AGENDA
9:00 AM

1. Introductions of Board and Staff

2. Minutes of the June 23, 2017, Board Meetings
 Presentation By: Cam Lay
 Director
 Action Needed: Amend and/or Approve

3. Consideration of Registration Requests for Several New Bt Corn Products
 Monsanto Company and Dow AgroSciences LLC have requested registrations of several new Bt corn products. The Board must consider whether these products are dissimilar enough from previous registrations to be reviewed by the Technical Committee before registration, or can be registered now based on the information submitted.
 Presentation By: Mary Tomlinson
 Pesticides Registrar/Water Quality Specialist
 Action Needed: Approve/Disapprove Registration Request or Refer to Technical Committee
4. Inquiry and Complaint Summary

Summary of enforcement actions taken in 2015-2016.

Presentation By: Raymond Connors
Manager of Compliance

Action Needed: None—Informational Only

5. Continuing Discussion of Funding for University of Maine Cooperative Extension PSAT and PSEP Positions

At the May 12, 2017 meeting, the Board tabled discussion of a request from Dr. James Dill of the University of Maine Cooperative Extension for a one-year grant of $65,000 for a combined Pesticide Safety Education Program and Pesticide Applicator Training position. The Board requested that staff meet with Dr. Dill to develop a list of deliverables for this funding. The Board will now discuss the proposed list.

Presentation By: Megan Patterson
Pesticide Program Manager

Action Needed: Discuss and Determine if the Board Wants to Fund this Request

6. Consideration of Consent Agreement with Weyerhaeuser Company of Fairfield, Maine

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves multiple aerial applications of pesticides to sensitive sites (streams) and insufficient notification of an adjacent landowner prior to the application.

Presentation By: Raymond Connors
Manager of Compliance

Action Needed: Approve/Disapprove the Consent Agreement Negotiated by Staff

7. Consideration of Consent Agreement with Town of Ogunquit, Maine

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves the misapplication of rodent bait.

Presentation By: Raymond Connors
Manager of Compliance
Action Needed: Approve/Disapprove the Consent Agreement Negotiated by Staff

8. Consideration of Consent Agreement with Green Thumb Lawn Service, Brewer, Maine

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves the application of herbicide to the wrong property.

Presentation By: Raymond Connors
Manager of Compliance

Action Needed: Approve/Disapprove the Consent Agreement Negotiated by Staff

9. Consideration of Consent Agreement with Frederick’s Property Preservation of Dixmont, Maine

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves the application of an herbicide in a manner inconsistent with its label, to an unauthorized property, by an unlicensed applicator.

Presentation By: Raymond Connors
Manager of Compliance

Action Needed: Approve/Disapprove the Consent Agreement Negotiated by Staff

10. Consideration of Consent Agreement with Dependable Pest Solutions of Rochester, New Hampshire

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves multiple applications of pesticides in Maine by an unlicensed and unsupervised applicator.

Presentation By: Raymond Connors
Manager of Compliance

Action Needed: Approve/Disapprove the Consent Agreement Negotiated by Staff

11. Other Old or New Business

a. Manchester Municipal Ordinance
b. Articles and correspondence submitted by Board constituents:
• Nancy Caudle Johnson email
• Claire Adams, et al, *Lincoln County News* letter
• Jody Spear, *Portland Press Herald* article

c. Variances approved (all Chapter 29, Section 6):
 • Farrell, knotweed on her own property along Carrabassett River
 • High Pine Environmental, LLC, *Phragmites* in Kittery
 • Burman Land and Tree, LLC, invasive plants in Vassalboro
 • Baxter State Park, invasive plants

12. **Schedule of Future Meetings**

 December 8, 2017, and January 10, 2018, are tentative Board meeting dates. The Board will decide whether to change and/or add dates.

 Adjustments and/or Additional Dates?

13. **Adjourn**

NOTES

• The Board Meeting Agenda and most supporting documents are posted one week before the meeting on the Board website at www.thinkfirstspraylast.org.

• Any person wishing to receive notices and agendas for meetings of the Board, Medical Advisory Committee, or Environmental Risk Advisory Committee must submit a request in writing to the Board’s office. Any person with technical expertise who would like to volunteer for service on either committee is invited to submit their resume for future consideration.

• On November 16, 2007, the Board adopted the following policy for submission and distribution of comments and information when conducting routine business (product registration, variances, enforcement actions, etc.):
 o *For regular, non-rulemaking business*, the Board will accept pesticide-related letters, reports, and articles. Reports and articles must be from peer-reviewed journals. E-mail, hard copy, or fax should be sent to the Board’s office or pesticides@maine.gov. In order for the Board to receive this information in time for distribution and consideration at its next meeting, all communications must be received by 8:00 AM, three days prior to the Board meeting date (e.g., if the meeting is on a Friday, the deadline would be Tuesday at 8:00 AM). Any information received after the deadline will be held over for the next meeting.

• During rulemaking, when proposing new or amending old regulations, the Board is subject to the requirements of the APA (*Administrative Procedures Act*), and comments must be taken according to the rules established by the Legislature.
1. **Introductions of Board and Staff**
 - The Board, Staff, and Assistant Attorney General Mark Randlett introduced themselves
 - Staff Present: Chamberlain, Connors, Couture, Hicks, Lay, Patterson

2. **Minutes of the March 31, 2017, and May 12, 2017, Board Meetings**
 - Presentation By: Cam Lay, Director
 - Action Needed: Amend and/or approve minutes from board meetings
 - Flewelling/Morrill: Moved and seconded to adopt the amended minutes from the March 31 and May 12, 2017 meetings
 - In Favor: Unanimous

3. **Overview of Regulations Regarding the Use of Unmanned Aircraft for Pesticide Application**
 - At the March 2017 meeting, the Board discussed current pesticide regulations and the use of unmanned aircraft to apply pesticides. Following that discussion, the Board requested that staff invite Federal...
Aviation Administration staff to provide an explanation of the current aviation regulations pertaining to the use of unmanned aircraft for the application of pesticides.

Presentation By: Daniel Jockett
FAA Aviation Safety Inspector

Action Needed: None; informational only

- Jockett works out of the Portland jetport and covers Maine, New Hampshire, and Vermont. Jockett gave the Board an in-depth presentation on the process for obtaining certification to operate an Unmanned Aircraft System (UAS), for pesticide applications. It is estimated that agricultural use of UASs will increase greatly in upcoming years.
- Jockett stated an aircraft is defined as any device used, or intended to be used, for flight. It has been determined via public law that UASs are aircraft. FAA created new regulations and revised the Code of Federal Regulations, CFR part 101 which was already in place for balloons, amateur rockets, radio-controlled model aircraft, and other non-standard aircraft. CFR part 107 applies to commercial operations. It is the first set of rules for operation of small UASs (<55 lbs.), and it took effect on August 29, 2016.
- Basics of CFR Part 107 state that to become certified to operate a UAS commercially you must:
 o be at least 16 years old
 o pass an aeronautical exam
 o obtain a remote pilot certificate
 o pass background check from FAA
 o conduct a pre-flight inspection for the UAS before any take-off
 o have no medical issues affecting safety
 o maintain visual line of sight during operation
 o stay below 400’ or within 400’ of a structure
 o stay under the maximum ground speed of 100 mph
 o ensure the UAS weighs less than 55 lbs., including payload
 o fly during daylight or civil twilight only
 o not operate over people
 o have no more than one UAS per operator
 o carry an external load only if it is secure and does not affect flight control
- Jockett added that for agricultural use the pilot must also obtain certification under Part 137, the section that covers agricultural aviation.
- Some of the rules can be exempted via a waiver, which an agricultural operator would require. The waiver portal can be found at: www.faa.gov/uas/request waiver/. The operator must justify their ability to fly safely in the airspace in order to receive a waiver.
- Jockett stated the FAA is in the process of putting together regulations for UASs heavier than 55 lbs., but currently the only way to operate one is to obtain a waiver for exemption.
- Authorization for waivers can be obtained for a one time use or for multiple uses. Examples of waivers that can be obtained include: operation from a moving vehicle or aircraft, operation with no visual line of sight, operation of multiple small UASs, etc.
- Jockett stated that before applying to a district flight standards office for certification under Part 137 the operator must first petition FAA for any exemptions needed to operate. For example, all aircraft pilots are required to have a shoulder restraint harness, but this makes no practical sense for a UAS operator so an application for exemption must be made. There is no fee for the certification process. Other requirements for applying to the district office include:
An audience member asked how this related to using a UAS to make an application on your own property. Jockett answered that if you want to apply on your own field you need to apply to FAA to get an exemption. He added that more than 70 companies have obtained the exemption to make agricultural applications to their own property.

Jockett stated that before flying, an operator should go to the website and look at the Before You Fly app, which will let you know if you are within five miles of an airport.

Hicks asked if any of the chemical companies are developing labels that will be applicable for use with UASs. Jockett responded he was not aware of any.

There was a discussion about hacking of drones. Jockett stated there is currently a technology that allows an individual to direct a beam at a flying drone which will make it drop, but there are efforts going on to counteract this. FAA does not respond to these kinds of privacy issues unless an individual is operating contrary to one of the regulations. If that is the case, then FAA has the duty to investigate.

Bohlen asked if there was equivalence with UAS of a plane’s airworthiness review. Jockett responded he essentially does that and he will not issue a certificate to operate a UAS if it does not pass inspection.

Patterson asked if anyone has become certified to apply pesticides in Maine. Jockett responded not yet, but they have been contacted by an individual interested in using a UAS to make applications for browntail moth. There are units registered in Seattle and California that are over 55 lbs.

Morrill asked if there was a course to help walk people through the process. Jockett stated there was not yet a course for drone operators.

Patterson asked if there was a timeline for when the rule will be in place for the larger drones over 55 lbs. Jockett stated there is no deadline yet and a timeline has not been established.

The Board thanked Jockett for taking the time to come speak to them on this topic.

4. Continuing Discussion of Funding for University of Maine Cooperative Extension PSAT and PSEP Positions

At the May 12, 2017, meeting, the Board tabled discussion of a request from Jim Dill of the UM CES for $65,000 per year in recurring funding for a combined UM PSEP (Pesticide Safety Education Program) and PAT (Pesticide Applicator Training) position. Dr. Dill provided draft job descriptions for both positions. Details of Dr. Dill’s presentation and the discussion to table the motion are in the minutes of that meeting.

Presentation By: Cam Lay
Director
Action Needed: Determine whether to provide funding for this position, and in what amount

- Morrill stated that historically this position looked at the applicator training manuals. This individual recently retired and Dill would like the position to also include coordination of the programming and working with the staff more closely to develop educational programming.
- Dill stated that the term PAT has been changed to PSEP. He added that the program is supposed to be somewhat self-sufficient, but as UMCE began charging more to fund it, the BPC stepped in and said they could not afford this.
- Patterson stated the agricultural manuals particularly require updating, especially the Worker Protection Standard (WPS) information in them. Board staff has discussed the possibility of including WPS info with the manuals as an addendum. When future WPS updates occur, the addendum could be updated instead of locating and updating the WPS section in each of the manuals. The aerial manual currently does not have any content regarding drones. Some manuals are written by UMCE and some manuals are purchased from other states.
- Flewelling asked if all manuals included IPM info. Dill replied that they do.
- Bohlen stated he is not clear what the proposal consists of at this point. From a policy point of view, he would be in support of finding ways to fund this not just as a position but as a set of specific deliverables. Bohlen would like to see a plan of what they will be doing in the upcoming year. In that plan he would like to see something about drafting guidance for drones.
- Dill suggested that he and Patterson could go through the manual list and decide which ones need updating this year.
- Bohlen suggested adding into a motion that it will be understood that this position will be reviewed annually for funding. Morrill suggested having a yearly list of deliverables. Bohlen added he would like to see a proposal letter outlining what they plan to do in the following 12 months so the Board can decide if this arrangement is hitting their priorities or not. Dill stated that sometimes priorities can change throughout a year and gave the example of the drones. Bohlen suggested if there is a priority change throughout the year that could be discussed with staff. There was a discussion regarding the logistics of this. Flewelling added that he wants to make sure the Board is not micromanaging.
- Dill will meet with Patterson and give her a list of what they plan to do for the upcoming year. Bohlen stated that a letter or a summary would suffice. At the end of the year they will state what items have been done and their plans for the next year. Morrill added he would like to see included in the list that they will function as a liaison to communities as an information resource. He stated he is not seeing UMCE engaged in the discussion at the municipal level, especially in respect to assisting with ordinances. Morrill suggested the money be earmarked for the following duties: liaising with communities, public outreach, manuals, training. There should also be a start date and an end date of when to report back to the Board so there will not be a discontinuation of funds. Dill stated he disagrees with having this position liaising in the communities. He did not think a new person coming in would be the best individual to do this.

 o Morrill/Flewelling: Moved and seconded to table until next meeting
 o In Favor: Unanimous

5. **Continuing Discussion of Rulemaking Priorities**

At an earlier meeting, the Board discussed undertaking rulemaking to address Section 5 of Chapter 29 concerning browntail moth. Rulemaking is time-consuming and expensive so a list of all potential
rulemaking was developed and, at the March 31, 2017, meeting, the Board pared that list down to Chapters 27, 29, and 36. The Board will now discuss whether to proceed with rulemaking and consideration of amendments.

Presentation By: Cam Lay
Director

Action Needed: Determine whether to initiate rulemaking and schedule a hearing

- Morrill stated rulemaking should be postponed and revisited this winter.
- Chamberlain asked the Board if they would like staff to come back with the full list at that time. Morrill responded that staff should come back with the housekeeping items first.
- Bohlen asked if they needed to keep the legislative calendar in mind. Chamberlain answered they would need to get the items to the legislature by the second week of January, so if they postpone until winter nothing would go in for this year’s session.
- There was a discussion of how this would affect the browntail moth spraying since policy is not enforceable. Chamberlain stated there have not been issues so far, but there may be a fall spray season. Morrill stated he would like to see how the fall spray season goes before they make any adjustments.
- Granger noted that he does have an issue with the Chapter 29 Section 5 exemptions. He would like to add in language allowing basal bark applications (spray applications to the lower portion of the truck of a tree). Granger does not want to require homeowners to have to hire someone to make this kind of treatment.
- There was discussion about also amending Chapter 27 and Chapter 36 if they were going to do any rulemaking.
- Hicks added she would like to see biologicals exempted from Chapter 29, Section 6 so that they can be used within 25’ of the high water mark.

 o Morrill/Bohlen: Moved and seconded to postpone rulemaking until winter
 o In Favor: Unanimous

6. Regarding Interpretation of “Dominated by Emergent or Aquatic Plants” as Used in Chapter 29 Section 6A(V)

At the May 12, 2017, meeting, the Board discussed whether the definition of wetlands in Chapter 29 Section 6A(V)(c) is intended to include small areas without standing water which contain plants typically associated with a wetland habitat. The Board also discussed whether manmade depressions containing surface water, such as equipment ruts and roadside ditches, should be considered as wetlands for the purpose of this section. The Board requested that staff draft a policy based on the discussion. That policy is attached for the Board’s review.

Presentation By: Cam Lay
Director

Action Needed: Revise and/or adopt policy

- The Board thanked staff for drafting the policy.
7. **Chapter 29 Variances**

At the April 24, 2015, meeting the Board began a two-year trial period in which staff could issue new variances from Chapter 29 for pesticide applications within 25 feet of surface water in railroad and DOT rights-of-way under criteria detailed in a memo from Henry Jennings and related Board discussions. The staff would like the Board to now provide guidance for drafting a formal policy for initial variances and renewals. The original memo and minutes are attached for reference. Staff would like to know if flood-control levees and utility lines should be included in the policy as well.

Presentation By: Cam Lay
Director

Action Needed: Evaluate trial program, provide guidance for draft policy

- Lay asked the Board to clarify when it is acceptable for staff to issue repeat variances and what they consider a repeat variance. If a product being used has been changed to one with a similar formulation or use pattern (to manage resistance, for example), is that still considered a repeat variance? The Board agreed that changes of that nature still resulted in a “repeat” variance.
- Morrill told staff the way they are currently handling the variances seems to be working, but if we are continuously granting variances maybe the Board should take a look at the rule. Chamberlain responded all the variances are for Chapter 29 Section 6, which discusses broadcast spraying within 25’ from the water, and they are mostly for railroads and invasives. Chamberlain added it is valuable to receive those variances to see what products the applicators are using and have a discussion about what methods and equipment they are using.
- Bohlen stated he does not feel he needs to view the variances, but he does want to know when they are approved because it is useful to get a count of how many are being issued.
- The Board agreed that unless there are any significant changes they are comfortable with staff granting repeat variances.

Flewelling/Morrill: Moved and seconded to authorize staff to grant repeat variances indefinitely.

In Favor: Unanimous

8. **Consideration of Consent Agreement with Jason Douin of JD Groundscapes Inc. of Augusta, Maine**

The Board’s Enforcement Protocol authorizes staff to work with the Attorney General and negotiate consent agreements in advance on matters not involving substantial threats to the environment or public health. This procedure was designed for cases where there is no dispute of material facts or law, and the violator admits to the violation and acknowledges a willingness to pay a fine to resolve the matter. This case involves the application of a pesticide by an unlicensed individual.

Presentation By: Raymond Connors
Manager of Compliance
Action Needed: Approve/disapprove the consent agreement negotiated by staff

- Connors stated Douin’s staff were observed finishing an application. No one from the company was licensed. Douin came to the BPC office and met with Connors and Couture. He admitted to doing occasional applications. Douin paid the proposed penalty amount and signed and returned the consent agreement.
- Flewelling asked if Douin has since obtained a license. Connors responded that he has not.

 o Flewelling/Morrill: Moved and seconded to approve the consent agreement
 o In Favor: Unanimous

9. Other Old or New Business
 a. Letter to Joint Standing Committee on State and Local Government from Board regarding LD 1505 An Act to Create Consistency in the Regulation of Pesticides.
 - Morrill thanked staff for the letter to the committee as asked last meeting.
 b. Pega business management software update and demo.
 - Morrill asked if Pega was currently working and being utilized by staff. Chamberlain stated that it is and they are currently in development of Release 3. The software is now being put out to external users. Both Modern Pest and Lucas Tree have begun to use it and staff are working on dealing with the influx of information coming in from the external use and detailing how that information will be handled. Chamberlain added that so far there have been a few hiccups but it seems to be functioning well. It has streamlined the process and users are receiving their licenses in a timely manner.
 - Flewelling asked if pesticide distributors were also included in Pega. Chamberlain responded that they are included and staff is currently working on moving product registration out of house to allow external users to enter their own info.
 - Morrill thanked Chamberlain for all her hard work on this project.
 c. Status of complaint summary report: in progress, will be complete by next meeting.
 - Connors stated he will have the report for next meeting. The Access database component is complete and the Pega portion just needs to be proofed.
 d. Articles and correspondence submitted by Board constituents:
 - Email and CNN news article submitted by Heather Spalding
 - Letter from Emera, Inc.
 - Morrill asked staff to reach out to Emera Inc. and let them know who the director of the BPC is. This has been accomplished.
 - Email from Nancy Jezior
 - Morrill asked Patterson if she would address Jezior’s questions. Patterson responded that she had already sent her the information she requested about what products were being used at golf courses.
 - Email and letter submitted by Lynn Hower Allen and Parkinson’s Disease support group
 - Email from Scott Longfellow
 Additional documents sent 6/20/17
 - Email from Jody Spear
 - In regards to Spear’s letter, Flewelling asked if applicators have to give application information by law. Lay replied not if the individual’s residence is more than 500’
away. She also wanted to know why there were blanks on the applicator sign. Lay explained to her that not all information was required by law.

- Email from Gerry Blase
- Email and letter from Nancy Odin
- Email from Timothy Mulherin

There was no further comment from the Board on these submissions.

e. Legislative items:
 - LD 174 An Act To Limit the Use of Pesticides on School Grounds—Committee Amendment
 - If passed, this bill would require annual submittal to the BPC of all pest management activity in schools and posting of the information on the BPC website. Morrill asked if staff was prepared to do this and if the bill had a fiscal note. Chamberlain responded that a fiscal note was required but when it is opened it stated “no fiscal note is required.” Chamberlain asked Mary Wells where the ball got dropped. The bill is currently in appropriations. Staff were not asked if they needed additional resources to do this. Lay stated that staff would of course comply with Legislative instructions, but without additional resources the most that could be done would be to scan and post the information, as received, on the web site.
 - Public Law 2017 Chapter 59 An Act To Modify the Definition of “General Use Pesticide” (LD 594)—signed by the Governor on May 11, 2017
 - This law changed the definition of “general use pesticide” to match the definition in BPC rule and thus include 25b products. This clarifies that individuals who only use 25b products will need to obtain an Agricultural Basic or Private pesticide applicator license.

f. Variances Renewed:
 - Dubois Contracting, vegetation control on Fort Kent dike
 - Maine Department of Transportation, control of woody brush on roadsides in various towns
 - Stantec, Inc, control of Japanese knotweed in Phippsburg

10. Schedule of Future Meetings

August 4, September 15, October 27, and December 8, 2017, are tentative Board meeting dates. The Board will decide whether to change and/or add dates.

- The August 4, 2017, meeting will be held in Fairfield at the John E. Dority Safety & Performance Training Center at 10 Mountain Avenue.

Adjustments and/or Additional Dates?

11. Adjourn

 - Granger/Morrill: Moved and seconded to adjourn at 11:51 AM.
 - In Favor: Unanimous
To: Board of Pesticides Control Members
From: Mary Tomlinson, Pesticides Registrar/Water Quality Specialist
RE: Bt Corn Products with Pending Maine Registration Status
Date: July 19, 2017

Monsanto Company and Dow AgroSciences LLC have requested registration of several new Bt corn products. The new active ingredient (unique identifier 87411-9) is a dsRNA transcript comprising a DvSnf7 inverted repeat sequence which matches that from the Western corn rootworm.

The EPSPS protein confers tolerance to glyphosate.

Products designed for the propagation of commercial seed have no spatial refuge which is typical of these types of products. SmartStax PRO Enlist requires a 5% non-Bt corn refuge, unless used for seed propagation, and SmartStax PRO Enlist Refuge Advanced contains a 5% interspersed refuge.

The 2015 EPA Registration Decision (RED) and USDA Draft Environmental Assessment for Mon 87411 are attached for your review.

The question posed to the Board is, are these products substantially different from currently registered Bt corn products? If so, what further review is recommended?

The labels for the products under consideration are attached for your review.

- EPA Reg. No. 524-631, MON 89034 x TC 1507 X MON 87411 X DAS-59122-7 RIB Complete
- EPA Reg. No. 524-632, MON 89034 x TC 1507 X MON 87411 X DAS-59122-7
- EPA Reg. No. 524-633, MON 87411 x DAS-59122-7
- EPA Reg. No. 524-635, MON 89034 x MIR162 x MON 87411
- EPA Reg. No. 62719-706 SmartStax PRO Enlist
- EPA Reg. No. 62719-707 SmartStax PRO Enlist Refuge Advanced
- EPA Reg. No. 62719-708, MON 89034 x MON 87411 x DAS-59122-7 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-709, MON 87411 x DAS-59122-7 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-710, TC 1507 x MON 87411 x DAS-59122-7 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-711, TC 1507 x MON 87411 x DAS-59122-7 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-712, MON 89034 x MON 87411 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-713, MON 89034 x TC 1507 x MON 87411 x DAS-59122-7 Insect-Protected, Herbicide-Tolerant Corn
- EPA Reg. No. 62719-714, TC 1507 x MON 87411 Insect-Protected, Herbicide-Tolerant Corn
MON 89034 × TC1507 × MON 87411 × DAS-59122-7
RIB Complete®

Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-89034-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7)

(SmartStax® PRO RIB Complete® corn blend)‡

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9).................................≤ 0.00000044%*

* Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ...≤ 0.0088%*

* Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ...≤ 0.0048%*

* Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø15Ø7-1).............................≤ 0.0096%*

* Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ...≤ 0.0041%*

* Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)...........≤ 0.012%*

* Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)......≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411......≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7
..≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)

‡ SmartStax® PRO RIB Complete™ corn blend with this refuge configuration contains 95% of the plant-incorporated protectant MON 89034 × TC1507 × MON 88017 × DAS-59122-7 mixed with at least 5% non-Bt corn within a single lot of seed.
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling. This product must be used as specified in the terms and conditions of the registration.

This Plant-Incorporated Protectant (PIP) may be combined or produced through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

MON 89034 × TC1507 × MON 87411 × DAS-59122-7 RIB Complete™ corn blend protects corn crops from leaf, stalk, and ear damage caused by lepidopteran corn pests listed on this label and root damage caused by corn rootworm larvae listed on this label. In order to minimize the risk of these pests developing resistance to MON 89034 × TC1507 × MON 87411 × DAS-59122-7 RIB Complete™ corn blend, an insect resistance management plan must be implemented as defined in the registration terms and conditions.

Grower agreements will specify that growers must adhere to the refuge requirements that will be described on the bag or bag/tag for MON 89034 × TC1507 × MON 87411 × DAS-59122-7 RIB Complete™ corn blend or other applicable product use documents.

Sales of corn hybrids that contain Monsanto’s Bt corn plant-incorporated pesticide(s) must be accompanied by either an IRM/Grower Guide or information on the bag or bag-tag, on planting, production, and insect resistance management, and notes that routine applications of insecticides to control these insects are usually unnecessary when corn containing the Bt proteins is planted.

Corn seed bags or bag tags for products containing MON 89034 × TC1507 × MON 87411 × DAS-59122-7 RIB Complete™ corn blend must include the refuge size requirement in text and graphical format.
INSECT RESISTANCE MANAGEMENT

Growers are instructed to read information on insect resistance management in the bag and/or bag-tag.

For the sole purpose of manufacturing and small scale research trials for observation, these refuge requirements do not apply to seed increase/propagation of inbred and hybrid seed corn up to a total of 20,000 acres per county and up to a combined United States (U.S.) total of 250,000 acres per plant-incorporated protectant (PIP) active ingredient per registrant per year.

The seed producer must ensure a minimum of 5% non-PIP refuge seed is included with MON 89034 × TC1507 × MON 87411 × DAS-59122-7 in each lot of seed corn. The refuge seed in the seed mixture may not be treated with seed-applied insecticides for corn rootworm (CRW) control unless the MON 89034 × TC1507 × MON 87411 × DAS-59122-7 seed in the seed mixture receives the same treatment.

The IRM/Grower Guide for MON 89034 × TC1507 × MON 87411 × DAS-59122-7 RIB Complete™ corn blend or comparable information presented on the product bag or bag-tag, must contain the following information:

This product is a seed mixture containing MON 89034 × TC1507 × MON 87411 × DAS-59122-7 and a minimum of 5% non-Bt seed that when planted creates an interspersed refuge within the field. There are no requirements for a separate structured refuge for SmartStax®PRO RIB Complete™ corn blend when planted in the U.S. corn-growing region, including Alaska and Hawaii, because the refuge seed is contained within the bag/container.

The interspersed refuge can only be used by planting seed corn specifically generated by qualified seed producers/conditioners licensed by the registrant. Insecticidal treatments labeled for adult CRW control are discouraged during the time of adult CRW emergence.

The seed mix refuge option for SmartStax®PRO RIB Complete™ corn blend satisfies the refuge requirements in all regions other than in the cotton-growing region where corn earworm is a significant pest as defined below.

Additional refuge requirements in the cotton-growing region where corn earworm is a significant pest

In the cotton-growing region where corn earworm is a significant pest, as defined below, SmartStax®PRO RIB Complete™ corn blend requires the planting of an additional 20% structured refuge (i.e. 20 acres of non-Bt corn for every 80 acres of SmartStax®PRO RIB Complete™ corn blend planted).

The 20% refuge must be planted with corn hybrids that do not contain Bt technologies for the control of corn rootworms or corn borers. The refuge and the SmartStax®PRO RIB Complete™ corn blend should be sown on the same day, or with the shortest window possible between
planting dates to ensure that corn root development is similar among varieties. The structured refuge may be planted as an in-field or adjacent (e.g., across the road) refuge or planted as a separate block that is within ½ mile of the SmartStax® PRO RIB Complete™ corn blend field. In-field refuge options include blocks, perimeter strips (i.e., strips around the field), or in-field strips. If perimeter or in-field strips are implemented, the strips must be at least 4 consecutive rows wide. The refuge can be protected from lepidopteran damage by use of non-Bt insecticides if the population of one or more target lepidopteran pests of SmartStax® PRO RIB Complete™ corn blend in the refuge exceeds economic thresholds. In addition, the refuge can be protected from CRW damage by an appropriate seed treatment or soil insecticide; however, insecticides labeled for adult CRW control must be avoided in the refuge during the period of CRW adult emergence. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants).

The cotton-growing region requiring the additional 20% refuge consists of the following states: Alabama, Arkansas, Georgia, Florida, Louisiana, North Carolina, Mississippi, South Carolina, Oklahoma (only the counties of Beckham, Caddo, Comanche, Custer, Greer, Harmon, Jackson, Kay, Kiowa, Tillman, and Washita), Tennessee (only the counties of Carroll, Chester, Crockett, Dyer, Fayette, Franklin, Gibson, Hardeman, Hardin, Haywood, Lake, Lauderdale, Lincoln, Madison, Obion, Rutherford, Shelby, and Tipton), Texas (except the counties of Carson, Dallam, Hansford, Hartley, Hutchinson, Lipscomb, Moore, Ochiltree, Roberts, and Sherman), Virginia (only the counties of Dinwiddie, Franklin City, Greensville, Isle of Wight, Northampton, Southampton, Suffolk City, Surrey, and Sussex) and Missouri (only the counties of Dunklin, New Madrid, Pemiscot, Scott, and Stoddard).
Corn Insects Controlled or Suppressed

European corn borer (ECB) Ostrinia nubilalis
Southwestern corn borer (SWCB) Diatraea grandiosella
Southern cornstalk borer (SCSB) Diatraea crambidoides
Corn earworm (CEW) Helicoverpa zea
Fall armyworm (FAW) Spodoptera frugiperda
Stalk borer Papaipema nebris
Lesser corn stalk borer Elasmopalpus lignosellus
Sugarcane borer (SCB) Diatraea saccharalis
Western bean cutworm (WBC) Richia albicosta
Black cutworm Agrotis ipsilon
Western corn rootworm (WCRW) Diabrotica virgifera virgifera
Northern corn rootworm (NCRW) Diabrotica barberi
Mexican corn rootworm (MCRW) Diabrotica virgifera zeae

MON 89034 × TC1507 × MON 87411 × DAS-59122-7 seed blend is a product of Monsanto’s research program offering unique genetic characteristics for specific grower needs and may be protected by one or more of the following U.S. patents that can be found at http://www.monsantotechnology.com

Monsanto Reference ID 2017-NPY197
MON 89034 × TC1507 × MON 87411 × DAS-59122-7

Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-89034-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)…………………………………≤ 0.00000044%*

Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ……≤ 0.0088%*

Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ……≤ 0.0048%*

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø15Ø7-1) ………………≤ 0.0096%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ……≤ 0.0041%*

Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)………≤ 0.012%*

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)………≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411…..≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7 ……
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling. Information regarding commercial production reflected here and in the terms and conditions of this registration must be included in the Technology Use Guide.

MON 89034 × TC1507 × MON 87411 × DAS-59122-7 protects corn crops from leaf, stalk, and ear damage caused by corn borers and root damage caused by corn rootworm larvae. In order to minimize the risk of these pests developing resistance to MON 89034 × TC1507 × MON 87411 × DAS-59122-7 corn, an insect resistance management plan must be implemented which includes planting of a structured refuge. Growers who fail to comply with the IRM requirements risk losing access to Monsanto’s corn PIP products.

For the sole purpose of manufacturing and small scale research trials for observation, these refuge requirements do not apply to seed increase/propagation of inbred and hybrid seed corn up to a total of 20,000 acres per county and up to a combined United States (U.S.) total of 250,000 acres per plant-incorporated protectant (PIP) active ingredient per registrant per year.

Several options for deployment of the refuge for MON 89034 × TC1507 × MON 87411 × DAS-59122-7 are available to growers. These options are based on the planting of MON 89034 × TC1507 × MON 87411 × DAS-59122-7 in cotton or non-cotton growing regions and the insect pressure present in those locations. The refuge sizes for these regions are either 5% (i.e. 5 acres of non-Bt corn for every 95 acres MON 89034 × TC1507 × MON 87411 × DAS-59122-7 planted) or 20% (20 acres of non-Bt corn for every 80 acres of MON 89034 × TC1507 × MON 87411 × DAS-59122-7 planted), and are presented in the table below:
If corn rootworms are significant within a region, the structured refuge must be planted as an in-field or adjacent refuge using corn hybrids that do not contain Bt technologies for the control of corn borers or corn rootworms. It can be planted as a block within or adjacent (e.g., across the road) to the MON 89034 × TC1507 × MON 87411 × DAS-59122-7, perimeter strips (i.e., strips around the field), or in-field strips. If perimeter or in-field strips are implemented, the strips must be at least 4 consecutive rows wide. The refuge can be protected from lepidopteran damage by use of non-Bt insecticides if the population of one or more target lepidopteran pests of MON 89034 × TC1507 × MON 87411 × DAS-59122-7 in the refuge exceeds economic threshold. In addition, the refuge can be protected from CRW damage by an appropriate seed treatment or soil insecticide; however, insecticides labeled for adult CRW control should be avoided in the refuge during the period of CRW adult emergence. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants). A schematic of one common refuge deployment option is shown below:

<table>
<thead>
<tr>
<th>Region</th>
<th>Refuge size</th>
<th>In-field or adjacent refuge</th>
<th>Refuge separated by up to ½ mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton belt where CEW is a significant pest and WCRW, NCRW and MCRW are not significant: NC, SC, GA, FL, TN, AL, MS, LA, AR, northern TX</td>
<td>20% non-Bt corn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cotton belt where CEW is a significant pest and MCRW is significant: southern TX</td>
<td>20% non-Bt corn</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cotton belt where CEW is not a significant pest and WCRW, NCRW and MCRW are not significant: NM, AZ, CA, NV</td>
<td>5% non-Bt corn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-cotton states where WCRW, NCRW and MCRW are not significant: OR, WA, ID, MT, WY, UT, CO, OK, VA, WV, PA, MD, DE, CT, RI, NJ, NY, ME, MA, NH, VT, HI, AK</td>
<td>5% non-Bt corn</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Non-cotton-growing where WCRW, NCRW and/or MCRW are significant: KS, NE, SD, ND, MN, IA, MO, IL, WI, MI, IN, OH, KY</td>
<td>5% non-Bt corn</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
If corn rootworms are not significant within a region, the structured refuge may be planted as an in-field or adjacent refuge, or as a separate block that is within ½ mile of the MON 89034 × TC1507 × MON 87411 × DAS-59122-7 field. The structured refuge must be planted with corn hybrids that do not contain Bt technologies for the control of corn borers or corn rootworms. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants). A schematic of one refuge option with the refuge planted within a ½ mile of the MON 89034 × TC1507 × MON 87411 × DAS-59122-7 field is shown below:
Corn Insects Controlled or Suppressed

<table>
<thead>
<tr>
<th>Insect Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>European corn borer (ECB)</td>
<td>Ostrinia nubilalis</td>
</tr>
<tr>
<td>Southwestern corn borer (SWCB)</td>
<td>Diatraea grandiosella</td>
</tr>
<tr>
<td>Southern cornstalk borer (SCSB)</td>
<td>Diatraea cramboidoides</td>
</tr>
<tr>
<td>Corn earworm (CEW)</td>
<td>Helicoverpa zea</td>
</tr>
<tr>
<td>Fall armyworm (FAW)</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>Stalk borer</td>
<td>Papaipema nebris</td>
</tr>
<tr>
<td>Lesser corn stalk borer</td>
<td>Elasmopalpus lignosellus</td>
</tr>
<tr>
<td>Sugarcane borer (SCB)</td>
<td>Diatraea saccharalis</td>
</tr>
<tr>
<td>Western bean cutworm (WBC)</td>
<td>Richia albicosta</td>
</tr>
<tr>
<td>Black cutworm</td>
<td>Agrotis ipsilon</td>
</tr>
<tr>
<td>Western corn rootworm (WCRW)</td>
<td>Diabrotica virgifera virgifera</td>
</tr>
<tr>
<td>Northern corn rootworm (NCRW)</td>
<td>Diabrotica barberi</td>
</tr>
<tr>
<td>Mexican corn rootworm (MCRW)</td>
<td>Diabrotica virgifera zeae</td>
</tr>
</tbody>
</table>

MON 89034 × TC1507 × MON 87411 × DAS-59122-7 is a product of Monsanto’s research program offering unique genetic characteristics for specific grower needs and may be protected by one or more of the following U.S. patents that can be found at http://www.monsantotechnology.com
MON 87411 × DAS-59122-7

(OECD Unique Identifier: MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material (vector PV-ZMIR10871) necessary for its production in MON 87411 corn (OECD Unique Identifier MON-87411-9) ≤ 0.0000044%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in MON 87411 corn (OECD Unique Identifier: MON-87411-9) ≤ 0.0041%*

Bacillus thuringiensis *Bacillus thuringiensis* Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in DAS-59122-7 corn (OECD Unique Identifier: DAS-59122-7) ≤ 0.012%*

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in DAS-59122-7 corn (OECD Unique Identifier: DAS-59122-7) ≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in MON 87411 corn ≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in TC1507 and DAS-59122-7 corn ≤ 0.0001%*

Percentage (wt/wt) on a dry weight basis for whole plant (forage)
KEEP OUT OF REACH OF CHILDREN

CAUTION

NET CONTENTS

EPA Registration No. 524-633
EPA Establishment No. 524-MO-002

Monsanto Company
800 North Lindbergh Blvd.
St. Louis, MO 63167

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 5,000 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

Harvested seed are not allowed for sale as a commercial seed in the US under the current conditions of this registration.

There are no refuge requirements for planting MON 87411 x DAS-59122-7 Corn.
MON 89034 × MIR162 × MON 87411

(OECD Unique Identifier: MON-89034-3 × SYN-IR162-4 × MON-87411-9)

Active Ingredients:

Bacillus thuringiensis Cry1A.105 protein and the genetic material necessary for its production (vector PV-ZMIR245) in event MON 89034 corn (Unique Identifier MON-89034-3) ... ≤0.0027%*

Bacillus thuringiensis Cry2Ab2 protein and the genetic material necessary for its production (vector PV-ZMIR245) in event MON 89034 corn (Unique Identifier MON-89034-3) ... ≤0.0071%*

Bacillus thuringiensis Vip3Aa20 protein and the genetic material necessary for its production (vector pNOV1300) in event MIR162 corn (Unique Identifier SYN-IR162-4) ... ≤0.014%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ... ≤ 0.0086%*

dsRNA transcript comprising a *DvSnf7* inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9) ... ≤ 0.00000037%*

Other Ingredients:

Phosphomannose isomerase (PMI) marker protein and the genetic material necessary (vector pNOV1300) for its production in the event MIR162 corn ≤0.00085%*

CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 ... ≤ 0.029%*

Percentage (wt/wt) on a dry weight basis for whole plant (forage)
KEEPE OUT OF REACH OF CHILDREN

CAUTION

NET CONTENTS________

EPA Registration No. 524-635
EPA Establishment No. 524-MO-002

Monsanto Company
800 North Lindbergh Blvd.
St Louis, MO 63167

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 5,000 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

Harvested seed are not allowed for sale as a commercial seed in the US under the current conditions of this registration.

There are no refuge requirements for planting MON 89034 × MIR162 × MON 87411 Corn.
Plant-Incorporated Protectant Label

SmartStax® PRO Enlist™
(Alternate Brand Name: SmartStax®PRO)
(Alternate Brand Name: MON 89034 × TC1507 × MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn)
(OECD Unique Identifier: MON-89034-3 × DAS-Ø1507-1 × MON-87411-9 × DAS-59122-7)

(Alternate Brand Name: MON 87427 × MON 89034 × TC1507 × MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn)
(OECD Unique Identifier: MON-87427-7 × MON-89034-3 × DAS-Ø1507-1 × MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier: MON-87411-9)......................≤ 0.00000044%*
Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ..≤ 0.0088%*
Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ..≤ 0.0048%*
Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø1507-1)..........................≤ 0.00096%*
Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9)..≤ 0.0041%*
Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)..≤ 0.0012%*
Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)..≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411.............≤ 0.036%*
PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7
..≤ 0.0001%*

*Maximum percent (%) dry weight basis for whole plant (forage)
KEEP OUT OF REACH OF CHILDREN

CAUTION

EPA Registration No. 62719-706

EPA Establishment No. 62719-IN-1

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling. Information regarding commercial production reflected here and in the terms and conditions of this registration must be included in the Technology Use Guide.

SmartStax®PRO Enlist™ protects corn crops from leaf, stalk, and ear damage caused by corn borers and root damage caused by corn rootworm larvae. In order to minimize the risk of these pests developing resistance to SmartStax®PRO Enlist™ corn, an insect resistance management plan must be implemented which includes planting of a structured refuge. Growers who fail to comply with the IRM requirements risk losing access to Dow AgroSciences’s corn PIP products.

These refuge requirements do not apply to seed increase/propagation of inbred and hybrid seed corn and small scale research trials for observation.

Several options for deployment of the refuge for SmartStax®PRO Enlist™ are available to growers. These options are based on the planting of SmartStax®PRO Enlist™ in cotton or non-cotton growing regions and the insect pressure present in those locations. The refuge sizes for these regions are either 5% (i.e. 5 acres of non-\textit{Bt} corn for every 95 acres SmartStax®PRO Enlist™ planted) or 20% (20 acres of non-\textit{Bt} corn for every 80 acres of SmartStax®PRO Enlist™ planted), and are presented in the table below:

<table>
<thead>
<tr>
<th>Region</th>
<th>Refuse size</th>
<th>In-field or adjacent refuge</th>
<th>Refuge separated by up to ½ mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton belt where CEW is a significant pest and WCRW, NCRW and MCRW are not significant: NC, SC, GA, FL, TN, AL, MS, LA, AR, northern TX</td>
<td>20% non-\textit{Bt} corn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\textit{SmartStax®} multi-event technology developed by Dow AgroSciences LLC and Monsanto

\textit{SmartStax®} is a trademark of Monsanto Technology LLC

\textit{TM Enlist} is a trademark of Dow AgroSciences LLC
<table>
<thead>
<tr>
<th>Area Description</th>
<th>Refuge Type</th>
<th>Bt Corn</th>
<th>No Bt Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton belt where CEW is a significant pest and MCRW is significant: southern TX</td>
<td>20% non-Bt</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cotton belt where CEW is not a significant pest and WCRW, NCRW and MCRW are not significant: NM, AZ, CA, NV</td>
<td>5% non-Bt</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-cotton states where WCRW, NCRW and MCRW are not significant: OR, WA, ID, MT, WY, UT, CO, OK, VA, WV, PA, MD, DE, CT, RI, NJ, NY, ME, MA, NH, VT, HI, AK</td>
<td>5% non-Bt</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Non-cotton-growing where WCRW, NCRW and/or MCRW are significant: KS, NE, SD, ND, MN, IA, MO, IL, WI, MI, IN, OH, KY</td>
<td>5% non-Bt</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

If corn rootworms are significant within a region, the structured refuge must be planted as an in-field or adjacent refuge using corn hybrids that do not contain Bt technologies for the control of corn borers or corn rootworms. It can be planted as a block within or adjacent (e.g., across the road) to the SmartStax® PRO Enlist™, perimeter strips (i.e., strips around the field), or in-field strips. If perimeter or in-field strips are implemented, the strips must be at least 4 consecutive rows wide. The refuge can be protected from lepidopteran damage by use of non-Bt insecticides if the population of one or more target lepidopteran pests of SmartStax® PRO Enlist™ in the refuge exceeds economic threshold. In addition, the refuge can be protected from CRW damage by an appropriate seed treatment or soil insecticide; however, insecticides labeled for adult CRW control should be avoided in the refuge during the period of CRW adult emergence. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants). A schematic of one common refuge deployment option is shown below:

```
\begin{center}
\begin{tikzpicture}
\draw (0,0) rectangle (2,2);
\node at (1,1) {SmartStax® PRO Enlist™};
\draw[->] (1,0.5) -- (2,0.5) node[above] {Non-Bt Corn};
\draw[->] (1.5,1) -- (1.5,0.5) node[right] {Refuge};
\end{tikzpicture}
\end{center}
```
If corn rootworms are not significant within a region, the structured refuge may be planted as an in-field or adjacent refuge, or as a separate block that is within ½ mile of the SmartStax®PRO Enlist™ field. The structured refuge must be planted with corn hybrids that do not contain Bt technologies for the control of corn borers or corn rootworms. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants). A schematic of one refuge option with the refuge planted within a ½ mile of the SmartStax®PRO Enlist™ field is shown below:

![Separated Structured Refuge Diagram]

SmartStax® multi-event technology developed by Dow AgroSciences LLC and Monsanto
SmartStax® is a trademark of Monsanto Technology LLC
™ Enlist is a trademark of Dow AgroSciences LLC
Corn Insects Controlled or Suppressed

<table>
<thead>
<tr>
<th>Insect Type</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>European corn borer (ECB)</td>
<td>Ostrinia nubilalis</td>
</tr>
<tr>
<td>Southwestern corn borer (SWCB)</td>
<td>Diatraea grandiosella</td>
</tr>
<tr>
<td>Southern cornstalk borer (SCSB)</td>
<td>Diatraea crambidoides</td>
</tr>
<tr>
<td>Corn earworm (CEW)</td>
<td>Helicoverpa zea</td>
</tr>
<tr>
<td>Fall armyworm (FAW)</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>Stalk borer</td>
<td>Papaiqema nebris</td>
</tr>
<tr>
<td>Lesser corn stalk borer</td>
<td>Elasmopalpus lignosellus</td>
</tr>
<tr>
<td>Sugarcane borer (SCB)</td>
<td>Diatraea saccharalis</td>
</tr>
<tr>
<td>Western bean cutworm (WBC)</td>
<td>Richia albicosta</td>
</tr>
<tr>
<td>Black cutworm</td>
<td>Agrotis ipsilon</td>
</tr>
<tr>
<td>Western corn rootworm (WCRW)</td>
<td>Diabrotica virgifera virgifera</td>
</tr>
<tr>
<td>Northern corn rootworm (NCRW)</td>
<td>Diabrotica barberi</td>
</tr>
<tr>
<td>Mexican corn rootworm (MCRW)</td>
<td>Diabrotica virgifera zea</td>
</tr>
</tbody>
</table>

EPA Accepted: 6/8/2017
Plant-Incorporated Protectant Label

SmartStax®PRO Enlist™ Refuge Advanced®‡
(Alternate Brand Name: SmartStax®PRO Refuge Advanced®)‡
(Alternate Brand Name: MON 89034 × TC1507 × MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn with interspersed refuge)
(OECD Unique Identifier: MON-89034-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7)

(Alternate Brand Name: MON 87427 × MON 89034 × TC1507 × MON 87411 × DAS-59122-7 × DAS-40278-9
Insect-Protected, Herbicide-Tolerant Corn with interspersed refuge)
(OECD Unique Identifier: MON-87427-7 × MON-89034-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7 × DAS-40278-9)

Active Ingredients:

dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary (vector PV-ZMIR10871) for its production in corn event MON 87411 (OECD Unique Identifier MON-87411-9) ≤ 0.00000044%

Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ≤ 0.0088%

Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ≤ 0.0048%

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø15Ø7-1) ≤ 0.00096%

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ≤ 0.0041%

Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7) ≤ 0.012%

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7) ≤ 0.0026%

Other Ingredients:

CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 ≤ 0.036%

The marker protein, PAT (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7 ≤ 0.0001%

*Maximum percent (%) dry weight basis for whole plant (forage)

‡ SmartStax®PRO Enlist™ Refuge Advanced® and SmartStax®PRO Refuge Advanced® seed with this refuge configuration contains 95% MON 89034 × TC1507 × MON 88017 × DAS-59122-7 mixed with at least 5% non-Bt corn within a single lot of seed.
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling. This product must be used as specified in the terms and conditions of the registration.

This Plant-Incorporated Protectant (PIP) may be combined or produced through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

SmartStax® PRO Enlist™ Refuge Advanced® corn blend protects corn crops from leaf, stalk, and ear damage caused by lepidopteran corn pests listed on this label and root damage caused by corn rootworm larvae listed on this label. In order to minimize the risk of these pests developing resistance to SmartStax® PRO Enlist™ Refuge Advanced® corn blend, an insect resistance management plan must be implemented as defined in the registration terms and conditions.

Grower agreements will specify that growers must adhere to the refuge requirements that will be described on the bag or bag-tag for SmartStax® PRO Enlist™ Refuge Advanced® corn blend or other applicable product use documents.

Sales of corn hybrids that contain Dow AgroSciences’s Bt corn plant-incorporated pesticide(s) must be accompanied by either an IRM/Grower Guide or information on the bag or bag-tag, on planting, production, and insect resistance management, and notes that routine applications of insecticides to control these insects are usually unnecessary when corn containing the Bt proteins is planted.

Corn seed bags or bag tags for products containing SmartStax® PRO Enlist™ Refuge Advanced® corn blend must include the refuge size requirement in text and graphical format.

INSECT RESISTANCE MANAGEMENT

Growers are instructed to read information on insect resistance management in the bag and/or bag-tag.

These refuge requirements do not apply to seed increase/propagation of inbred and hybrid seed corn up to a total of 20,000 acres per county and up to a combined United States (U.S.) total of 250,000 acres per plant-incorporated protectant (PIP) active ingredient per registrant per year.

SmartStax® multi-event technology developed by Dow AgroSciences LLC and Monsanto

SmartStax® is a trademark of Monsanto Technology LLC

Enlist™ is a trademark of Dow AgroSciences LLC

Refuge Advanced® is a registered trademark of Dow AgroSciences LLC
The seed producer must ensure a minimum of 5% non-PIP refuge seed is included with SmartStax® PRO Enlist™ in each lot of seed corn. The refuge seed in the seed mixture may not be treated with seed-applied insecticides for corn rootworm (CRW) control unless the SmartStax® PRO Enlist™ seed in the seed mixture receives the same treatment.

The IRM/Grower Guide for SmartStax® PRO Enlist™ Refuge Advanced® corn blend or comparable information presented on the product bag or bag-tag, must contain the following information:

This product is a seed mixture containing SmartStax® PRO Enlist™ and a minimum of 5% non-Bt seed that when planted creates an interspersed refuge within the field. There are no requirements for a separate structured refuge for SmartStax® PRO Enlist™ Refuge Advanced® corn blend when planted in the U.S. corn-growing region, including Alaska and Hawaii, because the refuge seed is contained within the bag/container.

The interspersed refuge can only be used by planting seed corn specifically generated by qualified seed producers/conditioners licensed by the registrant. Insecticidal treatments labeled for adult CRW control are discouraged during the time of adult CRW emergence.

The seed mix refuge option for SmartStax® PRO Enlist™ Refuge Advanced® corn blend satisfies the refuge requirements in all regions other than in the cotton-growing region where corn earworm is a significant pest as defined below.

Additional refuge requirements in the cotton-growing region where corn earworm is a significant pest

In the cotton-growing region where corn earworm is a significant pest, as defined below, SmartStax® PRO Enlist™ Refuge Advanced® corn blend requires the planting of an additional 20% structured refuge (i.e., 20 acres of non-Bt corn for every 80 acres of SmartStax® PRO Enlist™ Refuge Advanced® corn blend planted).

The 20% refuge must be planted with corn hybrids that do not contain Bt technologies for the control of corn rootworms or corn borers. The refuge and the SmartStax® PRO Enlist™ Refuge Advanced® corn blend should be sown on the same day, or with the shortest window possible between planting dates to ensure that corn root development is similar among varieties. The structured refuge may be planted as an in-field or adjacent (e.g., across the road) refuge or planted as a separate block that is within ½ mile of the SmartStax® PRO Enlist™ Refuge Advanced® corn blend field. In-field refuge options include blocks, perimeter strips (i.e., strips around the field), or in-field strips. If perimeter or in-field strips are implemented, the strips must be at least 4 consecutive rows wide. The refuge can be protected from lepidopteran damage by use of non-Bt insecticides if the population of one or more target lepidopteran pests of SmartStax® PRO Enlist™ Refuge Advanced® corn blend in the refuge exceeds economic thresholds. In addition, the refuge can be protected from CRW damage by an appropriate seed treatment or soil insecticide; however, insecticides labeled for adult CRW control must be avoided in the refuge during the period of CRW adult emergence. Economic thresholds will be determined using methods recommended by local or regional professionals (e.g., Extension Service agents, crop consultants).

The cotton-growing region requiring the additional 20% refuge consists of the following states: Alabama, Arkansas, Georgia, Florida, Louisiana, North Carolina, Mississippi, South Carolina, Oklahoma (only the counties of Beckham, Caddo, Comanche, Custer, Greer, Harmon, Jackson, Kay, Kiowa, Tillman, and Washita), Tennessee (only the counties of Carroll, Chester, Crockett, Dyer, Fayette, Franklin, Gibson, Hardeman, Hardin, Haywood, Lake, Lauderdale, Lincoln, Madison, Obion, Rutherford, Shelby, and Tipton), Texas (except the counties of Carson, Dallam, Hansford, Hartley, Hutchinson, Lipscomb, Moore, Ochiltree, Roberts, and Sherman), Virginia (only the counties of Dinwiddie, Franklin City, Greensville, Isle of Wight, Northampton, Southampton, Suffolk City, Surrey, and Sussex) and Missouri (only the counties of Dunklin, New Madrid, Pemiscot, Scott, and Stoddard).
Corn Insects Controlled or Suppressed

<table>
<thead>
<tr>
<th>Insect Type</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>European corn borer (ECB)</td>
<td>Ostrinia nubilalis</td>
</tr>
<tr>
<td>Southwestern corn borer (SWCB)</td>
<td>Diatraea grandiosella</td>
</tr>
<tr>
<td>Southern cornstalk borer (SCSB)</td>
<td>Diatraea crambidoides</td>
</tr>
<tr>
<td>Corn earworm (CEW)</td>
<td>Helicoverpa zea</td>
</tr>
<tr>
<td>Fall armyworm (FAW)</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>Stalk borer</td>
<td>Papaipema nebris</td>
</tr>
<tr>
<td>Lesser corn stalk borer</td>
<td>Elasmopalpus lignosellus</td>
</tr>
<tr>
<td>Sugarcane borer (SCB)</td>
<td>Diatraea saccharalis</td>
</tr>
<tr>
<td>Western bean cutworm (WBC)</td>
<td>Richia albicosta</td>
</tr>
<tr>
<td>Black cutworm</td>
<td>Agrotis ipsilon</td>
</tr>
<tr>
<td>Western corn rootworm (WCRW)</td>
<td>Diabrotica virgifera virgifera</td>
</tr>
<tr>
<td>Northern corn rootworm (NCRW)</td>
<td>Diabrotica barberi</td>
</tr>
<tr>
<td>Mexican corn rootworm (MCRW)</td>
<td>Diabrotica virgifera zeae</td>
</tr>
</tbody>
</table>

EPA Accepted: 6/8/2017
Plant-Incorporated Protectant Label

MON 89034 × MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-89034-3 × MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from \textit{Diabrotica virgifera virgifera}, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)..................≤ 0.0000044%*

\textit{Bacillus thuringiensis} Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ..≤ 0.0088%*

\textit{Bacillus thuringiensis} Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ..≤ 0.0048%*

\textit{Bacillus thuringiensis} Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ..≤ 0.0041%*

\textit{Bacillus thuringiensis} Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7).....≤ 0.012%*

\textit{Bacillus thuringiensis} Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7).....≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411......≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7
..≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
CAUTION

EPA Registration No. 62719-708

EPA Establishment No. 62719-IN-1

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 200 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/1/2017.
Plant-Incorporated Protectant Label

MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9) ≤ 0.00000044%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ≤ 0.0041%*

Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7) ≤ 0.012%*

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7) ≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 ≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 ≤ 0.0001%*

*Maximum percent (%) dry weight basis for whole plant (forage)
KEEP OUT OF REACH OF CHILDREN NET CONTENTS ______________

CAUTION

EPA Registration No. 62719-709
EPA Establishment No. 62719-IN-1

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 750 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/1/2017.
Plant-Incorporated Protectant Label

TC1507 × MON 87411 × DAS-59122-7
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9).......................≤ 0.00000044%*

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø15Ø7-1).....................≤ 0.00096%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9)

...≤ 0.0041%*

Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)............≤ 0.012%*

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7).......≤ 0.0026%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411......≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7

...≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
KEEP OUT OF REACH OF CHILDREN

CAUTION

EPA Registration No. 62719-710
EPA Establishment No. 62719-IN-1

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 200 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: ___3/1/2017_____.

MON 89034 × TC1507 × MON 87411
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-89034-3 × DAS-Ø1507-1 × MON-87411-9)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)..............................≤ 0.0000044%*

Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3)
...≤ 0.0088%*

Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3)
...≤ 0.0048%*

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø1507-1)......................≤ 0.00096%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9)
...≤ 0.0041%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411......≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vector PHP8999) necessary for its production in corn events TC1507
...≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 750 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/1/2017.
MON 89034 × MON 87411
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: MON-89034-3 × MON-87411-9)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9) ≤ 0.00000044%*

Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ≤ 0.0088%*

Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3) ≤ 0.0048%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9) ≤ 0.0041%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 ≤ 0.036%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 900 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/6/2017
Plant-Incorporated Protectant Label

MON 89034 × TC1507 × MON 87411 × DAS-59122-7

Insect-Protected, Herbicide-Tolerant Corn

(OECD Unique Identifier: MON-89034-3 × DAS-01507-1 × MON-87411-9 × DAS-59122-7)

Active Ingredients:

dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)......................≤ 0.0000044%*

Bacillus thuringiensis Cry1A.105 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3)

..≤ 0.0088%*

Bacillus thuringiensis Cry2Ab2 protein and the genetic material (vector PV-ZMIR245) necessary for its production in corn event MON 89034 (OECD Unique Identifier: MON-89034-3)

..≤ 0.0048%*

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-01507-1)......................≤ 0.0096%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9)

..≤ 0.0041%*

Bacillus thuringiensis Cry34Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7)......≤ 0.012%*

Bacillus thuringiensis Cry35Ab1 protein and the genetic material (vector PHP17662) necessary for its production in corn event DAS-59122-7 (OECD Unique Identifier: DAS-59122-7).....≤ 0.0026%*

Other Ingredients:

CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411.....≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vectors PHP17662 and PHP8999) necessary for its production in corn events TC1507 and DAS-59122-7

..≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
KEEP OUT OF REACH OF CHILDREN

CAUTION

EPA Registration No. 62719-713

EPA Establishment No. 62719-IN-1

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 200 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/1/2017
Plant-Incorporated Protectant Label

TC1507 × MON 87411
Insect-Protected, Herbicide-Tolerant Corn
(OECD Unique Identifier: DAS-Ø15Ø7-1 × MON-87411-9)

Active Ingredients:
dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from *Diabrotica virgifera virgifera*, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)..................≤ 0.00000044%*

Bacillus thuringiensis Cry1F protein and the genetic material (vector PHP8999) necessary for its production in corn event TC1507 (OECD Unique Identifier: DAS-Ø15Ø7-1)..........................≤ 0.00096%*

Bacillus thuringiensis Cry3Bb1 protein and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411 (OECD Unique Identifier: MON-87411-9)
..≤ 0.0041%*

Other Ingredients:
CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411.....≤ 0.036%*

PAT protein (phosphinothricin acetyl transferase) and the genetic material (vector PHP8999) necessary for its production in corn event TC1507
..≤ 0.0001%*

*Percentage (wt/wt) on a dry weight basis for whole plant (forage)
DIRECTIONS FOR USE

It is a violation of Federal law to use this product in any manner inconsistent with its labeling.

This plant-incorporated protectant (PIP) may be combined through conventional breeding with other registered plant-incorporated protectants that are similarly approved for use in combination, through conventional breeding, with other registered plant-incorporated protectants to produce inbred corn lines and hybrid corn varieties with combined pesticidal traits.

This product may be used for breeding purposes, agronomic testing, increasing inbred seed stocks, and producing hybrid seed on up to a combined United States (US) total of 750 acres per plant incorporated protectant (PIP) active ingredient per registrant per year. Commercial plantings of this product, for the purposes of grain production and controlling corn insect pests, are prohibited.

EPA Accepted: 3/1/2017.
Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm

Pamela M. Bachman*, Kristin M. Huizinga, Peter D. Jensen, Geoffrey Mueller, Jianguo Tan, Joshua P. Uffman, Steven L. Levine

Global Regulatory Sciences, Monsanto Company, 800 North Lindbergh Boulevard Creve Coeur, MO, 63167, USA

A R T I C L E I N F O
Article history:
Received 31 May 2016
Received in revised form 29 July 2016
Accepted 1 August 2016
Available online 3 August 2016

Keywords:
Non-target organism
RNAi
Ecological risk assessment
DvSnf7
MON 87411

A B S T R A C T
MON 87411 maize, which expresses DvSnf7 RNA, was developed to provide an additional mode of action to confer protection against corn rootworm (Diabrotica spp.). A critical step in the registration of a genetically engineered crop with an insecticidal trait is performing an ecological risk assessment to evaluate the potential for adverse ecological effects. For MON 87411, an assessment plan was developed that met specific protection goals by characterizing the routes and levels of exposure, and testing representative functional taxa that would be directly or indirectly exposed in the environment. The potential for toxicity of DvSnf7 RNA was evaluated with a harmonized battery of non-target organisms (NTOs) that included invertebrate predators, parasitoids, pollinators, soil biota as well as aquatic and terrestrial vertebrate species. Laboratory tests evaluated ecologically relevant endpoints such as survival, growth, development, and reproduction and were of sufficient duration to assess the potential for adverse effects. No adverse effects were observed with any species tested at, or above, the maximum expected environmental concentration (MEEC). All margins of exposure for NTOs were >10-fold the MEEC. Therefore, it is reasonable to conclude that exposure to DvSnf7 RNA, both directly and indirectly, is safe for NTOs at the expected field exposure levels.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the past decade, a number of food crops utilizing RNA interference (RNAi), have received regulatory approvals from United States agencies such as the Environmental Protection Agency (U.S. EPA) and Department of Agriculture (USDA), as well as approval in other countries such as Canada, Mexico, Australia, New Zealand, Japan, Korea, and Brazil (CERA, 2012). The RNA-based products approved thus far have conferred resistance to specific viruses (e.g. plum-pox virus), extended produce quality (e.g. Arctic Apple) or nutritional enhancement (e.g. alfalfa, soy) (Auer and Frederick, 2009; CERA, 2012). Recently, genetically engineered (GE) insect-protected plants that confer resistance via RNA-based gene regulation have been developed and reported in the scientific literature (Bachman et al., 2013; Baum et al., 2007; Bolognesi et al., 2012; Mao et al., 2007). These plants express double-stranded RNAs (dsRNAs) targeted to suppress mRNA levels in a specific species or a small group of closely related species by utilizing the RNAi pathway. The sequence specific nature of RNAi allows these products to target pest species with a high level of specificity, while mitigating risk to non-target organisms (NTOs) (Bachman et al., 2013; Burand and Hunter, 2013; Whyard et al., 2009). Monsanto Company has developed a GE maize, MON 87411, that confers protection against corn rootworm (CRW) (Diabrotica spp.) utilizing RNAi as the mechanism of insecticidal action (Bolognesi et al., 2012). The DvSnf7 RNA expressed in MON 87411 is composed of a 968 nucleotide sequence containing 240 base pair dsRNA component plus the addition of a poly A tail (Urquhart et al., 2015) designed to target the western corn rootworm (Diabrotica virgifera virgifera; WCR) Snf7 gene (DvSnf7). Upon consumption, the plant-produced RNA in MON 87411 is recognized by the CRW’s RNAi machinery, which results in a rapid decrease of DvSnf7 mRNA and protein levels leading to growth inhibition followed by mortality (Bolognesi et al., 2012; Levine et al., 2015). It has been established that after ingestion of DvSnf7 by WCR, suppression of the DvSnf7 mRNA occurs within 24 h, followed by suppression of DvSnf7 protein and onset of mortality by day 5 (Bolognesi et al.,

*Corresponding author.
E-mail address: pamela.m.bachman@monsanto.com (P.M. Bachman).

Abbreviations: dsRNA, double stranded RNA; RNA, ribonucleic acid; RNAi, RNA interference; NTO, non-target organism; ERA, ecological risk assessment.
A critical step in the deregulation and/or registration of a GE plant incorporated protectant (PIP) is performing an ecological risk assessment (ERA) to evaluate the potential for adverse ecological effects from cultivation. Assessment of potential ecological impacts, associated with the introduction of a PIP, is based on the characteristics of the crop and the introduced trait. The approach for evaluating ecological risks from pesticides is a multi-step iterative process (Romeis et al., 2013; U.S. EPA, 1998). Key steps include problem formulation, analysis of exposure and potential effects, risk characterization, and risk characterization. During problem formulation, the assessor defines protection goals, prepares a conceptual model to aid in identification of the relevant assessment and measurement endpoints, and then develops an analysis plan that serves as the basis for a risk characterization. Important information that was used to inform the problem formulation step for MON 87411 included the biology and familiarity with the crop and the trait, the mode of action (MOA), the spectrum of activity, the tissue specific expression profile, routes of exposure for ecological receptors and an assessment of potential persistence in the environment. In general, the scope of the ecological safety assessment for a PIP can be reduced when the MOA is well characterized, there is a narrow spectrum of activity, and expression levels of the trait are well characterized (Romeis et al., 2013). The MOA of DvSnf7 RNA has been well characterized (Bolognesi et al., 2012; Ramaseshadri et al., 2013) and has been shown to have a narrow spectrum of activity with activity only evident within a narrow subset of beetles, the Galerucinae subfamily in the order Coleoptera (Bachman et al., 2013). This limited range of activity reduces the potential for non-target effects and can narrow the scope of ecological testing. Additionally, the DvSnf7 RNA and Cry3Bb1 protein have been shown to act independently which allowed for Cry3Bb1 and DvSnf7 RNA to be tested and assessed independently (Levine et al., 2013). This limited range of activity reduces the potential for non-target effects and can narrow the scope of ecological testing. Additionally, the DvSnf7 RNA and Cry3Bb1 protein have been shown to act independently which allowed for Cry3Bb1 and DvSnf7 RNA to be tested and assessed independently (Levine et al., 2013). Taken together, information on the MOA, spectrum of activity, expression profile, lack of interaction, and routes of potential exposure were used to help inform and define the scope of NTO testing used for this ERA.

For the MON 87411 assessment, the protection goals were identified as the maintenance of ecological functions of NTOs ‘in-field’ and biodiversity of species ‘off-field’ that contribute to the structure and function of the environment. Ecological functions to be protected include pollination, predation and parasitism (i.e., biological pest control, referred to herein as biocontrol), decomposition of soil organic material, and soil nutrient cycling. Additional confirmatory data was collected to address regulatory requirements and to provide empirical data for a broad range of taxa for this first in class insecticidal RNA product. This included a broader range of avian and other non-target vertebrate populations where a plausible risk hypothesis would typically not require such data given barriers to exposure in these taxa (see section 4.1 in Discussion). An important assessment endpoint for PIPs is the abundance of taxa within functional groups of NTOs. Primary
indicators of effect include impacts on survival, growth, development and reproduction. The relationship between protection goals, assessment endpoints, and indicators of effect (measurement endpoints) for DvSnf7 RNA are outlined in Table 1. Using an exposure-based conceptual model (Fig. 1), ecologically relevant routes of exposure for NTOs were identified and used to develop risk hypotheses. The over-arching risk hypothesis that was tested was that cultivation of MON 87411 will have no unacceptable adverse effects on NTOs resulting from environmental exposure to the DvSnf7 RNA. Testing this hypothesis required performing laboratory toxicity tests on individual species and placing the results into the context of an ERA. An in silico analysis, using publically available sequences for relevant NTOs associated with maize agriculture and/or key ecological functions, was conducted to assess potential effects to additional species.

2. Materials/methods

2.1. Conceptual model

An exposure-based conceptual model was developed for MON 87411 to illustrate routes of exposure to DvSnf7 RNA for ecological receptors (e.g. NTOs) that represent functional roles (Fig. 1). Key functional and measureable attribute changes were identified for the ecological receptors that were linked to the identified environmental protection goals (Table 1). Pollen was included as the route of exposure for pollinators, facultative predators and parasitoids, and invertebrate herbivores that could use pollen as a supplementary or life-stage specific food source. Leaf, root, and grain tissue were included as an exposure route for herbivorous invertebrates and wild vertebrates and senescent tissue was considered as the route of exposure for soil biota. The invertebrate herbivores feeding on leaf or root tissue were considered an indirect exposure route for biocontrol species (e.g. insect predators or parasitoids) and wild vertebrates. Aquatic exposures were considered but not included in the conceptual model because exposure of aquatic organisms to maize tissue after harvest is limited temporally and spatially; therefore potential exposure of aquatic organisms is low to negligible (U.S. EPA, 2016a). In addition, DvSnf7 RNA has been shown to rapidly degrade in aquatic systems (Fischer et al., 2016a,b). Measureable attribute changes (assessment endpoints) were identified for each ecological receptor including biodiversity, population size, and/or ecological functionality.

2.2. Effects testing

2.2.1. Test species selection and study design

Selection of test organisms was informed by the protection goals and conceptual model, and to meet the U.S. EPA’s testing framework for PIPs (U.S. EPA, 2001). NTO testing included laboratory toxicity testing against a representative pollinator [honey bee (Apis mellifera)], six beneficial insect species that represent biocontrol species [parasitic wasp (Pedionius foveolatus), ladybird beetle (Coleomegilla maculata), carabid beetle (Poecilus chalcites), rove beetle (Aleochara bilineata), green lacewing (Chrysoperla carnea), and insidious flower bugs (Orius insidiosus)], representative soil biota [earthworm (Eisenia andrei), Collembola (Folsomia candida), and microbially-mediated soil processes], and representative wild vertebrates [bobwhite quail (Colinus virginianus); channel catfish (Ictalurus punctatus); and broiler chicken (Gallus domesticus)]. Survival, growth and/or developmental observations were examined in the ladybird beetle, carabid beetle, insidious flower bug, honey bee, and vertebrate studies; survival and reproduction with Collembola, rove beetle and green lacewing, and survival and biomass with earthworm. Carbon and nitrogen (C:N) transformation in soil mixed with root and shoot tissue derived from MON 87411 was measured to evaluate the functionality of soil nutrient cycling by microorganisms. In addition to the avian and catfish studies, the results of a 28-day (Mus musculus) repeat dose oral gavage study with the DvSnf7 RNA at doses up to 100 mg/kg/day (U.S. EPA, 2015; Petrick et al., 2016) was included as part of the ERA.

All NTO studies were conducted with diet-incorporation methodology and the organisms were fed ad libitum. Studies followed established regulatory guidelines or published methods from the authors’ laboratory. Details for each test method are provided in Tables 2 and 3 and Supplementary Appendix A. Dietary exposures were initiated with the earliest life stages amenable to laboratory testing and consideration was given to selecting the life stage(s) with direct exposure to the PIP where applicable. The duration of each study was selected to exceed the known time to kill for DvSnf7 RNA to CRW (~5 days) as well as allow for the evaluation of ecologically relevant endpoints beyond mortality to adequately assess the potential for off-target effects. Where appropriate, positive control treatments were included to...
Table 2
Non-target arthropod study design for DvSnf7_968 RNA laboratory studies.

<table>
<thead>
<tr>
<th>Non-target organism</th>
<th>Guideline or method</th>
<th>Concentration of DvSnf7_968 RNA</th>
<th>Duration (days)</th>
<th>Environmental conditions</th>
<th>Sample size</th>
<th>Life stage at initiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mellifera larvae</td>
<td>Tan et al., 2015</td>
<td>1000 ng/g diet; 11.3 ng/larvae</td>
<td>17 a</td>
<td>Dosing: 24 °C; RH 66%; Larval development: Ambient hive conditions; Adult emergence: 28 ± 2 °C; RH 60 ± 13%; 0L:24D</td>
<td>20 larvae × 4 replicates</td>
<td>2-3 day old larvae</td>
</tr>
<tr>
<td>A. mellifera adult</td>
<td>Tan et al., 2015</td>
<td>1000 ng/g diet</td>
<td>14</td>
<td></td>
<td>20 bees × 4 replicates</td>
<td><2-day old adults</td>
</tr>
<tr>
<td>C. maculata</td>
<td>Bachman et al., 2013</td>
<td>1000 ng/g diet</td>
<td>16–18</td>
<td></td>
<td>20 larvae × 3 replicates</td>
<td><32-h old larvae</td>
</tr>
<tr>
<td>P. chalcites</td>
<td>Bachman et al., 2013</td>
<td>1000 ng/g diet</td>
<td>35</td>
<td></td>
<td>20 larvae × 3 replicates</td>
<td><24-h old larvae</td>
</tr>
<tr>
<td>A. hilineta</td>
<td>Gomm et al., 2000</td>
<td>1000 ng/g diet</td>
<td>70 c</td>
<td></td>
<td>20 (10 F and 10 D) × 4 replicates</td>
<td>3-7 day old adults</td>
</tr>
<tr>
<td>C. carnea</td>
<td>Vogt et al., 2000</td>
<td>1001 ng/g diet</td>
<td>16–18</td>
<td></td>
<td>20 (10 F and 10 D) × 4 replicates</td>
<td><24-h old adults</td>
</tr>
<tr>
<td>P. pereolatmos</td>
<td>Bachman et al., 2013</td>
<td>1000 ng/g diet</td>
<td>20</td>
<td></td>
<td>10 wasps × 4 replicates</td>
<td>24-hr old adults</td>
</tr>
<tr>
<td>O. insidiosus</td>
<td>Tan et al., 2011</td>
<td>1000 ng/g diet</td>
<td>10</td>
<td></td>
<td>40 nymphs/treatment</td>
<td>5-day old nymphs</td>
</tr>
<tr>
<td>E. andreini</td>
<td>OECD 207</td>
<td>5000 µg/kg soil</td>
<td>14</td>
<td></td>
<td>10 worms × 4 replicates</td>
<td>~5-months old</td>
</tr>
<tr>
<td>F. candida</td>
<td>OECD 232</td>
<td>1000 ng/g diet</td>
<td>28</td>
<td></td>
<td>10 springtails × 4 replicates</td>
<td>9-10 day old juveniles</td>
</tr>
</tbody>
</table>
| a Single exposure on Day 0.
 b RH = relative humidity.
 c 28-day continuous dietary exposure followed by 42 day observation for emergence of F1 generation.

Table 3
Beneficial soil microbe and non-target vertebrate study design or DvSnf7_968 RNA and/or tissue derived from MON 87411.

<table>
<thead>
<tr>
<th>Non-target organism</th>
<th>Guideline or method</th>
<th>Concentration of DvSnf7_968 RNA</th>
<th>Duration (days)</th>
<th>Environmental conditions</th>
<th>Sample size</th>
<th>Life stage at initiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Transformation</td>
<td>OECD 217</td>
<td>MON 87411 root & shoot tissue</td>
<td>28</td>
<td>22 ± 3 °C; Days 0–6; 37.3 ± 4.0 °C; Days 7–14: 30.1 ± 1.2 °C; RH 32 ± 12%; 16L:8D; 400 lux</td>
<td>5 replicate samples</td>
<td>14 day old</td>
</tr>
<tr>
<td>Nitrogen Transformation</td>
<td>OECD 216</td>
<td>MON 87411 root & shoot tissue</td>
<td>14</td>
<td></td>
<td>5 quail × 6 replicates</td>
<td>14 day old</td>
</tr>
<tr>
<td>C. virginianus</td>
<td>OPPTS 850.2200 U.S.EPA, 1996</td>
<td>1000 µg/kg diet</td>
<td>14</td>
<td></td>
<td>5 replicate samples</td>
<td>14 day old</td>
</tr>
<tr>
<td>G. domesticus</td>
<td>Taylor et al., 2005</td>
<td>~57% MON 87411 grain</td>
<td>~42</td>
<td>Days 0–4; 24L:0D; 0.5–1.3 fc ab</td>
<td>100 birds/treatment</td>
<td>Approximately 1 day old chicks</td>
</tr>
<tr>
<td>I. punctatus</td>
<td>OECD 215; Hammond et al., 1996</td>
<td>30% MON 87411 grain</td>
<td>8 weeks</td>
<td>30 ± 2 °C; DO 5.00–6.41 mg/L; 14L:10D; Flow 750–1667 mL/min.</td>
<td>20 catfish × 5 replicates</td>
<td>11 months old; mean wt 5.1–5.5 g</td>
</tr>
</tbody>
</table>
| a RH = relative humidity.
 b fc = footcandles.
 c DO = Dissolved Oxygen.

Table 4
DvSnf7 RNA levels in selected maize tissues used to determine maximum expected environmental concentrations (MEEC) from MON 87411. The highest values in the range were used to determine MEEC.

<table>
<thead>
<tr>
<th>Tissue typea</th>
<th>Developmental stageb</th>
<th>Mean (SD) Range pg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen (fwt(^c))</td>
<td>VT-R1</td>
<td>0.103 x 10^{-3} (0.069 x 10^{-3})</td>
</tr>
<tr>
<td>Leaf (fwt(^c))</td>
<td>V14-R1</td>
<td>14.4 x 10^{-3} (6.71 x 10^{-3})</td>
</tr>
<tr>
<td>Root (fwt(^c))</td>
<td>V3-V4</td>
<td>3.15 x 10^{-3} (1.79 x 10^{-3})</td>
</tr>
<tr>
<td>Whole Plant (dwt(^c))</td>
<td>V6-V8</td>
<td>5.51 x 10^{-3} (23.1 x 10^{-3})</td>
</tr>
<tr>
<td>Grain (dwt(^c))</td>
<td>R5</td>
<td>0.104 x 10^{-3} (0.033 x 10^{-3})</td>
</tr>
</tbody>
</table>

\(^{a}\) For multiple over season tissue types (e.g. leaf) the tissue stage with the highest maximum expression is reported.

\(^{b}\) The crop development stages at which each tissue was collected. The growth stages were described by Ritchie et al. (1997).

\(^{c}\) The DvSnf7 RNA levels are calculated as microgram (µg) of DvSnf7 RNA per gram (g) of tissue on a fresh weight (fwt) basis. The sample means, SDs, and ranges (minimum and maximum values) were calculated for each tissue type across all 5 sites (n = 20), except for pollen n = 5 due to expressions from two pollen samples < LOQ and from the rest of the samples for < LOQ.

2.2.2. Test material
All terrestrial invertebrate NTO studies and the quail study were conducted using \textit{in vitro} produced DvSnf7 RNA, referred to as DvSnf7_968 RNA that was prepared as described in Urquhart et al. (2015). \textit{In vitro} synthesized DvSnf7_968 RNA was shown to be functionally equivalent to the DvSnf7 RNA produced in planta (Urquhart et al., 2015). This is critical information to support the risk assessment because it demonstrates that the DvSnf7 material used in testing was equipotent to DvSnf7 that non-target taxa would potentially be exposed to in the field. Soil microorganism testing was conducted using MON 87411 root and shoot tissue incorporated into a sandy loam soil and the catfish and broiler chicken studies were conducted using MON 87411 grain. With the exception of the earthworm study, all studies utilizing the \textit{in vitro} produced test substance included a diet analysis. Diet analyses were performed using a sensitive insect (Diabrotica undecimpunctata howardi; Southern corn rootworm, SCR) to measure biological activity and/or concentration or a DvSnf7-specific QuantiGene® Plex 2.0 (Affymetrix Inc.) assay (Armstrong et al., 2013). Tissue samples were collected from MON 87411 plants produced at five sites during 2011–2012. The DvSnf7 RNA level in each tissue type was calculated on a microgram (µg) per gram (g) of fresh weight tissue (fwt) or dry weight tissue (dwt) basis. Many of the invertebrate NTOs that were tested primarily feed upon pollen in the agroecosystem; therefore the maximum DvSnf7 RNA expression in pollen was used for the MEEC with honey bees, wasps, the ladybird beetle and the insidious flower bug. For predatory insects and insectivorous birds that consume herbivorous prey and have an indirect exposure to maize expressed DvSnf7 RNA, the maximum expression value from the leaf development stage with the highest expression (V14-R1) was used to represent worst-case scenario to calculate the margin of exposure (MOE). For other wild vertebrates, the most likely route of exposure to the DvSnf7 RNA is from grain produced by MON 87411 within the agroecosystem. The most ecologically relevant route of exposure for soil-dwelling organisms, such earthworms and Collumbola, was considered primarily to be from root tissue with some addition of late season plant tissue that enters the soil environment. Of these tissue types the highest expressing tissue (root V3-V4) was used in a worst-case exposure scenario for these taxa. For the C: N transformation studies, lyophilized MON 87411 shoot and root tissues (V7) were incorporated into soil at 20 mg dwt tissue/g dwt soil. This concentration was used as a worst-case scenario and assumed the biomass of 1-acre of maize containing 25,000 plants at 650 g dry wt/plant (Sims and Holden, 1996) was incorporated into the top 6 inches of soil. Additionally, the use of lyophilized tissues provided a higher concentration of DvSnf7 for the respective tissue used in the ERA, therefore the maximum dry weight expression in V7 plants was used as the MEEC for soil microorganisms. Based upon knowledge of agroecosystems, and that the amount of root or shoot tissue would be less than that for total plant tissue, it was concluded that this soil concentration would be in excess of the root and shoot tissue concentration occurring under normal cultivation of MON 87411.

2.3. In silico analysis
To provide additional data to evaluate the laboratory studies, bioinformatic analyses were conducted to evaluate whether non-target species have sufficient genomic match to the DvSnf7 sequence that would render them potentially susceptible to MON 87411 maize (Supplementary Appendix B). Twenty-three NTOs were selected based upon the following criteria: plausible exposure to MON 87411 maize, availability of public transcriptomes, and potential susceptibility based on current knowledge from laborato-

ory bioassays (Supplementary Appendix B). The evaluation was conducted using STELLAR software (version 1.3, July 2012) and compared the DvSnf7 sequence with transcript (22 organisms) or EST (1 organism) sequences from the 23 organisms. The STELLAR searches were conducted to identify exact 21 or greater nucleotide (nt) matches between the DvSnf7 query and sequences contained in transcript or EST collections. The species selected included vertebrate (birds, fish and mammals) and invertebrate species (arthropods, insects, worms and crustaceans). Although bioinformatics were evaluated for several vertebrate species, direct feeding of dsRNA to induce RNAi has not been successful in vertebrates without the use of encapsulation to prevent degradation, or addition of chemical stabilization and penetration enhancers such as transfection agents (Petrick et al., 2013; Sifuentes-Romero et al., 2011; Ubuka et al., 2012). These species were included as part of the concentrations were selected that represented a worst-case scenario exposure of greater than 10-times the MEEC (U.S. EPA, 2010a). DvSnf7 RNA expression levels were quantified using a validated QuantiGene® Plex 2.0 (Affymetrix Inc.) assay (Armstrong et al., 2013).
where applicable, the stability, homogeneity and nominal reproductive performance, and positive control response, and prescribed validity or performance criteria for control survival, endpoints in addition to survival. Additionally, all studies met the exception (wasp), conducted for MON 87411 assessed sub-lethal maize.

No signif...Table 5

3. Results

3.1. Effects testing

For all species tested, no statistically significant adverse effects from ingestion or exposure to DvSnf7_968 RNA were detected when compared to the control for any of the measured endpoints (Table 5, Table 6, Table 7, and Supplementary Appendix C). It is important to recognize that all of the NTO studies, with one exception (wasp), conducted for MON 87411 assessed sub-lethal endpoints in addition to survival. Additionally, all studies met the prescribed validity or performance criteria for control survival, reproductive performance, and positive control response, and where applicable the stability, homogeneity and nominal concentration of DvSnf7 RNA was confirmed.

For the NTOs, MOEs were calculated based on the ratio of the no observed adverse effects level (NOECs) from the laboratory studies to the MEECs. The NOECs and MOEs determined for each of the species under a worst case exposure scenario are summarized in Table 8. Included in Table 8 is the no observed adverse effects level of 100 mg/kg as described in U.S. EPA (2015) and the calculated MOE for the 28-day repeat dose oral toxicity study with M. musculus. As no long-term adverse effects were observed in the C. n transformation studies with MON 87411 tissue, as well as the chicken and catfish feeding studies with MON 87411 grain at maximum incorporation rates, the MOEs for these organisms were considered to be ≥ 1.

3.2. In silico assessment

A comprehensive in silico evaluation with available genomes

Table 6

<table>
<thead>
<tr>
<th>Non-target organism</th>
<th>Endpoint</th>
<th>DvSnf7_968 or MON 87411 treatment</th>
<th>Assay control</th>
<th>Positive control</th>
<th>Statistical test</th>
<th>Analytical confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mellifera adult</td>
<td>Mean Survival (%)</td>
<td>92.5</td>
<td>91.3</td>
<td>0*</td>
<td>T-test</td>
<td>SCR bioassay</td>
</tr>
<tr>
<td>A. mellifera larvae</td>
<td>Mean Survival (%)</td>
<td>100</td>
<td>100</td>
<td>0*</td>
<td>N/A</td>
<td>SCR bioassay</td>
</tr>
<tr>
<td>A. mellifera adult</td>
<td>Mean Capped Brood (%)</td>
<td>100</td>
<td>100</td>
<td>0*</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>C. maculata</td>
<td>Mean Survival (%)</td>
<td>91.7</td>
<td>90.0</td>
<td>16.7a</td>
<td>T-test</td>
<td>SCR bioassay</td>
</tr>
<tr>
<td>P. chalcites</td>
<td>Mean Survival (%)</td>
<td>93.3</td>
<td>91.7</td>
<td>65a</td>
<td>T-test</td>
<td>SCR bioassay</td>
</tr>
<tr>
<td>C. carnea</td>
<td>Mean Survival (%)</td>
<td>88.7</td>
<td>92.5</td>
<td>95.0</td>
<td>T-test</td>
<td></td>
</tr>
<tr>
<td>A. bilineata</td>
<td>Mean Survival (%)</td>
<td>1028.0</td>
<td>991.8</td>
<td>39.0a</td>
<td>Dunnett’s t-test</td>
<td>SCR bioassay and Quantigene</td>
</tr>
<tr>
<td>C. carnea</td>
<td>Mean Survival (%)</td>
<td>93.3</td>
<td>81.7</td>
<td>70.0</td>
<td>Fisher’s Exact test</td>
<td>SCR bioassay and Quantigene</td>
</tr>
<tr>
<td>P. foveolatus</td>
<td>Mean Survival (%)</td>
<td>20.3</td>
<td>18.2</td>
<td>1.0a</td>
<td>Dunnett’s t-test</td>
<td></td>
</tr>
<tr>
<td>O. insidiosus</td>
<td>Mean Survival (%)</td>
<td>100.0</td>
<td>100.0</td>
<td>0a</td>
<td>N/A</td>
<td>SCR bioassay</td>
</tr>
<tr>
<td>Mean Adult Emergence (%)</td>
<td>93.0</td>
<td>93.0</td>
<td>0.0a</td>
<td>T-test</td>
<td>SCR bioassay</td>
<td></td>
</tr>
<tr>
<td>Mean Development Time to Adult (Days ± SE)</td>
<td>10.9 ± 0.13</td>
<td>11.1 ± 0.15</td>
<td>10.6 ± 0.4</td>
<td>T-test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant difference from assay control at α = 0.05.

b Confirmation of biological activity, concentration, stability and/or homogeneity of DvSnf7_968 in Diet.

c Conducted as method development external to the definitive study.
and transcriptomes did not identify any >21 nt contiguous matches for the 23 species (Supplementary Appendix B). Therefore, no adverse effects of DvSnf7 RNA against these species are predicted. As mentioned above, honey bee adult and larvae were evaluated in previous laboratory studies (Bachman et al., 2013). The results of that bioinformatics analysis confirm the results of the toxicity testing and provide an additional line of evidence to explain why no adverse effects were detected with larval and adult honey bees. Likewise, this bioinformatics analysis provides additional evidence for the lack of adverse effects to other NTOs (jewel wasp, _Nasonia vitripennis_) that also were evaluated in previous laboratory studies (Bachman et al., 2013).

4. Discussion

The ERA for MON 87411 has taken into consideration the MOA, the spectrum of insecticidal activity, routes and levels of exposure

Table 7

No significant (p > 0.05) adverse effects of DvSnf7_968 RNA or MON 87411 on non-target vertebrates demonstrates negligible risk to these taxa from exposure to MON 87411 maize.

<table>
<thead>
<tr>
<th>Non-target organism</th>
<th>Endpoint</th>
<th>DvSnf7_968 or MON 87411 treatment</th>
<th>Assay control</th>
<th>Positive control</th>
<th>Statistical test</th>
<th>Analytical confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colias virginianus</td>
<td>Mean Survival (%)</td>
<td>100</td>
<td>100</td>
<td>N/A</td>
<td>N/A</td>
<td>SCR bioassay and Quanitgene</td>
</tr>
<tr>
<td></td>
<td>Mean Weight (g)</td>
<td>74.0 ± 9.0</td>
<td>75.0 ± 7.0</td>
<td>N/A</td>
<td>T-Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Weight change (g)</td>
<td>43.0 ± 7.0</td>
<td>43.0 ± 6.0</td>
<td>N/A</td>
<td>T-Test</td>
<td></td>
</tr>
<tr>
<td>G. domesticus</td>
<td>Mean Survival (%)</td>
<td>97.0</td>
<td>96.0</td>
<td>N/A</td>
<td>Fischer’s Exact Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Weight (g/bird ± SEM)</td>
<td>3004 ± 36.8</td>
<td>3001± 15.0</td>
<td>N/A</td>
<td>ANOVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Weight Gain (g/bird ±SEM)</td>
<td>2963 ± 36.9</td>
<td>2970± 15.1</td>
<td>N/A</td>
<td>ANOVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Diet consumed (g/meal ± SD)</td>
<td>30.6 ± 1.4</td>
<td>29.0 ± 1.8</td>
<td>N/A</td>
<td>ANOVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Weight Gain (g/meal ±SD)</td>
<td>14.0 ± 2.2</td>
<td>14.1 ± 1.3</td>
<td>N/A</td>
<td>ANOVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diet conversion ratio (±SD)</td>
<td>2.3 ± 0.4</td>
<td>2.1 ± 0.1</td>
<td>N/A</td>
<td>ANOVA</td>
<td></td>
</tr>
</tbody>
</table>

Table 8

Maximum expected environmental concentrations (MEECs), no observed effect concentrations (NOECs) from non-target organism (NTO) studies and estimated margins of exposure (MOEs).

<table>
<thead>
<tr>
<th>NTO</th>
<th>MEEC a</th>
<th>NOEC b</th>
<th>MOE c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mellifera larvae</td>
<td>0.000448 ng g⁻¹</td>
<td>≥11.3 ng/larvae e</td>
<td>≥25,223</td>
</tr>
<tr>
<td>A. mellifera adult</td>
<td>0.224 ng/g fwt pollen</td>
<td>≥1000 ng/g</td>
<td>≥4464</td>
</tr>
<tr>
<td>C. maculata</td>
<td>0.224 ng/g fwt pollen</td>
<td>≥1000 ng/g</td>
<td>≥4464</td>
</tr>
<tr>
<td>P. chalcites</td>
<td>33.8 ng/g fwt leaf f</td>
<td>≥1000 ng/g</td>
<td>≥29</td>
</tr>
<tr>
<td>A. bilineata</td>
<td>33.8 ng/g fwt leaf f</td>
<td>≥1000 ng/g</td>
<td>≥29</td>
</tr>
<tr>
<td>C. carnea</td>
<td>33.8 ng/g fwt leaf f</td>
<td>≥1000 ng/g</td>
<td>≥29</td>
</tr>
<tr>
<td>P. foveolatus</td>
<td>0.224 ng/g fwt pollen</td>
<td>≥1000 ng/g</td>
<td>≥4464</td>
</tr>
<tr>
<td>O. insidiosus</td>
<td>0.224 ng/g fwt pollen</td>
<td>≥1000 ng/g</td>
<td>≥4464</td>
</tr>
<tr>
<td>E. andre</td>
<td>8.0 ng/g fwt root g</td>
<td>≥5000 µg/kg dry soil</td>
<td>≥625</td>
</tr>
<tr>
<td>F. candida</td>
<td>8.0 ng/g fwt root g</td>
<td>≥1000 ng/kg dry soil</td>
<td>≥125</td>
</tr>
<tr>
<td>Soil microorganisms (CN Transformation)</td>
<td>106 ng/g dwt plant h</td>
<td>≥106 ng/g dwt plant</td>
<td>≥1</td>
</tr>
<tr>
<td>C. virginianus</td>
<td>33.8 ng/g fwt leaf</td>
<td>≥1000 µg/kg</td>
<td>≥29</td>
</tr>
<tr>
<td>G. domesticus</td>
<td>0.175 ng/g dwt grain</td>
<td>≥0.175 ng/g dwt grain</td>
<td>≥1</td>
</tr>
<tr>
<td>M. musculus</td>
<td>0.045 mg/kg/day i</td>
<td>≥100 mg/kg/day</td>
<td>≥2958</td>
</tr>
<tr>
<td>I. punctatus</td>
<td>0.175 ng/g dwt grain</td>
<td>≥2958</td>
<td></td>
</tr>
</tbody>
</table>

a. Maximum expression levels determined from MON 87411.
b. NOECs reflect nominal test concentrations.
c. MOE values were calculated based on the ratio of the NOEC to MEEC. The MOE was determined based on the maximum expression level of the DvSnf7 RNA in the tissue from MON 87411 deemed most relevant to the NTO exposure.
d. MEEC based upon mean quantity of DvSnf7 RNA expressed in 2 mg of MON 87411 pollen (fwt). The average consumption of pollen by honey bee larvae is 2 mg during development (Babendreier et al., 2004). The MEEC was calculated as follows: (2 mg pollen × (0.224 ng DvSnf7 RNA/1000 mg pollen)).
e. The NOEC represents a single dose of 10 µl of 1000 ng/g solution added to each larval cell. The total mass added and consumed in each larval cell was 11.3 ng DvSnf7/cell.
f. The concentration of 1000 ng/g DvSnf7_968 RNA in the diet solution is calculated based on the density of the 30% sucrose/water (w/v) solution of 1.127 g/ml.
g. The maximum expression value from the leaf development stage with the highest expression (V14-R1) was used to represent worst-case-scenario for a predator consuming a herbivorous prey.
h. The maximum expression value from the root development stage with the highest expression (V3-V4) was used to represent worst-case-scenario for a soil dwelling invertebrates.
i. For the C:N transformation studies, lyophilized MON 87411 80% shoot and 20% root tissues (V7) were incorporated into soil at 20 mg dwt tissue/g dwt soil. The highest expressing whole plant tissue dwt was used for the MEEC as this value exceeded all root expression values.
j. The MEEC for _M. musculus_ is based on a daily dietary dose (DDD). The DDD – Food Intake Rate (FIR)/body weight × dietary concentration, and was calculated for the grass eating herbivorous mammal with the highest FIR (1.33), the common vole that consumes 100% maize shoots. The highest leaf expression highest expression (V14-R1) was used to represent worst-case-scenario. Therefore, (1.33 × 0.0338 mg/kg fwt – 0.045 mg DvSnf7 RNA g body weight or mg/kg/body weight) following EFSA, 2009 and Crocker et al., 1998).
levels to DvSnf7 RNA produced by MON 87411 and the results from a taxonomically and functionally diverse group of NTO studies. NTO studies followed established methods and the tiered testing framework developed by the U.S. EPA to assess the environmental safety of PIPs. These studies evaluated ecologically relevant apical endpoints (survival, growth, development, and reproduction) to assess potential impacts to NTO populations and communities. Tier 1 NTO studies for PIPs are generally initiated with neonates, because they are typically thought to be the most sensitive life-stage, and the assays were run for a sufficient duration to evaluate developmental milestones (i.e. development to adult and/or reproduction). By evaluating a significant portion of the life cycle under conservative high dose exposure scenarios, it can be concluded with reasonable certainty that there is low likelihood of potential chronic adverse off-target effects at realistic field exposure levels. The Tier 1 studies for this ERA were conducted with concentrations (single limit dose) that far exceeded anticipated exposure of DvSnf7 RNA to maximize the potential for observing and documenting off-target effects. A limit dose is a treatment level that provides a high “worst-case” exposure level (i.e., 10 x anticipated field exposure level) and a large margin of exposure. Importantly, a lack of adverse effects in high dose testing has traditionally provided EPA with sufficient confidence to address uncertainties, conclude that there is no unacceptable risk to the environment, and conclude that no further data are required.

In an ecological assessment for PIPs, MOEs that are >10 are indicative of minimal risk in worst-case sub-chronic and chronic laboratory assays (U.S. EPA, 2010a). All of the MOEs calculated for the NTO species in this ERA were >10-times a high end predicted exposure level (Table 8). Of particular importance is the lack of adverse effects from exposure to DvSnf7 RNA in both adult and larval honey bees (A. mellifera). These results are consistent with (Velez et al., 2015), which found no adverse effects of adult or larval honey bees fed high concentrations of a dsRNA with 100% sequence match to the honey bee. Additionally, no long-term adverse effects were observed on microbially-mediated soil nutrient cycling with MON 87411 tissues incorporated into soil at levels that exceed expected environmental concentrations. In vertebrate feeding studies at concentrations that approximate realistic field concentrations and at worst-case exposures, no adverse effects of MON 87411 or the DvSnf7 RNA were observed. In addition to the data reported herein, a 28-day mouse (Mus musculus) repeat dose oral gavage study with the DvSnf7 RNA at 100 mg/kg/day was performed and no adverse effects attributable to the DvSnf7 RNA were observed (U.S. EPA, 2015; Petrick et al., 2016). An MOE for the mouse as a representative wild mammalian species can be calculated assuming a worst-case scenario for a herbivorous mammal consuming maize shoots (e.g. the common vole, Microtus arvalis) at a level of 133% of its body weight each day (Table 8) (Crocker et al., 1998; EFSA, 2009). This food intake rate of 1.33 exceeds a worst-case food intake rate corrected for body weight for an insectivorous mammal. In addition, insects would likely not accumulate DvSnf7 RNA to higher levels than what is expressed in planta because it is known that nucleic acids do not bioaccumulate. There is presently no evidence that the DvSnf7 RNA will persist or accumulate to levels higher than nucleic acids do not bioaccumulate. There is presently no evidence that the DvSnf7 RNA will persist or accumulate to levels higher than nucleic acids do not bioaccumulate. There is presently no evidence that the DvSnf7 RNA will persist or accumulate to levels higher than nucleic acids do not bioaccumulate. There is presently no evidence that the DvSnf7 RNA will persist or accumulate to levels higher than nucleic acids do not bioaccumulate. Therefore, as with the previously assessed Cry3Bb1 protein, DvSnf7 RNA is not likely to produce adverse effects on terrestrial beneficial invertebrate and vertebrate species at field exposure levels. This conclusion is in agreement with prior published literature which reported that DvSnf7 activity is restricted to the Galerucinae subfamily within the Chrysomelidae family in the Order Coleoptera (Bachman et al., 2013). Further confirmation of results from laboratory studies were provided in a field study by Ahmad et al. (2015), where no adverse effects from MON 87411 maize were observed to non-target arthropod communities.

Recently, consideration has been given to whether the existing ERA framework is applicable to GE crops expressing RNA-based traits, especially insecticidal traits (Auer and Frederick, 2009; Lundgren and Duan, 2013; Scott et al., 2013). In their recent review of the risk assessment approach for GE plants containing RNA-based traits, Lundgren and Duan (2013) postulated that unintended off-target effects of insecticidal RNAs against NTOs could be widespread. This assertion was largely based upon data from pharmaceutical-specific publications that examined the effects of high concentrations of dsRNA in vitro cell monolayers (Jackson and Linsley, 2010) and is not directly applicable to levels for the ecological assessment of MON 87411. Although off-target effects have been reported in vitro systems in the pharmaceutical literature at high concentrations, these studies are not relevant to exposure scenarios for NTOs in agroecosystems. Only realistic routes and levels of exposure for NTOs, to a trait such as DvSnf7 RNA in MON 87411 maize, should be considered in the risk assessment (Fig. 1). Therefore, in vitro studies with RNA are not predictive of potential impacts to NTOs following dietary exposures due to much lower exposures in the environment and the absence of significant uptake afforded by use of transfection reagents in cultured cells. Additionally, pools of small RNAs, as would arise from dicing of a long dsRNA tend to eliminate off-target effects due to a dilution effect of a complex siRNA pool (Hannus et al., 2014). When off-target effects have been observed, gene suppression has been shown to be orders of magnitude less potent than that observed with small RNAs having full complementarity (Vaishnav et al., 2010).

Lundgren and Duan (2013) also identified other reputed risks to NTOs based on the pharmaceutical literature such as immune stimulation and over-saturation of the RNAi machinery. The off-target effects observed in in vivo studies from the pharmaceutical literature result from exposure to large amounts of chemically stabilized dsRNA delivered specialized formulations via injection into the organism (Petrick et al., 2013). Therefore, these papers need to be interpreted with caution particularly in the context of low exposure scenarios to DvSnf7 RNA expressed by MON 87411. Under in vitro conditions, RNAi machinery saturation was shown to occur in a dose-dependent manner after transfection of relatively high doses of small RNAs into cells (Khan et al., 2009). This exposure condition in cell lines has limited or no relevance to risk an ERA for a PIP (Table 1). There are no reports to date suggesting that interferon or inflammatory responses occur following oral exposure (Petrick et al., 2013). Similar to humans and livestock, the diets of NTOs consist of plant or animal sources which naturally contain dsRNAs and there exists a long history of safe consumption of these endogenous dsRNAs across eukaryotes. This has been illustrated specifically for grain from food and feed crops such as soybean, corn, and rice (Heisel et al., 2008; Ivashuta et al., 2009; Jensen et al., 2013), and as the result of viral infection in crops such as kidney bean, pepper, and barley (Fukuhara et al., 2006). With constant oral exposure to environmental dsRNA endogenously present in natural food sources, unintended effects in non-target organisms from immune stimulation and RNAi machinery saturation are extremely unlikely to result from relatively low exposures to dsRNA resulting from cultivation of MON 87411.

Contrary to concerns regarding non-specific off-target effects, numerous studies have demonstrated that RNAi technology can
achieve sequence-specific gene silencing in some insects by feeding dsRNAs (Bachman et al., 2013; Baum et al., 2007; Whyard et al., 2009). Therefore, RNAi PIPs have the potential to selectively target economically important pest species and greatly reduce the likelihood of adverse effects on non-target organisms, including those beneficial to agriculture. The DvSnf7 RNA sequence in MON 87411 was carefully selected for its high degree of divergence between species to mitigate potential adverse effects on organism not closely related to the target pest species, WCR. This sequence has been shown to diverge rapidly within the subfamily level Galerucinae (Bachman et al., 2013), therefore, activity outside this subfamily is not predicted. The purposeful selection of the DvSnf7 sequence to reduce non-target effects is in alignment with recommendations from the 2014 Scientific Advisory Panel (SAP) on RNAi that recognized that targeting genes with a high degree of divergence will help “hone the specificity of RNAi to the target pest” (U.S. EPA, 2014). The SAP recommended that dsRNA sequences should be chosen that target a region of gene with no shared 21 nt sequences with other species (U.S. EPA, 2014). These recommendations are in alignment with previous studies by Baum et al. (2007), Whyard et al. (2009), and Bachman et al. (2013) that demonstrate how the insecticidal activity of ingested dsRNAs is directly related to the degree of sequence match to the target gene between species. Whyard et al. (2009) demonstrated that species-specific activity can be achieved in insects with dsRNAs that diverge at the species level. Bachman et al. (2013) demonstrated that for ingested dsRNAs, contiguous sequence matches of >21 nt to the target gene are necessary for biological activity to occur in insects, and that when no significant sequence match existed to the target gene then no adverse effects were observed in NTO testing. Finally, while a potential adverse effect from a dsRNA can be likely excluded when a 21 nt alignment is not present, it should be noted that NTO diets are continuously exposed to RNA that have 21 or greater bioinformatic alignments with the ingesting organism without evidence of a potential for hazard (Frizzi et al., 2014; Ishahuta et al., 2009).

The application of bioinformatics can have an important role in the selection and design of the dsRNAs and in informing the assessment process for NTOs. When bioinformatics data for non-target arthropods are available and indicate that the minimum sequence requirements for RNAi activity are not met, then the need for toxicity testing is diminished and the likelihood of detecting adverse effects is low. However, when the minimum sequence requirements are met, the converse is not true; these data cannot be reliably used to predict the presence of RNAi activity. Nevertheless, bioinformatics can assist with the developing a hypothesis-based taxonomic approach for characterizing the spectrum of activity for pest control, understanding the relationship between taxonomic relatedness and activity, and aid in the selection of test species for NTO testing (Bachman et al., 2013). This approach is in alignment with recommendations from RNAi —focused Scientific Advisory Panel (SAP) held in 2014 (U.S. EPA, 2014), which recommended that while a bioinformatics analysis is not an absolute predictor of effects, in silico searches of published genomes could be used to perform a screening level assessment to identify potential NTOs for further evaluation based upon the presence of sequence matches. While there are currently only a limited number of published complete and partial arthropod genomes publically available, additional genomes are being published at a rapid rate and are likely to become increasingly useful as a screening level tool for ERAs.

The confirmatory in silico analysis of NTO transcriptomes performed as part of this ERA support the findings of the laboratory bioassays, widen the scope of the NTO assessment, and provide further support to the conclusions of no adverse effects to NTOs from exposure to DvSnf7 RNA and cultivation of MON 87411 maize.

4.1. Further considerations for the ERA: exposure limitations of insecticidal RNA PIps

In addition to sequence specificity, physical and biochemical barriers to the oral toxicity of dsRNAs exist in arthropods and other non-target taxa. As identified by the recent SAP on RNAi (U.S. EPA, 2014) these barriers vary across taxa and for insects include feeding behavior and diet, potential degradation of the dsRNA prior to ingestion, and the inherent sensitivity of the insect to ingested dsRNA based upon conservation and function of components of the RNAi machinery (Whyard et al., 2009).

4.1.1. Exposure/uptake

For a transgenic plant expressing an insecticidal trait, ingestion of the RNA via plant material is the most likely route of exposure. Induction of RNAi-mediated gene suppression in insects via an oral route of exposure requires efficient uptake of dsRNAs by midgut cells followed by suppression of the target mRNA leading to significant effects on growth, development and survival. In plants, nematodes and some basal arthropods (e.g. Acari), exogenous dsRNAs that enter the cell can be amplified via RNA-dependent RNA polymerases (RdRPs) to produce endogenous dsRNAs that supplement the RNAi pathway and prolong the RNAi effect (Grbic et al., 2011; Miller et al., 2012). However, in it important to note that insects, crustaceans and mammals have been shown to lack RdRPs (Grbic et al., 2011; Miller et al., 2012) and the ability of WCR and Tribolium castaneum to produce dose-dependent responses with RNAi is consistent with the absence of an endogenous amplification mechanism (Bolognesi et al., 2012; Miller et al., 2012). The lack of an endogenous amplification mechanism in insects suggests that exposure to dsRNA in higher trophic levels, via ingested prey species, will be limited because a mechanism for bioamplification is not evident. Other factors can also influence the efficiency of RNAi in insects, including concentration, potency and efficacy against the target, sequence and length, persistence of gene silencing and the insect life-stage (Baum et al., 2007; Huvenne and Smagge, 2010; Whyard et al., 2009). In general, long dsRNAs that incorporate a high degree of sequence match to mRNAs in the target insect have greater potential for efficacy as a result of the number of siRNAs that can be produced from the sequence of each long dsRNA (Baum et al., 2007; Miller et al., 2012). Another mechanism that can affect RNAi efficiency in insects, and potentially limit environmental exposure, is the length of the dsRNA. Bolognesi et al. (2012) and Miller et al. (2012) demonstrated that a dsRNA must be of sufficient length (e.g. ≥ 60 bp) to result in efficacy against WCR and T. castaneum, respectively. Additionally, Bolognesi et al. (2012) demonstrated that a single 21 nt contiguous sequence match in a large carrier molecule was sufficient to induce biological activity in the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). Further, as demonstrated in Miller et al. (2012), the potency of a dsRNAs is positively related to the number of potential 21 nt matches contained in the sequence and therefore the number of 21 nt matches should be considered as part of the relevant environmental exposure necessary for biological activity under realistic exposure scenarios for NTOs in the agroecosystem.

4.1.2. Barriers

Physical and biochemical barriers to the oral toxicity of dsRNAs also exist in many arthropod taxa. These include potential degradation of the dsRNA prior to ingestion as well as the inherent sensitivity of the organism to ingested dsRNA (Whyard et al., 2009). For example, recent studies on the tarnished plant bug (Lygus
lineolaris, Hemiptera) demonstrated that endonucleases present in saliva rapidly degrade dsRNA creating a barrier to an RNAi effect in this species by oral delivery of dsRNA (Allen and Walker, 2012). In addition, as summarized in recent reviews (Baum and Roberts, 2014; Huvenne and Smagghe, 2010), insects display a wide range of sensitivities to ingested dsRNA, with the order Coleoptera demonstrating significantly greater sensitivity than other insect orders. For example, the order Lepidoptera has demonstrated variable sensitivity to ingested dsRNA and high concentrations are required to elicit a response in this order relative to coleopterans (Huvenne and Smagghe, 2010; Terenius et al., 2011). Additionally, rapid degradation of dsRNA in the hemolymph of *Manduca sexta* has been reported and attributed to nuclease activity, indicating that sensitivity to RNAi may be influenced by the instability of dsRNA within the insect (Garbutt et al., 2013). Successful induction of RNAi in aquatic invertebrates (shrimp, e.g. *Penaeus monodon*) via ingestion has been achieved, however all reported successful cases involved stabilization of the dsRNA in the diet either via of nanoparticle encapsulation or feed coated with bacteria expressing the dsRNA (Sarathi et al., 2008). Therefore, RNAi in aquatic invertebrates from ingestion of RNA-based PIPs or other unformulated dsRNAs is not expected. Similar to the above barriers described for arthropods, all vertebrate digestive systems display commonalities in regards to structure and function such as enzymes that aid in digestion. The digestive systems of mammals and other vertebrates such as fish, reptiles and birds contain physical barriers such as the cellular membranes of the gut epithelium in addition to salivary endonucleases, harsh conditions in the stomach, and ribonucleases that hydrolyze nucleic acids in the gut lumen, and even nucleases in the blood (Houck, 1958; Park et al., 2006; Stevens and Hume, 1995). Therefore, the same digestive barriers that prevent oral activity of ingested RNA in insects are also applicable to other vertebrates.

To date, no successful feeding studies with naked (without transfection reagents) dsRNAs to induce an RNAi response have been achieved in vertebrate systems. Using mammal models (i.e. surrogate for non-target wild mammals), systemic delivery of RNA via the oral route has only been successful through the use of encapsulation to prevent degradation, or addition of chemical stabilization and penetration enhancers (Petrick et al., 2013). In avian species, successful RNAi has only been achieved with cell lines and/or embryos and has required the use of electroporation or other invasive techniques (Sifuentes-Romero et al., 2011; Ubuka et al., 2012). Likewise, successful RNAi with fish, amphibians and aquatic reptiles has only been achieved with cell lines and/or embryos and has required the use of transfection agents, direct injection, or other invasive techniques (Schyth, 2008; Sifuentes-Romero et al., 2011). In this ERA we evaluated a worst-case scenario exposure for an insectivorous avian species, *C. virginianus*. As would be predicted from the physiological barriers present in vertebrates and the selective activity of the DvSnf7 RNA, no adverse effects from 14-day of continuous exposure to DvSnf7 RNA were observed. As discussed previously, and consistent with these findings, no adverse effects were observed in a 28-day mouse repeat dose oral gavage study with the DvSnf7_968 RNA or a 42-day broiler chicken feeding study with MON 87411 grain containing the DvSnf7 RNA (U.S. EPA, 2015). Based on low exposure levels, physiological barriers to exposure, the likelihood of adverse effects to non-target terrestrial vertebrates from cultivation of MON 87411 is concluded to be extremely low.

Though aquatic habitats may be located near agricultural areas, the exposure of aquatic organisms to GE crops is limited temporally and spatially and the potential exposure of aquatic organisms is therefore low to negligible (U.S. EPA, 2010a). Additionally, DvSnf7 RNA has been shown to rapidly degrade in both terrestrial (Dubelman et al., 2014; Fischer et al., 2016b) and aquatic systems (Fischer et al., 2016a), further limiting the potential for exposure to aquatic taxa. Due to the aforementioned barriers, the lack of meaningful ecologically-relevant exposure to aquatic organisms from maize, other than through purposeful feeding of processed maize products, and the reported rapid degradation of DvSnf7 RNA in the environment, Tier 1 effects tests on aquatic species were not conducted for MON 87411. An 8-week channel catfish growth study has shown that no adverse effects are expected from feeding of processed maize products to with a diet consisting of 33% MON 87411 grain containing the DvSnf7 RNA (U.S. EPA, 2015).

In these studies, no adverse effects were observed in any NTO tested. Though barriers exist to systemic exposure in vertebrate species, the potential barriers to exposure in each invertebrate NTO was not characterized. Therefore, we cannot know which, if any, of these species (especially invertebrates) are recalcitrant to environmental/oral RNAi and hence cannot determine if the lack of adverse effects was related to the presence of barriers or lack of sequence match. In the absence of barriers, the bioinformatics assessment provided herein lends confidence to a conclusion that should exposure occur, significant sequence match does not exist between the DvSnf7 RNA and NTOs to elicit an adverse effect.

5. Conclusions

No adverse effects on NTOs were observed in a comprehensive battery of laboratory tests evaluating the potential adverse effects of DvSnf7 RNA/MON 87411 maize. These effects data, along with information on relevant exposure levels within the agroecosystem, were assessed with an approach that is consistent with EPA’s current testing and assessment framework for genetically engineered plants (e.g. *Bt*-expressing plants). This ERA framework has enabled scientifically sound regulatory decisions with adequate certainty of acceptable risk and within the standards established by FIFRA (i.e., no unreasonable effects to the environment) (U.S. EPA, 2010b). Additionally, a tripartite group (government, industry and academia) evaluated this ERA approach and concluded that the current ERA framework and effects testing requirements for NTOs are applicable to plants engineered to express insecticidal RNA (ILSI-CERA, 2011).

As discussed, a key component of problem formulation is the identification of plausible risk hypotheses and evaluation of relevant routes of exposure through the conceptual model. In the case of MON 87411, based on the expected environmental exposure routes in the maize agroecosystem, the known environmental exposure concentrations, and the natural digestive barriers and physiological differences between NTOs, there is little probability of NTOs encountering DvSnf7 RNA in high enough concentrations to induce off-target effects as observed in the pharmaceutical literature and cautioned by Lundgren and Duan (2013). It is well established that RNAi is a sequence-specific mechanism, and activity is only possible when sufficient uptake and sequence complementarity to the target mRNA exists that leads to mRNA cleavage followed by gene silencing. There must be sufficient exposure to and uptake of the DvSnf7 RNA, sequence match, and sensitivity to RNAi in a given taxa for there to be a potential adverse effect.

Combining the lines of evidence from i) bioassays designed with appropriate duration and relevant endpoints to detect adverse and off-target effects specific to the known MOA of the DvSnf7 dsRNA in the target pest, ii) a spectrum of activity limited to within the Galerucinae, and iii) no adverse effects to NTOs from oral exposure to environmental dsRNA at MOE factors >10, and iv) rapid degradation in the environment, it can be concluded with reasonable certainty that there is low likelihood of MON 87411 maize adversely affecting NTOs at field exposure levels.
MON 87411 is the first commercial RNAi insecticidal PIP. As such, the studies incorporated in this ERA were not only designed to address specific risk hypotheses, but also intended to lay the foundation for regulatory approvals of a new class of insecticides and provide data that will aid in communicating the environmental safety for an insecticidal RNA. For future RNAi products, consideration should be given to whether representatives of wild birds and mammals that have barriers to systemic exposure to RNA should be tested for an RNA-based product with low environmental exposure. Additionally, as a sequence based mechanism with a high potential for specificity, the selection of dsRNAs to have a narrow spectrum of activity can limit the potential for adverse effects beyond a select and closely related group of insects, thus building a case for the reduction of the number and types of invertebrate NTOs required for testing to make a sound and science-based conclusion on potential ecological risks. This opinion was expressed in the consensus points on the 2011 ILSI-CERA conference on “Problem Formulation for the Environmental Risk Assessment of RNAi Plants” where it was recognized that bioinformatic data coupled with activity spectra evaluations can be used to reduce the scope of NTO testing (ILSI-CERA, 2011).

Acknowledgements

All funding for this manuscript was provided by the Monsanto Company and all authors are employees of the Monsanto Company.
We gratefully acknowledge Kara Giddings, Kevin Glenn, Jenny Murphy, Jay Petrick, Greg Watson, and Ray Dobert for their review and constructive comments on this manuscript.
We thank Kathy Richards at California Agricultural Research Inc; Russell Vaughan, Stephen Vinall, Gary Tew, and Michael Mead-Briggs at Mambo-Tox Ltd; Patrick Hubbard at Wildlife International; Jennifer Stafford at Smithers Viscount Carolina Research Center; and Samuel Hendrix at Colorado Quality Research Inc, for assistance in conducting some of these studies. We thank the following for providing study support: Laura Barbersis, David Carson, Joshua Fischer, Jennifer Fridley, Mark Paradise and Fatima Zapata for laboratory studies; Colton Kessenich and Andre Silvanovich for the in silico analysis; Zihong Song, Hao Chen, Jason Ward, and Qian Tian for the in planta expression data; and Gregory Friedich and Eric Park for the catfish and broiler chicken studies.

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.yrtph.2016.08.001.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.yrtph.2016.08.001.

References

Huvene, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and po-

The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) has developed this decision document to comply with the requirements of the National Environmental Policy Act (NEPA) of 1969, as amended, the Council of Environmental Quality (CEQ) regulations implementing NEPA, and the USDA APHIS NEPA-implementing regulations and procedures (7 Code of Federal Regulations (CFR) part 372). This NEPA decision document, a Finding of No Significant Impact (FONSI), sets forth APHIS’ NEPA decision and its rationale. Comments from the public involvement process were evaluated and considered in developing this NEPA decision.

In accordance with APHIS procedures implementing NEPA (7 CFR part 372), APHIS has prepared an Environmental Assessment (EA) to evaluate and determine if there are any potentially significant impacts to the human environment from a determination on the regulated status of a petition request (APHIS No. 13-290-01p) by Monsanto Company, St. Louis, Missouri (referred to as “Monsanto” in this document) for Monsanto 87411 Maize (referenced in this document as “MON 87411 Maize”), genetically engineered for resistance\(^1\) to the herbicide, glyphosate, and to control corn rootworms.

\(^1\) “Resistance” to herbicides is defined by the Herbicide Resistance Action Committee (HRAC) as the inherited ability of a plant population to survive and reproduce following repeated exposure to a dose of herbicide normally lethal to the wild type. Several technologies are available that can be used to develop herbicide resistance in plants including classical breeding, tissue culture, mutagenesis and genetic engineering. “Tolerance” is distinguished from resistance and defined by (HRAC. 2013. Guideline to the management of herbicide resistance. Herbicide Resistance Action Committee (HRAC) 2013. http://www.hracglobal.com/pages/ManagementofHerbicideResistance.aspx) as the inherent ability of a plant to survive and reproduce following exposure to an herbicide treatment. This implies that there was no selection or genetic manipulation to make the plant tolerant; it is naturally tolerant. Throughout the EA, and this FONSI, USDA-APHIS has used the terms “resistance” and “tolerance” consistent with the definitions of the HRAC. It should be noted however, that different terms for the same concept may be used interchangeably in some instances. In its petition to USDA-APHIS, Monsanto used the term “herbicide tolerant” throughout its documentation. This terminology can be considered synonymous with “herbicide-resistant” (HR) used in the EA and this FONSI.
MON 87411 Maize\(^2\) contains three GE modes-of-actions (MOAs): two for insect pest protection; one for resistance to the herbicide, glyphosate. The insect protection mechanisms are designed to control corn rootworms (CRWs), a major pest of maize in the United States.

MON 87411 Maize contains two transgenes to control CRW. The *Cry3Bb1* gene protects against CRW larval feeding by promoting expression of an insecticidal crystalline (Cry) protein, Cry3Bb1. The *Cry3Bb1* gene is a modified form of a gene derived from the soil bacterium *Bacillus thuringiensis* subsp. *kumamotoensis*, also known as *Bt* (Monsanto, 2013). Crops producing Cry proteins are also known as *Bt* crops. Another transgene in MON 87411 Maize promotes expression of an interference RNA (RNAi). The RNAi expressed in MON 87411 Maize mediates a gene silencing mechanism that stops expression of a gene in western corn rootworm (*WCR*: *Diabrotica virgifera virgifera*) (Monsanto, 2013). When expression of the *Snf7* gene is suppressed by RNAi in WCR, production of the protein is suppressed. This results in WCR death (Bolognesi et al., 2012). This additional mechanism was developed and incorporated into MON 87411 Maize because some CRW populations, especially western corn rootworms (WCR) populations, have become resistant to the insecticidal Cry protein expressed by other *Bt* corn crops (Tabashnik et al., 2013; US-EPA, 2013; Gassmann et al., 2014).

MON 87411 Maize also contains the *epsp* gene coding sequence from an *Agrobacterium* sp. (strain CP4) that encodes the EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) protein that confers resistance to glyphosate (Monsanto, 2013). The CP4 EPSPS protein in MON 87411 Maize is identical to the CP4 EPSPS protein present in several other commercially available crops that are no longer regulated following USDA reviews (e.g., glyphosate resistant [GR] varieties of soybean, maize, cotton, sugar beet, canola, and alfalfa). Expression of this glyphosate resistance trait in MON 87411 Maize allows growers to make post-emergent applications of herbicide products containing glyphosate as the active ingredient (a.i.) for broad-spectrum weed control.

The EA was prepared to specifically evaluate the impacts on the quality of the human environment\(^3\) that may result from a determination of nonregulated status of MON 87411 Maize. The EA assessed alternatives related to a determination of nonregulated status of MON 87411 Maize, and analyzed the potential environmental and socioeconomic impacts that may result from the proposed action and the alternatives.

Regulatory Authority

\(^2\) The terms, “maize” and “corn” are used interchangeably throughout this document for crops and products derived from *Zea mays*.

\(^3\) Under NEPA regulations, the “human environment” includes “the natural and physical environment and the relationship of people with that environment” (40 CFR §508.14).
“Protecting American Agriculture” is the basic charge of APHIS. APHIS provides leadership in ensuring the health and care of plants and animals. The Agency improves agricultural productivity and competitiveness, and contributes to the national economy and public health. USDA asserts that all methods of agricultural production (conventional, organic, or the use of GE varieties) can increase farm income, and provide benefits to the environment and consumers.

Since 1986, the United States government has regulated GE organisms pursuant to a regulatory framework known as the Coordinated Framework for the Regulation of Biotechnology (Coordinated Framework) (51 FR 23302, 57 FR 22984). The Coordinated Framework, published by the Office of Science and Technology Policy, describes the comprehensive federal regulatory policy for ensuring the safety of biotechnology research and products and explains how federal agencies will use existing Federal statutes in a manner to ensure public health and environmental safety, while maintaining regulatory flexibility to avoid impeding the growth of the biotechnology industry. The Coordinated Framework is based on several important guiding principles: (1) agencies should define those transgenic organisms subject to review to the extent permitted by their respective statutory authorities; (2) agencies are required to focus on the characteristics and risks of the biotechnology product, not the process by which it is created; (3) agencies are required to exercise oversight of GE organisms only when there is evidence of “unreasonable” risk.

The Coordinated Framework explains the regulatory roles and authorities for the three major agencies involved in regulating GE organisms: USDA APHIS, the Food and Drug Administration (FDA), and the Environmental Protection Agency (EPA).

APHIS is authorized to regulate GE organisms that are potential plant pests under the plant pest provisions of the Plant Protection Act of 2000, as amended (7 USC §§ 7701 et seq.) to ensure that they do not pose a plant pest risk as defined in 7 CFR part 340.

The FDA regulates GE organisms under the authority of the Federal Food, Drug, and Cosmetic Act (FFDCA). The FDA is responsible for ensuring the safety and proper labeling of all foods for human consumption and animal feeds, including those that are genetically engineered or contain components and/or ingredients derived using genetic engineering. To help developers of food and feed derived from GE crops comply with their obligations under Federal food safety laws, FDA encourages them to participate in a voluntary consultation process. The FDA policy statement concerning regulation of products derived from new plant varieties, including those genetically engineered, was published in the Federal Register on May 29, 1992 (57 FR 22984). Under this policy, FDA uses consultation process to ensure that human food and animal feed safety issues or other regulatory issues (e.g., labeling) are resolved prior to commercial distribution of GE foods.

The EPA regulates plant-incorporated protectants (PIPs) under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). EPA also sets tolerance limits for residues of pesticides on and in food and animal feed, or establishes an exemption from the requirement for a tolerance, under the Federal Food, Drug and Cosmetic Act (FFDCA) and regulates certain biological control organisms under the Toxic Substances Control Act (TSCA). The EPA is responsible for regulating the sale, distribution and use of pesticides, including pesticides that are produced by an organism through techniques of modern biotechnology.

Regulated Organisms
The mission of APHIS Biotechnology Regulatory Services (BRS) is to protect America’s agriculture and environment using a dynamic, science-based regulatory framework that allows for the safe development and use of GE organisms. APHIS regulations at 7 CFR part 340 were promulgated pursuant to authority under the Federal Plant Pest Act. This authority has since been replaced by the plant pest provisions of the Plant Protection Act (PPA) of 2000, as amended (7 United States Code (U.S.C.) 7701-7772), which allows the Agency to regulate the introduction (importation, interstate movement, or release into the environment) of certain GE organisms and products. A GE organism is no longer subject to the plant pest provisions of the Plant Protection Act or to the regulatory requirements of 7 CFR part 340 when APHIS determines that it is unlikely to pose a plant pest risk. A GE organism is considered a regulated article under 7 CFR part 340 if the donor organism, recipient organism, vector, or vector agent used in engineering the organism belongs to one of the taxa listed in the regulation (7 CFR 340.2), and is also considered a plant pest. A GE organism is also regulated under 7 CFR part 340 if the Administrator determines the GE organism is a plant pest or has reason to believe is a plant pest. An individual may petition APHIS for a determination that a particular regulated article is unlikely to pose a plant pest risk, and therefore, is no longer regulated under the plant pest provisions of the Plant Protection Act or the regulations at 7 CFR part 340. Under §340.6(c) (4), petitioners are required to provide information related to plant pest risk that the agency may use to determine whether the regulated article is unlikely to present a greater plant pest risk than the unmodified organism. A GE organism is no longer subject to the regulatory requirements of 7 CFR part 340 or the plant pest provisions of the Plant Protection Act when APHIS determines that it is unlikely to pose a plant pest risk.

APHIS’ Response to Petition for Nonregulated Status

Under the authority of the plant pest provisions of the Plant Protection Act and 7 CFR Part 340, APHIS has issued regulations for the safe development and use of GE organisms. As required by 7 CFR 340.6, APHIS must respond to petitioners who request a determination of the regulated status of GE organisms, including GE plants such as MON 87411 Maize. When a petition for nonregulated status is submitted, APHIS must determine if the GE organism of concern is likely to pose a plant pest risk. If APHIS determines, based on its Plant Pest Risk Assessment (PPRA), that the GE organism is unlikely to pose a plant pest risk, the GE organism is no longer subject to regulation under 7 CFR part 340.

MON 87411 Maize

MON 87411 Maize is currently regulated under 7 CFR part 340. Interstate movement and confined field releases of MON 87411 Maize were conducted under notifications acknowledged by APHIS, since 2010. These trials were conducted in diverse growing regions within the United States that include Arkansas, California, Colorado, Georgia, Hawaii, Iowa, Illinois, Indiana, Kansas, Louisiana, Michigan, Minnesota, Missouri, Mississippi, Nebraska, North Carolina, Ohio, Pennsylvania, Puerto Rico, South Dakota, Tennessee, Texas, and Wisconsin. Details about and data resulting from these field trials are described in the MON 87411 Maize petition (Monsanto, 2013), and were analyzed for plant pest risk in a preliminary Plant Pest Risk Assessment (PPRA) (USDA-APHIS, 2014).

Coordinated Framework Review
Food and Drug Administration

Mon 87411 Maize is within the scope of the FDA policy statement concerning regulation of products derived from new plant varieties, including those produced by genetic engineering. It is genetically engineered for resistance to glyphosate and control of corn rootworms. In June 2006, FDA published recommendations in “Guidance for Industry: Recommendations for the Early Food Safety Evaluation of New Non-Pesticidal Proteins Produced by New Plant Varieties Intended for Food Use” (US-FDA, 2011). These recommendation established voluntary food safety evaluations for new non-pesticidal proteins produced by new plant varieties, including GE plants, intended for use as food. Early food safety evaluations are designed to ensure that potential food safety issues related to a new protein in a new plant variety are addressed early in development.

Monsanto completed its submission of its safety and nutritional assessment of food and feed derived from MON 87411 Maize to FDA on March 14, 2014. All materials relevant to this notification were placed in a file designated as BNF 000145 by FDA. Based on the information Monsanto submitted, FDA acknowledged in a letter on October 17, 2014 that it had no further questions concerning food and feed derived from MON 87411 Maize.

Environmental Protection Agency

EPA has authority under FIFRA to establish pesticide use restrictions. These are listed on pesticide labels which are prepared during the pesticide registration process. Mon 87411 Maize is similar to currently available glyphosate-resistant (GR) maize varieties. Monsanto indicates that there will be no change in the use pattern for glyphosate on this glyphosate-resistant variety. APHIS used the current glyphosate labels relevant to applications for corn production as the basis for its evaluation of the potential impacts associated with the use of and exposure to glyphosate. EPA also regulates plants that express Bt proteins, as part of its authority to oversee plant-incorporated protectants (PIP), and the protein expressed by Mon 87411 has already been commercialized with extensive field use. Mon 87411 Maize incorporates an additional PIP DvSnf7 RNA that is expressed in the plant and specifically targets corn rootworm. EPA has produced an Environmental Risk Assessment for a FIFRA Section 3 Limited Seed Increase (US-EPA, 2015), based on Monsanto’s submitted results required by provisions of the ecological impact assessment method used for other PIPs. However, this will not necessarily be the same analysis used for future products. As EPA notes, “because of uncertainties associated with the potential for unexpected effects related to exposure to dsRNA, EPA raised questions to the SAP (Science Advisory Panel) regarding the applicability of the above approach to dsRNA PIPs. The SAP found that this approach was not sufficient to determine risks to nontarget organisms, and suggested an alternative framework (see pages 61-64 of the SAP minutes), which EPA is currently evaluating” (US-EPA, 2015). EPA plans to initially provide a limited acreage seed increase permit for two years to the product. EPA has also asked Monsanto for additional details about data and observations already supplied to EPA by Monsanto which will become part of the data package needed for the EPA permit for commercial use on Mon 87411 (US-EPA, 2015).

Scope of the Environmental Analysis.

Although a determination of nonregulated status of Mon 87411 Maize would allow for new plantings of Mon 87411 Maize anywhere in the United States, APHIS primarily focused the environmental analysis on those geographic areas that currently support corn production. A
determination of nonregulated status of Mon 87411 Maize is not expected to increase corn production by its availability alone, or when accompanied by other factors, nor should it cause an increase in overall GE-corn acreage. To identify areas in the United States where corn is produced, APHIS used data from the National Agricultural Statistics Service (NASS, 2014).

Public Involvement

In a *Federal Register* notice (79 FR 13035-6) on March 7, 2014, APHIS announced the availability of the petition for public review and comment (Docket No. APHIS-2014-0007). The 60-day public comment period closed on May 7, 2014. APHIS received 423 comments during the period the petition was available for public review. Comments are available for public review in the docket file at:

http://www.regulations.gov/#!docketDetail;D=APHIS-2014-0007

On June 1, 2015, APHIS published a notice in the *Federal Register* (77 FR 13258-13260, Docket No. APHIS-2011-0129) announcing the availability of the MON 87411 Maize draft EA and preliminary PPRA for public review and comment. The comment period closed on July 1, 2015. APHIS received 12 comments during this review process. Responses to these comments are included in an addendum to this FONSI.

Major Issues Addressed in the EA

Issues discussed in the EA were identified by considering public concerns and issues described in public comments for the petition for nonregulated status of MON 87411 Maize and other environmental assessments of GE organisms. Issues identified in lawsuits, and those submitted by various stakeholders were also discussed. These issues, including those regarding the agricultural production of corn using various production methods, and the environmental food/feed safety of GE plants, were addressed to analyze the potential environmental impacts of MON 87411 Maize.

The EA describes the alternatives considered and evaluated using the issues identified. The alternatives encompassed the following topics that were identified as important to the scope of the analysis (40 CFR 1508.25):

Agricultural Production:

- Areas and Acreage of Maize Production
- Agronomic Practices
- Organic Maize Farming and Specialty Corn Production

Environmental Resources:

- Soil Quality
- Water Resources
- Air Quality
• Climate Change
• Animal Communities
• Plant Communities
• Soil Microorganisms
• Biological Diversity
• Gene Movement

Human Health:
• Public Health
• Worker Health and Safety

Animal Health:
• Animal Feed
• Livestock Health

Socioeconomics:
• Domestic Economic Environment
• Trade Economic Environment

Alternatives that were fully analyzed

The EA analyzes the potential environmental consequences of a determination of nonregulated status of MON 87477 Maize. To respond favorably to a petition for nonregulated status, USDA-APHIS must determine that MON 87411 Maize is unlikely to pose a plant pest risk. Based on its PPRA (USDA-APHIS, 2014), USDA-APHIS made a determination that MON 87411 Maize is unlikely to pose a plant pest risk. Therefore, APHIS must determine that MON 87411 Maize is no longer subject to 7 CFR part 340 or the plant pest provisions of the PPA. Two alternatives were evaluated in the EA: (1) no action and (2) determination of nonregulated status of MON 87411 Maize. APHIS has assessed the potential for environmental impacts for each alternative in the “Environmental Consequences” section of the EA.

No Action: Continuation as a Regulated Article

Under the No Action Alternative, USDA-APHIS would deny the petition. MON 87411 Maize and progeny derived from MON 87411 Maize would continue to be regulated articles under the regulations at 7 CFR part 340. Permits issued or notifications acknowledged by APHIS would still be required for introductions of MON 87411 Maize and measures to ensure physical and
reproductive confinement would continue to be applied. APHIS might choose this alternative if there were insufficient evidence to demonstrate the lack of plant pest risk from the unconfined cultivation of MON 87411 Maize.

This alternative is not the Preferred Alternative because APHIS concluded through its PPRA that MON 87411 Maize is unlikely to pose a plant pest risk (USDA-APHIS, 2014). Choosing this alternative would not satisfy the purpose and need of making a determination of plant pest risk status and responding to the petition for nonregulated status.

Preferred Alternative: Determination That Mon 87411 Maize Is No Longer a Regulated Article

Under this alternative, MON 87411 Maize and progeny derived from this event would no longer be regulated articles under the regulations at 7 CFR part 340. MON 87411 Maize is unlikely to pose a plant pest risk (USDA-APHIS, 2014b). Permits issued or notifications acknowledged by APHIS would no longer be required for introductions of MON 87411 Maize and progeny derived from this event.

This alternative best meets the purpose and need to respond appropriately to a petition for nonregulated status based on the requirements in 7 CFR part 340 and the Agency’s authority under the plant pest provisions of the PPA. Based on the Agency’s conclusion that MON 87411 Maize is unlikely to pose a plant pest risk, a determination of nonregulated status of MON 87411 Maize is a response that is consistent with the plant pest provisions of the PPA, the regulations codified in 7 CFR part 340, and the biotechnology regulatory policies of the Coordinated Framework. Under this alternative, growers may have future access to MON 87411 Maize and progeny derived from this event if the developer decides to commercialize MON 87411 Maize.

Alternatives Considered but Rejected From Further Consideration

APHIS assembled a list of alternatives that might be considered for MON 87411 Maize. APHIS evaluated these alternatives according to the Agency's authority under the plant pest provisions of the PPA, and the regulations at 7 CFR part 340, with respect to environmental safety, efficacy, and practicality to identify which alternatives would be further considered for MON 87411 Maize. Based on this evaluation, APHIS rejected several alternatives. These alternatives are discussed briefly below with the specific reasons for rejecting each.

Prohibit Any MON 87411 Maize from Being Released

In response to public comments that stated a preference that no GE organisms enter the marketplace, APHIS considered prohibiting the release of MON 87411 Maize, including denying any permits associated with the field testing. APHIS determined that this alternative is not appropriate because MON 87411 Maize is unlikely to pose a plant pest risk (USDA-APHIS, 2014).

In enacting the PPA, Congress found that:

> . . . “decisions affecting imports, exports, and interstate movement of products regulated under this title [i.e., the PPA] shall be based on sound science;”

8
On March 11, 2011, in a Memorandum for the Heads of Executive Departments and Agencies, the White House Emerging Technologies Interagency Policy Coordination Committee developed broad principles, consistent with Executive Order 13563, to guide the development and implementation of policies for oversight of emerging technologies (such as genetic engineering) at the agency level. In accordance with this memorandum, agencies should adhere to Executive Order 13563 and, consistent with that Executive Order, the following principle, among others, to the extent permitted by law, when regulating emerging technologies:

“[D]ecisions should be based on the best reasonably obtainable scientific, technical, economic, and other information, within the boundaries of the authorities and mandates of each agency”

Based on its PPRA (USDA-APHIS, 2014) and the scientific data evaluated therein, USDA-APHIS concluded that MON 87411 Maize is not likely to pose a plant pest risk. Accordingly, there is no basis in science for prohibiting the release of MON 87411 Maize.

Approve the Petition in Part

The regulations at 7 CFR part 340.6(d)(3)(i) state that USDA-APHIS may "approve the petition in whole or in part." For example, a determination of nonregulated status in part may be appropriate if there is a plant pest risk associated with some, but not all events described in a petition. Because USDA-APHIS has concluded that MON 87411 Maize is unlikely to pose a plant pest risk, there is no regulatory basis under the plant pest provisions of the PPA for considering approval of the petition only in part.

Isolation Distance between MON 87411 Maize and Non-GE Maize and Geographical Restrictions

In response to public concerns of gene movement between GE and non-GE plants, APHIS considered requiring an isolation distance separating MON 87411 Maize from non-GE maize production. However, because APHIS has concluded that MON 87411 Maize is unlikely to pose a plant pest risk (USDA-APHIS, 2014b), an alternative based on requiring isolation distances would be inconsistent with the statutory authority under the plant pest provisions of the PPA and regulations in 7 CFR part 340.

APHIS also considered geographically restricting the production of MON 87411 Maize based on the location of production of non-GE maize in organic production systems in response to public concerns regarding possible gene movement between GE and non-GE plants. However, as presented in the Agency’s PPRA for MON 87411 Maize, there are no geographic differences associated with any identifiable plant pest risks for MON 87411 Maize (USDA-APHIS, 2014). Therefore, to be consistent with this determination, this alternative was rejected and not analyzed in detail. APHIS has concluded that MON 87411 Maize does not pose a plant pest risk, and will not exhibit a greater plant pest risk in any geographically restricted area (USDA-APHIS, 2014). Therefore, such an alternative would not be consistent with the APHIS statutory authority under the plant pest provisions of the PPA, the regulations in 7 CFR part 340 and the biotechnology regulatory policies described in the Coordinated Framework.

Based on the foregoing, the imposition of isolation distances or geographic restrictions would not meet APHIS’ purpose and need to respond appropriately to a petition for nonregulated status
based on the requirements in 7 CFR Part 340 and the Agency’s authority under the plant pest provisions of the Plant Protection Act. Nevertheless, APHIS is not expecting significant impacts. However, individuals might choose on their own to geographically isolate their non-GE maize productions systems from MON 87411 Maize or to use isolation distances and other management practices to minimize gene movement between cornfields. Information to assist growers in making informed management decisions for hybrid stacks based on MON 87411 Maize is available from Association of Official Seed Certifying Agencies (AOSCA, 2011).

Requirement of Testing for MON 87411 Maize

During comment periods for other petitions for nonregulated status, some commenters requested USDA to require and provide testing for GE products in non-GE production systems. USDA-APHIS notes that there are no nationally-established regulations involving testing, criteria, or limits of GE material in non-GE systems. Such a requirement would be extremely difficult to implement and maintain. Because MON 87411 Maize also does not pose a plant pest risk (USDA-APHIS, 2014), the imposition of any type of testing requirements is inconsistent with the plant pest provisions of the PPA, the regulations at 7 CFR part 340, and the biotechnology regulatory policies embodied in the Coordinated Framework. Therefore, imposing such a requirement for MON 87411 Maize would not meet the USDA-APHIS purpose and need to respond appropriately to the petition in accordance with its regulatory authorities.

Environmental Consequences of APHIS’ Selected Action

The EA contains a full analysis of the alternatives to which we refer the reader for specific details. The following table briefly summarizes the results for each of the issues fully analyzed in the Environmental Consequences section of the EA.
Table 1. Summary of Potential Impacts and Consequences of Alternatives.

<table>
<thead>
<tr>
<th>Attribute/Measure</th>
<th>Alternative A: No Action</th>
<th>Alternative B: Determination of Nonregulated Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets Purpose, Need and Objectives:</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unlikely to pose a plant pest risk:</td>
<td>Satisfied by regulated field trials.</td>
<td>Satisfied by risk assessment (USDA-APHIS, 2014)</td>
</tr>
</tbody>
</table>

Management Practices

| Areas and Acreage of Corn Production: | 90% of U.S. corn is GE; 70% is stacked with HR and IR traits. Market economics is the primary factor influencing U.S. corn acreage and areas of production. | Areas and acreage devoted to corn production are not expected to change. |

| Herbicide Use and Weed Management Practices: | Weeds resistant to glyphosate and other herbicides will continue to increase. As HR weeds become more prevalent, growers are expected to shift to more costly weed control measures or other HR crops that are economically viable. Some potential exists for use of increased conventional tillage or reduced conservation tillage. Growers of corn not resistant to herbicides are likely to continue the use of herbicides | Populations of weeds resistant to glyphosate and other herbicides will increase. Growers will continue to use herbicides in addition to glyphosate along with herbicide mixtures to control and avoid new resistant weed populations. Because MON 87411 is also resistant to glyphosate, it will be replacing other GR varieties and little or no change will accompany adoption of nonregulated MON 87411 Maize. |

<p>| Insecticide Use: | EPA approves and labels uses of herbicides on corn and PIPs in GE corn. Chemical insecticide use has declined since the introduction of IR corn varieties. | Insecticide use likely to be unchanged or minimally changed (possibly reduced) compared to No Action Alternative (Coupe and Capel, 2015). |</p>
<table>
<thead>
<tr>
<th>Attribute/Measure</th>
<th>Alternative A: No Action</th>
<th>Alternative B: Determination of Nonregulated Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Farming:</td>
<td>An extremely small amount (0.25%) of corn production is certified organic and some may be grown outside major GE corn-growing sites.</td>
<td>Planting of organic corn is unlikely to change.</td>
</tr>
<tr>
<td>Specialty Corn Including Seed Production:</td>
<td>The U.S. specialty corn crop is small (5%) compared to total U.S. corn production.</td>
<td>Planting of specialty corn is unlikely to change.</td>
</tr>
</tbody>
</table>

Physical Environment

<table>
<thead>
<tr>
<th>Land Use:</th>
<th>Current trends in acreage and areas of production are likely to continue to be driven by market conditions for corn and corn products, by ethanol, animal feed needs and by Federal policy.</th>
<th>Current trends in acreage and production are likely to continue to be driven by market use and Federal policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Quality:</td>
<td>Herbicide use in conjunction with HR corn has promoted conservation tillage; IR corn reduces reliance on chemical insecticides. Both tend to preserve or enhance soil quality.</td>
<td>Herbicide use with HR corn will continue to promote conservation tillage. MON 84711 is not expected to change the composition or structure of microbial communities.</td>
</tr>
<tr>
<td>Water Resources:</td>
<td>Agricultural NPS pollution sources (e.g., increased sedimentation from soil erosion; fertilizer and chemical pesticide residues) have declined as agronomic practices such as conservation tillage that mitigate runoff have been adopted for corn production.</td>
<td>Beneficial consequences of continued use of conservation tillage will remain the same as the No Action Alternative.</td>
</tr>
<tr>
<td>Attribute/Measure</td>
<td>Alternative A: No Action</td>
<td>Alternative B: Determination of Nonregulated Status</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Air Quality:</td>
<td>Pollution from agricultural sources (dust from tilling; drift/diffusion/volatilization of farm chemicals; exhaust emissions from mechanized farm equipment) have declined as mitigating agronomic practices such as conservation tillage have increased in conjunction with the introduction of GE corn.</td>
<td>Pollution from agricultural sources will continue to decline.</td>
</tr>
<tr>
<td>Climate Change:</td>
<td>Agriculture-related activities that are sources of GHGs (e.g., exhaust from mechanized farm equipment; soil disturbance from tillage; fertilizer applications) have declined with the introduction of GE corn.</td>
<td>GHGs would continue to decline with determination of non-regulated status of MON84711.</td>
</tr>
</tbody>
</table>

Biological Resources

<p>| Animal Communities: | Currently available insect resistant corn varieties do not impact populations of vertebrate and most invertebrate animals other than target pest species (e.g., European corn borer; CRWs). Non-target invertebrates are generally more abundant in Bt-corn fields than in fields of non-GE corn. | Expected to be the same as under the No Action Alternative. Studies have shown no adverse effects on vertebrate or invertebrate animals from diet containing the MON 84711 product or the dsRNA sequences that are produced by it. EPA regulates PIPs in IR corn and herbicides applied to HR corn, and determines whether specific PIPs including the RNAi PIP that is a subject of the EA, pose an unacceptable risk or impact on non-target organisms. |</p>
<table>
<thead>
<tr>
<th>Attribute/Measure</th>
<th>Alternative A: No Action</th>
<th>Alternative B: Determination of Nonregulated Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Communities:</td>
<td>Corn growers will continue to use accepted practices to control weeds. Because glyphosate will continue to be used in corn production, increased populations of glyphosate resistant weeds are expected. High intensity agriculture will have some impact on plant communities near corn agricultural fields</td>
<td>MON 87411 is not a potential plant pest because it does not compete with native plant species, does not hybridize with relatives, and will not affect natural plant communities. Continued development of HR weeds is likely to continue, including the potential for development of weeds with resistance to multiple modes of action. Because MON 87411 is GR, replacing other GR varieties with this trait will have no new impacts. Corn growers use production practices to manage weeds in and around fields. EPA regulates herbicides applied to HR corn and PIPS, and determines whether they, including the RNAi PIP that is the subject of this final EA, pose an unacceptable risk or impact on non-target organisms including plants.</td>
</tr>
<tr>
<td>Soil Microorganisms:</td>
<td>Soil microbial communities will provide valuable resources to growers in the form of soil stability and quality, while responding to the transient impacts of common agricultural production practices.</td>
<td>Because MON 84711 has not been shown to impact soil microbial communities, determination of nonregulated status will not be expected to change microbial composition or structure.</td>
</tr>
<tr>
<td>Biological Diversity:</td>
<td>Currently available Bt-corn crops may increase non-target abundance compared to those treated with broad-spectrum insecticides. There is no evidence of landscape-level impacts from currently available IR HR corn varieties.</td>
<td>Field testing of MON 87411 in three countries has not shown any impacts on arthropod diversity when compared with fields planted to non-RNAi expressing varieties. MON 87411 is not expected to alter biological diversity. EPA regulates impacts on biological diversity based on unacceptable risk or impact to non-target organisms.</td>
</tr>
<tr>
<td>Attribute/Measure</td>
<td>Alternative A: No Action</td>
<td>Alternative B: Determination of Nonregulated Status</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gene Movement:</td>
<td>Cultivated corn varieties can cross pollinate. Growers and seed-corn producers use various management practices to eliminate undesired cross pollination.</td>
<td>Current practices to maintain genetic purity of corn stocks are effective (Ireland, 2006). MON 84711 will not change these practices.</td>
</tr>
<tr>
<td>Public Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Health:</td>
<td>All corn varieties are associated with the same risks deriving from agricultural practices. Allergenicity to corn will continue to affect a small percentage of the population.</td>
<td>Neither the products of the RNAi mechanism associated with subject of this final EA (dsDvSnf7), nor the Cry proteins of Bt-corn products, nor the EPSPS protein are toxic to humans, and there are no known allergenic properties for humans.</td>
</tr>
<tr>
<td>Worker Safety:</td>
<td>EPA regulates herbicides applied to HR corn. Workers that routinely handle glyphosate may be exposed during spray operations. Because of low acute toxicity of glyphosate and absence of evidence of carcinogenicity and other toxicological concerns, occupational exposure data is not required for reregistration. However, EPA has classified</td>
<td>There are no effects of MON 87411 and its expressed RNAi dsDvSnf7 sequence on human health and no expectations of adverse worker exposure to the MON 87411 variety with its expressed Bt and EPSPS protein or exposure to the herbicide glyphosate.</td>
</tr>
<tr>
<td>Animal Feed:</td>
<td>Corn products will continue to be used in livestock feed.</td>
<td>Neither the products of the RNAi –based MON 87411 (expressing the dsDvSnf7), the Cry proteins of this Bt-corn variety nor the EPSPS protein are known to be toxic to animal species fed corn products aside from targeted insects.</td>
</tr>
<tr>
<td>Socioeconomic Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute/Measure</td>
<td>Alternative A: No Action</td>
<td>Alternative B: Determination of Nonregulated Status</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Domestic Economic Environment:</td>
<td>The US will continue to produce both GE and conventional corn varieties.</td>
<td>Farm income is positively impacted by currently available Bt and HR corn by reducing production costs or increasing revenues. Pest-resistant corn generally has a positive impact on farm income because of cost savings from reduced pesticide use.</td>
</tr>
<tr>
<td>Trade Economic Environment:</td>
<td>The primary US corn export destinations are to the largest world importers of corn and do not have barriers for importing food or feed commodities produced from transgenic crops including those with insect resistance traits. Nevertheless, import of each specific trait</td>
<td>Export of MON 84711 will require applications and approvals by the importing country, and Monsanto has begun to seek those approvals.</td>
</tr>
</tbody>
</table>

Other Regulatory Approvals

U.S. Agencies:

On March 31, 2004, the EPA established a permanent exemption from the requirement of a tolerance for the PIP, *Bacillus thuringiensis* Cry3Bb1 protein, and the genetic material necessary for its production in food and feed commodities of field corn, sweet corn and popcorn (40 CFR § 180.1214).

In a letter dated October 17, 2014 (Appendix A of this final EA), FDA confirmed completion of a consultation for a food/feed safety and nutritional assessment for Monsanto’s 87411 corn. A summary of findings was submitted to FDA in November 2013.

Compliance with Other Laws

| CAA, CWA, EOs: | Fully compliant | Fully compliant |

¹Unchanged—the current conditions will not change as a result of the selection of this alternative;

²Minimal—the current conditions may change slightly as a result of the selection of this alternative, but the changes, if any, are negligible.
Finding of No Significant Impact

APHIS’ analysis in the EA indicates that there will not be any significant impacts, individually or cumulatively, on the quality of the human environment as a result of this action. I agree with this conclusion and therefore find that an Environmental Impact Statement is not required. This NEPA determination is based on the following context and intensity factors as required by NEPA regulations (40 CFR 1508.27).

Context - The term “context” identifies potentially affected resources, the locations, and the specific circumstances and conditions in which the environmental impacts may occur. This action has potential to affect conventional and organic corn production systems, including surrounding environments and agricultural workers, human food and animal feed production systems, and foreign and domestic commodity markets.

Corn is grown in all 48 states of the conterminous continental United States. The highest concentration of production is located in the central United States (USDA-ERS, 2013a; USDA-NASS, 2013). The two states with the most production are Iowa and Illinois. They account for slightly more than a third of the United States (USDA-ERS, 2014c).

During the past two decades, corn acreage has increased. In 2000, 25% of U.S. corn production was from GE varieties (USDA-ERS, 2013b). In 2002, stacked hybrids were introduced. This led to a further increase in acreage of GE corn (Fernandez-Cornejo et al., 2014). By 2009, GE corn acreage exceeded 70% of the total in all major corn-growing states except Ohio (67%) (Fernandez-Cornejo et al., 2014). By 2013, 90% of the 87.6-million-acre U.S. crop was produced from GE corn.

In the period, 2006-2012, acreage of corn planted annually in the United States increased because market prices favored the planting of corn over alternative crops. In addition to the demand for feed grain, strong demand for ethanol production resulted in higher corn prices, which corresponded to an incentive to growers to increase acreage (USDA-ERS, 2013a). The increase in acreage involved all varieties of corn and occurred throughout the corn growing areas (USDA-ERS, 2010). In many cases, farmers increased corn acreage by adjusting crop rotations. Other sources of land for increased corn plantings were conversion from pasture and fallow land, acreage returned to production from expiring Conservation Reserve Program contracts, and shifts from other crops, such as soybean and cotton (USDA-ERS, 2014). A determination of nonregulated status of MON 87411 Maize is not expected to directly affect these influences on production trends, nor cause an increase in agricultural acreage devoted to corn production in general and that devoted to GE-corn cultivation. The availability of MON 87411 Maize will not change cultivation areas for corn production in the United States, and there are no anticipated changes to the availability of GE- and non-GE corn varieties on the market.

Intensity – Intensity is a measure of the degree or severity of an impact based upon ten factors. The following factors were used as a basis for this decision:

1. Impacts that may be both beneficial and adverse.
A determination of nonregulated status of MON 87411 Maize will have no significant environmental impact on the availability of GE, conventional or organic corn varieties. As discussed in Chapter 4 of the EA, a determination of nonregulated status of Mon 87411 Maize is expected to neither directly result in an increase in overall U.S. acreage of corn production, nor acreage of GE-corn. The availability of MON 87411 Maize will not change the areas of cultivation for corn production in the United States, and there are no anticipated changes in the availability of GE and non-GE corn varieties on the market. A determination of nonregulated status of Mon 87411 Maize will add another GE corn variety to the corn market, but is not expected to change the market demands for GE corn or corn produced using organic methods.

APHIS analyzed the data provided by Monsanto for MON 87411 (Monsanto 2013) and has concluded in the EA that the availability of Mon 87411 Maize will not alter the agronomic practices, locations of corn production, nor the production methods and quality characteristics of conventional and GE corn seed production. The introduction of Mon 87411 Maize provides an alternative corn variety with traits that control CRW and the continuing sustainability of Bt proteins that are currently used for CRW control. The trait for resistance to glyphosate is similar to that of many current varieties of commercial corn, and would result in no new changes in development of weed resistance to glyphosate.

2. The degree to which the proposed action affects public health or safety.

A determination of nonregulated status of MON 87411 Maize would have no significant impacts on human or animal health. Compositional tests conducted by the petitioner indicate that MON 87411 Maize is compositionally similar to other commercially available GE corn varieties (Monsanto 2013). Monsanto initiated a consultation process with FDA for the commercial distribution of MON 87411 Maize and submitted a safety and nutritional assessment of food and feed derived from MON 87411 Maize to the FDA. In a letter dated October 17, 2014, FDA confirmed completion of this consultation. Based on the information Monsanto submitted, FDA confirmed that it had no further questions regarding MON 87411 Maize. Based on the FDA’s consultation, laboratory data and scientific literature provided by Monsanto (Monsanto 2013), and safety data available on other Bt-expressing and herbicide-resistant products, APHIS has concluded that MON 87411 Maize would have no significant impacts on human or animal health.

3. Unique characteristics of the geographic area such as proximity to historic or cultural resources, park lands, prime farmlands, wetlands, wild and scenic rivers, or ecologically critical areas.

There are no unique characteristics of geographic areas such as park lands, prime farm lands, wetlands, wild and scenic areas, or ecologically critical areas that would be adversely impacted by a determination of nonregulated status for MON 87411 Maize. The common agricultural practices that would be carried out under the proposed action will not cause major ground disturbance, nor cause any physical destruction or damage to property, wildlife habitat, or landscapes, and do not involve the sale, lease, or transfer of ownership of any property. This action is limited to a determination of nonregulated status of MON 87411 Maize. The product will be planted on agricultural land currently suitable for production of corn, will replace existing varieties, and is not expected to increase the acreage of corn production. This action
would not convert nonagricultural land, and therefore would have no adverse impact on prime farm land. Standard agricultural practices for land preparation, planting, irrigation, and harvesting of plants would be used on agricultural lands planted to MON 87411 Maize including the use of EPA-registered pesticides. The applicant’s adherence to EPA-label-use restrictions for all pesticides will mitigate potential impacts to the human environment. In the event of a determination of nonregulated status of MON 87411 Maize, the action is not likely to affect historic or cultural resources, park lands, prime farmlands, wetlands, wild and scenic rivers, or ecologically critical areas that may be in close proximity to corn production sites.

4. The degree to which the effects on the quality of the human environment are likely to be highly controversial.

The effects on the quality of the human environment following a USDA determination of nonregulated status for MON 87411 Maize are not highly contested by scientists or those who may be in a position to supply substantive information. Although APHIS received public comments opposed to a determination of nonregulated status of MON 87411 Maize, this action is not likely to be highly controversial in terms of size, nature or effect on the natural or physical environment. As discussed in Chapter 4 of the EA, a determination of nonregulated status is not expected to directly cause an increase in agricultural acreage devoted to corn production in general, nor acreage devoted to GE corn cultivation. The availability of MON 87411 Maize will not change cultivation areas for corn production in the United States, and there are no anticipated changes to the availability of non-GE- and GE-corn varieties on the market. A determination of nonregulated status of MON 87411 Maize would add another GE-corn variety to the conventional corn market and is not expected to change the market demands for GE corn or corn produced using organic methods. A determination of nonregulated status of MON 87411 Maize will not change current practices for planting, tillage, fertilizer application or use, cultivation, pesticide application or use, or volunteer control. Management practices and seed standards for production of certified corn seed would not change. The effect of MON 87411 Maize on wildlife or biodiversity is no different than that of other GE corn currently used in agriculture, or other GE or non-GE corn produced in conventional agriculture in the United States. EPA will provide initially for only a seed increase permit for two years and on limited acreage, and has requested additional information about observations conducted to study arthropod biodiversity already supplied by Monsanto (US-EPA, 2015).

5. The degree to which the possible effects on the human environment are highly uncertain or involve unique or unknown risks.

From the analysis documented in the EA, the possible effects on the human environment are understood, although as EPA acknowledged some “uncertainties associated with the potential for unexpected effects related to exposure to dsRNA” had to be considered by the Science Advisory Panel that offered advisement on the issues (US-EPA, 2015). However, EPA has produced an Environmental Risk Assessment for a FIFRA Section 3 Limited Seed Increase (US-EPA, 2015), based on the previous ecological impact assessment method used for other PIPs (US-EPA, 2015). The effects of the proposed determination of nonregulated status are based on the preponderance of evidence provided by Monsanto and by USDA’s assessment of potential risk through consideration of experimental evidence and factual information in the
scientific literature. USDA does not conclude that risks to the natural or physical environment are substantive ones.

As discussed in Chapter 4 of the EA, a determination of nonregulated status of MON 87411 Maize is expected to neither directly cause an increase in agricultural acreage devoted to corn production, nor increase acreage devoted to GE-corn cultivation. A determination of nonregulated status of MON 87411 Maize will not result in changes in the current practices of planting, tillage, fertilizer application/use, pesticide application/use or volunteer control. Management practices and seed standards for production of certified corn seed would not change. The effect of MON 87411 Maize on wildlife or biodiversity is neither different from that of other GE crops currently used in agriculture, nor that of other GE or non-GE corn produced in conventional agriculture in the United States. As described in Chapter 2 of the EA, well-established management practices, production controls, and production practices (GE, conventional, and organic) are currently being used in commercial corn crop and see production systems in the United States. Therefore, it is reasonable to assume that farmers who produce conventional corn (GE and non-GE varieties), or produce corn using organic methods, will continue to use these reasonable, commonly-accepted, best-management practices for their chosen systems and varieties during agricultural corn production. GE corn is also currently planted on the majority of U.S. corn acres. Based upon historic trends, conventional production practices that use GE varieties will likely continue to prevail in terms of acreage with or without a determination of nonregulated status of MON 87411 Maize. Given the extensive experience that APHIS, stakeholders, and growers have with the use of GE corn products, the possible effects to the human environment from the release of an additional GE-corn product are already well known and understood. Therefore, the impacts are not highly uncertain, and do not involve unique or unknown risks.

6. The degree to which the action may establish a precedent for future actions with significant effects or represents a decision in principle about a future consideration.

A determination of nonregulated status for MON 87411 Maize would not establish a precedent for future actions with significant effects, nor would it represent a decision in principle about a future decision. While the request to EPA for an Experimental Use Permit for MON 87411 represents a request for a new trait with a target dissimilar to any others already permitted (interference RNA to control an insect pest), EPA is using its current ecological risk assessment approach for PIPs that was developed primarily from experience with Bt-derived Cry and Vip proteins (US-EPA, 2015). However, this will not necessarily be the same analysis used for future products. As EPA notes, “because of uncertainties associated with the potential for unexpected effects related to exposure to dsRNA, EPA raised questions to the SAP [Science Advisory Panel] regarding the applicability of the above approach to dsRNA PIPs. The SAP found that this approach was not sufficient to determine risks to nontarget organisms, and suggested an alternative framework (see pages 61-64 of the SAP minutes), which EPA is currently evaluating” (US-EPA, 2015).

Similar to past regulatory requests reviewed and approved by APHIS, a determination of nonregulated status will be based on whether an organism is unlikely to pose a plant pest risk pursuant to the regulatory requirements of 7 CFR part 340. Each petition that APHIS receives is specific to a particular GE organism and undergoes this independent review to determine if
the regulated article poses a plant pest risk. Under the authority of the plant pest provisions of the PPA and 7 CFR part 340, APHIS has issued regulations for the safe development and use of GE organisms. As required by 7 CFR 340.6, APHIS must respond to petitioners who request a determination of the regulated status of GE organisms, including GE plants such as MON 87411 Maize. When a petition for nonregulated status is submitted, APHIS must determine if the GE organism is unlikely to pose a plant pest risk. If APHIS determines, based on its Plant Pest Risk Assessment, that the GE organism is unlikely to pose a plant pest risk, the GE organism is no longer subject to the plant pest provisions of the PPA and 7 CFR part 340.

7. **Whether the action is related to other actions with individually insignificant but cumulatively significant impacts.**

No significant cumulative effects were identified during this assessment. The EA discussed cumulative effects on corn management practices, human and animal health, and the environment, and concluded that such impacts were not significant. A cumulative effects analysis is provided in Chapter 5 of the EA. In the event APHIS reaches a determination of nonregulated status of MON 87411 Maize, APHIS would no longer have regulatory authority over it and would no longer regulate it. In the event of a determination of nonregulated status of MON 87411 Maize, APHIS has not identified any significant impact on the environment that may result from the incremental impact of a determination of nonregulated status of MON 87411 Maize when added to past, present, and reasonably foreseeable future actions.

8. **The degree to which the action may adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places or may cause loss or destruction of significant scientific, cultural, or historic resources.**

A determination of nonregulated status of MON 87411 Maize will not adversely impact cultural resources on tribal properties. Any farming activities that may be used by farmers on tribal lands are only conducted at the tribe’s request. Thus, the tribes have control over any potential conflict with cultural resources on tribal properties. A determination of nonregulated status of MON 87411 Maize would not impact districts, sites, highways, structures, or objects listed in, or eligible for listing in the National Register of Historic Places, nor would they likely cause any loss or destruction of significant scientific, cultural, or historic resources. This action is limited to a determination of nonregulated status of MON 87411 Maize. Standard agricultural practices for land preparation, planting, irrigation, and harvesting of plants would be used on these agricultural lands including the use of EPA-registered pesticides. Adherence to EPA-label-use restrictions for all pesticides will mitigate impacts to the human environment. A determination of nonregulated status of MON 87411 Maize is a decision that will not directly or indirectly cause alteration in the character or use of historic properties protected under the National Historic Preservation Act (NHPA). In general, common agricultural activities conducted under this action do not have the potential to introduce visual, atmospheric, or audible elements to areas where they are used that could result in effects on the character or use of historic properties. For example, there is potential for audible effects on the use and enjoyment of a historic property when common agricultural practices, such as the operation of tractors and other mechanical equipment, are conducted close to such sites. A built-in mitigating factor for this issue is that virtually all of the methods involved would only have temporary effects on the audible nature of a site and can be ended at any time to restore the
audible qualities of such sites to their original condition with no further adverse effects. These cultivation practices are also being conducted currently throughout the corn production regions. The cultivation of MON 87411 Maize does not inherently change any of these agronomic practices in way that would cause any impact under the NHPA.

9. **The degree to which the action may adversely affect the endangered or threatened species or its habitat that has been determined to be critical under the Endangered Species Act of 1973.**

As described in Chapter 6 of the EA, APHIS has analyzed the potential for effects from a determination of nonregulated status of MON 87411 Maize on federally-listed threatened and endangered species (TES), species proposed for listing, and designated critical habitat and habitat proposed for designation, as required under Section 7 of the Endangered Species Act. After reviewing possible effects of a determination of nonregulated status of MON 87411 Maize, APHIS has concluded that a determination of nonregulated status of MON 87411 Maize would have no effect on federally listed TES and species proposed for listing, or on designated critical habitat or habitat proposed for designation.

10. **Whether the action threatens a violation of Federal, State, or local law or requirements imposed for the protection of the environment.**

The proposed action would be in compliance with all Federal, state, and local laws. EPA regulates all plant incorporated products, including both traits that express either the Bt protein, or the dsRNA for DvSnf7. EPA in an Environmental Risk Assessment has determined that “the activity of the Cry3Bb1 protein expressed in MON 88017 was also determined to be biochemically and functionally equivalent to Cry3Bb1 expressed in MON 863 maize, and both were determined to have no unreasonable adverse effects on nontarget organisms (US-EPA, 2015). EPA has also concluded, “Based on the data and rationale presented, adverse effects to nontarget organisms are not expected as a result of the proposed seed increase registration of DvSnf7 expressed in MON 87411 corn.

Because APHIS has concluded that MON 87411 Maize is unlikely to pose a plant pest risk, a determination of nonregulated status of MON 87411 Maize is a response that is consistent with the plant pest provisions of the PPA, the regulations codified in 7 CFR part 340, and the biotechnology regulatory policies in the Coordinated Framework. Monsanto initiated the consultation process with FDA for the commercial distribution of MON 87411 Maize and submitted a safety and nutritional assessment of food and feed derived from MON 87411 Maize to the FDA (Monsanto 2013). Based on the information Monsanto submitted, FDA confirmed on October 17, 2014 that it had no further questions regarding MON 87411 Maize. MON 87411 Maize is compositionally similar to currently available corn on the market. There are no other Federal, state, or local permits that are needed prior to the implementation of this action.

NEPA Decision and Rationale

I have carefully reviewed the EA prepared for this NEPA determination and the input from the public involvement process. I believe that the issues identified in the EA are best addressed by selecting Alternative 2 (Determination that MON 87411 Maize is No Longer a Regulated Article). This alternative meets the APHIS purpose and need to allow the safe development and use of GE organisms consistent with the plant pest provisions of the PPA.
As stated in the CEQ regulations, "the agency's preferred alternative is the alternative which the agency believes would fulfill its statutory mission and responsibilities, giving consideration to economic, environmental, technical and other factors." The preferred alternative has been selected for implementation based on consideration of a number of environmental, regulatory, and social factors. Based upon our evaluation and analysis, Alternative 2 is selected because (1) it allows APHIS to fulfill its statutory mission to protect America's agriculture and environment using a science-based regulatory framework that allows for the safe development and use of GE organisms; (2) it allows APHIS to fulfill its regulatory obligations. As APHIS has not identified any plant pest risks associated with Mon 87411 Maize, the continued regulated status of MON 87411 Maize would be inconsistent with the plant pest provisions of the PPA, the regulations codified at 7 CFR part 340, and the biotechnology regulatory policies in the Coordinated Framework. For the reasons stated above, I have determined that a determination of nonregulated status of MON 87411 Maize will not have any significant environmental effects.

Michael J. Firko, Ph.D.
APHIS Deputy Administrator
Biotechnology Regulatory Services
Animal and Plant Health Inspection Service
U.S. Department of Agriculture

Date

10/23/2015
Response to Public Comments on Monsanto 87411 Maize

In a *Federal Register* notice (79 FR 13035-6) on March 7, 2014, APHIS announced the availability of the petition for public review and comment (Docket No. APHIS-2014-0007). The 60-day public comment period closed on May 7, 2014. APHIS received 423 comments during the period the petition was available for public review. Comments are available for public review in the docket file:

http://www.regulations.gov/#!docketDetail;D=APHIS-2014-0007

Issues identified in comments submitted for the petition were considered by APHIS as part of its environmental analysis process and responses were incorporated into the EA.

On March 6, 2015, APHIS published a notice in the Federal Register (77 FR 13035-13036, Docket No. APHIS-2014-0007) announcing the availability of the draft Environmental Assessment (EA) and preliminary plant pest risk assessment (PPRA) for a 60-day public review period. On June 1, 2015 the comment period was reopened for an additional 30 days (80 FR 30997-30998) Docket No. APHIS-2014-0007). APHIS received a total of 12 comments: two supported a decision of nonregulated status for MON 87411 Maize; nine were opposed. Comments can be reviewed in the docket file at:

http://www.regulations.gov/#!documentDetail;D=APHIS-2014-0007-0002

Most of the comments expressing opposition to nonregulatory status for MON 87411 Maize expressed general opposition to genetically engineered (GE) food, the belief that GE crops harm the environment, or the belief that GE crops are not beneficial to farmers. Several specific issues related to the Monsanto CRW-protected and GR maize EA were identified by the public. All comments received were evaluated on the basis of whether they addressed the issues in question, whether they were based on valid science, and whether they were reasonable and practicable.

One opposing comment included 67 attachments of documents and published articles. APHIS has extensively reviewed the relevant articles submitted with this comment. Thirty-one of these attachments were relevant to Monsanto’s petition and the EA; 63 either were not relevant to issues and topics considered in the EA, or were general review papers that did not provide any new information that had not been included in the EA.

Issues expressed in opposing comments related to Monsanto CRW-protected and GR maize EA were organized into categories. Substantive issues were identified and are addressed in the responses that follow. Some comments included more than one issue. Therefore, the number of issues that follow, and the Agency response to each of them, does not correspond to the number of opposing comments that were submitted for the EA.

Issue 1: The EA is based on incomplete and inadequate science and analyses, and lacks critical data and vital risk assessments.
Response 1: APHIS disagrees. The Agency reviewed all available information and performed a rigorous analysis of the consequences and uncertainties in its EA before making a decision. The CEQ requires that an EA must be based on the best-available information. It does not require that new studies be commissioned or that new data be developed to support a NEPA document and decision.

APHIS identified reasonable alternatives and analyzed them using available information from various sources, including the data provided by Monsanto (Monsanto, 2013) and that available in the peer-reviewed, scientific literature to make an informed regulatory decision regarding the possible plant pest risks that may be associated with MON 87411 CRW-protected and GR maize. The Agency concluded that this product is unlikely to pose a plant pest risk.

APHIS also carefully reviewed the information provided by the petitioner and all available other sources and considered the possible environmental effects of regulating MON 87411 Maize (no-action alternative) or not regulating it (preferred alternative). Using the best-available relevant scientific information, APHIS analyzed possible effects of MON 87411 Maize on the environment, and concluded in its EA that these effects would not cause significant impacts.

Issue 2: The broad geographical range and the widespread importance of corn as a major cropping system in the United States requires preparation of an environmental impact statement (EIS).

Response 2: APHIS notes that neither the geographical extent nor economic importance of a crop, such as corn, is primary requirements for initiating an EIS. NEPA regulations determined by CEQ clarify that the threshold establishing the need for an EIS is the identification of one or more significant environmental impacts by an agency during its analysis for completing an EA. APHIS prepared its EA to consider all possible environmental effects of the proposed action and the reasonable alternatives to that action, consistent with NEPA requirements (40 CFR parts 1500-1508, 7 CFR 1b, and 7 CFR part 372).

The EA specifically evaluated the possible effects on the quality of the human environment that may result from a determination of the regulated status of Monsanto CRW-protected and GR maize. APHIS assembled a list of alternatives and evaluated these alternatives consistent with the Agency's statutory authority under the plant pest provisions of the Plant Protection Act, the regulations at 7 CFR part 340, and NEPA requirements (40 CFR parts 1500-1508, 7 CFR 1b, and 7 CFR part 372). It considered environmental safety, efficacy, and practicality to identify which alternatives were the appropriate ones to evaluate before making its decision. As described in the EA, APHIS evaluated two alternatives; (1) no action and (2) a determination of nonregulated status for Monsanto’s rootworm-protected and glyphosate resistance maize. APHIS concluded that the determination of nonregulated status would not cause significant impacts on the environment. Therefore, APHIS does not need to prepare an EIS before making a regulatory decision about to MON 87411 Maize.

Issue 3: MON 87411 Maize is unique because it incorporates an “animal” gene:

Response 3: The SvSbf7 gene in MON 87411 Maize is based on the partial coding sequence of the Snf7 gene from the corn rootworm, a Coleopteran insect (Monsanto, 2013). Data indicate
that the gene product is very specific, and is known to target only the corn rootworm, but not other insects even within the same family. There is no protein produced from the SvSbf7 gene, but rather only dsRNA. APHIS has experience evaluating numerous GE plants which utilize RNAi technology. In addition, APHIS has experience evaluating a variety of GE plants which contain genes from divergent sources including plants, bacteria, and viruses, and marine invertebrates. Thus, MON 87411 Maize utilizes familiar technology and does not present unique risks that have not been considered in other GE plants.

Issue 4: The commenter claims that potentially significant impacts on cultural development were not addressed in the petition, PPRA and EA.

Response 4: APHIS notes that the term, “cultural development” is not defined in the guidelines for responding to NEPA established by CEQ nor by the APHIS-implementing regulations for NEPA. The Agency also notes that the petitioner is not required to address “cultural development” in a petition for nonregulatory status.

If cultural development issues are included as components of the domestic economic environment and the trade economic environment, then APHIS addressed these in its EA, and determined that neither the preferred alternative nor the no action alternative will cause significant impacts on the domestic or trade economic environment.

Issue 5: A simple risk assessment based on safety to humans or the environment is inadequate to evaluate potentially significant cultural reactions to DvSnf7 RNA, such as not accepting the presence in food containing novel genes expressed in the plant.

Response 5: APHIS did not evaluate consumer preferences with regard to GE food in its EA because it is not within the scope of its NEPA requirement, APHIS regulatory authority, or the policies of the Federal government for products produced using recombinant DNA techniques as set forth in the Coordinated Framework for regulating biotechnology. FDA, not USDA, has authority over food safety and nutritional equivalencies of products derived from crops, whether genetically engineered or derived otherwise.

FDA responsibilities in reference to food products derived from GE crops are defined in the Coordinated Framework and Monsanto addressed those by engaging FDA in a consultation process.

Issue 6: “APHIS should consider all ‘reasonably foreseeable’ environmental impacts of the proposed deregulation of MON 84711, taking a programmatic approach to consider the use of RNAi technology on other crops and against other pests that will likely follow the deregulation of MON 84711.”

Response 6: EPA, not USDA, has the authority to regulate the PIPs (plant-incorporated protectants: (Bt and RNAi)) in MON 84711 Maize. EPA will continue to analyze environmental effects of this and other similar RNAi products which may impact nontarget animals beginning with a “White Paper,” convening a Science Advisory Panel and following with a summary document of the Panel’s findings. EPA has not fully completed a programmatic response to this type of product to allow for full registration. For MON 87411 Maize, EPA will require as
much data from Monsanto as needed to make a decision about the registration of this product and the required conditions for its use (pesticide labeling requirements), if any. In addition, current approaches for data needed to establish safety for other PIPs are being used in the EPA evaluation. Additional assessments will be made if new issues and risks are identified in the course of a proposed EPA permit for seed increase on limited acreage.

An EPA commitment for a programmatic approach to additional RNAi products has been made, which includes establishing new requirements for tests and observations. The requirements will be constructed after continued assessment of recent data requests of Monsanto, as well as any further field and lab data offered by Monsanto. An EPA Science Advisory Panel has already been convened in January 2015, and this has provided EPA with advice for the future development of regulation of future RNAi products. Finally, interactions with the company on an ongoing basis will also provide information sufficient for analysis of potential risks of future related products. When the regulatory protocols for these similar products are established, APHIS will use these to inform and confirm its future NEPA assessments.

Issue 7: APHIS must assess the impacts associated with this novel technology which is in the early phases of its development in an EIS, and new information about host-induced gene silencing is only now being revealed.

Response 7: Although RNAi technologies are not new, APHIS agrees new research continues to add to our understanding of the RNAi mechanism, however, much is known and APHIS has sufficient information on the phenotype and spectrum of activity of MON 87411 to perform a risk assessment. The commenter pointed out recent findings by Ivashuta et al. (2015), which show that long dsRNAs from corn may produce many 21 nucleotide (nt) siRNAs that correspond with western corn rootworm transcripts and are routinely formed in relatively high abundance. However, these do not affect the insect transcriptome, since most of these siRNAs derived from the host plant are formed from plant dsRNA by the insect in low copy number. While this is not a surprising finding, the conclusion that the authors could find no impact of plant-originated siRNAs on WCR RNA transcripts was important. The authors also found that while beetles were capable of cellular uptake and incorporation of environmental RNA (env-RNA), in a lepidopteran insect no plant-sourced siRNAs (one type of an env-RNA) were found. Feeding of whole animals with high concentrations of RNA isolated from corn or soy did not cause any changes of development or in weight gain. It appears that sequence identity of plant-produced RNAs is not alone sufficient to change transcription or host development, but that high copy numbers of the dsRNA are also required. This molecular analysis provides a mechanism for exclusion of potentially impacted nontarget organisms, confirming that such impacts on RNA insensitive insects such as Lepidoptera are unlikely. While new information about host induced gene silencing is valuable, the major issues about its mechanism are relevant, but the potential for impacts and under what circumstances they are important are
known from experimental observations and experience. Because EPA concludes that there are sufficient observations about these impacts, and that safety concerns have been satisfied by these observations, then EPA will provide conditional approval of two-year limited acreage seed increases. New details about underlying mechanisms elucidated by continuing research are also useful, and will be considered by USDA as future RNAi products are assessed for environmental impacts.

Issue 8: APHIS cannot base claims of “no impact” for MON 87411 on previous examples of gene silencing in GE crops such as GE papaya, summer squash, plum or genes of the plant itself (GE potato, apple, altered oil soybean) because their targets are completely different.

Response 8: While APHIS believes that the experience gained using other plants that use RNAi technology is relevant, we agree that each case is different and thus we continue to evaluate each on a case-by-case basis.

In this case, APHIS reviewed information which indicated that the activity spectrum of DvSnf7 RNA has been shown to be highly specific to corn rootworms. Bioassays were performed using representative insect species having close taxonomic relatedness to corn rootworm. In total 14 representative insect species from 10 Families and 4 Orders (Hemiptera, Hymenoptera, Lepidoptera, and Coleoptera) were tested. In these bioassays activity was found only in the subfamily Galerucinae in the family Chrysomelidae within the order Coleoptera. Specifically, only the western corn rootworm and the southern corn rootworm were affected. the Colorado potato beetle, which is in another subfamily (Chrysomelinae) of Chrysomelidae, is known to be sensitive to certain ingested dsRNAs; however, it was not affected by DvSnf7 RNA.

In addition, data indicated no effect of DvSnf7 RNA on any of the other nontarget species tested including the following which are often considered beneficial to agriculture: the spotted ladybird beetle, ground beetle, honeybee, insidious flower bug, and earthworm. This, together with the results from the study using the 14 species described above and the sequence specific nature of RNAi support a conclusion that it is unlikely that DvSnf7 RNA will have an effect on nontarget organisms.

APHIS also considered many other aspects of the observed phenotype in agronomic settings as described in the petition. The totality of this information allowed APHIS to reach a Finding of No Significant Impact (FONSI).

Issue 9: Off-target effects of RNAi silencing are common – so common in fact that they constitute major obstacles to the use of gene silencing, for example in human therapy as noted by Haussecker and Kay, 2015, the production of RNAi pesticides as described by Palli, 2014, and the agronomic improvement of crops cited by Saurabh et al., 2014.”

Response 9: The writer cites Saurabh et al., (2014) as suggesting that off-target effects are a “major obstacle” to commercial usages, but these authors note that one of the benefits of RNAi for gene silencing is that it is “precise—no off-target effects.” While the issues for potential
human impacts of RNAi are noted by Haussecker and Kay (2015), these concerns are not
directed towards environmental RNA, which would be the mode of human exposure to RNAi
from the MON 87411 Maize product. Rather, additional but different modes of human
exposure are the focus in this paper.

The first modality cited by Haussecker and Kay (2015) includes RNAi expressed by
transformed human cells (that is, using a “genetic template”) that produce dsRNA. The
impacts of this usage would be on those internal cellular processes normally mediated by
microRNAs. Second, these authors note the alternative strategy for providing an effective
dosage of human RNAi is through administering oligonucleotides directly. This requires use of
a specific ‘delivery option’ to protect introduced dsRNA from the mechanisms by which these
RNAs are easily degraded in humans. As noted in the Environmental Consequences Human
Impacts section, RNA is not stable in human digestive tracts or circulatory system and is
rapidly degraded. The third author cited by the commenter, Palli (2014), recognizes the
potential issue of off-target activity of either plant-expressed or applied (externally sprayed)
RNAi, but he notes the study of Bachmann et al. (2013) which showed the specificity of the
DvSnf7 and its lack of effects on the insects of 10 families. Spraying of RNAi in agricultural
situations has potential for impacts but he notes that 90% of DvSnf7 is degraded in 36 hours
(Dubelman et al., 2014), and was not detectable after two days. Palli (2014) cites the authors
conclusion that DvSnf7 was not likely to accumulate in the environment, so is unavailable for
uptake and thus unlikely to cause off-target effects.

**Issue 10: Corn rootworms are likely to develop resistance to the RNA-interference-based
mechanism for several likely reasons.**

Issue 10 A. Several commenters addressed the possibility that corn rootworms would develop
resistance to the RNAi component of MON 87411 Maize because each component, the Bt
protein as well as the RNAi mechanism results in mortality consistent with a “low dose”
strategy of plant protection.

Response 10 A: The development of resistance to any insecticidal mechanism should be
managed and then averted if possible. However, given the available rootworm products such as
various Bts, and now this product, the extremely high mortality that might be most desirable is
not commercially available. Taking account of this limitation, multiple overlapping toxins are
the best strategy to avoid a rapid selection for resistance (Storer et al., 2012). Critical to the
usefulness of this is that first, the multiple toxins act independently of one another through
different modes of action, so cross resistance isn’t possible. As recently affirmed by Levine et
al. (2015), the Cry protein, 3Bb1, currently used in field protection from damage caused by
corn rootworm acts completely independently of DvSnf7 for toxicity to southern corn
rootworm. Second, as noted by the commenter, the target insect should not be resistant to one
of the multiple toxins used in the strategy. In the case of growers who have known or
suspected rootworm resistance to Cry3Bb1, these would be advised on Monsanto’s and on independent websites, by field seed dealers and state extension personnel not to plant MON 87411 Maize combined with this Bt trait in their affected corn production fields. Grower perception of CRW resistance is considerable. About 23% of growers in Iowa in 2012 perceived that resistance to a Bt trait had occurred in their fields (Hodgson et al., 2013), and over half were able to confirm the suspicion with either direct root surveys or observations of corn plant goosenecking. APHIS concludes that growers will respond correctly to the advice of consultants to avoid planting the MON 87411 variety when a field location already is suggestive of susceptibility of CRW to Cry3bb1. Use of a seed combination of the MON 87411 trait along with Bts to which the CRW were not previously resistant would be a robust strategy to protect the future use of Bts, and also delay resistance to MON 87411.

Issue 10 B: Evidence for variable mortality responses to one RNAi-based pest control strategy are already described, and therefore resistance to the strategy may occur quickly (Chu et al., 2014).

Response 10 B: APHIS disagrees with Chu et al. (2014) who indicate that resistance to MON 87411 Maize will quickly appear in rootworm populations. From observations made by Chu et al. (2014) the authors conclude that RNAi silencing for insect control should be chosen so that the sequences used do not cause variable effects on different populations of the same species. APHIS agrees that differential susceptibility would potentially lead to early selection of populations for resistance to the introduced dsRNA sequence. In the case of the sequences that were assayed by Chu et al. (2014), the authors knew before beginning their observations that the genes were expressed at different levels in the three populations on which mortality would be assessed. Since it is known that pest populations with variable susceptibility to a particular RNAi based control method are likely to rapidly give rise to a largely resistant population. APHIS expects that any future products will be chosen which are broadly effective against the entire population when possible, thus delaying the possible selection of resistant pests.

Issue 10 C: Because the mechanism of cellular viral response to degrade virus impacts employs the same machinery as used by RNAi strategies for pest control, changes in viral susceptibility could alter the RNAi susceptibility as well.

Response 10 C: Multiple mechanisms are often involved in the development of insect resistance to external chemicals, and a mechanism that may change the RNAi machinery and allow susceptibility to the Snf7 dsRNAi sequence is possible (Swevers et al., 2013). As for this potential development in insects, and the consequences for other insect populations, APHIS does not disagree with the conclusion. No actual occurrences of this damage to silencing capacity in a cell have been demonstrated, neither to processing of an insect dsRNA, miRNA, nor siRNA. Some insect families may not have the capacity initially to process dsRNAs, but
these would be the native condition and for which an RNAi strategy would not be developed. APHIS estimates that if a population of pest insect became more susceptible to viruses (by inactivity of the Dicer/RISC) because they were tolerant of silencing dsRNA, populations of CRW could disappear. In contrast, if defenses against viruses were sharpened because the Dicer/RISC complex became more selective, discriminating between virus sequences for which siRNA was produced and which destroyed virus development and dsRNA against CRW which it failed to silence, infected insects as a source of a persist virus may be possible but of no consequence to insects other than the targeted pest species. It is clear that the capacity of many invertebrates to respond to virus infection is based on an RNAi mechanism, and may be indispensable for the protection afforded.

Issue 10 D: Defenses of insects against dsRNAs may be dispensable traits, and if so, this would allow new mechanisms of resistance to arise against the RNAi strategy.

Response 10 D: APHIS agrees that a variety of genetic adaptations could be used by CRW to overcome an RNAi-based defensive mechanism expressed by plants. As noted by Swevers et al. (2013), “as for every method for insect control, however, the rise of insecticide resistance is always a major issue.” Speculation about these mechanisms is certainly justified as the commenter reports. Selective loss of the Dicer/RISC based defenses against viruses (the mechanism that is used by the RNAi expression) would be a highly tenuous insect strategy inasmuch as there would need to be simultaneous development of an alternative means to control viruses as noted by Shabalina and Koonin (2008). The most important issue is not that CRW may be unintentionally selected for susceptibility to RNAi, but that appropriate strategies should be developed and executed by growers to effectively delay the potential for new resistance. Increasingly corn growers recognize that they must detect and respond to new incidents of corn rootworm resistance in their managed fields (Hodgson et al., 2013). These growers are well aware of recently arising CRW resistance in corn with one of the available Bt traits (and possibly another), and are incorporating additional strategies beyond reliance on seed technology to protect current resources used to defend corn from rootworm-inflicted losses of yield (Hodgson et al., 2013). Growers will also likely defend future resources by choosing good insect management practices for MON 87411.

Issue 10 E: In the nematode *C. elegans*, persistent viral infections and deficiency of RNAis are correlated in some existing strains, and the underlying mechanism for the observation although not known, could become a mechanism of resistance in CRW if environmental RNA never accumulated in some populations of insect pests.

Response 10 E: The potential for disruption of the siRNA mechanism by virus infection is suggested by Swevers et al. (2013) who find evidence for several such mechanisms, including
some in insects. These mechanisms are those directed by the virus to inhibit a component of the Dicer/RISC based system that responds to virus infections (to the detriment of the virus). The question posed by Swevers et al. (2013) is whether deployment of an RNAi based technique can demonstrate whether latent or chronic viral infections might be a successful mechanism for resistance to a commercial gene silencing mechanism. Again, APHIS asserts that mechanisms for resistance to any insect control strategy may well develop in an environment which exerts a consistent selecting pressure against an insect, but the focus for growers who plant this variety should be one of stewardship in which users attempt to delay that result by using appropriate pest management techniques.

Issue 10 F: APHIS concludes that the likelihood of CRW developing resistance to DvSnf7 RNAi is decreased by the presence of CRW-targeted Bt protein, but susceptibility of the insect to new mechanisms of resistance to the RNAi could reduce the ability of sustainable use of the Bt proteins which it would otherwise be supporting.

Response 10 F: As noted earlier in these Responses to Comments, APHIS does not disagree that resistance mechanisms to RNAi have been proposed, and that some may be potentially efficacious for developing resistance if selected for by exposure of CRW to RNAi. In the EA, APHIS has recognized the current status of corn rootworm resistance to Bts (Section 5.3.1) and does not speculate on the future usefulness of those CRW Bts to which resistance has not yet developed. However, APHIS asserts that the combination of multiple CRW toxins is a more effective strategy than either of these alone, either RNAi or specific Bt traits. Monsanto plans to stack commercial varieties with both MON 87411 toxins, and thus, seed production will not be pursued with the RNAi trait alone to resist CRW, which may not be a sustainable approach to provide sustained defenses against CRW.

Issue 11: APHIS ignored substantial uncertainties and data gaps in its EA analysis and based its analysis on very recent studies of Monsanto itself.

Response 11: The uncertainties about potential for impacts on the environment have been identified by EPA’s Scientific Advisory Panel, convened in January, 2014, and acknowledged in EPA’s summary of the record (US-EPA, 2014). Several authors who have reviewed the potential for impacts from RNAi use have also described some of the means by which these products might be assessed; these means may reduce the uncertainties of granting EPA permits and if adopted by EPA, further encourage their deployment on a commercial scale. EPA recently requested additional data from Monsanto supplementing the permit application, to further investigate the safety of MON 87411 Maize (personal communication, US-EPA). EPA subsequently received the data from Monsanto which EPA accepted but is also requesting clarification of some of the completed experiments and their conditions (US-EPA, 2015). The initial EPA and human effects and environmental effects analyses have been released for public
comment, and these represent the primary federal analysis of risks to the environment from MON 87411 (US-EPA, 2015). EPA has regulatory authority over pesticides and Plant-Incorporated Protectants (PIPs) and employs that authority to issue permits for this and other PIPs.

EPA has determined that it would primarily assess the potential impacts of DvSnf7 dsRNA using criteria and testing protocols developed for other plant incorporated protectants (US-EPA, 2015). EPA has concluded that the types of barriers within nontarget organisms for environmental RNA were sufficient to prevent environmental impacts (US-EPA, 2015), and although certain types of genomic and transcriptional details in these nontarget organisms might be of interest (US-EPA, 2014), an empirical approach was more likely to be adequate for analysis of the impact possibilities.

Although APHIS analyzed possible effects of MON 87411 Maize in its EA, USDA defers to the regulatory authority of EPA consistent with its findings and conclusions, regarding risks that may be associated with MON 87411 Maize. Some of these are uncertain because although possible impacts have been proposed, currently available data neither confirm nor refute these possibilities.

USDA used the best available data to prepare its EA, which is the requirement of NEPA, and made its conclusion based on the preponderance of evidence that MON 87411 Maize would not cause any significant environmental impacts if it were no longer regulated as a plant pest.

Issue 12: To carefully weigh the risks associated with RNAi to express a pesticide trait, USDA should work with the EPA to design a new risk assessment framework that can adequately capture the unintended consequences of the introduction of dsRNA molecules before any crops containing the technology are approved.

Response 12: As noted in previous responses, the approach that EPA is taking for future products is development of a risk assessment framework, which by following the pattern of previous permit processes, will prescribe specific types of tests and most likely, expected designs for field trials. As EPA announced for MON 87411 Maize, the assessment will include a permit for only a limited spatial release (15,000 acres) for the purpose of producing seed and potentially extending existing Monsanto observations and data, during a limited temporal release (for two years). Additional information about existing data will be used by EPA to make a final decision (US-EPA, 2015). This period of conditional and limited approval of a permit for the novel PIP (RNAi) in MON 87411 Maize will allow Monsanto to provide additional support for this RNAi product.

Issue 13: USDA must look at the literature surrounding this technology and evaluate the specific safety concerns for a method with so many associated risks.
Response 13: Since the publication of the Science Advisory Panel Minutes and discussion offered within the EPA white paper on RNA Interference (US-EPA, 2014), more details of the fate of dsRNA in the environment have been determined, and their conclusions published. Fate in agricultural soils established that the dsRNA from MON 87411 does not persist for any but a short time (Dubelman et al., 2014). As discussed in the EA, all evidence shows that persistence of RNAs in water is highly unlikely. No controversy exists to show that environmental persistence of DvSnf7 is at issue.

Issue 14: Many studies have shown that RNAi can actually suppress unintended genes that are similar to the target gene. These unintended effects may also be heritable through reproduction, which could have serious ramifications for plant and animal populations.

Response 14: APHIS agrees that silencing specific RNAi sequences of a target organism may also silence unintended sequences of nontarget organisms. Identical sequences in another organism which might be exposed, or possibly even some that were nearly identical or similar, may potentially be targeted. First, it is becoming clear that there are multiple reasons why environmental dsRNA might not be sufficient to silence genes. One is that the quantity of the environmental dsRNAi to which an organism is exposed is important. In those observations where copy number is low, such as transcripts produced by the natural RNA output of a host plant with similar 21nt sequences to those found in animal targets, recipients may take up these RNAs, but there still may be no impact at all on host incorporated transcripts; these observation have been made in honeybees (Snow et al., 2013). Two is that effective copy number may be insufficient for gene silencing because of inaccessible subcellular location of the transcripts in addition to low sequence copy number (Wittwer and Hirschi, 2004). In fact, among miRNAs, only 60% of those detected in tissues may have any “discernable activity” (Mullokandov et al., 2012). Second, as noted earlier in previous responses to comments here, genomic repetition number of a 21 nt (nucleotide) sequence empirically distinguishes whether or not an organism will respond to exogenous dsRNAs (such as from diet or a plant). In beetles there must be a minimum number of three of these dvSnf7 sequences in sensitive species (Bachman et al., 2013). Clearly the frequency of these repeated sequences decreases with decreasing phylogenetic relationship of the target organism (Bachman et al., 2013). Too few repeats will not trigger an appropriate RNAi impact on target sequences.

As described, not all organisms are sensitive to environmental RNAi, degrading it before it can be taken up by cells; gene silencing following exposure to env-RNAi in humans and vertebrates is not likely, a consensus clear from the EPA’s 2014 Science Advisory Panel (US-EPA, 2014). Off target effects, in which target sequences do not precisely correspond with the RNAi sequences silenced may also be a potential issue. Evidence of silencing of non-identical sequences from the insect Plutella xylostella is that these occur when the supplied environmental RNA populations are extremely high (see Section 5.4.1 of the EA and (Bautista
et al., 2009)), the nature of the host, the type of exposure, duration of exposure, the endogenous defensive mechanisms as well as the total cellular exposure are all relevant to any silencing response at all. Finally, it should be noted that the use of environmental RNA, through the use of dsRNA in insect diets, cannot be inherited because there is no cellular machinery in animal cells to form DNA from RNA sequences.

Issue 15: APHIS ignores impacts of glyphosate and makes outdated conclusions about herbicide use.

Response 15: The EA includes thorough documentation in support of the fact that MON 87411 Maize will only replace other corn varieties that express the GR trait and that this will not result in an increase/expansion of U.S. corn acreage planted in GR varieties. Therefore, the glyphosate use on corn in the United States is not expected to change, so any effects associated with its use will not change if MON Maize 87411 is no longer regulated as a plant pest.

The general uses of glyphosate are outside the scope of the EA. EPA is responsible for reviewing and analyzing the uses and toxicity of pesticides such as glyphosate, and establishing through its registration and labeling process restrictions on uses that have provide an acceptable margin of safety. While one organization (WHO) has made allegations of new hazards from exposure to glyphosate, US-EPA has no credible evidence to affirm the conclusion.

Issue 16: APHIS failed to consider impacts on monarch butterflies.

Response 16: Brower et al. (2012) analyzed the decrease in population abundance of monarch butterflies in Mexico, which is an overwintering area for some populations of monarchs. While the paper suggests that the potential decrease in habitat for the monarch’s host plant, milkweed, may be due in part to the increased spraying of glyphosate on GR crops and, subsequently, may be responsible for decreased monarch population levels, the study showed a statistically significant difference in monarch population levels over a period of several years, but did not contain any data or present any experiments which demonstrated that GE crop adoption is, in fact, responsible for any decrease in population.

Brower et al. (2012) also mentioned other potential causes of monarch population decline, such as extreme weather occurrences, and forest degradation. Furthermore, Brower et al. (2012) has been questioned by other researchers, including Davis et al. (2012), who performed a statistical analysis of monarch population levels of colonies in New Jersey and Michigan, and found that that population levels were not decreasing, but were, in fact, stable over a long period of time.

Chapter 4 of the EA provides a general review of the possible effects of GE crops on nontarget organisms. There are many variables that may affect population levels of nontarget organisms. These include cropping practices (e.g., strip or contour cropping, crop rotation), soil conservation practices that maintain grass strips, windbreaks and shelterbelts and the like, tillage, and the application of agrochemicals. The rotation of crops and strip contour cropping provide varied habitat that can benefit biodiversity. Crop production in general impacts
biodiversity at the landscape scale by potentially converting natural lands that have greater animal and plant species diversity to more monocultural landscapes. Glyphosate was found by the EPA to be no more than slightly toxic to birds, moderately toxic to practically nontoxic to fish, and practically nontoxic to aquatic invertebrates and honeybees (US-EPA, 1993).

The EA also includes thorough documentation in support of the fact that MON 87411 Maize will only replace other corn varieties that express the GR trait and that this will not result in an increase or expansion of U.S. corn acreage planted in GR varieties. Therefore, current glyphosate use on corn in the United States is not expected to change, so any effects associated with it use on monarch butterflies or other non-target organism is unlikely to change. The general uses of glyphosate are outside the scope of the EA. EPA is responsible for reviewing and analyzing the uses and toxicity of pesticides such as glyphosate to non-target organisms, and establishing through its registration and labeling process restrictions on uses that mitigate effects on non-target organisms.

Issue 17: APHIS did not adequately assess potential migratory bird impacts or those on threatened and endangered (T&E) species. One commenter also stated that APHIS failed to consider that the novel trait of MON 87411 Maize combined with the BT trait will result in expansion of corn acreage into natural areas.

Response 17: APHIS disagrees. The EA contains a section that reviewed the Agency’s obligations under EO 13186 (US-NARA, 2010), “Responsibilities of Federal Agencies to Protect Migratory Birds, and the potential for MON 87411 Maize to impact migratory birds. APHIS concluded that there is no reason to expect impacts to migratory birds. As required under Section 7 of the ESA, APHIS considered the potential for effects from the proposed determination of nonregulated status for MON 87411 Maize on federally listed threatened and endangered species and species proposed for listing, as well as effects on designated critical habitat and habitat proposed for designation. APHIS considered possible effects on all listed species and on all species proposed for listing. It also considered all designated critical habitat and habitat proposed for designation in States where corn is commercially grown. Species information was obtained from the USFWS Environmental Conservation Online System (ECOS; as accessed January 20, 2015 at http://ecos.fws.gov/tess_public/pub/stateListingAndOccurrence.jsp) (USDA-APHIS, 2015a), (USDA-APHIS, 2015b). After analyzing the potential for any effect, APHIS could not identify any stressor that would affect the reproduction, numbers, or distribution of any species, or affect their critical habitat. Based on this analysis, APHIS concluded that the determination of nonregulated status for MON 87411 Maize will have no effect on any federally listed T&E species or species proposed for listing, nor will it affect any designated critical habitat or habitat proposed for designation. This no effect determination eliminates a need for a consultation with, or the concurrence of, the USFWS and/or NMFS, consistent with ESA requirements.

Prior to performing its effects analysis on T&E species, APHIS considered the potential for MON 87411 Maize to expand corn production into natural areas. As reported in the EA, the conclusion from this analysis was that MON 87411 Maize is only expected to replace existing GE corn varieties in areas where corn is currently grown. It is not expected to increase total
U.S. corn acreage, nor is it likely to shift any existing corn acreage from where it is now grown into natural areas.
References

Bolognesi, R; Ramaseshadri, P; Anderson, J; Bachman, P; Clinton, W; Flannagan, R; Ilagan, O; Lawrence, C; Levine, S; Moar, W; Mueller, G; Tan, J; Uffman, J; Wiggins, E; Heck, G; and Segers, G (2012) "Characterizing the mechanism of action of double-stranded RNA activity against Western corn rootworm (Diabrotica virgifera virgifera LeConte)." PLoS ONE. 7 (10): p e47534.

Brower, LP; Taylor, OR; Williams, EH; Slayback, DA; Zubieta, RR; and Ramirez, MI (2012) "Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk?" Insect Conservation and Diversity. 5 (2): p 95-100.

US-EPA. 2015. Environmental Risk Assessment for a FIFRA Section 3 Limited Seed Increase Registration of DvSnf7 Double Stranded RNA (dsRNA) and Cry3Bb1 Bacillus thuringiensis Derived Insecticidal Protein as Expressed in MON 87411 Maize. B.a.P.P. Division. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY.

2015 Complaints / Inquiries received through the Maine Board Of Pesticides Control Enforcement Section

<table>
<thead>
<tr>
<th>Issues</th>
<th>Call Origin</th>
<th>Incident Location</th>
<th>Category of Caller</th>
<th>Date</th>
<th>Site/ Crop</th>
<th>Equipment</th>
<th>Pesticide</th>
<th>Response</th>
<th>Findings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification, drift</td>
<td>Raymond</td>
<td>Raymond</td>
<td>Abutter</td>
<td>6/11/2015</td>
<td>apple orchard</td>
<td></td>
<td></td>
<td>Discussed notification rights and drift regulations. Sent link to BPC home page and email about how to navigate to Ch.10, Ch. 22 and Ch. 28. Told caller he could contact BPC if a specific drift incident happens in the future.</td>
<td>Caller asking for information on regulations. Caller said orchardist not easy to communicate with.</td>
<td>Closed</td>
</tr>
<tr>
<td>Notification, drift, pesticide exposure</td>
<td>Abutter</td>
<td>7/27/2015</td>
<td>apple orchard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unsued notification rights, chapters 10, 22, and 28. Discussed complaint process and how to contact Hicks on tox. Questions.</td>
<td>Caller was fact finding did not want to file an official complaint at this time.</td>
<td>Closed</td>
</tr>
<tr>
<td>Pesticide drift from blueberry field</td>
<td>Palermo</td>
<td>Palermo</td>
<td>Abutter</td>
<td>6/21/2015</td>
<td>blueberries</td>
<td>Air Blast</td>
<td>MALATHION;</td>
<td>Samples collected, follow up inspection done. Hicks discussed steps to minimize pesticide exposure to children with caller.</td>
<td>Caller's sample positive for Malathion $500 consent agreement</td>
<td>Closed</td>
</tr>
<tr>
<td>Posting treated field</td>
<td>Columbia</td>
<td>Concerned citizen</td>
<td>6/3/2015</td>
<td>blueberries</td>
<td>imidan</td>
<td></td>
<td>Mutinyous caller provided insufficient information to follow up on allegations. No where, when and who.</td>
<td></td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Notification</td>
<td>Limington</td>
<td>Limington</td>
<td>Abutter</td>
<td>5/13/2015</td>
<td>F. corn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
</tr>
<tr>
<td>Buffer needed between dairy farm pasture and another farmer's abutting corn field needs buffer according to MOFGA certification. Dairy farmer wants the corn grower to establish the buffer on the corn. Sabattus</td>
<td>Sabattus</td>
<td>Abutter</td>
<td></td>
<td>5/13/2015</td>
<td></td>
<td></td>
<td></td>
<td>Told dairy farmer BPC does not require abutter to establish the buffer and that I would check with MOFGA on same. Conveyed MOFGA response to dairy farmer's contact information to Matt Randall along with the summary of the issue. Rand MOFGA cert. specialist said dairy farmer seeking organic cert. is responsible for the buffer, typically 100 feet.</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>grass damage</td>
<td>Perry</td>
<td>Perry</td>
<td>Abutter</td>
<td>6/11/2015</td>
<td>blueberries</td>
<td>Boom</td>
<td></td>
<td>Damage not pesticide related</td>
<td>Grower will not treat low area in future, closed</td>
<td></td>
</tr>
<tr>
<td>Alleged drift</td>
<td>Cathance TWP.</td>
<td>Cathance TWP</td>
<td>Abutter</td>
<td>6/24/2015</td>
<td>greenhouse</td>
<td>Boom</td>
<td></td>
<td>Site inspection</td>
<td>Damage not pesticide related</td>
<td>Closed</td>
</tr>
<tr>
<td>Spill</td>
<td>Liberty</td>
<td>Liberty</td>
<td>Concerned citizen</td>
<td>6/5/2015</td>
<td>blueberries</td>
<td></td>
<td></td>
<td>Foam marker only</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Indoor marijuana</td>
<td>York</td>
<td>Concerned citizen</td>
<td>6/1/2015</td>
<td>marijuana</td>
<td></td>
<td></td>
<td></td>
<td>Case to DHS</td>
<td>DNS to check</td>
<td>Closed</td>
</tr>
<tr>
<td>Runoff</td>
<td>Eastbrook</td>
<td>Concerned citizen</td>
<td>6/1/2015</td>
<td>blueberries</td>
<td>Boom</td>
<td>SINBAR WDG; DIURON 4L;</td>
<td></td>
<td>Site inspection</td>
<td>Foam marker, no viol</td>
<td>Closed</td>
</tr>
<tr>
<td>well, resource protect. area</td>
<td>Madison</td>
<td>Concerned citizen</td>
<td>7/10/2015</td>
<td>forage corn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concern, possible runoff to pond</td>
<td>Walpole</td>
<td>Concerned citizen</td>
<td>4/27/2015</td>
<td>apple orchard</td>
<td>Air Blast</td>
<td></td>
<td></td>
<td>Site inspection</td>
<td>No violation</td>
<td></td>
</tr>
<tr>
<td>Sick goats</td>
<td>Whitefield</td>
<td>Whitefield</td>
<td>Abutter</td>
<td>4/27/2015</td>
<td>forage (sorghum etc.)</td>
<td></td>
<td></td>
<td>Site inspection</td>
<td>Ex. specialist & vet , said sheep laurel plant eaten</td>
<td></td>
</tr>
<tr>
<td>Alleged inadequate training, storage, posting, PPE</td>
<td>CORNISH</td>
<td>Employee</td>
<td>9/10/2015</td>
<td>apple orchard</td>
<td>Air Blast</td>
<td></td>
<td></td>
<td>Inspection, consult DEP wetlands</td>
<td>No violation</td>
<td>Closed</td>
</tr>
<tr>
<td>Landlord/Tenant:5</td>
<td>Rumford</td>
<td>Tenant</td>
<td>3/20/2015</td>
<td>Structural pest co.</td>
<td></td>
<td></td>
<td></td>
<td>Called the pest control co. got label and MSDS for 2 insecticides and emailed Low same. Emailed Low bed bug statute and CH, 26 regulation. Emailed Hicks all correspondence and discussed with her. Hicks called Low, asked him to provide her contact info. To</td>
<td>Low provided information he wanted</td>
<td>Closed</td>
</tr>
<tr>
<td>Issues</td>
<td>Call Origin</td>
<td>Incident location</td>
<td>Category of Caller</td>
<td>Date</td>
<td>Site/ Crop</td>
<td>Equipment</td>
<td>Pesticide</td>
<td>Response</td>
<td>Findings</td>
<td>Status</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Lawyer for client - Ineffective treatments and unable to get pesticide information about use.</td>
<td>Portland</td>
<td>Portland</td>
<td>Lawyer</td>
<td>5/6/2015</td>
<td>Structural pest co.</td>
<td></td>
<td></td>
<td>Directed caller to ch. 26, Ch. 50 record keeping. K. Murray sent caller links to national pest control assoc. and New England pest control assoc. Also links related to statute about "fit for habitation" and related publications on same.</td>
<td>Caller was fact finding. Firm/owner licensed. He now has some info on tenant rights and understanding of general requirements. Will call back if new developments.</td>
<td>Closed</td>
</tr>
<tr>
<td>Tenant forced to move, does not want to take bed bugs with her to next place.</td>
<td>Winslow</td>
<td>Winslow</td>
<td>Tenant</td>
<td>8/4/2015</td>
<td>Structural pest co.</td>
<td></td>
<td></td>
<td>Provided the caller with our regulations on pest control and statute on bed bugs</td>
<td>Information requested</td>
<td>Closed</td>
</tr>
<tr>
<td>Complex residence said mgr. plans to make a grub application, does not think he is licensed.</td>
<td>Ocean Park</td>
<td>Old Orchard Beach</td>
<td>Tenant</td>
<td>5/14/2015</td>
<td>turf</td>
<td>Grub-ex</td>
<td>Called to complex mgr., he said no one licensed on staff. Told him of the license requirement of his spot treatment of turf at complex. Emailed him license requirement information from our web page and gave him Fish's and main office tel. numbers to arrange.</td>
<td>Maint. Supervisor did plan to have staff make an unk. Commercial turf application. Was not aware of lic. requirement. He agreed to call BPC for further inform on licensing.</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Dead trees from imprelis use on lawn.</td>
<td>Lincoln</td>
<td>Lincoln</td>
<td>Regulatory official</td>
<td>4/29/2015</td>
<td>lawn care</td>
<td></td>
<td></td>
<td>Provided the contact person MFS plant pathologist name and contact information. Provided a link to Purdue site about imprelis problem.</td>
<td>Information requested and provided</td>
<td>Closed</td>
</tr>
<tr>
<td>Caller has had cancer. 3 nearby properties use pesticides on a regular basis, when they do she coughs for a couple of days. Wants to know her rights. This is a condo association where she lives.</td>
<td>York Harbor</td>
<td>York Harbor</td>
<td>Abutter</td>
<td>7/15/2015</td>
<td>turf</td>
<td>Back Pack</td>
<td>Discussed notification and prohibition on getting pesticides on an abutting property.</td>
<td>Information was requested and provided</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>License issue</td>
<td>Portland</td>
<td>Portland</td>
<td>Employee</td>
<td>10/14/2015</td>
<td>lawn care</td>
<td>Hand Can</td>
<td>Discussed relevant regulations and sent email with links and pages to our website on same.</td>
<td>Information request only. Notification requested last yr. but not this yr.</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Commercial license</td>
<td>Fort Kent</td>
<td>Fort Kent</td>
<td>Concerned citizen</td>
<td>8/17/2015</td>
<td>turf</td>
<td></td>
<td>Alleged violations could not be substantiated. Need to post turf treatments.</td>
<td>Inspector explained licensing requirement while at course.</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Commercial license</td>
<td>WELLS</td>
<td>LAWN CARE</td>
<td>licensed applicato</td>
<td>10/2/2015</td>
<td>lawn care</td>
<td>NONE;</td>
<td>Inspector contact</td>
<td>No violation found</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Odor complaint</td>
<td>Presque Isle</td>
<td>ME</td>
<td>Homeowner</td>
<td>8/4/2015</td>
<td>turf</td>
<td></td>
<td>Discussed notification and prohibition on getting pesticides on an abutting property.</td>
<td>Information was requested and provided</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Contract dispute</td>
<td>Augusta</td>
<td>Augusta</td>
<td>Homeowner</td>
<td>1/23/2015</td>
<td>lawn care</td>
<td>TRUPOWER 3;</td>
<td>Recorded ch. & monitor. Licensed</td>
<td></td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Urine applicator</td>
<td>Caribou</td>
<td></td>
<td></td>
<td>6/23/2015</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Notification</td>
<td>Gorham</td>
<td>Gorham</td>
<td>Registry member</td>
<td>6/15/2015</td>
<td>lawn care</td>
<td>Non-powered Backpack</td>
<td>Investigate complaint. Registry member did not list the customer as an abutter</td>
<td></td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Turf posting</td>
<td>Windham</td>
<td>Windham</td>
<td>Concerned citizen</td>
<td>6/10/2015</td>
<td>athletic field</td>
<td>LESCO TREE WAY;</td>
<td>Site inspection</td>
<td>Properly posted</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Lawn damage</td>
<td>Augusta</td>
<td>Augusta</td>
<td>Homeowner</td>
<td>8/10/2015</td>
<td>Hose</td>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Sick cat, plant decline</td>
<td>South</td>
<td>Portland</td>
<td>Neighbor's lawns</td>
<td>9/11/2015</td>
<td>lawn care</td>
<td>NONE;</td>
<td>Site inspection record check</td>
<td>No violation</td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>

Foressty: 1
<table>
<thead>
<tr>
<th>Issues</th>
<th>Call Origin</th>
<th>Incident location</th>
<th>Category of Caller</th>
<th>Date</th>
<th>Site/Crop</th>
<th>Equipment</th>
<th>Pesticide</th>
<th>Response</th>
<th>Findings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller opposed to Irving's aerial forest project and its impacts. Thinks the practice in general should be prohibited.</td>
<td>Northern Maine Forest</td>
<td>Concerned citizen</td>
<td>7/24/2015</td>
<td>Forestry</td>
<td></td>
<td></td>
<td></td>
<td>Discussed the requirements for forest projects and provided the BPC director with her contact information so he could tell her how to have input on the subject.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caller was provided way to have input on her subject of concern.</td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>

License/Certification: 2

- **License issue**
 - Berwick
 - Tenants
 - 10/23/2015
 - Pest control structural
 - Fogger
 - HOT SHOT BED BUG & FLEA FOGGER: Inspector fol up
 - In the past fogger used. Hires heat treatment now. No heat treatment needed on site. Inspector staff. Inspector closed.

- **License**
 - Brunswick
 - Regulatory official
 - 8/19/2015
 - Pest control structural
 - Aerosol can
 - Inspector follow up on site
 - Mosq./tick

<table>
<thead>
<tr>
<th>Mosquito-Tick: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posting</td>
</tr>
<tr>
<td>Concern with wetland impact, PPE applications</td>
</tr>
<tr>
<td>Concern with wetland impact, drift</td>
</tr>
</tbody>
</table>

Outdoor Ornamental: 3

| Ornamental decline | E. Boothbay | E. Boothbay | Homeowner | 10/26/2015 | outdoor ornamental | | | Sample collected from affected area | Lab results positive for glyphosate | Consent agreement hearing. Bd. disapproved passage |

- **Unauthorized herbicide use to kill trees and other vegetation on abutting property**
 - Brunswick
 - Herpswell
 - Homeowner | 7/2/2015 | outdoor ornamental | UNKNOWN | Sample collected from affected area | Lab results positive for glyphosate | Consent agreement hearing. Bd. disapproved passage |

- **Caller suspected intentional damage to ornamental trees on property**
 - Skowhegan
 - Skowhegan
 - Homeowner | 8/1/2015 | outdoor ornamental | Sample collected from affected area | Lab results positive for glyphosate | Consent agreement hearing. Bd. disapproved passage |

Night-of - Way: 7

- **Concern with utility ROW spray**
 - Silver Stream Rd.
 - Concerned citizen | 9/10/2015 | right of way roadside | | | | | | | No violation found | Closed |

- **Asking about safety of berries**
 - Millinocket
 - Millinocket
 - Concerned citizen | 8/12/2015 | right of way roadside | | | | | | | No violation found | Closed |

- **Picked blue berries roadside ROW on paper co. land, later saw sign on another road saying herbicides applied. Was road he picking on sprayed too**
 - Millinocket
 - Somewhere N. of Millinocket T3 R8?
 - Concerned citizen | 8/3/2015 | right of way roadside | | | | | | | No formal NS agreement in place | Closed |

- **Utility Co. spraying when they said they would not, concern for well, animals, spring**
 - Brownfield
 - Abutter | 8/4/2015 | right of way roadside | | | | | | | No formal NS agreement in place | Closed |

- **If not notified about utility ROW spraying was legal**
 - Denmark
 - Denmark
 - Abutter | 7/21/2015 | right of way roadside | | | | | | | No formal NS agreement in place | Closed |

- **Utility ROW**
 - Troy
 - Troy
 - Abutter | 9/21/2015 | Utility ROW | Non-powered Backpack | | | | | | | No formal NS agreement in place | Closed |
<table>
<thead>
<tr>
<th>Issues</th>
<th>Call Origin</th>
<th>Incident location</th>
<th>Category of Caller</th>
<th>Date</th>
<th>Site/ Crop</th>
<th>Equipment</th>
<th>Pesticide</th>
<th>Response</th>
<th>Findings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodenticide: 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Structural: 8</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sale/Distribution: 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Water Related: 6</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Rodenticide: 1
- 2 dogs roaming at large, dead
- Farmington, Farmington
- Regulatory official
- 9/15/2015
- Rodenticide
- Local animal control asked regs.
- Animal control to follow up
- Closed

Structural: 8
- Inn gives bombs to tenants for bed bugs
- Augusta, Saco
- Regulatory official
- 10/9/2015
- Insect bomb
- Inspector to site
- State condemned bldg.
- Code violations
- Closed

Questions about regulations
- Augusta, Augusta
- Health worker
- 8/18/2015
- Insect bomb
- Discussed regs with caller
- Calling for client
- Closed

Caller did not want PCO company to return
- Cape Elizabeth, Customer
- 9/28/2015
- Logged phone message into database.
- Caller did not provide contact information. Said she would call back if she needed a response from BPC
- Closed

No notice that rodents treated next door, now rodents in home
- Glenburn, Glenburn
- Homeowner
- 11/4/2015
- Bait
- Rodenticide
- Inspector to site
- No violation
- Closed

Alleged wetland application
- Northport, Northport and costal route 1 towards Searsport
- Concerned citizen
- 6/29/2015
- Hose
- Alligare MSM60; Garlon 4 Ultra
- Discuss regs with homeowner
- Parties resolved themselves
- Closed

Unprofessional acting company
- Concerned citizen
- 12/1/2015
- Structural pest co.
- None specified
- Discussed caller’s concerns
- No specific viol.
- Closed

Unauthorized application
- Sweden, Sweden
- Homeowner
- 11/20/2015
- Bulb duster hand can
- Talstar Professional; Evergreen Pyrethrum Dust
- Inspect. with company
- Treated wrong house
- $1,000 Consent agreement case closed
- Closed

Notification and need for information about a specific application, exposure concern
- Rockland, Rockland
- Homeowner
- 8/4/2015
- Techno duster hand can
- I contacted the company and asked that the call Holworth and tell her the name of the pesticide and the EPA reg. No. I discussed registry with Holworth or alternative way to ask for notification
- Office mgr. of company reached Holworth about 5:15 the same day a after 4-5 call attempts.
- Manager asked Holworth if she wanted to know the name of the pesticide, EPA no. and active ingredient. Holworth responded no and said she was doing alright.
- Closed

Sale/Distribution: 1
- Concern about potential contamination of bird seed purchased at a store
- Gilead, Gorham, NH
- Customer
- 2/27/2015
- Store was in Gorham, NH.
- Summarize caller’s concern and emailed same to NH Div. of Pesticide Control. They said they will follow up on it when doing market place inspections.
- NH staff to follow up on and let caller know findings.
- Closed

Well and pond water
- Glenburn, Glenburn
- 6/29/2015
- Round-Up Poison Ivy
- Inspector fol up
- spray too close to pond
- DEP to handle
- Closed

Apply near water
- T4 Indian Purchase and surrounding tps.
- Concerned citizen
- 8/27/2015
- Hose
- ARSENAL; DUPTON STREAMLINE
- Inspector to site.
- Buffers left near water
- Closed

Posting / notice
- Prescott site
- Abbot
- 10/26/2015
- site visit
- No violation found
- Closed

Shore land zone
- Tacoma Lakes
- Concerned citizen
- 7/2/2015
- non-powered Backpack
- site fol up
- Look like herbicide
- Case to DEP

Apply near water
- T4 Indian Purchase and surrounding tps.
- Concerned citizen
- 8/27/2015
- Hose
- ARSENAL; DUPTON STREAMLINE
- Inspector to site.
- Buffers left near water
- Closed

Aquatic application posted
- Farmingdale, Albany TWP
- Concerned citizen
- 6/1/2015
- Pond
- Called agency on poster
- Old sign, old application
- Closed
<table>
<thead>
<tr>
<th>Case ID</th>
<th>Case Status</th>
<th>Caller Type</th>
<th>Event Type</th>
<th>Topic</th>
<th>Site</th>
<th>Date Of Incident</th>
<th>Application Method</th>
<th>Complaint Details</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-102</td>
<td>Enforcement Review Pending</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Unauthorized Application</td>
<td>AG-Cereals and Pasture</td>
<td>7/11/2016</td>
<td>Boom</td>
<td>Caller asked if BPC could check farm that sprays Alair Road and Baird Road in Caribou. FAA employee at 1306 Alair Road said when dust last Friday, it drifted onto his personal car, and federal vehicle. Today a worker was spraying something liquid with a boom. There was no drift today but in the past, the boom sprayer has hit the fence when making turns and there has been drift. Crop = wheat</td>
<td>Pittsfield</td>
</tr>
<tr>
<td>EC-171</td>
<td>Resolved-Finalized</td>
<td>Government Employee</td>
<td>Inquiry</td>
<td>Drift</td>
<td>AG-Cereals and Pasture</td>
<td>9/19/2016</td>
<td>Granular Spreader</td>
<td>Organic strawberry grower said a resident within 800 ft hired mosquito spraying. Wants to know his BPC notification rights and if local ordinance is in place.</td>
<td>Caribou</td>
</tr>
<tr>
<td>EC-122</td>
<td>Resolved-Finalized</td>
<td>Grower</td>
<td>Complaint</td>
<td>Notification / Posting</td>
<td>AG-Small Fruit</td>
<td>7/8/2016</td>
<td>Powered Backpack</td>
<td>Caller's neighbor lease some blueberry land to a grower. Caller wanted information on notification. She also has a specific request. She wants to know the bill number for the legislation that took away notification to a nearby property owner that according to LePage was a duplicate effort About 10 years ago. This bill kill and earlier bill that allowed an interested property owner to get on a notification list- Caller was on that original list.</td>
<td>Lebanon</td>
</tr>
<tr>
<td>EC-128</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Notification / Posting</td>
<td>AG-Small Fruit</td>
<td>7/19/2016</td>
<td>Unknown</td>
<td>Caller left a vm. He asked if our regulations specify a buffer requirement between spray blocks and abutting residents.</td>
<td>Columbia</td>
</tr>
<tr>
<td>EC-130</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Inquiry</td>
<td>Notification / Posting</td>
<td>AG-Small Fruit</td>
<td>7/21/2016</td>
<td>Unknown</td>
<td>Her son was recently diagnosed with Tourette's syndrome. She has questions about chromated arsenic and wants to know how to find out if it has been used on the BB fields and about testing soil and/or water for it. She stated she lives on land that was an active BB field 5-7 years ago and she lives across the street from a BB field that is currently active. She has two young children and plans to live on the property for some years and wants to know if she should be concerned.</td>
<td>Unknown</td>
</tr>
<tr>
<td>EC-187</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>Human Exposure / Health Effects</td>
<td>AG-Small Fruit</td>
<td>11/23/2016</td>
<td>Unknown</td>
<td>Neighbor hires a pest control co. to spray for mosquitoes and ticks. Supposed to be mild products. Caller could smell chemicals, asked types, they were conventional pesticides. Wants to know his rights as an abutter.</td>
<td>Union/Hope</td>
</tr>
<tr>
<td>EC-117</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>Odors</td>
<td>Biting Fly/Ticks</td>
<td>7/6/2016</td>
<td>Unknown</td>
<td>Caller emailed the following: The neighbors on either side of me use Mainely Grass from York for spraying mosquitoes. They spray the trees, shrubs, and the entire lawn right up into the Spartina grasses on the water. The spray drifts onto our property which is not OK with us. I have read the state rules and I'm pretty sure they don't allow spraying in a sensitive area. Does spraying with a wand come under aerial spraying?</td>
<td>Kennebunk</td>
</tr>
<tr>
<td>EC-175</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Drift</td>
<td>Biting Fly/Ticks</td>
<td>9/22/2016</td>
<td>Unknown</td>
<td>When checking 2015 project efficacy in Square Town this year his company noticed that there was a small unmapped stream in block SQT. not sure if this stream held water at the time of last August spray project or not. Application of Rodeo, Arsenal and Oust8 gal total mix/acre.</td>
<td>Cape Nedick</td>
</tr>
<tr>
<td>EC-134</td>
<td>Consent Agreement</td>
<td>Grower</td>
<td>Inquiry</td>
<td>Water Quality</td>
<td>Forestry</td>
<td>7/26/2016</td>
<td>Rotary</td>
<td></td>
<td>Square Town</td>
</tr>
<tr>
<td>EC</td>
<td>Number</td>
<td>Status</td>
<td>Type</td>
<td>Issue Description</td>
<td>Date</td>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-148</td>
<td>12</td>
<td>Resolved-Finalized</td>
<td>Employee Inquiry</td>
<td>Water Quality Forestry Rotory Caller said an on ground company review of their 2014 and 2015 projects currently in progress has revealed 29 sites where there may be issues with impacts to water. Company asked if BPC personnel could meet with them at their Fairfield office and also go into the field to help them understand our regulations.</td>
<td>8/9/2016</td>
<td>Greenville</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-348</td>
<td>13</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint Other Forestry Unknown Mr. Donovan thinks his neighbors to the north dumped pesticides on his property and killed a few balsam fir trees.</td>
<td>Glenridge Gardens caller said “industrial round up” herbicide on the rocks along the front perimeter of each building in the complex this morning. No notification and no posting of the treated area. Applicator sprayed anything in the rock area including toys, shoes and across the sidewalks.</td>
<td>8/1/2016</td>
<td>Searsmont</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-129</td>
<td>14</td>
<td>Resolved-Finalized</td>
<td>Tenant Complaint Notification / Posting General Vegetation Management Unknown Caller reported that the town of Norridgewock hired Lynch Landscaping to make a herbicide application along the fence of a cemetery adjacent to his property. Caller found a pesticide sign face down on his lawn, did not find any damage to his property but thinks Lynch L.S. sprayed his lawn, trees, and garden because he found the sign.</td>
<td>Augusta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-160</td>
<td>15</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint Non-Target Effects General Vegetation Management Unknown Applicator contracted for job with an 10-18 ft. bank from the canal to a road above the canal. The water in the canal is water diverted from the Androscoggin River and returns to the Androscoggin River. Wants to know what BPC regulations are for herbicide applications along the canal bank.</td>
<td>Norridgewock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-106</td>
<td>16</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Inquiry Water Quality Other Unknown Applicator contracted for job with an 10-18 ft. bank from the canal to a road above the canal. The water in the canal is water diverted from the Androscoggin River and returns to the Androscoggin River. Wants to know what BPC regulations are for herbicide applications along the canal bank.</td>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-108</td>
<td>17</td>
<td>Resolved-Finalized</td>
<td>Employee Inquiry License Issue Other Unknown Employee of REnergy called to ask about licensing requirements if a company employee is making applications to their own property in Ft. Fairfield in 2 situations. Fenced in area only accessible to employees. Situation 2 an area where employees and outside contractors have access.</td>
<td>Rumford</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-146</td>
<td>19</td>
<td>Resolved-Finalized</td>
<td>Government Employee Complaint Non-Target Effects Other 7/25/2016 Bait DEP Response Services called to report they just received a call from ME game warden. Warden told her his office as well as the U.S. Fish and WL Service were investigating the spreading of 32 lbs. of rat poison on Ogunquit beach. One dead bird was found. Thought the incident happened w/i the last 2 weeks.</td>
<td>Ogunquit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-150</td>
<td>20</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint Storage / Disposal Other 8/9/2016 Unknown Caller said a helicopter was spraying nearby on Monday Sept. 19. On Sept. 21 saw the helicopter spraying on a fir plantation that abuts his property. Spraying was done just above tree top level by a blue and white helicopter. Wind was towards his property. Suspects drift, wants to know if spraying is legal and what was applied.</td>
<td>Rockland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-173</td>
<td>21</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint Non-Target Effects Other 9/19/2016 Rotary</td>
<td>Glenridge Gardens caller said “industrial round up” herbicide on the rocks along the front perimeter of each building in the complex this morning. No notification and no posting of the treated area. Applicator sprayed anything in the rock area including toys, shoes and across the sidewalks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EC</th>
<th>Status</th>
<th>Type</th>
<th>Inquiry Description</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-178</td>
<td>Resolved-Finalized</td>
<td>Employee Inquiry</td>
<td>Caller has some space in a building on a wharf in Portland. The address is 446 Commercial Street. A friend of his has registered Anti-Mite (sp) with EPA. This product/company is in WA state. The caller said the Portland facility would receive containers in 5 to 10 gallons in size and repackage it into retail size containers in Portland as well as store it there for distribution. General Marine Construction on the space. Roger Hale works for this company. S/b red space now 4500 sq. ft. Would divide space. Only needs 1500 sq. ft. for this GPD. Wants to know if he can operate here under these conditions.</td>
<td>9/27/2016</td>
<td>Portland</td>
</tr>
<tr>
<td>EC-166</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Inquiry</td>
<td>Caller works as a landscaper. One of his clients in S.W. Harbor had some vegetation in a wetland area affected by herbicide work done on an abutting property. There is a sea wall in this area too. Smith wanted to know what can and cannot be done near water and wetlands.</td>
<td>8/15/2016</td>
<td>SW Harbor</td>
</tr>
<tr>
<td>EC-181</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator Inquiry</td>
<td>Caller said he/she is a business in Houlton has unlicensed grow facilities and is making unlicensed pesticide applications to the marijuana crop.</td>
<td>11/2/2016</td>
<td>Houlton</td>
</tr>
<tr>
<td>EC-188</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint</td>
<td>Caller asked about notification requirements when spraying roadside ROWs for the towns of Norridgewock and Madison.</td>
<td>11/29/2016</td>
<td>Presque Isle</td>
</tr>
<tr>
<td>EC-116</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator Inquiry</td>
<td>DOT while spraying today a hose came off the sprayer truck before the nozzle and lost about 3 gallons of solution it was on route 11 it all stayed on the road in a strip 3 inches wide there was some spots there was not any and some in others for a distance of .25 miles and dried up 2 to 3 minutes. The road was just wet and there was nothing to soak up before it dried, the mix was 1 quart of Garlon 4 Ultra per 50 gallons of water and ½ ounce of MSM 60 per 50 gallons there was between 1.9 to ounces of Garlon and .03 to ounces of MSM 60 in the 3 gallons.</td>
<td>7/12/2016</td>
<td>Presque Isle</td>
</tr>
<tr>
<td>EC-123</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen Complaint</td>
<td>Caller reported that only the high bush blue berry plants on the CMP powerline that crosses the Rocky Dundee Road in Buxton were sprayed from the road to about 1/2 mile in on the line. Caller concerned with well in this area too.</td>
<td>7/15/2016</td>
<td>Buxton</td>
</tr>
<tr>
<td>EC-135</td>
<td>Pending Enforcement Review</td>
<td>Concerned Citizen Complaint</td>
<td>Caller reported there is a bridge on the Durham Bridge Road in Newport and within the last week caller noticed the vegetation from the top of the road to the edge of the water was dead on both ends of the bridge. This area has rip rap to hold the embankment. Kids fish here and also concern for wildlife in area and the water. Wants someone to check if this is legal and safe for kids and environment. Caller has seen a "chemical truck" on this road in past years.</td>
<td>7/29/2016</td>
<td>Norridgewock</td>
</tr>
<tr>
<td>EC-139</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator Inquiry</td>
<td>Caller asked about notification requirements when spraying roadside ROWs for the towns of Norridgewock and Madison.</td>
<td>8/1/2016</td>
<td>Norridgewock</td>
</tr>
<tr>
<td>Case ID</td>
<td>Status</td>
<td>Caller Type</td>
<td>Event Type</td>
<td>Topic</td>
<td>Site</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>EC-152</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Right-of-Way</td>
<td>Water Quality</td>
<td>8/10/2016</td>
</tr>
<tr>
<td>EC-158</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Right-of-Way</td>
<td>Other</td>
<td>8/12/2016</td>
</tr>
<tr>
<td>EC-165</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Right-of-Way</td>
<td>Buffers</td>
<td>8/18/2016</td>
</tr>
<tr>
<td>EC-180</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Right-of-Way</td>
<td>Non-Target Effects</td>
<td>10/5/2016</td>
</tr>
<tr>
<td>EC-107</td>
<td>Resolved-Finalized</td>
<td>Tenant</td>
<td>Structural</td>
<td>Other</td>
<td>7/7/2016</td>
</tr>
<tr>
<td>EC-143</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Structural</td>
<td>Water Quality</td>
<td>8/2/2016</td>
</tr>
<tr>
<td>EC-142</td>
<td>Resolved-Finalized</td>
<td>Government Employee</td>
<td>Structural</td>
<td>License Issue</td>
<td>7/29/2016</td>
</tr>
<tr>
<td>EC-153</td>
<td>Consent Agreement</td>
<td>Tenant</td>
<td>Structural</td>
<td>License Issue</td>
<td>8/16/2016</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>39</td>
<td>EC-155</td>
<td>Resolved-Finalized</td>
<td>Tenant</td>
<td>Complaint</td>
<td>Unauthorized Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>EC-179</td>
<td>Enforcement Review Pending</td>
<td>Customer</td>
<td>Complaint</td>
<td>License Issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>EC-170</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Inquiry</td>
<td>Notification / Posting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>EC-168</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Complaint</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>EC-184</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Human Exposure / Health Effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>EC-190</td>
<td>Pending-Inspection</td>
<td>Tenant</td>
<td>Complaint</td>
<td>License Issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>EC-185</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Inquiry</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>EC-191</td>
<td>Enforcement Review Pending</td>
<td>Government Employee</td>
<td>Complaint</td>
<td>License Issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>EC-103</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>EC-112</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Unauthorized Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>EC-118</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Non-Target Effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>EC-132</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Storage / Disposal</td>
</tr>
<tr>
<td>EC-131</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Inquiry</td>
<td>Notification / Posting</td>
<td>Turf/Ornamental</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-144</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>Non-Target Effects</td>
<td>Turf/Ornamental</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-156</td>
<td>Resolved-Finalized</td>
<td>Licensed Applicator</td>
<td>Complaint</td>
<td>License Issue</td>
<td>Turf/Ornamental</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-189</td>
<td>Resolved-Finalized</td>
<td>Government Employee</td>
<td>Complaint</td>
<td>License Issue</td>
<td>Turf/Ornamental</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-192</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Complaint</td>
<td>Storage / Disposal</td>
<td>Unknown</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-167</td>
<td>Resolved-Finalized</td>
<td>Government Employee</td>
<td>Inquiry</td>
<td>Non-Target Effects</td>
<td>Unknown</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-192</td>
<td>Resolved-Finalized</td>
<td>Lawyer</td>
<td>Inquiry</td>
<td>Other</td>
<td>Unknown</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-193</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>License Issue</td>
<td>Unknown</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-----------------</td>
<td>----------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>61</td>
<td>EC-110</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>Non-Target Effects</td>
</tr>
<tr>
<td>62</td>
<td>EC-136</td>
<td>Resolved-Finalized</td>
<td>Concerned Citizen</td>
<td>Inquiry</td>
<td>Notification / Posting</td>
</tr>
</tbody>
</table>
Agriculture 7

<table>
<thead>
<tr>
<th>Complaint Issues</th>
<th>Site Location</th>
<th>Type of Caller</th>
<th>Date</th>
<th>Site Type</th>
<th>Equipment</th>
<th>Pesticide</th>
<th>Response</th>
<th>Findings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead crows/dead dogs</td>
<td>Lincoln</td>
<td>Police Dept.</td>
<td>4/26/2016</td>
<td>agriculture</td>
<td>Bait</td>
<td>LANNATE SP</td>
<td>Inspector fol. up</td>
<td>Misuse of a RUP</td>
<td>$1,500 consent agreement (CA), closed</td>
</tr>
<tr>
<td>Suspected drift</td>
<td>Canaan</td>
<td>Abutter</td>
<td>5/23/2016</td>
<td>forage corn</td>
<td>Boom</td>
<td>ROUND-UP POWER MAX; VERDICT; I;</td>
<td>Inspector fol. up</td>
<td>positive for saflufenacil < 1%</td>
<td>Enforcement action pending.</td>
</tr>
<tr>
<td>Drift, trees browning</td>
<td>Oxford</td>
<td>Abutter</td>
<td>5/31/2016</td>
<td>forage corn</td>
<td>Boom</td>
<td>MARAZON; VERDICT;</td>
<td>Inspector & MFS tech. fol. Up</td>
<td>Natural causes</td>
<td>Closed</td>
</tr>
<tr>
<td>Spill and application</td>
<td>Union</td>
<td>Homeowner</td>
<td>4/25/2016</td>
<td>blueberries</td>
<td>Boom</td>
<td>BLUEBERRY FIELDS</td>
<td>Inspector fol. up</td>
<td>Granular application</td>
<td>Closed</td>
</tr>
<tr>
<td>Winds excessive</td>
<td>Pittsfield</td>
<td>Homeowner</td>
<td>6/13/2016</td>
<td>forage corn</td>
<td>Boom</td>
<td>Inspector fol. up</td>
<td></td>
<td></td>
<td>Closed</td>
</tr>
<tr>
<td>Unauthorized application</td>
<td>Union</td>
<td>Grower</td>
<td>2/4/2016</td>
<td>blueberries</td>
<td>Sprinkler, Gaisto</td>
<td>Inspector fol. up</td>
<td>Confirmed allegation</td>
<td>Pour CA</td>
<td></td>
</tr>
</tbody>
</table>
| Lawn/Turf 12

<table>
<thead>
<tr>
<th>Complaint Issues</th>
<th>Site Location</th>
<th>Type of Caller</th>
<th>Date</th>
<th>Site Type</th>
<th>Equipment</th>
<th>Pesticide</th>
<th>Response</th>
<th>Findings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too close to water, posting</td>
<td>Scarborough</td>
<td>Homeowner</td>
<td>5/24/2016</td>
<td>lawn care</td>
<td>Hose</td>
<td>ADIOS;</td>
<td>Inspector fol. up</td>
<td>Fertilizer application, later spot treat weeds.</td>
<td>Closed</td>
</tr>
<tr>
<td>Unlic. applicator</td>
<td>Oxford Casino</td>
<td>Concerned citizen</td>
<td>5/6/2016</td>
<td>lawn care</td>
<td>Boom</td>
<td>MOMENTUM FX2;</td>
<td>Inspector fol. up</td>
<td>Work subcontracted to lic. applicator</td>
<td>Closed</td>
</tr>
<tr>
<td>Registry member not notified</td>
<td>Cape Elizabeth</td>
<td>Abutter</td>
<td>4/29/2016</td>
<td>lawn care</td>
<td>Hose</td>
<td>BARICADE 4FL; TRUPOWER 3;</td>
<td>Inspector fol. up</td>
<td>Confirmed allegation, repeat violation</td>
<td>$2,750 CA, Closed</td>
</tr>
<tr>
<td>Applic near salmon river</td>
<td>Newcastle</td>
<td>Concerned citizen</td>
<td>4/11/2016</td>
<td>lawn care</td>
<td>Granular Spreader</td>
<td>TCS GROWSTAR FERT W/0.29% BARRICADE HERB;</td>
<td>Inspector fol. up</td>
<td>25 Ft. buffer left</td>
<td>Closed</td>
</tr>
<tr>
<td>Applic when raining</td>
<td>Portland</td>
<td>Concerned citizen</td>
<td>3/17/2016</td>
<td>lawn care</td>
<td>Granular Spreader</td>
<td>DIMENSION 0.10% PLUS FERT;</td>
<td>Inspector fol. up</td>
<td>Fertilizer only</td>
<td>Closed</td>
</tr>
<tr>
<td>Unlicensed applicator</td>
<td>Wells</td>
<td>Licensed applicator</td>
<td>6/14/2016</td>
<td>lawn care</td>
<td>Granular Spreader</td>
<td>DIMENSION 0.10% PLUS FERT;</td>
<td>Inspector fol. up</td>
<td>Confirmed allegation</td>
<td>$400 CA</td>
</tr>
<tr>
<td>Lawn care companies not fol. BMPs, damage 3 yrs ago, hot temp applic. No BPC presence.</td>
<td>Aroostook County</td>
<td>Licensed applicator</td>
<td>6/30/2016</td>
<td>lawn care</td>
<td>Granular Spreader</td>
<td>ACRELPRYN 0.067;</td>
<td>Inspector fol up</td>
<td>Confirmed allegation</td>
<td>Enforcement action pending.</td>
</tr>
<tr>
<td>Too close to water</td>
<td>Scarborough</td>
<td>Concerned citizen</td>
<td>6/30/2016</td>
<td>lawn care</td>
<td>Granular Spreader</td>
<td>BARRICADE 4FL;</td>
<td>Inspector fol. up</td>
<td>Customer > 250 ft.</td>
<td>Closed</td>
</tr>
<tr>
<td>Notification</td>
<td>Portland</td>
<td>Registry member</td>
<td>5/24/2016</td>
<td>lawn care</td>
<td>Hose/gun</td>
<td>BARRICADE 4FL;</td>
<td>Inspector fol. up</td>
<td></td>
<td>Closed</td>
</tr>
<tr>
<td>Chemically sensitive person, neighbor hires lawn care co.</td>
<td>Saco</td>
<td>Abutter</td>
<td>6/22/2016</td>
<td>lawn care</td>
<td></td>
<td></td>
<td>Discussed regulations, Hicks talked to him also</td>
<td>Caller will contact BPC in future if drift suspected.</td>
<td>Closed</td>
</tr>
<tr>
<td>Asked how notification process worked</td>
<td>Portland</td>
<td>Abutter</td>
<td>6/29/2016</td>
<td>lawn care</td>
<td></td>
<td></td>
<td>Discussed Ch. 28 and emailed link, sent hard copy of application to get on pay registry.</td>
<td>Caller eligible for notification. Has to decide on method to request</td>
<td>Closed</td>
</tr>
<tr>
<td>Notification, sick dogs.</td>
<td>Sanford</td>
<td></td>
<td>5/24/2016</td>
<td>lawn</td>
<td></td>
<td></td>
<td>Inspector fol. up</td>
<td>Wanted info on registry</td>
<td>Closed</td>
</tr>
<tr>
<td>License/Cert 3</td>
<td>Compliance Issues</td>
<td>Site Location</td>
<td>Type of Caller</td>
<td>Date</td>
<td>Site Type</td>
<td>Equipment</td>
<td>Pesticide</td>
<td>Response</td>
<td>Findings</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Unlic. commercial use of rodenticide in rented storage units</td>
<td>Berwick, Arundel, York, Wells, Sanford, + 3 others</td>
<td>Concerned citizen</td>
<td>5/12/2016</td>
<td>pest control structural</td>
<td>Bait</td>
<td>TOP GUN PELLETT RODENTICIDE;</td>
<td>Inspector fol. up</td>
<td>Confirmed allegation</td>
</tr>
<tr>
<td></td>
<td>Alleged unlic application</td>
<td>Augusta</td>
<td>Concerned citizen</td>
<td>4/14/2016</td>
<td>Exterior structural</td>
<td>Hand can</td>
<td></td>
<td>Inspector called, co. owner said not at that site on that day</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Unlic. applicator</td>
<td>Southern Maine</td>
<td>Concerned citizen</td>
<td>6/28/2016</td>
<td>structural</td>
<td></td>
<td>Record check done</td>
<td>Confirmed allegation</td>
<td>Enforcement action pending.</td>
</tr>
<tr>
<td>Outdoor Ornamental 2</td>
<td>Unauthorized application</td>
<td>Cape Neddick</td>
<td>Concerned citizen</td>
<td>6/14/2016</td>
<td>outdoor ornamental</td>
<td></td>
<td>Inspector fol. up/3rd party sample</td>
<td>No detection</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Trees/shrubs concern</td>
<td>Minot</td>
<td>Abutter</td>
<td>5/31/2016</td>
<td>outdoor ornamental</td>
<td>Boom</td>
<td>MAKAZE; VERDICT;</td>
<td>Inspector/MFS tech. fol. Up</td>
<td>Natural causes</td>
</tr>
<tr>
<td>Right-of-Way 2</td>
<td>Neighbor treated roadside ROW and over P line</td>
<td>Rockland</td>
<td>Abutter</td>
<td>5/18/2016</td>
<td>other non ag Powered Ground Equipment</td>
<td>ROUND-UP</td>
<td></td>
<td>Inspector fol. up</td>
<td>Confirmed allegation</td>
</tr>
<tr>
<td></td>
<td>Notification</td>
<td>Mercer</td>
<td>Concerned citizen</td>
<td>6/30/2016</td>
<td>Utility ROW</td>
<td>NP backpacks</td>
<td></td>
<td>BPC staff answer notif. process questions</td>
<td>Information requested/provided</td>
</tr>
<tr>
<td>Structural 3</td>
<td>Rodenticide misuse</td>
<td>Kittery</td>
<td>Customer</td>
<td>Pest control structural</td>
<td>Bait</td>
<td>GENERATION MINI BLOCKS; CONTACT ALL-WEATHER BLOX;</td>
<td>Inspector fol. up</td>
<td>Baited inaccessible area, no violation</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Unauthorized application</td>
<td>Rockport</td>
<td>Homeowner</td>
<td>6/16/2016</td>
<td>pest control structural</td>
<td>Granular Spreader</td>
<td>DELTA GARD G;</td>
<td>Inspector fol up</td>
<td>Allegation confirmed</td>
</tr>
<tr>
<td></td>
<td>Abutter wants info on commercial application</td>
<td>Norridgewock</td>
<td>Abutter</td>
<td>6/13/2016</td>
<td>pest control structural</td>
<td></td>
<td></td>
<td>BPC staff phone call</td>
<td>Information provided</td>
</tr>
</tbody>
</table>
Jim,
Thank you for getting this to us. Cam please put this on our agenda for next meeting.

Hi Deven--Attached is Extension’s grant request that we’ve discussed at a couple of previous BPC meetings. I would like to have the grant year coincide with Federal Fiscal year, which starts October 1. However, I will not be requesting any of the funds for the first year until sometime in January 2018, I hope this will be satisfactory with the BPC. Unfortunately, I have had a Legislative ACF Committee obligation arise which has created a conflict for me on the 15th and I will not be able to attend the BPC meeting in person. Megan Patterson will have my cell phone number if any questions need to be answered which Megan can't. She and I have met and discussed this proposal. Thanks Jim Dill

LUCAS TREE EXPERTS CONFIDENTIALITY NOTICE: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.
Deven Morrill, Chair
Maine Board of Pesticides Control
28 State House Station
Augusta, Me 04333-0028

August 17, 2017

This letter outlines a formal request for funding of the Maine Pesticide Safety Education Program. As has been discussed during previous Board of Pesticides Control (BPC) meetings, the issuance of a $65,000 grant (with no overhead allowed) is requested for University of Maine Cooperative Extension in support of the Pesticide Safety Education Program. The logistics and distribution of this funding request have been discussed with Megan Patterson of the BPC. The following deliverables (as requested by the Board) will be produced in collaboration with BPC staff during the University of Maine’s FY 18 (October 1, 2017 through September 30, 2018). Therefore, the requested start date of the grant is October 1, 2017.

- Three manuals will be updated:
 - Private - Potato
 - Commercial – 3A-Outdoor Ornamentals
 - Either 7E-Biting Fly or 8B Public Health (general revision and increased information on ticks and browntail moth)
- At a minimum, four 4-hour commercial applicator training sessions will be conducted
- At least 12 recertification credits will be offered at the Agricultural Trades Show in January
- At least two 4-hour private applicator training sessions will be offered
- A 1 to 1.5 hour program on general pesticide information will be developed to be used for municipalities who may be considering local pesticide ordinances

We will report back to the BPC on the progress of the grant in August 2018, in time to include a request for continuing funding at the September 2018 BPC meeting. Thank you for your consideration.

Sincerely,

James Dill
University of Maine Cooperative Extension

The University of Maine and the U.S. Department of Agriculture cooperating with Cooperative Extension provides equal opportunities in programs and employment.
Proposed Administrative Consent Agreement

Background Summary

Subject: Weyerhaeuser Company
PO Box 89
Fairfield, ME 04903

Date of Incident(s): During the company’s 2014 and 2015 aerial forest spray project

Background Narrative: In early August of 2016 the company self-reported compliance concerns with their 2014 and 2015 aerial forest spray projects in their Moosehead district. Later in August, two Board staff members met with Weyerhaeuser personnel at Weyerhaeuser’s Fairfield office. The company summarized their system for developing their annual forest spray projects including their protocols for protecting environmentally sensitive areas. The company listed the spray blocks where they thought their protocols were not followed.

On five different days, three in August and two in September, a Board inspector accompanied a Weyerhaeuser forester in the field to ground check representative spray blocks of concern.

Based on a review of 2014 and 2015 project information and field observations, evidence indicated that there were violations of pesticide regulations. Herbicide applications were made over three streams and five herbicide applications violated the 75-foot buffer required by the label of an herbicide applied next to aquatic sites.

Finally, there was insufficient notification to a camp owner within 500 feet a spray block.

Summary of Violation(s): 7 M.R.S. 606(2)(b), it is a violation to “[u]se or cause to be used any pesticide in a manner inconsistent with its labeling or with rules of the board, if those rules further restrict the uses provided on the labeling”.

CMR 01-026 Chapter 51 Section IV(B)(2). In areas where there is no regular newspaper circulation, the person contracting for services may substitute individual notice to all landowners within 500 feet of the target site. This individual notice shall be provided to the person(s) owning property or using residential rental, commercial or institutional buildings within 500 feet of the intended target site at least 3 days but not more than 60 days before the commencement of the intended spray applications. The notice shall contain the information required in Section I(A). For absentee property owners who are difficult to locate, certified or equivalent mailing of the notice to the address listed in the Town tax record shall be considered sufficient notice.

Rationale for Settlement: The staff considered the company’s role of laying out spray blocks, including establishing protections to aquatic sites, and the scope and seriousness of the violations. The reduced penalty took into account that the company self-reported the violations; the cooperation of the company in the Board staff’s investigation of the violations; the fact that the company retained an independent expert to conduct a natural resource assessment of the areas involved, which reported no lasting environmental impact to those areas; and the fact that the company has taken affirmative steps to avoid future violations.

Attachments: Proposed Consent Agreement
STATE OF MAINE
DEPARTMENT OF AGRICULTURE, CONSERVATION, AND FORESTRY
BOARD OF PESTICIDES CONTROL

ADMINISTRATIVE CONSENT

Weyerhaeuser Company)
PO Box 89) AGREEMENT
Fairfield, ME 04903) AND
FINDINGS OF FACT

This Agreement, by and between Weyerhaeuser Company (hereinafter called the "Company") and the State of Maine Board of Pesticides Control (hereinafter called the "Board"), is entered into pursuant to 22 M.R.S.§1471-M (2)(D) and in accordance with the Enforcement Protocol amended by the Board on June 3, 1998.

The parties to this Agreement agree as follows:

1. That the Company owns and manages commercial timber lands in Maine, including planning annual forest spray projects and then contracting and coordinating with commercial aerial applicators to complete those projects.

2. That in early August of 2016, the company self-reported compliance concerns related to the Company’s 2014 and 2015 forest spray projects that their foresters detected when checking the vegetation control efficacy of past projects.

3. That on August 18, 2016, two Board staff met with Company staff at the Company’s Fairfield office.

4. That during the meeting described in paragraph three, Company staff summarized their system for developing their annual forest projects including their protocols for protecting environmentally sensitive areas in and near spray blocks. Additionally, Company staff listed the 2014 and 2015 spray blocks they thought could have compliance issues. All sites of concern were in the Company’s Moosehead District and attributed to an employee not following the Company’s established procedures.

5. That on August 23, 25, and 30, of 2016, and September 1 and 22, 2016, a Board inspector and Company staff ground checked representative spray blocks on the Company’s self-reported sites list with potential compliance issues.

6. That based on information and findings from paragraphs one through five, Board staff informed a Company employee it was the Board’s intention to present this information as an investigation summary at a monthly seven member public Board of Pesticides Control meeting to ask that Board for input on how to proceed.

7. That at the Company’s request for additional input at another meeting prior to the step summarized in paragraph six, Board staff, Assistant Attorney General Mark Randlett, Company staff, and an employee of the MDEP’s Bureau of Land and Water Quality met at the Attorney General’s office on May 22, 2017.

8. That at the meeting described in paragraph seven, Company staff presented information from their internal investigation and from a third party, Stantec Consulting Services Inc., hired by the Company to conduct a natural resource assessment of the spray blocks of concern. Stantec reported no lasting environmental impact to the areas involved. The Company also provided information on their corrective action plan moving forward. Company counsel acknowledged some violations involving sensitive areas and one
violation related to insufficient notification to a camp owner near an aerial application. Company Counsel also proposed paying a penalty through a consent agreement to settle the violations.

9. That, pursuant to 7 M.R.S. 606(2)(b), it is a violation to “[u]se or cause to be used any pesticide in a manner inconsistent with its labeling or with rules of the board, if those rules further restrict the uses provided on the labeling”.

10. That based on the Board inspector’s field observation described in paragraph five it was determined that three streams in or near the following three spray blocks received herbicide applications: Spencer Bay Township 7 release (2014), Squaretown Township 7 release (2015), and Thorndike Township 6 release (2015).

11. That the tank mix of pesticides applied to the spray blocks described in paragraph ten, included Accord XRT, Arsenal Applicators Concentrate herbicide, and DuPont Oust XP.

12. That all three pesticide labels for the pesticides described in paragraph eleven, prohibit direct application of those pesticides to water as described in paragraph 10.

13. That the circumstances described in paragraphs one through twelve, constitute three violations of 7 M.R.S. 606(2)(b) and the pesticide labels for the pesticides applied.

14. That the tank mix of pesticides applied to the Company’s 2015 project included DuPont Oust XP.

15. That the Dupont Oust XP label requires a seventy-five foot buffer from streams and other aquatic environments.

16. That the following spray blocks received Dupont Oust XP herbicide applications closer than seventy-five feet from sensitive aquatic sites on the Company’s 2015 project. Squaretown 2 release, Squaretown 4 release, Chase Stream 4 release, Elliotsville 1 site prep, and Misery 3 release.

17. That the circumstances described in paragraphs one through nine, fourteen, fifteen, and sixteen constitute five violations of 7 M.R.S. 606(2)(b) and the Dupont Oust XP label.

18. That CMR 01-026 Chapter 51 Section IV (B)(2) requires that, “[i]n areas where there is no regular newspaper circulation, the person contracting for services may substitute individual notice to all landowners within 500 feet of the target site. This individual notice shall be provided to the person(s) owning property or using residential rental, commercial or institutional buildings within 500 feet of the intended target site at least 3 days but not more than 60 days before the commencement of the intended spray applications.”

19. That the Company acknowledged that for the spray block Squaretown 4 release pesticide application in 2015, it did not provide sufficient notification to meet the requirement described in paragraph eighteen.

20. That the circumstances described in paragraphs one through eight, eighteen, and nineteen constitute a violation of CMR 01-026 Chapter 51 Section IV(B)(2).

21. That the Board has regulatory authority over the activities described herein.

22. That the Company expressly waives:

a. Notice of or opportunity for hearing;
b. Any and all further procedural steps before the Board; and

c. The making of any further findings of fact before the Board;

23. That this Agreement shall not become effective unless and until the Board accepts it.

24. That, in consideration for the release by the Board of the causes of action which the Board has or may have against the Company resulting from the violations referenced in paragraphs thirteen, seventeen, and twenty, the Company agrees to pay to the State of Maine the sum of $8,000.00. This agreement reflects a reduced penalty after consideration of the number and seriousness of the pesticide violations involved; the fact that the Company self-reported the violations; the cooperation of the Company in the Board staff's investigation of the violations; the fact that the Company retained an independent expert to conduct a natural resource assessment of the areas involved, which reported no lasting environmental impact to those areas; and the fact that the Company has taken affirmative steps to avoid future violations.

(Please make checks payable to Treasurer, State of Maine).

IN WITNESS WHEREOF, the parties have executed this Agreement of three pages.

WEYERHAUSENER COMPANY

By: ____________________________ Date: ____________________________

Type or Print Name: ____________________________

BOARD OF PESTICIDES CONTROL

By: ____________________________ Date: ____________________________

Cam Lay, Director

APPROVED

By: ____________________________ Date: ____________________________

Mark Randlett, Assistant Attorney General
CASE SUMMARY

Subject: Town of Ogunquit
PO Box 875
Ogunquit, Maine 03907

Date of Incident(s): Bait stations: parking lot 7-11-16/7-18-16/7-25-16; Rip rap approximately 7-18-16

Background Narrative: On August 8, 2016, the Board received a call from an employee of the Maine Department of Environmental Protection (MDEP). The MDEP employee relayed information that the Maine Department of Inland Fisheries and Wildlife (MDIFWL) was investigating the spreading of rat poison on the Ogunquit Beach and one dead bird was found.

On August 9, 2016, A Board of Pesticides Control (BPC) inspector conducted a follow up inspection with Ogunquit’s administrative services director and the director said he applied Tomcat All Weather Bait Chux rodenticide on 3 separate occasions in July of 2016. The applications were made to the town beach parking lot. The bait was placed in bait stations.

On August 11th, a MDEP employee called the BPC inspector investigating this case to convey information that another complaint was received from a person who reported finding a piece of rat bait in the rip rap section at the Ogunquit town beach. The MDEP employee went to the site and several young town seasonal employees there told the MDEP employee that they were involved with placing the bait throughout the rip rap.

The MDEP employee and the BPC inspector then met with Ogunquit’s administrative services director on March 12th. The Ogunquit administrative services director acknowledged that he instructed two town workers in mid-July to make a hand application of rodenticide bait blocks by placing them in openings in the rocks of the rip rap between the parking lot and the beach.

The BPC inspector also interviewed the town workers on March 12th who were involved with the rip rap application. Once that application was complete, the worker placing the bait had several blocks left over and he said he flipped them into the bushes on the opposite side parking lot from the rip rap.

No one employed by the town was a certified pesticide applicator. The Tomcat All Weather Bait Chux label states “Bait stations are mandatory for outdoor, above-ground use”. The Tomcat All Weather Bait Chux label states “Do not expose children, pets, or non-target animals to rodenticides”. No records were kept for any of the pesticide applications.

Summary of Violation(s):
- 22 M.R.S. § 1471-D(1)(A) Requires that any person making a pesticide application that is a custom application must be a certified commercial applicator.
- 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S. § 606 (2)(B) and 22 M.R.S. § 1471-D(8)(F) require that pesticides be used consistent with their labels.
- CMR 01-026 Chapter 50, Section I(A). Requires that commercial applicators making pesticide applications, must keep pesticide application records.

Rationale for Settlement: The pesticide was applied in a careless, negligent or faulty manner or in a manner which was potentially harmful to the public health, safety or welfare or the environment.
Don Gerrish Town of Ogunquit P.O. Box 875 Ogunquit, Maine 03907

STATE OF MAINE
DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY
BOARD OF PESTICIDES CONTROL

ADMINISTRATIVE CONSENT AGREEMENT
AND
FINDINGS OF FACT

This Agreement by and between the Town of Ogunquit (hereinafter “Ogunquit”) and the State of Maine Board of Pesticides Control (hereinafter called the “Board”) is entered into pursuant to 22 M.R.S. §1471-M (2)(D) and in accordance with the Enforcement Protocol amended by the Board on December 13, 2013.

The parties to this Agreement agree as follows:

1. That on August 8, 2016, the Board received a call from a Maine Department of Environmental Protection (MDEP) employee. The MDEP employee relayed information she received from a game warden with the Maine Department of Inland Fisheries & Wildlife (MDIFW), that MDIFW was investigating the spreading of rat poison on Ogunquit Beach and that one dead bird was found. A United States Fish and Wildlife Service’s forensic pathology report later stated that this bird died of pneumonia.

2. That on August 9, 2016, Gene Meserve, a Board inspector conducted a follow up inspection with Ogunquit’s administrative services director (ASD). The ASD acknowledged he was the applicator who put the rodenticide bait out.

3. That, during the inspection described in paragraph two, Meserve documented that the ASD applied Tomcat All Weather Bait Chux rodenticide on three separate occasions. Four blocks of bait were placed in each enclosed bait station. Six bait stations were placed out one hundred feet apart in the Town beach parking lot. For each application, the bait was put out at 10 p.m. and picked up at 5:30 a.m. on July 11-12, 18-19, and 25-26. The area treated was approximately 400 feet x 600 feet. The ASD and the Board inspector went to the site and the ASD showed the inspector where he had placed the bait stations. The inspector later marked these locations on an aerial photo. The ASD said he lost several bait stations during his applications. The inspector took photos of the label for Tomcat All Weather Bait Chux rodenticide and the bait stations used in the application. The inspector determined no pesticide application records were kept for these applications. During this inspection the ASD did not disclose that another rodenticide application had been made.

4. That the same day the inspection described in paragraphs two and three was completed, Meserve emailed the Board’s main office, the MDEP, and the MDIFW to update them on his findings.

5. That on August 11, 2016, a MDEP employee called Meserve. The MDEP employee told Meserve that his office just received another complaint from a person who reported finding a piece of rat bait in the rip rap section at the Ogunquit town beach. A MDEP employee went to the site the same day to search the rip rap for bait and found none, but while there, several Ogunquit town workers approached him and asked what he was looking for.

6. That during the discussion described in paragraph five, the workers said they were aware of the situation and were actually involved in placing the bait throughout the rip rap.

7. That the MDEP employee called Meserve to update him on the information described in paragraph six, which had not been shared with Meserve when he had met with the ASD.
8. That in response to the information reported to MDEP in paragraphs five and six, the MDEP employee and Meserve returned to Ogunquit on August 12, 2016. The MDEP employee arrived first and searched the rip rap for rodent bait but found none. Later while they were waiting to meet with the ASD, an Ogunquit town selectman that was at the town office told them he knew where there was a bait block near the beach. The MDEP employee went with the selectman and retrieved one bait block and returned. While Meserve met with the ASD, the MDEP employee went back to the beach and found another block in the same general vicinity as the previous one which was directly in front of the canopied area. This is on the edge of the beach parking lot just above the rip rap.

9. That during the Board inspector’s meeting with the ASD on August 12, 2016, the ASD told the inspector that he instructed two town workers in mid-July to make a hand application of bait blocks by placing them in openings in the rocks of the rip rap between the parking lot and the beach. This is the same parking lot where the ASD made the bait station applications described in paragraph three.

10. That during August 12, 2016, meeting, the ASD completed a written statement summarizing the rodent problem, his purchase of chunked rat bait, his use of bait stations, and his directive to town employees to place the rat bait into holes in the rocks of the beach rip rap.

11. That on August 12, 2016, the inspector collected a photo copy of a receipt from the Tractor Supply Company in Sanford dated July 18, 2016, that showed that Ogunquit made the following purchases: Tomcat 4lb. Pail Chunx, Tomcat 9lb. Pail Chunx, Tomcat 9lb. Pail Chunx, and 18lb. pail for a total of 40 lbs. of rodenticide purchased.

12. That on August 12, 2016, the Board inspector also met with one of the Ogunquit Public Services workers the ASD directed to make the rodenticide bait application to the rip rap as described in paragraph ten.

13. That the public service worker said the ASD told him and a coworker to place rat poison blocks along the Ogunquit Beach rocks. The investigation determined that the interviewed worker picked up trash in the area while his coworker applied approximately 40-50 Tomcat Bait Chunx blocks by hand to the rocks on July 18, 2016, (he thought) by placing them in deep holes a “few feet apart” as instructed. The interviewed worker further stated they were later instructed to remove the bait blocks. The worker completed a written statement about the rodenticide application.

14. That the interviewed worker also told the Board inspector that after the rip rap baiting was completed as instructed several bait blocks were left over that were put in the bushes on the opposite side of the parking lot from the rip rap. The Board inspector determined there was no pesticide application record kept for this application or the application described in paragraph thirteen.

15. That on August 19, 2016, a Board inspector placed a Stop Sale/Use/Removal order on the following Tomcat All Weather Bait Chunx: one 18 lb. pail, one 9 lb. pail, and one 4 lb. pail with one lb. in it for a total of 28 lbs. of rodent bait. The signed order was issued to The ASD.

16. That in an email to Board staff dated August 23, 2016, an MDEP employee wrote that his office had collected 23 pieces of bait (1.4375 lbs.) and that pieces collected by Ogunquit town personnel on August 8, 2016, were turned in to the Ogunquit police department. According to the label, the Tomcat All Weather Bait Chunx was in one-ounce bait blocks.

17. That on August 30, 2016, Board Staff called the Ogunquit Police Department and asked Police Chief Patricia Arnaudin how much rodenticide bait had been collected and turned in. Arnaudin said they had 87 whole blocks (5.4375 lbs.) and 15 broken pieces (estimated at .9375 lbs.). Arnaudin stated the bait came from the rip rap area next to the awnings.
18. That based on the amount of rodenticide purchased as described in paragraph eleven, and rodenticide collected and accounted for as described in paragraphs fifteen, sixteen, and seventeen it is estimated that 12 lbs. of bait was applied by Town employees and just less than 7.8125 lbs. of applied rodenticide was recovered. The remaining unrecovered rodenticide bait (estimated to be 4.1875 lbs.) is unaccounted for.

19. That any person making a pesticide application that is a custom application, as defined under 22 M.R.S. § 1471-C(5-A), must be a certified commercial applicator in accordance with 22 M.R.S. § 1471-D(1)(A).

20. That “commercial applicator” includes individuals who apply pesticides in connection with their duties as employees of local governments, according to 22 M.R.S. § 1471-C(5).

21. That a custom application is also defined in 22 M.R.S. § 1471-C(5-A) as any application of any pesticide under contract or for which compensation is received or any application of a pesticide to a property open to use by the public. The parking lot and the area where the rip-rap is located are areas that are open to use by the public.

22. That the applications described in paragraphs two, three, six, nine, ten, twelve, thirteen, and fourteen constitute custom applications as defined in 22 M.R.S.A. § 1471-C(5-A).

23. That no one from Ogunquit had a commercial pesticide applicator’s license at the time of the applications described in paragraphs two, three, six, nine, ten, twelve, thirteen, and fourteen.

24. That the circumstances described in paragraphs one through twenty-three constitute multiple violations of 22 M.R.S. § 1471-D(1)(A).

25. That the Tomcat All Weather Bait Chux label states “Bait stations are mandatory for outdoor, above-ground use”.

26. That the Tomcat All Weather Bait Chux label states “Do not expose children, pets, or non-target animals to rodenticides”.

27. That 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S. § 606 (2)(B) and 22 M.R.S. § 1471-D(8)(F) require that pesticides be used consistent with their labels.

28. That the circumstances described in paragraphs one, two, five through fourteen, sixteen through eighteen, and twenty-five through twenty-eight constitute uses of a pesticide inconsistent with the product labeling and multiple violations of 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S.§ 606 (2)(B) and 22 M.R.S.§ 1471-D(8)(F).

29. That commercial applicators making pesticide applications, must keep pesticide application records as required by CMR 01-026 Chapter 50, Section I(A).

30. That no records were kept of the pesticide applications described in paragraphs three and fourteen.

31. That the circumstances described in paragraphs three, fourteen, twenty-nine, and thirty constitute violations of CMR 01-026 Chapter 50, Section I(A).

32. That the Town of Ogunquit has fully cooperated with the Board to mitigate and address the application of rodenticide as described in this Agreement. Further, the Town of Ogunquit is training and educating all public service employees regarding the Town’s Ordinance which prohibits the use of pesticides, including the rodenticide used in July 2016.

33. That the Board has regulatory authority over the activities described herein.
34. That the Town expressly waives:
 a. Notice of or opportunity for hearing;
 b. Any and all further procedural steps before the Board; and
 c. The making of any further findings of fact before the Board.

35. That this Agreement shall not become effective unless and until the Board accepts it.

36. That, in consideration for the release by the Board of the causes of action which the Board has against the Town resulting from the violations referred to in paragraphs twenty-four, twenty-eight, and thirty-one, the Town agrees to pay to the State of Maine the sum of $3,500. (Please make checks payable to Treasurer, State of Maine.)

IN WITNESS WHEREOF, the parties have executed this Agreement of four pages.

TOWN OF Ogunquit

By: ___ Date: ____________________
Type or Print Name: ____________________________

BOARD OF PESTICIDES CONTROL

By: ___ Date: _____________________
 Henry Jennings, Director

APPROVED:

By: ___ Date: _____________________
 Mark Randlett, Assistant Attorney General
Proposed Administrative Consent Agreement

Background Summary

Subject: Michael Legasse
Green Thumb Lawn Service
64 Stevens Road
Brewer, Maine 04412

Date of Incident(s): July 18, 2017

Background Narrative: On July 26, 2017, a homeowner from Brewer called the Board to ask for remediation ideas to minimize the effects of a pesticide application that Green Thumb Lawn Service made to her lawn. The caller was not a customer of Green Thumb Lawn Service.

A Board inspector later met with the Green Thumb Lawn Service applicator who made the application. The inspector documented that the applicator applied Escalade 2 herbicide to turf at 25 Sunset Strip in Brewer on July 18, 2017, when the application was intended for a customer at 25 Starlight Drive in Brewer.

Although Green Thumb Lawn Service had a policy in place to positively identify the proper treatment site by checking the customer’s electric meter number, the Green Thumb Lawn Service applicator told the inspector he did not check the electric meter number on the caller’s house. The applicator grew up in this area and still lives in the area and thought he knew where the customer lived. The Green Thumb Lawn Service owner acknowledged the wrong property was treated.

Summary of Violation(s):

- CMR 01-026 Chapter 20 Section 6(D)2 No person may apply a pesticide to a property of another unless prior authorization for the pesticide application has been obtained from the owner, manager or legal occupant of that property. The term “legal occupant” includes tenants of rented property.

- CMR 01-026 Chapter 20 Section 7 Commercial applicators making outdoor treatments to residential properties must implement a system, based on Board approved methods, to positively identify the property of their customers. The Board shall adopt a policy listing approved methods of positive identification of the proper treatment site.

Rationale for Settlement: The staff compared the violation to similar cases settled by the Board and considered the remedial steps the company offered to the impacted property owner.

Attachments: Proposed Consent Agreement
STATE OF MAINE
DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY
BOARD OF PESTICIDES CONTROL

In the Matter of:) ADMINISTRATIVE CONSENT
Green Thumb Lawn Service) AGREEMENT
64 Stevens Road) AND
Brewer, Maine 04412) FINDINGS OF FACT

This Agreement by and between Green Thumb Lawn Service (hereinafter called the "Company") and the State of Maine Board of Pesticides Control (hereinafter called the "Board") is entered into pursuant to 22 M.R.S. §1471-M (2)(D) and in accordance with the Enforcement Protocol amended by the Board on December 13, 2013.

The parties to this Agreement agree as follows:

1. That the Company provides commercial lawn services and has the firm license number SCF 956 issued by the Board pursuant to 22 M.R.S. § 1471-D (1)(B).

2. That on July 26, 2017, a homeowner from Brewer called the Board to ask for remediation ideas to minimize the effects of a pesticide application that the Company made to her lawn. The caller was not a customer of the Company.

3. That in response to the call in paragraph two, a Board inspector phoned the homeowner and left her a voice message. The homeowner called the inspector back but declined a meeting with the inspector.

4. That on August 2, 2017, the inspector met with the Company applicator at the Company’s Brewer office to conduct an inspection of the application described in paragraph two.

5. That from the inspection described in paragraph four, the inspector documented that an Escalade 2 herbicide application was made to turf at 25 Sunset Strip in Brewer on July 18, 2017, by a Company applicator. This resident was not a Company customer. The intended application site was 25 Starlight Drive in Brewer.

6. That CMR 01-026 Chapter 20 Section 6(D)2 requires prior consent from the property owner before a person can apply pesticides to the property of another.

7. That the Company did not have the homeowner‘s authorization to make a pesticide application at 25 Sunset Strip in Brewer.

8. That the circumstances described in paragraphs one through seven constitute a violation of CMR 01-026 Chapter 20 Section 6(D)2.

9. That CMR 01-026 Chapter 20 Section 7 requires the positive identification of the proper treatment site when commercial applicators are making outdoor treatments to residential properties. Companies must implement a system, based on Board approved methods, to positively identify the property of their customers. The Board adopted a policy listing approved methods of positive identification of the proper treatment site.

10. That the inspector asked the Company technician who made the application at 25 Sunset Strip how the mistake was made. The technician said he was very familiar with the area and relied on his knowledge rather than GPS equipment or another means of positively identifying the treatment site.
11. That the circumstances in paragraphs one through five, nine, and ten constitute a violation of CMR 01-026 Chapter 20 Section 7.

12. That the Board has regulatory authority over the activities described herein.

13. That the Company expressly waives:
 A. Notice of or opportunity for hearing;
 B. Any and all further procedural steps before the Board; and
 C. The making of any further findings of fact before the Board.

14. That this Agreement shall not become effective unless and until the Board accepts it.

That in consideration for the release by the Board of the cause of action which the Board has against the Company resulting from the violations referred to in paragraphs eight and eleven, the Company agrees to pay a penalty to the State of Maine in the sum of $1,000.00. (Please make checks payable to Treasurer, State of Maine).

IN WITNESS WHEREOF, the parties have executed this Agreement of two pages.

GREEN THUMB LAWN SERVICE

By: ______________________________ Date: __________________________

Type or Print Name: ______________________________ __________________________

BOARD OF PESTICIDES CONTROL

By: ______________________________ Date: __________________________
Cam Lay, Director

APPROVED:

By: ______________________________ Date: __________________________
Mark Randlett, Assistant Attorney General
Proposed Administrative Consent Agreement
Background Summary

Subject: Frederick’s Property Preservation and Inspections
741 Western Avenue
Dixmont, Maine 04932

Date of Incident(s): On June 21, 2017, and June 23, 2017.

Background Narrative: Frederick’s Property Preservation and Inspections company was hired to clean up a foreclosed property at 112 Rockland Road (Route 17) in Whitefield. An enclosed cargo trailer parked on an abutting property but owned by the foreclosed property owner, was part of the cleanup project.

The contents of the enclosed trailer included approximately thirty 20 pound bags of Sam’s Choice Weed and Feed 24-6-12. Frederick’s Property Preservation and Inspections company employees said that when they dismantled the sides of the metal trailer on June 21, 2017, the bags fell off the trailer and ended up in a marsh/wetland area on the abutting property. The employees said all but six bags broke, those unbroken bags were removed from the site by the company employees. The balance of the weed and feed was left in the wetland.

The Maine Department of Environmental Protection (DEP) received a complaint call about the incident on June 23, 2017, and a DEP inspector went to the site the same day. The DEP inspector observed dead vegetation in the marsh/wetland area and talked to Frederick’s Property Preservation and Inspections employees who had just spread what they could of the original weed and feed pile that was in the marsh/wetland on drier ground. The DEP reported the spill to the BPC later in the day on June 23, 2017, and emailed DEP’s initial reporting form for the incident.

On June 26, 2017, an inspector from the DEP and an inspector from the BPC returned to the site to conduct a joint follow-up inspection. Granular weed and feed could still be seen in the marsh/wetland area. There was dead vegetation in this same area approximately fifteen feet in diameter. Other granules could be seen spread out on both the foreclosed property and the abutting property and there was a strong smell associated with pesticides. The granules were not spread out uniformly and clumps and piles covered about 16,476 square feet on the foreclosed property and 281 square feet on the abutting property.

On June 27, 2017, a BPC inspector met with the owner of Frederick’s Property Preservation and Inspections company. The owner acknowledged that the weed and feed was initially in the marsh/wetland area but later his crew collected some of the weed and feed in the marsh/wetland in pails and totes and removed it from the site. When the employees ran out of pails and totes they spread the remainder of the material out on the foreclosed property and the abutting property. The company owner estimates about ten 20 pound bags were spread on the properties.

No one from Frederick’s Property Preservation and Inspections company was a licensed applicator at the time of the applications.
Summary of Violation(s):

- 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S. § 606 (2)(B) and 22 M.R.S. § 1471-D(8)(F) Has made a pesticide recommendation, use or application, or has supervised such use or application, inconsistent with the labelling or other restrictions imposed by the board (rate of application and site of application).

- CMR 01-026 Chapter 20 Section 6(D)2 No person may apply a pesticide to a property of another unless prior authorization for the pesticide application has been obtained from the owner, manager or legal occupant of that property. The term “legal occupant” includes tenants of rented property.

- 22 M.R.S. 1471-D (1) (A)- No commercial applicator may use or supervise the use of any pesticide within the State without prior certification from the board, provided that a competent person who is not certified may use such a pesticide under the direct supervision of a certified applicator. CMR 01-026 Chapter 31 Section 1(A) III- Supervised on-site by either a licensed commercial applicator/master or a commercial applicator/operator who is physically present on the property of the client the entire time it takes to complete an application conducted by an unlicensed applicator….

Rationale for Settlement: Number of violations and environmental impact.

Attachments: Proposed Consent Agreement
This Agreement, by and between Frederick’s Property Preservation and Inspections (hereinafter called the "Company") and the State of Maine Board of Pesticides Control (hereinafter called the "Board"), is entered into pursuant to 22 M.R.S. §1471-M (2)(D) and in accordance with the Enforcement Protocol amended by the Board on June 3, 1998.

The parties to this Agreement agree as follows:

1. That the Company, owned by Ryan Frederick, is a commercial company that offers property inspection and cleanup services including in the Whitefield area.

2. That on June 21, 2017, the Maine Department of Environmental Protection (MDEP) received a complaint about material that was dumped on a wetland area located at 112 Rockland Road (Route 17) in Whitefield. This site is across from Elmer’s Barn.

3. MDEP’s initial spill report indicated that 8-10 bags of fertilizer were believed to have been disposed of in the wetland and surrounding area.

4. The Company was hired to clean up a foreclosed residential property at 112 Rockland Road.

5. That on June 23, 2017, in response to the complaint described in paragraph two, a MDEP inspector went to 112 Rockland Road to investigate. The Company happened to be at the site at that time. Company employees told the inspector they had just picked up piles of granular material that they previously spilled on site, including in the wetland area. When the employees ran out of totes and five gallon buckets to put the granular material that was picked up on June 23 into, the employees spread the remainder of granular material on the property. The MDEP inspector asked if the employees had any bags so he could determine what the granular material was. The employees said they did not have any bags and that the contents of up to ten bags had been disposed of on the property.

6. That during the inspection described paragraph five, the MDEP inspector observed an area of dead vegetation in a wetland area, approximately fifteen feet in diameter. Granular material had also been spread on portions of the foreclosed property and the property at 20 Otter Lane.

7. That on June 23, a MDEP staff person called Board staff to let them know about their investigation described in paragraphs one through six. The MDEP caller also sent the Board a copy of the MDEP’s initial spill report on the incident.

8. That a Board inspector and the MDEP inspector met at 112 Rockland Road on June 26, 2017, to further investigate the incident.

9. That during the investigation described in paragraph eight the Board inspector observed a high concentration of granular material visible in the wetland as well as on portions of the foreclosed property and portions of the abutting property at 20 Otter Lane. There was also a chemical smell in these areas.
10. That the Board inspector interviewed the owner of the property at 20 Otter Lane. From that interview the inspector determined that the wetland area where the granular material had been disposed of as described in paragraphs five, six, and nine was on the 20 Otter Lane property, not the foreclosed property.

11. That on June 27, 2017, a Board inspector met with Ryan Frederick and his brother Michael. Michael worked on the cleanup crew at the foreclosed property described in paragraphs four and five, including work done on July 21, 2017, and July 23, 2017. Ryan told the inspector that when an enclosed cargo trailer was being dismantled on the property all the Sam’s Choice Weed and Feed bags fell off the trailer. Both Fredericks estimated there were about thirty bags on the trailer, and all but six broke open when they fell. Ryan said these six unbroken bags were taken to his home. The inspector took photos of an empty bag of Sam’s Choice Weed and Feed 24-6-12 that Ryan provided. The net weight printed on the bag was 20 lbs.

12. That on August 2, 2017, a Board inspector returned to the property at 112 Rockland Road and the abutting property at 20 Otter Lane. The inspector measured the area where the Weed and Feed was spread as described in paragraphs five and six. From the measurements taken by the Board inspector, the Weed and Feed was applied to 16,476 square feet (0.38 acre) of the property at 112 Rockland Road, and to 281 square feet (0.01 acre) of the property at 20 Otter Lane, including in the wetland area.

13. That the maximum application rate stated on the label for Sam’s Choice Weed and Feed 24-6-12 is twenty pounds per 5,000 square feet or two-hundred pounds per 50,000 square feet (1.15 acres).

15. That based on the facts outlined in paragraphs one through thirteen, the Company exceeded the maximum label application rate of Sam’s Choice Weed and Feed 24-6-12.

16. That the circumstances described in paragraphs one through fourteen constitute a violation of 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S. § 606 (2)(B) and 22 M.R.S. § 1471-D(8)(F)

17. That the wetland area described in paragraphs two, three, five, six, nine, ten, and twelve, in which the Sam’s Choice Weed and Feed 24-6-12 was applied, is not a labeled treatment site on the Sam’s Choice Weed and Feed 24-6-12 pesticide label.

18. That the circumstances described in paragraphs one through fourteen and seventeen constitute violation of 7 U.S.C. § 136j (a)(2)(G), 7 M.R.S. § 606 (2)(B) and 22 M.R.S. § 1471-D(8)(F)

19. That CMR 01-026 Chapter 20 Section 6(D)2 requires prior authorization from the property owner before a person can apply pesticides to their property.

20. That the Company did not have the 20 Otter Lane property owner’s authorization for the June 21, 2017, and June 23, 2017, applications of pesticides to his property.

21. That the circumstances described in paragraphs one through twelve, nineteen, and twenty constitute violations of CMR 01-026 Chapter 20 Section 6(D)2.

22. That any person making a pesticide application that is a custom application, as defined under 22 M.R.S. § 1471-C(5-A), must be a certified commercial applicator or under the direct supervision of a certified applicator in accordance with 22 M.R.S. 1471-D(1)(A) and CMR 01-026 Chapter 31 Section 1(A) III.
23. That a custom application as defined in 22 M.R.S. § 1471-C(5-A) includes any application of any pesticide under a contract or for which compensation is received, or any application of a pesticide to a property open to use by the public.

24. That the pesticide applications described in paragraphs four and five constitute custom applications of pesticides in accordance with 22 M.R.S. § 1471-C (5-A) because the Company was operating under a contract for which it received compensation and because the Weed and Feed was applied in the performance of that contract.

25. That the Company did not employ a master applicator, and no one from the Company had a commercial pesticide applicator’s license at the time the applications described in paragraphs four and five were made.

26. That the circumstances described in paragraphs one, two, four, five, and twenty-two through twenty-five constitute violations of 22 M.R.S. 1471-D (1)(A) and CMR 01-026 Chapter 31 Section 1(A) III.

27. That the Board has regulatory authority over the activities described herein.

28. That the Company expressly waives:
 a. Notice of or opportunity for hearing;
 b. Any and all further procedural steps before the Board; and
 c. The making of any further findings of fact before the Board.

29. That this Agreement shall not become effective unless and until the Board accepts it.

30. That, in consideration for the release by the Board of the causes of action which the Board has against the Company resulting from the violations referred to in paragraphs sixteen, eighteen, twenty-one, and twenty-six, the Company agrees to pay to the State of Maine the sum of $900. (Please make checks payable to Treasurer, State of Maine).

IN WITNESS WHEREOF, the parties have executed this Agreement of three pages.

FREDERICK’S PROPERTY PRESERVATION AND INSPECTIONS

By: __________________________ Date: __________________

Type or Print Name: __________________________

BOARD OF PESTICIDES CONTROL

By: __________________________ Date: __________________

Cam Lay, Director

APPROVED

By: __________________________ Date: __________________

Mark Randlett, Assistant Attorney General
Proposed Administrative Consent Agreement

Background Summary

Subject: Dependable Pest Solutions
PO Box 476
Rochester, NH 03866

Date of Incident(s): February through July of 2016

Background Narrative: The Board received an allegation that Dependable Pest Solutions was sending an unlicensed applicator to Maine to make commercial pesticide applications. A Board inspector conducted a follow up inspection at the company’s Rochester, NH office. The inspection confirmed that 43 unlicensed and unsupervised commercial pesticide applications were made by a company applicator from February through July of 2016.

Summary of Violation(s): 22 M.R.S. § 1471-D(1)(A) No commercial applicator may use or supervise the use of any pesticide within the State without prior certification from the board, provided that a competent person who is not certified may use such a pesticide under the direct supervision of a certified applicator.

CMR 01-026 Chapter 31 Section 1(A) III. An unlicensed commercial applicator must be supervised on-site by either a licensed commercial applicator/master or a commercial applicator/operator who is physically present on the property of the client the entire time it takes to complete an application conducted by an unlicensed applicator.

Rationale for Settlement: The company was aware of Maine’s licensing requirements at the time of the unlicensed applications and the number of the unlicensed applications was significant.

Attachments: Proposed Consent Agreement
This Agreement, by and between Dependable Pest Solutions (hereinafter called the "Company") and the State of Maine Board of Pesticides Control (hereinafter called the "Board"), is entered into pursuant to 22 M.R.S. §1471-M (2)(D) and in accordance with the Enforcement Protocol amended by the Board on December 13, 2013.

The parties to this Agreement agree as follows:

1. That the Company is a commercial pest control company offering services in New Hampshire and Maine.

2. That on June 28, 2016, Board staff received a phone call alleging that the Company was making unlicensed commercial pesticide applications in Maine.

3. That in response to the call described in paragraph two, a Board inspector conducted a follow up inspection at the Company’s Main Street office in Rochester, NH on August 1, 2016.

4. That during the inspection described in paragraph three, the inspector collected three Company pesticide service orders for pesticide applications made in Maine in February of 2016, five Company pesticide service orders for pesticide applications made in Maine in March of 2016, nine Company pesticide service orders for pesticide applications made in Maine in April of 2016, thirteen Company pesticide service orders for pesticide applications made in Maine in May of 2016, seven Company pesticide service orders for pesticide applications made in Maine in June of 2016, and six Company pesticide service orders for pesticide applications made in Maine in July of 2016.

5. That any person making a pesticide application that is a custom application, as defined under 22 M.R.S. § 1471-C(5-A), must be a certified commercial applicator or under the direct supervision of a certified applicator in accordance with 22 M.R.S. 1471-D (1) (A) and CMR 01-026 Chapter 31 Section 1(A) III.

6. That a custom application as defined in 22 M.R.S. § 1471-C(5-A) includes any application of any pesticide under contract or for which compensation is received, or any application of a pesticide to a property open to use by the public.

7. That the forty-three pesticide applications described in paragraph four constitute custom applications of pesticides in accordance with 22 M.R.S. § 1471-C (5-A).

8. That the forty-three pesticide applications described in paragraph four were made by unlicensed and unsupervised Company applicators.

9. That the circumstances described in paragraphs one through eight constitute forty-three violations of 22 M.R.S. 1471-D (1) (A) and CMR 01-026 Chapter 31 Section 1(A) III.

10. That the Board has regulatory authority over the activities described herein.
11. That the Company expressly waives:
 a. Notice of or opportunity for hearing;
 b. Any and all further procedural steps before the Board; and
 c. The making of any further findings of fact before the Board.

12. That this Agreement shall not become effective unless and until the Board accepts it.

13. That, in consideration for the release by the Board of the causes of action which the Board has against the Company resulting from the violations referred to in paragraph nine, the Company agrees to pay to the State of Maine the sum of $1,500. (Please make checks payable to Treasurer, State of Maine).

IN WITNESS WHEREOF, the parties have executed this Agreement of two pages.

DEPENDABLE PEST SOLUTIONS

By: _________________________________ Date: __________________________
Type or Print Name: _________________________________

BOARD OF PESTICIDES CONTROL

By: _________________________________ Date: __________________________
Cam Lay, Director

APPROVED

By: _________________________________ Date: __________________________
Mark Randlett, Assistant Attorney General
Town of Manchester

Pesticide/Herbicide/Fertilizer Usage on Town-Owned Lands

Enacted: 06/15/2017

Attested Copy: ______________
Pesticide/Herbicide/Fertilizer Usage on Town Owned Lands

1. Purpose

The purpose of this ordinance is to safeguard the health and welfare of the residents of the Town of Manchester and to conserve and protect the Town’s ground water, Cobbossee Watershed and other natural resources, while ensuring preservation and enhancement of town owned land.

The following provisions shall be applicable to all turf, landscape and outdoor pest management activities on town owned land.

(a) Permitted:

i. Use or application of natural, organic land care protocols.

ii. All control products and soil amendments, including fertilizer and compost, used under the terms of this article shall be in keeping with, but not limited to, products that can be used on Maine Organic Farmers and Gardeners Association Certified Farms, and/or products permitted by the Organic Materials Review Institute or the USDA National Organic Program.

iii. Use or application of sludge or sludge-derived products to the extent permitted by the Maine Hazardous Waste, Septage and Solid Waste Management Act 38 M.R.S.A. §1301-1319-Y, the Protection of Natural Resources Act 38 M.R.S.A. § 480-A-480-Z, the Site Location of Development Act 38 M.R.S.A. § 481-490, and any rules related thereto, as amended from time to time.

(b) Prohibited:

i. Use or application of chemical pesticides, other than pesticides classified by the US Environmental Protection Agency as exempt materials under 40 CFR 152.25, and those products permitted by the Organic Materials Review Institute.

ii. Use of application of sludge or sludge derived products not listed as permitted above.
3. **Definitions**

The following words, terms and phrases, when used in this chapter, shall have the meanings ascribed to them in this section, except where the context clearly indicates a different meaning:

Natural, Organic land care: An extension of the principles and practices of organic agriculture to the care of turf and landscape.

Pesticide: Any substance or mixture of substances intended for preventing, destroying, repelling or mitigation any pest; any substance or mixture of substances intended for use as a plant regulator, defoliant of desiccant; and any nitrogen stabilizer. It does not include multi-cellular biological controls such as mites, nematodes, parasitic wasps, snails or other biological agents not regulated as pesticides by the U.S. Environmental Protections Agency. Herbicides, fungicides, insecticides and rodenticide are considered pesticides.

Sludge: Defined in 38 M.R.S.A. § 1303-C (28-A), as amended from time to time.

Town Owned Land: All land owned or leased by the Town of Manchester and/or managed by the Town, including outdoor grounds such as area around Town Office, playing fields, school grounds and Town Owned parcels.

Pest: Any undesirable insect, plant, fungi, bacteria, virus or micro-organism.

4. **Exemptions**

The following situations are exempt from the provisions of this Ordinance:

(a) Disinfectants, germicides, bactericides and virucides;
(b) Personal Application of Insect repellents;
(c) Outdoor animal repellants;
(d) Aerosol products;
(e) General use paints, stains and wood preservatives and sealants; and

The following processes are exempt: drinking water and wastewater treatment; indoor pesticide use; contained baits or traps for rodent control; use of pesticides classified by the US Environmental Protections Agency as exempt materials under 40 CFR 152.25 or pesticides permitted by the Organic Materials Review Institute.
Restricted pesticides may also be applied by a licensed pesticide applicator using the least toxic product in accordance with the US Environmental Protection Agency under 40 CFR 152.5, the Maine State Regulations Title 7 and Title 22: “Use of Pesticides:, and the Best A Management Practices for the Application of Turf Pesticides and Fertilizers of the Maine Board of Pesticide Control for the following purposes:

A. Noxious Growth: The control of plants, including and not limited to, poison ivy (Rhus Radicans or Toxicodendron Radicans), Poison oak (Rhus Toxicodendron or Toxicodendron Quercifolium), and poison sumac (Rhus Vernix or Toxicodendron Vernix).

B. Invasive Species: The control of invasive species that may be detrimental to the environment.

C. Mandatory Application: Use of pesticides mandated by state or federal law.

5. Emergency Waiver

If an emergency situation warrants the use of non-exempt pesticides, the Code Enforcement Officer may, upon written request to the Board of Selectmen, grant a thirty(30 day temporary waiver. The waiver may be extended to a six (6) month total period. Waiver approval shall be subject to the use of the least toxic material available to address the given emergency. The presence of weeds or common fungal diseases in the usual course of turf maintenance shall not constitute an emergency.

(a) Waiver determination shall be based on the following criteria.

i. The pest situation presents, a) an immediate threat to human health or environmental quality, or b) an immediate threat of substantial property damage or loss; and

ii. Viable alternatives consistent with this article do not exist. The Board of Selectmen shall request the Conservation Commission to review any waiver requests made under this section and to recommend a course of action.

6. Enforcement and Permits

This article shall be enforced by the Code Enforcement Officer, according to the policies governing enforcement of municipal ordinances of the Town of Manchester. Pesticide safety data sheets shall be submitted to the Code Enforcement Officer prior to the application of any pesticide.
7. Conflict and Invalidity

If a conflict or inconsistency is found between this article and other sections of the Land Use Ordinance or other Town ordinance, the terms of the stricter provisions shall prevail. The invalidity of a provision of this article shall not invalidate any other provision of this article.

8. Authority

Pursuant to 30A M.R.S.A. § 3001, municipalities may enact ordinances to protect the welfare of their inhabitants. Pursuant to 22 M.R.S.A. § 1471-U, Maine municipalities may enact ordinances that apply to pesticide storage, distribution, or use. Pursuant to 38 M.R.S.A. § 1310-U, municipalities may enact ordinances with respect to solid waste facilities with standards that are not more strict than those contained in the Maine Hazardous Waste, Septage and Solid Waste Management Act 38 M.R.S.A. § 480A – 480Z, the Site Location of Development Act 38 M.R.S.A. § 481-490, and the rules adopted under those articles, as amended from time to time.

__
Robert K. Gasper, Chairman

__
Paula Thomas, Vice Chairman

__
Jeremy Pare

__
Thomas Oliver

__
Dawn Kliphan

Respectfully Submitted by, ________________________________

Town Clerk

Date: ______________________________
10 July 2017

Ms. Tina Cagle
City Clerk/ Voter Registrar
Town of Manchester
P.O. Box 18
Manchester, ME 04351

Ms. Cagle:

Thank you for submitting the finalized Town of Manchester Pesticide Usage Ordinance. We will update our centralized listing of municipal pesticide ordinances pursuant to 22 M.R.S.A. § 1471-U.

Thank you for your timely attention. Please feel free to contact me if you have any questions or comments.

Sincerely,

Cam Lay
Director
Maine Board of Pesticides Control
Do Master Gardener Volunteers Help Maine?

June 8, 2017 at 12:33 pm

To the editor:

Does the University of Maine’s Cooperative Extension Master Gardener Volunteer Program help Maine?

Ask the hungry people who received over 250,000 pounds of food grown last year by master gardener volunteers whose work growing fruits and vegetables supported food pantries across the state. Ask the 1,500 schoolchildren who learned about growing their own food. Ask the people who benefit from over 80 community gardens and 86 school gardens that teach where healthy food comes from and how to grow their own food.

In a world of shifting demands for food, changing environments, and mounting pressures, the skills of citizens are being put to the test. In the Master Gardener Volunteer Program, participants explore methods for
dealing with soil, composting challenges, pests, and the countless and evolving varieties of vegetables and fruits that may be grown successfully in Maine.

Master gardener volunteers also gain a greater understanding of integrated pest management, pesticide use, and pruning, and learn to identify the characteristics of high-performing, productive gardens.

What do the master gardener volunteers get out of volunteering? Well, there are lessons learned, laughter and friendships made that make the time and effort worthwhile. The joy of sharing gardening ideas or building a twig trellis with new friends while outside is hard to match among life's simple pleasures, along with helping our communities thrive.

A powerful lesson is how effective, engaging, and exceptional the University of Maine's extension professors are; the reach and talent of our educators and groundbreaking researchers at the university level are something we should all be proud of.

Notably, Drs. David Hanley and Mark Hutton are in demand for their expertise – around the world – in growing vegetables and small fruits. Dr. Renae Moran is renowned for her work with fruit trees. Professor Mark Hutchinson, another notable agricultural industry expert, supervises the Knox/Lincoln/Waldo counties Master Gardener Volunteer Program. The ever-capable and indefatigable Elizabeth Stanley manages and organizes the logistics, and is the heart and soul of the Knox/Lincoln/Waldo program by making the volunteers feel welcome and supported.

The Master Gardener Volunteer Program not only leverages the talent of our university professors, but also draws in the skills and knowledge of our government employees. Megan Patterson, of the Board of Pesticides Control, teams up with her colleagues at the Board of Pesticides Control to ensure the master gardener volunteers fully understand the implications of using pesticides in our community garden projects and our homes, as well as to explain the laws surrounding applications of pesticides.
The world has no shortage of problems, and a handful of people can and do make our communities a little better. We hope that you will consider becoming a master gardener volunteer or donating to this worthwhile program at goo.gl/khqYD0. To find out more about the program, visit the Maine Master Gardener Volunteers’ website at goo.gl/NMSW12.

With respect, deep appreciation, and gratitude, the Knox/Lincoln/Waldo Counties Master Gardener Volunteer Class of 2016-2017:

Claire Adams, Appleton
Bill Bausch, Damariscotta
Mary Davis, Belfast
Amy Fischer, Camden
Irene Gerny, Boothbay
Anne Goodale, Tenants Harbor
Jack Green, Union
Kent Harlow, Lincolnville
Karen Jordan, Spruce Head
Marianne McKinney, Belfast
Aimee Moffitt-Mercer, Monroe
Gail Presley, Rockland
Wendy Roberts, Cushing
Kim Sullivan, Newcastle-Damariscotta
Erika Taylor, Union

Christina Vincent, North Haven

Gabrielle Wicklow, Camden
NANCY CAUDLE-JOHNSON
43 Pearl Street
Camden, ME 04843
207-236-6855

September 6, 2017

TO: Maine Board of Pesticides Control

RE: Typed Transcript (verbatim) of Handwritten Statement
Code No. 170609 JTP:2 A

I have a regular appointment on Tuesday mornings from 8 to 9 at a fitness studio - Impact Fitness - at the corner of Union Street in Camden and a private road to the Quarry Hill Retirement Community. I left early, at about 8:45, and, as I headed for the exit door, remarked to the trainer, Matt Merrifield, "What's what loud noise!".

I opened the door to head for my car and, looking to my right, realized it came from a spray rig. Two men, heading down the hill toward Union Street, were spraying the grass along the Quarry Hill roadside, and the spray (due to the very gusting wind) was visible and drifting in a cloud toward and over the Impact Fitness parking area - and over me!

The odor told me they were spraying an herbicide or pesticide. They looked like a couple of duds. One driving the tank equipment (with no protective gear), the other following with the spray wand (and wearing only a white particle mask).

My husband and I own Treekeepers LLC of Camden, an arboriculture company. I am a Maine licensed arborist. He (Douglas N. Johnson) is Maine licensed and ISA certified. We (Treekeepers) is also a licensed commercial pesticide applicator, although we use only organic insect and disease controls, and only for our arboriculture clients - as a special service to them.

When my husband applies controls, he wears a white disposable protective jumpsuit and a respirator. This is why I knew they must be in violation. No company should be spraying with winds gusting like they were yesterday morning.

I got into my car (2015 Honda Accord), pulled out of the parking lot, and began gesturing to the applicator, tooting lightly on the horn. He finally approached my car and I rolled down the passenger window. "Are you a licensed commercial applicator?" I asked. "Yes," he replied. "What company?" I asked. (Until then I'd assumed they must be groundspeople who worked for Quarry Hill.) "Sports Fields," he answered. I said, "Well, if you are a commercial applicator, you should know you shouldn't be spraying in this wind!" He made a remark to the effect that he had checked the wind and it was fine.

I drove the short distance home and phoned Quarry Hill, asking to speak with the Director. I was transferred to Mary Sargeut, the Executive Director. I told her what had transpired and suggested she stop them spraying right away because they shouldn't be doing it in the wind. She said she would contact the facilities manager. I asked her to phone me once she learned what they were spraying, because I had been enveloped in a cloud of it.

(page 1 of 2)
I immediately made detailed notes about what had transpired.

I then phoned the Bureau of Pesticides and left a message for Ray Connors (?), the Manager of Compliance.

Around midday, Mary Sargent left a voice mail message that they had been spraying herbicides - Milenium Ultra and Confront.

In my personal opinion, Quarry Hill should be more vigilant about what they use on their trees, shrubs, and grass. After all, their parent company is Pen Bay Health Care and their residents are the elderly who (mostly) have compromised immune systems.

Nancy Caudle-Johnson
Sept. 6, 2017

-End-
Maine Voices: Portland task force’s pesticide ordinance is full of loopholes

By Jody Spear Special to the Press Herald

HARBORSIDE — Anyone who has followed the Portland City Council task force deliberations on a pesticide ordinance over the last year has to have been encouraged by the strong showing at a June 21 hearing. Residents testifying in favor of the most protective regulations – namely, the provisos of an ordinance enacted by South Portland last year – outnumbered by 5 to 1 supporters of the chemical industry-friendly draft ordinance from the Portland task force.

The task force ordinance, which purports to be based on integrated pest management practices and to ban synthetic pesticides on public and private land, is replete with loopholes that allow insecticides, herbicides and fungicides to be used if “the pest population exceeds acceptable safety, economic or aesthetic threshold levels.” Whose “aesthetic threshold”? Someone who objects to dandelions on lawns? Whose “economic threshold”? That of a playground manager who looks for the cheapest way to kill grubs and weeds regardless of the environmental and human health consequences?

ABOUT THE AUTHOR

Jody Spear, of Harborside, is active in Portland Protectors and works on pesticide reform statewide.

Related

Read more Maine Voices

The task force also proposes waivers for undefined “emergency” situations, which would undoubtedly include the browntail-moth infestation now plaguing parts of the coast. Among the state-approved insecticides for this pest are four neonicotinoids and three pyrethroids, all deadly to bees and other pollinators. Recent evidence of the harm done by neonicotinoids to both honeybee and wild bee populations makes the case for banning these insecticides in the strongest possible terms.

Although they profess adherence to integrated pest management guidelines for least-toxic products and protocols, regulators and their business allies have hijacked the concept. It now translates to intensive spraying on a schedule rather than integrated pest management. As we saw at the hearing, they construct a straw-man argument based on the concept of organic pest management – the basis of the South Portland ordinance – demonizing organic products like vinegar and essential oils while ignoring the fact that organic pest management means fundamentally building healthy soil.

In addition to promoting this kind of environmentally protective land care, the South Portland ordinance stresses educating residents about organic pest management; Portland’s proposed ordinance does not. Education will be critical to making residents aware of nontoxic alternatives to the insecticides being sprayed to combat the browntail moth as well as the herbicides that destroy food sources and habitat for endangered pollinators.

These poisons, along with fungicides typically used pre-emptively on golf courses, are running off into streams (five of which are ranked “impaired” in Portland) and draining into Casco Bay. Unaccountably, the flawed Portland task force draft has been endorsed by Friends of Casco Bay, whose 2001-2009 stormwater monitoring shows the many lawn and golf-course chemicals polluting the bay.
Consider how the system works now: You live on a Portland street with one or more close neighbors who contract with a landscaper for regular spraying. You’re in a vulnerable subgroup, possibly with children and pets who must be kept inside while chemicals are applied and drifting close enough to you to trigger irritation and other symptoms of concern.

You can pay $20 to be listed on a state notification registry, so that anyone within 250 feet must let you know before the exterminator’s arrival on the scene. But it’s a hit-or-miss system. Pesticides are sometimes applied to the wrong property, or they drift off target, or contractors fail to provide advance notice.

The white flags put up after pesticide applications – with blank spaces for notes on the chemicals used, Environmental Protection Agency registration numbers and reason for spraying – provide none of that information. Why? Neighbors and bystanders exposed involuntarily to those dangerous chemicals have a right to know what has been sprayed.

In the limited cases where South Portland grants waivers for what are deemed emergencies, full disclosure of the pesticides used is required on the warning flags and all properties sprayed under waivers are itemized in the public record.

One final reason to reject the task force proposal: It originated with Deven Morrill, a commercial applicator with Lucas Tree Experts, who also chairs the state pesticide control board. We cannot count on the oversight authority in Augusta, which is known to be more about enabling than controlling pesticide use. Instead, we need a legal framework for transitioning to organic pest management at the local level, as the South Portland model does.

Anyone who’s concerned should write to members of the City Council’s Sustainability Committee (Spencer Thibodeau, Belinda Ray and Jill Duson) at portlandmaine.gov and attend a council-sponsored expert panel on pesticides July 26.
October 10, 2017

Ms. Elizabeth Farrell
1170 Middle Rd
New Portland, ME 04961

RE: Variance Permit for CMR 01-026, Chapter 29

Dear Ms. Farrell:

On December 13, 2013, the Board authorized the staff to issue multi-year permits for broadcast pesticide applications within 25 feet of water for the control of invasive plants provided the applicator has demonstrated knowledge of best management practices for control of the plant, has a multi-year plan for controlling the invasive plants, and has a re-vegetation plan for the site. Your detailed variance application meets these requirements.

This letter will document the granting of a variance from the 25-foot setback requirement contained in Chapter 29, Section 6 for your treatment of the invasive plant Japanese knotweed, *Fallopia japonica*, on your property along the Carrabassett River in New Portland, Maine.

This variance is valid until 31 December 2019. Please bear in mind that your permit is based upon you adhering to the precautions listed in your variance application; also, the Board does require that you notify them if there is a change in the methods or products to be used. (An email to us, in advance, is sufficient.)

I will notify the Board at its October 27, 2017 meeting that the variance permit has been issued. If you have any questions concerning this matter, please feel free to contact me at 287-2731.

Sincerely,

Cam Lay
Director
Maine Board of Pesticides Control
September 27, 2017

Mr. Joseph Anderson
High Pine Environmental, LLC
105 Front Street
Portland, ME 04103

RE: Variance Permit for CMR 01-026, Chapter 29

Dear Mr. Anderson:

On December 13, 2013, the Board authorized the staff to issue multi-year permits for broadcast pesticide applications within 25 feet of water for the control of invasive plants provided the applicator has demonstrated knowledge of best management practices for control of the plant, has a multi-year plan for controlling the invasive plants, and has a re-vegetation plan for the site. Your detailed variance application meets these requirements. This letter will document the granting of a variance from the 25-foot setback requirement contained in Chapter 29, Section 6 for your treatment of a small stand of the invasive plant *Phragmites australis* (common reed) on Shepards Lane in Kittery, Maine.

Your application outlines a 3-year program to control Phragmites at this location. This variance is valid until 31 December 2019. Please bear in mind that your permit is based upon your company adhering to the precautions listed in Section X of your variance application; also, the Board does require that you notify them if there is a change in products to be used.

I will alert the Board at its October 27, 2017 meeting that the variance permit has been issued. If you have any questions concerning this matter, please feel free to contact me at 287-2731.

Sincerely,

Cam Lay
Director
Maine Board of Pesticides Control
September 27, 2017

William Burman
Burman Land & Tree Company, LLC
16 Steep Hill Road
Orrington, ME 04474

RE: Variance Permit for CMR 01-026, Chapter 29

Dear Mr. Burman:

On December 13, 2013, the Board authorized the staff to issue multi-year permits for broadcast pesticide applications within 25 feet of water for control of invasive plants provided the applicator has demonstrated knowledge of best management practices for control of the plant, has a multi-year plan for controlling the invasive plants, and has a re-vegetation plan for the site.

By way of this letter, your request for a variance from the 25-foot setback requirement contained in Chapter 29, Section 6 is hereby granted for the treatment of various invasive plants below the Masse Dam in Vassalboro, Maine. This variance is valid until December 31, 2019. Please bear in mind that your permit is based upon your company adhering to the precautions listed in Section X of your variance application; also, the Board does require that you notify them if there is a change in products to be used.

We will alert the Board at its October 27, 2017 meeting that the variance permit has been issued. If you have any questions concerning this matter, please feel free to contact me at 287-2731.

Sincerely,

Megan Patterson
Manager of Pesticide Programs
Maine Board of Pesticides Control
September 12, 2017

Stephen Dunham
Baxter State Park
64 Balsam Drive
Millinocket, ME 04462

RE: Variance Permit for CMR 01-026, Chapter 29

Dear Mr. Dunham:

On December 13, 2013, the Board authorized the staff to issue multi-year permits for broadcast pesticide applications within 25 feet of water for control of invasive plants provided the applicator has demonstrated knowledge of best management practices for control of the plant, has a multi-year plan for controlling the invasive plants, and has a re-vegetation plan for the site.

By way of this letter, your request for a variance from the 25-foot setback requirement contained in Chapter 29, Section 6 is hereby granted for the treatment of various invasive plants on the Togue Pond Beach and Mountain View Bank properties in Baxter State Park, Millinocket, Maine. This variance is valid until December 31, 2019. Please bear in mind that your permit is based upon your company adhering to the precautions listed in Section X of your variance application; also, the Board does require that you notify them if there is a change in products to be used.

We will alert the Board at its October 24, 2017 meeting that the variance permit has been issued. If you have any questions concerning this matter, please feel free to contact me at 287-2731.

Sincerely,

Megan Patterson
Manager of Pesticide Programs
Maine Board of Pesticides Control