

Harmful Contaminants in Maine's Medical Cannabis Program

Findings from the Office of Cannabis Policy's August 2023 audit testing of Maine medical cannabis and cannabis products.

Executive Summary

Testing cannabis and cannabis products for harmful contaminants is voluntary in Maine's Medical Use of Cannabis Program (MMCP), not mandatory. Recent audit testing conducted by the Office of Cannabis Policy (OCP) on 120 samples from the medical cannabis program found that 50 samples, or 42%, contained at least one contaminant that would have failed testing according to the mandatory testing standards set for Maine's Adult Use Cannabis Program (AUCP).

Some samples failed testing for more than one contaminant, and some failed testing for multiple contaminants within a given analyte category. Overall, testing showed 30 failures for yeast and mold, 26 failures for pesticides, four failures for heavy metals, and one failure for filth and foreign materials. Of the pesticides detected, myclobutanil was most prevalent with eight individual medical samples exceeding the AUCP pass/fail threshold of 200 ppb. Myclobutanil releases cyanide gas upon combustion and causes a range of mild to severe effects when inhaled. Alarmingly, one medical cannabis sample's myclobutanil concentration was as high as 58,600 ppb, which is 293 times the pass/fail threshold established in the AUCP.

Over the years, public conversations in Maine about mandatory testing have been deeply contentious, have included disinformation about cannabis product testing and its accuracy, and have lacked reliable, rigorous, and sound data on contamination in Maine's medical cannabis supply chain. This report aims to bring data to the conversation, as well as fill information gaps around the impacts of cannabis contaminants and the requirements for certified cannabis testing facilities (CTFs) to operate and become licensed in Maine.

This report also identifies several policy challenges in Maine's medical cannabis program. This includes the lack of an inventory tracking system for addressing contaminated products in the supply chain coupled with insufficient authority for OCP to seize and destroy contaminated cannabis, as well as strict confidentiality protections for program participants that prevent OCP from disclosing which businesses were found to have contaminated products. OCP describes how these policy challenges impact the state's 106,000+ medical cannabis patients—especially the lack of mandatory testing—and highlights the need for a comprehensive solution for reforming and modernizing the *Maine Medical Use of Cannabis Act* to protect Maine's patients.

Introduction

Maine's Medical Use of Cannabis Program (MMCP) falls critically short of national standards around mandatory contaminant testing, which puts the state's most vulnerable medical patients at risk of complicating their medical conditions and experiencing symptoms of contamination that can be mistaken for symptoms associated with their condition. Public conversations in Maine about mandatory testing have been deeply contentious, have included disinformation about cannabis product testing and its

accuracy, and have lacked reliable, rigorous, and sound data on contamination in Maine's medical cannabis supply chain. The information and findings in this report by Maine's Office of Cannabis Policy (OCP) aim to help reset discussions around medical cannabis testing, bringing data and science to the core of this discussion with a primary goal of protecting patients.

The goal of any policy conversation around mandatory medical cannabis testing must always be keeping Maine's patients safe. Any serious stakeholder should be prioritizing patient safety over anything else. OCP's charge is to provide policymakers and patients with the best available data and science on the topic and to ensure that medical and policy choices are not made based on anecdote and business self-interest.

As such, OCP has examined past policy debates around mandatory medical cannabis testing and identified key informational gaps that exist. This report helps fill those gaps with information about the scientific processes around testing and the potential harm posed by the ingestion of contaminants. Most importantly, this report provides the first comprehensive and public look at contamination in the medical cannabis supply chain. Ultimately, this resource will help patients, their providers, and the public to understand more clearly what is contained in Maine's medical cannabis and how policy changes can protect Maine's patients from potential harms.

Methodology

Informational deficiencies exist in the public debate around medical cannabis testing. To correct this issue, OCP implemented a program to test the supply chain and bring scientific data to the conversation. The goal was to examine a basic question: whether and to what extent contamination exists in Maine's medical cannabis supply chain. In the process, OCP's goal was to provide clearer information and data to the public on this topic.

From August 4 to August 25, 2023, OCP field investigators collected 101 cannabis flower samples and 19 cannabis product samples (18 vape cartridges and one edible) from 112 registered caregivers and 8 registered dispensaries. This resulted in a total of 120 samples from 120 program registrants.

The locations from which samples were taken was selected through a combination of pre-scheduled field inspections and the geographic location of field investigators on a given day, with the goal of ensuring a geographically diverse sample of medical cannabis.¹ Each sample was preserved properly and sent to one of the state's licensed and certified cannabis testing facilities.² The cannabis testing facilities tested each sample for analytes that cannabis and cannabis products are required to be tested for in the state's Adult Use Cannabis Program (AUCP), using the same pass/fail thresholds.³ Those analytes include heavy metals, potency, pesticides, yeast and mold, and microbials. Results were reported to the medical cannabis businesses from which samples were taken. OCP paid for the entirety of the cost of testing.

Every medical cannabis business that had product sampled and tested was fully informed as to why product was being taken and for what purpose. After the sample was tested, each business was given a copy of the certificate of analysis (COA) from the testing laboratory that showed the test results for the business' sample(s).⁴ In addition to the COA, OCP included a letter explaining whether the sample(s)

¹ Samples were taken from approximately 36% of registered medical cannabis retail operations, including caregiver retail stores and registered dispensaries with a retail location. Not every retail location in the state was selected, as OCP sought to balance between getting a significant sample size from retail locations and responsibly using taxpayer dollars.

² At the time of sampling and testing, the state had three cannabis testing facilities licensed by OCP and certified by the Maine CDC: Nova Analytic Labs, Nelson Analytical, and CATLAB. Since that time, a fourth licensed and certified testing facility, MCR Labs, has come online, but was not used in this study due to timing.

³ A complete list of analytes that each medical cannabis sample type was tested for is included in Appendix A of this report.

⁴ Appendix B contains de-identified examples of a certificate of analysis from this effort.

passed or failed testing. When a sample failed, OCP included in that letter a set of recommendations for the removal of the product from shelves, the destruction of the product (or remediation wherever possible), and the notification of patients who had purchased or consumed it.⁵ **Unfortunately, because of existing statutory restrictions, OCP does not have the authority to seize or destroy contaminated medical cannabis.**⁶ Furthermore, because of the broad and restrictive confidentiality provisions of the medical cannabis program statute, OCP is unable to conduct public, mandatory recalls of contaminated medical cannabis products derived from registered caregivers.⁷ Existing medical cannabis law prioritizes the confidentiality of businesses over patients' rights to know about contaminants in their medicine and to make informed decisions about their treatment options.

It is amid this precarious regulatory environment that OCP, for the first time, conducted a broad-based, scientifically rigorous, and data-driven assessment of contamination in Maine's medical cannabis supply.

The results of OCP's medical testing effort clearly demonstrate that without mandatory testing, contaminated medical cannabis products are sitting on the shelves of numerous caregiver retail stores and medical dispensaries across the state of Maine, being sold to vulnerable, unsuspecting patients.

Findings

Test results from the 120 Maine medical cannabis samples provided exceptional data and insight for regulators, registrants, policymakers, and most importantly, medical cannabis patients. Testing showed that 50 samples, or **42% of all samples contained at least one contaminant** that would have failed testing in Maine's adult use program. In the 101 flower samples that were collected, the fail rate was 44.6%.

Of the 120 medical samples collected, the failures among the analyte categories for which adult use cannabis in Maine is mandatorily tested were as follows:

- 30 individual samples failed for yeast and mold (25.0% of all samples)
- 21 individual samples failed for pesticides (17.5% of all samples)
- 3 individual samples failed for heavy metals (2.5% of all samples)
- 1 individual sample failed for filth and foreign materials (0.8% of all samples)

It is important to note that samples can and did fail multiple categories and/or for multiple analytes within a given category. There were 12 samples (10.0% of all samples) that failed for more than one analyte category. There were also 4 samples (3.3% of all samples) that failed for multiple pesticides, resulting in a total of 26 pesticide failures. Another sample (0.08% of all samples) failed for multiple heavy metals, resulting in a total of 4 heavy metal failures.

⁵ Appendix C provides examples of the receipt OCP gave to cannabis businesses when collecting a sample along with the letter OCP sent to businesses if their sample failed testing.

⁶ Prior to this year, OCP lacked any authority to seize and destroy medical cannabis. Recent changes to the law have given OCP the authority to require the forfeiture and/or destruction of medical cannabis only pursuant to "a final order imposing an administrative penalty", not simply due to an imminent public health threat. *See* PL 2023, ch. 365, specifically, 22 MRS § 2430-I(5).

⁷ See 22 MRS § 2425-A(12).

It is also noteworthy that the contamination within the medical cannabis program is diverse. While failures for yeast and mold and pesticides were more common, samples failed for 19 different analytes across the categories. As seen in Table 1 below, included in those failures were 11 specific, different pesticides, none of which are approved for use on cannabis—in any quantity—by the Maine Board of Pesticides Control. In addition, samples failed for arsenic, cadmium, and lead as indicated in Table 2.

Analyte	Fail Count	Fail	
		Percentage	
Total	26	21.5%	
Abamectin	1	0.8%	
Bifenazate	1	0.8%	
Bifenthrin	3	2.5%	
Dichlorvos (DDVP)	1	0.8%	
Imidacloprid	1	0.8%	
Metalaxyl	1	0.8%	
Myclobutanil	8	6.7%	
Piperonylbutoxide	3	2.5%	
Pyrethrins (Total)	2	1.7%	
Spinosad	4	3.3%	
Spiromesifen	1	0.8%	

Table 1: Failures for Pesticides out of 120 Samples

Table 2: Failures for Heavy Metals out of 120 Samples

Analyte	Fail Count	Fail	
		Percentage	
Total	4	3.3%	
Arsenic	2	1.7%	
Cadmium	1	0.8%	
Lead	1	0.8%	

To understand in greater detail the extent of harm posed by such contaminants, it is important to understand the quantity of contamination within some samples. Some analytes like *Salmonella* or *E. coli* fail if any amount is present. For most analytes, there are thresholds above which the sample fails. These thresholds are in place for testing pesticides and heavy metals, for example, as scientific research provides information about the levels above which toxicity to humans can occur.

	Analyte	AUCP Pass/Fail Threshold ⁸	Concentration Found in Sample	Units ⁹
Location 1	Lead	500	523	ppb
	Myclobutanil	200	8,400	ppb
	Pyrethrins (Total)	1,000	3,390	ppb
Location 2	Spinosad	200	420	nnh
Location 2	Total Aerobic Bacteria	100,000	>490,000	ppb cfu/g
	Total Coliform	1,000	1,100	cfu/g
	Enterobacteriaceae	1,000	7,000	cfu/g
Location 3	Total Coliform	100	24,000	cfu/g
	Enterobacteriaceae	100	28,000	cfu/g
	Myclobutanil	200	58,600	ppb
	Spiromesifen	200	7,691	ppb
Location 4	Arsenic	200	251	ppb
	Total Yeast & Mold	10,000	>490,000	cfu/g
Location 5	Bifenthrin	200	1,700	ppb
	Piperonylbutoxide	2,000	15,300	ppb
	Pyrethrins (Total)	1,000	1,600	ppb

Table 3: Examples of Highly Contaminated Samples

The mandatory testing standards for Maine's Adult Use Cannabis Program (AUCP) require cannabis testing facilities to analyze samples for the following categories of analytes: filth and foreign materials; dangerous molds and mildews; harmful microbes; water activity; heavy metals; residual solvents; and pesticides. However, it is critical to note *why* OCP requires testing for those analytes.

To begin, every analyte tested presents some level of potential harm to a healthy human. That potential harm is exacerbated for those dealing with illness, especially individuals who are immunocompromised. It is also important to note that not all contaminants pose identical potential harms. Some present severe risks of harm; others are more moderate. Similarly, some contaminants can cause acute reactions while others present risks with chronic exposure.

Some common contaminants can provide a better understanding of these differences. For example, two microbial contaminants tested for are *Salmonella* and *E. coli*, which are commonly associated with foodborne illness in products like raw meat but can manifest in a variety of products. Exposure to those bacteria can cause acute health issues—commonly called food poisoning. In contrast, another contaminant tested for in the AUCP is lead. Consuming a small amount of lead will not cause serious illness or death in a healthy human. However, prolonged consumption of lead can cause an accumulation

⁸ Some pass/fail thresholds vary depending on the type of cannabis or cannabis product. *See generally, Rules for the Certification of Cannabis Testing Facilities,* 18-691 CMR, ch. 5.

⁹ The following abbreviations have the following meanings, "ppb" means "parts per billion", and "cfu/g" means "[microbial] colony forming units per gram [of sample]".

of the toxin in the body and can induce to a variety of health issues in children and adults. Differences between acute reactions and reactions due to chronic exposure can also depend on the amount of immediate exposure.

Testing cannabis generally is important for preventing both acute reactions and complications due to chronic exposure, regardless of the consumer of the cannabis or cannabis product. The cannabis plant is a bio-accumulator that, for better or worse, works as a sponge to its environmental surroundings, absorbing contaminants and nutrients alike from the air, water, and soil around it. Indeed, cannabis plants can and have been used to pull harmful contaminants from soil—a process known as phytoremediation. A particularly notable use of the cannabis plant as a phytoremediator is its use to purge soil contaminated by radiation released during the Chernobyl nuclear meltdown in 1986.¹⁰

As cannabis plants soak up potential contaminants in their surroundings, those contaminants cannot simply be washed off, like pesticides from the skin of an apple. This means that while some contaminants—like pesticides—can be purposefully applied to cannabis plants in ways that present potential harm for consumers, other contaminants can unknowingly be lurking in water or soil and are pulled into the cannabis plant. These potential harms are of concern for any cannabis consumer, and of even greater concern for the more than 106,000 medical cannabis patients in the state of Maine, whose conditions leave them even more vulnerable to the effects of such contaminants.

Complicating these issues is the fact that the effects of cannabis contaminants can be masked, especially for chronically ill patients. Some patients can unknowingly be experiencing the effects of contaminated cannabis yet end up associating those symptoms with the conditions or illnesses for which they are using medical cannabis. A recent report published by Americans for Safe Access engages scientists and other medical professionals to evaluate those precise questions. The report notes the risks for medical cannabis patients to confuse the effects of contaminated cannabis with the potential symptoms of illness or the side effects of pharmaceuticals. These concerns become even more worrisome for medical cannabis patients who are hesitant to communicate to health professionals that they are using medical cannabis as part of their treatment. In those situations, potential effects of contaminated cannabis may not be identified when individuals are not forthcoming about medical cannabis use for fears of a negative reaction from healthcare providers.

The effects of untested cannabis have also been documented in medical and scientific literature. For example, a September 2023 article in *Environmental Health Perspectives* examines the effects of individuals using cannabis that is untested for harmful contaminants.¹¹ Those individuals show higher levels of lead and cadmium in their bodies compared to individuals who did not consume untested cannabis. That article suggests the importance of cannabis reform policies that include the testing of cannabis for harmful contaminants.

The following table provides a detailed explanation of the analytes tested for in Maine's Adult Use Cannabis Program, the type of toxicity and/or health impacts associated with those analytes, and the level of risk those contaminants present.

¹⁰ Placido, D. F., & Lee, C. C. (2022). Potential of Industrial Hemp for Phytoremediation of Heavy Metals. *Plants*, *11*(5), 595. https://doi.org/10.3390/plants11050595. *See also*, Nason, S. L., Stanley, C. J., PeterPaul, C. E., Blumenthal, M. F., Zuverza-Mena, Z., & Silliboy, R. (2021). *A community based PFAS phytoremediation project at the former Loring Airforce Base*. https://www.maine.gov/dep/spills/topics/pfas/A%20community%20based%20PFAS%20phytoremediation...pdf.

¹¹ Nate Seltenrich. (2023). Untested, Unsafe? Cannabis Users Show Higher Lead and Cadmium Levels. *Environmental Health Perspectives*, *131*(9). <u>https://doi.org/10.1289/ehp13519</u>.

SOLVENTS			
Analyte	Effects		
Acetone	Short term in high amounts cause headaches, nausea, and blood cell changes. Long term exposure can cause kidney, liver, and nerve damage.		
Acetonitrile	Inhalation exposure causes moderate effects. Long term impacts cause cyanide poisoning, as cyanide is released after metabolism of acetonitrile.		
Butanes	Central nervous system (CNS) and cardiac effects. Impact tends to be low.		
Ethanol	Cognitive issues with acute and chronic exposure.		
Ethyl Acetate	Cellular irritation in mucous membranes.		
Ethyl Ether	Long term exposure can affect impairment and be habit forming.		
Heptane	Dizziness, stupor, incoordination; loss of appetite, nausea; dermatitis; chemical pneumonitis (aspiration liquid); and unconsciousness.		
Hexane (NEUROTOXIN)	Acute inhalation exposure in high levels causes mild CNS effects, including dizziness, giddiness, slight nausea, and headache. Chronic exposure in air is associated with polyneuropathy with numbness in the extremities, muscular weakness, blurred vision, headache, and fatigue observed. Neurotoxic effects have also been exhibited in rats.		
Isopropyl Alcohol	Irritation of mucous membranes, especially if inhaled in high concentrations.		
Methanol (NEUROTOXIN)	Chronic exposure may cause CNS birth defects. Chronic poisoning from repeated exposure to methanol vapor may produce inflammation of the eye (conjunctivitis), recurrent headaches, giddiness, insomnia, stomach disturbances, and visual failure.		
Pentane	Irritation of mucous membranes.		
Propane	Respiratory inflammation in high levels.		
Toluene	Can cause eye and nose irritation, tiredness, confusion, euphoria, dizziness,		
(NEUROTOXIN)	headache, dilated pupils, tears, anxiety, muscle fatigue, insomnia, nerve damage, inflammation of the skin, and liver and kidney damage. Long term exposure can be serious.		
<u>Xylenes</u>	Short term exposure toxicity is unknown. Long term exposure includes CNS effects (headache, dizziness, ataxia, drowsiness, excitement, tremor, and coma), ventricular arrythmias, acute pulmonary edema, respiratory depression, nausea, vomiting, and reversible hepatic impairment.		
Dichloroethane	Irritation, especially of lungs. Chronic exposure can be serious. Potential carcinogen.		
Benzene	Exposure at high levels can cause death and have neurological effects.		
(CARCINOGEN)	Leukemia and cancers in blood forming organs with long term exposure.		
Chloroform	Toxic if inhaled and potential carcinogen.		
Ethylene Oxide (REPRODUCTIVE HAZARD)	Cancer risk in long term, low-level exposure. Acute exposure causes irritation.		
Methylene chloride (REPRODUCTIVE HAZARD)	Neurotoxin especially with prolonged exposure.		
Trichloroethylene (CARCINOGEN)	Inhalation or ingestion can produce CNS effects including headache, dizziness, lack of coordination, stupor, and coma. Respiratory depression or cardiac dysrhythmia from high-level exposures can result in death. Other effects of acute exposure include hypotension, nausea, vomiting, and diarrhea.		

 Table 4: Toxicity and Health Impacts of Cannabis Contaminants

	HEAVY METALS
Arsenic	Arsenic can be harmful to the eyes, skin, liver, kidneys, lungs, and lymphatic
(CARCINOGEN)	system. Can also cause cancer and have acute and long term effects.
Cadmium	High levels of inhalation damages people's lungs and can cause death.
(CARCINOGEN)	Exposure to low levels in air, food, water, and particularly in tobacco smoke
(Critten (OGLI()	over time may build up cadmium in the kidneys and cause kidney disease and
	fragile bones.
Lead	Particularly harmful for children as it stunts brain development. Can cause
Leau	high blood pressure and brain, kidney, and reproductive health issues in adults.
	Symptoms of lead poisoning include headaches, stomach cramps, constipation,
	muscle/joint pain, trouble sleeping, fatigue, irritability, and loss of sex drive.
Management	
Mercury	Neurotoxin that can cause CNS problems, among many symptoms.
(NEUROTOXIN)	
T 1.	OTHER ANALYTES
<u>E. coli</u>	Each year in the United States, <i>E. coli</i> infections cause approximately 265,000
	illnesses and about 100 deaths.
Enterobacteriaceae	Antibiotic resistant bacteria that kills hundreds annually. Particularly risky to
	those with suppressed immune systems. Enterobacteriaceae has over 13,000
	infections annually.
<u>Mycotoxins</u>	Biproducts of fungus and may cause different types of poisoning and,
	consequently, diverse health problems (from acute to chronic problems) in
	both animals and humans. Long term exposure can cause immune suppression.
	Multiple mycotoxins are carcinogens.
<u>Salmonella</u>	CDC estimates Salmonella bacteria cause about 1.35 million infections, 26,500
	hospitalizations, and 420 deaths in the United States every year.
	PESTICIDES
	icides that have been detected either in the adult use program or in the medical audit testing
Abamectin	Patients may initially present with nausea, vomiting, salivation, diarrhea and
	dizziness. More severe manifestations may include aspiration pneumonia,
	respiratory failure, hypotension and coma.
<u>Bifenazate</u>	Irritant of eyes and skin, respiratory tract. May cause allergic skin reaction.
Bifenthrin	Harmful if inhaled, causes acute inhalation toxicity. May cause allergic skin
	reaction.
Cypermethrin	Banned pesticide. Suspected of damaging fertility.
Dichlorvos	Banned pesticide. May be fatal if it is absorbed through the eye or skin, is
	ingested or inhaled. May produce acute cholinesterase depression, symptoms
	of which include headache, nausea, vomiting, diarrhea, abdominal cramps,
	excessive sweating, salivation and tearing, constricted pupils, blurred vision,
	tightness in chest, weakness, muscle twitching and confusion; in extreme
	cases, unconsciousness, convulsions, severe respiratory depression and death
	may occur. Possible carcinogen.
Etoxazole	Irritant of eyes and skin. Minimally toxic when ingested or inhaled. High doses
	can cause lethargy, vomiting, decreased respiratory rate, reduced food
	consumption.
Fludioxonil	May cause allergic skin reaction.
Imazalil	Harmful if inhaled, toxic if swallowed. Causes serious eye damage and
<u>1111aZa111</u>	suspected of causing cancer.
Imidaalanrid	Toxic if swallowed.
<u>Imidacloprid</u>	
Malathian	
<u>Malathion</u> Metalaxyl	Acute oral toxicity, skin sensitizer (causes allergic contact dermatitis). Acute oral toxicity, skin sensitizer (causes allergic contact dermatitis).

M (1, 1, 1, 1)	Estilitation II and a side to Tradition at statistic Company initiality		
Methyl parathion	Fatal if swallowed or inhaled. Toxic in contact with skin. Causes eye irritation.		
	May cause damage to organs through prolonged or repeated exposure.		
<u>Myclobutanil</u>	Harmful if swallowed. Causes serious eye irritation. Suspected of damaging		
	fertility or the unborn child. Also releases cyanide upon combustion.		
	Cyanide Inhalation:		
	• Mild to moderate: CNS effects: headache, confusion, anxiety, dizziness,		
	weakness (malaise), and loss of consciousness. Cardiovascular effects:		
	palpitations. Respiratory effects: respiratory tract irritation, difficulty		
	breathing or shortness of breath (dyspnea), and transient increase in the		
	rate and depth of breathing (hyperpnea). Gastrointestinal effects: nausea		
	and vomiting (emesis).		
	• Severe: CNS effects: coma, seizures, and dilated pupils (mydriasis).		
	Cardiovascular effects: shock, abnormal or disordered heart rhythms		
	(dysrhythmias), critically low blood pressure, and cardiac arrest.		
	Respiratory effects: abnormally rapid, followed by abnormally slow		
	respirations; accumulation of fluid in the lungs (pulmonary edema); and		
	espiratory arrest. Eye effects: dilated pupils, inflammation of the surface		
	of the eye, and temporary blindness.		
Permethrin	Harmful if swallowed or inhaled. May cause an allergic skin reaction.		
Piperonylbutoxide	Very toxic to aquatic life with long lasting effects.		
Propiconazole	Harmful if swallowed. May cause an allergic skin reaction. May damage		
	fertility or the unborn child.		
Pyrethrins	Toxic if swallowed, in contact with skin or if inhaled. May cause an allergic		
	skin reaction. Suspected of damaging fertility or the unborn child. May cause		
	damage to organs through prolonged or repeated exposure.		
Spinosad	Very toxic to aquatic life with long lasting effects.		
Spiromesifen	May cause an allergic skin reaction.		

Understanding Maine's Cannabis Testing System

There is a deep misunderstanding, especially in the medical cannabis community, about the certified cannabis testing facilities (CTFs) in the state, how they operate, and how they come to be licensed in Maine. Maine has four certified cannabis testing facilities. Those facilities are licensed by Maine's Office of Cannabis Policy (OCP) and certified annually by Maine's Center for Disease Control & Prevention (CDC). That combination of different agencies in different departments blends the expertise that OCP has with respect to cannabis with the expertise CDC has regarding chemistry, microbiology, and laboratory testing certification. It ensures that laboratories are certified according to the most up-to-date scientific understanding around not only laboratory practices and standard operating procedures (SOPs), but also the relationship between contaminants and the risks to the human body.

The Certification Process for Cannabis Testing Facilities

For a testing facility to accept and analyze cannabis samples in Maine's Adult Use Cannabis Program, they must go through a lengthy and rigorous accreditation and certification process. They must meet all requirements in both the Licensing and Certification rules, which include demonstrating that they have proper security, confidentiality, impartiality, quality assurance, and personnel qualifications.¹²

¹² See generally, Adult Use Cannabis Program Rule, 18-691 CMR, ch. 1 and Rules for the Certification of Cannabis Testing Facilities, 18-691 CMR, ch. 5.

Furthermore, testing facilities must attain International Organization for Standardization and International Electrotechnical Committee (ISO/IEC) accreditation from an independent, third-party accreditor. ISO/IEC 17025:2017 accreditation is an international standard for the demonstration of competent facility operation and the ability to generate valid results. In addition to this accreditation, testing facilities must also complete Maine CDC's certification process, which requires adherence to more detailed and stringent Maine regulations.

Included in Maine's certification process is the requirement for a testing facility to develop a robust quality assurance program. This program must demonstrate how the testing facility ensures accuracy, precision, traceability, staff competence, chain of custody, and safety through their policies, operating procedures, training programs, validation, and reporting systems.¹³

Preliminary and annual on-site evaluations by the CDC's certification staff are required for a testing facility to enter and remain in the adult use testing program. During this assessment, all documentation and methods are reviewed, data is checked randomly to be sure it is accurate and all associated quality control requirements are complete, and staff qualifications and trainings are reviewed.

Currently OCP and CDC have certified four cannabis testing facilities in the state—CATLAB, MCR Labs, Nelson Analytical, and Nova Analytic Labs. All adult use cannabis and cannabis products in Maine must be submitted to one of these four testing facilities and pass all mandatory testing before those products can be sold at market. Products that fail testing are prohibited by the state's inventory tracking system from being transferred to a retail store. While other laboratories in the state will test cannabis that is voluntarily submitted to them from program participants, those facilities have not demonstrated adherence to state standards nor passed certification for testing. Therefore, the quality of data issued from uncertified testing facilities is unknown.

Cannabis Testing Facility Accuracy

OCP and CDC work closely to ensure that the practices and procedures in the state's certified cannabis testing labs—as well as the standards and thresholds around potential harm from contaminants—are science-based, data-driven, and focused on protecting consumers. Criticism has existed among cannabis business licensees about state-certified cannabis testing laboratories, which has largely been driven by anecdote and conjecture. However, OCP takes those concerns seriously. In the past year, the Office has added to its Compliance Team a full-time chemist to review, analyze, and make conclusions and recommendations regarding the data produced by the licensed testing facilities to evaluate potential deficiencies, skewed data, or potential problems. Allegations have specifically arisen around differences in measuring cannabis potency (total THC in cannabis).

As a result, OCP has conducted an analysis of this specific question: do certain cannabis testing facilities skew cannabis and cannabis product potency?

¹³ Examples of data accuracy requirements are participation in a proficiency testing (PT) program, internal quality control (QC) samples, calibration verifications, and data review procedures. PT testing requires annual participation in which a testing facility receives unknown samples and reports back results for every required analyte for which the testing facility is certified. The testing facility must pass these tests to remain certified. QC samples include Method Blanks to ensure no cross contamination occurs, Laboratory Control Samples to demonstrate testing accuracy, Duplicates to demonstrate analytical precision and repeatability, Matrix Spikes to demonstrate additional testing accuracy, and Certified Reference Material samples as an additional demonstration of accuracy. Calibrations are required to meet high correlation coefficient standards (not less than 0.99) and must be verified daily and between every 10 samples to further ensure accuracy. A final data review process by the laboratory manager or quality assurance officer is required to make sure every sample report that is issued from a certified testing facility meets all Quality Assurance objectives. *See generally, Rules for the Certification of Cannabis Testing Facilities*, 18-691 CMR, ch. 5.

In order to address this question, the Office examined all potency test results for cannabis flower over a two-year period among three certified cannabis testing facilities (CTFs): CATLAB, Nelson Analytical, and Nova Analytic Labs.¹⁴ This involved 7,976 total potency test results.

The results of this review are presented in the following histograms. Histograms are a visual way to show how the values of Total THC in flower are distributed. A normal distribution is one that is a "bell-shaped" curve. This "normal" shape indicates that there is no bias in the samples, and that there are no introduced or manufactured values that would skew the data. A skewed data set would appear offset to one side or have a pronounced drop-off at a certain point in the curve. Such an appearance would indicate testing facility systemic errors or malfeasance.

The histograms shown below for the three CTFs are all consistent with a normal distribution and indicate no bias and a high degree of comparability between the three facilities.

In addition, a two-way Analysis of Variance (ANOVA) was run on this data set to address the question of whether there were statistically significant differences in the overall potency values produced by each of the CTFs. This test measures whether there is a significant difference between the testing facilities or between growers that submitted samples to all three facilities over the course of the two-year data set. Results show that there is no significant difference in Total THC values between the testing facilities (p-value of .96) and that there *is* a significant difference in Total THC values depending on the grower (p-value of .004).¹⁵

¹⁴ OCP was unable to conduct this analysis for MCR Labs because that facility is new and did not begin operations within the state's program until August 24, 2023, substantially limiting the data from that testing facility available for these analyses. Future analyses of accuracy, reliability, and validity among all four cannabis testing facilities will occur as data become available. ¹⁵ Note: p-values close to 0 indicate that the observed difference is unlikely to be due to chance, whereas a p-value close to 1 suggests no difference between the groups other than due to chance.

These analyses suggest that differences in potency are not due to differences among cannabis testing facilities. Instead, cannabis cultivators and the strains submitted drive differences. It is true that some cannabis cultivators produce cannabis that is more potent—or has a higher percentage of total THC—than do others. If a cultivator that generally produces more potent cannabis tends to submit to a given cannabis testing facility, it could artificially appear as if that facility reports higher potency. One could then argue that such a cultivator submits to that cannabis testing facility *because* that facility reports higher potency;

however, that argument is demonstrably false, and the data demonstrate as such. The analyses presented here examine reported potency values from cultivators who submitted samples to all three cannabis testing facilities across a two-year period. Those analyses demonstrate the variation in potency is explained by the cultivator and not the cannabis testing facility.

These analyses of potency highlight the importance of OCP licensure and CDC certification standards and underscore the data-driven approach taken by the State in ensuring the validity, reliability, and consistency of the state's licensed and certified testing facilities. Taken together with the rigorous annual recertification and review of these facilities by the CDC, Maine's cannabis testing program has, thus far, avoided many of the challenges presented in other state's cannabis testing programs.

Policy Challenges in the Medical Cannabis Space and Recommended Solutions

A lack of mandatory medical cannabis testing creates multiple, serious challenges for Maine's medical cannabis patients, for the public health community, and for the Office of Cannabis Policy (OCP). In 2022, there were over 106,000 Mainers registered as medical cannabis patients. Those Mainers use cannabis to treat a host of medical conditions including cancer, HIV/AIDS, multiple sclerosis (MS), chronic pain, epilepsy, and symptoms associated with spinal cord injuries, just to name a few. OCP supports the rights of Maine's vulnerable medical patients to have access to cannabis as medicine. At the same time, it is essential for these patients to have complete information about their medicine, and for that medicine to be free from harmful contaminants that can be risky for even healthy individuals to ingest. There are a number of reasons why this is not the current standard in Maine's Medical Use of Cannabis Program (MMCP).

First, when Maine legalized medical cannabis in 1999, mandatory testing was not the norm and practice in this policy space. State programs were nascent, and largely being conducted by individuals who had previously been operating in legacy markets. Certified labs designated to test cannabis did not exist, nor did cannabis testing standards, and existing labs would not risk the legal liability of testing a federally illegal substance. Today, however, cannabis testing is the standard practice in the industry. Mandatory medical cannabis testing is the policy supported by doctors and other scientists as well as leading medical cannabis advocacy organizations such as Americans for Safe Access and Doctors for Cannabis Regulation.

A second reason Maine lacks medical cannabis testing stems from the design of Maine's initial medical caregiver model. For more than a decade from its inception, Maine's medical program was one of individual caregivers, cultivating and producing cannabis and cannabis products for a small number of patients with whom the caregiver had an individual relationship. Over time, however, the program has evolved into a large-scale commercial industry. While there are still some caregivers who serve a small number of patients on an individual basis, the vast majority of program participants regularly engage in arm's length retail transactions with hundreds of patients, wholesale an unlimited amount of untracked cannabis to and from other program participants, grow hundreds or thousands of square feet of cannabis plants, and/or operate retail stores or dispensaries. These changes in the market have meant that more patients are being served across the state; however, other areas of medical cannabis policy, like testing, have not kept pace with the changes in the program's size, scope, and operation. Regardless of size, medical cannabis operators have a moral obligation to protect their patients from contaminants in their medicine. They should also have a legal obligation.

Another reason Maine lacks the safety standards that mandatory medical testing provides is that a vocal minority of medical program business owners vehemently oppose such standards. Among the many false

arguments is that the costs of testing would be burdensome and unnecessary, and that the cost of patients' medicine would increase as a result. They also argue that the supply chain is free of contaminants because businesses are focused on patients and that the testing facilities and processes are inaccurate. This report demonstrates through the use of data that these claims are not true. On the first point, focused on cost, mandatory testing was introduced in the Adult Use Cannabis Program upon the program's rollout and expanded to include mandatory pesticide testing in late 2022. Market forces in that program saw prices decline even with the addition of more analyte categories to the mandatory testing panel. With respect to the latter claim, OCP has received calls for a need to test medical cannabis because of concerns about contaminants from medical cannabis business owners, employees, and patients. Through efforts like this report, OCP is actively working to educate the public about what is in the supply chain and combat misconceptions around cannabis testing.

Unfortunately, in the national landscape of cannabis reform, Maine's regulated medical cannabis program now stands out as a concern because it lacks mandatory testing. There has not been significant legislative appetite to institute mandatory testing in Maine's medical cannabis program. Furthermore, some testing skeptics have actively worked to stymic efforts by regulators and cannabis scientists to engage in substantive discussions about testing and patient safety.

Maine's vulnerable medical patients deserve better, and they (and their medical providers) need to be empowered with information about what they are putting or potentially putting into their bodies. A significant percentage of medical cannabis patients in Maine are consuming contaminated cannabis that would not be eligible for sale in the state's adult use program, nor in other states' medical cannabis programs. This reality comes with individual and public health risks, and it fails ill patients who are using cannabis and cannabis products in an effort to get relief from the illnesses and conditions that affect them. The information and findings in this report will inform policy discussions involving medical cannabis testing by bringing data and science to the discussion.

As previously mentioned, multiple reforms are necessary to modernize Maine's medical cannabis program. The medical cannabis statute in Maine is woefully out of date relative to the commercialized nature of Maine's medical cannabis program today and the standards that have developed across the country since Maine initially legalized medical cannabis in 1999. Identifying harmful contaminants in the medical cannabis supply chain is important, but absent the tools to do anything about such findings and/or remove them from the supply chain, the impacts of testing are limited at best. Thus, in addition to mandatory testing, medical cannabis must be subject to a comprehensive inventory tracking program.

An inventory tracking program complements the testing program so that businesses and regulators can identify precisely which products in the supply chain are in need of testing, or which products are or are not contaminated. Inventory tracking strengthens the wholesale market for medical cannabis by providing proof positive to retail stores that the products they are purchasing have passed testing. In Maine's adult use program, adult use programs across the United States, and medical programs across the United States, inventory tracking programs allow regulators to protect patients and consumers by identifying and isolating products that are contaminated, keeping those products out of the hands of the public. Currently in Maine, OCP is unable to provide any such protections to medical cannabis patients because OCP lacks an ability to know how much of a contaminated product is on shelves or has already been sold to patients due to the lack of an inventory tracking system.

Unlike in the state's Adult Use Cannabis Program, which does utilize an inventory tracking system, OCP is unable to place administrative restrictions on the sale or transfer of contaminated medical cannabis

products or order destruction of tainted product. Without inventory tracking, the Office cannot even identify how widespread contamination might be, even in the face of a failed test.

Another area needing comprehensive overhaul is the confidentiality provisions. Confidentiality protections are important for patients, but the current confidentiality structure does not protect patients; it protects businesses. In fact, they harm medical cannabis patients in demonstrable ways.

The confidentiality protections that harm patients are nowhere more obvious than the medical supply chain testing that motivated this report. For example, under 22 MRS § 2425-A(12), OCP is unable to notify patients, the public generally, or even other state agencies which caregivers and caregiver retail stores failed for having contaminated cannabis. OCP staff are subject to fines if they notify Maine CDC about a biological contaminant in the supply chain that potentially threatens patient and public health. OCP is barred from notifying the Board of Pesticides Control if a caregiver is using a banned pesticide or using a pesticide without a pesticide applicator license. OCP has, under statute, a limited number of regulatory actions it can take against those operators, all while lacking the statutory authority to notify patients as to the risks. Such policies perpetuate the potential harm to Maine's medical cannabis patients.

Not only do the medical cannabis confidentiality protections in statute protect businesses over patients, but those confidentiality provisions also protect businesses selling contaminated cannabis over both patients and businesses selling uncontaminated cannabis.

Conclusion

Historically, public discussions in Maine about mandatory testing have lacked data and information about contamination within the supply chain. OCP's recent audit testing of medical cannabis aimed to help fill that gap and bring sound, reliable data to the conversation. The fact that 42% of medical cannabis samples taken at random contained at least one contaminant at levels that would have failed testing in Maine's adult use program cannot be taken lightly, as these very same products are being offered to patients with serious medical conditions every day. The harmful effects of these cannabis contaminants are discussed at length in this report, and their known prevalence within the supply chain must serve to reset discussions around medical cannabis testing.

Maine's Medical Use of Cannabis Program (MMCP) has evolved dramatically since Maine legalized medical cannabis in 1999 and established the program's statutory framework in 2010. Early on in the program, Maine's registered caregivers were each cultivating and producing cannabis and cannabis products for a small number of patients with whom they had individual relationships. Today, however, medical program participants are serving more than 106,000 patients statewide rather than a handful of patients each. Similarly, at the inception of Maine's medical program, mandatory testing was not a universal best practice; while today, mandatory cannabis testing in medical and adult use programs (including Maine's adult use program) is a national standard—a standard Maine's medical program fails to meet. Maine's medical cannabis laws have not kept up with these state and national changes, and they do not go far enough in protecting the state's vulnerable patients who use cannabis as medicine.

Arguments against mandatory testing have historically included misinformation and criticism about Maine's certified cannabis testing facilities (CTFs). For a testing facility to accept and analyze cannabis samples in Maine's Adult Use Cannabis Program, they must go through a lengthy and rigorous accreditation and certification process with the state, plus they must attain accreditation from an independent, third-party accreditor, ISO/IEC, an international standard for demonstrating competent facility operation and valid results. In its own analysis to investigate claims of inconsistent potency test results by Maine CTFs, OCP found there to be no bias and a high degree of comparability between the three CTFs operating throughout the two-year period analyzed. The rigorous standards set for Maine CTFs are detailed throughout this report so that accurate information is available for future discussions about mandatory testing. Maine's reliable and accurate certified testing facilities have the capacity and expertise to keep Maine's medical cannabis supply chain free of harmful contaminants.

Implementing mandatory medical cannabis testing is but one part of protecting Maine's medical cannabis patients as multiple reforms are necessary to modernize Maine's medical cannabis program. Identifying harmful contaminants in the medical cannabis supply chain is important, but absent an inventory tracking system and changes to the confidentiality protections for program registrants, the impacts of such mandatory testing are limited at best. Maine's 106,000+ medical cannabis patients deserve a comprehensive solution that prioritizes their health and safety, and the primary goal of future policy conversations around mandatory medical cannabis testing must be to keep Maine's patients safe.

Appendix A – Analytes Tested by Product Type

Medical Cannabis/Cannabis Product	Analytes
	Filth & Foreign Materials
	Harmful Microbes (including Yeast & Mold)
Elowor(n-101)	Heavy Metals
Flower (n=101)	Pesticides
	• Potency
	Water Activity
	Heavy Metals
Concentrate (Vape Cartridges, n=18)	Pesticides
	Residual Solvents
	• Filth & Foreign Materials
	Harmful Microbes (including Yeast & Mold)
Edible (n=1)	Heavy Metals
	• Potency
	Water Activity

The Office of Cannabis Policy conducted audit testing for the following analytes by product type.

Appendix B – Deidentified Certificate of Analysis Examples

- Pages 19-34: Deidentified certificate of analysis from CATLAB
- Pages 35-41: Deidentified certificate of analysis from Nelson Analytical
- Pages 42-44: Deidentified certificate of analysis from Nova Analytic Labs

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station Augusta, ME 04333	License Number Phone Sample Type	207-287-3282 Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Summary of Results

Water Activity	/ Profile		
All Results	Pass		
Filth and Foreign Mat	erials Screening		
All Results	Pass		
Microbiological	Screening		
All Results Fail			
Heavy Metals S	creening		
All Results	Pass		
Pesticides Screening			
All Results Pass			

Potency Profile			
<u>Cannabinoid</u>	Result mg/g		
CBDV	< RL		
THCV	0.145		
CBDA	0.609		
CBD	< RL		
CBG	1.07		
CBN	< RL		
CBGA	11.3		
CBC	< RL		
exoTHC	< RL		
Δ9-THC	7.80		
∆8THC	< RL		
THCA	220		
Total Cannabinoids %	24.1		
Total CBD mg/g	0.534		
Total THC mg/g	201		
Total CBD %	0.0534		
Total THC %	20.1		

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone	207-287-3282
Address	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Potency

Date Analyzed: 8/21/23 Instrument:		Prep Date: 8/18/23 Method:		Analyst: KB	
Potency	Result %	Result (mg/g)	Result (mg/package)	RL (%)	RL (mg/g)
CBDV	< RL	< RL	N/A	0.0101	0.101
THCV	< RL	< RL	N/A	0.0101	0.101
CBDA	0.0609	0.609	N/A	0.0101	0.101
CBD	< RL	< RL	N/A	0.0101	0.101
CBG	0.107	1.07	N/A	0.0101	0.101
CBN	< RL	< RL	N/A	0.0101	0.101
CBGA	1.13	11.3	N/A	0.0101	0.101
CBC	< RL	< RL	N/A	0.0101	0.101
exoTHC	< RL	< RL	N/A	0.0101	0.101
Δ9-THC	0.780	7.80	N/A	0.0101	0.101
Δ8THC	< RL	< RL	N/A	0.0101	0.101
THCA	22.0	220	N/A	0.0101	0.101

CRM failure, CBDA > 120% expected. CCV failures due to evaporation of stock solution. Fresh CCV aliquots of new stock solution pass, indicating that the calibration is unaffected.

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone Sample Type	207-287-3282 Dried Flower
	Augusta, ME 04333		Direct lower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Pesticides

Date Analyzed: 08 Instrument:	8/21/23		Prep Meth	Date: 08 od:	3/18/23	А	nalyst: AC		
Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/ Fail	Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/ Fail
Abamectin	< RL	403	500	Pass	Dimethoate	< RL	39.9	200	Pass
Acephate	< RL	55.6	400	Pass	Ethoprophos	< RL	33.9	200	Pass
Acequinocyl	< RL	1150	2000	Pass	Etofenprox	< RL	78.1	400	Pass
Acetamiprid	< RL	31.2	200	Pass	Etoxazole	< RL	61.2	200	Pass
Aldicarb	< RL	31.2	400	Pass	Fenoxycarb	< RL	89.9	200	Pass
Azoxystrobin	< RL	33.2	200	Pass	Fenpyroximate	< RL	83.1	400	Pass
Bifenazate	< RL	31.2	200	Pass	Fipronil	< RL	112	400	Pass
Bifenthrin	< RL	96.5	200	Pass	Flonicamid	< RL	31.2	1000	Pass
Boscalid	< RL	42.9	400	Pass	Fludioxonil	< RL	62.5	400	Pass
Carbaryl	< RL	37.0	200	Pass	Hexythiazox	< RL	54.3	1000	Pass
Carbofuran	< RL	31.2	200	Pass	Imazalil	< RL	87.3	200	Pass
Chlorantraniliprole	< RL	92.2	200	Pass	Imidacloprid	< RL	39.8	400	Pass
Chlorfenapyr	< RL	919	1000	Pass	Kresoxim- methyl	< RL	53.6	400	Pass
Chlorpyrifos	< RL	74.5	200	Pass	Malathion	< RL	66.0	200	Pass
Clofentezine	< RL	56.7	200	Pass	Metalaxyl	< RL	56.4	200	Pass
Cyfluthrin	< RL	798	1000	Pass	Methiocarb	< RL	31.2	200	Pass
Cypermethrin	< RL	196	1000	Pass	Methomyl	< RL	31.2	400	Pass
Daminozide	< RL	329	1000	Pass	Methyl parathion	< RL	193	200	Pass
DDVP (Dichlorvos)	< RL	31.2	1000	Pass	MGK-264 ²	< RL	70.2	200	Pass
Diazinon	< RL	55.3	200	Pass	Myclobutanil	< RL	37.3	200	Pass
					Naled	< RL	42.2	500	Pass

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone	207-287-3282
	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Pesticides

Date Analyzed: 08/21/23 Instrument:	Prep Dat Method:	e: 08/18/23	Analyst: AC	
Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/Fail
Oxamyl	< RL	31.2	1000	Pass
Paclobutrazol	< RL	52.5	400	Pass
Permethrin ³	< RL	199	200	Pass
Phosmet	< RL	55.8	200	Pass
Piperonyl butoxide	< RL	59.0	2000	Pass
Prallethrin	< RL	103	200	Pass
Propiconazole	< RL	59.5	400	Pass
Propoxur	< RL	31.2	200	Pass
Pyrethrins ¹	< RL	248	1000	Pass
Pyridaben	< RL	59.8	200	Pass
Spinosad ⁴	< RL	62.4	200	Pass
Spiromesifen	< RL	62.5	200	Pass
Spirotetramat	< RL	37.5	200	Pass
Spiroxamine	< RL	37.9	400	Pass
tebuconazole	< RL	69.2	400	Pass
Thiacloprid	< RL	31.2	200	Pass
Thiamethoxam	< RL	62.6	200	Pass
Trifloxystrobin	< RL	59.3	200	Pass

Disclaimer:

1. Pyrethrin is measured as cumulative residues of Pyrethrin, Cinerin, and Jasmolin (CAS # 8003-34-7). 2. MGK-264 is measured as cumulative residue of MGK-264 A and MGK-264 B (CAS # 113-48-4).

3. Permethrin is measured as cumulative residue of cis- and trans- permethrin isomers. (CAS # 54774-45-7 and 51877-74-8, respectively). 4. Spinosad is a measured as cumulative residue of Spinosad A and Spinosad D (CAS # 168316-95-8 and 131929-60-7, respectively).

5. Abamectin is measured as cumulative residues of Abamectin B1a and Abamectin B1b (CAS #71751-41-2)

Note: QC presented analytes outside criteria in a CCV (Methomyl), LCS (Abamectins, Prallethrin), and Spiked matrix Sample.

Certificate of Analysis

Client Name	Maine OCP	License Number	
Address	162 State House Station Augusta, ME 04333	Phone	207-287-3282
		Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Heavy Metals

Date Analyzed: 8/18/23 Instrument:		Prep Date: 8/17/23 Method:	Analyst: ITG	
Metals	Result (ug/kg)	RL (ug/kg)	Action Level (ug/kg)	Pass/Fail
Arsenic	< RL	84.7	200	Pass
Cadmium	< RL	55.9	200	Pass
Lead	< RL	24.7	500	Pass
Mercury	< RL	4.89	100	Pass

Microbial Analysis

Prep Date Bacteria: 8/15/23 Date Analyzed Bacteria: 8/16/23 Instrument:	Prep Date Ecoli/SLM: 8/15/23 Date Analyzed Ecoli/SLM: 8/16/23 Method:		Prep Date Yeast and Mold Date Analyzed Yeast and I Analyst: KW	
Contaminants	Result (CFU/g)	RL (CFU/g)	Action Level (CFU/g)	Pass/Fail
Total Aerobic	< RL	100	100,000	Pass
Total Yeast/Mold	27000	100	10,000	Fail
Total Enterobacter	< RL	100	1,000	Pass
Total Coliform	< RL	100	1,000	Pass
Escherichia Coli (E. Coli)	< RL	1	1	Pass
Salmonella spp	< RL	1	1	Pass

The bacteria incubator was 0.3 degrees C outside of acceptance criteria for a portion of the incubation period.

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone	207-287-3282
	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Filth and Foreign Materials

Date Analyzed: 08/16/23 Instrument: Visual Inspection	Prep Date: 08/16/23 Method:	Analyst: JG	
Analyte	Result	Action Level	Pass/Fail
Sand, Soil, Cinders, Dirt, and Mold (%)	0	25	Pass
Embedded Foreign Material (%)	0	25	Pass
Insect Fragment	0	1	Pass
Hair	0	1	Pass
Mammalian Excreta	0	1	Pass

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station Augusta, ME 04333	License Number Phone Sample Type	207-287-3282 Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 10:15 AM	Date Generated	08/21/2023

Water Activity

Date Analyzed: 08/16/23Prep Date: 08/16/23Instrument:Method:			Analyst: JG/IG	
Analyte	Finding (Aw)	RL (Aw)	Action Level (Aw)	Pass/Fail
Water Activity	0.59	0.11	0.65	Pass

Deisy Peña-Romero Lab Director

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone Sample Type	207-287-3282 Dried Flower
	Augusta, ME 04333	Sample Type	Difectiower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Summary of Results

Water Activity Profile					
All Results Pass					
Filth and Foreign Mat	erials Screening				
All Results Pass					
Microbiological	Screening				
All Results	Fail				
Heavy Metals S	creening				
All Results	Pass				
i					
Pesticides Screening					
All Results	Pass				

Potency Profile				
<u>Cannabinoid</u>	Result mg/g			
CBDV	< RL			
THCV	1.10			
CBDA	0.573			
CBD	< RL			
CBG	0.560			
CBN	< RL			
CBGA	9.21			
CBC	< RL			
exoTHC	< RL			
Δ9-THC	7.56			
∆8THC	< RL			
THCA	241			
Total Cannabinoids %	26.0			
Total CBD mg/g	0.503			
Total THC mg/g	219			
Total CBD %	0.0503			
Total THC %	21.9			

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone	207-287-3282
	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Potency

Date Analyzed: Instrument:	8/21/23		p Date: 8/18/23 :hod:	Analyst: K	В
Potency	Result %	Result (mg/g)	Result (mg/package)	RL (%)	RL (mg/g)
CBDV	< RL	< RL	N/A	0.0101	0.101
THCV	0.110	1.10	N/A	0.0101	0.101
CBDA	0.0573	0.573	N/A	0.0101	0.101
CBD	< RL	< RL	N/A	0.0101	0.101
CBG	0.0560	0.560	N/A	0.0101	0.101
CBN	< RL	< RL	N/A	0.0101	0.101
CBGA	0.921	9.21	N/A	0.0101	0.101
CBC	< RL	< RL	N/A	0.0101	0.101
exoTHC	< RL	< RL	N/A	0.0101	0.101
Δ9-THC	0.756	7.56	N/A	0.0101	0.101
∆8THC	< RL	< RL	N/A	0.0101	0.101
THCA	24.1	241	N/A	0.0101	0.101

CRM failure, CBDA > 120% expected. CCV failures due to evaporation of stock solution. Fresh CCV aliquots of new stock solution pass, indicating that the calibration is unaffected.

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station Augusta, ME 04333	License Number Phone Sample Type	207-287-3282 Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Pesticides

Date Analyzed: 08 Instrument:	3/21/23		Prep Meth	Date: 08	8/18/23	Д	nalyst: AC		
Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/ Fail	Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/ Fail
Abamectin	< RL	403	500	Pass	Dimethoate	< RL	39.9	200	Pass
Acephate	< RL	55.6	400	Pass	Ethoprophos	< RL	33.9	200	Pass
Acequinocyl	< RL	1150	2000	Pass	Etofenprox	< RL	78.1	400	Pass
Acetamiprid	< RL	31.2	200	Pass	Etoxazole	< RL	61.2	200	Pass
Aldicarb	< RL	31.2	400	Pass	Fenoxycarb	< RL	89.9	200	Pass
Azoxystrobin	< RL	33.2	200	Pass	Fenpyroximate	< RL	83.1	400	Pass
Bifenazate	< RL	31.2	200	Pass	Fipronil	< RL	112	400	Pass
Bifenthrin	< RL	96.5	200	Pass	Flonicamid	< RL	31.2	1000	Pass
Boscalid	< RL	42.9	400	Pass	Fludioxonil	< RL	62.5	400	Pass
Carbaryl	< RL	37.0	200	Pass	Hexythiazox	< RL	54.3	1000	Pass
Carbofuran	< RL	31.2	200	Pass	Imazalil	< RL	87.3	200	Pass
Chlorantraniliprole	< RL	92.2	200	Pass	Imidacloprid	< RL	39.8	400	Pass
Chlorfenapyr	< RL	919	1000	Pass	Kresoxim- methyl	< RL	53.6	400	Pass
Chlorpyrifos	< RL	74.5	200	Pass	Malathion	< RL	66.0	200	Pass
Clofentezine	< RL	56.7	200	Pass	Metalaxyl	< RL	56.4	200	Pass
Cyfluthrin	< RL	798	1000	Pass	Methiocarb	< RL	31.2	200	Pass
Cypermethrin	< RL	196	1000	Pass	Methomyl	< RL	31.2	400	Pass
Daminozide	< RL	329	1000	Pass	Methyl parathion	< RL	193	200	Pass
DDVP (Dichlorvos)	< RL	31.2	1000	Pass	MGK-264 ²	< RL	70.2	200	Pass
Diazinon	< RL	55.3	200	Pass	Myclobutanil	< RL	37.3	200	Pass
					Naled	< RL	42.2	500	Pass

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone 207-287-3282		
	Augusta, ME 04333	Sample Type	Dried Flower	
Order ID	2240	Strain		
Sample ID		Serving Mass (g)/ Package	1	
METRC Sample ID		Collected Sample Weight	7g	
Date Received	08/14/2023	Collected By	OCP	
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023	

Pesticides

Date Analyzed: 08/21/23 Instrument:	Prep Dat Method:	e: 08/18/23	Analyst: AC	
Analyte	Finding (PPB)	LOQ (PPB)	Limit (PPB)	Pass/Fail
Oxamyl	< RL	31.2	1000	Pass
Paclobutrazol	< RL	52.5	400	Pass
Permethrin ³	< RL	199	200	Pass
Phosmet	< RL	55.8	200	Pass
Piperonyl butoxide	< RL	59.0	2000	Pass
Prallethrin	< RL	103	200	Pass
Propiconazole	< RL	59.5	400	Pass
Propoxur	< RL	31.2	200	Pass
Pyrethrins ¹	< RL	248	1000	Pass
Pyridaben	< RL	59.8	200	Pass
Spinosad ⁴	< RL	62.4	200	Pass
Spiromesifen	< RL	62.5	200	Pass
Spirotetramat	< RL	37.5	200	Pass
Spiroxamine	< RL	37.9	400	Pass
tebuconazole	< RL	69.2	400	Pass
Thiacloprid	< RL	31.2	200	Pass
Thiamethoxam	< RL	62.6	200	Pass
Trifloxystrobin	< RL	59.3	200	Pass

Disclaimer:

1. Pyrethrin is measured as cumulative residues of Pyrethrin, Cinerin, and Jasmolin (CAS # 8003-34-7). 2. MGK-264 is measured as cumulative residue of MGK-264 A and MGK-264 B (CAS # 113-48-4).

3. Permethrin is measured as cumulative residue of cis- and trans- permethrin isomers. (CAS # 54774-45-7 and 51877-74-8, respectively). 4. Spinosad is a measured as cumulative residue of Spinosad A and Spinosad D (CAS # 168316-95-8 and 131929-60-7, respectively).

5. Abamectin is measured as cumulative residues of Abamectin B1a and Abamectin B1b (CAS #71751-41-2)

Note: QC presented analytes outside criteria in a CCV (Methomyl), LCS (Abamectins, Prallethrin), and Spiked matrix Sample.

Certificate of Analysis

Client Name Maine OCP		License Number	
	162 State House Station	Phone	207-287-3282
	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Heavy Metals

Date Analyzed: 8/18/23 Instrument:		Prep Date: 8/17/23 Method:	Analyst: ITG	
Metals	Result (ug/kg)	RL (ug/kg)	Action Level (ug/kg)	Pass/Fail
Arsenic	< RL	84.7	200	Pass
Cadmium	< RL	55.9	200	Pass
Lead	< RL	24.7	500	Pass
Mercury	10.6	4.89	100	Pass

Microbial Analysis

Prep Date Bacteria: 8/15/23 Date Analyzed Bacteria: 8/16/23 Instrument:	Prep Date Ecoli/S Date Analyzed Ec Method:		Prep Date Yeast and Mold Date Analyzed Yeast and I Analyst: KW	
Contaminants	Result (CFU/g)	RL (CFU/g)	Action Level (CFU/g)	Pass/Fail
Total Aerobic	< RL	100	100,000	Pass
Total Yeast/Mold	23000	100	10,000	Fail
Total Enterobacter	< RL	100	1,000	Pass
Total Coliform	< RL	100	1,000	Pass
Escherichia Coli (E. Coli)	< RL	1	1	Pass
Salmonella spp	< RL	1	1	Pass

The bacteria incubator was 0.3 degrees C outside of acceptance criteria for a portion of the incubation period.

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station	License Number Phone	207-287-3282
	Augusta, ME 04333	Sample Type	Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	1
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Filth and Foreign Materials

Date Analyzed: 08/16/23 Instrument: Visual Inspection	Prep Date: 08/16/23 Method:	Analyst: JG			
Analyte	Result	Action Level	Pass/Fail		
Sand, Soil, Cinders, Dirt, and Mold (%)	0	25	Pass		
Embedded Foreign Material (%)	0	25	Pass		
Insect Fragment	0	1	Pass		
Hair	0	1	Pass		
Mammalian Excreta	0	1	Pass		

Certificate of Analysis

Client Name Address	Maine OCP 162 State House Station Augusta, ME 04333	License Number Phone Sample Type	207-287-3282 Dried Flower
Order ID	2240	Strain	
Sample ID		Serving Mass (g)/ Package	/
METRC Sample ID		Collected Sample Weight	7g
Date Received	08/14/2023	Collected By	OCP
Date/Time of Collection	08/14/2023 12:30 PM	Date Generated	08/21/2023

Water Activity

Date Analyzed: 08/16/23 Instrument:			Analyst: JG/IG			
Analyte	Finding (Aw)	RL (Aw)	Action Level (Aw)	Pass/Fail		
Water Activity	0.60	0.11	0.65	Pass		

Deisy Peña-Romero Lab Director

QSD-0058 REV12 JG 07192.

CATLAB, LLC

Sample Receipt Condition Report

Samples Received Via:CATLAB Sampler/Courier Licensee Certified Sampler Custody Seals Present and Intact on Transport Container:Yes No N/A Comments: Type of submitted	
Custody Seals Present and Intact on Transmeric Licensee Certified Sampler	
Custody Seals Present and Intraction of Contraction of the Common terms	
NPC Of Submittal: Medical Advisor NO N/A Commontar	
Receipt Temp: Humidity: If needed, ice present? Y / N Ambient:	
If heeded, ice present? Y/N Ambient:	

	H-60 1		Samples Received	
	II of Samples	# of Containers	Notes:	
Flower	2	2	1	
Trim				
Pre-Roll				
nfused Pre-Roll				
Retail Units				
Concentrate				
Infused Edibles				
Solid Batch				
Liquid Batch				2

Proper Sample Containers/Enough Sample?	VIN/NA	Comments:
Anolysis Marked on COC Match Bottles Rec'v?	YYN/MA	Comment
Date/Time/ID on Samples Match COC?	VV NI / NIA	contribution.
involue compliant for the part of the		
Sample tampered, manipulated, adulterated or contaminated?	Y/N/NA	Comments:
posted, oducerated or contaminated?	Y/N/NA	Comments:
AUNIC Sample size by Batch Size OK?	Y/M/INA	Commente
Samples collected in the manner required by OMP?	Y/N/NA	Comments:
Transport Manifest Received?	V/N/NA	comments:
Samples Baset Attended	TINANA	Comments:
Samples Received in Metro?	Y/N/NA	Comments:
omments:		Initials/Date:)& Stutt

Client ID/Contact	Reviewer's Checklist	
Reporting Instructions		If Adult Use:
-Rushes Communicated		Logged in Metrc
Temp, Condition OK		Transfer Manifest
Sample ID/Date/Time Matrix		If CATLAB Samples:
		Sampling Form
TAT Correct		Attestation Form
Correct Analyses	Initials: IC Date: 8/16/23	
	Date: 8/16/25	

NELSON ANALYTICAL LAB

ISO 17025:2017 Accreditation ANAB Certificate Number: AT-2169 Maine CDC Accreditation MTF001 Office of Marijuana Policy MTF328

Report Date: 15 Aug

15 August 2023

Office of Cannabis Policy: 162 State House Station:

120 York Street

Kennebunk, ME 04043 (207) 467-3478

Enclosed are the results of analytical testing performed on the following samples:

Laboratory ID	Sample Location	Date sampled	Date received
C23080289.01	Case #2023-MCP-990	10-Aug-23 12:40	10-Aug-23 15:06

If you have any questions concerning this report, please feel free to contact the laboratory at 207-467-3478.

Note: Imicladoprid was above the calibration range of the method. The original results are reported for all compounds except of Imicladoprid. The sample extract was diluted and re-analyzed. Not enough sample was submitted for re-extraction of the sample.\fs15

Loui Maling

Lorri Maling Laboratory Director

120 York Street Kennebunk, ME 04046 (207) 467-3478

Amount Received:

Collected by:

7.1g

W. Brocher

NELSON ANALYTICAL LAB

RP230815017

08/10/2023

08/15/2023

24.3

REPORT OF ANALYSIS

Office of Cannabis Policy

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

Date sampled :

Reported Date:

Temp Received:

Case #2023-MCP-990(Plant Material-Marijuana) 228 Results (mg/g) 171 114 57 2.71 1.51 0.689 0 retrahydroca nnabivarin... Delta-9. THC ^{annabigeroj} acid (CBGA) THCA-4 (JBC)

Cannabinoids by HPLC

Analyte	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	Analyzed	<u>Method</u>	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
Cannabidivarin (CBDV)	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabidiolic acid (CBDA)	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabigerolic acid (CBGA)	2.71	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabigerol (CBG)	0.689	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabidiol (CBD)	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Tetrahydrocannabivarin (THCV)	1.51	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabinol (CBN)	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Delta-9-THC	33.3	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Delta-8-THC	ND	0.2	mg/g		08/14/2023 16:09		NRS	N/A	
Cannabichromene (CBC)	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
THCA-A	227	0.1	mg/g		08/14/2023 16:09		NRS	N/A	

Total Cannabinoids by HPLC (Calculated)

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
CBD+CBDA- Calculated	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Total CBD-(Max CBD) Calculated	ND	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
THC+THCA- Calculated	261	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Total THC-(Max THC) Calculated	233	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Total THC-(Max THC+D8) Calculated	233	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Total Cannabinoids- Calculated	266	0.1	mg/g		08/14/2023 16:09		NRS	N/A	
Analysis preparation date	ND				08/11/2023 16:20		NRS	N/A	
120 York Street Kennebunk, ME 04046 (207) 467-3478

NELSON ANALYTICAL LAB

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

Amount Received: 7.1g

W. Brocher

Collected by:

REPORT OF ANALYSIS Office of Cannabis Policy

Date sampled :	08/10/2023
Reported Date:	08/15/2023
Temp Received:	24.3

Case #2023-MCP-990(Plant Material-Marijuana)

Microbiological Testing

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	Pass/Fail Limit	<u>Test</u> <u>Remarks</u>
Aerobic Plate Count	100	100	cfu/g		08/13/2023 10:15		RC	100000	Pass
Total Coliform	ND	100	cfu/g		08/12/2023 11:10		RC	1000	Pass
E. coli	Pass	1	per gram	1	08/13/2023 09:15		RC	Pass	Pass
Salmonella	Pass	1	per gram	1	08/13/2023 09:15		RC	Pass	Pass
Enterobacteriacaea	ND	100	cfu/g		08/12/2023 11:10		RC	1000	Pass
Yeast	ND	100	cfu/g		08/13/2023 10:15		RC	N/A	
Mold	ND	100	cfu/g		08/13/2023 10:15		RC	N/A	
Total Yeast and Mold	ND	100	cfu/g		08/13/2023 10:15		RC	10000	Pass
Microbiological Preparation Time	N/A				08/11/2023 10:05		RC	N/A	

Visual Inspection

<u>Analyte</u>	Result	Reporting Limit	<u>Units</u>	Q	Analyzed	Method	<u>Analyst</u>	Pass/Fail Limit	<u>Test</u> <u>Remarks</u>
Visual Inspection	Pass		NA	1	08/10/2023 15:36		BB	Pass	Pass

Water Activity

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	Test Remarks
Water Activity	0.56	0.2	Aw	1	08/11/2023	al for	BB	0.65	Pass

Metals by ICP MS

<u>Analyte</u>	Result	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	Pass/Fail Limit	Test Remarks
Metals preparation	ND				08/11/2023 11:31		BB	N/A	
Arsenic	ND	100	ug/kg		08/12/2023 11:17		LAM	200	Pass
Cadmium	ND	100	ug/kg		08/12/2023 11:17		LAM	200	Pass
Lead	ND	100	ug/kg		08/12/2023 11:17		LAM	500	Pass
Mercury	ND	80	ug/kg		08/12/2023 11:17		LAM	100	Pass

pesticides by LCMSMS

<u>Analyte</u>	Result	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	Analyzed	Method	<u>Analyst</u>	Pass/Fail Limit	<u>Test</u> <u>Remarks</u>
Abamectin	ND	400	ug/kg		08/10/2023 22:21		LAM	500	Pass

Results as reported above relate only to samples as submitted, unless specifically noted otherwise.

120 York Street Kennebunk, ME 04046 (207) 467-3478

Collected by:

NELSON ANALYTICAL LAB

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

W. Brocher

REPORT OF ANALYSIS

Office of Cannabis Policy

Date sampled :	08/10/2023
Reported Date:	08/15/2023
Temp Received:	24.3

Case #2023-MCP-990(Plant Material-Marijuana)

pesticides by LCMSMS

Analyte	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
Acephate	ND	100	ug/kg		08/10/2023 22:21		LAM	400	Pass
Acequinocyl	ND	500	ug/kg		08/10/2023 22:21		LAM	2000	Pass
Acetamiprid	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Aldicarb	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Azoxystrobin	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Bifenazate	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Bifenthrin	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Boscalid	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Carbaryl	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Carbofuran	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Chlorantraniliprole	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Chlorfenapyr	ND	500	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Chlorpyrifos	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Clofentezine	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Cyfluthrin	ND	500	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Cypermethrin	ND	500	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Daminozide	ND	400	ug/kg		08/10/2023 22:21		LAM	1000	Pass
DDVP (Dichlovos)	ND	400	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Diazinon	ND	150	ug/kg		08/10/2023 22:21		LAM	200	Pass
Dimethoate	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Ethoprophos	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Etonfenprox	ND	100	ug/kg		08/10/2023 22:21		LAM	400	Pass
Etoxazole	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Fenoxycarb	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Fenpyroximate	ND	100	ug/kg		08/10/2023 22:21		LAM	400	Pass
Fipronil	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Flonicamid	ND	200	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Fludioxonil	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Hexythiazox	ND	200	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Imazalil	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Imidacloprid	17800	1000	ug/kg		08/12/2023 17:06		LAM	400	Fail

Results as reported above relate only to samples as submitted, unless specifically noted otherwise.

120 York Street Kennebunk, ME 04046 (207) 467-3478

NELSON ANALYTICAL LAB

RP230815017

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

Amount Received: 7.1g

Collected by:

W. Brocher

REPORT OF ANALYSIS

Office of Cannabis Policy

Date sampled :	08/10/2023
Reported Date:	08/15/2023
Temp Received:	24.3

Case #2023-MCP-990(Plant Material-Marijuana)

pesticides by LCMSMS

Analyte	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	Analyzed	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
Kresoxim-methyl	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Malathion	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Metalaxyl	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Methiocarb	ND	100	ug/kg		08/10/2023 22:21		LAM	400	Pass
Methomyl	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Methyl Parathion	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
MGK-264	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Myclobutanil	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Naled	ND	200	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Oxamyl	ND	100	ug/kg		08/10/2023 22:21		LAM	400	Pass
Paclobutrazol	ND	200	ug/kg		08/10/2023 22:21		LAM	200	Pass
Permethrins (Cis and Trans)	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Phosmet	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Piperonylbutoxide	ND	500	ug/kg		08/10/2023 22:21		LAM	2000	Pass
Prallethrin	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
propiconazole	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Propoxur	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Pyrethrins (Cumulative Residues)	ND	500	ug/kg		08/10/2023 22:21		LAM	1000	Pass
Pyridaben	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Spinosad	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Spiromesifen	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Spirotetramat	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Spiroxamine	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Tebuconazole	ND	200	ug/kg		08/10/2023 22:21		LAM	400	Pass
Thiacloprid	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Thiamethoxam	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Trifloxystrobin	ND	100	ug/kg		08/10/2023 22:21		LAM	200	Pass
Pesticide Extraction Date	ND				08/10/2023 17:00		LAM	N/A	

120 York Street

Kennebunk, ME 04043 (207)467-3478

NELSON ANALYTICAL LAB

ANAB Certificate Number: AT-2169

www.Testedlabs.com

Notes	and	Defi	niti	ons

Note: All sample results are based on samples as they are received. Not all potential/existing hazards were evaluated. Unless otherwise noted below, analyses were performed without significant modifications and QC met the quality standards outlined in the methods reported. For purposes of reporting the terms marijuana and cannabis are used interchangeably. The Pass/Fail column on the report references Maine Adult Use acceptance limits. The State of Maine does not require Medical Marijuana or Hemp to meet these acceptance limits currently.

Results for the Maine Adult Use program are entered into the Metrc system. Due to reporting requirements some results are entered in Metrc as Zero. This is not scientifically accurate. Please refer to the final pdf report for the accurate reporting information and reporting limits.

Heat activation of cannabis products converts THCA to THC and CBDA to CBD in a time and temperature dependent manner. This conversion is known as decarboxylation and results from the loss of CO2 during heating.

Total THC (Max THC) = Delta 9 THC + (THCA x 0.877)- Calculation required for Maine Adult Use program

Total THC (Max THC+D8) = Delta 8 THC + Delta 9 THC + (THCA x 0.877)

Total CBD (Max CBD) = CBD + (CBDA x 0.877)

Nelson Analytical is accredited for testing by ISO/IEC 17025:2017 and certified by ME CDC for the following parameters only:

Cannabinoids: Cannabinol (CBN), Cannabidiol (CBD)*, Cannabidiolic Acid (CBDA)*, Cannabigerol (CBG), Cannabigerolic Acid (CBGA), Cannabichromene (CBC), delta-9-THC*, delta-8-THC, THCA-A*, Tetrahydrocannabivarin (THCV), Cannabidivarin (CBDV) by High Pressure Liquid Chromatography (HPLC). Internal SOP-1/SOP-7 Analysis of Cannabinoids *NOTE: ME CDC certification for CBD, CBDA, Delta 9 THC and THCA-A, Total THC and Total CBD. Edible samples for Maine Adult use may not exceed 10 mg/serving or 100 mg/package.

Homogeneity	samples for edibles and concentrates must be within 15% for Maine Adult Use.
Visual Inspection - Foreign Material Testing (sual Inspection)
% Moisture (Loss on drying) (Metals Preparation and Analysis: Arsenic, Cadmium, Lead and M	iercury (
Water Activity (products.) For Maine Adult Use the water activity should be <0.65 for plant and <0.85 for edibles or other
Mycotoxins: Total Aflatoxin and Ochratoxin by after a yeast and mold failure. They must be 20 ppb or less for a p	. For Maine Adult Use Total Mycotoxins are only evaluated assing result.

Yeast and Mold	Total Coliform and E.	E. Coli	P/A
, Aerobio	Plate Count	, Enterobacteriaceae (Salmonella (b

Microbial limits for Maine Adult Use are as follows for all but concentrate samples:

Yeast and Mold 10,000cfu/g or less, Total Aerobic Bacteria 100,000 cfu/g or less, Total Coliform 1000 cfu/g or less, Enterobacteriaceae 1000 cfu/g or less, E. coli and Salmonella must be negative per gram.

For concentrates the microbial limits are as follows:

Yeast and Mold 1000 cfu/g or less, Total Aerobic Bacteria 10,000 cfu/g or less, Total Coliform 100 cfu/g or less, Enterobacteriaceae 100 cfu/g or less, E. coli and Salmonella must be negative per gram

Residual Solvents:) The acceptance limits are in mg/kg in () next to the compound: Acetone(5000), Acetonitrile(410), Butanes(5000), Ethanol(5000), Ethyl Acetate(5000), Ethyl Ether(5000), Heptanes(5000), Hexane(290), Isopropyl alcohol(5000), Methanol(3000), Pentane(5000), Propane(5000), Toluene(890), Total Xylenes(2170), 1,2 Dichloroethane(1), Benzene(1), Chloroform(1), Ethylene Oxide(1), Methylene Chloride(1), Trichloroethylene(1).

< or ND - Analyte result not detected above the method reporting limit.

All sample results are reported on an "as received" basis.

Edibles are reported in mg/serving. The serving size is defined by the customer for Adult Use testing.

If the serving size is not defined by the customer (for R&D or Medical testing), the number reported is based on the weight of one unit of the product or as defined on the customer label.

The mg/serving reported are based on weights of the serving size taken at the laboratory or supplied by the customer. The mg/package results reported are based on information supplied by the customer.

Edible conversion calculation: mg/g in serving x weight of serving = mg per serving

Mg/package conversion: mg/serving x servings per package = mg/package

Laboratory uncertainty is calculated and updated on a regular basis and will be reported with lab results as needed or requested.

Samples are extracted and analyzed on the same day unless otherwise noted.

Cannabinoids, Residual Solvents and Terpene Analysis are based on laboratory developed methods. All other test methods are based on established EPA, USP or FDA methods.

Matrix matched quality control check samples for marijuana are available for microbiological analysis in a hemp-based QC. Other matrix matched quality control samples for most matrices may be available for hemp but do not currently exist in marijuana. Due to this unavailability, even ISO/IEC validated methods cannot be fully verified for the efficiency and accuracy of the marijuana extraction and analysis in any current Maine Testing facility. To convert mg/ml to a % percentage move the decimal place one to the left.

Note: Imicladoprid was above the calibration range of the method. The original results are reported for all compounds except of Imicladoprid. The sample extract was diluted and re-analyzed. Not enough sample was submitted for re-extraction of the sample.

QUALIFIER DEFINITION

NELSON ANALYTICAL LAB

120 York Street, Kennebunk, ME 04043

www.nelsonanalytical.com (207)467-3478 phone **REPORT OF ANALYSIS**

Laboratory ID:

NH ELAP Accreditation #NH2018 Maine State Certification # ME00015 Maine Radon Certification # ME17500

Qualifier Definition

1

Passes Maine Adult Use

Sampling performed by the lab is according to the lab document "Water Sampling Instructions". EPA standards list pH & Chlorine as field parameters which should be tested immediately upon sample collection. Samples tested for pH after submission are beyond the hold time. Samples will be analyzed as quickly as laboratory operations allow. Metals samples preserved and analyzed on the same day do not meet the method criteria. #-Sample(s) received at laboratory do not meet method specified temperature criteria. #L-Sample(s) received in lobby and it was unable to be verified if they were in a cooler or on ice at receipt. Solid samples are reported on a dry weight basis unless noted otherwise.

Subcontract Laboratories: SUB1: Nelson Analytical Manchester (NH1005) ME-NH01005 SUB 2: (NH 2136) (ME-CT00007),SUB3: (NH2001) (ME00019), SUB 4: NH2073 SUB5: (NH2530) (ME FL00117), SUB7: EAI Analytical (NH 1007),SUB 8: ME00002 SUB9: (NH2516) (MA00100)

CERTIFICATE OF ANALYSIS 2023-MCP-968 (FLOWER) // PRODUCED: AUG 18, 2023 MATRIX: FLOWER 1 CANNABINOID OVERVIEW SAMPLE ID: COLLECTED ON: AUG 14, 2023 RECEIVED ON: AUG 14, 2023 SAMPLE SIZE: 7 G 1 SAMPLED BY: MAINE OFFICE OF CANNABIS POLICY

¹ ENTERED BY CLIENT

RECEIVED BY: CHRISTOPHER COLE

BATCH RESULT: PASS

POTENCY	TESTED
FOREIGN	PASS
METALS	PASS
MICROBIAL	PASS
PESTICIDES	PASS
WATER	PASS

CAN.1: POTENCY & CANNABINOID PROFILE PREPARATION: AUG 15, 2023 // ANALYSIS: AUG 10

ANALYTE	LIMIT	AMT	AMT	LOD/LOQ (%)	PASS/FAIL	ANALYTE	LIMIT	AMT	AMT	LOD/LOQ (%)	PASS/FAIL
CBC		ND	ND	0.0449/0.225	N/A	CBNA		ND	ND	0.0449/0.225	NZA
CBCA	1	0.390 %	3.90 mg/g	0.0449/0.225	N/A	Δ ⁸ -THC		ND	ND	0.0449/0.225	N/A
CBD		ND	ND	0.0449/0.225	NZA	Δ ⁸ -THCA		ND	ND	0.0449/0.225	NZA
CBDA		ND	ND	0.0449/0.225	NZA	Δ9-THC		ND	ND	0.0449/0.225	NZA
CBDV		ND	ND	0.0449/0.225	NZA	Δ10-THC		ND	ND	0.0449/0.225	NYA
CBDVA		ND	ND	0.0449/0.225	NZA	EXO-THC		ND	ND	0.0449/0.225	NZA
CBG		ND	ND	0.0449/0.225	N/A	THCA	2	4.4 %	244 mg/g	0.0449/0.225	NZA
CBGA		0.881 %	8.81 mg/g	0.0449/0.225	N/A	THEV		ND	ND	0.0449/0.225	NZA
CBL		ND	ND	0,0449/0.225	N/A	THCVA	<	LOQ	< LOQ	0.0449/0.225	NZA
CBLA		ND	ND	0.0449/0.225	N/A	TOTAL THC**	2	1.4 %	214 mg/g		N/A
CBN		ND	ND	0.0449/0.225	NZA	TOTAL CBD**		ND	ND		NZA

** TOTAL CBD = (CBDA X 0.877) + CBD ** TOTAL THC = (THCA X 0.877) + THC Reported on an as received basis $1000 \ \mu g/g = 1 \ m g/g$

AUTHORIZED BY: ZACHARY SMITH LABORATORY MANAGER, NOVA ANALYTIC LABS AUG 18, 2023

THCA:	24.4 %
CBGA:	0.881 %
TOTAL CANNABINOIDS:	25.7 %

PST.2: PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY PREPARATION: AUG 15, 2023 // ANALYSIS: AUG 18, 2023

ANALYTE	LIMIT	AMT (µg/kg)	LOD/LOQ (µg/kg)	PASS/FAIL	ANALYTE	LIMIT AM	T (µg/kg) LO	D/LOQ (µg/kg) P/	ASS/FAIL
ABAMECTIN	500 µg/kg	ND	136/181	PASS	METHIOCARB	200 µg/kg	· ND	136/136	PASS
ACEPHATE	400 µg/kg	ND	136/181	PASS	METHOMYL	400 µg/kg	ND	136/181	PASS
ACEQUINOCYL	2000 µg/kg	ND	136/903	PASS	MGK-264	200 µg/kg	ND		PASS
ACETAMIPRID	200 µg/kg	ND	136/136	PASS	MGK-264 I		ND	82.7/82.7	NZA
ALDICARB	400 µg/kg	ND	136/181	PASS	MGK-264 11		ND	52.8/52.8	NZA
AZOXYSTROBIN	200 µg/kg	ND	136/136	PASS	MYCLOBUTANIL	200 µg/kg	ND	136/136	PASS
BIFENAZATE	200 µg/kg	ND	136/136	PASS	NALED	500 µg/kg	ND	136/181	PASS
BIFENTHRIN	200 µg/kg	ND	136/136	PASS	OXAMYL	1000	ND	136/452	PASS
BOSCALID	400 µg/kg	ND	136/181	PASS	OXAMIL	µg/kg			
CARBARYL	200 µg/kg	ND	136/136	PASS	PACLOBUTRAZOL	400 µg/kg	ND	136/181	PASS
CARBOFURAN	200 µg/kg	ND	136/136	PASS	PARATHION-	200 µg/kg	ND	136/136	PASS
CHLORANTRANIL-			126/126	DACC	METHYL	200 48/48	ND	1507150	
IPROLE	200 µg/kg	ND	136/136	PASS	PERMETHRIN	200 µg/kg	ND		PASS
CHLORFENAPYR	1000 µg/kg	ND	136/452	PASS	PERMETHRIN CIS		ND	58.3/58.3	NIA
CHLORPYRIFOS	200 µg/kg	ND	136/136	PASS	PERMETHRIN TRANS		ND	77.2/77.2	A VIA
CLOFENTEZINE	200 µg/kg	ND	136/136	PASS	PHOSMET	200 µg/kg	ND	136/136	PASS
CYFLUTHRIN	1000 µg/kg	ND	136/452	PASS	PIPERONYLBUTO-	2000	ND	136/903	PASS
CYPERMETHRIN	1000 µg/kg	ND	136/452	PASS	XIDE	µg/kg	n.p	1301303	17135
DAMINOZIDE	1000 µg/kg	ND	136/452	PASS	PRALLETHRIN	200 µg/kg	ND	136/136	PASS
DIAZINON	200 µg/kg	ND	136/136	PASS	PROPICONAZOLE	400 µg/kg	ND	136/181	PASS
DICHLORVOS	1000 µg/kg	ND	136/452	PASS	PROPOXUR	200 µg/kg	ND	136/136	PASS
DIMETHOATE	200 µg/kg	ND	136/136	PASS	PYRETHRINS	1000	ND		PASS
ETHOPROPHOS	200 µg/kg	ND	136/136	PASS	FIREINRING	µg/kg			
ETOFENPROX	400 µg/kg	ND	136/181	PASS	PYRETHRINS CINERIN I		ND	90.2/90.2	NZA
ETOXAZOLE	200 µg/kg	ND	136/136	PASS	PYRETHRINS CINERIN II		ND	92.1/92.1	NZA
FENOXYCARB	200 µg/kg	ND	136/136	PASS	PYRETHRINS JASMOLIN I		ND	73.2/73.2	NZA
FENPYROXIMATE	400 µg/kg	ND	136/181	PASS	PYRETHRINS JASMOLIN	1	ND	56.9/56.9	N/A
FIPRONIL	400 µg/kg	ND	136/181	PASS	PYRETHRINS PYRETHRIN	1	ND	420/420	NZA
FLONICAMID	1000 µg/kg	ND	136/452	PASS	PYRETHRINS PYRETHRIN		ND	248/248	N7A
FLUDIOXONIL	400 µg/kg	ND	136/181	PASS	11				
HEXYTHIAZOX	1000 µg/kg	ND	136/452	PASS	PYRIDABEN	200 µg/kg	ND	136/136	PASS
IMAZALIL	200 µg/kg	ND	136/136	PASS	SPINOSAD	200 µg/kg	ND	136/136	PASS
IMIDACLOPRID	400 µg/kg	ND	136/181	PASS	SPIROMESIFEN	200 µg/kg	ND	136/136	PASS
KRESOXIM-	100	ND	136/181	PASS	SPIROTETRAMAT	200 µg/kg	ND	136/136	PASS
METHYL	400 µg/kg	ND	130/101	FASS	SPIROXAMINE	400 µg/kg	ND	136/181	PASS
MALATHION	200 µg/kg	ND	136/136	PASS	TEBUCONAZOLE	400 µg/kg	ND	136/181	PASS
METALAXYL	200 µg/kg	ND	136/136	PASS	THIACLOPRID	200 µg/kg	ND	136/136	PAS5
					THIAMETHOXAM	200 µg/kg	ND	136/136	PASS
					TRIFLOXYSTROB- IN	200 µg/kg	ND	136/136	PAS5

HME.1: HEAVY METALS BY PREPARATION: AUG 15, 2025 // ANALYSIS: AUG 16, 2023

ANALYTE	LIMIT	AMT (µg/kg)	LOD/LOQ (µg/kg)	PASS/FAIL	ANALYTE	LIMIT	AMT (µg/kg)	LOD/LOQ (µg/kg)	PASS/FAIL
ARSENIC	200 µg/kg	ND	5.51/46.3	PASS	LEAD	500 µg/kg	< LOQ	2.55/55.5	PASS
CADMIUM	200 µg/kg	< LOQ	2.39/46.3	PASS	MERCURY	100 µg/kg	ND	8.51/37.0	PASS

FMT.1: FILTH AND FOREIGN MATERIAL BY VISUAL INSPECTION PREPARATION: AUG 14, 2023 // ANALYSIS: AUG 14, 2023

IT AMT (%)	PASS/FAIL	ANALYTE	LIMIT	AMT (%)	PASS/FAIL
% ND	PASS	MOLD	25 %	ND	PASS
% ND	PASS	RODENT HAIR	Any amt	ND	PASS
% ND	PASS	SAND	25 %	ND	PASS
nt ND	PASS	SOIL	25 %	ND	PASS
nt ND	PASS				
	% ND % ND % ND nt ND	% ND PASS % ND PASS % ND PASS nt ND PASS	% ND PASS MOLD % ND PASS RODENT HAIR % ND PASS SAND nt ND PASS SOIL	% ND PASS MOLD 25 % % ND PASS RODENT HAIR Any amt % ND PASS SAND 25 % nt ND PASS SOIL 25 %	% ND PASS MOLD 25 % ND % ND PASS RODENT HAIR Any amt ND % ND PASS SAND 25 % ND % ND PASS SAND 25 % ND nt ND PASS SOIL 25 % ND

WATER ACTIVITY BY WATER ACTIVITY METER PREPARATION: AUG 16, 2023 // ANALYSIS: AUG 16, 2023

ANALYTE	LIMIT	AMT (AW)	LOD/LOQ (AW)	PASS/FAIL
WATER ACTIVITY	0.65 AW	0.543	0.0300/0.0300	PASS

MIC.3: TOTAL CO PREPARATION: A			S: AUG 15, 2023	ŝ.
ANALYTE	LIMIT	AMT (CFU/g)	LOD/LOQ (CFU/g)	PASS/FAIL
COLIFORMS 10	000 CFU/g	ND	100/100	PASS
MIC.6: TOTAL EN PREPARATION: A			S: AUG 15, 2023	
ANALYTE	LI	MIT AMT (CFU	/g) LOD/LOQ (CFU/g)	PASS/FAIL
ENTEROBACTERIAC	EAE 1000 CF	U/g	ND 100/100	PASS
TOTAL AEROBIC PREPARATION: A			S: AUG 15, 2023	
ANALYTE	1.1	MIT AMT (CFU)	g) LOD/LOQ (CFU/g)	PASS/FAIL
AEROBIC BACTERIA	100000 CF	J/g N	ND 100/100	PASS
MIC.5: SALMONE PREPARATION: A	UG 14, 2023			
SALMONELLA			U/g) LOD/LOQ (CFU/g) PASSIFAIL
SPP.	Any amt	gram	ND 1.00/1.00	D PASS
MIC.4: PATHOGEI PREPARATION: A		3 // ANALYSI	S: AUG 16, 2023	
ANALYTE		LIMIT AMT (CF	U/g) LOD/LOQ (CFU/g) PASS/FAIL
SHIGA TOXIN- PRODUCING E. COI	Any amt	in 1 gram	ND 1.00/1.00	D PASS
TOTAL YEAST AN PREPARATION: A		B // ANALYS	S: AUG 17, 2023	
ANALYTE	LIMIT	AMT (CFU/g)	LOD/LOQ (CFU/g)	PASS/FAIL
YEAST & MOLD	10000 CFU/g	ND	1000/1000	PASS

NOTES

 ZACHARY SMITH
 POTENCY & CANNABINOID PROFILE BY

 AUG 18, 2023
 THE STANDARD LAB UNCERTAINTY FOR POTENCY IS 5% OF THE REPORTED VALUE.

PRODUCT IMAGES

* FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE.

ALL TESTS WERE PERFORMED IN ACCORDANCE WITH THE RULES AND REGULATIONS SET FORTH IN THE MAINE ADULT USE PROGRAM. LABORATORY SAMPLING PROTOCOLS ARE GOVERNED BY THE OCP'S SAMPLING GUIDANCE DOCUMENTS. ALL INFORMATION PROVIDED BY THE CLIENT, INCLUDING SELF SAMPLING, MUST BE ACCURATE AND ADHERE TO THE SAME RULES AND REGULATIONS. HOWEVER, CLIENT PROVIDED INFORMATION, INCLUDING SAMPLING, IS ULTIMATELY THE RESPONSIBILITY OF THE PROVIDING LICENSEE. REGISTERED CAREGIVER, PATIENT OR THE LIKE AND FALLURE TO FOLLOW SAID PROTOCOLS COULD LEAD TO ERRONDEOUS TEST RESULTS. NOTE: NOT ALL POTENTIAL AND/OR EXISTING HAZARDE WERE ANALYZED. THIS CERTIFICATE OF ANALYSIS IS RELEVANT ONLY TO THOSE ITEMS TESTED. THE SAMPLE WAS PROVIDED TO THE LABORATORY FOR TESTING BY THE CLIENT AND THE SAMPLE WAS TESTED AS RECEIVED.

END OF REPORT

Appendix C – OCP Receipt & Letter to Businesses

- **Page 46:** Copy of the receipt OCP gave to cannabis businesses when collecting a sample
- Page 47: Copy of the letter OCP sent to businesses if their sample failed testing

Medical Cannabis Sample Collection

User

Form start

Form complete

Location

Medical Cannabis Sample Collection Receipt

In accordance with the Office of Cannabis Policy's mission to ensure the health and safety of all Mainers accessing the state's regulated cannabis programs, OCP will periodically collect samples of cannabis cultivated for medical use and products containing cannabis for medical use as part of an onsite assessment.

Collecting of samples is authorized by 18-691 Code of Maine Rules Chapter 2 – Maine Medical Use of Cannabis Program Rule, Section 10 (B), the purpose of this sample collection is to perform testing for the presence of harmful contaminants and to validate any labeling claims related to contaminants, cannabinoid profiles, or potency. OCP will share test results with the registrant and use the resulting data to help inform future policy recommendations.

The registrant is not responsible for testing costs.

18-691 Code of Maine Rules Chapter 2 – Maine Medical Use of Cannabis Program Rule, Section 10 (B).

On-site assessment. The Department may initiate an on-site assessment, in accordance with the statute and this rule to ensure compliance prior to issuing a registry identification card, as a routine review, in response to an allegation of non-compliance or as part of a plan of correction.

- 1. During an on-site assessment, the primary focus of the Department will be:
- a. Verifying information submitted in an application;

b. Reviewing records for all required documents, including, but not limited to designation forms, registration, and licenses, labeling and employee records, as applicable;

c. Conducting interviews;

d. Entering areas used for conduct authorized by this rule and the statute to ensure any marijuana, including plants, usable marijuana and incidental marijuana cultivated for medical use, is within the specified limit and is identifiable and maintained as required; e. Taking samples of marijuana cultivated for medical use and products containing marijuana for medical use; and

f. Assessing conduct for compliance with the rule and statute.

This document serves as a receipt for all cannabis or products containing cannabis collected today.

JANET T. MILLS GOVERNOR STATE OF MAINE OFFICE OF CANNABIS POLICY 162 STATE HOUSE STATION 19 UNION STREET FIRST FLOOR AUGUSTA, MAINE 04333-0162 ADMINISTRATIVE & FINANCIAL SERVICES

KIRSTEN LC FIGUEROA COMMISSIONER

OFFICE OF CANNABIS POLICY

JOHN HUDAK DIRECTOR

Failed Medical Testing Notice

In accordance with the Office of Cannabis Policy's mission to ensure the health and safety of all Mainers accessing the state's regulated cannabis programs, we recently collected a sample of cannabis cultivated for medical use or products containing cannabis for medical use as part of an onsite assessment.

Results of testing have indicated the presence of harmful contaminants. We have included a copy of the laboratory certificate of analysis (COA). The COA is a detailed list of the analytes tested for and the results. Please refer to it for the specific failed analytes.

The presence of harmful contaminants at the levels indicated may cause short-term, medium-term, and/or long-term harmful effects if consumed. Medical cannabis patients with underlying health conditions may develop side effects, complications, or other health effects from consuming contaminated cannabis. Americans for Safe Access recently released this <u>report</u> detailing the health risks associated with cannabis containing harmful contaminants.

In the interest of public health, we strongly recommend the following steps:

Isolate all remaining product associated with the failed test.

Remove the product from stores and cease sales of those products to patients immediately. Cease wholesale transfers of affected product, unless transferred for remediation. Consider testing other products that may be affected.

This product is not suitable for consumption in its current condition without risking harm and potentially jeopardizing patient health. Remediation may be an option, except in cases of pesticide or heavy metal contamination. If remediation is pursued, we urge retesting to ensure the process was effective.

OCP believes that as a member of Maine's medical cannabis community you are a critical link to the wellbeing of medical cannabis patients. They are using cannabis to seek relief from myriad illnesses, injuries, and medical conditions. Patients rely on businesses like yours to provide products that are free of harmful contaminants that endanger their health. Thank you for taking prompt action and removing tainted products from sale to consumers.

Sincerely,

Michael W. Field Director of Compliance

Appendix D – Table 4 Sources

	SOLVENTS
Analyte	Source
Acetone	https://www.atsdr.cdc.gov/toxfaqs/tfacts21.pdf
Acetonitrile	https://www.epa.gov/sites/default/files/2016-09/documents/acetonitrile.pdf
Butanes	https://www.ncbi.nlm.nih.gov/books/NBK201460/
Ethanol	https://pubmed.ncbi.nlm.nih.gov/15941013/
Ethyl Acetate	https://www.cdc.gov/niosh/npg/npgd0260.html
Ethyl Ether	https://www.cdc.gov/niosh/pel88/60-29.html
Heptane	https://www.cdc.gov/niosh/npg/npgd0312.html
Hexane	https://www.epa.gov/sites/default/files/2016-09/documents/hexane.pdf
(NEUROTOXIN)	
Isopropyl Alcohol	https://www.cdc.gov/niosh/pel88/67-63.html
Methanol	https://www.cdc.gov/niosh/ershdb/emergencyresponsecard 29750029.html#:~:text=Meth
(NEUROTOXIN)	anol
Pentane	https://www.cdc.gov/niosh/pel88/109-66.html
Propane	https://www.ncbi.nlm.nih.gov/books/NBK201461/
Toluene	https://www.cdc.gov/niosh/topics/toluene/
(NEUROTOXIN)	
Xylenes	https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=291&toxid=53
Dichloroethane	https://nj.gov/health/eoh/rtkweb/documents/fs/0652.pdf
Benzene	https://emergency.cdc.gov/agent/benzene/basics/facts.asp
(CARCINOGEN)	
Chloroform	https://www.cdc.gov/niosh/topics/chloroform/
Ethylene Oxide	https://www.epa.gov/sites/default/files/2016-09/documents/ethylene-oxide.pdf
(REPRODUCTIVE	
HAZARD)	
Methylene chloride	https://www.epa.gov/sites/default/files/2016-09/documents/methylene-
(REPRODUCTIVE	<u>chloride.pdf</u>
HAZARD)	
Trichloroethylene	https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=168&toxid=30
(CARCINOGEN)	
	HEAVY METALS
Arsenic	https://www.cdc.gov/niosh/topics/arsenic/default.html#:~:text=Arsenic%20can%2
(CARCINOGEN)	0be%20harmful%20to,duration%2C%20and%20work%20being%20done
Cadmium	https://www.cdc.gov/biomonitoring/Cadmium_FactSheet.html#:~:text=Breathing
(CARCINOGEN)	%20high%20levels%20of%20cadmium,considered%20a%20cancer%2Dcausing
	%20agent
Lead	https://www.nyc.gov/site/doh/health/health-topics/lead-poisoning-adults-and-
	lead-
	poisoning.page#:~:text=Lead%20exposure%20can%20cause%20high,and%20los
	<u>s%20of%20sex%20drive</u>
Mercury	https://www.epa.gov/mercury/health-effects-exposures-mercury
(NEUROTOXIN)	
F 1:	OTHER ANALYTES
E. coli	https://epi.dph.ncdhhs.gov/cd/diseases/ecoli.html#:~:text=Each%20year%20in%2
	Othe%20United,caused%20by%20the%20strain%20E
Enterobacteriaceae	https://www.cdc.gov/hai/organisms/cre/index.html

Mycotoxins	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354945/
Salmonella	https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salm
	onella%20bacteria%20cause,for%20most%20of%20these%20illnesses
	PESTICIDES
	pesticides that have been detected either in the adult use program or in the medical audit testing
Abamectin	http://npic.orst.edu/RMPP/rmpp_ch8.pdf
Bifenazate	https://kernred.co.kern.ca.us/kern-agcomm/products/VIGILANT%204SC.pdf
Bifenthrin	https://newsomseed.com/resources/QP%20Bifenthrin%20IT%207.9F%20SDS%2
	<u>010-20-15.pdf</u>
Cypermethrin	https://www.merck.com/docs/product/safety-data-sheets/ah-
	sds/Cypermethrin%20Formulation_AH_BR_EN.pdf
Dichlorvos	http://download.ceris.purdue.edu/file/3193
Etoxazole	https://gcrec.ifas.ufl.edu/static/docs/pdf/strawberry-pathology/MSDS-
	pesticides/zeal.pdf
Fludioxonil	https://www.syngentaornamentals.co.uk/sites/g/files/kgtney951/files/migration/f/
	<u>media/2020/05/18/switch_v19.pdf</u>
Imazalil	https://www.sigmaaldrich.com/US/en/sds/SIAL/32007
Imidacloprid	https://www.sigmaaldrich.com/US/ko/sds/sial/68694
Malathion	https://www.sigmaaldrich.com/US/en/sds/sial/34541
Metalaxyl	https://www.sigmaaldrich.com/US/en/sds/sial/32012
Methyl parathion	http://cdn.chemservice.com/product/msdsnew/External/English/N-
	<u>12452%20English%20SDS%20US.pdf</u>
Myclobutanil	https://www.sigmaaldrich.com/US/en/sds/sial/34360
Permethrin	https://www.sigmaaldrich.com/US/en/sds/sial/45614
Piperonylbutoxide	https://www.fishersci.com/store/msds?partNumber=AC334165000&countryCode
	<u>=US&language=en</u>
Propiconazole	https://www.sigmaaldrich.com/US/en/sds/sial/45642
Pyrethrins	https://cdn.caymanchem.com/cdn/msds/25814m.pdf
Spinosad	https://www.fishersci.com/store/msds?partNumber=AC467190010&productDescr
	iption=SPINOSAD+1GR&vendorId=VN00032119&countryCode=US&language
	<u>=en</u>
Spiromesifen	https://www.sigmaaldrich.com/US/en/sds/sial/33599