REMOVAL PROGRAM PRELIMINARY ASSESSMENT/ SITE INVESTIGATION REPORT FOR THE CHARLOTTE SMITH PROPERTY SITE MEDDYBEMPS, WASHINGTON COUNTY, MAINE 28 AND 29 NOVEMBER 2006

Prepared For:

U.S. Environmental Protection Agency
Region I
Emergency Planning and Response Branch
1 Congress Street, Suite 1100
Boston, MA 02114-2023

CONTRACT NO. EP-W-05-042

TDD NO. 06-11-0001

TASK NO. 0258

DC NO. R-4664

Submitted By:

Weston Solutions, Inc.
Region I
Superfund Technical Assessment and Response Team III (START)
3 Riverside Drive
Andover, MA 01810

May 2007

TABLE OF CONTENTS

- I. Preliminary Assessment/Site Investigation Forms
- II. Narrative Chronology
- III. Appendices

Appendix A - Figures

Figure 1 – Site Location Map

Figure 2 – Basement Sample Location Diagram

Appendix B - Photodocumentation Log

Appendix C - Chain-of-Custody Records

Appendix D - Analytical Result Tables

Table 1 – VOC Field Screening Results Air/Soil Gas Samples

Table 2 – VOC Field Screening Result Soil/Solid Samples

Table 3 – Air/Soil Gas Analyses (TO-15)

Table 4 – VOAs in Soil High Level Method

 I. Preliminary Assessment/Site Investigation Forms

-

EPA REGION I REMOVAL PRELIMINARY ASSESSMENT

		Site N	ame and	l Locati	on	
Name: Charle Town: Medd	otte Smith Prop lybemps	erty		tion: Rot ty: Was		
Site Status:	()NPL ()ACTIVE	()NON-NP (X)ABAND		()RCI ()OTI		()TSCA
(X)Attached	USGS Map of	Location		()Site	I.D. N	lo.:
Latitude:	45° 2' 18.8" No	rth	Long	itude:	67° 2	1' 66.3" West
			Refer	ral		8 2
()Citizen ()RCRA	()Cit ()Otl	y/Town ier:	(X)St	ate	()Pre	eremedial
(MEDEP) Telephone:	erring party: F (207) 287-2651 7 State House S	·		Departme	ent of F	Environmental Protection
		Co	ntacts Id	lentified	ı	
1) 2) 3)	18 3	<u>50</u>	on was with A		Telep Telep	ohone:() ohone:()
		Sour	rce of In	formatic	n	
() Report:			-			tt and the property owner. cques Whitford Co. Inc., August

REMOVAL PRELIMINARY ASSESSMENT

		Potential Respo	nsible Parties	
Owner:	Dawn Smith	Tele	phone:()	
Address	Route 214			
	Meddybemps, ME	04657		
		Site A	ccess	
Authoriz	zing Person: Dawn	Smith		
Date: 2	28 November 2006	(X)Obtained	()Verbal	
Telepho	ne: ()	()Not Obtained	(X)Written	
		Historical P	reservation	
() Site is	Historically Signi	ficant or Eligible fo	r Historic Preservation	
		Contacts 1	dentified	
1) State	Historical Preserv	ation Officer (SHPC		
•			phone: (207) 287-2132	
		vation Officer (THI	•	
•	lame:		phone:()	
Comme	nts: This site is not	considered historical	y significant or eligible for historic	c preservation.
		Physical Site C	naracterization	183

Background Information: The Charlotte Smith Property site (the site) consists of a large, flat parcel that is bounded by Main Street (Route 191) to the south, by the Dennys River to the north and west,

and by Lombard Road to the east. The geographic coordinates of the site are 45° 02' 18.8" north latitude and 67°21'66.3" west longitude, as measured from the center of the site. The site is located in a rural residential area. The Eastern Surplus Superfund site lies northwest of the site to the north

of the Dennys River.

Description of Substances Possibly Present, Known or Alleged:

During May 2006, MEDEP performed a removal action, which consisted of the removal of more than 200 5-gallon containers of industrial solvents, including perchloroethylene (PCE), from the basement of the on-site residence. The MEDEP removal included the collection of concrete samples from the basement, and soil and soil gas samples from below the concrete slab. MEDEP analytical and air monitoring results indicated that there were elevated levels of volatile organic compounds (VOCs) in the air, soil, and soil gas in the basement of the residence.

REMOVAL PRELIMINARY ASSESSMENT

Existing Analytical Data

() Real-Time Monitoring Data:

(X) Sampling Data: Air sampling results for samples collected for MEDEP by Jacques Whitford Co. Inc. on 23 August 2006.

Potential Threat

Description of potential hazards to environment and/or population-identify any of the criteria for a Removal Action (from NCP) that may be met by the site under 40 CFR 300.415 [b] [2].

- i. Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances, pollutants or contaminants.
- ii. Actual or potential contamination of drinking water supplies or sensitive ecosystems.
- iii. Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers, that may pose a threat of release.
- iv. High levels of hazardous substances or pollutants or contaminants in soils largely at or near the surface, that may migrate.
- v. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.
- vi. Threat of fire or explosion.
- vii. The availability of other appropriate federal or state response mechanisms to respond to the release.
- viii. Other situations or factors that may pose threats to public health or welfare or the environment.

Prior Response Activities

() PRP (X) STATE () FEDERAL () OTHER

Brief Description: In May 2006, MEDEP completed the removal of more than 200 5-gallon containers of solvents. On 23 August 2006, MEDEP subcontractors conducted air sampling in the basement of the residence.

REMOVAL PRELIMINARY ASSESSMENT

	Priori	ty for Site Investig	ation		
(X) High Comments:	() Medium	() Low	()	None	
		Report Generation			_
Originator: A	lysha Lynch		Date:	16 May 2007	

Affiliation:

Weston Solutions, Inc., START

01-06-11-0001 TDD No.:

Telephone:

16 May 2007 (978) 552-2115

Task No.:

0258

EPA REGION I REMOVAL SITE INVESTIGATION

Inspection Information

Site Name: Charlotte Smith Property

Address: Route 191

Town: Meddybemps

County: Washington

Date of Inspection: 28 November 2006

State: Maine (ME) Time of Inspection: 0800 hours (hrs) to 1745 hrs

Weather Conditions: Overcast, 42° Fahrenheit

Date of Inspection: 29 November 2006

Time of Inspection: 0800 hrs to 1315 hrs

Weather Conditions: Overcast, 38° Fahrenheit

Site Status at Time of Inspection: () ACTIVE

(X) INACTIVE

Comments:

Agencies/Personnel Performing Inspection

8	<u>Names</u>	Program
(X) EPA:	AmyJean McKeown	U.S. Environmental Protection Agency (EPA) Region I Emergency Planning and Response Branch (EPRB), On-Scene Coordinator (OSC).
	Scott Clifford	EPA Office of Environmental Measurement and Evaluation (OEME), Chemist.
(X) EPA Contractor:	Eric Ackerman Lindsay Rasel	Weston Solutions, Inc. (WESTON), Superfund Technical Assessment and Response Team III (START).
(X) State:	Kathy Howatt	Maine Department of Environmental Protection (MEDEP) Bureau of Remediation & Waste Management

() Oth						
() Other: Current Owner Bas	ed on I	Field Intervie	w: Dawn Smit	h		El WQS
		Physical	Site Characte	eristics		
Parameter			Qua	ntities/Extent		
(X) Cylinders:		There were a staged on the		mmissioned co	ompressed gas	cylinders
() Drums:		•				
() Lagoons:						
1,	bove:		lon home heati h wall of the re		s located along	the
() Be	low:					
() Asbestos:						
() Piles:						
() Stained Soil:						
() Sheens:						
() Stressed Vegetat	ion:					
() Landfill:						
(X) Population in V	icinity:	The site is lo	ocated in a rura	l residential ar	ea.	
() Wells: () Di	inking:	22				
• • • • • • • • • • • • • • • • • • • •	onitorir	_				
(X) Other:		There were	several rusty m	achines and ge	enerators on the	site.
		Physica	ıl Site Observ	ations	22	
The one-story wood Route 191. There w basement of the restloor. The basement various types of hard	as notic sidence. at conta	ceable debris : The basemonined metal sh	n the backyard ent had poured	d and near the d-concrete wal	bulkhead entra	ance to the ed-concrete
		Field Sa	mpling and A	nalysis	n	
Matrix/Analytical Parameter		Field CGI/O ₂	l Instrumenta RAD	tion PID	FID	Other
Background Readi	ngs:	0.0/20.9%	8-9 μR/hr	0.0 ppm	0.0 ppm	

Field Sampling and Analysis (Concluded)

Matrix/Analytical	Field	l Instrumenta	tion		
Parameter	CGI/O ₂	RAD	PID	FID	Other
Air:	0.0/20.9%	8-9 μR/hr	0.0 ppm	0.0 ppm	
Soil:	0.0/20.9%	8-9 µR/hr	0.0 ppm	0.0 ppm	
Surface:		·		807.	
Water:				3	
Tanks:					
Drums:					
Vats:					
Lagoons:	40				
Spillage:					
Run Off:					
Piles:					
Sediments:					
Groundwater:					
Other:					
Other:					

Field Quality Control Procedures

() SOP Followed

(X) Deviation From SOP

Comments: START sampling activities followed the protocol outlined in the document entitled, Sampling and Analysis Plan (SAP) for the Charlotte Smith Property, Meddybemps, Washington County, Maine. Modifications included the following: WT-11 was not collected as there was no concrete to core through within the sump; SS-10 was not collected for analysis as the subslab soil type consisted of cobbles; and WT-05 was not analyzed due to the lack of methanol volume needed to conduct the analysis. In addition, OEME Chemist Clifford collected four Summa canister samples from basement sample locations SG-01, SG-02, SG-06, and SG-10, and one ambient (background) sample from an area outside the basement, for laboratory VOC analysis.

Description of Sampling Conducted

On 28 November 2006, EPA OSC McKeown, START members Ackerman and Rasel, and MEDEP representative Howatt arrived at the site to conduct Preliminary Assessment/Site Investigation (PA/SI) activities. Property owner Dawn Smith arrived on site to sign the EPA Access Agreement prior to EPA conducting site activities. START member Ackerman conducted a safety and operations meeting, and on-site personnel reviewed and signed the site Health and Safety Plan (HASP). The HASP was prepared as a separate document, entitled Weston Solutions, Inc. Region I START Site Health and Safety Plan (HASP) Charlotte Smith Site, Meddybemps, Maine.

Description of Sampling Conducted (Continued)

Bob Black from Eastern Maine Electrical arrived on site to conduct a DigSafe inspection. Mr. Black determined that the electrical power was live in the residence. START member Ackerman requested that Mr. Black disconnect the power.

START members Ackerman and Rasel established a support zone and calibrated air monitoring instruments, including a combination photoionization detector (PID)/flame ionization detector (FID), a combustible gas indicator/oxygen meter (CGI/O₂), and a radiation meter (MicroR). Background levels were recorded in the HASP as follows: PID = 0 parts per million (ppm); FID = 0 ppm; lower explosive limit (LEL) = 0%; oxygen (O₂) = 20.9%; and MicroR = 9 microRoentgens per hour (μ R/hr).

START members Ackerman and Rasel donned Level C personal protective equipment (PPE), entered the basement of the residence, and conducted a reconnaissance. Air monitoring levels were not elevated at the floor level or in the breathing zone of the basement. START personnel exited the basement, reported their findings, and downgraded to Modified Level D PPE per the HASP.

START and MEDEP representative Howatt utilized portable electric generators and existing temporary lighting to illuminate the basement. START and MEDEP personnel entered the basement and established a fan/blower assembly to ventilate/circulate air in the basement. The ventilation system was exhausted through a basement window along the south side of the residence. MEDEP representative Howatt photodocumented activities for the duration of the PA/SI.

Prior to conducting the concrete, soil gas, and subsurface soil sampling activities, START member Ackerman discussed the sampling procedure with EPA Office of Environmental Management and Evaluation (OEME) New England Regional Laboratory (NERL) Chemist Scott Clifford, who had arrived on site. OEME Chemist Clifford requested that the concrete dust samples be collected in 40-milliliter (ml) pre-weighed methanol vials and that isopropanol not be used for decontamination of the non-dedicated equipment.

START members Ackerman and Rasel, and MEDEP representative Howatt entered the basement and established 11 sample locations from which concrete dust (WT), soil gas (SG), and subsurface soil (SS) samples were collected for on-site volatile organic compound (VOC) analysis by OEME Chemist Clifford. START collected concrete dust, soil gas, and subsurface soil samples from each location except for the following: WT-11 was not collected as there was no concrete to core through within the sump; and SS-10 was not collected for analysis as the subslab soil type consisted of cobbles. Furthermore, WT-05 was not analyzed due to the lack of methanol volume needed to conduct the analysis. In addition, OEME Chemist Clifford collected four Summa canister samples from basement sample locations SG-01, SG-02, SG-06, and SG-10, and one ambient (background) sample from an area outside the basement, for laboratory VOC analysis. At the completion of sampling activities, all personnel departed for the day.

Description of Sampling Conducted (Concluded)

On 29 November 2006, START members Ackerman and Rasel arrived on site to complete PA/SI activities. Activities for the day included the backfilling of borings created on 28 November 2006 with bentonite and concrete. Ventilation of the basement continued prior to the completion of tasks in the basement. At the completion of site activities, OSC McKeown selected 10% of the samples that had been analyzed on site to be sent for confirmatory analysis at OEME NERL, located in North Chelmsford, Massachusetts.

(b) e	Analyses				
Analytical Parameter	Media	Laboratory			
(X) VOC	(X) AIR	(X) OEME NERL			
() PCB	() WATER	() CLP			
() PESTICIDE	(X) SOIL	() PRIVATE			
() METALS	() SOURCE	() SAS			
() CYANIDE	() SEDIMENT	() SOW			
() svoc	(X) CONCRETE	(X) FIELD - OEME			
() TOXICITY		Mobile Laboratory			
() DIOXIN					
() ASBESTOS		-			
() OTHER					
	lts: See Appendix D – Analytical Re	esult Tables			
	Receptors				
	Comme	nts			
(X) Drinking Water (X) Private	te: A private drinking water approximately 20 feet southeas				
() Munici	v				
() Groundwater:					
() Unrestricted Access:					
(X) Population in Proximity:	The site is located in a rural res	idential area.			
(X) Sensitive Ecosystem:	· · ·				
() Other:	,				
Addition	nal Procedures for Site Determina	tion			
() Biological Evaluation None planned at the time.	() ATSDR				

Site Determination

Depending on further information, criteria that may be met by the site include 40 CFR 300.415 [b] [2], parts:

- Actual or potential exposure to nearby human populations, animals, or the food chain i. from hazardous substances, pollutants or contaminants.
- Actual or potential contamination of drinking water supplies or sensitive ecosystems. ii.
- Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other iii. bulk storage containers, that may pose a threat of release.
- High levels of hazardous substances or pollutants or contaminants in soils largely at or iv. near the surface, that may migrate.
- Weather conditions that may cause hazardous substances or pollutants or contaminants to ٧. migrate or be released.
- Threat of fire or explosion. vi.
- The availability of other appropriate federal or state response mechanisms to respond to vii. the release.
- Other situations or factors that may pose threats to public health or welfare or the viii. environment.

Report Generation

Originator: Affiliation:

TDD No.:

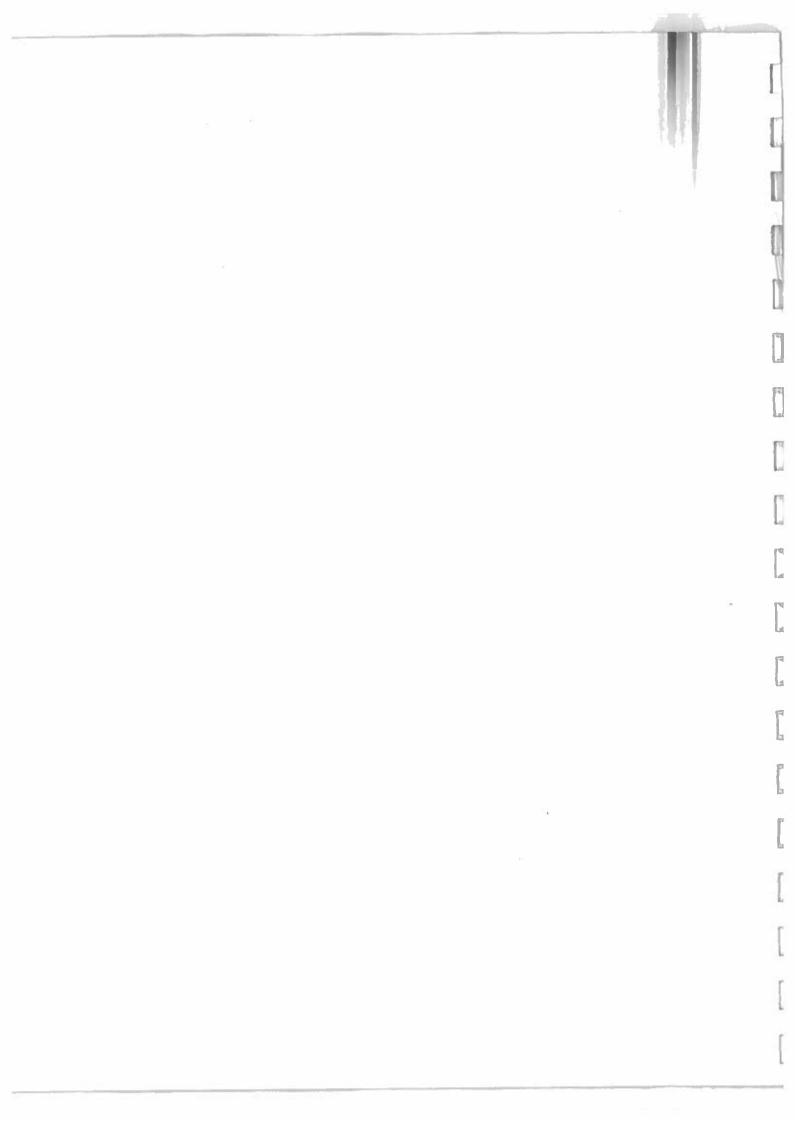
Alysha Lynch

01-06-11-0001

Weston Solutions, Inc., (START)

Date:

16 May 2007


Telephone:

(978) 552-2115

Task No.:

0258

II. Narrative Chronology

Narrative Chronology

On 28 November 2006, U.S. Environmental Protection Agency (EPA) On-Scene Coordinator (OSC) AmyJean McKeown, Weston Solutions, Inc., Superfund Technical Assessment and Response Team (START) members Eric Ackerman and Lindsay Rasel, and Maine Department of Environmental Protection (MEDEP) representative Kathy Howatt arrived at the Charlotte Smith Property site (the site) to conduct Preliminary Assessment/Site Investigation (PA/SI) activities.

The site consists of an unoccupied private residence located on a flat parcel that is bounded by Main Street (Route 191) to the south, by the Dennys River to the north and west, and by Lombard Road to the east. The geographic coordinates of the site are 45° 02' 18.8" north latitude and 67° 21' 66.3" west longitude, as measured from the center of the site (see Appendix A – Figures: Figure 1 – Site Location Map). Property owner Dawn Smith arrived on site to sign the EPA Access Agreement prior to EPA conducting site activities. START member Ackerman conducted a safety and operations meeting, and on-site personnel reviewed and signed the site Health and Safety Plan (HASP). The HASP was prepared as a separate document, entitled Weston Solutions, Inc. Region I START Site Health and Safety Plan (HASP) Charlotte Smith Site, Meddybemps, Maine.

Bob Black from Eastern Maine Electric arrived on site to conduct a DigSafe inspection. Mr. Black determined that the electrical power was live from the pole to an external box on the residence. START member Ackerman requested that Mr. Black leave the power to the interior of the residence disconnected.

START members Ackerman and Rasel established a support zone and calibrated air monitoring instruments, including a combination photoionization detector (PID)/flame ionization detector (FID), a combustible gas indicator/oxygen meter (CGI/O₂), and a radiation meter (MicroR). Background levels were recorded in the HASP as follows: PID = 0 parts per million (ppm); FID = 0 ppm; lower explosive limit (LEL) = 0%; oxygen (O₂) = 20.9%; and MicroR = 9 microRoentgens per hour (μ R/hr).

START members Ackerman and Rasel donned Level C personal protective equipment (PPE), entered the basement of the residence, and conducted a reconnaissance. Air monitoring levels were not elevated at the floor level or in the breathing zone of the basement. START personnel exited the basement, reported their findings, and downgraded to Modified Level D PPE per the HASP.

START and MEDEP representative Howatt utilized portable electric generators and existing temporary lighting to illuminate the basement. START and MEDEP personnel entered the basement and established a fan/blower assembly to ventilate/circulate air in the basement. The ventilation system was exhausted through a basement window along the south side of the residence. MEDEP representative Howatt photodocumented activities during the duration of the PA/SI (see Appendix B – Photodocumentation Log).

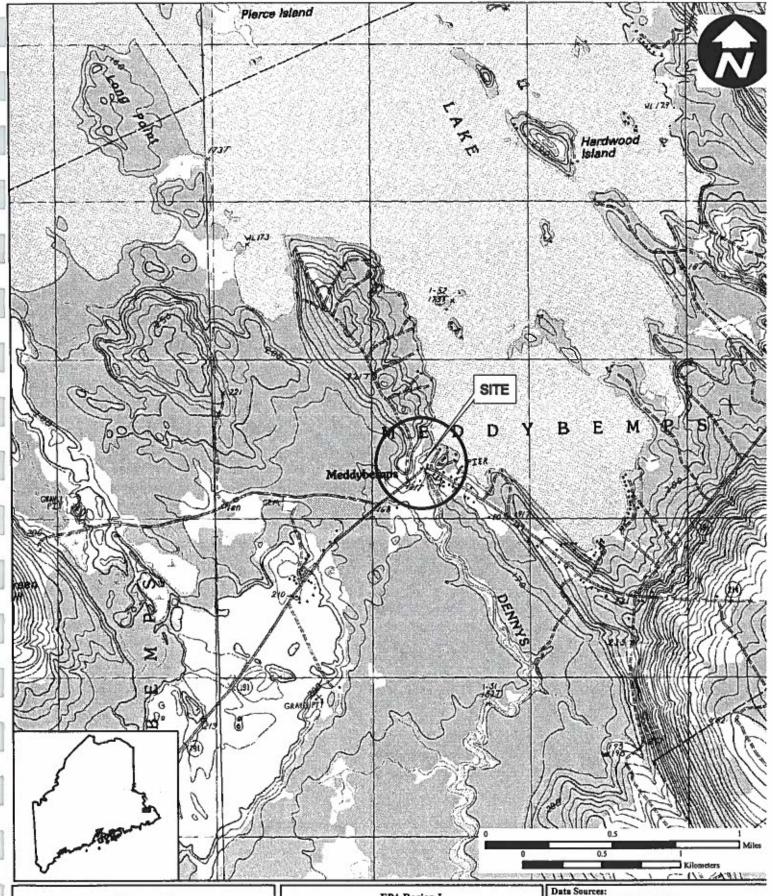
Prior to conducting the concrete, soil gas, and subsurface soil sampling activities, START member Ackerman discussed the sampling procedure with EPA Office of Environmental Management and Evaluation (OEME) New England Regional Laboratory (NERL) Chemist Scott Clifford, who had arrived on site to conduct sample analysis for volatile organic compounds (VOCs). OEME Chemist Clifford requested that the concrete dust samples be collected in 40-milliliter (ml) pre-weighed methanol vials and that isopropanol not be used for decontamination of the non-dedicated equipment.

START members Ackerman and Rasel, and MEDEP representative Howatt entered the basement and established 11 sample locations from which concrete dust (WT), soil gas (SG), and subsurface soil (SS) samples were collected for on-site VOC analysis by OEME Chemist Clifford (see Appendix A – Figures: Figure 2 – Basement Sample Location Diagram). START collected concrete dust, soil gas, and subsurface soil samples from each location except for the following: WT-11 was not collected as there was no concrete to core through within the sump; and SS-10 was not collected for analysis as the subslab soil type consisted of cobbles. Furthermore, WT-05 was not analyzed due to the lack of methanol volume needed to conduct the analysis. In addition, OEME Chemist Clifford collected four Summa canister samples from basement sample locations SG-01, SG-02, SG-06, and SG-10, and one ambient (background) sample from an area outside the basement, for laboratory VOC analysis. At the completion of sampling activities, all personnel departed for the day.

On 29 November 2006, OSC McKeown, EPA Chemist Clifford, START members Ackerman and Rasel, and MEDEP representative Howatt arrived on site to complete PA/SI activities. Activities for the day included using bentonite and concrete to backfill the borings created on 28 November 2006. Ventilation of the basement continued prior to the completion of tasks in the basement. At the completion of site activities, OSC McKeown selected 10% of the samples that had been analyzed on site to be sent for confirmatory analysis at OEME NERL located in North Chelmsford, Massachusetts (see Appendix C – Chain-of-Custody Records).

On 3 January 2007, START member Ackerman received the analytical results from OEME. The results are included in Appendix D [see Appendix D – Analytical Result Tables: Table 1 – VOC Field Screening Results Air/Soil Gas Samples; Table 2 – VOC Field Screening Result Soil/Solid Samples; Table 3 – Air/Soil Gas Analyses (TO-15); Table 4 – VOAs in Soil High Level Method].

Analytical Summaries


Analytical field screening results of the 11 soil gas samples (SG-01 through SG-11) indicated the presence of three VOCs; including cis-1,2-Dichloroethylene (cis-1,2-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) (see Appendix D – Analytical Result Tables: Table 1 – VOC Field Screening Results Air/Soil Gas Samples). Cis-1,2-DCE was detected in one sample (SG-07) at a concentration of 340 ppb/V. TCE was detected in five samples (SG-03, SG-06, SG-07, SG-08, and SG-11); at concentrations ranging from 18 to 1,940 ppb/V. PCE was detected in all 11 samples, at concentrations ranging from 42 to 642,000 ppb/V. Confirmation results from the summa canister samples collected at sample locations SG-01, SG-02, SG-06, and SG-10

indicated the presence of PCE at concentrations ranging from 83 to 10,700 ppb/V. Cis-1,2-DCE and TCE were not detected in the summa canister confirmation samples [see Appendix D – Analytical Result Tables: Table 3 – Air/Soil Gas Analyses (TO-15)].

Analytical field screening results of the 10 concrete dust samples (WT-01 through WT-10) indicated the presence of one VOC. PCE was detected in five samples (WT-03, WT-04, WT-06, WT-07, and WT-08) at concentrations ranging from 57 to 110,500 micrograms per kilogram (μg/kg) (see Appendix D – Analytical Result Tables: Table 2 – VOC Field Screening Result Soil/Solid Samples). No VOCs were detected in confirmation sample WT-02; however, PCE was detected in sample WT-07, at a concentration of 130 μg/kg (see Appendix D – Analytical Result Tables: Table 4 – VOAs in Soil High Level Method).

PCE was detected in all 10 subsurface soil samples (SS-01 through SS-09, and SS-11) screened on site, at concentrations ranging from 82 to 2,300,000 μ g/kg (see Appendix D – Analytical Result Tables: Table 4 – VOAs in Soil High Level Method). Two VOCs, bromomethane and PCE, were detected in subsurface soil confirmation samples. Bromomethane was detected in subsurface soil sample SS-05 at a concentration of 310 μ g/kg; and PCE was detected in SS-05 (77 μ g/kg), SS-07 (1,950,000 μ g/kg), and SS-11 (95 μ g/kg).

III. Appendices

Figure 1

Site Location Map

Charlotte Smith Property Route 191 Meddybemps, Maine

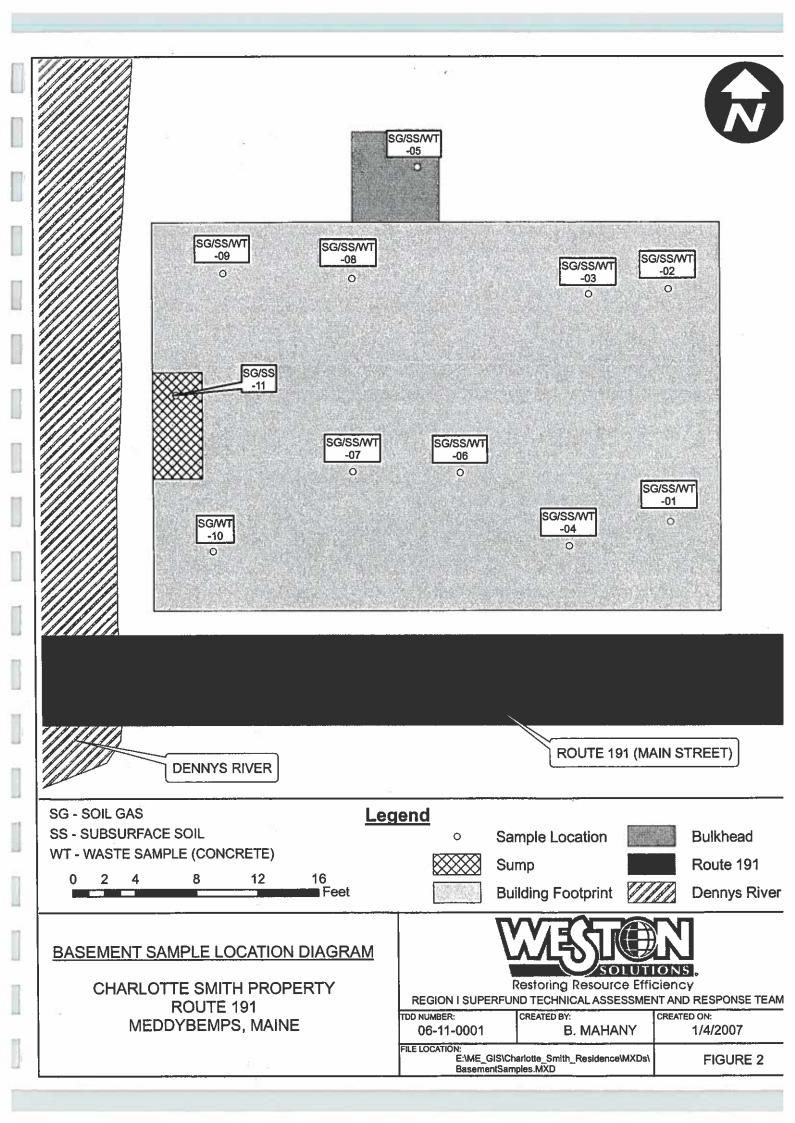
EPA Region I Superfund Technical Assessment and Response Team (START) III Contract No. EP-W-05-042

TDD Number:

06-11-0001

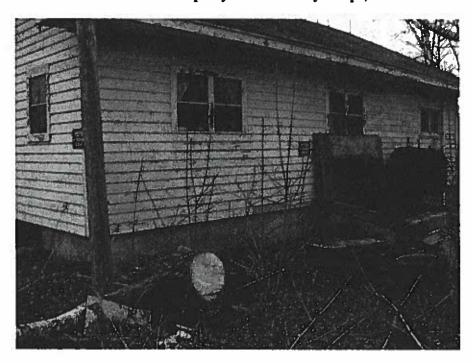
Created by: Created on: Aaron Benoit

7 November 2006


Modified by:

Eric Ackerman 17 May 2007

Modified on:


Data Sources:
Topos: MicroPath/USGS
Quadrangle Name(s): Meddybemps Lake East, Maine
& Meddybemps Lake West, Maine
All other data: START

Appendix B

Photodocumentation Log

SCENE: View of the rear of the residence and the entrance to the basement. Photograph taken facing southwest.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0800 hours

CAMERA: Nikon CoolPix 3100

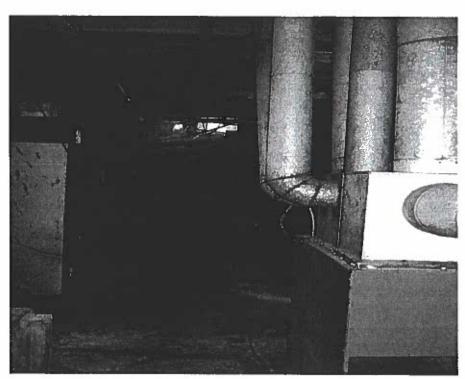
SCENE: View of the bulkhead entrance to the basement. Photograph taken facing southwest.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0801 hours

CAMERA: Nikon CoolPix 3100


SCENE: View of the ventilation/air circulation system used during sampling activities in the basement.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

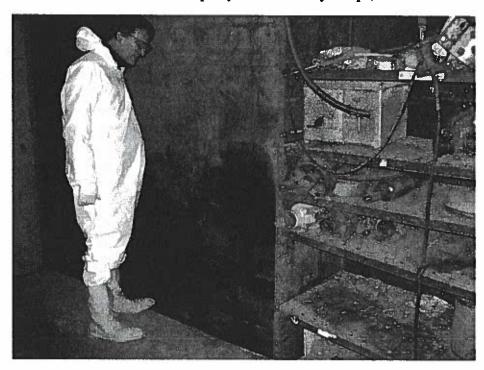
TIME: 0900 hours

CAMERA: Nikon CoolPix 3100

SCENE: View of the ventilation/air circulation system exhaust piping in the basement.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

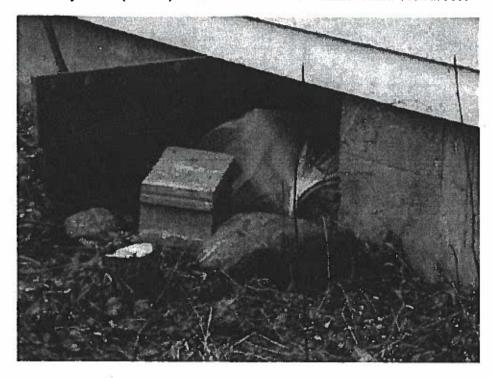

TIME: 0900 hours

CAMERA: Nikon CoolPix 3100

TDD No. 06-11-0001

Page 2 of 6

TASK No. 0258


SCENE: View of START member Eric Ackerman inspecting soil gas (SG)/subsurface soil (SS) sample location 11 located

within the 4 foot deep sump. **DATE:** 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0930 hours

CAMERA: Nikon CoolPix 3100

SCENE: View of the ventilation/air circulation exhaust outlet extending from the basement window on the east side of the

residence. Photograph taken facing southwest.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0945 hours

CAMERA: Nikon CoolPix 3100

TDD No. 06-11-0001

Page 3 of 6

TASK No. 0258

SCENE: View of the ventilation/air circulation exhaust outlet and portable electric generators along the eastern wall of the

site residence. Photograph taken facing southwest.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0946 hours

CAMERA: Nikon CoolPix 3100

SCENE: View of the bulkhead entrance to the basement. Photograph taken facing southwest.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 0949 hours

CAMERA: Nikon CoolPix 3100

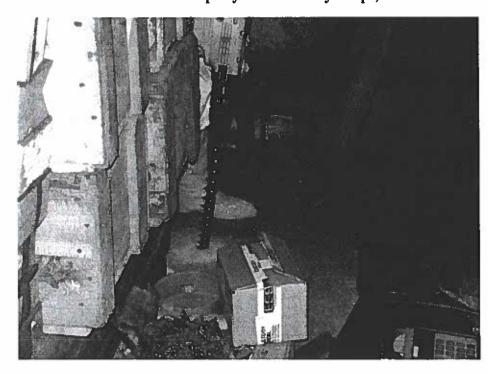
SCENE: View of START preparing to sample in the basement concrete.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 1235 hours

CAMERA: Nikon CoolPix 3100


SCENE: View of air monitoring and sampling equipment in the basement.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 1236 hours

CAMERA: Nikon CoolPix 3100

SCENE: View of the rotary hammer (hammer drill) being used to bore through the concrete floor of the basement.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 1245 hours

CAMERA: Nikon CoolPix 3100

SCENE: View of the staining on the basement floor.

DATE: 28 November 2006

PHOTOGRAPHER: Kathy Howatt (MEDEP)

TIME: 1300 hours

CAMERA: Nikon CoolPix 3100

TDD No. 06-11-0001

Page 6 of 6

TASK No. 0258

Appendix C

Chain-of-Custody Records

Charlott Swilly resemme

Page 1 of 3/2

Weston Solutions, Ins., Andover, MA EPA Contract Number: EP-W-05-042

CHAIN OF CUSTODY RECORD

Sib #: 01-08-11-0001 Eric Ackerman (978) 552-2127

No: 99999-11/28/06-0002

Lab: EPA OEME (NERL)

Forgrou	Analyses	Maturx	Collected	Numb	Numb Container Cont	Preservative	MS/MSD
	VOCs	Soil Gas	11/28/2006	ŀ	Tedlar Bag	40	
	VOCs	Soll Gas	11/28/2006	-	Tedlar Bag	4C	
	NOCs	Soll Gas	11/28/2008	-	Tedlar Bag	4C	
	VOCs	Soli Gas	11/28/2006	-	Tediar Bag	4C	14.
	VOCs	Soll Gas	11/28/2008	-	Tedlar Bag	4C	
	VOCs	Soil Gas	11/28/2006	-	Tedlar Bag	4C	
	VOCs	Soil Gas	11/28/2006	*-	Tedlar Bag	4C	
	VOCe	Soll Ges	11/28/2006		Tedlar Bag	4C	
	VOCs	Soll Gas	11/28/2006	-	Tedlar Bag	40	
	VOCs	Soil Gas	11/28/2006	•	Tedlar Bag	4C	
	VOCS	Soil Gas	11/28/2006	-	Tedlar Bag	40	
	VOCs	Soil	11/28/2006	-	40ml. Vial	Methanol	
	VOCs	Soll	11/28/2006	-	40ml, Vial	Methanol	
	VOCe	Soll	11/28/2006	- :	40mL Vial	Methanol	
	VOCs	Soil	11/28/2008	-	40mL Viel	Methanol	
į	VOCs	Soil	11/28/2006	4	40mL Vial	Methanol	
-	VOCs	Soff	11/28/2008	-	40ml. Vial	Methanol	
	VOCs	Soil	11/28/2008	-	40miL Vial	Methanol	
	VOCs	Soll	11/28/2008	-	40mL Vial	Methanol	

		emi-			0,	
(10)		Cate		100		:31 24
1		Kecewed by		17.00 m		
	r.	Cate	120 m 1500	#2		
		Refindulished by	•			1.2
	The state of the s	: Items/reason				
	_	PI III	1700ks	52		-
	4	Calle	11/29/06	, ,		144
	Doomhund hu	Necelyed Dy	Oct 2011		*	10.00 57 67
	Dob		ulerlob	i i		
	Delinaniehed he	remendation by	Los Cur	9	e.	
	(hemofileacon)	HOLLIEN VOGSOLI		•	10	

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Special Instructions:

Page 2 of 3/7

Weston Solutions, ins., Andover, MA EPA Contract Number: EP-W-05-042

CHAIN OF CUSTODY RECORD

Site #: 01-08-11-0001 Eric Ackerman (976) 552-2127

No: 99999-11/28/06-0002

Lab: EPA OEME (NERL)

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb	Numb Container	Preservative	MS/MSD
ė)						Cont	T.		Ţ
	W1243-0021	83-09	VOCs	Soil	11/28/2006	-	40ml. Viai	Methanol	
	W1243-0023	SS-11	NOC8	Soil	11/28/2006	*	40mL Vial	Methanol	
	W1243-0025	WT-01	VOCs	Concrete (Dust)	11/28/2008	-	40mL Visi	Methanoi	3:53
	W1243-0028	WT-02	VOCs	Concrete (Dust)	11/28/2006	-	40mL Vial	Methanol	
38	W1243-0027	WT-03	VOCs	Concrete (Dust)	11/28/2006	3	40mL Vial	Methanof	(22)
	W1243-002B	WT-04	VOCs	Concrete (Dust)	11/28/2008	-	40mL Viai	Methanol	100 200
	W1243-0029	WT-06	VOCs	Concrete (Dust)	11/28/2006		40mL Viai	Methanol	*
	W1243-0030	WT-06	VOCs	Concrete (Dust)	11/28/2006	-	40mL Viai	Methanol	t d
	W1243-0031	WT-07	VOCe	Concrete (Dust)	11/28/2006	· Kar	40mL Vial	Methanol	
	W1243-0032	WT-08	VOCs	Concrete (Dust)	11/28/2008	72	40mL Vial	Methanoi	
	W1243-0033	WT-09	VOCe	Concrete (Dust)	1/28/2008	1	40mL Vial	Methanot	
	W1243-0034	WT-10	VOCs	Concrete (Dust)	11/28/2008	<u>.</u>	40mL Vial	Methanol	

SAMPLES TRANSFERRED FROM	CHAIN OF CUSTODY #		
		0.50	
		Se	
	×		
	Æ		
	70		34
	dions:		
95	icial Instruc		
	Sp		

			*	
Time				
Date				59
Received by		*	157 60 1 68 1	
Date			550	
Relinquished By		•		2 3 3 3 4
Items/Reason	8 2	8.20	£ 20	10 M
Time	smool I	•		
Date	16 sto	//	234	4
Received by	Mrst Court Coll 1111	///		347
Date	11 25/06			570
Relinquished by	25 h Con	9.		2
Items/Reason	 	8		

Page 1 of 1

Weston Solutions, Ins., Andover, MA EPA Contract Number: EP-W-05-042

Charloth Swith Basenut Meddy Laines ME

Site #: 01-08-11-0001 Eric Ackerman (978) 552-2127

No: 99999-11/29/06-0006

Lab: EPA OEME (NERL)

MS/MSD						*	-						:		4				
Preservative	Methanol	Methanol	Methanol	Methanol	Methanol	Methanol				ā		1.2							
Container	40 ml VOA	40 ml VOA	40 ml VOA	40 mi VOA	40 mi VOA	40 mi VOA	6-Liter Summa	6-Liter Summa	8-Liter Summa	8-Liter Summa	6-Liter Summe	57				<u> 1</u> 3.			
Numb Cont Container	231	:::	-	-	-	-	7-	-	-	-	-						<u>.</u>	,	
Collected	11/28/2006	11/28/2006	11/28/2008	11/28/2008	11/28/2006	11/28/2006	11/28/2006	11/28/2006	11/28/2006	11/28/2008	11/28/2008	53					91	.04	*
Matrix	Soll (Blank)	Soll	Soil	Soll	Concrete (Dust)	Concrete (Dust)	Soll Gas	Soil Gas	Soil Gas	Soil Gas	Soli Gas		72			(P)			•
Analyses	VOC	Noc	Noc	Noc	Noc	NOC	Noc	NOC	NOC	Noc	Noc				**				
Location	MB-01	\$8-05	SS-07	SS-11	WT-02	WT-07	86-01	SG-02	80-08	SG-10	Ambient				100		7	8	
Sample #	W1243-0043	W1243-0045	W1249-0046		W1243-0048		W1249-0050		W1243-0062	W1243-0053	W1243-0054								
Lab#														3					

3°		*				2	NAS .	PLES TRA	SAMPLES TRANSFERRED FROM		
Special Instructions:			•				CH	CHAIN OF CUSTODY#	TODY #		10
			:		2			÷			
Items/Reason	Relinquished by	Date	Received by	Date	Time.	items/Reason	Relinquished By	Date	Received by	Date	TIMB
#	Ens. Com	20142/11	Quality !!!	idaspe	So:01 adreli		,	77.0			
==				10		8 10					(8)
	3.						10				
					147					7.2	

Appendix D

Analytical Result Tables

Table 1 – VOC Field Screening Results Air/Soil Gas Samples
Table 2 – VOC Field Screening Result Soil/Solid Samples
Table 3 – Air/Soil Gas Analyses (TO-15)
Table 4 – VOAs in Soil High Level Method

TABLE 1

VOC FIELD SCREENING RESULTS AIR/SOIL GAS SAMPLES CHARLOTTE SMITH PROPERTY MEDDYBEMPS, MAINE

				Tentative	ly Identified Compo	unds
	Sample Number	Location	Date Sampled	cls-1,2-Dictioroethylene	Trichloroethylene	Tetrachloroethylene
	Breathing Zone*	Basement	11/28/2006	NA.	NA	11
c	W1243-0001	SG-01	11/28/2006	10 U	10 U	1,690
c	W1243-0002	SG-02	11/28/2006	10 U	10 U	125
Г	W1243-0003	SG-03	11/28/2006	50 U	110	1,840
Г	W1243-0004	SG-04	11/28/2006	50 U	20 U	5,860
Г	W1243-0005	SG-05	11/28/2006	50 U	20 U	42
c	W1243-0006	SG-06	11/28/2006	50 U	18	9,730
Г	W1243-0007	SG-07	11/28/2006	340	1,940	642,000
Г	W1243-0008	SG-08	11/28/2006	50 U	52	23,500
Г	W1243-0009	SG-09	11/28/2006	50 U	50 U	302
c	W1243-0010	SG-10	11/28/2006	50 U	20 U	950
	W1243-0011	SG-11	11/28/2006	50 U	54	9,530

NOTES:

Results are reported on an "as received" basis.

Results are reported in parts per billion by volume (ppb/V).

SG - Soil Gas sample.

- C Indicates that a confirmation sample was collected in Summa cannisters for these locations.
- U The compound was analyzed for, but not detected. The value is the Sample Quantitation Limit (SQL).

^{*} Breathing Zone Sample - The EPA Chemist confirmed that VOC levels within the breathing zone of the basement were below HASP action levels.

TABLE 2

VOC FIELD SCREENING RESULTS SOIL/SOLID SAMPLES **CHARLOTTE SMITH PROPERTY** MEDDYBEMPS, MAINE

	Sample Number	Location	Date Sampled	Tentatively identified Compounds Tetrachiloroethylene
T	W1243-0025	WT-01	11/28/2006	30 U
cl	W1243-0026	WT-02	11/28/2006	30 U
1	W1243-0027	WT-03	11/28/2006	95
_	W1243-0028	WT-04	11/28/2006	93
+-	W1243-0029	WT-05	11/28/2006	NA
	W1243-0030	WT-06	11/28/2006	110,500
c	W1243-0031	WT-07	11/28/2006	2,640
	W1243-0032	WT-08	11/28/2006	57
\top	W1243-0033	WT-09	11/28/2006	30 U
\top	W1243-0034	WT-10	11/28/2006	30 U
	W1243-0013	SS-01	11/28/2006	82
\top	W1243-0014	SS-02	11/28/2006	123
_	W1243-0015	SS-03	11/28/2006	405
_	W1243-0016	SS-04	11/28/2006	1,310
С	W1243-0017	SS-05	11/28/2006	94
\top	W1243-0018	SS-06	11/28/2006	5,510
c	W1243-0019	SS-07	11/28/2006	2,300,000
_	W1243-0020	SS-08	11/28/2006	3,680
	W1243-0021	SS-09	11/28/2006	218
С	W1243-0023	SS-11	11/28/2006	1,240

NOTES:

- WT Concrete Dust sample
- SS Subsurface Soil sample
- Results are reported on a "Wet Weight Basis". Results are reported in micrograms per Kilogram (µg/Kg).
- C Indicates that a confirmation sample was collected for this station.
- U The compound was analyzed for, but not detected. The value is the sample quantitation limit (SQL).
- NA Not Analyzed.

Site: Charlotte Smith Property Case: NA SDG: W1243-001 Laboratory: OEME

TABLE 3 Air/Soil Gas Analyses (TO-15)

	Canister No. Lab Sample ID Scribe Number Date Collected	SG- AA67 W1243 11/28/	950 ⊢0050	SG- AA67 W1243 11/28	7951 3-0051	SG- AA67 W1243 11/28	952 -0052	AA6 W124	-10 7953 3-0053 /2006	Amb AA67 W1243 11/28	7954 3-0054	
Analyte		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Method
1,2,4-Trimethylbenzene		ND	32	ND	3.5	ND	220	ND	0.053	0.19	0.16	TO-15
4-Ethyttoluene		ND	30	ND	3.3	ND	210	ND	0.05	0.19	0.15	TO-15
Acetone		ND	58	ND	6.4	ND	400	ND	0.096	2.8	0.29	TO-15
Benzene		ND	32	ND	3.5	ND	220	ND	0.053	0.69	0.16	TO-15
Carbon Tetrachioride		ND	31	ND	3.4	ND	220	ND	0.052	0.07	0.16	TO-15
Dichlorodifluoromethane		ND	32	ND	3.5	ND	220	ND	0.053	0.5	0.16	TO-15
Ethylbenzene		ND	32	ND	3.5	ND	220	ND	0.053	0.2	0.16	TO-15
Hexane		ND	32	ND	3.5	ND	220	ND	0.053	0.33	0.18	TO-15
Isopropyl Alcohol		ND	57	39	6.3	ND	400	ND	0.095	110	0.29	_TO-15
Tetrachloroethylene		1370	32	83	3.5	10700	220	1460	0.053	0.43	0.16	TO-15
Toluene		ND	31	ND	3.4	ND	220	ND	0.052	1.4	0.16	TO-15
Trichlorofluoromethane		ND	31	ND	3.4	ND	220	ND	0.052	0.21	0.16	TO-15
m/p-Xylenes		ND	60	ND	6.6	ND	420	ND	0.1	0.6	0.31	TQ-15
o-Xylene		ND	31	ND	3.4	ND	220	ND	0.052	0.22	0.16	TO-15

Results are reported in parts per billion by volume (ppb/V). ND - Not detected
L - Estimated value is below the calibration range.
RL - Reporting Limit

SITE: CHARLOTTE SMITH PROPERTY

CASE: NA SDG: W1243-0001 LABORATORY: OEME (NERL)

TABLE 4 **VOAs in Soil High Level Method**

SAMPLE LOCATION: SAMPLE NUMBER: LABORATORY NUMBER:		MB-01 W1243-0043 AA67944		SS-05 W1243-0045 AA67945	SS-07 W1243-0046 AA67946		SS-11 W1243-0047 AA67947		WT-02 W1243-0048 AA67948		WT-07 W1243-0049 AA67949	
COMPOUND Bromomethane	Reporting Limit	50	U	310 77	100000 1950000	U	51 95	U	54 54	U	85 130	U
Tetrachloroethylene	50	50	<u> </u>		1950000		90		- 04	<u> </u>	130	
DILUTION: DATE SAMPLED: DATE EXTRACTED: DATE ANALYZED:		50 11/28/06 11/30/06 11/30/06		50 11/28/06 11/30/06 11/30/06	100000 11/28/06 11/30/06 11/30/06		50 11/28/06 11/30/06 11/30/06		50 11/28/06 11/30/06 11/30/06		50 11/28/06 11/30/06 11/30/06	

VOA - Volatile Organic Analysis All Results are reported in micrograms per Kliogram (μοκο)