Manual of Best Management Practices

For Maine Agriculture

Maine Department of Agriculture, Food & Rural Resources
Division of Animal Health & Industry
January 2007
Acknowledgements

This Manual of Best Management Practices for Maine Agriculture, published in January 2007, is the first comprehensive compilation of agriculture-related best management practices ever published in the State of Maine. It is a work that has been in progress for many years, and has reached completion through the efforts of many individuals. These individuals either have written text for the Manual and/or contributed lists of potential best management practices for the Manual, or have reviewed its contents for clarity and technical accuracy. We acknowledge their contributions below:

**Principal Authors**

Hugh M. Coxe  
New England Planning Concepts, Yarmouth, Maine

Mark F. Hedrich  
Nutrient Management Coordinator  
Maine Department of Agriculture, Food & Rural Resources

**Maine Department of Agriculture, Food & Rural Resources**

Robert Batteese  
Acting Director, Division of Plant Industry

Jonathan Chalmers  
Agricultural Compliance Supervisor

Shelley F. Doak  
Director, Division of Animal Health & Industry

Gary Fish  
Environmental Specialist

Clinton V. Giustra  
Livestock Industry Specialist

John Harker  
Agricultural Resource Management Specialist

Donald E. Hoenig, V.M.D.  
State Veterinarian

Craig Leonard  
Agricultural Compliance Supervisor

Peter N. Mosher, Ph.D.  
Director, Office of Agricultural, Natural & Rural Resources

David P. Rocque  
State Soil Scientist

William M. Seekins, Ph.D.  
Agricultural Resource Management Coordinator

**USDA Natural Resources Conservation Service**

Randy Doak  
District Conservationist

Paul Hughes  
State Resource Conservationist

Mary Thompson  
District Conservationist
# Best Management Practices for Maine Agriculture

## Summary Table of Contents

### I. Introduction
- **Purpose of the Manual** .......................................................... 1
- **History of Development of BMPs for Agriculture in Maine** .......... 3
- **Continued Development of BMPs** .......................................... 5

### II. Explanation of General BMPs and Site Specific BMPs ................. 6
- **Definition of BMPs** .................................................................. 6
- **Use of General BMPs** ............................................................... 7
- **Development of Site Specific BMPs** ........................................ 8

### III. General BMPs for Maine Agriculture .................................... 10
- **Erosion and Sedimentation Control** ........................................ 11
- **Manure Management** ............................................................... 14
- **Pest Management** ................................................................. 18
- **Nutrient Management** .............................................................. 22
- **Irrigation Management** ............................................................ 26
- **Livestock Management** ............................................................ 27
- **Odor Control** .......................................................................... 28
- **Insect Management** ................................................................. 30
- **Noise Control** .......................................................................... 33
- **Farm Management** ................................................................. 34

### IV. List of References ................................................................. 37
- **References by Reference Number** ........................................... 37
- **Reference Documents – By Category in Alphabetical Order** .......... 67

### V. Index ................................................................................. 92
**Detailed Table of Contents**

I. **Introduction** .......................................................................................................................... 1  
   A. Purpose of the Manual ........................................................................................................... 1  
   B. History of Development of BMPs for Agriculture in Maine ............................................. 3  
   C. Continued Development of BMPs ...................................................................................... 5  

II. **Explanation of General BMPs and Site Specific BMPs** ................................................. 6  
    A. Definition of BMPs .............................................................................................................. 6  
    B. Use of General BMPs ......................................................................................................... 7  
       1. **Contour Plowing** ........................................................................................................ 11  
       2. **Interseed Row Crops** .............................................................................................. 11  
       3. **Rotated Crops** .......................................................................................................... 11  
       4. **Buffer Strips** ............................................................................................................ 11  
       5. **Strip Crop** ................................................................................................................ 11  
       6. **Crop Residue** ........................................................................................................... 11  
       7. **Vegetate Highly Erodible Areas** .............................................................................. 12  
       8. **Cover Crops** ............................................................................................................. 12  
       9. **Divert Surface Waters** ............................................................................................ 12  
      10. **Stabilize Surface Water Diversion** ......................................................................... 12  
      11. **Sediment Basins** ...................................................................................................... 12  
      12. **Limit Livestock Access To Sediment Producing Areas** ......................................... 12  
      13. **Limit And Stabilize Livestock Crossings of Streams** ............................................ 13  
      14. **Locate or Develop a Stable Stream Crossing For Farm Equipment** .................... 13  
    B. Manure Management .......................................................................................................... 14  
       1. **Determine Manure Application Rates** ...................................................................... 14  
       2. **Buffers or Setbacks** .................................................................................................. 14  
       3. **Manure Nutrient Value** ............................................................................................. 14  
       4. **Apply Manure at Appropriate Rates** ....................................................................... 14  
       5. **Uniform Application** .................................................................................................. 14  
       6. **Reduced or Non-Application Areas** ......................................................................... 14  
       7. **Timing Manure Applications** .................................................................................... 15
8. **Incorporate Manure Applications** ........................................ 15

9. **Do Not Incorporate Manure** .................................................. 15

10. **Do not Apply Manure on Saturated Soils, Frozen or Snow-covered Fields or Drainage Swales** .................................................. 15

11. **Store Manure Properly** .......................................................... 15

12. **Stackable Manure** .............................................................. 15

13. **Adequate Storage** ............................................................... 16

14. **Compost Manure** ............................................................... 16

15. **Crop Rotations** ................................................................. 16

16. **Minimize Soil Erosion** .......................................................... 16

17. **Pest Control** ................................................................. 16

18. **Bedrock Outcrops** .............................................................. 16

19. **Shallow To Bedrock Soils** .................................................. 17

20. **Barnyard and Feedlot Runoff** ............................................. 17

21. **Water Body Access** ............................................................ 17

22. **Manure Concentrations** ..................................................... 17

23. **Cover Crop** ................................................................. 17

24. **Soil Infiltrative Capacity** ..................................................... 17

**C. Pest Management** ................................................................. 18

1. **Biological Controls** ............................................................. 18

2. **Field location Selection** ....................................................... 18

3. **Disease Free Seed and Propagation Material** .......................... 18

4. **Crop Disease Resistance** ...................................................... 18

5. **Natural Pest Controls** .......................................................... 18

6. **Cultural Controls** ............................................................... 18

7. **Pest Scouting** ................................................................. 19

8. **Manage Crops To Compete With Weeds** ................................. 19

9. **Develop Pesticide Application Plan** ....................................... 19

10. **Calibrate Pesticide Application Equipment** ............................. 19

11. **Read and Follow all Pesticide Label Directions & Material Safety Data Sheets** .................................................. 19
Best Management Practices for Maine Agriculture

12. Comply With All Federal and State Laws Regarding Pesticide Use ............ 19
13. Become a Certified and Licensed Pesticide Applicator ............................ 20
14. Mix, Load and Apply Pesticides Properly ............................................ 20
15. Pesticide Storage ................................................................................. 20
16. Pesticide Container Disposal .............................................................. 20
17. Spray Drift .......................................................................................... 20
18. Use Crop Rotation To Reduce Pesticide Application ................................ 20
19. Select Crops That Can Compete With Weeds ....................................... 20
20. Use Cover Crops To Control Weeds ...................................................... 21
21. Utilize Mechanical Weed Control ......................................................... 21
22. Consider Field Characteristics To Determine Application Levels ........... 21
23. Chemigate Properly ............................................................................. 21
24. Pesticide Application Techniques .......................................................... 21
25. Weather Conditions ............................................................................ 21

D. Nutrient Management ........................................................................... 22

1. Nutrient Application Levels .................................................................... 22
2. Uniformity of Nutrient Application .......................................................... 22
3. Background Nutrient Levels .................................................................... 22
4. Background Organic Matter Content Levels .......................................... 22
5. Soil Amendment Nutrient Levels ............................................................. 22
6. Determine Yield ..................................................................................... 23
7. Split Fertilizer Applications ..................................................................... 23
8. Fertilizer Release Rate ............................................................................ 23
9. Soil Characteristics ................................................................................ 23
10. Calibrate Nutrient Application Equipment ............................................ 23
11. Accurate Records .................................................................................. 23
12. Irrigation .............................................................................................. 24
13. Crop Rotations ..................................................................................... 24
14. Cover Crops ......................................................................................... 24
15. Fertigation ............................................................................................ 24
16. Plant Tissue Testing .............................................................................. 24
17. Leachable Nutrients ................................................................. 24
18. Avoid Applications On Frozen, Saturated or Snow Covered Soil .......... 25
19. Soil Erosion ........................................................................ 25
20. Buffer Strips ......................................................................... 25
21. Organic Matter Content of Soils .............................................. 25
22. Compost Excess or Spoiled Crops ......................................... 25

E. Irrigation Management ............................................................ 26
  1. Irrigating from Streams and Rivers ....................................... 26

F. Livestock Management ........................................................... 27
  1. Housing Facilities ................................................................. 27
  2. Waste Management Structures ............................................ 27
  3. Environmental Factors ........................................................ 27
  4. Livestock Fencing ................................................................. 27
  5. Pasture/Forage Crop Management ........................................ 27

G. Odor Control ......................................................................... 28
  1. Manure Storage Structures ................................................... 28
  2. Coordinate Manure Applications With Neighbors .................... 28
  3. Cover Field Stacked Manure ............................................... 28
  4. Incorporate Manure .............................................................. 28
  5. Sod Crop Applications .......................................................... 28
  6. Weather Conditions .............................................................. 28
  7. Injection .............................................................................. 29
  8. Spreading Activity ............................................................... 29
  9. Spreading Rates ................................................................. 29
 10. Minimize Spillage ............................................................... 29
 11. Even Application .................................................................. 29
 12. Solid Manure ....................................................................... 29
 13. Composting ........................................................................ 29

H. Insect Management ............................................................... 30
  1. Proper Sanitation ................................................................. 30
  2. Spilled Feed and Spoil Piles ............................................... 30
Best Management Practices for Maine Agriculture

3. Dead Animals ........................................................................................................... 30
4. Feed Bunks ............................................................................................................... 30
5. Waterers .................................................................................................................. 30
6. Animal Diet ............................................................................................................. 30
7. Ventilation ............................................................................................................... 30
8. Poultry House Manure Removal ............................................................................ 31
9. Empty Poultry Houses ............................................................................................ 31
10. Droppings Boards ................................................................................................. 31
11. Natural Insect Enemies .......................................................................................... 31
12. Utilize Physical Fly Removal Methods .................................................................. 31
13. Use Pesticides Sparingly ....................................................................................... 31
14. Use Pesticides Properly ....................................................................................... 31
15. Use Proper Pesticide Application Techniques ....................................................... 31
16. Pesticide Feed Additives ....................................................................................... 32
17. Cover Manure Piles ............................................................................................... 32
18. Compost ................................................................................................................ 32
19. Transporting Manure ............................................................................................ 32
20. Controlling Barnyard Exercise Lots ...................................................................... 32

I. Noise Control .......................................................................................................... 33
1. Irrigation Pumps ...................................................................................................... 33
2. Farm Equipment ...................................................................................................... 33

J. Farm Management .................................................................................................. 34
1. Animal Carcass Disposal ....................................................................................... 34
2. Cull Potato Disposal .............................................................................................. 34
3. Equipment Exiting Farm Fields .............................................................................. 34
4. Watering Livestock ................................................................................................. 34
5. Livestock Waterway Crossings .............................................................................. 34
6. Insect and Disease Infestations ............................................................................. 34
7. Aesthetics ................................................................................................................ 35
8. Vermin Control ....................................................................................................... 35
9. Wild Animal Damage ............................................................................................ 35
Best Management Practices for Maine Agriculture

10. Residual Usage ........................................................................................................ 35
11. Feed Storage ........................................................................................................... 35
12. Milkroom Waste ................................................................................................... 35
13. Silage Management ............................................................................................... 36
14. Management of Spoiled or Excess Crops .............................................................. 36
15. Dust Control ........................................................................................................... 36
16. Financial Record Keeping ....................................................................................... 36
17. Soil Health Management ....................................................................................... 36
18. Crop Production Guides ......................................................................................... 36

III. List of References .................................................................................................. 37
    A. References by Reference Number ....................................................................... 37
    B. Reference Documents – By Category in Alphabetical Order ............................ 67

IV. Index .................................................................................................................... 92
1. Introduction

1. Purpose of the Manual

The Manual of Best Management Practices for Maine Agriculture has been developed as a resource for the Agriculture Compliance Program of the Maine Department of Agriculture, Food & Rural Resources (hereinafter "Department of Agriculture"). Maine statutes, 17 MRSA §2805, commonly known as Maine’s “Right-To-Farm” Law, 17 MRSA §2701-B, known as the “Manure Handling Law”, and Title 7 Chapter 747, the Nutrient Management Law, establish and give authority to the Agriculture Compliance Program, and require a farm or farm operation to conform to and adopt "best management practices". These statutes give the commissioner of the Department of Agriculture the authority to determine whether a farm or farm operation is in conformance with best management practices, and require the Department of Agriculture to promulgate rules to interpret and implement these laws. Although investigations under these laws are initiated by complaints from the public, another statute, 7 MRSA §17, gives the Commissioner of Agriculture authority to investigate water quality concerns related to manure involving any farm operation, without having received a complaint. Such investigations, and any subsequent development of best management practices, are conducted under the Agriculture Compliance Program Rules referred to above using the same procedures.

This manual provides a guide for making a determination whether a farm or farm operation is conforming to or has adopted best management practices. It may be used by the department, in conjunction with other sources of information, for making such a determination. It also is available to farms or farm operations, or anyone consulting or advising a farm or farm operation, as a guide for getting a farm to conform to and/or adopt best management practices. Likewise it may serve as a guide to anyone else involved in addressing complaints that arise under the statutes listed above.
Best Management Practices for Maine Agriculture

Section III of the manual is a collection of practices that have been determined to meet environmental goals and commodity production goals that apply to a wide variety of agricultural issues in the State of Maine; these are termed “best management practices” (BMPs). The BMPs listed in the manual provide guidance and a basis for the development of “site-specific best management practices” for farms in Maine. Since each farm has a unique combination of site conditions and farming practices, and since several BMPs often could be effective for addressing a specific agricultural issue, the BMPs listed in the manual should be used as a menu from which appropriate site-specific BMPs are selected. The user of this Manual must clearly understand, however, that, although the BMPs listed in this Manual are a partial collection of “standard” or “conventional” BMPs, there are other valid procedures, also BMPs that may be utilized in some situations, but are not listed here. These omissions do not necessarily negate the potential effectiveness of such practices (BMPs) that may be employed in a specific situation. A person developing BMPs must have the appropriate training and experience to investigate agriculture-related problems, evaluate site conditions, and consider alternatives for addressing the agricultural issue(s) present. Development of actual site-specific BMPs often requires that people with the appropriate training and experience exercise their best professional judgment when selecting BMPs, or combinations of BMPs, after the investigation and evaluation of an agriculture-related problem. The BMPs contained in this manual may augment and guide that professional judgment but are not substitutes for it.

This manual has been compiled as a resource for people with professional training and expertise in agriculture, such as staff of the Maine Department of Agriculture, Food & Rural Resources, the University of Maine Cooperative Extension, the USDA Natural Resources Conservation Service (NRCS) and consultants working with or advising farms on farm management issues. This manual is not intended to be an educational document or a “how-to” manual for farming in Maine; it is a reference manual that may help in locating educational material such as “how to” descriptions and similar information. It contains general descriptions of BMPs sufficient to identify its utility in addressing


**Best Management Practices for Maine Agriculture**

particular agriculture-related problems, and essentially is an annotated list of known BMPs that may pertain to agriculture-related problems that occur on Maine farms.

The descriptions of BMPs contained in this manual are a starting point. Details of how to implement a given BMP, the scientific basis for the BMP, or any limitations or cautions in the use of the BMP, may be found in the material referenced with each BMP.

2. **History of Development of BMPs for Agriculture in Maine**

Following the 1981 passage of the Right-To-Farm Law, the Department promulgated Rule 01-001, Chapter 10: *Definition of Generally Accepted Agricultural Practices*. This rule stated that an agricultural practice is deemed a "generally accepted agricultural practice" if it meets two general tests. The first is that it must be consistent with current published rules, regulations and guidelines of state agencies, federal agencies, recognized agricultural organizations, or agricultural extension services. The second is that it must be "essential" to one or more aspects of the operation of the farm such as its "economic viability," "the successful production …of commodities," "disposition of …waste," etc.

This rule has proven over time to be too broad and general to serve as an effective guide for administering the agriculture compliance program. In practice, department personnel and others involved in the investigation and resolution of complaints have come to rely on a wide range of published and unpublished BMPs derived from many sources, and often pulled together on an as-needed basis. Furthermore, the term "generally accepted agricultural practices" has become obsolete. The focus, when selecting an agricultural practice to address agriculture-related problems, must not be whether that practice has been generally accepted, but rather whether that practice is the best practice for the circumstances of the particular situation. The more specific and more relevant term "best management practices" is used instead because "BMP" more accurately reflects the criteria for selecting a practice or set of practices. A BMP, or a set of BMPs, will be selected not only because it is the best available technology, but also because it makes both economic and environmental sense by providing the most benefit for the least cost.
While Rule 01-001, Chapter 10 seems to permit and even require that the Department of Agriculture reference a multitude of published sources when making a determination about a farm operation's conformance to BMPs, the law implies that BMPs should be adopted by rule. The department has adopted several specific rules that may be considered BMPs for certain agriculture issues such as Disposal of Animal Carcasses (Rule 01-001, Chapter 211), Disposal of Cull Potato Piles (Rule 01-001, Chapter 600), and Nutrient Management (Rule 01-001, Chapter 565). However, there are no rules in place that are comprehensive enough to serve as an effective guide to best management practices for the myriad of agriculture-related problems that arise under these pertinent statutes.

Probably the most complete agricultural best management practices document produced in the State of Maine to date is the October 1991 report of the Non-Point Source Agricultural Task Force entitled *Strategy for Managing Nonpoint Source Pollution from Agricultural Sources and Best Management System Guidelines* (hereinafter "NPS Report"). That report is one of several documents containing BMPs that the department may refer to when administering the agriculture compliance program. The NPS Report has not been adopted as a rule and therefore does not have the force of law. It does, however, serve as a guide when the department makes a determination as to whether a farm or farm operation has conformed to or adopted BMPs. It also is used as a resource or a guide when developing site specific BMPs. Some of the information in this manual is derived from this NPS Report.

In June 1999, the department compiled a list of about 130 BMPs organized by category of agricultural issue. The goal in developing this list was to formally adopt, by rulemaking process, the BMPs contained in the list. Although that list was not developed into a rule, it does serve as a source of much of the information contained in this manual. That list has been supplemented and revised for this manual and the descriptions of the BMPs have been expanded.
Best Management Practices for Maine Agriculture

3. Continued Development of BMPs

The *Manual of Best Management Practices for Maine Agriculture* is not a static document. The process of developing best management practices has evolved over time as new research proceeds and agricultural knowledge is expanded. This on-going process will continue as new technologies and new management techniques are constantly being developed, tested and disseminated. Numerous BMPs in this manual were not included in the 1991 NPS Report because they were not known techniques or were not recognized as effective techniques. Likewise the BMPs included in this manual may be replaced, updated or refined over time. Therefore, even if a BMP may not appear in this manual it does not necessarily mean that it does not have some application in certain circumstances. Therefore, consultation with a qualified expert is required when developing BMPs.
Best Management Practices for Maine Agriculture

II. **Explanation of General BMPs and Site Specific BMPs**

A. Definition of BMPs

The following definition of "BMP" was adopted for the 1991 NPS Report and still is applicable for Maine agriculture. It is based on practicality, economics, efficiency, and a cost/benefit comparison:

*A Best Management Practice is a method or practice which, when installed or used, is consistent with efficient, practical, technically and environmentally sound animal or crop production practices. BMPs are those practices best suited to preventing, reducing, or correcting agriculture-related problems.*

(NPS report, October 1991)

It also is important to understand the meaning of the word “best” in “best management practices” as used in the above definition. “Best” in this case does not infer the absolute maximum water quality protection method, measure, or practice that has been developed. In this context, the term “best” refers to any method, measure, or practice that, when installed, will provide reasonably improved prevention, reduction, or correction of water pollution.

In actuality, some BMPs offer greater protection than others. Not surprisingly, the BMPs offering the greatest degree of protection may also cost the most in terms of dollars, effort, and/or time to implement and maintain. If the cost of implementing a management practice or technique is substantially greater than the benefit that may accrue from that practice then it is not the best choice for the situation.

Finally, BMPs for water quality are not necessarily BMPs for other purposes. In fact the BMPs for water quality might directly conflict with an equally, if not more important,
Best Management Practices for Maine Agriculture

BMP to the farmer that could impact animal health, soil productivity or overall financial viability of the farm operation.

B. Use of General BMPs

The BMPs listed in section III of this manual are best described as “general” BMPs. Together they form a menu from which one or more techniques or practices may be selected to address an agriculture-related problem in the most appropriate manner for the site and the issue. Rarely will the use of a single BMP for any land use activity be sufficient to adequately address agricultural-related problems. More often, several BMPs, individually selected to fit the unique characteristics of each site and farming operation, will be required.

The BMPs developed to address the specific situation and the unique characteristics of the land are referred to as site-specific BMPs. When used in combination to address an agriculture-related problem within the context of the entire farm operation these groups of BMPs are often referred to as best management systems. The EPA defines management systems as:

*Economically-achievable measures for the control of the addition of pollutants from existing and new categories and classes of non-point sources of pollution, which reflect the greatest degree of pollutant reduction achievable through the application of the best available non-point source control practices, technologies, processes, siting criteria, operating methods, or other alternatives.*

While farming operations have been considered potential “non-point sources” of pollution, recent changes in federal legislation define certain livestock operations, “concentrated animal feeding operations” (CAFOs), as potential “point sources” of pollution attributable to agriculture. This necessitates recognition of these entities as candidates for BMP adoption utilizing the approaches outlined in this manual, and may include adoption of nutrient management plans and/or specifically defined effluent
Best Management Practices for Maine Agriculture

limitations guidelines, as appropriate. Such changes further illustrate the on-going need for constructive thought during planning processes and for flexibility when evaluating specific agricultural situations.

Farming activities are quite diverse, as are the site conditions upon which farming activities are practiced. It would be impractical to develop the list of specifications that fit each unique set of site conditions and farming practices. Additionally, there occasionally are several equally suitable approaches to the same problem and, therefore, management systems are designed so there is considerable flexibility to determine how to best achieve the performance expectations.

C. Development of Site Specific BMPs

Implementation of agricultural BMPs, for the most part, affects existing activities, whereas most BMPs for other land use activities impact proposed uses. Most farmers are farming on a limited land base and may not be able to expand into new areas. BMPs that would unnecessarily reduce this land base or hinder farmers’ existing operation may force those farmers out of business. Therefore the BMPs must be carefully developed and implemented on a site-specific basis to address each unique situation.

Best management practices that have the greatest cost/benefit ratio should be adopted and implemented. In some instances it may be necessary to require best management practices that are relatively expensive. In situations where the required best management practice is very costly and the primary benefit may be for society, rather than for the farmer, which usually is the case, it is appropriate that some financial assistance be provided. In other instances, creative application of best management practices may actually resolve a problem and save a farm operation some money.

It is because of the myriad of potential agricultural-related problems, the uniqueness of site conditions, and the interconnectivity and complexity of farming operations that development of site-specific best management practices is approached systematically –
Best Management Practices for Maine Agriculture

that is, through the use of best management systems – and is both an art involving considerable professional judgment and a science based on sound research and site analysis.

The great diversity of site conditions, farming operations, crop selections, and farming practices must be considered when developing BMPs. To adequately address each unique set of conditions, not only for each farm, but also for each field or portion of the field, site-specific BMPs are required. Therefore the agricultural BMPs in section III refer to a partial listing of technical publications and organizations that can be consulted for further guidance. Some of these references are continually being updated thus updating the BMPs.

Lists of the general best management practices associated with various best management systems follow. These are to be used as a menu from which the appropriate best management practice can be chosen for application on a site-specific basis.
III. **General BMPs for Maine Agriculture**

Following, is a list of BMPs arranged by categories based on the subject matter of the BMP. Each BMP is listed by title and contains a description of the BMP or a summary of the practice(s) it calls for, and references additional materials that can provide more detail about the use of the BMP and the science that supports the BMP. The list of references appears in section IV and each reference is numbered. The numbers listed in the “references” line for each BMP corresponds to the references that can be found in section IV. References are coded A, B or C, or in combinations thereof, and have the following meanings:

“A” references explain how a particular BMP is to be applied site specifically, or suggest ways of implementing the practice from an engineering or practical standpoint.

“B” references describe the basic science, research results or other activities, which support the practice.

“C” references offer a general description of a practice or situation which relates to a BMP for problem solving, but do not necessarily offer specifics about how to achieve a desired result.

Print versions of most reference materials are on file at the Maine Department of Agriculture and are available for copying and inspection. Most references are available on the Internet and have the web page link as part of the reference if the reference was available on line at the time this listing was assembled in 2005 - 2006.
Best Management Practices for Maine Agriculture

A. Erosion and Sedimentation Control

1. Contour Plowing
Plant crops across the predominant slope of the land, along the contour, to reduce the erosive force of runoff water. This BMP becomes more appropriate as the slope increases or the distance to a water-body decreases.

References: 25 AC; 99 AC; 255 ABC; 306 AC; 329 AC; 335 AC.

2. Interseed Row Crops
Plant a ground cover crop between the rows of the primary crop to protect the bare soil between rows.

References: 25 C; 45 AC; 49 C; 50 BC; 217 C; 223 B; 246 ABC; 277 AC; 317 AC.

3. Rotated Crops
Rotate crops that provide limited soil cover (row crops) with crops that provide high amounts of cover (hay or clover).

References: 45 AC; 99C; 213 AC; 218 BC; 219 C; 220 AC; 221 ABC; 238 ABC.

4. Buffer Strips
Install buffer strips next to surface waters that are in a position to receive runoff from crop fields.

References: 25 AC; 239 ABC; 240 ABC; 241 ABC; 258 C; 358 ABC; 361 AC; 375 ABC; 376 ABC.

5. Strip Crop
Plant row crops in strips along the contour on sloping fields, alternating with strips of plants that provide a high amount of cover and the potential to filter sediment out of runoff from the row crops.

References: 25 BC; 99AC; 242 ABC; 243 ABC; 376 BC.

6. Crop Residue
Leave as much residue from previous crop on the ground as possible to act as mulch.

References: 25 ABC; 58 ABC; 136 ABC; 207 ABC; 208 ABC; 243 ABC; 281 ABC; 336 ABC; 361 ABC.
7. **Vegetate Highly Erodible Areas**
Areas that are particularly prone to excessive erosion should be vegetated to permanently protect the soil.

References: 25 ABC; 34 ABC; 240 ABC; 244 ABC; 245 ABC; 248 ABC; 304 AC; 361 ABC; 358 ABC.

8. **Cover Crops**
Plant cover crops to reduce erosion, protect water quality, improve soil, impede weed growth, and enhance nutrient moisture availability to subsequent crops.

References: 45 AC; 58 ABC; 215 BC; 216 ABC; 240 ABC; 244 ABC; 245 ABC; 260 ABC; 292 ABC; 304 AC; 337 B; 373 ABC.

9. **Divert Surface Waters**
Construct diversions for controlling surface runoff water. Divert flows away from farmsteads, eroding areas, or other sites, as necessary.

References: 247 ABC; 248 ABC; 250 ABC; 356 ABC; 358 ABC.

10. **Stabilize Surface Water Diversion**
Stabilize surface water diversion channels so that they will not erode and become a source of sediment.

Reference: 247 AC; 248 AC; 250 AC; 358 ABC

11. **Sediment Basins**
Construct sediment basins to trap and store waterborne sediment and debris that could enter and fill waterways, reservoirs or ditches, etc.

References: 99 AC; 250 ABC; 251 ABC; 351 C; 358 ABC.

12. **Limit Livestock Access To Sediment Producing Areas**
Limiting livestock access and allowing those areas to become re-vegetated can stabilize areas that have bare soil due to extensive livestock traffic and are therefore prone to erosion.

References: 241 ABC; 249 ABC; 252 ABC; 253 ABC; 294 AC; 295 AC; 315 AC; 362 AC.
13. Limit And Stabilize Livestock Crossings of Streams
Direct livestock to one or more stable stream crossing areas to reduce soil disturbance in and adjacent to streams.

References: 2 ABC; 23 AC; 40 C; 99 C; 252 ABC; 253 ABC; 254 ABC; 315 AC; 362 AC.

14. Locate or Develop a Stable Stream Crossing For Farm Equipment
Farm equipment can cause erosion and sedimentation if stream crossings have not been stabilized with appropriate materials and methods.

References: 2 ABC; 209 ABC; 254 ABC.
B. Manure Management

1. **Determine Manure Application Rates**
   Base manure application rates on realistic yield goals to avoid over fertilizing. Keep accurate fertilizer and manure applications rates and yield records on a worksheet.

   References: 1 ABC; 5 ABC; 6 A; 25 ABC; 55 ABC; 309 AC; 312 ABC; 317 AC; 323 ABC; 375 ABC; 376 BC; 382 BC; 383 AC; 384 ABC; 387 ABC.

2. **Buffers or Setbacks**
   Establish site-specific manure spreading setbacks or buffers where and when appropriate.

   References: 5 AC; 18 AC; 22 AC; 25 ABC; 40 AC; 55 ABC; 62 AC; 63 AC; 64 C; 258 C; 326 AC; 362 AC; 363 B; 375 ABC; 380 C; 387 ABC.

3. **Manure Nutrient Value**
   Have manure analyzed to determine nutrient content.

   References: 1 ABC; 5 ABC; 25 ABC; 29 AC; 30 C; 147 ABC; 330 C; 323 ABC; 376 C.; 383 AC; 384 ABC; 386 ABC; 387 ABC.

4. **Apply Manure at Appropriate Rates**
   Calibrate manure application equipment to assure proper application rates.

   References: 5 AC; 6 AC; 22 AC; 25 AC; 29 AC; 64 AC; 111 AC; 115 AC; 312 ABC; 324 C; 327 AC; 375 ABC; 376 ABC; 383AC; 386 ABC; 387 ABC.

5. **Uniform Application**
   Apply manure uniformly over the entire area to be spread to avoid under and/or over fertilization.

   References: 5 AC; 22 ABC; 25 ABC; 29 C; 157 ABC; 309 AC; 327 AC; 387 ABC.

6. **Reduced or Non-Application Areas**
   In areas where organic matter additions are not desired or where bacteria may be a significant concern, other nutrient sources may be preferable to the spreading of manure or reduced manure application rates should be used.

   References: 25 ABC; 60 AC; 156 AC; 258 C; 309 AC; 324 BC; 330 C; 362 AC; 363 C; 387 ABC.
7. **Timing Manure Applications**
Manure spreading activities should be timed to coincide with crop uptake needs, particularly in areas where soils are highly permeable or where there is a highly sensitive resource concern located nearby.

References: 5 AC; 25 ABC; 55 AC; 60 AC; 64 AC; 324 C; 375 ABC; 376 C; 382 ABC; 384 ABC.

8. **Incorporate Manure Applications**
Where and when appropriate, manure applications should be incorporated (odor concerns, loss of N through volatilization).

References: 5 AC; 22 ABC; 55 AC; 64 AC; 68 C; 111 AC; 309 AC; 325 ABC.

9. **Do Not Incorporate Manure**
Manure should not be incorporated in inappropriate areas such as a stabilized hay field that is strongly sloping and is a highly erodible soil.

References: 64 AC; 118 BC.

10. **Do not Apply Manure on Saturated Soils, Frozen or Snow-covered Fields or Drainage Swales**
Base manure application rates on realistic yield goals to avoid over fertilizing. Keep accurate fertilizer and manure applications rates and yield records on a worksheet. Unless exempted by the Commissioner of the Maine Department of Agriculture, Food and Rural Resources, manure may not be spread between the dates of December 1 and March 15.

References: 5 AC; 6 AC; 22 ABC; 40 AC; 55 AC; 117 C; 156 AC; 157 ABC; 298 C; 320 C.

11. **Store Manure Properly**
Manure should be stored properly (on suitable field stacking sites or in properly designed storage facilities) when land application is not possible.

References: 3 BC; 5 ABC; 29 AC; 40 C; 41 AC; 61 C; 67 C; 105 AC; 269 AC; 298 C; 309 AC; 312 ABC; 320 C; 362 AC; 376 ABC.

12. **Stackable Manure**
Manure should be a minimum of 18% by weight, dry matter for field stacking.

References: 5 AC; 22 AC; 29 AC; 314 C.
13. Adequate Storage
Storage capacity should be available to store manure for the time that manure cannot or should not be field applied or otherwise utilized.

References: 3 BC; 22 ABC; 61 C; 69 AC; 226 AC; 309 AC; 312 AC; 314 C; 320 C; 330 C; 387 ABC.

14. Compost Manure
Composting manure is a method of storing manure and is a way to tie up nutrients so that they are not so readily lost through leaching and/or volatilization.

References: 17 AC; 18 AC; 19 C; 231 ABC; 309 AC; 314 AC; 320 C; 365 AC.

15. Crop Rotations
Plan crop rotations so that crops are included that can utilize residual nitrogen, where and when appropriate.

References: 45 ABC; 54 ABC; 212 C; 213 AC; 214 ABC; 216 AC; 220 AC; 222 ABC; 246 ABC; 267 AC; 317 AC.

16. Minimize Soil Erosion
If soil is eroding from a field where manure is applied, manure will be transported off-site.

References: 25 AC; 35 AC; 55 AC; 67 C; 238 ABC; 239 ABC; 242 ABC; 245 ABC; 246 ABC; 255 ABC; 279 AC; 324 C; 362 AC; 375 ABC; 387 ABC.

17. Pest Control
Proper pest control should be employed so that crop yields and nutrient uptake are maximized and neighborhood nuisances are limited.

References: 9 ABC; 14 ABC; 15 ABC; 52 AC; 317 AC.

18. Bedrock Outcrops
Avoid spreading over bedrock outcrops that may have fractures leading to groundwater aquifers.

References: 59 AC; 157 ABC; 158 AC; 338 ABC.
19. Shallow To Bedrock Soils
Reduce application rates on shallow to bedrock soils, particularly if the spreading will be after crop harvest (row crops).

References: 41 AC; 59 AC; 63 C; 64 AC; 157 ABC; 324 C.

20. Barnyard and Feedlot Runoff
Divert clean water away from of barnyards and feedlots, including roof runoff from barns and feedlot facilities. Treat runoff from barnyards and feedlots by use of settling basins, manure pits or filter strips with level spreaders. Encourage sheet flow.

References: 64 AC; 67 C; 68 C; 71 C; 74 AC; 233 ABC; 240 ABC; 251 ABC; 258 C; 279 AC; 312 AC; 314 AC; 339 ABC; 362 AC; 375 ABC; 380 C; 387 ABC.

21. Water Body Access
Livestock access to water bodies should be controlled and limited.

References: 38 AC; 67 AC; 99 AC; 297 AC; 362 ABC.

22. Manure Concentrations
Manage barnyards, feedlots and pastures to control concentrations of manure.

References: 67 AC; 71 C; 240 ABC; 257 AC; 298 C; 313 AC; 330 C; 340 ABC; 362 AC; 387 ABC.

23. Cover Crop
Plant crop fields to a cover crop after harvest to tie up nutrients not utilized by the primary crop.

References: 48 ABC; 54 AC; 58 BC; 60 ABC; 260 ABC; 267 AC; 292 ABC; 317 AC; 373 ABC.

24. Soil Infiltrative Capacity
On fine textured soils, maintain good soil structure and do not compact so that manure related nutrients can infiltrate the soil rather than be lost in run off.

References: 66 ABC; 67 C; 68 C; 72 AC; 73 C; 118 C; 126 AC; 217 AC; 306 ABC; 309 AC; 321 C.
C. Pest Management

The following BMPs are part of, or should be used in conjunction with, an Integrated Pest Management Plan (IPM).

1. Biological Controls
   Utilize and encourage biological controls when and where appropriate.
   References: 9 ABC; 20 ABC; 26 AC; 36 C; 43 AC; 249 ABC; 305 ABC; 317 AC; 332 C; 366 ABC.

2. Field location Selection
   Where and when possible, select fields which are not conducive to the development of pathogens for a particular crop.
   References: 89 C; 90 AC; 91 AC; 92 AC; 93 ABC; 94 C; 95 AC; 369 ABC; 370 ABC; 372 C

3. Disease Free Seed and Propagation Material
   Select disease free seed and propagation material.
   References: 17 ABC; 45 AC; 53 AC; 57 ABC; 317 ABC.

4. Crop Disease Resistance
   When possible, plant disease resistant crops or select varieties that are more resistant to specific diseases than are other varieties.
   References: 45 AC; 50 BC; 57 ABC; 82 ABC; 306 C; 317 AC; 343 AC.

5. Natural Pest Controls
   Protect and encourage the growth of natural pest predators.
   References: 17 ABC; 36 C; 43 AC; 51 AC; 56 AC; 58 AC; 249 ABC; 305 ABC; 317 AC; 332 C; 366 ABC.

6. Cultural Controls
   Utilize management practices that discourage crop pests, such as crop rotation, cover crops, varying planting and harvest dates, mechanical controls, etc.
   References: 18 C; 19 C; 34 ABC; 49 ABC; 50 ABC; 54 ABC; 55 C; 57 ABC; 99 C; 267 AC; 306 AC; 317 AC; 318 AC; 366 ABC.
7. Pest Scouting
Determine when and where pest levels are high enough to warrant management actions by conducting field evaluations instead of applying treatments according to a calendar date.

References: 21 AC; 34 ABC; 49 ABC; 50 C; 51 AC; 82 ABC; 99 AC; 305 AC; 307 C; 366 ABC.

8. Manage Crops To Compete With Weeds
Proper crop management can be an effective tool in controlling competition by weeds. Healthy, vigorous crops can more effectively compete with weeds.

References: 33 AC; 34 AC; 37 AC; 49 AC; 56 AC; 99 C; 276 ABC; 307 AC; 317 AC; 318 AC; 341 ABC; 342 ABC.

9. Develop Pesticide Application Plan
Pesticide applications should be based upon a number of site-specific factors, including: crop needs; pest levels; well locations; soil type; soil depth; land slope; organic matter content of soils; water table depth; and soil texture.

References: 10 AC; 22 ABC; 25 BC; 27 ABC; 311 C; 359 AC.

10. Calibrate Pesticide Application Equipment
Under application can result in a lack of control of a pest while over application can be a threat to ground and/or surface water resources. State and federal regulations require proper application rates for specific crops and circumstances.

References: 8 AC; 10 A; 75 AC; 80 C; 82 AC; 86 AC; 99 C; 367 AC.

11. Read and Follow all Pesticide Label Directions & Material Safety Data Sheets
Federal and State laws require applicators to know how and when to apply a pesticide. All Material Safety Data Sheets (MSDS) should be read, understood and readily available. Pesticide labels are legal documents that must be followed.

References: 8 AC; 10 A; 27 ABC; 82 AC; 306 AC; 311 ABC.

12. Comply With All Federal and State Laws Regarding Pesticide Use
Federal and State laws have been established to protect human health and the environment.

References: 7 AC; 8 AC; 10 AC; 27 ABC; 44 AC; 49 AC; 80 AC; 82 AC; 151 C; 290 AC; 308 AC; 351 ABC.
13. **Become a Certified and Licensed Pesticide Applicator**

Becoming a certified and licensed applicator or attending educational sessions for certification is a good way to become educated about pesticide use, and is a legal requirement for applications of restricted use pesticides.

*References: 8 AC; 10 A; 13 AC; 79 AC; 282 AC; 291 AC.*

14. **Mix, Load and Apply Pesticides Properly**

Using proper techniques and procedures will help protect surface and ground water resources, and is a legal requirement.

*References: 8 C; 10 AC; 75 AC; 78 AC; 81 C; 99 C; 308 ABC; 311 AC.*

15. **Pesticide Storage**

Pesticides should be stored in a safe location to minimize environmental risk and to protect the pesticides from degradation.

*References: 7 AC; 10 AC; 12 AC; 76 C; 82 AC; 155 ABC; 283 AC; 308 AC.*

16. **Pesticide Container Disposal**

Observe pesticide container label and MSDS instructions for safe pesticide container disposal. Follow Maine’s returnable pesticide container law. Rinse liquid pesticide containers a minimum of three times.

*References: 10 AC; 76 AC; 77 AC; 99 ABC; 155 ABC; 285 C; 311 AC.*

17. **Spray Drift**

Follow label guidelines and Maine’s drift law regarding wind speeds and equipment requirements to avoid over-spraying or drift problems.

*References: 10 ABC; 11 C; 21 AC; 32 AC; 80 AC; 82 AC; 150 AC; 359 AC.*

18. **Use Crop Rotation To Reduce Pesticide Application**

Crop rotation can be used as a means of controlling pest numbers and types, and may reduce the need to apply the same pesticide on a field year after year.

*References: 11 BC; 45 C; 85 AC; 155 AC; 216 AC; 359 BC.*

19. **Select Crops That Can Compete With Weeds**

By selecting crops that can effectively compete with weeds, less pesticide will be needed to control weeds, reducing possible environmental impacts of the pesticides.

*References: 99 C; 317 ABC; 292 C.*
20. Use Cover Crops To Control Weeds
Planting cover crops on fields where crops have been harvested can minimize the need for pesticide applications and reduce weed infestations.

References: 11 C; 45 C; 49 ABC; 54 ABC; 99 C; 267 ABC; 292 ABC; 304 ABC; 317 AC 318 ABC; 373 ABC.

21. Utilize Mechanical Weed Control
Use mechanical weed control such as row cultivation and rotary hoeing whenever possible to minimize the need for chemical weed control.

References: 45 AC; 83 AC; 84 AC; 87 AC; 99C; 267 AC; 317 ABC; 318 ABC; 359 AC.

22. Consider Field Characteristics To Determine Application Levels
Pesticide application levels should take into consideration individual field characteristics such as slope, soil texture, soil permeability, soil depth to bedrock, soil drainage, buffer type and width and setback features. Always consult the pesticide label for guidance.

References: 11 C; 27 AC; 41 ABC; 119 C; 122 ABC; 141 AC.

23. Chemigate Properly
Follow state and federal regulations when using chemigation to minimize drift, overspray, well contamination and impacts upon surface and ground waters.

References: 11 C; 27 AC; 96 AC; 97 AC; 98 C; 141 AC; 311 C.

24. Pesticide Application Techniques
When determining the pesticide application technique to use on a field, consider the specific characteristics of each field and the characteristics of the pesticide. For example, aerial spraying of a field with areas of exposed bedrock may not be appropriate for a pesticide that is highly leachable and persistent whereas aerial spraying may be appropriate where the site-specific conditions are different.

References: 10 ABC; 11 ABC; 22 ABC; 32 AC; 141 AC.

25. Weather Conditions
Avoid pesticide applications prior to a heavy rainfall during which leaching or runoff of the pesticide may occur. This potentially will result in contamination of surface and/or groundwater, and also may remove the pesticide from the crop field, negating its intended purpose. In contrast, some pesticides require light rainfall for activation.

References: 11 C; 120 AC; 122 AC; 123 AC.
D. Nutrient Management

1. Nutrient Application Levels
   Nutrients should be applied at a level needed to grow the intended crop, taking into consideration typical losses (leaching, volatilization, competition from microbes and weeds, and sequestration by soil particles).

   References: 1 ABC; 69 AC; 70 C; 99 AC; 306 AC; 307 AC; 312 ABC; 314 AC; 317 ABC; 318 AC; 326 AC; 288 ABC; 375 ABC; 377 ABC; 383 BC; 385 ABC; 387 ABC.

2. Uniformity of Nutrient Application
   Nutrients should be applied uniformly on a field unless a site-specific evaluation (or varied cropping practice) has determined that sections of a field need higher (or lower) rates of application than others.

   References: 5 AC; 99 ABC; 127 ABC; 257 AC; 289 AC; 306 AC; 317 ABC; 318 AC.

3. Background Nutrient Levels
   Utilize soil tests to determine background levels of P, K, Ca, Mg, other pertinent nutrients and pH so that appropriate application rates can be determined.

   References: 1 ABC; 22 ABC; 45 AC; 115 AC; 116 AC; 129 AC; 157 AC; 266 ABC; 288 C; 306 AC; 307 AC; 317 AC; 324 C; 326 C; 375 ABC; 385 ABC.

4. Background Organic Matter Content Levels
   Determine the nitrogen application rate needed for a crop by evaluating soil organic matter levels obtained from current soil tests.

   References: 1 ABC; 22 ABC; 45 AC; 111 AC; 157 AC; 267 AC; 306 AC; 317 AC; 377 BC.

5. Soil Amendment Nutrient Levels
   Test manure or other soil amendments to determine nutrient content and the level of supplemental nutrient applications needed.

   References: 1 ABC; 22 ABC; 69 ABC; 115 AC; 157 AC; 256 C; 307 C; 312 AC; 314 AC; 326 C; 307 C; 327 AC; 375 ABC; 377 C; 382 BCV
6. **Determine Yield**
Decide crop yield goals in order to accurately determine nutrient application levels.

References: 1 ABC; 22 ABC; 128 C; 129 ABC; 130 AC; 131 AC; 314 AC; 317 C; 326 C; 377 C; 382 BC.

7. **Split Fertilizer Applications**
Depending on the site, fertilizer type and crop, using split fertilizer applications can result in greater uptake by a crop and reduced nutrient loss to the environment.

References: 1 ABC; 25 ABC; 39 AC; 99 C; 256 AC; 257 C; 377 BC.

8. **Fertilizer Release Rate**
Adverse environmental impacts may be reduced by selecting a fertilizer with a specific release rate (depending upon crop, site characteristics and how often a fertilizer is to be applied).

References: 1 ABC; 5 ABC; 19 B; 153 C; 154 AC; 317 C; 387 ABC.

9. **Soil Characteristics**
Do not apply nutrients over exposed bedrock. Use several, smaller applications on shallow to bedrock or highly permeable soils and do not apply leachable nutrients when crops are absent or dormant on these soil types. Do not apply nutrients to poorly drained soils or when the water table is close to the soil surface.

References: 16 AC; 41 AC; 64 AC; 157 AC.

10. **Calibrate Nutrient Application Equipment**
Proper calibration of nutrient application equipment is necessary to guard against over or under application.

References: 16 AC; 150 AC.

11. **Accurate Records**
Keep accurate crop yield, soil amendment and nutrient application levels to assist in proper nutrient management planning.

References: 5 AC; 146 AC; 147 C; 150 AC; 152 AC; 309 AC; 326 AC; 327AC; 387 ABC.
12. Irrigation
Balance irrigation applications with crop needs to reduce potential leaching or surface runoff losses of nutrients.

References: 16 C; 45 AC; 132 AC; 133 AC; 268 AC; 310 AC; 312 ABC; 314 AC; 318 AC 343 AC.

13. Crop Rotations
Residual and/or excess nutrients can be effectively utilized by diversifying crop rotations.

References: 16 AC; 99 C; 213 AC; 214 AC; 267 ABC; 317 AC.

14. Cover Crops
Cover crops can effectively tie up available nutrients and provide organic matter to the soil for the next cropping season.

References: 54 AC; 99 C; 159 C; 214 AC; 215 ABC; 216 AC; 260 ABC; 292 AC; 317 AC; 343 ABC.

15. Fertigation
Incorporate fertilizers into irrigation systems only when there is need for the nutrients by the crop and then supply only the necessary amounts of nutrients to the crop.

References: 5 AC; 45 C; 96 AC; 97 C; 170 C; 318 AC; 343 AC; 382 C.

16. Plant Tissue Testing
Plant tissue testing is an effective method of determining soil macronutrient levels and availability. Stunted crops do not use nutrients at the same rate as healthy crops and therefore may leave excessive levels of nutrients in the soil that may be transported to surface or groundwater.

References: 34 AC; 129 C; 130 ABC; 284 AC; 343 AC; 345 ABC; 377 C; 385 ABC.

17. Leachable Nutrients
Applying nutrients, such as nitrogen, in a form that is readily leachable should be based upon site conditions and crop needs. Where leaching potential is high and off site impact is a major concern, leachable nutrients should be applied when crop uptake is expected to be high. Fall applications should be avoided or a less leachable form of the nutrient should be used.

References: 16 AC; 17 AC; 39 AC; 258 AC; 310 AC; 377 BC; 382 BC; 387 ABC.
18. Avoid Applications On Frozen, Saturated or Snow Covered Soil
If the soil is frozen, saturated or snow-covered, the likelihood that nutrients will be transported off-site in surface runoff is high, unless the site is nearly level and/or has been modified to contain and treat runoff. Unless specifically exempted, manure applications are illegal during the period of December 1 to March 15.

References: 6 AC; 60 C; 117 C; 156 AC; 157 ABC; 298 C; 320 C; 346 AC.

19. Soil Erosion
Minimize soil erosion to reduce the loss of nutrients with runoff water. This is particularly true for nutrients such as phosphorous, which are readily attached to soil particles.

References: 99 AC; 156 AC; 318 AC; 320 C; 361 AC; 362 AC; 387 ABC.

20. Buffer Strips
Buffer strips act as filters to collect and treat runoff waters, removing both sediments and nutrients.

References: 25 ABC; 99 AC; 239 AC; 240 ABC; 391 AC.

21. Organic Matter Content of Soils
By increasing or maintaining the organic matter content of soils to 5%-10%, the cation exchange capacity (CEC) of soils will improve. Increasing the CEC allows the soil to retain, and enables plants to utilize, more nutrients. Organic matter promotes good soil structure, which improves soil permeability thereby decreasing runoff of nutrients. High organic matter content also helps the soil to retain moisture, decreasing the need for irrigation, and promoting a more vigorous crop in dry years, even without irrigation.

References: 1 ABC; 41 BC; 64 C; 124 AC; 159 C.

22. Compost Excess or Spoiled Crops
Compost, re-cycle or utilize organic materials in an environmentally sound manner to minimize odors, vermin attraction, disease transmission or run-off.

References: 17 ABC; 18 ABC; 45 C; 365 AC
E. Irrigation Management

1. **Irrigating from Streams and Rivers**
   When irrigating from a small stream or river, water should not be drawn down below a level that could harm aquatic organisms.

   References: 45 C; 132 AC; 268 AC.
F. Livestock Management

1. **Housing Facilities**
Utilize appropriate housing for optimal productivity and health of various species.

   References: 108 AC; 235 ABC; 237 ABC; 279 ABC; 301 ABC; 302 ABC; 316 ABC; 319 ABC; 320 ABC; 380 C.

2. **Waste Management Structures**
Utilize appropriate containment structures in terms of capacity, siting and construction method for personnel safety and environmental protection.

   References: 22 ABC; 226 AC; 279 ABC; 298 C; 309 ABC; 312 ABC; 320 ABC; 363 C; 374 C.

3. **Environmental Factors**
Provide appropriate facilities and environment for optimal livestock productivity and health.

   References: 235 ABC; 236 ABC; 274 ABC; 275 ABC; 297 AC; 299 ABC; 301 ABC; 319 ABC; 320 ABC; 333 ABC; 334 ABC; 374 C; 379 C; 380 C; 381 AC.

4. **Livestock Fencing**
Construct species-specific fencing for livestock and predator control, and for environmental protection.

   References: 294 ABC; 295 ABC; 296 ABC; 315 ABC.

5. **Pasture/Forage Crop Management**
Manage crops for optimal productivity, nutritional value and environmental protection.

   References: 37 ABC; 183 ABC; 184 ABC; 185 ABC; 187 ABC; 188 ABC; 189 ABC; 190 AC; 191 AC; 192 AC; 193 AC; 194 AC; 195 ABC; 196 ABC; 197 ABC; 198 AC; 205 AC 306 ABC; 307 ABC; 360 AC.
G. Odor Control

1. Manure Storage Structures
Locate new manure storage structures as far as practical from neighboring residences.

References: 5 AC; 22 ABC; 63 AC; 100 C; 279 AC; 287 ABC; 298 AC; 387 ABC; 389ABC.

2. Coordinate Manure Applications With Neighbors
When and where appropriate, notify neighbors of intent to spread manure and adjust schedule to avoid conflict with neighbors’ outdoor activities.

References: 5 AC; 100 AC; 110 AC; 113 C; 287 ABC; 309 C; 313 AC; 387 ABC.

3. Cover Field Stacked Manure
When manure is to be stacked in close proximity to houses or other occupied buildings, when and where odor may be offensive, cover manure pile with lime, sawdust, plastic or some other odor barrier.

References: 5 AC; 67 C; 105 C; 112 AC; 287 ABC; 314 AC; 322 C.

4. Incorporate Manure
Incorporate manure applications on row crop ground as soon as possible after application.

References: 5 C; 68 C; 70 C; 110 C; 117 C; 136 AC; 287 ABC; 298 C; 322 ABC; 330 ABC.

5. Sod Crop Applications
When possible, apply manure to sod crops just before a light or moderate rain is predicted.

References: 5 C; 117 ABC; 287 ABC.

6. Weather Conditions
When possible, spread manure on cool moist days.

References: 110 AC; 111 AC; 113 C; 287 ABC; 298 AC; 322 ABC; 389 ABC.
Best Management Practices for Maine Agriculture

7. Injection
When and where possible, and when appropriate, apply liquid manure by sub-surface injection.

References: 99 BC; 110 AC; 111 AC; 113 BC; 117 ABC; 136 AC; 287 ABC; 313 C; 322 ABC.

8. Spreading Activity
Concentrate manure spreading activities so that it will be completed shortly after being started rather than spreading small amounts each day over a long period of time.

References: 5 AC; 110 AC; 134 C; 136 AC; 137 AC; 298 C.

9. Spreading Rates
Do not exceed spreading above the recommended rate.

References: 1 ABC; 5 AC; 6 AC; 25 ABC; 64 AC; 136 ABC; 389 ABC.

10. Minimize Spillage
Do not overload trucks or spreaders. Secure equipment so that spillage is minimized, particularly in areas that are not to be spread upon.

References: 29 AC; 100 C; 116 AC; 157 ABC; 287 ABC; 309C.

11. Even Application
Apply manure as evenly as possible.

References: 61 C; 111 AC; 166 AC; 287 ABC; 309 C; 320 C.

12. Solid Manure
Keep solid manure as dry as possible.

References: 67 C; 104 C; 105 C; 108 C; 287 ABC.

13. Composting
Compost manure when and where appropriate.

References: 17 ABC; 18 ABC; 53 AC; 115 C; 298 ABC; 309 C; 313 C; 314 AC; 320 C; 322 C; 365 AC.
H. Insect Management

1. **Proper Sanitation**
   Keep all animal and barnyard areas as clean and dry as possible to minimize insect breeding sites.

   References: 20 ABC; 28 AC; 42 ABC; 43 AC; 50 C; 108 C; 298 C; 362 AC.

2. **Spilled Feed and Spoil Piles**
   Clean up spilled feed and spoil piles as soon as possible.

   References: 20 ABC; 28 AC; 100 C; 101 C; 136 C.

3. **Dead Animals**
   Properly dispose of animal carcasses immediately upon discovery.

   References: 18 ABC; 100 C; 107 C; 114 AC; 178 AC; 179 AC; 287 ABC; 314 AC; 330 C; 388 ABC.

4. **Feed Bunks**
   Maintain clean feed bunks.

   References: 20 ABC; 28 AC; 71 C; 136 C.

5. **Waterers**
   Inspect for and repair leaks frequently. In poultry houses, spread compost, dry shavings or lime to absorb spilled water.

   References: 20 ABC; 28 AC; 101 C; 103 C; 105 C; 108 C.

6. **Animal Diet**
   Use proper animal feed to keep manure as dry as possible.

   References: 137 ABC; 330 ABC.

7. **Ventilation**
   Use proper ventilation in poultry houses to keep manure as dry as possible.

   References: 101 C; 106 ABC; 108 AC; 143 C.
8. Poultry House Manure Removal
Clean deep pit poultry houses as often as practical to minimize build up of flies, preferably during cold weather to minimize dispersal of flies.

References: 43 C; 103 C; 108 AC; 314 C.

9. Empty Poultry Houses
Remove manure from poultry houses within six (6) months after poultry have been taken away.

References: 43 AC; 101 C; 103 C; 170 C.

10. Droppings Boards
Clean droppings boards in poultry houses at least twice a day.

References: 109 C.

11. Natural Insect Enemies
Encourage natural insect predators by using partial cleanout of manure, or by releasing natural enemies into the manure.

References: 26 AC; 43 AC; 101 AC; 138 AC.

12. Utilize Physical Fly Removal Methods
Use traps or other devices to reduce fly populations in and around animal buildings.

References: 20 ABC; 28 C; 43 AC; 101 AC.

13. Use Pesticides Sparingly
Use pesticides to reduce insect populations as a last resort.

References: 20 ABC; 42 ABC; 49 ABC; 99 AC.

14. Use Pesticides Properly
Follow label and Cooperative Extension recommendations when applying pesticides to control insect populations.

References: 8 AC; 42 AC; 49 ABC; 141 ABC; 144 AC.

15. Use Proper Pesticide Application Techniques
Use proper protective equipment and calibrate all application equipment.

References: 10 AC; 99 AC; 121 C; 135 AC; 150 C; 351 ABC; 359 AC.
16. Pesticide Feed Additives
Use insecticidal feed additives only when necessary and in accordance with label and Cooperative Extension recommendations.

References: 138 AC; 139 AC; 140 AC; 141 ABC.

17. Cover Manure Piles
Use plastic or other appropriate materials to cover manure piles and prevent insect ingress or egress.

References: 105 C; 112 C; 157 ABC; 313 C; 320 C.

18. Compost
Composting can be used as a means of controlling insect populations in manure.

References: 18 C; 61 AC; 145 C; 159 C; 365 AC.

19. Transporting Manure
Control insect infestations in manure before transporting it to a stacking or spreading site.

References: 28 C; 29 AC; 42 ABC; 43 ABC; 139 AC.

20. Controlling Barnyard Exercise Lots
Keep clean by periodically sweeping and cleaning to control insects.

References: 20 ABC; 28 C; 42 AC; 340 ABC; 362 AC.
I. Noise Control

1. Irrigation Pumps
Operate pumps when they will not create offensive noise levels to neighbors. Install noise buffers where and when necessary.

References: 161 AC; 211 C; 213 C; 310 AC.

2. Farm Equipment
As much as practical, operate farm machinery when it will least likely result in noise levels that may be offensive to neighbors. Use appropriate mufflers and other noise-reducing features when operating equipment within hearing distance from neighbors.

References: 107 C; 167 AC; 212 C; 213 C; 214 C.
J. Farm Management

1. **Animal Carcass Disposal**
   Follow Chapter 211: Rules for the Disposal of Domestic Animals and Poultry.
   
   References: 18 AC; 107 C; 114 AC; 178 AC; 179 AC; 328 AC; 330 AC; 388 ABC.

2. **Cull Potato Disposal**
   Follow Chapter 600: Rules Regarding Disposal of Cull Potato Piles.
   
   References: 17 ABC; 18 ABC; 19 BC; 31 ABC; 293 AC.

3. **Equipment Exiting Farm Fields**
   When leaving farm fields with machinery, make the exit as clean as practical by preparing a gravel way or driving equipment over clean areas of the field to clean the tires of mud/manure before exiting.
   
   References: 163 C; 165 AC; 209 AC; 309 C.

4. **Watering Livestock**
   Limit livestock access to natural waterbodies or waterways for watering purposes so as to minimize sedimentation and/or deposition of animal wastes into the waterbody or waterway.
   
   References: 4 AC; 23 AC; 38 AC; 99 AC; 171 AC; 294 AC; 295 AC; 315 AC; 381 AC.

5. **Livestock Waterway Crossings**
   Funnel livestock to a single, stable crossing and complete the crossings as quickly as possible.
   
   References: 2 C; 23 AC; 99 C; 252 ABC.

6. **Insect and Disease Infestations**
   Properly dispose of any crop residue that may result in an insect or disease infestation. This includes infestations that may impact neighbors, but not affect the farmer who has the residue.
   
   References: 18 AC; 19 BC; 45 AC; 53 AC; 258 C.
7. **Aesthetics**
Maintain as neat and orderly an operation as possible when visible from a public way, particularly a heavily used public way, or when adjacent to a public place.

References: 61 AC; 162 C; 163 AC; 164 AC; 165 AC; 167 C; 169 AC; 272 ABC.

8. **Vermin Control**
Control vermin by maintaining as neat and clean an operation as possible. If additional vermin control is needed, consult Cooperative Extension or a licensed pest management professional for the control of particular vermin.

References: 18 AC; 20 ABC; 61 AC; 200 ABC.

9. **Wild Animal Damage**
Consult the local Animal Control Officer, Maine Department of Inland Fisheries and Wildlife, or the U.S.D.A. – APHIS Wildlife Services.

References: 18 C; 45 AC; 172 BC; 173 C; 174 AC; 175 AC; 176 AC; 177 AC; 201 ABC; 269 AC; 294 AC; 295 AC; 315 AC.

10. **Residual Usage**
If a residual is to be used as a nutrient source or soil amendment, follow Maine Department of Environmental Protection, Agronomic Utilization of Residual Rules and Maine Department of Agriculture, Nutrient Management Rules.

References: 5 AC; 157 ABC; 207 ABC; 208 ABC; 210 AC.

11. **Feed Storage**
Produce and store forage crops in a manner that preserves optimal nutritional value for livestock and which minimizes run-off and vermin attraction.

References: 180 ABC; 181 AC; 182 AC; 183 AC; 184 AC; 185 ABC; 186 ABC; 187 ABC; 188 ABC; 189 ABC; 190 AC; 191 ABC; 192 ABC; 195 ABC; 196 ABC; 197 ABC; 198 AC; 199 C.

12. **Milkroom Waste**
Construct and maintain appropriate systems to minimize milkhouse effluent off-site deposition of nutrients and other potential contaminants.

References: 22 AC; 65 AC; 203 AC; 204 AC; 211 AC; 312 C; 313 AC.
13. Silage Management
Produce and store forage crops in a manner that preserves optimal nutritional value for livestock, and which minimizes odors, leachate, and potential ground and surface water contamination.

References: 185 AC; 192 AC; 195 ABC; 196 ABD; 205 ABC; 278 ABC; 313 C.

14. Management of Spoiled or Excess Crops
Compost, re-cycle or utilize organic materials in an environmentally sound manner to minimize odors, vermin attraction, disease transmission or run-off.

References: 17 ABC; 18 ABC; 19 C; 31 AC; 157 ABC; 206 C.

15. Dust Control
Reduce dust and mold emissions from farmyard and livestock operations to enhance human health and reduce odor transmission to neighbors. Utilize respiratory protection with appropriate masks and filters when conditions warrant.

References: 17 AC; 46 AC; 49 C; 107 C; 202 ABC; 208 ABC; 245 ABC; 271 AC; 272 ABC; 287 C; 320 AC; 322 ABC; 330 C; 348 ABC; 349 ABC; 350 BC; 351 ABC; 352 C; 387 AC.

16. Financial Record Keeping
Keep appropriate business records to help insure viability of the farm business.

References: 148 AC; 149 AC.

17. Soil Health Management
Employ appropriate measures conducive to long-term soil productivity.

References: 1 ABC; 45 ABC; 47 ABC; 48 ABC; 66 ABC; 124 ABC; 157 ABC; 220 ABC; 221 ABC; 267 ABC; 304 ABC; 307 ABC; 373 ABC; 374 C; 378 BC.

18. Crop Production Guides
A compilation of excellent vegetable, fruit and greenhouse crop production guides outlining culture and management of various crops.

References: 14 ABC; 15 ABC; 34 ABC; 45 ABC; 57 ABC; 82 ABC; 317 ABC; 318 ABC; 343 ABC; 347 ABC; 353 ABC; 354 ABC; 355 ABC.
IV.  List of References

Print versions of most of the following reference materials are on file at the Maine Department of Agriculture and are available for copying and inspection. Most references are also available on the internet and have the web page link as part of the reference if the reference was available on line at the time this listing was assembled in 2005 - 2006.

The complete references are listed by reference number in ascending order in part A. The reference document titles are listed in alphabetical order followed by the reference number in part B. Part C lists the reference document titles alphabetically by BMP category along with the reference numbers.

A. References by Reference Number


2. Stream Bank Fencing. Penn. State Extension Circular 397.


8. **Maine Board of Pesticides Control Website – Certification and Training.** [www.maine.gov/agriculture/pesticides](http://www.maine.gov/agriculture/pesticides).


11. **National Management Measures for the Control of Non-Point Pollution from Agriculture.** EPA Manual 841-B-03-004.


Best Management Practices for Maine Agriculture


36. **Approaches to the Biological Control of Insects.** University of Maine Cooperative Extension, Bulletin 7144, [www.umext.maine.edu](http://www.umext.maine.edu).

37. **Selecting Forage Crops for your Farm.** University of Maine Cooperative Extension, Bulletin 2272, [www.umext.maine.edu](http://www.umext.maine.edu).


41. **Soil Survey of “X” County, Maine.** USDA, NRCS, (See local soil & water conservation district).


43. **Control of Flies in and Around Poultry Houses.** Ohio State University, Poultry Pest Management Bulletin 853, [http://ohioline.osu.edu/b853_1.html](http://ohioline.osu.edu/b853_1.html).

44. **USDA Pesticide Recordkeeping Requirements for Certified Private Applicators of Federal Restricted Use Pesticides.** USDA Agricultural Marketing Service, Pesticide Records Branch 8700 Centerville Road, Suite 200, Manassas, VA. 22110.

45. **Sustainable Vegetable Production from Start-Up to Market.** NRAES 104, Grubinger, University of Vermont, [www.nraes.cornell.edu](http://www.nraes.cornell.edu).


Best Management Practices for Maine Agriculture


57. **Diseases and Pests of Vegetable Crops in Canada.** Entomological Society of Canada, 393 Winston Ave., Ottawa, Ontario, Canada K2A 1Y8, 613-725-2619.


61. **Horse Stable Manure Management.** College of Agricultural Sciences, Agricultural Research and Cooperative Extension, Penn State University, [www.publs.cas.psu.edu/freepubs/pdfs/ubo35pdf](http://www.publs.cas.psu.edu/freepubs/pdfs/ubo35pdf).


64. **Guidelines for Applying Manure to Cropland and Pasture in Wisconsin.** Publication 3392, [Http://cecommerce.uwex.edu/pdfs/A3392.pdf](http://cecommerce.uwex.edu/pdfs/A3392.pdf).

65. **Milking Center Effluent Treatment.** University of Nebraska, Worksheet #13, EC 98-756-S, [http://ianrpubs.unl.edu/water/farm-a-syst/ec/56](http://ianrpubs.unl.edu/water/farm-a-syst/ec/56).


74. **Best Environmental Management Practices for Open Feedlots.** Iowa State University, Pub. PM 1946, [www.iowabeefcenter.org/content/PM1946](http://www.iowabeefcenter.org/content/PM1946).

75. **Calibration of Granular Applicators… for Mixed Fertilizer Applications.** University of Maine Cooperative Extension, Wild Blueberry Fact Sheet 234, Bulletin # 2434.

76. **Pesticide Storage and Disposal.** Maine Board of Pesticides Control Website, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).

77. **Pesticide Container Disposal and Storage.** Chapter 21, Maine Board of Pesticides Control Website, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).

78. **Standards for Water Quality Protection.** Chapter 29, Maine Board of Pesticides Control Website, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).

79. **Certification and Licensing Provisions/Private Applicators.** Chapter 32, Maine Board of Pesticides Control Website, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).

80. **Standards for Outdoor Application of Pesticides.** Chapter 22, Maine Board of Pesticides Control Website, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).


88. **Vegetable Farmers and their Weed Control Machines.** (video) University of Vermont Center for Sustainable Agriculture, [http://www.uvm.edu/~susagctr](http://www.uvm.edu/~susagctr).

89. **Trichoderma for Control of Soil Pathogens.** University of Connecticut Cooperative Extension, [www.hort.uconn.edu/ipm/veg/htms/trichoderma.htm](http://www.hort.uconn.edu/ipm/veg/htms/trichoderma.htm).

90. **Two Common, Late-Season, Cole Crop Diseases.** University of Connecticut Cooperative Extension, [www.hort.uconn.edu/ipm/veg/htms/coledis.htm](http://www.hort.uconn.edu/ipm/veg/htms/coledis.htm).

91. **Managing Diseases of Alfalfa.** University of Kentucky, Dept. of Agronomy, Pub. ID-104, [www.ca.uky.edu/agc/pubs/id/id104/id104.htm](http://www.ca.uky.edu/agc/pubs/id/id104/id104.htm).


93. **Seedling Diseases and Damping Off.** (Covers many crops – see website) [www.gov.on.ca/OMAFRA/english/crops/insects/diseases.html](http://www.gov.on.ca/OMAFRA/english/crops/insects/diseases.html).


96. **Chemigation Safety Measures.** University of Minnesota Extension Service, [www.extension.umn.edu/distribution/dropsystems/DC6122.html](http://www.extension.umn.edu/distribution/dropsystems/DC6122.html).


98. **Chemigation.** Maine Board of Pesticides Control, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).


Best Management Practices for Maine Agriculture

101. Sanitation for Fly and Disease Management at Confined Livestock Facilities.  
http://ianrpubs.unl.edu/insects/1175.htm.

102. Fly Control On Poultry. University of Kentucky Extension Service,  
Http://www.uky.edu/Agriculture/PAT/recs/livestk/recpou/poufly.htm.

103. Management of Small Flocks of Chickens. Florida Cooperative Extension Service, Fact Sheet PS-3,  

104. Fly Control in the Poultry House. Oklahoma State University Cooperative Extension, Bulletin F-8206,  

105. Broiler Litter Storage. Alabama Cooperative Extension System, Publication ANR-0839,  
www.aces.edu/pubs/docs/A/ANR-0839/.

106. Ventilation (Poultry). Poultry Industry Council Fact sheet #88,  
www.poultryindustrycouncil.ca/Factsheets/Factsheets/fact88.htm.


www1.agric.gov.ab.ca/$department.


110. Land Application of Manure. Manitoba Agriculture, Food and Rural Initiatives,  
www.gov.mb.ca/agriculture/livestock/pork/swine/bah04s02.html.

111. Manitoba Soil Fertility Guide – Manure. Manitoba Agriculture, Food and Rural Initiatives,  

112. Livestock & Poultry Area Integrated Pest Management. Virginia Polytechnic Institute and State University, Pub. 444-118w,  

113. Nuisance Fly Prevention. Manitoba Agricultural Sustainability Initiative,  
www.deerwood.mb.ca/peaticide/fly/page03.html.

114. Draft Guidelines for Emergency Composting of Cattle Mortalities. Iowa State University,  
www.abe.iastate.edu/cattlecomposting/guidelines.

115. Fertilizing with Manure. Washington State University Cooperative Extension,  
Best Management Practices for Maine Agriculture


Best Management Practices for Maine Agriculture


131. **Forage Fertilization Based on Yield and Management Goals.** West Virginia University Extension Service, [www.caf.wvu.edu/~forage/5202.htm](http://www.caf.wvu.edu/~forage/5202.htm).


135. **Pesticide Use and Personal Protective Equipment.** Maine Board of Pesticides Control, [www.state.me.us/agriculture/pesticides](http://www.state.me.us/agriculture/pesticides).

136. **Environmental Issues in Livestock Production.** Iowa State University, [www.abe.iastate.edu/homestudy/app.htm](http://www.abe.iastate.edu/homestudy/app.htm).


139. **Poultry Pest Management.** (extensive information – see website) Ohio State University, Bulletin 853 [http://ohioline.osu.edu/b853/](http://ohioline.osu.edu/b853/).

140. **Controlling Flies on Dairy Farms.** Purdue University Cooperative Extension Service, Bulletin E-10-W, [www.entm.purdue.edu/Entomology](http://www.entm.purdue.edu/Entomology).


142. **Insect Control on Poultry.** University of Kentucky Cooperative Extension Service, Bulletin ENT-28,
Best Management Practices for Maine Agriculture


Best Management Practices for Maine Agriculture


164. **Agricultural and Nature Tourism: Good for the People and the Land.** University of California, Division of Agriculture and Natural Resources, [http://groups.ucanr.org/Ag_Tour/Overview_of_the_Manual/](http://groups.ucanr.org/Ag_Tour/Overview_of_the_Manual/).


166. **Components of Good Manure Management.** University of Minnesota Extension Service, Pub. BU-07401, [www.extension.umn.edu/distribution/cropsystems/components/7401_01.html](http://www.extension.umn.edu/distribution/cropsystems/components/7401_01.html).

167. **It Takes Two to be a Good Neighbor.** Ohio Livestock Coalition, [www.oardc.ohio-state.edu/ocamm](http://www.oardc.ohio-state.edu/ocamm).

168. **Building and Maintaining Good Relationships with Neighbors.** (Available as slide show), University of Wisconsin, [www.discoveryfarms.org/training/heifergrowers.ppt](http://www.discoveryfarms.org/training/heifergrowers.ppt).
Best Management Practices for Maine Agriculture


171. **Livestock Water Development.** Ohio State University Extension Fact sheet ANR-12-02, [http://ohioline.osu.edu/anr-fact](http://ohioline.osu.edu/anr-fact).


173. **Wildlife Causing Damage or Nuisance.** Title 12, Part13, Chapter 21 [http://janus.state.me.us/legis/statutes/12title12sec12404.html](http://janus.state.me.us/legis/statutes/12title12sec12404.html).


175. **Summary of Enacted Legislation.** Maine Dept. of Inland Fisheries and Wildlife, [www.nesportsman.com](http://www.nesportsman.com).


177. **Controlling Birds around Farm Buildings.** (Specific reference covering many bird species) University of Pennsylvania, College of Agricultural Sciences, Cooperative Extension, [www.wildlifemanagement.info/publications/birds](http://www.wildlifemanagement.info/publications/birds).


179. **MDAFRR Policy/Rules Regarding the Disposal of up to 500 lbs. Of Sheep or Goat Carcasses (including offal) per Year by Burial.** Maine Dept. of Agriculture, 207-287-1132.


181. **Making Quality Silage Bales.** University of Wisconsin, “Focus on Forage” Vol.6: No.4, [www.uwex.edu/ces/crops/uwforage/SilageBales-FOF.htm](http://www.uwex.edu/ces/crops/uwforage/SilageBales-FOF.htm).

182. **Successful Wrapping and Storage of Square Bales.** University of Wisconsin, [www.uwex.edu/ces/forage/wfc/proceedings2003/squarebales.htm](http://www.uwex.edu/ces/forage/wfc/proceedings2003/squarebales.htm).
Best Management Practices for Maine Agriculture

183. **Forage Fadeout Losses for Various Storage Systems.** University of Wisconsin, “Focus on Forage” Vol. 4: No.7, [www.uwex.edu/ces/crops/uwforage/FeedLossFOF.htm](http://www.uwex.edu/ces/crops/uwforage/FeedLossFOF.htm).

184. **Managing Forage in Bunker Silos.** University of Wisconsin, “Focus on Forage” Vol. 3: No.6, [www.uwex.edu/ces/crops/uwforage/Manage/Bunker.html](http://www.uwex.edu/ces/crops/uwforage/Manage/Bunker.html).

185. **Preventing Silage Storage Losses.** University of Wisconsin/U.S. Dairy Forage Research Center, [http://www.uwex.edu/ces/crops/uwforage/storage.htm](http://www.uwex.edu/ces/crops/uwforage/storage.htm).


190. **Dry Round Hay Bale Storage Costs.** University of Wisconsin, “Focus on Forage” Vol.6: No.5, [www.uwex.edu/ces/crops/uwforage/LRB_StorageCosts-FOF.htm](http://www.uwex.edu/ces/crops/uwforage/LRB_StorageCosts-FOF.htm).

191. **Deciding on a Silage Storage Type.** University of Wisconsin, Biological Engineering Department, [http://www.uwex.edu/ces/crops/uwforage/storage.htm](http://www.uwex.edu/ces/crops/uwforage/storage.htm).

192. **Choosing Forage Storage Facilities.** University of Wisconsin, Biological Systems Engineering Department, [http://www.uwex.edu/ces/crops/uwforage/storage.htm](http://www.uwex.edu/ces/crops/uwforage/storage.htm).


194. **Harvesting Hay and Silage.** Minnesota Dept. of Agriculture/University of Minnesota, [www.mda.state.mn.us/crp/harvest.htm](http://www.mda.state.mn.us/crp/harvest.htm).


199. **Barns and Structures.** (A general listing of plans and contractors), [http://directory.google.com/Top/Business/Agriculture and Forestry/Barns and Structures/](http://directory.google.com/Top/Business/Agriculture and Forestry/Barns and Structures/).

200. **Controlling Rats.** University of Nebraska, Institute of Agriculture and Natural Resources, Pub. G92-1106-A, [http://ianrpubs.unl.edu/wildlife/g1106.htm](http://ianrpubs.unl.edu/wildlife/g1106.htm).


203. **Treatment of Milkhouse Effluent.** New Brunswick, Canada, Dept. of Agriculture, Fisheries and Aquaculture, [www.gnb.ca/0173/10/0173010004-e.asp](http://www.gnb.ca/0173/10/0173010004-e.asp).

204. **Pollution Control Guide for Milking Center Wastewater Management.** NCR 549, [http://cecommerce.uwex.edu/](http://cecommerce.uwex.edu/).

205. **Forage Resources – Harvesting and Storage.** (A listing of excellent references), University of Wisconsin Cooperative Extension, [www.uwex.edu/ces/crops/uwforage/storage.htm](http://www.uwex.edu/ces/crops/uwforage/storage.htm).


Best Management Practices for Maine Agriculture


212. **Crop Rotations.** University of Maryland, Cooperative Extension Service, Fact Sheet 7, [www.agnr.umd.edu/users](http://www.agnr.umd.edu/users).


219. **Crop Rotation as a Form of Conservation.** The Family Farm Project, [www2.Kenyon.edu/Projects/Famfarm/environ/rotation/rotation.htm](http://www2.Kenyon.edu/Projects/Famfarm/environ/rotation/rotation.htm).

220. **CROPS, the Crop Rotation Planning System for Whole-farm Planning.** (A computerized crop rotation planning system) Virginia Tech, [www.isis.vt.edu/dss/crops/](http://www.isis.vt.edu/dss/crops/).

221. **Crop Rotations for Increased Productivity.** North Dakota State University, NDSU Extension Service, Pub. EB-48, [www.ext.nodak.edu/extpubs/plantsci/crops/eb48-1.htm](http://www.ext.nodak.edu/extpubs/plantsci/crops/eb48-1.htm).
222. Effects of Long-Term Tillage and Crop Rotation on Soil Carbon and Soil Productivity. Iowa State University, Armstrong Research and Demonstration Farm, Pub. ISRF03-12, www.ag.iastate.edu/farms.


234. South-Central Grazing News. (covers wintering livestock outside plus manure packs), University of Wisconsin Extension Service, Phone 608-742-9682.
Best Management Practices for Maine Agriculture


Best Management Practices for Maine Agriculture


Best Management Practices for Maine Agriculture

262. **Farm Noise and Hearing Loss.** (Noise levels for common farm machinery) Australian Centre for Agricultural Health and Safety.  

263. **Farm Noise.** The SafetyLine Institute,  

264. **Around Ohio with OLC.** (Aesthetics and neighbor relations)  
www.ohiolivestock.org/Agricultural%20Districts.htm.

265. **Cover Crops and Intercrops for New York.**  
http://www.sarep.ucdavis.edu/cgi-bin/ccrop.exe.

266. **Understanding your Soil Test: pH-Excess Lime-Lime Needs.** University of Nebraska Cooperative Extension, Bulletin G92-1096-A,  
http://ianrpubs.unl.edu/soil/g1096.html.


269. **Earthen Manure Storage Design Considerations.** NRAES – 109,  
www.NRAES.ORG/PUBLICATIONS/NRAES109.HTML.


271. **Air Quality and Health.** (Dust) Farm Business Communications,  

272. **Using Shelterbelts to Reduce Odors Associated with Livestock Production Barns.** Ontario Ministry of Agriculture and Food,  


274. **Wind Protection Effects and Airflow Patterns in Outside Feedlots.** Journal of Animal Science, 82:3077-3087, University of Nebraska.

275. **Shade and Wind Barrier Effects on Summertime Feedlot Cattle Performance.** Journal of Animal Science, 77:2065-2072, University of Nebraska.
Best Management Practices for Maine Agriculture


277. Intercropping Cover Crops with Corn. Penobscot County Soil & Water Conservation District.

278. Silage Leachate & Water Quality. Environmental Quality Technical Note N5, USDA, NRCS.


302. Dairy Production. (Housing) University of Guelph, Department of Animal & Poultry Science, [www.aps.uoguelph.ca/~gking/Ag_2350/dairy1.htm](http://www.aps.uoguelph.ca/~gking/Ag_2350/dairy1.htm).
Best Management Practices for Maine Agriculture


304. Cover Crops for Vegetable Production in the Northeast. Cornell Cooperative Extension, Information Bulletin 244,
   [www.cce.cornell.edu/publications/catalog.html]

305. Natural Enemies of Vegetable Insect Pests. Cornell University Cooperative Extension, Dept. of Entomology,
   [www.cce.cornell.edu/publications/catalog.html]

   [www.cce.cornell.edu/publications/catalog.html]. (Updates and extensive
   information at [www.fieldcrops.org]).

   [www.cce.cornell.edu/publications/catalog.html]

308. On-Farm Agrichemical Handling Facilities. Northeast Regional Agricultural Engineering Service, NRAES – 78,
   [www.nraes.org]

309. Dairy Manure Systems: Equipment and Technology. NRAES – 143,
   [www.nraes.org]

310. Trickle Irrigation in the Eastern United States. NRAES – 4, [www.nraes.org]

   [www.nraes.org]


313. Environmental Factors to Consider When Expanding Dairies. NRAES – 95,
   [www.nraes.org]


315. High-Tensile Wire Fencing. NRAES – 11, [www.nraes.org]


318. **Production of Vegetables, Strawberries, and Cut Flowers Using Plasticulture.** 

319. **Animal Behavior and the Design of Livestock and Poultry Systems.** 


322. **Odors from Livestock Operations: Causes and Possible Cures.** University of Missouri Extension, Pub. #1884, [http://muextension.missouri.edu/explore/agguides/agengin/g01884.htm](http://muextension.missouri.edu/explore/agguides/agengin/g01884.htm).


324. **Applying Manure in Sensitive Areas.** University of Minnesota Cooperative Extension, Minnesota Pollution Control Agency, NRCS, [www.extension.umn.edu](http://www.extension.umn.edu).

325. **Runoff Reductions with Incorporated Manure – A Literature Review.** Minnesota Pollution Control Agency, Feedlot Program, [www.pca.state.mn.us/hot/feedlots.html](http://www.pca.state.mn.us/hot/feedlots.html).

326. **Land Application of Manure: Minimum State Requirements.** Minnesota Pollution Control Agency, Feedlot Program, Pub. #Wq-f8-11, [www.pca.state.mn.us/hot/feedlots.html](http://www.pca.state.mn.us/hot/feedlots.html).

327. **Manure Management Plan.** Minnesota Pollution Control Agency, Feedlot Program, [www.pca.state.mn.us/hot/feedlots.html](http://www.pca.state.mn.us/hot/feedlots.html).

328. **Windrow Construction & Maintenance.** (Carcass composting) Iowa State University, Dept. of Agricultural and Biosystems Engineering, [www.abe.iastate.edu/cattlecomposting/results/construction.asp](http://www.abe.iastate.edu/cattlecomposting/results/construction.asp).

329. **On-Farm Strategies to Protect Water Quality: An Assessment and Planning Tool for Best Management Practices.** Massachusetts Dept. of Food and Agriculture.
Best Management Practices for Maine Agriculture


Best Management Practices for Maine Agriculture


349. **Lungs Need Protection from Farm Dust.** Safe Farm, Iowa State University, Pub. # Pm1518b, [www.extension.iastate.edu/Publication/PM15188.pdf](http://www.extension.iastate.edu/Publication/PM15188.pdf).


357. **Pests in the Northeastern United States.** Cornell University, [www.nysaes.cornell.edu/ent/factsheeps/crops.html](http://www.nysaes.cornell.edu/ent/factsheeps/crops.html).

359. **Weed Control Principles.** Purdue University, www.btny.purdue.edu/Pubs/WS/WS-16/WeedControlPrinciples05.pdf


364. **EXTOXNET.** (The Extension TOXicology NETwork) Oregon State University, et al., http://extoxnet.orst.edu/.


Best Management Practices for Maine Agriculture


373. **Cover Crops on the Intensive Market Farm.** University of Wisconsin – Madison College of Agricultural and Life Sciences [http://www.hort.wisc.edu/FreshVeg/Publications/Cover%20Crops%20on%20the%20Intensive%20Market%20Farm.pdf](http://www.hort.wisc.edu/FreshVeg/Publications/Cover%20Crops%20on%20the%20Intensive%20Market%20Farm.pdf).

374. **Agricultural Environmental Management Systems.** University of Wisconsin, [www.uwex.edu/AgEMS](http://www.uwex.edu/AgEMS).


378. **Cutting Edge Technologies & Opportunities: Agricultural Nutrient Management.** Alliance for the Chesapeake Bay, Contact: Allison Wiedeman, wiedeman.Allison@epa.gov.


380. **Good Neighbor Guide for Horse-Keeping: Manure Management.** University of New Hampshire Cooperative Extension, USDA, NRCS, [http://ceinfo.unh.edu/Pubs/AgPubs/aahr1050.pdf](http://ceinfo.unh.edu/Pubs/AgPubs/aahr1050.pdf).

381. **Water Conservation on Dairy and Livestock Farms.** University of New Hampshire Cooperative Extension, [www.ceinfo.unh.edu](http://www.ceinfo.unh.edu).
Best Management Practices for Maine Agriculture


384. **Calculating the Value of Manure for Crop Production.** Nebraska Cooperative Extension, Bulletin G03-1519-A, [http://ianrpubs.unl.edu/wastemgt/g1519.htm](http://ianrpubs.unl.edu/wastemgt/g1519.htm).


386. **Determining Crop Available Nutrients from Manure.** University of Nebraska Cooperative Extension, Pub. G97-1335-A, [http://ianrpubs.unl.edu/wastemgt/g1335.htm](http://ianrpubs.unl.edu/wastemgt/g1335.htm).

387. **Managing Livestock Manure to Protect Environmental Quality.** University of Nebraska Cooperative Extension, Pub. JEC 02-179, [http://ianrpubs.unl.edu/wastemgt/ec179.pdf](http://ianrpubs.unl.edu/wastemgt/ec179.pdf).

388. **Disposal Methods of Livestock Mortality.** University of Nebraska Cooperative Extension, Pub. G01-1421-A, [http://ianrpubs.unl.edu/animals/g1421.htm](http://ianrpubs.unl.edu/animals/g1421.htm).

## B. Reference Documents – By Category in Alphabetical Order

### Erosion and Sedimentation Control

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Ways Farmers Can Protect Surface Waters</td>
<td>99</td>
</tr>
<tr>
<td>Access Road, Code 560</td>
<td>209</td>
</tr>
<tr>
<td>Agricultural Respiratory Protective Equipment</td>
<td>351</td>
</tr>
<tr>
<td>Agronomy: Soil Quality is Critical Factor in Management of National Resources</td>
<td>213</td>
</tr>
<tr>
<td>Animal Trails and Walkways – Code 575</td>
<td>252</td>
</tr>
<tr>
<td>Best Management Practices – No-Till: Making it Work</td>
<td>218</td>
</tr>
<tr>
<td>Conducting Site Erosion and Sediment Control Best Management Practices for Iowa</td>
<td>361</td>
</tr>
<tr>
<td>Conservation Cover – Code 327</td>
<td>245</td>
</tr>
<tr>
<td>Conservation Crop Rotation – Code 328</td>
<td>238</td>
</tr>
<tr>
<td>Constructing High-tensile Wire Fences</td>
<td>295</td>
</tr>
<tr>
<td>Contour Buffer Strips – Code 332</td>
<td>239</td>
</tr>
<tr>
<td>Contour Farming – Code 330</td>
<td>255</td>
</tr>
<tr>
<td>CORE4 Conservation Practices Reference Manual</td>
<td>25</td>
</tr>
<tr>
<td>Corridor Management for Pastureland Streams</td>
<td>23</td>
</tr>
<tr>
<td>Cover Crops – Adaptation, Use, Selection</td>
<td>260</td>
</tr>
<tr>
<td>Cover Crop – Code 340</td>
<td>246</td>
</tr>
<tr>
<td>Cover Crops for Vegetable Production in the Northeast</td>
<td>304</td>
</tr>
<tr>
<td>Cover Crops on the Intensive Market Farm</td>
<td>373</td>
</tr>
<tr>
<td>Critical Area Planting – Code 342</td>
<td>244</td>
</tr>
<tr>
<td>Crop Rotation and Intercropping Strategies for Weed Management</td>
<td>223</td>
</tr>
<tr>
<td>Crop Rotation as a Form of Conservation</td>
<td>219</td>
</tr>
<tr>
<td>Crop Rotations for Increased Productivity</td>
<td>221</td>
</tr>
<tr>
<td>CROPS, the Crop Rotation Planning System for Whole-farm Planning</td>
<td>220</td>
</tr>
<tr>
<td>Disease Resistance and Crop Rotation</td>
<td>215</td>
</tr>
</tbody>
</table>
## Best Management Practices for Maine Agriculture

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversion – Code 362</td>
<td>247</td>
</tr>
<tr>
<td>Effects of Residue Management and No-Till on Soil Quality</td>
<td>337</td>
</tr>
<tr>
<td>Environmental Issues in Livestock Production</td>
<td>136</td>
</tr>
<tr>
<td>Erosion and Sediment Control in North Carolina</td>
<td>358</td>
</tr>
<tr>
<td>Erosion and Sediment Pollution Control</td>
<td>335</td>
</tr>
<tr>
<td>Fencing – Code 382</td>
<td>253</td>
</tr>
<tr>
<td>Field Stripcropping – Code 586</td>
<td>242</td>
</tr>
<tr>
<td>Filter Strip – Code 393</td>
<td>240</td>
</tr>
<tr>
<td>Grassed Waterway – Code 412</td>
<td>248</td>
</tr>
<tr>
<td>Guidelines for Horsekeeping in Maine</td>
<td>40</td>
</tr>
<tr>
<td>High-Tensile Wire Fencing</td>
<td>315</td>
</tr>
<tr>
<td>Integrated Field Crop Management - 2005 Cornell Guide</td>
<td>306</td>
</tr>
<tr>
<td>Integrated Pest Management – Current and Future Strategies</td>
<td>50</td>
</tr>
<tr>
<td>Intercropping Cover Crops with Corn</td>
<td>277</td>
</tr>
<tr>
<td>IPM in Practice- Principles and Methods of Integrated Pest Management</td>
<td>49</td>
</tr>
<tr>
<td>Know Your Soil – Soil Organic Matter Content</td>
<td>336</td>
</tr>
<tr>
<td>Michigan Field Crop Ecology</td>
<td>58</td>
</tr>
<tr>
<td>Mulching for Improved Plant Cover</td>
<td>281</td>
</tr>
<tr>
<td>Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control</td>
<td>249</td>
</tr>
<tr>
<td>Nutrient Management in Kentucky</td>
<td>376</td>
</tr>
<tr>
<td>On-Farm Strategies to Protect Water Quality: An Assessment and Planning Tool for Best Management Practices</td>
<td>329</td>
</tr>
<tr>
<td>Organic Vegetable Production</td>
<td>317</td>
</tr>
<tr>
<td>Planning Fencing Systems for Controlled Grazing</td>
<td>294</td>
</tr>
<tr>
<td>Principles and Practices of Crop Rotation</td>
<td>216</td>
</tr>
<tr>
<td>Residue Management, Mulch Till – Code 329B</td>
<td>243</td>
</tr>
<tr>
<td>Residue Management, Ridge Till – Code 329c</td>
<td>207</td>
</tr>
<tr>
<td>Residue Management, Seasonal – Code 344</td>
<td>208</td>
</tr>
<tr>
<td>Revegetating Sand and Gravel Borrow Pits in Maine</td>
<td>356</td>
</tr>
<tr>
<td>Riparian Forest Buffer – Code 391</td>
<td>241</td>
</tr>
</tbody>
</table>
**Best Management Practices for Maine Agriculture**

Sediment Basin – Code 350  251  
Selecting the Right Cover Crop Gives Multiple Benefits  292  
Stream Bank Fencing  2  
Streambank and Shoreline Protection – Code 580  254  
Sustainable Vegetable Production from Start-Up to Market  45  
Water and Sediment Control Basin – Code 638  250  
Water Quality for Small-Scale Livestock Operations  362  
Waterborne Pathogens in Agricultural Watersheds  258  
Wild Blueberry Grower’s Guide  34  
Yankee Gardener’s Garden Data – Crop Rotation Chart  217

**Manure Management**

**Reference Document Titles**  
<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Ways Farmers Can Protect Surface Waters</td>
<td>99</td>
</tr>
<tr>
<td>Adjustments to Fertilizer Recommendations</td>
<td>62</td>
</tr>
<tr>
<td>Agricultural Waste Management Field Handbook, Part 651</td>
<td>22</td>
</tr>
<tr>
<td>Agronomy: Soil Quality is Critical Factor in Management of National Resources</td>
<td>213</td>
</tr>
<tr>
<td>Alternative Production Systems to Reduce Nitrates in Ground Water</td>
<td>214</td>
</tr>
<tr>
<td>Applying Manure in Sensitive Areas</td>
<td>324</td>
</tr>
<tr>
<td>Barn and Manure Storage Safety</td>
<td>3</td>
</tr>
<tr>
<td>Best Environmental Management Practices for Open Feedlots</td>
<td>74</td>
</tr>
<tr>
<td>Biological Control: A Guide to Natural Enemies in North America</td>
<td>9</td>
</tr>
<tr>
<td>Broiler Litter Storage</td>
<td>105</td>
</tr>
<tr>
<td>Building Soils for Better Crops</td>
<td>267</td>
</tr>
<tr>
<td>Calculating the Value of Manure for Crop Production</td>
<td>384</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Clean Water For Washington
Composting for Small-Scale Livestock Operations
Conservation Cover – Code 327
Conservation Crop Rotation – Code 328
Contour Buffer Strips – Code 332
Contour Farming – Code 330
Contribution of Cover Crop Mulches to Weed Management
Cover Crop – Code 340
Cover Crops – Adaptation, Use, Selection
Cover Crops on the Intensive Market Farm
Crop Rotations
CRoPS, the Crop Rotation Planning System for Whole-farm Planning
Dairy Farm Nutrient Balancer Spreadsheet
Dairy Manure Systems: Equipment and Technology
Determining Crop Available Nutrients from Manure
Earthen Manure Storage Design Considerations
Effects of Long-Term Tillage and Crop Rotation on Soil Carbon and Soil Productivity
Electronic Forum on Area-Wide Integration of Specialized Crop and Livestock Production
Environmental Factors to Consider When Expanding Dairies
Fertilizing with Manure
Field Guide to On-Farm Composting
Field Stripcropping – Code 586
Filter Strip – Code 393
Good Neighbor Guide for Horse-Keeping: Manure Management
Guide to Pasture Conditioning Scoring
Guidelines for Applying Manure to Cropland and Pasture in Wisconsin
Guidelines for Horsekeeping in Maine
Heavy Use Area Protection, Code 561
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse Facilities Handbook 2005</td>
<td>320</td>
</tr>
<tr>
<td>Horse Stable Manure Management</td>
<td>61</td>
</tr>
<tr>
<td>Integrated Animal Waste Management</td>
<td>330</td>
</tr>
<tr>
<td>Land Application of Manure: Minimum State Requirements</td>
<td>326</td>
</tr>
<tr>
<td>Livestock Manure Sampling</td>
<td>323</td>
</tr>
<tr>
<td>Livestock Waste Facilities Handbook</td>
<td>312</td>
</tr>
<tr>
<td>Livestock Waste Sampling, Analysis and Calculation of Land Application Rates</td>
<td>383</td>
</tr>
<tr>
<td>Maine Nutrient Management Certification Training Manual, 1999</td>
<td>5</td>
</tr>
<tr>
<td>Managing Cover Crops Profitably</td>
<td>48</td>
</tr>
<tr>
<td>Managing Livestock Manure to Protect Environmental Quality</td>
<td>387</td>
</tr>
<tr>
<td>Managing Livestock Manure to Protect Groundwater</td>
<td>257</td>
</tr>
<tr>
<td>Managing Manure Nutrients at Concentrated Animal Feeding Operations</td>
<td>55</td>
</tr>
<tr>
<td>Manitoba Soil Fertility Guide – Manure</td>
<td>111</td>
</tr>
<tr>
<td>Manure Management and Composting</td>
<td>231</td>
</tr>
<tr>
<td>Manure Management for Small Scale Livestock Operations, Pennsylvania</td>
<td>298</td>
</tr>
<tr>
<td>Manure Management in Small Farm Livestock Operations</td>
<td>67</td>
</tr>
<tr>
<td>Manure Management Plan</td>
<td>327</td>
</tr>
<tr>
<td>Manure Management Practices to Reduce Water Pollution</td>
<td>68</td>
</tr>
<tr>
<td>Manure Storage Systems</td>
<td>226</td>
</tr>
<tr>
<td>Manure Storage Handling and Transportation</td>
<td>233</td>
</tr>
<tr>
<td>Manure Utilization Guidelines, February 1, 2001</td>
<td>29</td>
</tr>
<tr>
<td>Manure: Nutrient Management and Field Application</td>
<td>158</td>
</tr>
<tr>
<td>Manure: What is it Worth on your Farm? University of Maine Cooperative Extension, Bulletin 2432, www</td>
<td>30</td>
</tr>
<tr>
<td>Methods and Timing for Manure Applications</td>
<td>118</td>
</tr>
<tr>
<td>Michigan Field Crop Ecology</td>
<td>58</td>
</tr>
<tr>
<td>Mulching for Improved Plant Cover</td>
<td>35</td>
</tr>
<tr>
<td>New England Small Fruit Pest Management Guide</td>
<td>14</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Waste Utilization - Code 633 338
Water Quality – Agriculture 156
Water Quality for Small-Scale Livestock Operations 362
Waterborne Pathogens in Agricultural Watersheds 258
Watering Systems for Livestock 38
Yankee Gardener’s Garden Data – Crop Rotation Chart 217
You Can Reduce the Risks of Leaching 60

Pest Management

Reference Document Titles

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Ways Farmers Can Protect Their Groundwater</td>
<td>155</td>
</tr>
<tr>
<td>60 Ways Farmers Can Protect Surface Waters</td>
<td>99</td>
</tr>
<tr>
<td>Agricultural Respiratory Protective Equipment</td>
<td>351</td>
</tr>
<tr>
<td>Agricultural Waste Management Field Handbook, Part 651</td>
<td>22</td>
</tr>
<tr>
<td>Agriculture, Fisheries and Aquaculture – Record Keeping (forms)</td>
<td>150</td>
</tr>
<tr>
<td>Approaches to the Biological Control of Insects</td>
<td>36</td>
</tr>
<tr>
<td>Best Management Practices for Agricultural Pesticides to Protect Water Resources</td>
<td>123</td>
</tr>
<tr>
<td>Biointensive Integrated Pest Management: Fundamentals of Sustainable Agriculture</td>
<td>366</td>
</tr>
<tr>
<td>Biological Control: A Guide to Natural Enemies in North America</td>
<td>9</td>
</tr>
<tr>
<td>Biological Pest Controls from IPM Laboratories, Inc</td>
<td>26</td>
</tr>
<tr>
<td>Building Soils for Better Crops</td>
<td>267</td>
</tr>
<tr>
<td>Calibration of Granular Applicators… for Mixed Fertilizer Applications</td>
<td>75</td>
</tr>
<tr>
<td>Certification and Licensing Provisions/Private Applicators</td>
<td>79</td>
</tr>
<tr>
<td>Chem Search</td>
<td>141</td>
</tr>
<tr>
<td>Chemigation</td>
<td>98</td>
</tr>
<tr>
<td>Chemigation and Fertigation: Anti-Pollution Devices for Irrigation Systems</td>
<td>97</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Best Management Practices for Maine Agriculture</td>
<td></td>
</tr>
<tr>
<td>Chemigation Safety Measures</td>
<td>96</td>
</tr>
<tr>
<td>Composts for Disease Suppression</td>
<td>53</td>
</tr>
<tr>
<td>Contribution of Cover Crop Mulches to Weed Management</td>
<td>54</td>
</tr>
<tr>
<td>Control of Flies in and Around Poultry Houses</td>
<td>43</td>
</tr>
<tr>
<td>CORE4 Conservation Practices Reference Manual</td>
<td>25</td>
</tr>
<tr>
<td>Cornell Field Crops and Soils Handbook</td>
<td>307</td>
</tr>
<tr>
<td>Cover Crops for Vegetable Production in the Northeast</td>
<td>304</td>
</tr>
<tr>
<td>Cover Crops on the Intensive Market Farm</td>
<td>373</td>
</tr>
<tr>
<td>Cultivation Tools for Mechanical Weed Control in Vegetables</td>
<td>83</td>
</tr>
<tr>
<td>Damping Off</td>
<td>370</td>
</tr>
<tr>
<td>Damping Off of Seedlings</td>
<td>372</td>
</tr>
<tr>
<td>Damping-Off in Flower and Vegetable Seedlings</td>
<td>369</td>
</tr>
<tr>
<td>Disease Management: Cultural Management Practices</td>
<td>95</td>
</tr>
<tr>
<td>Diseases and Pests of Vegetable Crops in Canada</td>
<td>57</td>
</tr>
<tr>
<td>Field Guide to On-Farm Composting</td>
<td>18</td>
</tr>
<tr>
<td>Filling Bare Spots in Blueberry Fields</td>
<td>33</td>
</tr>
<tr>
<td>Forest Site Preparation - Code 490</td>
<td>341</td>
</tr>
<tr>
<td>Gempler’s IPM Almanac, 1999-2000</td>
<td>21</td>
</tr>
<tr>
<td>Granular Application Equipment Calibration</td>
<td>367</td>
</tr>
<tr>
<td>Green Methods Manual</td>
<td>51</td>
</tr>
<tr>
<td>Handling Pesticides Safely</td>
<td>81</td>
</tr>
<tr>
<td>Integrated Fly Management Around Confined Livestock</td>
<td>20</td>
</tr>
<tr>
<td>Integrated Pest Management – Current and Future Strategies</td>
<td>50</td>
</tr>
<tr>
<td>Integrated Pest Management for Vegetable Gardens</td>
<td>94</td>
</tr>
<tr>
<td>IPM in Practice- Principles and Methods of Integrated Pest Management</td>
<td>49</td>
</tr>
<tr>
<td>Licensing Requirements for Pesticide Applicators in the State of Maine</td>
<td>13</td>
</tr>
<tr>
<td>Licensing Requirements for Pesticide Applicators in the State of Maine</td>
<td>282</td>
</tr>
<tr>
<td>Maine Board of Pesticides Control Website – Certification and Training</td>
<td>8</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Production of Vegetables, Strawberries, and Cut Flowers Using Plasticulture 318
Pumpkin Production Guide 343
Recommended Storage Practices for Pesticide Applications 12
Recommended Storage Practices for Pesticide Applicators 283
Record Keeping Requirements for Commercial Agricultural Producers 290
Restricted Use Pesticide Recordkeeping Inspection 151
Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects 19
Seedling Diseases and Damping Off 93
Selecting Forage Crops for your Farm 37
Selecting the Right Cover Crop Gives Multiple Benefits 292
Soil Survey of “X” County, Maine 41
Standards for Outdoor Application of Pesticides 80
Standards for Water Quality Protection 78
Sustainable Vegetable Production from Start-Up to Market 45
Timing and Intensity of Cultivation and Effects on Weed Control in Sweet Corn 87
Trichoderma for Control of Soil Pathogens 89
Two Common, Late-Season, Cole Crop Diseases 90
USDA Pesticide Recordkeeping Requirements for Certified Private Applicators of Federal Restricted Use Pesticides 44
Weed Control Guide for Ohio Field Crops 85
Weed Control Guide for Ohio Field Crops – Sprayer Calibration 86
Weed Control Principles 359
Wild Blueberry Grower’s Guide 34
WIN-PST (Windows Pesticide Screening Tool) 27
## Reference Document Titles

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Ways Farmers Can Protect Surface Waters</td>
<td>99</td>
</tr>
<tr>
<td>Agricultural Waste Management Field Handbook, Part 651</td>
<td>22</td>
</tr>
<tr>
<td>Agriculture, Fisheries and Aquaculture – Record Keeping (forms)</td>
<td>150</td>
</tr>
<tr>
<td>Agronomy: Soil Quality is Critical Factor in Management of National Resources</td>
<td>213</td>
</tr>
<tr>
<td>Alternative Production Systems to Reduce Nitrates in Ground Water</td>
<td>214</td>
</tr>
<tr>
<td>Applying Manure in Sensitive Areas</td>
<td>324</td>
</tr>
<tr>
<td>Assessing the Risk of Groundwater Contamination from Livestock Manure Management</td>
<td>256</td>
</tr>
<tr>
<td>Building Soils for Better Crops</td>
<td>267</td>
</tr>
<tr>
<td>Capturing Land-Applied manure in the Root Zone</td>
<td>70</td>
</tr>
<tr>
<td>Chemigation and Fertigation: Anti-Pollution Devices for Irrigation Systems</td>
<td>97</td>
</tr>
<tr>
<td>Chemigation Safety Measures</td>
<td>96</td>
</tr>
<tr>
<td>Composting for Small-Scale Livestock Operations</td>
<td>365</td>
</tr>
<tr>
<td>Conducting Site Erosion and Sediment Control Best Management Practices for Iowa</td>
<td>361</td>
</tr>
<tr>
<td>Contour Buffer Strips – Code 332</td>
<td>239</td>
</tr>
<tr>
<td>Contribution of Cover Crop Mulches to Weed Management</td>
<td>54</td>
</tr>
<tr>
<td>CORE4 Conservation Practices Reference Manual</td>
<td>25</td>
</tr>
<tr>
<td>Cornell Field Crops and Soils Handbook</td>
<td>307</td>
</tr>
<tr>
<td>Cover Crops – Adaptation, Use, Selection</td>
<td>260</td>
</tr>
<tr>
<td>Crop and Field Management Software</td>
<td>152</td>
</tr>
<tr>
<td>Crop Nutrition and Fertilizer Requirements</td>
<td>129</td>
</tr>
<tr>
<td>Dairy Farm Nutrient Balancer Spreadsheet</td>
<td>6</td>
</tr>
<tr>
<td>Dairy Manure Systems: Equipment and Technology</td>
<td>309</td>
</tr>
<tr>
<td>Disease Resistance and Crop Rotation</td>
<td>215</td>
</tr>
</tbody>
</table>
## Best Management Practices for Maine Agriculture

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downeast Salmon Rivers Water Use Management Plan</td>
<td>268</td>
</tr>
<tr>
<td>Fertilizing with Manure</td>
<td>115</td>
</tr>
<tr>
<td>Field Guide to On-Farm Composting</td>
<td>18</td>
</tr>
<tr>
<td>Filter Strip – Code 393</td>
<td>240</td>
</tr>
<tr>
<td>Forage Fertilization Based on Yield and Management Goals</td>
<td>131</td>
</tr>
<tr>
<td>Guidelines for Applying Manure to Cropland and Pasture in Wisconsin</td>
<td>64</td>
</tr>
<tr>
<td>Horse Facilities Handbook 2005</td>
<td>320</td>
</tr>
<tr>
<td>Introduction to Precision Agriculture: Sources of Soil and Crop Yield Variation within a Field</td>
<td>127</td>
</tr>
<tr>
<td>Irrigation Water Management – Code 449</td>
<td>132</td>
</tr>
<tr>
<td>Land Application of Manure</td>
<td>116</td>
</tr>
<tr>
<td>Land Application of Manure: Minimum State Requirements</td>
<td>326</td>
</tr>
<tr>
<td>Leaf &amp; Petiole Tissue Analysis Program</td>
<td>284</td>
</tr>
<tr>
<td>Livestock Waste Facilities Handbook</td>
<td>312</td>
</tr>
<tr>
<td>Livestock Waste Sampling, Analysis and Calculation of Land Application Rates</td>
<td>383</td>
</tr>
<tr>
<td>Maine Nutrient Management Certification Training Manual, 1999</td>
<td>5</td>
</tr>
<tr>
<td>Managing Livestock Manure to Protect Environmental Quality</td>
<td>387</td>
</tr>
<tr>
<td>Managing Livestock Manure to Protect Groundwater</td>
<td>257</td>
</tr>
<tr>
<td>Manitoba Soil Fertility Guide – Manure</td>
<td>111</td>
</tr>
<tr>
<td>Manure Management for Small Scale Livestock Operations, Pennsylvania</td>
<td>298</td>
</tr>
<tr>
<td>Small-Scale Livestock Committee, <a href="http://www">http://www</a></td>
<td></td>
</tr>
<tr>
<td>Manure Management Plan</td>
<td>327</td>
</tr>
<tr>
<td>Nitrogen Fertilizer Choices</td>
<td>39</td>
</tr>
<tr>
<td>Nutrient and Pesticide Best Management Practices for Wisconsin Farms</td>
<td>170</td>
</tr>
<tr>
<td>Nutrient Management</td>
<td>382</td>
</tr>
<tr>
<td>Nutrient Management – Code 590</td>
<td>157</td>
</tr>
<tr>
<td>Nutrient Management Planning: Plant Nutrients</td>
<td>128</td>
</tr>
<tr>
<td>Nutrient Management Plans - What Industry Agronomists are Doing</td>
<td>146</td>
</tr>
<tr>
<td>Nutrient Management Rules, Chapter 565</td>
<td>346</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Nutrient Management: Crop Production and Water Quality 16
Nutrite Turf (fertilizer release rates) 154
On Farm Composting Handbook 17
Organic Farming Systems – Overview-- Rotations, Insects & Diseases, Weeds, Livestock Systems 159
Organic Matter Management 124
Organic Vegetable Production 317
Phosphorous in Agriculture 288
Plant Tissue Test Instructions 345
Potato Fertilization on Irrigated Soils 130
Poultry Waste Management Handbook 314
Principles and Practices of Crop Rotation 216
Production of Vegetables, Strawberries, and Cut Flowers Using Plasticulture 318
Pumpkin Production Guide 343
Reducing the Risk of Groundwater Contamination from Livestock Manure Management 69
Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects 19
Selecting the Right Cover Crop Gives Multiple Benefits 292
Slow-Release Fertilizers 153
Soil Facts: Nitrogen Management and Water Quality 377
Soil Survey of “X” County, Maine 41
Soil Testing Handbook for Professionals in Agriculture, Nutrient and Residuals Management 1
Sprinkler Irrigation Systems – Code 442 133
Sustainable Vegetable Production from Start-Up to Market 45
The Agronomics of Manure Use for Crop Production 289
The Perishability and Profitability of Manure 117
Trickle Irrigation in the Eastern United States 310
Understanding your Soil Test: pH-Excess Lime-Lime Needs 266
Best Management Practices for Maine Agriculture

Using a Chlorophyll Meter to Improve N Management 385
Water Quality – Agriculture 156
Water Quality for Small-Scale Livestock Operations 362
Waterborne Pathogens in Agricultural Watersheds 258
Wild Blueberry Grower’s Guide 34
You Can Reduce the Risks of Leaching 60

Irrigation Management

Reference Document Titles

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downeast Salmon Rivers Water Use Management Plan</td>
<td>268</td>
</tr>
<tr>
<td>Irrigation Water Management – Code 449</td>
<td>132</td>
</tr>
<tr>
<td>Sustainable Vegetable Production from Start-Up to Market</td>
<td>45</td>
</tr>
</tbody>
</table>

Livestock Management

Reference Document Titles

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Environmental Management Systems</td>
<td>374</td>
</tr>
<tr>
<td>Agricultural Waste Management Field Handbook, Part 651</td>
<td>22</td>
</tr>
<tr>
<td>An Overview of Current Beef Welfare Concerns</td>
<td>236</td>
</tr>
<tr>
<td>Animal Behavior and the Design of Livestock and Poultry Systems</td>
<td>319</td>
</tr>
<tr>
<td>Bags vs</td>
<td>193</td>
</tr>
<tr>
<td>Building an Electric Antipredator Fence</td>
<td>296</td>
</tr>
<tr>
<td>Building for Cow Comfort</td>
<td>299</td>
</tr>
<tr>
<td>Building Freestall Barns and Milking Centers: Methods and Materials</td>
<td>316</td>
</tr>
<tr>
<td>Choosing Forage Storage Facilities</td>
<td>192</td>
</tr>
<tr>
<td>Constructing High-tensile Wire Fences</td>
<td>295</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Cornell Field Crops and Soils Handbook 307
Dairy Manure Systems: Equipment and Technology 309
Dairy Production 302
Deciding on a Silage Storage Type 191
Dry Round Hay Bale Storage Costs 190
Electronic Forum on Area-Wide Integration of Specialized Crop and Livestock Production 363
Environmental Designs for Healthier and More Profitable Cows 301
Forage Feedout Losses for Various Storage Systems 183
Forage Resources - Harvesting and Storage 360
Forage Resources – Harvesting and Storage 205
Forage Testing: Why, How, and Where 197
Generally Accepted Agricultural and Management Practices for the Care of Farm Animals 235
Good Neighbor Guide for Horse-Keeping: Manure Management 380
Harvesting Hay and Silage 194
Harvesting, Storing and Feeding Forages as Round Bale Silage 196
High-Tensile Wire Fencing 315
Horse Facilities Handbook 2005 320
Housing, Equipment and Manure Systems 108
Inoculants for Corn Silage 189
Inoculants for Legume-Grass Silage 188
Livestock Waste Facilities Handbook 312
Managing Forage in Bunker Silos 184
Manure Management for Small Scale Livestock Operations, Pennsylvania 298
Small-Scale Livestock Committee, http://www Manure Storage Systems 226
Maryland Small Ruminant Page 379
Natural Ventilation for Freestall Dairy Barns 334
Planning a Hay Storage 198
Best Management Practices for Maine Agriculture

Planning Fencing Systems for Controlled Grazing 294
Preserving Baled Hay with Organic Acids 187
Preventing Silage Storage Losses 185
Pumping Water from Remote Locations for Livestock Watering 297
Reducing Heat Stress for Dairy Cattle 333
Reducing the Risk of Groundwater Contamination by Improving Silage Storage 195
Selecting Forage Crops for your Farm 37
Shade and Wind Barrier Effects on Summertime Feedlot Cattle Performance 275
Sheep Housing and Equipment Handbook 237
Site Selection for Animal Housing and Waste Storage Facilities 279
Water Conservation on Dairy and Livestock Farms 381
Wind Protection Effects and Airflow Patterns in Outside Feedlots 274

Odor Control

Reference Document Titles

60 Ways Farmers Can Protect Surface Waters 99
Agricultural Waste Management Field Handbook, Part 651 22
Broiler Litter Storage 105
Capturing Land-Applied manure in the Root Zone 70
Components of Good Manure Management 166
Composting for Small-Scale Livestock Operations 365
Composts for Disease Suppression 53
CORE4 Conservation Practices Reference Manual 25
Dairy Farm Nutrient Balancer Spreadsheet 6
Dairy Manure Systems: Equipment and Technology 309
Environmental Factors to Consider When Expanding Dairies 313
Environmental Issues in Livestock Production 136

82
Best Management Practices for Maine Agriculture

Fertilizing with Manure 115
Field Guide to On-Farm Composting 18
Fly Control in the Poultry House 104
Guideline for Dairy Odor Management 287
Guidelines for Applying Manure to Cropland and Pasture in Wisconsin 64
Horse Facilities Handbook 2005 320
Horse Stable Manure Management 61
Housing, Equipment and Manure Systems 108
Integrated Animal Waste Management 330
Land Application of Manure 110
Land Application of Manure 116
Livestock & Poultry Area Integrated Pest Management 112
Maine Nutrient Management Certification Training Manual, 1999 5
Managing Livestock Manure to Protect Environmental Quality 387
Manitoba Soil Fertility Guide – Manure 111
Manure Management for Small Scale Livestock Operations, Pennsylvania 298
Small-Scale Livestock Committee, http://www
Manure Management Guidelines 134
Manure Management in Small Farm Livestock Operations 67
Manure Management Practices to Reduce Water Pollution 68
Manure Utilization Guidelines, February 1, 2001 29
Meeting Odour Head On: Odour Reduction Practices – Animal Diets and Land
Application of Manure 137
Nuisance Fly Prevention 113
Nutrient Management – Code 590 157
Odor Control on Livestock and Poultry Farms 100
Odor from Feedlots Setback Estimation Tool (OFFSET) 389
Odors from Livestock Operations: Causes and Possible Cures 322
On Farm Composting Handbook 17
Poultry Waste Management Handbook 314
### Best Management Practices for Maine Agriculture

Site Selection for Animal Housing and Waste Storage Facilities 63  
Site Selection for Animal Housing and Waste Storage Facilities 279  
Soil Testing Handbook for Professionals in Agriculture, Nutrient and Residuals Management 1  
The Perishability and Profitability of Manure 117  

### Insect Management

**Reference Document Titles**

<table>
<thead>
<tr>
<th>Reference Document Titles</th>
<th>Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Ways Farmers Can Protect Surface Waters</td>
<td>99</td>
</tr>
<tr>
<td>Agricultural Respiratory Protective Equipment</td>
<td>351</td>
</tr>
<tr>
<td>Agriculture, Fisheries and Aquaculture – Record Keeping (forms)</td>
<td>150</td>
</tr>
<tr>
<td>Biological Pest Controls from IPM Laboratories, Inc</td>
<td>26</td>
</tr>
<tr>
<td>Broiler Litter Storage</td>
<td>105</td>
</tr>
<tr>
<td>Chem Search</td>
<td>141</td>
</tr>
<tr>
<td>Composting for Small-Scale Livestock Operations</td>
<td>365</td>
</tr>
<tr>
<td>Control of Flies in and Around Poultry Houses</td>
<td>43</td>
</tr>
<tr>
<td>Controlling Flies on Dairy Farms</td>
<td>140</td>
</tr>
<tr>
<td>Disposal Methods of Livestock Mortality</td>
<td>388</td>
</tr>
<tr>
<td>Draft Guidelines for Emergency Composting of Cattle Mortalities</td>
<td>114</td>
</tr>
<tr>
<td>Environmental Factors to Consider When Expanding Dairies</td>
<td>313</td>
</tr>
<tr>
<td>Environmental Issues in Livestock Production</td>
<td>136</td>
</tr>
<tr>
<td>Field Guide to On-Farm Composting</td>
<td>18</td>
</tr>
<tr>
<td>Guideline for Dairy Odor Management</td>
<td>287</td>
</tr>
<tr>
<td>Heavy Use Area Protection, Code 561</td>
<td>340</td>
</tr>
<tr>
<td>Horse Facilities Handbook 2005</td>
<td>320</td>
</tr>
<tr>
<td>Horse Manure Management</td>
<td>145</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Poultry Waste Management Handbook 314
Profitable Poultry Production: Poultry Fixtures and Devices 109
Reducing Contamination by Improving Livestock Holding Pen Management 71
Rules for the Disposal of Animal Carcasses 178
Sanitation for Fly and Disease Management at Confined Livestock Facilities 101
Ventilation (Poultry) 106
Water Quality for Small-Scale Livestock Operations 362
Weed Control Principles 359

Noise Control

Reference Document Titles

| Agronomy: Soil Quality is Critical Factor in Management of National Resources | 213 |
| Alternative Production Systems to Reduce Nitrates in Ground Water | 214 |
| Crop Rotations | 212 |
| It Takes Two to be a Good Neighbor | 167 |
| Milking Center Waste Water Treatment System | 211 |
| Noise Control on Farms | 161 |
| Pollution Solutions-Poultry Farms | 107 |
| Trickle Irrigation in the Eastern United States | 310 |

Farm Management

Reference Document Titles

| 60 Ways Farmers Can Protect Surface Waters | 99 |
| About the Countryside Initiative | 162 |
| Access Road, Code 560 | 209 |
| Agricultural and Nature Tourism: Good for the People and the Land | 164 |
**Best Management Practices for Maine Agriculture**

Agricultural Environmental Management Systems 374  
Agricultural Respiratory Protective Equipment 351  
Agricultural Respiratory Protective Equipment: Air-Purifying Respirators 46  
Agricultural Waste Management Field Handbook, Part 651 22  
Agronomic Utilization of Residuals 210  
Air Quality and Health 271  
Animal Trails and Walkways – Code 575 252  
Barns and Structures 199  
Bramble Production Guide 354  
Building Positive Neighbor Relations 163  
Building Soils for Better Crops 267  
Causes and Symptoms of Mold and Dust-Induced Respiratory Illness 350  
Choosing Forage Storage Facilities 192  
Composts for Disease Suppression 53  
Computerized Farm Record Keeping with Quicken 2003 149  
Conservation Cover – Code 327 245  
Constructing High-tensile Wire Fences 295  
Controlling Birds around Farm Buildings 177  
Controlling Birds on Fruit Crops 176  
Controlling Rats 200  
Controlling Rodents in Commercial Poultry Facilities 201  
Cornell Field Crops and Soils Handbook 307  
Corridor Management for Pastureland Streams 23  
Cover Crops for Vegetable Production in the Northeast 304  
Cover Crops on the Intensive Market Farm 373  
Crop Rotations for Increased Productivity 221  
CRoPS, the Crop Rotation Planning System for Whole-farm Planning 220  
Cull Potato Composting 31
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cull Potato Disposal Best Management Practices</td>
<td>293</td>
</tr>
<tr>
<td>Cutting Edge Technologies &amp; Opportunities: Agricultural Nutrient Management</td>
<td>378</td>
</tr>
<tr>
<td>Dairy Manure Systems: Equipment and Technology</td>
<td>309</td>
</tr>
<tr>
<td>Deciding on a Silage Storage Type</td>
<td>191</td>
</tr>
<tr>
<td>Diseases and Pests of Vegetable Crops in Canada</td>
<td>57</td>
</tr>
<tr>
<td>Disposal Methods of Livestock Mortality</td>
<td>388</td>
</tr>
<tr>
<td>Draft Guidelines for Emergency Composting of Cattle Mortalities</td>
<td>114</td>
</tr>
<tr>
<td>Dry Round Hay Bale Storage Costs</td>
<td>190</td>
</tr>
<tr>
<td>Dust and Mold</td>
<td>202</td>
</tr>
<tr>
<td>Earthen Manure Storage Design Considerations</td>
<td>269</td>
</tr>
<tr>
<td>Environmental Factors to Consider When Expanding Dairies</td>
<td>313</td>
</tr>
<tr>
<td>Establishing and Using a Farm Financial Record-Keeping System</td>
<td>148</td>
</tr>
<tr>
<td>Farm Respiratory Protection</td>
<td>348</td>
</tr>
<tr>
<td>Field Border – Code 386</td>
<td>165</td>
</tr>
<tr>
<td>Field Guide to On-Farm Composting</td>
<td>18</td>
</tr>
<tr>
<td>Forage Feedout Losses for Various Storage Systems</td>
<td>183</td>
</tr>
<tr>
<td>Forage Resources – Harvesting and Storage</td>
<td>205</td>
</tr>
<tr>
<td>Forage Testing: Why, How, and Where</td>
<td>197</td>
</tr>
<tr>
<td>Guideline for Dairy Odor Management</td>
<td>287</td>
</tr>
<tr>
<td>Harvest and Storage of High-Quality Corn Silage for Dairy Cows</td>
<td>180</td>
</tr>
<tr>
<td>Harvesting, Storing and Feeding Forages as Round Bale Silage</td>
<td>196</td>
</tr>
<tr>
<td>Highbush Blueberry Production Guide</td>
<td>355</td>
</tr>
<tr>
<td>High-Tensile Wire Fencing</td>
<td>315</td>
</tr>
<tr>
<td>Horse Facilities Handbook 2005</td>
<td>320</td>
</tr>
<tr>
<td>Horse Stable Manure Management</td>
<td>61</td>
</tr>
<tr>
<td>Human-Wildlife Conflict Management – A Practitioner’s Guide</td>
<td>172</td>
</tr>
<tr>
<td>Inoculants for Corn Silage</td>
<td>189</td>
</tr>
<tr>
<td>Inoculants for Legume-Grass Silage</td>
<td>188</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

Integrated Animal Waste Management 330
Integrated Fly Management Around Confined Livestock 20
IPM in Practice- Principles and Methods of Integrated Pest Management 49
It Takes Two to be a Good Neighbor 167
Livestock Waste Facilities Handbook 312
Livestock Water Development 171
Lungs Need Protection from Farm Dust 349
Maine Nutrient Management Certification Training Manual, 1999 5
Making Quality Silage Bales 181
Managing Cover Crops Profitably 48
Managing Forage in Bunker Silos 184
Managing Forage in Tower Silos 186
Managing Livestock Manure to Protect Environmental Quality 387
MDAFRR Policy/Rules Regarding the Disposal of up to 500 lbs 179
Milking Center Effluent Treatment 65
Milking Center Waste Water Treatment System 211
New England Apple Pest Management Guide 82
New England Greenhouse Floricultural Recommendations Management Guide 15
for Insects, Diseases, Weeds and Growth Regulators
New England Small Fruit Pest Management Guide 14
New England Vegetable Management Guide 347
Nutrient Management – Code 590 157
Odors from Livestock Operations: Causes and Possible Cures 322
On Farm Composting Handbook 17
Organic Matter Management 124
Organic Vegetable Production 317
Personal Protection against Respiratory Hazards 352
Planning a Hay Storage 198
Planning Fencing Systems for Controlled Grazing 294
## Best Management Practices for Maine Agriculture

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution Control Guide for Milking Center Wastewater Management</td>
<td>204</td>
</tr>
<tr>
<td>Pollution Solutions-Poultry Farms</td>
<td>107</td>
</tr>
<tr>
<td>Preserving Baled Hay with Organic Acids</td>
<td>187</td>
</tr>
<tr>
<td>Preventing Silage Storage Losses</td>
<td>185</td>
</tr>
<tr>
<td>Production of Vegetables, Strawberries, and Cut Flowers Using Plasticulture</td>
<td>318</td>
</tr>
<tr>
<td>Pumpkin Production Guide</td>
<td>343</td>
</tr>
<tr>
<td>Reducing the Risk of Groundwater Contamination by Improving Silage Storage</td>
<td>195</td>
</tr>
<tr>
<td>Residue Management, Ridge Till – Code 329c</td>
<td>207</td>
</tr>
<tr>
<td>Residue Management, Seasonal – Code 344</td>
<td>208</td>
</tr>
<tr>
<td>Rules for the Disposal of Animal Carcasses</td>
<td>178</td>
</tr>
<tr>
<td>Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects</td>
<td>19</td>
</tr>
<tr>
<td>Silage Leachate &amp; Water Quality</td>
<td>278</td>
</tr>
<tr>
<td>Soil Biology Primer</td>
<td>47</td>
</tr>
<tr>
<td>Soil Compaction: Causes, Effects &amp; Control</td>
<td>66</td>
</tr>
<tr>
<td>Soil Testing Handbook for Professionals in Agriculture, Nutrient and Residuals Management</td>
<td>1</td>
</tr>
<tr>
<td>Strawberry Production Guide</td>
<td>353</td>
</tr>
<tr>
<td>Stream Bank Fencing</td>
<td>2</td>
</tr>
<tr>
<td>Successful Wrapping and Storage of Square Bales</td>
<td>182</td>
</tr>
<tr>
<td>Summary of Enacted Legislation</td>
<td>175</td>
</tr>
<tr>
<td>Sustainable Vegetable Production from Start-Up to Market</td>
<td>45</td>
</tr>
<tr>
<td>The Benefits of Planting Trees around Poultry Farms</td>
<td>169</td>
</tr>
<tr>
<td>Treatment of Milkhouse Effluent</td>
<td>203</td>
</tr>
<tr>
<td>USDA Agency Helps Solve Problems Between Humans and Wildlife</td>
<td>174</td>
</tr>
<tr>
<td>Using Shelterbelts to Reduce Odors Associated with Livestock Production Barns</td>
<td>272</td>
</tr>
<tr>
<td>Utilizing Food Processing Waste as a Soil Amendment for Growing Cover Crops in an Organic Vegetable Production System</td>
<td>206</td>
</tr>
<tr>
<td>Water Conservation on Dairy and Livestock Farms</td>
<td>381</td>
</tr>
<tr>
<td>Waterborne Pathogens in Agricultural Watersheds</td>
<td>258</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Watering Pumps for Livestock – Pasture Pump and Hydro Ram</td>
<td>4</td>
</tr>
<tr>
<td>Watering Systems for Livestock</td>
<td>38</td>
</tr>
<tr>
<td>Wild Blueberry Grower’s Guide</td>
<td>34</td>
</tr>
<tr>
<td>Wildlife Causing Damage or Nuisance</td>
<td>173</td>
</tr>
<tr>
<td>Windrow Construction &amp; Maintenance</td>
<td>328</td>
</tr>
</tbody>
</table>
## Index

### A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerial spraying</td>
<td>21</td>
</tr>
<tr>
<td>Agriculture Compliance Program</td>
<td>1</td>
</tr>
<tr>
<td>animal carcasses</td>
<td>30</td>
</tr>
<tr>
<td>animal health</td>
<td>7</td>
</tr>
<tr>
<td>application rates</td>
<td>14, 15, 16, 19, 22</td>
</tr>
<tr>
<td>applicators</td>
<td>19</td>
</tr>
</tbody>
</table>

### B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>background nutrient levels</td>
<td>22</td>
</tr>
<tr>
<td>bacteria</td>
<td>14</td>
</tr>
<tr>
<td>barnyard areas</td>
<td>30</td>
</tr>
<tr>
<td>barnyards</td>
<td>17</td>
</tr>
<tr>
<td>bedrock</td>
<td>16, 21, 23</td>
</tr>
<tr>
<td>best management practices</td>
<td>1, 3, 4, 6, 8, 9</td>
</tr>
<tr>
<td>best management systems</td>
<td>8, 9</td>
</tr>
<tr>
<td>best professional judgment</td>
<td>2</td>
</tr>
<tr>
<td>biological controls</td>
<td>18</td>
</tr>
<tr>
<td>BMPs</td>
<td>1, 2, 3, 4, 6, 7, 8, 9, 10, 18</td>
</tr>
<tr>
<td>buffer strips</td>
<td>11, 25</td>
</tr>
<tr>
<td>buffers</td>
<td>14, 33</td>
</tr>
<tr>
<td>business records</td>
<td>36</td>
</tr>
</tbody>
</table>

### C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calibrate pesticide application equipment</td>
<td>19</td>
</tr>
<tr>
<td>calibration</td>
<td>23</td>
</tr>
<tr>
<td>certified applicator</td>
<td>20</td>
</tr>
<tr>
<td>certified pesticide applicator</td>
<td>20</td>
</tr>
<tr>
<td>chemigation</td>
<td>21</td>
</tr>
<tr>
<td>compost</td>
<td>16, 25, 29, 32, 36</td>
</tr>
<tr>
<td>compost manure</td>
<td>16</td>
</tr>
<tr>
<td>contour</td>
<td>11</td>
</tr>
<tr>
<td>contour plowing</td>
<td>11</td>
</tr>
<tr>
<td>cost/ benefit ratio</td>
<td>8</td>
</tr>
<tr>
<td>cover crop</td>
<td>17</td>
</tr>
<tr>
<td>cover crops</td>
<td>12, 18, 21, 24</td>
</tr>
<tr>
<td>crop rotation</td>
<td>18, 20</td>
</tr>
<tr>
<td>crop rotations</td>
<td>16, 24</td>
</tr>
<tr>
<td>crop uptake</td>
<td>15, 24</td>
</tr>
<tr>
<td>crop yield</td>
<td>22, 23</td>
</tr>
</tbody>
</table>
# Best Management Practices for Maine Agriculture

crop yields ................................................................................................................. 16

cultural controls ..................................................................................................... 18

## D

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Agriculture</td>
<td>1, 2, 15, 35</td>
</tr>
<tr>
<td>disease free seed</td>
<td>18</td>
</tr>
<tr>
<td>disease resistant crops</td>
<td>18</td>
</tr>
<tr>
<td>disposal of animal carcasses</td>
<td>3</td>
</tr>
<tr>
<td>disposal of animals</td>
<td>34</td>
</tr>
<tr>
<td>disposal of cull potato piles</td>
<td>3</td>
</tr>
<tr>
<td>disposal of cull potatoes</td>
<td>34</td>
</tr>
<tr>
<td>diversions</td>
<td>12</td>
</tr>
<tr>
<td>drift law</td>
<td>20</td>
</tr>
<tr>
<td>dust control</td>
<td>36</td>
</tr>
</tbody>
</table>

## E

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>erosion</td>
<td>12, 13, 25</td>
</tr>
<tr>
<td>erosion and sedimentation control</td>
<td>11</td>
</tr>
<tr>
<td>erosive force</td>
<td>11</td>
</tr>
</tbody>
</table>

## F

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>farm machinery</td>
<td>33, 34</td>
</tr>
<tr>
<td>feed bunks</td>
<td>30</td>
</tr>
<tr>
<td>feed storage</td>
<td>35</td>
</tr>
<tr>
<td>fertigation</td>
<td>24</td>
</tr>
<tr>
<td>fertilization</td>
<td>14</td>
</tr>
<tr>
<td>fertilizer</td>
<td>14, 15, 23</td>
</tr>
<tr>
<td>field applied</td>
<td>16</td>
</tr>
<tr>
<td>field characteristics</td>
<td>21</td>
</tr>
<tr>
<td>field location</td>
<td>18</td>
</tr>
<tr>
<td>field stacking</td>
<td>15</td>
</tr>
<tr>
<td>filter strips</td>
<td>17</td>
</tr>
<tr>
<td>financial viability</td>
<td>7</td>
</tr>
<tr>
<td>flies</td>
<td>30</td>
</tr>
<tr>
<td>frozen or snow covered fields</td>
<td>15</td>
</tr>
</tbody>
</table>

## G

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>generally accepted agricultural practice</td>
<td>3</td>
</tr>
<tr>
<td>ground cover crop</td>
<td>11</td>
</tr>
<tr>
<td>groundwater</td>
<td>16, 21, 24</td>
</tr>
</tbody>
</table>
Best Management Practices for Maine Agriculture

H

harvest dates.............................................................................................................. 18
highly erodible soil ................................................................................................. 15

I

Integrated Pest Management Plan (IPM)............................................................... 18
interseed .................................................................................................................... 11
irrigation.................................................................................................................. 23, 24, 25
irrigation management ......................................................................................... 26
irrigation pumps...................................................................................................... 33

L

label guidelines ...................................................................................................... 20
land application ...................................................................................................... 15
leaching .................................................................................................................. 16, 21, 22, 23, 24
livestock ................................................................................................................. 12, 17, 27, 34
fencing.................................................................................................................... 27
housing.................................................................................................................... 27
waste management ................................................................................................. 27
livestock access ....................................................................................................... 12, 34

M

management systems .............................................................................................. 7
manure..................................................................................................................... 14, 15, 16, 17, 22, 24, 28, 29, 30, 31, 32, 34
applications .......................................................................................................... 15, 28
field stacked ............................................................................................................. 28
spreading rates ....................................................................................................... 29
storage...................................................................................................................... 28
manure application equipment.............................................................................. 14
manure application rates........................................................................................ 14
manure management .............................................................................................. 14
manure nutrient value ............................................................................................ 14
manure spreading .................................................................................................. 15
manure spreading setbacks .................................................................................... 14
Material Safety Data Sheets.................................................................................. 19
mechanical weed control ....................................................................................... 21
milkhouse .................................................................................................................. 35

N

natural insect predators .......................................................................................... 31
natural pest predators ............................................................................................ 18
natural resources conservation service ................................................... 2
nitrogen ........................................................................................................ 16, 22, 24
nps report ...................................................................................................... 4, 6
nutrient application .................................................................................... 22, 23
nutrient content .......................................................................................... 14, 22
nutrient loss .................................................................................................. 23
nutrient management ................................................................................... 3, 22, 35
nutrient sources ........................................................................................... 14
nutrient uptake ............................................................................................. 16
nutrients .......................................................................................................... 16, 17, 22, 23, 24, 25, 35

organic matter ............................................................................................... 14, 19, 22, 24, 25
over spray ...................................................................................................... 21

pastures .......................................................................................................... 17
pathogens ....................................................................................................... 18
permanent vegetation .................................................................................. 12
pest control ................................................................................................. 16
pest scouting ............................................................................................... 19
pesticide ......................................................................................................... 19, 20, 21
pesticide
container disposal .......................................................................................... 20
mixing ............................................................................................................. 20
storage .......................................................................................................... 20
pesticide application plan .......................................................................... 19
pesticide application techniques ................................................................. 21, 31
pesticide management ............................................................................... 18
phosphorous ................................................................................................. 25
plant tissue testing ....................................................................................... 24
poultry houses ............................................................................................. 30, 31
primary crop ................................................................................................. 11, 17
professional judgment ............................................................................... 2, 6, 8
propagation material .................................................................................... 18

realistic yield goals ...................................................................................... 14
release rate .................................................................................................... 23
residuals ........................................................................................................ 16, 35
residue .......................................................................................................... 11, 34
returnable pesticide container law ............................................................... 20
right-to-farm ................................................................................................. 1, 2, 3
Best Management Practices for Maine Agriculture

rotary hoeing ........................................................................................................ 21
rotate crops ........................................................................................................... 11
row cultivation ..................................................................................................... 21
runoff ................................................................................................................. 11, 12, 17, 21, 23, 24, 25
runoff water ....................................................................................................... 11, 12, 25

S

sediment .............................................................................................................. 11, 12
sedimentation .................................................................................................... 13, 34
sequestration ..................................................................................................... 22
setbacks .............................................................................................................. 14
settling basins ................................................................................................... 17
silage ................................................................................................................... 35
site-specific BMPs ............................................................................................... 7, 9
slope .................................................................................................................. 11, 21
soil characteristics .............................................................................................. 23
soil cover ............................................................................................................ 11
soil disturbance .................................................................................................. 12
soil infiltration .................................................................................................... 17
soil productivity .................................................................................................. 7, 36
soil tests .............................................................................................................. 22
soil type .............................................................................................................. 19
split fertilizer applications .................................................................................. 23
spray drift .......................................................................................................... 20
spreading .......................................................................................................... 14, 16
stable stream crossing ....................................................................................... 12
storage facilities ................................................................................................. 15
Strategy for Managing Nonpoint Source Pollution from Agricultural Sources and Best Management System Guidelines .................................................................................. See NPS Report
stream crossings .............................................................................................. 13
surface waters ................................................................................................. 11

T

tillage .................................................................................................................. 18

U

University of Maine Cooperative Extension ..................................................... 2

V

ventilation .......................................................................................................... 30
vermin control ................................................................................................... 35
volatilization ..................................................................................................... 15, 16, 22
### W
- water quality ......................................................... 6, 7, 12
- water table depth ................................................. 19
- weather conditions .................................................. 21, 28
- weeds ........................................................................ 19, 20, 22
- well contamination .................................................... 21
- well locations ............................................................ 19
- wind speeds .................................................................. 20

### Y
- yield records .................................................................. 14