

Maine Geological Survey

Address: 22 State House Station, Augusta, Maine 04333 **Telephone:** 207-287-2801 **E-mail:** mgs@maine.gov Home page: http://www.maine.gov/doc/nrimc/nrimc.htm

Sample explanation from Significant Sand and Gravel Aquifers Map

SIGNIFICANT SAND AND GRAVEL AQUIFERS (vields greater than 10 gallons per minute)

Approximate boundary of surficial deposits with significant saturated thickness where potential ground-water yield is moderate to excellent.

Surficial deposits with good to excellent potential ground-water yield; vields generally greater than 50 gallons per minute to a properly constructed well. Deposits consist primarily of glacial sand and gravel, but can include areas of sandy till and alluvium; yield zones are based on subsurface data where available, and may vary from mapped extent in areas where data are unavailable.

Surficial deposits with moderate to good potential ground-water yield; yields generally greater than 10 gallons per minute to a properly constructed well. Deposits consist primarily of glacial sand and gravel, but can include areas of sandy till and alluvium; yields may exceed 50 gallons per minute in deposits hydraulically connected with surface-water bodies, or in extensive deposits where subsurface data are available.

SURFICIAL DEPOSITS WITH LESS FAVORABLE AQUIFER CHARACTERISTICS (vields less than 10 gallons per minute)

Areas with moderate to low or no potential ground-water yield (includes areas underlain by till, marine deposits, eolian deposits, alluvium, swamps, thin glacial sand and gravel deposits, or bedrock); yields in surficial deposits generally less than 10 gallons per minute to a properly constructed well.

SEISMIC-LINE INFORMATION

Profiles for 12-channel seismic lines are shown in Appendix 2 of Open-File Report 98-57 (Neil and others, 1998). Length of 12-channel seismic lines as shown on the map is to scale. All single-channel lines ranged from 80 to 300 feet long and are not shown to scale.

- Depth to bedrock, in feet below land surface.
- Depth to bedrock exceeds depth shown (based on calculations).
- **12** Depth to water level, in feet below land surface.
- Twelve-channel seismic line, with depth to bedrock and depth to water shown at the midpoint of the line, in feet below land surface.

69, 12 ■ Single-channel seismic line, with depth to bedrock and depth to **MAP-E** water shown at each end of the line, in feet below land surface. Unless otherwise indicated, data shown above the line-identifier box refers to the northern end of the seismic line.

The 3-letter identifier for a line is an abbreviation for the topographic quadrangle. If the 3-letter identifier for the line is followed by a number (ex: MAP - 7, MAP - 4). the line is a 12-channel line. If the identifier is followed by a letter (ex: MAP - E. MAP- P), the line is a single-channel line. Single-channel seismic interpretations by L. E. Foster. Twelve-channel seismic interpretations by C. D. Neil.

OTHER SOURCES OF INFORMATION

- 1. Neil, C. D., Locke, D. B., and Nichols, W. J., Jr., 1998, Hydrogeology and water quality of significant sand and gravel aquifers in parts of Hancock, Penobscot, and Piscataquis Counties, Maine: Maine Geological Survey, Open-File Report 98-57, 90 p.
- 2. Locke, D. B., 2000, Surficial materials of the Alligator Lake quadrangle, Maine: Maine Geological Survey, Open-File Map 00-XX.
- 3. Holland, W. R., 1986, Reconnaissance surficial geology of the Lead Mountain 15' quadrangle, Maine: Maine Geological Survey, Open-File Map 86-63.
- 4. Caswell, W. B., 1987, Ground water handbook for the state of Maine, Second Edition: Maine Geological Survey, Bulletin 39, 135 p.
- 5. Thompson, W. B., 1979, Surficial geology handbook for coastal Maine: Maine Geological Survey, 68p. (out of print)
- 6. Thompson, W. B., and Borns, H. W., Jr., 1985, Surficial geologic map of Maine: Maine Geological Survey, scale 1:500,000.

GEOLOGIC AND WELL INFORMATION

- Depth to bedrock, in feet below land surface
- Penetration depth of boring; ≥ symbol refers to minimum depth to bedrock based on boring depth or refusal
- Depth to water level in feet below land surface (observed in well, spring, test boring, pit, or seismic line)
- Gravel pit (overburden thickness noted in feet, e.g. 5-12')
- Ouarry
- Yield (flow) of well or spring in gallons per minute (GPM)
 - Spring, with general direction of flow
 - Drilled overburden well
 - Dug well
 - Observation well (project well if labeled; nonproject well if unlabeled)
 - Test boring (project boring if labeled; nonproject boring if unlabeled)
 - Driven point
 - 0 Test pit
 - Drilled bedrock well
 - Potential point source of ground-water contamination
 - Bedrock outcrop

Surface-water drainage-basin boundary; surface-water divides generally correspond to ground-water divides. Horizontal direction of ground-water flow generally is away from divides and toward surface-water bodies.