Pesky Garden Pests – Lawns & Trees

Gary Fish
State Horticulturist
Maine DACF
gary.fish@maine.gov
207-287-7545

Do I need to manage a tree pest?

- Can it be physically removed
- Early season defoliation is most damaging
- Damage after late June is usually tolerable for trees
- Conifers are more susceptible
- Hardwoods can survive 1 3 years of defoliation depending on other stress factors
- Does it cause a rash

Eastern Tent Caterpillar

Browntail Moth Euproctis chrysorrhoea

- Invasive insect from Europe
 - Order: Lepidoptera (moths)
 - Family: Lymantriidae
- Caterpillars have toxic hairs

Late season defoliation

Birch decline

Impacts of systemics used on trees and woody ornamentals

- Imidacloprid and dinotefuran are both highly toxic to bees.
- Low doses of these neonics may cause bees to behave in ways that lead to death or colony weakening
- Imidacloprid changes to its olefin stage in trees and the olefin stage is 10 – 16 times more toxic to insects
- Peak concentrations may occur 18 months after a soil treatment

Impacts of systemics used on trees and woody ornamentals

- Use in woody plants tends to concentrate systemics
 - Higher rates can be more risky to pollinators
 - Must not treat trees or shrubs that produce flowers that are highly attractive to pollinators unless they have finished flowering for that season
 - Best to use dinotefuran over imidacloprid on trees that provide bee attractive blooms
 - Imidacloprid can persist for as long as 8 years
 - Dinotefuran usually breaks down over one growing season

Systemics can be harmful to beneficial predators and parasites

- O Spider mite outbreaks have been observed after imidacloprid applications
 - May be the result of secondary poisoning of predators
 - May act as a fertility drug to the mites
 - OImproves the health of the plant which feeds the mites

When's the best time to plant grass seed or sod?

If water is available, sod can be installed anytime

- Seeding is best done from August 15 – September 30
 - High soil temps, less weed emergence
- Seeding in May or June is less desirable
 - Low soil temps, large weed flush at same time grass emerges

Harvest Moon = best seeding time

Turf Selection

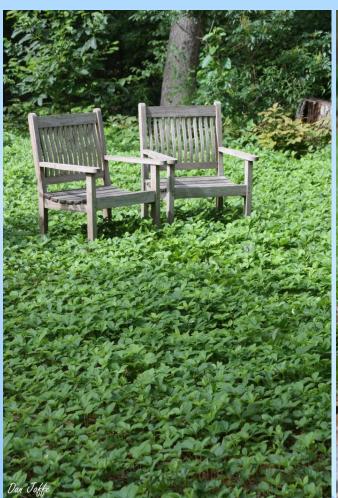
	Kentucky Bluegrass	Perennial Ryegrasses	Tall Fescue	Fine Fescue
Growth habit	Rhizotamous	Bunch	Bunch	Bunch
Leaf texture (blade width)	Medium-Fine	Medium	Coarse	Very Fine
Establishment from seed	Slow (approx. 30–90 days)	Fast (approx. 14–21 days)	Fast to Average (21–30 days)	Average (21–50 days)
Seeding rate	1 to 2 lb./1,000 ft. ²	5 to 9 lb./1,000 ft. ²	5 to 9 lb. /1,000 ft. ²	3 to 5 lb./1,000 ft. ²
Annual nitrogen fertilizer	3 to 4 lb./1,000 ft. ²	2 to 6 lb./1,000 ft. ²	2 to 4 lb./1,000 ft. ²	1 to 2 lb./1,000 ft. ²
Drought tolerance	Poor	Poor	Some	Some
Shade tolerance (min. 4 hr. of direct sun)	Poor	Poor	Good	Excellent
Wear tolerance (traffic)	Good	Good	Good	Poor

Insect tolerance	Some	Some	Excellent	Good
Disease tolerance	Some	Some	Good	Good

Low maintenance mixes

- Fine Fescues 40 50% of mix
 - Creeping Red Fescue
 - Hard Fescue
 - Chewings Fescue
- Tall Fescue 100% of mix,
 2 3 varieties
- Common Kentucky Bluegrass
- Endophyte enhanced fescues or perennial rye

Example Mix

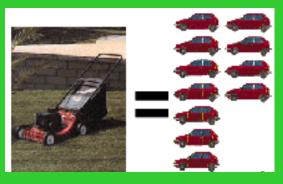

40% Endophyte Enhanced Creeping Red Fescue 10% Southport Chewings Fescue

30% Endophyte Enhanced Perennial Ryegrass 20% Kenblue KBG

How about *native plant* alternatives for a lawn?

Wild Strawberry and Pennsylvania Sedge.

Photos courtesy
Native Plant Trust

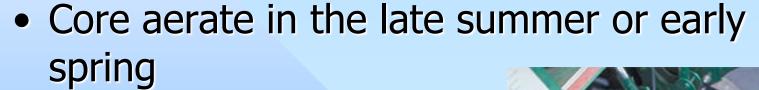


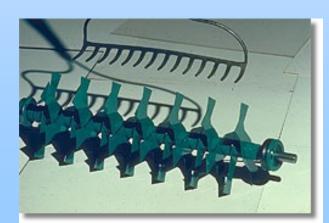
Mow properly

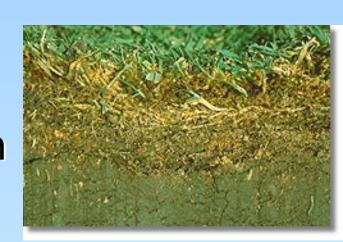
- Mow high at 3 4 inches or highest setting
- Mow regularly
- Keep mower sharp
- Return clippings
- Vary mowing pattern

Mower exhaust = 11 cars' exhaust

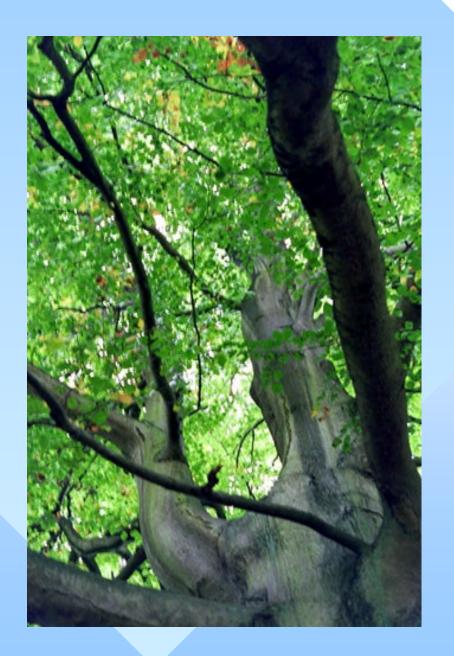
One hour of mowing = driving 400 miles

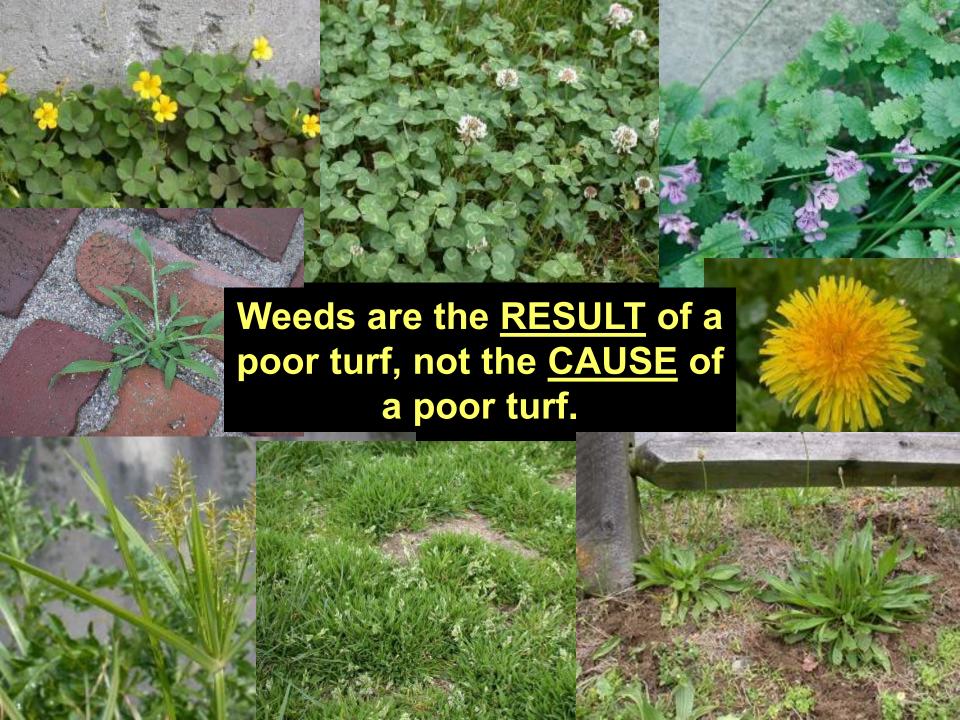

Mowers spew 87 lbs of greenhouse gases and 40 pounds of other pollutants annually

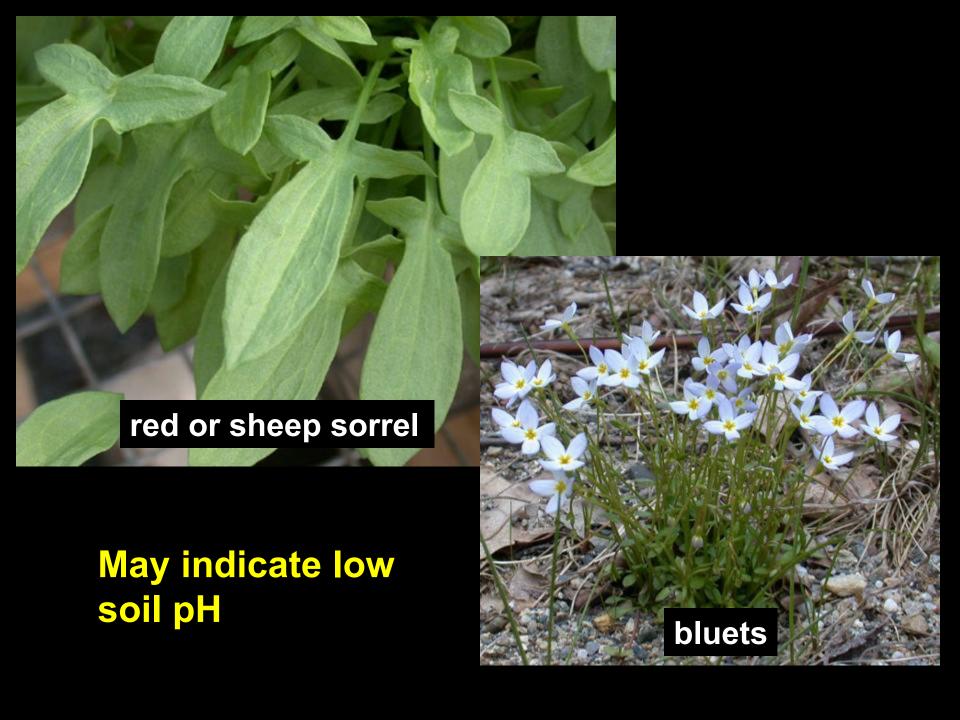

Water only when needed


- Deepen the roots by holding off on watering in the spring until you see signs of stress (turf has a blue or purple cast)
- Water deeply 3/4 1^{1/2} inches per week
 - Don't water every day (use a rain gauge)
 - 1 2 times a week is best
 - Water early in the morning (to reduce disease)
- To reduce water needs allow the turf to go dormant in the summer
 - apply 1/4 1/2 inch water every 3 weeks

Let it breathe

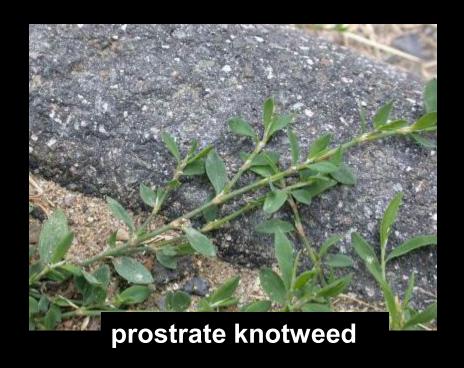

- Keep thatch under 1/2 inch
- Cut back on pesticide use


#1 Killer of grass



To much shade?

- Must have at least 6 hours of direct sunlight to grow lawn grasses
- Trees in shaded areas must be thinned and lower branches pruned
- Better yet leave the trees and plant shade tolerant ground cover



path rush

Change the growing environment

- adjust soil pH
- adjust soil moisture
- adjust sun exposure
- adjust air circulation

Indicator weeds and soil conditions

Wet, waterlogged, poor drainage

Creeping buttercup, Coltsfoot, Ox-eye daisy, Curled dock, Moss, Plantain, Garden sorrel, Perennial sow thistle,

Broad-leaved meadowsweet

Acidic or low lime

Eastern bracken, Silvery cinquefoil, Coltsfoot, Ox-eye daisy, Dandelion, Curled dock, Hawkweed, Field horsetail, Knapweed, Prostrate knotweed, Moss, Common mullein, Nettle, Plantain, Garden sorrel, Sheep sorrel

Hardpan

Field bindweed, Quackgrass, Pineappleweed, Stinkweed

Tilled or cultivated soil

Buttercup, Chickweed, Prostrate knotweed, Lamb's quarters, Prickly lettuce, Mustard, Nettle, Redroot pigweed, Plantain

Alkaline

Bladder campion, White mustard, Perennial sow thistle, Foxtail barley

Heavy clay soil

Chicory, Coltsfoot, Dandelion, Annual sow thistle. Canada thistle

Dry soil

Silvery cinquefoil, Field horsetail

Overgrazed

Perennial bluegrasses, Bentgrasses

Nutrient imbalance

Eastern bracken (low K, low P), Yarrow (low K), Stinkweed (high lime)

Saline soils

Shepherd's purse, Russian thistle

Compacted

Velvetleaf, Jimsonweed

Adapted from a handout by Stuart Hill and Jennifer Ramsey for Ecological Agricultural Projects at MacDonald Campus of McGill and published in *The Soul of the Soil, A Guide to Ecological Soil Management*, 2nd Edition, by Grace Gershuny and Joseph Smillie.

Weed control approach

- First rule of weed management – Exclusion!
- Mow as high as possible!

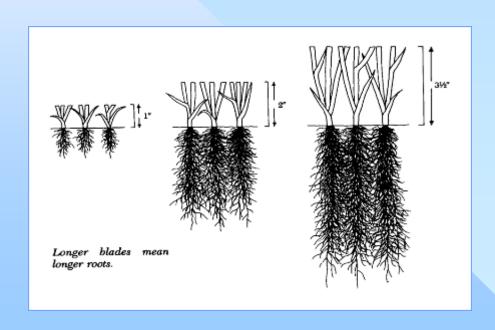


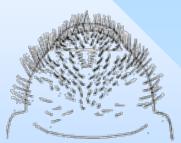
Illustration courtesy of Paul Wheaton, richsoil.com

Weed Control Approach (BASIC STRATEGY - dense, tall turf tends to reduce weed invasion)

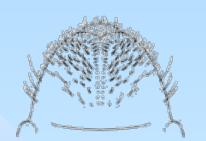
- Mow high, 3 4inches MINIMUM
- Promote root growth fertilize in late summer/early fall
- Reduce wear and compaction encourage foot traffic away from turf; core aerify twice per year
- Overseed or slit-seed open areas ASAP
- Seed is the best weed control!
- Spot treatment with herbicides only when necessary.

White Grubs

Grub biology


- One generation per year
- Grubs active in spring (April-May) and fall (mid August through October)
- European Chafers active through the winter under snow
- Adults active in summer months

Inse	ct	Jan-Mar	Apr	ı	May	June	July	Augus	it	Sept		Oct	Nov-Dec	
European chafer		larvae – I overwintering fee		larva feedin	rd instar Adults eme arvae – mate & lay eg ding and no feedin upation		eggs –	Ist instar larvae – feeding		2nd instar larvae – feeding		d instar rvae – eeding	3rd instar larvae – over- wintering	
June beetle	Yr I					ults emerge, e and lay eggs		Eggs hatch – Ist instar larvae – feeding		2nd instar larvae – feeding		2nd instar larvae – overwintering		
	Yr 2					3rd instar larvae – feeding					3rd instar larvae – overwintering			
	Yr 3	3rd instar larvae – overwintering larvae – feeding				Pupation and adults remain in soil to hibernate and overwinter								
Japanese beetle		3rd instar larvae – 3r overwintering				Adults er mate & lay no fee	eggs -	lst instar larvae – feeding		vae –		r larvae – ntering		


Pest Identification is crucial

White grub rastral patterns

Asiatic garden beetle

New grub species

- Asiatic garden beetle
- Grubs are slightly smaller than Japanese beetle and European chafer
- Adults are drawn to bright lights at night

Fig. 2. Grub of an Asiatic garden beetle

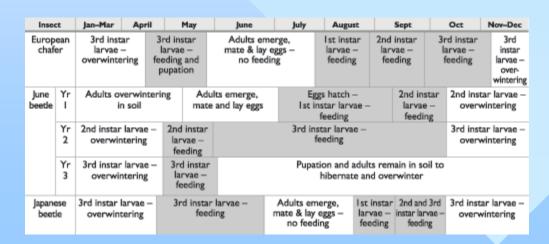
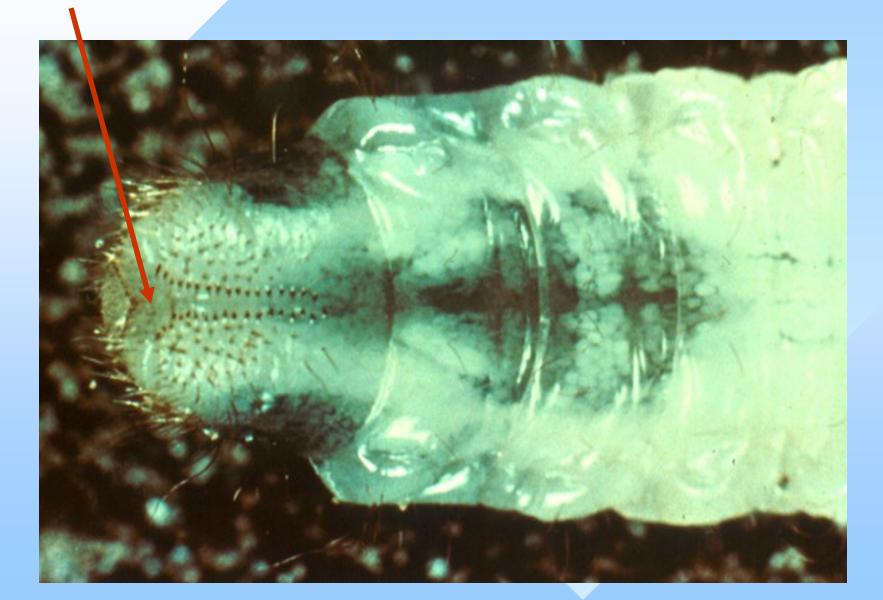


Fig. 3. Raster pattern of an Asiatic garden beetle grub



European chafers

- Active mostly in coastal areas of Maine
 - Bangor area has been heavily infested last 3 years
- Life cycle two weeks EARLIER than JB's
- Least sensitive to cold temperatures
 - Feeds all winter under snow covered grass
- Most damaging species (grub for grub)

Look for the extended "V"

Monitoring Grubs

- Most grub damage happens in September - October or April - May
- Turn over 1 sq. ft patch of turf, count grubs or Cup cutter plug (0.1 sq. ft.)
- Threshold:
 - Japanese beetles 8 15 / sq. ft.
 - European chafers 4 10 / sq. ft.
 - May / June beetles 3 8 / sq. ft.
 - These levels are doubled on irrigated turf

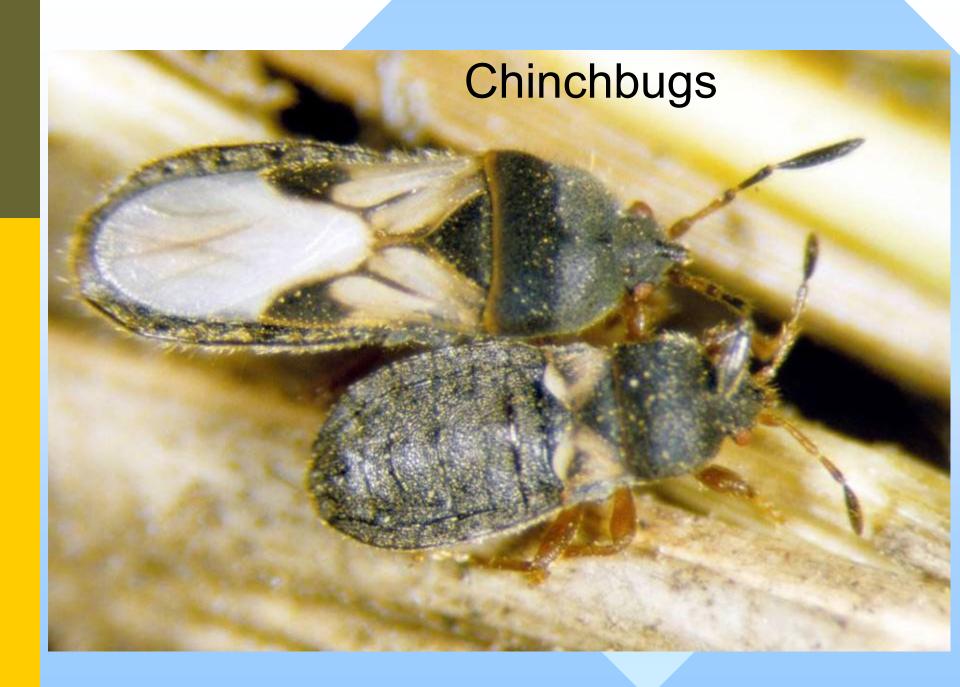
Cultural controls for grubs

- Avoid use of bluegrass
- Tall fescue may be more tolerant
- Let turf go dormant in July/August
- ³/₄ 1 ¹/₂ inches of water every 5-7 days
- High pressure water injection (done on golf courses)
- Core aeration may also help

Water reduces grub damage

- Water deeply ³/₄ 1^{1/2} inches per week
 - Don't water every day (use a rain gauge)
 - 1 2 times a week is best
 - Water early in the morning (to reduce disease)
- Light watering (Syringing) on very hot afternoons is also acceptable
- Avoid irrigation 24 hours prior to sporting events

Biocontrols for grub control


- Heterorhabditis bacteriophora nematodes
- Bt galleriae (GrubGone! G) Soil bacteria

Do Not use milky spore

https://www.maine.gov/dacf/php/gotpests/bugs/documents/nematodes-for-grub-control-maine.pdf

Hairy Chinch Bug

- Small (<1/4" long) red to black, white wings
- Adults and nymphs suck grass sap causing injury
- 1-2 gens/yr. Overwinters as adult in protected areas near turf.
- Damage: irreg. Yellow patches 2-3' diam. Usu. During hot dry weather in mid-summer & early fall (S. ME) or July (C. and N. ME). Looks like draught damage.

Chinch Bug Prevention and Monitoring

- Prevention: Irrigate regularly during hot, dry months
- Monitoring:
 - insert bottomless coffee can into turf, fill with water, poke turf w/stick.
 - Visual inspection esp. when turf seems to be under drought stress
- Threshold: 15 bugs/6" diam. can

Biological Control -Chinchbugs

- Endophytes
- Protect big-eyed bugs
- Beauveria bassiana???

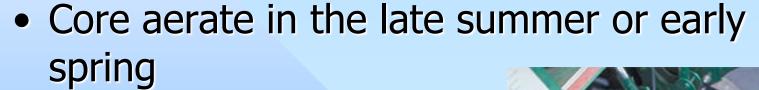
Big-eyed bug

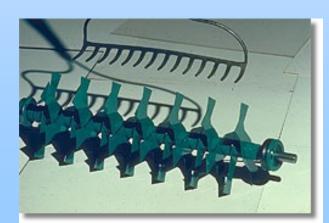
Insect Control Approach (BASIC STRATEGY - use resistant turf species and create deep root systems)

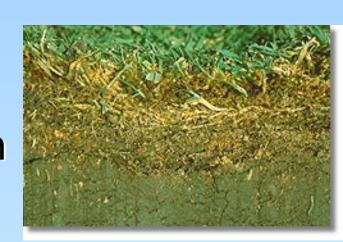
Fescues and Ryegrasses with endophytes are resistant to surface feeding insects.

 Endophytes also make grasses more disease resistant and help exclude weed competition

Morning Star


- High Endophyte level for natural insect resistance (+90%)
- Excellent disease resistance
- Beautiful, dark green color
- Fine leaf texture
- Superb summer and fall density
- Excellent drought tolerance
- Seeding rate: 6-8 lbs./ 1,000 sq. ft.


Cultural Control - Chinchbugs


- Use endophytic grass cultivars (fescues and ryegrasses)
- Minimize thatch Core aeration
- Avoid drought stress

Let it breathe

- Keep thatch under 1/2 inch
- Cut back on pesticide use

Core Aeration Guidelines

- Do not aerate during the heat of the summer
- Aerate when the soil is moist but not wet
- Leave cores on the ground and drag them in
- Seed bare areas at the same time as coring
- Irrigate after coring & dragging to facilitate recovery

Lawn disease management

- Avoid sod
- Improve air circulation
- Water in early morning only
- Reduce thatch with aeration
- Plant resistant varieties
- Convert shady areas to ground covers
- Apply nitrogen

Dollar Spot

Red Thread

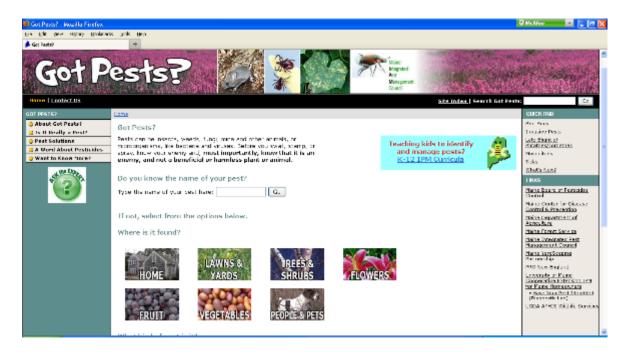
Brown Patch

Other disease-like problems

- Mushrooms
 - Buried wood
 - Infected soil
- Moss
 - Too wet
 - Too shady
 - Too acid
 - Too compacted
 - Low fertility
 - Scalping

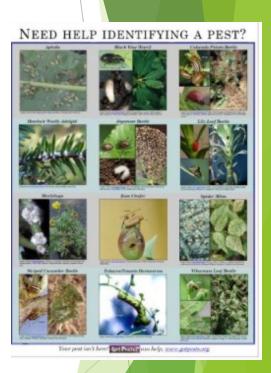
Vertebrate problems

- Birds
 - Starlings, crows, grackles
- Moles
 - Eastern or star-nosed
- Skunks, squirrels, raccoons



Identifying Pests and Beneficials

Gotpests.org


Bugs? Plant Diseases? Weeds? Critters? In Your Garden? Yard? Home?

www.GotPests.org

Maine Integrated Pest Management Council

Resources

- ► Maine Department of Agriculture, Conservation and Forestry Plant Health Division
 - Apiary Arborist Ginseng Horticulture Hemp • IPM - Programs 207-287-3891
 - ► https://www.maine.gov/dacf/php/index.shtml
 - Cooperative Extension: Insect Pests, Ticks, and Plant Diseases
 - ► 207.581.3880 or 800.287.0279 (in Maine)
 - <u>extension.diagnosticlab@maine.edu</u>

