PFOS, Land Application of Residuals, Dairy Farms and Milk

Andrew Smith, SM, ScD
State Toxicologist
Maine Center for Disease Control and Prevention
January 14, 2020
What is PFOS?
(perfluorooctane sulfonic acid)

Carbon backbone

Octane

Acid Group

Perfluorooctane sulfonic acid (PFOS)
PFOS is Toxic

Toxicity Values for PFOS

Reference Dose (ng/kg/day)

* Proposed

Maine Department of Health and Human Services
Why are we concerned about PFOS?

We are all exposed to PFOS.

Source:
PFOS stays in our bodies for years.

Why are we concerned about PFOS?

Half-Life in Human Body for Selected PFAS (years)

<table>
<thead>
<tr>
<th>Per-fluorinated Alkyl Substances</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>2</td>
</tr>
<tr>
<td>PFOS</td>
<td>3.5</td>
</tr>
<tr>
<td>PFHxS</td>
<td>5</td>
</tr>
<tr>
<td>PFHpA</td>
<td>1</td>
</tr>
<tr>
<td>PFNA</td>
<td>3</td>
</tr>
</tbody>
</table>

Sources:
PFOS is Persistent and Mobile
- Stoneridge Farm -

Soil / Hay in µg/kg, dw
Water / Milk in ng/L

Surface Soil Data - January - May 2017

Maine Department of Health and Human Services
Is it the hay or the water?

Kowalczyk et al. 2013.

- **Milk**: 1400 ng/L
- **Ground Water**: 40 – 130 ng/L
- **Hay**: 9.6 µg/kg, dw

PFOS levels for milk and water in nanograms / liter.
Based on USEPA RfD of 20 ng/kg/day, 95th percentile incidental soil ingestion rate for a 1-6 year old child, 150 days / year.
I would use the RAG here as the chapter 418 standard wouldn't necessarily be the applicable standard applied in this case, i.e., that is a new site with contaminated soils where you don't know the source. DEP would use the soil RAG to evaluate.

Simones, Thomas, 9/11/2019

I would also use the 2018 RAG of 1700 ug/kg to avoid any confusion and mention that at the time of discovery the RAG was 2700.

Simones, Thomas, 9/11/2019
What would be a PFOS soil screening level for the dairy farming scenario?

Soil → Hay/Corn → Cow → Milk → Child
EPA PRGR Soil Screening Level Equation

Agronomic Pathway

\[SL_{soil} = \frac{C_{milk}}{TF_{milk} \times \left(I_{fodder} \times F_{onsite-f} \times F_{year-f} \times (TF_{plant} + MLF) \right) + (I_{soil} \times F_{onsite-g} \times F_{year-g})} \]

- **Milk Action Level**
 - "Adulterated"

- **Transfer Factor from Intake to Milk**

- **Fraction of time exposed to contaminated feed**

- **Plant uptake and soil loading**

- **Fraction of time exposed to contaminated soil**

Source:

Maine Department of Health and Human Services
Transfer pathways:

1. Root uptake
2. Translocation
3. Soil resuspension
PFOS Corn Transfer Factor (TF_{plant})

$TF_{\text{corn}} = < 0.08$

$TF_{\text{corn}} = 0.04$

$TF_{\text{corn}} = 0.16$
PFOS Hay Transfer Factor ($T_{F_{plant}}$)

$T_{F_{hay}} = 0.07$

$T_{F_{hay}} = 0.1$

$T_{F_{hay}} = 0.5$

Maine Department of Health and Human Services
Plant Soil Mass Loading Factor (MLF)

Processes for transfer of soil to plant surface
- Rain splash
- Wind erosion
- Soil disturbance by mechanical equipment

USEPA PRGR Defaults
- Default = 0.25, range 0.001 to 0.5
- Geometric mean of 11 studies* = 0.034 (pasture plants only)

\[\text{MLF} = 0.034 \]

Source:

Maine Department of Health and Human Services
Dairy Farm Scenarios

<table>
<thead>
<tr>
<th>Grass-fed Dairy Farm</th>
<th>“Average” Maine Dairy Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay (65%)</td>
<td>Hay (20%)</td>
</tr>
<tr>
<td>Corn Silage (20%)</td>
<td>Corn Silage (37%)</td>
</tr>
<tr>
<td>Grain (15%)</td>
<td>Grain (35%)</td>
</tr>
</tbody>
</table>
Soil Ingestion while Grazing

USEPA PRGR Defaults

- 2% of total dry matter intake
PFOS Milk Transfer Factor (TF_{milk})

PFOS in Milk Feeding Study

- Observed $TF_{milk} = 0.005$
- Steady-state $TF_{milk} = 0.02$ to 0.08

Source:
Action Level for “adulterated” Milk

- Toxicity Value: 20 ng/kg/day
- 90th Percentile Milk Intake: 0.074 L/kg/day
- Milk Exposure Limit: 270 ng/L
- Relative Source Contribution: 80%
- Action Level: 210 ng/L
Example Soil SL Calculation for Hay

\[
SL_{\text{soil}} = \frac{C_{\text{milk}}}{TF_{\text{milk}} \times \left[\left(I_{\text{fodder}} \times F_{\text{onsite-f}} \times F_{\text{year-f}} \times (TF_{\text{plant}} + MLF) \right) + (I_{\text{soil}} \times F_{\text{onsite-g}} \times F_{\text{year-g}}) \right]}
\]

Source:
Example Soil SL Calculation for Corn Silage

\[SL_{\text{soil}} = \frac{C_{\text{milk}}}{TF_{\text{milk}} \times \left[(I_{\text{fodder}} \times F_{\text{onsite-f}} \times F_{\text{year-f}} \times (TF_{\text{plant}} + MLF)) \right]} \]

\[\begin{align*}
31,300 \text{ ng/kg dw} \\
(31.3 \mu\text{g/kg dw})
\end{align*} \]

\[204 \text{ ng/kg} \]

\[0.02 \text{ day/kg} \]

\[8.7 \text{ kg/day} \]

\[1 \]

\[1 \]

\[0.04 \]

\[0.0014 \]

\[0.32 \text{ kg/day} \]

Source:
Modified equation from U.S. EPA Preliminary Remediation Goals for Radionuclides, consumption of milk back calculated to soil -
https://epa-prgs.orl.gov/radionuclides/users_guide.html

Maine Department of Health and Human Services
Example Soil Screening Levels for Dairy Farm Scenarios

EPA “Subsistence Dairy Farm”
- Diet: Hay (65%) Corn (20%) Grain (15%)

SSL = 6 μg/kg, dw

Average Maine Dairy Farm
- Diet: Hay (28%) Corn (37%) Grain (35%)

SSL = 10 μg/kg, dw
Ground-truthing Model Predictions

Soil / Hay in µg/kg, dw
Water / Milk in ng/L

Maine Department of Health and Human Services
Model Estimated PFOS Milk Levels based on Stoneridge Farms Average Soil Levels

<table>
<thead>
<tr>
<th>Stoneridge Farms PFOS site-wide soil level estimates (ug/kg dry weight)</th>
<th>Model estimated PFOS milk (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123 (arithmetic average)</td>
<td>3,808</td>
</tr>
<tr>
<td>25 (geometric mean)</td>
<td>734</td>
</tr>
</tbody>
</table>

Initial average measured PFOS milk levels at Stoneridge Farms = 1,117 ng/L

NOTE – Does not include water contribution, which could add 90 – 200 ppt to milk.
Next Steps

Soil-to-Corn PFOS Uptake Study (DEP, MECDC, DACF)

- Collected matched soil and silage corn samples for PFOS analysis
- Identified a laboratory to perform plant PFOS analyses
- Awaiting plant data to derive a transfer factor

Ongoing model refinements

- Evaluating consensus on toxicity values
- Monitoring new literature / reports on plant uptake
- Looking for more farms to test model against

Maine Department of Health and Human Services
Questions?

Andrew Smith, SM, ScD
State Toxicologist
Maine Center for Disease Control and Prevention
andy.e.smith@maine.gov

Thomas Simones, PhD
Toxicologist
Maine Center for Disease Control and Prevention
thomas.simones@maine.gov