

October 29, 2015

Mrs. Becky Blais
Maine Department of Environmental Protection
17 State House Station
Augusta, Maine 04333

Re: Dry Cleaner Initiative Phase II Environmental Site Assessment LeBlanc's Cleaners | 10 Lafayette Street | Lewiston, Maine

Dear Mrs. Blais:

CES, Inc. (CES) completed a Dry Cleaner investigation (DCI) at the subject property located at 10 Lafayette Street in Lewiston, Maine (Site) on July 28, 2015 and September 2, 2015. A Site Location Map is included as **Figure 1**. The DCI was completed to identify the potential for dry cleaner-related issues affecting the Site and adjacent properties. The scope of work was presented in our Work Plan dated July 22, 2015 and submitted to your attention. The work was completed for the Department's Dry Cleaner Initiative under the Uncontrolled Sites Program.

BACKGROUND

The Site, identified by the City of Lewiston Assessor's Office as Tax Map 173, Lot 19, which corresponds to 10 Lafayette Street, City of Lewiston, Androscoggin County, Maine, was developed with a wagon repair shop, steam dye facility, and dry cleaning operations circa 1914. The main Site building with the more current dry cleaning operation was constructed on the Site circa 1955. At that time, the Site operated one dry cleaning unit which utilized Tetrachloroethene or "Perc" as the primary dry cleaning solvent. According to the property owner, the original dry cleaning machine was vented to the exterior on the western side of the Site building. The original dry cleaning unit and associated vent pipe remain in the Site building but have not been in operation since the early 1970's. This original dry cleaning machine was replaced with a Renzacci dry cleaning unit in the 1970's and operated until 2014, utilizing Perc throughout its operation. The owner ceased the dry cleaning operation in November 2014, and used filters, pre filter lint, and spent solvents from the Renzacci dry cleaning machine are currently stored in the unoccupied building.

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 1

The Phase I Environmental Site Assessment (ESA) performed by Ransom Consulting Inc. (Ransom) reported that significant staining was observed under the dry cleaning unit as well as throughout the Site building, including some staining in the concrete floor under the drums that have historically been used for hazardous waste storage. Used filters, spent solvents, and waste Perc were reportedly stored on the Northern side of the building and disposed of by Safety Kleen throughout dry cleaning operations. The Site reconnaissance performed as part of the Phase I ESA observed empty drums and substance containers on the Site, with staining and substance residue noted on or in the vicinity of the containers, dry cleaning units, and wet-The current and former dry cleaner units were both located along the northwestern wall of the main Site building between 1955 and 2014. According to Sanborn Maps dating back to the early 1900's, historical dry cleaning operations took place in the current boiler room. Mr. LeBlanc, the Site owner, had no information regarding operations that took place prior to 1955 or in the boiler room section of the building. According to the Site owner, dry cleaning chemicals have been stored in the northern portion of the Site building since 1955. A total of five vent pipes and two fill pipes are located on the property. The fill pipes lead to two 275-gallon heating oil storage tanks. Mr. LeBlanc was not aware of the presence of underground storage tanks at the Site. However, according to historical Sanborn Maps, underground storage tanks were located on the Site between 1914 and 1950. Although the tanks were identified as "gas tanks" on the historical maps, the contents of these tanks is unknown. Based on the historical use of the Site, the tanks likely contained fuel oil and/or dry cleaning chemicals. No records regarding tank registration, installation, inspections, or closure of the USTs were provided or identified during the Phase I ESA Site assessment. The Site building is provided with municipal sewer and water services. According to the Lewiston Sewer & Water District, the sewer service discharges to the sewer main located on Lafayette Street. Two floor drains are located within the northern and eastern section of the Site building, and one additional floor drain is located in the boiler room. During the Phase I ESA Site reconnaissance, three floor drains were observed in connection with the Site building; however, the discharge locations of the floor drains could not be confirmed. According to the Phase I ESA report, the environmental conditions of the Site have the potential to be impacted in connection with the floor drains as a result of leaks or releases of dry cleaning chemicals or petroleum products, and vapor encroachment for surrounding properties cannot be ruled out.

The Site was identified by Environmental Data Resources (EDR) as a U.S. EPA Hazardous Waste Site for disposal of small quantities of halogenated solvent materials associated with the former dry cleaning operation, including Tetrachloroethylene. Several violations were reported in connection with the Site's listing as a Resource Conservation and Recovery Act (RCRA) Conditionally Exempt Small Quantity Generators (CESQG).

PHYSICAL SETTING

The Site is located in a mixed use residential and commercial area. Commercial properties are primarily located to the North and South of the Site, along Sabattus Street and Campus Avenue. Residential properties adjoin the property to the Northeast, East, South, and Southwest of the Site, along Lafayette Street. According to the Maine Geological Survey's online well database (http://www.maine.gov/dacf/mgs/pubs/digital/well.htm), one private drinking water well (205 Webster Street) is located with 2,500 feet of the Site.

The topography of the Site has been graded to be generally flat. The topography in the area surrounding the Site generally slopes downward to the North, towards Jepson Brook. Based on the Lewiston, Maine United States Geological Survey (USGS) Quadrangle map, the general elevation of the Site is approximately 250 feet above mean sea level, as referenced to the National Geodetic Vertical Datum (NGVD).

According to the 2002 Surficial Geologic Map of Maine, surficial soils at the Site are identified as Marine regressive sand deposits. Marine regressive sand deposits are generally represented by a sand, silt, and minor gravel, which were deposited by marine currents and wave action as sea level fell during late-glacial time. Those deposits can be as much as ten (10) feet thick. Surficial geology may also be influenced by fill material, which may have been used for Site grading purposes.

According to 1985 Bedrock Geologic Map of Maine, bedrock in the area of the Site is identified as the Sangerville Formation. This bedrock formation consists of Silurian age marble and calcium-bearing silicate rock. Bedrock outcrops were not observed at the Site during reconnaissance.

PRELIMINARY CONCEPTUAL SITE MODEL

Based on the historic operations as a dry cleaner, since the early 1900's, the solvents used included both petroleum and chlorinated based compounds. The areas of concern include the garage area, the northwestern portions of the main building, the former and/or current USTs, and the migration pathways to area receptors. The area receptors include residential and commercial workers. Given the availability of public water, groundwater consumption is not a risk pathway of concern. However, contaminated groundwater migration can be a risk migration pathway for vapor intrusion exposure to human receptors on and off-site. Shallow soil contamination is a concern for direct contact and deeper soils are potentially accessible if future site uses are modified. Vapor intrusion from contaminated vapors, soils, and groundwater is an important human health exposure pathway that needs to be evaluated. Therefore, soil, air, and groundwater are environmental media that need to be evaluated. Because the site is vacant and is adjacent to residential properties on three sides and a commercial property on the fourth side environmental media should be compared to both commercial and residential exposure criteria for vapor and soils.

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 3

CHEMICAL TESTING PLAN

Based upon past usage of the Site building, Chlorinated Vapor Intrusion (CVI) may be a concern. To assist in the determination as to whether this is a concern, CES recommended completing an Indoor Air sample within the structure, three Sub-slab Vapor samples within the structure, Soil Gas samples outside of the structure, as well as groundwater and soil samples.

Utility Locating and Floor Drains

Prior to completing subsurface work on the property, CES subcontracted with Digsmart of Maine (Digsmart) to locate on-site utilities and to attempt to determine the terminus of the floor drains within the building. While locating the utilities with ground penetrating radar (GPR), Digsmart identified two underground structures on the property. One of these structures appears to be an underground storage tank (UST) which is believed to have contained tetrachloroethylene. The exact size of this structure was not able to be definitively determined. The second underground structure appears to be connected to a storm drain that is connected to the floor drains within the Site building. The structure is approximately 4 feet wide and 15 feet long and appears to have a flat top according to the GPR readout.

Soil Borings/Groundwater

On July 28, 2015, CES oversaw the installation of seven soil borings from which five were completed as temporary monitoring wells and groundwater samples were collected following MEDEP's Low Flow Sampling SOP. The locations of soil borings and monitoring wells are shown on **Figure 2**. The ground water sample from each monitoring well was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, Massachusetts for analysis of the nine chlorinated compounds by USEPA Method 8260. Soil was screened with the MiniRae Photoionization Detector (PID) and a soil sample was collected from the depth that had the highest PID reading. The soil samples determined to be of interest were submitted to Alpha for analysis of the nine chlorinated compounds by USEPA Method 8260.

Soils encountered on the North side of the Site building (B-01/MW-01) were comprised of sand, clay, and clayey sand to a total depth of 14.5 feet below ground surface (bgs) with groundwater being encountered at approximately 13 feet below ground surface (bgs). PID results ranged from 0 parts per million (ppm) to 40.7 ppm at 6-8 feet, from which the soil sample (B-01) was collected.

Soils encountered on the West side of the Site building (B-05/MW-05) were comprised of saturated silty sand with a very strong Perc odor, to a total depth of five feet bgs with groundwater being encountered at approximately one foot bgs. PID results ranged from 170 ppm to 1,670 ppm at 4-5 feet. The soil sample (B-05) was collected from 0-4 feet.

Soils encountered on the South side of the Site building (B-03/MW-03, B-04/MW-04, and B-07/MW-07) comprised of sand, clay, sandy clay, and clayey sand to a total depth between 14.5-18.5 feet bgs with groundwater being encountered at approximately 15 feet bgs. PID results ranged from 0 ppm to 499 ppm. The soil samples (B-03, and B-07) were collected from 4-6 feet.

On September 2, 2015, CES oversaw the installation of one additional soil boring completed with a temporary monitoring well (B-08/MW-08) on the northwest side of the Site building, refer to **Figure 2.** Soils encountered comprised of sand, clay, and clayey sand to a total depth of 12 feet bgs with groundwater being encountered at 12 feet bgs. PID results ranged from 2.3 ppm to 102 ppm. The soil samples (B-08) were collected from 0-2 feet (102 ppm) and 6-8 feet (77.6 ppm). The ground water sample was submitted to Alpha for analysis of the nine chlorinated compounds by USEPA Method 8260. Groundwater was determined to be flowing to the west towards the Androscoggin River. See Table 1 for groundwater elevation data.

TABLE 1: WELL SURVEY DATA											
Location	Ground Elevation	Casing Elevation	Depth to Groundwater	Groundwater Elevation							
MW-01	100.00	100.90	9.22	91.68							
MW-03	99.88	102.53	9.05	93.48							
MW-04	99.71	101.41	8.15	93.26							
MW-05	98.90	102.10	4.61	97.49							
MW-07	99.40	100.90	6.30	94.60							

Surficial Soil

CES collected one surficial soil sample to the west (SS-07) of the Site building. The surficial soil sample was taken from 0-2 feet. The soil sample was submitted to Alpha for analysis of the nine chlorinated compounds by USEPA Method 8260.

Ambient Air

On July 27, 2015 CES installed one 24-hour indoor air sample (IA-01) within the Site building. The ambient air sample was collected using a 6-liter SUMMA canister supplied by Alpha. CES documented ambient oxygen and carbon dioxide concentrations as well as post-sample oxygen, and carbon dioxide using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae PID. On July 28, 2015, CES closed the valve on the SUMMA canister. The sample was submitted to Alpha for analysis of Volatile Organic Compounds (VOCs) by USEPA Method TO-15 SIM.

Soil Vapor

On July 28, 2015, CES oversaw the installation of three soil vapor points (SV-03, SV-04, and SV-07) that were co-located with three of the temporary monitoring wells (see **Figure 2** for the locations). All the soil vapor points were installed by the Geoprobe 66DT at the depth of 2.5-3.5 feet bgs with Teflon tubing brought to the ground surface. Vapor samples were collected from each of these locations following MEDEP SOP DR#027. CES documented ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). The samples were submitted to Alpha for analysis of the nine chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

In addition, CES used a stainless steel pore water sampler to collect a soil gas sample (SV-01) from within the sewer utility trench along the northern side of the structure following MEDEP SOP DR#027. CES documented ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). Sample was submitted to Alpha for analysis of the nine chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

Samples were collected via Teflon tubing and 2.7 liter SUMMA canisters supplied by Alpha. CES utilized a peristaltic pump to purge the soil gas sample location for five minutes prior to collecting readings.

On September 2, 2015, CES installed five additional soil vapor points on the Site and on abutting properties (SV-08, SV-09, SV-10, SV-11, and SV-13) shown on the **Figure 2**. The soil vapor points were installed using a Geoprobe 66DT at depths between 2.0-3.5 feet bgs with Teflon tubing brought to the ground surface. An additional location (SV-12) was installed on September 3, 2015 using a pore water sampler in close proximity to the apartment building located to the southwest of the Site. Vapor samples were collected from each of these locations following MEDEP SOP DR#027. CES documented ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a ppb MiniRae PID. The samples were submitted to Alpha for analysis of the nine chlorinated breakdown compounds by USEPA Method TO-15 by SIM. Sample SV-11 was not analyzed by Alpha due to a malfunction of the flow controller connected to the SUMMA canister.

Subslab Vapor

On July 28, 2015, CES collected two 30-minute sub-slab vapor samples (SSV-01, SSV-02) from within the Site building and one 30-minute sub-slab vapor sample (SSV-03) from within the garage following MEDEP SOP DR#027. This consisted of using a hammer drill to drill a half inch hole into the concrete, inserting Teflon tubing, and sealing the holes with modeling clay. CES documented pressure difference with a manometer, ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). The samples were submitted to Alpha for analysis of the nine chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

	TABLE 2: SAMPLE COLLECTION LOCATION INFORMATION												
Vapor Sample Location	Sample ID	Can Size (Liter)	Sample Duration	Analysis	Notes								
Indoor Air within Dry Cleaner	IA-01	6	24 Hours	TO-15 SIM	Indoor Air within dry cleaner								
Between two former dry cleaning machines	SSV-01	2.7	30 minutes	TO-15 SIM	Subslab Vapor sample within former dry cleaner machines area								
Below the washer and flow trench	SSV-02	2.7	30 minutes	TO-15 SIM	Subslab Vapor sample within former dry cleaner								
Between an AST and a former boiler in the garage area	SSV-03	2.7	30 minutes	TO-15 SIM	Subslab Vapor sample within former dry cleaner garage area								
Near discovered perc UST	SV-03	2.7	30 minutes	TO-15 SIM	Soil vapor near perc tank								
Near discovered concrete underground structure	SV-02	2.7	30 minutes	TO-15 SIM	Soil vapor near concrete underground structure								
Northwest of the building	SV-08	2.7	30 minutes	TO-15 SIM	Soil Vapor sample near the dry cleaner machines								
Southwest of the building	SV-04, SV-07 and SV-10	2.7	30 minutes	TO-15 SIM	Soil Vapor between Site and adjacent apartment building								
Near apartment building	SV-12	2.7	30 minutes	TO-15 SIM	Soil vapor adjacent to apartment building (off- site receptor)								
Within utility corridor	SV-01, SV-09, SV-11, and SV- 13	2.7	30 minutes	TO-15 SIM	Soil vapor within sewer utility corridor (SV-11 was not analyzed due to a regulator malfunction)								

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 7

Groundwater Sample Location	Sample ID	Analysis	Notes
North of Site Building	MW-01	VOC	Groundwater down gradient of building
South of Site Building	MW-03 and MW-07	VOC	Groundwater up gradient of building
West of Site Building	MW-05 and MW-08	VOC	Groundwater up gradient of building
East of Site Building	MW-04	VOC	Groundwater up gradient of building

Soil Sample Location	Sample ID	Analysis	Notes
North of the Site Building	B-01	9 Chlorinated compounds by USEPA 8260	Soil sample (6-8' bgs) from B-01 down gradient of building
South of the Site Building	B-03 and B-07	9 Chlorinated compounds by USEPA 8260	Soil sample (4-6'bgs) from B-03 and B-07 up gradient of building
West of the Site Building	B-05 and B-08	9 Chlorinated compounds by USEPA 8260	Soil sample (0-4' bgs) from B-05 up gradient of building; Soil samples (0-2'bgs and 6-8'bgs) from B-08 up gradient of building

ANALYTICAL RESULTS

Groundwater

The groundwater sample collected from the monitoring well MW-05 was reported to contain Total Xylenes (3,700 ug/L) and Naphthalene (330 ug/L) above the RAGs for Groundwater for both Residential and Construction Worker scenarios Toluene, Ethylbenzene, Acetone, n-Butvlbenzene. Isopropylbenzene, p-Isopropyltoluene, n-Propylbenzene, 1.3.5-Trimethylbenzene, and 1,2,4-Trimethylbenzene were reported above the laboratory detection limit. The groundwater sample collected from monitoring well MW-08 was reported to contain Trichloroethene (320 ug/L) above the RAGs for Groundwater Construction Worker. Tetrachloroethene, Vinyl chloride, trans-1,2-Dichloroethene and cis-1,2-Dichloroethene were reported above the laboratory detection limit. Several volatile organic compounds were detected in the groundwater sample from the monitoring wells MW-03 and MW-07 and were reported above the laboratory detection limit. The sample results are summarized in Table 3 and laboratory results are included in Appendix B.

Soil

Surficial soil sample from SS-07 (0-2' bgs) did not detect volatile compounds at concentrations above the RAGs for Residential and Commercial Worker scenarios. However, the concentration of Tetrachloroethene was detected above the laboratory detection limits. No other VOC compounds were detected from the sample collected. Laboratory analytical results for these soil samples are summarized in Table 4 and laboratory results are included in Appendix B.

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 8

Subsurface soil samples from boring B-02 (6-8' bgs), B-05 (0-4' bgs), and B-08 (0-2' bgs) did not detect any compounds at concentrations above the RAGs for Construction Worker scenarios. However, concentration of Tetrachloroethene, Trichloroethene, and cis-1,2-Dichloroethene were detected above the laboratory detection limits. Laboratory analytical results for these soil samples are summarized in Table 5 and laboratory results are included in Appendix B.

Soil Gas

Soil gas samples were reported to contain volatile organic compounds (1,1-Dichloroethene, trans-1,2-Dichloroethene, 1,1-Dichloroethene, and cis-1,2-Dichloroethene), which were detected in soil gas sample locations (SV-01, SV-02, SV-03, SV-04, SV-08, SV-09, SV-10 and SV-12) above the laboratory detection limit. As these samples were soil gas samples, the RAGs are not directly comparable to subslab soil gas samples. Therefore, the attenuation factor was applied to these samples prior to comparison. Applying this attenuation factor to the reported results, the concentrations of trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Trichloroethene and Tetrachloroethene for SSV-01 and Trichloroethene and Tetrachloroethene for SSV-02 and SSV-03 were greater than ten times the Indoor Air for residential and commercial settings. The sample results are summarized in Table 6 and laboratory results are included in Appendix B.

Subslab Soil Gas

Several volatile organic compounds (trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, and 1,1,1-Trichloroethene) were detected in the sub slab soil gas sample locations (SSV-01, SSV-02, and SSV-03) above the laboratory detection limit. As with the soil gas samples, the RAGs are not directly comparable to subslab soil gas samples. Therefore, the attenuation factor was also applied to these samples prior to comparison. Applying this attenuation factor to the reported results, the concentrations of trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Trichloroethene and Tetrachloroethene for SSV-01 and Trichloroethene and Tetrachloroethene for SSV-02 and SSV-03 were greater than ten times the Indoor Air for commercial settings. Laboratory analytical results for these sub slab soil gas samples are summarized in Table 7 and laboratory results are included in Appendix B.

Indoor Air

The sample collected from inside the facility (IA-1) reported concentrations of Tetrachloroethene above the RAGs for the Indoor Air Commercial applications. Although several detections were identified, no other VOC compounds were identified exceeding the Indoor Air for commercial settings. Laboratory analytical results for this indoor air sample are summarized in Table 8 and laboratory results are included in Appendix B.

<u>Updated Conceptual Site Model</u>

The areas of concern for this property are the former dry cleaning machine location (IA-1, SSV-01, and SSV-02) and the garage area (SSV-03). The contaminants of concern include Tetrachloroethylene and daughter compounds including Trichloroethylene, 1,2-Dichloroethylene isomers. In the area of MW-05 and MW-08, on the west side of the Site building, petroleum compounds including Naphthalene, Ethylbenzene and other derivatives of benzene were also detected in shallow groundwater. Based on the reported dry cleaner operational history (1914 to 2014) carbon tetrachloride is also considered a contaminant of concern.

The migration pathways to potential receptors include vapor intrusion into the site building through the cement floor (slab), vapor intrusion into buildings on adjacent properties through foundation backfill material and through utility corridor backfill material. Additional risk pathways include contaminated groundwater migration that facilitates vapor migration to receptors hydraulically downgradient of the dry cleaner and ingestion of contaminated groundwater through water supply wells. The third potential risk pathway includes direct contact risks associated with contaminated soils outside the footprint of the building related to chemical handling, filter handling and maintenance, and lint handling practices.

Potential receptors include people with water supply wells, occupants of buildings where vapor intrusion may be occurring on-site and on adjacent properties; and commercial workers that may contact accessible and potentially accessible soils outside the footprint of the building. The results indicate that pathways on-site are complete for vapor intrusion.

Based on the sample results of this investigation and the results of the Phase I ESA completed previously, the pathways to receptors are complete for groundwater, soil contact, or vapor migration. Subslab samples collected in the area of concern indicate that the source concentration of vapors is high and does pose a migration risk to on-site receptors and may pose a migration risk to off-site receptors down gradient (north of the Site). Based on the DEP, Bureau of Remediation, 2013 Remedial Action Guidelines there are unacceptable risks to the current and future receptors. Mitigation combined with institutional controls are warranted for the site based on the RAG exceedances. Potential future risks to contaminated soils should be addressed through a declaration of environmental covenant and a soil management plan through the Voluntary Response Action Program.

The underground structure present under the driveway appears to receive discharges from the existing floor drains and storm water from the driveway. The structure may be related to a historic grit-tank or possible septic tank for the property. Based on the observations during placement of B05/MW-05, it appears that a discharge pipe from the grit-tank may discharge in this direction. Based on observations of the water depths in MW-05 and the clarity of the discharge water, samples likely represent water in the pipe and not actual groundwater. The actual discharge location is unknown, but may go to a historic surface discharge that has been filled in. This historic drainage may be influencing shallow groundwater flow in the area resulting in the westerly flow pattern.

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 10

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Additional investigations west and southwest of B-05/MW-05 are warranted.

Based upon the current MEDEP RAGs for Indoor Air in Commercial scenarios, there are exceedances for indoor air and soil gas on the property. Groundwater RAGs for Construction Worker scenarios have been exceeded at two of the monitoring wells installed on the property (MW-05 and MW-08), both are located at the western property boundary.

On-site receptors are currently at risk due to the indoor air concentrations of Tetrachloroethene and the sub slab concentrations of Trichloroethene and Tetrachloroethene.

Off-site receptors are currently at risk due to the soil gas concentrations of Trichloroethene and Tetrachloroethene throughout the Site; however the soil gas sample (SV-12), collected from in front of adjacent building did not detect any concentrations above the RAGs but they were detected above the laboratory detection limit.

Recommendations

At this time CES recommends the following:

- Receptors west and southwest of the property should be identified and migration pathways should be further evaluated.
- The USTs discovered during the Phase II ESA should be removed or abandoned-inplace in accordance with MEDEP regulations;
- The current property owner should complete Hazardous Waste Closure as required by EPA regulations;
- The current property owner should submit an application to the MEDEP Voluntary Response Action Program (VRAP) to secure the liability protections currently afforded by the Department.

If you have any questions regarding this letter report, please feel free to contact me at (207) 795-6009.

Sincerely;

CES, INC.

Dorota Schweier

Environmental Technician

John K. Cressey, C.G. Senior Project Manager

DES/JKC/jna

Mrs. Becky Blais | 10.29.2015 | 10193.027 | Page 11

TABLES

TABLE 3 - GROUNDWATER SAMPLE RESULTS											
	MW-01	MW-03	MW-04	MW-05	MW-07	MW-8	Groundwater Construction Worker				
Date	7/28/2015	7/28/2015	7/28/2015	7/28/2015	7/28/2015	9/2/2015					
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L				
VOCs			<u> </u>		<u> </u>		<u>!</u>				
1,1-Dichloroethane	<0.75	<0.75	<0.75	<19	<3.0	<7.5	2,200				
Tetrachloroethene	<0.5	9	<0.5	<12	<2.0	300	880				
1,2-Dichloroethane	<0.5	<0.5	<0.5	<12	<2.0	<5	140				
1,1,1-Trichloroethane	<0.5	<0.5	<0.5	<12	<2.0	<5	15,000				
Vinyl chloride	<1.0	31	<1.0	<25	<4.0	140	160				
1,1-Dichloroethene	<0.5	<0.5	<0.5	<12	<2.0	<5	500				
trans-1,2-Dichloroethene	<0.75	38	<0.75	<19	<3.0	21	2,000				
Trichloroethene	<0.5	1.2	<0.5	<12	<2.0	320	5.8				
cis-1,2-Dichloroethene	<0.5	23	<0.5	<12	<2.0	800	2,000				
Toluene	NA	NA	NA	94	<3.0	NA	12,000				
Ethylbenzene	NA	NA	NA	180	2.6	NA	1,500				
p/m-Xylene	NA	NA	NA	2100	7.9	NA	790				
o-Xylene	NA	NA	NA	1600	<4.0	NA	790				
Xylenes, Total	NA	NA	NA	3700	7.9	NA	790				
Acetone	NA	NA	NA	210	<20	NA	160,000				
n-Butylbenzene	NA	NA	NA	110	4.3	NA	-				
sec-Butylbenzene	NA	NA	NA	<12	4.0	NA	-				
Isopropylbenzene	NA	NA	NA	110	3.5	NA	-				
p-Isopropyltoluene	NA	NA	NA	120	6.0	NA	-				
Naphthalene	NA	NA	NA	330	<10	NA	9.7				
n-Propylbenzene	NA	NA	NA	130	6.8	NA	-				
1,3,5-Trimethylbenzene	NA	NA	NA	990	17	NA	-				
1,2,4-Trimethylbenzene	NA	NA	NA	2600	69	NA	-				

- < = Below the laboratory detection limit
- J = Estimated Value
- ug/L = micrograms per liter
- = No applicable guideline
- NA = Not analyzed

	TABLE 4 - SURFICIAL SOIL SAMPLE RESULTS											
	SS-07	B-05	B-08	Park User	Commercial Worker							
Date	7/28/2015	7/28/2015	9/2/2015									
Depth (ft.)	0-2	0-4	0-2	0-2	0-2							
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							
VOCs				[
1,1-Dichloroethane	<0.12	<0.17	<0.12	4,200	8,400							
Tetrachloroethene	1.3	0.12	0.73	1,700	10,000							
1,2-Dichloroethane	<0.08	<0.11	<0.081	260	520							
1,1,1-Trichloroethane	<0.08	<0.11	<0.081	10,000	10,000							
Vinyl chloride	<0.16	<0.23	<0.15	0.49	66							
1,1-Dichloroethene	<0.08	<0.11	<0.081	10,000	10,000							
trans-1,2-Dichloroethene	<0.12	<0.17	<0.12	5,700	10,000							
Trichloroethene	<0.08	<0.11	<0.081	140	850							
cis-1,2-Dichloroethene	<0.08	<0.11	<0.081	570	3,400							

< = Below the laboratory detection limit mg/kg = milligram per kilogram

	TABLE 5 - SUBSURFACE SOIL SAMPLE RESULTS											
	B-01	B-02	B-03	B-07	B-08	Construction Worker						
Date	7/28/2015	7/28/2015	7/28/2015	7/28/2015	9/2/2015							
Depth (ft.)	6-8	6-8	4-6	4-6	6-8	4-15						
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
VOCs						1						
1,1-Dichloroethane	<0.0015	<0.11	<0.3	<0.093	<0.094	10,000						
Tetrachloroethene	<0.00098	3.7	<0.2	< 0.062	< 0.062	10,000						
1,2-Dichloroethane	<0.00098	< 0.0076	<0.2	< 0.062	< 0.062	3,700						
1,1,1-Trichloroethane	<0.00098	< 0.0076	<0.2	< 0.062	< 0.062	10,000						
Vinyl chloride	< 0.002	<0.15	<0.4	<0.12	<0.12	600						
1,1-Dichloroethene	<0.00098	< 0.0076	<0.2	< 0.062	< 0.062	10,000						
trans-1,2-Dichloroethene	<0.0015	<0.11	<0.3	< 0.093	< 0.094	10,000						
Trichloroethene	<0.00098	1.1	<0.2	< 0.062	< 0.062	140						
cis-1,2-Dichloroethene	<0.00098	0.11	<0.2	<0.062	<0.062	6,200						

< = Below the laboratory detection limit mg/kg = milligram per kilogram

	TABLE 6 - SOIL GAS SAMPLE RESULTS												
	SV-01	SV-02	SV-03	SV-04	SV-07	SV-08	SV-09	SV-10	SV-13	SV-12	Indoor Air Commercial	10 Times Indoor Air Commercial	
Date	7/28/2015	7/28/2015	7/28/2015	7/28/2015	7/28/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/3/2015			
	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3		ug/m3	
Vinyl Chloride	<0.102	206	391	40.4	<0.511	<6.88	3.66	<0.051	<0.511	<0.051	28	280	
1,1-Dichloroethene	< 0.159	16.8	<9.71	<44.8	< 0.793	<10.7	1.73	< 0.079	< 0.793	< 0.079	880	8,880	
trans-1,2-Dichloroethene	<0.159	162	113	<44.8	<0.793	15.4	2.6	< 0.079	<0.793	<0.079	260	2,600	
1,1-Dichloroethane	<0.162	0.465	<9.92	<45.7	<0.809	<10.9	< 0.270	<0.081	<0.809	<0.081	2,200	22,000	
cis-1,2-Dichloroethene	<0.159	630	500	46.8	< 0.793	80.5	322	0.519	<0.793	<0.079	260	2,600	
1,2-Dichloroethane	<0.162	< 0.405	<9.92	6,640	<0.809	<10.9	< 0.270	<0.081	<0.809	<0.081	4.7	47	
1,1,1-Trichloroethane	<0.218	<0.546	<13.4	<61.7	<1.09	<14.7	< 0.364	<0.109	<1.09	<0.109	22,000	220,000	
Trichloroethene	0.247	224	143	<60.7	<1.07	570	13	0.398	<1.07	1.27	8.8	88	
Tetrachloroethene	296	160	3,850	997	217	21,200	109	9.29	2,750	4.9	180	1,800	

< = Below the laboratory detection limit

ND = Not detected above the laboratory detection limit

ug/m3 = micrograms per cubic meter

- = No applicable guideline

Bold = Above applicable guideline

NA = Not analyzed

Т	TABLE 7 - SUB SLAB VAPOR SAMPLE RESULTS											
	SSV-01	SSV-02	SSV-03	Indoor Air Commercial	10 Times Indoor Air Commercial							
Date	7/28/2015	7/28/2015	7/28/2015									
	ug/m3	ug/m3	ug/m3		ug/m3							
Vinyl Chloride	<427	<8.33	<0.511	28	280							
1,1-Dichloroethene	<662	<12.9	<0.793	880	8,880							
trans-1,2-Dichloroethene	2,950	<12.9	<0.793	260	2,600							
1,1-Dichloroethane	<676	<13.2	<0.809	2,200	22,000							
cis-1,2-Dichloroethene	97,900	89.2	94.8	260	2,600							
1,2-Dichloroethane	<676	<13.2	<0.809	4.7	47							
1,1,1-Trichloroethane	<911	22.2	<1.09	22,000	220,000							
Trichloroethene	81,700	443	240	8.8	88							
Tetrachloroethene	4,860,000	28,600	3,320	180	1,800							

< = Below the laboratory detection limit

ND = Not detected above the laboratory detection limit ug/m3 = micrograms per cubic meter

- = No applicable guideline

Bold = Above applicable guideline

NA = Not analyzed

TABLE 8 - INDOOR A	TABLE 8 - INDOOR AIR SAMPLE RESULTS											
	IA-1	Indoor Air Commercial										
Date	7/28/2015											
	ug/m3	ug/m3										
Vinyl Chloride	0.084	28										
1,1-Dichloroethene	< 0.079	880										
trans,-1,2-Dichloroethene	0.266	260										
1,1-Dichloroethane	<0.081	2,200										
cis-1,2-Dichloroethene	2.22	260										
1,2-Dichloroethane	0.085	4.7										
1,1,1-Trichloroethane	<0.109	22,000										
Trichloroethene	5.34	8.8										
Tetrachloroethene	2,750	180										

< = Below the laboratory detection limit

ND = Not detected above the laboratory detection limit ug/m3 = micrograms per cubic meter

- = No applicable guideline

Bold = Above applicable guideline

FIGURE 1 SITE LOCATION MAP

SOURCE: U.S.G.S. TOPOGRAPHIC QUADRANGLE LEWISTON @ 1:24,000

10193.027

FIGURE 2 SAMPLING PLAN

Legend

FIRE HYDRANT

GEO-PROBE

INDOOR AIR SAMPLE

SOIL GAS SAMPLE

SOIL GAS SAMPLE/MONITORING WELL/SOIL SAMPLE

SUBJECT PROPERTY

LeBlanc's Cleaners 10 Lfayette Street Lewiston, ME

Maine Dept. of Env. Protection Project No.: 10193.027 Updated: 10/27/2015 [lladd]

MAP NOTES:

- 1: BASE MAP AERIAL IMAGES ARE AUGUST, 2013 1-METER ORTHOIMAGERY COLLECTED THROUGH THE NATIONAL AERIAL IMAGERY PROGRAM (NAIP), ACQUIRED VIA ESRI ONLINE, 2015.
- 2: MAP IS PROJECTED USING THE UNIVERSAL TRANSVERSE MERC-ATOR (UTM) PROJECTION WITH HORIZONTAL UNITS OF METERS AND REFERENCES THE NORTH AMERICAN DATUM OF 1983 (NAD83).
- 3: NORTH ARROW IS REFERENCED TO GRID NORTH.
- 4: PARCELS & ROAD NAME (NG 911) DATA COURTESY OF MEGIS (2015).
- 5: SAMPLING DATA AND SITE STRUCTURES COURTESY OF THE MAINE DEPARTMENT OF ENVIRON-MENTAL PROTECTION (MEDEP).

Sampling Location Plan

APPENDIX A SOIL BORING LOGS AND SAMPLING SHEETS

			, KO				RING LOG	Boring #:	B-01	
		CE3	INC			Project: PRauc	5 Cleaners	Project #:	10193,027	7
		640 Main	Street			Location: 10 Lake	uette St.	Sheet:		
		ewiston, Ma	ine 04240			Lein	Sten ME	Chkd by:		4
Drilling	Ço:	EPI		V25 A 40 1	_	Boring Location: End	of the mark s	auldir	<u>y </u>	
Person	nel:	PEARS				Elevation:	Date Completed: 7/2	28/15		1
	Statt: RILLI N G N	HARD		<i>HWE(1</i> MPLER	<u> </u>	Date started: 7 28 15	STIMATED GROUND WA			1
Vehicle	CILLING N		Type:	VIPLER		Date Depth	Reference	1	undwater Elevation	
Model:	24	& DT	Hammer:	•		Bate Boptii	Ex. Grade			1
Method		<u> </u>	Fall:				Top of PVC			
Depth						SAN	IPLE		Field	
(ft.)	No.	Pen/Rec (in)	*	Blows/	6 in.		RIPTION	Stratum	Screening (ppmv)	4
		48 8	0-4			0-8" light Brown	N MED-FINE SAND DOCKY (FILL)		0-41 3.7	
-			 -			LOOSE A	DOCKY (FILL)			
2	-		_			-				
						-				
	•					1				
_										
4_		2000 12100	11. 11							
	<u> </u>	48 48	4-8			0-484 BLVE/BX CLAY ST	OWN MOTTLED		4-6' 0.0	
-						CLAY ST	IFF DRY		6-8' 40.7	
6						1			6-8 407	SOIL
_						1				SAMPLE
_]				@ 111:01
										14.Z
8_		wahia	- 1-2	<u> </u>						_
	3	48/48	8-12			0-22" AS ABO	NE		8-10 0.0	
-										
10			_	<u> </u>		22-44"GRAY DAH	MP CLAY SOFT		10-12 0.0	
- "						44 -48" GRAY DA	HAR FLAY WERY OF	+		
			<u> </u>			ען אואט פריךף	ini Cont vortant			
]				
12_	,,	0 - 100	10 111 10							-
	4	30 28	12-14.5			0-28" GRAY ME	DFINITE SAND		12-14500	
_	 		 		_	CLAYEV R	OCKY SHURATED		12 1113 0.0	
14						@13FT.	J			
l '''-						01911.		-		1
_	92.		A 101	1						
	KI	AVSAL	a 14.	5 1						
¹⁶ -	<u> </u>	_		_						
1					_					
-			_							
18						1			İ	
	-									
l										
20						NOTES I'm		****		4
	ılar Soils		ve Soils	% Comp	osition	NOTES: MONITORING	s well MW-01)	instal	LED WITH	
Blows/ft. 0-4	Density V. Loose	Blows/ft.	Consistency V. soft	-		5 FT. SCET 1. Field screening results in	STAN LLUTTED CA	NADI +	a 14:47	
4-10	V. Loose	2-4	v. son Soft	<5% tr	ace	1. Field screening results in	parts per million by volume	は てて レビ(e (ppmv).	51776	
10-30	Compact		Firm		itle			w		
30-50	Dense	8-15	Stiff		some					
>50	V. Dense	15-30	V. Stiff	>25	and					
I		>30	Hard	ĺ		1				1

WATER LEVEL 9.22'
WELL DEPTH 14.75'

/· ?									72 630			
1			, K.				SOIL BORI	NG LOG	Boring #:	B-0:	₹	
1			INC			Project:	EB AND	CLEANING-		10193		
1		640 Main				Location:	IA LEAV	ette CT	Sheet:	10177	<i>ज्यस</i>	
1		ewiston, Ma				Location.	10 VAI 73 (DN ME	Chkd by:			
			1116 04240			.	742(4)86	LOT BETWEEN MET		O'DINI'DIO	ICACIONE	מודה ידונה
Drilling		EPI	1 1 6 6 7	19-14	200	Boring Location	on: (AZKING	COL BETWEEN LOCI	TL MUU	F BUILDI	16/C03C	
Person	nel:	TEARSO				Elevation:	<u> </u>		70 10			ROAD
CES		HAEDE		WE		Date started:	Date started: 7 28 (5 Date Completed: 7 28 (5					
	RILLING M			IPLEF	₹		ES	TIMATED GROUND WA	•			
Vehicle	G€€	PROBE	Туре:			Date	Depth	Reference	Gro	oundwater Ele	vation	
Model:		GG DT	Hammer:					Ex. Grade				
Method	:		Fall:					Top of PVC				
Depth							SAMP			1	ield	
(ft.)	No.	Pen/Rec (in)		Blov	ws/6 in.		DESCRI	PTION	Stratum	Screeni	ing (ppmv)	
		48/23	0-4			a it i p	PAUSI MOTO	-AINE SAND		0-2'	•	
_						0-4 6	keeple Lich	עיוואנ שאדד		0-2	0,0	
						3-4" B	LACK NED	-FINE SAND WITH		A 116		
2							FEW R	200KC		2-4	0.0	
						4-23"	31 <i>uelGea</i> y	CLAY DRY				
] ` • • `	DENSE	antivizza).				
4							DOING !	N/ACTIVE -				
I -	2	48 48	4-8							15 -1		
						0-48"	AS ABOU	A		4-6	4.2	
-						• ' •	713 71001	,,	ļ			
6		-								100	NO 0	- Coll
-	<u> </u>					1				6-8	48.8	70.00
						1			1			SAMPLE
-						1			İ			65 42
8						1 _						> SOIL SAMPLE @ 11:58
-	2	30/15	8-95			0 124	AS ABOVI	- -		8-101	0.0	_
		20112	0 112									
-					_	19 -154	POCK C	eushed white		10-12	0.0	_
10	·					10 19	- 		<u> </u>			
'*-	D.	100110	1 6	a	p==	j						
		CT V 3 1	pr 🕓	1	<u> </u>	1						
-						1						
12				_		1						
'						1						
			-									
1 -						1						
14						1			ŀ			
14 -	ļ	-	 			1						
				-		1			ľ			
I -						1						
1.6				ļ—		1						
16_	 			-		1						
			 	1		1						
I -	 					1						
4.5		-	· -		 .	4						
18 -						-						
				<u> </u>		-			1			,
-	ļ			-		-						
	├	ļ		 		-						
20	J		<u> </u>			NOTES :	- 44	- A - 8				
	ılar Soils		ve Soils	% Co	mposition	NOTES: N	o monet	dring well	instal	LED		
Blows/ft.	Density	Blows/ft.	Consistency			.,	APOR PA	INT (SV-02) of parts per million by volume	@ 9 /	- 2-	- ET	
0-4	V. Loose	<2	V. soft	1		_ V i	MUE 10	(1 () 1 - (X)	ريس حرر	フーゴン	1.	
4-10	Loose	2-4	Soft	<5%	trace	1. Field scree	ning results in p	arts per million by volúme	(ppmv).			Ī
10-30	Compact	4-8	Firm	5-15	little	1						
30-50	Dense	8-15	Stiff	15-25	some							
>50	V. Dense	15-30	V. Stiff	>25	and							
1		>30	Hard									

			<i>∴∧</i> 4 <i>△</i>		1			1	6 6 6 6	1
		CEC	NC			SOIL BOR		Boring #:	B-03	
					Project:	(FBLANC	y ceeaning		10193,027	
		640 Main			Location:	10 PATA	YETTE JI.	Sheet: Chkd by:		
		ewiston, Ma	ine 04240		5 1 1 11	PARKAN	TON ME		SHED & BUILDING	
Drilling (EPI BUA PEA	120001111	DODARI	Boring Locati Elevation:	ion: WHEKIN	g Lot between 1	WIAL	SHUD E DVI CIDING	
Personn		HARI		HUNELER	Date started:	2/28/15	Date Completed:	78/15		
, -v-,	ILLING M	***	717 1 017	MPLER	- Dato otalitos.		STIMATED GROUND WA	TER DEPTH	1	
Vehicle:		PROBE	Type:		 Date	Depth	Reference	1	oundwater Elevation	
Model:		66 DT	Hammer:				Ex. Grade			
Method:			Fall:				Top of PVC			
Depth			,	· 	<u>_</u>	SAMI		044	Field	
(ft.)	No.	Pen/Rec (in)		Blows/6 in		DESCRI		Stratum	Screening (ppmv)	
		48 21	0-4		- 0-5" B	black Med-	FINE SAND DAMP		0-21 0.0	
-					⊣ 1	perc oper	W-5-]	2-4' 200	
2					٠,,		, ,		2-4 200	
- 1			-		70-21"	BLUE GRE	EN CLAY DENSE			
						DRY				
i -										
4_						· · · · · · · · · · · · · · · · · · ·	<u> </u>			یم ا
	2	48 48	4-8		A 1100	11 45 400			4-6 400 -	> Soll
-					- 0-40	AS ABO	VE		" " " " " " " " " " " " " " " " " " "	SAMPLE
			-		\dashv				4-6' 400-	@ last
6_					-				60 6.6	C10.4
					-					
-			-		_					
8								ļ		
	3_	48144	8-12		0 10"	4 4-00	سير		8-10' 0.0	
I _					10-10	AS ABO	VE		-	
					184	AS ARO	ve, soft		10-12' 0.0	
10_									10 .2	
					−18-38°	BLUE GR	AY CLAY SOFT			
i -		<u> </u>	<u> </u>		┥.	DAMP			44	
12					 738-44"	GRAY MED	SAMP DAMP LOOSE F	en Roce	<u> </u>	
-	Ч	36 21	12-15						10 10-1	
	•				⊒0-21"	GRAY MED	. SAND LOOSE		12-15 0.0	
					_	SATURATED	Fin Rocks	1		
14_					_	, ,				
1 1								<u> </u>		
16		1-1-1-0-1	. 0		┪					
l '°-	K	RYVSA	1 (W)	5	_					
ı	- 	, , ,			7					
I -										
18_					_					
I -			 		_					
1 -	ļ	ļ <u> </u>		 	4			1		
	<u> </u>		 -		-					
20	les Calle	0-5	ive Colle	% Companie	n NOTES:	ANITA OF AL	COST MILL NO	INCTA	LED WITH 5TT.	CROWN
Granu Blows/ft.	lar Soils Density	Blows/ft.	ive Soils Consistency	70 Compositi					אד פ אייויא עסט.	- cocer
0-4	V. Loose	-	V. soft	 	⊣ ₩	hter sam	1PLE@ 11:32	ì		
4-10	Loose	2-4	Soft	<5% trace			parts per million by volume			
10-30	Compact	1	Firm	5-15 little	1	hanta tana	ACT (OI OO)	@ 9 t	- 20-ET	
30-50	Dense	8-15	Stiff	15-25 som	e 141	alink in	NT (SV-03) (عبر العن العن العن العن العن العن العن العن	2, 5'2 LP	
>50	V. Dense	15-30	V. Stiff	>25 and			-			
<u></u>		>30	Hard	·						ı

WATER LEVEL 9.051 WEU DEPTH 16.71

							2011 202		L	R All	1		
		CES					SOIL BOR		Boring #:	B-04	I		
						Project:	LEBLANC	/	Project #:	0193,027			
	1	640 Main ewiston, Ma				Location:	10 LAFA	STON, ME	Sheet: * Chkd by:				
Drilling		EP1	07470			Boring Location		OF THE META	L SHED	CLOSER TO THE	ROA		
Person	nel:	TEARSO	NINO	ODA	ed	Elevation:	······································	- WT MUV TVO TT		1	[''		
CES		HAZDA				Date started:	7 28 15	Date Completed:	28 15				
	RILLING N	METHOD	SAI	VIPLE			ES	TIMATED GROUND WA	1				
Vehicle	60	PROBE	Type:			Date _	Depth	Reference	Grou	indwater Elevation	l		
Model:	ı .	GG DT	Hammer: Fall:			<u> </u>		Ex. Grade Top of PVC	1		1		
Method Depth	i.		raii.				I SAMF			Field			
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blo	ws/6 in.		DESCRI		Stratum	Screening (ppmv)			
\···/	1	48/18	0-4			A IIII							
						10-4" BE	MY MED I	HND TRACE OF ASPHALT		0-215.5			
							(HU)	TISTHALI					
2_			ļ			16 1016	and care	V (n au)		2-4' 31.8			
Ī						4-18 (LANT I JANU	4 (7-9") MP					
-	 		<u> </u>	-		,	DIGNIPE D	9147					
4	 		-										
l "-	2	48146	4-8			 							
		1017W	 ' ''	1		0-26"	CLAY GE	een Brown		4-6'12.7			
_								MORTLE					
6_							NULLIAR	MARILE	}	6-8' 0.0			
						25 160	4 Ar An	OLD DAMP		0.0			
_				ļ		20-40	· 45 Als	OVE, DAMP					
_													
8_	8	48/39	8-12								-		
	2	70157	25-17			0-29	" AS AB	nia-		0 101	l		
_	1					0-91	राज सङ्	eve.		8-10° 0.0 10-12' 0.0			
10				-	••	1				l			
_	<u> </u>					1				10-12' 0.0	ŀ		
_]							
]			
12_	21	1/2/06	707 (0						ļ <u> </u>	<u> </u>			
	4	48 26	12-16	ļ		0 764	CHAN CA	and all once		12-14 0.0			
-	ļ					0-26		NDY CLAY SOFT		12-17 0.0			
14		-		-			DAMP S	ATURATED@15'		14-16' 0.0			
'*-						1		-		114-16' 0.0			
						1							
-]					ŀ		
16_										ļ			
	5	3019	16-18	5		0 8111	AnaV Ass	Alora mide		10 10			
_		! !	ļ	Ļ.				h MCD-FINE		16-18.5'0.0	-		
		ļ.				į	loose sat	<i>vrated</i>					
18 -		_	-				FEW ROCK	<i>در</i>					
				 					 	†	T		
-	N. K.	FUSAt		5	(1	1,						
20	- VV	, , ,,,,,	T W										
	ılar Soils	Cohesi	ve Soils	% Co	mposition	NOTES: WE	ADMAL LE	CLED (MW-04)	MITH K	ET COPPA			
Blows/ft.		Blows/ft.	Consistency		,				/vion 3	110 201-01/10			
0-4	V. Loose	<2	V. soft			W	ATTEL SAL	upit@ 11:06					
4-10	Loose	2-4	Soft	<5%	trace			arts per million by volume	e (ppmv).				
10-30	Compact	4-8	-	5-15	little	NO COLL CAMPLE							
30-50	Dense	8-15	Stiff	15-25	5 some								
>50	V. Dense		V. Stiff	>25	and	VAPOR	2 POINT !	SV-04)@ 2.9	5-25	-et			
1		>30	Hard	1		VIIIVE		" - 17 C WI	₂)(J	1 1/			

WATER LEVEL 8.151 WELL DEPTH 19.51

					-							
			, (\$\$ \$)				SOIL BOR	_ ^	Boring #:	B-05		
		CES	INC			Project:	LEBLAN	C'S CLEANING		10193.00	₹ 7	
		640 Main				Location:	TO TALY	YETTE ST.	Sheet: Chkd by:			
Drilling ⁽		ewiston, Ma	IIII E 04240			Boring Locat	ion: RACL	TON ME OF THE GABAG			-	
Person		PEARSO	N MOS	DA	e\$	Elevation:	1011. 1440 <u>2</u>		•			
CES	Staff:	HARDI			ier	Date started:			28 15			
	ILLING N			MPLER	<u> </u>	D-4-	1	STIMATED GROUND WA		H oundwater Elevatio	on	
Vehicle: Model:	GU	OPROBE	Type: Hammer:			Date	Depth	Reference Ex. Grade	Gi	outiuwater Elevatio	<u></u>	
Method:		<u> QQ X I</u>	Fall:					Top of PVC				
Depth				T			SAM			Field		
(ft.)	No.	Pen/Rec (in) 식성 6	Depth (ft)	Blov	vs/6 in.		DESCR	IPTION	Stratum			Cate
	L	4816	0-4		-	0-60	LIGHT BE	DOWN FINE SLLTY		0-4' 17	10 H	> SOIL SAMPLE
-							SAND RO	ots percoder				PAMICE
2_												@13:23
			 									
-	<u> </u>			 		ĺ						
4_									<u></u>			
	<u>_2</u> _	1217	4-5	<u> </u>		0-7"	DARK GRA	Y SILTY SATURATE TRONG PERC ODOR	D .	4-511,	670	
~~=				-			30074 SI	KONG LEKT CHA				-
6	1	MULT	10	 								
_		CYVJA	La_	O_	-							
_			<u> </u>	 		ļ						
8				-		1						
_												
_		_		<u> </u>								
10				-		-						
'0-		<u></u>				1						
_												
40				-		[l l	
12_		<u>-</u>	-			ĺ					i	
1 _]						
				<u> </u>								
14 -			 	 		-						
			-									
-										-		
16_	ļ <u>.</u>		 	<u> </u>	 ,	-						
			 	 	_	1						
l -]						
18_						1						
				-		1						
-				 		-						
20										_]		
	lar Soils	 	ve Soils	1	mposition	NOTES:	ZOY SMIT	H (MDEP) COLLEC	TED V	APOR SAMP	LE	
Blows/ft. 0-4	Density V. Loose	Blows/ft.	Consistency V. soft	-								
4-10	Loose	2-4	V. soft	<5%	trace	1. Field scre	ening results in	HAND TOOLS DVE parts per million by volume	∋ (ppmv).	<u> </u>	~	
10-30	Compact	4-8	Firm	5-15	little	NELL	NSTA LI #	> (MW-05) WI	TH 51	T. SCREEN		
30-50	Dense	8-15	Stiff	15-25	some	IT TOO!	e two b	AGT OF CAND AN	D WOULT	TAKE NOR	YE - 1	r SEEM to
>50	V. Dense	15-30 >30	V. Stiff Hard	>25	and	WATE	R HAD S	> (MW-05) WI HGS OF SAND AND TRONG PERC OT	OR.		'l	TOT A MAN
				•		و مثنہ ت	MAN IT TO	RBID LIKE THE	7 Nort	or wir life	7116	of h wid

WATER LEVEL 4.611 WELL DEPHI 7.651

WATER SAMPLE @ 13:48

Project Location: LEBLANK S CLANING Sheet: 10/93.027 Drilling Co: FT				CONTRACT TO		Т	SOIL BORING LOG	Boring #:	B-06
Drilling Co. Drilling Co. Eversignet: Transfor West Part Boring Location: In Transfor Of The Entrence Door Drilling Co. Eversignet: Transfor West Part Drilling Method SAMPLER Drilling Method SAMPLER Drilling Method: Sample Drilling Method SAMPLER Depth Reference Groundwater Elevation Extinated Groundwater Elevation Extinated Groundwater Depth Reference Groundwater Elevation Extinated Groundwater Extinated Groundwat		6	CFS			-			
Drilling Co: Persognet Persognet PESSIBIT HALDEN CONTACT PENDIT OF THE ENTRANCE DOOR PERSON WOODARD Elevation: TRANSIN WOODARD Elevation: TRANSIN WOODARD Elevation: TRANSIN Type: Date Date Depth Reference Model: GCD Hamner:	I .	,							1V170. VXT
Drilling Co:	1	Le				[LEWISTON, ME	Chkd by:	
Personnel: TAZON MODALD Elevation: Date Date Completed: T28 S DRILLING METHOD SAMPLER Date started: T28 S DRILLING METHOD SAMPLER Date Depth Reference Groundwater Elevation Model: GaDT Hammer: Estimated Ground water Depth Reference Groundwater Elevation Model: GaDT Hammer: Estimated Ground water Elevation Estimated Groundwater Elevation Date Depth Reference Groundwater Elevation Estimated Groundwater Es	Drilling C					1		ince t	200 R
DRILLING METHOD SAMPLER DRILLING METHOD SAMPLER Date Depth SETIMATED GROUND WATER DEPTH ESTIMATED GROUND WATER DEPTH Reference Groundwater Elevation Beach Sample Ex. Grade Groundwater Elevation Screening (ppm) Sample Depth Fail: SAMPLE Depth No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth 1 UR 21 0-4 UR 12 0-4 UR 12 10-4 Depth 1 UR 12 10-4 Depth 1 UR 12 10-4 Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Exception Sample Construction Stratum (it) Screening (ppin) Depth (it) No. Pen/Rec (in) Depth (it) Blows/6 in. Depth (it) No. Pen/Rec (in) Depth (it) Exception Sample Construction Stratum (it) Screening (ppin) Depth (it) No. Pen/Rec (in) Depth (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construction Stratum (it) Sample Construct	Personne	el:					Elevation:	1001	
Vehicle: GETTEURS Type: Hammer: Hammer: Ex. Grade Ex	[CES	Staff:		3000	V	_		158/18	
No. Pen/Rec (in) Depth (it) Blows/6 in. Description Stratum Screening (ppmv I 48 21 0 - 4 0 -					PLER	_			
Fall: Top of PVC Fall: Top of PVC Field Sample Description Stratum Screening (ppmv (ft.) No. Pen/Rec (in) Depth (ft.) Blows/6 in. DESCRIPTION Stratum Screening (ppmv (ft.) No. Pen/Rec (in) Depth (ft.) Blows/6 in. DESCRIPTION Stratum Screening (ppmv (ft.) No. Pen/Rec (in) Depth (ft.) Blows/6 in. DESCRIPTION Stratum Screening (ppmv (ft.) No. Pen/Rec (in) Depth (ft.) Blows/6 in. Depth (ft.) DESCRIPTION Stratum Screening (ppmv (ft.) No. Pen/Rec (in) Depth (ft.) Depth (ft.) Dep		GU	LKO BY	-		\dashv		010	didwater Elevation
Depth		-	100.1/1	-	-	\dashv			
1						╗	SAMPLE		Field
2 48 48 4-8 0-48" CLAY BLACK GEERAL DRY DENSE 4 2 48 48 4-8 0-48" AS ABOVE 6 2-4" O.C. 8 3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY POFT DAMP 12 4 36 14 12-15 14 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15"	(ft.)				Blows/6	n.	DESCRIPTION	Stratum	Screening (ppmv)
4-8" CLAY BEOWN DRY DENSE 8-9" MED. SAND BLACK LOSSE 9-24" CLAY BLACK GREEN DRY DENSE 4 2 48 48 4-8			48/21	0-4			O_4" MED SAND FEW ROCKS BROWN		0 21 00
8-9" MED. SAND BLACK LOSSE 9-24" CLAY BLACK GREAT DRY DENSE 4 2 48 48 4-8 0-48" As ABOVE 6 6-8' 0.6 8 3 48 48 8-12 0-24" As ABOVE 10 24-48" GRAY SANDY CLAY FOFT DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15" 14 16 DETUCATION OF THE PROCKY SATURATED Q 15"	1 4						- · · · ·		V-6 0.10
8-9" MED. SAND BLACK LOSSE 9-21" CLAY BLACK GREAT DRY DENSE 4 2 48 48 4-8						\dashv	4-8" CLAY BROWN DRY DENSE	1	
4 2 48 4 8 0 - 48" AS ABOVE 6 8 0 - 6 - 8' 0 - 6 - 6 - 8' 0 - 6 - 6 - 8' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6' 0 - 6 - 6 - 6'	-			_		\dashv	8-9" MED. SAND BLACK LOOSE		2-4' 0.0
4 2 48 4 4 - 8 0 - 48" AS ABOVE 4-6' 0.0 6 3 48 48 8 - 12 0 - 24" AS ABOVE 8 - 10' 0.0 10 24 - 48" GRAY SANDY CLAY FOFT 10 - 12' 0.0 11 DAMP 12 4 36 14 12 - 15 0 - 14" GRAY MED SAND CLAYEY FOCKY SATURATED Q 5 15' 14 DECLEMENT 12 - 15' 0.0	1					- 1		l	
2 48 48 4-8 0-48" AS ABOVE 4-6' 0.0 8 3 48 49 8-12 0-24" AS ABOVE 8-10' 0.0 10 24-48" GRAY SANDY CLAY POFT 10-12' 0.0 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 14 POCKY SATURATED Q 15'	1 1					\Box	9-11" CLAY BLACK/GREAT DRY DENSE	1	
6	4		notito	4 2		_		ļ	
6-8' 0.6 8 3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY ROFT 10-12' 0. 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 14 8 8 5 5 6 6 7 0.6	1	2	48/48	7-8		\dashv	A. USU Ar AROUT		146 00
8 3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY POFT 10-12' 0. 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 14 POCKY SATURATED Q 15'	1 +						6 - da 113 1113006		
8 3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY POFT 10-12' 0. 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 14 POCKY SATURATED Q 15'	6								100
3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY FOFT 10-12' O. DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 16 2 5 5 10 0.0	1	·							10-8 0.0
3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY FOFT 10-12' O. DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 16 2 5 5 10 0.0	1 1								
3 48 48 8-12 0-24" AS ABOVE 10 24-48" GRAY SANDY CLAY FOFT 10-12' 0. DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15' 16 2 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		<u> </u>		- -		_			
10 24" AS ABOVE 24 -48" GRAY SANDY CLAY FOFT DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 15" 16 DETUCAL OUT	8	7	110/110	8-17	-				0 1 1 -
10 24-48" GRAY SANDY CLAY POFT 10-12' O. DAMP 12 4 36 14 12-15 0-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 51' 14 ROCKY SATURATED Q 55'	1	7	10 14x	0-17		一	0-24" AS ABOVE		8-10' Q.O
DAMP 12 4 36 14 12-15 0-144 GRAY MED SAND CLAYEY ROCKY SATURATED Q 151 16 16 17 18	1 +								11
12	10						24-48" GRAY SANDY CLAY POFT		10-12' 0.0
4 36 14 12-15 0-144 GRAY MED SAND CLAYEY ROCKY SATURATED Q 151				-			DAMP		
4 36 14 12-15 0-144 GRAY MED SAND CLAYEY ROCKY SATURATED Q 151	1 4	 			-				
4 36 14 12-15 0-144 GRAY MED SAND CLAYEY ROCKY SATURATED Q 151	12								
O-14" GRAY MED SAND CLAYEY ROCKY SATURATED Q 5"	'-	4	36 14	12-15		1			10 10 -
ROCKY SATURATED Q 15'	1]	_					0-144 GRAY MED SAND CLAYEY	1	12-13 0.0
	1 7								
16 P T (A) (b) 15	14						Ancel mineritance la		· .
16 P V A 1 (10 15 1	1	<u> </u>		-					
16 P V A 10 15	[-	 							
	16	1	Tile I	10	1-1				
		N.	GL 1/24	TL (W	10				
	1 4				<u> </u>				
	1				<u> </u>	_			
	18	ļ							
				-	<u> </u>				
	1 -	1							
20	20								
Granular Soils Cohesive Soils % Composition NOTES:					% Compo	sition	NOTES:		
Blows/ft, Density Blows/ft. Consistency									
0-4 V. Loose <2 V. soft 4-10 Loose 2-4 Soft <5% trace 1. Field screening results in parts per million by volume (ppmv).	1				 <5% trai	e.	1. Field screening results in parts per million by volume	e (ppmv).	
4-10 Loose 2-4 Soft <5% trace 1. Field screening results in parts per million by volume (ppmv). 10-30 Compact 4-8 Firm 5-15 little					l			u. /·	
30-50 Dense 8-15 Stiff 15-25 some		•	1		1				
>50 V. Dense 15-30 V. Stiff >25 and					>25 a	nd			
>30 Hard			>30	Hard	<u> </u>				

SCESINC S40 Main Street Location Maine ob/240 Dilling Oct S40 Main Street Location Maine ob/240 Dilling Oct S40 Main Street Location Maine ob/240 Dilling Oct S41 Main Street Location Maine ob/240 Dilling Oct S41 Main Model CES Sint MAR Or SELECT MOD DAP D. Dilling Oct DES Sint MAR Or SELECT MOD DAP D. Dilling Oct DES Sint MAR OR SAMPLER Date Depth Reference DBRILLING MAIN MODEL MAR OR SAMPLER Date Depth Reference GGT COSE Type Model Mathod				((()		SOIL BORING LOG	Boring #:	8-07	1
Set O Main Street Location: TO AFFACTE THE Sheet WINTON ME Cipid by Diring Occ Prosonant ES Statt: HOOD APD Divided Statt ARE CON THOOD APD Divided Statt ARE CON THOOD APD Divided Statt ARE CON THOOD APD DESCRIPTION ES Statt ARE CON THOOD ASAPLER Description: TO STATE STATE SHEET ARE DESCRIPTION DELLINES WITHOUT STATE DESCRIPTION Painter CONTROLLED THOOD ASAPLER Date Stattwarter Date Depth Reference Groundwater Elevation Fail Description: Top of PVC Fail Bloward in Description: Top of PVC Fail Bloward in Description: Top of PVC Painter Bloward in Description: Top of PVC Fail Bloward in Description: Top of PVC Fail Bloward in Description: Top of PVC Painter Description: Top of PVC Fail Bloward in Description: Top of PVC Painter Description: Top of PVC Fail Bloward in Description: Top of PVC Fail Description: Top of PVC Fail Bloward in Description: Top of PVC Fail Fai			CES	INC					1
Deling Oc. PACK ON NOODAD Deling Location: SOTH OF METAL SHED AT THE END OF AST MALT ST.			-			ocation: 10 LAFAYETTE ST.	Sheet:	14/13/42/	
Personnet			ewiston, Ma	ine 04240		LEWISTON, ME		Tile print and Add	HAIT COM
CESSIBIT					0100 T		DIAT	THE END OF AST	THE LI JIK
STIMULION METHOD SAMPLER Data			JIAO DA		UNTIER.		2815	<u></u>	1
Vehicle: GEDITAGE Typos Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: Method: GG DT Hammer Method: GG			ETHOD	SAN	MPLER		TER DEPTH	1	
Method: Falk SAMPLE Flet SAMPLE Flet Screening (sprint)				Туре:			Gro	undwater Elevation	_
Depth			66 DT	1			 -	<u></u> .	ł
(1) No. Peurifice (iii) Depth (ii) Blowaris in. 1	_	: 1		raii:			-	Field	1
1		No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		Stratum	Screening (ppmv)	
10			48111	0-4		O MULICUT ROOMAL EINE CAN'T		0 11 00	
10	_			`		LOOSE TOY OPGANIC		V-4 0.0	
10 -11" BEOWN MED SAND SATURATED	_					Most ber opposite	ļ		
SOME CLAY LOOSE JATURATED 14	²-				-	10-11" BROWN MED CAND			
2							nen		
2 48 27 4-8 0-2" AS ABOVE 2-23" GRAY MED-FINE SAND CLAYEY BOCKY SOFT SATURATED OFDER 6-8" 315" G-8" 315" G-8" 315" G-8" 315" G-8" 315" G-8" 315" G-12" O.O SATURATED OFDER 6-8" 315" G-12" O.O SATURATED OFDER 6-8" 315" G-12" O.O SATURATED 6-12" O.O SATURATED 6-15" O.O						Source Court Design Statement			
C-1	4_	9	16/22	u_ Ø	<u> </u>		 	1	†
10		<u> </u>	4017	1-1-0		O-7." AS ABOVE		4-6 499 -	> SOIL
10	_								SAMPL
10	6_					2-27" GRAY MED-FINE SAND			@15
10			. <u>-</u>			CLAYEY ROCKY SOFT		6-81 215	0.0.
8 3 48 38 8-12 0-28" AS ABOVE 10 28-38" GRAY SANDY SILT ROCKY SATURATED 10-12! 0.0 12 4 30 16 12-14.5 0-8" AS ABOVE 14 8-16" GRAY CLAY SANDY FIRM FEW ROCKS SATURATED 18 18 18 18 18 18 18 18 18 18 18 18 18 1	-				-	•		0 0 510	
10	8					MINISTREY SUCK		_	
28-38" GRAY SANDY SILT ROCKY SATURATED 12 4 30 16 12 - 14.5 0 - 8" AS ABOVE 14 8 - 16" GRAY CLAY SANDY FIRM FEW ROCKS SATURATED 18 18 10 10 10 10 10 10	_	3	48 38	8-12		0 204 45 45 45			
SKIVRATED SKIVRATED 12 4 SOLIG 12-14.5 O -8" AS ABOVE 12 -14.5 O O -8" AS ABOVE 14 18 18 20 Granular Solis Consistency O-4 V. Loses 4-10 Lose 2-4 Soft 4-10 Lose 2-4 Soft 4-10 Lose 2-4 Soft 4-10 Lose 1-5 Simple Simple Golis Simple Golis Simple Golis SAMPLE GOLISCIED VATOR SAMPLE (SV-D7) TROY SMITH (MDET) COLLECTED VATOR SAMPLE (SV-D7) WITH HAND TOOLS	_		*** •	<u> </u>		0-18 AS ABOVE		8-10'0.0	
SKIVRATED SKIVRATED 12 4 SOLIG 12-14.5 O -8" AS ABOVE 12 -14.5 O O -8" AS ABOVE 14 18 18 20 Granular Solis Consistency O-4 V. Loses 4-10 Lose 2-4 Soft 4-10 Lose 2-4 Soft 4-10 Lose 2-4 Soft 4-10 Lose 1-5 Simple Simple Golis Simple Golis Simple Golis SAMPLE GOLISCIED VATOR SAMPLE (SV-D7) TROY SMITH (MDET) COLLECTED VATOR SAMPLE (SV-D7) WITH HAND TOOLS	10					10-20" FRAN CHITY SILT POPLY		l. tot	
12	'"-			-				10-12 00	
14	_					MURMIED			
14				 					
14 16 Composition Consistency Consis	12 -	ut -	3016	12-14	_	0 01 4- 10-1		and the said	Ī
18 20 Granufar Soils Cohesive Soils Mother Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature So			1010	10-11		0-8" AS ABOVE		12-14.5'00	
18 20 Granufar Soils Cohesive Soils Mother Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature So	I -					Q. IC " COAY PLAY SANDV ADM	1		
18 20 Granufar Soils Cohesive Soils Mother Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature Soils Cohesive Soils Signature So	14_					BOILD FRILL POCKS CATURATED			
Granular Soils Cohesive Soils % Composition NOTES: WELL INSTACLED (MW-O7) WITH IO FT. SCREEN Blows/ft. Density Blows/ft. Consistency 0.4 V. Loose <2 V. soft 4-10 Loose 2.4 Soft <5% trace 10-30 Compact 4-8 Firm 5-15 little 30-50 Dense 8-15 Stiff 15-25 some >50 V. Dense 15-30 V. Stiff >25 and WITH HAND TOOLS NOTES: WELL INSTACLED (MW-O7) WITH IO FT. SCREEN WATER SAMPLE @ 15:27 1. Field screening results in parts per million by volume (ppmv). TROY SMITH (MDET) COLLECTED VAPOR SAMPLE (SV-D7) WITH HAND TOOLS		 -	 	 	 	TVW Notes 3111			1
Granular Soils Cohesive Soils % Composition NOTES: WELL INSTACLED (MW-O7) WITH IO FT. SCREEN Blows/ft. Density Blows/ft. Consistency 0.4 V. Loose <2 V. soft 4-10 Loose 2.4 Soft <5% trace 10-30 Compact 4-8 Firm 5-15 little 30-50 Dense 8-15 Stiff 15-25 some >50 V. Dense 15-30 V. Stiff >25 and WITH HAND TOOLS NOTES: WELL INSTACLED (MW-O7) WITH IO FT. SCREEN WATER SAMPLE @ 15:27 1. Field screening results in parts per million by volume (ppmv). TROY SMITH (MDET) COLLECTED VAPOR SAMPLE (SV-D7) WITH HAND TOOLS	-	M .	- 1 15 A		11 1				
Granutar Soils Cohesive Soils % Composition Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose	16	K	W V 541	(W)	14.7				
Granutar Soils Cohesive Soils % Composition Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose									
Granutar Soils Cohesive Soils % Composition Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose	-	<u> </u>		 					
Granutar Soils Cohesive Soils % Composition Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose	18		-	 					
Granular Soils Cohesive Soils % Composition NOTES: WELL INSTALLED (MW-O4) WITH IO FT. SCREEN Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose] [']								
Granular Soils Cohesive Soils % Composition NOTES: WELL INSTALLED (MW-O4) WITH IO FT. SCREEN Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose	_								
Granular Soils Cohesive Soils % Composition NOTES: WELL INSTALLED (MW-O4) WITH IO FT. SCREEN Blows/ft. Density Blows/ft. Consistency 0-4 V. Loose 2-4 Soft <5% trace 4-10 Loose 2-4 Soft Soft 5-15 little 30-50 Dense 8-15 Stiff 15-25 some >50 V. Dense 15-30 V. Stiff 5-25 and WITH HAND TOOLS NOTES: WELL INSTALLED (MW-O4) WITH IO FT. SCREEN MATTER SAMPLE © 15:24 1. Field screening results in parts per million by volume (ppmv). TROY SMITH (MDF) COLLECTED VATOR SAMPLE (SV-D7)				ļ	<u> </u>				1
10-30 Compact 4-8 Firm 5-15 little TROY SMITH (MDEP) COLLECTED VAPOR SAMPLE (SV-D7) Solution		dar Collo	Cohen	ive Soile	% Composition	OTES: N. M. LANDONA FE CON LAND	m\	-1 10 CT C-	
10-30 Compact 4-8 Firm 5-15 little TROY SMITH (MDEP) COLLECTED VAPOR SAMPLE (SV-D7) Solution					-1	wen instacked file-	VT) MI	141 10 41. 3CA	4EEN
10-30 Compact 4-8 Firm 5-15 little TROY SMITH (MDEP) COLLECTED VAPOR SAMPLE (SV-D7) Solution			 	<u>-</u>		MATTER SAMPLE @ 15:2	7		
>50 V. Dense 15-30 V. Stiff >25 and WITH HAND TOOLS	4-10	Loose		-		. Field screening results in parts per million by volum	e (ppmv).	o t	_ 1
>50 V. Dense 15-30 V. Stiff >25 and WITH HAND TOOLS		•			-	TROY SMITH (MDEP) COLLECTE	d vator	e Jample (SV-	P7)
						WITH HAND TOOLS		•	
	- 50	4. DE188				Balan Indiah Inaka			_

WATER LEVEL 6.301 WELL DEPTH 14.51

CF	ESINC UNITE - PARTIES - SCIENCES		SOIL BOI	RING L	OG	Page	e 1 of
Project: _	e Blanc Cle	equers		Project No:		Date: 4, 2	-15
Boring:	Driller: 1	PI/Ince	Geologist:	NEU		Notes:	
Depth (ft)	Recovered Profile (in)	De	escription of Soils		Comi	ments	PID (ppm)
0-4) }!!	8-23"=G	ray Cl, stife Ft, clamp	¥1	Simp (0-2) D094	10	0-2: 102 2-4: 4/1
4-8	30"	16-20-20	e bram-s	·	500g (G-8)	ove 50	4-6= 2.3 6-8= 77.6
8-12	187	6"-18" - rocky, 5	rschold m-sc son, at.				8.10: 23.70 10-12-
		5'561 r13er, 54(fa	sandte	7			

	· · · · · · · · · · · · · · · · · · ·	
Site Name:	Le Blanc Cleaners	Sample Location Sketch
Town:	Lewiston	Hillings Comment of the Comment of t
Date:	7/28/15	
Sample I.D.:	54-01	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	
Sampling Personnel:	115	
Project Manager	J. Cressey/B. Blais	
Collection Device:	(Summa Can) (Tedlar Bag)	1 Long
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)	Drue Way Levis
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	2.1'	
Depth to Water:		13 LeBhan
Suspected COCs:	(Petroleum) (Solvents)	Cleaners
Cannister I.D.:	370	
Flow Control I.D.:	0656	
Flow control rate:		
O ₂ Ambient	20.9%	
CO ₂ Ambient	150PPM	3-1-1-1
subsurface pressure/vacuum	(+/- inches of water column)	SVO STAR STAR STAR STAR STAR STAR STAR STAR
Pre-Sample: O ₂	18.4%	
Pre-Sample CO ₂ :	>10,000	
Pre-Sample PID:	3,300 PPb	Remared Building
Pre-Sample CH ₄ :	3 0/0 LE(% Volume, %LEL, PPM)	Dive Removed Building
Sample Initiation Time:	ما ۱۰	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Initial Vacuum:	-29.16	
Sample End Time:	1:46	
Final Vaccum:	-4,44	maranina tanina waka waka makama in waxaa aa waxaa waxaa ka
Post Sample O ₂ :	18.7%	
Post Sample CO ₂ :	>10,000	
An	abient PID= 1200 APA	

Ambient PID= 1200 pph LEL= 290 post Sample

Notes:

Site Name:	LeBlanc's Cleaners	Sample Location Sketch
Town:	Lewisten ME	
Date:	7/28/2015	
Sample I.D.:	SV-02	
Sampling	(Source) (Utility) (Mitigation)	
Purpose	(Receptor) (Other)	
Sampling Personnel:	WEH DES	Polescours Min Toward 2
Project Manager	TKC	Reference the Figure 2
Collection Device:	(Summa Can) (Tedlar Bag)	
Sample Penetration Location:	Asphalt (Concrete) (Soil)	
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	2.5-3.5'	
Depth to Water:	9.51	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	533	
Flow Control I.D.:	404	
Flow control rate:	72 ml/min	
O ₂ Ambient	20.9	
CO ₂ Ambient	200	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	5.1	
Pre-Sample CO ₂ :	> 5000	we de la company
Pre-Sample PID:	23 ppl	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)	
Sample Initiation Time:	12125	·
Initial Vacuum:	- 29.55	
Sample End Time:	12:55	
Final Vaccum:	- 4.94	
Post Sample O ₂	GUIT O.1	
Post Sample CO ₂ :	> 5000	
	•	

Notes:

Site Name:	LeBlanc's Cleaners	Sample Location Sketch
Town:	1 ewister	·
Date:	7/28/15	
Sample I.D.:	5V-03	w.
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	Value V. C.
Sampling Personnel:	WEAT DES	Reference the Figure 2
Project Manager	JKC	
Collection Device:	(Summa Can) (Tedlar Bag)	
Sample Penetration Location:	(Asphalt) (Concrete) (Soil)	
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	2.5-3.51	
Depth to Water:	151	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	402	
Flow Control I.D.:	138	
Flow control rate:	72 mlmin	
O ₂ Ambient	19.9	•
CO₂ Ambient	220	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	B 8.0	
Pre-Sample CO ₂ :	>5000 RAM	
Pre-Sample PID:	139806	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)	
Sample Initiation Time:	1110	
Initial Vacuum:	- 78.77	
Sample End Time:	1739	
Final Vaccum:	-5,41	
Post Sample O ₂ :	0,0	
Post Sample CO ₂ :	7)5600	
Notes:	(

Site Name:	Le Blanc's Cleaners
Town:	Lepoiston, ME
Date:	7/28/2015
Sample I.D.:	SV-04
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)
Sampling Personnel:	Mas pas
Project Manager	JKC
Collection Device:	(Summa Can) (Tedlar Bag)
Sample Penetration Location:	(Asphalt) (Concrete) (Soil)
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)
Sample Depth:	3-41
Depth to Water:	151
Suspected COCs:	(Petroleum) (Solvents)
Cannister I.D.:	282
Flow Control I.D.:	369
Flow control rate:	72 ml min
O ₂ Ambient	20.6
CO ₂ Ambient	260 ppm
subsurface pressure/vacuum	(+/- inches of water column)
Pre-Sample: O ₂	3.4
Pre-Sample CO ₂	5000 ppm
Pre-Sample PID:	35 pp6
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)
Sample Initiation Time:	10100
Initial Vacuum:	- 29.63
Sample End Time:	1320 1520
Final Vaccum:	/3.87
Post Sample O ₂ :	3,5
Post Sample CO ₂ :	75000
1	•

Sample Location Sketch

Reference she Figure Z

Notes:

PUST PID= 2 SOPD

	·																	
Site Name:	LeBlanc's Cleaners		-		s	am	ple	Loc	atio	on S	Ske	etch	1					
Town:	Lewiston	4	S- :	1	119			Ç .	} {			i i		E SH		*	Ł	1
Date:	7/28/2015	- edathion V-194au	odarand years.				***********				VIII WAYA		***************************************					1
Sample I.D.:	5V-07										A.					<u>.</u>		<u> </u>
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	1000 Period of 1000		K	لا	XV		N.	L		th	le	4	1	pt	W	C	
Sampling Personnel:	T. Smith			ļ.,				·				Material Address of the		S C C C C C C C C C C C C C C C C C C C				
Project Manager		No. area, officer of the	nach Nach	: : :													June	
Collection Device:	(Summa Can) (Tedlar Bag)					1			<u> </u>					<u>.</u>		1	e felma enceçum	<u></u>
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)							200										
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	44			1			200										
Sample Depth:								200		-	_	}						
Depth to Water:					1				-	-	_							
Suspected COCs:	(Petroleum) (Solvents)	***************************************		-				- Cart				1	- 1			EACH TO SERVICE STATE OF THE S		
Cannister I.D.:	392	.,,00,000		-														
Flow Control I.D.:	591		1	<u> </u>				1 1 1					Chexas					
Flow control rate:	30 ml/min	-		<u> </u>												<u>î</u>		
O ₂ Ambient	20.9%		12 ASSESSED TO THE REAL PROPERTY OF THE REAL PROPER					4						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	ĺ		
CO ₂ Ambient	1508AM					641-11-11-11-11-11-11-11-11-11-11-11-11-1		valoratis Nu	*******				[
subsurface pressure/vacuum	(+/- inches of water column)	NEWSON O NEWSON	1							[:	<u> </u>					
Pre-Sample: O ₂	20.5%	endersthere.		Kirshanan I	e terrore	***************************************				*****	*		*****			erene je		00000000000000000000000000000000000000
Pre-Sample CO ₂ :	83900pm			-				Š									1	
Pre-Sample PID:	8120 ppb		Ì	<u>i</u>	19		-			- Ann		<u>i</u>	Acht.	<u> </u>	· Alter Pr	Ė	<u>. </u>	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)											:			_		1	
Sample Initiation Time:	5:30		3		- 1	+						*	was trans	<u> </u>	-	i.		<u> </u>
Initial Vacuum:	-29.36		1	•	Ì			ë E				: (A STATE OF THE STA			1		
Sample End Time:	16:15		***************************************								<u> </u>		L. Linguista					
Final Vaccum:	- 6.57		**************************************	-		1		J	1	ينب	Į							
Post Sample O ₂ :	20.G										,		:					
Post Sample CO ₂ :	7550	·								_						_		
POST PID	1974											· ·						
Notes:																		

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	LESCANC	Sample Location Sketch
Town:	LECUISTON	
Date:	7-28-15	
Sample I.D.:	SSV-01	10 10 10 10
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	Reference the Figure 2
Sampling Personnel:	SMITH KRESSLY	O .
Project Manager	BLAIS	
Collection Device:	(Summa Can) (Tedlar Bag)	
Sample Penetration Location:	(Asphalt) (Concrete) (Soil)	
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:		
Depth to Water:		
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	490	
Flow Control I.D.:	0138	
Flow control rate:	71	
O ₂ Ambient	20,9%	
CO ₂ Ambient	200 pm	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	12.2%	
Pre-Sample CO ₂ :	710,000	
Pre-Sample PID:	6400 ppm	•
Pre-Sample CH₄:	(% Volume, %LEL) PPM)	
Sample Initiation Time:	11:20	
Initial Vacuum:	-29.46	
Sample End Time:) a	
Final Vaccum:	-4.67	
Post Sample O ₂ :	12.20/6	
Post Sample CO ₂ :	710,000 ppm	
	Final PID=64	00 ppm

Notes:

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	LeBlar.	Sample Location Sketch
Town:	Lewiston	
Date:	9-2-15	·
Sample I.D.:	50.08	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	*
Sampling Personnel:	MEH	
Project Manager	SKC	#
Collection Device:	(Symma Can) (Tedlar Bag)	~ / * /
Sample Penetration Location:	(Asphalt) (Concrete) (Soil)	80-115
Soil Type:	(Fill) (Sand & Gravel) (Glacial Marine)	∞
Sample Depth:	3.3,5'	7 1
Depth to Water:	8	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	179	7
Flow Control I.D.:	138	
Flow control rate:	le9 mL/min	
O ₂ Ambient	20,3	*
CO ₂ Ambient	308	
subsurface pressure/vacuum	(+/- inches of water column)	.]
Pre-Sample: O ₂	12.2 man %	*
Pre-Sample CO ₂ :	7/0000 pan	
Pre-Sample PID:	45.8 pan	
Pre-Sample CH ₄ :	Wolume, %LED, PPM)	1
Sample Initiation Time:	1034	
Initial Vacuum:	-29.45	
Sample End Time:	1110	
Final Vaccum:	-4,44	
Post Sample O ₂ :	11.1%	
Post Sample CO ₂ :	710000	
Notes:		

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	Le Blance	Sample Location Sketch
Town:	Lewiston	·
Date:	9-2-15	
Sample I.D.:	50-09	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	
Sampling Personnel:	WEH	
Project Manager	SKC	
Collection Device:	(Summa Can) (Tedlar Bag)	}
Sample Penetration Location:	(Aschalt) (Concrete) (Soil)	
Soil Type:	(Fil) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	3.3.5	
Depth to Water:	8	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	375	
Flow Control i.D.:	336	
Flow control rate:	72ml/mb	
O ₂ Ambient	202	
CO ₂ Ambient	100	99
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	11,3%	
Pre-Sample CO ₂ :	210K	·
Pre-Sample PID:	1074 pab	
Pre-Sample CH₄:	(% Volume %LEL PPM)	
Sample Initiation Time:	1225	
Initial Vacuum:	-30.07	
Sample End Time:	125)	
Final Vaccum:	-4,97	•
Post Sample O ₂ :	0.60%	· ·
Post Sample CO ₂ :	>10/k oum	
Notes:		

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	LeBlanc	Sample Location Sketch
Town:	10405	
Date:	9-1-15	
Sample I.D.:	311-10	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	1
Sampling Personnel:	WEH	
Project Manager	3KC	91-18
Collection Device:	(Summa Can) (Tedlar Bag)	6
Sample Penetration Location:	(Asphalt) (Concrete)	
Soil Type:	(万利) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	3-3.5	·
Depth to Water:	81	
Suspected COCs:	(Petroleum) (201vents)	·
Cannister I.D.:	407	
Flow Control I.D.:	479	
Flow control rate:	22 m/ 1061	
O ₂ Ambient	2011	[
CO ₂ Ambient	150	.
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	197	•
Pre-Sample CO ₂ :	G50	•
Pre-Sample PID:	1575 NDb	
Pre-Sample CH ₄ :	/ Volume, (L. PPM)	
Sample Initiation Time:	1052	
Initial Vacuum:	-29,89	
Sample End Time:	110 1125	,
Final Vaccum:	4.66 -10.9	
Post Sample O ₂ :	19,1	
Post Sample CO ₂ :	1750	
Notes:	could not pu	1163-3.5 (not an oligh Flow for meter)

Soil Gas Sampling Field Sheet Maine DEP

Site Name	Leplanc	Sample Location Sketch
Town:	Ruston	•
Date:	9-2-15	
Sample I.D.:	50-11	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	
Sampling Personnel:	WEH	
Project Manager	SKC	
Collection Device:	(Summa)Can) (Tedlar Bag)	\
Sample Penetration Location:	(Asphalt) (Concrete) (
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	
Sample Depth:	2.2.5	
Depth to Water:	61	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	1734	1 2
Flow Control I.D.:	3/Ce ,	
Flow control rate:	72ml/min	
O ₂ Ambient	20,1	
CO ₂ Ambient	100	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	ר. ד'.	=
Pre-Sample CO ₂ :	710K	
Pre-Sample PID:	1000	
Pre-Sample CH₄:	(% Volume, %LFL, PPM)	
Sample Initiation Time:	115-3	
Initial Vacuum:	3/.3É	
Sample End Time:	1405	\
Final Vaccum:	-18.10	
Post Sample O ₂ :	17.4	
Post Sample CO ₂ :	7/0000	
Notes: (ulled up to	2-2.5

Soil Gas Sampling Field Sheet Maine DEP

			Maine	DEF	
Site Name:	LEBLANC				Sample Location Sketch
Town:	LEWISTON	1		1	, (
Date:	9-3-15				
Sample I.D.:	SV-12		Calledon .	10	a Tellemen
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)		·		Signary Constanting
Sampling Personnel:	CRESSEY				GNASS
Project Manager	BLAIS	Š	THE STATE OF THE S	8	
Collection Device:	(Summa Can) (Tedlar Bag)	2) OHNO	田の	۲	I merit
Sample Penetration Location:	(Asphalt) (Concrete) (Soil)	Ŀ		SIDELLA	PANEMENT
Soil Type:	(Fill) (Sand & Gravel) (Glacial Marine)		-	2 (GRAVEZ
Sample Depth:	了'				
Depth to Water:	8′				
Suspected COCs:	(Petroleum) (Solvents)				2016
Cannister I.D.:	3				STORAGE BLOG.
Flow Control I.D.:	0167				
Flow control rate:	72 m/min				
O ₂ Ambient	20,9				
CO ₂ Ambient	0				·
subsurface pressure/vacuum	(+/- inches of water column)		-		
Pre-Sample: O ₂	17.5%				
Pre-Sample CO ₂ :	1000 ppm				
Pre-Sample PID:	1100%			1	
Pre-Sample CH₄:	(% Volume, %LEL, PPM)			}	
Sample Initiation Time:	9:40				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Initial Vacuum:	- 30,19				LEBLANCS
Sample End Time:	10:15				
Final Vaccum:	- 9. lole				
Post Sample O ₂ :	17.5 %				
Post Sample CO ₂ :	1000 ppm				
Notes:					

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	LeBlanc	Sample Location Sketch
Town:	Lewisdon	
Date:	9-2-15	1
Sample I.D.:	51/-13	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)	
Sampling Personnel:	WEH	
Project Manager	JKC	1
Collection Device:	(Summa Can) (Tedlar Bag)	(
Sample Penetration Location:	(Asonalt) (Concrete) (Soil)	
Soil Type:	(Till) (Sand & Gravel) (Glacial Marine)	legnes
Sample Depth:	3-3.6	
Depth to Water:	6	URGNES
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	150	
Flow Control I.D.:	343	
Flow control rate:	G7mL/min	51-13
O ₂ Ambient	20,2	10-13
CO₂ Ambient	150	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	17.3	
Pre-Sample CO ₂ :	LUDDO	
Pre-Sample PID:	403000	9
Pre-Sample CH ₄ :	(% Volume, & EC, PPM)	<u> </u>
Sample Initiation Time:	1320	Hydrand
Initial Vacuum:	-30,14	
Sample End Time:	1355.	·
Final Vaccum:	-498	
Post Sample O ₂ :	17.5%	
Post Sample CO ₂ :	S/OK ppm	
	·	
Notes:		,

Indoor Air/Subslab Sampling Field Sheet Maine DEP

Site Name:	bafavette Clos	Sample Location Sketch
Town:	Lemiston	
Date:	7-27-15	
Sample I.D.:	IA-01	Polaron His Bours 2
Project Manager:	JhC.	Reference the Figure 2
Sampling Personnel:	Jhc/WEH	
Collection Device:	(Summa/Can) (Tedlar Bag)	
Sample Type:	(Subslab) (Indoo Air)	
Sampling Location:	Mary floor	
Foundation Floor Type:	(Dirt) (Concrete)	
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)	
Sump Hole:	(Yes) (Mg)	
Penetrations in Floor:	(Sewer) (Wafer) (Gas) (Cracks) (Drains)	
Penetrations in Wall:	(Sewer) (Water) (Gas) (Electric) (Cracks)	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	758	
Flow Control I.D.:	0397	
Flow control rate:	3.3 m/min	
O ₂ Ambient	20,9	
CO ₂ Ambient	260	
Pre-Sample: O ₂	20.9	,
Pre-Sample CO ₂ :	240'	
Pre-Sample PID:	0	
Pre-Sample CH ₄ :		
Sample Initiation Time:	0930 1/2/	
Initial Vacuum:	-28.50	
Sample End Time:	0925 7/28	
Final Vaccum:	7.03	
Post Sample O ₂ :	20.9	
Post Sample CO ₂ :	<u> </u>	
Notes/Observat	ions:	

Indoor Air/Subslab Sampling Field Sheet Maine DEP

Site Name:	LEBUANC	Sample Location Sketch
Town:	herzius)	·
Date:		
Sample I.D.:	55V-03	
Project Manager:	Bus	Gware Bother
Sampling Personnel:	CRESSMY SMITH	
Collection Device:	(Summa Can) (Tedlar Bag)	James /
Sample Type:	(Subslab) (Indoor Air)	
Sampling Location:	Garage	000 mm 2
Foundation Floor Type:	(Dirt) (Concrete)	
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)	
Sump Hole:	(Yes) (No)	7
Penetrations in Floor:	(Sewer) (Water) (Gas) (Cracks) (Drains)	
Penetrations in Wall:	(Sewer) (Water) (Gas) (Electric) (Cracks)	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	556	
Flow Control I.D.:	0625	
Flow control rate:	70	
O ₂ Ambient	20,9%	
CO ₂ Ambient	850 ppm	
Pre-Sample: O ₂	17.190	
Pre-Sample CO ₂ :	>10,02090	
Pre-Sample PID:	42.86 ppm	Street
Pre-Sample CH ₄ :	3%131	Tales
Sample Initiation Time:	1136	
Initial Vacuum:	-z9,18	
Sample End Time:	12:08	
Final Vaccum:	-5,75	
Post Sample O ₂ :	17,0%	
Post Sample CO ₂ :	710,000 ppm	
Notes/Observati	ons:	
Pos	+ PID= 24,45	Ppm

Indoor Air/Subslab Sampling Field Sheet Maine DEP

Site Name:	LESLAVE	Sample Location Sketch
Town:	(few 1870)	
Date:	7-28-15	
Sample I.D.:	35V-02	Reference the Figure 2
Project Manager:	BLAIS	
Sampling Personnel:	CRESSIM/SMITH	
Collection Device:	(Summa Can) (Tedlar Bag)	·
Sample Type:	(Subslab) (Indoor Air)	
Sampling Location:		
Foundation Floor Type:	(Dirt) (Concrete)	
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)	
Sump Hole:	(Yes) (No)	·
Penetrations in Floor:	(Sewer) (Water) (Gas) (Cracks) (Drains)	
Penetrations in Wall:	(Sewer) (Water) (Gas) (Électric) (Cracks)	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	377	
Flow Control I.D.:	0209	
Flow control rate:	7)	·
O ₂ Ambient	20.9%	
CO ₂ Ambient	250 ppm	
Pre-Sample: O ₂	7.5%	
Pre-Sample CO ₂ :	>10,000ppm	
Pre-Sample PID:	10,8 ppm	
Pre-Sample CH₄:	19/0'	
Sample Initiation Time:	10:54	
Initial Vacuum:	- Z8,99	
Sample End Time:	11:20	
Final Vaccum:	-3.38	
Post Sample O ₂ :	7.4%	,
Post Sample CO ₂ :	710,000	
Notes/Observati	•	Dbw
	ons: PID = 171.2 METHANG 1 1/	(h)
	1 00 11 11 11	
l		

APPENDIX B LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1517707

Client: CES, Inc

640 Main St

Lewiston, ME 04240

ATTN: John Cressey Phone: (207) 795-6009

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Report Date: 08/05/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 10193.027

Lab Number: L1517707 **Report Date:** 08/05/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1517707-01	IA-1	AIR	10 LEFEYETTE ST.	07/28/15 09:25	07/29/15
L1517707-02	SSV-01	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 11:51	07/29/15
L1517707-03	SSV-02	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 11:20	07/29/15
L1517707-04	SSV-03	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 12:08	07/29/15
L1517707-05	SV-01	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 13:46	07/29/15
L1517707-06	SV-02	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 12:55	07/29/15
L1517707-07	SV-03	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 11:39	07/29/15
L1517707-08	SV-04	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 15:20	07/29/15
L1517707-09	SV-07	SOIL_VAPOR	10 LEFEYETTE ST.	07/28/15 16:15	07/29/15

L1517707

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/05/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	624-9220	with a	nv c	uestions.
	contact	0110110	00111000	at ooo	02 . 0220	with a	., .	14000.00.10.

L1517707

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/05/15

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on July 27, 2015. The canister certification results are provided as an addendum.

Samples L1517707-01 and -02 were diluted and re-analyzed to quantify the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

Samples L1517707-02 through -06 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Samples L1517707-07 through -09: The samples have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the samples.

Sample Receipt

The sample designated SSV-02 (L1517707-03) had a RPD for the pre- and post-flow controller calibration check (27% RPD) that was outside of the control limit (20% RPD). The initial flow rate for the flow controller was 71 mL/minute; the final flow rate was 93 mL/minute. The final pressure recorded by the laboratory of the associated canister was -3.9 inches of mercury.

The sample designated SV-04 (L1517707-08) had a RPD for the pre- and post-flow controller calibration check (147% RPD) that was outside of the control limit (20% RPD). The initial flow rate for the flow controller was 72 mL/minute; the final flow rate was 11 mL/minute. The final pressure recorded by the laboratory of the associated canister was -14.6 inches of mercury.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative Date: 08/05/15

AIR

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

Date Collected:

08/05/15

07/28/15 09:25

SAMPLE RESULTS

Lab ID: L1517707-01

Client ID: IA-1

Sample Location: 10 LEFEYETTE ST.

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 21:25

Analyst: RY

Date Received: 07/29/15
Field Prep: Not Specified

ppbV ug/m3 Dilution **Factor** RL Results RL MDL Qualifier **Parameter** Results MDL Volatile Organics in Air by SIM - Mansfield Lab Vinyl chloride 0.084 0.033 0.020 0.051 1 1,1-Dichloroethene ND 0.020 ND 0.079 1 ---trans-1,2-Dichloroethene 0.067 0.020 0.266 0.079 1 1,1-Dichloroethane ND ND 0.020 0.081 1 ---cis-1,2-Dichloroethene 0.560 0.020 2.22 0.079 1 ----1,2-Dichloroethane 0.021 0.020 0.085 0.081 1 --1,1,1-Trichloroethane ND 0.020 ND 0.109 1 Trichloroethene 1 0.993 0.020 --5.34 0.107 --Tetrachloroethene 406 0.020 2750 Ε 1 --0.136

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	84		60-140
chlorobenzene-d5	83		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-01 D

Client ID: IA-1

Sample Location: 10 LEFEYETTE ST.

Matrix:

Air

Analytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 09:15

Analyst: RY

Date Collected:

07/28/15 09:25

Date Received:

07/29/15

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Tetrachloroethene	780	0.398		5290	2.70			19.91

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	87		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

Date Collected:

Date Received:

Field Prep:

08/05/15

07/29/15

07/28/15 11:51

Not Specified

SAMPLE RESULTS

Lab ID: L1517707-02 D

Client ID: SSV-01

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 00:04

Analyst: RY

		ppbV		ug/m3			Dilut	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	167		ND	427			8361
1,1-Dichloroethene	ND	167.		ND	662			8361
trans-1,2-Dichloroethene	744	167		2950	662			8361
1,1-Dichloroethane	ND	167.		ND	676			8361
cis-1,2-Dichloroethene	24700	167		97900	662			8361
1,2-Dichloroethane	ND	167.		ND	676			8361
1,1,1-Trichloroethane	ND	167.		ND	911			8361
Trichloroethene	15200	167		81700	897			8361
Tetrachloroethene	804000	167		5450000	1130		Е	8361

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	89		60-140

Project Number: 10193.027

Lab Number:

L1517707

07/28/15 11:51

Report Date:

Date Collected:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-02 D2

Client ID: SSV-01

Sample Location: 10 LEFEYETTE ST.

Volatile Organics in Air by SIM - Mansfield Lab

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 08:31

Analyst: RY

Parameter

Tetrachloroethene

Date Received:	07/29/15
Field Prep:	Not Specified

ppbV		ug/m3				Dilution
RL	MDL	Results	RL	MDL	Qualifier	Factor
667		4860000	4520			33330

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	88		60-140

Results

717000

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

Date Collected:

08/05/15

07/28/15 11:20

SAMPLE RESULTS

Lab ID: L1517707-03 D

Client ID: SSV-02

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 00:36

Analyst: RY

Date Received: 07/29/15
Field Prep: Not Specified

ppbV ug/m3 Dilution **Factor** Results RL MDL Qualifier **Parameter** Results RLMDL Volatile Organics in Air by SIM - Mansfield Lab Vinyl chloride ND ND 3.26 8.33 162.9 1,1-Dichloroethene ND 3.26 ND 12.9 162.9 ---trans-1,2-Dichloroethene ND 3.26 ND 12.9 162.9 1,1-Dichloroethane ND ND 3.26 13.2 162.9 ---cis-1,2-Dichloroethene 22.5 3.26 89.2 12.9 162.9 ----1,2-Dichloroethane ND 3.26 ND 162.9 13.2 ----1,1,1-Trichloroethane 4.07 3.26 22.2 17.8 162.9 --Trichloroethene 443 82.4 3.26 --17.5 --162.9 Tetrachloroethene 4220 28600 162.9 3.26 --22.1 --

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	86		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

Date Collected:

08/05/15

07/28/15 12:08

SAMPLE RESULTS

Lab ID: L1517707-04 D

Client ID: SSV-03

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 21:57

Analyst: RY

Date Received:	07/29/15
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	RL MDL	Results	RL MC	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.200		ND	0.511			10
1,1-Dichloroethene	ND	0.200		ND	0.793			10
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,1-Dichloroethane	ND	0.200		ND	0.809			10
cis-1,2-Dichloroethene	23.9	0.200		94.8	0.793			10
1,2-Dichloroethane	ND	0.200		ND	0.809			10
1,1,1-Trichloroethane	ND	0.200		ND	1.09			10
Trichloroethene	44.6	0.200		240	1.07			10
Tetrachloroethene	490	0.200		3320	1.36			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	79		60-140
bromochloromethane	82		60-140
chlorobenzene-d5	89		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-05 D

Client ID: SV-01 Sample Location: 10 LEF

10 LEFEYETTE ST.

Matrix: Anaytical Method: Soil_Vapor 48,TO-15-SIM

Analytical Date:

48,10-15-SIM 07/31/15 22:29

Analyst:

RY

Date Collected: 07/28/15 13:46
Date Received: 07/29/15

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.040		ND	0.102			2
1,1-Dichloroethene	ND	0.040		ND	0.159			2
trans-1,2-Dichloroethene	ND	0.040		ND	0.159			2
1,1-Dichloroethane	ND	0.040		ND	0.162			2
cis-1,2-Dichloroethene	ND	0.040		ND	0.159			2
1,2-Dichloroethane	ND	0.040		ND	0.162			2
1,1,1-Trichloroethane	ND	0.040		ND	0.218			2
Trichloroethene	0.046	0.040		0.247	0.215			2
Tetrachloroethene	43.6	0.040		296	0.271			2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	83		60-140
chlorobenzene-d5	79		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-06 D

Client ID: SV-02

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 23:00

Analyst: RY

Date Collected: 07/28/15 12:55 Date Received: 07/29/15

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	80.6	0.100		206	0.256			5
1,1-Dichloroethene	4.24	0.100		16.8	0.396			5
trans-1,2-Dichloroethene	40.8	0.100		162	0.396			5
1,1-Dichloroethane	0.115	0.100		0.465	0.405			5
cis-1,2-Dichloroethene	159	0.100		630	0.396			5
1,2-Dichloroethane	ND	0.100		ND	0.405			5
1,1,1-Trichloroethane	ND	0.100		ND	0.546			5
Trichloroethene	41.6	0.100		224	0.537			5
Tetrachloroethene	23.6	0.100		160	0.678			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	95		60-140

Project Number: 10193.027

Lab Number:

Date Collected:

L1517707

Report Date:

08/05/15

07/28/15 11:39

SAMPLE RESULTS

Lab ID: L1517707-07 D

Client ID: SV-03

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 01:08

Analyst: RY

Date Received:	07/29/15
Field Prep:	Not Specified

ppbV ug/m3				Dilution			
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Mansfield Lab							
153	2.45		391	6.26			122.6
ND	2.45		ND	9.71			122.6
28.6	2.45		113	9.71			122.6
ND	2.45		ND	9.92			122.6
126	2.45		500	9.71			122.6
ND	2.45		ND	9.92			122.6
ND	2.45		ND	13.4			122.6
26.7	2.45		143	13.2			122.6
568	2.45		3850	16.6			122.6
	Mansfield Lab 153 ND 28.6 ND 126 ND ND 26.7	Results RL Mansfield Lab 153 2.45 ND 2.45 28.6 2.45 ND 2.45 126 2.45 ND 2.45 ND 2.45 ND 2.45 26.7 2.45	Results RL MDL Mansfield Lab 153 2.45 ND 2.45 28.6 2.45 ND 2.45 ND 2.45 ND 2.45 ND 2.45 26.7 2.45	Results RL MDL Results Mansfield Lab 153 2.45 391 ND 2.45 ND 28.6 2.45 113 ND 2.45 ND 126 2.45 500 ND 2.45 ND ND 2.45 ND 26.7 2.45 143	Results RL MDL Results RL Mansfield Lab 153 2.45 391 6.26 ND 2.45 ND 9.71 28.6 2.45 113 9.71 ND 2.45 ND 9.92 126 2.45 500 9.71 ND 2.45 ND 9.92 ND 2.45 ND 13.4 26.7 2.45 143 13.2	Results RL MDL Results RL MDL Mansfield Lab 153 2.45 391 6.26 ND 2.45 ND 9.71 28.6 2.45 113 9.71 ND 2.45 ND 9.92 126 2.45 500 9.71 ND 2.45 ND 9.92 ND 2.45 ND 13.4 26.7 2.45 143 13.2	Results RL MDL Results RL MDL Qualifier Mansfield Lab 153 2.45 391 6.26 ND 2.45 ND 9.71 28.6 2.45 113 9.71 ND 2.45 ND 9.92 ND 2.45 ND 9.92 ND 2.45 ND 9.92 ND 2.45 ND 13.4 26.7 2.45 143 13.2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	87		60-140

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-08 D

Client ID: SV-04

Sample Location: 10 LEFEYETTE ST.

Matrix: Soil_Vapor Anaytical Method: 48,TO-15-SIM Analytical Date: 08/01/15 01:40

Analyst: RY

Date Collected: 07/28/15 15:20 Date Received: 07/29/15

Field Prep: Not Specified

		pbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	15.8	11.3		40.4	28.9			564.6
1,1-Dichloroethene	ND	11.3		ND	44.8			564.6
trans-1,2-Dichloroethene	ND	11.3		ND	44.8			564.6
1,1-Dichloroethane	ND	11.3		ND	45.7			564.6
cis-1,2-Dichloroethene	11.8	11.3		46.8	44.8			564.6
1,2-Dichloroethane	1640	11.3		6640	45.7			564.6
1,1,1-Trichloroethane	ND	11.3		ND	61.7			564.6
Trichloroethene	ND	11.3		ND	60.7			564.6
Tetrachloroethene	147	11.3		997	76.6			564.6

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Project Number: 10193.027 Lab Number:

L1517707

Report Date:

08/05/15

SAMPLE RESULTS

Lab ID: L1517707-09 D

Client ID: SV-07 Sample Location:

10 LEFEYETTE ST.

Matrix: Anaytical Method: Analytical Date:

Soil_Vapor 48,TO-15-SIM 07/31/15 23:32

Analyst:

RY

Date Collected:

07/28/15 16:15 07/29/15

Date Received:

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	И - Mansfield Lab							
Vinyl chloride	ND	0.200		ND	0.511			10
1,1-Dichloroethene	ND	0.200		ND	0.793			10
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,1-Dichloroethane	ND	0.200		ND	0.809			10
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,2-Dichloroethane	ND	0.200		ND	0.809			10
1,1,1-Trichloroethane	ND	0.200		ND	1.09			10
Trichloroethene	ND	0.200		ND	1.07			10
Tetrachloroethene	32.0	0.200		217	1.36			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	84		60-140
chlorobenzene-d5	81		60-140

Project Name: LEBLANC'S CLEANERS Lab Number: L1517707

Project Number: 10193.027 **Report Date:** 08/05/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 14:58

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab f	or sample	e(s): 01-09	Batch: W	G807920)-4		
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: LEBLANC'S CLEANERS Lab Number: L1517707

Project Number: 10193.027 **Report Date:** 08/05/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 14:58

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-09	Batch: W	G807920)- 4		
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: LEBLANC'S CLEANERS Lab Number: L1517707

Project Number: 10193.027 **Report Date:** 08/05/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/31/15 14:58

		ppbV			ug/m3		Dilution	
Parameter	Results	Results RL MDL		Results	Results RL MDL		Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-0	9 Batch: W	G807920)-4		
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517707

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	/olatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-09 Batch: WG807920-3								
Dichlorodifluoromethane	95				70-130	-		25	
Chloromethane	89		-		70-130	-		25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	91		-		70-130	-		25	
Vinyl chloride	91		-		70-130	-		25	
1,3-Butadiene	100		-		70-130	-		25	
Bromomethane	90		-		70-130	-		25	
Chloroethane	85		-		70-130	-		25	
Acetone	96		-		70-130	-		25	
Trichlorofluoromethane	94		-		70-130	-		25	
Acrylonitrile	86		-		70-130	-		25	
1,1-Dichloroethene	92		-		70-130	-		25	
Methylene chloride	92		-		70-130	-		25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	90		-		70-130	-		25	
Halothane	102		-		70-130	-		25	
trans-1,2-Dichloroethene	84		-		70-130	-		25	
1,1-Dichloroethane	92		-		70-130	-		25	
Methyl tert butyl ether	92		-		70-130	-		25	
2-Butanone	95		-		70-130	-		25	
cis-1,2-Dichloroethene	101		-		70-130	-		25	
Chloroform	91		-		70-130	-		25	
1,2-Dichloroethane	90		-		70-130	-		25	

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517707

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
/olatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-09 Batch: WG807920-3								
1,1,1-Trichloroethane	91	-	70-130	-	25			
Benzene	91	-	70-130	-	25			
Carbon tetrachloride	92	-	70-130	-	25			
1,2-Dichloropropane	91	-	70-130	-	25			
Bromodichloromethane	96	-	70-130	-	25			
1,4-Dioxane	92	-	70-130	-	25			
Trichloroethene	92	-	70-130	-	25			
cis-1,3-Dichloropropene	97	-	70-130	-	25			
4-Methyl-2-pentanone	98	-	70-130	-	25			
trans-1,3-Dichloropropene	82	-	70-130	-	25			
1,1,2-Trichloroethane	93	-	70-130	-	25			
Toluene	89	-	70-130	-	25			
Dibromochloromethane	89	-	70-130	-	25			
1,2-Dibromoethane	91	-	70-130	-	25			
Tetrachloroethene	88	-	70-130	-	25			
1,1,1,2-Tetrachloroethane	84	-	70-130	-	25			
Chlorobenzene	92	-	70-130	-	25			
Ethylbenzene	91	-	70-130	-	25			
p/m-Xylene	93	-	70-130	-	25			
Bromoform	90	-	70-130	-	25			
Styrene	93	-	70-130	-	25			

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517707

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield La	ab Associated sa	ample(s):	01-09 Batch: W0	8807920-3					
1,1,2,2-Tetrachloroethane	94		-		70-130	-		25	
o-Xylene	93		-		70-130	-		25	
Isopropylbenzene	92		-		70-130	-		25	
4-Ethyltoluene	96		-		70-130	-		25	
1,3,5-Trimethylbenzene	92		-		70-130	-		25	
1,2,4-Trimethylbenzene	99		-		70-130	-		25	
1,3-Dichlorobenzene	103		-		70-130	-		25	
1,4-Dichlorobenzene	91		-		70-130	-		25	
sec-Butylbenzene	92		-		70-130	-		25	
p-Isopropyltoluene	88		-		70-130	-		25	
1,2-Dichlorobenzene	97		-		70-130	-		25	
n-Butylbenzene	99		-		70-130	-		25	
1,2,4-Trichlorobenzene	104		-		70-130	-		25	
Naphthalene	105		-		70-130	-		25	
1,2,3-Trichlorobenzene	99		-		70-130	-		25	
Hexachlorobutadiene	94		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield La ample	ab Associated sample(s): 01-09	QC Batch ID: WG80)7920-5 QC	Sample: L151	17899-01 Client ID: DUP
Dichlorodifluoromethane	0.251	0.297	ppbV	17	25
Chloromethane	0.532	0.550	ppbV	3	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	0.021	ND	ppbV	NC	25
Trichlorofluoromethane	0.214	0.218	ppbV	2	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Methylene chloride	ND	ND	ppbV	NC	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.064	0.065	ppbV	2	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Chloroform	0.034	0.034	ppbV	0	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	2.50	2.55	ppbV	2	25

Lab Duplicate Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

L1517707

Report Date:

08/05/15

arameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM ample	- Mansfield Lab	Associated sample(s): 01-09	QC Batch ID: WG80	7920-5 QC S	Sample: L15178	899-01 Client ID: DUP
Carbon tetrachloride		0.073	0.073	ppbV	0	25
1,2-Dichloropropane		ND	ND	ppbV	NC	25
Bromodichloromethane		ND	ND	ppbV	NC	25
Trichloroethene		0.037	0.037	ppbV	0	25
cis-1,3-Dichloropropene		ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene		ND	ND	ppbV	NC	25
1,1,2-Trichloroethane		ND	ND	ppbV	NC	25
Toluene		9.17	9.52	ppbV	4	25
Dibromochloromethane		ND	ND	ppbV	NC	25
1,2-Dibromoethane		ND	ND	ppbV	NC	25
Tetrachloroethene		0.462	0.480	ppbV	4	25
1,1,1,2-Tetrachloroethane		ND	ND	ppbV	NC	25
Chlorobenzene		ND	ND	ppbV	NC	25
Ethylbenzene		1.24	1.27	ppbV	2	25
p/m-Xylene		6.61	6.77	ppbV	2	25
Bromoform		ND	ND	ppbV	NC	25
Styrene		0.893	0.916	ppbV	3	25
1,1,2,2-Tetrachloroethane		ND	ND	ppbV	NC	25
o-Xylene		2.94	3.02	ppbV	3	25

L1517707

Lab Duplicate Analysis Batch Quality Control

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansf ample	ield Lab Associated sample(s): 01-09	QC Batch ID: WG80	07920-5 QC Sa	ample: L15178	99-01 Client ID: DUP
4-Ethyltoluene	0.309	0.318	ppbV	3	25
1,3,5-Trimethylbenzene	0.603	0.619	ppbV	3	25
1,2,4-Trimethylbenzene	1.50	1.57	ppbV	5	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Naphthalene	0.823	0.894	ppbV	8	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Lab Number: L1517707

Report Date: 08/05/15

Project Number: 10193.027

LEBLANC'S CLEANERS

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leal Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1517707-01	IA-1	0397	#16 AMB	07/24/15	207095		-	-	-	Pass	3.3	3.2	3
L1517707-01	IA-1	758	6.0L Can	07/24/15	207095	L1516642-02	Pass	-28.1	-4.6	-	-	-	-
L1517707-02	SSV-01	0138	#90 SV	07/27/15	206804		-	-	-	Pass	71	68	4
L1517707-02	SSV-01	490	2.7L Can	07/27/15	206804	L1516783-01	Pass	-29.6	-4.5	-	-	-	-
L1517707-03	SSV-02	0209	#90 SV	07/27/15	206804		-	-	-	Pass	71	93	27
L1517707-03	SSV-02	377	2.7L Can	07/27/15	206804	L1516783-01	Pass	-29.6	-3.9	-	-	-	_
L1517707-04	SSV-03	0625	#90 SV	07/27/15	206804		-	-	-	Pass	70	73	4
L1517707-04	SSV-03	556	2.7L Can	07/27/15	206804	L1516634-01	Pass	-29.5	-5.8	-	-	-	_
L1517707-05	SV-01	0656	#30 SV	07/27/15	206804		-	-	-	Pass	72	74	3
L1517707-05	SV-01	370	2.7L Can	07/27/15	206804	L1516783-01	Pass	-29.5	-5.1	-	-	-	-
L1517707-06	SV-02	0404	#30 AMB	07/27/15	206804		-	-	-	Pass	72	74	3
L1517707-06	SV-02	533	2.7L Can	07/27/15	206804	L1516634-01	Pass	-29.6	-6.2	-	-	-	_
L1517707-07	SV-03	0178	#90 SV	07/27/15	206804		-	-	-	Pass	72	73	1
L1517707-07	SV-03	402	2.7L Can	07/27/15	206804	L1516634-01	Pass	-28.7	-6.5	-	-	-	-
L1517707-08	SV-04	0369	#16 SV	07/27/15	206804		-	-	-	Pass	72	11	147

Project Name:

Project Name: LEBLANC'S CLEANERS Lab Number: L1517707

Project Number: 10193.027 Report Date: 08/05/15

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L1517707-08	SV-04	282	2.7L CAN	07/27/15	206804	L1516634-01	Pass -	-29.6	-14.6	-	-	-	-
L1517707-09	SV-07	0591	#30 SV	07/27/15	206804			-	-	Pass	70	68	3
L1517707-09	SV-07	392	2.7L Can	07/27/15	206804	L1516783-01	Pass -	-29.6	-0.3	-	-	-	-

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/17/15 18:40

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
/inyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
sopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15
Sample Location: Field Prep: Not Specified

•						•		
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield		IVE	IAIDE	Nooulio	IVE	HUL	- Guaiiii	
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			 1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			 1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

 Lab ID:
 L1516634-01
 Date Collected:
 07/16/15 18:00

 Client ID:
 CAN 185 SHELF 2
 Date Received:
 07/17/15

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	98		60-140

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/17/15 18:40

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516634-01 Date Collected: 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15
Sample Location: Field Prep: Not Specified

•						•		•
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: L1516634

Project Number: CANISTER QC BAT **Report Date:** 08/05/15

Air Canister Certification Results

Lab ID: Date Collected: L1516634-01 07/16/15 18:00

Client ID: CAN 185 SHELF 2 Date Received: 07/17/15

Field Prep: Sample Location: Not Specified

		ug/m3				Dilution		
Parameter	Results RL MDL		Results	Results RL MDL		Qualifier	Factor	
Volatile Organics in Air by SIM - Mans	field Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/17/15 20:16

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
/inyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15
Sample Location: Field Prep: Not Specified

		I.V						
_		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	1 actor
Volatile Organics in Air - Mansfield L	Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: Lab Number:

CANISTER QC BAT **Project Number: Report Date:** 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Client ID: **CAN 790 SHELF 41**

Sample Location:

Date Collected:

07/16/15 18:00

Date Received: 07/17/15 Field Prep:

Not Specified

L1516642

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	97		60-140

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/17/15 20:16

Analyst: RY

	ppbV ug/m3							
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT **Report Date:** 08/05/15

Air Canister Certification Results

Lab ID: Date Collected: L1516642-02 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15 Sample Location: Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: L1516642

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516642-02 Date Collected: 07/16/15 18:00

Client ID: CAN 790 SHELF 41 Date Received: 07/17/15

Sample Location: Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Matrix: Air
Anaytical Method: 48,TO-15

Analytical Date: 07/21/15 17:12

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
/inyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
sopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Fertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

·									
		ppbV			ug/m3		Dilution Factor		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	1 actor	
Volatile Organics in Air - Mansfi	eld Lab								
Trichloroethene	ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Methyl Methacrylate	ND	0.500		ND	2.05			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	ND	0.200		ND	0.754			1	
1,3-Dichloropropane	ND	0.200		ND	0.924			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Butyl Acetate	ND	0.500		ND	2.38			1	
Octane	ND	0.200		ND	0.934			1	
Tetrachloroethene	ND	0.200		ND	1.36			1	
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
o/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1	
Nonane (C9)	ND	0.200		ND	1.05			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
Bromobenzene	ND	0.200		ND	0.793			1	

Project Name: Lab Number: L1516783

CANISTER QC BAT **Project Number: Report Date:** 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Client ID: CAN 559 SHELF 3

Sample Location:

Date Collected:

07/20/15 18:00

Date Received:

07/21/15

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	91		60-140

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/21/15 17:12

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

·									
		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM -	· Mansfield Lab								
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.020		ND	0.092			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
p/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/05/15

Air Canister Certification Results

Lab ID: L1516783-01 Date Collected: 07/20/15 18:00

Client ID: CAN 559 SHELF 3 Date Received: 07/21/15
Sample Location: Field Prep: Not Specifie

Sample Location: Field Prep: Not Specified

ppbV ug/m3 Dilution

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Name: LEBLANC'S CLEANERS

Lab Number: L1517707 **Report Date:** 08/05/15 Project Number: 10193.027

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1517707-01A	Canister - 6 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-02A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-03A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-04A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-05A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-06A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-07A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-08A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1517707-09A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)

Project Name:LEBLANC'S CLEANERSLab Number:L1517707Project Number:10193.027Report Date:08/05/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name:LEBLANC'S CLEANERSLab Number:L1517707Project Number:10193.027Report Date:08/05/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:LEBLANC'S CLEANERSLab Number:L1517707Project Number:10193.027Report Date:08/05/15

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ZVPHA	AIR AN	VALY	SIS	PA	GE	OF	Date F	Rec'd in L	.ab:	7/2	29/15		AL	PHA 、	Job #	1: L16	517787	
ANALYTICAL		Project	Informati	on			Repo	ort Inform	nation -	Data D	elivera	oles	Bi	lling In	ıform	ation		
320 Forbes Blvd, Ma TEL: 508-822-9300	FAX: 508-822-3288	Project Na	ame: 0 X	lauc's	Cluon	ZNON	□FA	X		-			X	ame as	Clien	t info PO#	<i>‡</i> :	
Client Informatio	n	Project Lo		Lefeye	V 0	•	□ AC		h a alca a									
Client: CES	Inc.	Project #:	1019	13.05		•			sed on Regu	latory Crite	eria Indicate	d)	,					
Address: 640	Main St.	Project Ma		JKC				Other For //AIL (star	mats: ndard pdf	report)			Re	gulato	ry R	equirement	ts/Report Lim	its
Levas	ten, ME 04240	ALPHA Q	uote #:	eBla	uc's	2015 1043	□Ad		eliverable				Sta	te/Fed	F	Program	Criteria	
Phone: 207	740 6880	Turn-A	round Tim					rt to: (if differ	ent than Projec	t Manager)					-			
Fax:	,	A -													_			
Email: JCRESS	ey@ces-maine.com	Standa	rd 🗅	RUSH (only c	onfirmed if pre-app	proved!)					<u>-</u>			AN	ALYS	SIS		
	re been previously analyzed by Alpha	Date Due) :		Time:									/ jour	<u> 7 / </u>	7//		
Other Project S	pecific Requirements/Comr	nents:					-						/ /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/,	/ / /		
													S/ /	A TO TO	/s /	4/		
	All C	olum	ıns B	elow	/ Mus	st Be	Fill	led (Out			T		FIXED GA	74SF	Sample Co		
ALPHA Lab ID	Comple ID		Co	llecti	on Initial	Final	Sample	Sample	r's Can	ID	ID-Flow Controller	7.14. .14.4	70-15 SM	FIXED	70-734 20-734	}		
(Lab Use Only)	Sample ID	-	Start Time	~ 75	Vacuum	Vacuum	Matrix*	Initials	Size	Can	Controller			₹ /₺ /		Sample Co	omments (i.e. Pl	D)
7707.01	4A-1	7-27	930	9:25	-28.50	רסגל -	AA	Ju	(ol	758	0397		X		\perp			
07	SSV-01	7-28	1120	1121	-29.46	-4.67	SV	JKC	271	490	0138		X					
· 3	SSV-02	7-28	1054	1120	78,99	-338	SV	Juc	271	371	0209		X					
04	551-03	7-28	1136	1208	-29,18	- 5,75	SV	JIC	77.71	55%	abas		X					
05	SV-DI	7-28	13:10	13:46	•	~4.44		TSmit	42.7L		0654	!	×					
ap	SV-07_	7/28	12:25		-29.53		SV		ક રસ		0404		X					
07	SV-03		11:10	11:39		-5.41	3		327L		0178		X		+			
08	SV-04	7/28	·	15:20			SV		327L				X					
09	SV-07		15:30										X		+			
- 07	J • • †	7100	10. 20	10.12	71.00	Wijt)V	Merilac	37.10	912	0911	-			+			
in the second se	A A	A - Ambier	t Air (Indoor	(Outdoor)	*										_		7	·····
*SAMPLI	E MATRIX CODES s		or/Landfill (Containe	r Type			ĊS			completely.	clearly, legibly and Samples can not b	be
			shed By:	* v ~	Date	e/Time		Rev	eived By:				ate/T	me:		logged in and clock will not	d turnaround time t start until any amb	bi-
	1	P. \			7-29		1	& lun		Soft	1 %	2518		154	10	submitted are	esolved. All sample re subject to Alpha's	
		# 5		>		·- 19:42	X		Du -	1		palis	19	42	·	Terms and C See reverse		
-527 805791-02 59-Jun-	09)				7/30/1	5 0400		MUL	12U	K		130,	1/5	UY	00			

ANALYTICAL REPORT

Lab Number: L1517709

Client: CES, Inc

640 Main St

Lewiston, ME 04240

ATTN: John Cressey Phone: (207) 795-6009

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Report Date: 08/10/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709 **Report Date:** 08/10/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1517709-01	B-01 (6-8)	SOIL	10 LAFAYETTE ST.	07/28/15 14:28	07/29/15
L1517709-02	B-02 (6-8)	SOIL	10 LAFAYETTE ST.	07/28/15 11:58	07/29/15
L1517709-03	B-03 (4-6)	SOIL	10 LAFAYETTE ST.	07/28/15 10:40	07/29/15
L1517709-04	B-05 (0-4)	SOIL	10 LAFAYETTE ST.	07/28/15 13:23	07/29/15
L1517709-05	B-07 (4-6)	SOIL	10 LAFAYETTE ST.	07/28/15 15:08	07/29/15
L1517709-06	MW-01	WATER	10 LAFAYETTE ST.	07/28/15 14:28	07/29/15
L1517709-07	MW-03	WATER	10 LAFAYETTE ST.	07/28/15 11:32	07/29/15
L1517709-08	MW-04	WATER	10 LAFAYETTE ST.	07/28/15 11:06	07/29/15
L1517709-09	MW-05	WATER	10 LAFAYETTE ST.	07/28/15 13:48	07/29/15
L1517709-10	MW-07	WATER	10 LAFAYETTE ST.	07/28/15 15:27	07/29/15
L1517709-11	SS-07	SOIL	10 LAFAYETTE ST.	07/28/15 14:40	07/29/15
L1517709-12	TRIP BLANK	SOIL	10 LAFAYETTE ST.	07/24/15 00:00	07/29/15
L1517709-13	TRIP BLANK	WATER	10 LAFAYETTE ST.	07/24/15 00:00	07/29/15

L1517709

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/10/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:08101517:50

Project Name: LEBLANC'S CLEANERS Lab Number: L1517709

Project Number: 10193.027 **Report Date:** 08/10/15

Case Narrative (continued)

Report Submission

This report replaces the report issued August 6, 2015. At the client's request, the Volatile Organics High Level compound list was changed on L1517709-09 and -10.

Volatile Organics

L1517709-03, -09, and -10: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1517709-04 and -05: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/10/15

600, Shandow Kelly Stenstrom

ORGANICS

VOLATILES

L1517709

08/10/15

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L1517709-01

Client ID: B-01 (6-8)

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/04/15 17:32

Analyst: MVPercent Solids: 78%

Date Collected:	07/28/15 14:28
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - Westbo	rough Lab					
1,1-Dichloroethane	ND		ug/kg	1.5		1
Tetrachloroethene	ND		ug/kg	0.98		1
1,2-Dichloroethane	ND		ug/kg	0.98		1
1,1,1-Trichloroethane	ND		ug/kg	0.98		1
Vinyl chloride	ND		ug/kg	2.0		1
1,1-Dichloroethene	ND		ug/kg	0.98		1
trans-1,2-Dichloroethene	ND		ug/kg	1.5		1
Trichloroethene	ND		ug/kg	0.98		1
cis-1,2-Dichloroethene	ND		ug/kg	0.98		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	122		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	97		70-130	

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Report Date: 08/10/15

Lab Number:

Lab ID: L1517709-02

Client ID: B-02 (6-8)

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/05/15 09:02

Analyst: ΒN Percent Solids: 78%

Date Collected:	07/28/15 11:58
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - We	estborough Lab						
			_				
1,1-Dichloroethane	ND		ug/kg	110		1	
Tetrachloroethene	3700		ug/kg	76		1	
1,2-Dichloroethane	ND		ug/kg	76		1	
1,1,1-Trichloroethane	ND		ug/kg	76		1	
Vinyl chloride	ND		ug/kg	150		1	
1,1-Dichloroethene	ND		ug/kg	76		1	
trans-1,2-Dichloroethene	ND		ug/kg	110		1	
Trichloroethene	1100		ug/kg	76		1	
cis-1,2-Dichloroethene	110		ug/kg	76		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	98		70-130	

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Report Date: 08/10/15

Lab Number:

Lab ID: L1517709-03 D

Client ID: B-03 (4-6)

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/05/15 09:28

Analyst: ΒN Percent Solids: 77%

Date Collected:	07/28/15 10:40
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-503	5 - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	300		2	
Tetrachloroethene	ND		ug/kg	200		2	
1,2-Dichloroethane	ND		ug/kg	200		2	
1,1,1-Trichloroethane	ND		ug/kg	200		2	
Vinyl chloride	ND		ug/kg	400		2	
1,1-Dichloroethene	ND		ug/kg	200		2	
trans-1,2-Dichloroethene	ND		ug/kg	300		2	
Trichloroethene	ND		ug/kg	200		2	
cis-1,2-Dichloroethene	ND		ug/kg	200		2	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Report Date:

Lab Number:

L1517709 08/10/15

Lab ID: L1517709-04 Client ID: B-05 (0-4)

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/05/15 09:53

Analyst: BN Percent Solids: 68%

Date Collected:	07/28/15 13:23
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - We	stborough Lab						
1,1-Dichloroethane	ND		ug/kg	170		1	
Tetrachloroethene	120		ug/kg	110		1	
1,2-Dichloroethane	ND		ug/kg	110		1	
1,1,1-Trichloroethane	ND		ug/kg	110		1	
Vinyl chloride	ND		ug/kg	230		1	
1,1-Dichloroethene	ND		ug/kg	110		1	
trans-1,2-Dichloroethene	ND		ug/kg	170		1	
Trichloroethene	ND		ug/kg	110		1	
cis-1,2-Dichloroethene	ND		ug/kg	110		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	83		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	88		70-130	

L1517709

08/10/15

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L1517709-05 Client ID: B-07 (4-6)

10 LAFAYETTE ST. Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 08/05/15 10:19

Analyst: ΒN Percent Solids: 83% Date Collected: 07/28/15 15:08 Date Received: 07/29/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	5 - Westborough Lab					
1,1-Dichloroethane	ND		ua/ka	93		1
Tetrachloroethene			ug/kg	62		1
	ND		ug/kg			<u> </u>
1,2-Dichloroethane	ND		ug/kg	62		1
1,1,1-Trichloroethane	ND		ug/kg	62		1
Vinyl chloride	ND		ug/kg	120		1
1,1-Dichloroethene	ND		ug/kg	62		1
trans-1,2-Dichloroethene	ND		ug/kg	93		1
Trichloroethene	ND		ug/kg	62		1
cis-1,2-Dichloroethene	ND		ug/kg	62		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	86		70-130			
Toluene-d8	102		70-130			
4-Bromofluorobenzene	111		70-130			
Dibromofluoromethane	91		70-130			

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number:

Report Date: 08/10/15

Lab ID: L1517709-06

Client ID: MW-01

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/05/15 00:39

Analyst: PΚ Date Collected: 07/28/15 14:28 Date Received: 07/29/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,1-Dichloroethane	ND		ug/l	0.75		1			
Tetrachloroethene	ND		ug/l	0.50		1			
1,2-Dichloroethane	ND		ug/l	0.50		1			
1,1,1-Trichloroethane	ND		ug/l	0.50		1			
Vinyl chloride	ND		ug/l	1.0		1			
1,1-Dichloroethene	ND		ug/l	0.50		1			
trans-1,2-Dichloroethene	ND		ug/l	0.75		1			
Trichloroethene	ND		ug/l	0.50		1			
cis-1,2-Dichloroethene	ND		ug/l	0.50		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	88		70-130	

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number:

Report Date: 08/10/15

Lab ID: L1517709-07

Client ID: MW-03

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/05/15 01:12

Analyst: PΚ

Date Collected:	07/28/15 11:32
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
1,1-Dichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	9.0		ug/l	0.50		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Vinyl chloride	31		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	38		ug/l	0.75		1	
Trichloroethene	1.2		ug/l	0.50		1	
cis-1,2-Dichloroethene	23		ug/l	0.50		1	

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	105		70-130				
Toluene-d8	98		70-130				
4-Bromofluorobenzene	121		70-130				
Dibromofluoromethane	92		70-130				

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number: L1517709

Report Date: 08/10/15

Lab ID: L1517709-08

Client ID: MW-04

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/05/15 01:46

Analyst: PΚ

Date Collected:	07/28/15 11:06
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,1-Dichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Vinyl chloride	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
Trichloroethene	ND		ug/l	0.50		1	
cis-1,2-Dichloroethene	ND		ua/l	0.50		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	90		70-130	

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number:

Report Date: 08/10/15

Lab ID: D

L1517709-09

Client ID: MW-05

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/06/15 17:24

Analyst: MS Date Collected: 07/28/15 13:48

Date Received: 07/29/15 Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND ND	ug/l ug/l	75 19	 25
1,1-Dichloroethane Chloroform	ND ND			 25
Chloroform	ND	ug/l	19	
			10	 25
Carbon tetrachloride	ND	ug/l	19	 25
Carbon tetrachionae		ug/l	12	 25
1,2-Dichloropropane	ND	ug/l	44	 25
Dibromochloromethane	ND	ug/l	12	 25
1,1,2-Trichloroethane	ND	ug/l	19	 25
Tetrachloroethene	ND	ug/l	12	 25
Chlorobenzene	ND	ug/l	12	 25
Trichlorofluoromethane	ND	ug/l	62	 25
1,2-Dichloroethane	ND	ug/l	12	 25
1,1,1-Trichloroethane	ND	ug/l	12	 25
Bromodichloromethane	ND	ug/l	12	 25
trans-1,3-Dichloropropene	ND	ug/l	12	 25
cis-1,3-Dichloropropene	ND	ug/l	12	 25
1,3-Dichloropropene, Total	ND	ug/l	12	 25
1,1-Dichloropropene	ND	ug/l	62	 25
Bromoform	ND	ug/l	50	 25
1,1,2,2-Tetrachloroethane	ND	ug/l	12	 25
Benzene	ND	ug/l	12	 25
Toluene	94	ug/l	19	 25
Ethylbenzene	180	ug/l	12	 25
Chloromethane	ND	ug/l	62	 25
Bromomethane	ND	ug/l	25	 25
Vinyl chloride	ND	ug/l	25	 25
Chloroethane	ND	ug/l	25	 25
1,1-Dichloroethene	ND	ug/l	12	 25
trans-1,2-Dichloroethene	ND	ug/l	19	 25
1,2-Dichloroethene, Total	ND	ug/l	12	 25
Trichloroethene	ND	ug/l	12	 25

Project Name: LEBLANC'S CLEANERS Lab Number: L1517709

Project Number: 10193.027 **Report Date:** 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-09 D

Client ID: MW-05

Sample Location: 10 LAFAYETTE ST.

Date Collected: 07/28/15 13:48

Date Received: 07/29/15
Field Prep: Not Specified

Xylones, Total 3700 ug/l 25 - 25 cis-1,2-Dichloroethene ND ug/l 12 - 25 Dibromomethane ND ug/l 120 - 25 L-2,3-Trichloroptopane ND ug/l 120 - 25 Slyrene ND ug/l 120 - 25 Dichlorodifluoromethane ND ug/l 120 - 25 Slyrene ND ug/l 120 - 25 Dichlorodifluoromethane ND ug/l 120 - 25 Acettone 210 ug/l 120 - 25 Acettone ND ug/l 120 - 25 Quabratilde ND ug/l 120 - 25 4-Mettyl-2-pertance ND ug/l 120 - 25 Ethyl methacrylate ND ug/l 120 - 25 Ethyl methacrylate<	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,3-Dichlorobenzene ND ugfl 62 - 25 1,4-Dichlorobenzene ND ugfl 62 - 25 1,4-Dichlorobenzene ND ugfl 25 - 25 1,4-Dichlorobenzene ND ugfl 25 - 25 1,5-Dichlorobenzene ND ugfl 12 - 25 1,5-Dichlorobenzene ND ugfl 12 - 25 1,4-Dichlorobenzene ND ugfl 120 - 25 1,4-Dichlorobenzene N	Volatile Organics by GC/MS - West	borough Lab					
1,4Dichloroberozene	1,2-Dichlorobenzene	ND		ug/l	62		25
Methyl tert butyl ether ND ug/l 25 25 p/m-Xylene 2100 ug/l 25 25 Xylenes 1600 ug/l 25 25 Xylenes, Total 3700 ug/l 12 25 Xylenes, Total ND ug/l 120 25 Dibromomethane ND ug/l 120 25 Dibromomethane ND ug/l 120 25 1,2,3-Trichtoroprane ND ug/l 120 25 Styrone ND ug/l 120 25 Styrone ND ug/l 120 25 Dichtorodifluormethane ND ug/l 120 25 Action 210 ug/l 120 25 Carbon disulfide ND ug/l 120 25 Carbon disulfide	1,3-Dichlorobenzene	ND		ug/l	62		25
Definition Process P	1,4-Dichlorobenzene	ND		ug/l	62		25
Oxylene 1600 ug/l 25 25 Xylenes, Total 3700 ug/l 25 25 Xylenes, Total 3700 ug/l 12 25 uis-1,2-Dichloroethane ND ug/l 120 25 1,4-Dichlorobutane ND ug/l 120 25 1,2-3-Tichloropropane ND ug/l 120 25 Styrene ND ug/l 120 25 Syrene ND ug/l 120 25 Acetone 210 ug/l 120 25 Acetone 210 ug/l 120 25 Carbon disulfide ND ug/l 120 25 Carbon disulfide ND ug/l 120 25 2-Butanone ND ug/l 120 25 2-Hasanone ND <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>25</td> <td></td> <td>25</td>	Methyl tert butyl ether	ND		ug/l	25		25
Xylones, Total 3700 ug/l 25 - 25 cis-1,2-Dichloroethene ND ug/l 12 - 25 Dibromomethane ND ug/l 120 - 25 L-2,3-Trichloropropane ND ug/l 120 - 25 Slyrene ND ug/l 120 - 25 Dichloroffiloromethane ND ug/l 120 - 25 Slyrene ND ug/l 120 - 25 Dichloroffiloromethane ND ug/l 120 - 25 Acetone 210 ug/l 120 - 25 Acetone ND ug/l 120 - 25 Catorbo disulide ND ug/l 120 - 25 Viryl acetate ND ug/l 120 - 25 Viryl acetate ND ug/l 120 - 25 Ethyl methacrylate	p/m-Xylene	2100		ug/l	25		25
ND Ug/l 12 25 25 25 25 25 25 2	o-Xylene	1600		ug/l	25		25
Dibromomethane ND ug/l 120 25	Xylenes, Total	3700		ug/l	25		25
1.4-Dichlorobutane	cis-1,2-Dichloroethene	ND		ug/l	12		25
ND	Dibromomethane	ND		ug/l	120		25
ND	1,4-Dichlorobutane	ND		ug/l	120		25
Dichlorodifluoromethane ND	1,2,3-Trichloropropane	ND		ug/l	120		25
Actone 210 ug/l 120 25 Carbon disulfide ND ug/l 120 25 2-Butanone ND ug/l 120 25 Viryl acetate ND ug/l 120 25 4-Methyl-2-pentanone ND ug/l 120 25 4-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 62 25 1.2-Dibromoethane ND ug/l 62 25 1.2-Dibromoethane ND ug/l 62 25 1.2-Dibromoethane ND ug/l 62 25 Bromobenazene <td>Styrene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>25</td> <td></td> <td>25</td>	Styrene	ND		ug/l	25		25
Carbon disulfide ND ug/l 120 25 2-Butanone ND ug/l 120 25 Vinyl acetate ND ug/l 120 25 4-Methyl-2-pentanone ND ug/l 120 25 2-Hexanone ND ug/l 120 25 2-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acryonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 1-2-Dibromoethane ND ug/l 62 25 1-3-Dichoropropane ND ug/l 62 25 1-3-Dibromoethane ND ug/l 62 25 1-3-Dibromoethane ND ug/l 62 25 1-3-Dibromoe	Dichlorodifluoromethane	ND		ug/l	120		25
2-Butanone ND ug/l 120 25 Vinyl acetate ND ug/l 120 25 4-Methyl-2-pentanone ND ug/l 120 25 2-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Bromochloromethane ND ug/l 62 25 1,2-Dibromorpane ND ug/l 62 25 1,2-Dibromorbane ND ug/l 62 25 1,1-Dibrioropropane ND ug/l 62 25 1,1-1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 n-	Acetone	210		ug/l	120		25
Vinyl acetate ND ug/l 120 25 4-Methyl-2-pentanone ND ug/l 120 25 2-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 62 25 2,2-Diblropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 62 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 Bromobenzene ND ug/l 62 25 br	Carbon disulfide	ND		ug/l	120		25
4-Methyl-2-pentanone ND ug/l 120 25 2-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 120 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 62 25 1,3-Dichloropropane ND ug/l 62 25 1,3-Dichloropropane ND ug/l 62 25 1,3-Dichloropropane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 Bromobenzene ND ug/l 62 25	2-Butanone	ND		ug/l	120		25
2-Hexanone ND ug/l 120 25 Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 62 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene ND ug/l 12 25 sec-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25	Vinyl acetate	ND		ug/l	120		25
Ethyl methacrylate ND ug/l 120 25 Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 120 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 62 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 <	4-Methyl-2-pentanone	ND		ug/l	120		25
Acrylonitrile ND ug/l 120 25 Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 120 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene ND ug/l 12 25 sec-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 <	2-Hexanone	ND		ug/l	120		25
Bromochloromethane ND ug/l 62 25 Tetrahydrofuran ND ug/l 120 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 62 25 Bromobenzene ND ug/l 62 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 tetr-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 <t< td=""><td>Ethyl methacrylate</td><td>ND</td><td></td><td>ug/l</td><td>120</td><td></td><td>25</td></t<>	Ethyl methacrylate	ND		ug/l	120		25
Tetrahydrofuran ND ug/l 120 25 2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 12 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 62 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Isopropylbenzene 110 ug/l 12 25 <tr< td=""><td>Acrylonitrile</td><td>ND</td><td></td><td>ug/l</td><td>120</td><td></td><td>25</td></tr<>	Acrylonitrile	ND		ug/l	120		25
2,2-Dichloropropane ND ug/l 62 25 1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 12 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 lsopropylbenzene 110 ug/l 12 25 lsopropylbenzene 110 ug/l 12 25 lsopropylbenzene 110 ug/l 12 25 Naphthalene 330 ug/l 62 25	Bromochloromethane	ND		ug/l	62		25
1,2-Dibromoethane ND ug/l 50 25 1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 12 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 sec-Butylbenzene ND ug/l 62 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 Hexachlorobutadiene ND ug/l 62 25 Isopropylbenzene 110 ug/l 12 25 Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	Tetrahydrofuran	ND		ug/l	120		25
1,3-Dichloropropane ND ug/l 62 25 1,1,1,2-Tetrachloroethane ND ug/l 12 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 Naphthalene 330 ug/l 62 25	2,2-Dichloropropane	ND		ug/l	62		25
1,1,1,2-Tetrachloroethane ND ug/l 12 25 Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	1,2-Dibromoethane	ND		ug/l	50		25
Bromobenzene ND ug/l 62 25 n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	1,3-Dichloropropane	ND		ug/l	62		25
n-Butylbenzene 110 ug/l 12 25 sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 62 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	1,1,1,2-Tetrachloroethane	ND		ug/l	12		25
sec-Butylbenzene ND ug/l 12 25 tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 P-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	Bromobenzene	ND		ug/l	62		25
tert-Butylbenzene ND ug/l 62 25 o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	n-Butylbenzene	110		ug/l	12		25
o-Chlorotoluene ND ug/l 62 25 p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	sec-Butylbenzene	ND		ug/l	12		25
p-Chlorotoluene ND ug/l 62 25 1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	tert-Butylbenzene	ND		ug/l	62		25
1,2-Dibromo-3-chloropropane ND ug/l 62 25 Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	o-Chlorotoluene	ND		ug/l	62		25
Hexachlorobutadiene ND ug/l 12 25 Isopropylbenzene 110 ug/l 12 25 p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	p-Chlorotoluene	ND		ug/l	62		25
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	62		25
p-Isopropyltoluene 120 ug/l 12 25 Naphthalene 330 ug/l 62 25	Hexachlorobutadiene	ND		ug/l	12		25
Naphthalene 330 ug/l 62 25	Isopropylbenzene	110		ug/l	12		25
, ,	p-Isopropyltoluene	120		ug/l	12		25
n-Propylbenzene 130 ug/l 12 25	Naphthalene	330		ug/l	62		25
	n-Propylbenzene	130		ug/l	12		25

Project Name: LEBLANC'S CLEANERS Lab Number: L1517709

Project Number: 10193.027 **Report Date:** 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-09 D

Client ID: MW-05

Sample Location: 10 LAFAYETTE ST.

Date Collected: 07/28/15 13:48

Date Received: 07/29/15
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	62		25	
1,2,4-Trichlorobenzene	ND		ug/l	62		25	
1,3,5-Trimethylbenzene	990		ug/l	62		25	
1,2,4-Trimethylbenzene	2600		ug/l	62		25	
trans-1,4-Dichloro-2-butene	ND		ug/l	62		25	
Ethyl ether	ND		ug/l	62		25	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	88		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number: L1517709

Report Date: 08/10/15

Lab ID: L1517709-10 D

Client ID: MW-07

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/05/15 02:19

Analyst: PΚ Date Collected: 07/28/15 15:27

Date Received: 07/29/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Methylene chloride	ND		ug/l	12		4	
1,1-Dichloroethane	ND		ug/l	3.0		4	
Chloroform	ND		ug/l	3.0		4	
Carbon tetrachloride	ND		ug/l	2.0		4	
1,2-Dichloropropane	ND		ug/l	7.0		4	
Dibromochloromethane	ND		ug/l	2.0		4	
1,1,2-Trichloroethane	ND		ug/l	3.0		4	
Tetrachloroethene	ND		ug/l	2.0		4	
Chlorobenzene	ND		ug/l	2.0		4	
Trichlorofluoromethane	ND		ug/l	10		4	
1,2-Dichloroethane	ND		ug/l	2.0		4	
1,1,1-Trichloroethane	ND		ug/l	2.0		4	
Bromodichloromethane	ND		ug/l	2.0		4	
trans-1,3-Dichloropropene	ND		ug/l	2.0		4	
cis-1,3-Dichloropropene	ND		ug/l	2.0		4	
1,3-Dichloropropene, Total	ND		ug/l	2.0		4	
1,1-Dichloropropene	ND		ug/l	10		4	
Bromoform	ND		ug/l	8.0		4	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0		4	
Benzene	ND		ug/l	2.0		4	
Toluene	ND		ug/l	3.0		4	
Ethylbenzene	2.6		ug/l	2.0		4	
Chloromethane	ND		ug/l	10		4	
Bromomethane	ND		ug/l	4.0		4	
Vinyl chloride	ND		ug/l	4.0		4	
Chloroethane	ND		ug/l	4.0		4	
1,1-Dichloroethene	ND		ug/l	2.0		4	
trans-1,2-Dichloroethene	ND		ug/l	3.0		4	
1,2-Dichloroethene, Total	ND		ug/l	2.0		4	
Trichloroethene	ND		ug/l	2.0		4	

L1517709

08/10/15

Project Name: LEBLANC'S CLEANERS

L1517709-10

MW-07

D

Project Number: 10193.027

Lab ID:

Client ID:

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 07/28/15 15:27

Date Received: 07/29/15 Field Prep: Not Specified

Chefit ID.	10100-07				Date Ne		07/29/13	
Sample Location:	10 LAFAYETTE ST.				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	GC/MS - Westborough	Lab						
1,2-Dichlorobenzene		ND		ug/l	10		4	
1,3-Dichlorobenzene		ND		ug/l	10		4	
1,4-Dichlorobenzene		ND		ug/l	10		4	
Methyl tert butyl ether		ND		ug/l	4.0		4	
p/m-Xylene		7.9		ug/l	4.0		4	
o-Xylene		ND		ug/l	4.0		4	
Xylenes, Total		7.9		ug/l	4.0		4	
cis-1,2-Dichloroethene		ND		ug/l	2.0		4	
Dibromomethane		ND		ug/l	20		4	
1,4-Dichlorobutane		ND		ug/l	20		4	
1,2,3-Trichloropropane		ND		ug/l	20		4	
Styrene		ND		ug/l	4.0		4	
Dichlorodifluoromethane		ND		ug/l	20		4	
Acetone		ND		ug/l	20		4	
Carbon disulfide		ND		ug/l	20		4	
2-Butanone		ND		ug/l	20		4	
Vinyl acetate		ND		ug/l	20		4	
4-Methyl-2-pentanone		ND		ug/l	20		4	
2-Hexanone		ND		ug/l	20		4	
Ethyl methacrylate		ND		ug/l	20		4	
Acrylonitrile		ND		ug/l	20		4	
Bromochloromethane		ND		ug/l	10		4	
Tetrahydrofuran		ND		ug/l	20		4	
2,2-Dichloropropane		ND		ug/l	10		4	
1,2-Dibromoethane		ND		ug/l	8.0		4	
1,3-Dichloropropane		ND		ug/l	10		4	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.0		4	
Bromobenzene		ND		ug/l	10		4	
n-Butylbenzene		4.3		ug/l	2.0		4	
sec-Butylbenzene		4.0		ug/l	2.0		4	
tert-Butylbenzene		ND		ug/l	10		4	
o-Chlorotoluene		ND		ug/l	10		4	
p-Chlorotoluene		ND		ug/l	10		4	
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	10		4	
Hexachlorobutadiene		ND		ug/l	2.0		4	
Isopropylbenzene		3.5		ug/l	2.0		4	
p-Isopropyltoluene		6.0		ug/l	2.0		4	
Naphthalene		ND		ug/l	10		4	
n-Propylbenzene		6.8		ug/l	2.0		4	

Project Name: LEBLANC'S CLEANERS Lab Number: L1517709

Project Number: 10193.027 **Report Date:** 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-10 D

Client ID: MW-07

Sample Location: 10 LAFAYETTE ST.

Date Collected: 07/28/15 15:27

Date Received: 07/29/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	10		4	
1,2,4-Trichlorobenzene	ND		ug/l	10		4	
1,3,5-Trimethylbenzene	17		ug/l	10		4	
1,2,4-Trimethylbenzene	69		ug/l	10		4	
trans-1,4-Dichloro-2-butene	ND		ug/l	10		4	
Ethyl ether	ND		ug/l	10		4	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	89		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number: L1517709

Report Date: 08/10/15

SAWIFEL IN

Lab ID: L1517709-11 Client ID: SS-07

Operate Level's a 40 LAFAVI

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/05/15 10:44

Analyst: BN Percent Solids: 87%

Date Collected:	07/28/15 14:40
Date Received:	07/29/15
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-503	5 - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	120		1	
Tetrachloroethene	1300		ug/kg	80		1	
1,2-Dichloroethane	ND		ug/kg	80		1	
1,1,1-Trichloroethane	ND		ug/kg	80		1	
Vinyl chloride	ND		ug/kg	160		1	
1,1-Dichloroethene	ND		ug/kg	80		1	
trans-1,2-Dichloroethene	ND		ug/kg	120		1	
Trichloroethene	ND		ug/kg	80		1	
cis-1,2-Dichloroethene	ND		ug/kg	80		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	90		70-130	

L1517709

08/10/15

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Date Collected: 07/24/15 00:00

Lab Number:

Report Date:

Date Received: 07/29/15
Field Prep: Not Specified

Lab ID: L1517709-12
Client ID: TRIP BLANK
Sample Location: 10 LAFAYETTE ST.

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/04/15 17:59

Analyst: MV

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - Westbor	ough Lab					
1,1-Dichloroethane	ND		ug/kg	1.5		1
Tetrachloroethene	ND		ug/kg	1.0		1
1,2-Dichloroethane	ND		ug/kg	1.0		1
1,1,1-Trichloroethane	ND		ug/kg	1.0		1
Vinyl chloride	ND		ug/kg	2.0		1
1,1-Dichloroethene	ND		ug/kg	1.0		1
trans-1,2-Dichloroethene	ND		ug/kg	1.5		1
Trichloroethene	ND		ug/kg	1.0		1
cis-1,2-Dichloroethene	ND		ug/kg	1.0		1

_			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	125		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

L1517709

07/24/15 00:00

Not Specified

07/29/15

Project Name: LEBLANC'S CLEANERS

L1517709-12

Project Number: 10193.027

SAMPLE RESULTS

Report Date: 08/10/15

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMIFEE RESUL

Client ID: TRIP BLANK

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/05/15 11:10

Analyst: BN

Lab ID:

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - Westh	orough Lal)					
			_				
1,1-Dichloroethane	ND		ug/kg	75		1	
Tetrachloroethene	ND		ug/kg	50		1	
1,2-Dichloroethane	ND		ug/kg	50		1	
1,1,1-Trichloroethane	ND		ug/kg	50		1	
Vinyl chloride	ND		ug/kg	100		1	
1,1-Dichloroethene	ND		ug/kg	50		1	
trans-1,2-Dichloroethene	ND		ug/kg	75		1	
Trichloroethene	ND		ug/kg	50		1	
cis-1,2-Dichloroethene	ND		ug/kg	50		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	93		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

L1517709

Lab Number:

Report Date: 08/10/15

Lab ID: L1517709-13

Client ID: TRIP BLANK

Sample Location: 10 LAFAYETTE ST.

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/04/15 21:50

Analyst: PΚ Date Collected: 07/24/15 00:00 Date Received: 07/29/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,1-Dichloroethane	ND		ug/l	0.75		1				
Tetrachloroethene	ND		ug/l	0.50		1				
1,2-Dichloroethane	ND		ug/l	0.50		1				
1,1,1-Trichloroethane	ND		ug/l	0.50		1				
Vinyl chloride	ND		ug/l	1.0		1				
1,1-Dichloroethene	ND		ug/l	0.50		1				
trans-1,2-Dichloroethene	ND		ug/l	0.75		1				
Trichloroethene	ND		ug/l	0.50		1				
cis-1,2-Dichloroethene	ND		ug/l	0.50		1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	88		70-130	

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 09:59

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS-5035 -	Westborou	gh Lab for	sample(s):	01,12	Batch:	WG809216-3
Methylene chloride	ND		ug/kg	10		
1,1-Dichloroethane	ND		ug/kg	1.5		
Chloroform	ND		ug/kg	1.5		
Carbon tetrachloride	ND		ug/kg	1.0		
1,2-Dichloropropane	ND		ug/kg	3.5		
Dibromochloromethane	ND		ug/kg	1.0		
1,1,2-Trichloroethane	ND		ug/kg	1.5		
2-Chloroethylvinyl ether	ND		ug/kg	20		
Tetrachloroethene	ND		ug/kg	1.0		
Chlorobenzene	ND		ug/kg	1.0		
Trichlorofluoromethane	ND		ug/kg	5.0		
1,2-Dichloroethane	ND		ug/kg	1.0		
1,1,1-Trichloroethane	ND		ug/kg	1.0		
Bromodichloromethane	ND		ug/kg	1.0		
trans-1,3-Dichloropropene	ND		ug/kg	1.0		
cis-1,3-Dichloropropene	ND		ug/kg	1.0		
1,3-Dichloropropene, Total	ND		ug/kg	1.0		
1,1-Dichloropropene	ND		ug/kg	5.0		
Bromoform	ND		ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		
Benzene	ND		ug/kg	1.0		
Toluene	ND		ug/kg	1.5		
Ethylbenzene	ND		ug/kg	1.0		
Chloromethane	ND		ug/kg	5.0		
Bromomethane	ND		ug/kg	2.0		
Vinyl chloride	ND		ug/kg	2.0		
Chloroethane	ND		ug/kg	2.0		
1,1-Dichloroethene	ND		ug/kg	1.0		
trans-1,2-Dichloroethene	ND		ug/kg	1.5		

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 09:59

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by GC/MS-5035	- Westborou	igh Lab for	sample(s):	01,12	Batch:	WG809216-3
Trichloroethene	ND		ug/kg	1.0		
1,2-Dichlorobenzene	ND		ug/kg	5.0		
1,3-Dichlorobenzene	ND		ug/kg	5.0		
1,4-Dichlorobenzene	ND		ug/kg	5.0		
Methyl tert butyl ether	ND		ug/kg	2.0		
p/m-Xylene	ND		ug/kg	2.0		
o-Xylene	ND		ug/kg	2.0		
Xylene (Total)	ND		ug/kg	2.0		
cis-1,2-Dichloroethene	ND		ug/kg	1.0		
1,2-Dichloroethene (total)	ND		ug/kg	1.0		
Dibromomethane	ND		ug/kg	10		
1,4-Dichlorobutane	ND		ug/kg	10		
1,2,3-Trichloropropane	ND		ug/kg	10		
Styrene	ND		ug/kg	2.0		
Dichlorodifluoromethane	ND		ug/kg	10		
Acetone	ND		ug/kg	36		
Carbon disulfide	ND		ug/kg	10		
2-Butanone	ND		ug/kg	10		
Vinyl acetate	ND		ug/kg	10		
4-Methyl-2-pentanone	ND		ug/kg	10		
2-Hexanone	ND		ug/kg	10		
Ethyl methacrylate	ND		ug/kg	10		
Acrolein	ND		ug/kg	25		
Acrylonitrile	ND		ug/kg	4.0		
Bromochloromethane	ND		ug/kg	5.0		
Tetrahydrofuran	ND		ug/kg	20		
2,2-Dichloropropane	ND		ug/kg	5.0		
1,2-Dibromoethane	ND		ug/kg	4.0		
1,3-Dichloropropane	ND		ug/kg	5.0		

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 09:59

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS-5035	- Westborou	gh Lab for	sample(s):	01,12	Batch: WG809216-3
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	
Bromobenzene	ND		ug/kg	5.0	
n-Butylbenzene	ND		ug/kg	1.0	
sec-Butylbenzene	ND		ug/kg	1.0	
tert-Butylbenzene	ND		ug/kg	5.0	
1,3,5-Trichlorobenzene	ND		ug/kg	4.0	
o-Chlorotoluene	ND		ug/kg	5.0	
p-Chlorotoluene	ND		ug/kg	5.0	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	
Hexachlorobutadiene	ND		ug/kg	5.0	
Isopropylbenzene	ND		ug/kg	1.0	
p-Isopropyltoluene	ND		ug/kg	1.0	
Naphthalene	ND		ug/kg	5.0	
n-Propylbenzene	ND		ug/kg	1.0	
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	
Halothane	ND		ug/kg	40	
Ethyl ether	ND		ug/kg	5.0	
Methyl Acetate	ND		ug/kg	20	
Ethyl Acetate	ND		ug/kg	20	
Isopropyl Ether	ND		ug/kg	4.0	
Cyclohexane	ND		ug/kg	20	
tert-Butyl Alcohol	ND		ug/kg	100	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.0	
1,4-Dioxane	ND		ug/kg	100	

Project Name: LEBLANC'S CLEANERS Lab Number: L1517709

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 09:59

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-5035 -	Westborou	igh Lab for	sample(s):	01,12	Batch: WG809216-3
Methyl cyclohexane	ND		ug/kg	4.0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	20	
1,4-Diethylbenzene	ND		ug/kg	4.0	
4-Ethyltoluene	ND		ug/kg	4.0	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0	

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	98		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Report Date: 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/05/15 07:45

1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	estborough Lab for ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg	02-05,11-12 500 75 75 50 180	Batch:
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	75 75 50	
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND	ug/kg ug/kg ug/kg	75 50	
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND	ug/kg ug/kg	50	
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND	ug/kg		
Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND		180	
1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene			100	
2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND	ug/kg	50	
Tetrachloroethene Chlorobenzene		ug/kg	75	
Chlorobenzene	ND	ug/kg	1000	
	ND	ug/kg	50	
Trichlorofluoromethane	ND	ug/kg	50	
	ND	ug/kg	250	
1,2-Dichloroethane	ND	ug/kg	50	
1,1,1-Trichloroethane	ND	ug/kg	50	
Bromodichloromethane	ND	ug/kg	50	
trans-1,3-Dichloropropene	ND	ug/kg	50	
cis-1,3-Dichloropropene	ND	ug/kg	50	
1,3-Dichloropropene, Total	ND	ug/kg	50	
1,1-Dichloropropene	ND	ug/kg	250	
Bromoform	ND	ug/kg	200	
1,1,2,2-Tetrachloroethane	ND	ug/kg	50	
Benzene	ND	ug/kg	50	
Toluene	ND	ug/kg	75	
Ethylbenzene	ND	ug/kg	50	
Chloromethane	ND	ug/kg	250	
Bromomethane	ND	ug/kg	100	
Vinyl chloride	ND	ug/kg	100	
Chloroethane	ND	ug/kg	100	
1,1-Dichloroethene	ND	ug/kg	50	
trans-1,2-Dichloroethene				

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Report Date: 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/05/15 07:45

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High WG809236-3	- Westbord	ough Lab fo	or sample(s):	02-05,11-12	Batch:
Trichloroethene	ND		ug/kg	50	
1,2-Dichlorobenzene	ND		ug/kg	250	
1,3-Dichlorobenzene	ND		ug/kg	250	
1,4-Dichlorobenzene	ND		ug/kg	250	
Methyl tert butyl ether	ND		ug/kg	100	
p/m-Xylene	ND		ug/kg	100	
o-Xylene	ND		ug/kg	100	
Xylene (Total)	ND		ug/kg	100	
cis-1,2-Dichloroethene	ND		ug/kg	50	
1,2-Dichloroethene (total)	ND		ug/kg	50	
Dibromomethane	ND		ug/kg	500	
1,4-Dichlorobutane	ND		ug/kg	500	
1,2,3-Trichloropropane	ND		ug/kg	500	
Styrene	ND		ug/kg	100	
Dichlorodifluoromethane	ND		ug/kg	500	
Acetone	ND		ug/kg	1800	
Carbon disulfide	ND		ug/kg	500	
2-Butanone	ND		ug/kg	500	
Vinyl acetate	ND		ug/kg	500	
4-Methyl-2-pentanone	ND		ug/kg	500	
2-Hexanone	ND		ug/kg	500	
Ethyl methacrylate	ND		ug/kg	500	
Acrolein	ND		ug/kg	1200	
Acrylonitrile	ND		ug/kg	200	
Bromochloromethane	ND		ug/kg	250	
Tetrahydrofuran	ND		ug/kg	1000	
2,2-Dichloropropane	ND		ug/kg	250	
1,2-Dibromoethane	ND		ug/kg	200	
1,3-Dichloropropane	ND		ug/kg	250	

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/05/15 07:45

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High WG809236-3	- Westbore	ough Lab fo	or sample(s):	02-05,11-12	Batch:
1,1,1,2-Tetrachloroethane	ND		ug/kg	50	
Bromobenzene	ND		ug/kg	250	
n-Butylbenzene	ND		ug/kg	50	
sec-Butylbenzene	ND		ug/kg	50	
tert-Butylbenzene	ND		ug/kg	250	
1,3,5-Trichlorobenzene	ND		ug/kg	200	
o-Chlorotoluene	ND		ug/kg	250	
p-Chlorotoluene	ND		ug/kg	250	
1,2-Dibromo-3-chloropropane	ND		ug/kg	250	
Hexachlorobutadiene	ND		ug/kg	250	
Isopropylbenzene	ND		ug/kg	50	
p-Isopropyltoluene	ND		ug/kg	50	
Naphthalene	ND		ug/kg	250	
n-Propylbenzene	ND		ug/kg	50	
1,2,3-Trichlorobenzene	ND		ug/kg	250	
1,2,4-Trichlorobenzene	ND		ug/kg	250	
1,3,5-Trimethylbenzene	ND		ug/kg	250	
1,2,4-Trimethylbenzene	ND		ug/kg	250	
trans-1,4-Dichloro-2-butene	ND		ug/kg	250	
Ethyl ether	ND		ug/kg	250	
Methyl Acetate	ND		ug/kg	1000	
Ethyl Acetate	ND		ug/kg	1000	
Isopropyl Ether	ND		ug/kg	200	
Cyclohexane	ND		ug/kg	1000	
tert-Butyl Alcohol	ND		ug/kg	5000	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200	
Tertiary-Amyl Methyl Ether	ND		ug/kg	200	
1,4-Dioxane	ND		ug/kg	5000	
Methyl cyclohexane	ND		ug/kg	200	

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/05/15 07:45

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High WG809236-3	- Westboro	ough Lab fo	or sample(s):	02-05,11-12	Batch:
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	1000	
1,4-Diethylbenzene	ND		ug/kg	200	
4-Ethyltoluene	ND		ug/kg	200	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	200	

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	100		70-130					
Toluene-d8	99		70-130					
4-Bromofluorobenzene	92		70-130					
Dibromofluoromethane	95		70-130					

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Parameter	Result	Qualifier	Units	RL	-	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample	(s):	06-08,13	Batch:	WG809294-3
Methylene chloride	ND		ug/l	3.0)	
1,1-Dichloroethane	ND		ug/l	0.7	5	
Chloroform	ND		ug/l	0.7	5	
Carbon tetrachloride	ND		ug/l	0.5	0	
1,2-Dichloropropane	ND		ug/l	1.8	3	
Dibromochloromethane	ND		ug/l	0.5	0	
1,1,2-Trichloroethane	ND		ug/l	0.7	5	
Tetrachloroethene	ND		ug/l	0.5	0	
Chlorobenzene	ND		ug/l	0.5	0	
Trichlorofluoromethane	ND		ug/l	2.5	5	
1,2-Dichloroethane	ND		ug/l	0.5	0	
1,1,1-Trichloroethane	ND		ug/l	0.5	0	
Bromodichloromethane	ND		ug/l	0.5	0	
trans-1,3-Dichloropropene	ND		ug/l	0.5	0	
cis-1,3-Dichloropropene	ND		ug/l	0.5	0	
1,3-Dichloropropene, Total	ND		ug/l	0.5	0	
1,1-Dichloropropene	ND		ug/l	2.5	5	
Bromoform	ND		ug/l	2.0)	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.5	0	
Benzene	ND		ug/l	0.5	0	
Toluene	ND		ug/l	0.7	5	
Ethylbenzene	ND		ug/l	0.5	0	
Chloromethane	ND		ug/l	2.5	5	
Bromomethane	ND		ug/l	1.0)	
Vinyl chloride	ND		ug/l	1.0)	
Chloroethane	ND		ug/l	1.0)	
1,1-Dichloroethene	ND		ug/l	0.5	0	
trans-1,2-Dichloroethene	ND		ug/l	0.7	5	
1,2-Dichloroethene (total)	ND		ug/l	0.5	0	

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Volatile Organics by GC/MS - Westborough Lab for sample(s): 06-08,13 Batch: WG809294-3	Parameter	Result	Qualifier	Units	RL		MDL
1,2-Dichlorobenzene ND ug/l 2.5 1,3-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 5.0 Dibromoethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 Styrene ND ug/l 5.0 Sty	olatile Organics by GC/MS	- Westborough La	ab for sample	e(s):	06-08,13 B	atch:	WG809294-3
1,3-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 5.0 Dibromoethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 Styrene ND ug/l 5.0 Styrene ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone <td>Trichloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td></td>	Trichloroethene	ND		ug/l	0.50		
1,4-Dichlorobenzene ND ug/l 2.5 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 5.0 Dibromomethane ND ug/l 5.0 1,4-Dichlorodethane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Styrene ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Vinyl acetate </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td></td> <td></td>	1,2-Dichlorobenzene	ND		ug/l	2.5		
Methyl tert butyl ether ND ug/l 1.0	1,3-Dichlorobenzene	ND		ug/l	2.5		
p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 5.0 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 Ethyl	1,4-Dichlorobenzene	ND		ug/l	2.5		
o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Et	Methyl tert butyl ether	ND		ug/l	1.0		
Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Bromochloromethane ND ug/l 5.0	p/m-Xylene	ND		ug/l	1.0		
cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 5.0	o-Xylene	ND		ug/l	1.0		
Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 1.0 Dichlorodiffuoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 <td< td=""><td>Xylene (Total)</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td></td><td></td></td<>	Xylene (Total)	ND		ug/l	1.0		
1,4-Dichlorobutane	cis-1,2-Dichloroethene	ND		ug/l	0.50		
1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5	Dibromomethane	ND		ug/l	5.0		
Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	1,4-Dichlorobutane	ND		ug/l	5.0		
Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dichloropropane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	1,2,3-Trichloropropane	ND		ug/l	5.0		
Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Styrene	ND		ug/l	1.0		
Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Dichlorodifluoromethane	ND		ug/l	5.0		
2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Acetone	ND		ug/l	5.0		
Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Carbon disulfide	ND		ug/l	5.0		
4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	2-Butanone	ND		ug/l	5.0		
2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Vinyl acetate	ND		ug/l	5.0		
Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	4-Methyl-2-pentanone	ND		ug/l	5.0		
Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	2-Hexanone	ND		ug/l	5.0		
Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Ethyl methacrylate	ND		ug/l	5.0		
Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Acrylonitrile	ND		ug/l	5.0		
2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Bromochloromethane	ND		ug/l	2.5		
1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	Tetrahydrofuran	ND		ug/l	5.0		
1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	2,2-Dichloropropane	ND		ug/l	2.5		
1,1,1,2-Tetrachloroethane ND ug/l 0.50	1,2-Dibromoethane	ND		ug/l	2.0		
•	1,3-Dichloropropane	ND		ug/l	2.5		
ND 05	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		
Bromobenzene ND ug/l 2.5	Bromobenzene	ND		ug/l	2.5		

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Parameter	Result	Qualifier Units	RL RL	MDL
Volatile Organics by GC/MS - \	Westborough Lab	for sample(s):	06-08,13 Batch	: WG809294-3
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	104		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	107		70-130			
Dibromofluoromethane	88		70-130			

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sample(s): 1	0 Batch:	WG809566-3
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
1,2-Dichloroethene (total)	ND	ug/l	0.50	

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s): 1	0 Batch:	WG809566-3
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	
1,4-Dichlorobenzene	ND		ug/l	2.5	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	5.0	
1,4-Dichlorobutane	ND		ug/l	5.0	
1,2,3-Trichloropropane	ND		ug/l	5.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	5.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	5.0	
2-Butanone	ND		ug/l	5.0	
Vinyl acetate	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Ethyl methacrylate	ND		ug/l	5.0	
Acrylonitrile	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	2.5	
Tetrahydrofuran	ND		ug/l	5.0	
2,2-Dichloropropane	ND		ug/l	2.5	
1,2-Dibromoethane	ND		ug/l	2.0	
1,3-Dichloropropane	ND		ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	2.5	

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/15 20:43

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	10 Batch:	WG809566-3	
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l			
tert-Butylbenzene	ND	ug/l			
o-Chlorotoluene	ND	ug/l			
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.50		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5		
Ethyl ether	ND	ug/l	2.5		

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	104		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	107		70-130			
Dibromofluoromethane	88		70-130			

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/15 16:50

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sampl	e(s): 09	Batch:	WG810674-3
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.8	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.5	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.5	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	
1,2-Dichloroethene (total)	ND		ug/l	0.50	

Lab Number:

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/15 16:50

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s):	09	Batch:	WG810674-3
Trichloroethene	ND		ug/l		0.50	
1,2-Dichlorobenzene	ND		ug/l		2.5	
1,3-Dichlorobenzene	ND		ug/l		2.5	
1,4-Dichlorobenzene	ND		ug/l		2.5	
Methyl tert butyl ether	ND		ug/l		1.0	
p/m-Xylene	ND		ug/l		1.0	
o-Xylene	ND		ug/l		1.0	
Xylene (Total)	ND		ug/l		1.0	
cis-1,2-Dichloroethene	ND		ug/l		0.50	
Dibromomethane	ND		ug/l		5.0	
1,4-Dichlorobutane	ND		ug/l		5.0	
1,2,3-Trichloropropane	ND		ug/l		5.0	
Styrene	ND		ug/l		1.0	
Dichlorodifluoromethane	ND		ug/l		5.0	
Acetone	ND		ug/l		5.0	
Carbon disulfide	ND		ug/l		5.0	
2-Butanone	ND		ug/l		5.0	
Vinyl acetate	ND		ug/l		5.0	
4-Methyl-2-pentanone	ND		ug/l		5.0	
2-Hexanone	ND		ug/l		5.0	
Ethyl methacrylate	ND		ug/l		5.0	
Acrylonitrile	ND		ug/l		5.0	
Bromochloromethane	ND		ug/l		2.5	
Tetrahydrofuran	ND		ug/l		5.0	
2,2-Dichloropropane	ND		ug/l		2.5	
1,2-Dibromoethane	ND		ug/l		2.0	
1,3-Dichloropropane	ND		ug/l		2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l		0.50	
Bromobenzene	ND		ug/l		2.5	

L1517709

Project Name: LEBLANC'S CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 08/10/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/15 16:50

Analyst: MS

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lat	o for sample	(s): 09	Batch:	WG810674-3
n-Butylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	2.5	
o-Chlorotoluene	ND		ug/l	2.5	
p-Chlorotoluene	ND		ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	2.5	
n-Propylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	
Ethyl ether	ND		ug/l	2.5	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	86		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbook	rough Lab Assoc	ciated sample(s): 01,12 Bato	h: WG809	9216-1 WG809216	i-2	
Methylene chloride	96		89		70-130	8	30
1,1-Dichloroethane	108		101		70-130	7	30
Chloroform	112		107		70-130	5	30
Carbon tetrachloride	141	Q	133	Q	70-130	6	30
1,2-Dichloropropane	97		90		70-130	7	30
Dibromochloromethane	108		105		70-130	3	30
1,1,2-Trichloroethane	98		90		70-130	9	30
2-Chloroethylvinyl ether	101		97		70-130	4	30
Tetrachloroethene	113		107		70-130	5	30
Chlorobenzene	100		94		70-130	6	30
Trichlorofluoromethane	178	Q	172	Q	70-139	3	30
1,2-Dichloroethane	117		113		70-130	3	30
1,1,1-Trichloroethane	127		121		70-130	5	30
Bromodichloromethane	108		105		70-130	3	30
trans-1,3-Dichloropropene	111		107		70-130	4	30
cis-1,3-Dichloropropene	101		98		70-130	3	30
1,1-Dichloropropene	112		104		70-130	7	30
Bromoform	97		92		70-130	5	30
1,1,2,2-Tetrachloroethane	88		82		70-130	7	30
Benzene	102		97		70-130	5	30
Toluene	102		97		70-130	5	30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbord	ough Lab Asso	ciated sample(s	s): 01,12 Batcl	n: WG809216-1 WG809216	-2	
Ethylbenzene	111		103	70-130	7	30
Chloromethane	111		106	52-130	5	30
Bromomethane	145		136	57-147	6	30
Vinyl chloride	112		107	67-130	5	30
Chloroethane	154	Q	143	50-151	7	30
1,1-Dichloroethene	109		104	65-135	5	30
trans-1,2-Dichloroethene	102		98	70-130	4	30
Trichloroethene	104		99	70-130	5	30
1,2-Dichlorobenzene	103		98	70-130	5	30
1,3-Dichlorobenzene	106		99	70-130	7	30
1,4-Dichlorobenzene	106		99	70-130	7	30
Methyl tert butyl ether	95		90	66-130	5	30
p/m-Xylene	109		104	70-130	5	30
o-Xylene	106		102	70-130	4	30
cis-1,2-Dichloroethene	99		95	70-130	4	30
Dibromomethane	98		97	70-130	1	30
1,4-Dichlorobutane	92		88	70-130	4	30
1,2,3-Trichloropropane	91		87	68-130	4	30
Styrene	102		98	70-130	4	30
Dichlorodifluoromethane	151	Q	142	30-146	6	30
Acetone	94		83	54-140	12	30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbor	ough Lab Assoc	ciated sample(s	s): 01,12 Batch	n: WG809	9216-1 WG809216	6-2	
Carbon disulfide	88		81		59-130	8	30
2-Butanone	82		77		70-130	6	30
Vinyl acetate	116		109		70-130	6	30
4-Methyl-2-pentanone	76		74		70-130	3	30
2-Hexanone	96		81		70-130	17	30
Ethyl methacrylate	85		79		70-130	7	30
Acrolein	70		67	Q	70-130	4	30
Acrylonitrile	71		70		70-130	1	30
Bromochloromethane	99		93		70-130	6	30
Tetrahydrofuran	79		74		66-130	7	30
2,2-Dichloropropane	132	Q	124		70-130	6	30
1,2-Dibromoethane	98		93		70-130	5	30
1,3-Dichloropropane	101		96		69-130	5	30
1,1,1,2-Tetrachloroethane	110		106		70-130	4	30
Bromobenzene	101		94		70-130	7	30
n-Butylbenzene	113		109		70-130	4	30
sec-Butylbenzene	115		109		70-130	5	30
tert-Butylbenzene	113		107		70-130	5	30
1,3,5-Trichlorobenzene	100		101		70-139	1	30
o-Chlorotoluene	113		117		70-130	3	30
p-Chlorotoluene	110		103		70-130	7	30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westb	orough Lab Assoc	ciated sample(s): 01,12 Batch	n: WG809216-1 WG809216	i-2	
1,2-Dibromo-3-chloropropane	81	82	68-130	1	30
Hexachlorobutadiene	113	114	67-130	1	30
Isopropylbenzene	112	107	70-130	5	30
p-Isopropyltoluene	116	110	70-130	5	30
Naphthalene	80	84	70-130	5	30
n-Propylbenzene	109	103	70-130	6	30
1,2,3-Trichlorobenzene	95	93	70-130	2	30
1,2,4-Trichlorobenzene	96	97	70-130	1	30
1,3,5-Trimethylbenzene	113	108	70-130	5	30
1,2,4-Trimethylbenzene	112	107	70-130	5	30
trans-1,4-Dichloro-2-butene	106	99	70-130	7	30
Halothane	102	95	70-130	7	20
Ethyl ether	89	90	67-130	1	30
Methyl Acetate	87	84	65-130	4	30
Ethyl Acetate	90	86	70-130	5	30
Isopropyl Ether	100	97	66-130	3	30
Cyclohexane	95	91	70-130	4	30
Tert-Butyl Alcohol	75	70	70-130	7	30
Ethyl-Tert-Butyl-Ether	101	96	70-130	5	30
Tertiary-Amyl Methyl Ether	98	94	70-130	4	30
1,4-Dioxane	69	66	65-136	4	30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-5035 - V	Vestborough Lab Associa	ated sample(s): 01,12 Batch	n: WG8092 ²	16-1 WG809216	-2		
Methyl cyclohexane	97		94		70-130	3		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	116		110		70-130	5		30
1,4-Diethylbenzene	106		101		70-130	5		30
4-Ethyltoluene	110		104		70-130	6		30
1,2,4,5-Tetramethylbenzene	99		103		70-130	4		30

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
114		116		70-130	
98		99		70-130	
95		95		70-130	
98		97		70-130	
	%Recovery 114 98 95	%Recovery Qual 114 98 95	%Recovery Qual %Recovery 114 116 98 99 95 95	%Recovery Qual %Recovery Qual 114 116 98 99 95 95 95	%Recovery Qual %Recovery Qual Criteria 114 116 70-130 98 99 70-130 95 95 70-130

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - \	Westborough Lab Ass	sociated sample(s)	: 02-05,11-12	Batch:	WG809236-1	WG809236-2		
Methylene chloride	104		98		70-130	6		30
1,1-Dichloroethane	109		102		70-130	7		30
Chloroform	118		110		70-130	7		30
Carbon tetrachloride	122		113		70-130	8		30
1,2-Dichloropropane	102		97		70-130	5		30
Dibromochloromethane	104		100		70-130	4		30
1,1,2-Trichloroethane	106		103		70-130	3		30
2-Chloroethylvinyl ether	87		85		70-130	2		30
Tetrachloroethene	122		116		70-130	5		30
Chlorobenzene	109		103		70-130	6		30
Trichlorofluoromethane	127		119		70-139	7		30
1,2-Dichloroethane	104		100		70-130	4		30
1,1,1-Trichloroethane	120		112		70-130	7		30
Bromodichloromethane	108		104		70-130	4		30
trans-1,3-Dichloropropene	107		103		70-130	4		30
cis-1,3-Dichloropropene	108		104		70-130	4		30
1,1-Dichloropropene	118		112		70-130	5		30
Bromoform	103		99		70-130	4		30
1,1,2,2-Tetrachloroethane	94		93		70-130	1		30
Benzene	114		108		70-130	5		30
Toluene	108		103		70-130	5		30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Wes	stborough Lab Ass	sociated sample(s):	02-05,11-12	Batch:	WG809236-1	WG809236-2		
Ethylbenzene	114		108		70-130	5		30
Chloromethane	95		87		52-130	9		30
Bromomethane	116		106		57-147	9		30
Vinyl chloride	118		110		67-130	7		30
Chloroethane	112		105		50-151	6		30
1,1-Dichloroethene	120		113		65-135	6		30
trans-1,2-Dichloroethene	117		108		70-130	8		30
Trichloroethene	117		110		70-130	6		30
1,2-Dichlorobenzene	104		99		70-130	5		30
1,3-Dichlorobenzene	108		101		70-130	7		30
1,4-Dichlorobenzene	106		101		70-130	5		30
Methyl tert butyl ether	103		100		66-130	3		30
p/m-Xylene	115		108		70-130	6		30
o-Xylene	112		106		70-130	6		30
cis-1,2-Dichloroethene	113		107		70-130	5		30
Dibromomethane	103		100		70-130	3		30
1,4-Dichlorobutane	86		83		70-130	4		30
1,2,3-Trichloropropane	98		95		68-130	3		30
Styrene	111		106		70-130	5		30
Dichlorodifluoromethane	127		118		30-146	7		30
Acetone	89		82		54-140	8		30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - West	borough Lab Ass	ociated sample(s)	: 02-05,11-12	Batch:	WG809236-1	WG809236-2		
Carbon disulfide	115		108		59-130	6		30
2-Butanone	86		84		70-130	2		30
Vinyl acetate	90		86		70-130	5		30
4-Methyl-2-pentanone	75		77		70-130	3		30
2-Hexanone	70		71		70-130	1		30
Ethyl methacrylate	91		90		70-130	1		30
Acrolein	76		72		70-130	5		30
Acrylonitrile	78		79		70-130	1		30
Bromochloromethane	109		103		70-130	6		30
Tetrahydrofuran	68		78		66-130	14		30
2,2-Dichloropropane	120		111		70-130	8		30
1,2-Dibromoethane	100		99		70-130	1		30
1,3-Dichloropropane	105		102		69-130	3		30
1,1,1,2-Tetrachloroethane	111		104		70-130	7		30
Bromobenzene	102		97		70-130	5		30
n-Butylbenzene	114		106		70-130	7		30
sec-Butylbenzene	109		103		70-130	6		30
tert-Butylbenzene	104		98		70-130	6		30
1,3,5-Trichlorobenzene	133		125		70-139	6		30
o-Chlorotoluene	110		94		70-130	16		30
p-Chlorotoluene	106		100		70-130	6		30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - \	Westborough Lab Ass	sociated sample(s):	: 02-05,11-12	Batch:	WG809236-1	WG809236-2		
1,2-Dibromo-3-chloropropane	90		89		68-130	1		30
Hexachlorobutadiene	125		115		67-130	8		30
Isopropylbenzene	116		110		70-130	5		30
p-Isopropyltoluene	107		100		70-130	7		30
Naphthalene	94		91		70-130	3		30
n-Propylbenzene	107		101		70-130	6		30
1,2,3-Trichlorobenzene	115		108		70-130	6		30
1,2,4-Trichlorobenzene	116		109		70-130	6		30
1,3,5-Trimethylbenzene	107		101		70-130	6		30
1,2,4-Trimethylbenzene	105		99		70-130	6		30
trans-1,4-Dichloro-2-butene	84		80		70-130	5		30
Ethyl ether	109		106		67-130	3		30
Methyl Acetate	84		81		65-130	4		30
Ethyl Acetate	74		72		70-130	3		30
Isopropyl Ether	91		88		66-130	3		30
Cyclohexane	102		98		70-130	4		30
Tert-Butyl Alcohol	80		79		70-130	1		30
Ethyl-Tert-Butyl-Ether	98		93		70-130	5		30
Tertiary-Amyl Methyl Ether	103		100		70-130	3		30
1,4-Dioxane	94		94		65-136	0		30
Methyl cyclohexane	120		112		70-130	7		30

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

L1517709

Report Date:

08/10/15

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 High - W	estborough Lab Asso	ociated sample(s):	02-05,11-12	Batch:	WG809236-1	WG809236-2			
1,1,2-Trichloro-1,2,2-Trifluoroethane	126		118		70-130	7		30	
p-Diethylbenzene	118		112		70-130	5		30	
4-Ethyltoluene	118		111		70-130	6		30	
1,2,4,5-Tetramethylbenzene	114		107		70-130	6		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		98		70-130	
Toluene-d8	100		99		70-130	
4-Bromofluorobenzene	92		93		70-130	
Dibromofluoromethane	102		100		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s):	06-08,13 Batch:	WG809294-	1 WG809294-2				
Methylene chloride	114		94		70-130	19		20	
1,1-Dichloroethane	116		96		70-130	19		20	
Chloroform	106		87		70-130	20		20	
Carbon tetrachloride	124		108		63-132	14		20	
1,2-Dichloropropane	110		90		70-130	20		20	
Dibromochloromethane	89		71		63-130	23	Q	20	
1,1,2-Trichloroethane	108		87		70-130	22	Q	20	
Tetrachloroethene	100		83		70-130	19		20	
Chlorobenzene	100		82		75-130	20		25	
Trichlorofluoromethane	117		97		62-150	19		20	
1,2-Dichloroethane	112		89		70-130	23	Q	20	
1,1,1-Trichloroethane	96		78		67-130	21	Q	20	
Bromodichloromethane	100		79		67-130	23	Q	20	
trans-1,3-Dichloropropene	84		65	Q	70-130	26	Q	20	
cis-1,3-Dichloropropene	89		69	Q	70-130	25	Q	20	
1,1-Dichloropropene	110		90		70-130	20		20	
Bromoform	86		68		54-136	23	Q	20	
1,1,2,2-Tetrachloroethane	111		88		67-130	23	Q	20	
Benzene	104		86		70-130	19		25	
Toluene	103		84		70-130	20		25	
Ethylbenzene	106		87		70-130	20		20	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	06-08,13 Batch:	WG809294-	1 WG809294-2			
Chloromethane	115		99		64-130	15		20
Bromomethane	128		98		39-139	27	Q	20
Vinyl chloride	125		99		55-140	23	Q	20
Chloroethane	176	Q	141	Q	55-138	22	Q	20
1,1-Dichloroethene	104		88		61-145	17		25
trans-1,2-Dichloroethene	104		88		70-130	17		20
Trichloroethene	108		88		70-130	20		25
1,2-Dichlorobenzene	101		82		70-130	21	Q	20
1,3-Dichlorobenzene	102		82		70-130	22	Q	20
1,4-Dichlorobenzene	101		83		70-130	20		20
Methyl tert butyl ether	82		68		63-130	19		20
p/m-Xylene	104		86		70-130	19		20
o-Xylene	103		84		70-130	20		20
cis-1,2-Dichloroethene	104		86		70-130	19		20
Dibromomethane	103		82		70-130	23	Q	20
1,4-Dichlorobutane	113		90		70-130	23	Q	20
1,2,3-Trichloropropane	110		89		64-130	21	Q	20
Styrene	95		77		70-130	21	Q	20
Dichlorodifluoromethane	112		92		36-147	20		20
Acetone	119		72		58-148	49	Q	20
Carbon disulfide	111		87		51-130	24	Q	20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - West	tborough Lab Associated	sample(s):	06-08,13 Batch	: WG809294-	1 WG809294-2			
2-Butanone	114		85		63-138	29	Q	20
Vinyl acetate	77		61	Q	70-130	23	Q	20
4-Methyl-2-pentanone	113		88		59-130	25	Q	20
2-Hexanone	119		91		57-130	27	Q	20
Ethyl methacrylate	99		80		70-130	21	Q	20
Acrylonitrile	110		89		70-130	21	Q	20
Bromochloromethane	115		93		70-130	21	Q	20
Tetrahydrofuran	112		87		58-130	25	Q	20
2,2-Dichloropropane	104		91		63-133	13		20
1,2-Dibromoethane	99		74		70-130	29	Q	20
1,3-Dichloropropane	105		84		70-130	22	Q	20
1,1,1,2-Tetrachloroethane	88		72		64-130	20		20
Bromobenzene	101		84		70-130	18		20
n-Butylbenzene	119		94		53-136	23	Q	20
sec-Butylbenzene	112		90		70-130	22	Q	20
tert-Butylbenzene	106		86		70-130	21	Q	20
o-Chlorotoluene	106		88		70-130	19		20
p-Chlorotoluene	108		89		70-130	19		20
1,2-Dibromo-3-chloropropane	105		81		41-144	26	Q	20
Hexachlorobutadiene	116		89		63-130	26	Q	20
Isopropylbenzene	102		83		70-130	21	Q	20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

arameter	LCS %Recovery	Qual	LC: %Rec		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	06-08,13	Batch:	WG809294-1	WG809294-2				
p-Isopropyltoluene	111		8	8		70-130	23	Q	20	
Naphthalene	109		8	6		70-130	24	Q	20	
n-Propylbenzene	114		9	4		69-130	19		20	
1,2,3-Trichlorobenzene	103		8	2		70-130	23	Q	20	
1,2,4-Trichlorobenzene	112		8	9		70-130	23	Q	20	
1,3,5-Trimethylbenzene	107		8	8		64-130	19		20	
1,2,4-Trimethylbenzene	108		8	9		70-130	19		20	
trans-1,4-Dichloro-2-butene	103		7	5		70-130	31	Q	20	
Ethyl ether	108		8	6		59-134	23	Q	20	

	LCS		LCSD	Acceptance		
Surrogate	%Recovery	Qual	%Recovery Qual		Criteria	
1,2-Dichloroethane-d4	95		94		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	97		95		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 1	0 Batch: WG	309566-1	WG809566-2			
Methylene chloride	114		94		70-130	19		20
1,1-Dichloroethane	116		96		70-130	19		20
Chloroform	106		87		70-130	20		20
Carbon tetrachloride	124		108		63-132	14		20
1,2-Dichloropropane	110		90		70-130	20		20
Dibromochloromethane	89		71		63-130	23	Q	20
1,1,2-Trichloroethane	108		87		70-130	22	Q	20
Tetrachloroethene	100		83		70-130	19		20
Chlorobenzene	100		82		75-130	20		25
Trichlorofluoromethane	117		97		62-150	19		20
1,2-Dichloroethane	112		89		70-130	23	Q	20
1,1,1-Trichloroethane	96		78		67-130	21	Q	20
Bromodichloromethane	100		79		67-130	23	Q	20
trans-1,3-Dichloropropene	84		65	Q	70-130	26	Q	20
cis-1,3-Dichloropropene	89		69	Q	70-130	25	Q	20
1,1-Dichloropropene	110		90		70-130	20		20
Bromoform	86		68		54-136	23	Q	20
1,1,2,2-Tetrachloroethane	111		88		67-130	23	Q	20
Benzene	104		86		70-130	19		25
Toluene	103		84		70-130	20		25
Ethylbenzene	106		87		70-130	20		20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 1	0 Batch: WG8	09566-1	WG809566-2			
Chloromethane	115		99		64-130	15		20
Bromomethane	128		98		39-139	27	Q	20
Vinyl chloride	125		99		55-140	23	Q	20
Chloroethane	176	Q	141	Q	55-138	22	Q	20
1,1-Dichloroethene	104		88		61-145	17		25
trans-1,2-Dichloroethene	104		88		70-130	17		20
Trichloroethene	108		88		70-130	20		25
1,2-Dichlorobenzene	101		82		70-130	21	Q	20
1,3-Dichlorobenzene	102		82		70-130	22	Q	20
1,4-Dichlorobenzene	101		83		70-130	20		20
Methyl tert butyl ether	82		68		63-130	19		20
p/m-Xylene	104		86		70-130	19		20
o-Xylene	103		84		70-130	20		20
cis-1,2-Dichloroethene	104		86		70-130	19		20
Dibromomethane	103		82		70-130	23	Q	20
1,4-Dichlorobutane	113		90		70-130	23	Q	20
1,2,3-Trichloropropane	110		89		64-130	21	Q	20
Styrene	95		77		70-130	21	Q	20
Dichlorodifluoromethane	112		92		36-147	20		20
Acetone	119		72		58-148	49	Q	20
Carbon disulfide	111		87		51-130	24	Q	20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 1	0 Batch: WG8	09566-1	WG809566-2			
2-Butanone	114		85		63-138	29	Q	20
Vinyl acetate	77		61	Q	70-130	23	Q	20
4-Methyl-2-pentanone	113		88		59-130	25	Q	20
2-Hexanone	119		91		57-130	27	Q	20
Ethyl methacrylate	99		80		70-130	21	Q	20
Acrylonitrile	110		89		70-130	21	Q	20
Bromochloromethane	115		93		70-130	21	Q	20
Tetrahydrofuran	112		87		58-130	25	Q	20
2,2-Dichloropropane	104		91		63-133	13		20
1,2-Dibromoethane	99		74		70-130	29	Q	20
1,3-Dichloropropane	105		84		70-130	22	Q	20
1,1,1,2-Tetrachloroethane	88		72		64-130	20		20
Bromobenzene	101		84		70-130	18		20
n-Butylbenzene	119		94		53-136	23	Q	20
sec-Butylbenzene	112		90		70-130	22	Q	20
tert-Butylbenzene	106		86		70-130	21	Q	20
o-Chlorotoluene	106		88		70-130	19		20
p-Chlorotoluene	108		89		70-130	19		20
1,2-Dibromo-3-chloropropane	105		81		41-144	26	Q	20
Hexachlorobutadiene	116		89		63-130	26	Q	20
Isopropylbenzene	102		83		70-130	21	Q	20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	10 Batch:	WG809566-1	WG809566-2				
p-Isopropyltoluene	111		88		70-130	23	Q	20	
Naphthalene	109		86		70-130	24	Q	20	
n-Propylbenzene	114		94		69-130	19		20	
1,2,3-Trichlorobenzene	103		82		70-130	23	Q	20	
1,2,4-Trichlorobenzene	112		89		70-130	23	Q	20	
1,3,5-Trimethylbenzene	107		88		64-130	19		20	
1,2,4-Trimethylbenzene	108		89		70-130	19		20	
trans-1,4-Dichloro-2-butene	103		75		70-130	31	Q	20	
Ethyl ether	108		86		59-134	23	Q	20	

	LCS		LCSD	Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	95		94		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	97		95		70-130	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 09	Batch: WG8	10674-1	WG810674-2			
Methylene chloride	110		96		70-130	14	20	
1,1-Dichloroethane	118		101		70-130	16	20	
Chloroform	108		94		70-130	14	20	
Carbon tetrachloride	124		112		63-132	10	20	
1,2-Dichloropropane	110		95		70-130	15	20	
Dibromochloromethane	84		72		63-130	15	20	
1,1,2-Trichloroethane	104		92		70-130	12	20	
Tetrachloroethene	100		87		70-130	14	20	
Chlorobenzene	99		86		75-130	14	25	
Trichlorofluoromethane	120		103		62-150	15	20	
1,2-Dichloroethane	111		96		70-130	14	20	
1,1,1-Trichloroethane	96		83		67-130	15	20	
Bromodichloromethane	96		82		67-130	16	20	
trans-1,3-Dichloropropene	80		70		70-130	13	20	
cis-1,3-Dichloropropene	86		73		70-130	16	20	
1,1-Dichloropropene	112		94		70-130	17	20	
Bromoform	80		70		54-136	13	20	
1,1,2,2-Tetrachloroethane	103		92		67-130	11	20	
Benzene	104		90		70-130	14	25	
Toluene	102		89		70-130	14	25	
Ethylbenzene	105		91		70-130	14	20	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	9 Batch: WG8	10674-1	WG810674-2		
Chloromethane	101		86		64-130	16	20
Bromomethane	114		97		39-139	16	20
Vinyl chloride	124		105		55-140	17	20
Chloroethane	174	Q	143	Q	55-138	20	20
1,1-Dichloroethene	105		92		61-145	13	25
trans-1,2-Dichloroethene	107		93		70-130	14	20
Trichloroethene	108		93		70-130	15	25
1,2-Dichlorobenzene	98		86		70-130	13	20
1,3-Dichlorobenzene	99		87		70-130	13	20
1,4-Dichlorobenzene	99		86		70-130	14	20
Methyl tert butyl ether	96		83		63-130	15	20
p/m-Xylene	104		90		70-130	14	20
o-Xylene	102		89		70-130	14	20
cis-1,2-Dichloroethene	106		92		70-130	14	20
Dibromomethane	101		85		70-130	17	20
1,4-Dichlorobutane	108		97		70-130	11	20
1,2,3-Trichloropropane	104		95		64-130	9	20
Styrene	94		82		70-130	14	20
Dichlorodifluoromethane	118		105		36-147	12	20
Acetone	91		98		58-148	7	20
Carbon disulfide	109		91		51-130	18	20

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09 Batch: WO	9810674-1	WG810674-2			
2-Butanone	104		91		63-138	13	20	
Vinyl acetate	68	Q	60	Q	70-130	13	20	
4-Methyl-2-pentanone	107		98		59-130	9	20	
2-Hexanone	114		100		57-130	13	20	
Ethyl methacrylate	95		86		70-130	10	20	
Acrylonitrile	101		98		70-130	3	20	
Bromochloromethane	114		96		70-130	17	20	
Tetrahydrofuran	100		92		58-130	8	20	
2,2-Dichloropropane	120		107		63-133	11	20	
1,2-Dibromoethane	92		80		70-130	14	20	
1,3-Dichloropropane	101		89		70-130	13	20	
1,1,1,2-Tetrachloroethane	86		74		64-130	15	20	
Bromobenzene	99		87		70-130	13	20	
n-Butylbenzene	117		99		53-136	17	20	
sec-Butylbenzene	110		95		70-130	15	20	
tert-Butylbenzene	104		90		70-130	14	20	
o-Chlorotoluene	105		90		70-130	15	20	
p-Chlorotoluene	108		95		70-130	13	20	
1,2-Dibromo-3-chloropropane	93		84		41-144	10	20	
Hexachlorobutadiene	109		91		63-130	18	20	
Isopropylbenzene	102		88		70-130	15	20	

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number:

L1517709

Report Date:

08/10/15

Parameter	LCS %Recovery	Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	09 Batch:	WG810674-1	WG810674-2			
p-Isopropyltoluene	109		92		70-130	17		20
Naphthalene	96		92		70-130	4		20
n-Propylbenzene	114		98		69-130	15		20
1,2,3-Trichlorobenzene	93		84		70-130	10		20
1,2,4-Trichlorobenzene	105		92		70-130	13		20
1,3,5-Trimethylbenzene	108		93		64-130	15		20
1,2,4-Trimethylbenzene	108		93		70-130	15		20
trans-1,4-Dichloro-2-butene	91		80		70-130	13		20
Ethyl ether	105		92		59-134	13		20

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria		
Surrogate	70Necovery	Quai	/ortecovery	Quai			
1,2-Dichloroethane-d4	94		95		70-130		
Toluene-d8	96		97		70-130		
4-Bromofluorobenzene	101		102		70-130		
Dibromofluoromethane	95		93		70-130		

INORGANICS & MISCELLANEOUS

Project Name: LEBLANC'S CLEANERS

Lab Number: **Report Date:**

L1517709

Project Number: 10193.027

08/10/15

07/30/15 14:08

SAMPLE RESULTS

Lab ID: L1517709-01

B-01 (6-8) Client ID:

10 LAFAYETTE ST. Sample Location:

Matrix: Soil

Solids, Total

Date Collected:

07/28/15 14:28

Date Received:

07/29/15

Field Prep:

Not Specified

30,2540G

ΑB

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab

NA

1

0.100

%

Project Name: LEBLANC'S CLEANERS

Lab Number:

L1517709

Project Number: 10193.027

Report Date: 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-02

Client ID: B-02 (6-8)

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil

Date Collected:

07/28/15 11:58

Date Received:

07/29/15

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	78.1		%	0.100	NA	1	-	07/30/15 14:08	30,2540G	AB

L1517709

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027 Report Date: 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-03

B-03 (4-6) Client ID:

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil Date Collected:

Lab Number:

07/28/15 10:40

Date Received: 07/29/15

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	77.3		%	0.100	NA	1	-	07/30/15 14:08	30,2540G	AB

Project Name: LEBLANC'S CLEANERS

Lab Number: Report Date:

L1517709

Project Number: 10193.027

08/10/15

SAMPLE RESULTS

Lab ID:

L1517709-04

Client ID:

B-05 (0-4)

Sample Location: 10 LAFAYETTE ST.

Matrix:

Soil

Date Collected:

07/28/15 13:23

Date Received:

07/29/15

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	67.6		%	0.100	NA	1	-	07/30/15 14:08	30,2540G	AB

Project Name: LEBLANC'S CLEANERS

Lab Number: **Report Date:**

L1517709

Project Number: 10193.027

08/10/15

SAMPLE RESULTS

Lab ID: L1517709-05

B-07 (4-6) Client ID:

10 LAFAYETTE ST.

Matrix: Soil

Sample Location:

Date Collected:

07/28/15 15:08

Date Received:

07/29/15

Field Prep:

Not Specified

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 82.9 % 0.100 NA 1 07/30/15 14:08 30,2540G ΑB

Project Name: LEBLANC'S CLEANERS

Lab Number: Report Date:

L1517709

Project Number: 10193.027

eport Date: 08/10/15

SAMPLE RESULTS

Lab ID: L1517709-11

Client ID: SS-07

Sample Location: 10 LAFAYETTE ST.

Matrix: Soil

Date Collected:

07/28/15 14:40

Date Received:

07/29/15

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	87.2		%	0.100	NA	1	-	07/30/15 14:08	30,2540G	AB

L1517709

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

LEBLANC'S CLEANERS

Batch Quality Control

Project Number: 10193.027 **Report Date:** 08/10/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-05,11	QC Batch ID: WG807470-1	QC Sample:	L1517668-01	Client ID:	DUP Sample
Solids, Total	87.9	88.6	%	1		20

Project Name:

Project Name: LEBLANC'S CLEANERS

Lab Number: L1517709 **Report Date:** 08/10/15 Project Number: 10193.027

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 07/28/2015 18:30

Cooler Information Custody Seal

Cooler

Α Absent

Container Information Temp									
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)		
L1517709-01A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-01B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-01C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-01D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)		
L1517709-02A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-02B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-02C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-02D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)		
L1517709-03A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-03B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-03C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-03D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)		
L1517709-04A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-04B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-04C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-04D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)		
L1517709-05A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-05B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-05C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)		
L1517709-05D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)		
L1517709-06A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-06B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-06C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-07A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-07B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-07C	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		
L1517709-08A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)		

Project Name: LEBLANC'S CLEANERS

Project Number: 10193.027

Lab Number: L1517709 **Report Date:** 08/10/15

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1517709-08B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)
L1517709-08C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)
L1517709-09A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-09B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-09C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-10A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-10B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-10C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260(14)
L1517709-11A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)
L1517709-11B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)
L1517709-11C	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14)
L1517709-11D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1517709-12A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14),8260H(14)
L1517709-12B	Vial water preserved	Α	N/A	2.9	Υ	Absent	8260HLW(14),8260H(14)
L1517709-13A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)
L1517709-13B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	8260-CHLR(14)

Project Name:LEBLANC'S CLEANERSLab Number:L1517709Project Number:10193.027Report Date:08/10/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name:LEBLANC'S CLEANERSLab Number:L1517709Project Number:10193.027Report Date:08/10/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:LEBLANC'S CLEANERSLab Number:L1517709Project Number:10193.027Report Date:08/10/15

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

								Serial_No:0810)1517:50
ΔPHA	CHAIN OF	CUSTODY	PAGEOF	Date Rec'd	in Lab:	7/29/15	ALPH	A Job #: 21	517709
8 Walkup Drive	320 Forbes Blvd	Project Information			ormation - D	ata Deliverab	les Billin	g Information	
Westboro, MA 01: Tel: 508-898-922	581 Mansfield, MA 02048	Project Name: LeBla	nc's Cleaners	□ ADEx	≯ EMA	IL	Same	e as Client info	PO #:
Client Information		Project Location: 10 La	Soyelle St		y Requireme	nts & Pro	ect Informat	ion Requiremen	ts
Client: CFS 1	nc.	Project #: 10193	027		MA MCP Anal			es LNo CT RCP ed for MCP Inorgan	Analytical Methods
	Main St.,	Project Manager: JK		☐ Yes 🖪 No	GW1 Standard			PH with Targets)	iics)
Leis	iston, ME 04240				NPDES RGP te /Fed Program	n		Criteria	
Phone: 203	740 6880	Turn-Around Time	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ Curior Citat		7 7 7	111	/ / /	
	EY@ CES-MAINE.COM		┤ (only confirmed if pre-approved!)	8/10/10	DRCP 15	U PCB C PEST TPH: CQuant Only	/ /	////	
	oject Information:	Date Due:		ANALYSIS 24 OSZAZÍGYLU	METALS: UMCP 13 UMCP 14 EPH: DRanges 8 T.	ts C Ran	J.Fingerprint		SAMPLE INFO
Spil U	Xs frozen:			D 624			7 / /		Filtration #
7/280	1837				MCP ACRA	PEST CONIN	////	1///	☐ Lab to do
7000				10 A	S: D S: D S: D S: D S: D S: D S: D S: D	CB CPEST COMPANY COMPANY COMPANY COMPANY	/ / / /		Preservation O T T L L L E
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Tir	Sample Sampler me Matrix Initials	VOC: V 8260 E SVOC: DABN	METALS: UMCP 13 UMCP EPH: DRanges & T	WPH: C		Sa	imple Comments
17709-01	B-01 (6-8)	7/28 14:	28 SOIL DES	X					
02	3-02 (6-8)	7/28 11:5	58 SOIL DES	X					
03	0 02 (11 0	7/100 111	40 SOIL DES						
	105 4-6	7/20 10.	07 5011 500						
04	5-05 (0-4)	7/18 13.	23 JULL DES						
05	5-07 (4-6)) 7/28/15:	US SOIL DES	X					
OG	MW-01	7/28 14:	28 GW DES	X					
Of	MW-03	7/28 11:3	32 GW DES	X					
08	MW-04	7/28 11:0	DE GW DES	X					
09	MN-05	7/28 13:	48 GW DES	X	.				
10	M/M - 02	2/28/15:	7 GW DEC	$\hat{\mathbf{x}}$					
Container Type	Preservative	1 (40 17:3	Container Type	V					
P= Plastic A= Amber glass	A= None B= HCl		Container Type Preservative	Olf-					
V= Vial G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Relinquished By:	Date/Time		Table 1 Div		Date/Time		
C= Cube O= Other E= Encore	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	, ricilliquished by.	7-29 1340	CE	received By:	10 72	¬ ′′	All samples subr	mitted are subject to
D= BOD Bottle	I= Ascorbic Åcid J = NH₄Cl	2880	7-29.15 21:42	Audi	T well	7	9/15 2142	Alpha's Terms ar See reverse side	
Page 78 of 79	K= Zn Acetate O= Other							FORM NO: 01-01 (rev	12-Mar-2012)

Агрна	CHAIN O	E CU	STO	DY P	AGE 2	OF_2	Dat	te Rec'	d in Lal	b:	7	129	115		ALP	HA Jo	ob #:	4	51770	09
8 Walkup Drive	320 Forbes Blvd		Informat				Re	port li	nforma	ation -	Data	Deliv	erabl	es	Billi	ng Info	ormati	on		
Westboro, MA 0 Tel: 508-898-92	01581 Mansfield, MA 02048	Project N	Name:	EBLANC	's CLE	ANERS		ADEx		O HEN	ΛAIL				Sar	ne as C	lient in	fo PO	#:	
Client Informatio	n			EWISTO			A CONTRACTOR OF THE PARTY OF TH	State of the last	The same of the sa	Name of Street, or other Party of Street, or	THE PARTY OF THE P		SECTION AND PROPERTY.			-	THE RESERVE OF THE PERSON NAMED IN	ements		
	INC.	Project #		13.027			\ \	/es 02 N /es 02 N	lo MA I Io Matr	MCP Ar ix Spike	nalytica Requi	I Meth ired on	ods this S	SDG?	(Requ	Yes 🛍 I ired for	No C [*] MCP Ir	T RCP A norganic	nalytical Me	thods
Address: 640	MAIN ST.	Project N	/lanager:	JKC				res ؀N				nfo Re	quirec	for M	etals &	EPH w	ith Tar	gets)		
	500 , ME 04240	ALPHA	Quote #:	2015104	13		ПС	Other St	ate /Fe	d Prog	ram			-		_ Criter	ia			
Phone: 207-	795 - 6009	Turn-A	Around Ti	me				/	E S	15	13	\$	/ ح		//	/ /	/ /	/ /		
Email: JCRESSE	YECES-MAINE . COM	9⊒ Stand	dard [RUSH (only	applished if are or	narawadi)]	0/3	(70)	DRC	[D]	les Or	5		//	/ ,	/ /			
	roject Information:	Date I		TROOT (only	commed ii pre-ap	pproved:)	ANAIL	D 624 D 524.2	J PAH	EPH: DRS. DRCP 14 DRCP 15	VPH. D.Rance	'gets D Rang		_ringerprint		//		/ /	SAMPLE IN Filtration	IFO T A L
100	1230							0 ,	7 6	188	A 7.	& Tal	Ying	//	/ /	/ ,	/ /	/	☐ Field ☐ Lab to do	#
1128	(9,50						14	SVOC: DARM	DMO	D'RC	anges	DP.	Couant Only	/ /		//		/ /	Preservation	7 B O T
ALPHA Lab ID			Colle	ection	Sample	Sampler	, , , , , ,	8	TALS	4 DA	1. D. A.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			//			/ (⊒ Lab to do	Ť
(Lab Use Only)	Sample ID		Date	Time	Matrix	Initials	8	\ \overline{\sigma} \ \	ME ME	/ 1	1 5	0/6						Sam	ple Comme	nts S
17709-11	SS-07 TRIP BLANK TRIP BLANK		7/28	1440	Sol	SVC	X													
12	TRIP BLANK				Soil		X												¥1	
13	TRIP BLANK				420		X													
																		п		
										-										
Container Type P= Plastic	Preservative A= None	it-			Conta	iner Type	V													
A= Amber glass V= Vial G= Glass	A= None B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	eservative	OF												1 72	
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH	Relinqu	ished By:		-	e/Time			Receiv	ved By:	- 1	,	1	Date/1		Δ11	sample	e submi	tted are sub	iect to
E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	A.	7.		7-29	1340	5	13.0	Car	reli			72	9.15	13:	Alpl	ha's Te	rms and	Conditions.	
Page 79 of 79	J = NH₄Cl K= Zn Acetate O= Other		anco	No. I have been dead	2.29.15	7114:		M	u n	vu			160	M(II	0176		e revers		2-Mar-2012)	

ANALYTICAL REPORT

Lab Number: L1521594

Client: CES, Inc

640 Main St

Lewiston, ME 04240

ATTN: John Cressey Phone: (207) 795-6009

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Report Date: 09/11/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA0030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521594 **Report Date:** 09/11/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1521594-01	SV-08	SOIL_VAPOR	LEWISTON, ME	09/02/15 11:10	09/03/15
L1521594-02	SV-09	SOIL_VAPOR	LEWISTON, ME	09/02/15 12:57	09/03/15
L1521594-03	SV-10	SOIL_VAPOR	LEWISTON, ME	09/02/15 11:25	09/03/15
L1521594-04	SV-11	SOIL_VAPOR	LEWISTON, ME	09/02/15 14:05	09/03/15
L1521594-05	SV-13	SOIL_VAPOR	LEWISTON, ME	09/02/15 13:55	09/03/15
L1521594-06	SV-12	SOIL_VAPOR	LEWISTON, ME	09/03/15 10:15	09/03/15

Project Name: LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 **Report Date:** 09/11/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact	t Client Services	at 800-624-9220	with any questions.

Project Name: LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 **Report Date:** 09/11/15

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on August 28, 2015. The canister certification results are provided as an addendum.

Samples L1521594-01, -02 and -05: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Sample Receipt

The sample designated SV-11 (L1521594-04) was received with a final pressure of -28.8 inHg. The client was contacted and the sample was cancelled.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/11/15

Christopher J. Anderson

AIR

L1521594

09/02/15 11:10

Not Specified

09/03/15

Lab Number:

Date Received:

Field Prep:

Project Name: LEBLANC CLEANERS

Project Number: Report Date: 10193.027 09/11/15

SAMPLE RESULTS

Lab ID: Date Collected: L1521594-01 D

Client ID: **SV-08**

Sample Location: LEWISTON, ME

Soil_Vapor Matrix: 48,TO-15-SIM Anaytical Method: Analytical Date: 09/08/15 17:12

Analyst: RY

		Vdqq					Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Mansfield Lab							
ND	2.69		ND	6.88			134.3
ND	2.69		ND	10.7			134.3
3.89	2.69		15.4	10.7			134.3
ND	2.69		ND	10.9			134.3
20.3	2.69		80.5	10.7			134.3
ND	2.69		ND	10.9			134.3
ND	2.69		ND	14.7			134.3
106	2.69		570	14.5			134.3
3130	2.69		21200	18.2			134.3
	ND ND 3.89 ND 20.3 ND ND	ND 2.69 ND 2.69 3.89 2.69 ND 2.69 20.3 2.69 ND 2.69 ND 2.69 ND 2.69 ND 2.69 ND 2.69	ND 2.69 ND 2.69 ND 2.69 3.89 2.69 ND 2.69 20.3 2.69 ND 2.69 ND 2.69 106 2.69	Mansfield Lab ND 2.69 ND ND 2.69 ND 3.89 2.69 15.4 ND 2.69 ND 20.3 2.69 ND ND 2.69 ND ND 2.69 ND ND 2.69 ND ND 2.69 ND ND 2.69 ND	Mansfield Lab ND 2.69 ND 6.88 ND 2.69 ND 10.7 3.89 2.69 15.4 10.7 ND 2.69 ND 10.9 20.3 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9	Mansfield Lab ND 2.69 ND 6.88 ND 2.69 ND 10.7 3.89 2.69 15.4 10.7 ND 2.69 ND 10.9 20.3 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 14.7 106 2.69 570 14.5	Mansfield Lab ND 2.69 ND 6.88 ND 2.69 ND 10.7 3.89 2.69 15.4 10.7 ND 2.69 ND 10.9 20.3 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 10.9 ND 2.69 ND 14.7 106 2.69 570 14.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number:

L1521594

Report Date:

09/11/15

SAMPLE RESULTS

Lab ID:

L1521594-02 D SV-09

Sample Location:

LEWISTON, ME

Matrix:

Client ID:

Soil_Vapor

Anaytical Method:

1,2-Dichloroethane

Trichloroethene

Tetrachloroethene

1,1,1-Trichloroethane

48,TO-15-SIM 09/08/15 14:33

Analytical Date: Analyst:

RY

Date Collected: 09/02/15 12:57

Date Received:

09/03/15

Field Prep:

Not Specified

3.333

3.333

3.333

3.333

Volatile Organics in Air by SIM - Mansfield Lab Vinyl chloride 1.43 0.067 3.66 0.171 3.3 1,1-Dichloroethene 0.437 0.067 1.73 0.264 3.3 trans-1,2-Dichloroethene 0.657 0.067 2.60 0.264 3.3 1,1-Dichloroethane ND 0.067 ND 0.270 3.3				ug/m3		Dilution			
Vinyl chloride 1.43 0.067 3.66 0.171 3.3 1,1-Dichloroethene 0.437 0.067 1.73 0.264 3.3 trans-1,2-Dichloroethene 0.657 0.067 2.60 0.264 3.3 1,1-Dichloroethane ND 0.067 ND 0.270 3.3	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
1,1-Dichloroethene 0.437 0.067 1.73 0.264 3.3 trans-1,2-Dichloroethene 0.657 0.067 2.60 0.264 3.3 1,1-Dichloroethane ND 0.067 ND 0.270 3.3	Volatile Organics in Air by SIM	- Mansfield Lab							
trans-1,2-Dichloroethene 0.657 0.067 2.60 0.264 3.3 1,1-Dichloroethane ND 0.067 ND 0.270 3.3	Vinyl chloride	1.43	0.067		3.66	0.171			3.333
1,1-Dichloroethane ND 0.067 ND 0.270 3.3	1,1-Dichloroethene	0.437	0.067		1.73	0.264			3.333
11D 0.007 11D 0.270 0.0	trans-1,2-Dichloroethene	0.657	0.067		2.60	0.264			3.333
cis-1,2-Dichloroethene 81.1 0.067 322 0.264 3.3	1,1-Dichloroethane	ND	0.067		ND	0.270			3.333
****	cis-1,2-Dichloroethene	81.1	0.067		322	0.264			3.333

--

--

--

ND

ND

12.8

109

0.270

0.364

0.358

0.452

--

--

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	99		60-140

0.067

0.067

0.067

0.067

ND

ND

2.38

16.1

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number:

L1521594

Report Date:

09/11/15

SAMPLE RESULTS

Lab ID: L1521594-03

Client ID: SV-10

Sample Location: LEWISTON, ME

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15-SIM 09/08/15 15:36

Analyst:

RY

Date Collected: 09/02/15 11:25
Date Received: 09/03/15

Field Prep: Not Specified

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	M - Mansfield Lab								
Vinyl chloride	ND	0.020		ND	0.051			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
cis-1,2-Dichloroethene	0.131	0.020		0.519	0.079			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Trichloroethene	0.074	0.020		0.398	0.107			1	
Tetrachloroethene	1.37	0.020		9.29	0.136			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	84		60-140
chlorobenzene-d5	92		60-140

L1521594

Project Name: Lab Number: LEBLANC CLEANERS

Project Number: Report Date: 10193.027

09/11/15

SAMPLE RESULTS

Lab ID: Date Collected: L1521594-05 D 09/02/15 13:55

Client ID: SV-13

Date Received: 09/03/15 Sample Location: LEWISTON, ME Field Prep: Not Specified

Matrix: Soil_Vapor 48,TO-15-SIM Anaytical Method: Analytical Date: 09/08/15 16:08

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.200		ND	0.511			10
1,1-Dichloroethene	ND	0.200		ND	0.793			10
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,1-Dichloroethane	ND	0.200		ND	0.809			10
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,2-Dichloroethane	ND	0.200		ND	0.809			10
1,1,1-Trichloroethane	ND	0.200		ND	1.09			10
Trichloroethene	ND	0.200		ND	1.07			10
Tetrachloroethene	405	0.200		2750	1.36			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	95		60-140

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number:

L1521594

Report Date:

09/11/15

SAMPLE RESULTS

Lab ID: L1521594-06

Client ID: SV-12 Sample Location: LEWIS

LEWISTON, ME

Matrix:

Soil_Vapor

Anaytical Method:

48,TO-15-SIM 09/08/15 16:40

Analytical Date: Analyst:

RY

Date Collected: 09/03/15 10:15 Date Received: 09/03/15

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	0.237	0.020		1.27	0.107			1
Tetrachloroethene	0.723	0.020		4.90	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	81		60-140
chlorobenzene-d5	92		60-140

Project Name: LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 **Report Date:** 09/11/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 09/08/15 12:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample	e(s): 01-0	3,05-06 Bat	ch: WG8	319302-	4	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 **Report Date:** 09/11/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 09/08/15 12:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-0	3,05-06 Bat	ch: WG8	319302-	4	
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 **Report Date:** 09/11/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 09/08/15 12:52

		ppbV					Dilution	
Parameter	Results	Results RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	(s): 01-0	3,05-06 Bat	ch: WG8	319302-	4	
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521594

Report Date: 09/11/15

arameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield L	ab Associated s	ample(s):	01-03,05-06	Batch:	WG8193	02-3				
Dichlorodifluoromethane	80		-			70-130	-		25	
Chloromethane	99		-			70-130	-		25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	97		-			70-130	-		25	
Vinyl chloride	98		-			70-130	-		25	
1,3-Butadiene	101		-			70-130	-		25	
Bromomethane	94		-			70-130	-		25	
Chloroethane	89		-			70-130	-		25	
Acetone	103		-			70-130	-		25	
Trichlorofluoromethane	99		-			70-130	-		25	
Acrylonitrile	93		-			70-130	-		25	
1,1-Dichloroethene	97		-			70-130	-		25	
Methylene chloride	108		-			70-130	-		25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	96		-			70-130	-		25	
Halothane	104		-			70-130	-		25	
trans-1,2-Dichloroethene	81		-			70-130	-		25	
1,1-Dichloroethane	89		-			70-130	-		25	
Methyl tert butyl ether	87		-			70-130	-		25	
2-Butanone	90		-			70-130	-		25	
cis-1,2-Dichloroethene	103		-			70-130	-		25	
Chloroform	94		-			70-130	-		25	
1,2-Dichloroethane	93		-			70-130	-		25	

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521594

Report Date: 09/11/15

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mar	nsfield Lab Associated sam	ple(s): 01-03,05-06	Batch: WG8193	302-3			
1,1,1-Trichloroethane	98	-		70-130	-		25
Benzene	89	-		70-130	-		25
Carbon tetrachloride	110	-		70-130	-		25
1,2-Dichloropropane	92	-		70-130	-		25
Bromodichloromethane	99	-		70-130	-		25
1,4-Dioxane	91	-		70-130	-		25
Trichloroethene	92	-		70-130	-		25
cis-1,3-Dichloropropene	101	-		70-130	-		25
4-Methyl-2-pentanone	97	-		70-130	-		25
trans-1,3-Dichloropropene	88	-		70-130	-		25
1,1,2-Trichloroethane	97	-		70-130	-		25
Toluene	85	-		70-130	-		25
Dibromochloromethane	93	-		70-130	-		25
1,2-Dibromoethane	92	-		70-130	-		25
Tetrachloroethene	86	-		70-130	-		25
1,1,1,2-Tetrachloroethane	86	-		70-130	-		25
Chlorobenzene	88	-		70-130	-		25
Ethylbenzene	86	-		70-130	-		25
p/m-Xylene	88	-		70-130	-		25
Bromoform	93	-		70-130	-		25
Styrene	89	-		70-130	-		25

Lab Control Sample Analysis Batch Quality Control

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521594

Report Date: 09/11/15

arameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield	Lab Associated sa	ample(s):	01-03,05-06	Batch:	WG819	302-3				
1,1,2,2-Tetrachloroethane	94		-			70-130	-		25	
o-Xylene	88		-			70-130	-		25	
Isopropylbenzene	86		-			70-130	-		25	
4-Ethyltoluene	84		-			70-130	-		25	
1,3,5-Trimethylbenzene	89		-			70-130	-		25	
1,2,4-Trimethylbenzene	92		-			70-130	-		25	
1,3-Dichlorobenzene	94		-			70-130	-		25	
1,4-Dichlorobenzene	93		-			70-130	-		25	
sec-Butylbenzene	87		-			70-130	-		25	
p-Isopropyltoluene	80		-			70-130	-		25	
1,2-Dichlorobenzene	94		-			70-130	-		25	
n-Butylbenzene	95		-			70-130	-		25	
1,2,4-Trichlorobenzene	110		-			70-130	-		25	
Naphthalene	108		-			70-130	-		25	
1,2,3-Trichlorobenzene	109		-			70-130	-		25	
Hexachlorobutadiene	100					70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number:

L1521594

Report Date:

09/11/15

ameter		Native Sample	Dupl	licate Sample	Units	RPD		RPD Limits
atile Organics in Air by SIM -	- Mansfield Lab	Associated sample(s):	01-03,05-06	QC Batch ID:	WG819302-5	QC Sample:	L1521594-02	2 Client ID: S
Vinyl chloride		1.43		1.42	ppbV	1		25
1,1-Dichloroethene		0.437		0.433	ppbV	1		25
trans-1,2-Dichloroethene		0.657		0.647	ppbV	2		25
1,1-Dichloroethane		ND		ND	ppbV	NC		25
cis-1,2-Dichloroethene		81.1		87.2	ppbV	7		25
1,2-Dichloroethane		ND		ND	ppbV	NC		25
1,1,1-Trichloroethane		ND		ND	ppbV	NC		25
Trichloroethene		2.38		2.51	ppbV	5		25
Tetrachloroethene		16.1		17.0	ppbV	5		25

LEBLANC CLEANERS Lab Number: L1521594

Project Number: 10193.027 Report Date: 09/11/15

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out	Flow In mL/min	% RPD
L1521594-01	SV-08	0138	#90 SV	08/28/15	208564		-	-	-	Pass	69	69	0
L1521594-01	SV-08	179	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.5	-5.0	-	-	-	-
L1521594-02	SV-09	0326	#90 SV	08/28/15	208564		-	-	-	Pass	72	71	1
L1521594-02	SV-09	375	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.6	-6.5	-	-	-	_
L1521594-03	SV-10	0479	#90 SV	08/28/15	208564		-	-	-	Pass	72	82	13
L1521594-03	SV-10	407	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.6	-11.2	-	-	-	
L1521594-04	SV-11	0316	#90 SV	08/28/15	208564		-	-	-	Pass	72	85	17
L1521594-04	SV-11	1734	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.6	-28.8	-	-	-	-
L1521594-05	SV-13	0343	#90 SV	08/28/15	208564		-	-	-	Pass	67	70	4
L1521594-05	SV-13	150	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.6	-6.2	-	-	-	-
L1521594-06	SV-12	0167	#90 SV	08/28/15	208564		-	-	-	Pass	72	81	12
L1521594-06	SV-12	475	2.7L Can	08/28/15	208564	L1520154-01	Pass	-29.6	-10.6	-	-	-	-

Project Name:

L1520154

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01 Date Collected: 08/19/15 16:00

Client ID: CAN 532 SHELF 1 Date Received: 08/20/15

Sample Location: Field Prep: Not Specified

Matrix: Air Anaytical Method: 48,TO-15

Analytical Date: 08/20/15 15:23

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1520154

08/19/15 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01 Date Collected:

Client ID: CAN 532 SHELF 1 Sample Location:

Date Received: 08/20/15
Field Prep: Not Specified

•						- 1			
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor	
Volatile Organics in Air - Mansfiel		NE .	IVIDE	resuits	112	MIDE	Qualifier		
Methylene chloride	ND	0.500	<u></u>	ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
Freon-113	ND	0.200		ND	1.53			1	
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
/inyl acetate	ND	1.00		ND	3.52			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
2,2-Dichloropropane	ND	0.200		ND	0.924			1	
,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
Diisopropyl ether	ND	0.200		ND	0.836			1	
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
1,1-Dichloropropene	ND	0.200		ND	0.908			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1	
Dibromomethane	ND	0.200		ND	1.42			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	

L1520154

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 09/11/15

Air Canister Certification Results

Lab ID: Date Collected: L1520154-01 08/19/15 16:00

08/20/15 Client ID: CAN 532 SHELF 1 Date Received:

Sample Location: Field Prep: Not Specified

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfie	eld Lab								
Trichloroethene	ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Methyl Methacrylate	ND	0.500		ND	2.05			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	ND	0.200		ND	0.754			1	
1,3-Dichloropropane	ND	0.200		ND	0.924			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
,2-Dibromoethane	ND	0.200		ND	1.54			1	
Butyl acetate	ND	0.500		ND	2.38			1	
Octane	ND	0.200		ND	0.934			1	
Tetrachloroethene	ND	0.200		ND	1.36			1	
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
o/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
,2,3-Trichloropropane	ND	0.200		ND	1.21			1	
Nonane	ND	0.200		ND	1.05			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
Bromobenzene	ND	0.200		ND	0.793			1	

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1520154

Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01
Client ID: CAN 532 SHELF 1

Sample Location:

Date Collected:

08/19/15 16:00

Date Received:

08/20/15

Field Prep:

Not Specified

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1520154

Project Number: CANISTER QC BAT Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01 Date Collected: 08/19/15 16:00

Client ID: CAN 532 SHELF 1 Date Received: 08/20/15

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	83		60-140

L1520154

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/11/15

Air Canister Certification Results

Date Collected: Lab ID: L1520154-01 08/19/15 16:00

Client ID: Date Received: 08/20/15 CAN 532 SHELF 1

Sample Location: Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 08/20/15 15:23

Analyst: MB

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09	1.09		1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020	ND		0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
,2-Dichloropropane	ND	0.020		ND	0.092			1

L1520154

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01 Date Collected: 08/19/15 16:00

Client ID: CAN 532 SHELF 1 Date Received: 08/20/15
Sample Location: Field Prep: Not Specified

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM -	Mansfield Lab								
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.020		ND	0.092			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
o/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Lab Number:

L1520154

Report Date: 09/11/15

Air Canister Certification Results

Lab ID: L1520154-01 Client ID:

Sample Location:

CAN 532 SHELF 1

Date Received:

08/19/15 16:00

Date Collected:

08/20/15

Field Prep:

Not Specified

			ug/m3		Dilution			
Parameter	Results RL		MDL	Results	RL	RL MDL		Factor
Volatile Organics in Air by SIM - Mans	field Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	90		60-140

Lab Number: L1521594

Project Name: LEBLANC CLEANERS

Project Number: 10193.027 **Report Date:** 09/11/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info		Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1521594-01A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1521594-02A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1521594-03A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1521594-04A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	CANCELLED()
L1521594-05A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)
L1521594-06A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-SIM(30)

Project Name:LEBLANC CLEANERSLab Number:L1521594Project Number:10193.027Report Date:09/11/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name:LEBLANC CLEANERSLab Number:L1521594Project Number:10193.027Report Date:09/11/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:LEBLANC CLEANERSLab Number:L1521594Project Number:10193.027Report Date:09/11/15

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Maria .		VALYSIS	PA	GE	OF	Date F	Rec'd in La	b: 9	14	115		ALF	HA J	ob #:	L15	21594		
ANATANTICAL	CHAIN OF CUSTODY	Project Inform	Project Information					ation - l	Data D	eliveral	oles	Bill	ing In	formatio	n			
320 Forbes Blvd, Ma TEL: 508-822-9300	Anstield, MA 02048 FAX: 508-822-3288	Project Name: Phan Cleaners				□ FAX						₽ Sa	me as	Client info	PO #			
Client Informatio	n	Project Location: Lewis for ME				S ADEx												
Client:		Project #: 10193.027					Criteria Checker: (Default based on Regulatory Criteria Indicated)											
Address: (JU)	Vara SL	Project Manager:	Toba	NISS		Other Formats: GEMAIL (standard pdf report)						Reg	ulato	ts/Report Lin	nits			
1 des	ON ME	ALPHA Quote #:					☐ Additional Deliverables:						/Fed	Progr		Criteria		
Phone: 2077	95 6009	Turn-Around	Γime			Repor	t to: (if different	t than Project	Manager)					-				
Fax:						_						-						
Email: COSC	146) (es-Maine.co	☐ Standard	☐ RUSH (only o	onfirmed if pre-app	proved!)							1	ANA	ALYSIS			_	
	rebeen previously analyzed by Alpha	Date Due:		Time:								/ /	\Box	77	77			
	pecific Requirements/Comr	ments:				<u>-'</u>					,	/ /	W.	///	/ /			
												5/ /		(n / /				
	All C	olumns	Below	/ Mils	st Be	EHI	ed O	nut.		ID-Flow Controller	<u> </u>	70-15 SIM (24)	FIXED GAS:	4 70-10 10-10				
ALPHA Lab ID			ollecti				Sampler's		1 D	ID - Flow	14. A.A.	. 15 15 15	FD G	0 1 Se				
(Lab Use Only)	Sample ID	Date Start Tir	me End Time		Final Vacuum	Matrix*		Size	Can	Controller	6 6	6 8			ample Co	omments (i.e. F	اD)	
21594-61	51/-08	92-15 1034	1 1110	-29.45	-4.44	51/,	UH	2.72	179	138		X						
~ο?	SV-09	1 1225	1257	-30107	497	50/	WH	274	375	Bale		X.						
- 503	50-10	105	2 1725	-29.89	10.71	51/	WH	2.7/	407	479		V,						
ि ₋ ७५	511-17	1753	1405	3/.38		<1/	WL	27	1734	3/6								
505	5/1/13	1320		-30.14		51/	1,4	27/	180	343								
506	SV-12	940		-30.19			JKC	771				X			-			
	JV-1C	(A)	1012	20.(1)	- 1,66	20	500	2- (-						
							ļ				-		-	++-				
							-											
											-		++					
	Commission S. No. S. San S. San A. San A. San A. San A.	# # # . · · · · · · · · · · · · · · · ·	0.00			A										1		
	E MATRIX CODES s	A = Ambient Air (Ind V = Soil Vapor/Landf other = Please Specify	ill Gas/SVE			e	C	ontainer	Туре			5		con	npletely. S	learly, legibly and Samples can not l turnaround time	be	
	-24	Relinquished By:		Date	e/Time		Recei	ived By:	11		D	ate/Tim	ie:	cloc	ck will not s	start until any am solved. All sampl	ıbi-	
	///	A/	n/ Z	7/8//	5/6/10	96	Kin	N/P.	HC	_5	2/2/1	(Z:	00	sub Ter		subject to Alpha		
₱ age 03216255 ^{Jun-0}	₁₉₎	July A	July J	9/4/15	0400	R	R		T		1/5) G/:/	5 17 115 9	1.00 %	See	e reverse s			
1 ayt JZ UI JZ						120		0			7141	117	- (1 6	0				

ANALYTICAL REPORT

Lab Number: L1521595

Client: CES, Inc

640 Main St

Lewiston, ME 04240

ATTN: John Cressey Phone: (207) 795-6009

Project Name: LEBLANC CLEANERS

Project Number: 10193.027 Report Date: 09/15/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595 **Report Date:** 09/15/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1521595-01	B-8 (0-2)	SOIL	LEWISTON, ME	09/02/15 09:40	09/03/15
L1521595-02	B-8 (6-8)	SOIL	LEWISTON, ME	09/02/15 09:50	09/03/15
L1521595-03	MW-8	WATER	LEWISTON, ME	09/02/15 11:05	09/03/15

Project Name: LEBLANC CLEANERS Lab Number: L1521595

Project Number: 10193.027 **Report Date:** 09/15/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: LEBLANC CLEANERS Lab Number: L1521595

Project Number: 10193.027 **Report Date:** 09/15/15

Case Narrative (continued)

Volatile Organics

L1521595-02: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/15/15

Custin Walker Cristin Walker

ORGANICS

VOLATILES

L1521595

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Report Date:

Lab Number:

09/15/15

Lab ID: L1521595-01 Client ID: B-8 (0-2)

LEWISTON, ME Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/11/15 23:11

Analyst: MV Percent Solids: 88% Date Collected: 09/02/15 09:40 Date Received: 09/03/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5038	5 - Westborough Lab					
4.4 Diablamathana	ND			400		4
1,1-Dichloroethane	ND		ug/kg	120		1
Tetrachloroethene	730		ug/kg	81		1
1,2-Dichloroethane	ND		ug/kg	81		1
1,1,1-Trichloroethane	ND		ug/kg	81		1
Vinyl chloride	ND		ug/kg	160		1
1,1-Dichloroethene	ND		ug/kg	81		1
trans-1,2-Dichloroethene	ND		ug/kg	120		1
Trichloroethene	ND		ug/kg	81		1
cis-1,2-Dichloroethene	ND		ug/kg	81		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	99		70-130	

L1521595

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

SAMPLE RESULTS

Lab Number:

Report Date: 09/15/15

Lab ID: L1521595-02

Client ID: B-8 (6-8)

LEWISTON, ME Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 09/11/15 23:37

Analyst: MVPercent Solids: 82% Date Collected: 09/02/15 09:50 Date Received: 09/03/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - We	stborough Lab					
1,1-Dichloroethane	ND		ug/kg	94		1
Tetrachloroethene	ND		ug/kg	62		1
1,2-Dichloroethane	ND		ug/kg	62		1
1,1,1-Trichloroethane	ND		ug/kg	62		1
Vinyl chloride	ND		ug/kg	120		1
1,1-Dichloroethene	ND		ug/kg	62		1
trans-1,2-Dichloroethene	ND		ug/kg	94		1
Trichloroethene	ND		ug/kg	62		1
cis-1,2-Dichloroethene	ND		ug/kg	62		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

09/02/15 11:05

Not Specified

09/03/15

Date Collected:

Date Received:

Field Prep:

Project Name: LEBLANC CLEANERS Lab Number: L1521595

Project Number: 10193.027 **Report Date:** 09/15/15

SAMPLE RESULTS

Lab ID: L1521595-03 D

Client ID: MW-8

Sample Location: LEWISTON, ME

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/11/15 16:38

Analyst: MS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,1-Dichloroethane	ND		ug/l	7.5		10	
Tetrachloroethene	300		ug/l	5.0		10	
1,2-Dichloroethane	ND		ug/l	5.0		10	
1,1,1-Trichloroethane	ND		ug/l	5.0		10	
Vinyl chloride	140		ug/l	2.0		10	
1,1-Dichloroethene	ND		ug/l	5.0		10	
trans-1,2-Dichloroethene	21		ug/l	7.5		10	
Trichloroethene	320		ug/l	5.0		10	
cis-1,2-Dichloroethene	800		ug/l	5.0		10	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	81		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	91		70-130	

L1521595

Project Name: LEBLANC CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 09/15/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/11/15 16:03

Analyst: MS

Parameter	Result Qua	lifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab for s	sample(s): 03	Batch:	WG820623-3	
1,1-Dichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Vinyl chloride	ND	ug/l	0.20		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	82		70-130	
,	-			
Toluene-d8	93		70-130	
4-Bromofluorobenzene	85		70-130	
Dibromofluoromethane	92		70-130	

L1521595

Project Name: LEBLANC CLEANERS Lab Number:

Project Number: 10193.027 **Report Date:** 09/15/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/11/15 14:54

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-5035	- Westborou	igh Lab for	sample(s):	01-02	Batch: WG820842-3
1,1-Dichloroethane	ND		ug/kg	75	
Tetrachloroethene	ND		ug/kg	50	
1,2-Dichloroethane	ND		ug/kg	50	
1,1,1-Trichloroethane	ND		ug/kg	50	
Vinyl chloride	ND		ug/kg	100	
1,1-Dichloroethene	ND		ug/kg	50	
trans-1,2-Dichloroethene	ND		ug/kg	75	
Trichloroethene	ND		ug/kg	50	
cis-1,2-Dichloroethene	ND		ug/kg	50	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	112		70-130			
Toluene-d8	95		70-130			
4-Bromofluorobenzene	87		70-130			
Dibromofluoromethane	112		70-130			

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	3 Batch: WG8	20623-1	WG820623-2			
Methylene chloride	100		86		70-130	15		20
1,1-Dichloroethane	97		81		70-130	18		20
Chloroform	98		80		70-130	20		20
Carbon tetrachloride	75		70		63-132	7		20
1,2-Dichloropropane	102		85		70-130	18		20
Dibromochloromethane	76		68		63-130	11		20
1,1,2-Trichloroethane	110		91		70-130	19		20
Tetrachloroethene	124		103		70-130	19		20
Chlorobenzene	110		92		75-130	18		25
Trichlorofluoromethane	65		80		62-150	21	Q	20
1,2-Dichloroethane	90		75		70-130	18		20
1,1,1-Trichloroethane	93		81		67-130	14		20
Bromodichloromethane	82		71		67-130	14		20
trans-1,3-Dichloropropene	115		97		70-130	17		20
cis-1,3-Dichloropropene	110		92		70-130	18		20
1,1-Dichloropropene	94		79		70-130	17		20
Bromoform	65		59		54-136	10		20
1,1,2,2-Tetrachloroethane	104		86		67-130	19		20
Benzene	112		94		70-130	17		25
Toluene	109		91		70-130	18		25
Ethylbenzene	106		89		70-130	17		20

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG8	20623-1	WG820623-2			
Chloromethane	65		64		64-130	2		20
Bromomethane	53		76		39-139	36	Q	20
Vinyl chloride	72		61		55-140	17		20
Chloroethane	68		95		55-138	33	Q	20
1,1-Dichloroethene	84		90		61-145	7		25
trans-1,2-Dichloroethene	110		91		70-130	19		20
Trichloroethene	102		84		70-130	19		25
1,2-Dichlorobenzene	112		93		70-130	19		20
1,3-Dichlorobenzene	112		92		70-130	20		20
1,4-Dichlorobenzene	110		93		70-130	17		20
Methyl tert butyl ether	118		97		63-130	20		20
p/m-Xylene	116		98		70-130	17		20
o-Xylene	115		97		70-130	17		20
cis-1,2-Dichloroethene	105		88		70-130	18		20
Dibromomethane	102		84		70-130	19		20
1,4-Dichlorobutane	104		84		70-130	21	Q	20
1,2,3-Trichloropropane	99		81		64-130	20		20
Styrene	118		99		70-130	18		20
Dichlorodifluoromethane	116		129		36-147	11		20
Acetone	82		83		58-148	1		20
Carbon disulfide	105		90		51-130	15		20

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (3 Batch: WG	820623-1	WG820623-2			
2-Butanone	121		100		63-138	19		20
Vinyl acetate	92		78		70-130	16		20
4-Methyl-2-pentanone	112		90		59-130	22	Q	20
2-Hexanone	100		76		57-130	27	Q	20
Ethyl methacrylate	114		95		70-130	18		20
Acrylonitrile	103		82		70-130	23	Q	20
Bromochloromethane	113		94		70-130	18		20
Tetrahydrofuran	90		78		58-130	14		20
2,2-Dichloropropane	133		111		63-133	18		20
1,2-Dibromoethane	115		94		70-130	20		20
1,3-Dichloropropane	105		87		70-130	19		20
1,1,1,2-Tetrachloroethane	92		81		64-130	13		20
Bromobenzene	118		97		70-130	20		20
n-Butylbenzene	96		80		53-136	18		20
sec-Butylbenzene	107		89		70-130	18		20
tert-Butylbenzene	107		88		70-130	19		20
o-Chlorotoluene	100		83		70-130	19		20
p-Chlorotoluene	105		86		70-130	20		20
1,2-Dibromo-3-chloropropane	77		68		41-144	12		20
Hexachlorobutadiene	117		95		63-130	21	Q	20
Isopropylbenzene	111		92		70-130	19		20

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L152

L1521595

Report Date:

09/15/15

Parameter	LCS %Recovery	Qual	LCS %Rece		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	03 Batch	n: WG8	20623-1	WG820623-2				
p-Isopropyltoluene	109		9	0		70-130	19		20	
Naphthalene	110		9	1		70-130	19		20	
n-Propylbenzene	106		8	8		69-130	19		20	
1,2,3-Trichlorobenzene	109		9	2		70-130	17		20	
1,2,4-Trichlorobenzene	115		9	4		70-130	20		20	
1,3,5-Trimethylbenzene	112		9	2		64-130	20		20	
1,2,4-Trimethylbenzene	112		9	2		70-130	20		20	
trans-1,4-Dichloro-2-butene	117		9	9		70-130	17		20	
Ethyl ether	73		10	00		59-134	31	Q	20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	83		82		70-130
Toluene-d8	95		94		70-130
4-Bromofluorobenzene	88		86		70-130
Dibromofluoromethane	90		90		70-130

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbo	rough Lab Assoc	ciated sample(s): 01-02 Batch	n: WG820842-1 WG820842	2-2	
Methylene chloride	100		101	70-130	1	30
1,1-Dichloroethane	111		108	70-130	3	30
Chloroform	112		112	70-130	0	30
Carbon tetrachloride	123		121	70-130	2	30
1,2-Dichloropropane	99		102	70-130	3	30
Dibromochloromethane	106		105	70-130	1	30
1,1,2-Trichloroethane	100		101	70-130	1	30
2-Chloroethylvinyl ether	67	Q	72	70-130	7	30
Tetrachloroethene	110		110	70-130	0	30
Chlorobenzene	99		99	70-130	0	30
Trichlorofluoromethane	123		116	70-139	6	30
1,2-Dichloroethane	107		107	70-130	0	30
1,1,1-Trichloroethane	115		116	70-130	1	30
Bromodichloromethane	108		111	70-130	3	30
trans-1,3-Dichloropropene	98		99	70-130	1	30
cis-1,3-Dichloropropene	98		99	70-130	1	30
1,1-Dichloropropene	105		105	70-130	0	30
Bromoform	92		91	70-130	1	30
1,1,2,2-Tetrachloroethane	87		89	70-130	2	30
Benzene	104		103	70-130	1	30
Toluene	100		100	70-130	0	30

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbord	ough Lab Asso	ciated sample(s): 01-02 Batch	n: WG820842-1 WG820842	-2	
Ethylbenzene	100	99	70-130	1	30
Chloromethane	103	99	52-130	4	30
Bromomethane	100	106	57-147	6	30
Vinyl chloride	70	68	67-130	3	30
Chloroethane	108	104	50-151	4	30
1,1-Dichloroethene	103	101	65-135	2	30
trans-1,2-Dichloroethene	105	103	70-130	2	30
Trichloroethene	108	109	70-130	1	30
1,2-Dichlorobenzene	98	99	70-130	1	30
1,3-Dichlorobenzene	103	101	70-130	2	30
1,4-Dichlorobenzene	100	101	70-130	1	30
Methyl tert butyl ether	84	84	66-130	0	30
p/m-Xylene	96	98	70-130	2	30
o-Xylene	92	93	70-130	1	30
cis-1,2-Dichloroethene	102	102	70-130	0	30
Dibromomethane	106	109	70-130	3	30
1,4-Dichlorobutane	84	84	70-130	0	30
1,2,3-Trichloropropane	86	88	68-130	2	30
Styrene	93	93	70-130	0	30
Dichlorodifluoromethane	88	84	30-146	5	30
Acetone	164	Q 130	54-140	23	30

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbor	ough Lab Asso	ciated sample(s	s): 01-02 Bato	ch: WG82	0842-1 WG820842	2-2	
Carbon disulfide	106		102		59-130	4	30
2-Butanone	105		99		70-130	6	30
Vinyl acetate	95		97		70-130	2	30
4-Methyl-2-pentanone	64	Q	66	Q	70-130	3	30
2-Hexanone	74		71		70-130	4	30
Ethyl methacrylate	73		74		70-130	1	30
Acrolein	124		114		70-130	8	30
Acrylonitrile	102		96		70-130	6	30
Bromochloromethane	112		114		70-130	2	30
Tetrahydrofuran	84		92		66-130	9	30
2,2-Dichloropropane	114		111		70-130	3	30
1,2-Dibromoethane	93		94		70-130	1	30
1,3-Dichloropropane	96		96		69-130	0	30
1,1,1,2-Tetrachloroethane	108		108		70-130	0	30
Bromobenzene	95		96		70-130	1	30
n-Butylbenzene	98		100		70-130	2	30
sec-Butylbenzene	96		95		70-130	1	30
tert-Butylbenzene	91		91		70-130	0	30
1,3,5-Trichlorobenzene	104		107		70-139	3	30
o-Chlorotoluene	95		95		70-130	0	30
p-Chlorotoluene	93		93		70-130	0	30

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS-5035 - Wes	stborough Lab Assoc	iated sample(s)): 01-02 Bato	ch: WG82084	12-1 WG820842	2-2		
1,2-Dibromo-3-chloropropane	83		82		68-130	1	30	
Hexachlorobutadiene	114		114		67-130	0	30	
Isopropylbenzene	90		91		70-130	1	30	
p-Isopropyltoluene	93		92		70-130	1	30	
Naphthalene	79		79		70-130	0	30	
n-Propylbenzene	94		95		70-130	1	30	
1,2,3-Trichlorobenzene	97		98		70-130	1	30	
1,2,4-Trichlorobenzene	98		98		70-130	0	30	
1,3,5-Trimethylbenzene	94		93		70-130	1	30	
1,2,4-Trimethylbenzene	93		93		70-130	0	30	
trans-1,4-Dichloro-2-butene	96		98		70-130	2	30	
Halothane	110		110		70-130	0	20	
Ethyl ether	105		97		67-130	8	30	
Methyl Acetate	101		98		65-130	3	30	
Ethyl Acetate	91		90		70-130	1	30	
Isopropyl Ether	99		97		66-130	2	30	
Cyclohexane	93		93		70-130	0	30	
Tert-Butyl Alcohol	67	Q	66	Q	70-130	2	30	
Ethyl-Tert-Butyl-Ether	83		83		70-130	0	30	
Tertiary-Amyl Methyl Ether	78		79		70-130	1	30	
1,4-Dioxane	75		77		65-136	3	30	

Project Name: LEBLANC CLEANERS

Project Number: 10193.027

Lab Number: L1521595

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-5035 - Westboro	ugh Lab Assoc	iated sample(s): 01-02 Batc	h: WG8208	842-1 WG820842	-2		
Methyl cyclohexane	95		94		70-130	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	111		107		70-130	4		30
1,4-Diethylbenzene	93		93		70-130	0		30
4-Ethyltoluene	94		95		70-130	1		30
1,2,4,5-Tetramethylbenzene	85		86		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
4.0 Dishlamasihana d4	440		400		70.400	
1,2-Dichloroethane-d4	110		109		70-130	
Toluene-d8	97		97		70-130	
4-Bromofluorobenzene	85		87		70-130	
Dibromofluoromethane	109		110		70-130	

INORGANICS & MISCELLANEOUS

L1521595

Project Name: LEBLANC CLEANERS Lab Number:

Project Number: 10193.027 Report Date: 09/15/15

SAMPLE RESULTS

Lab ID: Date Collected: L1521595-01 09/02/15 09:40

B-8 (0-2) Client ID: Date Received: 09/03/15 Sample Location: LEWISTON, ME Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	87.5		%	0.100	NA	1	-	09/08/15 18:26	30,2540G	RT

Project Name: LEBLANC CLEANERS Lab Number: L1521595

Project Number: 10193.027 **Report Date:** 09/15/15

SAMPLE RESULTS

Lab ID: L1521595-02 Date Collected: 09/02/15 09:50

Client ID: B-8 (6-8) Date Received: 09/03/15
Sample Location: LEWISTON, ME Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	81.7		%	0.100	NA	1	-	09/08/15 18:26	30,2540G	RT

Lab Number: L1521595

Project Name: LEBLANC CLEANERS

Project Number: 10193.027 **Report Date:** 09/15/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 09/02/2015 15:00

Cooler Information Custody Seal

Cooler

A Absent

Container Information Temp										
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)			
L1521595-01A	Vial MeOH preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-01B	Vial water preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-01C	Vial water preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-01D	Plastic 2oz unpreserved for TS	Α	N/A	3.0	Υ	Absent	ME-TS-2540(7)			
L1521595-02A	Vial MeOH preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-02B	Vial water preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-02C	Vial water preserved	Α	N/A	3.0	Υ	Absent	8260HLW(14)			
L1521595-02D	Plastic 2oz unpreserved for TS	Α	N/A	3.0	Υ	Absent	ME-TS-2540(7)			
L1521595-03A	Vial HCI preserved	Α	N/A	3.0	Υ	Absent	ME-8260(14)			
L1521595-03B	Vial HCl preserved	Α	N/A	3.0	Υ	Absent	ME-8260(14)			
L1521595-03C	Vial HCl preserved	Α	N/A	3.0	Υ	Absent	ME-8260(14)			

Project Name:LEBLANC CLEANERSLab Number:L1521595Project Number:10193.027Report Date:09/15/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name:LEBLANC CLEANERSLab Number:L1521595Project Number:10193.027Report Date:09/15/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:LEBLANC CLEANERSLab Number:L1521595Project Number:10193.027Report Date:09/15/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 2. Methylthiophene, 2. Trimethyl-1-pentene, 1,2,4,5. Trimethyl-1-pentene, 1,2,

 $3- Methyl thiophene,\ 2- Ethyl thiophene,\ 1,2,3- Trimethyl benzene,\ Indan,\ Indene,\ 1,2,4,5- Tetramethyl benzene,$

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA	CHAIN OI	F CUSTODY	PAGEOF	Date Rec'd in Lab: 9-3-15 ALPHA Job #: L1521595	,
A WALVII OAL	220 Fashar Blad	Project Information	阿拉斯斯斯	Report Information - Data Deliverables Billing Information	
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		Project Name: Pitt. L	Blow Seame	☐ ADEx ☐ EMAIL ☐ Same as Client info ☐ PO #:	
Client Informatio	n	Project Location: Lawrence Project #: 1/0/93	Lan MI	Regulatory Requirements & Project Information Requirements	
Client: CES		Project #: 1/)/93.7	27	☐ Yes ☐ No MA MCP Analytical Methods ☐ Yes ☐ No CT RCP Analytical Methods ☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)	s
Address: 640	Mamsh	Project Manager:	-	☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets)	
Lead	ston MF	ALPHA Quote #:	0,02209	☐ Yes ☐ No NPDES RGP ☐ Other State /Fed Program Criteria	
Phone: 207	Mamst 1956009	Turn-Around Time			
Additional Pr	InQCes malv.com roject Information: 29 an (6) 1500	Date Due:	inly confirmed if pre-approved!)	ANALYSIS ANALYS ANAL	TOTAL #
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Sampler Matrix Initials	Sample Comments	T T L E S
21595-01	B-8(0-2).	9-2-15 0940	5 Soil WA		
02	B-8(6-8)	1 095	O Soil WH		
03	MIJ-R	100	- Cew WH		
	7	4 1105	0 0 0 11)		
			-	+++++++++++++++++++++++++++++++++++++++	
					PRODUCTION OF THE PROPERTY OF
Container Type P= Plastic	Preservative		Container Type		
A= Amber glass V= Vial	A= None B= HCI C= HNO ₃	ICI INO ₃ Preservative			-
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinquished By:	Date/Time	Received By: Date/Time	
O= Other G= NaHSO ₄ E= Encore H= Na ₂ S ₂ O ₃ D= BOD Bottle I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate C= O= Other		us das	9-3-15 1920	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)	0

July 24, 2015

Mrs. Becky Blais Maine Department of Environmental Protection 17 State House Station Augusta, Maine 04333

RE: Phase II Environmental Site Assessment | LeBlanc's Cleaners| Lewiston, Maine

Dear Becky:

CES, Inc. (CES) is pleased to present this work plan for the completion of the Site investigation work to be conducted at the LeBlanc's Cleaners located at 10 Lafayette Street in Lewiston, Maine. The Scope of Work included in this proposal is based upon the Request for Bids received via email on June 15, 2015 and our Site visit completed in July 16, 2015.

BACKGROUND

The Site (location shown in **Figure 1**) was developed with a wagon repair shop, steam dye facility, and dry cleaning operations circa 1914. The main Site building with the more current dry cleaning operations was constructed on the Site circa 1955. At that time, the Site operated one dry cleaning unit which utilized Tetrachloroethene or "Perc" as the primary dry cleaning solvent. According to the property owner, the original dry cleaning machine was vented to the exterior on the western side of the Site building. The original dry cleaning unit and associated vent pipe remain in the Site building but have not been in operation since the early 1970's. This original dry cleaning machine was replaced with a Renzacci dry cleaning unit in the 1970's and operated until 2014, utilizing Perc throughout its operation. The owner ceased thedry cleaning operation in November 2014, and used filters, pre filter lint, and spent solvents from the Renzacci dry cleaning machine have not yet been disposed of.

Based upon this information, it was determined, by the MEDEP, that subsurface and indoor air investigation was warranted to determine the potential for impacts to these media from the former dry cleaner.

SCOPE OF WORK

Existing Conditions

At the commencement of field activities, CES will subcontract with DigSmart of Maine to complete utility location, soil boring clearance, and tracing of the floor drains. CES will also subcontract with Environmental Projects, Inc. (EPI) to complete Geoprobe activities. DigSmart will be subcontracted to scan the concrete around the floor drains to determine the route of exit

Mrs. Becky Blais | 07.24.2015 | 10193.027-01 | Page 1

from the building. The floor drains will be dye traced, if necessary, with different colored dyes to attempt to determine terminuses. CES will discuss this dye testing with the Lewiston-Auburn Water Pollution Control Authority (LAWPCA) prior to conducting the testing to set up a time to complete the testing. DigSmart will also be subcontracted to conduct a ground penetrating radar (GPR) survey of the former underground storage tank (UST) locations as well as any suspect locations.

In April 2015, CES conducted a site visit at the request of the Site owner and observed what appeared to be a vent pipe next to the garage, which may represent a UST still present at the Site. If it is determined that a UST is still present through using the GPR, the proposed boring location (B-04) will be altered to move away far enough to not necessitate the presence of a Certified Tank Installer (CTI).

CES's staff geologist will oversee five (5) soil borings (B-01, B-02, B-03, B-04, and B-05) to log soil conditions and perform soil screening with a MiniRae Photoionization Detector (PID). Soil samples determined to be impacted or determined to be of interest due to location will be submitted for analysis of the nine (9) chlorinated compounds by USEPA Method 8260. Soil samples will be collected following the MEDEP Standard Operating Procedure (SOP) #DR006 (Protocol for Collecting Soil Samples). Soil samples will be submitted to Alpha Analytical Laboratory (Alpha) of Westborough, Massachusetts. Five (5) temporary monitoring wells (MW-01, MW-02, MW-03, MW-04, and MW-05) will be installed in the borings using a Geoprobe rig and their construction will be logged by the staff geologist for submission to the MEDEP with the report. All five (5) monitoring wells will be sampled following low flow purging techniques as defined in the MEDEP SOP DR#002 (Groundwater Sample Collection for Site Investigation and Assessment Monitoring) and submitted to Alpha for the nine (9) chlorinated compounds by USEPA Method 8260.

Four (4) of the monitoring wells will also be co-located with soil vapor points (SV-02, SV-03, SV-04, and SV-05). All four (4) soil vapor points will be installed by the Geoprobe at a depth of four (4) feet below ground surface with Teflon tubing brought to the ground surface and one (1) soil gas sample will be collected from each of these locations following MEDEP SOP DR#027. The locations are shown on **Figure 2** and have been selected to provide the data to indicate whether abutting properties are at risk due to past on-site activities. CES will document ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). The samples will be submitted to Alpha for analysis of the nine (9) chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

Additionally, CES will use a pore water sampler to collect a soil gas sample (SV-01) from within the sewer utility trench along the northern side of the structure following MEDEP SOP DR#027. CES will document ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID).

The samples will be submitted to Alpha for analysis of the nine (9) chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

CES will collect two (2) 30-minute sub-slab vapor samples (SSV-01, SSV-02) from within the Site building and one (1) 30-minute sub-slab vapor sample (SSV-03) from within the garage, in locations likely to have been affected by the past usage, following MEDEP SOP DR#027. A half inch (½") hole will be drilled into the concrete and Teflon tubing inserted and sealed with modeling clay. CES will document pressure difference with a manometer, ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). The samples will be submitted to Alpha for analysis of the nine (9) chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

CES will collect one (1) 24-hour indoor air sample (IA-01) from within the Site building. CES will document ambient oxygen and carbon dioxide concentrations as well as pre-sample oxygen, carbon dioxide, and methane concentrations using an Eagle multi-gas meter, and volatile organic readings using a part per billion (ppb) MiniRae Photoionization Detector (PID). The sample will be submitted to Alpha for analysis of the nine (9) chlorinated breakdown compounds by USEPA Method TO-15 by SIM.

REPORT

CES will prepare a draft Phase II ESA Report including a refined CSM, tables, recommendations and figures in MS Word format to the Department for review. Once comments from the MEDEP have been incorporated into the report it will be sealed by a Maine Certified Geologist. The Report will include a site map depicting site features, screening locations and results and laboratory sample locations and results. The Phase II Report will also include an approximate quantity of contaminated soil moved on-site. John Cressey will meet with the Department in person to discuss comments to the report within 10 days of submission of the draft report.

CES will incorporate the Department's comments within five days of the receipt of the written comments. CES will submit an electronic copy (PDF) version of the completed document (along with an acceptable electronic data delivery (EDD) that has all laboratory data and soil gas and ambient air field sheets), and two (2) bound paper documents with all tables, figures, appendices, and attachments to the Department.

Sincerely, CES, Inc.

John K. Cressey, C.G. Senior Project Manager

JKC/jna

