlying a surficial layer of topsoil or forest duff, the test borings encountered a soils profile generally consisting of fluvial soils mantling probable bedrock or fluvial soils overlying glacial till mantling probable bedrock. The principal strata encountered are summarized below.

<u>Topsoil and Forest Duff</u>: The test borings encountered about 0.5 to 1 foot of surficial topsoil or forest duff generally consisting of loose sandy silt with organics.

<u>Fluvial Soils</u>: Underlying the topsoil, the test borings encountered fluvial soils generally consisting of loose to dense sand and gravel with varying portions of silt.

<u>Glacial Till</u>: Underlying the fluvial soils, test borings B-104, B-107, B-113, B-114 and B-118 encountered medium dense to dense glacial till soils generally consisting of silty sand with varying portions of gravel and cobbles.



<u>Bedrock</u>: All test boring and probe explorations were terminated on refusal surfaces (probable bedrock) at depths ranging from about 2 to 32 feet. A refusal summary sheet is attached in Appendix C.

Upon encountering bedrock, test borings B-101, B-102, B-110 and B-114 were advanced about 5 feet into bedrock using NQ2 rock core drilling techniques. The bedrock consisted of gray volcanic rock of the Edmunds Formation. The Rock Quality Designation (RQD) value for the bedrock core ranged from 0 to 75 percent correlating to a Rock Mass Quality (RMQ) of very poor to good.

Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information.

# 3.1.2 Prior Explorations

S.W.COLE completed a geotechnical investigation at the site in February 2020. The previous explorations encountered similar subsurface conditions, generally consisting of fluvial soils mantling probable bedrock or fluvial soils overlying glacial till mantling probable bedrock. Logs of the prior explorations are attached in Appendix C.

# 3.2 Groundwater

Free water was observed in test borings B-109, B-113 and B-118 at depths ranging from the ground surface to about 11 feet. The soils were observed wet to saturated in test borings B-101 through B-104, B-106, B-107, B-110 through B-112 and B-114 through B-117 below depths of about 5 to 15 feet. Groundwater likely becomes perched on the relatively impervious silty native soils and bedrock encountered at the test borings. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate, particularly in response to periods of snowmelt and precipitation, as well as changes in site use and the adjacent tidal Atlantic Ocean.

# 3.3 Thermal Resistivity

Field measurements of thermal resistivity were made at three test pit locations (TP-1 through TP-3) utilizing a KD2 Pro thermal property analyzer. Thermal resistivity is dependent on material type, density, and moisture content, and will vary accordingly in field tests. Field thermal resistivity measurements at test pits TP-1, TP-2 and TP-3 were 61.03, 82.06 and 75.39°C - cm / W, respectively. Results of the thermal resistivity testing are shown on the test pit logs attached in Appendix C.



# 3.4 Electrical Resistivity

S.W.COLE performed one field soil electrical resistivity test spread at the site on November 5, 2020. The approximate location of the test spread is shown on the "Exploration Location Plan," attached in Appendix B.

Field soil electrical resistivity testing was performed using the fixed-center Wenner Array method with an AGI SuperSting R1 resistivity meter. The electrical resistivity testing was performed at two mutually perpendicular test lines (KFM.R1A and KFM.R1B) at one fixed-center location within the central portion of the site. Maximum A-spacing for the mutually perpendicular test lines were 300 feet. Instrument settings included automatic current and voltage settings and the use of interference compensation settings (for power at 60 Hz), which helps to minimize interferences to testing from nearby electrical fields. The apparent resistivity testing results are tabulated and graphed on the Resistivity Computation Data Sheets included as Appendix E.

As shown on the Resistivity Computation Data Sheets, the apparent resistivity ranged from approximately 2,105 ohm-meters ( $\Omega$ m) at spread KFM.R1A (1 foot A-spacing) to 8,130  $\Omega$ m at spread KFM.R1B (100 foot A-spacing). The apparent resistivity at the test spreads generally show similar trends. Variations in apparent resistivity between test locations and spread locations are interpreted as being due to variations in surficial and bedrock geology, moisture content and depth to water, and proximal unknown interferences.

The resistivity data meets our data collection quality guidelines. The resistivity data should be reviewed by a grounding design engineer, in combination with the boring logs, to confirm that they are acceptable for the design of the grounding grid. It should be noted that these apparent resistivity measurements may be higher during drier seasonal conditions.

# 4.0 EVALUATION AND RECOMMENDATIONS

# 4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint. The principle geotechnical considerations are as follows:

• Relatively shallow bedrock was encountered within the western portion of Building 2. The probable bedrock was generally encountered about 1 to 5 feet above the

proposed bottom of footing grade in the area. We anticipate the bedrock will require blasting for excavation. Blasting should be controlled to reduce overblast; all loose and over-blasted bedrock must be removed beneath the proposed building footprint.

- Spread footings should bear on at least 3 inches of compacted Crushed Stone overlying new compacted fill soils or undisturbed, native soils. On-grade floor slabs should bear on at least 12-inches of properly compacted Structural Fill overlying properly prepared subgrades.
- Subgrades across the site will consist of moisture sensitive fluvial and glacial till soils. Earthwork and grading activities should occur during drier, non-freezing months of late Spring, Summer and Fall. Rubber tired construction equipment should not operate directly on the exposed native soils. Excavation of bearing surfaces should be completed with a smooth-edged bucket to lessen subgrade disturbance.
- Imported Granular Borrow, Structural Fill and Crushed Stone will be required for construction. The native soils are unsuitable for reuse below the proposed buildings or as backfill for foundations; however, may be suitable for reuse below paved and landscape areas, provided they are at a compactable moisture content at the time of construction.

# 4.2 Site and Subgrade Preparation

We recommend site preparation begin with the construction of an erosion control system to protect adjacent drainage ways and areas outside the construction limits. Surficial topsoil and forest duff, soils with organics and roots should be completely removed from areas of proposed fill and construction. We recommend as much vegetation as possible should remain outside the construction areas to lessen the potential for erosion and site disturbance.

Following stripping and grubbing of the site, we anticipate blasting will be required to achieve proposed bottom of foundation grades in the western portion of Building 2. We recommend that blasting for bedrock removal be controlled to within 1 foot below footing subgrade elevation for the proposed building. We understand the tanks will require below grade piping, which may require deeper blasting depths. Loose and over-blasted bedrock should be removed beneath the building footprint after blasting. Crushed Stone should be thoroughly worked into the bedrock surface to choke any voids or fractures in the bedrock.



Subgrade soils which become disturbed due to blasting should be removed and replaced with compacted Structural Fill.

We recommend excavations to subgrade in soil be performed with a smooth-edged bucket to lessen disturbance of subgrade soils. We recommend footings be founded on 3 inches of compacted Crushed Stone overlying undisturbed native soils or new compacted fill soils.

#### 4.3 Excavation and Dewatering

Excavation work will generally encounter surficial organics, topsoil, forest duff, fluvial soils, glacial till, and bedrock. The native soils are moisture sensitive and can experience substantial strength loss if subjected to construction traffic and excavation activities, particularly when wet or thawing. Care must be exercised during construction to limit disturbance of the bearing soils. Earthwork and grading activities should occur during drier, non-freezing Spring, Summer and Fall seasons. Rubber tired construction equipment should not operate directly on the native soils when wet or thawing. Final cuts to subgrade in soil should be performed with a smooth-edged bucket to help reduce soil disturbance.

Based on the subsurface findings, we anticipate blasting will be required for bedrock removal. We recommend a licensed blasting contractor be engaged to provide bedrock removal. Pre-blast surveys should be completed on surrounding structures, water supply wells and infrastructure prior to commencing blasting activities. Vibrations from construction should be controlled below threshold limits of 0.5 in/sec for structures, water supply wells and infrastructure within 500 feet of the project site. More restrictive vibration limits may be warranted in specific cases with sensitive equipment, historic structures or artifacts on-site or within close proximity.

Groundwater was encountered in the current borings at depths ranging from the existing ground surface to depths of about 15 feet. Open excavations shallower than about 5 to 10 feet appear feasible with conventional sump and pump dewatering techniques. Deeper excavations, such as for over-excavations and utilities, may require sheetpiling and dewatering systems for groundwater cutoff and control. Controlling the water levels to at least 1 foot below planned excavation depths will help stabilize subgrades during construction. Excavations must be properly shored or sloped in accordance with OSHA trenching regulations to prevent sloughing and caving of the sidewalls during construction.



The design and planning of excavations, excavation support systems, and dewatering is the responsibility of the contractor.

# 4.4 Foundations and Walls

Foundations for the proposed buildings should be cast on 3 inches of compacted Crushed Stone overlying undisturbed native fluvial or glacial till soils, compacted Granular Borrow or clean, sound bedrock. For foundations bearing on properly prepared subgrades, we recommend the following geotechnical parameters for design consideration:

| Geotechnical Parameters for Spread Footings and Foundation Walls |                                     |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Design Frost Depth                                               | 4.5 feet                            |  |  |  |  |  |  |  |  |  |  |  |
| Net Allowable Soil Bearing Pressure                              | 3 ksf                               |  |  |  |  |  |  |  |  |  |  |  |
| Base Friction Factor                                             | 0.35                                |  |  |  |  |  |  |  |  |  |  |  |
| Total Unit Weight of Backfill                                    | 130 pcf (compacted Structural Fill) |  |  |  |  |  |  |  |  |  |  |  |
| At-Rest Lateral Earth Pressure Coefficient                       | 0.5 (compacted Structural Fill)     |  |  |  |  |  |  |  |  |  |  |  |
| Internal Friction Angle of Backfill                              | 32° (compacted Structural Fill)     |  |  |  |  |  |  |  |  |  |  |  |
| Total Post-Construction Settlement                               | 1 inch or less                      |  |  |  |  |  |  |  |  |  |  |  |
| Differential Post-Construction Settlement                        | 1/2 inch or less                    |  |  |  |  |  |  |  |  |  |  |  |

Based on the subsurface findings, we interpret the site soils to correspond to Seismic Soil Site Class D according to IBC 2015/ASCE 7-05. We recommend the following seismic design parameters:

| RECOMMENDED SEISMIC DESIGN PARAMETERS |                     |                   |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------|---------------------|-------------------|--|--|--|--|--|--|--|--|--|--|
| Peak Ground Acceleration              | 0.2-second Spectral | 1-second Spectral |  |  |  |  |  |  |  |  |  |  |
| (PGA)                                 | Acceleration (Ss)   | Acceleration (S1) |  |  |  |  |  |  |  |  |  |  |
| 0.124 g                               | 0.22 g              | 0.063 g           |  |  |  |  |  |  |  |  |  |  |

NOTE: Seismic design parameters from OSHPD accessed December, 31, 2020. (https://seismicmaps.org/)

Liquefaction is typically observed in saturated deposits of loose sands and non-plastic silts subjected to ground shaking most commonly from earthquakes. The foundation soils at the site typically consist of medium dense fluvial soils overlying glacial till soils mantling bedrock. Therefore, based on the soils present and the recommended Granular Borrow fill soils, we assess the risk of seismically induced liquefaction occurring at the site is low. Additionally, we assess the risk of seismically induced settlement occurring at the site is low.



### 4.5 Foundation Drainage

We recommend an underdrain system be installed on the outside edge of perimeter footings. The underdrain pipe should consist of 4-inch diameter, perforated SDR-35 foundation drain pipe bedded in Crushed Stone and wrapped in non-woven geotextile fabric such as Mirafi 180N or equivalent. The underdrain pipe must have a positive gravity outlet protected from freezing, clogging and backflow. Surface grades should be sloped away from the building for positive surface water drainage. A general foundation detail sketch is attached in Appendix B.

#### 4.6 Slab-On-Grade

On-grade floor slabs in heated areas may be designed using a subgrade reaction modulus of 120 pci (pounds per cubic inch) provided the slab is underlain by at least 12inches of compacted Structural Fill placed over properly prepared subgrades. The structural engineer or concrete consultant must design steel reinforcing and joint spacing appropriate to slab thickness and function.

The presence of shallow bedrock beneath proposed buildings increases the risk of radon intrusion in the building. We recommend a qualified radon consultant be consulted to provide design of a sub-slab radon venting system and positive building pressurization, as needed for indoor air quality.

We recommend a sub-slab vapor retarder particularly in areas of the building where the concrete slab will be covered with an impermeable surface treatment or floor covering that may be sensitive to moisture vapors. The vapor retarder must have a permeance that is less than the floor cover or surface treatment that is applied to the slab. The vapor retarder must have sufficient durability to withstand direct contact with the sub-slab base material and construction activity. The vapor retarder material should be placed according to the manufacturer's recommended method, including the taping and lapping of all joints and wall connections. The architect and/or flooring consultant should select the vapor retarder products compatible with flooring and adhesive materials.

The floor slab should be appropriately cured using moisture retention methods after casting. Typical floor slab curing methods should be used for at least 7 days. The architect or flooring consultant should assign curing methods consistent with current applicable American Concrete Institute (ACI) procedures with consideration of curing method compatibility to proposed surface treatments, flooring and adhesive materials.



# 4.7 Entrance Slabs, Sidewalks and Exterior Slabs

Entrance slabs, sidewalks and exterior slabs must be designed to reduce the effects of differential frost action between adjacent pavement, doorways, and entrances. We recommend that non-frost susceptible Structural Fill be provided to a depth of at least 4.5 feet below the top of entrance slabs, sidewalks, and exterior slabs. This thickness of Structural Fill should extend the full width of the entrance slab, sidewalk and exterior slabs or outward at least 4.5 feet, whichever is greater, thereafter transitioning up to the bottom of the adjacent sidewalk or pavement gravels at a 3H:1V or flatter slope. General details of this frost transition zone are attached in Appendix B.

#### 4.8 Embankment Construction

Based on the provided plan, we understand cuts and fills will be needed to achieve finish grade for the building and paved areas. Based on the existing grade, we understand tapered cuts of up to 7 feet and tapered fills of up to 20 feet are anticipated to achieve proposed FFE. Fill slopes should be constructed as level benches, which are overbuilt to facilitate compaction. The final slope face should be constructed by cutting back into the compacted core prior to placing slope surface materials. Embankments constructed on existing soil slopes steeper than 3H:1V should be keyed into the existing ground surface and built with continuous level benches. Embankments constructed on existing soil slopes flatter than 3H:1V may be constructed without keying and continuous benching.

Soil slopes will be susceptible to surface erosion, slumping and sloughing, particularly during heavy rain and freeze/thaw events. We recommend slope faces be covered with topsoil and seed. Topsoil and seed should be installed, as soon as practicable, to create a vegetated mat over the entire surface of the slope. Slopes that are steeper than 2H:1V should be covered with an erosion control fabric. Slopes steeper than 1.5H:1V should be covered with geotextile fabric and rip-rap. We do not recommend slopes steeper than 1H:1V. If areas where surface water is concentrated and discharged over the slope are proposed, we recommend covering the slope with rip-rap placed over a layer of Structural Fill and a woven filter fabric.



#### 4.9 Backfill and Compaction

We recommend the following fill and backfill materials: recycled products must also be tested in accordance with applicable environmental regulations and approved by a qualified environmental consultant.

<u>Granular Borrow</u>: Backfill for over-excavations and fill to raise grades in building and paved areas should be sand or silty sand meeting the gradation requirements of 2020 Maine Department of Transportation (MaineDOT) Standard Specification 703.19 Granular Borrow as given below:

|            | Granular Borrow            |                            |  |  |  |  |  |  |  |  |  |  |  |  |
|------------|----------------------------|----------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Sieve Size |                            |                            |  |  |  |  |  |  |  |  |  |  |  |  |
|            | Under Water (Wet Subgrade) | Above Water (Dry Subgrade) |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 inch    | 100                        | 100                        |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 inch     | Portion Passir             | ng 3 inch Sieve            |  |  |  |  |  |  |  |  |  |  |  |  |
| #40        | 0 to 70                    | 0 to 70                    |  |  |  |  |  |  |  |  |  |  |  |  |
| #200       | 0 to 7                     | 0 to 20                    |  |  |  |  |  |  |  |  |  |  |  |  |

<u>Structural Fill</u>: Fill to repair soft areas, backfill for foundations, slab base material and material below exterior entrances and sidewalks should be clean, non-frost susceptible sand and gravel meeting the gradation requirements for Structural Fill as given below

| Structural Fill |                         |  |  |  |  |  |  |  |  |  |
|-----------------|-------------------------|--|--|--|--|--|--|--|--|--|
| Sieve Size      | Percent Finer by Weight |  |  |  |  |  |  |  |  |  |
| 4 inch          | 100                     |  |  |  |  |  |  |  |  |  |
| 3 inch          | 90 to 100               |  |  |  |  |  |  |  |  |  |
| 1/4 inch        | 25 to 90                |  |  |  |  |  |  |  |  |  |
| #40             | 0 to 30                 |  |  |  |  |  |  |  |  |  |
| #200            | 0 to 6                  |  |  |  |  |  |  |  |  |  |

<u>Crushed Stone</u>: Crushed Stone, used below foundations and for underdrain aggregate, should meet the requirements of 2020 MaineDOT Standard Specification 703.13 Crushed Stone 3/4-Inch.

<u>Underdrain Sand</u>: Sand used as backfill around below slab utilities and piping should be clean, free-draining sand meeting the requirements of 2020 MaineDOT Standard



Specification 703.22 Underdrain Backfill Material Type B or as recommended by the Utility Designer.

<u>Reuse of Site Soils</u>: The native soils are unsuitable for reuse as fill in the building areas, but may be suitable for re-use in landscape or paved areas, provided they are at a compactable moisture content at the time of construction. If used, the soils should be dried and placed as the lower lifts of fill.

<u>Placement and Compaction</u>: Fill should be placed in horizontal lifts and compacted such that the desired density is achieved throughout the lift thickness with 3 to 5 passes of the compaction equipment. Loose lift thicknesses for grading fill, and backfill activities should not exceed 12 inches. We recommend that fill and backfill be compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557. Crushed Stone should be compacted with 3 to 5 passes of a vibratory plate compactor having a static weight of at least 500 pounds.

# 4.10 Weather Considerations

Construction activity should be limited during wet and freezing weather and the site soils may require drying before construction activities may continue. The contractor should anticipate the need for water to temper fills in order to facilitate compaction during dry weather. If construction takes place during cold weather, subgrades, foundations and floor slabs must be protected during freezing conditions. Concrete and fill must not be placed on frozen soil; and once placed, the concrete and soil beneath the structure must be protected from freezing.

# 4.11 Design Review and Construction Testing

S.W.COLE should be retained to review the construction documents to determine that our earthwork and foundation recommendations have been properly interpreted and implemented.

A construction materials testing and special inspections program should be implemented during construction to observe compliance with the design concepts, plans, and specifications. S.W.COLE is available to provide geotechnical observations during earthwork and foundation activities as well as testing and special inspections of soil, concrete, steel, spray-applied fireproofing and asphalt construction materials.



# 5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

# S. W. Cole Engineering, Inc.

Nathan D. Strout, P.E. Geotechnical Engineer

NDS:tjb

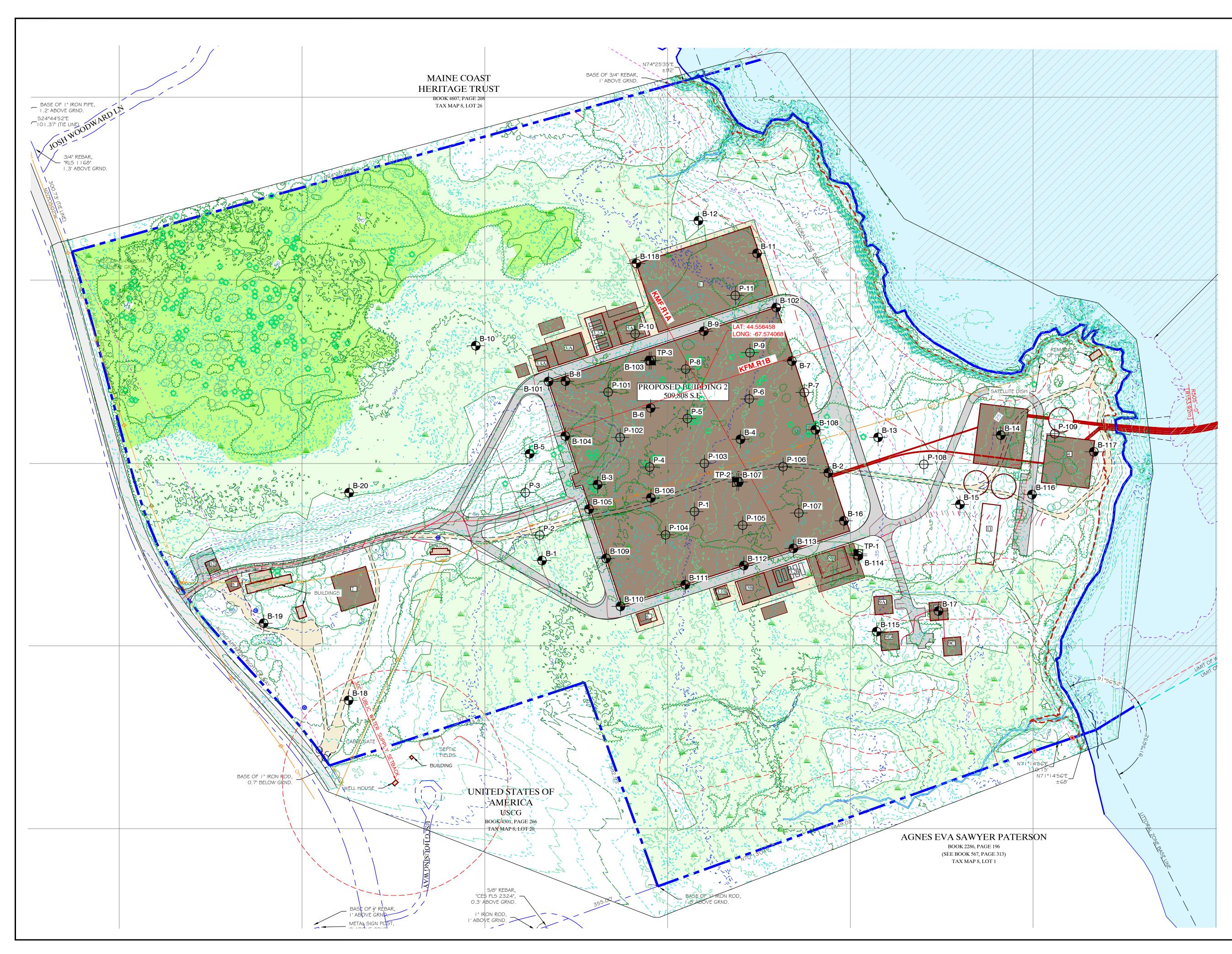


# Appendix A Limitations

This report has been prepared for the exclusive use of Kingfish Zeeland Maine for specific application to the proposed Kingfish Maine, Inc. Aquaculture Facility on Dun Garvin Road in Jonesport, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.


Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

APPENDIX B

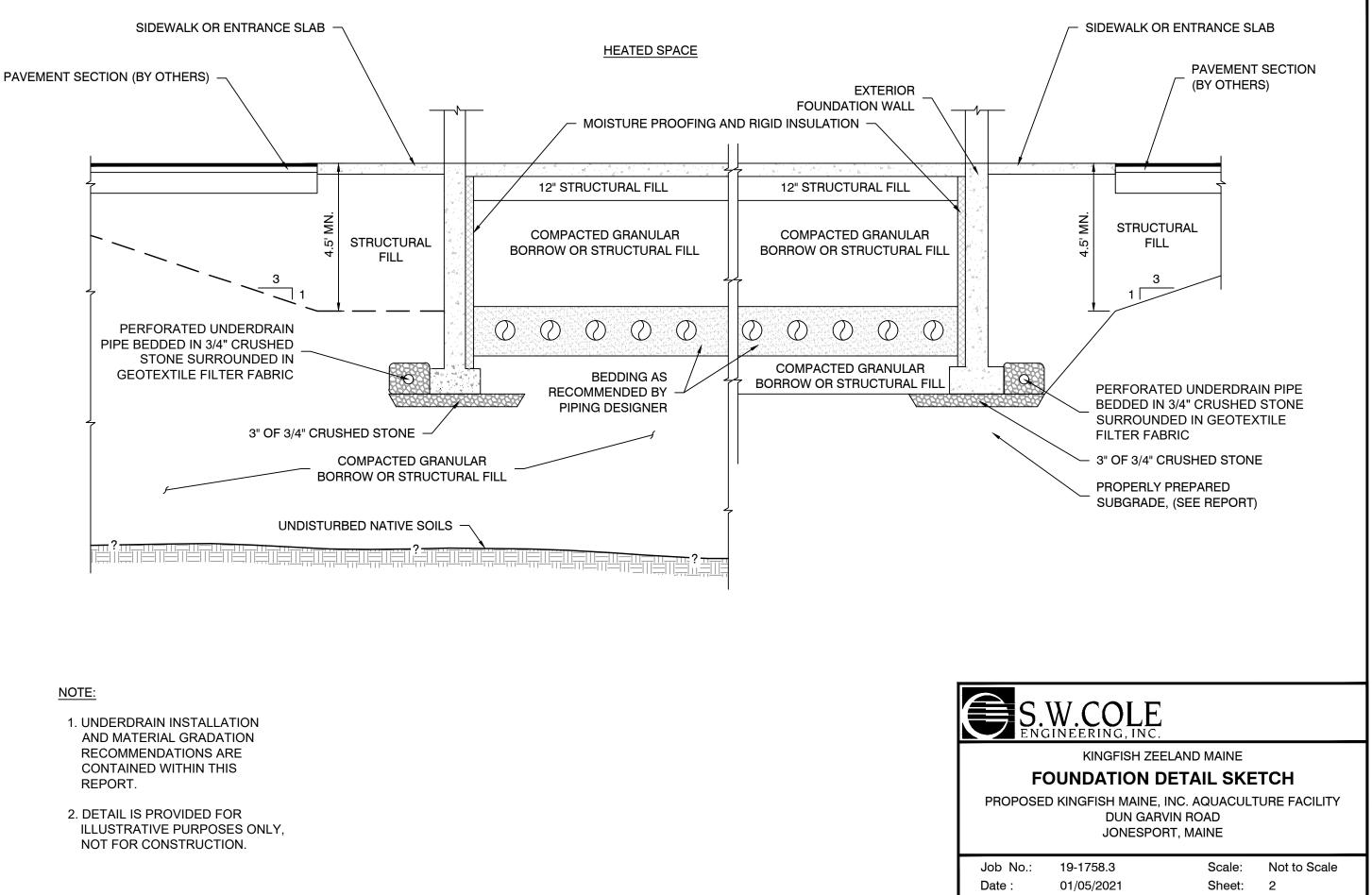
Figures



# LEGEND:



APPROXIMATE BORING LOCATION


- APPROXIMATE PROBE LOCATION
- APPROXIMATE TEST PIT LOCATION

APPROXIMATE RESISTIVITY TEST SPREAD WITH GPS LOCATED CENTER POINT

# NOTES:

- EXPLORATION LOCATION PLAN WAS PREPARED FROM A 1"=120' SCALE PLAN OF THE SITE ENTITLED "SKETCH PLAN," PREPARED BY GARTLEY & DORSKY ENGINEERING & SURVEYING, DATED 11/04/2020.
- 2. BORINGS B-1 THROUGH B-20 WERE LOCATED AND GROUND SURFACE ELEVATIONS ESTABLISHED IN THE FIELD BY SURVEY BY GARTLEY & DORSKY AND PROVIDED ON THE ABOVE REFERENCED PLAN.
- 3. PROBES P-1 THROUGH P-11 WERE LOCATED IN THE FIELD BY GPS SURVEY BY S. W. COLE ENGINEERING, INC. (S.W.COLE) USING A MAPPING GRADE TRIMBLE GPS RECEIVER. GROUND SURFACE ELEVATIONS WERE DETERMINED BY LINEAR INTERPOLATION FROM LIDAR CONTOUR DATA.
- 4. BORINGS B-101 THROUGH B-118 AND PROBES P-101 THROUGH P-109 WERE LOCATED IN THE FIELD BY GPS SURVEY BY S.W.COLE USING A MAPPING GRADE TRIMBLE GPS RECEIVER. GROUND SURFACE ELEVATIONS WERE DETERMINED BY LINEAR INTERPOLATION FROM LIDAR CONTOUR DATA.
- 5. TEST PITS TP-1 THROUGH TP-3 WERE LOCATED IN THE FIELD BY MEASUREMENTS FROM BORING LOCATIONS.
- 6. RESISTIVITY CENTER POINT WAS LOCATED IN THE FIELD BY GPS SURVEY BY S. W. COLE ENGINEERING, INC. USING A MAPPING GRADE TRIMBLE GPS RECEIVER.
- THIS PLAN SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT.
- 8. THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.

|                                                                                           | 0          | 1:          | 20 24         | -        |     |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------|-------------|---------------|----------|-----|--|--|--|--|--|--|
|                                                                                           |            |             |               | Feet     |     |  |  |  |  |  |  |
|                                                                                           |            |             |               |          |     |  |  |  |  |  |  |
|                                                                                           |            |             |               |          |     |  |  |  |  |  |  |
|                                                                                           |            |             |               |          |     |  |  |  |  |  |  |
|                                                                                           |            |             |               |          |     |  |  |  |  |  |  |
| 2                                                                                         | 01/04/2021 | DESIGN PHA  | SE REPORT SUI | BMISSION | CEM |  |  |  |  |  |  |
| 1                                                                                         | 09/21/2020 | PROPOSED    | DESIGN PHASE  | BORINGS  | CEM |  |  |  |  |  |  |
| 0                                                                                         | 03/23/2020 | PRELIMINAR  | Y REPORT SUBN | /ISSION  | CEM |  |  |  |  |  |  |
| NO.                                                                                       | DATE       | D           | ESCRIPTION    |          | BY  |  |  |  |  |  |  |
|                                                                                           | S.W        | COLE        |               |          |     |  |  |  |  |  |  |
|                                                                                           |            | KINGFISH ZE | ELAND MAINE   |          |     |  |  |  |  |  |  |
|                                                                                           | EXPLO      | ORATION     | LOCATION      | PLAN     |     |  |  |  |  |  |  |
| PROPOSED KINGFISH MAINE, INC. AQUACULTURE FACILITY<br>DUN GARVIN ROAD<br>JONESPORT, MAINE |            |             |               |          |     |  |  |  |  |  |  |
|                                                                                           |            |             |               |          |     |  |  |  |  |  |  |
| Job                                                                                       | o No.: 19  | -1758.3     | Scale:        | 1" = 120 | )'  |  |  |  |  |  |  |





# APPENDIX C

# Exploration Logs, Refusal Summary Sheet and Key

|               |               |                         |                          |              |                         |                       |                            |                              |                | BORIN           | NG LOG                                                                         | BORING NO .:              |                          |
|---------------|---------------|-------------------------|--------------------------|--------------|-------------------------|-----------------------|----------------------------|------------------------------|----------------|-----------------|--------------------------------------------------------------------------------|---------------------------|--------------------------|
|               |               | C                       | TT.                      | 11           | $\neg c$                |                       |                            |                              |                |                 |                                                                                | SHEET:                    | <u>1 of 1</u>            |
|               | -             |                         |                          |              | $\mathbb{C}\mathbb{C}$  |                       |                            | LIENT: <u>King</u>           |                |                 | ne<br>nc. Aquaculture Facility                                                 | PROJECT NO                |                          |
|               |               | ΕN                      | IGIN                     | ΕI           | ERIN                    | G,IN(                 |                            |                              |                |                 | , Jonesport, Maine                                                             | DATE FINISH:              |                          |
|               | ng Info       |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              | cation Pla<br>orations, |                       |                            | DN (FT): 51.<br>Kevin Hanso  |                |                 | TOTAL DEPTH (FT): 16.5 LO<br>DRILLING METHOD: Cased Boring                     | OGGED BY: Bre             | ndan Auth                |
|               |               |                         |                          |              | rich D-50               |                       |                            | D/OD: N/A/N                  |                |                 | SAMPLER: Standard Split-Spoon                                                  | <u>,</u>                  |                          |
|               |               |                         | utomatic                 |              |                         |                       |                            | WEIGHT (lbs)                 |                | 0 / 140         |                                                                                | ORE BARREL:               | NQ2                      |
|               |               |                         | CY FACT                  |              |                         |                       |                            | DROP (inch):                 | 30 /           | / 30            |                                                                                |                           |                          |
|               |               |                         | THS (ft):                | _            | Soils wet               | below 5' -            | +/-                        |                              |                |                 |                                                                                |                           |                          |
|               | RAL NO        |                         | er Level                 |              |                         | D = Split S           | Snoon Sam                  | nle Pen :                    | = Pen          | etration Length | WOR = Weight of Rods $S_v = Fie$                                               | eld Vane Shear Strer      | ath kins/sa ft           |
|               | YMBOLS:       | ∑ At<br>∑ At            | t time of D              | on c         |                         |                       | Valled Tub<br>Core Samp    | e Sample Rec. =<br>ble bpf = | = Rec<br>Blows |                 | WOH = Weight of Hammer $q_{u}$ = UnRQD = Rock Quality Designation $Ø$ = Frid   |                           | ve Strength, kips/sq.ft. |
|               |               |                         |                          |              | SAMPI                   | E INFO                | RMATIO                     | N                            | g              |                 |                                                                                |                           |                          |
| Elev.<br>(ft) | Depth<br>(ft) | Casing<br>Pen.<br>(bpf) | Sample<br>No.            | Type         | Depth<br>(ft)           | Pen./<br>Rec.<br>(in) | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data     | Graphic Log    |                 | Sample<br>Description &<br>Classification                                      | H <sub>2</sub> 0<br>Depth | Remarks                  |
| <u> </u>      |               |                         | 1D                       |              | 0-2                     | 24/14                 | 1-2-9-9                    |                              |                | Fore            | st Duff                                                                        |                           |                          |
| -             | Ļ             |                         |                          | Ŋ            | 0-2                     | 24/14                 | 1-2-3-3                    |                              |                |                 | ium dense, red-brown Gravelly SAND,                                            |                           |                          |
| 50 -          |               |                         |                          | $\mathbb{N}$ |                         |                       |                            |                              |                | som             | e silt                                                                         |                           |                          |
| -             | -<br>-        |                         | 2D                       | $\mathbb{N}$ | 2-4                     | 24/6                  | 12-14-<br>15-19            |                              |                |                 |                                                                                |                           |                          |
| .             | -             |                         |                          | ľŇ           |                         |                       | 10-19                      |                              |                |                 |                                                                                |                           |                          |
|               | -             |                         |                          | H            |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               | - 5           |                         |                          |              |                         | 04/40                 | 5000                       |                              |                | 5.0 Mod         |                                                                                |                           |                          |
| -             |               |                         | 3D                       | N            | 5-7                     | 24/18                 | 5-6-6-6                    |                              |                | Nied            | ium dense, brown Silty fine SAND                                               |                           |                          |
| 45 —          | -             |                         |                          | M            |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| .             | -             |                         |                          | F            |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               | -             |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               | -             |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| -             | - 10          |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| -             |               |                         | 4D                       | X            | 10-11                   | 12/10                 | 10-50                      |                              |                |                 |                                                                                |                           |                          |
| 40            |               |                         |                          |              | 44.5                    | 04/04                 | 00                         |                              |                |                 | rock, advanced by rollercone 11 to 11.                                         | 5                         |                          |
| .             | -             |                         | 1R                       |              | 11.5-<br>13.5           | 24/24                 | 63                         |                              |                | 1001            | v, very slightly weathered, contact                                            | '                         |                          |
|               | -             |                         |                          |              |                         |                       |                            |                              |                | meta            | amorphosed, mafic, VOLCANIC ROCK                                               | ,                         |                          |
| -             | ļ             |                         | 2R                       | П            | 13.5-                   | 20/19                 | 75                         |                              |                | joint<br>horiz  | s at 0°, 30°, 40°, 50°, 75°, 85° from zontal, slight iron oxide staining along |                           |                          |
| -             | - 15          |                         |                          |              | 15.2                    |                       |                            |                              |                | joint           | s (Edmunds Formation)                                                          |                           |                          |
| -             | 15            |                         | 3R                       | П            | 15.2-                   | 16/8                  | 0                          |                              |                |                 |                                                                                |                           |                          |
|               | -             |                         |                          |              | 16.5                    |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 | Bottom of Exploration at 16.5 feet                                             |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| i             |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| i             |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| 2             |               |                         |                          |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
|               |               |                         | ent appro                |              |                         |                       |                            |                              |                |                 |                                                                                |                           |                          |
| be grad       | ual. Wate     | level n                 | readings h               | ave          | been                    |                       |                            |                              |                |                 |                                                                                |                           |                          |
| Fluctuat      | tions of gr   | oundwa                  | ater may o<br>present at | ccui         | r due to                |                       |                            |                              |                |                 |                                                                                |                           | D 464                    |
| measur        | ements w      | ere ma                  | de.                      | are          |                         |                       |                            |                              |                |                 |                                                                                | BORING NO .:              | B-101                    |

| E                                                 |                                                  | S                                                           | W                                                           | (                         | $^{\sim}$                                                  | )I E                                                   |                                          |                                                                             | fish           | BORING LOG         BORING NO.:         B-102           SHEET:         1 of 1           PROJECT NO.         19-1758.3                                                                                                                                                                                                |
|---------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------|------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | フ                                                | ΕN                                                          | GINI                                                        |                           | ERIN                                                       | G,IN(                                                  | - <b>N</b>                               |                                                                             | _              | Inc. Aquaculture Facility     DATE START:     10/27/2020       Garvin Road, Jonesport, Maine     10/27/2020     10/27/2020                                                                                                                                                                                          |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATE | ING CO.:<br>(PE: <u>Tr</u><br>ER TYPI<br>ER EFFI | See Exp<br>S. V<br>rack Mo<br>E: <u>Au</u><br>CIENC<br>DEPT | V. Cole E<br>ounted D<br>tomatic /                          | iedr<br>Au<br><b>DR</b> : | orations,<br>rich D-50<br>tomatic<br>0.995                 | LLC [<br>#                                             | Driller:<br>Auger ID<br>Iammer<br>Iammer | DN (FT):44.7<br>Kevin Hansc<br>VOD:N/A / N<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>/A<br>14 | DRILLING METHOD:         Cased Boring           SAMPLER:         Standard Split-Spoon           0 / 140         CASING ID/OD:         4 in / 4 1/2 in         CORE BARREL:         NQ2                                                                                                                              |
| KEY TO                                            | O NOTES<br>YMBOLS:                               | <u>Wate</u><br>⊈ At<br>⊈ At                                 | e <u>r Level</u><br>time of Dr<br>Completic<br>ter Drilling | on of                     | g<br>f Drilling                                            | D = Split S<br>U = Thin W<br>R = Rock (<br>V = Field \ | alled Tube                               | e Sample Rec. =<br>ble bpf = E                                              | Rec<br>Blows   | tration LengthWOR = Weight of Rods $S_v$ = Field Vane Shear Strength, kips/sq.ft.overy LengthWOH = Weight of Hammer $q_u$ = Unconfined Compressive Strength, kips/sqis per FootRQD = Rock Quality Designation $\emptyset$ = Friction Angle (Estimated)te per FootPID = Photoionization DetectorN/A = Not Applicable |
| Elev.<br>(ft)                                     | Depth<br>(ft)                                    | Casing<br>Pen.<br>(bpf)                                     | Sample<br>No.                                               | Type                      | SAMPL<br>Depth<br>(ft)                                     | E INFOF<br>Pen./<br>Rec.<br>(in)                       | Blow<br>Count<br>or                      | N<br>Field / Lab<br>Test Data                                               | Graphic Log    | Sample<br>Description & Depth Remarks<br>Classification                                                                                                                                                                                                                                                             |
|                                                   | -                                                |                                                             | 1D                                                          | M                         | 0-2                                                        | 24/14                                                  | RQD<br>1-2-2-5                           |                                                                             |                | 0.5 Forest Duff<br>Medium dense, red-brown Gravelly SAND,<br>some silt                                                                                                                                                                                                                                              |
| -                                                 | -                                                |                                                             | 2D                                                          | X                         | 2-4                                                        | 24/20                                                  | 12-13-<br>12-14                          |                                                                             |                | 2.0 Medium dense, brown SAND, some silt and gravel                                                                                                                                                                                                                                                                  |
| 40                                                | - 5<br>-<br>-<br>-                               |                                                             | 3D                                                          | X                         | 5-7                                                        | 24/20                                                  | 7-6-5-<br>10                             | w =5.2 %                                                                    |                | 5.0 Medium dense, brown SAND, some silt, trace gravel                                                                                                                                                                                                                                                               |
| -<br>35 —<br>-                                    | -<br>10<br>-                                     |                                                             | 4D                                                          | V                         | 10-12                                                      | 24/20                                                  | 6-8-11-<br>11                            |                                                                             |                |                                                                                                                                                                                                                                                                                                                     |
| -                                                 | -<br>-<br>-                                      |                                                             | 5D                                                          | $\left  \right\rangle$    | 12-14                                                      | 24/20                                                  | 10-46-<br>43-50                          |                                                                             |                |                                                                                                                                                                                                                                                                                                                     |
| 30 —<br>-<br>-                                    | - 15<br>-<br>-<br>-                              |                                                             | 6D                                                          | X                         | 15-17                                                      | 24/12                                                  | 3-6-10-<br>30                            |                                                                             |                | 15.0 Medium dense, brown Gravelly SAND, some silt                                                                                                                                                                                                                                                                   |
| -<br>25<br>-<br>-                                 | -<br>-<br>- 20<br>-<br>-                         |                                                             | 1R<br>2R<br>3R<br>4R                                        |                           | 19-19.8<br>19.8-<br>20.1<br>20.1-<br>21.5<br>21.5-<br>25.5 | 10/8<br>4/4<br>17/13<br>48/30                          | 0<br>0<br>59<br>47                       | qu = 22,550<br>psi<br>Unit Weight =<br>185.3 pcf                            |                | <ul> <li>Bedrock; gray, very slightly weathered,<br/>slightly contact metamorphosed, mafic,<br/>VOLCANIC ROCK, joints at 0°, 5°, 15°, 25°,<br/>50° from horizontal, slight iron oxide staining<br/>along joints (Edmunds Formation)</li> </ul>                                                                      |
| 20 —                                              | -<br>- 25                                        |                                                             |                                                             |                           |                                                            |                                                        |                                          |                                                                             |                | Bottom of Exploration at 25.5 feet                                                                                                                                                                                                                                                                                  |
| bounda<br>be grad<br>made a                       | ry betweer<br>ual. Water<br>t times an           | n soil ty<br>r level re<br>d under                          | ent approx<br>pes, transi<br>adings ha                      | tion:<br>ive b<br>s sta   | s may<br>been<br>ated.                                     |                                                        |                                          |                                                                             |                |                                                                                                                                                                                                                                                                                                                     |
| other fa                                          |                                                  | those p                                                     | iter may oc<br>present at t<br>de.                          |                           |                                                            |                                                        |                                          |                                                                             |                | BORING NO.: <b>B-102</b>                                                                                                                                                                                                                                                                                            |

|                                                    |                                               |                                            | ΕN                                            |                                                                                    |                                  |                                          | )<br>Le<br>g,ing                                     | _   P                                            | ROJECT: Ki                                                                                             | fish<br>ng F                         | BORING LOG<br>Zeeland Maine<br>sh Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, Maine                                                               |                                                                                            | BORING<br>SHEET:<br>PROJEC<br>DATE ST<br>DATE FII | <br>T NO<br>ART: _    | <b>B-103</b><br>1 of 1<br>19-1758.3<br>10/29/2020<br>10/29/2020 |  |
|----------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------------------------------------------------|--|
| Loca<br>Drill<br>Rig T<br>Hamn<br>Hamn<br>Wate     | LING CO<br>YPE: _<br>MER TY<br>MER EF         |                                            | e Exp<br>S. W<br>ck Mc<br>Aut<br>ENC<br>DEPT  | loration<br>/. Cole E<br>punted D<br>tomatic<br>Y FACT                             | Expl<br>Died                     | cation Pla<br>orations,<br>rich D-50<br> | LLC  <br>) /<br> <br>                                | DRILLER:<br>AUGER II<br>HAMMER<br>HAMMER         | DN (FT): 50.<br>: Kevin Hanso<br>D/OD: 2 1/4 ir<br>: WEIGHT (Ibs)<br>: DROP (inch):<br>served, saturat | :om<br>n / 5 !<br>: <u>1</u> 4<br>30 | /8 in SAMPLER: Standard Split-<br>CASING ID/OD: N/A /N/A                                                                                                          | DRILLING METHOD:         Hollow Stem Auger           SAMPLER:         Standard Split-Spoon |                                                   |                       |                                                                 |  |
| KEY T                                              | O NOTE<br>SYMBOL                              | S<br>S:                                    | <u>Wate</u><br>⊈ At<br>⊈ At                   | <u>r Level</u><br>time of D<br>Completi<br>er Drilling                             | on o                             |                                          | D = Split S<br>U = Thin V<br>R = Rock<br>V = Field V | Valled Tub<br>Core Sam                           | e Sample Rec. =<br>ple bpf =                                                                           | = Rec<br>Blows                       | tration Length WOR = Weight of Rods<br>very Length WOH = Weight of Hammer<br>per Foot RQD = Rock Quality Designation<br>e per Foot PID = Photoionization Detector | q <sub>∪</sub> = Unc<br>Ø = Frict                                                          |                                                   | pressive<br>stimated) | h, kips/sq.ft.<br>Strength, kips/sq.ft.<br>)                    |  |
| Elev.<br>(ft)                                      | Dept<br>(ft)                                  | ''  F                                      | asing<br>Pen.<br>bpf)                         | Sample<br>No.                                                                      | Type                             |                                          | LE INFO                                              | RMATIO<br>Blow<br>Count<br>or<br>RQD             | N<br>Field / Lab<br>Test Data                                                                          | Graphic Log                          | Sample<br>Description &<br>Classification                                                                                                                         |                                                                                            | H₂0<br>Depth                                      |                       | Remarks                                                         |  |
| 45 -                                               |                                               | 5                                          |                                               | 1D<br>2D<br>3D                                                                     |                                  | 0-2<br>5-7<br>10-11.7                    | 24/13<br>24/18<br>24/18                              | 6-13-<br>13-13<br>13-13<br>4-16-<br>16-<br>50/2" |                                                                                                        |                                      | <ul> <li>0.4 Topsoil<br/>Dense, brown SAND and GRAVEL<br/>cobbles, trace silt</li> <li>3.8 Medium dense, brown Silty fine SA<br/>gravel</li> </ul>                | ND, som                                                                                    | e                                                 |                       |                                                                 |  |
| bounda<br>be grad<br>made a<br>Fluctua<br>other fa | ary betw<br>dual. Wa<br>at times<br>ations of | een s<br>ater le<br>and ι<br>grou<br>an th | oil typ<br>evel re<br>under<br>ndwat<br>ose p | ent approx<br>bes, trans<br>adings ha<br>condition<br>ter may o<br>resent at<br>e. | ition<br>ave l<br>is sta<br>ccur | is may<br>been<br>ated.<br>· due to      |                                                      |                                                  |                                                                                                        |                                      | Auger Refusal at 11.7 fea<br>(Probable Bedrock)                                                                                                                   |                                                                                            | BORING                                            | NO.:                  | B-103                                                           |  |

|                   |                         |                       |                                                          |                         |                        |                                                 | BORING LOG             |                                          |                |                                                               |                                                                                                                    |                                   | BORING                                                       | NO.: _                   | B-104                      |
|-------------------|-------------------------|-----------------------|----------------------------------------------------------|-------------------------|------------------------|-------------------------------------------------|------------------------|------------------------------------------|----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|--------------------------|----------------------------|
|                   |                         | C                     | XX                                                       | 11                      | $\mathbb{C}C$          | N I                                             |                        | CLIENT: King                             |                |                                                               |                                                                                                                    |                                   | SHEET:<br>PROJEC                                             |                          | <u>1 of 1</u><br>19-1758.3 |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               | nc. Aquaculture Facility                                                                                           |                                   | DATE ST                                                      | _                        | 10/26/2020                 |
|                   |                         | EN                    | IGIN                                                     | ΕE                      | ERIN                   | G,IN                                            |                        |                                          |                |                                                               | , Jonesport, Maine                                                                                                 |                                   | DATE FI                                                      | -                        | 10/26/2020                 |
|                   | ng Info                 |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         | cation Pla             |                                                 |                        | ON (FT): 61.                             |                |                                                               | TOTAL DEPTH (FT): 16.8                                                                                             |                                   | GGED BY:                                                     | Brenc                    | lan Auth                   |
|                   |                         |                       |                                                          |                         | orations,<br>rich D-50 |                                                 |                        | R: Kevin Hanso                           |                | 5/9 in                                                        |                                                                                                                    | w Stem A                          | Auger                                                        |                          |                            |
|                   | IER TYP                 |                       |                                                          | Jieu                    |                        |                                                 |                        | D/OD: <u>2 1/4 ir</u><br>R WEIGHT (Ibs): |                |                                                               | SAMPLER: <u>Standard Split-</u><br>CASING ID/OD: N/A /N/A                                                          |                                   | RE BARRI                                                     | -I· N//                  | Δ                          |
|                   |                         |                       |                                                          | OR:                     | 0.995                  |                                                 |                        | R DROP (inch):                           |                | 10                                                            |                                                                                                                    | 00                                |                                                              | - <b>-</b> - <u>19/7</u> |                            |
| WATE              | R LEVEI                 | DEPT                  | THS (ft):                                                | 5                       | Soils wet              | below 15                                        | ' +/-                  | . ,                                      |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| GENE              | RAL NO                  | TES:                  |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | O NOTES<br>YMBOLS:      | ∑ At<br>∑ At          | er <u>Level</u><br>time of D<br>Completi<br>ter Drilling | on o                    |                        | D = Split S $U = Thin V$ $R = Rock$ $V = Field$ | Valled Tul<br>Core Sam | be Sample Rec. =<br>ple bpf =            | = Rec<br>Blows | etration Length<br>overy Length<br>s per Foot<br>ite per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | q <sub>∪</sub> = Unc<br>Ø = Frict | d Vane Shea<br>confined Com<br>ion Angle (E<br>ot Applicable | pressive<br>stimated)    | Strength, kips/sq.ft.      |
| <u> </u>          |                         |                       |                                                          |                         | SAMPI                  | LE INFO                                         | RMATIC                 | ON                                       | 5              |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| Elev.             | Depth                   | Casing                |                                                          |                         |                        |                                                 | Blow                   |                                          | Graphic Log    |                                                               | Sample                                                                                                             |                                   | H₂0                                                          |                          |                            |
| (ft)              | (ft)                    | Pen.<br>(bpf)         | Sample<br>No.                                            | ype                     | Depth                  | Pen./                                           | Count                  |                                          | aphi           |                                                               | Description &<br>Classification                                                                                    |                                   | Depth                                                        |                          | Remarks                    |
|                   |                         |                       | No.                                                      | F                       | (ft)                   | (in)                                            | or<br>RQD              | Test Data                                | Ū              |                                                               | Classification                                                                                                     |                                   |                                                              |                          |                            |
|                   |                         |                       | 1D                                                       | $\overline{\mathbf{N}}$ | 0-1.5                  | 18/8                                            | 10-15-                 |                                          |                |                                                               | soil                                                                                                               |                                   |                                                              |                          |                            |
| · ·               | 1                       |                       |                                                          | X                       |                        |                                                 | 15-<br>50/0"           |                                          |                | 0.5 Med                                                       | ium dense, red-brown Gravelly                                                                                      | SAND,                             |                                                              |                          |                            |
| 60 -              |                         |                       |                                                          | H                       |                        |                                                 | 50/0                   |                                          |                | som                                                           | e silt                                                                                                             |                                   |                                                              |                          |                            |
|                   | 4                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                | 3.0 Med                                                       | ium dense, brown Silty fine SA                                                                                     | ND                                |                                                              |                          |                            |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| · ·               | - 5                     |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| ·                 |                         |                       | 2D                                                       | M                       | 5-7                    | 24/18                                           | 15-14-                 |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 55 -              |                         |                       |                                                          | Ŵ                       |                        |                                                 | 10 20                  |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          | $\mu$                   |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| · ·               | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| .                 | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | [                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | - 10                    |                       | 3D                                                       | $\nabla$                | 10-11.5                | 18/18                                           | 54-44-                 | w =3.7 %                                 |                | 10.0 Very                                                     | dense, brown Silty Gravelly SA                                                                                     | AND with                          | 1                                                            |                          |                            |
| · ·               | 1                       |                       |                                                          | Ň                       |                        |                                                 | 50                     |                                          |                | cobi                                                          | bles (Glacial Till)                                                                                                |                                   |                                                              |                          |                            |
| 50 -              |                         |                       |                                                          | H                       |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   | -                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| ·                 | - 15                    |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| ·                 | -                       |                       | 4D                                                       | Å                       | 15-15.5                | 6/6                                             | 50                     |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 45 -              | ſ                       |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                | _                                                             | Auger Refusal at 16.8 fee                                                                                          | t                                 |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               | (Probable Bedrock)                                                                                                 |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 5                 |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| i                 |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 1                 |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 1                 |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| 5                 |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
|                   |                         |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| bounda            | ry betwee               | n soil ty             | ent appro                                                | sition                  | is may                 |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| be grad<br>made a | ual. Wate<br>t times ar | r level re<br>d under | eadings h<br>condition                                   | ave l<br>is sta         | been<br>ated.          |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   |                                                              |                          |                            |
| Fluctua           | tions of gr             | oundwa                | ater may o<br>present at                                 | ccur                    | due to                 |                                                 |                        |                                          |                |                                                               |                                                                                                                    | ſ                                 | PODING                                                       |                          | D 404                      |
|                   | ements w                |                       |                                                          |                         |                        |                                                 |                        |                                          |                |                                                               |                                                                                                                    |                                   | BORING                                                       | NO.:                     | B-104                      |

| <form><form><form><form><form><form></form></form></form></form></form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     | 1                                                                                                                                                          |                                              |                                                          |                       | BORIN                       | NG LOG                                                   |                               | DRING NO.:                       | <b>B-105</b>        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------|----------------------------------------------------------|-------------------------------|----------------------------------|---------------------|
| <form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     | SWCC                                                                                                                                                       | JE                                           | CLIENT: King                                             | fish                  | Zeeland Mai                 | ine                                                      |                               |                                  | 1 of 1<br>19-1758.3 |
| Definition         Device for the control of the                               |                                                                                                     |                                                                                                                                                            |                                              |                                                          |                       |                             |                                                          |                               |                                  |                     |
| LOCATION: See Exploration Location Pan       ELEVATION (F): S2.4 +/-       TOTAL DEFT (HT): 2.2       LOBORD 19: Brindin Auf         RO TYPE: Track Mounted Detricin D-0       AUGER IDCO: 2.14 in /5 58 in       TOTAL DEFT (HT): 2.2       LOBORD 19: Brindin Auf         MAMRER TYPE: Audomatic       HAMMER DROP (Inch): 30       Common Pan       Sandrad Split Spool       Sandrad Split Spool         MAMRER TYPE: Audomatic       HAMMER DROP (Inch): 30       Common Pan       Common Pan       Common Pan         MAMRER TYPE: Audomatic       HAMMER DROP (Inch): 30       Common Pan       Common Pan       Common Pan         MAREE LYPE: LOCATION (F): See Transmitter Cherrend       How Pan       Common Pan       Common Pan       Common Pan         MAREE LYPE: LOCATION (F): See Transmitter Cherrend       Common Pan       Pan Pan Pan Pan Pan Pan       Pan Pan Pan Pan Pan Pan       Pan Pan Pan Pan Pan Pan Pan Pan Pan Pan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | ENGINEERI                                                                                                                                                  | NG, INC.                                     |                                                          | Dun                   | Garvin Road                 | l, Jonesport, Maine                                      | D/                            | ATE FINISH:                      | 10/26/2020          |
| With Long Tuning       D: Bill Spont Sample       Pn: - Preventation Lunging       WOR - Weight of Roads (all point sample)       No Work of relations (all point sample)       No Work of relationsample)       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOCATION:<br>DRILLING CO.<br>RIG TYPE:<br>HAMMER TYP<br>HAMMER EFF<br>WATER LEVE                    | See Exploration Location F<br>: S. W. Cole Exploration<br>rack Mounted Diedrich D-<br>F: Automatic<br>ICIENCY FACTOR: 0.99<br>L DEPTHS (ft): No free       | s, LLC DRILL<br>50 AUGE<br>50 HAMM<br>5 HAMM | ER: Kevin Hansc<br>R ID/OD: 2 1/4 ir<br>IER WEIGHT (Ibs) | :om<br>1 / 5 :<br>:14 | 5/8 in<br>40                | DRILLING METHOD: Hollow<br>SAMPLER: Standard Split-      | w Stem Aug<br>Spoon           | er                               |                     |
| Elev.       Depth       Caling       Sample       How                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KEY TO NOTES                                                                                        | <u>Water Level</u><br>⊈ At time of Drilling<br><b>▼</b> At Completion of Drilling                                                                          | U = Thin Walled<br>R = Rock Core S           | Tube Sample Rec. =<br>Sample bpf =                       | = Rec<br>Blows        | covery Length<br>s per Foot | WOH = Weight of Hammer<br>RQD = Rock Quality Designation | $q_{U} = UnconfiØ = Friction$ | ned Compressi<br>Angle (Estimate | e Strength, kips/s  |
| Image: stratute to the segment approximate             Stratute to the segment approximate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     | SAM                                                                                                                                                        | PLE INFORMA                                  | TION                                                     | D                     |                             |                                                          |                               |                                  |                     |
| Staffadion lines regressent approximate  Terrifadion lines regressent |                                                                                                     | Pen. Sample g Dept                                                                                                                                         | h Rec. Cou                                   | unt Field / Lab<br>r Test Data                           | Graphic Lo            |                             | Description &                                            |                               |                                  | Remarks             |
| (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     | 1D 0-2                                                                                                                                                     |                                              |                                                          |                       | 0.5 Med                     |                                                          | ND, some                      |                                  |                     |
| Statification lines represent approximate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |                                                                                                                                                            | 1 1                                          | ļ.                                                       |                       |                             |                                                          |                               | 1 1                              |                     |
| boundary between soil types, transitions may<br>be gradual. Water level readings have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |                                                                                                                                                            |                                              |                                                          |                       |                             |                                                          |                               |                                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | boundary betwee<br>be gradual. Wate<br>made at times ar<br>Fluctuations of gr<br>other factors thar | en soil types, transitions may<br>er level readings have been<br>nd under conditions stated.<br>roundwater may occur due to<br>n those present at the time |                                              |                                                          |                       |                             |                                                          |                               |                                  | B-105               |

|                     |                           |                         |                                         |              |                        |               | BORING LOG          |                                      |             |                                             |                                                          |                                                    |                | <b>B-106</b><br>1 of 1 |
|---------------------|---------------------------|-------------------------|-----------------------------------------|--------------|------------------------|---------------|---------------------|--------------------------------------|-------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------|------------------------|
| E                   |                           | C                       | XX                                      | 11           | $\mathbb{C}\mathbb{C}$ | I F           |                     | LIENT: King                          | fish        | Zeeland Mair                                | 10                                                       | SHEET:                                             | T NO.          | 19-1758.3              |
|                     | -                         | U                       | <b>.</b> VV                             |              |                        |               |                     | ROJECT: Ki                           | ng F        | Fish Maine, In                              | c. Aquaculture Facility                                  | DATE ST                                            | _              | 10/29/2020             |
|                     |                           | EN                      | IGIN                                    | ΕI           | ERIN                   | G,IN(         |                     |                                      |             |                                             | Jonesport, Maine                                         | DATE FI                                            | NISH:          | 10/29/2020             |
|                     | ng Info                   |                         |                                         |              | cation Pla             | - I           |                     | <b>ON (ET):</b> 40                   | 2' +/       |                                             |                                                          | .OGGED BY:                                         | Kovin          | Hanaaam                |
|                     |                           |                         |                                         |              | orations,              |               |                     | ON (FT): <u>49.</u><br>: Kevin Hanso |             |                                             | TOTAL DEPTH (FT): 14.9 L<br>DRILLING METHOD: Hollow Stem |                                                    | Revin          | Tianscom               |
|                     |                           |                         |                                         |              | rich D-50              |               |                     | D/OD: 2 1/4 in                       |             |                                             | SAMPLER: Standard Split-Spoon                            |                                                    |                |                        |
|                     | IER TYP                   |                         |                                         |              |                        |               |                     | R WEIGHT (lbs)                       | -           |                                             | CASING ID/OD: N/A /N/A                                   | ORE BARR                                           | EL: <u>N//</u> | 4                      |
|                     |                           |                         |                                         |              | 0.995                  |               |                     | R DROP (inch):                       | 30          |                                             |                                                          |                                                    |                |                        |
|                     | RAL NO                    |                         | ΗS (π):                                 | <u> </u>     | to free wa             | iter obser    | ved, satt           | rated below 5'                       |             |                                             |                                                          |                                                    |                |                        |
| KEY T               | O NOTES                   |                         | er Level                                |              |                        | D = Split S   | Spoon San           | nple Pen. :                          | = Per       | netration Length                            | WOR = Weight of Rods S <sub>v</sub> = Fi                 | eld Vane Shea                                      | ar Strengt     | h, kips/sq.ft.         |
| AND S               | YMBOLS:                   | 🗴 At                    | time of D<br>Completion<br>ter Drilling | on c         | of Drilling            |               | Core Sam            |                                      | Blow        | covery Length<br>s per Foot<br>ute per Foot | RQD = Rock Quality Designation Ø = Fr                    | nconfined Con<br>iction Angle (E<br>Not Applicable | stimated)      | Strength, kips/sq.ft.  |
|                     |                           |                         |                                         |              | SAMPL                  | E INFO        | RMATIC              | N                                    | D<br>D      |                                             |                                                          |                                                    |                |                        |
| Elev.<br>(ft)       | Depth<br>(ft)             | Casing<br>Pen.<br>(bpf) | Sample<br>No.                           | vpe          | Depth<br>(ft)          | Pen./<br>Rec. | Blow<br>Count<br>or | Field / Lab<br>Test Data             | Graphic Log |                                             | Sample<br>Description &<br>Classification                | H₂0<br>Depth                                       |                | Remarks                |
|                     |                           |                         | 1.0.                                    |              |                        | (in)          | RQD                 | T CSt Data                           | Q           |                                             |                                                          |                                                    |                |                        |
|                     | -                         |                         | 1D                                      |              | 0-2                    | 24/24         | 2-2-2-4             |                                      | -           | 0.4 Tops                                    |                                                          |                                                    |                |                        |
|                     | F                         |                         |                                         | X            |                        |               |                     |                                      |             |                                             | e, gray Silty fine SAND<br>e, brown Silty fine SAND      | [                                                  |                |                        |
|                     | -                         |                         | 2D                                      | E            | 2-4                    | 24/21         | 10-14-              |                                      |             |                                             | e, brown Silly line SAND                                 |                                                    |                |                        |
|                     | _                         |                         |                                         | IV           | 2-4                    | 27/21         | 10-14-              |                                      |             | 2.3 Mediu                                   | um dense, brown fine Sandy SILT                          |                                                    |                |                        |
|                     |                           |                         |                                         | $\wedge$     |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| 45 -                | ſ                         |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| -                   | - 5                       |                         | 3D                                      |              | 5-7                    | 24/24         | 5-8-10-             |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     | -                         |                         |                                         | X            |                        |               | 11                  |                                      |             | 5.7 Mediu                                   | um dense, brown Silty fine SAND                          |                                                    |                |                        |
|                     | -                         |                         |                                         | $\mu$        |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| -                   |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| 40 -                | f                         |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     | - 10                      |                         | 4D                                      |              | 10-11.5                | 18/18         | 18-26-              |                                      |             | 10.2 Dens                                   | e, brown Silty SAND and GRAVEL w                         | ith                                                |                |                        |
|                     | ł                         |                         |                                         | Ň            |                        |               | 45                  |                                      |             | cobbl                                       |                                                          |                                                    |                |                        |
|                     | -                         |                         |                                         |              | ]                      |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| -                   |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| 35 -                | f                         |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         | -            |                        |               |                     |                                      |             |                                             | Auger Refusal at 14.9 feet                               |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             | (Probable Bedrock)                                       |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
|                     |                           |                         |                                         |              |                        |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| bounda              | ation lines               | n sòil ty               | pes, trans                              | sitior       | ns may                 |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| be grad<br>made a   | lual. Wate<br>It times an | r level r<br>d under    | eadings ha                              | ave<br>is st | been<br>ated.          |               |                     |                                      |             |                                             |                                                          |                                                    |                |                        |
| Fluctua<br>other fa | tions of gr<br>ctors than | oundwa<br>those p       | iter may o<br>present at                | ccu          | r due to               |               |                     |                                      |             |                                             |                                                          | BORING                                             | NO ·           | B-106                  |
| measur              | rements w                 | ere mad                 | je.                                     |              |                        | 1             |                     |                                      |             |                                             |                                                          |                                                    |                | D-100                  |

|                                                   |                                                   |                                                                                      |                                                     |                |                                                              | ~ -                   |                                   |                                                                                       |                        | BORI                                                           | NG LOG                                                                                | BORING<br>SHEET:                                                  | NO.: _                                                    | <b>B-107</b><br>1 of 1 |  |
|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|--------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------------------------|--|
|                                                   |                                                   | S                                                                                    | $\Delta \lambda$                                    | (              | $\mathbb{C}$                                                 |                       | -                                 | CLIENT: King                                                                          | gfish                  | Zeeland Ma                                                     | ine                                                                                   | PROJEC                                                            | T NO.                                                     | 19-1758.3              |  |
|                                                   | 7                                                 |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                | nc. Aquaculture Facility                                                              | DATE S                                                            | TART:                                                     | 10/28/2020             |  |
|                                                   |                                                   | EN                                                                                   | IGIN.                                               | ΕĿ             | ERIN                                                         | G, IN C               | <b>-</b> .                        | LOCATION: _                                                                           | Dun                    | Garvin Road                                                    | l, Jonesport, Maine                                                                   | DATE F                                                            | NISH:                                                     | 10/28/2020             |  |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATE | ING CO.:<br>YPE:<br>IER TYP<br>IER EFF<br>R LEVEI | See Ex           S. V           ack M           E: Au           CIENC           DEP1 | ploration<br>V. Cole E<br>ounted D<br>itomatic      | Expl<br>Died   | cation Pla<br>orations,<br>rich D-50<br>0.995<br>Soils wet l | LLC [                 | orille<br>Auger<br>Hamme<br>Hamme | TION (FT):42.<br>R: _Kevin Hanso<br>ID/OD:2 1/4 i<br>R WEIGHT (Ibs)<br>R DROP (inch): | com<br>n / 5<br>): _14 | 5/8 in<br>40                                                   | DRILLING METHOD:         Hollow Stem           SAMPLER:         Standard Split-Spoon  | Auger                                                             | DGGED BY: Jeff McElroy<br>Auger<br>DRE BARREL: <u>N/A</u> |                        |  |
|                                                   | RAL NO                                            |                                                                                      | <u> </u>                                            |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| AND S                                             | O NOTES<br>YMBOLS:                                | ∑ At<br>∑ At                                                                         | er Level<br>time of Di<br>Completio<br>ter Drilling | on o           | g<br>f Drilling                                              |                       | Valled T<br>Core Sa               | ube Sample Rec.<br>mple bpf =                                                         | = Rec<br>Blows         | etration Length<br>covery Length<br>s per Foot<br>ite per Foot | WOH = Weight of Hammer $q_U = Ur$<br>RQD = Rock Quality Designation $\emptyset$ = Fri | eld Vane She<br>aconfined Cor<br>ction Angle (E<br>Not Applicable | npressive<br>Estimated                                    | Strength, kips/sq.ft.  |  |
|                                                   |                                                   |                                                                                      |                                                     |                | SAMPL                                                        | E INFO                | RMAT                              | ION                                                                                   | Fog                    |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| Elev.<br>(ft)                                     | Depth<br>(ft)                                     | Casing<br>Pen.<br>(bpf)                                                              | Sample<br>No.                                       | Type           | Depth<br>(ft)                                                | Pen./<br>Rec.<br>(in) | Blov<br>Cour<br>or<br>RQE         | nt Field / Lab<br>Test Data                                                           | Graphic Lo             |                                                                | Sample<br>Description &<br>Classification                                             | H₂0<br>Depth                                                      |                                                           | Remarks                |  |
| -                                                 |                                                   |                                                                                      | 1D                                                  | $\mathbb{N}$   | 0-2                                                          | 24/17                 | 1-2-3                             | -4                                                                                    |                        | Тор                                                            | soil                                                                                  |                                                                   |                                                           |                        |  |
| -                                                 | ł                                                 |                                                                                      |                                                     | X              |                                                              |                       |                                   |                                                                                       |                        |                                                                | lium dense, red-brown Gravelly SAND, e silt                                           |                                                                   |                                                           |                        |  |
| 40 -                                              | ł                                                 |                                                                                      | 2D                                                  | H              | 2-4                                                          | 24/20                 | 9-11                              | _                                                                                     |                        | 5011                                                           | esiit                                                                                 |                                                                   |                                                           |                        |  |
|                                                   | Ļ                                                 |                                                                                      |                                                     | Ŋ              | 27                                                           |                       | 12-1                              |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   | L                                                 |                                                                                      |                                                     | $\wedge$       |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| -                                                 | ſ                                                 |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| -                                                 | - 5                                               |                                                                                      | 3D                                                  | $\nabla$       | 5-7                                                          | 24/20                 | 6-6-1                             | 0-                                                                                    |                        | 5.0 Med                                                        | lium dense, brown SAND, trace silt                                                    |                                                                   |                                                           |                        |  |
| -                                                 | ł                                                 |                                                                                      |                                                     | X              |                                                              |                       | 10                                |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| 35 —                                              | Ļ                                                 |                                                                                      |                                                     | $\square$      |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| 00                                                |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        | 7.8 Mod                                                        |                                                                                       |                                                                   |                                                           |                        |  |
| -                                                 | ſ                                                 |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        | IVIEU                                                          | lium dense, brown Silty Gravelly SANE<br>cial Till)                                   | )                                                                 |                                                           |                        |  |
| -                                                 | -                                                 |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        | , ,                                                            | ,                                                                                     |                                                                   |                                                           |                        |  |
| -                                                 | - 10                                              |                                                                                      | 4D                                                  | $\square$      | 10-12                                                        | 24/20                 | 10-1                              | 5-                                                                                    |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| -                                                 | -                                                 |                                                                                      |                                                     | X              | -                                                            | -                     | 14-9                              |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| 30 -                                              | ļ                                                 |                                                                                      |                                                     | Δ              |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                | Auger Refusal at 12.4 feet                                                            |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                | (Probable Bedrock)                                                                    |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
|                                                   |                                                   |                                                                                      |                                                     |                |                                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| hounda                                            | rv hetwee                                         | n soil ty                                                                            | ent approx<br>pes, trans                            | ition          | is may                                                       |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| be grad<br>made a                                 | ual. Wate<br>t times an                           | r level re<br>d under                                                                | eadings have condition iter may o                   | ave l<br>s sta | been (<br>ated.                                              |                       |                                   |                                                                                       |                        |                                                                |                                                                                       |                                                                   |                                                           |                        |  |
| other fa                                          | ctors than                                        | those p                                                                              | present at                                          | ccur<br>the    | due to<br>time                                               |                       |                                   |                                                                                       |                        |                                                                |                                                                                       | BORING                                                            | NO ·                                                      | B-107                  |  |
| measur                                            | ements w                                          | ere ma                                                                               | de.                                                 |                |                                                              | 1                     |                                   |                                                                                       |                        |                                                                |                                                                                       | DOKING                                                            | INU.:                                                     | D-10/                  |  |

|                             |                                                                      | C                                 | W                                                 | 11                     | $\sim c$                             |                                                      |                            |                                              |                | BORING LOG                                                                                       | BORING NO.:<br>SHEET:<br>PROJECT NO.                                                 | <b>B-108</b><br>1 of 1<br>19-1758.3 |
|-----------------------------|----------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|------------------------|--------------------------------------|------------------------------------------------------|----------------------------|----------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|
|                             | ラ                                                                    |                                   |                                                   | FI                     |                                      | G,IN(                                                | F                          | ROJECT: K                                    | ing F          | ish Maine, Inc. Aquaculture Facility                                                             | DATE START:                                                                          | 10/29/2020                          |
|                             |                                                                      |                                   |                                                   |                        |                                      | G, INV                                               |                            | OCATION: _[                                  | Dun            | Garvin Road, Jonesport, Maine                                                                    | DATE FINISH:                                                                         | 10/29/2020                          |
| LOCA <sup>®</sup><br>DRILL  | ING CO.                                                              | See Ex                            | ploration<br>V. Cole E                            | Expl                   | cation Pla<br>orations,<br>rich D-50 | LLC                                                  | DRILLER                    | ON (FT):38.<br>:Kevin Hanso<br>D/OD:2 1/4 ii | com            | DRILLING METHOD: Hollow Stem                                                                     | <b>DGGED BY:</b> <u>Kevi</u><br>Auger                                                | n Hanscom                           |
| HAMM<br>WATE                | IER TYP<br>IER EFF<br>R LEVEI<br>RAL NO                              | CIENC                             | Y FACT                                            |                        | -                                    |                                                      | HAMMEF                     | R WEIGHT (lbs)<br>R DROP (inch):             |                | 0.0 CASING ID/OD: <u>N/A /N/A</u> CO                                                             | DRE BARREL: <u>N</u>                                                                 | I/A                                 |
|                             | O NOTES<br>YMBOLS:                                                   | ∑ At<br>∑ At                      | er Level<br>time of D<br>Completi<br>ter Drilling | on o                   |                                      | D = Split S<br>U = Thin V<br>R = Rock<br>V = Field V | Valled Tub<br>Core Sam     | ple Sample Rec. =                            | = Rec<br>Blows | vorery LengthWOH = Weight of Hammer $q_U$ = Unper FootRQD = Rock Quality DesignationØ = Friction | ld Vane Shear Streng<br>confined Compressiv<br>tion Angle (Estimate<br>ot Applicable | e Strength, kips/sq.ft.             |
|                             |                                                                      |                                   |                                                   | _                      | SAMPL                                |                                                      | RMATIC                     | N .                                          | - Bo           | Sample                                                                                           |                                                                                      |                                     |
| Elev.<br>(ft)               | Depth<br>(ft)                                                        | Casing<br>Pen.<br>(bpf)           | Sample<br>No.                                     | Type                   | Depth<br>(ft)                        | Pen./<br>Rec.<br>(in)                                | Blow<br>Count<br>or<br>RQD | Test Data                                    | Graphic Log    | Sample<br>Description &<br>Classification                                                        | H <sub>2</sub> 0<br>Depth                                                            | Remarks                             |
|                             | -                                                                    |                                   | 1D                                                | X                      | 0-2                                  | 24/10                                                | 1-2-2-2                    |                                              |                | 0.5 Topsoil<br>Loose, brown Silty fine to medium SAND                                            |                                                                                      |                                     |
| - 35                        | -                                                                    |                                   | 2D                                                | X                      | 2-4                                  | 24/12                                                | 2-3-4-5                    |                                              |                | 2.5 Medium dense, brown fine to medium SAN trace silt                                            | <del>,</del>                                                                         |                                     |
|                             | - 5                                                                  |                                   | 3D                                                | X                      | 5-7                                  | 24/19                                                | 5-11-<br>11-13             |                                              |                |                                                                                                  |                                                                                      |                                     |
| 30 –                        | -<br>-<br>-<br>-                                                     |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                | 9.1 Dense brown Silty Gravelly SAND with                                                         |                                                                                      |                                     |
|                             | - 10<br>-                                                            |                                   | 4D                                                | X                      | 10-12                                | 24/20                                                | 25-37-<br>40-36            |                                              |                | 9.1 Dense, brown Silty Gravelly SAND with<br>cobbles                                             |                                                                                      |                                     |
| 25 -                        | -<br>-<br>-                                                          |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                | 12.5 Medium dense, gray Silty fine SAND                                                          |                                                                                      |                                     |
| -                           | - 15                                                                 |                                   | - 5D                                              |                        | 15-15.3                              |                                                      | 50/3"                      |                                              |                |                                                                                                  |                                                                                      |                                     |
|                             |                                                                      |                                   |                                                   | _                      | (                                    | /                                                    | ,                          | J                                            |                | Auger Refusal at 15.3 feet<br>(Probable Bedrock)                                                 |                                                                                      |                                     |
|                             |                                                                      |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                |                                                                                                  |                                                                                      |                                     |
|                             |                                                                      |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                |                                                                                                  |                                                                                      |                                     |
|                             |                                                                      |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                |                                                                                                  |                                                                                      |                                     |
|                             |                                                                      |                                   |                                                   |                        |                                      |                                                      |                            |                                              |                |                                                                                                  |                                                                                      |                                     |
| bounda<br>be grad<br>made a | ation lines<br>ry betwee<br>lual. Wate<br>It times an<br>tions of gr | n soil ty<br>r level n<br>d under | pes, trans<br>eadings har<br>condition            | ave<br>sition<br>s sta | ns may<br>been<br>ated.              |                                                      |                            |                                              |                |                                                                                                  |                                                                                      |                                     |
| other fa                    | ctors than<br>rements w                                              | those p                           | present at                                        |                        |                                      |                                                      |                            |                                              |                |                                                                                                  | BORING NO .:                                                                         | B-108                               |

BORING / WELL 19-1758.3.GPJ SWCE TEMPLATE.GDT 1/2/21

|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                | BORIN                                                        | NG LOG                                                                                                             |                                   | BORING N                                                          | IO.: _      | B-109                          |
|-----------|-----------------|----------------------|------------------------|-----------------------------------------------------------------|-----------------|--------------|--------------------------------------------------------|-------------------------|---------------------------------|----------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|-------------|--------------------------------|
|           | 6               |                      | C                      | W                                                               | 10              |              | ТГ                                                     |                         |                                 |                |                                                              |                                                                                                                    |                                   | SHEET:                                                            | NO -        | 1 of 1                         |
|           | =               | -                    | J                      | ).W                                                             |                 |              | ノレト                                                    |                         | LIENT: King                     |                |                                                              | ne<br>nc. Aquaculture Facility                                                                                     |                                   | PROJECT                                                           | _           | <u>19-1758.3</u><br>10/26/2020 |
|           |                 |                      | ΕN                     | IGIN                                                            | ΕE              | RIN          | G,IN(                                                  |                         |                                 |                |                                                              | I, Jonesport, Maine                                                                                                |                                   | DATE STA                                                          | -           | 10/26/2020                     |
|           | منالانه         | a lofa               | rmoti.                 |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              | ,                                                                                                                  |                                   |                                                                   | -           |                                |
| LO        | CAT             |                      | See Ex                 | ploration                                                       |                 |              |                                                        | ELEVATIO                | <b>DN (FT):</b> 50'             | +/-            |                                                              | <b>TOTAL DEPTH (FT):</b> <u>5.0</u>                                                                                | LO                                | GGED BY:                                                          | Brend       | dan Auth                       |
|           |                 |                      |                        | V. Cole E                                                       |                 |              |                                                        |                         | Kevin Hanso                     |                |                                                              | DRILLING METHOD: Hollo                                                                                             |                                   | Auger                                                             |             |                                |
|           |                 |                      |                        | ounted D<br>utomatic                                            | ledri           | ich D-50     |                                                        |                         | 0/OD: 2 1/4 ir<br>WEIGHT (lbs): |                |                                                              | SAMPLER: <u>Standard Split</u><br>CASING ID/OD: N/A /N/A                                                           |                                   | ORE BARREI                                                        | _: N//      | Δ                              |
|           |                 |                      | -                      | CY FACT                                                         | OR:             | 0.995        |                                                        |                         | DROP (inch):                    | -              | 10                                                           |                                                                                                                    | 00                                |                                                                   | <u>IN//</u> | <u>n</u>                       |
|           |                 |                      |                        |                                                                 |                 |              | Free wate                                              | r observe               | d at 1.3'                       | -              |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 | AL NO                |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 | NOTES<br>MBOLS:      | ∑ At<br>▼ At           | <u>er Level</u><br>t time of Di<br>t Completio<br>fter Drilling | on of           | Drilling     | D = Split S<br>U = Thin V<br>R = Rock (<br>V = Field \ | Valled Tub<br>Core Samp | e Sample Rec. =<br>ble bpf =    | = Rec<br>Blows | etration Length<br>overy Length<br>s per Foot<br>te per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | q <sub>U</sub> = Uno<br>Ø = Frict | d Vane Shear<br>confined Comp<br>tion Angle (Est<br>ot Applicable | ressive     | Strength, kips/sq.ff           |
|           |                 |                      |                        |                                                                 |                 | SAMPL        | E INFO                                                 | RMATIO                  | N                               | D              |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
| EI        | ev.             | Depth                | Casing                 |                                                                 |                 |              | Den /                                                  | Blow                    |                                 | Graphic Log    |                                                              | Sample                                                                                                             |                                   | H₂0                                                               |             | <b>D</b>                       |
|           | ft)             | (ft)                 | Pen.<br>(bpf)          | Sample                                                          | , ype           | Depth        | Pen./<br>Rec.                                          | Count                   | Field / Lab<br>Test Data        | aphi           |                                                              | Description &<br>Classification                                                                                    |                                   | Depth                                                             |             | Remarks                        |
|           |                 |                      |                        | No.                                                             |                 | (ft)         | (in)                                                   | or<br>RQD               | rest Data                       | ğ              |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        | 1D                                                              | $\mathbf{M}$    | 0-2          | 24/12                                                  | 1-2-7-                  |                                 | $\square$      | Тор                                                          | soil                                                                                                               |                                   |                                                                   |             |                                |
|           | +               |                      |                        |                                                                 | X               |              |                                                        | 16                      |                                 |                |                                                              | lium dense, brown Silty SAND,                                                                                      | some                              | Σ                                                                 |             |                                |
|           | +               |                      |                        | 2D                                                              | H               | 2-4          | 24/6                                                   | 8-20-                   |                                 | -              | 2.0 Den                                                      | se, brown Silty fine SAND                                                                                          |                                   |                                                                   |             |                                |
| 1         | 1               |                      |                        |                                                                 | M               | ∠-4          | 24/0                                                   | 34-56                   |                                 |                | Den                                                          | SO, DIOWH SHLY IIIC SAND                                                                                           |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 | $\mathbb{N}$    |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           | T               |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
| 4         | 5               | - 5                  |                        | 3D                                                              |                 | 5-5          | 0/0                                                    | 25/0"                   |                                 | 1              |                                                              | Auger Refusal at 5.0 fee                                                                                           | t                                 |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              | (Probable Bedrock)                                                                                                 |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
|           |                 |                      |                        |                                                                 |                 |              |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   |                                                                   |             |                                |
| bou<br>be | undary<br>gradu | betwee<br>al. Wate   | n soil ty<br>r level r | ent approx<br>pes, trans<br>eadings ha                          | itions<br>ave b | s may<br>een |                                                        | _                       | _                               | _              | _                                                            |                                                                                                                    | _                                 |                                                                   | _           |                                |
| Flu       | ctuatio         | ons of gr            | oundwa                 | r condition<br>ater may or                                      | ccur            | due to       |                                                        |                         |                                 |                |                                                              |                                                                                                                    | r                                 |                                                                   |             | <b></b>                        |
| 5 me      |                 | tors thar<br>ments w |                        | present at<br>de.                                               | uie (i          | ше           |                                                        |                         |                                 |                |                                                              |                                                                                                                    |                                   | BORING N                                                          | 10.:        | B-109                          |

|                                                        |                                          | 1                                                                                                                                                    |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 | BORING LOG                                                                                                                                                                                                   | BORING<br>SHEET: | NO.: _        | <b>B-110</b><br>1 of 1                |
|--------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------------------|------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------------------------------------|
|                                                        | )                                        | S                                                                                                                                                    |                                                  |                                |                                                         | )<br>LE<br>g, in c     | d PF                                       | ROJECT: Ki                                                                 | ng F                            | Zeeland Maine<br>sh Maine, Inc. Aquaculture Facility<br>Sarvin Road, Jonesport, Maine                                                                                                                        | DATE ST          | ART:          | 19-1758.3<br>10/26/2020<br>10/26/2020 |
| LOCA<br>DRILL<br>RIG T<br>HAMM<br>HAMM<br>WATE<br>GENE | ING CO.<br>YPE: _T<br>IER TYP<br>IER EFF | See         Ex           rack         M           rack         M           E:         Au           ICIENC         DEP1           ICES:         ICES: | ploration<br>V. Cole E<br>ounted D<br>itomatic / | Explo<br>liedr<br>/ Aut<br>OR: | orations,<br>ich D-50<br>tomatic<br>0.995<br>oils wet b | LLC D<br>A<br>H        | RILLER:<br>UGER ID<br>AMMER<br>AMMER<br>/- | N (FT):49.<br>_Kevin Hanso<br>/OD:N/A / N<br>WEIGHT (Ibs);<br>DROP (inch): | :om<br>I/A<br>: <u>14</u><br>30 | DRILLING METHOD:       Cased Boring         SAMPLER:       Standard Split-Spoon         0 / 140       CASING ID/OD:       4 in / 4 1/2 in       C         30       Cased Boring       C       C              | -                | EL: <u>NC</u> | 2                                     |
|                                                        | YMBOLS:                                  | ∑ At<br>∑ At                                                                                                                                         | time of D                                        | on of                          | g<br>f Drilling                                         |                        | alled Tube                                 | Sample Rec. =<br>le bpf =                                                  | = Rec<br>Blows                  | wery LengthWOH = Weight of Hammer $q_U = Ur$ per FootRQD = Rock Quality Designation $\emptyset$ = Fri                                                                                                        | nconfined Com    | pressive      | Strength, kips/sq.                    |
| Elev.<br>(ft)                                          | Depth<br>(ft)                            | Casing<br>Pen.                                                                                                                                       | Sample                                           | e e                            | SAMPL<br>Depth                                          | E INFOF                | RMATION<br>Blow<br>Count                   | N<br>Field / Lab                                                           | Graphic Log                     | Sample<br>Description &                                                                                                                                                                                      | H₂0<br>Depth     |               | Remarks                               |
|                                                        | (11)                                     | (bpf)                                                                                                                                                | No.                                              | Typ                            | (ft)                                                    | Rec.<br>(in)<br>24/16  | or<br>RQD<br>1-1-2-6                       | Test Data                                                                  | Grap                            | Classification<br>Forest Duff                                                                                                                                                                                |                  |               |                                       |
| -                                                      | -                                        |                                                                                                                                                      | 2D                                               | X                              | 2-4                                                     | 24/16                  | 11-11-<br>14-15                            |                                                                            |                                 | 0.7 Medium dense, brown SAND, some grave<br>and silt                                                                                                                                                         |                  |               |                                       |
| 45 -                                                   | - 5<br>- 5                               |                                                                                                                                                      | 3D                                               | $\left[ \right]$               | 5-7                                                     |                        | 3-3-7-8                                    |                                                                            |                                 | 5.0 Medium dense, gray Sandy SILT, some gravel                                                                                                                                                               |                  |               |                                       |
| 40 -                                                   | -<br>-<br>- 10                           |                                                                                                                                                      | 1R<br>2R<br>3R                                   |                                | 7-8<br>8-8.9<br>8.9-12                                  | 12/10<br>11/8<br>37/34 | 0<br>45<br>62                              |                                                                            |                                 | 7.0 Bedrock; gray, very slightly weathered,<br>contact metamorphosed, mafic, VOLCANIC<br>ROCK, joints at 5°-20°, 30°, 80° from<br>horizontal, slight iron oxide staining along<br>joints (Edmunds Formation) | c                |               |                                       |
| -                                                      | -                                        |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 | with DIORITE intrusion                                                                                                                                                                                       |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 | Bottom of Exploration at 12.0 feet                                                                                                                                                                           |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
|                                                        |                                          |                                                                                                                                                      |                                                  |                                |                                                         |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
| bounda<br>be grad<br>made a                            | iry betwee<br>lual. Wate<br>at times an  | n soil ty<br>r level ro<br>d under                                                                                                                   | ent approx<br>pes, trans<br>eadings ha           | ition:<br>ave b<br>s sta       | s may<br>been<br>ited.                                  |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              |                  |               |                                       |
| Fluctua<br>other fa                                    | tions of gr                              | oundwa<br>those p                                                                                                                                    | ater may o<br>present at                         | ccur                           | due to                                                  |                        |                                            |                                                                            |                                 |                                                                                                                                                                                                              | BORING           | NO.:          | B-110                                 |

|                   |                           |                         |                          |                 |                        |               |           |                                  |               | BORIN           | NG LOG                                                                       |                      | BORING N            | 10.: _  | B-111                    |
|-------------------|---------------------------|-------------------------|--------------------------|-----------------|------------------------|---------------|-----------|----------------------------------|---------------|-----------------|------------------------------------------------------------------------------|----------------------|---------------------|---------|--------------------------|
| E                 | 2                         | C                       | W                        | 10              | $\gamma $              | ТГ            | 7         |                                  |               |                 |                                                                              |                      | SHEET:              | NO -    | 1 of 1                   |
|                   | -                         |                         | .W                       |                 |                        |               |           | CLIENT: King                     |               |                 | ne<br>nc. Aquaculture Facility                                               |                      | PROJECT<br>DATE ST/ | -       | 19-1758.3                |
|                   |                           | ΕN                      | GIN                      | ΕE              | ERIN                   | G,IN(         |           |                                  |               |                 | , Jonesport, Maine                                                           | _                    | DATE ST             |         | 10/26/2020<br>10/26/2020 |
| Desility          |                           |                         |                          |                 |                        |               |           |                                  |               |                 | ,                                                                            | _                    |                     |         |                          |
| LOCA              |                           | See Exp                 | oloration                |                 | ation Pla              |               |           | ION (FT):45.                     |               |                 | <b>TOTAL DEPTH (FT):</b> 8.0                                                 |                      | GGED BY:            | Brend   | dan Auth                 |
|                   |                           |                         |                          |                 | orations,<br>rich D-50 |               |           | R: Kevin Hanso<br>D/OD: 2 1/4 in |               | 5/8 in          | DRILLING METHOD: Hollow Si<br>SAMPLER: Standard Split-Spo                    |                      | uger                |         |                          |
|                   | IER TYP                   |                         |                          | leui            |                        |               |           | R WEIGHT (lbs)                   |               |                 | CASING ID/OD: N/A /N/A                                                       |                      | RE BARRE            | L: N/   | A                        |
|                   |                           |                         | Y FACT                   | OR:             | 0.995                  |               |           | R DROP (inch):                   | -             |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         | 'HS (ft):                | S               | Soils wet              | below 5' +    | -/-       |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   | RAL NO                    |                         | er Level                 |                 |                        | D = Split S   | noon Sa   | mole Pen                         | = Pen         | etration Length | WOR = Weight of Rods S <sub>v</sub>                                          | = Field              | Vane Shear          | Strengt | h kins/sa ft             |
|                   | YMBOLS:                   | ∑ At<br>∑ At            | time of D                | on of           | g<br>f Drilling        |               | alled Tu  | be Sample Rec.                   | = Rec<br>Blow |                 | WOH = Weight of Hammer $q_U$<br>RQD = Rock Quality Designation $\emptyset$ = | = Unco<br>= Friction |                     | ressive | Strength, kips/sq.ft     |
|                   |                           |                         |                          |                 | SAMPL                  | E INFO        | RMATIO    | ON                               | 0             |                 |                                                                              |                      |                     |         |                          |
| Elev.             | Depth                     | Casing                  |                          | Π               |                        | <b>D</b> (    | Blow      |                                  | Graphic Log   |                 | Sample                                                                       |                      | H₂0                 |         |                          |
| (ft)              | (ft)                      | Pen.<br>(bpf)           | Sample<br>No.            | ype             | Depth                  | Pen./<br>Rec. | Count     | Field / Lab                      | aphi          |                 | Description &<br>Classification                                              |                      | Depth               |         | Remarks                  |
|                   |                           |                         | No.                      |                 | (ft)                   | (in)          | or<br>RQD | Test Data                        | Q             |                 |                                                                              |                      |                     |         |                          |
| -                 | 1                         |                         | 1D                       | $\mathbf{N}$    | 0-2                    | 24/12         | 1-2-3-7   | 7                                |               | Fore            | st Duff                                                                      |                      |                     |         |                          |
| -                 | F                         |                         |                          | X               |                        |               |           |                                  |               |                 | ium dense to dense, red-brown Gr                                             | avelly               |                     |         |                          |
|                   | -                         |                         | 2D                       | H               | 2-4                    | 24/18         | 8-19-     |                                  |               | SAN             | D, some silt                                                                 |                      |                     |         |                          |
|                   | Ļ                         |                         |                          | Ŋ               | 2-4                    | 24/10         | 30-19     |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   | L                         |                         |                          | $\wedge$        |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
| -                 |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
| 40 -              | - 5                       |                         | 3D                       | $\square$       | 5-7                    | 24/16         |           | -                                |               | 5.0 Med         | ium dense, brown fine SAND, so                                               | ne sil               | t                   |         |                          |
| · ·               | -                         |                         |                          | X               |                        |               | 6         |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   | -                         |                         |                          | Д               |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 | Auger Refusal at 8.0 feet                                                    |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 | (Probable Bedrock)                                                           |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
|                   |                           |                         |                          |                 |                        |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
| Stratific         | ation lines               | repres                  | ent approx               | kimat           | te                     |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
| bounda<br>be grad | ry betwee<br>ual. Wate    | n soil ty<br>r level re | pes, trans<br>eadings ha | ition:<br>ave b | s may<br>been          |               |           |                                  |               |                 |                                                                              |                      |                     |         |                          |
| made a<br>Fluctua | t times an<br>tions of gr | d under<br>oundwa       | condition                | s sta<br>ccur   | ated.<br>due to        |               |           |                                  |               |                 |                                                                              | _                    |                     |         |                          |
| other fa          |                           | those p                 | present at               |                 |                        |               |           |                                  |               |                 |                                                                              |                      | Boring N            | Ю.:     | B-111                    |

|                                                             |                                                                      |                                                            |                                                                                     |                                 |                                            |                                                      |                                           |                                                                                           |                                      | BORING LOG                                                                                                                               |                       | RING NO.:<br>EET: | <b>B-112</b><br>1 of 1                         |
|-------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------------------------------------|
| Ę                                                           | ラ                                                                    |                                                            |                                                                                     | (<br>E E                        |                                            | )<br>Le<br>g, i n (                                  |                                           | PROJECT: Ki                                                                               | ng F                                 | Zeeland Maine<br>ish Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, Maine                                                   | PR                    |                   | . <u>19-1758.</u><br>: <u>10/26/202</u>        |
| .OCAT<br>DRILLI<br>RIG TY<br>IAMM<br>IAMM<br>VATEF<br>SENEF | ING CO.<br>YPE: <u>T</u><br>IER TYP<br>IER EFF<br>R LEVEI<br>RAL NOT | See Exp<br>rack Mo<br>E: Au<br>ICIENC<br>L DEPT<br>TES:    | Dioration<br>V. Cole E<br>Dounted Di<br>tomatic<br>Y FACTO<br>THS (ft):             | xplo<br>iedr                    | orations,<br>ich D-50<br>0.995<br>oils wet | LLC [<br>] / /<br>/<br>/<br>below 5' -               | DRILLEF<br>AUGER<br>HAMME<br>HAMME<br>+/- | ION (FT):40.4<br>R: _Kevin Hansc<br>ID/OD: _2 1/4 ir<br>R WEIGHT (Ibs):<br>R DROP (inch): | com<br>n / 5 :<br>: <u>1</u> 4<br>30 | DRILLING METHOD:       Hollow Ster         5/8 in       SAMPLER:       Standard Split-Spoon         0       CASING ID/OD:       N/A /N/A | m Auge<br>I<br>CORE I | BARREL:           | N/A                                            |
|                                                             | O NOTES<br>YMBOLS:                                                   | ⊈ At<br>⊈ At                                               | er <u>Level</u><br>time of Dr<br>Completic<br>ter Drilling                          | on of                           | )<br>Drilling                              | D = Split S<br>U = Thin V<br>R = Rock<br>V = Field V | Valled Tu<br>Core San                     | be Sample Rec. =<br>nple bpf =                                                            | = Rec<br>Blows                       | very LengthWOH = Weight of Hammer $q_U = U$ per FootRQD = Rock Quality Designation $\emptyset = F$                                       | Unconfin              | ed Compress       | ngth, kips/sq.ft.<br>ive Strength, kips<br>ed) |
| Elev.<br>(ft)                                               | Depth<br>(ft)                                                        | Casing<br>Pen.<br>(bpf)                                    | Sample<br>No.                                                                       | Type                            | SAMPL<br>Depth<br>(ft)                     | E INFO                                               | RMATIC<br>Blow<br>Count<br>or<br>RQD      | t Field / Lab<br>Test Data                                                                | Graphic Log                          | Sample<br>Description &<br>Classification                                                                                                |                       | H₂0<br>Depth      | Remarks                                        |
| 40 —                                                        | -<br>-<br>-                                                          |                                                            | 1D                                                                                  | X                               | 0-2                                        | 24/18                                                | 3-1-6-                                    | 6                                                                                         |                                      | Forest Duff<br>1.0 Medium dense, brown Gravelly SAND, so<br>gravel and silt                                                              | ome                   |                   |                                                |
| -<br>-<br>35 —<br>-                                         | - 5                                                                  |                                                            | 3D                                                                                  | X                               | 2-4<br>5-7                                 | 24/18                                                | 8-8-16<br>19<br>8-13-<br>12-9             |                                                                                           |                                      | <sup>15.0</sup> Medium dense, brown Sandy SILT                                                                                           |                       |                   |                                                |
| -<br>-<br>30 —<br>-                                         | -<br>-<br>-<br>-<br>-                                                |                                                            | 4D                                                                                  | X                               | 10-12                                      | 24/24                                                | 3-5-7-                                    | 7                                                                                         |                                      | 10.0 Medium dense, brown fine SAND, some silt with occasional silt layers                                                                | e                     |                   |                                                |
| -<br>-<br>25 —<br>-                                         | -<br>-<br>-<br>-<br>-                                                |                                                            | 5D                                                                                  | X                               | 15-17                                      | 24/18                                                | 8-7-13<br>14                              | -                                                                                         |                                      |                                                                                                                                          |                       |                   |                                                |
| -<br>-<br>20 —<br>-                                         | -<br>-<br>- 20                                                       |                                                            | 6D                                                                                  | X                               | 20-22                                      | 24/20                                                | 3-5-19<br>50                              | )-                                                                                        |                                      | with some gravel                                                                                                                         |                       |                   |                                                |
|                                                             | 1                                                                    | <u> </u>                                                   |                                                                                     |                                 |                                            | <u> </u>                                             | <u> </u>                                  |                                                                                           |                                      | Auger Refusal at 22.9 feet<br>(Probable Bedrock)                                                                                         |                       |                   |                                                |
| oundar<br>be gradu<br>nade at<br>fluctuat<br>other fac      | ry betwee<br>ual. Wate<br>t times an<br>tions of gr                  | n soil ty<br>r level re<br>id under<br>oundwa<br>i those p | ent approx<br>pes, transi<br>eadings ha<br>conditions<br>ter may oc<br>present at t | tions<br>ive b<br>s sta<br>ccur | s may<br>been<br>ited.<br>due to           |                                                      |                                           |                                                                                           |                                      |                                                                                                                                          | RO                    | RING NO.:         | B-112                                          |

|                            |                    |                   | TT                                                            | τ,           |                         | <b>.</b>                                             |                      |                                  |               | E           | BORIN                                                   | IG LOG                                                                    |                        | ORING N<br>HEET: | 0.: _         | <b>B-113</b><br>1 of 1                  |
|----------------------------|--------------------|-------------------|---------------------------------------------------------------|--------------|-------------------------|------------------------------------------------------|----------------------|----------------------------------|---------------|-------------|---------------------------------------------------------|---------------------------------------------------------------------------|------------------------|------------------|---------------|-----------------------------------------|
|                            |                    | 5                 | W                                                             |              |                         | )LE                                                  | <b>⊣</b> `           | CLIENT: King                     |               |             |                                                         |                                                                           |                        | ROJECT           | _             | 19-1758.3                               |
|                            |                    |                   |                                                               |              |                         | G,IN(                                                |                      | -                                |               |             |                                                         | nc. Aquaculture Facility                                                  |                        | ATE STA          | -             | 10/28/2020                              |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  | Jun           | G           | barvin Roau,                                            | , Jonesport, Maine                                                        | D                      | ATE FIN          | эп: _         | 10/28/2020                              |
| LOCA <sup>®</sup><br>DRILL | ING CO.            | See Ex<br>: _S. V | ploration<br>V. Cole E                                        | Expl         | cation Pla<br>orations, | LLC                                                  | DRILLE               | TION (FT):38.1<br>R:Kevin Hanso  | com           |             |                                                         | TOTAL DEPTH (FT):21.2<br>DRILLING METHOD:Hollow S                         | tem Aug                | GED BY:<br>ger   | Jeff M        | lcElroy                                 |
|                            |                    |                   |                                                               | Died         | rich D-50               |                                                      |                      | ID/OD: 2 1/4 in                  |               |             |                                                         | SAMPLER: Standard Split-Spo                                               |                        |                  |               | <u></u>                                 |
|                            |                    |                   | utomatic                                                      |              | 0.995                   |                                                      |                      | R WEIGHT (lbs)<br>R DROP (inch): | -             |             | )                                                       | CASING ID/OD: N/A /N/A                                                    | COR                    | EBARREL          | .: <u>N//</u> | 4                                       |
|                            |                    |                   |                                                               |              |                         | r observe                                            |                      |                                  | 00            |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | RAL NO             |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | O NOTES<br>YMBOLS: | ∑ At<br>▼ At      | <u>er Level</u><br>t time of D<br>t Completi<br>fter Drilling | on c         |                         | D = Split S<br>U = Thin V<br>R = Rock<br>V = Field V | Valled To<br>Core Sa | ube Sample Rec. =<br>mple bpf =  | = Rec<br>Blow | cov<br>/s p | tration Length<br>very Length<br>per Foot<br>e per Foot | WOH = Weight of Hammer q <sub>L</sub><br>RQD = Rock Quality Designation Ø | = Uncont<br>= Friction |                  | ressive       | n, kips/sq.ft.<br>Strength, kips/sq.ft. |
|                            |                    |                   |                                                               |              | SAMPL                   | E INFO                                               | RMATI                | ON                               |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| Elev.                      | Depth              | Casing            |                                                               | Τ            | -                       |                                                      | Blow                 |                                  | , ĽÓ          |             |                                                         | Sample                                                                    |                        | H <sub>2</sub> 0 |               |                                         |
| (ft)                       | (ft)               | Pen.<br>(bpf)     | Sample<br>No.                                                 | Type         | ( 7                     | Pen./<br>Rec.<br>(in)                                | Cour<br>or<br>RQE    | t Field / Lab<br>Test Data       | Graphic Log   |             |                                                         | Description & Classification                                              |                        | Depth            |               | Remarks                                 |
| _                          |                    |                   | 1D                                                            | N            | 0-2                     | 24/19                                                | 1-2-2-               | 3                                | $\vdash$      | +           | 0.5 Tops                                                | oil<br>e, red-brown Gravelly SAND, son                                    | o oilt                 | ~                |               |                                         |
|                            |                    |                   |                                                               | Ŵ            |                         |                                                      |                      |                                  |               |             | LOOS                                                    | e, red-blown Gravelly SAND, son                                           | ie siit                |                  |               |                                         |
| -                          | 1                  |                   | 2D                                                            |              | 2-4                     | 24/19                                                | 4-5-12               | 2-                               |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| -                          | 4                  |                   |                                                               | X            |                         |                                                      | 16                   |                                  |               | 4           | 2.5 Medi                                                | um dense, brown SAND, trace sil                                           | t                      |                  |               |                                         |
| 35 -                       |                    |                   |                                                               | $\square$    |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | - 5                |                   | 3D                                                            | $\mathbf{N}$ | 5-7                     | 24/14                                                | 10-6-0               | 6-                               |               |             | 5.5 Modi                                                |                                                                           |                        | _                |               |                                         |
| -                          | 1                  |                   |                                                               | X            |                         |                                                      | 8                    |                                  |               |             | iviedi                                                  | um dense, Sandy SILT                                                      |                        |                  |               |                                         |
| -                          | -                  |                   |                                                               | $\mu$        |                         |                                                      |                      |                                  |               |             |                                                         | th numerous cobbles                                                       |                        |                  |               |                                         |
| -                          |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             | wit                                                     | In numerous cooples                                                       |                        |                  |               |                                         |
| 30 -                       |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | Ē                  |                   |                                                               |              |                         |                                                      |                      |                                  |               | ę           |                                                         | um dense, varved Sandy SILT an                                            | d fine                 |                  |               |                                         |
| -                          | - 10               |                   | 4D                                                            |              | 10-12                   | 24/24                                                | 3-3-8-               | 6                                |               |             | SAN                                                     | D                                                                         |                        |                  |               |                                         |
| -                          | -                  |                   |                                                               | X            |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| -                          | 1                  |                   |                                                               | $\square$    |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | 1                  |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| 25 -                       | Γ                  |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| 25 -                       | }                  |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| -                          | - 15               |                   | 5D                                                            |              | 15-17                   | 24/24                                                | 7-8-9                | _                                |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| -                          | 1                  |                   |                                                               | Ŋ            | 13-17                   | 24/24                                                | 13                   | -                                |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            |                    |                   |                                                               | $ \rangle$   |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            | Γ                  |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| -                          | }                  |                   |                                                               |              |                         |                                                      |                      |                                  |               | +.          | 18.0 Dens                                               | se, probable brown Silty Gravelly                                         | SAND                   | -                |               |                                         |
| 20 -                       | 4                  |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         | cobbles (Glacial Till)                                                    |                        |                  |               |                                         |
| -                          | - 20               |                   | _                                                             |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| 2<br>2<br>-                | 1                  |                   | D                                                             |              | 20-20                   | 0/0                                                  | 25/0                 |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| 5                          | r                  | 1                 | 1                                                             | _            | I                       | I                                                    | 1                    |                                  | 1             |             |                                                         | Auger Refusal at 21.2 feet                                                |                        |                  |               |                                         |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         | (Probable Bedrock)                                                        |                        |                  |               |                                         |
| ,                          |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| 5                          |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
|                            |                    |                   |                                                               |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| Stratific                  | ation line         | s repres          | ent appro                                                     | xime         | ite                     | 1                                                    |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| bounda                     | ry betwee          | n sòil ty         | pes, trans                                                    | sitior       | is may                  |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| made a                     | t times ar         | d unde            | r condition<br>ater may o                                     | is st        | ated.                   |                                                      |                      |                                  |               |             |                                                         |                                                                           |                        |                  |               |                                         |
| other fa                   |                    | those             | present at                                                    |              |                         |                                                      |                      |                                  |               |             |                                                         |                                                                           | В                      | ORING N          | 0.:           | B-113                                   |

|                                                   |                                                                    |                                                                                                                     | TT.                                                     | T                                    |                                  |                                 |                                                     |                                                                            |                            | BORING LOG                                                                                                                                                   | BORING I<br>SHEET:                                                   |                | <b>B-114</b><br>1 of 2          |
|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------|---------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|---------------------------------|
|                                                   | ラ                                                                  | ΕN                                                                                                                  |                                                         | E E                                  | ERIN                             | )<br>G,IN(                      | <b></b>   PF                                        | ROJECT: Ki                                                                 | ng F                       | Zeeland Maine<br>sh Maine, Inc. Aquaculture Facility<br>arvin Road, Jonesport, Maine                                                                         | PROJECT<br>DATE ST<br>DATE FIN                                       | <b>ART</b> : 1 | 9-1758.<br>0/27/202<br>0/27/202 |
| .ocat<br>Rilli<br>Rig Ty<br>Iamm<br>Iamm<br>Vater | ING CO.<br>(PE:<br>ER TYP<br>ER EFF                                | See         Exp           :         _S. V           rack M           E:         _Au           ICIENC           DEPT | ploration<br>V. Cole<br>ounted [<br>itomatic<br>CY FACT | Explo<br>Diedr<br>/ Au<br><b>OR:</b> | 0.995                            |                                 | DRILLER:<br>AUGER ID<br>HAMMER<br>HAMMER            | DN (FT):36'<br>Kevin Hansc<br>/OD:N/A / N<br>WEIGHT (Ibs):<br>DROP (inch): | :om<br>I/A<br>: <u>1</u> 4 | DRILLING METHOD:         Cased Borin           SAMPLER:         Standard Split-Spoon           0/140         CASING ID/OD:         4 in / 4 1/2 in         C | OGGED BY:                                                            |                | Auth                            |
| KEY TO                                            | O NOTES<br>YMBOLS:                                                 | <u>Wate</u><br>⊈ At<br><b>⊈</b> At                                                                                  | er Level<br>time of D<br>Complet<br>ter Drilling        | ion o                                | g<br>f Drilling                  | U = Thin V<br>R = Rock          | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | e Sample Rec. =<br>le bpf =                                                | = Rec<br>Blows             | very LengthWOH = Weight of Hammer $q_U = U_U$ per FootRQD = Rock Quality DesignationØ = Fri                                                                  | eld Vane Shear<br>nconfined Com<br>ction Angle (Es<br>Not Applicable | pressive Stre  |                                 |
| Elev.<br>(ft)                                     | Depth<br>(ft)                                                      | Casing<br>Pen.<br>(bpf)                                                                                             | Sample<br>No.                                           | a<br>Type                            | SAMPL<br>Depth<br>(ft)           | E INFO<br>Pen./<br>Rec.<br>(in) | RMATION<br>Blow<br>Count<br>or<br>RQD               | N<br>Field / Lab<br>Test Data                                              | Graphic Log                | Sample<br>Description &<br>Classification                                                                                                                    | H <sub>2</sub> 0<br>Depth                                            | Re             | marks                           |
| 35 —                                              | -                                                                  |                                                                                                                     | 1D<br>2D                                                |                                      | 0-2<br>2-4                       | 24/12                           | 2-5-10-<br>10<br>8-10-<br>19-22                     |                                                                            |                            | 0.5 Forest Duff<br>Medium dense, red-brown Gravelly SAND<br>trace silt                                                                                       | ,                                                                    |                |                                 |
|                                                   | -<br>- 5<br>-                                                      |                                                                                                                     | 3D                                                      | Å                                    | 5-7                              | 24/18                           | 8-13-<br>16-19                                      |                                                                            |                            | 5.0 Medium dense, brown fine SAND, trace s                                                                                                                   | silt                                                                 |                |                                 |
| -<br>-<br>25 —<br>-                               | -<br>10<br>                                                        |                                                                                                                     | 4D                                                      | X                                    | 10-12                            | 24/20                           | 8-6-5-6                                             |                                                                            |                            |                                                                                                                                                              |                                                                      |                |                                 |
| -<br>20 —<br>-                                    | - 15<br>                                                           |                                                                                                                     | 5D                                                      | X                                    | 15-17                            | 24/20                           | 2-2-4-5                                             | w =21.3 %                                                                  |                            |                                                                                                                                                              |                                                                      |                |                                 |
| -<br>-<br>15 —<br>-                               | -<br>- 20<br>-                                                     |                                                                                                                     | 6D                                                      | X                                    | 20-22                            | 24/20                           | 1-4-4-3                                             |                                                                            |                            | with some gravel                                                                                                                                             |                                                                      |                |                                 |
| -<br>-<br>10 —                                    | -<br>- 25<br>-                                                     |                                                                                                                     | 7D                                                      | X                                    | 25-27                            | 24/20                           | 4-5-6-7                                             |                                                                            |                            |                                                                                                                                                              |                                                                      |                |                                 |
| oundar<br>e gradu<br>nade at<br>luctuat           | ation lines<br>ry betwee<br>ual. Wate<br>t times an<br>tions of gr | n soil ty<br>r level re<br>d under<br>oundwa                                                                        | pes, trans<br>eadings h<br>conditior                    | sition<br>ave t<br>ns sta<br>occur   | s may<br>been<br>ated.<br>due to |                                 |                                                     |                                                                            | <u>I</u>                   | (Continued Next Page)                                                                                                                                        | BORING                                                               |                | 3-114                           |

|               | S                       | W.<br>GINE                         | CC<br>Ceri                                         | DL<br>NG,IN                                                                                                                           |                                                                                                                                                               | PROJECT: Ki                                                                                                                                                                                                  | fish .<br>ng F                                                                                                                                                                                                                                           | Zeeland Maine<br>sh Maine, Inc. Aquaculture Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SHEET:<br>PROJEC <sup>-</sup><br>DATE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T NO<br>ART:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>B-114</b><br>2 of 2<br>19-1758.3<br>10/27/2020<br>10/27/2020                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-------------------------|------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft) | Casing<br>Pen.<br>(bpf) | Sample                             | n Dep                                              | th Pen./<br>Rec.                                                                                                                      | Blow<br>Count                                                                                                                                                 | Field / Lab                                                                                                                                                                                                  | raphic Log                                                                                                                                                                                                                                               | Sample<br>Description &<br>Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H₂0<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 30          |                         | 1R<br>2R                           | 30.<br>31.:                                        | 24/3<br>2- 60/59                                                                                                                      | RQD<br>70                                                                                                                                                     | qu = 19,250<br>psi<br>Unit Weight =<br>169.1 pcf                                                                                                                                                             |                                                                                                                                                                                                                                                          | cored through cobbles from 28.2 to 30.2 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | (ft)<br>- 30            | Depth (ft) Casing<br>Pen.<br>(bpf) | Depth (ft) Casing Pen. (bpf) Sample No. 1R - 30 2R | Depth Casing Pen. (bpf) Sample No. (ft) Casing Pen. SAM (ft) Casing Pen. No. (ft) Casing Pen. (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) | Depth<br>(ft)Casing<br>Pen.<br>(bpf)Sample<br>Sample<br>No.Depth<br>Pen./<br>(ft)Pen./<br>Rec.<br>(in)- 301R28.8-<br>30.824/3<br>30.8- 302R31.2-<br>36.260/59 | SAMPLE INFORMATIO       Depth (ft)     Casing Pen. (bpf)     Sample g     Depth (ft)     Pen. / Rec. (in)     Blow Count or RQD       - 30     1R     28.8-<br>30.8     24/3<br>30.8     24/3<br>30.9     70 | PROJECT: Ki<br>DOCATION: Casing<br>Pen.<br>(ft)Depth<br>(ft)Casing<br>Pen.<br>(bpf)Sample<br>g<br>Pen.<br>No.Depth<br>(ft)Pen./<br>Rec.<br>(in)Blow<br>Count<br>or<br>RQDField / Lab<br>Test Data- 301R28.8-<br>30.824/3<br>30.824/3<br>21.2-<br>36.2970 | SAMPLE INFORMATION       Organization         Casing Pen. (tp)       Sample of the pen. (tp)       Depth (ft)       Pen. / Rec. (in)       Blow Count or RQD       Field / Lab Test Data       organization         - 30       1R       28.8-<br>30.8       24/3<br>30.8       70       qu = 19,250 psi Unit Weight = 100 psi pci for for the pen prime prima prime prima prime prime prime prime prima prima prime | DOUNTING LOG         SUPERINGENER         Depth Casing Pen, (tr)       SAMPLE INFORMATION         Depth (tr)       Sample Pen, (tr)       Sample (tr)       Pen, (tr)       < | SAMPLE INFORMATION<br>(ft)       Biow<br>(ft)       Field / Lab<br>(ft)       0<br>(ft)       Field / Lab<br>(ft)       0<br>(ft)       0<br>(ft)       Sample<br>(ft)       Depth<br>(ft)       Pen./<br>(ft)       Biow<br>(ft)       Field / Lab<br>(ft)       0<br>(ft)       0<br>(ft)       0<br>(ft)       0<br>(ft)       Pen./<br>(ft)       Biow<br>(ft)       Field / Lab<br>(ft)       0<br>(ft)       < | SAMPLE INFORMATION       CLIENT: Kingfish Zeeland Maine<br>PROJECT: King Fish Maine, Inc. Aquaculture Facility<br>Location: Dun Garvin Road, Jonesport, Maine       PROJECT NO.<br>DATE START:<br>DATE START:<br>DATE FINISH:         Depth<br>(ft)       Sample g<br>No.       Depth<br>(ft)       Pen /<br>Rec.<br>(n)       Blow<br>Count<br>RQD       Field / Lab<br>Test Data       0<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: B-114

|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                | BORIN                                                        | NG LOG                                                                                                             |                                  | BORING N<br>SHEET:                                                | NO.: _        | <b>B-115</b><br>1 of 1 |
|-------------------|-------------------------|----------------------|----------------------------------------------------------|-------------------------|------------------------|---------------|-----------------------|-----------------------------------|----------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|---------------|------------------------|
|                   |                         | S                    | $\mathbf{X}$                                             | (                       | $\mathbb{C}\mathbb{C}$ |               | -                     | CLIENT: King                      | fish           | Zeeland Mai                                                  | ne                                                                                                                 |                                  | PROJECT                                                           | ' NO.         | 19-1758.3              |
|                   | $\overline{}$           |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              | nc. Aquaculture Facility                                                                                           |                                  | DATE ST                                                           |               | 10/29/2020             |
|                   |                         | ΙΕΝ                  | GIN                                                      | Εt                      | ERIN                   | G, ING        | <u> </u>              | OCATION: _[                       | Dun            | Garvin Road                                                  | , Jonesport, Maine                                                                                                 |                                  | DATE FIN                                                          | IISH:         | 10/29/2020             |
|                   | ng Info<br>FION: _      |                      |                                                          | Loc                     | cation Pla             | in I          | ELEVAT                | ION (FT): 35.8                    | 8' +/-         |                                                              | TOTAL DEPTH (FT): 21.2                                                                                             | LC                               | GGED BY:                                                          | Kevin         | Hanscom                |
|                   |                         |                      |                                                          |                         | orations,              |               |                       | R: Kevin Hanso                    |                |                                                              |                                                                                                                    | v Stem /                         | Auger                                                             |               |                        |
|                   |                         |                      |                                                          | )ied                    | rich D-50              |               |                       | D/OD: 2 1/4 ir                    |                |                                                              | SAMPLER: Standard Split-S                                                                                          |                                  |                                                                   |               |                        |
|                   | ER TYP                  |                      |                                                          |                         | 0.995                  |               |                       | R WEIGHT (lbs):<br>R DROP (inch): |                | 10                                                           | CASING ID/OD: N/A /N/A                                                                                             |                                  | ORE BARRE                                                         | L: <u>N//</u> | 4                      |
|                   |                         |                      |                                                          |                         |                        |               |                       | urated below 10                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | RAL NO                  |                      |                                                          | _                       |                        |               | ,                     |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | O NOTES<br>YMBOLS:      | ∑ At<br>∑ At         | er <u>Level</u><br>time of D<br>Completi<br>ter Drilling | on o                    | ig<br>of Drilling      |               | Valled Tu<br>Core San | be Sample Rec. =<br>ple bpf =     | = Rec<br>Blows | etration Length<br>overy Length<br>s per Foot<br>te per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | q <sub>∪</sub> = Uno<br>Ø = Fric | ld Vane Shear<br>confined Comp<br>tion Angle (Es<br>ot Applicable | oressive      | Strength, kips/sq.ft.  |
|                   |                         |                      |                                                          |                         | SAMPL                  | E INFO        | RMATIO                | ON                                | 5              |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| Floy              | Donth                   | Casing               |                                                          | Т                       |                        |               | Blow                  |                                   | Graphic Log    |                                                              | Sample                                                                                                             |                                  | H₂0                                                               |               |                        |
| Elev.<br>(ft)     | Depth<br>(ft)           | Pen.<br>(bpf)        | Sample<br>No.                                            | e le                    | Depth                  | Pen./<br>Rec. | Count                 |                                   | phic           |                                                              | Description &<br>Classification                                                                                    |                                  | Depth                                                             |               | Remarks                |
|                   |                         | ()                   | No.                                                      | F                       | (ft)                   | (in)          | or<br>RQD             | Test Data                         | Gra            |                                                              | Classification                                                                                                     |                                  |                                                                   |               |                        |
|                   |                         |                      | 1D                                                       | +                       | 0-2                    | 24/12         | 2-6-10                | _                                 |                |                                                              | oil                                                                                                                |                                  |                                                                   |               |                        |
| 35 —              | -                       |                      |                                                          | Ŋ                       | 0-2                    |               | 6                     | -                                 |                | 10.4                                                         | e, gray Silty fine SAND                                                                                            |                                  |                                                                   |               |                        |
| -                 |                         |                      |                                                          | $\mathbb{N}$            |                        |               |                       |                                   |                | Med                                                          | ium dense, brown fine to mediu                                                                                     | m SANI                           | D,                                                                |               |                        |
|                   | Γ                       |                      | 2D                                                       | $\overline{\mathbf{N}}$ | 2-4                    | 24/18         | 7-11-                 |                                   |                | trace                                                        | silt                                                                                                               |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          | X                       |                        |               | 16-21                 |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          | $\mu$                   | 4                      |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | - 5                     |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              | ium dense, brown SAND and G                                                                                        | RAVEL                            | ,                                                                 |               |                        |
| 20                |                         |                      | 3D                                                       | $\mathbb{N}$            | 5-7                    | 24/21         | 11-16                 |                                   |                | 5.5 Med                                                      |                                                                                                                    | <u> </u>                         |                                                                   |               |                        |
| 30 -              | -                       |                      |                                                          | IX                      |                        |               | 16-15                 |                                   |                | Ivied                                                        | ium dense, gray Silty fine SANE                                                                                    | J                                |                                                                   |               |                        |
| -                 | -                       |                      |                                                          | $\mu$                   | 4                      |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | Γ                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | - 10                    |                      | 4D                                                       |                         | 10-12                  | 24/20         | 7-9-9-                |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| 25 -              |                         |                      | 40                                                       | N                       | 10-12                  | 24/20         | 10                    |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          | Μ                       |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | -                       |                      |                                                          | F                       |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | Ļ                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                | 14.5 Den                                                     | se, gray Silty SAND and GRAV                                                                                       | =1                               |                                                                   |               |                        |
|                   | - 15                    |                      | 5D                                                       | $\overline{\Lambda}$    | 15-17                  | 24/18         | 21-34                 |                                   |                | Den                                                          |                                                                                                                    |                                  |                                                                   |               |                        |
| 20 -              | -                       |                      |                                                          | X                       |                        |               | 26-31                 |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | -                       |                      |                                                          | $\square$               |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | F                       |                      |                                                          |                         |                        |               |                       |                                   |                | 18.0 Den:                                                    | se, gray Silty fine SAND                                                                                           |                                  |                                                                   |               |                        |
| <br>1             | -                       |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| -                 | - 20                    |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| 15 –              |                         |                      | 6D                                                       | X                       | 20-21.2                | 14/8          | 8-30-                 |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   | Γ                       |                      |                                                          | <u> </u>                | N                      |               |                       |                                   |                |                                                              | Auger Refusal at 21.2 feet                                                                                         |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              | (Probable Bedrock)                                                                                                 |                                  |                                                                   |               |                        |
| 1                 |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| 2                 |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
|                   |                         |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| bounda            | ry betwee               | n sòil ty            | ent approz<br>pes, trans                                 | ition                   | ns may                 |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| be grad<br>made a | ual. Wate<br>t times an | r level n<br>d under | eadings ha                                               | ave<br>is sta           | been<br>ated.          |               |                       |                                   |                |                                                              |                                                                                                                    |                                  |                                                                   |               |                        |
| Fluctua           | tions of gr             | oundwa               | ater may o<br>present at                                 | ccur                    | r due to               |               |                       |                                   |                |                                                              |                                                                                                                    | I                                | DODULO                                                            |               | D 445                  |
|                   | ements w                |                      |                                                          |                         |                        |               |                       |                                   |                |                                                              |                                                                                                                    |                                  | BORING N                                                          | NO.:          | B-115                  |

|                                                    |                                                                                    | S                                                  |                                                                    |                              | CC                                          | )<br>LE                         |                                          |                                                                                                                                                          | fish                  | BORING LOG<br>Zeeland Maine<br>ish Maine, Inc. Aquaculture Facility                                 | BORING NO.:<br>SHEET:<br>PROJECT NO<br>DATE START                                   | 1 of 1<br>19-1758.3                   |
|----------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------------------|---------------------------------------------|---------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|
|                                                    | ng Info                                                                            | rmatio                                             | on                                                                 |                              |                                             |                                 |                                          |                                                                                                                                                          |                       | Garvin Road, Jonesport, Maine                                                                       | DATE FINISH                                                                         |                                       |
| DRILL<br>RIG T`<br>HAMN<br>HAMN                    | ING CO.<br>YPE: _⊤<br>IER TYP<br>IER EFF                                           | : <u>S.</u> V<br>rack Me<br>E: <u>Au</u><br>ICIENC | V. Cole E<br>ounted D<br>itomatic                                  | Expl<br>Died                 | cation Pla<br>lorations,<br>lrich D-50<br>: | LLC [<br>/<br>                  | DRILLER:<br>AUGER II<br>HAMMER<br>HAMMER | ON (FT):         19.           :         Kevin Hansc           D/OD:         2 1/4 ir           :         WEIGHT (lbs):           :         DROP (inch): | :om<br>1 / 5 :<br>:14 | DRILLING METHOD:         Hollow Stem           5/8 in         SAMPLER:         Standard Split-Spoon | OGGED BY: <u>Je</u><br>Auger<br>ORE BARREL:                                         | · · · · · · · · · · · · · · · · · · · |
| KEY T                                              | RAL NO<br>O NOTES<br>YMBOLS:                                                       | <u>Wate</u><br>⊻ At<br>▼ At                        | er Level<br>time of D<br>Completi<br>ter Drilling                  | on c                         | ng<br>of Drilling                           |                                 | Valled Tub<br>Core Sam                   | e Sample Rec. =<br>ple bpf =                                                                                                                             | = Rec<br>Blows        | very LengthWOH = Weight of Hammer $q_U$ = Urper FootRQD = Rock Quality DesignationØ = Fri           | eld Vane Shear Stre<br>aconfined Compress<br>ction Angle (Estimat<br>Not Applicable | ive Strength, kips/sq.ft.             |
| Elev.<br>(ft)                                      | Depth<br>(ft)                                                                      | Casing<br>Pen.<br>(bpf)                            | Sample<br>No.                                                      | Type                         |                                             | E INFO<br>Pen./<br>Rec.<br>(in) | RMATIO<br>Blow<br>Count<br>or<br>RQD     | N<br>Field / Lab<br>Test Data                                                                                                                            | Graphic Log           | Sample<br>Description &<br>Classification                                                           | H₂0<br>Depth                                                                        | Remarks                               |
| · ·                                                | -                                                                                  |                                                    | 1D<br>2D                                                           |                              | 0-2<br>2-4                                  | 24/21                           | 1-5-10-<br>11<br>8-7-8-8                 |                                                                                                                                                          |                       | Topsoil<br>0.7 Medium dense, red-brown Gravelly SAND,<br>some silt                                  |                                                                                     |                                       |
| -<br>15 –                                          | <br><br>5                                                                          |                                                    | 3D                                                                 | X                            | 5-7                                         | 24/19                           | 3-6-10-<br>10                            |                                                                                                                                                          |                       | 3.0 Medium dense, brown SAND, trace silt and<br>gravel                                              | 1                                                                                   |                                       |
| 10 -                                               | -<br><br>                                                                          |                                                    |                                                                    | Λ                            |                                             |                                 |                                          |                                                                                                                                                          |                       | 6.2 Medium dense, brown Gravelly Silty SANE                                                         | )                                                                                   |                                       |
| .                                                  | 10<br><br>                                                                         |                                                    | 4D                                                                 |                              | 10-12                                       | 24/12                           | 10-10-<br>10-17                          | w =11.3 %                                                                                                                                                |                       |                                                                                                     |                                                                                     |                                       |
| 5 -                                                | <br><br>15<br>                                                                     |                                                    | 5D                                                                 | X                            | 15-16.4                                     | 17/12                           | 9-17-<br>50/5"                           |                                                                                                                                                          |                       |                                                                                                     |                                                                                     |                                       |
|                                                    |                                                                                    |                                                    |                                                                    |                              | I                                           |                                 |                                          |                                                                                                                                                          |                       | Auger Refusal at 16.8 feet<br>(Probable Bedrock)                                                    |                                                                                     |                                       |
|                                                    |                                                                                    |                                                    |                                                                    |                              |                                             |                                 |                                          |                                                                                                                                                          |                       |                                                                                                     |                                                                                     |                                       |
|                                                    |                                                                                    |                                                    |                                                                    |                              |                                             |                                 |                                          |                                                                                                                                                          |                       |                                                                                                     |                                                                                     |                                       |
| bounda<br>be grad<br>made a<br>Fluctua<br>other fa | ation lines<br>ry betwee<br>lual. Wate<br>t times ar<br>tions of gr<br>actors thar | n soil ty<br>r level re<br>ounder<br>oundwa        | pes, trans<br>eadings har<br>condition<br>iter may o<br>present at | itior<br>ave<br>is st<br>ccu | ns may<br>been<br>ated.<br>r due to         |                                 |                                          |                                                                                                                                                          |                       |                                                                                                     | BORING NO.:                                                                         | B-116                                 |

BORING / WELL 19-1758.3.GPJ SWCE TEMPLATE.GDT 1/2/21

|                                                    |                                                     | S                                                                        |                                                                                               | E E R                                     |                             |                          | - PF                                               |                                                                                              | fish<br>ng F        | Zeeland Mai<br>ïsh Maine, Ir                                 | ne<br>nc. Aquaculture Facility<br>, Jonesport, Maine                                                                       |                                 | BORING N<br>SHEET:<br>PROJECT<br>DATE ST<br>DATE FIN               | " NO<br>ART: _ | <b>B-117</b><br>1 of 1<br>19-1758.3<br>10/28/2020<br>10/28/2020 |
|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|--------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|----------------|-----------------------------------------------------------------|
| Loca<br>Drill<br>Rig t<br>Hamn<br>Hamn<br>Wate     | LING CO<br>YPE: _]<br>MER TYI<br>MER EFI            | See Ex<br>.: <u>S. V</u><br>rack M<br>PE: <u>Au</u><br>FICIENC<br>EL DEP | on_<br>ploration<br>V. Cole E<br>lounted Di<br>utomatic<br>CY FACTC<br>THS (ft):              | xplora<br>edrich<br>DR: _0                | tions, L<br>n D-50<br>).995 | <u>LC</u><br><br><br>H   | Driller:<br>Auger ID<br>Iammer<br>Iammer           | DN (FT): <u>16.6</u><br>Kevin Hansc<br>/OD: <u>2 1/4 ir</u><br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 !<br>14 | 5/8 in                                                       | TOTAL DEPTH (FT): 5.2<br>DRILLING METHOD: Holic<br>SAMPLER: Standard Split-<br>CASING ID/OD: N/A /N/A                      | w Stem                          | DGGED BY:<br>Auger<br>DRE BARRE                                    |                |                                                                 |
|                                                    | O NOTES<br>SYMBOLS                                  | : ⊻ Ai<br>▼ Ai                                                           | <u>er Level</u><br>t time of Dr<br>t Completic<br>fter Drilling                               | n of Dr                                   | l<br>rilling F              | J = Thin W<br>R = Rock ( | poon Sam<br>/alled Tube<br>Core Samp<br>/ane Shear | e Sample Rec. =<br>le bpf = I                                                                | Rec<br>Blows        | etration Length<br>overy Length<br>s per Foot<br>te per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector         | q <sub>u</sub> = Un<br>Ø = Fric | Id Vane Shear<br>confined Comp<br>tion Angle (Es<br>lot Applicable | oressive       | Strength, kips/sq.ft                                            |
| Elev.<br>(ft)                                      | Depth<br>(ft)                                       | Casing<br>Pen.<br>(bpf)                                                  | Sample<br>No.                                                                                 | Type<br>D                                 | epth<br>(ft)                | Pen./<br>Rec.<br>(in)    | RMATIO<br>Blow<br>Count<br>or<br>RQD               | N<br>Field / Lab<br>Test Data                                                                | Graphic Log         |                                                              | Sample<br>Description &<br>Classification                                                                                  |                                 | H₂0<br>Depth                                                       |                | Remarks                                                         |
| 15 -                                               | -<br>-<br>-<br>-<br>-<br>-                          |                                                                          | 1D<br>2D                                                                                      | X                                         | 0-2<br>2-4                  | 24/21<br>24/20           | 1-2-6-<br>12<br>11-26-<br>27-16                    |                                                                                              |                     | 1.5 Med<br>2.5 Dens                                          | ium dense, light brown Silty S<br>ium dense, dark brown Sandy<br>se, red-brown Silty SAND<br>se, brown Silty Gravelly SAND | SILT                            |                                                                    |                |                                                                 |
|                                                    | - 5                                                 |                                                                          |                                                                                               | × 5                                       | 5-5.3                       | 3/2                      | \_50/3" <i>[</i>                                   |                                                                                              |                     |                                                              | Auger Refusal at 5.2 fee<br>(Probable Bedrock)                                                                             | t                               |                                                                    |                |                                                                 |
|                                                    |                                                     |                                                                          |                                                                                               |                                           |                             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 |                                                                    |                |                                                                 |
|                                                    |                                                     |                                                                          |                                                                                               |                                           |                             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 |                                                                    |                |                                                                 |
|                                                    |                                                     |                                                                          |                                                                                               |                                           |                             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 |                                                                    |                |                                                                 |
|                                                    |                                                     |                                                                          |                                                                                               |                                           |                             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 |                                                                    |                |                                                                 |
|                                                    |                                                     |                                                                          |                                                                                               |                                           |                             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 |                                                                    |                |                                                                 |
| bounda<br>be grad<br>made a<br>Fluctua<br>other fa | ary betwe<br>dual. Wat<br>at times a<br>ations of g | en soil ty<br>er level r<br>nd unde<br>roundwa<br>n those j              | ent approx<br>pes, transi<br>eadings ha<br>r conditions<br>ater may oc<br>present at t<br>de. | tions m<br>ve beei<br>s stated<br>cur due | n<br>1.<br>e to             |                          |                                                    |                                                                                              |                     |                                                              |                                                                                                                            |                                 | BORING I                                                           | NO.:           | B-117                                                           |

|                   |                         |                         |                           |                 |                 |                       |                            |                                         |                | BORING LOG                                                                                                            | BORING NO.<br>SHEET: | : <b>B-118</b><br>1 of 1   |
|-------------------|-------------------------|-------------------------|---------------------------|-----------------|-----------------|-----------------------|----------------------------|-----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|
|                   |                         | S                       | W                         | 1(              | $\neg \bigcirc$ | N F                   | $\overline{}$              | CLIENT: King                            | fish           | Zeeland Maine                                                                                                         |                      |                            |
|                   | フ                       |                         |                           |                 | ERIN            |                       | - I I I                    |                                         |                | sh Maine, Inc. Aquaculture Facility                                                                                   | DATE STAR            |                            |
|                   |                         | IEN                     | GIN                       | Εſ              | 2 K I IN        | G, IN C               | <u> </u>                   | OCATION: _[                             | Dun            | Garvin Road, Jonesport, Maine                                                                                         |                      | <b>1</b> : 10/29/2020      |
| LOCA              |                         | See Ex                  | ploration                 |                 | cation Pla      |                       |                            | <b>ON (FT):</b> 46.                     |                |                                                                                                                       | .OGGED BY: Ke        | evin Hanscom               |
|                   |                         |                         |                           |                 | orations,       |                       |                            | Kevin Hanso                             |                | DRILLING METHOD: Hollow Sten                                                                                          | Auger                |                            |
|                   |                         |                         | utomatic                  | Jiea            | rich D-50       |                       |                            | D/OD: <u>2 1/4 in</u><br>R WEIGHT (Ibs) |                |                                                                                                                       | ORE BARREL:          | N/A                        |
| HAMN              | IER EFF                 |                         | CY FACT                   |                 |                 | H                     | HAMMER                     | R DROP (inch):                          |                |                                                                                                                       |                      |                            |
|                   |                         |                         | THS (ft):                 | Ţ               | 0 ft wat        | ter at grou           | und surfa                  | ace                                     |                |                                                                                                                       |                      |                            |
|                   | RAL NO                  |                         | er Level                  |                 |                 | D = Split S           | Snoon Sar                  | nnle Pen :                              | = Pen          | etration Length WOR = Weight of Rods $S_v = F$                                                                        | eld Vane Shear Stre  | enath kins/sa ft           |
| AND S             | YMBOLS:                 | ∑ At<br>▼ At            | t time of D               | on o            | g<br>f Drilling | U = Thin V            | Valled Tul<br>Core Sarr    | ple Sample Rec.                         | = Rec<br>Blows | worry Length         WOH = Weight of Hammer $q_U = U$ per Foot         RQD = Rock Quality Designation         Ø = Fit |                      | sive Strength, kips/sq.ft. |
|                   |                         |                         |                           |                 | SAMPL           | E INFO                | RMATIC                     | N                                       | бc             |                                                                                                                       |                      |                            |
| Elev.<br>(ft)     | Depth<br>(ft)           | Casing<br>Pen.<br>(bpf) | Sample<br>No.             | Type            | Depth<br>(ft)   | Pen./<br>Rec.<br>(in) | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data                | Graphic Log    | Sample<br>Description &<br>Classification                                                                             | H₂0<br>Depth         | Remarks                    |
|                   | -                       |                         | 1D                        |                 | 0-2             | 24/7                  | WOH-                       |                                         | -              | Topsoil                                                                                                               | <u> </u>             |                            |
| 45 -              | ŀ                       |                         |                           | X               |                 |                       | WOH-<br>4-6                |                                         |                | 1.0 Medium dense to loose, brown Silty Grave                                                                          |                      |                            |
|                   | -                       |                         | 20                        | А               | 24              | 24/22                 |                            |                                         |                | SAND                                                                                                                  | , in y               |                            |
|                   | _                       |                         | 2D                        | N               | 2-4             | 24/22                 | 8-18-<br>23-20             |                                         |                |                                                                                                                       |                      |                            |
|                   |                         |                         |                           | $\wedge$        |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| -                 | ſ                       |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | - 5                     |                         | 3D                        | $\nabla$        | 5-7             | 24/24                 | 3-2-1-3                    | 3                                       |                |                                                                                                                       |                      |                            |
| 40 -              | ł                       |                         |                           | X               |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | -                       |                         | 4D                        | $\mathbb{H}$    | 7-9             | 24/24                 | 3-3-5-5                    | 5                                       |                | 7.0 Medium dense, brown Gravelly SAND, so                                                                             | me                   |                            |
|                   | -                       |                         |                           | X               |                 |                       |                            |                                         |                | 7.5 silt                                                                                                              |                      |                            |
|                   | -                       |                         |                           | μ               |                 |                       |                            |                                         |                | Loose, gray Sandy SILT, trace clay                                                                                    |                      |                            |
|                   | - 10                    |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   |                         |                         | 5D                        | M               | 10-12           | 24/24                 | 2-3-2-3                    | 3                                       |                |                                                                                                                       |                      |                            |
| 35 -              | 1                       |                         |                           | Μ               |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | f                       |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | ł                       |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | -                       |                         |                           |                 |                 |                       |                            |                                         | -              | 14.0 Loose, gray Silty fine SAND                                                                                      |                      |                            |
|                   | - 15                    |                         | 6D                        |                 | 15-17           | 24/24                 | WOR-                       |                                         |                |                                                                                                                       |                      |                            |
| 30 -              | -                       |                         |                           | X               | 10 11           |                       | WOR-<br>18-23              |                                         |                | 16.0 Medium dense, gray Gravelly Silty SAND                                                                           |                      |                            |
|                   | _                       |                         |                           | Δ               |                 |                       | 10-23                      |                                         |                | (Glacial Till)                                                                                                        |                      |                            |
|                   | _                       |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | 「                       |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   | - 20                    |                         | 7D                        | X               | 20-21.1         | 13/13                 | 12-13-                     |                                         |                |                                                                                                                       |                      |                            |
| <u>نا</u>         | <u> </u>                |                         |                           |                 |                 |                       | 50/1"                      |                                         |                | Auger Refusal at 21.1 feet                                                                                            |                      |                            |
|                   |                         |                         |                           |                 |                 |                       |                            |                                         |                | (Probable Bedrock)                                                                                                    |                      |                            |
| L<br>L            |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
|                   |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| 2                 |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| 2.00              |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| 6                 |                         |                         |                           |                 |                 |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| bounda            | ry betwee               | n soil ty               | ent appro:<br>/pes, trans | sition          | is may          |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| be grad<br>made a | ual. Wate<br>t times ar | r level r<br>id under   | eadings h<br>r condition  | ave l<br>is sta | been<br>ated.   |                       |                            |                                         |                |                                                                                                                       |                      |                            |
| other fa          |                         | those p                 | ater may o<br>present at  |                 |                 |                       |                            |                                         |                |                                                                                                                       | BORING NO.           | : B-118                    |
| measu             | Cinents W               | cie illa                | u <del>.</del> .          |                 |                 | 1                     |                            |                                         |                |                                                                                                                       |                      | 2.10                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            | BORING LOG                                                    |               |                    |                                                                                                         |                   | BORING N<br>SHEET:           | <b>B- 1</b><br>1 of 1 |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------|--------------|----------------------------|---------------------------------------------------------------|---------------|--------------------|---------------------------------------------------------------------------------------------------------|-------------------|------------------------------|-----------------------|------------|
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | C                                            | XI/                                    | CC                                              | N F          | С                          | -IENT: Gartl                                                  | ev 8          | Dorsky End         | ineering & Surveying                                                                                    |                   | PROJECT                      | NO.                   | 19-1758.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                   |                                              |                                        |                                                 |              |                            |                                                               |               |                    | Maine, Inc. Aquaculture Facili                                                                          |                   | DATE ST                      | _                     | 2/5/2020   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | EN                                           | GINE                                   | LEKIN                                           | G,INC.       |                            | DCATION: 9                                                    | Dur           | n Garvin Roa       | ad, Jonesport, ME                                                                                       |                   | DATE FIN                     | ISH: _                | 2/5/2020   |
| LOCA <sup>®</sup><br>DRILL<br>RIG T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ING CO.:                                            | See Exp<br>S. V<br>ack M                     | oloration I<br>/. Cole Ex<br>ounted Di | Location Pla<br>xplorations,<br>edrich D-50     | LLC DRI      | LLER:<br>GER ID            | N (FT):51.9<br>_Kevin Hansco<br>/OD:2 1/4 in<br>WEIGHT (Ibs): | om<br>  / 5 5 | 5/8 in             | TOTAL DEPTH (FT): 2.5<br>DRILLING METHOD: Hollow<br>SAMPLER: Standard Split-S<br>CASING ID/OD: N/A /N/A | v Stem Av<br>poon | GGED BY:<br>uger<br>RE BARRE |                       |            |
| НАММ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IER EFFI                                            | CIENC                                        | Y FACTO                                | DR: 0.98                                        | HAI          | MMER                       | DROP (inch):                                                  | 30            |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R LEVEL                                             |                                              | • •                                    |                                                 | water observ | ed                         |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        | 'W, refusal                                     |              | on Samr                    | ole Pen =                                                     | Pon           | atration Length    | WOR = Weight of Rods                                                                                    | S = Field         | Vane Shear                   | Strength              | kins/sa ft |
| KEY TO NOTES<br>AND SYMBOLS:       Water Level<br>X Att me of Drilling<br>X At Completion of Drilling       D = Split Spoon Sample<br>U = Thin Walled Tube Sample<br>R = Rock Core Sample<br>V = Field Vane Shear       Pen. = Penetration Length<br>Rec. = Recovery Length<br>bpf = Blows per Foot<br>mpf = Minute per Foot       WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector       S <sub>v</sub> = Field Vane Shear Strength, kips/sq.ft. |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              | Strength, kips/sq.ft. |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        | SAMPL                                           | E INFORM     | IATION                     | N                                                             | Б<br>Б        |                    |                                                                                                         |                   |                              |                       |            |
| Elev.<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth<br>(ft)                                       | Casing<br>Pen.<br>(bpf)                      | Sample<br>No.                          | e Depth<br>⊢ (ft)                               | Rec.         | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data                                      | Graphic Log   |                    | Sample<br>Description &<br>Classification                                                               |                   | H₂0<br>Depth                 |                       | Remarks    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              | 1D                                     | 0-2                                             | 24/9 1-      | -1-4-8                     |                                                               |               | 0.4 ─ Very<br>orga | loose, dark brown, Sandy SILT                                                                           | with              | r I                          |                       |            |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-<br>1-                                            |                                              |                                        | Й                                               |              |                            |                                                               |               | Loos               | e to medium dense, dark brown<br>D, some gravel                                                         | , Silty           |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    | Auger Refusal at 2.5 feet<br>(Probable Bedrock)                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                              |                                        |                                                 |              |                            |                                                               |               |                    |                                                                                                         |                   |                              |                       |            |
| bounda<br>be grad<br>made a<br>Fluctua                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ry betwee<br>ual. Wate<br>t times an<br>tions of gr | n soil ty<br>r level re<br>d under<br>oundwa |                                        | tions may<br>ve been<br>s stated.<br>cur due to |              |                            |                                                               |               |                    |                                                                                                         | -                 |                              |                       |            |
| other fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctors than                                          | those p                                      | resent at the                          | ne time                                         |              |                            |                                                               |               |                    |                                                                                                         |                   | BORING N                     | 10.:                  | B- 1       |

|                                                             | _                                                                                        |                                                                                                                                                               |                                                                      |                |                                  |                                                        |                                          |                                                                                    |                               | BORING LOG                                                                                                                                                             | BORING                                 |                           | B-2                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|----------------------------------|--------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|-----------------------------------------------|
| S.W.COLE<br>Engineering, inc.                               |                                                                                          |                                                                                                                                                               |                                                                      |                |                                  |                                                        | - P                                      | ROJECT: Pr                                                                         | ey &<br>opo:                  | Dorsky Engineering & Surveying<br>ed Kingfish Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, ME                                                           | SHEET:<br>PROJEC<br>DATE ST<br>DATE FI |                           | 1 of 1<br>19-1758.1<br>2/4/2020<br>2/4/2020   |
| Jocat<br>Drilli<br>Rig ty<br>Hamm<br>Hamm<br>Vatef<br>Genef | NG CO.<br>(PE: _T<br>ER TYP<br>ER EFF<br>R LEVEI<br>RAL NO                               | See         Exp           rack         Model           rack         Model           E:         Au           ICIENC         DEPT           TES:         ICIES: | bloration<br>/. Cole I<br>bunted I<br>tomatic<br>Y FACT<br>'HS (ft): | Explo<br>Diedr | 2 6.5 ft                         | LLC [<br>/<br>H<br>H                                   | DRILLER:<br>AUGER II<br>IAMMER<br>IAMMER | DN (FT):38.4<br>:Kevin Hansc<br>D/OD:2 1/4 ir<br>2 WEIGHT (lbs):<br>2 DROP (inch): | om<br>/ 5<br><u>1</u> 2<br>30 | DRILLING METHOD: Hollow Stem.<br>/8 in SAMPLER: Standard Split-Spoon<br>CASING ID/OD: N/A /N/A Co                                                                      | Auger                                  | f: <u>Todd</u>            | ۱ <u>ــــــــــــــــــــــــــــــــــــ</u> |
|                                                             | ) NOTES<br>(MBOLS:                                                                       | ∑ At<br>▼ At                                                                                                                                                  | <u>r Level</u><br>time of D<br>Completi<br>ter Drilling              | ion o          | g<br>f Drilling                  | D = Split S<br>U = Thin V<br>R = Rock (<br>V = Field \ | valled Tub<br>Core Sam                   | e Sample Rec. =<br>ple bpf = I                                                     | Rec                           | very Length         WOH = Weight of Hammer $q_u$ = Unper Foot           RQD = Rock Quality Designation         Ø = Friction                                            | onfined Co                             | mpressive :<br>Estimated) | n, kips/sq.ft.<br>Strength, kips              |
| Elev.<br>(ft)                                               | Depth<br>(ft)                                                                            | Casing<br>Pen.<br>(bpf)                                                                                                                                       | Sample<br>No.                                                        | u<br>Type      | SAMPL<br>Depth<br>(ft)           | E INFO<br>Pen./<br>Rec.<br>(in)                        | Blow<br>Count<br>or                      | N<br>Field / Lab<br>Test Data                                                      | Graphic Log                   | Sample<br>Description &<br>Classification                                                                                                                              | H <sub>2</sub> 0<br>Deptf              |                           | Remarks                                       |
|                                                             | -                                                                                        |                                                                                                                                                               | 1D                                                                   |                | 0-2                              | 24/24                                                  | RQD<br>11-8-7-<br>7                      |                                                                                    |                               | Loose, dark brown, Sandy SILT with organi<br>0.8 and roots<br>Medium dense, rusty brown, SAND, some s<br>2.5 Medium dense, light brown, SAND, trace si<br>trace gravel | .ilt                                   |                           |                                               |
|                                                             | - 5                                                                                      |                                                                                                                                                               | 2D                                                                   | X              | 5-7                              | 24/20                                                  | 7-9-8-8                                  | w =17.7 %                                                                          |                               | 5.5 Medium dense, light brown, fine to medium SAND, trace silt                                                                                                         | <br>                                   |                           |                                               |
| 30 —<br>-<br>-                                              | -<br>- 10<br>-                                                                           |                                                                                                                                                               | 3D                                                                   | X              | 10-12                            | 24/24                                                  | 7-9-10-<br>18                            |                                                                                    |                               | with brown silty fine sand layers<br>11.7 Very dense, brown, Gravelly SAND, some s<br>with occasional cobbles                                                          | ilt                                    |                           |                                               |
| 25 —<br>-<br>-                                              | -<br>- 15<br>-                                                                           |                                                                                                                                                               | 4D                                                                   | X              | 15-16.9                          | 23/23                                                  | 19-30-<br>29-<br>50/5"                   |                                                                                    |                               | 16 7                                                                                                                                                                   |                                        |                           |                                               |
|                                                             |                                                                                          |                                                                                                                                                               |                                                                      |                |                                  | -                                                      |                                          |                                                                                    |                               | Probable weathered bedrock<br>Auger Refusal at 17.0 feet<br>(Probable Bedrock)                                                                                         | /                                      | -                         |                                               |
|                                                             |                                                                                          |                                                                                                                                                               |                                                                      |                |                                  |                                                        |                                          |                                                                                    |                               |                                                                                                                                                                        |                                        |                           |                                               |
| ooundar<br>be gradu<br>nade at<br>Fluctuat<br>other fac     | ation lines<br>betwee<br>ual. Wate<br>t times an<br>ions of gr<br>ctors than<br>ements w | n soil ty<br>r level re<br>d under<br>oundwa<br>those p                                                                                                       | bes, trans<br>eadings h<br>conditior<br>ter may o<br>resent at       | ave to state   | s may<br>been<br>ated.<br>due to |                                                        |                                          |                                                                                    |                               |                                                                                                                                                                        | BORING                                 | NO.:                      | B- 2                                          |

|                                                        |                                                       |                                                           |                                                                                            |                                 |                                |                                  |                                                    |                                                                          |                                  |                                                                                                                                                                                                                                                                                                      | RING N                  |                  | B- 3                                       |
|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|----------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------|
|                                                        |                                                       | S                                                         |                                                                                            |                                 |                                | G, IN G                          |                                                    | ROJECT: Pr                                                               | tley &                           | Dorsky Engineering & Surveying PR<br>ed Kingfish Maine, Inc. Aquaculture Facility DA                                                                                                                                                                                                                 | EET:<br>OJECT<br>TE STA | NO. 19<br>ART: 2 | 1 of 1<br>9-1758.1<br>2/5/2020<br>2/5/2020 |
| Locat<br>Drilli<br>Rig Ty<br>Hamm<br>Hamm<br>Watei     | ING CO.:<br>(PE:<br>IER TYPI<br>IER EFFI<br>R LEVEL   | See Exp<br>: S. W<br>rack Mo<br>E: Au<br>ICIENC<br>- DEPT | oloration<br>V. Cole E<br>ounted D                                                         | iedri                           | -                              | LLC [<br>/<br>H                  | ELEVATIC<br>DRILLER:<br>AUGER ID<br>HAMMER         | N (FT):<br>_Kevin Hanso<br>/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | 9' Su<br>com<br>n / 5 {<br>: _14 | Veyed TOTAL DEPTH (FT): 11.7 LOGGI<br>DRILLING METHOD: Hollow Stem Auge<br>18 in SAMPLER: Standard Split-Spoon                                                                                                                                                                                       | ED BY:                  | Todd Sek         |                                            |
| KEY TO                                                 | RAL NOT<br>O NOTES<br>YMBOLS:                         | <u>Wate</u><br>⊻ At<br>▼ At                               | er Level<br>time of Dr<br>Completio<br>ter Drilling                                        | on of                           | )<br>Drilling                  | U = Thin V<br>R = Rock           | poon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | Sample Rec. =<br>le bpf =                                                | = Rec<br>Blows                   | tration Length         WOR = Weight of Rods $S_v$ = Field Vale           very Length         WOH = Weight of Hammer $q_u$ = Unconfir           per Foot         ROD = Rock Quality Designation         Ø = Friction A           per Foot         PID = Photoionization Detector         N/A = Not Ap | ned Comp<br>Angle (Est  | ressive Stre     |                                            |
| Elev.<br>(ft)                                          | Depth<br>(ft)                                         | Casing<br>Pen.<br>(bpf)                                   | Sample<br>No.                                                                              | Type                            | SAMPL<br>Depth<br>(ft)         | E INFOI<br>Pen./<br>Rec.<br>(in) | RMATION<br>Blow<br>Count<br>or                     | N<br>Field / Lab<br>Test Data                                            | Graphic Log                      | Sample<br>Description &<br>Classification                                                                                                                                                                                                                                                            | H₂0<br>Depth            | Rer              | narks                                      |
| -<br>50 —<br>-<br>-<br>-<br>45 —                       | <br><br>5<br><br>                                     |                                                           | 1D<br>2D                                                                                   | X                               | 0-2                            | 24/20                            | RQD<br>2-1-1-8<br>6-6-8-7                          |                                                                          |                                  | Loose, dark brown, Sandy SILT with organics     Loose, rusty brown, fine to medium SAND,     some silt     Medium dense, brown, Gravelly SAND, some     silt with occasional cobbles     Medium dense, brown, fine to medium     SAND, some silt, with clayey silt layers                            | ·<br>·<br>· ·           |                  |                                            |
| -                                                      | -<br>- 10                                             |                                                           | 3D                                                                                         | $\mathbb{N}$                    | 10-11.8                        | 22/14                            | 15-20-<br>32-<br>25/4"                             |                                                                          |                                  | 9.3 Dense, brown, Gravelly Silty SAND with<br>occasional cobbles (Glacial Till)                                                                                                                                                                                                                      |                         |                  |                                            |
|                                                        |                                                       |                                                           |                                                                                            |                                 |                                |                                  |                                                    |                                                                          |                                  | Auger Refusal at 11.7 feet<br>(Probable Bedrock)                                                                                                                                                                                                                                                     |                         |                  |                                            |
|                                                        |                                                       |                                                           |                                                                                            |                                 |                                |                                  |                                                    |                                                                          |                                  |                                                                                                                                                                                                                                                                                                      |                         |                  |                                            |
| boundar<br>be grade<br>made at<br>Fluctuat<br>other fa | ry betweer<br>ual. Water<br>t times an<br>tions of gr | n soil ty<br>r level re<br>d under<br>oundwa<br>those p   | ent approx<br>pes, transi<br>eadings ha<br>conditions<br>ter may oc<br>present at t<br>de. | tions<br>ive b<br>s sta<br>ccur | s may<br>een<br>ted.<br>due to |                                  |                                                    |                                                                          |                                  | ВО                                                                                                                                                                                                                                                                                                   | RING N                  | 10.:             | B- 3                                       |

|                                                    |                                                    |                                                        |                                                                     |                                  |                                  |                                                        |                                |                                                                                |                     | BORING LOG                                                                                                                       | BORING                        |                           | B- 4                                 |
|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------------------------|
| VE                                                 |                                                    | C                                                      | VV)                                                                 | 1                                |                                  | ТГ                                                     |                                |                                                                                |                     |                                                                                                                                  | SHEET:                        |                           | 1 of 1                               |
|                                                    | -                                                  |                                                        | W                                                                   |                                  |                                  | )LE                                                    |                                |                                                                                |                     | Dorsky Engineering & Surveying                                                                                                   | PROJEC                        |                           |                                      |
|                                                    |                                                    |                                                        |                                                                     |                                  |                                  | G,IN(                                                  |                                |                                                                                |                     | ed Kingfish Maine, Inc. Aquaculture Facility                                                                                     | DATE S                        | _                         | 2/4/2020                             |
|                                                    |                                                    |                                                        | GIN                                                                 |                                  |                                  | 0,110                                                  |                                | UCATION: 9                                                                     | Du                  | Garvin Road, Jonesport, ME                                                                                                       | DATE F                        | INISH:                    | 2/4/2020                             |
| Locat<br>Drilli<br>Rig Ty<br>Hamm<br>Hamm<br>Watei | NG CO.:<br>′PE:⊺r<br>ER TYPI<br>ER EFFI            | See Exp<br>S. V<br>rack Mo<br>E: Au<br>CIENC<br>. DEPT | oloration<br>V. Cole E<br>ounted D                                  | iedr                             | orations,<br>ich D-50<br>0.98    | LLC [<br>/<br>H                                        | ORILLER:<br>AUGER II<br>IAMMER | DN (FT):43.4<br>:Kevin Hansc<br>D/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 {<br>14 | DRILLING METHOD:         Hollow Stem           /8 in         SAMPLER:         Standard Split-Spoon                               | DGGED BY<br>Auger<br>DRE BARR |                           |                                      |
|                                                    | ) NOTES<br>(MBOLS:                                 | ∑ At<br>∑ At                                           | er <u>Level</u><br>time of Dr<br>Completic<br>ter Drilling          | on of                            | )<br>Drilling                    | D = Split S<br>U = Thin V<br>R = Rock (<br>V = Field \ | alled Tub<br>Core Sam          | e Sample Rec. =<br>ble bpf =                                                   | = Rec<br>Blows      | very Length         WOH = Weight of Hammer $q_U$ = Un           per Foot         RQD = Rock Quality Designation         Ø = Frid |                               | mpressive (<br>Estimated) | , kips/sq.ft.<br>Strength, kips/sq.t |
|                                                    |                                                    |                                                        |                                                                     |                                  | SAMPL                            | E INFO                                                 | RMATIO                         | N                                                                              |                     |                                                                                                                                  |                               |                           |                                      |
| Elev.<br>(ft)                                      | Depth<br>(ft)                                      | Casing<br>Pen.<br>(bpf)                                | Sample<br>No.                                                       | Type                             | Depth<br>(ft)                    | Pen./<br>Rec.<br>(in)                                  | Blow<br>Count<br>or<br>RQD     | Field / Lab<br>Test Data                                                       | Graphic Log         | Sample<br>Description &<br>Classification                                                                                        | H₂0<br>Depth                  | , I                       | Remarks                              |
|                                                    |                                                    |                                                        | 10                                                                  |                                  | 0.0                              | 04/20                                                  |                                |                                                                                |                     | Lagan dark brown Candy Oll T with                                                                                                |                               |                           |                                      |
| -                                                  |                                                    |                                                        | 1D                                                                  | $\mathbb{N}$                     | 0-2                              | 24/20                                                  | 2-2-4-7                        |                                                                                |                     | Loose, dark brown, Sandy SILT, with $0.8 - \sqrt{100}$ organics, roots                                                           | Å                             |                           |                                      |
| _                                                  | -                                                  |                                                        |                                                                     | Δ                                |                                  |                                                        |                                |                                                                                |                     | Medium dense, rusty brown, SAND, some silt, trace gravel                                                                         |                               |                           |                                      |
| 40 —                                               | -                                                  |                                                        |                                                                     |                                  |                                  |                                                        |                                |                                                                                |                     | 3.0 Medium dense, brown, fine to medium<br>SAND, trace silt, trace gravel                                                        | Ā                             |                           |                                      |
| -                                                  | - 5                                                |                                                        | 2D                                                                  | X                                | 5-7                              | 24/21                                                  | 5-6-8-9                        |                                                                                |                     | 5.0 Medium dense, brown, Clayey SILT with si<br>fine sand seams                                                                  | ty                            |                           |                                      |
| -<br>35 —                                          | -                                                  |                                                        |                                                                     |                                  |                                  |                                                        |                                |                                                                                |                     | 7.5 Medium dense, brown, fine to medium SAND, trace silt                                                                         |                               |                           |                                      |
| -                                                  | -<br>- 10                                          |                                                        | 3D                                                                  | $\left[ \right]$                 | 10-12                            | 24/8                                                   | 18-22-<br>20-38                |                                                                                |                     | 9.7 Dense, brown, Gravelly SILT and SAND wi cobbles (Glacial Till)                                                               | th                            |                           |                                      |
| 30 —                                               | -                                                  |                                                        |                                                                     |                                  |                                  |                                                        |                                |                                                                                |                     |                                                                                                                                  |                               |                           |                                      |
|                                                    |                                                    |                                                        | I                                                                   | 1                                |                                  | I                                                      | I                              | 1                                                                              |                     | Auger Refusal at 14.3 feet<br>(Probable Bedrock)                                                                                 |                               |                           |                                      |
|                                                    |                                                    |                                                        |                                                                     |                                  |                                  |                                                        |                                |                                                                                |                     |                                                                                                                                  |                               |                           |                                      |
| boundar<br>be gradu<br>made at<br>Fluctuat         | y between<br>ual. Waten<br>times an<br>ions of gro | n soil ty<br>r level re<br>d under<br>oundwa           | ent approx<br>pes, transi<br>eadings ha<br>conditions<br>ter may or | itions<br>ave b<br>s sta<br>ccur | s may<br>been<br>ited.<br>due to |                                                        |                                |                                                                                |                     |                                                                                                                                  |                               |                           |                                      |
|                                                    | ctors than<br>ements w                             |                                                        | present at t<br>de.                                                 | tne t                            | ime                              |                                                        |                                |                                                                                |                     |                                                                                                                                  | BORING                        | NO.:                      | B- 4                                 |

|                                              |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                | BORI                                                           | NG LOG                                                                                                             |                                  | BORING<br>SHEET: | NO.: _                  | <b>B- 5</b><br>1 of 1                        |
|----------------------------------------------|---------------------------|----------------------------------|-------------------------------------|----------------|--------------------------------------|------------------------|----------------------------|---------------------------------------------------------------------------|----------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------------------|----------------------------------------------|
| l                                            |                           | C                                | W                                   | 1              | $\neg \cap$                          | N F                    |                            | LIENT: Gart                                                               | lev 8          | & Dorsky En                                                    | gineering & Surveying                                                                                              |                                  | PROJEC           | T NO.                   | 19-1758.1                                    |
|                                              |                           |                                  | <b>. vv</b>                         |                |                                      |                        |                            |                                                                           |                |                                                                | Maine, Inc. Aquaculture Fac                                                                                        | ilitv                            | DATE S           | _                       | 2/5/2020                                     |
|                                              |                           | EN                               | IGINI                               | ΕE             | ERIN                                 | G,IN(                  | · · · •                    |                                                                           | <u> </u>       |                                                                | ad, Jonesport, ME                                                                                                  |                                  | DATE FI          | -                       | 2/5/2020                                     |
| LOCA<br>DRILI<br>RIG T                       |                           | See Ex<br>: <u>S</u> V<br>rack M | ploration<br>V. Cole E<br>ounted D  | xpl            | cation Pla<br>orations,<br>rich D-50 |                        | ORILLER:<br>AUGER II       | <b>DN (FT):</b> <u>62.</u><br>Kevin Hansc<br><b>D/OD:</b> <u>2 1/4 ir</u> | om<br>1 / 5    | 5/8 in                                                         | TOTAL DEPTH (FT): 17.1<br>DRILLING METHOD: Hollo<br>SAMPLER: Standard Split-                                       | w Stem /<br>Spoon                |                  |                         | Sekera                                       |
|                                              | MER TYP                   | -                                |                                     |                |                                      |                        |                            | WEIGHT (lbs)                                                              |                | 40                                                             | Casing ID/OD: N/A /N/A                                                                                             | co                               | ORE BARR         | EL: <u>N//</u>          | Α                                            |
|                                              |                           |                                  |                                     |                |                                      | ł                      | HAMMER                     | DROP (inch):                                                              | 30             |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
|                                              |                           |                                  | THS (ft):                           |                | ⊈ 9 n                                |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| KEY 1                                        | O NOTES<br>SYMBOLS:       | <u>Wate</u><br>⊻ At<br>▼ At      | er Level<br>time of Dr<br>Completio | on o           | g<br>f Drilling                      | U = Thin V<br>R = Rock |                            | e Sample Rec. =<br>ble bpf =                                              | = Rec<br>Blows | etration Length<br>covery Length<br>s per Foot<br>ite per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | q <sub>∪</sub> = Uno<br>Ø = Fric | confined Cor     | npressive<br>(stimated) | h, kips/sq.ft.<br>Strength, kips/sq.ft.<br>) |
|                                              |                           |                                  |                                     |                | SAMPL                                | E INFO                 | RMATIO                     | N                                                                         | Log            |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| Elev.<br>(ft)                                | Depth<br>(ft)             | Casing<br>Pen.<br>(bpf)          | Sample<br>No.                       | Type           | Depth<br>(ft)                        | Pen./<br>Rec.<br>(in)  | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data                                                  | Graphic Lo     |                                                                | Sample<br>Description &<br>Classification                                                                          |                                  | H₂0<br>Depth     |                         | Remarks                                      |
|                                              | -                         |                                  | 1D                                  | M              | 0-2                                  | 24/11                  | 2-4-10-<br>15              |                                                                           |                |                                                                | se, dark brown, Sandy SILT wit<br>roots                                                                            | h organi                         | cs               |                         |                                              |
| 60 -                                         |                           |                                  |                                     | Å              |                                      |                        | 15                         |                                                                           |                | 1.0 Loos<br>grav<br>Med                                        | se, rusty brown, SAND, some s                                                                                      |                                  |                  |                         |                                              |
|                                              | -<br>-<br>- 5             |                                  | 0.0                                 |                | 5.7                                  | 04/47                  | 40.40                      |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| 55 -                                         | -                         |                                  | 2D                                  | X              | 5-7                                  | 24/17                  | 16-18-<br>17-14            |                                                                           |                | 6.7 Med                                                        | lium dense, brown, fine Sandy                                                                                      | SILT                             |                  |                         |                                              |
|                                              | -<br>-<br>-               |                                  |                                     |                |                                      |                        |                            |                                                                           |                | 8.0 Med                                                        | lium dense, brown, fine SAND,                                                                                      | some sil                         | lt<br>⊻          |                         |                                              |
|                                              | - 10<br> -<br> -          |                                  | 3D                                  |                | 10-12                                | 24/18                  | 8-13-<br>15-16             |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| 50 -                                         | -<br>-<br>-<br>-          |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                | lium dense, brown, Gravelly Sil                                                                                    |                                  | )                |                         |                                              |
|                                              | -<br>- 15<br>-            |                                  | 4D                                  | X              | 15-16.2                              | 14/13                  | 18-19-<br>25/2"            |                                                                           |                | 16.2                                                           | occasional cobbles (Glacial Til                                                                                    | 1)                               |                  |                         |                                              |
|                                              | _                         |                                  |                                     |                |                                      |                        |                            |                                                                           |                | Prot                                                           | bable weathered bedrock                                                                                            |                                  |                  |                         |                                              |
| 19-11/001:01-0 0WOLF 1EMIL FAIL: 001 0/24/20 |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                | Auger Refusal at 17.1 fee<br>(Probable Bedrock)                                                                    | t                                |                  |                         |                                              |
|                                              |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                | ,                                                                                                                  |                                  |                  |                         |                                              |
| j<br>j                                       |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| S                                            |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
|                                              |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
|                                              |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| 5                                            |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| <u>.</u>                                     |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
|                                              |                           |                                  |                                     |                |                                      |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| Stratifi                                     | cation line               | s repres                         | ent approx                          | kima           | ite                                  |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| bound<br>be gra                              | ary betwee<br>dual. Wate  | en soil ty<br>er level n         | pes, transi<br>eadings ha           | ition<br>ave l | is may<br>been                       |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  |                  |                         |                                              |
| Fluctua                                      | ations of g               | roundwa                          | r condition<br>ater may or          | ccur           | due to                               |                        |                            |                                                                           |                |                                                                |                                                                                                                    | 1                                |                  |                         |                                              |
| measu                                        | actors thai<br>irements v |                                  | present at<br>de.                   | ule            | ume                                  |                        |                            |                                                                           |                |                                                                |                                                                                                                    |                                  | BORING           | NO.:                    | B- 5                                         |

|                   |                                          |                             | TT                                                       | 1/             |               |                                                    |                            |                                        |                |                                                              | NG LOG                                                                                   | BORING<br>SHEET:                                                  | _                      | <b>B- 6</b><br>1 of 1             |
|-------------------|------------------------------------------|-----------------------------|----------------------------------------------------------|----------------|---------------|----------------------------------------------------|----------------------------|----------------------------------------|----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-----------------------------------|
| K                 | ラ                                        |                             |                                                          |                |               | G,IN                                               |                            | PROJECT: P                             | ropo           | sed Kingfish                                                 | gineering & Surveying<br>Maine, Inc. Aquaculture Facility<br>ad, Jonesport, ME           | PROJEC<br>DATE ST<br>DATE FI                                      | ART:                   | 19-1758.1<br>2/4/2020<br>2/4/2020 |
|                   | ng Info<br>TION:                         |                             |                                                          | Loc            | ation Pla     | an I                                               |                            | ON (FT):                               |                |                                                              |                                                                                          | <br>OGGED BY:                                                     |                        |                                   |
|                   | ING CO.                                  |                             |                                                          |                |               |                                                    |                            | Kevin Hanse                            |                | <b>5</b> /0 :                                                | DRILLING METHOD: Hollow Stem                                                             | Auger                                                             |                        |                                   |
|                   | YPE: _⊺<br>IER TYP                       |                             |                                                          | Jean           | 1011 D-50     |                                                    |                            | D/OD: <u>2 1/4 i</u><br>R WEIGHT (Ibs) |                |                                                              | SAMPLER:         Standard Split-Spoon           CASING ID/OD:         N/A /N/A         C | ORE BARR                                                          | EL: N/A                | 4                                 |
|                   | IER EFF                                  |                             |                                                          |                |               |                                                    | HAMMEI                     | R DROP (inch):                         | 30             |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   | R LEVEI                                  |                             | THS (ft):                                                | 7              | 2 10.8 ft     |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| KEY TO            | O NOTES<br>YMBOLS:                       | <u>Wate</u><br>⊻ At<br>▼ At | er <u>Level</u><br>time of D<br>Completi<br>ter Drilling | on o           |               | D = Split S<br>U = Thin V<br>R = Rock<br>V = Field | Valled Tu<br>Core Sarr     | ple Sample Rec.                        | = Rec<br>Blows | etration Length<br>overy Length<br>s per Foot<br>te per Foot | WOH = Weight of Hammer $q_U$ = Ur<br>RQD = Rock Quality Designation $\emptyset$ = Fri    | eld Vane Shea<br>confined Con<br>ction Angle (E<br>lot Applicable | npressive<br>stimated) | Strength, kips/sq.ft.             |
|                   |                                          |                             |                                                          |                | SAMPI         | LE INFO                                            | RMATIC                     | DN .                                   |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| Elev.<br>(ft)     | Depth<br>(ft)                            | Casing<br>Pen.<br>(bpf)     | Sample<br>No.                                            | Type           | Depth<br>(ft) | Pen./<br>Rec.<br>(in)                              | Blow<br>Count<br>or<br>RQD |                                        | Graphic Log    |                                                              | Sample<br>Description &<br>Classification                                                | H <sub>2</sub> 0<br>Depth                                         |                        | Remarks                           |
| 50 -              | -                                        |                             | 1D                                                       | M              | 0-2           | 24/15                                              | 2-1-4-<br>10               |                                        |                |                                                              | se, dark brown, Sandy SILT with organ<br>roots                                           | ics <sub>F</sub>                                                  |                        |                                   |
| .                 | -                                        |                             |                                                          | Ň              |               |                                                    |                            |                                        |                | Loos                                                         | se, light gray fine to medium SAND, so                                                   | me                                                                |                        |                                   |
| .                 | -                                        |                             |                                                          | H              |               |                                                    |                            |                                        |                | silt<br>Med                                                  | lium dense, rusty brown, SAND, some                                                      | ]                                                                 |                        |                                   |
|                   | -                                        |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              | trace gravel<br>lium dense, brown, fine to medium                                        |                                                                   |                        |                                   |
|                   | -                                        |                             |                                                          |                |               |                                                    |                            |                                        |                | SAN                                                          | ID, some silt, with clayey silt layers                                                   |                                                                   |                        |                                   |
| <u>.</u>          | - 5                                      |                             | 2D                                                       | H              | 5-7           | 24/10                                              | 8-14-                      |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| 45 -              | 1                                        |                             |                                                          | X              | 0.1           |                                                    | 19-17                      |                                        |                |                                                              | se to medium dense, brown, Sandy Sl<br>e gravel with cobbles (Glacial Till)              | _T,                                                               |                        |                                   |
| · ·               | -                                        |                             |                                                          | Δ              |               |                                                    |                            |                                        |                | 3011                                                         | e graver with cobbles (Glacial Till)                                                     |                                                                   |                        |                                   |
| · ·               |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| -                 | 1                                        |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| .                 |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| 40 -              | - 10<br>                                 |                             | 3D                                                       | $\square$      | 10-12         | 24/24                                              | 8-9-9-<br>14               |                                        |                |                                                              |                                                                                          | l⊻                                                                |                        |                                   |
|                   | -                                        |                             |                                                          | Ň              |               |                                                    |                            |                                        |                |                                                              |                                                                                          | -                                                                 |                        |                                   |
|                   | -                                        |                             |                                                          | Н              |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   | -                                        |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   | ·                                        |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              | Auger Refusal at 13.6 feet<br>(Probable Bedrock)                                         | •                                                                 |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              | (                                                                                        |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| 1                 |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| 1                 |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
|                   |                                          |                             |                                                          |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| Stratific         | ation line:                              | s repres                    | ent approx                                               | xima           | te            | 1                                                  |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| bounda<br>be grad | iry betwee<br>lual. Wate                 | n soil ty<br>r level r      | pes, trans<br>eadings h                                  | ition<br>ave t | s may<br>been |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| Fluctua           | t times ar<br>tions of gr<br>totors thar | oundwa                      | ater may o                                               | ccur           | due to        |                                                    |                            |                                        |                |                                                              |                                                                                          |                                                                   |                        |                                   |
| measur            | rements w                                | ere ma                      | de.                                                      |                |               |                                                    |                            |                                        |                |                                                              |                                                                                          | BORING                                                            | NO.:                   | B- 6                              |

|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                | BORI                                                          | NG LOG                                                                                                             |                                   | BORING           | NO.: _                  | B-7                                         |
|-----------------------|----------------------|-----------------|-----------------------|-----------------------------------------------------|----------------|-----------------|------------------------|-----------------------------------------------------|-----------------------------|----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-------------------------|---------------------------------------------|
|                       |                      |                 | C                     | W                                                   | 1              | $\neg \bigcirc$ | I I                    |                                                     | IENT: Gart                  | lev 8          | & Dorsky En                                                   | gineering & Surveying                                                                                              |                                   | SHEET:<br>PROJEC |                         | <u>1 of 1</u><br>19-1758.1                  |
|                       |                      | 7               | J                     | <b>.</b> VV                                         |                |                 |                        |                                                     |                             |                |                                                               | Maine, Inc. Aquaculture Fac                                                                                        | ility                             | DATE S           | -                       | 2/5/2020                                    |
|                       |                      |                 | ΕN                    | IGINI                                               | ΕE             | ERIN            | G,IN(                  |                                                     |                             | - · · ·        |                                                               | ad, Jonesport, ME                                                                                                  |                                   | DATE FI          | -                       | 2/5/2020                                    |
|                       | illing<br>CATIO      |                 |                       |                                                     | Loc            | cation Pla      | n E                    |                                                     | <b>DN (FT):</b> 42.2        | 2' Su          | rveved                                                        | <b>TOTAL DEPTH (FT):</b> 12.0                                                                                      | ]<br>L0                           | GGED BY          | -<br>: Todd             | Sekera                                      |
|                       |                      |                 |                       |                                                     |                | orations,       |                        |                                                     | Kevin Hansc                 |                |                                                               | DRILLING METHOD: Hollo                                                                                             |                                   |                  | . 1000                  |                                             |
| RIG                   | TYPE                 | : <u>Tr</u>     | ack Mo                | ounted D                                            | ied            | rich D-50       |                        |                                                     | /OD: 2 1/4 ir               |                | 5/8 in                                                        | SAMPLER: Standard Split-                                                                                           | Spoon                             | -                |                         |                                             |
|                       |                      |                 | -                     | Itomatic                                            |                |                 |                        |                                                     | WEIGHT (lbs):               |                | 40                                                            | CASING ID/OD: N/A /N/A                                                                                             | cc                                | ORE BARR         | EL: <u>N//</u>          | ۹                                           |
|                       |                      |                 |                       |                                                     |                |                 | ł                      | HAMMER                                              | DROP (inch):                | 30             |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | NERAL                |                 |                       | "HS (ft):                                           |                | ≗ on            |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | Y TO NO<br>D SYME    |                 | ⊻ At<br>▼ At          | er Level<br>time of Dr<br>Completio<br>ter Drilling | on o           | g<br>f Drilling | U = Thin V<br>R = Rock | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | Sample Rec. =<br>le bpf = l | = Rec<br>Blows | etration Length<br>overy Length<br>s per Foot<br>ite per Foot | WOR = Weight of Rods<br>WOH = Weight of Hammer<br>RQD = Rock Quality Designation<br>PID = Photoionization Detector | q <sub>∪</sub> = Unc<br>Ø = Frict |                  | npressive<br>Estimated) | h, kips/sq.ft.<br>Strength, kips/sq.ft<br>) |
| $\vdash$              |                      |                 |                       | -                                                   |                | SAMPL           | E INFO                 | RMATIO                                              | N                           | 0              |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| Ele                   |                      | epth            | Casing                |                                                     |                |                 |                        | Blow                                                |                             | c Log          |                                                               | Sample                                                                                                             |                                   | H,0              |                         |                                             |
| (ft                   |                      | (ft)            | Pen.<br>(bpf)         | Sample<br>No.                                       | Type           | Depth<br>(ft)   | Pen./<br>Rec.<br>(in)  | Count<br>or<br>RQD                                  | Field / Lab<br>Test Data    | Graphic        |                                                               | Description & Classification                                                                                       |                                   | Depth            |                         | Remarks                                     |
|                       | -                    |                 |                       | 1D                                                  | 1/             | 0-2             | 24/12                  | 3-3-5-8                                             |                             |                | Loo                                                           | se, dark brown, Sandy SILT wit                                                                                     | h organio                         | cs               |                         |                                             |
|                       | Ļ                    |                 |                       |                                                     | X              |                 |                        |                                                     |                             |                | 0.5 Loo                                                       | se, rusty brown, fine to medium<br>le silt, trace gravel                                                           |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     | Д              |                 |                        |                                                     |                             |                | 4.0                                                           | lium dense to very dense, brow                                                                                     | 'n                                |                  |                         |                                             |
| 40                    | 7                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               | velly Silty SAND                                                                                                   |                                   |                  |                         |                                             |
|                       | f                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | ł                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | L                    | 5               |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | 1                    |                 |                       | 2D                                                  | M              | 5-7             | 24/20                  | 28-39-<br>30-26                                     | w =6.4 %                    |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | Ŧ                    |                 |                       |                                                     | Ŵ              |                 |                        | 00 20                                               |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| 35                    | 5                    |                 |                       |                                                     | Р              |                 |                        |                                                     |                             |                | 7.0 Mer                                                       | lium dense, brown, fine to med                                                                                     | ium                               |                  |                         |                                             |
|                       | L                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               | ND, trace silt                                                                                                     |                                   | I⊥               |                         |                                             |
|                       | -                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | ł                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | +                    | 10              |                       | 3D                                                  | $\vdash$       | 10-10.9         | 11/10                  | 7-25/5"                                             |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       | L                    |                 |                       |                                                     | Д              | 10 10.0         | 11/10                  | 1 20/0                                              |                             |                | 10.6 Mec                                                      | lium dense, brown, Gravelly Sil                                                                                    | ty SAND                           | Г                |                         |                                             |
|                       | -                    |                 |                       |                                                     |                |                 |                        |                                                     |                             |                | 10.9 (Gla                                                     | icial Till)                                                                                                        |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               | bable weathered bedrock<br>Auger Refusal at 12.0 fee                                                               | ۰t                                | /                |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               | (Probable Bedrock)                                                                                                 |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| 21210                 |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| Ū<br>-                |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| 5                     |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| 9-1/58                |                      |                 |                       |                                                     |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
|                       |                      |                 |                       | ent approx<br>pes, transi                           |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| be g<br>mad<br>z Fluc | radual.<br>le at tim | Water<br>nes an | r level re<br>d under | eadings ha                                          | ave l<br>s sta | been<br>ated.   |                        |                                                     |                             |                |                                                               |                                                                                                                    |                                   |                  |                         |                                             |
| othe<br>mea           |                      | s than          | those p               | present at                                          |                |                 |                        |                                                     |                             |                |                                                               |                                                                                                                    | [                                 | BORING           | NO.:                    | B-7                                         |

|            |                                        |               |               |        |               |                        |                    |                          |                | BORI            | NG LOG                                                                              | BORIN       | NG NO.: _       | <b>B- 8</b><br>1 of 1 |
|------------|----------------------------------------|---------------|---------------|--------|---------------|------------------------|--------------------|--------------------------|----------------|-----------------|-------------------------------------------------------------------------------------|-------------|-----------------|-----------------------|
|            |                                        |               | X             | 1(     | $\mathbb{C}$  | N F                    |                    | LIENT: Gar               | tley &         | & Dorsky Eng    | gineering & Surveying                                                               |             | ECT NO.         | 19-1758.1             |
|            | フ                                      |               |               |        |               | G,IN                   |                    | ROJECT: P                | ropo           | sed Kingfish    | Maine, Inc. Aquaculture Facility                                                    | DATE        | START:          | 2/5/2020              |
|            |                                        | EN            | GIN           | ΕE     | 2 K I N       | G, IN                  |                    | OCATION: _               | 9 Du           | n Garvin Ro     | ad, Jonesport, ME                                                                   | DATE        | FINISH:         | 2/5/2020              |
|            | ng Info<br>TION: S                     |               |               | Loc    | ation Pla     | an I                   | ELEVATI            | <b>ON (FT):</b> 50'      | Surv           | veyed           | <b>TOTAL DEPTH (FT):</b> 16.5 L                                                     |             | BY: Todd        | Sekera                |
| DRILL      | ING CO.                                | S. V          | V. Cole I     | Explo  | orations,     | LLC                    | DRILLER            | : Kevin Hanso            | com            |                 | DRILLING METHOD: Hollow Stem                                                        | Auger       |                 |                       |
|            | <b>YPE</b> : <u>T</u>                  |               |               | Diedr  | rich D-50     |                        |                    | D/OD: 2 1/4 in           |                |                 | SAMPLER: Standard Split-Spoon                                                       |             |                 |                       |
|            | IER TYP<br>IER EFF                     |               |               | 00     | 0.00          |                        |                    | R WEIGHT (lbs)           | -              |                 | CASING ID/OD: N/A /N/A C                                                            | ORE BA      | RREL: <u>N/</u> | Δ                     |
|            | R LEVE                                 |               |               |        |               |                        |                    | R DROP (inch):           | 30             |                 |                                                                                     |             |                 |                       |
|            | RAL NO                                 |               | - ( -)        |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            | O NOTES<br>YMBOLS:                     | ∑ At<br>∑ At  |               | ion of |               | U = Thin V<br>R = Rock | Core Sam           | ple Sample Rec.<br>bpf = | = Rec<br>Blows | s per Foot      | WOH = Weight of Hammer $q_U = Ur$ RQD = Rock Quality Designation $\emptyset = Frid$ | confined (  | e (Estimated)   | Strength, kips/sq.ft. |
|            |                                        | ¥ Af          | ter Drilling  | g      | SAMPI         |                        | Vane Shea          |                          |                | ute per Foot    | PID = Photoionization Detector N/A = N                                              | Not Applica |                 |                       |
| Elev.      | Depth                                  | Casing        |               |        |               |                        | Blow               |                          | - Č            |                 | Sample                                                                              | н           | _0              |                       |
| (ft)       | (ft)                                   | Pen.<br>(bpf) | Sample<br>No. | Type   | Depth<br>(ft) | Pen./<br>Rec.<br>(in)  | Count<br>or<br>RQD | Field / Lab<br>Test Data | Graphic Log    |                 | Description & Classification                                                        |             | pth             | Remarks               |
|            |                                        |               | 1D            | М      | 0-2           | 24/13                  | 1-                 |                          |                | Very            | loose, organics with roots                                                          |             |                 |                       |
| · ·        | +                                      |               |               | X      |               |                        | WOH-               |                          |                |                 | loose, dark brown, Sandy SILT, trace                                                |             |                 |                       |
|            | Ļ                                      |               |               | Д      |               |                        |                    |                          |                |                 | el with organics and roots<br>ium dense, brown, SAND, some silt,                    |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 | e gravel                                                                            |             |                 |                       |
|            | Ť                                      |               |               |        |               |                        |                    |                          |                |                 |                                                                                     | <u> </u>    |                 |                       |
| · ·        | +                                      |               |               |        |               |                        |                    |                          |                | 4.0 Med         | ium stiff consistency, brown, Clayey                                                |             |                 |                       |
| 45 -       | - 5                                    |               |               |        |               |                        |                    |                          |                |                 | , with silty fine sand seams                                                        |             |                 |                       |
|            |                                        |               | 2D            | М      | 5-7           | 24/13                  | 2-3-6-             |                          |                |                 |                                                                                     |             |                 |                       |
| · ·        | t                                      |               |               | Ň      |               |                        | 14                 |                          |                | - C E           |                                                                                     |             |                 |                       |
| · ·        | +                                      |               |               | А      |               |                        |                    |                          |                | 6.5 Med<br>silt | ium dense, brown, Gravelly SAND, so                                                 | ne          |                 |                       |
|            | Ļ                                      |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 | se to medium dense, brown, fine SANE<br>e silt                                      | ),          |                 |                       |
| · ·        | Ť                                      |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| 40 -       | - 10                                   |               | 3D            | Н      | 10-12         | 24/23                  | 5-8-5-5            |                          |                |                 |                                                                                     |             |                 |                       |
|            | Ļ                                      |               |               | W      | 10 12         | 24/20                  |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               | Μ      |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| ·          | t                                      |               |               | H      |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            | +                                      |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            | L                                      |               |               |        |               |                        |                    |                          |                |                 | se, brown, Silty SAND, some gravel wi                                               | th          |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                | OCCa            | asional cobbles (Glacial Till)                                                      |             |                 |                       |
| 35 -       | 15                                     |               | 4D            | М      | 15-16         | 12/12                  | 17-62              |                          |                |                 |                                                                                     |             |                 |                       |
| <b>I</b> . | +                                      |               |               | А      |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            | 1                                      |               | I             |        |               | 1                      |                    | 1                        | -              |                 | Auger Refusal at 16.5 feet                                                          |             | I               |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 | (Probable Bedrock)                                                                  |             |                 |                       |
| 5          |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| i          |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| 1          |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
|            |                                        |               |               |        |               |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| Ohr-HP     | ation !!-                              |               | ont o         |        | 10            | 1                      |                    |                          |                |                 |                                                                                     |             |                 |                       |
| bounda     | ation lines<br>ry betwee<br>lual. Wate | n soil ty     | pes, trans    | sition | s may         |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| made a     | t times ar                             | d under       | · conditior   | ns sta | ated.         |                        |                    |                          |                |                 |                                                                                     |             |                 |                       |
| other fa   | ctors than<br>rements w                | those p       | present at    |        |               |                        |                    |                          |                |                 |                                                                                     | BORIN       | IG NO.:         | B- 8                  |

|                                                             |                                                                                              |                                                                   |                                                                     |                         |                                  |                                  |                                                     |                                                                               |                           | BORING LOG                                                                                                                                                                                            |                        | RING N                               | -                                                              |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|----------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|----------------------------------------------------------------|
| Ę                                                           | Ì                                                                                            |                                                                   |                                                                     |                         |                                  | DLE<br>G,ING                     | PI                                                  | ROJECT: Pr                                                                    | ley &                     | Dorsky Engineering & Surveying<br>ed Kingfish Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, ME                                                                                          | PR                     | IEET:<br>OJECT<br>ATE STA<br>ATE FIN | ART: 2/4/202                                                   |
| -OCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATEF<br>GENEF | ING CO.<br>(PE: <u>T</u><br>ER TYP<br>ER EFF<br>R LEVEL<br>RAL NOT                           | See Exp<br>: S. W<br>rack Mo<br>E: Au<br>ICIENC<br>L DEPT<br>TES: | bloration<br>/. Cole I<br>bunted I<br>tomatic<br>Y FACT<br>HS (ft): | Explo<br>Diedr          |                                  | LLC [<br>) / /<br>H              | DRILLER:<br>AUGER ID<br>HAMMER<br>HAMMER            | DN (FT):48.2<br>Kevin Hansc<br>)/OD:2 1/4 in<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 !<br>14<br>30 | DRILLING METHOD: Hollow Ste<br>/8 in SAMPLER: Standard Split-Spoor<br>0 CASING ID/OD: N/A /N/A                                                                                                        | m Auge<br>1<br>CORE    | BARRE                                | Todd Sekera                                                    |
|                                                             | O NOTES<br>YMBOLS:                                                                           | ⊻ At<br>▼ At                                                      | <u>r Level</u><br>time of D<br>Completi<br>er Drilling              | ion of                  | Drilling                         | U = Thin V<br>R = Rock           | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | e Sample Rec. =<br>ble bpf = I                                                | Rec<br>Blows              | wery LengthWOH = Weight of Hammer $q_u =$ per FootRQD = Rock Quality Designation $\emptyset = I$                                                                                                      | Unconfir<br>Friction A | ned Com                              | r Strength, kips/sq.ft.<br>pressive Strength, kips<br>timated) |
| Elev.<br>(ft)                                               | Depth<br>(ft)                                                                                | Casing<br>Pen.<br>(bpf)                                           | Sample<br>No.                                                       | Type                    | Depth<br>(ft)                    | E INFOI<br>Pen./<br>Rec.<br>(in) | RMATIO<br>Blow<br>Count<br>or<br>RQD                | N<br>Field / Lab<br>Test Data                                                 | Graphic Log               | Sample<br>Description &<br>Classification                                                                                                                                                             |                        | H₂0<br>Depth                         | Remarks                                                        |
| -<br>-<br>45 —                                              | -                                                                                            |                                                                   | 1D                                                                  |                         | 0-2                              | 24/19                            | 4-6-15-<br>12                                       |                                                                               |                           | <ul> <li>Loose, dark brown, Sandy SILT with organd roots</li> <li>Medium dense, rusty brown, SAND, som silt, some gravel</li> <li>2.5 Medium dense, brown, fine to medium SAND, trace silt</li> </ul> |                        |                                      |                                                                |
|                                                             | - 5<br>- 5                                                                                   |                                                                   | 2D                                                                  | X                       | 5-7                              | 24/22                            | 11-14-<br>14-18                                     |                                                                               |                           | 5.0 Medium dense, brown, fine SAND, some with clayey silt layers                                                                                                                                      | e silt                 | Į                                    |                                                                |
| 40                                                          | -<br>-<br>- 10<br>-                                                                          |                                                                   | 3D                                                                  | X                       | 10-12                            | 24/24                            | 7-8-11-<br>14                                       |                                                                               |                           |                                                                                                                                                                                                       |                        |                                      |                                                                |
| 35                                                          | -<br>-<br>- 15<br>-                                                                          |                                                                   | 4D                                                                  | X                       | 15-17                            | 24/16                            | 24-25-<br>26-23                                     | w =8.8 %                                                                      |                           | 14.3 Dense, brown Gravelly Silty SAND with cobbles (Glacial Till)                                                                                                                                     |                        |                                      |                                                                |
| 30 —                                                        | -<br> <br>                                                                                   |                                                                   |                                                                     |                         |                                  |                                  |                                                     |                                                                               |                           | Auger Refusal at 19.0 feet<br>(Probable Bedrock)                                                                                                                                                      |                        |                                      |                                                                |
|                                                             |                                                                                              |                                                                   |                                                                     |                         |                                  |                                  |                                                     |                                                                               |                           |                                                                                                                                                                                                       |                        |                                      |                                                                |
| oundar<br>oe gradu<br>nade at<br>fluctuation<br>other fac   | ation lines<br>ry betwee<br>ual. Wate<br>t times an<br>tions of gr<br>ctors than<br>ements w | n soil typ<br>r level re<br>id under<br>oundwa                    | bes, trans<br>adings h<br>conditior<br>ter may o<br>resent at       | ave t<br>ave t<br>s sta | s may<br>been<br>ited.<br>due to |                                  |                                                     |                                                                               |                           |                                                                                                                                                                                                       |                        | DRING                                | NO.: <b>B-9</b>                                                |

|                                                                                                |                                                                     |                                                    | TT                                                      | т /            |                         |                        |                                       |                                                                             |                           | BORING LOG                                                                                                                                                                                                           | BORING                        |                           | <b>B-10</b><br>1 of 1            |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|----------------|-------------------------|------------------------|---------------------------------------|-----------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|----------------------------------|
| E                                                                                              | フ                                                                   |                                                    |                                                         | E E            |                         | G,IN                   |                                       | ROJECT: Pr                                                                  | opos                      | Dorsky Engineering & Surveying<br>ed Kingfish Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, ME                                                                                                         | PROJEC<br>DATE S<br>DATE F    | -                         | 19-1758.<br>2/5/2020<br>2/5/2020 |
| Drilling<br>LOCATIC<br>DRILLING<br>RIG TYPI<br>HAMMEF<br>HAMMEF<br>WATER I<br>GENERA<br>KEYTON | DN: <u>S</u><br>G CO.:<br>E: <u>Tr</u><br>R TYPE<br>R EFFI<br>LEVEL | See Exp<br>ack Mo<br>E: Au<br>CIENC<br>DEPT<br>ES: | bloration<br>/. Cole  <br>bunted [<br>tomatic<br>Y FACT | Explo<br>Diedr | 0.98<br>0.98<br>0.95 ft | LLC [                  | DRILLER:<br>AUGER ID<br>HAMMER        | DN (FT):51.<br>Kevin Hansc<br>VOD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 {<br>14<br>30 | DRILLING METHOD:       Hollow Stem         8 in       SAMPLER:       Standard Split-Spoon         CASING ID/OD:       N/A /N/A       C                                                                               | OGGED B'<br>Auger<br>ORE BARI | REL: <u>N//</u>           | A                                |
| AND SYM                                                                                        |                                                                     | ∑ At<br>∑ At                                       | time of D                                               | ion of         | )<br>Drilling           | U = Thin V<br>R = Rock |                                       | e Sample Rec. =<br>le bpf =                                                 | = Rec<br>Blows            | very LengthWOH = Weight of Hammer $q_u = U_u$ ber FootRQD = Rock Quality Designation $\emptyset$ = Fri                                                                                                               |                               | ompressive<br>(Estimated) | Strength, kips                   |
|                                                                                                | Depth<br>(ft)                                                       | Casing<br>Pen.<br>(bpf)                            | Sample<br>No.                                           | a<br>Type      | SAMPL<br>Depth<br>(ft)  | E INFO                 | RMATIOI<br>Blow<br>Count<br>or<br>RQD | N<br>Field / Lab<br>Test Data                                               | Graphic Log               | Sample<br>Description &<br>Classification                                                                                                                                                                            | H <sub>2</sub> 0<br>Dept      |                           | Remarks                          |
| -<br>50<br>-                                                                                   |                                                                     |                                                    | 1D                                                      | X              | 0-2                     | 24/15                  | 2-2-2-3                               |                                                                             |                           | Loose, dark brown, SILT with organics and<br>roots<br>Loose, rusty brown, SAND, some silt                                                                                                                            |                               |                           |                                  |
|                                                                                                | 5                                                                   |                                                    | 00                                                      |                |                         | 04/04                  |                                       |                                                                             |                           | <ul> <li>Medium dense, brown, SAND, some silt, trace gravel</li> <li>Medium etiff consistency, brown, Clayer, S</li> </ul>                                                                                           | <br>                          |                           |                                  |
| 45 —<br>-                                                                                      |                                                                     |                                                    | 2D                                                      | X              | 5-7                     | 24/21                  | 3-4-8-8                               |                                                                             |                           | Medium stiff consistency, brown, Clayey S<br>with silty fine sand partings     Action of the sand partings     Medium dense, brown, fine SAND, some s     Medium dense, brown, Gravelly Silty SAN     (Glacial Till) | ilt                           |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         |                        |                                       |                                                                             |                           | Auger Refusal at 7.9 feet<br>(Probable Bedrock)                                                                                                                                                                      |                               |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         |                        |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         |                        |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         |                        |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         |                        |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |
|                                                                                                |                                                                     |                                                    |                                                         |                |                         | I                      |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |
| Stratificatio                                                                                  | on lines                                                            | represent soil type                                | ent appro                                               | ximat          | e                       |                        |                                       |                                                                             |                           |                                                                                                                                                                                                                      |                               |                           |                                  |

|                                           |                                       | 1                                                            |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           | BORING NO     |                                                 |     |
|-------------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------|-----------------|--------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|-----|
| VE                                        |                                       | C                                                            | W                                                   | 11              | $\neg \bigcirc$ | ТГ                                                     |                            |                                                                                    |                        |                                                                                                           |               | 1 of                                            |     |
| E                                         | -                                     | D                                                            | $\mathbf{W}$                                        |                 |                 | DLF<br>G,ING                                           |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       | ΕN                                                           | IGIN                                                | ΕE              | ERIN            | G.INC                                                  |                            |                                                                                    | _                      |                                                                                                           | DATE STAI     | -                                               |     |
|                                           |                                       |                                                              | ann                                                 |                 |                 | а, ш                                                   |                            | OCATION:                                                                           | 9 Du                   | Garvin Road, Jonesport, ME                                                                                | DATE FINIS    | SH: 2/5/2                                       | 020 |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM | ING CO.:                              | See Exp<br>: <u>S. V</u><br>rack Mo<br>E: <u>Au</u><br>CIENC | ploration<br>V. Cole E<br>ounted D<br>itomatic      | Explo<br>Diedr  |                 | LLC [<br>A<br>H                                        | RILLER<br>UGER I<br>IAMMEF | ON (FT):1.<br>L: _Kevin Hanso<br>D/OD:2 1/4 ii<br>R WEIGHT (Ibs)<br>R DROP (inch): | com<br>n / 5 :<br>: 14 | DRILLING METHOD:         Hollow Stem Au           B in         SAMPLER:         Standard Split-Spoon      | -             | Todd Sekera                                     |     |
| GENE                                      | RAL NOT                               | TES:                                                         |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           | O NOTES<br>YMBOLS:                    | ⊻ At<br>▼ At                                                 | er Level<br>time of D<br>Completion<br>ter Drilling | on of           | g<br>f Drilling | D = Split S<br>U = Thin W<br>R = Rock (<br>V = Field \ | alled Tub<br>Core Sam      | ple Sample Rec.                                                                    | = Rec<br>Blows         | ery LengthWOH = Weight of Hammer $q_U$ = Uncoer FootRQD = Rock Quality Designation $\emptyset$ = Friction | nfined Compre | trength, kips/sq.<br>essive Strength,<br>nated) |     |
|                                           |                                       |                                                              |                                                     |                 | SAMPL           | E INFOR                                                | RMATIC                     | DN                                                                                 | g                      |                                                                                                           |               |                                                 |     |
| Elev.<br>(ft)                             | Depth<br>(ft)                         | Casing<br>Pen.<br>(bpf)                                      | Sample<br>No.                                       | Type            | Depth<br>(ft)   | Pen./<br>Rec.<br>(in)                                  | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data                                                           | Graphic Log            | Sample<br>Description &<br>Classification                                                                 | H₂0<br>Depth  | Remark                                          | S   |
|                                           |                                       |                                                              | 1D                                                  |                 | 0-2             | 24/24                                                  | 1-2-9-                     |                                                                                    |                        | Loose, dark brown, Sandy SILT with organics                                                               |               |                                                 |     |
| -                                         |                                       |                                                              |                                                     | M               | 0-2             | 27/27                                                  | 12                         |                                                                                    |                        | Loose, light gray fine to medium SAND, some                                                               |               |                                                 |     |
| 40 —                                      |                                       |                                                              |                                                     | Μ               |                 |                                                        |                            |                                                                                    |                        | .2 silt                                                                                                   | _1            |                                                 |     |
| -                                         | -                                     |                                                              |                                                     | Н               |                 |                                                        |                            |                                                                                    |                        | Medium dense, rusty brown, fine to medium SAND, some silt                                                 |               |                                                 |     |
|                                           | -                                     |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| -                                         |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| -                                         |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        | 7                                                                                                         | _ ⊻           |                                                 |     |
| -                                         | - 5                                   |                                                              | 2D                                                  | $\square$       | 5-7             | 24/14                                                  | 8-15-8                     | _                                                                                  |                        | Medium dense, brown, fine to medium                                                                       |               |                                                 |     |
|                                           |                                       |                                                              |                                                     | IVI             | •               |                                                        | 6                          |                                                                                    |                        | SAND, some silt, with sandy gravel layers<br>and clayey silt layers                                       |               |                                                 |     |
| 35 —                                      | -                                     |                                                              |                                                     | Μ               |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| _                                         | -                                     |                                                              |                                                     | Н               |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           | _                                     |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| -                                         |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| _                                         | -                                     |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           | - 10                                  |                                                              | 20                                                  | H               | 10 11 0         | 10/10                                                  | 7.0                        |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| -                                         |                                       |                                                              | 3D                                                  | X               | 10-11.3         | 16/16                                                  | 7-9-<br>25/4"              |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| 30 -                                      | -                                     |                                                              |                                                     | Р               |                 |                                                        |                            |                                                                                    |                        | 1.3 Prohable bedrock                                                                                      | _             |                                                 |     |
|                                           | -                                     |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        | <sup>1.3</sup> Probable bedrock                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        | Auger Refusal at 12.3 feet                                                                                |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        | (Probable Bedrock)                                                                                        |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           |                                       |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
|                                           | ation lines                           |                                                              |                                                     |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| be grad<br>made a                         | ry betweer<br>ual. Wate<br>t times an | r level re<br>d under                                        | eadings ha                                          | ave t<br>is sta | been<br>ated.   |                                                        |                            |                                                                                    |                        |                                                                                                           |               |                                                 |     |
| other fa                                  | tions of gr<br>ctors than             | those p                                                      | present at                                          |                 |                 |                                                        |                            |                                                                                    |                        | Г                                                                                                         | BORING NO     | D.: <b>B-1</b>                                  | 1   |
| measur                                    | ements w                              | ere ma                                                       | de.                                                 |                 |                 |                                                        |                            |                                                                                    |                        |                                                                                                           |               | <b>D</b> -1                                     |     |

|                                                      | $\sim$                                              |                                                           |                                                                                            |                          |                                |                                                        |                                      |                                                                              |                       |                                                                                                                                                                                                                   | BORING                                | NO.:                    | B-12                                        |
|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|--------------------------------|--------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|---------------------------------------------|
| K                                                    | )                                                   |                                                           |                                                                                            |                          |                                |                                                        | PI                                   | ROJECT: Pr                                                                   | ley 8<br>opos         | Dorsky Engineering & Surveying<br>ed Kingfish Maine, Inc. Aquaculture Facility                                                                                                                                    | SHEET:<br>PROJEC<br>DATE S<br>DATE FI |                         | 1 of 1<br>19-1758.1<br>2/5/2020<br>2/5/2020 |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATE    | ING CO.<br>YPE: _T<br>IER TYP<br>IER EFF<br>R LEVEI | See Ex<br>: _S. V<br>rack M<br>E: _AL<br>ICIENC<br>L DEPT | ploration<br>V. Cole E<br>ounted D                                                         | iedri                    | orations,<br>ich D-50<br>0.98  | LLC D<br>A<br>B                                        | RILLER:<br>UGER ID<br>AMMER          | DN (FT):42.<br>Kevin Hansc<br>)/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 5<br>: 14 | DRILLING METHOD:         Hollow Stem A           8 in         SAMPLER:         Standard Split-Spoon                                                                                                               | GGED BY                               |                         |                                             |
| KEY TO                                               | RAL NO<br>D NOTES<br>YMBOLS:                        | <u>Wate</u><br>⊻ At<br>▼ At                               | er Level<br>time of Dr<br>Completic<br>ter Drilling                                        | on of                    | l<br>Drilling                  | D = Split S<br>U = Thin W<br>R = Rock (<br>V = Field V | alled Tube                           | e Sample Rec. =<br>ble bpf =                                                 | = Reco<br>Blows       | very Length WOH = Weight of Hammer $q_{ij}$ = Unce<br>ber Foot RQD = Rock Quality Designation Ø = Fricti                                                                                                          | nfined Con                            | npressive<br>(stimated) | n, kips/sq.ft.<br>Strength, kips/sq.ft.     |
| Elev.<br>(ft)                                        | Depth<br>(ft)                                       | Casing<br>Pen.<br>(bpf)                                   | Sample<br>No.                                                                              |                          | SAMPL<br>Depth<br>(ft)         | E INFOF<br>Pen./<br>Rec.<br>(in)                       | RMATIO<br>Blow<br>Count<br>or<br>RQD | N<br>Field / Lab<br>Test Data                                                | Graphic Log           | Sample<br>Description &<br>Classification                                                                                                                                                                         | H₂0<br>Depth                          |                         | Remarks                                     |
| 40                                                   |                                                     |                                                           | 1D                                                                                         | X                        | 0-2                            | 24/20                                                  | 1-1-3-7                              |                                                                              |                       | <ul> <li>Loose, dark brown, Sandy SILT, with organics and roots</li> <li>Loose becoming medium dense, rusty brown fine to medium SAND, some silt</li> <li>Medium dense, brown, Gravelly SAND, som silt</li> </ul> |                                       |                         |                                             |
|                                                      | 5<br><br>                                           |                                                           | 2D                                                                                         | X                        | 5-7                            | 24/15                                                  | 14-14-<br>18-18                      |                                                                              |                       | 6.0 Dense, brown, Gravelly Silty SAND with occasional cobbles (Glacial Till) Auger Refusal at 8.6 feet                                                                                                            |                                       |                         |                                             |
|                                                      |                                                     |                                                           |                                                                                            |                          |                                |                                                        |                                      |                                                                              |                       | (Probable Bedrock)                                                                                                                                                                                                |                                       |                         |                                             |
|                                                      |                                                     |                                                           |                                                                                            |                          |                                |                                                        |                                      |                                                                              |                       |                                                                                                                                                                                                                   |                                       |                         |                                             |
|                                                      | otion !!-                                           |                                                           |                                                                                            | ime                      |                                |                                                        |                                      |                                                                              |                       |                                                                                                                                                                                                                   |                                       |                         |                                             |
| boundat<br>be grad<br>made a<br>Fluctuat<br>other fa | ry betwee<br>ual. Wate<br>t times ar<br>tions of gr | n soil ty<br>r level ro<br>od under<br>oundwa             | ent approx<br>pes, transi<br>eadings ha<br>conditions<br>ter may or<br>present at t<br>de. | tions<br>ive b<br>s stat | s may<br>een<br>ted.<br>due to |                                                        |                                      |                                                                              |                       | [                                                                                                                                                                                                                 | BORING                                | NO.:                    | B-12                                        |

|                                                    |                                                                     |                                                           |                                                            |                                 |                                  |                                 |                                                     |                                                                               |                       | BORING LOG                                                                                                                                                                                                       |                       | G NO.: _                    | <b>B-13</b>                                |
|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------------------------|
| E                                                  | 5                                                                   |                                                           |                                                            | E E                             |                                  | ) <b>LE</b><br>g,in(            | PI                                                  | ROJECT: Pr                                                                    | ley &                 | Dorsky Engineering & Surveying<br>ed Kingfish Maine, Inc. Aquaculture Facility<br>Garvin Road, Jonesport, ME                                                                                                     | DATE                  | CT NO.<br>START:<br>FINISH: | 1 of 1<br>19-1758.<br>2/4/2020<br>2/4/2020 |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>NATEI | ING CO.                                                             | See Exp<br>: S. W<br>rack Mo<br>E: Au<br>ICIENC<br>L DEPT | Dioration<br>V. Cole E<br>Dunted D<br>tomatic<br>Y FACTO   | iedr                            |                                  | LLC [<br>/<br>H                 | ORILLER:<br>AUGER ID<br>HAMMER                      | DN (FT):35.<br>_Kevin Hansc<br>)/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>1 / 5 :<br>: 14 | DRILLING METHOD:         Hollow Stem           8 in         SAMPLER:         Standard Split-Spoon                                                                                                                | Auger                 | 3 <b>Y</b> : <u>Todd</u>    |                                            |
|                                                    | O NOTES<br>YMBOLS:                                                  | ⊈ At<br>⊈ At                                              | er <u>Level</u><br>time of Di<br>Completio<br>ter Drilling | on o                            | g<br>f Drilling                  | U = Thin V<br>R = Rock          | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | e Sample Rec. =<br>ble bpf =                                                  | = Rec<br>Blows        | very LengthWOH = Weight of Hammer $q_U = U$ per FootRQD = Rock Quality Designation $\emptyset$ = Fr                                                                                                              | nconfined C           | ompressive<br>(Estimated    | h, kips/sq.ft.<br>Strength, kips<br>)      |
| Elev.<br>(ft)                                      | Depth<br>(ft)                                                       | Casing<br>Pen.<br>(bpf)                                   | Sample<br>No.                                              | Type                            | SAMPL<br>Depth<br>(ft)           | E INFO<br>Pen./<br>Rec.<br>(in) | RMATIO<br>Blow<br>Count<br>or<br>RQD                | N<br>Field / Lab<br>Test Data                                                 | Graphic Log           | Sample<br>Description &<br>Classification                                                                                                                                                                        | H <sub>2</sub><br>Dep |                             | Remarks                                    |
| 35 —<br>-<br>-                                     |                                                                     |                                                           | 1D                                                         | X                               | 0-2                              | 24/21                           | 4-3-5-3                                             |                                                                               |                       | Loose, dark brown, Sandy SILT with organ<br>and roots<br>Loose, light gray fine to medium SAND, so<br>silt<br>Loose, rusty brown, SAND, some silt<br>3.0 Dense, brown, Gravelly SAND, some silt,<br>some cobbles |                       |                             |                                            |
| -<br>30 —<br>-                                     | - 5                                                                 |                                                           | 2D                                                         | X                               | 5-7                              | 24/19                           | 26-20-<br>17-16                                     |                                                                               |                       | 5.6 Dense becoming medium dense, light bro<br>fine to medium SAND, trace silt                                                                                                                                    | <u>wn,</u><br>⊻       |                             |                                            |
| -<br>25 —<br>-                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                |                                                           | 3D                                                         | X                               | 10-12                            | 24/24                           | 5-8-9-<br>13                                        |                                                                               |                       |                                                                                                                                                                                                                  |                       |                             |                                            |
| -<br>20 —<br>-                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                      |                                                           | 4D                                                         | X                               | 15-17                            | 24/5                            | 14-17-<br>22-29                                     |                                                                               |                       | 13.0 Dense, brown, Silty Gravelly SAND with cobbles                                                                                                                                                              |                       |                             |                                            |
| -<br>-<br>15 —                                     | -<br>-<br>- 20                                                      |                                                           | 5D                                                         | X                               | 20-20.4                          | 5/4                             | 60/5"                                               |                                                                               |                       | 19.5 Probablr weathered volcanic bedrock<br>(Edmunds Formation)                                                                                                                                                  |                       |                             |                                            |
|                                                    | 4                                                                   | 1                                                         | <u> </u>                                                   |                                 |                                  | 1                               | 1                                                   | 1                                                                             | 1                     | Auger Refusal at 21.6 feet<br>(Probable Bedrock)                                                                                                                                                                 | I                     |                             |                                            |
| ooundar<br>oe grad<br>nade at<br>fluctuat          | ation lines<br>ry betwee<br>lual. Wate<br>t times ar<br>tions of gr | n soil typer<br>r level re<br>d under<br>oundwa           | pes, trans<br>adings hat<br>condition                      | ition<br>ave t<br>s sta<br>ccur | s may<br>been<br>ated.<br>due to |                                 |                                                     |                                                                               |                       |                                                                                                                                                                                                                  |                       | G NO.:                      | B-13                                       |

|               |                      |                         | TT                                         | τ,       | ~~            |                                     |                            |                                  |             | BORI                                       | NG LOG                                                    | BOR     | ING NO.: _       | <b>B-14</b><br>1 of 1        |
|---------------|----------------------|-------------------------|--------------------------------------------|----------|---------------|-------------------------------------|----------------------------|----------------------------------|-------------|--------------------------------------------|-----------------------------------------------------------|---------|------------------|------------------------------|
|               | =                    |                         | .W                                         |          |               | )Lt                                 |                            |                                  |             |                                            | gineering & Surveying<br>Maine, Inc. Aquaculture Facility | -       | JECT NO.         | 19-1758.1<br>2/4/2020        |
|               |                      | ΕN                      | IGIN                                       | ΕE       | ERIN          | G,IN                                |                            |                                  |             |                                            | ad, Jonesport, ME                                         | -       | E FINISH:        | 2/4/2020                     |
|               | ng Info              |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         | ploration<br>V. Cole E                     |          |               |                                     |                            | ON (FT): 23.                     |             | rveyed                                     | TOTAL DEPTH (FT): 14.1 I<br>DRILLING METHOD: Hollow Sten  |         | BY: Todd         | Sekera                       |
| RIGT          | <b>YPE</b> : <u></u> | rack M                  | ounted D                                   |          |               | )                                   | AUGER I                    | D/OD: 2 1/4 i                    | n / 5       |                                            | SAMPLER: Standard Split-Spoon                             |         |                  |                              |
|               | IER TYP<br>IER EFF   |                         | utomatic<br>CY FACT                        | OR:      | 0.98          |                                     |                            | R WEIGHT (lbs)<br>R DROP (inch): | -           | 10                                         | CASING ID/OD: <u>N/A /N/A</u>                             | CORE BA | ARREL: <u>N/</u> | Α                            |
| WATE          | R LEVE               | _ DEP1                  | THS (ft):                                  |          |               |                                     |                            | . ,                              |             |                                            |                                                           |         |                  |                              |
| KEY TO        | RAL NO               | Wate                    | er Level                                   |          |               | D = Split S                         |                            |                                  |             | etration Length                            |                                                           |         | Shear Strengt    |                              |
| AND S         | YMBOLS:              | 👤 At                    | t time of D<br>Completion<br>fter Drilling | on o     |               | U = Thin V<br>R = Rock<br>V = Field | Core Sam                   |                                  | Blows       | overy Length<br>s per Foot<br>ite per Foot | RQD = Rock Quality Designation Ø = Fi                     |         | le (Estimated    | e Strength, kips/sq.ft.<br>) |
|               |                      |                         |                                            | _        | SAMPI         |                                     | RMATIC                     | DN                               | - Bo        |                                            | Comple                                                    |         |                  |                              |
| Elev.<br>(ft) | Depth<br>(ft)        | Casing<br>Pen.<br>(bpf) | Sample<br>No.                              | Type     | Depth<br>(ft) | Pen./<br>Rec.<br>(in)               | Blow<br>Count<br>or<br>RQD | Field / Lab<br>Test Data         | Graphic Log |                                            | Sample<br>Description &<br>Classification                 |         | H₂0<br>lepth     | Remarks                      |
|               |                      |                         | 1D                                         | M        | 0-2           | 24/19                               | 2-4-9-<br>10               |                                  |             |                                            | se, dark brown, Sandy SILT with organ                     |         |                  |                              |
|               | -                    |                         |                                            | Ň        |               |                                     |                            |                                  |             | Med                                        | lium dense, rusty brown, SAND, some                       | silt    |                  |                              |
|               | -                    |                         |                                            | H        |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| 20 -          | -                    |                         |                                            |          |               |                                     |                            |                                  |             |                                            | lium dense, light brown, fine to mediu                    | n       |                  |                              |
| 20 -          | -                    |                         |                                            |          |               |                                     |                            |                                  |             | SAN                                        | ID, trace silt, trace gravel                              |         |                  |                              |
| -             | - 5                  |                         | 2D                                         | $\nabla$ | 5-7           | 24/16                               | 5-7-7-9                    | )                                |             |                                            |                                                           |         |                  |                              |
| -             | -                    |                         |                                            | X        |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               | -                    |                         |                                            | μ        |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| -             | -                    |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| 15 -          | -                    |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           | 7       | Z                |                              |
| -             | - 10                 |                         | 3D                                         |          | 10-12         | 24/19                               | 5-6-6-6                    | 5                                |             |                                            |                                                           |         | <u>-</u>         |                              |
| -             | -                    |                         |                                            | X        |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| -             | -                    |                         |                                            | μ        |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| -             | -                    |                         |                                            |          |               |                                     |                            |                                  |             | 13.0 Pro                                   | vn Gravelly SAND, some silt                               |         |                  |                              |
| 10 -          | -                    |                         |                                            |          |               |                                     |                            |                                  |             | ВЮ                                         | •                                                         |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            | Auger Refusal at 14.1 feet<br>(Probable Bedrock)          |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
|               |                      |                         |                                            |          |               |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| bounda        | ry betwee            | n soil ty               | ent approx                                 | ition    | is may        |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| made a        | t times ar           | id under                | eadings har<br>condition<br>ater may o     | is sta   | ated.         |                                     |                            |                                  |             |                                            |                                                           |         |                  |                              |
| other fa      |                      | those p                 | present at                                 |          |               |                                     |                            |                                  |             |                                            |                                                           | BOR     | ING NO.:         | B-14                         |

|                                                    | ~                                      |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         | BORING LOG                                                                                          | BORIN                                                              |                           | B-15                        |
|----------------------------------------------------|----------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------|-----------------|------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|-----------------------------|
| E                                                  |                                        | C                                                         | II                                                       | 11             | $\gamma $       |                        |                                                     |                                                                            |                         | Dorsky Engineering & Surveying                                                                      | SHEET:1 of 7<br>PROJECT NO. 19-175                                 |                           |                             |
|                                                    | -                                      | J                                                         | . VV                                                     |                | し               | ノレロ                    |                                                     |                                                                            |                         | ed Kingfish Maine, Inc. Aquaculture Facility                                                        | _                                                                  | START:                    | <u>19-1758.</u><br>2/4/2020 |
|                                                    |                                        | ΕN                                                        | GIN                                                      | ΕE             | ERIN            | G,IN(                  |                                                     |                                                                            |                         | Garvin Road, Jonesport, ME                                                                          |                                                                    | -                         | 2/4/2020                    |
|                                                    |                                        |                                                           |                                                          |                |                 |                        |                                                     |                                                                            | וויי י                  |                                                                                                     |                                                                    | INIST: _                  | 2/4/2020                    |
| Jocat<br>Drilli<br>Rig Ty<br>Hamm<br>Hamm<br>Natef | NG CO.                                 | See Ex<br>: _S. V<br>rack M<br>E: _AL<br>ICIENC<br>L DEPT | oloration V. Cole I ounted E tomatic Y FACT              | Explo<br>Diedi |                 | LLC [                  | DRILLER:<br>AUGER ID<br>HAMMER                      | N (FT):27<br>_Kevin Hansc<br>/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | :om<br>1 / 5 !<br>: _14 | DRILLING METHOD:         Hollow Ste           /8 in         SAMPLER:         Standard Split-Spoo    | 0                                                                  |                           |                             |
| KEY TO                                             | O NOTES<br>YMBOLS:                     | <u>Wate</u><br>⊻ At<br>▼ At                               | er <u>Level</u><br>time of D<br>Completi<br>ter Drilling | ion o          | g<br>f Drilling | U = Thin V<br>R = Rock | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shear | Sample Rec. =                                                              | = Rec<br>Blows          | very LengthWOH = Weight of Hammer $q_{\cup} =$ per FootRQD = Rock Quality Designation $\emptyset =$ | Field Vane Sh<br>Unconfined Co<br>Friction Angle<br>= Not Applicat | ompressive<br>(Estimated) | Strength, kips              |
|                                                    |                                        |                                                           |                                                          |                | SAMPL           | E INFO                 | RMATIO                                              | N                                                                          | 5                       |                                                                                                     |                                                                    |                           |                             |
| Elev.                                              | Depth                                  | Casing                                                    |                                                          |                | -               |                        | Blow                                                |                                                                            | ĽČ                      | Sample                                                                                              | H,C                                                                | ,                         |                             |
| (ft)                                               | (ft)                                   | Pen.<br>(bpf)                                             | Sample<br>No.                                            | Type a         | Depth<br>(ft)   | Pen./<br>Rec.<br>(in)  | Count<br>or<br>RQD                                  | Field / Lab<br>Test Data                                                   | Graphic Log             | Description & Classification                                                                        | Dep                                                                |                           | Remarks                     |
| -                                                  |                                        |                                                           | 1D                                                       |                | 0-2             | 24/20                  | 3-3-4-5                                             |                                                                            |                         | Loose, dark brown, Sandy SILT, with 0.6 \ organics                                                  | г                                                                  |                           |                             |
| _                                                  | [                                      |                                                           |                                                          | Д              |                 |                        |                                                     |                                                                            |                         | Loose, rusty brown, SAND, some silt                                                                 | /                                                                  |                           |                             |
| 25 —                                               | -                                      |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         | 3.0 Loose to medium dense, light brown, fin medium SAND, trace silt, trace gravel                   | e to                                                               |                           |                             |
| _                                                  | - 5                                    |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         | inculum SAND, trace Sill, trace yravel                                                              |                                                                    |                           |                             |
| -                                                  |                                        |                                                           | 2D                                                       | M              | 5-7             | 24/19                  | 4-5-6-7                                             |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  | -                                      |                                                           |                                                          | Δ              |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| 20                                                 | <br>                                   |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  | - 10                                   |                                                           | 3D                                                       |                | 10-12           | 24/18                  | 5-5-6-5                                             |                                                                            |                         |                                                                                                     | ¥                                                                  |                           |                             |
| -                                                  | 1<br>                                  |                                                           |                                                          | Д              |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| 15                                                 | -                                      |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  | - 15                                   |                                                           | 4D                                                       |                | 15-17           | 24/24                  | 2-3-5-5                                             |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  | -                                      |                                                           |                                                          | X              | 10-17           | 27/24                  | 2-0-0-0                                             |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| 10 —                                               | -<br> <br> -                           |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  | 20                                     |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| -                                                  |                                        |                                                           | 5D                                                       | M              | 20-22           | 24/24                  | 2-2-4-5                                             |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
| 5 —                                                | -                                      |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
|                                                    | <u> </u>                               |                                                           |                                                          |                |                 |                        |                                                     |                                                                            |                         | Auger Refusal at 23.5 feet<br>(Probable Bedrock)                                                    |                                                                    |                           |                             |
| oundar                                             | ation lines                            | n soil ty                                                 | pes, trans                                               | sition         | s may           |                        |                                                     |                                                                            |                         | (                                                                                                   |                                                                    |                           |                             |
| nade at                                            | ual. Wate<br>t times ar<br>tions of gr | nd under                                                  | conditior                                                | ns sta         | ated.           |                        |                                                     |                                                                            |                         |                                                                                                     |                                                                    |                           |                             |
|                                                    |                                        |                                                           | present at                                               |                |                 | 1                      |                                                     |                                                                            |                         |                                                                                                     |                                                                    | G NO.:                    | B-15                        |

| CLIENT: Gartiey & Dorsky Engineering & Sunsying         PROJECT NO. 19-1728:<br>DATE STATE: Proceed Kingfish Maine, Inc. Aquaculture Facility         CATION: See Exploration Location Plan         ELEVATION (F): 37.5 Surveyed<br>DRULER: Kein Hanscom         TOTAL DEPTH (FT): 23.7 LOGGED BY: Todd Sekera<br>MUMBER TYPE: Advanable         Mathematication Plan         ELEVATION (FT): 37.5 Surveyed<br>MUMBER TYPE: Advanable         Mathematication Plan         HEAVION (FT): 37.5 Surveyed<br>MUMBER TYPE: Advanable         Mathematication Plan         HEAVION (FT): 37.5 Surveyed<br>MUMBER TYPE: Advanable         Mathematication Plan         HEAVION (FT): 37.5 Surveyed<br>MUMBER TYPE: Advanable       COGGED BY: Todd Sekera         Mathematication Plan       LEVENTOR: Call Advanable         Mathematication Plan       Advanable         Mathematication Plan       LEVENTOR: Call Advanable         Mathematication Plan       Call Advanable         Mathematication       Call Mathematication         Mathematication         Mathematication         Colspan="2">Call Advanable         Mathematication <th></th> <th>BORING LOG</th> <th>BORIN</th> <th>G NO.: _</th> <th><b>B-16</b></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       | BORING LOG                                                                                                                        | BORIN          | G NO.: _                  | <b>B-16</b>      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-----------------|-------------------------------|--------------------------|--------------------------------|-----------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------------|
| Product or model in the second of the s                                                                                                                                                                                                                                      | V=                                                 |                                                                          | C                                                           | W                                              | 11              |                               | T                        |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| ENDINFERSION         LOCATION:         Submark         Date FINISH:         24/2020           Alling Information         ELEVATION (Str. Epiporation Location Ram<br>BLUNC CC: 3. W. Cole Exploration LLD         ELEVATION (ST: 127.5 Sturveyed<br>TYPE: Track Lands Detection Co.)         TOTAL DEPTH (TT):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | -                                                                        | J J                                                         | . VV                                           |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                | -                         |                  |
| Decknow         Decknow <t< td=""><td></td><td></td><td>ΕN</td><td>GIN</td><td>ΕE</td><td>RIN</td><td>G.ING</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                                                          | ΕN                                                          | GIN                                            | ΕE              | RIN                           | G.ING                    |                                |                                               |                       |                                                                                                                                   |                | -                         |                  |
| CARTON: Set Exploration Location Plan.         Classifier of the Mark Discrete Discrete Plan Plan Plan Plan Plan Plan Plan Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               | י Du                  |                                                                                                                                   | DATE           |                           | 2/4/2020         |
| WBONNESS:     A time of billing<br>to provide a state of the constraint of the                                                                                                                                                                                                                                                         | Locat<br>Drilli<br>Rig Ty<br>Hamm<br>Hamm<br>Natef | ION: <u></u><br>NG CO.:<br>PE: <u>T</u><br>ER TYPI<br>ER EFFI<br>R LEVEL | See Exp<br>: _S. V<br>rack Me<br>E: _Au<br>ICIENC<br>L DEPT | ploration<br>V. Cole E<br>ounted D<br>itomatic | Explo<br>Viedr  | orations,<br>ich D-50<br>0.98 | LLC [<br>/<br>H          | ORILLER:<br>AUGER II<br>IAMMER | Kevin Hansc<br>D/OD: 2 1/4 ir<br>WEIGHT (Ibs) | :om<br>1 / 5 :<br>:14 | DRILLING METHOD:         Hollow Stem           /8 in         SAMPLER:         Standard Split-Spoon                                | Auger          |                           |                  |
| Oright         Case of<br>(th)         SAMPLE INFORMATION<br>(th)         Sample<br>Remarks         Depth<br>(th)         Sample<br>Remarks         Depth<br>(th)         Remarks           0         10         0.2         24/16         0-2-2.4         Book         Field / Lab<br>(n)         Depth<br>(n)         Depth         Perc./<br>(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                                                                          | ∑ At<br>∑ At                                                | time of D<br>Completion                        | on of           | )<br>Drilling                 | U = Thin V<br>R = Rock ( | Valled Tub<br>Core Samp        | e Sample Rec. =<br>ble bpf =                  | = Rec<br>Blows        | wery Length         WOH = Weight of Hammer $q_u$ = Uno           per Foot         RQD = Rock Quality Designation         Ø = Fric | onfined C      | ompressive<br>(Estimated) | Strength, kips/s |
| 10       0.2       24/16       6-2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                                                          | ¥ A                                                         |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 10       0.2       24/16       6-2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elev.                                              | Denth                                                                    |                                                             |                                                | Π               |                               |                          | Blow                           |                                               | 12                    |                                                                                                                                   | H <sub>2</sub> | 0                         |                  |
| 10       0.2       24/16       6-2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ft)                                               |                                                                          |                                                             |                                                | be e            |                               |                          | Count                          |                                               | 1phi                  |                                                                                                                                   |                |                           | Remarks          |
| 10       10       0.2       24/16       6-2.2.4       Lose, fully brown, Sandy SiLT with organics         15       20       5.7       24/2       5-8-9-8       0.3       Medium dense, light brown, fine to medium SAND, trace silt, trace gravel       V         10       30       10-12       24/24       2.7-6-11       10.0       Loses, brown, fine Sandy SiLT         10       30       10-12       24/24       2.7-6-11       10.0       Loses, brown, fine Sandy SiLT         10       -       -       -       -       -       -       -         10       -       -       -       -       -       -       -         10       -       -       -       -       -       -       -         10.6       -       -       -       -       -       -       -         10.6       -       -       -       -       -       -       -       -         12       -       -       11       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                          |                                                             | No.                                            | F               | (ft)                          |                          |                                | Test Data                                     | Gra                   | CiassincaliOn                                                                                                                     |                |                           |                  |
| 10       30       10       12       24/2       5-89-8       10.0       Loose, trusty brown, SAND, some silt         10       30       10       12       24/2       5-89-8       10.0       Loose, brown, fine Sandy Sill T         10       30       10       12       24/24       2.7-6-       10.0       Loose, brown, fine Sandy Sill T         10.6       Medium dense, brown, fine Sandy Sill T       10.6       Medium dense, brown, fine to medium SAND, trace silt       SAND, trace silt         10       30       10.12       24/24       2.7-6-       10.6       Medium dense, brown, fine Sandy Sill T         10.6       Medium dense, brown, fine bornedium SAND, trace silt       10.5       Very dense to dense, brown, fine to medium SAND, some silt with oobbles         0       0       15-17       24/18       12.31-       15.5       Very dense to dense, brown, Gravelly SAND, some silt with oobbles         0       0       20.22       24/16       15.20-       23.2       Probable weathered bedrock         Attrace silt 23.7 feet         (Probable Bedrock         Attrace silt 23.7 feet         (Probable Bedrock         (Probable Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                          |                                                             | 45                                             | +               | 0.0                           | 04/40                    |                                |                                               | -                     |                                                                                                                                   |                |                           |                  |
| 16       10       10       10       10       10       10.0       Loose, rusty brown, SAND, some silt         10       30       10.12       24/2       5-8-9-8       10.0       Loose, brown, fine Sandy SiLT         10.0       10.0       Loose, brown, fine Sandy SiLT       10.0       Loose, brown, fine Sandy SiLT         10.0       Loose, brown, fine Sandy SiLT       10.6       Medium dense, brown, fine to medium         5       20       50       15.17       24/18       12.31         15.5       Very dense to dense, brown, fine to medium       SAND, trace silt       Interference of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  |                                                                          |                                                             | טי                                             | M               | 0-2                           | 24/16                    | º-2-2-4                        |                                               |                       | and reate                                                                                                                         | s              |                           |                  |
| 16       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>_</td><td>-</td><td></td><td></td><td>١<u>٨</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                  | -                                                                        |                                                             |                                                | ١ <u>٨</u>      |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | -                                                                        |                                                             |                                                | Ц               |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| Image: Same site of the second state of the secon                                                                                                                                                                                                                                                  | 35 —                                               |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| Image: Solution of the second approximate management and constrained at the second and constant data constant approximate management and the second state.     SAND, trace silt, frace gravel     Image: Solution of the second state.       Image: Solution of the second approximate management and constant and const                                                                                                                                                                                                                                                                                          |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               | $\vdash$              | 3.0 Medium dense. light brown, fine to medium                                                                                     |                |                           |                  |
| 1       20       5.7       24/2       5.8-9.8         10       30       10-12       24/24       2.7-6-         11       10.0       Loose, brown, fine Sandy SiLT         10       10.0       Loose, brown, fine Sandy SiLT         10       10.1       24/24       2.7-6-         11       10.6       Medium dense, brown, fine to medium         SAND, trace slit       10.6         10       40       15-17         24/18       12.31-         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         12.2.2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  | _                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 1       20       5.7       24/2       5.8-9.8         10       30       10-12       24/24       2.7-6-         11       10.0       Loose, brown, fine Sandy SiLT         10       10.0       Loose, brown, fine Sandy SiLT         10       10.1       24/24       2.7-6-         11       10.6       Medium dense, brown, fine to medium         SAND, trace slit       10.6         10       40       15-17         24/18       12.31-         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         15.5       Very dense to dense, brown, Gravelly SAND, some slit with cobbles         12.2.2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                  |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       | -                                                                                                                                 |                |                           |                  |
| and     and <td></td> <td>- 5</td> <td></td> <td>20</td> <td>H</td> <td>F 7</td> <td>24/2</td> <td>5000</td> <td></td> <td></td> <td></td> <td>Į₽</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | - 5                                                                      |                                                             | 20                                             | H               | F 7                           | 24/2                     | 5000                           |                                               |                       |                                                                                                                                   | Į₽             |                           |                  |
| 10       30       10-12       24/24       2-7-6-11       10.0       Loose, brown, fine Sandy SILT         10.6       Medium dense, brown, fine to medium       SAND, trace silt       10.6       Medium dense, brown, fine to medium         15       4D       15-17       24/18       12-31-       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         16       5D       20-22       24/16       15-20-       23-2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)         Capital developmenter may occur due to the refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                  |                                                                          |                                                             | 20                                             |                 | 0-1                           | 24/2                     | <del>ວ-</del> ອ-ອ-ອ            |                                               |                       |                                                                                                                                   |                |                           |                  |
| 10       30       10-12       24/24       2-7-6-11       10.0       Loose, brown, fine Sandy SILT         10.6       Medium dense, brown, fine to medium       SAND, trace silt       10.6       Medium dense, brown, fine to medium         15       4D       15-17       24/18       12-31-       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         16       5D       20-22       24/16       15-20-       23-2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)         Capital developmenter may occur due to the refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | -                                                                        |                                                             |                                                | ١ <u>۸</u>      |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 10       30       10-12       24/24       2-7-6-11       10.0       Loose, brown, fine Sandy SILT         10.6       Medium dense, brown, fine to medium       SAND, trace silt       10.6       Medium dense, brown, fine to medium         15       4D       15-17       24/18       12-31-       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         16       5D       20-22       24/16       15-20-       23-2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)         Capital developmenter may occur due to the refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | _                                                                        |                                                             |                                                | Д               |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 10       30       10-12       24/24       2-7-6-11       10.0       Loose, brown, fine Sandy SILT         10.6       Medium dense, brown, fine to medium       SAND, trace silt       10.6       Medium dense, brown, fine to medium         15       4D       15-17       24/18       12-31-       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         16       5D       20-22       24/16       15-20-       23-2       Probable weathered bedrock         Auger Refusal at 23.7 feet (Probable Bedrock)         Capital developmenter may occur due to the refusal at 23.7 feet (Probable Bedrock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 —                                               |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 3D       10-12       24/24       2-7-6-       10-6       Loose, brown, fine Sandy SLI         10-6       Medium dense, brown, fine to medium       SAND, trace sit         10-7       15       4D       15-17       24/18       12-31-         10-7       20       5D       20-22       24/16       15-20-         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       Very dense to dense, brown, Gravely SAND, some silt with cobbies       Auger Refusal at 23.7 feet (Probable Bedrock)         atification lines represent approximate undary between sol types, transitions may produle the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characteriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 3D       10-12       24/24       2-7-6-       10-6       Loose, brown, fine Sandy SLI         10-6       Medium dense, brown, fine to medium       SAND, trace sit         10-7       15       4D       15-17       24/18       12-31-         10-7       20       5D       20-22       24/16       15-20-         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       Very dense to dense, brown, Gravely SAND, some silt with cobbies       Auger Refusal at 23.7 feet (Probable Bedrock)         atification lines represent approximate undary between sol types, transitions may produle the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characteriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                  |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 3D       10-12       24/24       2-7-6-       10-6       Loose, brown, fine Sandy SLI         10-6       Medium dense, brown, fine to medium       SAND, trace sit         10-7       15       4D       15-17       24/18       12-31-         10-7       20       5D       20-22       24/16       15-20-         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       Very dense to dense, brown, Gravely SAND, some silt with cobbies       Auger Refusal at 23.7 feet (Probable Bedrock)         atification lines represent approximate undary between sol types, transitions may produle the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characteriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 3D       10-12       24/24       2-7-6-       10-6       Loose, brown, fine Sandy SLI         10-6       Medium dense, brown, fine to medium       SAND, trace sit         10-7       15       4D       15-17       24/18       12-31-         10-7       20       5D       20-22       24/16       15-20-         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       5D       20-22       24/16       15-20-       23-2         15       Very dense to dense, brown, Gravely SAND, some silt with cobbies       Auger Refusal at 23.7 feet (Probable Bedrock)         atification lines represent approximate undary between sol types, transitions may produle the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characterized bedrock to be receingt and the time of the ending may be been characterized be been characteriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | - 10                                                                     |                                                             |                                                | Ц               | 10.10                         | 0.1/0.1                  | 070                            |                                               |                       | 10.0                                                                                                                              |                |                           |                  |
| All and a set of down, me to medium<br>SAND, trace slit<br>SAND, trace | _                                                  | -                                                                        |                                                             | 3D                                             | M               | 10-12                         | 24/24                    |                                |                                               |                       | LOUSE, DIOWIT, IITIE Sality SILT                                                                                                  |                |                           |                  |
| 15       4D       15-17       24/18       12-31-<br>33-34         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         15.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         16.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         16.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles         17.5       Very dense to dense, brown, Gravelly SAND,<br>some silt with cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | -                                                                        |                                                             |                                                | ١XI             |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 4D       4D       15-17       24/18       12-31-<br>33-34       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         4D       4D       4D       4D       15-17       24/18       12-31-<br>33-34         4D       4D       4D       4D       15-17       24/18       12-31-<br>20       15.5         Very dense to dense, brown, Gravelly SAND, some silt with cobbles       5D       20-22       24/16       15-20-<br>21-23         4D       4D       4D       15-20-<br>21-23       23.2       Probable weathered bedrock         Auger Refusal at 23.7 feet<br>(Probable Bedrock)         atfication lines represent approximate<br>undary between soll types, transitions may<br>gradual. Water level readings have been<br>deat times and under conditions stated,<br>challows of groundwater may occur due to<br>er factors than those present at the time       Expension Curve       Expension Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                  | _                                                                        |                                                             |                                                | $\square$       |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 4D       4D       15-17       24/18       12-31-<br>33-34       15.5       Very dense to dense, brown, Gravelly SAND, some silt with cobbles         4D       4D       4D       4D       15-17       24/18       12-31-<br>33-34         4D       4D       4D       4D       15-17       24/18       12-31-<br>20       15.5         Very dense to dense, brown, Gravelly SAND, some silt with cobbles       5D       20-22       24/16       15-20-<br>21-23         4D       4D       4D       15-20-<br>21-23       23.2       Probable weathered bedrock         Auger Refusal at 23.7 feet<br>(Probable Bedrock)         atfication lines represent approximate<br>undary between soll types, transitions may<br>gradual. Water level readings have been<br>deat times and under conditions stated,<br>challows of groundwater may occur due to<br>er factors than those present at the time       Expension Curve       Expension Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 —                                               |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                  |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | - 15                                                                     |                                                             |                                                | Ц               |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| alfication lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>deal times and under conditions stated.<br>teta times and under conditions stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                  |                                                                          |                                                             | 4D                                             | M               | 15-17                         | 24/18                    |                                |                                               | <u> </u>              | 15.5 Venu dense to donce, brown, Croughly CANIC                                                                                   |                |                           |                  |
| alfication lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>de at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors that those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | -                                                                        |                                                             |                                                | X               |                               |                          | 00-04                          |                                               |                       | very dense to dense, brown, Graveny SAM                                                                                           | ,              |                           |                  |
| a     b     b     b     b     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c <td>-</td> <td>_</td> <td></td> <td></td> <td><math>\square</math></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                  | _                                                                        |                                                             |                                                | $\square$       |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| a     b     b     b     b     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c     c <td>20 -</td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 -                                               | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>add at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>add at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                  |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>add at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | -                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>add at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                  | - 20                                                                     |                                                             |                                                | Ц               |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| 15 - 1 23.2 Probable weathered bedrock<br>Auger Refusal at 23.7 feet<br>(Probable Bedrock)<br>atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>ide at times and under conditions stated.<br>Inclusions of groundwater may occur due to<br>be refactors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                  |                                                                          |                                                             | 5D                                             | M               | 20-22                         | 24/16                    |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>de at times and under conditions stated.<br>iccutations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | -                                                                        |                                                             |                                                | X               |                               |                          | 21-23                          |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>de at times and under conditions stated.<br>iccutations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                  |                                                                          |                                                             |                                                | $\mathbb{N}$    |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>de at times and under conditions stated.<br>iccutations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 -                                               | -                                                                        |                                                             |                                                | Н               |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| Auger Refusal at 23.7 feet<br>(Probable Bedrock)<br>atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>ade at times and under conditions stated.<br>Ictuations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | _                                                                        |                                                             |                                                |                 |                               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
| (Probable Bedrock)<br>atification lines represent approximate<br>undary between soil types, transitions may<br>gradual. Water level readings have been<br>ade at times and under conditions stated.<br>icituations of groundwater may occur due to<br>ler factors than those present at the time<br>P. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                  |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       | 23.2 Probable weathered bedrock                                                                                                   |                |                           |                  |
| undary between soil types, transitions may<br>gradual. Water level readings have been<br>ade at times and under conditions stated.<br>cicutations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                          |                                                             |                                                |                 |                               |                          |                                |                                               |                       | Auger Refusal at 23.7 feet<br>(Probable Bedrock)                                                                                  | _              |                           |                  |
| Ide at times and under conditions stated.<br>Incluations of groundwater may occur due to<br>ler factors than those present at the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | undar<br>gradu                                     | y betweer<br>al. Wate                                                    | n soil ty<br>r level re                                     | pes, trans<br>eadings ha                       | itions<br>ave b | s may<br>een                  |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ade at<br>uctuat                                   | times an<br>ions of gr                                                   | id under<br>oundwa                                          | condition                                      | s sta<br>ccur   | ited.<br>due to               |                          |                                |                                               |                       |                                                                                                                                   |                |                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                          |                                                             |                                                | the ti          | ime                           |                          |                                |                                               |                       |                                                                                                                                   | BORIN          | g no.:                    | B-16             |

|                   |                              | 1                        |                                         |                |                   |                       |                                       |                               |             | BORI                                          | NG LOG                                                    | BOR<br>SHEI                            | ING NO.: _                   | <b>B-17</b><br>1 of 1 |
|-------------------|------------------------------|--------------------------|-----------------------------------------|----------------|-------------------|-----------------------|---------------------------------------|-------------------------------|-------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------------|------------------------------|-----------------------|
| E                 |                              | C                        | W                                       | 1              | $\neg \cap$       |                       |                                       | IFNT: Gart                    | lev 8       | & Dorsky End                                  | gineering & Surveying                                     |                                        |                              | 19-1758.1             |
|                   | -                            |                          | <b></b>                                 |                | し                 |                       |                                       |                               |             |                                               | Maine, Inc. Aquaculture Facility                          |                                        | E START:                     | 2/4/2020              |
|                   |                              | ΕN                       | IGINI                                   | ΕE             | ERIN              | G,IN(                 |                                       |                               | <u> </u>    |                                               | ad, Jonesport, ME                                         |                                        | E FINISH:                    | 2/4/2020              |
| LOCA              |                              | See Ex                   | ploration                               |                |                   |                       |                                       | DN (FT):                      |             | rveyed                                        |                                                           |                                        | BY: Todd                     | Sekera                |
|                   |                              |                          | V. Cole E                               |                |                   |                       |                                       | Kevin Hanso                   |             | =                                             | DRILLING METHOD: Hollow Stem                              | Auger                                  |                              |                       |
|                   |                              |                          | ounted D                                | ied            | rich D-50         |                       |                                       | /OD: <u>2 1/4 ir</u>          |             |                                               | SAMPLER: <u>Standard Split-Spoon</u>                      |                                        | ARREL: N//                   | •                     |
| HAMM              | ER EFF                       |                          | utomatic<br>CY FACT(<br>THS (ft):       |                |                   |                       |                                       | WEIGHT (lbs):<br>DROP (inch): | -           |                                               | Casing ID/OD: <u>N/A /N/A</u> C                           | ORE BA                                 | ARREL: <u> \//</u>           | A                     |
| KEY TO            | RAL NO<br>D NOTES<br>YMBOLS: | <u>Wat</u> e<br>⊈ At     | er Level<br>t time of Dr                |                | g                 | U = Thin V            | Spoon Sam<br>Valled Tube<br>Core Samp | e Sample Rec. =               | = Rec       | etration Length<br>overy Length<br>s per Foot | WOH = Weight of Hammer q <sub>u</sub> = U                 | nconfined                              | Shear Strengt<br>Compressive | Strength, kips/sq.ft  |
|                   | 1                            |                          | fter Drilling                           |                | -                 | V = Field             | Vane Shear                            | mpf =                         |             | te per Foot                                   |                                                           | Not Appli                              |                              |                       |
|                   |                              |                          |                                         | _              | SAMPL             | E INFO                | RMATIO                                | N                             | - 6         |                                               | Sample                                                    |                                        |                              |                       |
| Elev.<br>(ft)     | Depth<br>(ft)                | Casing<br>Pen.<br>(bpf)  | Sample<br>No.                           | Type           | Depth<br>(ft)     | Pen./<br>Rec.<br>(in) | Blow<br>Count<br>or<br>RQD            | Field / Lab<br>Test Data      | Graphic Log |                                               | Description &<br>Classification                           | D                                      | H <sub>2</sub> 0<br>bepth    | Remarks               |
|                   |                              |                          | 1D                                      | 1/             | 0-2               | 24/17                 | 5-1-1-3                               |                               | 1           | Very                                          | loose, dark brown, Sandy SILT with                        |                                        |                              |                       |
| -                 | +                            |                          |                                         | X              |                   |                       |                                       |                               |             |                                               | nics and roots<br>/ loose, rusty brown, SAND, some silt,  |                                        |                              |                       |
| -                 | _                            |                          |                                         | Д              |                   |                       |                                       |                               |             |                                               | e gravel                                                  |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| -                 | 1                            |                          |                                         |                |                   |                       |                                       |                               |             | 3.0 Med                                       | lium dense, brown, SAND, trace silt, tr                   | ace                                    |                              |                       |
| 25 —              | -                            |                          |                                         |                |                   |                       |                                       |                               |             | grav                                          | rel                                                       |                                        |                              |                       |
| _                 | - 5                          |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   | - 3                          |                          | 2D                                      | $\nabla$       | 5-7               | 24/14                 | 6-8-8-9                               |                               |             | 5.5 Mod                                       |                                                           | <u> </u>                               | Z                            |                       |
| -                 | -                            |                          |                                         | X              |                   |                       |                                       |                               |             | ivieu                                         | lium dense, light brown, fine to mediur<br>ID, trace silt | n                                      |                              |                       |
| -                 | 1                            |                          |                                         | $\square$      |                   |                       |                                       |                               |             |                                               | ,                                                         |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| -                 | 1                            |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| 20 -              | -                            |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| _                 | 10                           |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   | - 10                         |                          | 3D                                      | $\nabla$       | 10-12             | 24/22                 | 13-18-                                |                               |             |                                               |                                                           |                                        |                              |                       |
| -                 | -                            |                          |                                         | X              |                   |                       | 17-14                                 |                               |             |                                               |                                                           |                                        |                              |                       |
| -                 |                              |                          |                                         | $\square$      |                   |                       |                                       |                               |             | with                                          | brown, fine sandy silt seams                              |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             | 12.3 Den                                      | se, brown, Gravelly SAND, some silt v                     | vith                                   |                              |                       |
| -                 | -                            |                          |                                         |                |                   |                       |                                       |                               |             | cobl                                          |                                                           |                                        |                              |                       |
| 15 —              | 4                            |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               | <b> </b>    | 14.6 Prot                                     | bable weathered bedrock                                   |                                        |                              |                       |
|                   | <u> </u>                     |                          | 1                                       | -              |                   |                       | 1                                     | I                             |             |                                               | Auger Refusal at 15.0 feet                                | ــــــــــــــــــــــــــــــــــــــ | I                            |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               | (Probable Bedrock)                                        |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| Obr-117           | ation "                      |                          | ont                                     | der-           | 10                | 1                     |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| bounda<br>be grad | ry betwee<br>ual. Wate       | en soil ty<br>er level r | ent approx<br>pes, transi<br>eadings ha | ition<br>ave l | is may<br>been    |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
| made a<br>Fluctua | t times ar<br>tions of gr    | nd under<br>roundwa      | r condition:<br>ater may or             | s sta<br>ccur  | ated.<br>r due to |                       |                                       |                               |             |                                               |                                                           |                                        |                              |                       |
|                   | ctors than<br>ements w       |                          | present at de.                          | the            | time              |                       |                                       |                               |             |                                               |                                                           | BOR                                    | ing no.:                     | B-17                  |
|                   |                              |                          |                                         |                |                   |                       |                                       |                               | -           |                                               |                                                           |                                        |                              |                       |

|                                                   |                                                     | G                                                                                                                   |                                                                                  |                                  |                                  |                                                                                                                                                                         |                                      |                                                                                       |                     | BORING LOG                                                                                                                                  | BORIN      | : _                          | <b>B-18</b><br>1 of 1                |
|---------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|--------------------------------------|
| E                                                 | ラ                                                   |                                                                                                                     |                                                                                  | E E                              |                                  | G, INC. CLIENT: _Gartley & Dorsky Engineering & Surveying<br>PROJECT: Proposed Kingfish Maine, Inc. Aquaculture Facility<br>LOCATION: _9 Dun Garvin Road, Jonesport, ME |                                      |                                                                                       |                     |                                                                                                                                             |            | CT NO<br>START: _<br>FINISH: | 19-1758.1<br>2/5/2020<br>2/5/2020    |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATE | ING CO.:<br>(PE:<br>IER TYPI<br>IER EFFI            | See         Exp           :         _S. V           rack M           E:         _Au           ICIENC           DEPT | oloration<br>V. Cole E<br>ounted D                                               | Explo<br>iedr                    | orations,<br>ich D-50<br>0.98    | LLC [<br>/<br>H                                                                                                                                                         | ORILLER<br>AUGER II<br>IAMMER        | ON (FT): 61.3<br>: Kevin Hansc<br>D/OD: 2 1/4 ir<br>R WEIGHT (Ibs):<br>R DROP (inch): | om<br>1 / 5 {<br>14 | DRILLING METHOD:         Hollow Stem           //8 in         SAMPLER:         Standard Split-Spoon                                         |            | Y: <u>Todd \$</u>            |                                      |
| KEY TO                                            | O NOTES<br>YMBOLS:                                  | <u>Wate</u><br>⊈ At<br><b>⊈</b> At                                                                                  | er <u>Level</u><br>time of Dr<br>Completio<br>ter Drilling                       | on of                            | g<br>f Drilling                  | D = Split S<br>U = Thin V<br>R = Rock (<br>V = Field \                                                                                                                  | alled Tub<br>Core Sam                | e Sample Rec. =<br>ple bpf =                                                          | = Rec<br>Blows      | worry Length         WOH = Weight of Hammer $q_U$ = Unit           per Foot         RQD = Rock Quality Designation         Ø = Frict        | confined C | (Estimated)                  | , kips/sq.ft.<br>Strength, kips/sq.f |
| Elev.<br>(ft)                                     | Depth<br>(ft)                                       | Casing<br>Pen.<br>(bpf)                                                                                             | Sample<br>No.                                                                    | Type                             | SAMPL<br>Depth<br>(ft)           | E INFOR<br>Pen./<br>Rec.<br>(in)                                                                                                                                        | RMATIC<br>Blow<br>Count<br>or<br>RQD | N<br>Field / Lab<br>Test Data                                                         | Graphic Log         | Sample<br>Description &<br>Classification                                                                                                   | H₂(<br>Dep |                              | Remarks                              |
| 60 —                                              | -                                                   |                                                                                                                     | 1D                                                                               | X                                | 0-2                              | 24/16                                                                                                                                                                   | 3-3-4-8                              |                                                                                       |                     | 0.3 Loose, dark brown, Silty SAND with organic<br>0.8 Loose, light gray Silty SAND<br>Medium dense, rusty brown SAND, some s<br>some gravel |            |                              |                                      |
| -<br>-<br>55 —                                    | -<br>-<br>-<br>-<br>-<br>-<br>-                     |                                                                                                                     | 2D                                                                               | X                                | 5-7                              | 24/24                                                                                                                                                                   | 6-6-7-<br>19                         |                                                                                       |                     | 3.0 Medium dense, brown Clayey Sandy SILT, some gravel with cobbles (Glacial Till)                                                          |            |                              |                                      |
| -<br>-<br>-<br>50 —                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                |                                                                                                                     | 3D                                                                               | X                                | 10-12                            | 24/24                                                                                                                                                                   | 10-13-<br>16-15                      |                                                                                       |                     |                                                                                                                                             | Ţ          |                              |                                      |
| -<br>-<br>45 —                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                |                                                                                                                     | 4D                                                                               | X                                | 15-17                            | 24/24                                                                                                                                                                   | 8-9-8-9                              |                                                                                       |                     |                                                                                                                                             |            |                              |                                      |
| -<br>-<br>40 —                                    | -<br>-<br>- 20<br>-                                 |                                                                                                                     | 5D                                                                               | $\left \right\rangle$            | 20-22                            | 24/21                                                                                                                                                                   | 10-11-<br>11-12                      |                                                                                       |                     |                                                                                                                                             |            |                              |                                      |
|                                                   |                                                     |                                                                                                                     |                                                                                  |                                  |                                  |                                                                                                                                                                         |                                      |                                                                                       |                     | Bottom of Exploration at 22.0 feet                                                                                                          |            |                              |                                      |
| boundat<br>be grad<br>made a<br>Fluctuat          | ry betwee<br>ual. Wate<br>t times an<br>tions of gr | n soil ty<br>r level re<br>d under<br>oundwa                                                                        | ent approx<br>pes, transi<br>eadings ha<br>condition<br>ter may op<br>present at | ition:<br>ave t<br>s sta<br>ccur | s may<br>been<br>ited.<br>due to |                                                                                                                                                                         |                                      |                                                                                       |                     |                                                                                                                                             |            |                              |                                      |
|                                                   | ements w                                            |                                                                                                                     |                                                                                  |                                  |                                  |                                                                                                                                                                         |                                      |                                                                                       |                     |                                                                                                                                             | BORIN      | :NO ق                        | B-18                                 |

|                                                            |                                                                                      |                                                                   |                                                                     | <b>v</b>                 | ~ ~                    |                                  |                                                    |                                                                              |                                 | BORING                             | LOG                                                                                                                 |                              | DRING N<br>IEET: | <b>o</b> .: <b>B-19</b><br>1 of 1                          |
|------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|------------------------|----------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------------------------------------------------|
|                                                            | Dilling Information                                                                  |                                                                   |                                                                     |                          | P                      | ROJECT: Pr                       | opos                                               | k Dorsky Engineeri<br>sed Kingfish Maine<br>n Garvin Road, Jor               | e, Inc. Aquaculture Facility    | DATE START:                        |                                                                                                                     | NO. 19-1758.<br>RT: 2/5/2020 |                  |                                                            |
| LOCAT<br>DRILLI<br>RIG TY<br>HAMM<br>HAMM<br>WATE<br>GENEI | TION: <u></u><br>ING CO.<br>YPE: <u>T</u><br>IER TYP<br>IER EFF<br>R LEVEI<br>RAL NO | See Exp<br>: S. W<br>rack Mo<br>E: Au<br>ICIENC<br>L DEPT<br>TES: | bloration<br>V. Cole E<br>bunted D<br>tomatic<br>Y FACT<br>HS (ft): | Expl<br>Died             | 2 6.8 ft               | LLC [<br>/<br>H<br>H             | DRILLER:<br>AUGER IE<br>IAMMER<br>IAMMER           | DN (FT):65'<br>Kevin Hansc<br>D/OD:2 1/4 ir<br>WEIGHT (Ibs):<br>DROP (inch): | om<br>/ 5 :<br><u>1</u> 2<br>30 | DRIL<br>5/8 in SAMI<br>0 CASI      | LING METHOD: Hollow Ster<br>PLER: Standard Split-Spoor<br>NG ID/OD: N/A /N/A                                        | m Auge<br>CORE               | er<br>BARREL     |                                                            |
|                                                            | O NOTES<br>YMBOLS:                                                                   | ⊽ At<br>▼ At                                                      | er <u>Level</u><br>time of D<br>Completi<br>ter Drilling            | on o                     | g<br>f Drilling        | U = Thin V<br>R = Rock (         | Spoon Sam<br>Valled Tube<br>Core Samp<br>Vane Shea | e Sample Rec. =<br>ble bpf = I                                               | Rec                             | overy Length WOH<br>s per Foot RQD | $H = Weight of Hammer q_U = V$<br>= Rock Quality Designation $\emptyset = F$                                        | Unconfin<br>Friction         | ned Comp         | Strength, kips/sq.ft.<br>ressive Strength, kips<br>imated) |
| Elev.<br>(ft)                                              | Depth<br>(ft)                                                                        | Casing<br>Pen.<br>(bpf)                                           | Sample<br>No.                                                       | Type                     | -                      | E INFOR<br>Pen./<br>Rec.<br>(in) | RMATIO<br>Blow<br>Count<br>or<br>RQD               | N<br>Field / Lab<br>Test Data                                                | Graphic Log                     |                                    | Sample<br>Description &<br>Classification                                                                           |                              | H₂0<br>Depth     | Remarks                                                    |
| -                                                          | -                                                                                    |                                                                   | 1D                                                                  | X                        | 0-2                    | 24/8                             | 1-5-9-<br>19                                       |                                                                              |                                 | 0.8 Loose, ligh<br>Medium de       | k brown, Silty SAND with orga<br>t gray Silty SAND<br>ense, rusty brown SAND, some<br>nedium dense, brown, Gravelly | /<br>e silt                  | r<br>r           |                                                            |
| -<br>-<br>60 —<br>-<br>-                                   | - 5                                                                                  |                                                                   | 2D                                                                  | X                        | 5-7                    | 24/10                            | 15-16-<br>19-23                                    |                                                                              |                                 |                                    | ne silt with cobbles (Glacial Til                                                                                   |                              | ¥                |                                                            |
| - 55                                                       | -<br>- 10<br>-                                                                       |                                                                   | 3D                                                                  | X                        | 10-12                  | 24/24                            | 9-11-<br>11-12                                     |                                                                              |                                 |                                    |                                                                                                                     |                              |                  |                                                            |
| -<br>-<br>50 —<br>-<br>-                                   | -<br>-<br>-<br>-<br>-                                                                |                                                                   | 4D                                                                  | X                        | 15-16.5                | 18/18                            | 17-35-<br>60                                       |                                                                              |                                 |                                    | ense, brown, Silty fine SAND<br>e, brown, Silty Sandy GRAVEL<br>es                                                  |                              | -                |                                                            |
| -<br>45 —<br>-                                             | -<br>- 20                                                                            |                                                                   | 5D                                                                  | X                        | 20-22                  | 24/24                            | 10-11-<br>11-10                                    |                                                                              |                                 |                                    | ense, brown, Sandy SILT, som<br>occasional cobbles (Glacial T                                                       |                              | _                |                                                            |
|                                                            | L                                                                                    | <u> </u>                                                          | <u> </u>                                                            | <u> </u>                 |                        |                                  |                                                    |                                                                              | <u> </u>                        | <br>Botto                          | om of Exploration at 22.0 feet                                                                                      |                              |                  |                                                            |
| bounda<br>be grad<br>made a                                | ation lines<br>ry betwee<br>ual. Wate<br>t times an                                  | n soil ty<br>r level re<br>d under                                | pes, trans<br>eadings ha                                            | ition<br>ave l<br>is sta | s may<br>been<br>ated. |                                  |                                                    |                                                                              |                                 |                                    |                                                                                                                     |                              |                  |                                                            |
| other fa                                                   | tions of gr<br>ctors than<br>rements w                                               | those p                                                           | resent at                                                           | the t                    | due to<br>time         |                                  |                                                    |                                                                              |                                 |                                    |                                                                                                                     | BC                           | oring N          | o.: <b>B-19</b>                                            |

|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               | BORI                                                            | NG LOG                                                                             |           | NG NO.: _        | B-20                       |
|-------------------|------------------------------------------|-----------------------|---------------------------------------------------|-----------------|---------------|---------------------------------------------------|------------------------|----------------------------------|---------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|------------------|----------------------------|
| 1E                |                                          | S                     | W                                                 | 1(              | $^{\sim}$     | N F                                               |                        | LIENT: Gar                       | tley a        | & Dorsky End                                                    | gineering & Surveying                                                              | SHEE      | ECT NO.          | <u>1 of 1</u><br>19-1758.1 |
|                   | 7                                        |                       |                                                   |                 |               | G,IN                                              |                        |                                  |               |                                                                 | Maine, Inc. Aquaculture Facility                                                   | DATE      | START:           | 2/5/2020                   |
|                   |                                          | EN                    | GIN                                               | ΕE              | KIN           | G, IN                                             | <u> </u>               | OCATION:                         | 9 Du          | n Garvin Ro                                                     | ad, Jonesport, ME                                                                  | DATE      | FINISH:          | 2/5/2020                   |
|                   | ng Info<br>TION: S                       |                       |                                                   | Loc             | ation Pla     | in l                                              | ELEVATI                | <b>ON (FT):</b> 50.              | 4' Si         | irveved                                                         | TOTAL DEPTH (FT): 16.8 L                                                           | OGGED     | BY: Todd         | Sekera                     |
|                   | ING CO.                                  |                       |                                                   |                 |               |                                                   |                        | : Kevin Hanso                    |               |                                                                 | DRILLING METHOD: Hollow Stem                                                       |           | <u></u>          |                            |
|                   | <b>YPE</b> : <u>T</u>                    |                       |                                                   | Diedri          | ich D-50      |                                                   |                        | <b>D/OD:</b> 2 1/4 i             |               |                                                                 | SAMPLER: Standard Split-Spoon                                                      |           |                  |                            |
|                   | IER TYP<br>IER EFF                       | -                     |                                                   |                 | 0.08          |                                                   |                        | R WEIGHT (lbs)<br>R DROP (inch): |               |                                                                 | CASING ID/OD: N/A /N/A C                                                           | ORE BA    | RREL: <u>N/A</u> | 4                          |
|                   | R LEVEI                                  |                       |                                                   |                 |               | ·                                                 |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| GENE              | RAL NO                                   | TES:                  |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   | O NOTES<br>YMBOLS:                       | ∑ At<br>∑ At          | er Level<br>time of D<br>Completi<br>ter Drilling | on of           | )<br>Drilling | D = Split S $U = Thin V$ $R = Rock$ $V = Field Y$ | Valled Tub<br>Core Sam | ple Sample Rec.<br>ple bpf =     | = Rec<br>Blow | netration Length<br>covery Length<br>s per Foot<br>ute per Foot | WOH = Weight of Hammer $q_U = Ur$ RQD = Rock Quality Designation $\emptyset = Fri$ | nconfined | e (Estimated)    | Strength, kips/sq.ft.      |
|                   |                                          | -                     |                                                   |                 |               | E INFO                                            |                        | •                                |               |                                                                 |                                                                                    |           |                  |                            |
| Elev.             | Depth                                    | Casing                |                                                   | Т               |               | Dere (                                            | Blow                   |                                  | Graphic Log   |                                                                 | Sample                                                                             |           | H <sub>2</sub> 0 |                            |
| (ft)              | (ft)                                     | Pen.<br>(bpf)         | Sample<br>No.                                     | ) ype           | Depth<br>(ft) | Pen./<br>Rec.                                     | Count<br>or            | Field / Lab<br>Test Data         | aphi          |                                                                 | Description &<br>Classification                                                    | De        | epth             | Remarks                    |
|                   |                                          |                       | 1.10.                                             | ľ               | (11)          | (in)                                              | RQD                    | 1 Col Dala                       | ō             |                                                                 |                                                                                    |           |                  |                            |
| 50 -              | -                                        |                       | 1D                                                | М               | 0-2           | 24/9                                              | 1-<br>WOH-             |                                  |               |                                                                 | loose, organics with roots                                                         |           |                  |                            |
| · ·               | -                                        |                       |                                                   | Μ               |               |                                                   | 1-3                    |                                  |               |                                                                 | v loose, dark brown, Sandy SILT, with<br>nics and roots                            | Г         |                  |                            |
|                   | -                                        |                       |                                                   | Ħ               |               |                                                   |                        |                                  |               |                                                                 | se, brown, Silty SAND, some gravel                                                 |           |                  |                            |
|                   | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 | lium dense, brown, Gravelly Silty SANI<br>numerous cobbles                         | D,        |                  |                            |
|                   | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               | , vitil                                                         |                                                                                    | Σ         | 7                |                            |
| 45 -              | - 5                                      |                       | 2D                                                | $\vdash$        | 5-7           | 24/15                                             | 2-5-9-9                |                                  |               | 5.0 Med                                                         | ium dense, brown, fine Sandy SILT                                                  |           |                  |                            |
| 45 -              | ]                                        |                       |                                                   | Ŋ               | 0.            |                                                   |                        |                                  |               |                                                                 | · · · · ·                                                                          |           |                  |                            |
|                   |                                          |                       |                                                   | Δ               |               |                                                   |                        |                                  |               | grav                                                            | lium dense, brown, Silty SAND, some<br>el                                          |           |                  |                            |
| · ·               | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| .                 | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               | 9.0 Den                                                         | se, brown Gravelly Silty SAND                                                      |           |                  |                            |
| 40 -              | - 10                                     |                       | 3D                                                | Н               | 10-12         | 24/22                                             | 11-16-                 |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   | -                                        |                       |                                                   | X               |               |                                                   | 19-23                  |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   | Δ               |               |                                                   |                        |                                  |               | 11.5 Den                                                        | se, brown, Gravelly Sandy SILT with                                                |           |                  |                            |
| · ·               | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               | num                                                             | erous cobbles (Glacial Till)                                                       |           |                  |                            |
|                   | -                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   | +                                        |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| 35 -              | - 15                                     |                       | 4D                                                | $\mathbb{H}$    | 15-15.9       | 11/11                                             | 8-25/5'                |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| 55                | -                                        |                       |                                                   | А               |               |                                                   |                        |                                  |               | 15.9 Prot                                                       | bable weathered bedrock                                                            |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 | Auger Refusal at 16.8 feet                                                         |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 | (Probable Bedrock)                                                                 |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
|                   |                                          |                       |                                                   |                 |               |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| bounda            | ation lines                              | n sòil ty             | pes, trans                                        | sitions         | s may         |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| be grad<br>made a | lual. Wate<br>It times ar<br>tions of gr | r level re<br>d under | eadings had condition                             | ave b<br>is sta | een ted.      |                                                   |                        |                                  |               |                                                                 |                                                                                    |           |                  |                            |
| other fa          | ctors than<br>rements w                  | those p               | present at                                        | the ti          | ime           |                                                   |                        |                                  |               |                                                                 |                                                                                    | BORI      | NG NO.:          | B-20                       |



# **TEST PIT LOGS**

CLIENT: Kingfish Zeeland Maine

 PROJECT:
 Proposed Kingfish Maine, Inc. Aquaculture Facility

 LOCATION:
 Dun Garvin Road, Jonesport, Maine

PROJECT NO.: 19-1758.3 LOGGED BY: Nate Strout CONTRACTOR: Hanscom Construction, Inc. EQUIPMENT: Deere 310G Backhoe

|                          |                                 | _ LOCATION: _ See Explor                                                                                                                          |                                              |                           | COMPL         | ETIC    | ON DEPTH                | <b>i (FT):</b> <u>4.0</u>            |
|--------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|---------------|---------|-------------------------|--------------------------------------|
| Depth<br>(feet)          | Graphic<br>Log                  | "HS (FT): <u>No free water obs</u>                                                                                                                | Stratum Description                          | H <sub>2</sub> 0<br>Depth | Sample<br>No. | Type    | Sample<br>Depth<br>(ft) | Field / Lab<br>Test Data             |
|                          |                                 | Topsoil                                                                                                                                           |                                              |                           |               |         |                         |                                      |
|                          |                                 | 0.5 Red-brown Grave                                                                                                                               | Ily SAND, trace silt                         |                           |               |         |                         |                                      |
| -                        | 1                               |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
| -                        | -                               |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
| -                        | -                               |                                                                                                                                                   |                                              |                           |               |         | 3-                      | Thermal Resistivit<br>= 82.06°C-cm/W |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   | Bottom of Exploration at 4.0 feet            |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   | TEST PIT TP-2                                |                           |               |         |                         |                                      |
|                          | EVEL DEPT                       | LOCATION: See Explor<br>THS (FT): No free water obs                                                                                               |                                              |                           |               | EIIC    |                         | 1 (FT): <u>4.0</u>                   |
| Depth                    | Graphic<br>Log                  |                                                                                                                                                   | Stratum Description                          | H <sub>2</sub> 0          | Sample<br>No. | Type    | Sample<br>Depth         | Field / Lab                          |
| (feet)                   | 5                               | Topsoil                                                                                                                                           |                                              | Depth                     | NO.           | -       | (ft)                    | Test Data                            |
|                          |                                 | ropson                                                                                                                                            |                                              |                           |               |         |                         |                                      |
| -                        |                                 | 0.7 Red-brown SAND                                                                                                                                | ), some gravel and silt                      |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
| -                        |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 | becoming brow                                                                                                                                     | 'n                                           |                           |               |         |                         |                                      |
| -                        | 1                               |                                                                                                                                                   |                                              |                           |               |         | 3-                      | Thermal Resistivit<br>= 82.06°C-cm/W |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   | Bottom of Exploration at 4.0 feet            |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
|                          |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
| 0. 15                    |                                 |                                                                                                                                                   |                                              |                           |               |         |                         |                                      |
| Stratificatio            |                                 | the second se                                   |                                              |                           |               |         |                         |                                      |
| soil types,<br>have been | transitions man<br>made at time | sent approximate boundary between<br>ay be gradual. Water level readings<br>s and under conditions stated.<br>ater may occur due to other factors | KEY TO NOTES<br>AND SYMBOLS:     Water Level | ket Penetro               | meter Strer   | ngth, I | kips/sq.ft.             |                                      |



# **TEST PIT LOGS**

CLIENT: Kingfish Zeeland Maine

 PROJECT:
 Proposed Kingfish Maine, Inc. Aquaculture Facility

 LOCATION:
 Dun Garvin Road, Jonesport, Maine

PROJECT NO.: 19-1758.3 LOGGED BY: Nate Strout CONTRACTOR: Hanscom Construction, Inc. EQUIPMENT: Deere 310G Backhoe

|            | ATE:                                         | 1/23/2020<br>/EL DEPT                       |                                                                                                                                                                                 | ation Location Plan          | ST PIT TP-3<br>SURFACE ELEVATION (FT): 50.1' +,<br>REMARKS:                                                            | I              | COMPL         | ETIC   | N DEPTH                 | (FT): <u>4.5</u>         |
|------------|----------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--------|-------------------------|--------------------------|
|            | Depth<br>(feet)                              | Graphic<br>Log                              |                                                                                                                                                                                 |                              | Description                                                                                                            | H₂0<br>Depth   | Sample<br>No. | Type   | Sample<br>Depth<br>(ft) | Field / Lab<br>Test Data |
|            |                                              |                                             | Topsoil                                                                                                                                                                         |                              |                                                                                                                        |                |               |        |                         |                          |
| -          | -                                            |                                             | <sup>0.6</sup> Red-brown SAND                                                                                                                                                   | and GRAVEL, tra              | ace silt                                                                                                               |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| -          | +                                            |                                             | 2.0 Brown Silty SAND                                                                                                                                                            | , some gravel wit            | h occasional cobbles                                                                                                   | _              |               |        |                         |                          |
|            | _                                            |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        | 2                       | Thermal Resistivity      |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        | 3-                      | = 75.39°C-cm/W           |
| -          | -                                            |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 | Bottom of Expl               | oration at 4.5 feet                                                                                                    |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| 07/10/2    |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
|            |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| 3WCE -     |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| 0.01       |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| 0.00.1     |                                              |                                             |                                                                                                                                                                                 |                              |                                                                                                                        |                |               |        |                         |                          |
| = S<br>- F | oil types, tra<br>ave been m<br>fluctuations | ansitions ma<br>ade at times<br>of groundwa | ent approximate boundary between<br>y be gradual. Water level readings<br>s and under conditions stated.<br>ater may occur due to other factors<br>time measurements were made. | KEY TO NOTES<br>AND SYMBOLS: | Water Level $q_p = F$ $\checkmark$ At time of Digging $\checkmark$ At Completion of Digging $\checkmark$ After Digging | Pocket Penetro | meter Stren   | gth, k | ips/sq.ft.              |                          |



# **Refusal Summary Sheet**

| Exploration<br>Number | Approximate Exploration<br>Elevation (feet) | Apparent Bedrock Depth BGS<br>(feet) | Approximate Apparent<br>Bedrock Elevation (feet) |
|-----------------------|---------------------------------------------|--------------------------------------|--------------------------------------------------|
| B-1                   | 51.9                                        | 2.5                                  | 49.4                                             |
| B-2                   | 38.4                                        | 16.7                                 | 21.7                                             |
| B-3                   | 52.9                                        | 11.7                                 | 41.2                                             |
| B-4                   | 43.8                                        | 14.3                                 | 29.5                                             |
| B-5                   | 62.4                                        | 16.2                                 | 46.2                                             |
| B-6                   | 50.5                                        | 13.6                                 | 36.9                                             |
| B-7                   | 42.2                                        | 10.9                                 | 31.3                                             |
| B-8                   | 50.0                                        | 16.5                                 | 33.5                                             |
| B-9                   | 48.2                                        | 19.0                                 | 29.2                                             |
| B-10                  | 51.3                                        | 7.9                                  | 43.4                                             |
| B-11                  | 41.4                                        | 11.3                                 | 30.1                                             |
| B-12                  | 42.1                                        | 8.6                                  | 33.5                                             |
| B-13                  | 35.5                                        | 19.5                                 | 16.0                                             |
| B-14                  | 23.7                                        | 14.1                                 | 9.6                                              |
| B-15                  | 27.7                                        | 23.5                                 | 4.2                                              |
| B-16                  | 37.5                                        | 23.2                                 | 14.3                                             |
| B-17                  | 28.9                                        | 14.6                                 | 14.3                                             |
| B-18                  | 61.5                                        | >22                                  | N/A                                              |
| B-19                  | 65.0                                        | >22                                  | N/A                                              |
| B-20                  | 50.4                                        | 15.9                                 | 34.5                                             |
| B-101                 | 51.4                                        | 11.0                                 | 40.4                                             |
| B-102                 | 44.7                                        | 19.0                                 | 25.7                                             |
| B-103                 | 50.1                                        | 11.7                                 | 38.4                                             |
| B-104                 | 61.6                                        | 16.8                                 | 44.8                                             |
| B-105                 | 52.4                                        | 2.2                                  | 50.2                                             |
| B-106                 | 49.2                                        | 14.9                                 | 34.3                                             |
| B-107                 | 42.1                                        | 12.4                                 | 29.7                                             |
| B-108                 | 38.7                                        | 15.3                                 | 23.4                                             |
| B-109                 | 50.0                                        | 5.0                                  | 45.0                                             |
| B-110                 | 49.1                                        | 7.0                                  | 42.1                                             |
| B-111                 | 45.1                                        | 8.0                                  | 37.1                                             |
| B-112                 | 40.8                                        | 22.9                                 | 17.9                                             |
| B-113                 | 38.8                                        | 21.2                                 | 17.6                                             |
| B-114                 | 36.0                                        | 31.2                                 | 4.8                                              |
| B-115                 | 35.8                                        | 21.2                                 | 14.6                                             |
| B-116                 | 19.1                                        | 16.8                                 | 2.3                                              |
| B-117                 | 16.6                                        | 5.2                                  | 11.4                                             |
| B-118                 | 46.2                                        | 21.1                                 | 25.1                                             |



### **Refusal Summary Sheet**

| Exploration<br>Number | Approximate Exploration<br>Elevation (feet) | Apparent Bedrock Depth BGS<br>(feet) | Approximate Apparent<br>Bedrock Elevation (feet) |
|-----------------------|---------------------------------------------|--------------------------------------|--------------------------------------------------|
| P-1                   | 45.3                                        | 11.2                                 | 34.1                                             |
| P-2                   | 53.7                                        | 6.5                                  | 47.2                                             |
| P-3                   | 63.0                                        | 16.4                                 | 46.6                                             |
| P-4                   | 49.4                                        | 10.6                                 | 38.8                                             |
| P-5                   | 50.0                                        | 11.2                                 | 38.8                                             |
| P-6                   | 44.2                                        | 11.1                                 | 33.1                                             |
| P-7                   | 41.3                                        | 13.5                                 | 27.8                                             |
| P-8                   | 49.8                                        | 10.5                                 | 39.3                                             |
| P-9                   | 46.0                                        | 13.9                                 | 32.1                                             |
| P-10                  | 47.8                                        | 20.3                                 | 27.5                                             |
| P-11                  | 46.2                                        | 12.8                                 | 33.4                                             |
| P-101                 | 50.5                                        | 13.8                                 | 36.7                                             |
| P-102                 | 55.0                                        | 15.2                                 | 39.8                                             |
| P-103                 | 45.6                                        | 12.1                                 | 33.5                                             |
| P-104                 | 48.4                                        | 12.5                                 | 35.9                                             |
| P-105                 | 41.1                                        | 14.4                                 | 26.7                                             |
| P-106                 | 40.3                                        | 16.9                                 | 23.4                                             |
| P-107                 | 39.3                                        | 23.0                                 | 16.3                                             |
| P-108                 | 31.4                                        | 18.2                                 | 13.2                                             |
| P-109                 | 18.6                                        | 10.5                                 | 8.1                                              |

Note:

Elevations as obtained from the "Exploration Location Plan".

Apparent competent bedrock is interpreted to occur from auger refusal.

BGS = Below Ground Surface



### KEY TO THE NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

### Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S<sub>v</sub> field vane shear strength, kips/sq. ft.
- L<sub>v</sub> lab vane shear strength, kips/sq. ft.
- q<sub>p</sub> unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W<sub>L</sub> liquid limit Atterberg test
- W<sub>P</sub> plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- $\gamma_T$  total soil weight
- $\gamma_{\rm B}$  buoyant soil weight

### Description of Proportions:

### **Description of Stratified Soils**

|        |                  | Parting:    | 0 to 1/16" thickness                |
|--------|------------------|-------------|-------------------------------------|
| Trace: | 0 to 5%          | Seam:       | 1/16" to 1/2" thickness             |
| Some:  | 5 to 12%         | Layer:      | 1⁄2" to 12" thickness               |
| "Y"    | 12 to 35%        | Varved:     | Alternating seams or layers         |
| And    | 35+%             | Occasional: | one or less per foot of thickness   |
| With   | Undifferentiated | Frequent:   | more than one per foot of thickness |

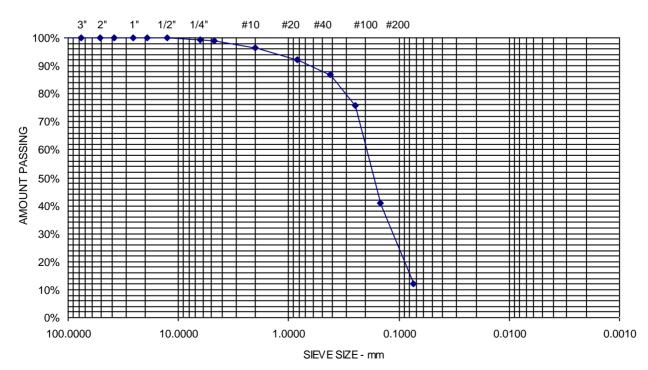
**REFUSAL:** <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

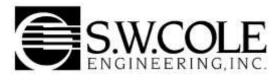
**REFUSAL:** <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

## APPENDIX D

Laboratory Test Results



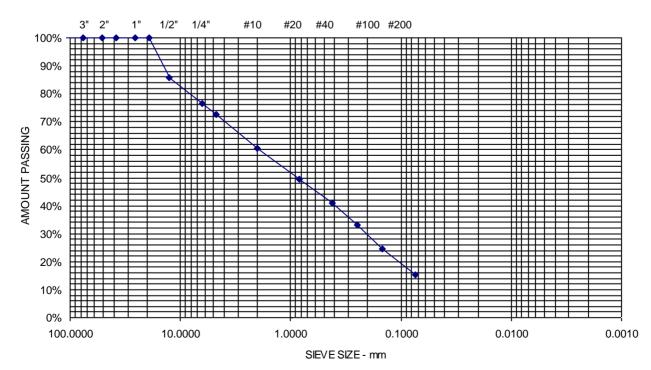


ASTM C-117 & C-136

| Project Name    | JONESPORT ME - PROPOSED KINGFISH MAINE AQUACULTURE<br>FACILITY - DESIGN PHASE - GEOTECHNICAL ENGINEERING |
|-----------------|----------------------------------------------------------------------------------------------------------|
| Client          | KINGFISH ZEELAND MAINE                                                                                   |
| Exploration     | 3D                                                                                                       |
| Material Source | B-102, 5-7 FEET                                                                                          |

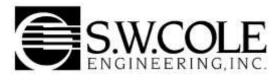
| Project Number | 19-1758.3     |
|----------------|---------------|
| Lab ID         | 26484B        |
| Date Received  | 11/18/2020    |
| Date Completed | 11/19/2020    |
| Tested By      | BAXTER HUGHES |

| <u>STANDARD</u><br>DESIGNATION (mm/µm) | <u>SIEVE SIZE</u> | AMOUNT PASSING (%) |             |
|----------------------------------------|-------------------|--------------------|-------------|
|                                        |                   |                    |             |
| 150                                    | 6"                | 100                |             |
| 125                                    | 5"                | 100                |             |
| 100                                    | 4"                | 100                |             |
| 75                                     | 3"                | 100                |             |
| 50                                     | 2"                | 100                |             |
| 38.1                                   | 1-1/2"            | 100                |             |
| 25.0                                   | 1"                | 100                |             |
| 19.0                                   | 3/4"              | 100                |             |
| 12.5                                   | 1/2"              | 100                |             |
| 6.3                                    | 1/4"              | 99                 |             |
| 4.75                                   | No. 4             | 99                 | 1.2% Gravel |
| 2.00                                   | No. 10            | 96                 |             |
| 850                                    | No. 20            | 92                 |             |
| 425                                    | No. 40            | 87                 | 86.9% Sand  |
| 250                                    | No. 60            | 76                 |             |
| 150                                    | No. 100           | 41                 |             |
| 75                                     | No. 200           | 11.9               | 11.9% Fines |






ASTM C-117 & C-136

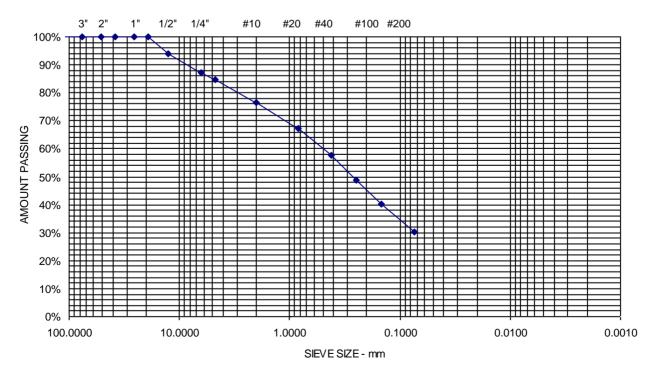

| Project Name    | JONESPORT ME - PROPOSED KINGFISH MAINE AQUACULTURE<br>FACILITY - DESIGN PHASE - GEOTECHNICAL ENGINEERING |
|-----------------|----------------------------------------------------------------------------------------------------------|
| Client          | KINGFISH ZEELAND MAINE                                                                                   |
| Exploration     | 3D                                                                                                       |
| Material Source | B-104, 10-12 FEET                                                                                        |

| Project Number | 19-1758.3    |
|----------------|--------------|
| Lab ID         | 26485B       |
| Date Received  | 11/18/2020   |
| Date Completed | 11/19/2020   |
| Tested By      | DEAN MALLETT |

| <u>STANDARD</u><br>DESIGNATION (mm/µm) | SIEVE SIZE | AMOUNT PASSING (% | 2            |
|----------------------------------------|------------|-------------------|--------------|
|                                        |            |                   |              |
| 150                                    | 6"         | 100               |              |
| 125                                    | 5"         | 100               |              |
| 100                                    | 4"         | 100               |              |
| 75                                     | 3"         | 100               |              |
| 50                                     | 2"         | 100               |              |
| 38.1                                   | 1-1/2"     | 100               |              |
| 25.0                                   | 1"         | 100               |              |
| 19.0                                   | 3/4"       | 100               |              |
| 12.5                                   | 1/2"       | 86                |              |
| 6.3                                    | 1/4"       | 76                |              |
| 4.75                                   | No. 4      | 72                | 27.5% Gravel |
| 2.00                                   | No. 10     | 61                |              |
| 850                                    | No. 20     | 49                |              |
| 425                                    | No. 40     | 41                | 57.3% Sand   |
| 250                                    | No. 60     | 33                |              |
| 150                                    | No. 100    | 25                |              |
| 75                                     | No. 200    | 15.1              | 15.1% Fines  |



Comments:



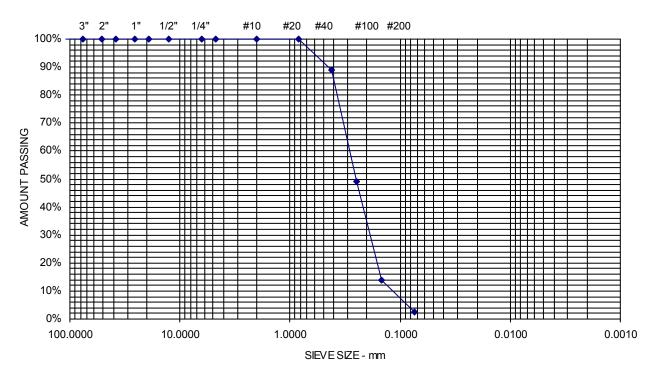

ASTM C-117 & C-136

| Project Name    | JONESPORT ME - PROPOSED KINGFISH MAINE AQUACULTURE<br>FACILITY - DESIGN PHASE - GEOTECHNICAL ENGINEERING |
|-----------------|----------------------------------------------------------------------------------------------------------|
| Client          | KINGFISH ZEELAND MAINE                                                                                   |
| Exploration     | 4D                                                                                                       |
| Material Source | B-116, 10-12 FEET                                                                                        |

| Project Number | 19-1758.3    |
|----------------|--------------|
| Lab ID         | 26486B       |
| Date Received  | 11/18/2020   |
| Date Completed | 11/19/2020   |
| Tested By      | DEAN MALLETT |

| <u>STANDARD</u><br>DESIGNATION (mm/µm) | SIEVE SIZE | AMOUNT PASSING (%) | 1            |
|----------------------------------------|------------|--------------------|--------------|
|                                        |            |                    |              |
| 150                                    | 6"         | 100                |              |
| 125                                    | 5"         | 100                |              |
| 100                                    | 4"         | 100                |              |
| 75                                     | 3"         | 100                |              |
| 50                                     | 2"         | 100                |              |
| 38.1                                   | 1-1/2"     | 100                |              |
| 25.0                                   | 1"         | 100                |              |
| 19.0                                   | 3/4"       | 100                |              |
| 12.5                                   | 1/2"       | 94                 |              |
| 6.3                                    | 1/4"       | 87                 |              |
| 4.75                                   | No. 4      | 85                 | 15.2% Gravel |
| 2.00                                   | No. 10     | 77                 |              |
| 850                                    | No. 20     | 67                 |              |
| 425                                    | No. 40     | 58                 | 54.6% Sand   |
| 250                                    | No. 60     | 49                 |              |
| 150                                    | No. 100    | 40                 |              |
| 75                                     | No. 200    | 30.2               | 30.2% Fines  |





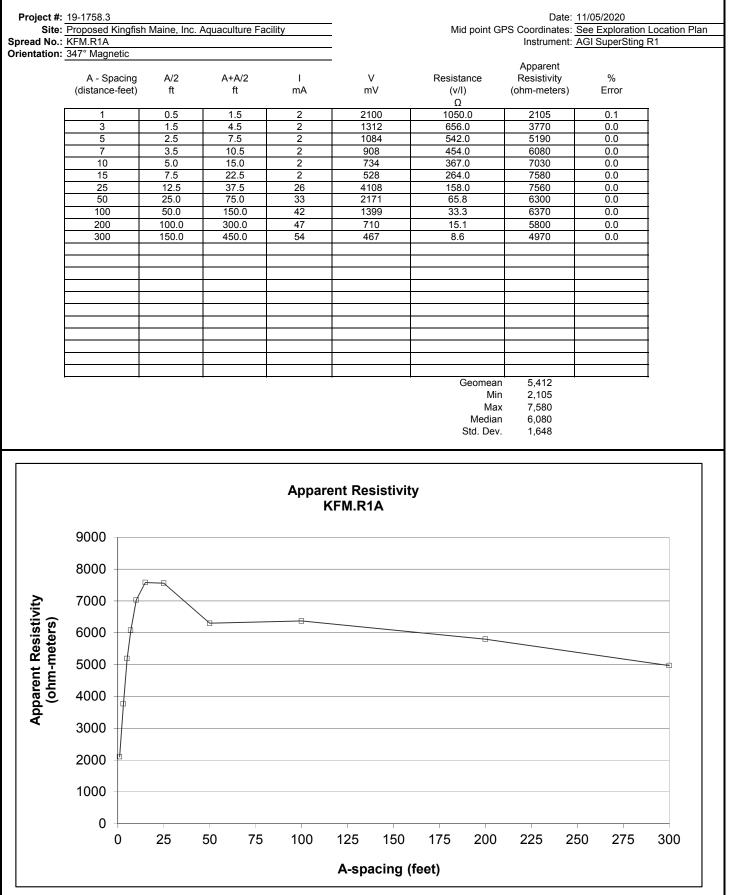

ASTM C-117 & C-136

Project NameJONESPORT ME - PROPOSED KINGFISH MAINE AQUACULTURE<br/>FACILITY - DESIGN PHASE - GEOTECHNICAL ENGINEERINGClientKINGFISH ZEELAND MAINEExploration5DMaterial SourceB-114, 15-17 FEET

| Project Number | 19-1758.3      |
|----------------|----------------|
| Lab ID         | 26588B         |
| Date Received  | 1/2/2021       |
| Date Completed | 1/3/2021       |
| Tested By      | THOMAS HIGGINS |

| <u>STANDARD</u><br>DESIGNATION (mm/µm) | <u>SIEVE SIZE</u> | AMOUNT PASSING (% | 1          |
|----------------------------------------|-------------------|-------------------|------------|
| 450                                    | <b>.</b>          | 400               |            |
| 150                                    | 6"                | 100               |            |
| 125                                    | 5"                | 100               |            |
| 100                                    | 4"                | 100               |            |
| 75                                     | 3"                | 100               |            |
| 50                                     | 2"                | 100               |            |
| 38.1                                   | 1-1/2"            | 100               |            |
| 25.0                                   | 1"                | 100               |            |
| 19.0                                   | 3/4"              | 100               |            |
| 12.5                                   | 1/2"              | 100               |            |
| 6.3                                    | 1/4"              | 100               |            |
| 4.75                                   | No. 4             | 100               | 0% Gravel  |
| 2.00                                   | No. 10            | 100               |            |
| 850                                    | No. 20            | 100               |            |
| 425                                    | No. 40            | 89                | 97.5% Sand |
| 250                                    | No. 60            | 49                |            |
| 150                                    | No. 100           | 14                |            |
| 75                                     | No. 200           | 2.5               | 2.5% Fines |

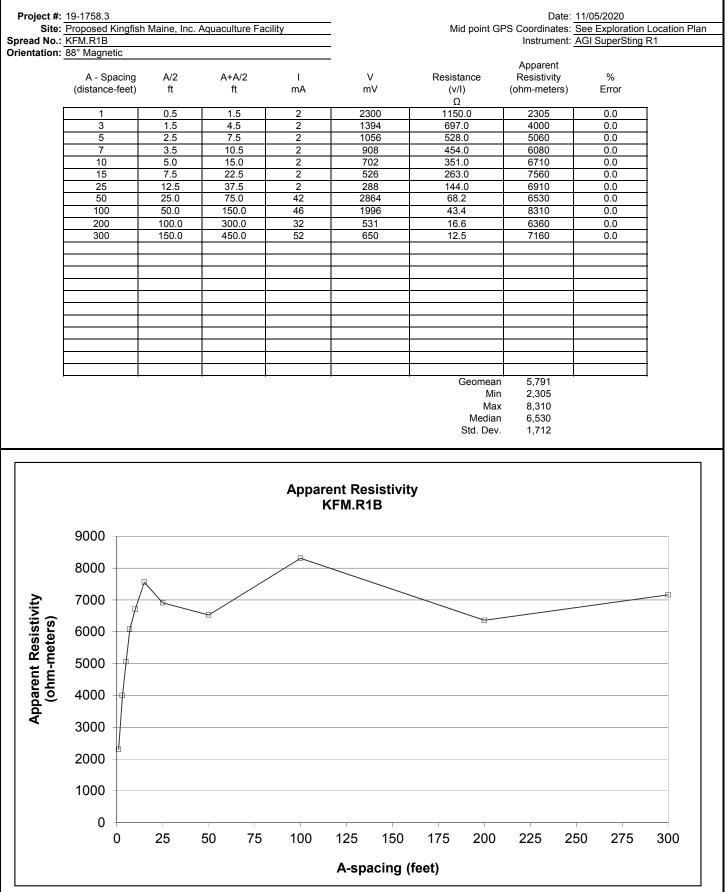



## APPENDIX E

# **Electrical Resistivity Test Results**



#### RESISTIVITY COMPUTATION DATA SHEET Wenner Configuration


Fixed Center





#### RESISTIVITY COMPUTATION DATA SHEET Wenner Configuration

Fixed Center



# APPENDIX 11C

Test Pit Data Report





January 6, 2020

Megan Sorby Tom Sorby Kingfish Maine, Inc.

via email:

megan@kingfish-maine.com tom@kingfish-maine.com

### RE: Subsurface Wastewater Disposal Soil Investigation Kingfish Maine RAS Facility

**Project 2019-412** 

Dear Megan and Tom:

We write to summarize the investigation work performed at your request at the proposed Kingfish Maine RAS facility site at 9 Dun Garvin Road, Jonesport. We have determined that suitable soils are present and will provide opportunities to site and install wastewater disposal systems. We base our understanding of the disposal requirements on current plans, and understand the final design sizing and scale will be dependent on clarification of the overall project scope.

### SOILS INVESTIGATION

Natalie Marceau, licensed soils scientist and licensed site evaluator, screened the ~95 acre property to identify and characterize the locations of soils suitable for onsite wastewater disposal. Natalie performed onsite work to site and observe machine dug test pits at the property on December 23, 2019. Test pits, numbered from 1 to 15, were excavated and logs have been prepared to describe the conditions encountered. These logs represent moderately varying conditions, and indicate consistent and suitable soils across the portions of the site that will be available for siting disposal system(s). An exception to this condition was identified at Test Pit 10, which appears to be located where prior earthwork and filling have occurred. Owing to this disturbance, use of this location is dependent on adjacent conditions and would require further investigation to establish its suitability. The test pits were field located using submeter grade GPS mapping equipment, and have been annotated on the previously prepared base map. When the boundary survey and topographic map is generated by our surveyors, test pit location information will be added to that plan. Test pit 5 and Test pit 6 were excavated in the southerly portion of the property, and are relatively close to the adjacent Coast Guard housing facility's well. This well is presently not registered as a public water supply, according to information provided by state Drinking Water Program staff. It had been regulated as one in the past, but its status was revised. A minimum separation of 100 feet is required from any well to any new disposal field. If the adjacent well was still a public water supply, the separation requirement would increase to 300 feet.

### SYSTEM SIZING REVIEW

For onsite wastewater disposal requirements, domestic demand (non-process wastewater) is expected from employee use and staff housing. From information you have provided, staffing level is understood to be projected as 70 to 100 employees. Staff housing is understood to be several housing units, approximately 4 dwellings. Based on this planned level of development, the design flow prescribed by the Maine Subsurface Wastewater Disposal Rules is roughly approximated as 3,000 to 3,500 gallons per day.

### CONCEPTUAL DESIGN

The soil profiles identified indicate that in the locations where suitable soils exist, the sizing factor for system design is predominantly 2.6 square feet per gallon per day. The sizing factor for test pit 6 is 3.3 square feet per gallon per day. System sizing varies, depending on whether the design incorporates state approved proprietary disposal units to reduce footprint. The identified sizing factors indicates a probable range of disposal field sizing of 10,000 square feet down to 3,000 square feet (exclusive of fill slopes), depending on which system type is incorporated into the design.

### SUMMARY

We have observed soil profiles of suitable conditions and in sufficient varied locations to conclude that adequate soils exist on the property to support onsite subsurface wastewater disposal for the enumerated facility in conformance with applicable regulations.

Enclosed herewith are test pit logs in the prescribed format per Maine Department of Human Services, Division of Health Engineering. Also enclosed is the referenced plan. We appreciate your interest. If you have any questions, please feel free to contact us at (207) 236-4365.

Very truly yours, Gartley & Dorsky, Engineering & Surveying Inc.

William T. Lane, P.E. Vice President

cc: Sune Moeller, Kingfish Zeeland

enclosures: Base Map Test Pit Logs Natale Morean

Natalie Marceau, S.S., S.E. Environmental Scientist



| SUBSURFACE WASTEWATER DISPOSAL                                           | SYSTEM APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Department of Human Services<br>Division of Health Engineering<br>(207) 287-5672 Fax: (207) 287-3165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Town, City, Plantation                                                   | Street, Road, Subdivision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Owner's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JONESPORT                                                                | DUN GARVAN ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KINGFISH MAINE, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SOIL DESC                                                                | RIPTION AND CLASSIFICATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Observation Hole ■ Test Pit Bo<br>○ " Depth of Organic Horizon Above Min |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Pit ☐ Boring<br>of Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Texture Consistency Color M                                              | Mottling 0 Texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Consistency Color Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                   | NONE LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LO | BROWN     NONE       FRIABLE     YELLOWISH       BROWN     COMMON       MEDIUM     DISTINCT       STRONG     BROWN       OLIVE     BROWN       BROWN     BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observation Hole <u>3</u> Test Pit <u>B</u>                              | oring Observation Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Pit 🔲 Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| " Depth of Organic Horizon Above Min                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOAM FRIABLE BROWN                                                       | aver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Consistency     Color     Mottling       BROWN     NONE       STRONG     NONE       FRIABLE     BROWN       FRIABLE     COMMON       MEDIUM     DISTINCT       STRONG     STRONG       BROWN     DISTINCT       BROWN     BROWN       BROWN     BROWN |
|                                                                          | 1   1         1 2/23/19           SE #         Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 1 of 4<br>HHE-200 Rev. 8/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| SUBSURFACE WASTEWATER DISPOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L SYSTEM APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLICATION                                                                                       | Department of Human Services<br>Division of Health Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Town, City, Plantation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Street, Roa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ad, Subdivision                                                                                 | (207) 287-5672 Fax: (207) 287-3165<br>Owner's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| JONESPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DUN GARV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 | KINGFISH MAINE, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D CLASSIFICATI                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| " Depth of Organic Horizon Above M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth o                                                                                         | f Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 Texture Consistency Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 | Consistency Color Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FINE SANDY                                                                                      | - BROWN - NONE -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 SANDY FRIABLE STRONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 | FRIABLE STRONG NONL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOWE NOW NOW Surface (inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 | LIGHT OLIVE COMMON -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMMON S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 SAND                                                                                         | BROWN DISTINCT<br>STRONG<br>BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAND LIGHT OLIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DISTINCT STRONG BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MEDIUM<br>DISTINCT<br>STRONG<br>BROWN<br>H<br>USTRONG<br>H<br>BROWN<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>H<br>USTRONG<br>H<br>USTRONG<br>H<br>H<br>H<br>USTRONG<br>H<br>H<br>H<br>H<br>H<br>H<br>H | 30 FINE SANDY                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | : + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10<br>SANDY<br>FRIABLE<br>SANDY<br>FRIABLE<br>BROWN<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM  | Denth Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                              | BOTTOM OF BACKHOE TEST PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | - + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50     Soil Classification     Slope     Limiting      Ground W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50<br>Soil Classification Slo                                                                   | ppe Limiting Ground Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $5 C \pm 2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 | Factor Restrictive Layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profile Condition <u>18</u> " Dit Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [] []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Profile Condition                                                                               | $\underline{12"}  \square \text{ Pit Depth}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOIL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRIPTION ANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D CLASSIFICATI                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observation Hole                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| " Depth of Organic Horizon Above M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | f Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tenten Consistency Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| O Texture Consistency Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Texture                                                                                       | Consistency Color Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | - + + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | DARK DARK NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | PRIABLE STRONG BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | DARK     DARK       BROWN     NONE       FRIABLE     STRONG       BROWN     COMMON       MEDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | DARK       BROWN       NONE       FRIABLE       STRONG       BROWN       COMMON       MEDIUM       MEDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NONE   NONE   NONE   NONE   NONE   NONE   NONE   NONE   NOTIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | DARK     DARK       BROWN     NONE       FRIABLE     STRONG       BROWN     COMMON       MEDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NONE   NONE   NONE   NONE   NONE   NONE   NONE   NONE   NOTIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | DARK     DARK       BROWN     NONE       FRIABLE     STRONG       BROWN     COMMON       MEDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NONE   NONE   NONE   NONE   NONE   NONE   NONE   NONE   NOTIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | FRIABLE STRONG COMMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dark<br>BROWN<br>10<br>20<br>40<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>LOAM<br>10<br>LOAMY<br>20<br>SAND<br>40                                                   | DARK     DARK       BROWN     NONE       FRIABLE     STRONG       BROWN     MEDIUM       DISTINCT     DISTINCT       BROWN     STRONG       BROWN     BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LOAM<br>SANDY<br>FRIABLE<br>DARK<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>LOAM | NONE   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>LOAM<br>10<br>LOAMY<br>20<br>SAND<br>30<br>40<br>50                                       | DARK       BROWN       FRIABLE       STRONG       BROWN       COMMON       MEDIUM       DISTINCT       STRONG       BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LOAM<br>SANDY<br>SANDY<br>FRIABLE<br>DARK<br>BROWN<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>STRONG<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN                                                                                                 | NONE   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>LOAM<br>10<br>LOAMY<br>20<br>SAND<br>30<br>40<br>50<br>Soil Classification                | PRIABLE STRONG<br>BROWN NONE<br>FRIABLE STRONG<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>B |
| LOAM<br>SANDY<br>FRIABLE<br>COAM<br>SANDY<br>FRIABLE<br>DARK<br>BROWN<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>LOAM<br>LOAM<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>LOAM<br>STRONG<br>BROWN<br>BROWN<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL<br>SOUL                | NONE   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>LOAM<br>10<br>LOAMY<br>20<br>SAND<br>30<br>40<br>50<br>Soil Classification                | DARK       BROWN       FRIABLE       STRONG       BROWN       COMMON       MEDIUM       DISTINCT       STRONG       BROWN       BROWN </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOAM<br>LOAM<br>SANDY<br>FRIABLE<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>SAND<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK<br>DARK                           | NONE   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>LOAM<br>10<br>20<br>LOAMY<br>20<br>SAND<br>30<br>40<br>50<br>Soil Classification<br>5 C ± | DARK         BROWN         NONE         FRIABLE         STRONG         BROWN         COMMON         MEDIUM         DISTINCT         DISTINCT         BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LOAM<br>SANDY<br>FRIABLE<br>DARK<br>BROWN<br>DARK<br>BROWN<br>DARK<br>BROWN<br>STRONG<br>BROWN<br>LIGHT OLIVE<br>BROWN<br>SAND<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>LOAMY<br>SAND<br>LOAMY<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>STRONG<br>BROWN<br>DARK<br>BROWN<br>BROWN<br>COAMY<br>SAND<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>COAMY<br>SAND<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>COAMY<br>SAND<br>LIGHT OLIVE<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN<br>BROWN                                                                                                 | NONE   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>LOAM<br>10<br>20<br>LOAMY<br>20<br>SAND<br>30<br>40<br>50<br>Soil Classification<br>5 C ± | DARK         BROWN         NONE         FRIABLE         STRONG         BROWN         COMMON         MEDIUM         DISTINCT         DISTINCT         BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

H:\Land Projects 3\19412\Drawings\19412 TP data.dwg

| SUBSURFACE WASTEWATER DIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Department of Human Services<br>Division of Health Engineering<br>(207) 287-5672 Fax: (207) 287-3165 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Town, City, Plantation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Street,                                                                                              | Owner's Name                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| JONESPORT DUN GARVAN ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                                                                                                                     | KINGFISH MAINE, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| SOIL DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Observation Hole       9       ■ Test Pit       Boring       Observation Hole       ■ Test Pit       Boring                 " Depth of Organic Horizon Above Mineral Soil       ±28       " Depth of Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Texture Consistency Colo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | Texture                                                                                                                                                             | Consistency Color Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| SANDY<br>LOAM<br>SANDY<br>LOAM<br>FRIABLE<br>STROM<br>BROW<br>SAND<br>LOAMY<br>SAND<br>LOAMY<br>SAND<br>LOAMY<br>SAND<br>LIGHT C<br>BROW<br>SAND<br>LIGHT C<br>BROW<br>SAND<br>SAND<br>LIGHT C<br>BROW<br>SAND<br>SAND<br>LIGHT C<br>BROW<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND | VN NONE                                                                                              | LOAM<br>(HIGH IN<br>ORGANICS)<br>10<br>LOAM<br>(ALBIC<br>(ALBIC<br>HORIZON)<br>20<br>LOAM<br>(HIGH IN<br>ORGANICS)<br>40<br>FINE SANDY<br>50<br>Soil Classification | PRIABLE       DARK         BROWN       BROWN         BROWNISH       NONE         BROWNISH       NONE         GRAY       BROWN         FIRM       DARK         BROWN       BROWN         LIGHT OLIVE       COMMON         BROWN       DISTINCT         STRONG       DISTINCT         STRONG BROWN       DISTINCT         STRONG BROWN       DISTINCT         STRONG BROWN       DISTINCT         STRONG BROWN       BISTINCT         STRONG BROWN       DISTINCT         STRONG BROWN       BISTINCT         STRONG BROWN       BISTINCT         STRONG BROWN       BISTINCT         STRONG BROWN       BISTINCT         STRONG BROWN       BISTRONG BROWN         BOTTOM OF BACKHOE TEST PIT       STRONG BROWN         BELOW DEEP ORGANIC HORIZONS       BELOW DEEP ORGANIC HORIZONS                                                                                                                                                        |  |  |
| SOIL DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Observation Hole        Test Pit       Boring       Observation Hole2        Test Pit       Boring          "       Depth of Organic Horizon Above Mineral Soil        "       Depth of Organic Horizon Above Mineral Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0 Texture Consistency Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | 0 Texture                                                                                                                                                           | Consistency Color Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $5 C \pm 2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NONE<br>NONE<br>T<br>IISH<br>Y<br>COMMON<br>MEDIUM<br>JG<br>DISTINCT<br>N<br>STRONG<br>BROWN         | 50<br>Soil Classification                                                                                                                                           | FRIABLE       DARK<br>BROWN       NONE         STRONG<br>BROWN       COMMON<br>MEDIUM<br>MEDIUM<br>DISTINCT         LIGHT OLIVE       DISTINCT         BROWN       STRONG         BROWN       BROWN         BROWN       STRONG         BROWN       BROWN         LIGHT OLIVE       DISTINCT         BROWN       STRONG         BROWN       BROWN         BROWN       BROWN |  |  |
| Natalia Marcan<br>Site Evaluator Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4    <br>se #                                                                                        | 2/23/   9<br>Date                                                                                                                                                   | Page 3 of 4<br>HHE-200 Rev. 8/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

H:\Land Projects 3\19412\Drawings\19412 TP data.dwg

PROJ. NO.: 2019-412

| SUBSURFACE WASTEWATER DISPOSAL SYSTEM APPLICATION                                                                                                                                                                   |                                          |                                              | Department of Human Services<br>Division of Health Engineering<br>(207) 287-5672 Fax: (207) 287-3165                                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Town, City, Plantation                                                                                                                                                                                              | Street,                                  | Owner's Name                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| JONESPORT                                                                                                                                                                                                           | DUN GA                                   | RVAN ROAD                                    | KINGFISH MAINE, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SOIL DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                 |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Observation Hole3       ■ Test Pit Boring       Observation Hole4       ■ Test Pit Boring         I       " Depth of Organic Horizon Above Mineral Soil       I       " Depth of Organic Horizon Above Mineral Soil |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $5 C \pm 2\%$                                                                                                                                                                                                       | K NONE                                   | Debth Below Mineral Soli Soil Classification | Consistency     Color     Mottling       DARK     NONE       FRIABLE     BROWN     NONE       STRONG     BROWN       BROWN     COMMON       MEDIUM     MEDIUM       BROWN     DISTINCT       BROWN     STRONG       BROWN     STRONG       BROWN     BROWN       BROWN     BROWN       BROWN     BROWN       BROWN     STRONG       BROWN     STRONG       BROWN     BROWN       BROWN     BROWN       BROWN     BROWN       BROWN     BROWN       BROWN     BROWN |  |  |
|                                                                                                                                                                                                                     |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                     | DIL DESCRIPTION A                        | ND CLASSIFICATI                              | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Observation Hole5 Test Pit Boring         " Depth of Organic Horizon Above Mineral Soil                                                                                                                             |                                          | Observation Hole                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $\  -4 - D -   \pm 2\% \ _{10}$                                                                                                                                                                                     | K NONE NONE NONE NONE NONE NONE NONE NON | Depth Below Mineral Soil Surface (inches)    | Consistency     Color     Mottling                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                     |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |