

February 13, 2025

Ms. Tanya Hovell
Maine Department of Environmental Protection
Bureau of Air Quality
106 Hogan Road
Bangor, ME 04401
Tanya.Hovell@maine.gov

Re: Cold Brook Energy | Fenceline Monitoring Q4-2024 | 809 Main Road North, Hampden, Maine

Dear Ms. Hovell:

Attached is the Fourth Quarter 2024 Fenceline Monitoring Report. A total of seven monitoring periods were conducted throughout the fourth quarter of 2024. Each monitoring period consisted of 14 days, with the exception of the sampling period from December 11, 2024, to December 26, 2024 (discussed below). During each monitoring period at the Coldbrook Energy Facility, twelve Fenceline Monitoring samples were deployed and collected. In accordance with EPA Method 325A, one field blank and one duplicate sample were collected for every ten ambient air samples.

The sampling period from December 11, 2024, to December 26, 2024, was extended by one additional day, due to the Federal holiday. The first monitoring period in 2025 has been corrected to 13 days of monitoring, due to the holiday adjustment. Following the completion of the Field Replicate Precision analysis, duplicate samples with a variance greater than 30% were flagged. We have reported the results based on the sample ID number documented on the Chain of Custody, field data sheets and lab reports. No deployment or retrieval issues were encountered during the fourth quarter.

If you have any questions, please do not hesitate to contact me at 207-989-4824 or ksullivan@haleyward.com, or contact Kevin Fish directly at 207-945-9465.

Haley Ward, Inc.

Kyle Sullivan, Project Manager

Environmental Division

KSS/jnp/kjf Attachments

ATTACHMENT 1

Cold Brook Energy 809 Main Rd North, Hampden, Maine Q4-2024 Fenceline Monitoring Data Summary

in the second second	1)174		405000		RESIDENCE.	A STATE OF THE PARTY OF	KR3102	No. of the same	9	/18/2024-10/2/2	024	Augusta Presidentes	Unit. Ivide	3.5	MANAGORIAN.	by Albana de	V to make the	ACIVE CARREST	A P 1 ST 1 ST 1 ST 1		Shocks
	0000	Benzene				Tolue	ene		Mary west	Ethylber	nzene	100 may 1010 - 1		m,p-)	ylene		8 - Jan 19	o-X	vlene	and the same of	Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifler	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	
FLM 1 - Sample	12		0.89	0.28	24	-	2.3	0.60	2.9	100 A . 100 A	0.32	0.073	8.9		0.96	0.22	3.4		0.37	0.086	
FLM 2 - Sample	13		100 100/	0.31	27		2.6	0.69	3.9	* Contract	0.42	0.096	12		1.3	0.29	4.3	0.000 a 1000	0.47	0.11	
FLM 3 - Sample	15		1.1	0.34	30	- =	2.9	0.76	3.8		0.41	0.095	12		1.3	0.30	4.5	LEMMA LOCKE	0.49	0.11	
FLM 4 - Sample	10	n 10	0.76	0.24	21	-	2	0.53	2.8	(e e e e e e e e e e e e e e e e e e e	0.3	0.07	9.2	=	0.99	0.23	3.3		0.36	0.083	
FLM 5 - Sample	9.2		0.7	0.22	18		1.7	0.45	2.3	Amy of a female	0.25	0.06	7.5		0.81	0.19	2.7.	V->0 €2.5 (1.2)	0.29	0.066	
FLM 6 - Sample	9.7	-100	0.73	0.23	19	=	1.8	0.47	2.5		0.27	0.062	8.3		0.9	0.21	3.2	100 to 10	0.35	0.08	
FLM 7 - Sample	10	1	0.77	0.24	22		2.1	0.55	2.8	= 100	0.31	0.071	9.7		1.1	0.24	3.8		0.4	0.093	1
FLM 8 - Sample	11		0.86	0.27	22	=	2.1	0.57	2.8	1000	0.3	0.069	8.8		0.95	0.22	3.5		0.37	0.086	1
FLM 9 - Sample	14		1.1	0.34	36		3.5	0.92	6.2		0.67	0.15	21		2.2	0.51	8.1	Wall of the last	0.88	0.20	
FLM 10 - Sample	16	100 -000	1.2	0.38	36		3.5	0.93	4.1	1000 a 1000	0.44	0.10	13		1.5	0.33	5.2	FROM BRIDE	0.56	0.13	
FLM 11 - Sample	13		100100	0.31	30		2.9	0.77	3.5		0.38	0.088	11		1.2	0.28	4.4	A 1000 - 1000	0.47	0.11	
FLM 12 - Sample	13	10 m	0.98	0.31	25		2.4	0.64	2.8	CONTRACTOR	0.3	0.07	8.4	-	0.91	0.21	3.3	A WOOD WEST	0.36	0.082	
FLM 13 - Dupe (FLM 7)	10	P2004 - 23-14	0.78	0.24	21	=	2	0.54	2.9	=	0.31	0.072	9.5	-	1	0.24	3.6	- 1	0.39	0.090	
FLM 14 - Dupe (FLM 12)	13	1800 - 1800	0.94	0.29	27		2.6	0.69	3.5	Copy + color	0.37	0.086	11		1.2	0.28	4.1	1 may 1 min	0.44	0.10	
FLM 15 - Blank (FLM 1)	2	<	0.15	0.046	2	<	0.19	0.051	2	<	0.22	0.050	4	<	0.43	0.099	2	<	0.22	0.050	
FLM 16 - Blank (FLM 5)	2	<	0.15	0.046	2	<	0.19	0.051	2	٠,	0.22	0.050	4	<	0.43	0.099	2	<	0.22	0.050	
MDL ug/m ³	2	NA	<0.15	<0.00015	2	NA	<0.19	<0.00019	2	NA NA	<0.22	<0.00022	4	NA	< 0.43	<0.00043	2	NA NA	<0.22	<0.00022	

Cold Brook Energy

809 Main Rd North, Hampden, Maine Q4-2024 Fenceline Monitoring Data Summary

他们是快乐性处理 计算机			A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9/18/2024 -	10/2/2024	assemble Chief	SAR BUTTER	1.76	Cally Call	No. of House
				Tota	l ng					
	Be	nzene	To	luene	Ethyl	benzene	m,p	-Xylene	0-)	(ylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	12		24	(8)	2.9	(F853 _) _ 1	8.9	1	3.4	e supranto vesto
FLM 2 - Sample	13	N PARTITION OF	27		3.9		12		4.3	a few and the
FLM 3 - Sample	15	Tay Back	30		3.8		12		4.5	A FE THE WATER
FLM 4 - Sample	10		21	i i	2.8		9.2		3.3	B Karl Contact
FLM 5 - Sample	9.2	图 1981年起	18	1	2.3		7.5		2.7.	AT SALANT
FLM 6 - Sample	9.7	The state of the s	19	100	2.5		8.3		3.2	E BE TO LAND
FLM 7 - Sample	10		22		2.8	A CHARLES	9.7		3.8	
FLM 8 - Sample	11		22	7	2.8		8.8		3.5	
FLM 9 - Sample	14		36		6.2		21		8.1	A WAY DOWN
FLM 10 - Sample	16	y Chemiles	36		4.1	计正程序类型 结合	13		5.2	A TRUETALVEY
FLM 11 - Sample	13	L PROBLEM	30	1	3.5		11		4.4	
FLM 12 - Sample	13		25	16	2.8		8.4		3.3	
FLM 7 - Dup	10		21		2.9	BONG STATE	9.5		3.6	
Field Duplicate Precision		0		5	Market 1	4		2		5
FLM 12 - Dup	13	美国共享的	27		3.5	H DEVELOPE DE	11		4.1	
Field Duplicate Precision		0		8	was the state	22		27		22
FLM 2 -Blank	2	U	2	U	2	U	4	U	2	U
FLM 4 -Blank	2	U	2	U	2	U U	4	U	2	U
MDL ng	2		2		2		4		2	图 特别人

Field Duplicate Precision exceeding 30% are indicated by:

"U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 3258

C 110 (F1-F2I) 100

40

1/14/2019

Where

F1 = A measurement value (mass) taken from one of the two field replicate tubes used in

F2 = A measurement value (mass) taken from the second of two field replicate tubes used sampling.

F = The average of F1 and F2.

Method 325 A/B Field Data Sheet

10000	erica e le	
Site	NIOR	no.
SILE	IVAL	ne.

Cold Brook Energy

Site Address:

809 Main Rd North

City:

Hampden

State:

Maine

Zip Code:

04444

Sampling Period:

9-18-24 to 10-2-24

Avg. Wind

Avg. Ambient

Temperature:

Avg. Barometric Pressure (in. Hg): 29.9

Speed and Direction:

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12"	A /A / A MIA		~ O : C		
W68° 47' 00.09"	FLM 1 - Sample	9/18/2024	0948	10/2/2024	0920
N44° 46' 43.51"					
W68° 46' 59.55"	FLM 2 - Sample	9/18/2024	0957	10/2/2024	0925
N44° 46' 42.41"			10-2	Taking to the	60211
W68° 47' 00.80"	FLM 3 - Sample	9/18/2024	1002	10/2/2024	6934
N44° 46′ 41.62″		24.16.2529	1000	2.4.2.20	MARG
W68° 47' 01.76" N44° 46' 40.41"	FLM 4 - Sample	9/18/2024	1007	10/2/2024	0939
W68° 47' 03.25"	FLM 5 - Sample	0/19/2024	1010	10/2/2024	0948
N44° 46' 40.54"	rtivi 5 - Sample	9/18/2024	1010	10/2/2024	0991
W68° 47' 04.34"	FLM 6 - Sample	9/18/2024	1017	10/2/2024	0956
N44° 46' 41.25"		1111	1017		0 10 1
W68° 47' 05.46"	FLM 7 - Sample	9/18/2024	1021	10/2/2024	1000
N44° 46' 42.19"			1000		1000
W68° 47' 04.63"	FLM 8 - Sample	9/18/2024	1029	10/2/2024	1015
N44° 46' 43.01"			12755727		
W68° 47' 04.90"	FLM 9 - Sample	9/18/2024	0920	10/2/2024	0859
N44° 46' 44.11"			- 0 -		
W68° 47' 03.88"	FLM 10 - Sample	9/18/2024	0930	10/2/2024	69105
N44° 46′ 44.80"				1 /3W.00	m 0
W68° 47' 03.01"	FLM 11 - Sample	9/18/2024	0938	10/2/2024	0910
N44° 46' 44.82"			0.12		~ Q
W68° 47' 01.49"	FLM 12 - Sample	9/18/2024	0942	10/2/2024	4160
N44° 46' 41.25"					001
W68° 47' 05.46"	FLM 7 - Dup	9/18/2024	1022	10/2/2024	1001
N44° 46' 44.82"		545036.0	0012	6463656	Caul
W68° 47' 01.49"	FLM 12 - Dup	9/18/2024	0943	10/2/2024	0914
N44° 46' 44.12" W68° 47' 00.09"	FIAA 1 - Blook	0/10/2024	0949	10/2/2024	0920
N44° 46' 40.41"	FLM 1 - Blank	9/18/2024	0 1-11	10/2/2024	0912-
	FLM 5 - Blank	9/18/2024	1010	10/2/2024	0948

Sampler Name:

Tanesha Pottle

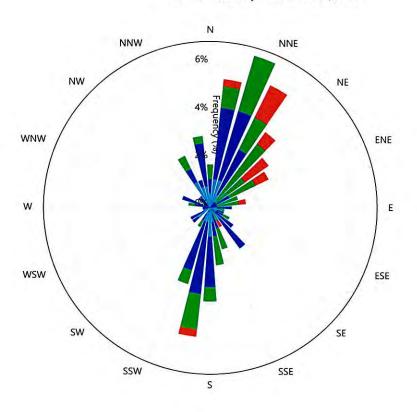
Sampler Signature:

Privacy Policy

Hi Jason! Log out

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

September 18, 2024 - October 02, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

0 1.3 - 4

94-8

8 - 13

13 - 19

9 19 - 25

25 - 32 32 - 39

9 39 - 47 **9** 47 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Latitude: 44.7979

Start Date: September 18, Sub Interval Windows

2024

Start End

Longitude: -68.8185

(mph)

End Date: October 02,

January December Date

Elevation: 147 ft. Element : Mean Wind Speed 2024

31

of Days: 15 of 15 24 Hour 0 # obs : poss : 353 of 360

(Greater than or equal to initial interval value and Less than ending interval value.)

Range 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI,

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 12/9/2024 10:48:14 AM EST

Copyright © 2000-2023 Midwestern Regional Climate Center. All rights reserved.

		S Physical Company	INSTANCE.	MI JEJN SEW			NAME OF	NEW BURNE	Per Prison	0/2/2024-10/16/	2024	water days of	JAMES STATE	11-11	111201	E-1045	Wallet Va	TY STEP COLUMN THE	STATE OF STREET		-D-1
	STATE OF THE PARTY	Benzene		11 7 70		Tolue	ene		11,750,711.00	Ethylbe	enzene	Value of the said		m,p-)	Cylene		10000	o-Xv	lene	Spring South	Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppby	ng	Qualifier	ug/m3	ppbv	
FLM 1 - Sample	2	99-34-319	0.15	0.046	2	<	0.19	0.051	2	<	0.22	0.050	4	<	0.43	0.099	2	Carlos Compa	0.22	0.050	
FLM 2 - Sample	12	100 m 1942	0.94	0.29	20		1.9	0.52	2.3		0.25	0.057	6.3		0.68	0.16	2.2	Court water	0.24	0.056	
FLM 3 - Sample	18	= 100	1.4	0.44	27		2.6	0.69	3.3		0.35	0.081	9.3		1.0	0.23	3.6	of the same	0.39	0.089	
FLM 4 - Sample	2		0.15	0.046	2	<	0.19	0.051	2	<	0.22	0.050	4	<	0.43	0.099	2	O MARKET & THE REAL PROPERTY.	0.22	0.050	
FLM 5 - Sample	11	THE RESERVE	0.85	0.27	14		1.3	0.36	2		0.22	0.050	4.5	-	0.48	0.11	2		0.22	0.050	
FLM 6 - Sample	9.3	A 191 B 1 1 1 1 1	0.7	0.22	12	=	1.1	0.30	2		0.22	0.050	4.1		0.44	0.10	2		0.22	0.050	-
FLM 7 - Sample	8.9		0.67	0.21	11	=	1	0.28	2	<	0.22	0.050	4		0.43	0.099	2	10000-000	0.22	0.050	\vdash
FLM 8 - Sample	8.6	Sec. 25.00	0.65	0.20	11		1	0.28	2	100	0.22	0.050	4.4		0.47	0.11	2	CONTRACTOR	0.22	0.050	$\overline{}$
FLM 9 - Sample	12	THE LAND	0.87	0.27	18	=	1.7	0.46	3.5		0.37	0.086	11		1.2	0.27	4,3	0.100E-000E	0.46	0.050	-
FLM 10 - Sample	19	1-07 A = 100.00	1.5	0.47	39		3.7	0.98	5.2	o Children Cod	0.56	0.13	16	-	1.7	0.40	6.5		0.48	0.11	-
FLM 11 - Sample	14 151500	1000	1.1	0.34	27		2.5	0.67	3.7	Later Section	0.4	0.091	11	-	1.2	0.40	4.1	2000	0.44	0.10	$\overline{}$
FLM 12 - Sample	14	(Horaka)	1.1	0.34	24		2.3	0.60	2.8		0.3		7.8		0.84	0.19	3.2		0.34	0.10	-
FLM 13 - Dupe (FLM 3)	18	TO	1.4	0.44	28		2.6	0.70	3.4	A Military Common	0.37	0.085	9.1	-	0.98	0.22	3.7	-	0.34	0.079	-
FLM 14 - Dupe (FLM 10)	19	Water and the	1.5	0.47	41	-	3.9	1.00	5.4	V Miles Collec											_
run 14 bape (run 10)			1.5	0.47	41	-	3.9	1.00	5.4	I was been been to	0.59	0.13	17		1.8	0.41	6.6	11 . II # 11 . II	0.71	0.16	
FLM 15 - Blank (FLM 5)	2	<	0.15	0.046	2	<	0.19	0.051	2	•	0.22	0.050	4	<	0.43	0.099	2	<	0.22	0.050	
FLM 16 - Blank (FLM 2)	2	<	0.15	0.046	2	<	0.19	0.051	2	<	0.22	0.050	4	<	0.43	0.099	2	<	0.22	0.050	
MDL ug/m ³	2	NA NA	<0.15	< 0.00015	2	NA	<0.19	< 0.00019	2	NA NA	<0.22	<0.00022	4	NA	< 0.43	<0.00043	15,000 2 0 0 0	NA.	<0.22	<0.00022	

	经推荐的	是於海绵主於		10/2/2024-1	0/16/2024	Marie State of the	Serial State	US MADE AND		
				Tota	l ng					
	Be	nzene	To	luene	Ethyl	benzene	m,p	-Xylene	0->	(ylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	2	U	2	U	2	U	4	U	2	U
FLM 2 - Sample	12	G MENGTIES	20	5	2.3	以下 正常生以	6.3		2.2	A GLASSIAN A
FLM 3 - Sample	18	SEEDINE	27	3	3.3		9.3		3.6	
FLM 4 - Sample	2	A STATE OF THE STA	2	U	2	U	4	U	2	Ü
FLM 5 - Sample	11	H WESTERNESS	14		2	Ü	4.5		2	U
FLM 6 - Sample	9.3		12		2	U	4.1		2	U
FLM 7 - Sample	8.9		11	1	2	U	4	U	2	U
FLM 8 - Sample	8.6		11	- D	2	U	4.4		2	U
FLM 9 - Sample	12	6 150 4,835 6	18	P.	3.5	N A STATE OF THE	11		4.3	P. Calendari
FLM 10 - Sample	19		39		5.2		16		6.5	· 加州李列。2
FLM 11 - Sample	14	TO PROMISE	27		3.7	10.11	11		4.1	
FLM 12 - Sample	14		24	1	2.8	THE PLANT OF THE	7.8		3.2	E. L.
FLM 13 - Dupe (FLM 3)	18	S CHECKLE	28	(A)	3.4	4 3 17	9.1		3.7	Marine Marine
Field Duplicate Precision		0		4	in Dieses	3		2		3
FLM 14 - Dupe (FLM 10)	19	CHARLES	41		5.4	Mark Bridge	17		6.6	10 4 5
Field Duplicate Precision		0		5	Legation 1	4		6	2011/06/20	2
FLM 15 - Blank (FLM 5)	2	U	2	U	2	U	4	U	2	l u
FLM 16 - Blank (FLM 2)	2	U 4	2	U	2	U	4	U	2	U
MDL ng	2		2		2		4		2	

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

riose de moderial.

Method 325 A/B Field Data Sheet

Site Name:	Cold Brook Energy		_ Site Address:	809 Main Rd No	orth		
City:	Hampden		_State:	Maine			وسيونس
Zip Code:	04444		Sampling Period:	10/2/24	10	10/16	,/24
Avg. Ambient Temperature:	51.8°F	Avg. Barometric Pressure (in. Hg):	- 29.7#	Avg. Wind Speed and Q Direction:	6.2	mph	17

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12" W68° 47' 00.09"	FLM 1 - Sample	10/2/2024	0922	10/16/2024	0953
N44° 46' 43.51" W68° 46' 59.55"	FLM 2 - Sample	10/2/2024	0926	10/16/2024	0455
N44° 46' 42.41" W68° 47' 00.80"	FLM 3 - Sample	10/2/2024	0935	10/16/2024	1003
N44° 46' 41.62" W68° 47' 01.76"	FLM 4 - Sample	10/2/2024	0940	10/16/2024	1007
N44° 46' 40.41" W68° 47' 03.25"	FLM 5 - Sample	10/2/2024	0949	10/16/2024	1013
N44° 46' 40.54" W68° 47' 04.34"	FLM 6 - Sample	10/2/2024	0957	10/16/2024	1018
N44° 46' 41.25" W68° 47' 05.46"	FLM 7 - Sample	10/2/2024	10:01	10/16/2024	1025
N44° 46' 42.19" W68° 47' 04.63"	FLM 8 - Sample	10/2/2024	1020	10/16/2024	KU30
N44° 46' 43.01" W68° 47' 04.90"	FLM 9 - Sample	10/2/2024	0903	10/16/2024	0138
N44° 46' 44.11" W68° 47' 03.88"	FLM 10 - Sample	10/2/2024	095	10/16/2024	0941
N44° 46' 44.80" W68° 47' 03.01"	FLM 11 - Sample	10/2/2024	0911	10/16/2024	0946
N44° 46' 44.82" W68° 47' 01.49"	FLM 12 - Sample	10/2/2024	0918	10/16/2024	0450
N44° 46' 42.41" W68° 47' 00.80"	FLM 13 - FLM 3 DUP	10/2/2024	0935	10/16/2024	1003
N44° 46' 44.11" W68° 47' 03.88"	FLM 14 - FLM 10 DUP	10/2/2024	0907	10/16/2024	00141
N44° 46' 40.41" W68° 47' 03.25"	FLM 15 - FLM 5 Blank	10/2/2024	0950	10/16/2024	1013
N44° 46' 43.51" W68° 46' 59.55"	FLM 16 - FLM 2 Blank	10/2/2024	0927	10/16/2024	0958

Sampler Name:

Tanesha Pottle

Sampler Signature:

Janesha Bette

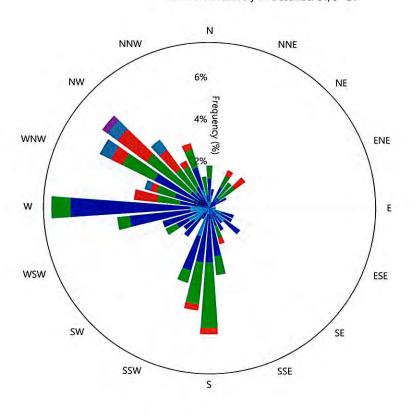
MRCC Midwestern Regional Climate Center

Privacy Policy

Log out

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

October 02, 2024 - October 16, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

0 1.3 - 4

4 - 88 - 13

13 - 19

19 - 25

0 25 - 32

32 - 3939 - 47

9 47 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Latitude: 44.7979 Start 2024

Start Date: October 02, Sub

Sub Interval Windows Start End

Longitude: -68.8185

End Date : October 16, 2024

Date January December

Elevation: 147 ft. Element: Mean Wind Speed

of Days : 15 of 15 # obs : poss : 359 of 360

1 31 Hour 0 24

(Greater than or equal to initial interval value and Less than ending interval value.)

(mph) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

1.3 - 4 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.3 0.9 0.0 0.3 0.3 0.0 0.3 0.3 1.4 0.0 0.3 0.9 1.1 0.6 0.9 0.9 0.0 0.3 0.3 0.0 0.0 0.0 0.9 0.3 11.7

4 - 81	1.1 0.3 0.	0 1.1 0	0.60	.6 0.	9 0.3	0.0	0.3	0.0	0.6	0.9	0.9	0.9	0.9	0.6	2.3	2.3	2.3	1.7	0.6	1.4	0.6	0.6	1.7	2.9	5.7	1.4	1.4	2.6	1.1	0.9	1.1	1.1	0.3	41.7
8 - 13	0.6 0.0 0.	3 0.6 0	0.9	.9 0.	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.9	3.1	210	0.6	0.0	0.0	0.0	0.6	0.0	0.6	0.9	1.1	0.9	1.7	2.6	1.4	1.1	0.9	0.9	22.9
13 - 19	0.0 0.0 0.	0 0.3 0	0.0	.6 0.	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.3	0.6	1.7	1.1	0.3	0.3	0.0	7.1
19 - 25	0.0 0.0 0.	0.00	0.0	.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.6	0.0	0.0	0.0	2.0
25 - 32	0.0 0.0 0.	0.00	0.0	.0 0.	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.3
32 - 39	0.0 0.0 0.	0.00	0.0	.0 0.	0.00	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39 - 47	0.0 0.0 0.	0.00	0.0	.0 0.	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47 -	0.0 0.0 0.	0.00	0.0	.0 0.	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	2.0 0.9 0,	3 2.0 1	1.4 2	.0 0.	9 0.3	0.00	0.3	0.3	1.1	1.1	1.7	0.9	1.1	1.7	3.1	6.0	4.9	3.7	0.6	1.7	1.4	2.3	2.3	4.3	7.4	3.7	3.1	5.7	6.3	4.0	2.6	3.1	1.4	85.7
Calm (<1.3)																																		14.3
Ave Speed	6.7 4.3 9.	0 8.0 8	3.29	.6 6.	7 6.0	•	5.0	3.0	4.5	4.8	4.7	5.0	5.5	7.2	7.5	8.1	7.8	5.6	6.0	5.0	4.2	5.1	4.9	5.5	6.0	10.1	8.7	9.6	11.6	12.1	8.4	7,1	7.0	5.5

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 12/9/2024 10:42:50 AM EST

Copyright © 2000-2023 Midwestern Regional Climate Center. All rights reserved.

NO UNICOSTRUPT PRINTS	est and his concessor	Market Street	Name of	U.S. T. S. S. T. S. S. S.		AND Victor	Rehime	COURS SHOW	10	/16/2024-10/30/	2024	Clien Attal	WIND SALV	Shift and the	THE MINISTER	-	11210	THE MILES	-11-11-11-11-11-11-11-11-11-11-11-11-11	setor an	100
	CISH PRODUCTOR	Benzene				Tolu	ene		A SHIPPING COMM	Ethylbe	nzene	Control Common di		m,p-)	(ylene		THE RESERVE OF	o-Xy	lene	discontinue of the later of the	Flag
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	
FLM 1 - Sample	13	THE STREET PROPERTY.	0.97	0.30	25		2.4	0.64	3.3		0.36	0.082	10		1.1	0.25	3.9		0.41	0.095	
FLM 2 - Sample	13		0.97	0.30	26	=	2.5	0.65	3.2	1000	0.35	0.080	9.8	- 1	1.1	0.24	3.7	277 X # 21 000	0.39	0.091	
FLM 3 - Sample	14		1	0.31	29		2.8	0.73	3.7		0.4	0.091	11		1.2	0.28	4.2	\$1000 may 2000	0.46	0.10	
FLM 4 - Sample	13	The same to be got by	0.95	0.30	25		2.4	0.63	3	DESIGNATION OF THE PERSON OF T	0.33	0.075	9.2	q	0.99	0.23	3.4	E-9029-0-3097	0.37	0.084	
FLM 5 - Sample	9.2	AD PRINCIPAL DIVINO	0.70	0.22	16		1.5	0.40	2.3	Compared to	0.25	0.058	7.2		0.77	0.18	2.6	SARRY - NEAR	0.28	0.065	
FLM 6 - Sample	8.4	A COLUMN	0.64	0.20	14	=	1.4	0.35	2		0.22	0.050	5.5	=	0.59	0.14	2.2	2007	0.24	0.054	
FLM 7 - Sample	8.4		0.64	0.20	13		1.3	0.33	2	<	0.22	0.050	4.9		0.52	0.12	2	<	0.22	0.050	
FLM 8 - Sample	8.6		0.65	0.20	17		1.6	0.42	2.5	Con Province	0.27	0.061	7.6		0.82	0.19	2.8	ACTUAL COURSE	0.3	0.070	
FLM 9 - Sample	12		0.88	0.28	33		3.1	0.82	9.2	Maria and Miles	0.99	0.23	33		3.6	0.82	15		1.7	0.38	
FLM 10 - Sample	21	B' Antonio	1.6	0.50	50		4.8	1.30	7.1	distribution of the last	0.76	0.18	23		2.5	0.58	8.9	municipal and a	0.96	0.22	
FLM 11 - Sample	15	S 27 10 1 2 1 1 1 1	1.1	0.34	33		3.1	0.82	4.9	A STATE OF THE STATE OF	0.52	0.12	14		1.5	0.35	5.4	0000 a 0000	0.59	0.13	_
FLM 12 - Sample	14		1	0.31	31		2.9	0.78	3.8	# 2.5m	0.41	0.094	12	=	1.3	0.29	4.5	13000	0.49	0.11	_
FLM 13 - Dupe (FLM 1)	12		0.88	0.28	22		2.1	0.55	2.5	district a facility	0.27	0.063	7.3		0.79	0.18	3		0.32	0.073	
FLM 14 - Dupe (FLM 6)	8.3		0.63	0.20	15	-	1.4	0.38	2.2	20032	0.24	0.055	7.1	-	0.77	0.18	2.8	-	0.3	0.070	_
FLM 15 - Blank (FLM 2)	2	<	0.15	0.046	2	<	0.19	0.050	2	<	0.22	0.050	4	<	0.43	0.099	2		0.22	0.050	_
FLM 16 - Blank (FLM 4)	2	< 100	0.15	0.046	2	<	0.19	0.050	2		0.22	0.050	4	<	0.43	0.099	2		0.22	0.050	-
MDL ug/m³	2	NA NA	<0.15	<0.00015	2	NA	<0.19	< 0.00019	2	NA NA	<0.22	<0.00022	4	NA	<0.43	<0.00043	2	NA NA	<0.22	<0.00022	

				10/16/2024-	10/30/2024	建 加速器 的复数				
				Tota	l ng					
	Be	nzene	То	luene	Ethyl	benzene	m,p	-Xylene	0-)	(ylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	13		25		3.3	机良铁线线机	10		3.9	
FLM 2 - Sample	13	(4) (4) (4)	26		3.2	A REPORTED	9.8		3.7	1 集團 描述是
FLM 3 - Sample	14		29		3.7		11		4.2	
FLM 4 - Sample	13		25		3	2 4 11 12 12 13 14	9.2		3.4	
FLM 5 - Sample	9.2	70 mg 2	16	1	2.3		7.2		2.6	
FLM 6 - Sample	8.4		14	1	2	UA	5.5		2.2	I de la compa
FLM 7 - Sample	8.4		13	1	2	U	4.9		2	U
FLM 8 - Sample	8.6		17		2.5	1 45 F Card T	7.6		2.8	A DESCRIPTION
FLM 9 - Sample	12		33		9.2	North (400)	33		15	
FLM 10 - Sample	21		50		7.1	a the Table	23	7	8.9	
FLM 11 - Sample	15	A PART OF THE	33	1	4.9	\$ 17/15/14/NO.5	14		5.4	
FLM 12 - Sample	14 ′	A WINDS	31	1	3.8		12		4.5	
FLM 13 - Dupe (FLM 1)	12	电影型	22		2.5	Train Trains	7.3		3	
Field Duplicate Precision		8		13	the Make	28		31	Sales average	26
FLM 14 - Dupe (FLM 6)	8.3		15		2.2	N GALEGORIAN STATE	7.1		2.5	N Struck Street
Field Duplicate Precision	Annah Sala	1		7		10		25		13
FLM 15 - Blank (FLM 2)	2	U	2	U	2	U	4	I U	2	U
FLM 16 - Blank (FLM 4)	2	U	2	U	2	U	4	U	2	U
MDL ng	2	N EVILLACION	2		2		4		2	

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 325 A/B Field Data Sheet

Site Name:

Cold Brook Energy

Site Address:

809 Main Rd North

City:

Hampden

State:

Maine

Zip Code:

04444

Sampling Period:

10/16/24 10/30/24 10/02/2024 to 10/16/2024

Avg. Wind

Speed and

Avg. Ambient Temperature:

47.5

Avg. Barometric Pressure (in. Hg):

36.6

Direction:

5.3men Norm

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46′ 44.12″					1000
W68° 47' 00.09"	FLM 1 - Sample	10/16/2024	0956	10/30/2024	1047
N44° 46' 43.51"			*		100
W68° 46' 59.55"	FLM 2 - Sample	10/16/2024	1001	10/30/2024	1052
N44° 46′ 42.41″					1000
W68° 47' 00.80"	FLM 3 - Sample	10/16/2024	000i	10/30/2024	1056
N44° 46' 41.62"	1. 1.)		
W68° 47' 01.76"	FLM 4 - Sample	10/16/2024	<u> </u>	10/30/2024	1100
N44° 46' 40.41"			20.00		is oil
W68° 47' 03.25"	FLM 5 - Sample	10/16/2024	1012	10/30/2024	1104
N44° 46' 40.54"			1000		11 11
W68° 47' 04.34"	FLM 6 - Sample	10/16/2024	1020	10/30/2024	_11 11
N44° 46' 41.25"	Time your factors and		1.0		11 1/6
W68° 47' 05.46"	FLM 7 - Sample	10/16/2024	1027	10/30/2024	1114
N44° 46' 42.19"		4			1110
W68° 47' 04.63"	FLM 8 - Sample	10/16/2024	10.52	10/30/2024	1119
N44° 46' 43.01"			50.00		1000
W68° 47' 04.90"	FLM 9 - Sample	10/16/2024	0930	10/30/2024	1028
N44° 46' 44.11"					. 12
W68° 47' 03.88"	FLM 10 - Sample	10/16/2024	0944	10/30/2024	1033
N44° 46' 44.80"			:- Auce		
W68° 47' 03.01"	FLM 11 - Sample	10/16/2024	0948	10/30/2024	1036
N44° 46' 44.82"			-0:0		
W68° 47' 01.49"	FLM 12 - Sample	10/16/2024	0952	10/30/2024	1040
N44° 46′ 44.12″					Lasta
W68° 47' 00.09"	FLM 1- Dup	10/16/2024	0956	10/30/2024	1047
N44° 46' 40.54"			0		11.
W68° 47' 04.34"	FLM 6- Dup	10/16/2024	1020	10/30/2024	1111
N44° 46′ 43.51″					1000
W68° 46' 59.55"	FLM 2- Blank	10/16/2024	1001	10/30/2024	1052
N44° 46' 41.62"					9100
W68° 47' 01.76"	FLM 4- Blank	10/16/2024	1010	10/30/2024	1100

Sampler Name:

Hedda Samuelson

Sampler Signature:

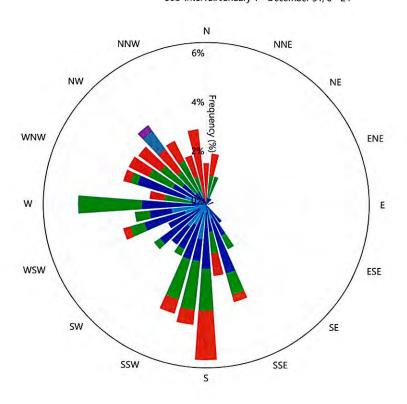
Mulle huber

Hi Jason! Log out

Privacy Policy

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

October 16, 2024 - October 30, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

0 1.3 - 4

0 4-8

8 - 13

13 - 19

9 19 - 25

25 - 32

32 - 39

39 - 4747 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Start Date : October 16, Sub Interval Windows

Latitude: 44.7979 2024 Start End

Longitude : -68.8185 End Date : October 30, Elevation : 147 ft. 2024 Date 1 31

of Days : 15 of 15 # obs : poss : 360 of 360 Hour 0 24

(Greater than or equal to initial interval value and Less than ending interval value.)

Range (mph) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

8 - 13	0.3	0.9 0.9 0.	0 0.0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.9	0.9	1.7	2.0	1.7	0.3	0.0	0.3	0.0	0.6	0.6	2.6	1.1	0.3	1.1	1.1	1.1	1.4	0.9	0.0 2	<u>2</u> μ.о
13 - 19	1.4	0.9 0.0 0.	0 0.0 0	.0 0.0	0.00	.00,0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.9	2.0	0.6	0.6	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.6	0.3	0.9	1.1	1.1	0.9	0.9	3.1 1	15.6
19 4.25	0.0	0.0 0.0 0.	0 0,0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.9
25 - 32	0.0	0.0 0.0 0.	0 0.0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.3
32 - 39	0.0	0.0 0.0 0.	0 0.0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39 - 47	0.0	0.0 0.0 0.	0 0.0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47 -	0.0	0.0 0.0 0.	0 0.0 0	.0 0.0	0.00	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	1.7	2.0 1.1 0.	3 0.3 0	.0 0.0	0.30	.0 0.0	0.0	0.0	0.0	0.0	0.9	2.0	4.0	2.8	6.2	4.8	4.5	2.3	2.0	2.6	1.7	3.4	2.8	5.1	2.3	3.4	3.4	3.4	4.0	2.8	2.0	3.1 7	75.3
Calm (<1.3)																															2	24.7
Ave Speed	13.2	11.1 8.8 7.	0 6.0		6.0						6.0	6.0	6.6	9.9	9.2	7.2	7.9	5.0	4.0	6.0	5.3	6.2	5.3	7.9	10.0	6.1	8.4	9.6	13.8	10.7	12.3	14.1	5.4

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 12/9/2024 10:44:47 AM EST

Copyright © 2000-2023 Midwestern Regional Climate Center. All rights reserved.

P - 17/12/20 - 20/2		Salt Language And	A PROPERTY.	Vertical Park	nilesea	Service of	PERSONAL PROPERTY.	200	10	/30/2024-11/13/	2024		A STATE OF THE PARTY.	THE PROPERTY OF	www.intreeri	01051(ht4)(v03	SILE THE	recipional del la constitución de la constitución d	Brooklessey.	Control of the s	222
		Benzene	VICTOR OF			Tolu	ene		personal residence	Ethylbe	nzene	Adjust to the	-	m,p-)	(ylene		Emily Confe	o-Xy	riene	AT THE OWNER OF	Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppby	Flags
FLM 1 - Sample	13	(A 100 m to 17)	0.98	0.31	28		2.7	0.71	3.8	ERON - VENE	0.41	0.094	11		1.2	0.29	4.6	1000-100	0.49	0.11	-
FLM 2 - Sample	13	ALCOHOL:	1	0.31	28	=	2.7	0.72	3.7		0.4	0.092	10	2	1.1	0.25	4	Service Control	0.43	0.099	9.7
FLM 3 - Sample	13		1	0.31	31		3	0.79	3.9		0.42	0.096	12	-	1.3	0.29	4.5	Activities and the second of	0.48	0.11	
FLM 4 - Sample	11		0.82	0.26	27		2.6	0.70	3.4		0.36	0.084	10		1.1	0.26	4	Name of Street	0.43	0.099	
FLM 5 - Sample	8.8	A Designation of	0.67	0.21	14		1.4	0.36	2	STATE CHANG	0.22	0.050	5.3		0.58	0.13	2.1	<	0.23	0.052	
FLM 6 - Sample	8.1	District to	0.62	0.19	13		1.2	0.32	2		0.22	0.050	4.6		0.5	0.12	2		0.22	0.050	
FLM 7 - Sample	7.4	* (F (S)	0.56	0.18	11		1	0.28	2	<	0.22	0.050	4.4		0.48	0.11	2	<	0.22	0.050	-
FLM 8 - Sample	8,8		0.67	0.21	18		1.7	0.45	2.8		0.3	0.069	8.5		0.92	0.21	3.1		0.34	0.078	65
FLM 9 - Sample	10	Signal and	0.77	0.24	45		4.3	1.1	2	<	0.22	0.050	4	<	0.43	0.10	2	<	0.22	0.050	
FLM 10 - Sample	15	AND MARKS SERVICE	1.2	0.38	42		4	1.1	6.4	Company of	0.7	0.16	20		2.2	0.51	8	Marie British	0.87	0.20	
FLM 11 - Sample	22		1.7	0.53	71		6.8	1.8	12	the state of	1.3	0.29	38		4.1	0.94	15	\$2500 a 1500	1.6	0.36	_
FLM 12 - Sample	20	all Maria into	1.5	0.47	67		6.4	1.7	11	1000 a 0000	1.2	0.28	36	-	3.9	0.90	14	STATE WATER	1.5	0.35	-
FLM 13 - Dup (FLM 7)	7.2	STATE OF THE	0.55	0.17	11		1	0.27	2	<	0.22	0.050	4	<	0.43	0.10	2	<	0.22	0.050	15
FLM 14 - Dup (FLM 12)	20		1.5	0.47	66		6.3	1.7	10		1.1	0.26	33	=	3.6	0.82	13	100	1.4	0.33	66
FLM 15 - Blank (FLM 1)	2	<	0.15	0.047	2	<	0.19	0.051	2	1603 (1981)	0.22	0.050	4	<	0.43	0.10	2		0.22	0.050	-
FLM 16 - Blank (FLM 5)	2 1000	•	0.15	0.047	2	<	0.19	0.051	2	1000	0.22	0.050	4	<	0.43	0.10	2	<	0.22	0.050	2
MDL ug/m ³	2	NA NA	<0.15	<0.00015	2	NA	<0.19	<0.00019	2	NA	<0.22	<0.00022	4	NA	<0.43	<0.00043	2	NA NA	<0.22	<0.00022	

Committee of the Commit	National Parket		Seal and	10/30/2024-:	11/13/2024	4			No. of the	
				Total	l ng					
	Be	nzene	To	luene	Ethyl	benzene	m,p	-Xylene	0-)	(ylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	13	HARRIOTER!	28		3.8		11		4.6	
FLM 2 - Sample	13		28	1	3.7	Can shope on	10		4	A Links Lor
FLM 3 - Sample	13	4 000000000000000000000000000000000000	31	1	3.9	a wagabilita	12		4.5	X YEAR DELL
FLM 4 - Sample	11		27	1 8	3.4	(特別)	10		4	V AUGUST
FLM 5 - Sample	8.8		14	1	2	Ù	5.3		2.1	100
FLM 6 - Sample	8.1	10 年的日本	13	10	2	U	4.6		2	U
FLM 7 - Sample	7.4	4年,自己的政策	11	1	2	A PLANE UND THE	4.4		2	U
FLM 8 - Sample	8.8		18		2.8		8.5		3.1	(4.2)
FLM 9 - Sample	10	STATE OF THE STATE OF	45	8	2	U	2	U	2	U
FLM 10 - Sample	15		42	1	6.4		20		8	
FLM 11 - Sample	22	Committee of	71		12	The ARTHUR W	38		15	Participate
FLM 12 - Sample	20		67		11		36		14	A MARKE A
FLM 13 - Dupe (FLM 7)	7.2	The Harman	11	i i	2	United to	2	U	2	U
Field Duplicate Precision	ALC: YES	3		0	14.0	0		75		Ö
FLM 14 - Dupe (FLM 12)	20	A FINAL POTE II.	66	3	10	Market Mark	33		13	Y BURLET'S
Field Duplicate Precision		0		2		10		9	1100	7
FLM 15 - Blank (FLM 1)	2	U	2	U	2	U	4	U	2	U
FLM 16 - Blank (FLM 5)	2	U	2	U	2	U. L. U.	4	U	2	U
MDL ng	2	新兴中国新疆	2	1	2	VENT HAR	4		2	BUILDING SWIT

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 325 A/B Field Data Sheet

Site Name:

Cold Brook Energy

Site Address:

809 Main Rd North

City:

Hampden

State:

Maine

Zip Code:

04444

Sampling Period:

10/30/2024 to 11/13/2024 Avg. Wind

Avg. Ambient Temperature: 11-

Avg. Barometric Pressure (in. Hg): Spee

Speed and

Direction:

6.7 men N

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12" W68° 47' 00.09"	FLM 1 - Sample	10/30/2024	1049	11/13/2024	0931
N44° 46' 43.51" W68° 46' 59.55"	FLM 2 - Sample	10/30/2024	1054	11/13/2024	0937
N44° 46' 42.41" W68° 47' 00.80"	FLM 3 - Sample	10/30/2024	1058	11/13/2024	0947
N44° 46' 41.62" W68° 47' 01.76"	FLM 4 - Sample	10/30/2024	1102	11/13/2024	0940
N44° 46' 40.41" W68° 47' 03.25"	FLM 5 - Sample	10/30/2024	1100	11/13/2024	0951
N44° 46' 40.54" W68° 47' 04.34"	FLM 6 - Sample	10/30/2024	1112	11/13/2024	1950
N44° 46' 41.25" W68° 47' 05.46"	FLM 7 - Sample	10/30/2024	1117	11/13/2024	1004
N44° 46' 42.19" W68° 47' 04.63"	FLM 8 - Sample	10/30/2024	1122	11/13/2024	1010
N44° 46' 43.01" W68° 47' 04.90"	FLM 9 - Sample	10/30/2024	1029	11/13/2024	0910
N44° 46' 44.11" W68° 47' 03.88"	FLM 10 - Sample	10/30/2024	1034	11/13/2024	0915
N44° 46' 44.80" W68° 47' 03.01"	FLM 11 - Sample	10/30/2024	1038	11/13/2024	0920
N44° 46' 44.82" W68° 47' 01.49"	FLM 12 - Sample	10/30/2024	1043	11/13/2024	0925
N44° 46' 41.25" W68° 47' 05.46"	FLM 13- DUP (FLM 7)	10/30/2024	1117	11/13/2024	1006
N44° 46' 44.82" W68° 47' 01.49"	FLM 14- DUP (FLM 12)	10/30/2024	1043	11/13/2024	0925
N44° 46' 44.12" W68° 47' 00.09"	FLM 15- Blank (FLM 1)	10/30/2024	1049	11/13/2024	0931
N44° 46' 40.41" W68° 47' 03.25"	FLM 16- Blank (FLM 5)	10/30/2024	1100	11/13/2024	0951

Sampler Name:

Hedda Samuelson

Sampler Signature:

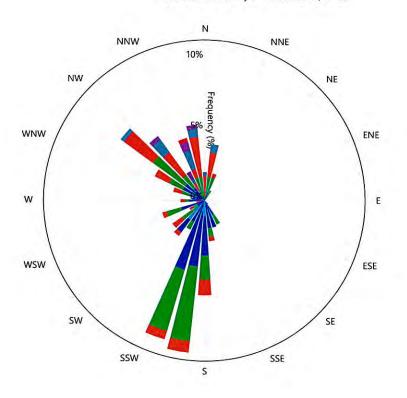
nollellelle

Hi Jason! Log out

Privacy Policy

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

October 30, 2024 - November 13, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

 \equiv

1.3 - 4 0 4 - 8

8 - 13 9 13 - 19

9 19 - 25

25 - 32

32 - 39 9 39 - 47

47 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Latitude: 44,7979

Longitude: -68.8185 Elevation: 147 ft.

Element: Mean Wind Speed

Start Date: October 30, 2024

End Date: November 13, 2024

of Days: 15 of 15

Sub Interval Windows

Start End

Date January December 31

Hour 0 # obs : poss : 360 of 360

(Greater than or equal to initial interval value and Less than ending interval value.)

Range

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

(mph) 1.3 - 4

4 - 8

8 - 13	0.3	1.7 1.1 0.8	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.6	1.7	5.3	4.5	0.6	0.0	1.4	0.3	1.1	0.0	0.3	0.0	0.6	1.1	2.8	1.1	0.8	1.4	1.7	30,1
13 - 19	1.4	1.7 0.3 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.1	0.8	0.6	0.0	0.3	0.8	0.3	0.3	0.3	0.3	0.0	0.6	1.1	2.5	2.0	0.6	0.6	2.8	18.5
19 - 25	0.3	0.6 0.0 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.1	0.3	1.4	0.6	4,5
25 - 32	0.0	0.0 0.0 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.3	1.7
32 - 39	0.0	0.0 0.0 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39 - 47	0.0	0.0 0.0 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3
47 -	0.0	0.0 0.0 0.0	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	2.0	3.9 2.0 0.8	0.0 0.0	0.00	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.0	2.0	2.8	6.7	11.0	10.1	2.2	3.1	2.8	1.1	3.1	0.6	1.7	8.0	2.2	3.9	7.3	5.6	2.2	4.5	5.3	90.2
Calm (<1.3)																																	9.8
Ave Speed	15.3	13.4 9.1 8.7	P -								6.0	6.6	6.1	7.3	7.6	7.8	8.0	7.1	5.0	10.0	8.5	7.6	11.5	7.7	5.0	8.4	8.9	11.3	14.5	16.8	17.9	14.8	9.0
																																	1

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 12/9/2024 10:46:30 AM EST

Copyright @ 2000-2023 Midwestern Regional Climate Center, All rights reserved.

	Harry Hall Street		PRODUCTION OF THE PARTY.	I show the	40-83-2-1	die de la constante de la cons		Re-Uliver	11,	13/2024-11/27	/2024	WITH THE REAL PROPERTY.	1 160 171	on the state of	Sylvenien	CONTRACTOR OF THE	A STATE OF THE PARTY OF THE PAR	SCHOOL STATE	Will block	LOVER THE PARTY	-
	INCOME STATE OF THE PARTY OF TH	Benzene	OFF GROOM	and the state of the		Tolu	ene		AND DESCRIPTIONS	Ethylbe	nzene	ALTONOMISE DE		m,p-X	ylene		F (2549V154	o-Xv	rlene		Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppby	ng	Qualifier	ug/m3	poby	Flags
FLM 1 - Sample	7.3	E STATES OF STREET	0.57	0.18	12		1.1	0.30	2	<	0.22	0.050	5		0.54	0.12	2.1	- Commercial	0.23	0.053	1.065
FLM 2 - Sample	8.1	A STATE	0.63	0.20	14		1.3	0.35	2	10000 C 1000	0.22	0.050	4	<	0.43	0.10	2	<	0.22	0.050	
FLM 3 - Sample	10		0.79	0.25	21	-	2	0.54	2	<	0.22	0.050	5.9		0.64	0.15	2.4	1000000	0.26	0.060	_
FLM 4 - Sample	9.8	a The Land of the	0.76	0.24	18		1.8	0.47	2.9	4 felice	0.32	0.073	9		0.97	0.22	3.5		0.38	0.087	
FLM 5 - Sample	2	<	0.15	0.046	9		0.86	0.23	2	<	0.22	0.050	4		0.43	0.10	2	<	0.22	0.050	
FLM 6 - Sample	8.8	AV policing	0.68	0.21	14		1.3	0.35	2	<	0.22	0.050	4		0.43	0.10	2 2 2		0.22	0.050	100
FLM 7 - Sample	9.1	E ANTONIO SAVO	0.7	0.22	16		1.5	0.41	2	<	0.22	0.050	6.3		0.68	0.16	2.5		0.28	0.063	271
FLM 8 - Sample	9.8	Director 1	0.76	0.24	39		3.7	0.99	2.8	And the second	0.3	0.070	8.6		0.93	0.21	3.4		0.26	0.084	_
FLM 9 - Sample	12	Service Control	0.96	0.30	59		5.6	1.5	6.3	Anthony series	0.68	0.16	21		2.2	0.51	8.2		0.89	0.20	_
FLM 10 - Sample	11	S-2000	0.86	0.27	26		2.5	0.66	3.2	A North Res	0.35	0.080	10		1.1	0.25	4.2		0.46	0.20	
FLM 11 - Sample	7.5	STORES OF	0.58	0.18	12		1.2	0.32	2		0.22	0.050	4.2		0.45	0.10	4.2	COMMISSION AND ADDRESS OF THE PARTY OF THE P	0.46	0.050	
FLM 12 - Sample	7.8	the state of the	0.60	0.19	12		1.2	0.31	2		0.22	0.050	A.	-	0.43	0.10	2		0.22		
FLM 13 - Dup (FLM 1)	8.1	4994000	0.63	0.20	18	7	1.7	0.44	2		0.22	0.050	4	-	0.43	0.10	2			0.050	8
FLM 14 - Dup (FLM 6)	11		0.81	0.25	16		1.5	0.4	2	200	0.22	0.050	5.3	`	0.43	0.10	2.4	<	0.22	0.050	
FLM 15 - Blank (FLM 2)	2	<	0.15	0.047	2		0.19	0.051	2	- CANOL	0.22	0.050	3.3		0.57	0.13	2.4		0.26	0.060	199
FLM 16 - Blank (FLM 4)	2	<	0.15	0.047	2		0.19	0.051	2		0.22	0.050	4		0.43	0.10	2	<	0.22	0.050	
MDL ug/m ³	Description 2 (A)	NA NA	<0.15	<0.00015	2	NA.	<0.19	<0.00019	2	NA NA	<0.22	<0.00022	4	NA NA	<0.43	<0.00043	2	NA NA	<0.22	<0.00022	80

信用的数据。为操作性辩证				11/13/2024-	11/27/2024	NE OF SURE	Distriction.	Mark Street	that have	
				Tota	l ng					
	Be	nzene	To	luene	Ethyl	penzene	m,p	-Xylene	0->	Kylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	7.3	E STAIN SE	12		2	<	5		2.1	
FLM 2 - Sample	8.1		14		2	<	4	<	2	<
FLM 3 - Sample	10		21		2	<	5.9		2.4	TO THE PLANE
FLM 4 - Sample	9.8		18	1	2.9		9		3.5	aidi, maka
FLM 5 - Sample	2	<	9	100	2	<	4	<	2	<
FLM 6 - Sample	8.8	设施工等标识 以	14		2	<	4		2	<
FLM 7 - Sample	9.1		16		2	<	6.3		2.5	2011
FLM 8 - Sample	9.8		39		2.8		8.6		3.4	
FLM 9 - Sample	12	A SULT IN THE	59	1	6.3	7. 25 180 1	21		8.2	
FLM 10 - Sample	11	A ME ARCHAR	26		3.2	1-4.00 Petilish	10		4.2	
FLM 11 - Sample	7.5	1. 1. 1772 F. 470 W.	12		2	<	4.2		2	<
FLM 12 - Sample	7.8	1000	12		2	<	4	<	2	<
FLM 13 - Dupe (FLM 1)	8.1	No. of the second	18		2	<	4	<	2	<
Field Duplicate Precision		10		40		0		22		5
FLM 14 - Dupe (FLM 6)	11	PARTIES DO	16		2		5.3		2.4	A GENERAL
Field Duplicate Precision	ATM HUZZ	22		13	NF A	0		28		18
FLM 15 - Blank (FLM 2)	2	U	2	U	2	U	4	U	2	T u
FLM 16 - Blank (FLM 4)	2	A COLUMN	2	U	2	U -	4	U	2	U
MDL ng	2		2		2	11645	4		2	

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 325 A/B Field Data Sheet

Site Name:

Cold Brook Energy

Site Address:

809 Main Rd North

City:

Hampden

State:

Maine

Zip Code:

04444

Sampling Period:

Total Avg.

Barometric

Total Avg. Wind

Pressure (in.

Speed and

Total Avg. Ambient Temperature (°F):

41.1

Hg):

29.6

Direction:

,		9	1	
V	0	1,9	12	
1	_	A	2 1	•
(/	1.		

Location Coordinate	s Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12" W68° 47' 00.09"	FLM 1 - Sample	11/12/2024	0934		· 4~1
N44° 46' 43.51"	Trivi 1 - Sample	11/13/2024	00107	11/27/2024	0859
W68° 46' 59.55" N44° 46' 42.41"	FLM 2 - Sample	11/13/2024	0940	11/27/2024	0901
W68° 47' 00.80"	FLM 3 - Sample	11/13/2024	0944	11/27/2024	0903
N44° 46' 41.62" W68° 47' 01.76" N44° 46' 40.41"	FLM 4 - Sample	11/13/2024	0947	11/27/2024	0908
W68° 47' 03.25"	FLM 5 - Sample	11/13/2024	0953	11/27/2024	0911
N44° 46' 40.54" W68° 47' 04.34"	FLM 6 - Sample	11/13/2024	0958	11/27/2024	09/6
N44° 46' 41.25" W68° 47' 05.46"	FLM 7 - Sample	11/13/2024	1008	11/27/2024	0919
N44° 46' 42.19" W68° 47' 04.63"	FLM 8 - Sample	11/13/2024	1011	11/27/2024	0722
N44° 46' 43.01" W68° 47' 04.90"	FLM 9 - Sample	11/13/2024	1917-	11/27/2024	0839
N44° 46' 44.11" W68° 47' 03.88"	FLM 10 - Sample	11/13/2024	1910	11/27/2024	0843
N44° 46' 44.80" W68° 47' 03.01"	FLM 11 - Sample	11/13/2024	0922	11/27/2024	0846
N44° 46' 44.82" W68° 47' 01.49"	FLM 12 - Sample	11/13/2024	0927	11/27/2024	0849
N44° 46' 44.12" W68° 47' 00.09"	FLM 13- FLM1 DUP	11/13/2024	0934	11/27/2024	0855
N44° 46' 40.54" W68° 47' 04.34"	FLM 14- FLM 6 DUP	11/13/2024	0958	11/27/2024	0916
N44° 46' 43.51" W68° 46' 59.55"	FLM 15- FLM 2 Blank	11/13/2024	6940	11/27/2024	0902
N44° 46' 41.62"	FLM 16- FLM 4 Blank	11/13/2024	0941	11/27/2024	0908

Sampler Name:

Heddie Samuelson

+ Jason PATTELSON)

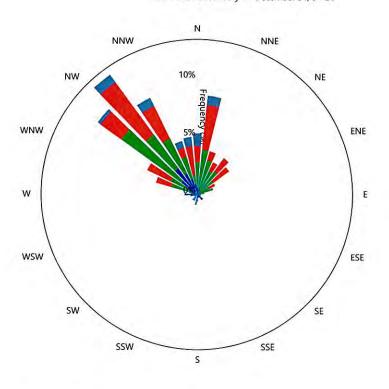
Sampler Signature:

Hi Jason! Log out MRCC
Midwestern Regional
Climate Center

Privacy Policy

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

November 13, 2024 - November 27, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

32 - 3939 - 4747 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Sub Interval Windows

Latitude: 44.7979 Longitude: -68.8185 Elevation: 147 ft. Element: Mean Wind Speed Start Date: November 13, 2024 End Date: November 27, 2024

024 Start End 24 January Dec

Date January December 31

Hour 0 24

(Greater than or equal to initial interval value and Less than ending interval value.)

of Days: 15 of 15

obs : poss : 360 of 360

Range (mph)	0	10	20	30	40	50	60	70 8	0 90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350 7	otal
1.3 - 4	0.0	0.0	0.3	0.3	0.0	0.0	0.0	0.0 0.	0 0.	0 0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.6	0.6	0.0	0.6	0.6	0.0	0.0	0.3	0.3	0.3	0.0	0.0	0.3	0.3	0.6	0.3	0.6	0.3	6.2
4 - 8	0.6	0.3	0.3	0.0	0.3	0.0	0.0	0.0 0.	3 0.	0.0	0.3	0.3	0.3	0.6	0.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.8	0.3	0.3	0.6	1.4	2.2	1.7	0.8	0.6	12.9
8 - 13	2.2	3.6	2.5	2.0	2.2	1.7	1.1	1.4 0.	3 0.	3 0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.0	1.7	6.4	3.6	3.4	2.0	0.8	38.1
13 - 19	1.4	3.9	0.8	0.8	14	1.7	0.6	0.00	0 0	0 0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	22	22	5.6	3 1	0.8	25	006

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 12/9/2024 10:47:17 AM EST

Copyright @ 2000-2023 Midwestern Regional Climate Center, All rights reserved.

TOTAL TOTAL STREET			-1-1	e with his	and the pro-	Dearies	L-Arrest	701800	11/2	27/2024 to 12/11	/2024	Contracting	Rect of the	had palate	2 0 1 1 1 1 1	THE PERSON NAMED IN	Control of	Contract Code Ann	THE RESERVE AND	Darling States	Carrier of the Control
	The state of the s	Benzene	1000	PERSONAL PROPERTY.		Tolu	ene		CONTRACTOR	Ethylber	nzene	CALIFORNIA DE LA CALIFO		m,p-)	ylene			o-Xv	lene		Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppby	ng	Qualifier	ug/m3	ppby	Flags
FLM 1 - Sample	12	A SERVICE	0.9	0.28	19		1.9	0.49	3.1	The state of the	0.33	0.076	9.8		1.1	0.24	3.8	41460000000	0.42	0.096	Lings
FLM 2 - Sample	13	(Allegania)	0.98	0.31	20		1.9	0.51	2.4	A TEXT OF THE	0.26	0.059	6.9		0.75	0.17	2.8	Figure 20 course	0.31	0.071	
FLM 3 - Sample	13	Fall (British	1.0	0.31	22		2.1	0.57	3.2	- Sec. 19	0.35	0.080	9.7		1.1	0.24	3.9	Section with	0.42	0.096	
FLM 4 - Sample	11	1970minute	0.83	0.26	115		1.4	0.37	2	<	0.22	0.050	6.2		0.67	0.15	2.4		0.26	0.061	
FLM 5 - Sample	9.6	A SHIRT WAY	0.75	0.24	11		1.1	0.28	2	<	0.22	0.050	4.4		0.47	0.11	2.4		0.22	0.050	
FLM 6 - Sample	9.2	SE SAVSTAN	0.72	0.23	12		1.1	0.30	2.2	10 mm and 2012 mile	0.23	0.054	6.5		0.7	0.16	2.5		0.27	0.050	
FLM 7 - Sample	9	d (Automobile	0.7	0.22	11		1.1	0.28	2		0.22	0.050	6.0		0.65	0.15	2.6		0.27	0.063	
FLM 8 - Sample	9.9	Service of	0.77	0.24	15		1.4	0.37	SHOWING THE REAL PROPERTY.	ar a color ve in the	0.32	0.074	9.8		1.1	0.24	3.8		0.42	0.064	
FLM 9 - Sample	12	F TA 1575	0.9	0.28	26		2.5	0.65	6.3	Sales Sies St.	0.68	0.16	22		2.3	0.54	8.7	A Company of the company	0.42		2
FLM 10 - Sample	14	A STREET, SQUARE	1.1	0.34	29		2.8	0.74	4.8	a large marks	0.52	0.12	16		1.8	0.41	6.4	1-1-1-1	0.69	0.22	
FLM 11 - Sample	13	14200010	1.0	0.31	23		2.2	0.59	3.3	Marie Park	0.35	0.081	9.8		1.1	0.41	0.4			0.16	
FLM 12 - Sample	12	10000	0.96	0.30	22		2.1	0.55	2.9	GEOVERN COLUMN	0.31	0.072	9.2		0.99	0.24	3.8		0.43	0.099	
FLM 13 - Dup (FLM 2)	13	et Securit	1.00	0.31	24		2.3	0.60	3.6	All San Andrews	0.39	0.089	11		1.2	0.23			0.41	0.094	4
FLM 14 - Dup (FLM 7)	2		0.15	0.046	2		0.19	0.051	3.0	1200000	0.33	0.050	- 11				4.2	1,100	0.45	0.100	6
FLM 15 - Blank (FLM 3)	2		0.15	0.046	2	1	0.19	0.051	2	<	0.22	0.050	4		0.43	0.099	2	<	0.22	0.050	4
FLM 16 - Blank (FLM 5)	the state of the s	Actual Control	0.15	0.046	2	1	0.19	0.051	2		0.22		- 4		0.43	0.099	2	<	0.22	0.050	
MDL ug/m³		NA.		415.10					2			0.050	4	<	0.43	0.099	2	<	0.22	0.050	
mot agrin	the second second second	NA NA	<0.15	<0.00015	2	NA	<0.19	< 0.00019	2	NA	<0.22	<0.00022	4	NA	< 0.43	< 0.00043	2	NA NA	<0.22	< 0.00022	El .

	的影響情			11/27/2024-	12/11/202	4		10 10 10 10 10 10		National Control
				Tota	l ng					
	Be	nzene	То	luene	Ethyl	benzene	m,p	-Xylene	0->	Kylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	12	中国基门的等。	19		3.1		9.8		3.8	i Nacional
FLM 2 - Sample	13		20		2.4	新加州	6.9	1	2.8	a promoter a
FLM 3 - Sample	13		22		3.2		9.7		3.9	100
FLM 4 - Sample	11		115		2	<	6.2		2.4	100000000000000000000000000000000000000
FLM 5 - Sample	9.6	A CAME N. AND	11	1	2	<	4.4		2	<
FLM 6 - Sample	9.2		12	7	2.2	II MARKANI	6.5		2.5	The Later Control
FLM 7 - Sample	9	A GENEVAL AND A	11	1	2	<	6.0		2.6	S DIESERSE
FLM 8 - Sample	9.9	# 图 图 图 图 图	15	3	3	E CONSTRUCTO	9.8		3.8	de la companya de la
FLM 9 - Sample	12		26		6.3		22		8.7	P B Committee
FLM 10 - Sample	14	F LURELLE	29		4.8		16		6.4	
FLM 11 - Sample	13	I Library & T	23	1	3.3	r Sarahalan	9.8		4	
FLM 12 - Sample	12		22	(2.9	3 8 1 V = 12 V = 10	9.2		3.8	1 8 4 1 1 1
FLM 13 - Dup (FLM 2)	13	FILE MEN	24		3.6	A SECTION AND	11		4.2	The Barrier
Field Duplicate Precision		0		18		40	er en de	46		40
FLM 14 - Dup (FLM 7)	2	<	2	<	2	<	4	<	2	<
Field Duplicate Precision		127		138		0		40		26
FLM 15 - Blank (FLM 3)	2	U	2	U	2	i eleveni	4	l u	2	U
FLM 16 - Blank (FLM 5)	2	U	2	U	2	U	4	Ü	2	U
MDL ng	2	8 K 19 G E 19 S	2		2	a di telle cons	4	1	2	

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 325 A/B Field Data Sheet

Site Name:	Cold Brook Energy	Site Address:	809 Main Ro	Nor	ih
City:	Hampden	State:	Maine		
Zip Code:	04444	Sampling Period:	11/27	-	12/11
		Total Avg.			Total Avg. Wind
Total Avg. Ambie	ent	Barometric			Speed and
Temperature (°F):	Pressure (in. Hg):			Direction:

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12" W68° 47' 00.09"	FLM 1 - Sample	11/27/2024	0856	12/11/2024	828
N44° 46' 43.51" W68° 46' 59.55"	FLM 2 - Sample	11/27/2024	6902	12/11/2024	832
N44° 46' 42.41" W68° 47' 00.80"	FLM 3 - Sample	11/27/2024	0905	12/11/2024	837
N44° 46' 41.62" W68° 47' 01.76"	FLM 4 - Sample	11/27/2024	0909	12/11/2024	841
N44° 46' 40.41" W68° 47' 03.25"	FLM 5 - Sample	11/27/2024	0913	12/11/2024	845
N44° 46' 40.54" W68° 47' 04.34"	FLM 6 - Sample	11/27/2024	6916	12/11/2024	849
N44° 46' 41.25" W68° 47' 05.46"	FLM 7 - Sample	11/27/2024	09290	12/11/2024	852
N44° 46' 42.19" W68° 47' 04.63"	FLM 8 - Sample	11/27/2024	6924	12/11/2024	857
N44° 46' 43.01" W68° 47' 04.90"	FLM 9 - Sample	11/27/2024	0841	12/11/2024	811
N44° 46' 44.11" W68° 47' 03.88"	FLM 10 - Sample	11/27/2024	0845	12/11/2024	818
N44° 46' 44.80" W68° 47' 03.01"	FLM 11 - Sample	11/27/2024	0848	12/11/2024	122
N44° 46' 44.82" W68° 47' 01.49"	FLM 12 - Sample	11/27/2024	6851	12/11/2024	825
N44° 46' 44.12" W68° 47' 00.09"	FLM 13- FLM 2 DUP	11/27/2024	6857	12/11/2024	833
N44° 46' 40.54" W68° 47' 04.34"	FLM 14- FLM 7 DUP	11/27/2024	0918	12/11/2024	ह्य
N44° 46' 43.51" W68° 46' 59.55"	FLM 15- FLM 3 Blank	11/27/2024	0904	12/11/2024	838
N44° 46' 41.62" W68° 47' 01.76"	FLM 16- FLM 5 Blank	11/27/2024	09/6	12/11/2024	846

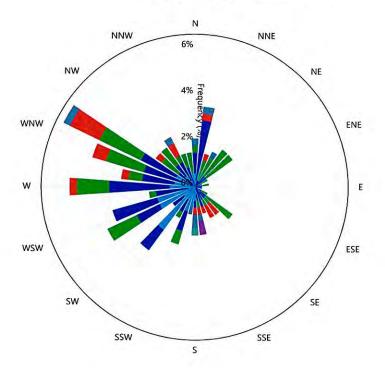
(cs) {

Sampler Name:	Jason Patterson	
Camalas Cignotums		
Sampler Signature:		

Privacy Policy

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

November 27, 2024 - December 11, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

1.3 - 44 - 8

0 8 - 13

13 - 1919 - 25

25 - 32

32 - 3939 - 4747 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Start Date : November 27, Sub Interval Windows ude : 44.7979 2024 Start End

Latitude: 44.7979 2024 Longitude: -68.8185 End Date: December 11, Elevation: 147 ft. 2024

Date January December

Element : Mean Wind Speed # of Days : 15 of 15

of Days: 15 of 15 # obs: poss: 357 of 360 Hour 0 24

(Greater than or equal to initial interval value and Less than ending interval value.)

Range (mph)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

4 - 8 0.9 2.6 0.3 0.3 0.6 0.6 0.0 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.6 0.6 0.9 0.3 0.3 0.0 0.9 0.6 1.15 0.6 1.1 2.0 1.4 2.6 1.4 2.0 1.7 0.9 0.6 0.9 0.9 0.9 27.9 0.3 0.0 0.9 1.1 1.4 1.4 0.6 0.0 0.3 0.0 0.0 0.0 0.3 1.4 0.3 0.3 0.0 0.3 0.0 0.6 0.3 0.0 0.0 1.4 0.0 0.3 1.4 0.6 1.7 2.0 0.9 0.9 0.3 0.6 0.9 2b.4 25 - 32 32 - 3947 -Total 2.0 3.4 1.4 1.7 2.0 2.0 0.6 0.3 0.6 0.3 0.6 0.3 0.0 0.6 2.0 1.4 1.4 1.1 2.0 2.0 1.1 2.6 1.4 3.4 1.1 4.3 3.7 2.0 5.5 3.2 4.6 6.3 2.0 2.0 2.3 1.4 1.4 7\(\beta\).9 9.9 Calm (<1.3) Ave Speed 8.4 8.2 9.4 10.7 8.3 7.6 8.0 7.0 5.5 5.0 5.0 6.5 8.3 9.8 11.0 8.2 14.6 15.7 7.8 4.9 5.0 3.8 4.5 5.4 4.4 5.3 6.2 6.5 8.4 9.8 8.1 6.1 10.0 8.0 6.2

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 1/3/2025 12:12:28 PM EST

Copyright @ 2000-2023 Midwestern Regional Climate Center, All rights reserved.

	20 11/2024 to 12/26/2024 The state of the st																				
	SHAPPEN HARRY	Benzene	Marie Se	Margaret al		Tolu	ene		CONTRACTOR OF STREET	Ethylbe	nzene	Name and April 1		m,p-)	(ylene		CIPPIN	o-Xy	lene	of Philosophia	Flags
Location	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	ppbv	ng	Qualifier	ug/m3	poby	Flags
FLM 1 - Sample	13	N. Khing Lagarid	0.91	0.29	25	-	2.2	0.58	3.6	4 (0.75 (0.07 mode)	0.37	0.084	12		1.2	0.27	4.8	I SERVICE OF THE PARTY OF THE P	0.48	0.11	100
FLM 2 - Sample	12	1 50 7 30 3	0.85	0.27	21		1.9	0.51	2.9	C THE PROPERTY OF	0.29	0.068	8.7		0.88	0.20	3,4	Or Control of the	0.35	0.080	Na .
FLM 3 - Sample	11	The state of the s	0.80	0.25	20		1.8	0.47	3.2	Constitution of	0.32	0.073	10	0	1	0.24	3.9	DATE THE YEAR	0.39	0.090	81
FLM 4 - Sample	9.5	100.20	0.69	0.22	15		1.3	0.34	2.2	16	0.22	0.051	6.9		0.69	0.16	2.7	ALCOHOLD !	0.27	0.062	
FLM 5 - Sample	8.4	STREET, SALES	0.61	0.19	11		0.95	0.25	2.0		0.22	0.046	5.2		0.53	0.12	2.1	Several Control Control	0.21	0.048	
FLM 6 - Sample	8.1		0.58	0.18	8.8		0.78	0.21	2.0	Page Assert	0.22	0.046	4	<	0.40	0.093	2		0.20	0.046	
FLM 7 - Sample	12	Service Service	0.87	0.27	14		1.2	0.33	2.0	<	0.20	0.046	5.8		0.59	0.14	2.4		0.24	0.056	10
FLM 8 - Sample	8.8	100000000	0.64	0.20	11		1.0	0.27	2.0		0.20	0.046	5.0		0.51	0.12	2.2	and the second second	0.22	0.051	nel.
FLM 9 - Sample	12	1000	0.90	0.28	38		3.4	0.89	7.0	MARKS WELVE	0.70	0.16	25		2.5	0.57	9.8	A STATE OF THE PARTY	0.99	0.23	
FLM 10 - Sample	16	14.00	1.20	0.38	36		3.2	0.85	4.9	C (You be home)	0.49	0.11	16		1.6	0.37	6.1	workers and the second	0.62	0.14	and a
FLM 11 - Sample	15	30 2081	1.10	0.34	35		3.1	0.83	5.5	THE THEFT	0.55	0.13	18		1.8	0.42	7.3	5.000	0.73	0.17	
FLM 12 - Sample	15	31 3 3 3 1 3 1	1.10	0.34	37	-	3.3	0.86	5.7	Committee of the Commit	0.57	0.13	19		1.9	0.43	7.3		0.73	0.17	
FLM 13 - Dup (FLM 1)	12	CONTRACTOR OF	0.85	0.27	19		1.7	0.44	2.5	and the state of t	0.25	0.057	7.8		0.79	0.18	3.2		0.32	0.073	-
FLM 14 - Dup (FLM 6)	8.7	THE THE SERVICE	0.64	0.20	11		0.96	0.25	2.0	<	0.20	0.046	4.4		0.45	0.10	2	100 to 100 to 100 to	0.32	0.046	48
FLM 15 - Blank (FLM 2)	11000000 0 2 0 000000	<	0.15	0.046	2	<	0.19	0.051	2 4 6 6	0.007 C 0000	0.22	0.046	4		0.43	0.099	2		0.22	0.050	100
FLM 16 - Blank (FLM 4)	2	-	0.15	0.046	2	<	0.19	0.051	2	- C	0.22	0.046	4		0.43	0.099	2		0.22	0.050	
MDL ug/m³	2	NA NA	<0.15	<0.00015	2	NA	<0.19	<0.00019	2	NA NA	<0.22	<0.00022	4	NA	<0.43	<0.00043	2	NA NA	<0.22	<0.00022	

		STATE STATES		12/11/2024-	12/26/2024			建筑地区的情况		COLUMN OF
				Tota	l ng					
	Be	nzene	To	luene	Ethyl	benzene	m,p	-Xylene	0->	(ylene
Location	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier	ng	Qualifier
FLM 1 - Sample	13		25	9	3.6	A REPORT OF THE	12		4.8	A SELVICE ON THE
FLM 2 - Sample	12	A ALTERNATION	21	1	2.9	Mark That	8.7		3.4	
FLM 3 - Sample	11		20		3.2	A (50) 11 (60)	10		3.9	REPORT
FLM 4 - Sample	9.5		15	8	2.2		6.9		2.7	A TOTAL SECTION
FLM 5 - Sample	8.4		11	1	2	<	5.2		2.1	II Williamstein
FLM 6 - Sample	8.1		8.8	1	2	<	4	<	2	<
FLM 7 - Sample	12		14	1	2	<	5.8		2.4	
FLM 8 - Sample	8.8		11		2	<	5		2.2	North water
FLM 9 - Sample	12	(中国/10/21/12/20)	38		7		25		9.8	2002 N 20
FLM 10 - Sample	16	· 推行。司法司	36		4.9	V = ZVCPE DV	16		6.1	# Y - 1 - 1 - 1 - 1 - 1
FLM 11 - Sample	15	位 建加速。開始	35		5.5	1 11 (6.0) 4.0. 1	18		7.3	Malway Tel.
FLM 12 - Sample	15	18. 美主体制度	37		5.7		19		7.3	S. C. C. Sales
FLM 13 - Dupe (FLM 3)	12		19		2.5	A STATE OF A	7.8		3.2	
Field Duplicate Precision		9	5		25		25		20	
FLM 14 - Dupe (FLM 8)	8.7	A CONTRACT	11		2	< pm	4.4		2	<
Field Duplicate Precision		1		0	- 10 10 16	0		13		10
FLM 15 - Blank (FLM 4)	2	U	2	U	2	U	4	U	2	U
FLM 16 - Blank (FLM 7)	2	Û	2	U	2	U	4	U	2	U
MDL ng	2		2		2	Responsible and	4		2	1000

Field Duplicate Precision exceeding 30% are indicated by:

[&]quot;U" data qualification flag = Compounds that were "non-detect" are reported at the Method Detection Limit (MDL)

Method 325 A/B Field Data Sheet

Site Name:	Cold Brook Energy	Site Address:	809 Main Rd North
City:	Hampden	State:	Maine
Zip Code:	04444	Sampling Period	: 12/11/24 to 12/26/24
		Total Avg.	Total Avg. Wind
Total Avg. Ambie	ent	Barometric	Speed and
Temperature (°F)):	Pressure (in. Hg)	: Direction:

Location Coordinates	Sample ID	Deployment Date	Start Time	Retrieval Date	End Time
N44° 46' 44.12"					829
W68° 47′ 00.09"	FLM 1 - Sample	12/11/2024	8:29	12/26/2024	00-(
N44° 46' 43.51"					831
W68° 46′ 59.55"	FLM 2 - Sample	12/11/2024	8:33	12/26/2024	0.31
N44° 46' 42.41"		WW. VS7.650		0.000	0011
W68° 47' 00.80"	FLM 3 - Sample	12/11/2024	8:38	12/26/2024	834
N44° 46' 41.62"	2000	0.000.000			9.21
W68° 47' 01.76"	FLM 4 - Sample	12/11/2024	8:42	12/26/2024	8:38
N44° 46' 40.41"			474	4 5 10 5 10 5 5	842
W68° 47' 03.25"	FLM 5 - Sample	12/11/2024	8:46	12/26/2024	0/00
N44° 46' 40.54"		40/44/2001	0.70	42/20/2024	846
W68° 47' 04.34"	FLM 6 - Sample	12/11/2024	8:50	12/26/2024	0/10
N44° 46' 41.25"	2232 2. 122	No. 2. o Trans		Vice Selection and other in	850
W68° 47' 05.46"	FLM 7 - Sample	12/11/2024	8:53	12/26/2024	100
N44° 46' 42.19"					8:09
W68° 47' 04.63"	FLM 8 - Sample	12/11/2024	8:58	12/26/2024	0.01
N44° 46' 43.01"		1000			Gile
W68° 47' 04.90"	FLM 9 - Sample	12/11/2024	8:12	12/26/2024	8:15
N44° 46' 44.11"					6.1-
W68° 47' 03.88"	FLM 10 - Sample	12/11/2024	8:19	12/26/2024	8:20
N44° 46' 44.80"				To Elizabeth	6.00
W68° 47' 03.01"	FLM 11 - Sample	12/11/2024	8:23	12/26/2024	8:20
N44° 46' 44.82"		7 7 7 7 7			001
W68° 47' 01.49"	FLM 12 - Sample	12/11/2024	8:26	12/26/2024	8:26
N44° 46′ 44.12"					E8/25
W68° 47' 00.09"	FLM 13- FLM 3 DUP	12/11/2024	8:34	12/26/2024	834
N44° 46' 40.54"				THE PROPERTY OF	
W68° 47' 04.34"	FLM 14- FLM 8 DUP	12/11/2024	8:54	12/26/2024	809
N44° 46' 43.51"					
W68° 46' 59.55"	FLM 15- FLM 4 Blank	12/11/2024	8:39	12/26/2024	838
N44° 46' 41.62"					850
W68° 47' 01.76"	FLM 16- FLM 7 Blank	12/11/2024	8:47	12/26/2024	000

Risens w

Verily S

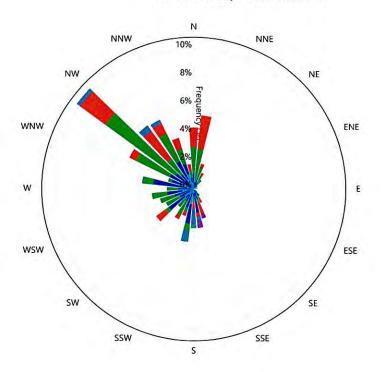
Sampler Name:	Jason Patterson	
Sampler Signature:		

Privacy Policy

Hi Jason! Log out

Data Selector

See Data Values


Data CSV Version

Product Description

Send Feedback

BANGOR INTERNATIONAL AIRPORT (ME) Wind Rose

December 11, 2024 - December 26, 2024 Sub-Interval: January 1 - December 31, 0 - 24

Wind Speed (mph)

0 1.3 - 4 0 4 - 8

8 - 13 13 - 19

9 19 - 25 **25 - 32** 32 - 39

9 39 - 47 47 -

Click and drag to zoom

BANGOR INTERNATIONAL AIRPORT (ME)- Wind Frequency Table (percentage)

Latitude: 44.7979 Longitude: -68.8185 Elevation: 147 ft.

2024 End Date: December 26,

Start Date: December 11, Sub Interval Windows Start End

2024

Date January December 31

Element : Mean Wind Speed

of Days: 16 of 16 # obs : poss : 380 of 384

Hour 0 24

(Greater than or equal to initial interval value and Less than ending interval value.)

Range (mph)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

This tool uses standard hourly observations based on raw (non-quality controlled) decoded metar data from the ACIS-hourly database. Sub-hourly data (one-minute data, five-minute data, and special observations) are not included but are available from NCEI.

Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 1/3/2025 12:15:14 PM EST

Copyright @ 2000-2023 Midwestern Regional Climate Center, All rights reserved.

ATTACHMENT 2

Heddie Samuelson Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401

October 10, 2024

Account# 41031

Login# L639332

Dear Heddie Samuelson:

Enclosed are the analytical results for the samples received by our laboratory on October 03, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab

Laboratory Director

Lisa Lwab

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
1 - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24
Date Received : 03-OCT-24

Ward Inc. Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 1 Lab ID : L639332-1 Time : 20132 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/08/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20132	12		0.89	0.28	1
Toluene	2	2.0	20132	24		2.3	0.60	1
Ethylbenzene	2	2.0	20132	2.9		0.32	0.073	1
m,p-Xylene	4	4.0	20132	8.9		0.96	0.22	1
o-Xylene	2	2.0	20132	3.4		0.37	0.086	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS St

Collection Media : Carbopack X

Supervisor: TLH

Submitted by: NKP

Approved by : TLH

Date : 10-0CT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 2 Lab ID : L639332-2 Time : 20128 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20128	13		1.0	0.31	1
Toluene	2	2.0	20128	27		2.6	0.69	1
Ethylbenzene	2	2.0	20128	3.9		0.42	0.096	1
m,p-Xylene	4	4.0	20128	12		1.3	0.29	1
o-Xylene	2	2.0	20128	4.3		0.47	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031 Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Date : 10-OCT-24

Client ID : SAMPLE 3 Date Sampled : 09/18/24 Lab ID : L639332-3

Time: 20132 minutes

Date Analyzed: 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20132	15		1.1	0.34	1
Toluene	2	2.0	20132	30		2.9	0.76	1
Ethylbenzene	2	2.0	20132	3.8		0.41	0.095	1
m,p-Xylene	4	4.0	20132	12		1.3	0.30	1
o-Xylene	2	2.0	20132	4.5		0.49	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 4 Lab ID : L639332-4 Time : 20132 minutes

Date Sampled : 09/18/24 Date Analyzed: 10/08/24

Parameter	MDL	LOQ	Time	Total	Total	Conc		Dil
Parameter	<u>ng</u>	ng	minutes	ng	Qual	ug/m3	ppbv	Fact
Benzene	2	2.0	20132	10		0.76	0.24	1
Toluene	2	2.0	20132	21		2.0	0.53	1
Ethylbenzene	2	2.0	20132	2.8		0.30	0.070	1
m,p-Xylene	4	4.0	20132	9.2		0.99	0.23	1
o-Xylene	2	2.0	20132	3.3		0.36	0.083	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 10-OCT-24

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571

www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24 Account No.: 41031

Login No. : L639332

Date Analyzed: 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 5 Lab ID : L639332-5 Time : 20138 minutes Date Sampled: 09/18/24

Date Analyzed: 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20138	9.2		0.70	0.22	1
Toluene	2	2.0	20138	18		1.7	0.45	1
Ethylbenzene	2	2.0	20138	2.3		0.25	0.058	1
m,p-Xylene	4	4.0	20138	7.5		0.81	0.19	1
o-Xylene	2	2.0	20138	2.7		0.29	0.066	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 10-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031 Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 6 Lab ID : L639332-6 Time : 20139 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20139	9.7		0.73	0.23	1
Toluene	2	2.0	20139	19		1.8	0.47	1
Ethylbenzene	2	2.0	20139	2.5		0.27	0.062	1
m,p-Xylene	4	4.0	20139	8.3		0.90	0.21	1
o-Xylene	2	2.0	20139	3.2		0.35	0.080	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24 Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 7 Lab ID : L639332-7 Time: 20139 minutes Date Sampled: 09/18/24

Date Analyzed: 10/08/24

	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	<u>ng</u>	ng	minutes	<u>ng</u>	Qual	_ug/m3	ppbv	<u>Fact</u>
Benzene	2	2.0	20139	10		0.77	0.24	1
Toluene	2	2.0	20139	22		2.1	0.55	1
Ethylbenzene	2	2.0	20139	2.8		0.31	0.071	1
m,p-Xylene	4	4.0	20139	9.7		1.1	0.24	1
o-Xylene	2	2.0	20139	3.8		0.40	0.093	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 10-0CT-24

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Client : Haley Ward Inc.

Account No.: 41031 Login No. : L639332

6601 Kirkville Road East Syracuse, NY 13057

Site : NS

Date Analyzed : 08-OCT-24 - 09-OCT-24

(315) 432-5227 FAX: (315) 437-0571 Date Sampled : 18-SEP-24
Date Received : 03-OCT-24

Report ID : 1452328

Date : 10-OCT-24

www.sgsgalson.com

Client ID : SAMPLE 8

Date Sampled: 09/18/24

Lab ID : L639332-8

Time : 20146 minutes

Date Analyzed : 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20146	11		0.86	0.27	1
Toluene	2	2.0	20146	22		2.1	0.57	1
Ethylbenzene	2	2.0	20146	2.8		0.30	0.069	1
m,p-Xylene	4	4.0	20146	8.8		0.95	0.22	1
o-Xylene	2	2.0	20146	3.5		0.37	0.086	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571

www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS Account No.: 41031

Login No. : L639332

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 9 Date Sampled: 09/18/24

Lab ID : L639332-9 Time : 20139 minutes

Date Analyzed: 10/08/24

<u>Parameter</u>	MDL _ng_	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20139	14		1.1	0.34	1
Toluene	2	2.0	20139	36		3.5	0.92	1
Ethylbenzene	2	2.0	20139	6.2		0.67	0.15	1
m,p-Xylene	4	4.0	20139	21		2.2	0.51	1
o-Xylene	2	2.0	20139	8.1		0.88	0.20	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 10-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 10 Lab ID : L639332-10 Time : 20135 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/08/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	vdqq	Dil Fact
Benzene	2	2.0	20135	16		1.2	0.38	1
Toluene	2	2.0	20135	36		3.5	0.92	1
Ethylbenzene	2	2.0	20135	4.1		0.44	0.10	1
m,p-Xylene	4	4.0	20135	13		1.5	0.33	1
o-Xylene	2	2.0	20135	5.2		0.56	0.13	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LELAP Lab ID #04083

Dil Fact

1

1

1

1

1

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

o-Xylene

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031 Login No. : L639332

0.47

Date Analyzed: 08-OCT-24 - 09-OCT-24

0.11

Report ID : 1452328

Client ID : SAMPLE 11 Date Sampled: 09/18/24

Lab ID : L639332-11 Date Analyzed: 10/08/24

4.4

Time: 20132 minutes

	MDL	LOQ	Time	Total	Total	Conc	
<u>Parameter</u>	ng	ng	minutes	<u>ng</u>	Qual	_ug/m3	ppbv
Benzene	2	2.0	20132	13		1.0	0.31
Toluene	2	2.0	20132	30		2.9	0.77
Ethylbenzene	2	2.0	20132	3.5		0.38	0.088
m,p-Xylene	4	4.0	20132	11		1.2	0.28

2.0 20132

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 10-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : NS

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24 Account No.: 41031 Login No. : L639332

Date Analyzed: 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 12 Date Sampled: 09/18/24 Lab ID : L639332-12 Time : 20132 minutes

Date Analyzed: 10/08/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Totalng	Total Qual	Conc _ug/m3	_ppbv_	Dil <u>Fact</u>
Benzene	2	2.0	20132	13		0.98	0.31	1
Toluene	2	2.0	20132	25		2.4	0.63	1
Ethylbenzene	2	2.0	20132	2.8		0.30	0.070	1
m,p-Xylene	4	4.0	20132	8.4		0.91	0.21	1
o-Xylene	2	2.0	20132	3.3		0.36	0.082	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 10-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24 Account No.: 41031 Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

MDL LOQ Time Total Total Conc Dil Parameter ng ng minutes ng Oual ug/m3 ppbv Fact Benzene 2 2.0 20139 10 0.78 0.24 1 Toluene 2.0 20139 21 2.0 0.54 Ethylbenzene 2.0 20139 2.9 0.31 0.072 1 m,p-Xylene 4 4.0 20139 9.5 1.0 0.24 1 o-Xylene 2.0 20139 3.6 0.39 0.090 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LELAP Lab ID #04083

Client

: Haley Ward Inc.

Account No.: 41031 Login No. : L639332

6601 Kirkville Road East Syracuse, NY 13057 Site : NS

Date Analyzed : 08-OCT-24 - 09-OCT-24

(315) 432-5227

Date Sampled : 18-SEP-24 Date Received : 03-OCT-24

Report ID : 1452328

FAX: (315) 437-0571 www.sgsgalson.com

> Lab ID : L639332-14 Client ID : SAMPLE 14/DUP PLM12

Time : 20131 minutes

LABORATORY ANALYSIS REPORT

Date Analyzed: 10/09/24 Date Sampled : 09/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20131	13		0.94	0.29	1
Toluene	2	2.0	20131	27		2.6	0.69	1
Ethylbenzene	2	2.0	20131	3.5		0.37	0.086	1
m,p-Xylene	4	4.0	20131	11		1.2	0.28	1
o-Xylene	2	2.0	20131	4.1		0.44	0.10	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 10-0CT-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 15/BLANK PLM1 Lab ID : L639332-15 Time : 20131 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/09/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20131	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20131	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20131	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20131	ND	U	< 0.43	< 0.099	1
o-Xylene	2	2.0	20131	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 18-SEP-24

Date Received : 03-OCT-24

Account No.: 41031

Login No. : L639332

Date Analyzed : 08-OCT-24 - 09-OCT-24

Report ID : 1452328

Client ID : SAMPLE 16/BLANK PLM5 Lab ID : L639332-16 Time : 20138 minutes

Date Sampled: 09/18/24 Date Analyzed: 10/09/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc _ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20138	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20138	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20138	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20138	ND	U	<0.43	<0.099	1
o-Xylene	2	2.0	20138	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 10-OCT-24

LABORATORY FOOTNOTE REPORT

Client Name : Haley Ward Inc. Site

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled: 18-SEP-24 Date Received: 03-OCT-24

Date Analyzed: 08-OCT-24 - 09-OCT-24

Account No.: 41031 Login No. : L639332

L639332 (Report ID: 1452328):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

L639332 (Report ID: 1452328):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Benzene	+/-20.6%	101%
Ethylbenzene	+/-20.4%	102%
m,p-Xylenes	+/-19.3%	104%
o-Xylene	+/-19.5%	102%
Toluene	+/-21.2%	98.9%

Parameter	Method
Benzene	mod. EPA 325B; GCMS
Ethylbenzene	mod. EPA 325B; GCMS
Toluene	mod. EPA 325B; GCMS
m,p-Xylene	mod. EPA 325B; GCMS
o-Xylene	mod. EPA 325B; GCMS

Sample 1 Sample 1 Sample 2 Sample 3 Sample 4 Sample 4 Sample 4 Sample 5 Sample 6 Sample 6 Sample 6 Sample 6 Sample 7 Sample 7 Sample 7 Sample 8 Sample 8 Sample 8 Sample 9 Sample	9011/he12050		Fieller	CUEL ISUM	Bill Fis		Received by LAB:
Sample 10 Carloppack X	1 -1-21-21		model	Sarryst		BOJ SMON	Relinquished by : TEN
Sample 10 Sample 11 Sample 12 Sample 10 Sample 10 Sample 11 Sample 11 Sample 11 Sample 12 Sample 12 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 16 Sample 16 Sample 17 Sample 16 Sample 17 Sample 19 Sample 10 Sample 11 Sample 11 Sample 10 Sample 11 Sample 10 Sample 10 Sample 10 Sample 11 Sample 10	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1			9 00	
Sample 9. Company Name Company Name (Bulliary Time) Sample 9. Carbopack X Carbon Medium (Milliary Time) Sample 9. Carbopack Medium (Milliary Time) Sample 9. Carbopack Medium (Milliary Time	omiTleted						
Sample 9 Carbopack X OOS O CSS BTEX Mode EPA2589 GOMS Sample 9 Carbopack X OOS O CSS BTEX MOD EPA2589 GOMS Sample 9 Carbopack X OOS O CSS BTEV Mode EPA2589 GOMS Sample 9 Carbopack X OOS OOS BTEX MOD EPA2589 GOMS Sample 9 Carbopack X OOS BTEX MOD EPA2589 GOMS Sample 9 Carbopack X OOS BTEX MOD EPA2589 GOMS Sample 9 Carbopack X OOS OOS BTEX MOD EPA2589 GOMS Sample 9 Carbopack X OOS OOS BTEX MOD EPA2589 GOMS Sample 9 Carbopack	MOD. EPA325B: GCMS	ХЭТВ	0150 A	8570 D	Сафораск Х		Sample 11
Sample 9 Sample	MOD: EPA325B: GCMS	BTEX	5060	08,00	Carbopack X		Sample 10
Sample 5 Sample 6 Sample 7 Sample 8	MOD. EPA325B: GCMS	X3T8	65.80	0260	Csrbopack X		Sample 9
Sample 6 Sample 7 Sample 7 Sample 7 Sample 8 Sample 8 Sample 8 Sample 8 Sample 9 Sam	MOD: EPA325B: GCMS	X3T8	_2(0)	5201	Carbopack X		Sample 8
Sample 3 Sample 4 Sample 5 Sample 5 Sample 6 Sample 6 Sample 6 Sample 6 Sample 6 Sample 5 Sample 7 Sample 7 Sample 7 Sample 7 Sample 8 Sample 8 Sample 8 Sample 9	MOD. EPA325B: GCMS	X∃T8	000	1201	Carbopack X		Sample 7
Complete S Days Company Name	MOD. EPA325B: GCMS	X3T8	2500	Cloj.	Сафораск Х		Sample 6
Sample 3 Sample 4 Sample 3 Sample 4 Sample 5 Sample 4 Sample 5 Sample 6 Sample 6 Sample 6 Sample 7 Sample 8 Sample 8 Sample 8 Sample 8 Sample 8 Sample 8 Sample 9 Sam	MOD. EPA325B: GCMS	BTEX	2100	0101	Csrbopack X		Sample 5
Semple S	MOD. EPA325B: GCMS	BTEX	95.00	Lool	Сафораск Х		Sample 4
Sample S	MOD. EPA325B: GCMS	BTEX	h260	7001	Carbopack X		Sample 3
Company Name: Haley Ward Inc. Sample Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Sample Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Sample Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Sample Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Sample Company Name: Haley Ward Inc. Company Name: Haley Wa	MOD. EPA325B: GCMS	BTEX	5260	L540	Сагрораск Х		Sample 2
Sample Sample	MOD. EPA325B: GCMS	X3T8	0250 42/2/0	Plana metal/6	Сафораск Х		1 elqms2
Company Name: Haley Ward Inc. Sulfe 701	Method	Analysis Requested			Collection Medium	Manufacturer ID	
Company Name Haley Ward Line Haley W			-3				
Free Results By: (surcharge) Company Name: Haley Ward Inc. Address 1: 1 Marchants Plaza Address 2: Sulte 701 Address 2: Sulte 701 Email Report to: Cell No. Solt-214-0141 Email Address: Joreskovich@haleyward.com Po. No. Cell No		Sampled By:			:tolect:	1	
Feed Results By*: (surcharge) Company Name: Haley Ward Inc. Address 2: Sulte 701 Address 2: Sulte 701 City, State, Zip: Bangor, ME 04401 City, State, Zip: Bangor, ME 0401 City,	L12	f			Project:	<u> </u>	
Seed Results By*: (surcharge) Search Arginess Days Seed Results By*: (surcharge) Search Arginess Days Seed Results By*: (surcharge) Search Arginess Days Seed Results Report to: (surcharge) Search Arginess Days Search Ar	562	rometric Pressure:	Average Ba		Project:	<u> </u>	
Feed Results By*: (surcharge) Company Name: Haley Ward Inc.	20°2	ibient Temperature: rometric Pressure:	nA egstevA sa egstevA	and rewring to the			per:UPS ials:BCF
Seed Results By*: (surcharge) Address 1: 1 Marchants Plaza Address 2: Suite 7014	26°C189	ibient Temperature: rometric Pressure:	nA egstevA sa egstevA	ons and return to the			:10/03/24 per:UPS ials:BCF
Company Name: Company Name: Haley Ward Inc. Address 1: 1 Marchants Plaza Suite 701 Address 2: Suite 701 Address 2: Suite 701 Email Report to: City, State, Zip: Bangor, ME 04401 Email Address 2: Suite 701 Email Report to: City, State, Zip: Bangor, ME 04401 Email Address 2: Suite 701 Email Report to: City, State, Zip: Bangor, ME 04401 Email Address 2: Suite 701 Provided Plaza Suite 701 Email Address 2: Suite 701 Provided Plaza Prov	5.62 (2.01.29)	ibient Temperature: rometric Pressure:	nA egstevA sa egstevA	off of muter bas enoti	Complete shaded por		43178466812491 10/03/24 1als:8CF
Company Name: Haley Ward Inc. Alley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Address 2: Suite 701 Alley Ward Inc. Address 2: Suite 701 Alley Ward Inc. Company Name: Company Name: Haley Ward Inc. Company Name: Compa		les.* blient Temperature: rometric Pressure:	nA egstevA sa egstevA	off of muter bns snoi	Complete shaded por		Same day 200%
Company Name: Address Days Company Name: Address Days City, State, Zip: Cell No.: Cell No.: Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Address Days Company Name: Address Days City, State, Zip: Cell No.: Cell No.: Cell No.: Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Address Days Company Name: Cell No.: Cell No.:	eli∃ no b	Credit Caro les.* bisent Temperature: rometric Pressure:	nA egstevA sa egstevA		Prep No.:		Mext Day by Moon 150% Same day 200% 43178466812491 10/03/24 per: UPS 1als: BCF
Company Name: Address 2: Suite 701 Address 3: Suite 701 Address 2: Suite 701 Address 3: Suite 701 Address 7: Addr	ej⊩ no b	Payment Info: Will Phone Credit Card	nA egstevA sa egstevA		Trep No.: Complete shaded por	The E	Next Day by 6pm 100% Next Day by Noon 150% 43178466812491 10/03/24 per: UPS 1als:8CF
Company Name: Company Name: Company Name: Company Name: Address 2: Suite 701	in Credit Card Information d on File	P.O. No: Payment Info:	nA egstevA sa egstevA	офремята.сош	ili Report to: Prep No.: Complete shaded por	The E	2 Business Days 75% Next Day by 6pm 100% A3178466812491 A3178466812491 A3178466812491 A3178466812491 A3178466812491
Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Company Name: Haley Ward Inc.	reskovich@haleyward.com s in Credit Card Information d on File	Email Address: P.O. No: Payment Info: Credit Card Ibes.* Ibes.* Cometric Pressure:	nA egstevA sa egstevA	207-214-0141	Tep No.: Prep No.: Complete shaded por	he E	3 Business Days 50% 2 Business Days 76% 43 1 78 4668 12 49 1 60% 43 1 78 4668 12 49 1 60% 43 1 78 4668 12 49 1 60% 43 1 78 4668 12 49 1 60%
Company Name: Haley Ward Inc. Company Name: Haley Ward Inc.	Bangor, ME 04401 reskovich@haleyward.com in Credit Card Information d on File	Email Address: P.O. No: P.O. No: Payment Info: Credit Card Ibes.* Personner Temperature: Cometric Pressure:	nA egstevA sa egstevA	Bangor, ME 04401 207-214-0141 oottle@haleyward.com	Y, State, Zip: Cell No.: Prep No.: Complete shaded por	EW CH	4 Business Days 35% 3 Business Days 50% A Business Days 75% Next Day by 6pm 100% 43178466812491 500% 43178466812491 500% 50er : UPS 5ame day 200% 5als : BCF
Application of the property of	Suite 701 Bangor, ME 04401 reskovich@haleyward.com in Credit Card Information d on File	Address 2: City, State, Zip: Email Address: P.O. No: Payment Info: Credit Card Card	nA egstevA sa egstevA	Suite 701 Bangor, ME 04401 207-214-0141 pottle@haleyward.com	Address 2: Y, State, Zip: Cell No.: If Report to: Prep No.: Complete shaded por	Ema Grand	5 Business Days 0% 5 Business Days 25% 6 Business Days 25% 7 Business Days 75% 7 Business Days 75% 8 Business Days 75% 8 Business Days 75% 9 Business Days 75% 8 Business Days 75% 9 Business
MARIAN VENILA	1 Marchants Plaza Suite 701 Bangor, ME 04401 reskovich@haleyward.com in Credit Card Information d on File	Address 1: City, State, Zip: Email Address: P.O. No: Payment Info: Will Phone Credit Card Info: Dibient Temperature: Cometric Pressure:	nA egstevA sa egstevA	1 Marchants Plaza Suite 701 Bangor, ME 04401 207-214-0141	Address 1: Address 2: y, State, Zip: Cell No.: prep No.: ti	Em CH	5 Business Days 0% 4 Business Days 25% A Business Days 75% A Business

EPA 325A	Fenceline	Monitoring

SGS	GALSON
- Carl Carl	GVFAGIA

Comments

The 18 20 1 1 1 1 1		Complete shaded po	ortions and return to	he lab with the samp	les.*	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method
Sample 12		Carbopack X	9/8/24 942	192/24 0914	BTEX	MOD. EPA325B: GCMS
Sample 13 / FUM	2	Carbopack X	1022	1001	BTEX	MOD. EPA325B: GCMS
Sample 14 / PLM	17	Carbopack X	0943	0914	BTEX	MOD. EPA325B: GCMS
Sample 15 / PLM	e	Carbopack X	0949	0920	BTEX	MOD. EPA325B: GCMS
1360	4	Carbopack X	1010	0948	BTEX	MOD. EPA325B: GCMS
Sample 16/PLIMS			1010			
				-1 1 120		
	Print Na			Signature		Date/Time
Chain of Custody		me He	Turl		to	1012124 1117
Relinquished by : Received by LAB :	W USI'M P	Bill Fische		alua 1		0300724/1106
*Required fields, failure to co	omplete these fields r	nay result in a delay in			Page will be considered as next d	x2 of 2

Tanesha Pottle Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401 October 25, 2024

Account# 41031

Login# L640706

Dear Tanesha Pottle:

Enclosed are the analytical results for the samples received by our laboratory on October 17, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Look

Enclosure(s)

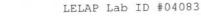
ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a
 third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to
 the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter
 used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and
 strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to
 the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.


Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

: Haley Ward Inc. Client : COLD BROOK

Account No.: 41031 Login No. : L640706

Site : COLD BROOK FENCELINE MONITORING Project No.

Date Analyzed : 23-OCT-24 - 24-OCT-24 : 02-OCT-24 Date Sampled

: 1455398 Report ID Date Received : 17-OCT-24

Client ID : FLM 1-SAMPLE Date Sampled: 10/02/24

Time : 20191 minutes Lab ID : L640706-1

Date Analyzed: 10/24/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc _ug/m3	ppbv	Dil <u>Fact</u>
	2	2.0	20191	ND	Ü	<0.15	<0.046	1
Benzene	2	2.0	20191	ND	U	<0.19	<0.051	1
Toluene	2	2.0	20191	ND	U	<0.22	<0.050	1
Ethylbenzene	4	4.0	20191	ND	U	< 0.43	<0.099	1
m,p-Xylene o-Xylene	2	2.0	20191	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sqsqalson.com

Client Site

: Haley Ward Inc.

: COLD BROOK

Account No.: 41031 Login No. : L640706

: COLD BROOK FENCELINE MONITORING Project No.

Date Sampled : 02-OCT-24 Date Received : 17-OCT-24

Date Analyzed : 23-OCT-24 - 24-OCT-24

: 1455398 Report ID

Client ID : FLM 2-SAMPLE Date Sampled: 10/02/24

Time: 20189 minutes Lab ID : L640706-2

Date Analyzed: 10/23/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20189	12		0.94	0.29	1
Toluene	2	2.0	20189	20		1.9	0.52	1
Ethylbenzene	2	2.0	20189	2.3		0.25	0.057	1
m,p-Xylene	4	4.0	20189	6.3		0.68	0.16	1
o-Xvlene	2	2.0	20189	2.2		0.24	0.056	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Parameter

Benzene Toluene Ethylbenzene m, p-Xylene o-Xylene

: Haley Ward Inc. Client : COLD BROOK

Site : COLD BROOK FENCELINE MONITORING Project No.

Date Sampled : 02-OCT-24

Date Received : 17-OCT-24

Account No.: 41031

Login No. : L640706

Date Analyzed : 23-OCT-24 - 24-OCT-24

: 1455398 Report ID

Client ID : FLM 3-SAMPLE Date Sampled: 10/02/24

Time : 20188 minutes Lab ID : L640706-3

Date Analyzed: 10/23/24

MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
	0 0	20188	18		1.4	0.44	1
.2	2.0				2.6	0.69	1
2	2.0	20188	27			0.081	1
2	2.0	20188	3.3		0.35		_
-		20188	9.3		1.0	0.23	1
4	4.0				0.39	0.089	1
2	2.0	20188	3.6		0.35		

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Account No.: 41031 Site : COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 4-SAMPLE Lab ID : L640706-4 Time : 20187 minutes

Date Sampled: 10/02/24 Date Analyzed: 10/24/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20187	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20187	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20187	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20187	ND	U	< 0.43	<0.099	1
o-Xylene	2	2.0	20187	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 25-0CT-24

Site

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

: COLD BROOK

LABORATORY ANALYSIS REPORT

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Received : 17-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

Report ID : 1455398

Account No.: 41031

Login No. : L640706

Time : 20184 minutes Lab ID : L640706-5 Client ID : FLM 5-SAMPLE Date Sampled: 10/02/24

Date Analyzed: 10/24/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20184	11		0.85	0.27	1
Toluene	2	2.0	20184	14		1.3	0.36	1
Ethylbenzene	2	2.0	20184	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20184	4.5		0.48	0.11	1
o-Xylene	2	2.0	20184	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Submitted by: NKP Date : 25-OCT-24 Analytical Method: mod. EPA 325B; GCMS

Approved by : BHB Collection Media : Carbopack X Supervisor: TLH

6601 Kirkville Road

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

East Syracuse, NY 13057

GALSON

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Client : Haley Ward Inc. Account No.: 41031 Site : COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 6-SAMPLE Lab ID : L640706-6 Time : 20181 minutes

Date Sampled: 10/02/24 Date Analyzed: 10/23/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total _Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20181	9.3		0.70	0.22	1
Toluene	2	2.0	20181	12		1.1	0.30	1
Ethylbenzene	2	2.0	20181	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20181	4.1		0.44	0.10	1
o-Xvlene	2	2.0	20181	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 25-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

Account No.: 41031

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK

: COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 7-SAMPLE Lab ID : L640706-7 Time : 20184 minutes

Date Sampled: 10/02/24 Date Analyzed: 10/23/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20184	8.9		0.67	0.21	1
Toluene	2	2.0	20184	11		1.0	0.28	1
Ethylbenzene	2	2.0	20184	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20184	ND	U	<0.43	< 0.099	1
o-Xylene	2	2.0	20184	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 25-OCT-24

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc. Site : COLD BROOK Account No.: 41031 Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24
Date Received : 17-OCT-24

Date Analyzed : 23-OCT-24 - 24-OCT-24

Report ID : 1455398

Client ID : FLM 8-SAMPLE Date Sampled : 10/02/24 Lab ID : L640706-8 Time : 20170 minutes

Date Analyzed : 10/24/24

<u>Parameter</u>	MDL _ng_	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20170	8.6		0.65	0.20	1
Toluene	2	2.0	20170	11 ND		1.0	<0.050	1
Ethylbenzene	2	2.0 4.0	20170	4.4	0	0.47	0.11	1
m,p-Xylene o-Xylene	2	2.0	20170	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Client

: Haley Ward Inc.

Account No.: 41031

: COLD BROOK Site

Login No. : L640706

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571

www.sgsgalson.com

Project No.

: COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Received : 17-OCT-24

Date Analyzed : 23-OCT-24 - 24-OCT-24

: 1455398 Report ID

Client ID : FLM 9-SAMPLE Date Sampled: 10/02/24

Time: 20195 minutes Lab ID : L640706-9

Date Analyzed: 10/24/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv _	Dil Fact
		0 0	00105	12		0.87	0.27	1
Benzene	2	2.0	20195				0.46	1
	2	2.0	20195	18		1.7		1
Toluene	2	2.0	20195	3.5		0.37	0.086	1
Ethylbenzene	2			11		1.2	0.27	1
m,p-Xylene	4	4.0	20195	11				1
o-Xylene	2	2.0	20195 .	4.3		0.46	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

Account No.: 41031 Login No. : L640706

Date Analyzed : 23-OCT-24 - 24-OCT-24

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : COLD BROOK

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Lab ID : L640706-10 Time : 20194 minutes Client ID : FLM 10-SAMPLE Date Analyzed: 10/24/24 Date Sampled: 10/02/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20194	19		1.5	0.47	1
Toluene	2	2.0	20194	39		3.7	0.98	1
Ethylbenzene	2	2.0	20194	5.2		0.56	0.13	1
m,p-Xylene	4	4.0	20194	16		1.7	0.40	1
o-Xylene	2	2.0	20194	6.5		0.70	0.16	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 25-OCT-24

Supervisor: TLH Approved by : BHB Collection Media : Carbopack X

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Account No.: 41031 Site : COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 11-SAMPLE Lab ID : L640706-11 Time: 20195 minutes Date Sampled: 10/02/24 Date Analyzed: 10/24/24

MDL LOQ Time Total Total Conc Dil Parameter minutes Oual ug/m3 nq ng nq ppbv Fact Benzene 2 2.0 20195 14 1.1 0.34 1 Toluene 2 2.0 20195 27 2.5 0.67 2 Ethylbenzene 2.0 20195 3.7 0.40 0.091 1 4 4.0 m,p-Xylene 20195 11 1.2 0.27 1 o-Xylene 2 2.0 20195 4.1 0.44 0.10 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 25-OCT-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

Account No.: 41031

Login No. : L640706

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : COLD BROOK

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24

Date Analyzed : 23-OCT-24 - 24-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 12-SAMPLE Lab ID : L640706-12 Time: 20192 minutes Date Sampled: 10/02/24 Date Analyzed: 10/24/24

MDL LOQ Time Total Total Conc Dil Parameter minutes ng ng na Oual ug/m3 ppbv Fact Benzene 2 2.0 20192 14 1.1 0.34 1 Toluene 2 2.0 20192 24 2.3 0.60 1 Ethylbenzene 2.0 20192 2.8 0.30 0.070 m, p-Xylene 4 4.0 20192 7.8 0.84 0.19 1 o-Xylene 2.0 20192 3.2 0.34 0.079 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 25-OCT-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.
Site : COLD BROOK

: COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 13-SAMPLE Date Sampled : 10/02/24 Lab ID : L640706-13

Time : 20188 minutes

Date Analyzed: 10/24/24

<u>Parameter</u>	MDL _ng_	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20188	18		1.4	0.44	1
Toluene	2	2.0	20188	28		2.6	0.70	1
Ethylbenzene	2	2.0	20188	3.4		0.37	0.085	1
m,p-Xylene	4	4.0	20188	9.1		0.98	0.22	1
o-Xylene	2	2.0	20188	3.7		0.40	0.092	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Account No.: 41031

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sqsgalson.com

Client : Haley Ward Inc. Site

Account No.: 41031 Login No. : L640706 : COLD BROOK

: COLD BROOK FENCELINE MONITORING Project No.

Date Analyzed : 23-OCT-24 - 24-OCT-24 Date Sampled : 02-OCT-24

Report ID : 1455398

Date Received : 17-OCT-24

Client ID : FLM 14-SAMPLE Date Sampled: 10/02/24

Time : 20194 minutes Lab ID : L640706-14

Date Analyzed: 10/24/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20194	19		1.5	0.47	1
Toluene	2	2.0	20194	41		3.9	1.0	1
Ethylbenzene	2	2.0	20194	5.4		0.59	0.13	1
m,p-Xylene	4	4.0	20194	17		1.8	0.41	1
o-Xylene	2	2.0	20194	6.6		0.71	0.16	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 25-OCT-24

Collection Media : Carbopack X

Supervisor: TLH

www.sgsgalson.com

GALSON

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

UN

Client : Haley Ward Inc. Account No.: 41031
6601 Kirkville Road Site : COLD BROOK Login No. : L640706

East Syracuse, NY 13057 Project No. : COLD BROOK FENCELINE MONITORING

(315) 432-5227 Date Sampled : 02-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

FAX: (315) 437-0571 Date Received : 17-OCT-24 Report ID : 1455398

<u>Parameter</u>	MDL ng	LOQ	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20183	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20183	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20183	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20183	ND	U	<0.43	<0.099	1
o-Xvlene	2	2.0	20183	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 25-OCT-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Account No.: 41031 Site : COLD BROOK Login No. : L640706

Project No. : COLD BROOK FENCELINE MONITORING

Date Sampled : 02-OCT-24 Date Analyzed : 23-OCT-24 - 24-OCT-24

Date Received : 17-OCT-24 Report ID : 1455398

Client ID : FLM 16-SAMPLE Lab ID : L640706-16 Time : 20191 minutes

Date Sampled: 10/02/24 Date Analyzed: 10/23/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Design	2	2.0	20191	ND	U	<0.15	<0.046	1
Benzene	2	2.0	20191	ND	U	<0.19	<0.051	1
Toluene	2	2.0	20191	ND	U	<0.22	<0.050	1
Ethylbenzene	1	4.0	20191	ND	U	< 0.43	<0.099	1
m,p-Xylene o-Xylene	2	2.0	20191	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 25-OCT-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LABORATORY FOOTNOTE REPORT

Client Name : Haley Ward Inc. : COLD BROOK

Project No. : COLD BROOK FENCELINE MONITORING

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled: 02-OCT-24

Account No.: 41031 Login No. : L640706 Date Received: 17-OCT-24

Date Analyzed: 23-OCT-24 - 24-OCT-24

L640706 (Report ID: 1455398):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

Parameter	Method
Benzene	mod. EPA 325B; GCMS
Ethylbenzene	mod. EPA 325B; GCMS
Toluene	mod. EPA 325B; GCMS
m,p-Xylene	mod. EPA 325B; GCMS
o-Xylene	mod. EPA 325B; GCMS

0.5	ent Acct. No.	41031	EPA 325	A Fenceline M	lonitorin	g	
SGS GALSON	ent ACCL NO.	41031	1			Invoice To :	ccounts Payable-Julie
GALSON		Report To:	Tanesha Pottle			Company Name:	Haley Ward Inc.
	Co	mpany Name:	Haley Ward Inc. 1 Marchants Plaza			Address 1:	1 Marchants Plaza
Need Results By*: (surcharge)		Address 1:	Suite 701			Address 2:	Suite 701
5 Business Days 0%		Address 2:	Bangor, ME 04401			City, State, Zip:	Bangor, ME 04401
4 Business Days 35%	C	ity, State, Zip:	207-214-0141				eskovich@haleyward.com
3 Business Days 50%	<u> </u>	nail Report to: h Sar		0104.105	4	P.O. No:	999
2 Business Days 75%	/ Er	nall Report to. 7 3 CT	tpottle@haleyward.com	miej ww.	com	Payment Info: Will Phone	in Credit Card Information
Next Day by 6pm 100%	(00)					Credit Care	d on File
Next Day by Noon 150% Same day 200%	10)	Prep No.:	PSY749649				40
Same day 200%	(0)						77
	$\overline{}$						
E		Complete shaded po	ortions and return to	the lab with t	he samp	oles.	610-
mments: DECC C	616.510	1 1 101 1011	: .			nbient Temperature:	51.8°F
mments: PERC Fire on 3.4 miles	Starte	2 1011 124	4	Av	rerage Ba	rometric Pressure:	29.7 Hg
72 3.7 Mices	.,,~						3
- Nama:		Project:				Sampled By:	
e Name: COLCL B rook		Cold B	rook Fencel	ine Mor	nitorin	g Hedda	Samuelson
Sample			Date/Time Deployed	Date/Time Re	etrieved	0	
Identification* Mai	nufacturer ID	Collection Medium	(Military Time)	(Military T	Time)	Analysis Requested	Method
	*	Carbopack X	10 2 24/ 6922	10-16-24	10953	BTEX	MOD. EPA325B: GCMS
FLM 1-Sample		Carbopatien	1			DIEX	WIOD. ET AGEGO. COMO
		Carbopack X	10-2-24/0920	10-16-24	10955	BTEX	MOD. EPA325B: GCMS
FLM 2-Sample			1	1	1 -		
ZM 3- Sample	1 -	Carbopack X	10-2-24 /0935	10-16-24/	1003	BTEX	MOD. EPA325B: GCMS
LPI 5 SWITTER	2-1	Carbopack X	10-2-24 /2016	1. 11 -211	Linna	DTEV	MOD, EPA325B: GCMS
FLM 4- Sample		Carbopack	10-2-24/0940	10-16-29	1,001	BTEX	MOD. EPA323B. GCM3
		Carbopack X	10-2-24/0949	110-16-24	11013	BTEX	MOD. EPA325B: GCMS
-LM5-Sample	1				1.		
FLM Ce-Sample		Carbopack X	10-2-24/095	710-16-24	1018	BTEX	MOD. EPA325B: GCMS
Li Co santra		Carbanask V	1		1		MOD FRANCED COME
FLM 7-Sample	1	Carbopack X	10-2-24/1001	10-10-24	11070	BTEX	MOD. EPA325B: GCMS
		Carbopack X	10-2-24/1020	10-110-24	11130	BTEX	MOD. EPA325B: GCMS
ZM 8-Sanpre			1		/	DIEX.	
FLM 9- Sample		Carbopack X	10-2-24/090	310-16-24	10938	BTEX	MOD. EPA325B: GCMS
			1		,		
-LM 10-Sample	,	Carbopack X	10-2-24/0907	10-10-17	10741	BTEX	MOD. EPA325B: GCMS
		Carbopack X	10-2-24/0911	10-11-24	haus	BTEX	MOD. EPA325B: GCMS
-LM 11- Sample	1 1	Carbopack	10-2-19/0911	10-10-21	10190	BIEX	WIOD. EFA323B. GCWIS
							F
	A Print Na	pne .		Signa	ature		Date/Time
Chain of Cuctody	A	11	Ledda	James	San		,
Chain of Custody	11/0/1/	0 /1	THE LATACAL				
Relinquished by :	sell		Bill Fischer	13,00	3:01		170CT24/1157

EPA 325	A Fencel	line M	onite	oring				

SGS GALSON

Comments

		Complete shaded pe	ortions and return to	the lab with the samp	les.*	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method
FLM 12-Sample		Carbopack X	10-2-24/09187	10-16-24/0950	BTEX	MOD. EPA325B: GCMS
FLM 13-FLM 3 DUP	:	Carbopack X	10-2-24/0935	10-16-24/1003	BTEX	MOD. EPA325B: GCMS
FLM 14 - FLM 10 DUP	1	Carbopack X	10-2-24/0907	10-16-24/0941	втех	MOD. EPA325B: GCMS
FLM 15-FLM 5 Blank	177	Carbopack X	10-2-24 /,0950	10-16-24/1013	BTEX	MOD. EPA325B: GCMS
FLM 16-FLM 2 Blank		Carbopack X	10-2-24/0927	10-10-24/0958	BTEX	MOD. EPA325B: GCMS
			ļ		<u> </u>	
			-			
						
· · · · · · · · · · · · · · · · · · ·		-				
-				1		
Chain of Custody	Print Nam	ne		Signature		Date/Time
Relinquished by : Head	aa Same	1800	Hellela e	huede		10/10/24
Received by LAB:			Bill Fischer	Bill Fraken		170cray /1157
*Required fields, failure to comp your sample	lete these fields ma es being processed		Sar	nples received after 3pm w	Page rill be considered as next d	12 of 2 ay's business.

Tanesha Pottle Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401 November 07, 2024

Account# 41031

Login# L642177

Dear Tanesha Pottle:

Enclosed are the analytical results for the samples received by our laboratory on October 31, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY

Project No.

: FENCELINE MONITORING

Date Sampled

: 16-OCT-24

Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

: 1457602 Report ID

Client ID : FLM1-SAMPLE Date Sampled: 10/16/24 Lab ID : L642177-1

Time : 20211 minutes

Date Analyzed: 11/01/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv _	Dil <u>Fact</u>
Benzene	2	2.0	20211	13		0.97	0.30	1
Toluene	2	2.0	20211	25		2.4	0.64	1
Ethylbenzene	2	2.0	20211	3.3		0.36	0.082	1
m,p-Xylene	4	4.0	20211	10		1.1	0.25	1
o-Xvlene	2	2.0	20211	3.9		0.41	0.095	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Collection Media : Carbopack X

Supervisor: TLH

Submitted by: NKP Approved by : BHB

Date: 07-NOV-24

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

(315) 432-5227 FAX: (315) 437-0571

East Syracuse, NY 13057

www.sqsqalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY

Project No.

: FENCELINE MONITORING

Date Sampled : 16-OCT-24 Date Received : 31-OCT-24 Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

: 1457602 Report ID

Date : 07-NOV-24

Client ID : FLM2-SAMPLE Date Sampled: 10/16/24

Time: 20211 minutes Lab ID : L642177-2

Date Analyzed : 11/01/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv _	Dil Fact
		0 0	20211	13		0.97	0.30	1
Benzene	2	2.0	20211			2.5	0.65	1
Toluene	2	2.0	20211	26				1
	2	2.0	20211	3.2		0.35	0.080	1
Ethylbenzene	2			9.8		1.1	0.24	1
m,p-Xylene	4	4.0	20211			0.39	0.091	1
o-Xylene	2	2.0	20211	3.7		0.39	0.031	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Approved by : BHB

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY : FENCELINE MONITORING

Project No. Date Sampled : 16-OCT-24 Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed: 01-NOV-24 - 02-NOV-24

: 1457602 Report ID

Client ID : FLM3-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-3

Time : 20210 minutes

Date Analyzed: 11/01/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
200.000	2	2.0	20210	14		1.0	0.31	1
Benzene	2	2.0	20210	29		2.8	0.73	1
Toluene	2	2.0	20210	3.7		0.40	0.091	1
Ethylbenzene	-	4.0	20210	11		1.2	0.28	1
m,p-Xylene	4	2.0	20210	4.2		0.46	0.10	1
o-Xvlene	4	2.0						

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM4-SAMPLE Lab ID : L642177-4 Time : 20210 minutes

Date Sampled: 10/16/24 Date Analyzed: 11/01/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20210	13		0.95	0.30	1
Toluene	2	2.0	20210	25		2.4	0.63	1
Ethylbenzene	2	2.0	20210	3.0		0.33	0.075	1
m,p-Xylene	4	4.0	20210	9.2		0.99	0.23	1
o-Xylene	2	2.0	20210	3.4		0.37	0.084	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 07-NOV-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sqsqalson.com Client Site : Haley Ward Inc. : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031

Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM5-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-5

Time: 20209 minutes

Date Analyzed : 11/01/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20209	9.2		0.70	0.22	1
Toluene	2	2.0	20209	16		1.5	0.40	1
Ethylbenzene	2	2.0	20209	2.3		0.25	0.058	1
m,p-Xylene	4	4.0	20209	7.2		0.77	0.18	1
o-Xylene	2	2.0	20209	2.6		0.28	0.065	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date: 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

: Haley Ward Inc. Client : COLD BROOK ENERGY Site

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24 Date Received : 31-OCT-24 Account No.: 41031 Login No. : L642177

LABORATORY ANALYSIS REPORT

Date Analyzed: 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Lab ID : L642177-6 Time: 20211 minutes Client ID : FLM6-SAMPLE

Date Analyzed: 11/01/24 Date Sampled: 10/16/24

	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	<u>ng</u>	ng	minutes	<u>ng</u>	Qual	_ug/m3	_ ppbv	<u>Fact</u>
Benzene	2	2.0	20211	8.4		0.64	0.20	1
Toluene	2	2.0	20211	14		1.4	0.36	1
Ethylbenzene	2	2.0	20211	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20211	5.5		0.59	0.14	1
o-Xylene	2	2.0	20211	2.2		0.24	0.054	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Date : 07-NOV-24 Submitted by: NKP Analytical Method: mod. EPA 325B; GCMS

Approved by : BHB Supervisor: TLH Collection Media : Carbopack X

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client Site : Haley Ward Inc. : COLD BROOK ENERGY

Project No.

: FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031

Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM7-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-7

Time : 20207 minutes

Date Analyzed : 11/01/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20207	8.4		0.64	0.20	1
Toluene	2	2.0	20207	13		1.3	0.33	1
Ethylbenzene	2	2.0	20207	ND	U	<0.22	< 0.050	1
m,p-Xylene	4	4.0	20207	4.9		0.52	0.12	1
o-Xylene	2	2.0	20207	ND	U	<0.22	< 0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

arbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24 Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed: 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM8-SAMPLE Lab ID : L642177-8 Time: 20207 minutes

Date Sampled: 10/16/24 Date Analyzed: 11/01/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20207	8.6		0.65	0.20	1
Toluene	2	2.0	20207	17		1.6	0.42	1
Ethylbenzene	2	2.0	20207	2.5		0.27	0.061	1
m,p-Xylene	4	4.0	20207	7.6		0.82	0.19	1
o-Xylene	2	2.0	20207	2.8		0.30	0.070	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 07-NOV-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING
Date Sampled : 16-OCT-24

Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM9-SAMPLE Lab ID : L642177-9 Time : 20209 minutes

Date Sampled: 10/16/24 Date Analyzed: 11/01/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20209	12		0.88	0.28	1
Toluene	2	2.0	20209	33		3.1	0.82	1
Ethylbenzene	2	2.0	20209	9.2		0.99	0.23	1
m,p-Xylene	4	4.0	20209	33		3.6	0.82	1
o-Xylene	2	2.0	20209	15		1.7	0.38	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 07-NOV-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site : Haley Ward Inc. : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM10-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-10

Time : 20179 minutes

Date Analyzed : 11/02/24

	MDL ng_	LOQ	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Parameter Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	2 2 2 4 2	2.0 2.0 2.0 4.0 2.0	20179 20179 20179 20179 20179	21 50 7.1 23 8.9		1.6 4.8 0.76 2.5 0.96	0.50 1.3 0.18 0.58 0.22	1 1 1 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

ODDERON BURLUGIG DEDONE

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site : Haley Ward Inc. : COLD BROOK ENERGY

Project No. : F

: FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031

Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

LELAP Lab ID #04083

Report ID : 1457602

Client ID : FLM11-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-11

Time: 20208 minutes

Date Analyzed: 11/02/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20208	15		1.1	0.34	1
Toluene	2	2.0	20208	33		3.1	0.82	1
Ethylbenzene	2	2.0	20208	4.9		0.52	0.12	1
m,p-Xylene	4	4.0	20208	14		1.5	0.35	1
o-Xylene	2	2.0	20208	5.4		0.59	0.13	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client

Site

: Haley Ward Inc. : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM12-SAMPLE Date Sampled : 10/16/24 Lab ID : L642177-12

Time : 20208 minutes

LABORATORY ANALYSIS REPORT

Date Analyzed: 11/02/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20208	14		1.0	0.31	1
Toluene	2	2.0	20208	31		2.9	0.78	1
Ethylbenzene	2	2.0	20208	3.8		0.41	0.094	1
m,p-Xylene	4	4.0	20208	12		1.3	0.29	1
o-Xylene	2	2.0	20208	4.5		0.49	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

Project No.

: Haley Ward Inc. : COLD BROOK ENERGY

: FENCELINE MONITORING

Date Sampled : 16-OCT-24 Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM13-DUP (FLM1) Date Sampled: 10/16/24

Lab ID : L642177-13

Time : 20211 minutes

Date Analyzed: 11/02/24

	MDI	1.00	m:	mahal	maka 1	0		D.: 1
P. Company	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	<u>ng</u>	ng	minutes	<u>ng</u>	Qual	_ug/m3	_ ppbv	Fact
Benzene	2	2.0	20211	12		0.88	0.28	1
Toluene	2	2.0	20211	22		2.1	0.55	1
Ethylbenzene	2	2.0	20211	2.5		0.27	0.063	1
m,p-Xylene	4	4.0	20211	7.3		0.79	0.18	1
o-Xylene	2	2.0	20211	3.0		0.32	0.073	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date: 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sqsqalson.com

Client : Haley Ward Inc.
Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24
Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Client ID : FLM14-DUP (FLM6) Lab ID : L642177-14 Time : 20211 minutes

Date Sampled: 10/16/24 Date Analyzed: 11/02/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual		Conc ug/m3	_ ppbv_	Dil Fact
Benzene	2	2.0	20211	8.3			0.63	0.20	1
Toluene	2	2.0	20211	15		Y-11	1.4	0.38	1
Ethylbenzene	2	2.0	20211	2.2			0.24	0.055	1
m,p-Xylene	4	4.0	20211	7.1			0.77	0.18	1
o-Xvlene	2	2.0	20211	2.8			0.30	0.070	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 07-NOV-24

Collection Media : Carbopack X Supervisor: TLH Approved by : BHB

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. : COLD BROOK ENERGY Site

Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24 Date Received : 31-OCT-24 Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

Report ID : 1457602

Lab ID : L642177-15 Time : 20211 minutes Client ID : FLM15-BLANK (FLM 2)

Date Analyzed: 11/02/24 Date Sampled: 10/16/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20211	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20211	ND	U	<0.19	<0.050	1
Ethylbenzene	2	2.0	20211	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20211	ND	U	<0.43	<0.099	1
o-Xylene	2	2.0	20211	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Submitted by: NKP Date : 07-NOV-24 Analytical Method: mod. EPA 325B; GCMS

Supervisor: TLH Approved by : BHB Collection Media : Carbopack X

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY : FENCELINE MONITORING

Project No. Date Sampled : 16-OCT-24

Date Received : 31-OCT-24

Account No.: 41031 Login No. : L642177

Date Analyzed : 01-NOV-24 - 02-NOV-24

: 1457602 Report ID

Client ID : FLM16-BLANK (FLM 4) Date Sampled: 10/16/24

Lab ID : L642177-16

Time: 20210 minutes

Date Analyzed : 11/02/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil <u>Fact</u>
	2	2.0	20210	ND	U	<0.15	<0.046	1
Benzene	2			ND	11	< 0.19	< 0.051	1
Toluene	2	2.0	20210			<0.22	< 0.050	1
Ethylbenzene	2	2.0	20210	ND	0		<0.099	1
m,p-Xylene	4	4.0	20210	ND	U	<0.43		1
o-Xylene	2	2.0	20210	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 07-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

Client Name : Haley Ward Inc. : COLD BROOK ENERGY Site Project No. : FENCELINE MONITORING

Date Sampled: 16-OCT-24 Date Received: 31-OCT-24

Date Analyzed: 01-NOV-24 - 02-NOV-24

Login No. : L642177

Account No.: 41031

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sqsgalson.com

L642177 (Report ID: 1457602):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

 ${\tt J}$ - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

L642177-6,14 (Report ID: 1457602):

Duplicate sample RPD does not agree within 30% for Ethylbenzene.

L642177-1,13 (Report ID: 1457602):

Duplicate samples RPD does not agree within 30% for ${\tt m}$ and ${\tt p}\text{-xylene}$.

The internal standard response for this sample was outside of the control limits of 60-140% at 142% and 145% . Results for all compounds may be biased low.

L642177-15 (Report ID: 1457602):

The internal standard response for this sample was outside of the control limits of 60-140% at 143%. Results for Toluene, Ethylbenzene and Xylene may be biased low.

L642177 (Report ID: 1457602):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Benzene	+/-20.6%	101%
Ethylbenzene	+/-20.4%	102%
Toluene	+/-21.2%	98.9%
m,p-Xylenes	+/-19.3%	104%
o-Xylene	+/-19.5%	102%

L642177-14 (Report ID: 145760:

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Ethylbenzene	+/-20.4%	102%

6601 Kirkville Road

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

East Syracuse, NY 13057

LABORATORY FOOTNOTE REPORT

Client Name : Haley Ward Inc. : COLD BROOK ENERGY Site Project No. : FENCELINE MONITORING

Date Sampled : 16-OCT-24

Date Received: 31-OCT-24 Date Analyzed: 01-NOV-24 - 02-NOV-24

Account No.: 41031 Login No. : L642177

L642177-6 (Report ID: 1457602:

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery	
Ethylbenzene	+/-20.4%	102%	
Parameter	Method		
Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	mod. EPA 325B; mod. EPA 325B; mod. EPA 325B; mod. EPA 325B; mod. EPA 325B;	GCMS GCMS GCMS	

642177 EPA 325A Fenceline Monitoring Client Acct. No. 41031 SGS GALSON Accounts Payable-Julie Tanesha Pottle Invoice To: Report To: Haley Ward Inc. Haley Ward Inc. Company Name: Company Name: 1 Marchants Plaza 1 Marchants Plaza Need Results By :: (surcharge) Address 1: Address 1: W 0 Suite 701 5 Business Days 0% Address 2: Suite 701 Address 2: Bangor, ME 04401 4 Business Days Bangor, ME 04401 35% City, State, Zip: City, State, Zip: joreskovich@haleyward.com 207-214-0141 3 Business Days 50% Email Address: Cell No .: n Samuelson @ haleyward. com 75% P.O. No: 2 Business Days Email Report to: Payment Info: Will Phone in Credit Card Information Next Day by 6pm 100% tpottle@haleyward.com Credit Card on File Next Day by Noon 150% 121043178467004344 Same day 200% Date: 10/31/24 Shipper: UPS Initials:BCF and return to the lab with the samples." Average Ambient Temperature: Comments: Prep: UNKNOWN Average Barometric Pressure: NONE. Site Name: Sampled By: Project: COld Brook Energy Hedda Sangelson Fenceline Monitorin Date/Time Deployed Sample (Military Time) (Military Time) **Analysis Requested** Method Identification* Manufacturer ID Collection Medium Carbopack X 040255 FLM I-Sample BTEX MOD. EPA325B: GCMS Carbopack X 41.450 FLM 7-Sample BTEX MOD. EPA325B: GCMS Carbopack X FLM 3- Sample C41425 MOD. EPA325B: GCMS BTEX Carbopack X 1472 FLM4-Sample MOD. EPA325B: GCMS BTEX Carbopack X FLM-5 Sample MOD. EPA325B: GCMS BTEX Carbopack X FLM Co-Sample BTEX MOD. EPA325B: GCMS Carbopack X FLM 7-Sample BTEX MOD. EPA325B: GCMS Carbopack X FLM B- Sumple BTEX MOD. EPA325B: GCMS Carbopack X FLM 9- Sample BTEX _MOD-EPA325B: GCMS Carbopack X FLM 10-Sample MOD. EPA325B: GCMS BTEX FLM11-Sample Carbopack X BTEX MOD. EPA325B: GCMS Date/Time Chain of Custody **Print Name** Signature - Hellowa Sunveison 517 Relinquished by Bill Fischer 310CT24 1118 Received by LAB Page *Required fields, failure to complete these fields may result in a delay in Report Reference: 1 Generated: 07-NOV-24 11:30 . . . your samples being processed. . . Page 21 of 22

EPA 325A Fenceline Monitoring

Date/Time Deployed | Date/Time Retrieved

(Military Time)

Analysis Requested

Complete shaded portions and return to the lab with the samples.*

(Military Time)

SGS GALSON

Sample

Identification*

Manufacturer ID

Collection Medium

Comments

Identification		Manufacturer ID	Collection Medium	(Military	Time)	(Military	Time)	Analysis Requested	Method
FLM 12-Sa	mere	C41381	Carbopack X	10-16-24	0952	10-30-24	1040	BTEX	MOD. EPA325B: GCMS
FLM 13-DU	2(FIM1)	C38502	Carbopack X	10-10-24/	0956	10-30-24	1047	BTEX	MOD. EPA325B: GCMS
FLM 14-DUP	(FLM6)	C40212	Carbopack X	10-16-24/	1020	10-36-24	1111	BTEX	MOD. EPA325B: GCMS
FLM 15-Blank	(FLM 2)	C41410	Carbopack X	10-16-24		. 11		BTEX	MOD. EPA325B: GCMS
FIM 16-Blank	FLM+)	C41402	Carbopack X	10-16-24				BTEX	MOD. EPA325B: GCMS
						1			
		1 1 = 1			1			N.	
						* .		4	
					j)				
				**					
					4				
Chain of Custody		Print Nam	e			Signat	ture		Date/Time
Relinquished by :	Hedda	Samuelson		Hell	1/4 6	rellery	1		10-30-24/1527
Received by LAB:			Bill	ischer	Sil	1 Fish	~		3100124/1118
*Required fields, failu y	our samples	ete these fields ma being processed.	y result in a delay in	lolov in				2 of 2	

Tanesha Pottle Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401 November 21, 2024

Account# 41031

Login# L643481

Dear Tanesha Pottle:

Enclosed are the analytical results for the samples received by our laboratory on November 14, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a
 third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to
 the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter
 used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and
 strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to
 the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

IFLAP

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology
State	Accreditation/Recognition	Lab ID#	Program/Sector
	Accreditation/ necognition	Lab ID#	Flogram/Sector

Lab ID: 04083

Air Analysis, Solid Chemical Materials

Legend

Louisiana (LDEQ)

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc.

: COLD BROOK ENERGY

Project No. Date Sampled : FENCELINE MONITORING

: 30-OCT-24 Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM1-SAMPLE Date Sampled: 10/30/24 Lab ID : L643481-1

Time: 20082 minutes

Date Analyzed: 11/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20082	13		0.98	0.31	1
Toluene	2	2.0	20082	28		2.7	0.71	1
Ethylbenzene	2	2.0	20082	3.8		0.41	0.094	1
m,p-Xylene	4	4.0	20082	11		1.2	0.29	1
o-Xylene	2	2.0	20082	4.6		0.49	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TEM/TLH

6601 Kirkville Road

FAX: (315) 437-0571 www.sqsqalson.com

(315) 432-5227

East Syracuse, NY 13057

GALSON

LELAP Lab ID #04083

Client Site

Project No.

: Haley Ward Inc. : COLD BROOK ENERGY

: FENCELINE MONITORING

LABORATORY ANALYSIS REPORT

Date Sampled : 30-OCT-24 Date Received : 14-NOV-24 Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM2-SAMPLE Date Sampled : 10/30/24

Lab ID : L643481-2 Time : 20083 minutes

Date Analyzed: 11/18/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20083	13		1.0	0.31	1
Toluene	2	2.0	20083	28		2.7	0.72	1
Ethylbenzene	2	2.0	20083	3.7		0.40	0.092	1
m,p-Xylene	4	4.0	20083	10		1.1	0.25	1
o-Xvlene	2	2.0	20083	4.0		0.43	0.099	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TEM/TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

: Haley Ward Inc. Client : COLD BROOK ENERGY Site : FENCELINE MONITORING Project No.

Date Sampled : 30-OCT-24 Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed: 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM3-SAMPLE Date Sampled: 10/30/24 Lab ID : L643481-3

Time: 20089 minutes

Date Analyzed: 11/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Totalng	Total Oual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20089	13		1.0	0.31	1
Toluene	2	2.0	20089	31		3.0	0.79	1
Ethylbenzene	2	2.0	20089	3.9		0.42	0.096	1
m,p-Xylene	4	4.0	20089	12		1.3	0.29	1
o-Xvlene	2	2.0	20089	4.5		0.48	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

Approved by : TEM/TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY
Project No. : FENCELINE MONITORIN

Project No. : FENCELINE MONITORING
Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed: 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM4-SAMPLE Lab ID : L643481-4 Time : 20084 minutes
Date Sampled : 10/30/24 Date Analyzed : 11/18/24

MDL LOQ Time Total Total Conc Dil Parameter minutes ng Qual ua/m3 ppbv Fact ng nq Benzene 2.0 20084 11 0.82 0.26 1 Toluene 2 2.0 20084 27 2.6 0.70 1 2 2.0 20084 3.4 0.36 Ethylbenzene 0.084 4 m,p-Xylene 4.0 20084 10 1.1 0.26 1 o-Xylene 2.0 20084 4.0 0.43 0.099 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NOV-24

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM/TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-057

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.
Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING
Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM5-SAMPLE Lab ID : L643481-5 Time : 20085 minutes

Date Sampled: 10/30/24 Date Analyzed: 11/18/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20085	8.8		0.67	0.21	1
Toluene	2	2.0	20085	14		1.4	0.36	1
Ethylbenzene	2	2.0	20085	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20085	5.3		0.58	0.13	1
o-Xylene	2	2.0	20085	2.1		0.23	0.052	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NoV-24

6601 Kirkville Road

FAX: (315) 437-0571

www.sgsgalson.com

(315) 432-5227

East Syracuse, NY 13057

GALSON

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Client : Haley Ward Inc. Account No.: 41031
Site : COLD BROOK ENERGY Login No. : L643481

Project No. : FENCELINE MONITORING
Date Sampled : 30-OCT-24

Client ID : FLM6-SAMPLE Lab ID : L643481-6 Time : 20084 minutes
Date Sampled : 10/30/24 Date Analyzed : 11/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ppbv_	Dil Fact
Benzene	2	2.0	20084	8.1		0.62	0.19	1
Toluene	2	2.0	20084	13		1.2	0.32	1
Ethylbenzene	2	2.0	20084	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20084	4.6		0.50	0.12	1
o-Xylene	2	2.0	20084	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NOV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY
Project No. : FENCELINE MONITORING

Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM7-SAMPLE Lab ID : L643481-7 Time : 20087 minutes
Date Sampled : 10/30/24 Date Analyzed : 11/18/24

	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	<u>ng</u>	ng	minutes	ng	Qual	_ug/m3_	ppbv	<u>Fact</u>
Benzene	2	2.0	20087	7.4		0.56	0.18	1
Toluene	2	2.0	20087	11		1.0	0.28	1
Ethylbenzene	2	2.0	20087	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20087	4.4		0.48	0.11	1
o-Xylene	2	2.0	20087	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NoV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY

Project No. : FENCELINE MONITORING

Date Sampled : 30-OCT-24
Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM8-SAMPLE Lab ID : L643481-8 Time : 20088 minutes

Date Sampled: 10/30/24 Date Analyzed: 11/18/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc _ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20088	8.8		0.67	0.21	1
Toluene	2	2.0	20088	18		1.7	0.45	1
Ethylbenzene	2	2.0	20088	2.8		0.30	0.069	1
m,p-Xylene	4	4.0	20088	8.5		0.92	0.21	1
o-Xylene	2	2.0	20088	3.1		0.34	0.078	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NOV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : COLD BROOK ENERGY Project No. : FENCELINE MONITORING

Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed: 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM9-SAMPLE Time: 20081 minutes Lab ID : L643481-9 Date Sampled: 10/30/24 Date Analyzed: 11/18/24

<u>Parameter</u>	ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20081	10		0.77	0.24	1
Toluene	2	2.0	20081	45		4.3	1.1	1
Ethylbenzene	2	2.0	20081	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20081	ND	U	< 0.43	<0.10	1
o-Xylene	2	2.0	20081	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 21-NOV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site : COLD BROOK ENERGY Project No.

: FENCELINE MONITORING

Date Sampled : 30-OCT-24 Date Received : 14-NOV-24 Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM10-SAMPLE Lab ID : L643481-10 Time: 20081 minutes Date Sampled: 10/30/24 Date Analyzed: 11/18/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc _ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20081	15		1.2	0.38	1
Toluene	2	2.0	20081	42		4.0	1.1	1
Ethylbenzene	2	2.0	20081	6.4		0.70	0.16	1
m,p-Xylene	4	4.0	20081	20		2.2	0.51	1
o-Xylene	2	2.0	20081	8.0		0.87	0.20	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 21-NOV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sqsqalson.com Client : Haley Site : COLD

: Haley Ward Inc. : COLD BROOK ENERGY : FENCELINE MONITORING

Project No. : FENCELINE
Date Sampled : 30-OCT-24
Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM11-SAMPLE Date Sampled : 10/30/24 Lab ID : L643481-11 Time Date Analyzed : 11/18/24

Time: 20082 minutes

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene Toluene Ethylbenzene m,p-Xylene	2 2 2 4	2.0 2.0 2.0 4.0	20082 20082 20082 20082	22 71 12 38		1.7 6.8 1.3 4.1	0.53 1.8 0.29 0.94	1 1 1 1
m,p-xylene o-Xylene	2	2.0	20082	15		1.6	0.36	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

GCHD

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.
Site : COLD BROOK ENERGY
Project No. : FENCELINE MONITORIES

Project No. : FENCELINE MONITORING
Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20082	20		1.5	0.47	1
Toluene	2	2.0	20082	67		6.4	1.7	1
Ethylbenzene	2	2.0	20082	11		1.2	0.28	1
m,p-Xylene	4	4.0	20082	36		3.9	0.90	1
o-Xylene	2	2.0	20082	14		1.5	0.35	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 21-NOV-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sqsqalson.com

: Haley Ward Inc. Client : COLD BROOK ENERGY Site

Project No. : FENCELINE MONITORING

Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed: 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM13-SAMPLE Date Sampled: 10/30/24

Lab ID : L643481-13

Time: 20089 minutes

Date Analyzed: 11/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20089	7.2		0.55	0.17	1
Toluene	2	2.0	20089	11		1.0	0.27	1
Ethylbenzene	2	2.0	20089	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20089	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20089	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY

Project No.

: FENCELINE MONITORING Date Sampled : 30-OCT-24

Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

Date Analyzed: 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM14-SAMPLE Date Sampled: 10/30/24

Lab ID : L643481-14

Time: 20082 minutes

Date Analyzed: 11/19/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20082	20		1.5	0.47	1
Toluene	2	2.0	20082	66		6.3	1.7	1
Ethylbenzene	2	2.0	20082	10		1.1	0.26	1
m,p-Xylene	4	4.0	20082	33		3.6	0.82	1
o-Xylene	2	2.0	20082	13		1.4	0.33	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc. : COLD BROOK ENERGY

Account No.: 41031 Login No. : L643481

Project No. Date Sampled

: FENCELINE MONITORING : 30-OCT-24

Date Analyzed : 18-NOV-24 - 19-NOV-24

Date Received : 14-NOV-24

Report ID : 1460658

Client ID : FLM15-SAMPLE Date Sampled: 10/30/24

Lab ID : L643481-15

Time: 20082 minutes

Date Analyzed: 11/19/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ppbv_	Dil <u>Fact</u>
Benzene	2	2.0	20082	ND	U	<0.15	<0.047	1
Toluene	2	2.0	20082	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20082	ND	U	<0.22	< 0.050	1
m,p-Xylene	4	4.0	20082	ND	U	< 0.43	<0.10	1
o-Xylene	2	2.0	20082	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sqsgalson.com Client Site : Haley Ward Inc. : COLD BROOK ENERGY

Project No.

: FENCELINE MONITORING

Date Sampled : 30-OCT-24
Date Received : 14-NOV-24

Account No.: 41031 Login No. : L643481

2-t- 2--1--1 10 W

Date Analyzed : 18-NOV-24 - 19-NOV-24

Report ID : 1460658

Client ID : FLM16-SAMPLE Date Sampled : 10/30/24 Lab ID : L643481-16

Time : 20085 minutes

Date Analyzed: 11/19/24

	MDL	LOO	Time	Total	Total	Conc		Dil
<u>Parameter</u>	ng	ng	minutes	ng	Qual	ug/m3	_ ppbv	Fact
Benzene	2	2.0	20085	ND	U	<0.15	<0.047	1
Toluene	2	2.0	20085	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20085	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20085	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20085	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 21-NOV-24

Collection Media : Carbopack X

Supervisor: TLH

Client Name : Haley Ward Inc.
Site : COLD BROOK ENERGY
Project No. : FENCELINE MONITORING

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled: 30-OCT-24 Date Received: 14-NOV-24

Date Analyzed: 18-NOV-24 - 19-NOV-24

Account No.: 41031 Login No. : L643481

L643481 (Report ID: 1460658):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

L643481-7,13 (Report ID: 1460658):

Duplicate samples do not agree within 30% for m&p-xylene.

L643481-1-5,12-15 (Report ID: 1460658):

Sample was recieved with loose caps.

L643481 (Report ID: 1460658):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery	
Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene	+/-20.6% +/-20.4% +/-21.2% +/-19.3% +/-19.5%	101% 102% 98.9% 104% 102%	
Parameter	Method		
Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	mod. EPA 325B; mod. EPA 325B; mod. EPA 325B; mod. EPA 325B; mod. EPA 325B;	GCMS GCMS GCMS	

EPA 325A Fenceline Monitoring 41031 Client Acct. No. SGS Tanesha Pottle Report To: Invoice To: Accounts Payable-Julie 1Z10431 Date:11 Shipper Initial Haley Ward Inc. Haley Ward Inc. iny Name: Company Name: 1 Marchants Plaza Need Results By*: (surcharge \ddress 1: 1 Marchants Plaza Address 1: Suite 701 5 Business Days 0% \ddress 2: Suite 701 Address 2: 4 Business Days 35% State, Zip: Bangor, ME 04401 Bangor, ME 04401 City, State, Zip: 207-214-0141 3 Business Days 50% Cell No .: joreskovich@haleyward.com **Email Address:** Report to: h Samuel Son@haveyward; com tpottle@haleyward.com 2 Business Days 75% P.O. No: Payment Info: Will Phone in Credit Card Information Next Day by 6pm 100% Credit Card on File Next Day by Noon 150% PSY749651 200% rep No .: implete shaded portions and return to the lab with the samples.* Average Ambient Temperature: Comments: Average Barometric Pressure: Project: Sampled By: Site Name: Cold Brook Energy Fenceline Monitoring Hedda Samuelson Date/Time Deployed | Date/Time Retrieved Sample (Military Time) (Military Time) Identification* Collection Medium Manufacturer ID Analysis Requested Method Carbopack X 049 11-13-24 FLM1-Sample C41382 BTEX MOD, EPA325B: GCMS Carbopack X 2-Sumple 11-13-24 0937 C41411 BTEX MOD. EPA325B: GCMS Carbopack X 0947 3-sample 1058 C41424 BTÉX MOD. EPA325B: GCMS Carbopack X 0946 FLM 4 - Sample 1107 C41446 BTEX MOD. EPA325B: GCMS 5- Sample Carbopack X 0951 C41428 BTEX MOD. EPA325B: GCMS Carbopack X (1-Sample 0956 C41461 BTEX MOD. EPA325B: GCMS Carbopack X - Sample 11-13-24 C41439 1004 BTEX MOD. EPA325B: GCMS B- Sample Carbopack X 1010 C41467 BTEX MOD. EPA325B: GCMS 9-Sumple Carbopack X 0910 C41396 BTEX MOD. EPA325B: GCMS FLM 10 - Sample Carbopack X 0915 C41392 BTEX MOD. EPA325B: GCMS Carbopack X FLM 11-Sample C41457 BTEX MOD. EPA325B: GCMS Chain of Custody **Print Name** Signature Date/Time Hedaa Samuelson Relinquished by: 1. Silver Received by LAB *Required fields, failure to complete these fields may result in a delay in Page your samples being processed. Page 20 of 21 Report Reference: 1 Generated: 21-NOV-24 (08:07

EPA 325A Fenceline Monitorin	
	~
LEA 323A LEHCEHHE MOHIOH	ıu

SGS GALSON

Comments

		Complete shaded po	ortions and return to	the lab with the samp	les.*	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method
FLM 12-Sample	C41417	Carbopack X	10-30-24 1043	11-13-24 0925	BTEX	MOD. EPA325B: GCMS
FLM 13-DUP (FLM 7	C41398	Carbopack X	10-30-24/1117	11-13-24/ 1000	BTEX	MOD. EPA325B: GCMS
FLM 14-DUP (FLM 12)	C41399	Carbopack X	10-30-24 1043	11-13-24 0925	BTEX	MOD. EPA325B: GCMS
FLM 15-Blank (FLM1)	C41405	Carbopack X	10-30-24/1049	11-13-24 0931	BTEX	MOD. EPA325B: GCMS
FLM 10-BLANK (FLM.	C41462	Carbopack X	10-30-24 1100	11-13-24 0951	BTEX	MOD. EPA325B: GCMS
			1 .	1		
				\		
				,		
-						
-						
Chain of Custody	Print Nan		41.01	Signature		Date/Time
Relinquished by : Head	a Samuelson	1	Tulle	suggy	Janes	11-13-24/13/2
Received by LAB:			Olivia 1.	Silver (Shunde 1.	Auror	11114/24 1142
*Required fields, failure to comp your sample	olete these fields m		Sa	mples received after 3pm	Page will be considered as next d	2 of 2 ay's business.

Mr. Jason Patterson Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401 December 09, 2024

Account# 41031

Login# L645001

Dear Mr. Patterson:

Enclosed are the analytical results for the samples received by our laboratory on December 02, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab

Laboratory Director

Lisa Lwab

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP		Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

: Haley Ward Inc.

Site : NS Account No.: 41031 Login No. : L645001

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24 Date Analyzed : 03-DEC-24 - 04-DEC-24

: 1463471 Report ID

Client ID : FLM1-SAMPLE Date Sampled: 11/13/24 Lab ID : L645001-1

Time : 20120 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL _nq	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
	2	2.0	20120	7.3		0.57	0.18	1
Benzene	2	2.0	20120	12		1.1	0.30	1
Toluene	2		20120	ND	U	<0.22	<0.050	1
Ethylbenzene	2	2.0		5.0		0.54	0.12	1
m,p-Xylene	4	4.0	20120			0.23	0.053	1
o-Xvlene	2	2.0	20120	2.1		0.25	0.000	_

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

Site

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

: NS

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Account No.: 41031

Login No. : L645001

Date Analyzed: 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM2-SAMPLE Date Sampled: 11/13/24 Lab ID : L645001-2

Time: 20121 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20121	8.1		0.63	0.20	1
Toluene	2	2.0	20121	14		1.3	0.35	1
Ethylbenzene	2	2.0	20121	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20121	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20121	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date: 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

o-Xylene

Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24
Date Received : 02-DEC-24

2.0 20119

Account No.: 41031 Login No. : L645001

0.26

Date Analyzed : 03-DEC-24 - 04-DEC-24

0.060

1

Report ID : 1463471

Client ID : FLM3-SAMPLE Lab ID : L645001-3 Time : 20119 minutes Date Sampled : 11/13/24 Date Analyzed : 12/03/24

MDL LOQ Time Total Total Conc Dil Parameter __nq__ minutes Oual ug/m3 ppbv ng ng Fact Benzene 2.0 20119 10 0.79 0.25 1 Toluene 2 2.0 20119 21 2.0 0.54 1 Ethylbenzene 2 2.0 20119 ND U < 0.22 < 0.050 m,p-Xylene 4 4.0 20119 5.9 0.64 0.15 1

2.4

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: CMW Date: 09-DEC-24

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24
Date Received : 02-DEC-24

Account No.: 41031 Login No. : L645001

LOGIN NO. . LO45001

Date Analyzed : 03-DEC-24 - 04-DEC-24 Report ID : 1463471

Client ID : FLM4-SAMPLE Lab ID : L645001-4 Time : 20121 minutes

Date Sampled: 11/13/24 Date Analyzed: 12/03/24

Parameter	MDL ng	LOQ	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Tarameter								
Benzene	2	2.0	20121	9.8		0.76	0.24	1
Toluene	2	2.0	20121	18		1.8	0.47	1
Ethylbenzene	2	2.0	20121	2.9		0.32	0.073	1
m,p-Xylene	4	4.0	20121	9.0		0.97	0.22	1
o-Xvlene	2	2.0	20121	3.5		0.38	0.087	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: CMW Date: 09-DEC-24

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc. Site

: NS

Account No.: 41031 Login No. : L645001

Date: 09-DEC-24

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24

Report ID

Date Analyzed: 03-DEC-24 - 04-DEC-24 : 1463471

Client ID : FLM5-SAMPLE Date Sampled: 11/13/24

Lab ID : L645001-5 Time: 20118 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20118	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20118	9.0		0.86	0.23	1
Ethylbenzene	2	2.0	20118	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20118	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20118	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

Client : Haley Ward Inc. Site

Account No.: 41031

Login No. : L645001

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

: NS

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM6-SAMPLE Date Sampled: 11/13/24 Lab ID : L645001-6 Time: 20118 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20118	8.8		0.68	0.21	1
Toluene	2	2.0	20118	14		1.3	0.35	1
Ethylbenzene	2	2.0	20118	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20118	4.0		0.43	0.10	1
o-Xylene	2	2.0	20118	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24

Date Analyzed: 03-DEC-24 - 04-DEC-24

Account No.: 41031

Login No. : L645001

Report ID : 1463471

Date : 09-DEC-24

Client ID : FLM7-SAMPLE Lab ID : L645001-7 Time: 20111 minutes Date Sampled: 11/13/24 Date Analyzed: 12/03/24

MDL LOQ Time Total Total Conc Dil minutes Qual Parameter ng ng ng ug/m3 ppbv Fact Benzene 2 2.0 20111 9.1 0.70 0.22 1 Toluene 2 2.0 20111 16 0.41 1.5 1 2 Ethylbenzene 2.0 20111 U < 0.22 < 0.050 1 4 m,p-Xylene 4.0 20111 6.3 0.68 0.16 1 2 o-Xylene 2.0 20111 2.5 0.28 0.063 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Account No.: 41031

Login No. : L645001

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM8-SAMPLE Lab ID : L645001-8 Time : 20111 minutes

Date Sampled : 11/13/24 Date Analyzed : 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20111	9.8		0.76	0.24	1
Toluene	2	2.0	20111	39		3.7	0.99	1
Ethylbenzene	2	2.0	20111	2.8		0.30	0.070	1
m,p-Xylene	4	4.0	20111	8.6		0.93	0.21	1
o-Xylene	2	2.0	20111	3.4		0.36	0.084	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: CMW Date: 09-DEC-24

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: NS Site

: Haley Ward Inc.

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Account No.: 41031

Login No. : L645001

Date Analyzed: 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM9-SAMPLE Lab ID : L645001-9 Time: 20127 minutes Date Sampled: 11/13/24

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20127	12		0.96	0.30	1
Toluene	2	2.0	20127	59		5.6	1.5	1
Ethylbenzene	2	2.0	20127	6.3		0.68	0.16	1
m,p-Xylene	4	4.0	20127	21		2.2	0.51	1
o-Xylene	2	2.0	20127	8.2		0.89	0.20	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: CMW Date : 09-DEC-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: NS

: Haley Ward Inc.

Account No.: 41031

Site

Login No. : L645001

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24

Date Analyzed: 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM10-SAMPLE Date Sampled: 11/13/24

Lab ID : L645001-10

Time: 20127 minutes

Date Analyzed: 12/03/24

	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	ng	ng	minutes	ng	Qual	_ug/m3	vdqq	Fact
Benzene	2	2.0	20127	11		0.86	0.27	1
Toluene	2	2.0	20127	26		2.5	0.66	1
Ethylbenzene	2	2.0	20127	3.2		0.35	0.080	1
m,p-Xylene	4	4.0	20127	10		1.1	0.25	1
o-Xylene	2	2.0	20127	4.2		0.46	0.11	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Account No.: 41031

Login No. : L645001

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM11-SAMPLE Date Sampled: 11/13/24

Lab ID : L645001-11

Time: 20124 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total _Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20124	7.5		0.58	0.18	1
Toluene	2	2.0	20124	12		1.2	0.32	1
Ethylbenzene	2	2.0	20124	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20124	4.2		0.45	0.10	1
o-Xylene	2	2.0	20124	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571

www.sgsgalson.com

Client

: Haley Ward Inc.

Site : NS Account No.: 41031 Login No. : L645001

: 13-NOV-24 Date Sampled

Date Received : 02-DEC-24

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID

: 1463471

Client ID : FLM12-SAMPLE Date Sampled: 11/13/24

Lab ID : L645001-12

Time : 20122 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20122	7.8		0.60	0.19	1
Toluene	2	2.0	20122	12		1.2	0.31	1
Ethylbenzene	2	2.0	20122	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20122	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20122	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Client : Haley Ward Inc. Account No.: 41031 Login No. : L645001

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Site : NS

Date Analyzed: 03-DEC-24 - 04-DEC-24

Date Sampled : 13-NOV-24 Date Received : 02-DEC-24

Report ID : 1463471

Time : 20121 minutes Client ID : FLM13-FLM 1 DOD Lab ID : L645001-13

Date Analyzed: 12/03/24 Date Sampled : 11/13/24

<u>Parameter</u>	ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20121	8.1		0.63	0.20	1
Toluene	2	2.0	20121	18		1.7	0.44	1
Ethylbenzene	2	2.0	20121	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20121	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20121	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Date : 09-DEC-24 Submitted by: CMW

Supervisor: TLH Approved by : TEM Collection Media : Carbopack X

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

Site

Account No.: 41031 Login No. : L645001

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

: NS

Date Analyzed : 03-DEC-24 - 04-DEC-24

: 1463471 Report ID

Client ID : FLM14-FLM 6 DOD Date Sampled: 11/13/24

Lab ID : L645001-14

Time : 20118 minutes

Date Analyzed: 12/03/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	2 2 2 4 2	2.0 2.0 2.0 4.0 2.0	20118 20118 20118 20118 20118	11 16 ND 5.3 2.4	Ū	0.81 1.5 <0.22 0.57 0.26	0.25 0.41 <0.050 0.13 0.060	1 1 1 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: CMW

Date : 09-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

: NS Site

Account No.: 41031 Login No. : L645001

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM15-FLM 2 BLANK Date Sampled: 11/13/24

Lab ID : L645001-15

Time: 20122 minutes

Date Analyzed: 12/03/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20122	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20122	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20122	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20122	ND	U	<0.43	<0.10	1
o-Xvlene	2	2.0	20122	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Collection Media : Carbopack X

Submitted by: CMW Supervisor: TLH

Approved by : TEM

Date : 09-DEC-24

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Haley Ward Inc.

Site : NS

Date Sampled : 13-NOV-24

Date Received : 02-DEC-24

Account No.: 41031

Login No. : L645001

Date Analyzed : 03-DEC-24 - 04-DEC-24

Report ID : 1463471

Client ID : FLM16-FLM 4 BLANK Lab ID : L645001-16 Time : 20121 minutes

Date Sampled: 11/13/24 Date Analyzed: 12/04/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20121	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20121	8.0		0.76	0.20	1
Ethylbenzene	2	2.0	20121	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20121	ND	U	<0.43	<0.10	1
o-Xylene	2	2.0	20121	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: CMW Date: 09-DEC-24

LABORATORY FOOTNOTE REPORT

Client Name : Haley Ward Inc.

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled: 13-NOV-24 Date Received: 02-DEC-24

Date Analyzed: 03-DEC-24 - 04-DEC-24

Account No.: 41031 Login No. : L645001

L645001 (Report ID: 1463471):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

Samples and respective duplicates do not agree within 30% RPD.

L645001 (Report ID: 1463471):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery	
Benzene m,p-Xylenes o-Xylene	+/-20.6% +/-19.3% +/-19.5%	101% 104% 102%	
Toluene	+/-21.2%	98.9%	
Parameter	Method		
Benzene	mod. EPA 325B;	GCMS	
Ethylbenzene	mod. EPA 325B;	GCMS	
Toluene	mod. EPA 325B;	GCMS	
m,p-Xylene	mod. EPA 325B;	GCMS	
o-Xylene	mod. EPA 325B;	GCMS	

645001 EPA 325A Fenceline Monitoring SGS Client Acct. No. 41031 - GALSON Janestra Pottle JASON PATTELSON Report To: Invoice To: Accounts Payable-Julie Company Name: Haley Ward Inc. Company Name: Haley Ward Inc. Need Results By": (surcharge) Address 1: 1 Marchants Plaza 1 Marchants Plaza Address 1: MELS Business Days 0% Suite 701 Address 2: Suite 701 Address 2: 4 Business Days 35% City, State, Zip: Bangor, ME 04401 Bangor, ME 04401 City, State, Zip: 3 Business Days 207-214-0141 Cell No .: Email Address: joreskovich@haleyward.com JPATTERSON @ Halex Ward. Com Email Report to: P.O. No: 1ZX4U2090319424522 tpottle@haleyward.com Date: 12/02/24 Payment Info: Will Phone in Credit Card Information Shipper: UPS Credit Card on File Initials: MMM Prep No.: Average Ambient Air Temp (F): 34.0. MEL 12/6/24 Prep: UNKNOWN Complete shaded portions and return to the lab with the samples.* Average Ambient Temperature: Average Barometric Pressure: Site Name: Project: Sampled By: Date/Time Deployed Sample Date/Time Retrieved Identification* Manufacturer ID Collection Medium (Military Time) (Military Time) Analysis Requested Method Carbopack X FLM 1 - Sample 0934 C53703 BTEX MOD. EPA325B: GCMS Carbopack X FLM 2- Sample 8 C40555 BTEX MOD. EPA325B: GCMS 3 - Sample Carbopack X C40549 BTEX MOD. EPA325B: GCMS Carbopack X FLM 4- Sample C53928 BTEX MOD. EPA325B: GCMS Carbopack X J⁻ Sample ■ C38512 BTEX MOD. EPA325B: GCMS Carbopack X M (0 - Sample C15985 BTEX MOD. EPA325B: GCMS Carbopack X 7 - Sample P C27948 BTEX MOD. EPA325B: GCMS Carbopack X 0 Sample C16020 BTEX MOD. EPA325B: GCMS Carbopack X FLM 9 Sample C26778 BTEX MOD. EPA325B: GCMS Carbopack X FLM 10- Sample 0843 C40520 09/6 BTEX MOD. EPA325B: GCMS Carbopack X FLM II - Sample C38593 BTEX MOD. EPA325B: GCMS Chain of Custody **Print Name** Signature Date/Time PATTERSON Relinquished by : Megan M. McGrath Wygun A Received by LAB: *Required fields, failure to complete these fields may result in a delay in Page your samples being processed. Page 20 of 21 Report Reference Samples reserved after 19 Per 24 e considered as next day's business.

000		EPA 325A Fenceline Monitoring
SGS	GALSON	

Comments

Identification*	Manufacturer ID	Collection Medium	(Military Time)	(Military Time)	Analysis Requested	Method		
FLM 12-Sample	C15994	Carbopack X	11/13/24 0927	11/27/24 0849	BTEX	MOD. EPA325B: GCMS		
FLM 13- Sample POP	C12300	Carbopack X	11/13/24 0934	11/27/24 0855	BTEX	MOD. EPA325B: GCMS		
FLM 14-Sampleta FLM 6	C13313	Carbopack X	11/13/24 0958	11:	BTEX	MOD. EPA325B: GCMS		
PLM 15-Sample 46 Blank	C20369	Carbopack X	11/13/24 0940	11/27/24 0902	BTEX	MOD. EPA325B: GCMS		
FLMILO - Sample 16 Blank	C37964	Carbopack X	11/13/24 0947	11/27/24 0908	BTEX	MOD. EPA325B; GCMS		
				-				
4								
,				/	8			
3								
•						-		
\$								
Relinquished by: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Print Nam	e	1	Signature		Date/Time		
Received by LAB:	M	legan M. McGra	il Mygur 14 11/60			11/27/24, 10:10		
*Required fields, failure to comple	Relinquished by: Saso N PATERSON Megan M. McGraiti Man M. McGr							

Complete shaded portions and return to the lab with the samples.*

Jason Patterson Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401

December 20, 2024

Account# 41031

Login# L646203

Dear Jason Patterson:

Enclosed are the analytical results for the samples received by our laboratory on December 13, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- · Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 27-NOV-24

Date Received : 13-DEC-24

Account No.: 41031

Login No. : L646203

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 1-SAMPLE Lab ID : L646203-1 Date Sampled: 11/27/24

Time : 20132 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ppbv_	Dil <u>Fact</u>
Benzene	2	2.0	20132	12		0.90	0.28	1
Toluene	2	2.0	20132	19		1.9	0.49	1
Ethylbenzene	2	2.0	20132	3.1		0.33	0.076	1
m,p-Xylene	4	4.0	20132	9.8		1.1	0.24	1
o-Xylene	2	2.0	20132	3.8		0.42	0.096	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

(315) 432-5227 FAX: (315) 437-0571 Client

: Haley Ward Inc.

Account No.: 41031

East Syracuse, NY 13057

www.sgsgalson.com

Site : NS Login No. : L646203

Date Analyzed: 17-DEC-24 - 18-DEC-24

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Report ID : 1466633

Client ID : FLM 2-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-2

Time: 20130 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20130	13		0.98	0.31	1
Toluene	2	2.0	20130	20		1.9	0.51	1
Ethylbenzene	2	2.0	20130	2.4		0.26	0.059	1
m,p-Xylene	4	4.0	20130	6.9		0.75	0.17	1
o-Xylene	2	2.0	20130	2.8		0.31	0.071	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 27-NOV-24

Date Received : 13-DEC-24

Account No.: 41031

Login No. : L646203

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 3-SAMPLE Lab ID : L646203-3 Time : 20132 minutes
Date Sampled : 11/27/24 Date Analyzed : 12/17/24

MDL LOO Time Total Total Conc Dil Parameter ng nq minutes ng Qual ug/m3 ppbv Fact 2 Benzene 2.0 20132 13 1.0 0.31 1 Toluene 2 2.0 20132 22 2.1 0.57 1 2 2.0 20132 3.2 0.35 Ethylbenzene 0.080 m,p-Xylene 4 4.0 20132 9.7 1.1 0.24 1 o-Xylene 2 2.0 20132 3.9 0.42 0.096 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 20-DEC-24

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

Site

Account No.: 41031

Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

: NS

Date Analyzed: 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 4-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-4

Time: 20132 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20132	11		0.83	0.26	1
Toluene	2	2.0	20132	15		1.4	0.37	1
Ethylbenzene	2	2.0	20132	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20132	6.2		0.67	0.15	1
o-Xylene	2	2.0	20132	2.4		0.26	0.061	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS Account No.: 41031 Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed: 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 5-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-5 Time: 20132 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ppbv_	Dil Fact
Benzene	2	2.0	20132	9.6		0.75	0.24	1
Toluene	2	2.0	20132	11		1.1	0.28	1
Ethylbenzene	2	2.0	20132	ND	U	<0.22	< 0.050	1
m,p-Xylene	4	4.0	20132	4.4		0.47	0.11	1
o-Xylene	2	2.0	20132	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site

: NS

Account No.: 41031 Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 6-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-6

Time: 20133 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc _ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	20133	9.2		0.72	0.23	1
Toluene	2	2.0	20133	12		1.1	0.30	1
Ethylbenzene	2	2.0	20133	2.2		0.23	0.054	1
m,p-Xylene	4	4.0	20133	6.5		0.70	0.16	1
o-Xylene	2	2.0	20133	2.5		0.27	0.063	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date: 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 27-NOV-24

Date Received : 13-DEC-24

Account No.: 41031

Login No. : L646203

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Date : 20-DEC-24

MDL LOQ Time Total Total Conc Dil Parameter ng ng minutes Qual uq/m3 ng ppbv Fact Benzene 2 2.0 20132 9.0 0.70 0.22 Toluene 2 2.0 20132 11 1.1 0.28 1 Ethylbenzene 2 2.0 20132 ND U < 0.22 < 0.050 1 m,p-Xylene 4 4.0 20132 6.0 0.65 0.15 o-Xylene 2 2.0 20132 2.6 0.28 0.064 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

Account No.: 41031

Site : NS Login No. : L646203

Date Sampled : 27-NOV-24

Date Received : 13-DEC-24

Report ID

Date Analyzed: 17-DEC-24 - 18-DEC-24 : 1466633

Client ID : FLM 8-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-8

Time: 20133 minutes

Date Analyzed: 12/17/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20133	9.9		0.77	0.24	1
Toluene	2	2.0	20133	15		1.4	0.37	1
Ethylbenzene	2	2.0	20133	3.0		0.32	0.074	1
m,p-Xylene	4	4.0	20133	9.8		1.1	0.24	1
o-Xylene	2	2.0	20133	3.8		0.42	0.096	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

_ GALSON

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS Account No.: 41031 Login No. : L646203

Date Sampled : 27-NOV-24

Date Analyzed: 17-DEC-24 - 18-DEC-24

Date Received : 13-DEC-24 Report ID : 1466633

Client ID : FLM 9-SAMPLE Lab ID : L646203-9 Time : 20130 minutes

Date Sampled: 11/27/24 Date Analyzed: 12/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20130	12		0.90	0.28	1
Toluene	2	2.0	20130	26		2.5	0.65	1
Ethylbenzene	2	2.0	20130	6.3		0.68	0.16	1
m,p-Xylene	4	4.0	20130	22		2.3	0.54	1
o-Xylene	2	2.0	20130	8.7		0.94	0.22	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 20-DEC-24

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

Account No.: 41031

Site

: NS

Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed: 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 10-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-10

Time : 20133 minutes

Date Analyzed: 12/18/24

	MDL	LOQ	Time	Total	Total	Conc		Dil
<u>Parameter</u>	<u>ng</u>	ng	minutes	<u>ng</u>	Qual	_ug/m3	ppbv	Fact
Benzene	2	2.0	20133	14		1.1	0.34	1
Toluene	2	2.0	20133	29		2.8	0.74	1
Ethylbenzene	2	2.0	20133	4.8		0.52	0.12	1
m,p-Xylene	4	4.0	20133	16		1.8	0.41	1
o-Xylene	2	2.0	20133	6.4		0.69	0.16	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

: Haley Ward Inc. Client

Site

: NS Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed: 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Account No.: 41031

Client ID : FLM 11-SAMPLE Date Sampled: 11/27/24

Time: 20134 minutes Lab ID : L646203-11

Date Analyzed: 12/18/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20134	13		1.0	0.31	1
Toluene	2	2.0	20134	23		2.2	0.59	1
Ethylbenzene	2	2.0	20134	3.3		0.35	0.081	1
m,p-Xylene	4	4.0	20134	9.8		1.1	0.24	1
o-Xylene	2	2.0	20134	4.0		0.43	0.099	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date: 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Account No.: 41031 Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 12-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-12 Time: 20134 minutes

Date Analyzed: 12/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total _Qual	Conc _ug/m3	ppbv	Dil Fact
Benzene	2	2.0	20134	12		0.96	0.30	1
Toluene	2	2.0	20134	22		2.1	0.55	1
Ethylbenzene	2	2.0	20134	2.9		0.31	0.072	1
m,p-Xylene	4	4.0	20134	9.2		0.99	0.23	1
o-Xylene	2	2.0	20134	3.8		0.41	0.094	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24 Account No.: 41031 Login No. : L646203

Date Analyzed: 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 13-SAMPLE Lab ID : L646203-13 Time: 20136 minutes Date Sampled : 11/27/24 Date Analyzed: 12/18/24

MDL LOQ Time Total Total Conc Dil Parameter minutes ng Qual ua/m3 ng __ng vdqq Fact Benzene 2 2.0 20136 13 1.0 0.31 1 Toluene 2 2.0 20136 24 2.3 0.60 1 2 2.0 20136 3.6 Ethylbenzene 0.39 0.089 1 4.0 20136 m,p-Xylene 11 1.2 0.27 1 o-Xylene 2 2.0 20136 4.2 0.45 0.10 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 20-DEC-24

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

: Haley Ward Inc.

Site

: NS

Account No.: 41031

Login No. : L646203

Date Sampled : 27-NOV-24 Date Received : 13-DEC-24

Date Analyzed : 17-DEC-24 - 18-DEC-24

: 1466633 Report ID

Client ID : FLM 14-SAMPLE Date Sampled: 11/27/24

Lab ID : L646203-14

Time: 20135 minutes

Date Analyzed: 12/18/24

Parameter Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
			00405	ND	П	<0.15	<0.046	1
Benzene	2	2.0	20135	ND	0		<0.051	1
	2	2.0	20135	ND	U	<0.19		1
Toluene	2			ND	U	<0.22	<0.050	1
Ethylbenzene	2	2.0	20135			< 0.43	< 0.099	1
	4	4.0	20135	ND	U			1
m,p-Xylene o-Xylene	2	2.0	20135	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 20-DEC-24

Collection Media : Carbopack X

Supervisor: TLH

6601 Kirkville Road

(315) 432-5227

www.sgsgalson.com

GALSON

LELAP Lab ID #04083 LABORATORY ANALYSIS REPORT

Account No.: 41031

Client : Haley Ward Inc.

Login No. : L646203 : NS Site

East Syracuse, NY 13057 Date Analyzed: 17-DEC-24 - 18-DEC-24 Date Sampled : 27-NOV-24

Date Received : 13-DEC-24 Report ID : 1466633 FAX: (315) 437-0571

Lab ID : L646203-15 Time: 20134 minutes Client ID : FLM 15-SAMPLE

Date Analyzed: 12/18/24 Date Sampled: 11/27/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	20134	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20134	ND	U	<0.19	<0.051	1
Ethylbenzene	2	2.0	20134	ND	U	<0.22	<0.050	1
m,p-Xylene	4	4.0	20134	ND	U	<0.43	<0.099	1
o-Xvlene	2	2.0	20134	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 20-DEC-24

Approved by : TEM Supervisor: TLH Collection Media : Carbopack X

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

FAX: (315) 437-0571

(315) 432-5227

www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 27-NOV-24

Date Received : 13-DEC-24

Account No.: 41031

Login No. : L646203

Date Analyzed : 17-DEC-24 - 18-DEC-24

Report ID : 1466633

Client ID : FLM 16-SAMPLE Lab ID : L646203-16 Time : 20136 minutes

Date Sampled: 11/27/24 Date Analyzed: 12/18/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ppbv_	Dil <u>Fact</u>
Benzene	2	2.0	20136	ND	U	<0.15	<0.046	1
Toluene	2	2.0	20136	ND	Ū	<0.19	<0.051	1
Ethylbenzene	2	2.0	20136	ND	U	<0.22	< 0.050	1
m,p-Xylene	4	4.0	20136	ND	U	< 0.43	<0.099	1
o-Xylene	2	2.0	20136	ND	U	<0.22	<0.050	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 20-DEC-24

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LABORATORY FOOTNOTE REPORT

GALSON

Client Name : Haley Ward Inc.

Site

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com Date Sampled: 27-NOV-24 Date Received: 13-DEC-24

Date Analyzed: 17-DEC-24 - 18-DEC-24

Account No.: 41031 Login No. : L646203

L646203 (Report ID: 1466633):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

L646203-2,7,13-14 (Report ID: 1466633):

Duplicate samples do not agree within 30%

L646203 (Report ID: 1466633):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Benzene	+/-20.6%	101%
Ethylbenzene	+/-16.4%	107%
Toluene	+/-15.5%	105%
m,p-Xylenes	+/-17.6%	108%
o-Xylene	+/-16.8%	106%
Parameter	Method	
Benzene	mod. EPA 325B;	GCMS
Ethylbenzene		
	mod. EPA 325B;	GCMS
Toluene	mod. EPA 325B; mod. EPA 325B;	
Toluene m,p-Xylene	· ·	GCMS

COC	Client Acct. No.	41031	EPA 325/	A Fenceline	e Monitorii	ng	
SGS GALSON		Report To:	Janesha Pottle	SON AT	TERSON	Invoice To :	Accounts Payable-Julie
	Co	mpany Name:	Haley Ward Inc.			Company Name:	Haley Ward Inc.
Need Results By*: (surcharge)		Address 1:	1 Marchants Plaza			Address 1:	1 Marchants Plaza
5 Business Days 0%		Address 2:	Suite 701	Suite 701		Address 2:	Suite 701
4 Business Days 35%	c	ity, State, Zip:	Bangor, ME 04401			City, State, Zip:	Bangor, ME 04401
3 Business Days 50%		Cell No.:	207-214-0141			Email Address: jo	oreskovich@haleyward.com
2 Business Days 75%	En En	nall Report to: TPAT	TERSON@ Haleywo	rd.com		P.O. No:	
Next Day by 6pm 100%] / _ \		tpottle@trateyword.com			Payment Info: Will Phor	ne in Credit Card Information
Next Day by Noon 150%	7 /2/01					☐ Credit Ca	ard on File
Same day 200%		Prep No.:	PSY749654				
043178466160749 e:12/13/24	-						
pper:UPS tials:BCF	1 4	Complete snaded po	ortions and return to			mbient Temperature:	29.2°F
p:UNKNOWN	× 				Average Ba	arometric Pressure:	29.66 in Hg
p. Ottowit	-	Project:				Sampled By:	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time (Militar		Analysis Requested	Method
FLM 1- Sample	C41410	Carbopack X	11/27/24	12/11/24	0828	BTEX	MOD. EPA325B: GCMS
FLM 2-Sample	C40214	Carbopack X	11/27/24 0902	12/11/24	0832	BTEX	MOD. EPA325B: GCMS
FLM13-Sample	C41465	Carbopack X	11/27/24 0905	12/11/04	0837	BTEX	MOD. EPA325B: GCMS
FLM 4-Sample	C41381	Carbopack X	11/27/24 0909	12/11/24	0841	BTEX	MOD. EPA325B: GCMS
FLM 5-Sample	C41524	Carbopack X	11/27/24 0913	12/11/24	0895	BTEX	MOD. EPA325B: GCMS
FLM 6-Sample	C41401	Carbopack X	11/27/24 0916	12/11/24	6849	BTEX	MOD. EPA325B: GCMS
FLM 7- Sample	C41425	Carbopack X	11/27/24 0920	12/11/29	0852	BTEX	MOD. EPA325B: GCMS
FLM 8-Sample	C41402	Carbopack X	11/27/24 0924	12/11/24	0857	BTEX	MOD. EPA325B: GCMS
-CM 9-Sample	C41419	Carbopack X	11/27/24.: 0841	12/11/24	1180	BTEX	MOD. EPA325B: GCMS
FLM 10-Semple	C41422	Carbopack X	11/27/24 0845	12/11/24	0818	BTEX	MOD. EPA325B: GCMS
FLM 11- Sample	C40275	Carbopack X	11/27/24 0848	12/11/24	0822	BTEX	MOD. EPA325B: GCMS
Chain of Custody	Print Nan	ne	0 1	Sign	nature		, , Date/Time
Relinquished by : Jason	S PATTERSO	N	1 mm/2	5			12/11/24 10:00
Received by LAB:			Bill Fisch	er B	1000	<u> </u>	1300024/1308
Required fields, failure to comp	plete these fields m	ay result in a delay in			ed after 3pm	Page	

à .

EPA 3	25A	Fenceline	Mon	itoring

SGS GALSON

Comments

	1 -	Complete shaded po	ortions and return to	the lab with the samp	les.	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method
FLM 12-Sample	C38502	Carbopack X	11/27/24 0851	12/11/24 0825	BTEX	MOD. EPA325B: GCMS
LM 13- FLM 2 DOP	C41456	Carbopack X	11/27/24 0857	12/11/24 0833	BTEX	MOD. EPA325B: GCMS
LM 14-FLM7 DOP	C41504	Carbopack X	11/27/24 09/8	12/11/24 6853	BTEX	MOD. EPA325B: GCMS
m 15- FLM 3 Blank	C40212	Carbopack X	11/27/24 .0904	12/11/24 0838	BTEX	MOD. EPA325B: GCMS
M 16-FLM5Blank	C40255	Carbopack X	11/27/24:0910	12/11/24 6846	BTEX	MOD. EPA325B: GCMS
1						/
			1, 1			
			1			
				2 4 1 1 1 1		
					••	
				3.		
hain of Custody	Print Nan	ne	1 , 1	Signature		, / Date/Time
Relinquished by: JAS	ON PATTER	SON	Jan /2		4	12/11/2024 10:00
Received by LAB :			Bill Fischer	Bell Fin	her	13Dec 24/1308

Mr. Jason Patterson Haley Ward Inc. 1 Merchants Plaza Suite 701 Bangor, ME 04401 January 14, 2025

Account# 41031

Login# L647421

Dear Mr. Patterson:

Enclosed are the revised analytical results for the samples received by our laboratory on December 27, 2024. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Lwat

Enclosure(s)

Account : 41031 Login No. : L647421

COMMENT ANNEX

Per your request, results have been updated to reflect the corrected sampling temperature and pressure for samples FLM 1-FLM 16. Please note that this revision cancels and supersedes L647421 (report reference: 1) dated 01/06/2025 issued by SGS Galson.

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead, Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client :

: Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24
Date Received : 27-DEC-24

Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 1-SAMPLE Date Sampled : 12/11/24 Lab ID : L647421-1 Time : 21600 minutes

Date Analyzed: 12/31/24

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	2 2 2 4 2	2.0 2.0 2.0 4.0 2.0	21600 21600 21600 21600 21600	13 25 3.6 12 4.8		0.91 2.2 0.37 1.2 0.48	0.29 0.58 0.084 0.27 0.11	1 1 1 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method : mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc.

: NS

Account No.: 41031

Login No. : L647421

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 2-SAMPLE Date Sampled: 12/11/24

Lab ID : L647421-2

Time: 21598 minutes

Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21598	12		0.85	0.27	1
Toluene	2	2.0	21598	21		1.9	0.51	1
Ethylbenzene	2	2.0	21598	2.9		0.29	0.068	1
m,p-Xylene	4	4.0	21598	8.7		0.88	0.20	1
o-Xylene	2	2.0	21598	3.4		0.35	0.080	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Hal

Site : NS

: Haley Ward Inc. Account N : NS Login No.

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

MDL LOQ Time Total Total Conc Dil Parameter minutes Qual uq/m3 ng __ng nq ppbv Fact Benzene 2 2.0 21596 11 0.80 0.25 Toluene 2 2.0 21596 20 1.8 0.47 1

Ethylbenzene 2.0 21596 3.2 0.32 0.073 1 m,p-Xylene 4 4.0 21596 10 1.0 0.24 1 o-Xylene 2.0 21596 3.9 0.39 0.090 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 4-SAMPLE Lab ID : L647421-4 Time : 21596 minutes

Date Sampled: 12/11/24 Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21596	9.5		0.69	0.22	1
Toluene	2	2.0	21596	15		1.3	0.34	1
Ethylbenzene	2	2.0	21596	2.2		0.22	0.051	1
m,p-Xylene	4	4.0	21596	6.9		0.69	0.16	1
o-Xylene	2	2.0	21596	2.7		0.27	0.062	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc.

: NS

Account No.: 41031

Login No. : L647421

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Date Analyzed: 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 5-SAMPLE Date Sampled: 12/11/24

Lab ID : L647421-5

Time: 21596 minutes

Date Analyzed: 12/31/24

<u>Parameter</u>	MDL _ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21596	8.4		0.61	0.19	1
Toluene	2	2.0	21596	11		0.95	0.25	1
Ethylbenzene	2	2.0	21596	ND	U	<0.20	<0.046	1
m,p-Xylene	4	4.0	21596	5.2		0.53	0.12	1
o-Xylene	2	2.0	21596	2.1		0.21	0.048	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc.

: NS

Account No.: 41031

Login No. : L647421

Date Sampled : 11-DEC-24 Date Received : 27-DEC-24

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 6-SAMPLE Date Sampled: 12/11/24

Lab ID : L647421-6

Time: 21596 minutes

Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	21596	8.1		0.58	0.18	1
Toluene	2	2.0	21596	8.8		0.78	0.21	1
Ethylbenzene	2	2.0	21596	ND	U	<0.20	< 0.046	1
m,p-Xylene	4	4.0	21596	ND	U	<0.40	<0.093	1
o-Xylene	2	2.0	21596	ND	U	<0.20	<0.046	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

FAX: (315) 437-0571 www.sgsgalson.com

Client Site

: Haley Ward Inc.

: NS

Account No.: 41031

Login No. : L647421

(315) 432-5227

Date Sampled : 11-DEC-24

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 7-SAMPLE Date Sampled : 12/11/24

Lab ID : L647421-7

Date Received : 27-DEC-24

Time: 21597 minutes

Date Analyzed: 01/01/25

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21597	12		0.87	0.27	1
Toluene	2	2.0	21597	14		1.2	0.33	1
Ethylbenzene	2	2.0	21597	ND	U	<0.20	< 0.046	1
m,p-Xylene	4	4.0	21597	5.8		0.59	0.14	1
o-Xylene	2	2.0	21597	2.4		0.24	0.056	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Account No.: 41031

Login No. : L647421

Date Analyzed: 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Lab ID : L647421-8 Client ID : FLM 8-SAMPLE Time: 21551 minutes Date Sampled : 12/11/24 Date Analyzed: 01/01/25

Time MDL LOO Total Total Conc Dil Parameter minutes Qual ug/m3 ng ng ng ppbv Fact Benzene 2 2.0 21551 8.8 0.64 0.20 2 2.0 Toluene 21551 11 1.0 0.27 1 2 Ethylbenzene 2.0 21551 ND U <0.20 < 0.046 1 4 4.0 21551 5.0 0.51 0.12 1 m,p-Xylene o-Xylene 2.0 21551 2.2 0.22 0.051 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24

Date Received : 27-DEC-24

Account No.: 41031

Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 9-SAMPLE Lab ID : L647421-9 Time : 21603 minutes Date Sampled: 12/11/24

Date Analyzed: 01/01/25

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21603	12		0.90	0.28	1
Toluene	2	2.0	21603	38		3.4	0.89	1
Ethylbenzene	2	2.0	21603	7.0		0.70	0.16	1
m,p-Xylene	4	4.0	21603	25		2.5	0.57	1
o-Xylene	2	2.0	21603	9.8		0.99	0.23	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client

Site

: Haley Ward Inc.

: NS

Account No.: 41031

Login No. : L647421

Date Sampled : 11-DEC-24

Date Analyzed : 31-DEC-24 - 01-JAN-25

Date Received : 27-DEC-24

Report ID : 1468643

Client ID : FLM 10-SAMPLE Date Sampled: 12/11/24

Lab ID : L647421-10

Time: 21601 minutes

Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	21601	16		1.2	0.38	1
Toluene	2	2.0	21601	36		3.2	0.85	1
Ethylbenzene	2	2.0	21601	4.9		0.49	0.11	1
m,p-Xylene	4	4.0	21601	16		1.6	0.37	1
o-Xylene	2	2.0	21601	6.1		0.62	0.14	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS

Submitted by: NKP

Date : 14-JAN-25

Collection Media : Carbopack X

Supervisor: TLH

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

: NS

Date Sampled : 11-DEC-24 Date Received : 27-DEC-24 Account No.: 41031

Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

LOQ Time Total MDL Total Conc Dil Qual uq/m3 Parameter ng minutes ng ppbv Fact nq 2 2.0 21599 15 Benzene 1.1 0.34 1

2 2.0 35 3.1 0.83 Toluene 21599 1 2 5.5 0.55 2.0 21599 0.13 1 Ethylbenzene 4 4.0 21599 18 1.8 0.42 1 m,p-Xylene o-Xylene 2.0 21599 7.3 0.73 0.17 1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

: NS

Account No.: 41031

Site

Login No. : L647421

Date Sampled : 11-DEC-24 Date Received : 27-DEC-24

Report ID

Date Analyzed : 31-DEC-24 - 01-JAN-25 : 1468643

Client ID : FLM 12-SAMPLE Lab ID : L647421-12 Time : 21600 minutes

Date Sampled : 12/11/24 Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil Fact
Benzene	2	2.0	21600	15		1.1	0.34	1
Toluene	2	2.0	21600	37		3.3	0.86	1
Ethylbenzene	2	2.0	21600	5.7		0.57	0.13	1
m,p-Xylene	4	4.0	21600	19		1.9	0.43	1
o-Xylene	2	2.0	21600	7.3		0.73	0.17	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24
Date Received : 27-DEC-24

Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Totalng	Total Oual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	21600	12		0.85	0.27	1
Toluene	2	2.0	21600	19		1.7	0.44	1
Ethylbenzene	2	2.0	21600	2.5		0.25	0.057	1
m,p-Xylene	4	4.0	21600	7.8		0.79	0.18	1
o-Xylene	2	2.0	21600	3.2		0.32	0.073	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

Client

: Haley Ward Inc.

Account No.: 41031

FAX: (315) 437-0571 www.sgsgalson.com

Site : NS Login No. : L647421

Date Sampled : 11-DEC-24 Date Received : 27-DEC-24

Date Analyzed: 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 14-FLM 8 DOD Lab ID : L647421-14 Time: 21555 minutes

Date Sampled: 12/11/24 Date Analyzed: 12/31/24

<u>Parameter</u>	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	ppbv	Dil <u>Fact</u>
Benzene	2	2.0	21555	8.7		0.64	0.20	1
Toluene	2	2.0	21555	11		0.96	0.25	1
Ethylbenzene	2	2.0	21555	ND	U	<0.20	< 0.046	1
m,p-Xylene	4	4.0	21555	4.4		0.45	0.10	1
o-Xylene	2	2.0	21555	ND	U	<0.20	<0.046	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date : 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LELAP Lab ID #04083

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24
Date Received : 27-DEC-24

Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 15-FLM 4 BLANK Lab ID : L647421-15 Time : 21599 minutes

Date Sampled: 12/11/24 Date Analyzed: 01/01/25

Parameter	MDL ng	LOQ ng	Time minutes	Total ng	Total Qual	Conc ug/m3	_ ppbv	Dil Fact
Benzene	2	2.0	21599	ND	U	<0.14	<0.043	1
Toluene	2	2.0	21599	ND	U	<0.18	< 0.047	1
Ethylbenzene	2	2.0	21599	ND	U	<0.20	<0.046	1
m,p-Xylene	4	4.0	21599	ND	U	<0.40	<0.093	1
o-Xylene	2	2.0	21599	ND	U	<0.20	<0.046	1

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LABORATORY ANALYSIS REPORT

LELAP Lab ID #04083

6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

Client : Haley Ward Inc.

Site : NS

Date Sampled : 11-DEC-24 Date Received : 27-DEC-24 Account No.: 41031 Login No. : L647421

Date Analyzed : 31-DEC-24 - 01-JAN-25

Report ID : 1468643

Client ID : FLM 16-FLM 7 BLANK Lab ID : L647421-16 Time : 21603 minutes
Date Sampled : 12/11/24 Date Analyzed : 01/01/25

Dil Total Conc Total MDL LOQ Time uq/m3 ppbv Fact Qual minutes nq ng nq Parameter 1 < 0.043 < 0.14 U 2.0 21603 ND Benzene < 0.047 1 < 0.18 U 2 2.0 21603 ND Toluene < 0.20 < 0.046 U 21603 2 2.0 Ethylbenzene < 0.40 < 0.093 1 U 4.0 21603 ND m,p-Xylene < 0.046 1 < 0.20 U 21603 ND 2.0 2 o-Xylene

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Analytical Method: mod. EPA 325B; GCMS Submitted by: NKP Date: 14-JAN-25

Collection Media : Carbopack X Supervisor: TLH Approved by : TEM

LABORATORY FOOTNOTE REPORT

Client Name : Haley Ward Inc.

Site

Date Sampled : 11-DEC-24

Account No.: 41031 Login No. : L647421

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.sgsgalson.com

6601 Kirkville Road

Date Received: 27-DEC-24

Date Analyzed: 31-DEC-24 - 01-JAN-25

L647421 (Report ID: 1468643):

EPA qualifiers are as follows:

U - Compound was analyzed for, but not detected.

J - Compound was found greater than the MDL, but less than the LOQ.

B - Compound is found in the associated method blank as well as in the sample.

SOPs: MS-SOP-17(13)

L647421-8,14 (Report ID: 1468643):

Duplicate samples do not agree within 30%. for o-Xylene.

L647421 (Report ID: 1468643):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery	
Benzene Ethylbenzene m,p-Xylenes o-Xylene Toluene	+/-13.3% +/-16.4% +/-17.6% +/-16.8% +/-15.5%	105% 107% 108% 106% 105%	
Parameter	Method		
Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	mod. EPA 325B mod. EPA 325B mod. EPA 325B mod. EPA 325B mod. EPA 325B	; GCMS ; GCMS ; GCMS	

	647461						
CCC	Client Acct. No.	. No. 41031 EPA 325A Fenceline			e Monitoring		
SGS GALSON		· Report To:	Tunesha Pottle	SOON ATTERSON	Invoice To :	Accounts Payable-Julie	
	ع الم	ny Name:	Haley Ward Inc.		Company Name:	Haley Ward Inc.	
Need Results By*: (surcharge)	8 = -56	ddress 1:	1 Marchants Plaza		Address 1:	1 Marchants Plaza	
5 Business Days 0%	S = 12	ddress 2:	Suite 701		Address 2:	Suite 701	
4 Business Days 35%	₹ S :: 2	itate, Zip:	Bangor, ME 04401 207-214-0141		City, State, Zip:	Bangor, ME 04401	
3 Business Days 50% 2 Business Days 75%	ET : UPS tals: OTS	Cell No.:	ERSON® Holey Wa	m cam	Email Address: jo	oreskovich@haleyward.com	
Next Day by 6pm 100%	E 12/27/24 Der: UPS Lals: OTS LUNKHOLIN	SPANT	About of the Annual Control			ne in Credit Card Information	
Next Day by Noon 150%					☐ Credit Ca	ard on File	
Same day 200%		rep No.:	PSY749656 ortions and return to	the lab with the sam	H)		
omments:					mbient Temperature:	142.9°F	
				Average B	arometric Pressure:	29.88 in Ha	
				1	20.04		
ite Name:		Project:			Sampled By: 1/9/25	in hg DPL	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method	
FLM 1-Sample	C41461	Carbopack X	12/11/24 829	12/26/24 0829	BTEX	MOD. EPA325B; GCMS	
FLM 2- Sample	C41446	Carbopack X	12/11/24 0533	12/26/24 6831	BTEX	MOD. EPA325B: GCMS	
FLM 3-Semples	C41467	Carbopack X	12/11/84 0838	12/26/24 0834	BTEX	MOD. EPA325B: GCMS	
FLM 4-Sample	C41392	Carbopack X	12/11/24 0842	12/26/24 0838	BTEX	MOD. EPA325B: GCMS	
FLM 5-Sample	C41417	Carbopack X	12/11/24 0846	12/26/24 0842	BTEX	MOD. EPA325B: GCMS	
FLM 6-Sample	C41398	Carbopack X	12/11/24 0850	12/26/24 0846	BTEX	MOD. EPA325B: GCMS	
FLM 7- Sample	C41399	Carbopack X	12/11/24 0853	12/26/24 6850	BTEX	MOD. EPA325B: GCMS	
FLM 8- Sample	C41462	Carbopack X	12/11/24 0858	12/26/24 0869	втех	MOD. EPA325B: GCMS	
FLM 9-Sample	C41396	Carbopack X	12/11/24 0812	12/26/24 0815	втех	MOD. EPA325B: GCMS	
FLM 10-5=mple	C41428	Carbopack X	12/11/24 08/9	12/26/24 0820	втех	MOD. EPA325B: GCMS	
FLM 11-Sample	C41424	Carbopack X	12/11/24 0823	12/26/24 0822	втех	MOD. EPA325B: GCMS	
Chain of Custody Print Name				, Date/Time			
Relinquished by: TASON PATTERSON			Jan /	12/26/24 10:00			
Received by LAB :			Olivia 1.	Silver Olara	1. Allver	12/27/24 1033	
Required fields, failure to comp			Report Reference	nples received after 3pm · 2 Generated 14-JA	Page will be considered as next N-25 16:46	e 1 of day's business.	

EDA 225A	Famaalina	AAiti
EFA 323A	rencenne	Monitoring

SGS	GALSON
	UNLOUN

Comments

	-	Complete shaded p	ortions and return to	the lab with the samp	les.*	
Sample Identification*	Manufacturer ID	Collection Medium	Date/Time Deployed (Military Time)	Date/Time Retrieved (Military Time)	Analysis Requested	Method
FLM 12-Sample	C41411	Carbopack X	12/11/24 0826	12/26/24 0826	BTEX	MOD. EPA325B: GCMS
FLM 13- FLM 3.	C41439	Carbopack X	12/11/24 0834	12/26/24 0834	BTEX	MOD. EPA325B: GCMS
FLM 14. PLM 8	C41405	Carbopack X	12/11/24 0854	12/26/24 0809	BTEX	MOD. EPA325B: GCMS
FLM 15- FLM &	C41457	Carbopack X	12/11/24 6839	12/26/24 0838	BTEX	MOD. EPA325B: GCMS
FLM 16- Blank	C41382	Carbopack X	12/11/24 0847	12/26/24 0850	BTEX	MOD. EPA325B: GCMS
		-				
					-	
	1					
				9.5		
		ř				
Chair of County I				7		
Relinquished by: Jason Patterson		1 1	Signature		Date/Time	
Received by LAB:		Olivia T.	Silver Olivia 1	Silver	12/26/24 10:00	
*Required fields, failure to comp your sample	lete these fields ma s being processed	ay result in a delay in	San	ples received after 3pm v	Page	

*** *** ********

· Fr or the protection of